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THESIS ABSTRACT 
 
Yebo Feng 
 
Master of Science 
 
Department of Computer and Information Science 
 
June 2018 
 
Title: BotFlowMon: Identify Social Bot Traffic with NetFlow and Machine Learning 
 
 

With the rapid development of online social networks (OSN), maintaining the 

security of social media ecosystems becomes dramatically important for public. Among 

all the security threats in OSN, malicious social bot is the most common risk factor.  

This paper puts forward a detection method called BotFlowMon that only utilize 

NetFlow data to identify OSN bot traffic. The detection procedure takes the raw NetFlow 

data as input and use DBSCAN algorithm to aggregate related flows into transaction 

level data. Then a special data fusion technique along with a visualization method are 

proposed to extract features, normalize values and help analyzing flows. A new clustering 

algorithm called Clustering Based on Density Sort and Valley Point Competition is also 

designed to subdivide transactions into basic operations. After the above preprocessing 

steps, some classic machine learning algorithms are applied to construct the classification 

model. 
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CHAPTER I 

INTRODUCTION 

The definition of online social networks (OSN) encompasses networking for 

business, pleasure, and all points in between. Over the past decades, we have witnessed 

the rapid expansion of OSN. Based on the statistics from Q1 2018, Facebook achieved 

more than 2.196 billion active users around the world, and twitter also reached 336 

million.  

With such a boom, the security of OSN becomes a severe problem worthy of our 

concern. OSNs are increasingly threatened by social bots (E Ferrara, 2016), which are 

software-controlled social accounts and visitors that mimic human users or crawl for 

private data with abnormal intentions (J Zhang, 2016). In fact, not all the social bots are 

malicious, lots of companies and institution use bots for customer service and 

information spreading. However, there have been reports on various attacks, abuses, and 

manipulations based on social bots (E Ferrara, 2015), such as infiltrating Facebook (Y 

Boshmaf, 2011) or Twitter (L Bilge, 2009), launching spam campaign (H Gao, 2010), 

performing financial fraud and conducting political astroturf (J Ratkiewicz, 2011). 

The Existing works to detect bots on OSNs need to utilize the network topology, 

private data in payload or account activity histories, which is sensitive and might violate 

privacy. In this paper, a new detection method called BotFlowMon is proposed that inputs 

flow level data such as Cisco's NetFlow (B Claise, 2004) to differentiate social bots 

traffic from legitimate (human) traffic.  From NetFlow data, we can just get low volume, 

coarse-grained, non-application specific data (R Sommer, 2002) and cannot touch the 

sensitive payload information, making this approach privacy-preserving and can be 
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deployed by telecommunications companies like AT&T and Xfinity, also adds challenges 

to detection procedure. While with the help of some data fusion and machine learning 

techniques, it is possible to identify social bot traffic in such scenario. 

This BotFlowMon system uses labeled NetFlow data (social bot traffic versus 

legitimate traffic) as ground truth and utilize four important modules to perform the 

classification. (1) The aggregation module transfers the raw NetFlow data into transaction 

level dataset to make the characteristics obvious for detection. (2) Flow fingerprint 

generation module extract features from transaction level dataset and normalize the 

features into matrix. In this step, a flow fingerprint visualization method is also 

developed to help analysis. (3) The subdivision module cut each transaction into more 

basic operations, which accelerates the learning model to converge and reduce the data 

volume requirement for training. (4) Machine learning module, takes the preprocessed 

data as input to construct a classification model and achieves satisfactory accuracy. 
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CHAPTER II 

RELATED WORK 

In order to maintain secure and harmonious online social environments for public 

users, network security community has been developing innovative techniques to identify 

bot users effectively. According to the different kinds of data the techniques require, we 

can generally classify the detection approaches into three categories: (A) content-based 

detection approaches, (B) detection methods based on OSN topology, (C) approaches 

require crowdsourcing on posts and profile analysis (A Karataş, 2011). There are some 

other approaches that may be the mixture of these three categories. No doubt, they have 

great performances on identifying specific types of OSN bots, but to a certain degree, the 

sensitive data they require to utilize intrude upon users' privacy, making these approaches 

difficult to be extensively used. 

