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THESIS ABSTRACT

Shweta Gupta

Master of Science

Department of Computer and Information Science

June 2018

Title: Software Development Productivity Metrics, Measurements and Implications

The rapidly increasing capabilities and complexity of numerical software

present a growing challenge to software development productivity. While

many open source projects enable the community to share experiences, learn

and collaborate; estimating individual developer productivity becomes more

difficult as projects expand. In this work, we analyze some HPC software Git

repositories with issue trackers and compute productivity metrics that can

be used to better understand and potentially improve development processes.

Evaluating productivity in these communities presents additional challenges

because bug reports and feature requests are often done by using mailing lists

instead of issue tracking, resulting in difficult-to-analyze unstructured data. For

such data, we investigate automatic tag generation by using natural language

processing techniques. We aim to produce metrics that help quantify productivity

improvement or degradation over the projects lifetimes. We also provide an

objective measurement of productivity based on the effort estimation for the

developer’s work.
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CHAPTER I

INTRODUCTION

Software development is a high-expertise, high-effort activity that occurs

in industry, science, engineering, and many other areas. Software engineering

researchers have long attempted to quantify the human effort expended to produce

artifacts. Because of the inherent difficulties in measuring all the different things

that would comprise such “effort”, existing approaches are necessarily based on

incomplete and noisy data.

Scientific software development traditionally focuses on functionality,

accuracy, and performance, and to a much lesser extent on the productivity of

developers. Some new efforts such as the DOE IDEAS (Productivity [2011]) project

aim to achieve a better understanding of HPC developer productivity and explore

methods for improvement through existing and new software engineering practices.

An important first step in this quest is to develop metrics that help understand the

factors that affect developer productivity.

We intend to analyze HPC software Git repositories, issue tracking data, and

developer/user mailing lists to estimate productivity metrics that can be used to

better understand and potentially improve development processes. Issue tracking

systems have not yet gained wide adoption in scientific computing, although they

are commonly used in software projects elsewhere. When used, issue trackers

enable developers and users to submit and track different issues, such as bugs,

feature requests, enhancements, or any other tag the developers wish to define for

their project. However, many scientific software projects began long before issue

tracking became available, so a large part of their development history is saved in
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mailing list archives. For such data, we investigate automatic tag generation by

using natural language processing techniques. We also evaluate some non scientific

software projects including Linux (Torvalds [1999]), Couch Potato (Burger [2010]),

Famous (Valdman [2014]), l2met (Smith [2012]), KindleToPdf (Hou and Aivazian

[2011]) etc to understand the difference between the traditional projects and

scientific projects.

In this work we are considering the following scientific software libraries,

which are funded in part through government research grants, but also depend on

unpaid contributors.

– Portable, Extensible Toolkit for Scientific Computation (PETSc): a suite of

data structures and routines for the scalable (parallel) solution of scientific

applications modeled by partial differential equations. It supports MPI, and

GPUs through CUDA or OpenCL, as well as hybrid MPI-GPU parallelism.

PETSc (sometimes called PETSc/Tao) also contains the Tao optimization

software library (Balay et al. [2018]).

– Supercomputer PACKage manager (SPACK): a flexible, configurable, Python-

based HPC package manager, used for automating the installation and fine-

tuning of simulations and libraries. It operates on a wide variety of HPC

platforms and enables users to build many code configurations (Gamblin et al.

[2015]).

– FLASH: a multiphysics multiscale simulation code with a wide international

user base. It is the product from The Flash Center for Computational Science

at the University of Chicago which has been home to several cross-disciplinary
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computational research projects in its 20-year existence (at University of

Chicago [2011]).

– The Visualization Toolkit (VTK): an open-source, freely available software

system for 3D computer graphics, image processing, and visualization.

It consists of a C++ class library and several interpreted interface layers

including Tcl/Tk, Java, and Python. VTK supports a wide variety of

visualization algorithms including scalar, vector, tensor, texture, and

volumetric methods, as well as advanced modeling techniques such as implicit

modeling, polygon reduction, mesh smoothing, cutting, contouring, and

Delaunay triangulation (Schroeder et al. [2006]).
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CHAPTER II

BACKGROUND DEFINITIONS AND TOOLS

Scientific software is developed to answer scientific research questions. Most

of the projects are started as a proof of a concept until they actually evolve. They

are developed by domain experts, such as physicists and applied mathematicians,

who are highly skilled in their fields but are essentially not computer science

experts. Scientific software projects typically do not employ traditional software

development paradigms such as formal design, testing, versioning or documenting.

Moreover, as the complexity of software grows, it becomes equally important

to pay as much attention to software reusability, efficiency, robustness, and user-

friendliness as to developing new functionality. The growing research software

complexity require more research towards understanding ways of improving both

software quality and productivity.

Scientific software communities are different from non-research software

development communities. A lot of time the focus is on library or application

development in a super fast agile manner rather than having to manage or maintain

the software products. There is always a lot of discussion with stakeholders on

enhancements and contributions from the community. Most of the times the

collaborators are geographically distributed. As a result of a lot of discussions

written in different formats. Moreover, as the tools and technology evolve, there

is little or no refactoring or restructuring. Thus, mining of developer discussions

becomes essential. Machine learning, data mining tools, and models can help

us perform unsupervised classification and clustering. The preliminary steps to

perform the analysis is data cleaning and parsing. There are a lot of open source
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libraries available to accomplish data analysis. We have listed some of these

techniques and libraries below.

HTML Parsing

Data collection is one of the major steps in data mining. HTML parsing

is used for web scraping. By doing this the data is downloaded, extracted and

presented in a format that a developer can easily make sense of it.

