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Abstract—Distributed Denial-of-Service (DDoS) attacks
continue to pose a significant threat to the availability of
Internet services, which are increasingly poorly equipped
to face the growing scale and frequency of such attacks.
Moreover, since attackers continue to discover and quickly
exploit new attack vectors, the variety of DDoS attack
types continues to grow, posing yet another obstacle to
those seeking to defend against these attacks. On the
other hand, in the midst of an ongoing DDoS attack, the
victim of the attack has the unique advantage of having
the most knowledge about the specific traffic patterns
present, which the victim can leverage to generate highly
effective traffic filtering rules. Herein we first identify and
describe a fundamental trade-off that exists between a set of
rules’ coverage of attack traffic, potential collateral damage,
and resource consumption. We then describe a systematic
method by which a DDoS victim may generate traffic-
filtering rules while adhering to the victim’s constraints,
thereby allowing a highly individualized defense to be
deployed. Our proposed method relies on a unique tree-
based data structure along with a set of heuristic algorithms
for efficiently generating rules in real time. We evaluate our
rule generation procedure via simulated replay of three
real-world DDoS attack traces, and show that we can
generate rules with high efficacy towards filtering DDoS
traffic, while satisfying the victim’s constraints.

I. INTRODUCTION

Distributed Denial of Service—or DDoS—attacks
continue to pose a major threat to the reliability and
availability of critical Internet infrastructure. Especially
due to the expanding availability of high-speed Internet
access, attackers are increasingly able to carry out attacks
that consume extremely large amounts of bandwidth,
in turn making defense a progressively more difficult
prospect. Another element that contributes to the diffi-
culty of DDoS defense is that many different forms of
this attack exist, all of which achieve a similar result,
though by employing slightly different methods. This
wide variety of different DDoS attack methods serves as
an additional barrier to effective defense methods, and
all but precludes the use of static signature-based DDoS
defense mechanisms.

Since DDoS attacks typically display highly dynamic
behavior, equipping a DDoS victim with the ability
to quickly and dynamically react to such attacks by
generating accurate and effective traffic filtering rules can

be advantageously leveraged to enable a novel DDoS
defense system, capable of dynamically adapting to
changes in attack patterns. Here, the high-level goal is
to filter out or drop any DDoS traffic that traverses a
particular network. The filtering strategy used to achieve
this goal may be simple or complex, and may be enforced
in many different ways, but regardless of the specific
mechanism used to implement DDoS filtering, a common
feature is the use of rules, where in this context, a rule
is simply an action, e.g., “drop”, that is associated with
a set of values that describe the traffic to which the rule
should be applied. A simple example is a rule to drop
all traffic destined to a particular port number.

In order to have the desired effects, these rules must
be deployed on the actual network hardware in locations
through which the DDoS traffic travels. Ultimately, in
order to process traffic and apply the appropriate rules
to the matching traffic at line-speed, these network de-
vices are necessarily constrained in the number of rules
that they can accommodate. Thus, available rule space,
which we define as the constraint on the number of rules
that can be accomodated, can quickly become a precious
resource. In this project, we examine the resource allo-
cation problem that arises from this situation.

As an example, consider a network administrator who
wants to drop all traffic originating from addresses that
appear on a blacklist. The simplest solution is to deploy
a set of rules containing a “drop” rule for each address
on the blacklist, but the size of this list, along with con-
straints on available rule space, may make it infeasible
to deploy this set of rules effectively. In this case, the
administrator may wish to replace the set of rules with
a smaller set of rules that will still have the same effect
of dropping all traffic from the blacklisted addresses.

This scenario becomes more complex if the network
administrator decides that dropping traffic from all of the
blacklisted addresses is not necessary if, for example,
traffic from 90% of the blacklisted addresses can be
dropped with a drastically smaller number of rules.
Alternatively, the administrator may allow some small
amount traffic that does not appear on the blacklist to also
be dropped if it allows this policy to be enforced using
a smaller number of rules. Many similar situations exist,



from which multiple questions arise. For instance, what
is the minimum number of rules required to describe
a specifically defined class of traffic? Given a blacklist
of attacker addresses, what is the maximum number of
blacklist addresses that can be dropped given specific
resource constraints (i.e., limited rule space)?

Contributing to the difficulty of this problem is the
observation that common formats for describing flow-
level network traffic, e.g. OpenFlow, offer a rich format
by which Internet traffic can be described using nearly
any packet header value, across nearly all Internet pro-
tocol layers. Thus, in this context the victim of a DDoS
attack has a surfeit of options for how to best describe
the malicious attack traffic. Therefore, after first deciding
what traffic it would like to have filtered, the victim must
also decide how to describe this traffic.

In this work, we focus on how to generate a set of
traffic engineering rules optimally in one of four rele-
vant dimensions, and according to certain user-defined
constraints. We achieve this using a systematic rule
generation procedure which we have developed, the
description of which makes up the majority of this paper.
At the core of our generation procedure is a unique
tree-based data structure, along with three polynomial-
time heuristic-based algorithms (Section IV) that pro-
duce workable solutions to the NP-complete optimization
problems described in Section III.

II. OVERVIEW

The goal of this project is to generate a set of traffic
engineering rules for the purpose of DDoS filtering,
according to certain user-defined parameters. This rule
generation problem is essentially a question of resource
allocation, where the resource in question is rule space,
e.g., flow table entries, or space in traditional forwarding
tables. More specifically, given descriptions of the DDoS
traffic, as well as descriptions of any traffic that is known
or suspected to be benign, how may we generate a set of
rules that result in dropping the DDoS traffic and not the
benign, while requiring no more than a minimal amount
of rule space?