Content-Based Approach 

The key idea of content-based bot detection method is to observe the differences 

between human being and bot in terms of tweet contents, activity histories and linguistic 

features. Nowadays, big data is exploding as more and more information is collected and 

stored, it becomes much easier to fetch massive labeled data from ISPs. Meanwhile, 

benefitting from rapid development of machine learning, nature language processing and 

semantic analysis, constructing a classification model to classify bots becomes very 

efficacious. Lots of great content-based detection approaches have been proposed: 

"BotOrNot" (CA Davis, 2016), as the first social bot detection framework publicly 

available for Twitter, analyzed 15k manually verified social bots and 16k legitimate 
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accounts and achieved 86\% accuracy; SentiBot (JP Dickerson, 2014), relies on tweet 

syntax, semantics and user behaviors to distinguish human and social bots.  

The limitations of this approach are that large volume of high-quality labeled 

social data is required for the analysis process and the collection of the data needs to be 

carefully performed to avoid invasion of privacy. Moreover, as bots are becoming more 

and more sophisticated by using AI powered techniques, this approach is facing 

unprecedented challenges. 

Topology-Based Approach 

Approaches based on topology (social network structure) focus on detecting 

amplification bots and Sybil account. For these attacks, multiple accounts are controlled 

by one master, so we can assume that these malicious accounts are connected to each 

other and have some similar attributes. Once the topology structure of the network is 

acknowledged, some methods like Random Walk, Bayesian Network and Loopy Belief 

Propagation can be applied to identify malicious accounts. In 2009, SybilInfer (G 

Danezis, 2009) utilizes the combination of Bayesian inference and Monte-Carlo sampling 

techniques to estimate the set of legitimate and Sybil accounts; Sybilbelief (NZ Gong, 

2014), identifies Sybil nodes with low false positive rates and low false negative rates by 

using Markov Random Field and Belief Propagation. 

CrowdSourcing-Based Approach 

As crowdsourcing is becoming a valuable method for companies and researchers 

to measure scores for tasks, some bot detection schemas based on crowdsourcing have 

been put forward. In 2012, Gang Wang (G Wang, 2012) constructed a two-layered bot 

detection system containing filtering and crowdsourcing layer. The leverage of this 
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strategy faces two fundamental issues. First, it is hard to manage security and privacy 

issues, strict policy should be implemented when sharing the information with the crowd 

to prevent privacy leaks. Second, it is expensive to keep the system running both duo to 

the high running time cost of the crowd and cost of crowd workforce. 
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CHAPTER III 

DATA SOURCE 

NetFlow is a feature that was introduced on Cisco routers that provides the ability 

to collect IP network traffic as it enters or exits an interface. Initially, it is invented for 

monitoring overall network traffic, so the information we can leverage from NetFlow is 

very basic and limited, only contains partial attributes from the header of IP datagram. 

The configuration of the NetFlow is shown in the table below: 

Table 1 

Configuration of NetFlow 

Configuration of NetFlow 
Start Time Input Interface num 
End Time Output Interface num 
Duration Packets 
Protocol Bytes 
Source Address Flows 
Destination Address Packets 
Source Address Port TCP Flags 
Destination Address Port ToS 
Source Port bits per second 
Destination Port packets per second 
Source AS Bytes per package 
Destination AS  

 

The datasets we use to construct and test BotFlowMon come from two sources: 

traffic generated and gathered from our own computers and routers, which has superior 

flexibility and conveniences for simulation and experiments; datasets generated and 

collected from University of Oregon's campus traffic, although it is a relatively small ISP, 

still offers realistic scenario verification tests.  