HTML is a syntax specific language. Every tag serves as a block in a web

page. If the websites adhere to the HTML syntax it should be easy to scrape.

Using python it’s easy to do web scraping using BeautifulSoup library Nair [2014].

A regular HTTP request is made to the server which returns HTML page as the

response. The response is then parsed to BeautifulSoup format so we can use

BeautifulSoup to work on it. Using functions on the BeautifulSoup object like

“find all” and “get” can help in getting the desired object.

Tokenizing

Text tokenizing is a way of splitting the text to tokens. A token can be either

be a word, a sentence or a paragraph. In this work, we have used Python NLTK

tokenizer Loper and Bird [2002] and StanfordNLP Manning et al. [2014] Tokenizer.

Both these instances use Penn Treebank 3 (PTB) tokenization Marcus et al. [1999]

which works on simple rules for punctuations, double quote, parsed corpus etc. The

rules are mentioned here Taylor et al. [2003].

Example:

I/P :: “Since this is a big code, it has tons of output.”

O/P :: [Since, this, is, a, big, code, it, has, tons, of, output,.]
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Stemming

Stemming is a process which essentially removes the morphological affixes

from words so that we are left with the root word. Both NLTK and StanfordNLP

use Porter stemmer algorithm Porter [1997] to remove the common morphological

and inflexional endings from words in English. It is a rule-based stemmer that is

applied to the given word in a particular sequence.

Example:

I/P :: “Since this is a big code, it has tons of output.”

O/P :: “Sinc thi is a big code , it ha ton of output.”

Stopword Removal

Usually, most frequent words don’t make any sense when we do information

retrieval. In such a case it’s necessary to remove such words. The process of

removal of most frequent words from the given text is called stopword removal.

Every NLP library has a set of predefined stop words like “is”, “of”, “the”, etc.

There is no universal list of stop words in NLP research, however, the NLTK

module contains a list of stop words. These words can be hardcoded or the library

may have defined corpus for the same. Eventually, each word in the given text is

matched with the dictionary to determine whether it is to be kept or removed.

Example:

I/P :: “Since this is a big code, it has tons of output.”

O/P :: [Since, big, code, tons, output]
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Bag of Words (BoW) Model

In order to simplify representation, we use Bag of words model. It is one of

the most common representations used for the various machine learning algorithm

as input. The problem when we model an algorithm is that the input is messy.

Most of the time they prefer a fixed length input and output. The text cannot

be feed directly as raw. They need to be converted to a vector representation.

Essentially, the vector to the actual words is also necessary as to make sense of

the results.

Bag of words (BoW) is very simple and flexible mechanism to do so. A BoW

contains two things - A vocabulary of the given word and measure of the presence

of word (Brownlee [2017]). It is called “bag” as the information about the order or

structure of words is not maintained. Consider an example: A text snippet of the

first few lines of text from the book “A Tale of Two Cities” by Charles Dickens,

taken from Project Gutenberg.

it was the best of times,

it was the worst of times,

it was the age of wisdom,

it was the age of foolishness

The scoring would be like (“it” : 1), (“was” : 1), (“the” : 1), (“best” : 1),

(“of” : 1), (“times” : 1), (“worst” : 0), (“age” : 0), (“wisdom” : 0), (“foolishness” :

0)

The documents would look as follows:

“it was the worst of times” = [1, 1, 1, 0, 1, 1, 1, 0, 0, 0]

“it was the age of wisdom” = [1, 1, 1, 0, 1, 0, 0, 1, 1, 0]
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“it was the age of foolishness” = [1, 1, 1, 0, 1, 0, 0, 1, 0, 1]

K-means Clustering

K-means is an unsupervised machine learning algorithm which helps in

finding a fixed set of data clusters. A cluster is essentially the group of data points

which have same features. When using K-means we start with real or imaginary

centers for each cluster. Then every point in the dataset is added to a cluster based

on the standard defined distance measure. This process is then repeated until a

fixed number of times or until the centers converge.

Example:

I/P datapoints: A1(3,10), A2(4,6), A3(9,5), B1(2,8), B2(8,5), B3(6,6),

C1(3,3), C2(5,7), C3(6,8)

Lets say we have 3 centers (A1,B1, C1) and we take square error distance as

our measure.

After first iteration we have clusters as

Cluster 1: [(6,8), (3,10)]

Cluster 2: [(5,7), (2,8), (4,6)]

Cluster 3: [(3,3), (6,6), (8,5), (9,5)]

And the new centres for cluster are: [(4.5, 9), (3.67, 7), (6.5, 4.75)]

Following are the basic distance measures:
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Euclidean Distance

The Euclidean distance between two points is the length of the path

connecting them √√√√ N∑
i=1

(xi − yi)2

Manhattan Distance

The Manhattan Distance between two given points is the absolute distance of

their Cartesian points

|x1 − x2|+ |y1 − y2|

Cosine Similarity

Given two non - zero vectors cosine similarity is the measure of cosine angle

between them ∑n
i=1AiBi√∑n

i=1Ai

√∑n
i=1Bi

Latent Dirichlet Allocation (LDA)

Latent Dirichlet Allocation is a generative statistical model that allows sets

of observations to be explained by unobserved groups that explain why some parts

of the data are similar (Wikipedia contributors [2018a]). It is the most widely used

topic modelling algorithm. A document can be expressed as a mixture of topics.

Each document consists of words that contribute to a given topic and it can be

predicted by generating the probability distribution. Given the dataset and LDA

backtracks it tries to figure out the most likely topic for that document. An open
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source library to perform LDA in python is Gensim Řeh̊uřek and Sojka [2010]. It

scales well on a large text corpus. Example Chen [2011]:

Suppose you have the following set of sentences:

I like to eat broccoli and bananas.