We begin by requiring two mutually exclusive classes
of traffic, which we call targeted, and protected. We
refer to this traffic collectively as classified or labeled
traffic. Here, we consider the targeted traffic to be the
DDoS traffic, which the user desires to drop. In contrast,
the protected traffic consists of any traffic that the user
wants to preserve, i.e., which the user does not want to
drop. In addition, we consider a third class of unknown
traffic, defined as any traffic that does not fall within
the previous two classes. This unknown traffic may be
covered by the generated rules if necessary. Note that the
union of these three sets of traffic comprises all possible
Internet traffic.

Thus, generally the goals of the rule generation pro-
cedure are to generate a set of rules of a specified
size that will effectively drop some portion of the tar-
geted traffic, while only affecting a limited portion of
the protected traffic. To quantify how well a set of
rules meets these goals, we define coverage, collateral
damage, and potential collateral damage to be the
amount of targeted traffic, protected traffic, and unknown
traffic covered by the generated rules, respectively. Put in
these terms, the high-level objectives of rule generation
are thus to maximize coverage and minimize collateral
damage, potential collateral damage, and the size of the
ruleset.

(As a brief digression, note that we may also begin
with a set of existing rules, and merely extract the traffic
described by the rules to serve as the targeted traffic, and
consider all other traffic to be protected. In this case,
or any case where only the targeted traffic is provided,
there is no distinction between the classes of unknown
and protected traffic, and thus no difference between
collateral and potential collateral damage.)

Ideally, we would like to generate the smallest set of
rules that provides 100% coverage, no collateral damage,
and no potential collateral damage. These objectives are
not independent, however, and often we must compro-
mise one objective in order to optimize for the other.
For example, in order to keep the size of the ruleset
within some constraint, we may allow the potential
collateral damage to become higher if that in turn lowers
the collateral damage, since we may care less about
unknown traffic than protected traffic; or, we may allow
less than complete coverage if necessary to ensure that no
collateral damage occurs. Of course, in the trivial case,
if no constraint is imposed on the number of rules, or if
the constraint is relatively high, then a set of rules may
be generated that covers all targeted traffic, i.e., 100%
coverage, and causes no collateral damage or potential
collateral damage. On the other hand, when a sufficiently
stringent constraint is imposed on the number of rules, it
remains possible to generate a smaller number of broader
rules that still cover all of the targeted traffic, but at the
expense of also covering protected or unknown traffic,
thus incurring collateral or potential collateral damage,
respectively.

Note that the strategies we have described above
represent only a few among many viable options for
many varied scenarios. One could also, for example,
choose to optimize toward a minimal number of rules,
while keeping coverage, collateral damage, and potential
collateral damage within certain bounds instead. We do
not claim any specific strategy to be superior in all
scenarios, and in fact, generation of traffic engineering
rules with regard to specific objectives merely reflects a
different set of priorities on the part of the user, and thus



diverse strategies may become equally valid, depending
on the circumstances.

We conclude this section with an example, wherein the
DDoS attack victim first decides what traffic to filter by
classifying received flows as either “attack” or “benign”.
These classified flows then become the input to the
rule generation procedure, and based on these flows the
victim may then construct a set of rules, each of which
describes traffic in terms of one or more packet header
field values, and further defines the action that should be
taken when a match occurs. Clearly, the effectiveness
of this type of defense hinges on the victim’s ability
to generate rules that actually match the attack traffic
(i.e., high coverage). Moreover the victim should also
desire to prevent collateral damage, which is caused in
this context by any benign traffic that is covered by a
set of filtering rules. Finally, the victim must also be
aware of the cost of deploying these rules, which we
measure by the size of the set of rules. Therefore, here
the objective is to generate rules with maximal coverage
and minimal collateral damage with a minimal number
of rules. In a context such as this, and especially if the
DDoS victim has only limited rule space with which to
defend, the optimization of the defense rules towards
the victim’s specific defense requirements may enable
a more effective defense to be implemented with lower
rule space requirements.

The algorithms for rule generation that we describe
in Section IV are responsible for generating a set of
rules that are optimized towards maximum coverage,
minimum collateral damage, or a minimum number of
rules, while meeting whatever constraints are imposed,
whether they be constraints on the maximum size of the
ruleset, the maximum amount of acceptable collateral or
potential collateral damage, or the minimum amount of
coverage.

III. PROBLEM FORMULATION

Now that we have discussed the context and motivation
for this work, and provided a high-level overview of the
problem, we continue with a formal definition.

A. Assumptions

As described in Section II, we assume the user
posesses a set of traffic flows classified into two mu-
tually exclusive classes to serve as the input to the rule
generation procedure. Here a traffic flow is a sequence
of packets belonging to a specific TCP/UDP connection
or simply all packets sharing certain common properties
(e.g., all packets from a specific source to the IP of
the user’s machine, or more generally all packets that
share a common sequence of bits in the TCP/IP header
or payload).

B. Rule Generation Procedure Overview

The basic goal of the rule generation procedure is
to transform an input of classified traffic flows into
set of traffic engineering rules that meet user-defined
constraints. Here, we now formally define this goal, as
well as the form that these constraints may take.