For legitimate flows, no API related scripts can be used during the data creation 

process, so we created and labeled the legitimate traffic flow by manually doing normal 
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daily operations on Twitter and Facebook. For social bot traffic, a variety of social bot 

programs are used to perform bot activities on Twitter and Facebook. The traffic of them 

are collected and labeled as the ground truth. In order to have a comprehensive social bot 

simulation and fetch highly credible labeled data, we categorize the social bots to four 

types by implementation mechanisms: (A) chat bot, the program or artificial intelligence 

based script which conducts a conversation via auditory or textual methods; (B)poster 

bot, automatically disseminates fraud information, spam and commercial promotions by 

tweeting, posting and commenting; (C) amplification bot, massively amplifies certain 

messages or conduct speculations by working as fake follower or forwarding robot; (D) 

OSN crawler, a programmed spider that systematically browses and collect private data 

for malicious intentions. 

Chat Bot 

Chat bots are very active on messaging applications such as Twitter DM, 

Facebook Messenger or WeChat. They can be artificial intelligence powered or simply 

logic-based programs that automatically perform conversations with normal users for 

unusual purposes. 

The simulation of this abnormal behavior relies on some widely used chat bot 

frameworks, APIs and open-sourced programs such as botmaster (RS Wallace, 2003), 

Ontbot (H AI-Zubaide, 2011) and python-twitter API. We created hundreds of Twitter 

and Facebook accounts and performed these chat bot programs only for research purpose. 

Multitudinous flow traffic of the conversations between human beings and these chat bots 

are collected, with different frequencies, response times and transmission contents 

(include images, audio files, texts and hyperlinks). 
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Poster Bot 

Benefitting from easily used official and third-party APIs, poster bot becomes the 

most common social bot in OSN. They have started to distribute spam tweets and 

Facebook posts which can be broadly defined as unwanted that contains malicious URLs 

in most cases or occasionally malicious texts (J Zhang, 2016) (C Grier, 2010). These 

malicious URLs could cause financial, privacy losses to the users and pollute the social 

network environment. According to a study in 2010 (C Grier, 2010), roughly 8% of the 

URLs in tweets are malicious ones that direct users to scams, malware and phishing sites, 

and about 0.13% of the spam URLs will be clicked. 

In order to collect data for designing effective spam defenses, we wrote several 

poster bot programs based on APIs such as Tweepy (J Roesslein, 2009) and Facebook 

API (W Graham, 2008). We ran these bots program during different time periods to post 

some harmless messages that contained textual contents, tiny videos, images and external 

links on Twitter and Facebook. The related NetFlow traffic data in different activity rates 

and network environments are collected to enrich the training dataset. 

Amplification Bot 

Amplification bot, benefits from its large volume, can be easily used to create 

some heat topics for commercial purposes and defraudations. Without creating new 

contents, amplification bots often work as fake followers, those Twitter or Facebook 

accounts specifically created to inflate the number of followers of a target account. Fake 

followers are dangerous for the social platform and beyond, since they may alter concepts 

like popularity and influence in the Twittersphere, hence impacting on economy, politics, 
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and society (S Cresci, 2015). It also serves as forwarding and liking robot, popularizes 

some unwanted junk information and helps commercial promotion. 

From its operation mechanism, most amplification bots are sybil accounts, 

powered by a large botnet and have one bot master to send commands. Since the social 

topology is unknown in NetFlow data, we only need to simulate each amplification bot's 

interactions with OSNs. OAuth (D Hardt, 2012) software is used for token management 

and switching accounts. API-based bot scripts are also implemented for amplification bot 

simulation. 

OSN Crawler 

OSNs such as Facebook and Twitter, contain valuable data about millions of users 

that coveted by commercial institutions and fraudulent groups. The core functionality of 

OSNs is enabling users to share slices of life, personal perspectives and profiles, 

however, can be exploited by crawlers to aggregate data about large numbers of OSN 

users for re-publication or other more nefarious purposes that violate users' privacy and 

security. 

There are two kinds of OSN crawlers in social networks. One is API-based, which 

relies on a relative large botnet and to dig users' private sensitive date. Because in OSNs, 

lots of users' information can only be seen by their friends, so a large amount of bots are 

need to get access to privacy efficiently. Once the relationship is built, private data can be 

easily fetched with basic API functions. 

