
INTEGRATING PERFORMANCE ANALYSIS IN PARALLEL SOFTWARE

ENGINEERING

by

DAVID POLIAKOFF

A THESIS

Presented to the Department of Computer and Information Science
and the Graduate School of the University of Oregon

in partial fulfillment of the requirements
for the degree of
Master of Science

June 2015

THESIS APPROVAL PAGE

Student: David Poliakoff

Title: Integrating Performance Analysis in Parallel Software Engineering

This thesis has been accepted and approved in partial fulfillment of the requirements
for the Master of Science degree in the Department of Computer and Information
Science by:

Allen D. Malony Chair

and

Scott L. Pratt Dean of the Graduate School

Original approval signatures are on file with the University of Oregon Graduate
School.

Degree awarded June 2015

ii

c© 2015 David Poliakoff

This work is licensed under a Creative Commons

Attribution License

iii

THESIS ABSTRACT

David Poliakoff

Master of Science

Department of Computer and Information Science

June 2015

Title: Integrating Performance Analysis in Parallel Software Engineering

Modern computational software is increasingly large in terms of lines of code,

number of developers, intended longevity, and complexity of intended architectures.

While tools exist to mitigate the problems this type of software causes for the

development of functional software, no solutions exist to deal with the problems

it causes for performance. This thesis introduces a design called the Software

Development Performance Analysis System, or SDPAS. SDPAS observes the

performance of software tests as software is developed, tracking builds, tests, and

developers in order to provide data with which to analyze a software development

process. SDPAS integrates with the CMake build and test suite to obtain data about

builds and provide consistent tests, with git to obtain data about how software is

changing. SDPAS also integrates with TAU to obtain performance data and store it

along with the data obtained from other tools. The utility of SDPAS is observed on

two pieces of production software.

iv

CURRICULUM VITAE

NAME OF AUTHOR: David Poliakoff

GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED:
University of Oregon, Eugene, OR
Millsaps College, Jackson, MS

DEGREES AWARDED:
Master of Science in Computer Science, 2015, University of Oregon
Bachelor of Science in Computer Science, 2012, Millsaps College

AREAS OF SPECIAL INTEREST:
HPC, Parallel Computing, Performance Analysis

PROFESSIONAL EXPERIENCE:

Graduate Intern, Oak Ridge National Laboratory

Graduate Intern, Sandia National Laboratory

GRANTS, AWARDS AND HONORS:

First Place Student Paper Section, 2011 LA/MS Section of the Mathematical
Association of America

v

ACKNOWLEDGEMENTS

This work benefitted from extensive work on the parts of Professor Allen Malony,

Professor Mike Heroux, Dr. Jeremy Templeton, Dr. Karla Morris, Dr Lindsay

Erickson, and Sandia National Laboratory

vi

For Hadley

vii

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION . 1

II. MOTIVATION . 3

III. DESIGN . 5

IV. WEB INTERFACE DEVELOPMENT 9

V. IMPLEMENTATION . 13

VI. EVALUATION . 17

VII. FUTURE WORK . 23

VIII. CONCLUSION . 26

IX. REFERENCES CITED . 27

viii

LIST OF FIGURES

Figure Page

1 The components of the system, and the information they provide one
another . 5

2 The web interface showing a test in which performance bugs are
introduced and resolved . 12

3 The mechanisms by which the components of the system interact with
one another . 13

4 A TAU view of the different versions of the code 18

5 A stable git repository. Right now there is no automatic categorization
of ”interesting” and ”uninteresting” graphs, requiring additional user
work. 20

ix

.

.

.

.

.

CHAPTER I

INTRODUCTION

Modern computational software codebases are large. For example, Trilinos is a

project ”to develop algorithms and enabling technologies within an object-oriented

software framework for the solution of large-scale, complex multi-physics engineering

and scientific problems” [?]. It provides a broad array of functionality, from simple

C++ utility classes, to MPI wrapping functionality and distributed data structures,

to solver libraries directly usable by domain scientists to solve problems. It has

344 authors listed in its git repository, and over 3 million lines of code written

over years of development, with a need to be compatible with Fortran and support

C++11. It also must provide functionality for traditional CPUs as well as future

accelerators. Trilinos leverages the expertise of authors from the domain sciences,

database experts, web experts, and experts in many computational technologies.