The rules in question describe traffic based on TCP/IP
header fields of the traffic or byte patterns in their pay-
loads. Some of these fields are by nature aggregatable in
that a single value in a rule may match multiple patterns.
Examples are the source IP address, the destination IP ad-
dress, or the payload. For example, assuming m rules can
match traffic based on m different source IP addresses
ai or m different payload patterns pi (i=1,...,m), if we
can aggregate these m addresses or payload patterns into
a single source IP address prefix A or a single payload
pattern P , i.e., A = ∪mi=1ai and P = ∪mi=1pi, we can
use one rule based on A or P to replace all m rules,
thus making it possible to obtain a smaller number of
rules. Other fields are non-aggregatable, such as the
protocol field (TCP or UDP), source port, destination
port, time-to-live (TTL), and Type of Service (TOS).
For instance, given m rules that apply to m different
source port numbers, there is no single value—and thus
no single rule—that can match all m port numbers, thus
preventing any reduction in the size of the rule set.

We thus focus on the aggregatable fields of labeled
traffic flows to generate rules, since the non-aggregatable
fields provide no room for optimization. For example,
a rule to block all UDP traffic to DNS port 53 is
already optimal in terms of number of rules (one), as
is a rule to drop any traffic whose TOS field matches
some value. Clearly this variety of rules is already easy
to produce and efficient to enforce. Thus, we proceed
to the aggregatable fields and perform our optimization
over these fields.

C. Problem Formulation

We formulate the problem of rule generation as fol-
lows. For a given rule r, we define b(r, T ), g(r, T ), and
u(r, T ) to be the coverage, collateral damage, and poten-
tial collateral damage of rule r, respectively. They repre-
sent the amounts of targeted traffic, protected traffic, and
unknown traffic that r matches from traffic set T , respec-
tively. As such, if we have a set of rules R={ri|i=1, . . .,
n}, where ri is a rule, we have b(R, T )=

∑n
i=1 b(ri, T ),

g(R, T )=
∑n

i=1 g(ri, T ), and u(R, T )=
∑n

i=1 u(ri, T ) to
represent the coverage, collateral damage, and potential
collateral damage of the rule set R, respectively, when
applied to the set of traffic T . We may now define the
rule generation problem as a following multi-objective
optimization problem:

How may we generate a set of rules R={ri|i =
1, ..., n} such that among all possible sets of rules, R



has the minimal g(R, T ), minimal |R|, and maximal
b(R, T ) for a given set of traffic T?

We tackle this multi-objective problem using the ε-
constraint method [9]. We develop an a priori method
which allows the user to first express her preferences on
the lower bound of coverage and the upper bound of
collateral damage, potential collateral damage, and the
number of rules to generate. We then scalarize this multi-
objective optimization problem by formulating multiple
single-objective optimization problems, which become
the basis for our rule generation procedure. Finally
we use heuristic-based algorithms to produce workable
solutions to each of these problems in polynomial time.

Assuming the user’s preference for the lower bound
on coverage of targeted traffic is B, the upper bounds
on collateral damage is G, and the upper bound on the
number of rules that can be generated is M , we define
four single-objective optimization problems as follows:
• Problem 1: For a given set of traffic T , output a set

of rules R={ri|i = 1, ..., n} that minimizes g(R, T ),
whereas b(R, T )≥B and |R|≤M ;

• Problem 2: For a given set of traffic T , output
a set of rules R={ri|i = 1, ..., n} that maximizes
b(R, T ), whereas g(R, T )≤G and |R|≤M ; and

• Problem 3: For a given set of traffic T , output a
set of rules R={ri|i = 1, ..., n} that minimizes |R|,
whereas g(R, T )≤G and b(R, T )≥B.

IV. ALGORITHMS

In this section, we first describe the F-tree, which is
the fundamental data structure used for rule generation.
We then describe our rule generation algorithms, which
operate on the F -tree to generate rule sets that meet the
criteria defined in Section III. Finally, we describe how
we repeatedly employ these algorithms in real-time to
dynamically generate rules over the course of a DDoS
attack.

A. F -tree

We now introduce a data structure called the F -tree,
and describe how a user can initialize its F -tree based on
labeled traffic flows. We use an F -tree to discover how
the values in an aggregatable field, which we denote as
F or F -field, may aggregate from the bottom up in a way
that satisfies the objective and meets the constraints of
the rule generation problems. Although our design can be
easily extended to non-binary trees, for simplicity below
we assume F -tree is a binary tree. Figure 1 shows an
example F-tree.

Every node on the F -tree has five associated values:
• p: A prefix of an F -field value, which we also call

an F -prefix. Every node is associated with a unique
p. Nodes with F -prefix of the same length are on
the same level of the tree.

• S: a set of traffic flows that share a common F -
prefix p;

• b: the amount of targeted traffic from S, where the
amount can be in terms of bytes, packets, or TCP
or UDP connections;

• g: the amount of protected traffic from S; and
• u: the amount of unknown traffic from S.
Every node N with a set of child nodes c1, ..., cn (in

a binary tree n is 1 or 2), derives five values from those
of its children:
• N.p = prefix({c1.p, . . . , cn.p}), where
prefix() is a function to extract the longest (i.e.,
the most specific) prefix from a set of prefixes;

• N.S=∪ni=1(ci.S)
• N.b=

∑n
i=1(ci.b)

• N.g=
∑n

i=1(ci.g)
• N.u=

∑n
i=1(ci.u)

(b3,0,0) (0,g3,0)

(b3,g3,0) (b2,g2,0)

(b3+b2,g3+g2,0) (b1,g1,0)

(b3+b2+b1,g3+g2+g1,0)

/25 /25

/24 /24

/23 /23

/22

A B

C D

E F

G

Fig. 1. An example F-tree where every node represents a source
address prefix. Below every node is the length of its address prefix
and next to every node is its (b, g, u) values.