Another kind of OSN crawler is page crawler, instead of using API privileges, it 

directly reads the HTML files of OSNs and utilize regular expression to extract target 

information. The NetFlow traffic of this bot has large resemblance to normal users' 
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traffic, but still differs on flow density, operation regularity and frequency, making the 

trace detectable if properly analyzed. 

Both the two kinds of crawlers are roundly simulated during data collection step. 
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CHAPTER IV 

BOTFLOWMON SCHEMA 

The flow chart of the BotFlowMon is shown in the figure 1. For the NetFlow data 

from University of Oregon campus traffic, a precise preprocessing step is designed to 

denoise, filter irrelevant flows, recognize labeled traffic and extract only OSN related 

NetFlow. For traffic generated and collected from our own experimental platforms, noise 

reduction and OSN flow extraction steps are still required to obtain pure data. Then, the 

aggregation module uses DBSCAN (M Ester, 1996) algorithm to aggregate correlative 

flows into a group data that can represent user's transaction. We designed a data fusion 

method called Bot Flow Fingerprint and implemented in the flow fingerprint generation 

module to extract normalized features, also makes the data suitable for machine learning. 

Finally, the subdivision module and machine learning module collaborate to output one 

classification model that has satisfactory accuracy. 

 

Figure 1. Flow chart for BotFlowMon 
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Preprocessing 

For NetFlow data from campus traffic, the first indispensable step is grouping 

flows by user. In campus network environment, thousands of users' network traffic are 

mixed together, we need to settle each single user's flows into one group by matching IP 

address and address port number. For data amassed from our own experimental 

platforms, this process can be skipped because we strictly controlled that only one user's 

operations can be performed at one time. 

Then, a filtration machine is constructed to wipe out flows with zero Byte, zero 

duration, irrelevant protocols (such as ICMP) and external flows that pass by edge router. 

For now, we have relatively clean NetFlows, but we still need to extract the traffic 

flows only related with the OSNs. The basic thought is for each flow, we check its 

interaction IP addresses to test whether it belongs to Facebook, Twitter or other social 

websites. However, one concern is the IP blocks of the OSNs may change over time, and 

each OSN has a huge number of IP blocks. It is difficult to build a static IP library to 

accurately match the result.  The breakthrough is that autonomous systems will update 

router tables to maintain network reachability information, the access to the dynamic 

router table enables us to match the most updated and historical accurate IP blocks. With 

those information, a IP block library can be built dynamically to help the extraction 

process. In order to obtain that information, BGP stream (C Orsini, 2016) is used in this 

step. BGP stream is an open-source software framework for the analysis of both historical 

and real-time Border Gateway Protocol (BGP) measurement data. Those BGP data 

contain the updated and historical router information including the router tables. By using 
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the BGPStream API, we can look up what IP blocks are forwarded to Facebook and 

Twitter at different time. 

The IP address matching process is implemented with the longest prefix match 

algorithm (T Hayashi, 1999), which refers to an algorithm used by routers in Internet 

Protocol (IP) networking to select an entry from a forwarding table. The algorithm also 

needs to be executed in parallel, because for one single day, there could be more than 

100GB data generated from campus traffic and around 500MB data collected from our 

small experimental platform. The parallelization can significantly increase the efficiency 

of the processing. 

With the help of BGP stream and parallelized longest prefix match algorithm, we 

are able to efficiently extract the only OSN related flow data. Although there still could 

contain some tiny noise in the grouped data such as traffic delivered by CDN protocol, 

sufficient detailed traffic flows are obtained for analysis and would not affect final result. 

Aggregation 

Inasmuch as the little information flow-level data contains, DBSCAN (M Ester, 

1996), a density-based clustering algorithm, is used to aggregate the related flows into 

one transaction, so that the features of both malicious and legitimate traffic become 

conspicuous and make it feasible to distinguish. Here, transaction refers to that one user 

performs several operations on OSN for some purposes in a relatively short time period. 