All of this creates significant software engineering complexity simply to maintain

functionality, the Trilinos team has developed a system called TriBITS (Tribal Build,

Integration, and Testing System) to provide a software engineering framework which

manages this complexity. TriBITS does not provide an ability to track performance,

it is not possible to answer questions such as ”how has the performance of Trilinos

changed in the past year?”

MOAB is a piece of software out of Sandia National Laboratories built on top

of Trilinos. It has been in development for a little under two years, and is intended

to solve problems in fluid dynamics. It is built in C++, and has 34 thousand lines

of code written by four authors. It is developed by three mechanical engineers and a

computer scientist. This early in the development, changes to existing code happen

rapidly, functionality goes from being prototyped to being part of the codebase in

1

weeks. The team lacks the time to manually answer questions like ”how did my

change from using one Trilinos data structure to another impact all of the tests in

my test suite?”

Each of these teams lacks the ability to track how their performance is changing

without significant manual effort on the part of developers. They do have well

defined tests, they use the CMake system to build software, which includes the

CTest system to test software. They do use git to manage versions of their software,

giving information about who authored changes to the code and an author provided

summary of the changes they made. We leveraged these abilities to provide a way to

describe the state of the software, and developed a system to track the performance

of the software as it is developed. Moab and Trilinos were chosen as examples to

demonstrate the utility of this system.

2

CHAPTER II

MOTIVATION

This work is motivated by studies done on maintaining the functionality of

software systems. One canonical result in software engineering is that the time

between bugs being introduced and being discovered will drastically increase the cost

of maintenance (Boehm, 1988; Schofield, 2008). That is, if a bug is introduced to

software, discovered, and immediately removed, the cost is as simple as refactoring

the code causing the bug. If the bug stays in the code for years, other code which

relies on that bug might need to be refactored, this could be thousands of line of code

which are impacted by the bug. This has led to the development of systems which

monitor code bases for functionality bugs. CDash is a system which tracks bugs in

codebases as they are developed, the aim being to minimize the time to discovery of

buggy code.

A similar argument establishes the need to track the performance of code. If

a bug is introduced which doubles the runtime of a piece of code, and that bug is

immediately discovered and fixed, the cost is minimal. If the bug is introduced, sits

in the code for years and is only discovered then, all of the code which relies on it

might require refactoring. Worse, early code can establish the standard practices

for a codebase. In one example from the Moab team, early on we used Trilinos

to manage the distribution of data structures across MPI processes in our code.

We unknowingly started using a code path in Trilinos which added data to these

structures and immediately distributed those changes to other processors. We would

make these function calls repeatedly, without needing that data to be distributed

immediately. Moving to an idiom which added data to the data structure but only

distributed the data when necessary was a much faster process. Because we were

3

tracking our performance, we immediately noticed the problem, and did not use the

slower code path in other parts of the code. If we had not noticed the bug, we might

have made the same error in other parts of our code, drastically increasing the cost

of refactoring the bug out of the code. In fact, there have been project and domain

specific systems to track performance in the past (Pradel, Huggler, & Gross, 2014)

From canonical software engineering, we know that to resolve functionality bugs

immediately is to resolve them cheaply. If a bug is fixed before other code relies on it,

the fix is simpler. The same forces which cause these phenomena apply to performance

bugs as well. Further, these performance bugs can establish idioms which are used

in other places in the code, so the cost to fix scales not only with the code which

directly uses the buggy code, but with any other parts of the software which use the

idioms established in the buggy code. This is our motivation for introducing a system

which tracks performance, it is an attempt to allow users to quickly discover their

performance bugs in order to minimize the cost of bug fixing.

4

CHAPTER III

DESIGN

To understand the design of the system, it is beneficial to look at the kinds

of questions the system is intended to help answer. A programmer might want to

refactor a function and see how the performance of their tests is impacted. This

requires a few capabilities, described in Figure 1.