I ate a banana and spinach smoothie for breakfast.

Chinchillas and kittens are cute.

My sister adopted a kitten yesterday.

Look at this cute hamster munching on a piece of broccoli.

LDA is a way of automatically discovering topics that these sentences contain.

For example, given these sentences and asked for 2 topics, LDA might produce

something like

Sentences 1 and 2: 100% Topic A

Sentences 3 and 4: 100% Topic B

Sentence 5: 60% Topic A, 40% Topic B

Topic A: 30% broccoli, 15% bananas, 10% breakfast, 10% munching, (at

which point, you could interpret topic A to be about food)

Topic B: 20% chinchillas, 20% kittens, 20% cute, 15% hamster, (at which

point, you could interpret topic B to be about cute animals)

Term Frequency - Inverse Document Frequency (TF - IDF)

TF-IDF is a numerical statistic which reflects how important a word is to a

document in the given dataset (Wikipedia contributors [2018b]). The importance

of a word increases proportionally to the number of times a word appears in a

document. As the name suggests it composes of two terms, Term Frequency (TF)

and Inverse Document Frequency(IDF). TF is defined as the frequency of a given
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word in a document. In order to normalize the occurrence of any word with respect

to the length of a document it is divided by the total number of terms in the

document. Thus, TF(x) = (Number of times “x” appears in a document) / (Total

number of terms in the document).

IDF on other hand computes the importance of a term. In order to scale

down the importance of frequently occurring stop words, we take the logarithmic

value of the term.

Thus, IDF(x) = log(Total number of documents / Number of documents with

term “x” in it).

Example:

Consider a document has 100 words and the word “dog” appears 8 times.

The TF for “dog” is (8/100) = 0.08. Now, let’s assume we have 1000 documents

and “dog” appears in 100 of them. Thus IDF = log (1000/100) = log(10) = 1. So,

the tf-idf is given as 0.08 * 1 = 0.08.

Word2Vec

A word2vec model is a word embedding model. It takes the text as input and

returns a vector space of the specified dimension. The word vector represents a

word in the space in such a way that the words that share common contexts in the

corpus are close to each other. Word2Vec is a shallow neural network with three

layers; the input, output and a hidden layer. An input to a neural network is a

sequence of numbers that represents the given text. This representation is called

“One Hot Encoding”. The word2vec model can be based on either of two models

Continuous Bag of Words and Skip-gram model.
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Continuous Bag of Words (CBOW)

CBOW model predicts the base word, given the surrounding words. We define

the window size while feeding data to the neural network. Consider a sentence as

“cat climbs tree for the first time ever” and the window size is 3, the input and

target will be [(cat, tree), climb] where climb is the target word.

Skip-gram

Skip-gram model predicts the context given a word. There is just one input

feed to the model which is one hot encoded. In response, we get a list of words

which are more likely to share context with it. Consider if we give an input as

“Climbed” and “Tree” and “Cat” are in context, then the output will be cat and

tree.

If the dataset size is smaller then, Skip gram performs better than the

CBOW. CBOW needs a lot more training based on the text and window size.

Naive Bayes

Naive Bayes is a classification algorithm which is based on the Bayesian

Theorem. It assumes that a presence of a feature is unrelated to any other feature.

Thus, it finds the probability of an event occurring given that the other event has

already occurred.

P (Ck/B) =
P (B/Ck)P (Ck)

P (B)

where K is the number of possible outcomes for feature C and B is essentially

a vector of features.
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Semantic Parsing

Semantic parsing is a task of converting the natural language task to a

logical form. A logic form could be a machine-understandable representation of a

database query. Most of the application of semantic parsing is in code generation

and question answering applications.

Lambda Dependency-Based Compositional Semantics (Lambda DCS)

Lambda DCS works on the fact that it has a knowledge base of asserts in

the background. Each entry in the knowledge base is of type Entity, Property,

Entity. This can be visualized as a directed graph where nodes are entities and

edges represent assertions in the knowledge graph. Each rule is written as a lambda

operator and can be evaluated as an unary case, binary case, join, intersection,

union, negation or higher-order functions Liang [2013].

Example: Consider an entity like Seattle, it can be represented in the unary

form as

λx.[x = Seattle]

Combinatory Categorial Grammar (CCG)

In CCG the verbs are associated with a syntactic “category” which identifies

them as functions and specifies the type and directionality of their arguments and

the type of their result.

Anaphora Resolution

The problem resolving pronoun is called as Anaphora Resolution. For

humans, it’s an easy task to resolve a pronoun with the noun knowing the text
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preceding it. For machines, it’s one of the most challenging tasks. It is considered

as one of the major Black Hole in the NLP domain. There are two different

libraries that address this issue

Stanford Deterministic Coreference Resolution System

This system implements the multi-pass sieve coreference resolution (or

anaphora resolution) system written in Java.

Neural coref

As the name suggests, Neural coref is a neural network model based on SpaCy

parser inspired by Kevin Clark’s and Christopher D. Mannings Deep Reinforcement

Learning for Mention-Ranking Coreference Models(Clark and Manning [2016]). It

extracts the potential mentions, that is, words that are referring to real entities.

Based on the predefined rules and parsing the dependency tree, it trains the model.

Further, the most likely feature is selected from the input text and a pairwise

ranking is given.