For example, a transaction can be taking 30 seconds to reply some messages through 

Facebook Messenger or tweeting 20 anomalous hyperlinks on twitter within one minute. 

We treat flows as points scattered on timeline, DBSCAN groups together points 

that are closely packed together (points with many nearby neighbors), marking as outliers 
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points that lie alone in low-density regions (whose nearest neighbors are too far away). 

This one-dimensional DBSCAN algorithm will be used to group the data by taking two 

parameters as threshold values, one is density threshold value minPts, refers to bits per 

second (bps) in this case; one is radius threshold value ε, refers to time interval between 

flows. Based on experimental results, we set minPts as 1500 bps, a relatively small value 

for OSN traffic, because some EventListeners in web scripts and API programs 

frequently generate some tiny streams between users and OSN servers, these traffic 

should definitely be included instead of being labeled as outliers. We set ε as relatively 

large values between 10 to 20 seconds, because lots of people may spend some time on 

reading content on OSN, with no or very few NetFlow data created during this time 

period, but it still needs to be treated as a single transaction. Moreover, if we get very 

large patterns after the aggregation process, we can still cut this pattern into pieces in the 

following steps to fix the complexity problem, but there are no ways to fix if we get very 

tiny patterns containing too few information. 

In addition, as a solution for getting a grip on complexity, one transaction's time 

duration should be in the range of 1.5 seconds to 60 seconds. Any transactions shorter 

than that range will be discarded as noise (could be OSN notifications or status checking 

traffic) and any transactions longer than that range will force to be divided evenly until 

qualified. 

Flow Fingerprint Generation 

After the aggregation process, we can obtain transactions level data represented 

by different numbers of flows. In order to easily apply machine learning algorithms to 

train classification models, we need encode the transactions into normalized data, 
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transferring both numerical attributes and symbolic attributes into the same format. Here, 

a data fusion method named Flow Fingerprint along with a visualization method are 

proposed for this reason. 

The basic idea of the Flow Fingerprint approach is to transfer the aggregated 

flows to a 6 × 200 matrix shown as the table below. For each transaction level data, it 

contains specific number of flows that have different start time and end time. The 

transaction itself also has an overall start and end time. We perform equal division to 

partition the transaction time duration into 200 pieces and extract features from each 

piece to fill each column of the matrix respectively. 

Table 2 

Configuration of Flow Fingerprint matrix 

Flow Fingerprint matrix 
1: outgoing traffic bps bps𝑜1, bps𝑜2, bps𝑜3,… , bps𝑜200 
2: outgoing traffic pps pps𝑜1, pps𝑜2, pps𝑜3,… , pps𝑜200 
3: outgoing traffic ToS tos𝑜1, tos𝑜2, tos𝑜3, … , tos𝑜200 
4: incoming traffic bps bps𝑖1, bps𝑖2, bps𝑖3,… , bps𝑖200 
5: incoming traffic pps pps𝑖1, pps𝑖2, pps𝑖3,… , pps𝑖200 
6: incoming traffic ToS tos𝑖1, tos𝑖2, tos𝑖3,… , tos𝑖200 

 

Row 1 to row 3 are features extracted from outgoing NetFlows, while row 4 to 

row 6 are features extracted from incoming NetFlows. They both take bits per second 

(bps), packets per second (pps) and type of service (ToS) as data entries. At one moment, 

several different flows could overlap, so the bps and pps values should be the 

accumulation of the overlap NetFlows. Let F be the set of flows overlapped at time t, the 

pps and bps values at t can be calculated with the following equations. 

bps(t) =∑𝑓.𝑏𝑝𝑠
𝑓∈𝐹
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pps(t) = ∑𝑓. 𝑝𝑝𝑠
𝑓∈𝐹

 

ToS, a 8-bit field that becomes increasingly important as voice and video gain 

popularity on today's social networks. It is used for prioritizing traffic to guarantee high 

quality datagram transmission service. As it is a symbolic value, we only fill the 

dominating flow's ToS value into the matrix when several flows overlapped. Here, 

dominating flow means the flow has the largest bps value at the moment. There is one 

concern that in NetFlow system, two bits of ToS field are reserved for customization, 

theoretically, ISPs can rewrite the whole ToS field for differentiated demands, which 

means the classification model may not be universal. So, we will train another 

classification model only utilizing 4 × 200 matrix (incoming and outgoing ToS are wiped 

off) as a comparison. This comparison model would be more generally applicable but has 

weaker performance. 