FIGURE 1. The components of the system, and the information they provide one
another

1. The ability to measure the performance of a test

2. The ability to define a consistent test which can be measured

5

3. The ability to know what changes were made to a piece of code

4. The ability to store all of these results

5. The ability to view all of these results

The first constraint in the system is slightly complicated in that it has to

be able to obtain performance data from a broad array of architectures. Modern

computational systems like Trilinos are intended to work on GPU and Xeon Phi, to

use MPI where appropriate, and to work with any future architectures that arise. In

particular, needing data from MPI is a significant constraint, as MPI runs on multiple

nodes of a supercomputer (Forum 1994). They also can use Fortran, C, or C++. This

constraint of needing performance data on a broad array of architectures was satisfied

by TAU (Shende 2006). Given an executable on most HPC architectures, TAU will

provide performance data for a run of that executable

However, on its own TAU only knows about source code and executables. As this

system is designed to analyze test which change over time, there is a need to be able to

associate an executable with a test. Further, there is a need to know the characteristics

of that test not present in the executable. Knowing whether a run of the test came

from a debug or release version of the code provides valuable information, comparing

performance data from builds which are not meant to be compared will provide faulty

data. The CMake/CTest system satisfied these constraints, CMake allows you to

define builds and tests (Martin & Hoffman, 2006). Further, it stores extensive data

about these artifacts in a format other tools can use.

However, CMake only defines a build and test. It can not provide data about

what the source code for a given test looked like eight code revisions ago. It only

provides data about the status of a test at a given point in the development process.

6

For this data the system relies on git. Git is a utility for tracking the changes made

to a project, which is a perfect fit for this constraint in the project. When changes

are made to a project, git tracks the specific changes, and also requires a message to

be added along with the changes to describe the revision (Chacon 2009).

With these three constraints satisfied, the types of questions we set out to answer

are answerable. CMake gives us tests, TAU gives us performance data, and git gives

us revision information. But all of this data needs to be extracted and stored. The

extraction will be described in the implementation section. For storage and correlation

of data from different sources, a database is ideal. TAU comes with its own database

system for tracking performance data (Huck 2005). In this design we extend the TAU

database to accept the information from these other sources and associate it with its

own performance data.

Finally, the need to view data is done through a modern web interface. In these

collaborative development teams information needs to be shared over distances and

the web is ideal for that. Further, there may eventually need to be an ability to

restrict certain data for confidentiality reasons, and this is a well explored problem

in web development. The details of this design are described in their own section.

This design was arrived at through a series of compromises. The biggest sacrifices

in the design were in the loss of automation and other convenience for the sake of

security, and in the choice of which displays of data to develop among the many

displays different teams might want to answer different questions.

One natural design would be to have a web interface which automatically speaks

to a database to provide data. This is a common practice. However, in a a national

lab environment, some data can not be shared, and some ports can not be accessed

remotely. Here we sacrificed the convenience of following standard practices in order

7

to maintain security, data is pulled from the database in a user-controlled way and

uploaded to a web server.

The greatest design decision that had to be made in all of this is which questions

to allow a user to answer. These decisions are discussed in detail in the next section,

interface development.

8

CHAPTER IV

WEB INTERFACE DEVELOPMENT

One issue that was immediately apparent was the volume of data this system

would produce, and the number of analyses that could be run on it. In one

brainstorming session with the Trilinos team, the authors thought of some views

we might want to support.

1. For a given test among possible thousands of tests, treat the commit history

as a timeline, and display the performance of various functions as the software

is updated. Include version control information for significant commits, with

commit messages included to explain the significant performance changes. This

was intended to provide a general view of the health of a given test across time

2. If a user clicks on a specific run anywhere in the interface, display the

performance data on that trial, including build characteristics, diffs on the file,

and the commit message associated with the change. This was intended to

answer any questions about a seemingly anomalous data point, if a test increases

in runtime by a factor of two, this should identify why.

3. For a given programmer of the software, how do their commits impact the

performance of the software? Who are the programmers providing the best

commits? Where is each programmer doing the best development? This is

intended to help map tasks to programmers. For instance, if one programmer

does great work on Zoltan2 part of the project and another does well in Stokhos,

this would be valuable information for a manager to know.