TextBlob

Textblob is a simple Python library for processing textual data. It provides a

simple API for diving into common Natural Language Processing (NLP) tasks such

as part-of-speech tagging, noun phrase extraction, sentiment analysis, classification,

translation, and more. It’s a simple, easy to understand, well-documented library

with many features for performing NLP tasks. We used this library to perform

sentiment analysis. The TextBlob sentiment analysis we used was powered by

Naive Bayes Classifier. The classifier is trained on Movie Review dataset available
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in NLTK for sentiment analysis. The accuracy of this model is 72%. Although it’s

not very high, it is still very useful.

Natural Language Toolkit (NLTK)

NLTK is a leading platform for building Python programs to work with

human language data. It provides easy-to-use interfaces to over 50 corpora and

lexical resources such as WordNet, along with a suite of text processing libraries for

classification, tokenization, stemming, tagging, parsing, and semantic reasoning,

wrappers for industrial-strength NLP libraries, and an active discussion forum

(Loper and Bird [2002]).

It comprises of suites of program modules, data sets, tutorials and exercises,

covering symbolic and statistical natural language processing. NLTK is written in

Python and distributed under the GPL open source license.

Stanford NLP

The Stanford NLP Group makes Natural Language Processing tools, modules,

datasets which provide statistical NLP, deep learning NLP, and rule-based NLP

tools for major computational linguistics problems. The packages are widely

available to be used in industry, academia, and government (Manning et al. [2014]).

Gensim

Gensim is the most robust, efficient and hassle-free piece of software to

realize unsupervised semantic modelling from plain text.It uses NumPy, SciPy and

optionally Cython for performance. Gensim is specifically designed to handle large

text collections, using data streaming and efficient incremental algorithms, which
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differentiates it from most other scientific software packages that only target batch

and in-memory processing.(Řeh̊uřek and Sojka [2010])

SpaCy

SpaCy is yet another open source software written in Python and Cython

for Natural Language Processing. It has features like neural models for tagging,

parsing and entity recognition. It scales well on large data sets and is highly

memory managed (Honnibal and Montani [2017])

Sci-kit Learn

Scikit is a simple and efficient tool for data mining and data analysis. It is

accessible to everybody and reusable in various contexts. It is built on NumPy,

SciPy, and matplotlib. It contains many states of the art algorithms that are easy

to use with high-level APIs and well-maintained documentation (Pedregosa et al.

[2011])

Highcharts

Highcharts are highly interactive JavaScript charts used for the web pages.

Highcharts supports line, spline, area, areaspline, column, bar, pie, scatter, gauge,

arearange, areasplinerange and column range chart types. It is easy to use with

high-level APIs and well-maintained documentation.

Cytoscape

Cytoscape (P et al. [2003]) is an open source software project for integrating

biomolecular interaction networks with high-throughput expression data and
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other molecular states into a unified conceptual framework. It is most powerful

when used in conjunction with large databases of protein-protein, protein-DNA,

and genetic interactions that are increasingly available for humans and model

organisms. In this work we are using Cytoscape to analyse large networks such

as inter-developer interactions and developer commits directed graph.
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CHAPTER III

RELATED WORK

Software productivity is a measure which can help control and improve

software development processes. It has been subject to active research for a long

time. Martin Fowler (Fowler [2003]) mentions in his blog that the software industry

lacks the ability to measure some of the basic elements of the effectiveness of

software development because productivity is something you determine by looking

at the input of an activity and its output. So to measure software productivity

you have to measure the output of software development - the reason we can’t

measure productivity is because we can’t measure output. However, there are

various communities and groups trying to measure and determine what factors

affect software development.

It is very interesting to explore the largest open source software repository -

GitHub. A lot of factors can potentially be including in estimating the productivity

developers and teams in open source software projects. Tsay et al. [2014]

investigate how contributions are affected by discussions on GitHub. On the

other hand, Ray et al. [2014] study the programming language as a factor for code

quality. They use Negative Binomial Regression to model the non-negative counts

of project attributes such as the number of commits.

Some researchers study the psychological aspects of development based on

these repositories. For example, Thung et al. [2013] create the network structure

that reflects developers’ influence on GitHub. They identify the most influential

developers and projects using the PageRank algorithm. Understanding how

developers and projects are actually related to each other on a social coding site
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is the first step towards building tools to aid social programmers in performing

their tasks more efficiently. Guzman et al. [2014] study Git users’ sentiments in the

commit comments to analyze emotions and related factors which could be a factor

in managing programming teams.

Vasilescu et al. [2015a] try to understand the perception of diversity on

GitHub. Contributors can be professional developers or volunteers of varied

personalities, educational and cultural backgrounds, age, gender, and expertise.

Diversity on GitHub can be used as complementary data to quantitatively study of

developer’s behavior which can affect and impact software productivity. Another

research paper by Vasilescu et al. [2015b] studies gender and tenure diversity,

aiming for better outcomes in recruiting and performance.

The book Social Informatics by Jarczyk et al. [2014] addresses project quality

and a project’s influence on other projects by defining some metrics. Their first

metric is based on the number of stars, the other is on survival analysis techniques

applied to issues reported on the project by its users. The book on Software

Quality Engineering by Kan [2002] describes various metrics associated with the

software life-cycle: in-process, end-product, and maintenance.
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CHAPTER IV

METHODOLOGY

Scientific projects evolve very quickly and can be active for decades. There

are various time-dependent factors that matter in the project’s evolution and

popularity. Traditional software productivity analysis cannot be applied easily to

these projects. Most established metrics are static and rely purely on code factors.

We are also trying to discover other potential factors that affect developer and

team productivity, such as the changing budget of the project, the effects of the

research funding environment, etc.