The normalization of the matrix is based on the dispersion of bps, pps and ToS 

values in the entire network. In order to achieve that, we fetched 235GB NetFlow data 

from campus traffic including internal router flows and performed the same matrix 

transformation procedure on these data. Then create a new dataset that have the same 

number of values that evenly distribute in the range of 0 to 255. Three gigantic quantile to 

quantile plots are drawn based on these two dataset to represent the dispersions of bps, 

pps and ToS values respectively (figure 2 and 3 are the quantile to quantile plots of bps 

and pps). From now on, three value mapping functions 𝑓𝑟(𝑏𝑝𝑠), 𝑓𝑔(𝑝𝑝𝑠) and 𝑓𝑔(𝑡𝑜𝑠) can 

be constructed to normalize the matrix values into the range of 0 to 255 based on the 

quantile to quantile plots. The final matrix is called flow fingerprint. 
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Figure 2. Quantile to Quantile plot of NetFlow size and Number of Packets 

 

Figure 3. Quantile to Quantile plot of TOS 

Why should we normalize the matrix values into 0 to 255? Actually, in the 

machine learning step, we still convert them into the range of 0 to 1 to fit training 

algorithms, but for now, we can easily visualize the matrix for better observation and 

analysis with the 0 to 255 range. We visualize the 6 × 200 matrix to two colorful bars in 

standard RGB space with the length of 200 pixels.  
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Figure 4. A transaction lasting for 35.74s, containing 220 NetFlows. 

Figure 4 is an example of the visualized flow fingerprint, which represents a 

legitimate user that spent 35.74 seconds browsing Facebook and reloaded the page twice 

during this transaction. The beginning and ending position of the image represent the 

starting time and ending time of the transaction. The bar above denotes the outgoing 

traffic, while the bar beneath denotes the incoming traffic. The RGB value of each pixel 

is calculated by the following equation. By figuring out the difference value with 255, 

column lager bps and pps values tends have deeper color while column with smaller bps 

and pps values tends to have lighter color. 

RGB(bps, pps, tos) = (255 − 𝑓𝑟(𝑏𝑝𝑠), 255 − 𝑓𝑔(𝑝𝑝𝑠), 255 − 𝑓𝑏(𝑡𝑜𝑠)) 

Some more examples are shown in figure 5. Flow fingerprint 1 and 2 are two 

users conducting a conversation with each other through Twitter DM, the difference is 

flow fingerprint 1 was generated by legitimate user while flow fingerprint 2 was 

generated by a chat bot; Flow fingerprint 3 was created by a poster bot, using API to 

tweet textual messages on Twitter for every 3 seconds; Flow fingerprint 4 is a hybrid bot, 

crawling friends' photo albums and posting link spams at the same time. 
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Figure 5. More Flow Fingerprint examples 

Flow Subdivision 

After the previous preprocessing steps, we already have normalized dataset can 

perfectly fit machine learning algorithms. However, satisfactory results still cannot be 

obtained due to two issues: (A) There can be countless kinds of bot and human 

transactions existing, with different operation frequencies, combinations of operations 

and density dispersions. This makes the limited training set cannot cover all possible 

application scenarios; (B) The training sets we have now still features different time 

durations, range from two seconds to one minute, increasing challenges for the learning 

model convergence. 

As a solution for these two issues, we designed a new cluster algorithm named 

Clustering Based on Density Sort and Valley Point Competition to subdivide the 
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transaction level data into more basic operation level data. The key idea is, one OSN 

transaction is a combination of different basic operations. When bots and humans are 

performing single operation in OSNs (such as tweeting, clicking like button and making 

comment), the flow density is relatively higher than other inactive time. We can identify 

legitimate users' and bots' transactions by performing the classification of bot operations 

versus human operations. Based on experimental results, it is much easier to differentiate 

bot operations from human operations through NetFlow data. 