The F -tree has several interesting properties pertaining
to rule generation:
• We map every node N to a rule dictating to apply

the appropriate action to the traffic whose F -field
matches N.p. Applying this rule to N.S results in
coverage of N.b, collateral damage of N.g, and
potential collateral damage of N.u.

• If two sibling nodes are both chosen, representing
two rules, their parent node should be used instead
to derive simply one rule, without affecting the
coverage, collateral damage, and potential collateral
damage.

• If a node is chosen to derive a rule, none of its
descendants should be used to derive a rule.

B. Rule Generation Algorithms

In order to generate rules, the user will first use labeled
traffic flows to populate an F-tree and then use the F-tree
to derive rules that solve the rule generation problems
listed in Section III-C.

We employ a simple top-down procedure to populate
the F-tree based on labeled traffic flows, whereby the



value in each flow’s F -field (e.g., the address for an F-
tree of source addresses), describes the path from the
tree’s root to a leaf node, say L, on the F-tree. L.p is
then the value in the F -field (i.e., L.p is the longest prefix
of the value), L.S is the set of all flows that share this
prefix, and L.b, L.g, and L.u are the sum of the amount
of unwanted (bad), protected (good), and unknown traffic
in L.S, respectively.

After the F-tree is initialized, the fundamental step is
called the aggregation step. In this step we replace leaf
nodes with their first common ancestor node (which has
the longest shared prefix among all ancestors), where the
leaf nodes can be two sibling leaf nodes, or a single leaf
node without a sibling, or two adjacent leaf nodes that
are not siblings—sometimes not even at the same level.
(For the first two cases the ancestor node is simply the
parent node of the leaf node(s).) With an aggregation
step, all descendants of the ancestor will be pruned from
the F-tree, and the ancestor node becomes a new leaf
node. An aggregation step can be of two types: a clean
aggregation step where the g-value and u-value of the
ancestor node are not greater than those values of nodes
being replaced, and a dirty aggregation step where they
are. Clearly, a clean aggregation step will not introduce
extra collateral or potential collateral damage, but a dirty
aggregation step will.

We apply the aggregation step on the F-tree repeatedly
to determine which nodes to use to produce rules. First,
we apply a set of clean aggregation steps over all leaf
nodes recursively until no clean aggregation can be done.
We also call this process a clean pruning process.

We then run a loop process. First, we determine if a
subset of leaf nodes of the current F-tree can be used to
derive rules that satisfy the constraints; if so, we have
met the stopping condition and we then use the leaf
nodes to derive rules; if not, we select and conduct a
dirty aggregation of two adjacent leaf nodes, followed
by the clean pruning process to evolve the F-tree, and
then go back to the beginning of the loop.

The stopping condition and the heuristic by which we
select which dirty aggregation to perform are both depen-
dent on which single-objective optimization problem we
seek to solve (Section III-C). Specifically, for problem 1,
the stopping condition is to check if in the current F-tree
there are M nodes or fewer whose sum of b values are no
less than B, and we will apply the dirty aggregation that
results in introducing the least extra collateral damage.
For problem 2, the stopping condition is to check in the
current F-tree there are M nodes or fewer whose sum
of collateral continues to stay within the constraints; if
not, we must perform a dirty aggregation and we choose
the dirty aggregation that brings the smallest decrease of
the coverage without violating the constraints. Finally,
for problem 3, the stopping condition is to check if

we can conduct a dirty aggregation to further decrease
the number of rules while ensuring the coverage and
collateral damage remain within the constraints; if so,
we choose the dirty aggregation that results in the largest
number of leaf nodes pruned (i.e., decreases the number
of rules the most) without violating the constraints.

Algorithm 1 Minimize Collateral
procedure MIN-COLLATERAL(T, b,m)

R← leaf nodes l of T with l.b > 0
while True do

if |R| ≤ m then
break

end if
if bsum ≥ b then

R← top m nodes, sorted by b
break

end if
A← {lca(ri, ri+1) for ri ∈ R}
Amin ← ancestor with minimum g
R← R ∪ {Amin}
R← R− {descendants of Amin}

end while
return R

end procedure

Algorithm 2 Maximize Coverage
procedure MAX-COVERAGE(T, g,m)

R← leaf nodes l of T with l.b > 0
while True do

gtotal ←
∑
ri.g for ri ∈ R

A← {lca(ri, ri+1) for ri ∈ R}
G∆← {gtotal from ai for ai ∈ A}
Avalid ← {ai ∈ A | gi.g ∈ G∆ ≤ gtotal}
if length(Avalid) = 0 then

break
end if
Afinal ← ancestor with largest b value
R← R ∪ {Afinal}
R← R− {descendants of Afinal}

end while
R← top m rules by b value
return R

end procedure

C. Dynamic Rule Generation

In most cases, after a set of rules has been gener-
ated and deployed, the victim may continue to receive
additional unwanted traffic. Thus, the victim continues
to label traffic, insert newly labeled traffic flows to its
F-tree, and run algorithms above to derive new rules,
all repeatedly at a fixed interval. At each time interval,