In this work, we are trying to understand how the successful active projects

differ from the traditional archived project. Can we predict the lifespan of a

project? How does a developer sentiment affect the team? Does the time variant

sentiment also affect its productivity? Does the productivity of the team as a whole

depend on one or a few core developers? How impactful is each core developer?

Unlike in product-focused software projects, since there are no easy replacements

for the same work, what happens if the core developer stops contributing?

Following are the steps that are necessary to perform data analysis that aims

to help answer these and future questions.

Data Collection

Emails

Most of the open source software libraries have publicly available mailing lists

hosted by Mailman (Warsaw et al. [1999]) servers. In order to download the data,
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we needed to perform web scraping. We used Pythons BeautifulSoup to do so. We

considered the following are the projects and their repositories:

– PETSc

∗ petsc-maint(https://lists.mcs.anl.gov/mailman/private/petsc-maint/)

∗ petsc-users (http://lists.mcs.anl.gov/pipermail/petsc-users/)

∗ petsc-dev (http://lists.mcs.anl.gov/pipermail/petsc-dev/)

– Linux

∗ Linux-Kernel Archive(http://lkml.iu.edu/hypermail/linux/kernel)

Github Commits

Git (Chacon and Straub [2014]) is a free and open source version control

system. It can handle all size of projects with speed and efficiency. Git commit

records all changes to the repository. Ones with multiple commits to the repository

the log of commits can be done. The following git commands provide data on all

commits:

git clone 〈repository url〉

git log –abbrev-commit –decorate –all –numstat -p

These commands gives author, file name, commit diffs and commit date.

Since it is the fastest way to pull commit history, we performed this for most of

the repositories mentioned below

– PETSc

– LINUX
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– COUCHPOTATO

– FAMOUS

– KINDLETOPDF

– VTK

– l2met

GitHub Issues

Git issues are a great way to keep track of tasks, enhancements, and bugs.

They are similar to emails but are shared with the entire team instead of specific

contributor/developer. Github’s issue tracking tracks collaboration, references, and

excellent text formatting, making it ideal for your research.

GitHub issues can be downloaded as JSON objects using the well-documented

GitHub REST API v3 Developer [2017] to Github’s web services. The web services

are secured and hence one needs to have a GitHub account for access. We cloned

the following repositories’ issue trackers.

– SPACK

Bitbucket

Bitbucket is a web-based version control system based on Git. Some projects

like PETSc have their version control managed using Bitbucket. The commit

messages and code diffs were downloaded in a similar fashion to Github’s data.
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SVN

Apache Subversion (SVN) is another version control system under the Apache

Licence. With SVN users can create self-hosted private repositories. FLASH uses

SVN. In order to download commit data and messages, we needed to have access

to their private repository. Once the access was granted, we created a Git local

repository so that we could use the same parser as for other projects. We used git-

scm (Chacon and Long [2005]) for the conversion. Finally, we were able to parse

the data in the same format.

Preprocessing

In this section we overview the data preprocessing steps we implemented.

Selection

Most of the emails are threads, i.e. they include one or more replies to the

original email. We must distinguish the content of the new email from the old

email. The relevant content new to the current email was extracting by using

regular expressions and the fact that most of the previous content was started with

prefix “〉” and was indented.

Most of the time emails start salutations and end with the author’s signature.

We created a dictionary of the most common salutations and authors and filtered it

out from the text. In addition, we parsed the text to find most frequent developers

and used them in the list of stopwords so that the models are not biased towards

them.
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Process

Preprocessing steps like tokenizing, removing stopwords and removing non-

ASCII characters were performed on unstructured text. Since stemming changes

the meaning of the word and we wanted to determine what part of speech it is, we

choose not to do it.

As an illustration of what our inputs look like, below are a couple of examples

of the structure of a FLASH email object and a PETSc commit object.

{

"_id" :"597d78cd785d391f2896270b",

"author" : "Jason Galyardt",

"text" : "Dear FLASH developers, My apologies -- I reported the same bug that Mark found. There

are two new bugs in source/physics/Hydro/HydroMain/unsplit/Hydro_computeDt.F90 on lines

188 and 190, also having to do with array indices: !~~~~ jmS = max(blkLimits(LOW,IAXIS),

jmS) !... jpS = min(blkLimits(HIGH,IAXIS), jpS) !~~~~ The 'IAXIS' on both lines should be

'JAXIS', I believe. Here are the corrected lines: !~~~~ jmS = max(blkLimits(LOW,JAXIS),

jmS) !... jpS = min(blkLimits(HIGH,JAXIS), jpS) !~~~~ Sorry about the confusion. Again,

these bugs are also in source/physics/Hydro/HydroMain/unsplit_rad/Hydro_computeDt.F90.

Best Regards, Jason On Fri, Feb 12, 2016 at 3:52 PM, Jason Galyardt <jason.galyardt at

gmail.com> wrote: > Dear FLASH developers, > > In looking at

source/physics/Hydro/HydroMain/unsplit/Hydro_computeDt.F90 > to correct a bug reported to

the flash-users list by Mark Richardson, I > noticed another bug. Line 239 in the FLASH

4.3 version of this file reads > as follows: > > if (NDIM > 2) dt_ltemp = >

max(dt_ltemp,(abs(U(VELZ_VAR,i,j,k)-uzgrid(j))+sqrt(cfz2))*delzinv) > > However, I believe

the index of the uzgrid array is incorrect; the index > 'j' should be 'k', yielding: > >

if (NDIM > 2) dt_ltemp = >

max(dt_ltemp,(abs(U(VELZ_VAR,i,j,k)-uzgrid(k))+sqrt(cfz2))*delzinv) > > I've not noticed

any problems traceable to this bug, though I can verify > that the corrected version is

functional. Given that Mark Richardson's bug > was first identified in

unsplit_rad/Hydro_computeDt.F90, the bug identified > above likely affects the unsplit_rad

version of this routine as well. > > Best Regards, > > Jason > > ---- > Jason Galyardt >

Department of Physics and Astronomy > University of Georgia > > ",

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

"date" : "2016-02-12T15:25:20.000Z",

"pid" :"597d78c8785d391f2896270a",

"title" : "Bug in Unsplit Hydro_computeDt",

"url" : "http://flash.uchicago.edu/pipermail/flash-bugs/2016-February/000392.html",

"content" : "Dear FLASH developers, My apologies -- I reported the same bug that Mark found.