 

The pseudocode of the algorithm is shown above, which takes one dataset and 

radius threshold value r as input. We first extract the flow fingerprint matrix's incoming 

and outgoing bps rows out, sum the values from the same column together to generate a 

new 1 × 200 matrix. Then take the new matrix as input dataset D, treat the value from 

each column as single data point. 

Density 

For one data point p, there is a dataset D containing all the points within a r radius of p. 

Then the density of p is summation of all the D's belonging points' bps values. 
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Potential Point 

For a cluster D, its potential point p should be within a r radius of one of D's 

belonging point b. 

∃b ∈ {x|x ∈ D ∧ dist(x, p) < r} 

Valley Point 

For point a, if it is the potential point of two or more clusters, then a is the valley 

point of the neighboring clusters. 

Valley Point Competition 

Once some clusters are border by and a valley point appears, we need to make 

judgement for how we should label that point. We have three choices here: (1) Combine 

all the clusters together and make the point as the combined cluster's belonging; (2) 

Combine some of the clusters together and label the point as the combined cluster's 

belonging; (3) Do not combine any of them, just assign the valley point to one of the 

clusters. 

The process of making the choice is called valley point competition. In this 

algorithm, if the density of the valley is larger than 50% of its around clusters' center 

density, then we combine all the around clusters together and assign the valley point to 

the combined cluster. If the density is less than 50% of its around clusters, then we assign 

the valley point to the clusters with smallest number of belongings. 
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Figure 6. Subdivision example 

Machine Learning 

The machine learning module uses operation level data labeled as bot flows and 

legitimate flows to train the classification model. The prediction process also input 

operation level data to analyze. Instead of outputting the result directly, it enables each 

operation level data vote for its transaction level data's identity. This strategy makes the 

sensitivity of the detection method can be controlled by setting different passing lines of 

voting. 

We used keras (F Chollet, 2015) with TensorFlow (M Abadi, 2016) to construct 

the learning model. Since it is nonlinear high-dimensional data training, Multilayer 

Perceptron (MLP) and Conventional Neural Network (CNN) are used as training 

approaches. 
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As stated before, due to the customizability of ToS field, two versions of data are 

engaged to separately train two versions of models as a comparison to test the 

universality. One is the data involves ToS, another is the data without ToS. 
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CHAPTER V 

EVALUATION 

We first evaluated the subdivision component to see whether the Clustering Based 

on Density Sort and Valley Point Competition algorithm can divide the transaction level 

flows into operation level flows correctly. 

The algorithm takes one radius threshold parameter r as input, whose unit is pixel 

length. Different r values can generate different subdivision results and eventually make 

differences to detection outcome. Figure 7 is the line chart that shows the clustering 

purity scores with different r values. The horizontal axis represents the values of r and the 

vertical axis represents the purity score of the resulted clusters  (purity =

1
𝑁
∑ 𝑚𝑎𝑥𝑗|𝑐𝑖 ∩ 𝑡𝑗|𝑘
𝑖=1 , where N is the number of data points, k denotes the number of 

clusters, 𝑐𝑖 is a cluster in C, and 𝑡𝑗 is the cluster generated by the algorithm which has the 

maximum count for cluster 𝑐𝑖). We can see the algorithm is very sensitive to r parameter, 

and optimal results can be generated when r is in the range of 18 to 22. For traffic 

generated by bots, the subdivision module works well, can achieve up to 93.58% purity 

when r=23, that's because bots' operations mostly utilize API to perform, making the 

traffics have very clear flow fingerprint for classification (tend to be short and 

concentrate). For legitimate transactions, the clustering result is inferior to bot 

transactions. The maximal purity score we can achieve is 78.32% when r=26 and 

legitimate transactions are more sensitive to the variation r. One reason is the boundaries 

of different operations in legitimate transactions are blurry in flow level data. Almost all 

the OSN websites have lots of EventListeners embedded into the HTML to preload the 

contents dynamically, which fills in the blanks between operations. In addition, we rely 
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on manual recording to label legitimate transactions, which adds the impreciseness to 

evaluation. 