Algorithm 3 Minimize Number of Rules
procedure MIN-RULES(T, g, b)

R← leaf nodes l of T with l.b > 0
while True do

R← R sorted by numeric value
gtotal ←

∑
ri.g for ri ∈ R

btotal ←
∑
ri.b for ri ∈ R

A← {lca(ri, ri+1) for ri ∈ R}
G∆← {gtotal from ai for ai ∈ A}
B∆← {btotal from ai for ai ∈ A}
R∆← {|R| from ai for ai ∈ A}
if length(A) = 0 then

break
end if
A← A sorted by corresponding R∆ value
for ai ∈ A do

if (gi ≤ gtotal) and (bi ≥ btotal) then
R← R ∪ {Ai}
R← R− {descendants of Ai}
break

end if
end for
if no aggregations are made then

break
end if

end while
R← R sorted by b value
btotal ←

∑
ri.b for ri ∈ R

for ri ∈ R do
if (btotal − ri.b) ≥ b then

R← R− {ai}
btotal ← btotal − ai.b

end if
end for
return R

end procedure

a new set of rules R′ is generated, and by comparing
R′ to the previous interval’s rules R, we arrive at the
following sets: R − (R ∩ R′) are rules that must be
revoked, R′ − (R ∩ R′) are new rules to be deployed,
and (R ∩R′) are rules that will remain deployed.

The values of b, g, and u are updated at each time
interval according to any newly received traffic flows,
and we use an exponentially-weighted moving average
to determine the final values of b, g, and u. In this way,
these three values decay over time, effectively allowing
the rules to time out. For example, if no new traffic is
received from a particular unwanted source s, either be-
cause a generated rule is completely effective in blocking
traffic from s, or because the source s ceases sending
attack traffic, the b associated with the corresponding
node on the F -tree will decay over time, and the rule

will eventually be revoked. On the other hand, if s
continues to send attack traffic after the corresponding
rule has been revoked, the victim will receive it and will
once again generate a rule to block traffic from s. The
exponentially-weighted moving average thus provides
the best prediction of what future traffic will arrive, based
on the traffic that has already been received. Ultimately,
this process results in a set of rules that reflects the
most up-to-date information available about what traffic
to filter, thereby more effectively utilizing the victim’s
rule budget.

V. EVALUATION

A. Methodology

To evaluate the rule generation algorithms described
in Section IV, we first examine a single round of rule
generation, where we apply each algorithm in turn to
a set of 1000 randomly generated bit strings of length
32. Note that for evaluation purposes, these bit strings
may be thought of as either source IP addresses, or the
first four bytes of IP packet payloads. For this static
evaluation, and for each algorithm, we vary the two
constraints across all possible values, e.g., we vary the
constraint on minimum coverage b from 0, representing
no coverage of the attack traffic, all the way to 1,
which similarly represents complete coverage. Then, we
study the value of the objective, e.g., for problem 1,
the objective of which is to minimize collateral damage,
we vary the constraints b and m, and then measure the
collateral damage for each set of rules resulting from
each combination of b and m.

Next, we examine our rule generation algorithms
in a dynamic setting, by performing three case stud-
ies, wherein we apply the procedure described in sec-
tion IV-C to real-world DDoS attack traces, and mea-
sure all relevant metrics over the course of the attack.
We show that our rule generation procedure accurately
generates rules that meet the specified constraints, and
we further demonstrate that for three distinct attacks,
our rule generation procedure generates rules that remain
effective in the face of quickly shifting attack dynamics.

B. Static Evaluation

We first examine the algorithm for problem 1 de-
scribed in Section IV. The goal of this algorithm is to
minimize the collateral damage, subject to constraints
on coverage and number of rules. Figure 2 shows how
the coverage, collateral damage, and number of rules
vary according to the values of the minimal coverage
B and the maximum number of rules M . For these
figures we have normalized all axes except M to range
between 0 and 1. These figures show that we achieve
100% coverage of the targeted traffic with a rule budget
M that achieves a significantly smaller rule set, as long



as the minimum coverage (B) is not too high. Collateral
damage is indeed minimized, and is zero in most cases.
When B is high and M is low, some collateral damage is
incurred, since the only way to cover a large percentage
of targeted flows with a relatively small number of
rules is to allow some collateral damage to occur. This
exemplifies the basic tradeoff inherent in this problem.

Next, we continue our evaluation by examining our
algorithm for problem 2 described Section IV. Here, the
goal is to maximize coverage, while satisfying constraints
on the maximum number of rules M and the maximum
amount of acceptable collateral damage G. We vary the
values for G and M and examine the coverage, collateral
damage, and size of the resulting ruleset. As shown in
Figure 3, we see that 100% coverage is achieved easily,
except when G and M are both low. In these cases,
however, the coverage is still maximized, but is subject
to the stringent constraints on G and M .

We now examine our algorithm for problem 3, wherein
the objective is to minimize the size of the ruleset
R, while keeping the collateral damage and coverage
within the constraints defined by G and B, respectively.
Similarly to the previous case, in figure 4 we vary the
values for G and B, and record the size of the resulting
ruleset. As expected, the smallest resulting ruleset results
from the cases where B is relatively low, or where
G is relatively high, or both. When B approaches a
normalized value of 1.0, this represents the requirement
that nearly all of the targeted traffic must be covered by
the set of rules. If this is the case, and the value of G is
high, then a small number of rules can still be obtained by
introducing a large amount of collateral damage via dirty
aggregation. On the other hand, when B remains high,
but the value of G approaches 0, very little reduction is
possible in the size of the ruleset, since very few (if any)
dirty aggregations are possible due to the tight constraint
on collateral damage.