There are two new bugs in source/physics/Hydro/HydroMain/unsplit/Hydro_computeDt.F90 on

lines 188 and 190, also having to do with array indices: !~~~~ jmS =

max(blkLimits(LOW,IAXIS), jmS) !... jpS = min(blkLimits(HIGH,IAXIS), jpS) !~~~~ The

'IAXIS' on both lines should be 'JAXIS', I believe. Here are the corrected lines: !~~~~

jmS = max(blkLimits(LOW,JAXIS), jmS) !... jpS = min(blkLimits(HIGH,JAXIS), jpS) !~~~~

Sorry about the confusion. Again, these bugs are also in

source/physics/Hydro/HydroMain/unsplit_rad/Hydro_computeDt.F90. Best Regards, Jason On

Fri, Feb 12, 2016 at 3:52 PM, Jason Galyardt <jason.galyardt at gmail.com>",

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

"prediction" : "bug"

}

{

"_id" : "d3a0d25",

"author" : "Alp Dener",
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"commits" : [

{

"deletions" : "1",

"diffs" : [

{

"spacy" : 1.00000003488181,

"tag" : "change",

"text2" : "{\\bf Todd Munson \\\\ Jason Sarich \\\\ Stefan Wild \\\\ Steven

Benson \\\\ Lois Curfman McInnes}",↪→
"max_char" : 84,

"text1" : "{\\bf Alp Dener \\\\ Todd Munson \\\\ Jason Sarich \\\\ Stefan Wild

\\\\ Steven Benson \\\\ Lois Curfman McInnes}",↪→
"diff" : 0.925820099772552,

"_id" : "d3a0d25_3",

"diff_eff" : 6.23111161910567

}

],

"filename" : "src/docs/tao_tex/manual/cover.tex",

"diff_eff_avg" : 0.0110216678544351,

"additions" : "1",

"diff_eff" : 6.23111161910567

},

{

"deletions" : "1",

"additions" : "1",

"filename" : "src/tao/unconstrained/impls/lmvm/lmvm.c"

}

],

"diff_eff_avg" : 0.925820099772552,

"date" : "2018-03-05T19:44:07.000Z",

"diff_eff" : 6.23111161910567

}

Data Mining

In this section we briefly overview the different data mining methods we

applied.

Topic Labelling

In order to identify whether the email is primarily about a bug or a feature

request, we performed topic labeling. We used Latent Dirichlet allocation in python

Gensim to perform topic labeling.

Each email was considered as the document to analyze. After preprocessing

the documents, they were ready to be fed to LDA model. However, LDA requires

some sort of text encoding, so that the input is a vector of numbers. In order to

25



convert words to vector, we used Bag of word representation. Gensim creates a

dictionary of encapsulates the mapping between normalized words and their integer

IDs.

Because the vocabulary size is huge we restricted the dictionary to contain

200000 words only. Once the bag of words representation is ready, it is fed as input

to LDA model. The LDA model gave the probability distribution of words which

contributed to the topic. Since the topics are unlabelled we get an output as topic1,

topic2 and corresponding word association along with the probability of how much

the word contributes towards the topic. We then used human judgment to conclude

that the words such as “error ”, “lead ”, and “experiment ” represent Bugs and

words such as “would ”, “like ”, “change ” represent Features.

Once we label the topics with Bug and Feature labels, we need to tag

each email. So, each document was then preprocessed and converted to Bag-of-

word representation. For Bag-of-word each document is converted into a vector

representation. The number of items in the vector representing a document

corresponds to the number of words in the vocabulary. The larger the vocabulary,

the longer the vector representation, hence the preference for smaller vocabularies

in the previous section. The next step is to feed again to LDA model previously

generated. This process gives out the probability distribution of the document to

the topics. The higher the probability, the more likely it is that the document is

intended to be related to that topic. Thus, we were able to label all documents as

Bug or Feature.
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Clustering

Email chains are usually supposed to have the same behavior in terms of thr

number of emails exchanged in the mail chains or the topic of discussion is relevant

to the team. This is called its normal behavior. However, there might be some

deviation from the standard normal pattern. This is called an anomaly. To detect

the unusual pattern we decided to perform unsupervised clustering. In particular,

we used TF-IDF over the titles to perform k-means clustering where the number of

clusters is two.

Data Visualization

The implicit features are frequently overlooked while performing complex

analysis. Simple patterns can depict very useful and meaningful information. Thus,

after preprocessing the data, we decided to plot emails exchanges per contributor

over the years, email density over time per unique chain and author to bug/feature

ratios.

Sentiment Analysis

In order to track the overall mood of developers with respect to a project

average, we projected the sentiment analysis on emails and issues discussed. We

used the TextBlob sentiment analysis feature to perform sentiment analysis. The

interesting patterns we wanted to evaluate was, how does the open source non-

funded project work against scientific projects which are government funded. How

does the course of project change when the funding changes? Does each developer’s

sentiment matter equally? Can we detect/predict when a the project encounters

a difficult time? Does male to female ratio matter when it comes to sentiment
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analysis? Does a lot of work pressure make people negative? How productive is a

more negative community compared to a more positive one?