9

4. For a given function in the program among possible thousands of functions,

treat the commit history as a timeline, and show how the function has changed

its performance across the various CTest tests. This was intended to be used

by a developer who refactored a given function in order to figure out whether

their changes had a positive or negative effect

5. For a given commit, check its impact on the entire test suite. For each test,

how did the commit impact performance? Were there any functions which were

particularly impacted by the commit? These are the questions this view would

answer

6. Whole repository view. Given some weighting of test importance to

performance, provide an analysis of the health of the entire repository. This

is intended for a high level manager to be able to look at one page and get a

general overview of the health of the repository.

7. More tentatively, do multiple repository analysis. MOAB relies on Trilinos, is it

possible to provide views of how changes in Trilinos impact MOAB performance?

Is it possible to see how a change made in MOAB saw better performance of

Trilinos functions and share that data with other users of Trilinos?

There is a wide variety of data there, with a wide variety of possible displays.

We needed to be able to display this information to the user in an intuitive and non

overwhelming way. After a consultation with groups within the Trilinos project, as

well as conversations with other developers, we decided that the view which looks

at a test across time was the natural starting point. In listening to developers, the

questions asked were most frequently something along the lines of ”how has our ability

to do a given task our software is meant to accomplish changed over time?” As tasks

10

are often represented with tests, we settled on this view. We decided that the view

would show a given test. On top would be a table containing the most significant

commits that impacted the test, with their author, commit message, and change to

performance. This would allow a user to quickly see the biggest changes to a test.

For more in-depth information, we added a graph. This graph would plot various

functions in the test in different colors, with commits going along the X axis and time

spent in that function going along the Y axis. This allows you to see the performance

of various functions in the test over time.

Figure 2 shows part of the interface, the legend is large and is omitted. Here

we see the interface described in bullet point 1, with a timeline of commits, different

functions represented by different colors, and a table containing significant commits,

with one commit expanded to display the commit message. This interface is viewable

online, which demonstrates that it is easily shared with collaborators (Poliakoff

2015). The interface takes advantage of a number of web technologies, with Twitter

Bootstrap providing the look of the table, Polymer providing the ability to manipulate

the data stored in the table and graphs, and Dygraphs providing the graph itself. In

addition, standard JS/CSS/HTML/JQuery are used(Bidel 2015). This leads to an

interface that can be viewed by external collaborators, in languages that are familiar

to any web developers, providing extensibility and maintainability.

11

FIGURE 2. The web interface showing a test in which performance bugs are
introduced and resolved

12

FIGURE 3. The mechanisms by which the components of the system interact with
one another

CHAPTER V

IMPLEMENTATION

In this section we discuss how the above design choices were implemented. Figure

3 shows how the implementation is tied together, it is a lower level view than the

design. In short, various tools which provide data upload that data to a TAU database

modified to accept the data, queries are then run on that data to provide output usable

by a web interface designed to accept that data.

CHAPTER

13

DATABASE MODIFICATION

The most common organization of data in a TAU database is a hierarchy, with

applications containing multiple trials, and those trials being associated with the

various timers, counters, and metadata which TAU collects. For this work, TAU

needed some additional context, an ability to store and recognize the special data

being added to it by the other tools. First, a relationship was established between

these trials and version control information in a git repository, including an order in

which commits were applied. This allowed for questions such as what are the ten

functions behaving most differently from the last commit to this one? The database

also had to be aware of the CTest notion of tests, to answer questions like how did

the behavior of the test MultiplyMatrices change from the past commit to this one?

In addition, the CMake build characteristics needed to be specially identified so that

people could quickly ask questions like which build properties are different between

trial X and trial Y to ensure that any difference in data between two tests was caused

by changes to the code and not just different build flags.

Further, a set of customized queries was developed to answer some of the

questions this additional information exposes relevant data for. The database was

modified to allow the storage of data to answer the questions in the preceding

paragraph, but the data still needed to be filtered, grouped, and displayed in a

way that users would find sensible. This required a query which found the major

functions of a test and got their runtime across the different commits in the code

base. It also required the ability to observe a function across different tests across

different commits.