C. Dynamic Evaluation

1) Case Study 1: CAIDA2007: The first attack trace
against which we evaluate our rule generation procedure
was captured by CAIDA in 2007. The attack in question
reaches a peak bandwidth of around 80 Mbits/s, and
includes over 5000 unique attack sources. In this case
study, we apply all three algorithms in turn, and for
each algorithm we vary the values of the two relevant
constraints. Figure 5 shows the overall dynamics of the
attack, in terms of the number of both unwanted and
protected flows at a one-second time granularity. Here we
can see that the number of unwanted flows per second
reaches a peak of roughly 5000 (when this happens,
nearly all attack sources are attacking simultaneously).

We begin with the objective of maximizing coverage,
subject to constraints on the maximum number of rules

M , and the maximum collateral damage G. Here, we
vary the value of M , while holding the value of G
constant at 0 in all cases. Our goal in defending against
this attack is thus to maximize the coverage of the
unwanted flows, while keeping the number of rules below
M , and without covering any protected flows (which
average around 100 per second).

Figure 6 shows the results of our max-coverage algo-
rithm in terms of percentage of unwanted flows filtered
at each second, as we vary the value of M . Here, the
y-axis shows for each second-length interval, how many
unwanted flows from the current interval is filtered by
the rules generated in the previous interval. Generally, as
we increase the value of M , we see a higher percentage
of unwanted flows filtered by the generated rules, where
a value of 500 is sufficient to filter nearly 100% of the
unwanted flows. Similarly, figure 7 shows the cumulative
percentage of unwanted flows filtered over the course
of the attack. Even with a maximum rule limitation of
merely 100, over 60% of all unwanted flows are filtered
by the generated rules.

Next, we select the objective of minimizing collateral
damage, subject to the constraints B and M , which
represent the minimum coverage and maximum number
of rules, respectively. Again, we vary the value of M ,
while B remains constant at 1, representing full coverage
of unwanted flows. Our goal is thus to minimize the
number of protected flows covered by our rules, while
simultaneously covering all unwanted flows and keeping
the number of rules less than or equal to M .

Figure 8 shows, at each second over the course of
the attack, the percentage of protected traffic flows that
are filtered, i.e., collateral damage. Since we keep the
constraint B at its maximum value of 1, we see that
as we reduce the value of M , the overall collateral
damage increases, as shown by figure 9, which shows
the cumulative collateral damage as a percentage of the
total number of protected traffic flows.

The differences between these results and the results
of the max-coverage algorithm merely reflect the conse-
quences of selecting a different objective towards which
to optimize. We already know from figure 7 that if we
desire no more than 100 rules, and no collateral damage,
then we can only achieve roughly 65% coverage. In this
case, we desire no more than 100 rules and complete
coverage, and we see that we can only reduce the
collateral damage to approximately 80%.

Finally, we choose to minimize the number of rules
generated, while keeping coverage greater than or equal
to B, and while keeping collateral damage less than
or equal to G. Here, we keep the value of G constant
at 0, while we vary the value of B from 0.5 to 1.0,
representing the range from 50% to complete coverage.

Figure 10 shows the percent coverage achieved by
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Fig. 2. The normalized coverage, normalized collateral damage, and number of generated rules. Rules are optimized toward minimal
collateral damage subject to the rule budget M and minimum coverage B.
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Fig. 3. The coverage, collateral damage, and number of generated rules, all normalized. Rules are optimized toward maximal coverage
subject to the rule budget M and maximum collateral damage G.

Maximum Collateral Damage Minimum Coverage

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

C
o

v
er

ag
e

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

(a) Coverage vs. G and B

Maximum Collateral Damage Minimum Coverage

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

C
o

ll
at

er
al

 D
am

ag
e

 0

 0.2

 0.4

 0.6

 0.8

 1

(b) Collateral damage vs. G and B

Maximum Collateral Damage Minimum Coverage

 0

 100

 200

 300

 400

 500

 600

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

T
o

ta
l 

#
 o

f 
ru

le
s

 0

 100

 200

 300

 400

 500

 600

(c) Number of rules vs. G and B

Fig. 4. The coverage, collateral damage, and number of generated rules, all normalized. Rules are optimized toward a minimum number
of rules, subject to the minimum coverage B and maximum collateral damage G.

this algorithm as the value of B varies. Here we show
that in all cases, the coverage exceeds the constraint,
while in all cases the collateral damage remains at 0 (not
shown). Here we see similar results to the results of the
max-coverage algorithm, where in the most extreme case
we achieve on average 65% coverage and no collateral
damage with approximately 100 rules. (Figures 11 and
12).

2) Case Study 2: RADB2012: Next, we apply our
min-rules algorithm to the RADB2012 attack trace. This
DDoS attack was captured by Merit Network, Inc. in
2016, was based on the DNS protocol, and targeted
Merit’s RADb service, which provides a public registry

of network routing information.

For this case study, we employ the min-rules algo-
rithm, meaning that our goal is to defend against this
attack using as few rules as necessary to meet the
two constraints: B, the minimum coverage, and G, the
maximum collateral damage. Here, we execute the rule
generation procedure multiple times while varying the
value of B from 0.5 to 1, and we keep constant the
value of G = 0, i.e., no collateral damage.