In this work, we choose to explore only some aspects and some research

software and non-research open-source projects, such as SPACK, PETSc, FLASH,

VTK, and LINUX. Standard preprocessing steps are performed on the content

of the unstructured text and then using the analyzer the probability of the text

being positive or negative is calculated. Then, based on the higher percentage the

document is labeled as positive or negative.

Profanity

Psychology researchers believe that a human swears for reasons such as

to show power and control, express humor, increase peer bonding, etc. Some

studies claim that swearing is the sign of intelligence (Stephens [2017]). In order to

understand how profanity affects the current projects and some old projects, we did

profanity analysis in Python. Since there is not a predefined list of profane words

and no standardized dictionary, we decided to create our own profane dictionary of

words.

The list contained a total of 438 words which excluded word relevant to the

domain. For example, the daemon was excluded from the dictionary as it is an

important keyword in computer science domain.

The profanity analysis is performed by preprocessing the text. Once that

is done, using a word tokenizer we check if each word is present in the profanity

dictionary. If the word exists we mark that email to contain profane word and

created a list of all profane words in the text. After generating the profanity list

we create a dictionary model which essentially contains the profane words and the
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word count associated with it. We then rank the dictionary for word count from

higher to lower. Based on a certain threshold for each project we then make the

judgment for the topic with which profanity is most associated with. Currently, we

have explored profanity analysis on big repositories like LINUX and even on the

smaller ones like SPACK, PETSc, and FLASH.

Developer Effort Estimate

There are various metrics that defines effort estimation. For example addition

of total lines of code or deletion of it, number of characters added/deleted, etc.

We decided to estimate effort based on fine-grained change analysis instead

of the more typical file-based changed lines metrics. Each commit may have one or

more changed files, and each file may have one or more sets of changed lines, which

we consider individually. After cloning the repository we generate the log file using

git. A parser processes the log to generate a set of fine grained commit changes.

Each addition/deletion is 100% effort whereas an update is evaluated based on the

significance of the change computed through the similarity analysis discussed below.

– Similarity using a vector method

For each of the text to compare, a number vector is calculated based on the

frequency of words. Then for both the vectors say A and B, the difference is

calculated as the cosine similarity. In this process, pure Python code is used

to calculate similarity.

– Similarity using cosine difference on TF-IDF

Sci-kit Learns TF-IDF text vectorizer is used to calculate the word vector.

The transformed vector is then used to calculate cosine similarity.

29



– Similarity using Spacy

We use SpaCy Similarity feature to compute the difference. The word

embedding is generated using word2vec model. The resultant is then

computed by taking the negation of the similarity.

Most of the above-mentioned projects work best for standard English

sentences. However, we created a validation to have a comparison of which model

suit our case. We finally concluded that calculating difference using the vector

method gave higher accuracy.

The effort estimation is directly proportional to the changes made to the

commit change. Thus the effort estimate can be given as

(1− codesimilarity)

totalnumberofcharacters

There are other complex methods to compute the similarity of code, like using

Abstract Syntax Tree and Measure of Software Similarity (MOSS) (Schleimer et al.

[2003]). We leave it for the future to explore.

Developer - code connected graph

Every contributor touches a certain piece of code as a core developer or

as a contributor. There is a difference in the pattern for the different types of

project. Scientific software like PETSc and FLASH don’t have more client specific

customizations.

Projects like l2met, couchpotato or famous have a much more single developer

specific code. The graphs are generated by creating a directed edge from a

developer to a file, to which they have committed changes. Graph measures
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like density, the in-degree, out-degree, and centrality depicts some important

characteristics of the project. We intend to explore this further in the future.

Developer - contributor connected graph

There is a lot of interaction in between team and the frequency of response

varies from between the team to a user. Some developers are proactive and have

a tendency to respond to users frequently. Whereas some contributors keep it to

themselves. There are many such patterns that we can study by just using the

developer contributed graph.

The developer contributor graph is a weighted graph with edges between

a developer and other members of the team based on communications between

developers. The weight is based on the frequency of the developers’ responses.

At times when the mail chain address reply to all, the edge is connected from

the sender to all the receivers. In case of the Git issues, the response is a weight

on the issue thread. However, a user may address certain concern using the

“@〈user name〉” structure. In such a case, it is strictly dedicated to that specific

Git user.
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CHAPTER V

RESULTS AND ANALYSIS

Data

We collected data from various sources to perform the software productivity

measures and understand its implications. For projects such as PETSc, on an

average it takes around a day to download the data. The average number of emails

is 20,000. Because most of the data and computation are stored in MongoDB, the

size of the collection is about 120 MB. The major challenge was downloading email

data for LINUX. The dataset size is around 6.5 GB.

For parsing the Git log files it takes a couple of hours on average depending

on the project size. The size of MongoDB collection ranges from 4 MB to 30 MB.

The other challenge is downloading issues from GitHub using the REST API.

Git restricts a maximum of 5,000 calls an hour to an authorized user. The size for

SPACK issues is 20 MB.