 

Figure 7. Purity scores with different r values 

The ultimate goal of subdivision is not precisely partition all the operations, 

instead, it is designed to make the data more diacritical to help the machine learning 

process. We randomly sampled 100 legitimate transactions and 100 bot transactions, then 

recorded the number of operations and average duration times for each transaction after 

subdivision. Figure 8 is the scatter plot of the result. All the bot transactions are divided 

into relatively shorter operations compared with legitimate flows. Moreover, bots flow 

fingerprints' durations are normalized to the range of 0 second to 15 seconds, while 

legitimate operations distribute in the range of 0 second to 40 seconds. This procedure 

can significantly help the training process. 
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Figure 8. Scatter Diagram for Subdivision 

Figure 9 shows the test result for machine learning module with 6 × 200 matrix 

data (with incoming and outgoing bps, pps and ToS). The test set contains 675 bot 

transactions and 420 legitimate transactions. For both Multilayer Perceptron (MLP) and 

Conventional Neural Network (CNN) algorithms, we used 10-fold cross-validation to 

check whether the model is overfitting. Since multiple actions had been taken to prevent 

the model from overfitting, such as controlling the learning rate η and limit the number of 

iterations, the cross-validation accuracy is very similar to the testing accuracy. As we can 

see in the figure, with subdivision, the accuracy has an improvement of around 20%. As a 

true-or-false classification with the bottom line of 50% accuracy, it is a huge 

improvement. For here, CNN achieves the greatest result, with 93.61% of accuracy. 
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Figure 9. Result for 6*200 matrix version 

 

Figure 10. Result for 4*200 matrix version 

As stated before, in order to guarantee the universality of BotFlowMon, we used 

4 × 200 matrix version data (just with incoming and outgoing bps and pps) to train 

another classification model. The result can be seen in figure 10. Surprisingly, the 

accuracies only get around 1% lower than the 6 × 200 matrix version. The decrease of 

dimensions will reduce the information but also make the model easier to converge, 

especially for MLP. Again, CNN gets the best result in this model. The detailed 

evaluation score for CNN in these two versions of models can be seen in the table below. 

Table 3 

Detailed results for CNN 

 6*200 Matrix 4*200 Matrix 
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Accuracy 0.9361 0.9233 
Precision 0.9887 0.9821 
Recall 0.9067 0.8919 
F1 score 0.9459 0.9348 

 

In real environment, with an accuracy of more than 93%, we can detect most of 

bot traffic. Because one bot can create several transaction level flow fingerprints in a 

specific time range, only one of the transactions is identified as illegimate, the bot can be 

identified. Another concern is false alarm, we want legitimate traffic can 100% pass the 

BotFlowMon system. Benefitting from voting mechanism in machine learning module, 

we can set a strict passing line to adjust the sensitiveness. As experimented, if a 

transaction can be labeled as illegimate only when more than 75% of the operations are 

judged as illegimate, there will be no false alarms in this system, but the accuracy will 

drop down to 89.56%. 
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CHAPTER VI 

CONCLUSION 

With the rapid increasing of social bots activities, it becomes more and more 

meaningful to develop an efficient social bots detection system. Compared with the 

previous methods to limit social bots, BotFlowMon has the following advantages: (1) 

Only NetFlow data will be involved to finish the whole detection procedure, which 

avoids damaging the privacy of the users; (2) Due to its operating mechanism, this 

system is easy to deploy. We only need to mirror NetFlow data from routers to 

BotFlowMon system. (3) Have relatively higher accuracy compared with content-based 

detection methods. 

There are still lots of works need to be done in the future. This detection system 

can be transferred into a real-time monitor system, which poses a velocity challenge; the 

training and testing set can be further enriched to reinforce the classification model. 
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