Again, we first examine the overall dynamics of the
attack in question. Figure 13 shows the number of both
unwanted and protected flows per second over the course
of the attack. While the peak number of flows per second
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Fig. 5. Dynamics of unwanted and protected traffic for the
CAIDA2007 attack. Here we show the number of both unwanted and
protected traffic flows that would arrive at the victim, if no defense is
present.
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Fig. 6. Percentage of unwanted traffic filtered by the generated
rules for the CAIDA2007 attack. Here we show the percentage of
unwanted traffic filtered by our rule generation procedure using the
max-coverage algorithm, as we vary the limitation on the maximum
number of rules M .

is considerably smaller than the CAIDA2007 attack, the
attack sources show much more dynamic behavior, with
over 10,000 unique attack sources participating in this
attack.

In figure 14 we show the percentage of unwanted flows
filtered at each second, as we vary the minimum coverage
from 0 to 1. Again, this figure shows how effective
each interval’s rules are at filtering traffic from the next
interval. As we expect, when B = 1, the percentage of
of unwanted flows filtered remains at nearly 100% for
the entire attack. Interestingly, even when the minimum
coverage is set to be 0.5, on average over 60% of
unwanted flows are filtered at each second. This shows
that the exponentially-weighted average provides a good
prediction of upcoming traffic.

Figure 15 shows the number of rules generated at each
second during the attack. Generally, we see a linear trend
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Fig. 7. Overall percentage of unwanted traffic filtered by the gener-
ated rules for the CAIDA2007 attack. Here we show cumulatively the
percentage of unwanted traffic filtered by our rule generation procedure
using the max-coverage algorithm, as we vary the limitation on the
maximum number of rules M .

1500 2000 2500 3000 3500 4000
Time (s)

0.0

0.2

0.4

0.6

0.8
Co

lla
te
ra
l D

am
ag

e 
(%

)

m = 500
m = 400
m = 300
m = 200
m = 100

Fig. 8. Collateral damage caused during CAIDA2007 attack. Here
we show the percentage of protected traffic flows that are filtered at
each second by the min-collateral algorithm, over the course of the
attack.

whereby a higher value for B results in a larger set of
rules. Similarly, from figure 16 we can see the mean
number of rules required in order to meet the various
constraints on minimum coverage.

3) Case Study 3: BOOTER2014: The final attack trace
to which we apply our rule generation procedure was
captured in 2014 by Santanna et al. [11] as part of a study
on so-called booter services, which offer UDP-based
DDoS attacks for a price, directed at the purchaser’s
target of choice. This attack is much shorter than the
previous two, lasting only 5 minutes.

Figure 17 shows the overall dynamics of the
BOOTER2014 attack. To defend against this attack, we
apply the min-collateral algorithm, the goal of which is
to generate a set of rules at each interval that covers as
few protected flows as possible while meeting constraints
on the number of rules M and the minimum coverage B.
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Fig. 9. Cumulative collateral damage caused during BOOTER2014
attack. Here we show the cumulative percentage of protected traffic
flows that are filtered by the min-collateral algorithm, over the course
of the attack.
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Fig. 10. Percentage of unwanted traffic filtered by the generated
rules for the CAIDA2007 attack. Here we show the percentage of
unwanted traffic that is filtered by our rule generation procedure using
the min-rules algorithm, as we vary the limitation on the minimum
coverage B.

Here, we keep constant the constraint B = 1, meaning
that we always require complete coverage of unwanted
traffic. Meanwhile, we vary the value of M , and measure
the relevant metrics of the resulting rules.

Keep in mind that although the goal of this algorithm
is to minimize collateral damage, by setting B = 1
and M to a relatively low value, which represent quite
stringent values for the constraints, we force the rule
generation procedure to generate rules that cause a signif-
icant amount of collateral damage. As seen in figures 18
and 19, when M = 100, over 80% collateral damage is
caused at times, and even when M = 500, the collateral
damage remains around 20%.

VI. RELATED WORK

Previous work related to this project lies across mul-
tiple topics. First of all, the following works attempt to
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Fig. 11. Number of rules generated over time for the CAIDA2007
attack. Here we show the number of rules generated by the min-rules
algorithm, as we vary the constraint on minimum coverage B from
50% to 100%.
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Fig. 12. Mean number of rules required at any given time for
the CAIDA2007 attack. Here we show the mean number of rules that
are required at any given time during the attack, in order min-rules
algorithm to meet the constraints of B and G. Here G = 0 and B
varies from 50% to 100%.

gain a better understanding of the behavior of malicious
traffic sources, including source distribution, structure,
and dynamics. In [4], Kohler et al. examine the structure
and distribution of IP addresses in Internet traffic. Work
done by Chen et al. [1] describes the observed spatial
and temporal characteristics of malicious traffic sources.
In [2], Collins et al. attempt to predict the addresses of
future bots, for the purpose of predictive filtering, and
Ramachandran et al. [10] present a study on the network-
level behavior of Internet spammers.