CHAPTER

14

CTEST MODIFCATIONS AND USAGE

At the beginning of this work, CTest lacked necessary functionality. Specifically,

it was not possible to run a command to operate on the results of a test. Adding in

this functionality was a simple patch. Now it is possible to tell the testing system to

run the commands to upload necessary created data to a database. The more useful

contribution made by the authors is the ability to respond to different test states, to

do something different based on whether a test passes or fails. Once this functionality

was in place, SDPAS had the functionality it needed. CTest knows about the results

of CMake, so we were able to tag the profiles created by a test with metadata from

the CMake build process. Further, we were able to obtain whether the test passed

or failed and avoid rewarding tests that failed quickly rather than passing slowly.

This part of SDPAS was valuable independently of the version control information,

the ability to reproduce builds and attempt to reproduce questionable performance

data is valuable for performance analysis. If a test shows an inexplicable change in

runtime it is now possible to recreate some of the features of the build to see whether

the result is repeatable.. Finally, the work of the TriBITS team in following version

control data inside CMake was leveraged to get version control information uploaded

to our own database.

Existing CTest functionality was essential to this system. CTest already provides

a way for users to express as test of the software, often getting performance data

was just a matter of increasing the problem size given to these tests or increasing

the number of MPI processes being used to solve a problem. This ability to have

comparable units to compare between commits was essential to SDPAS.

CHAPTER

15

GIT ENFORCEMENT OF PERFORMANCE MEASUREMENT

Thus far, everything about the system has focused on what it can do. One

issue often encountered in software engineering tools is that people will stop using

them at the first sign of inconvenience. A user could very well decide they wanted

to add functionality immediately and bypass the performance measurement. Some

development teams want this, but some may want rigorous enforcement of all commits

being analyzed. In the MOAB teams case, we wanted performance data on every

commit. Git provides hooks to allow actions to happen every time a commit is

pushed to a database, even to reject a pushed commit in the event the commit does

not conform to some policy of the maintainer of the repository. The MOAB team used

this functionality to ensure that every commit has tests run on it, and performance

data uploaded to a database. The Trilinos team sees such a volume of commits that

this approach was not desired, and so this functionality was not used.

16

CHAPTER VI

EVALUATION

Thus far, everything about the system has focused on what it can do. One

issue often encountered in software engineering tools is that people will stop using

them at the first sign of inconvenience. A user could very well decide they wanted

to add functionality immediately and bypass the performance measurement. Some

development teams want this, but some may want rigorous enforcement of all commits

being analyzed. In the MOAB teams case, we wanted performance data on every

commit. Git provides hooks to allow actions to happen every time a commit is

pushed to a database, even to reject a pushed commit in the event the commit does

not conform to some policy of the maintainer of the repository. The MOAB team used

this functionality to ensure that every commit has tests run on it, and performance

data uploaded to a database. The Trilinos team sees such a volume of commits that

this approach was not desired, and so this functionality was not used.

CHAPTER

MOAB

MOAB is undergoing rapid development, with new capabilities introduced every

day. This means that an ability to quickly detect performance bugs is essential, any

delay could lead to significant amounts of code being built on top of broken software,

leading to expensive bugs to fix. Figure 4 shows the resolution of one such bug.

Figure 1 showed a test in the MOAB suite at a time that represents the utility

of this kind of software. The expanded commit message is one where a team member

added functionality to the test. This increased the runtime by approximately 20

17

FIGURE 4. A TAU view of the different versions of the code

percent. Because this testing happens automatically, we saw this result the next day,

with only time for one more commit to enter the repository. With the legend, we

were even able to isolate which function was taking longer. we were able to call the

collaborator and ask whether this increase was expected. It wasnt, we looked with the

collaborator at those specific trials, and figured out which function was the problem.

Because we had the version control information and test name, we were able

to select these trials from the TAU database, and view them in TAU itself. In one

case, the problematic function is one called doPostsAndWaits. This is where Trilinos

distributes data in its data structures. We saw that this code was getting called

more, implying that we were distributing data more often than necessary. We looked

through the modified code, found where this was happening, and fixed it. Figure 4

shows this action, showing the performance of code before the introduction of a bug,

while a bug is in the code, and after the bug has been resolved.