The second body of related work is that which ad-
dresses various strategies for filtering malicious traffic.
All of these solutions, however, focus on source-based
filtering, rather than flow-based filtering, which allows
for more expressive traffic engineering rules. Work by
Liu et al. [7] addresses the problem of network-layer
filtering of traffic originating from large-scale botnets.
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Fig. 13. Dynamics of unwanted and protected traffic for the
RADB2016 attack. Here we show the number of both unwanted and
protected traffic flows that would arrive at the victim, if no defense is
present.
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Fig. 14. Percentage of unwanted traffic filtered by the generated
rules for the RADB2016 attack. Here we show the percentage of
unwanted traffic for the RADB2012 attack that is filtered by our rule
generation procedure using the min-rules algorithm, as we vary the
limitation on the minimum coverage B.

Soldo et al. offer models and algorithms for source-based
filtering of malicious traffic in [13], and later expand on
their work to provide an optimal source-based filtering
solution in [12].

Finally, mathematically-grounded methods of repre-
senting and reasoning about IP packet headers are pro-
posed in [6] and [3].

VII. DISCUSSION

A. Connection with Multiply Constrained Knapsack
Problem

An astute reader may recognize that the we present in
section III-C four optimization problems are quite similar
in nature to the 0-1 variant of the multi-dimensional
knapsack problem, which is also sometimes called the
multiply constrained knapsack problem. This is a vari-
ation on the traditional 0-1 knapsack problem where the
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Fig. 15. Number of rules generated over time for the RADB2016
attack. Here we show the number of rules generated for the RADB2012
attack, as we vary the constraint on minimum coverage B from 50%
to 100%.
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Fig. 16. Mean number of rules required at any given time for
the RADB2016 attack. Here we show the mean number of rules that
are required at any given time during the attack, in order to meet the
constraints of B and G. Here G = 0 and B varies from 50% to 100%.

selection of items is constrained in multiple dimensions.
The 0-1 variant of this problem was shown to be NP-
complete [8], and further, it has been shown that no fully
polynomial-time approximation scheme exists, unless
P = NP [5].

The salient difference between the problems we define
above and the traditional multi-dimensional knapsack
problem is that in this case, there exists a heirarchical
relationship between the items that may be selected. In
effect, this means that the selection of one item has
an impact on which other items may be selected. For
example, if we consider the set from which we must
choose to be the set of all possible rules (a finite set),
then after choosing a rule that covers some portion
A ⊂ T of the targeted traffic, it no longer makes
sense to choose any other rule that covers A, since
this will not meaningfully increase coverage, and instead
merely redundantly covers traffic that is already covered.
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Fig. 17. Dynamics of unwanted and protected traffic for the
BOOTER2014 attack. Here we show the number of both unwanted
and protected traffic flows that would arrive at the victim, if no defense
is present.
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Fig. 18. Collateral damage caused during BOOTER2014 attack.
Here we show the percentage of protected traffic flows that are filtered
by the generated rules, over the course of the attack.

This difference reduces the number of valid items, thus
simplifying the problem to some degree, but prevents the
use of existing pseudopolynomial-time approximations.

B. Algorithmic Complexity

The three algorithms for which pseudocode is provided
in figures 1, 2, and 3 share a similar structure. The main
loop required for each algorithm begins with an initial set
of selected nodes, and performs an aggregation at each
iteration until the stopping condition is satisfied.

Assuming that the number of selected nodes is initially
n, we first note that n must be less than or equal to the
number of input flows, i.e., the number of elements in T
that are classified as targeted. The maximum number of
aggregations that can be performed on n nodes is then
n − 1, and thus the main loop may run n times in the
worst case.

Within this main loop, it is necessary to sort the
list of selected nodes. Assuming a sorting complexity
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Fig. 19. Cumulative collateral damage caused during
BOOTER2014 attack. Here we show the cumulative percentage of
protected traffic flows that are filtered by the generated rules, over the
course of the attack.

of O(nlog(n)), this sort then dominates other terms
within the loop, such as iterating through ancestors for all
selected nodes (an operation that costs O(n)). We then
have a worst-case complexity of O(n2log(n)), where n
is less than or equal to the size of the input of unwanted
traffic.

Note however that the number of items to be sorted
decreases by one with each iteration of the main loop.
This results in an average-case complexity of O(n2),
where n is less than or equal to the size of the input
of unwanted traffic. Further, we can see trivially that
the best-case complexity for these algorithms is merely
O(nlog(n)), which represents the time required for a
single sort of n items.

VIII. CONCLUSION

In this work we have devised a systematic method
for the constrained generation of traffic-filtering rules for
the purpose of DDoS defense. More specifically, given
descriptions of the DDoS traffic, as well as descriptions
of any traffic that is known or suspected to be benign, we
generate a set of rules that result in dropping the DDoS
traffic and not the benign, while requiring no more than
a minimal amount of rule space. After formulating the
problem in section III as a multi-objective optimization
problem and scalarizing the problem as a set of single-
objective constrained optimizations, we described in sec-
tion IV a novel tree-based data structure, which we call
the F -tree, as well as a set of algorithms that operate
upon the F -tree to generate sets of rules that satisfy
the DDoS victim’s objectives, while remaining within
particular constraints.

We thoroughly evaluated these algorithms, both in a
static context by applying each algorithm to randomly-
generated simulated DDoS attack sources, and in a dy-
namic context, by repeatedly applying each algorithm to



defend against simulated playbacks of real-world DDoS
attack traces. Our evaluation shows that these algorithms
do in fact generate rules that maximize coverage and
minimize collateral damage and the size of the ruleset.
Moreover, our evaluation further shows that the rules
generated by our algorithms prove effective over time,
even as the DDoS attack in question may display dy-
namic behavior.
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