There are a number of these small hills in the graph, in which a bug is introduced

and quickly fixed. Two of the surprising results of this work were how often these

18

performance bugs get introduced and how easy they often were to fix. Often users

would change code around the interface to a distributed object in Trilinos, the changed

MOAB code would use some slower Trilinos code. Fixing this would be as easy as

pointing it out and then moving to some quicker code in Trilinos. As mentioned in the

motivation, fixing these bugs early meant not building code on top of them, making

refactoring cheaper. It also meant we did not make the same mistakes in other parts

of the code. In the absence of this knowledge, the shapes of these performance graphs

could be a set of ever higher plateaus as buggy code is introduced, not fixed, and then

replicated elsewhere.

The system was largely effective in MOAB, commits happened slowly enough

and impacted a large enough portion of the code that every commit could be looked

at. Still, there were difficulties. Among them was the cost of detecting an insignificant

commit. Figure 5 shows a test of the very simple CommManager, a class in MOAB.

This code has not changed at all, the slight change in performance is attributable to

noise. Still, we had to verify it was insignificant by looking at these flat lines every few

commits. Future work would include an ability to pinpoint significant changes and

provide an alert to the user when they occurred. That said, the cost to the MOAB

team to use the system is fairly low, all of the data collection and publication are

automated, once the system is set up the only costs are in maintaining a TAU build

of the software and observing the interface.

CHAPTER

TRILINOS

The involvement with Trilinos was informative due to the wildly different needs

of the two teams. In the MOAB case, there was a team responsible for all of MOAB,

19

FIGURE 5. A stable git repository. Right now there is no automatic categorization
of ”interesting” and ”uninteresting” graphs, requiring additional user work.

20

and that was who we would talk with. In the case of Trilinos, there are a multitude

of packages developed by different teams with different goals. Further, it is a much

more active repository. This leads to an incredible volume of changing code.

The Trilinos work began after the MOAB work, so many poor design decisions

from the MOAB focused design were tested. Among these were a dropdown to select

tests that worked for MOABs 40 tests, but was obviously unworkable on the 700

Trilinos tests. It was possible to look through 40 tests and ignore the boring ones,

but manually scanning 700 tests is infeasible. The practice of testing every commit

was okay with Moab, which would have at most a few commits a day, but Trilinos

gets more than 10 commits a day. The MOAB team could focus on one build of

the software and be happy with the resulting data. Trilinos has teams which want

different build configurations, different customized instrumentations, some teams

want different builds of TAU or other underlying libraries. One place SDPAS initially

failed is working in this much larger environment.

One problem which remains is the tracking of different builds in the same

interface. If different people want to track different builds in SDPAS, they need

multiple SDPAS installs. Future work will involve finding ways to allow these multiple

builds in a single SDPAS install with obvious differentiation between different builds

in order to avoid invalid comparisons.

What has been solved is the problem of commit volume. For Trilinos, we have

moved to a nightly testing model. Each night the performance is tested, each morning

the performance is looked at. In cases where somebody finds tests of interest, they

can see all the commits made that night. If they are particularly interested in

what happened, they can even schedule a run of all the commits that night and

the graph will be populated with this additional data. The problem of scanning

21

700 tests was solved through a web library. Tests in Trilinos have names of the

form Package Subpackage Subpackage... CapabilityArea TestName. Autocomplete

libraries exist for web interfaces, these provide the ability to specify each underscore-

separated part of the name independently.

The problem of managing such large codebases is not completely solved.

However, even in this case users are able to follow tests of interest, or to track how

changes they made to code impacted various tests.

22

CHAPTER VII

FUTURE WORK

Much of the future work is mentioned as flaws in the current methodology. Work

needs to be done in identifying the difference between significant and insignificant

commits. This would significantly reduce the cost of observing performance. There

are a few possibilities. First is to simply use a threshold, and report all performance

shifts greater than that threshold. The issue with that is in large codebases, changes

can be slow but consistent. That is, there may not be a commit which changes runtime

by 25%, but there might be a number of commits in succession which each raise

runtime performance by 1%, leading to the same result. Theres also the possibility of

having tests which are meant to represent the health of the codebase as a whole, and

only run the full suite if those tests show change. Ultimately, the work of filtering

out insignificant commits has solutions, the main stumbling block is in picking the

solutions users can agree on.

Another related flaw is in the handling of noise in performance data. Currently

the way this works is that if the user sees a significant performance change, they

can manually rerun the test and see whether the result was noise or significant. The

system captures information about the CMake build, so it is possible to redo old

builds. If the previous problem of identifying significant commits were solved, this

would be a valuable bit of work.

Of great interest is the ability to provide richer information to users out of this

data. The possibilities in this area are extensive.

1. Currently the work focuses exclusively on analysis at runtime and tying that

back to commit messages. No work was done in tying the changes back to

23

actual code. That is, if the system sees a change in function MultiplyMatrices

at a given commit, there is no investigation of the contents of the diff for that

commit in MultiplyMatrices.

2. The move into analyzing multiple repositories that depend on one another has

not started. That is, if Moab and Albany both rely on Trilinos, it would be

interesting to inform members of Albany about how changes in Moab reduced

their runtime in Trilinos. This sharing of expertise among users of a library

would be valuable to the computational science community

3. Moving the other direction, it would be nice if Trilinos knew that Moab

used it, and could have information about how changes to Trilinos impacted

performance in Moab.

There is a lot of research that can be done in this area.

Additional work is in a tighter integration with git. Currently, the system looks

at commit messages. Git also provides the ability to look at differences in source

code between versions. So we can know that a given commit increased time in

MultiplyMatrices, but do not know the source code changes to MultiplyMatrices

without moving back to using git from the command line. This tighter integration,

with views into the source code itself, would allow for the study of these performance

artifacts in greater detail. There is a large space for automated performance analysis

to be done on this, if we see that one code which moves from using fast code paths in

Trilinos to slow ones suffer, we could warn other code bases when they make similar

moves. Much of the future potential of this project is in deeper reasoning about the

source code being developed, tied to analysis being done over multiple repositories in

order to share knowledge between development teams.

24

Finally, one issue which did not come up in either Trilinos or Moab but which

will certainly come up in the future is the definition of test used in SDPAS. Currently

a test is a single run of an application. Scaling tests are common in computational

science, the ability to reason about how scaling changes over time would be valuable.

More generally, providing greater flexibility in how users define tests would allow for

a greater variety of software to use this system.

25

CHAPTER VIII

CONCLUSION

Currently, high performance computing teams lack a way to analyze how changes

to their software impact performance. In this thesis we described a system called

SDPAS to track performance. The modifications necessary to the component systems

were described. The utility of various views of changes in performance in software

developed were described. We observed the use of the system on two different

applications, Moab and Trilinos. While the test did show the value of observing

performance in software development processes, many future areas of research were

discovered.

26

CHAPTER IX

REFERENCES CITED

Heroux, M. (2015). The Trilinos Project. Retrieved June 8, 2015, from

http://trilinos.org/

Schofield, J. (2008). Security-Enhanced Quality Assurance, Testing and Project

Management. 7th Annual QAI&QAAM Regional Conference.

Boehm, B., & Papaccio, P. (1988). Understanding and controlling software costs.

IIEEE Trans. Software Eng. IEEE Transactions on Software Engineering, 1462-1477.

Martin, K., & Hoffman, B. (2006). Mastering CMake: Updated for CMake

version 2.2. Clifton Park, New York: Kitware.

Shende, S. (2006). The Tau Parallel Performance System. International Journal

of High Performance Computing Applications, 287-311.

K. A. Huck and A. D. Malony (2005). Perfexplorer: A performance data

mining framework for large-scale parallel computing. 2005 ACM/IEEE conference

on Supercomputing

M. P. Forum (1994) Mpi: A message-passing interface standard.

Chacon, S. (2009). ¡i¿Pro Git¡/i¿. Berkeley, CA: Apress

Poliakoff, D. (2015). Git Performance Viewer. Retrieved June 8, 2015, from

http://nic.uoregon.edu/ poliadz/dist/tableImage7.html

Pradel, M., Huggler, M., & Gross, T. (2014). Performance regression testing of

concurrent classes. ¡i¿Proceedings of the 2014 International Symposium on Software

Testing and Analysis - ISSTA 2014¡/i¿.

Bidel, E. (2015). Polymer - Welcome. Retrieved June 8, 2015, from

https://www.polymer-project.org/

27