Topic Labelling

The result of the topic labeling is shown in Table 1. Understanding the bugs

and features classification helps determine the stability of the project. Things to

consider are how the teams deal with the bugs? What are there project lifecycle

like? How much do they value third-party users? Does the community support

matters? If so, how? Does the popularity of the project depend on these factors?
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TABLE 1. Topic label analysis

Project Bug Feature Total Duration (months)

PETSc 2,538 18,334 20,880 ∼ 146

FLASH 588 111 699 ∼ 195

LINUX 79,217 5,13,480 5,92,697 ∼ 264

VTK 36,212 35,498 71,710 ∼ 224

As we can see for PETSc and Linux, around 12-13% of the discussion is

centered around bugs, and the remaining emails are about feature requests or other

activities. For VTK, around 50% of the emails are about bugs. In terms of Google

searches for each package, the popularity of VTK and PETSc varies a lot. The

Google trends in Figure 1 show the normalized counts of searches for both projects

over the last five years.

FIGURE 1. Google trends - VTK vs PETSc

For FLASH, the majority of emails were about bugs and a very few were

about features. This was a surprisingly different pattern as FLASH team had the
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(a) PETSc (b) FLASH

FIGURE 2. K-Means clustering.

practice to take feature request outside email conversations and it was confirmed

by one of the lead team members. Thus we see not many variations in the FLASH

dataset. GitHub issues already have tag associated with them, so did not require

tag generation through NLP.

Clustering

One of the goals of using clustering is to help identify anomalies. There are

various other features one can consider while executing anomaly detection. We

considered the title as the feature to figure out completely off topic discussion.

Since the scientific domain are restricted with the domain experts, we detected few

outliers. The number of spammers was also limited. A good reason for the same is

most mail servers have spam detectors already enabled. The clustering results for

PETSc and FLASH can be seen in Figure 2.

As we can see, The two outliners are titled “New web utility” and “Student

Insurance”. These two points clearly don’t speak about the working of the software

or issues related to it.

34



Visualizations

Visualizing developer activity over time can help identify core developers’

normal work patterns or abnormal periods (e.g., vacations or other events). This

can help predict when bugs/features associated with that developer are likely

to be resolved. It could also help with planning new releases. We show these

visualizations for PETSc, FLASH, LINUX, VTK, and SPACK in Figure 3.

On the x-axis, we have time (measured in months) and the value on the y-

axis is the number of emails a developer exchanged during that month.

The peaks on each of the graphs show the most active developer. It is very

evident the places where those line plots drops are the regular vacation (or non-

development) periods for that developer. The density of the lines on the bottom

shows the popularity of the project and the lines with different color peak shows

the number of active developers.

Understanding how long an email chain runs both in terms of duration and

amount together gives interesting insights like the most common recurring topic,

or an important concern which has not been resolved since long, or concluding its

a complex topic. Further, one can evaluate how many topics are been documented

and also provide suggestion to document. The teams can in general work towards

resolving issues much quicker. For projects, PETSc, FLASH, VTK, and SPACK

the plots are represented in Figure 4.

The X-axis represents email topics, Y-axis email count. The diameter of

the circle gives time complexity. Thus, we can see for PETSc “Configuration

issues” have most time complexity and a lot of emails were exchanged discussing

“estimating eigenvalues” in a short span of time.
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(a) PETSc (b) FLASH

(c) LINUX (d) SPACK

(e) VTK

FIGURE 3. Email and issue counts per developer.
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(a) PETSc (b) FLASH

(c) SPACK (d) VTK

FIGURE 4. Topics over time and count
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For VTK, the team had a discussion on a title “no subject” for almost 200

emails. Also, a discussion on support for Visual Studio went along for almost 80

emails within a duration of just three days. It is evident the community is very

active and most of the discussion involved a lot of stakeholders. SPACK has a

default pattern, with a usual discussion not involving more than 40 responses on

either of the topics. The reason for such a behavior is probably because of the age

of the project. It is just 4-5 years old.

Sentiment Analysis

Sentiment analysis offers us a glimpse into the emotional state of the team,

at least as visible through development-related communications. One can judge the

attitude, options, and opinion of the repository. Further, does sentiments affect the

team spirit? Can it make or destroy the team spirit? How do the trends follow?

How are time variant the projects? Many evaluations that can be done while

studying this time-dependent sentiment analysis.

Sentiment analysis for individual developer across different teams is projected

in Figure 5.

Heat maps in Figure 6 show the variation of the developer sentiments from

the average team mood for a month in a year. In research projects, we see certain

patterns especially at the start of a fiscal year when new funding starts and at the

end when there is an uncertainty of the budgets for next year. The heat maps

are for the time period when the team had maximum amounts of conversation

happening. Most of the teams’ sentiment is below average during the middle of

the year in general.

38



(a) PETSc

(b) SPACK

(c) VTK

FIGURE 5. Developer sentiments over time.
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(a) SPACK (2016-17) (b) VTK (2009-10)

(c) PETSc (2014-15)

FIGURE 6. Team sentiments over time.
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(a) PETSc (b) LINUX

(c) SPACK (d) VTK

FIGURE 7. Profane words.

Profanity

Every community is different. The use of curse word differs from one project

to another. Is the use of such words specific to a region? Or is there a specific

pattern of usage? Whats the context of such usage? We first explore the variety

and number of curse words used with the pie charts for PETSc, SPACK, VTK,

LINUX in Figure 7.

Although the community size differs for each of the projects, the scientific

software shows pretty much the same words. For Linux, the number of contributors
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(a) PETSc (b) LINUX (c) SPACK

FIGURE 8. Topics corresponding to profanity.

is much higher, we see a pattern where even the females curse, unlike any other

project we’ve analyzed. The curse words used are also more varied.

An interesting insight into profanity is related to understanding what topics

most commonly inspire it. For example, managing multi-platform configuration

and build systems is a time-consuming and unpleasant task for scientific software

developers. Indeed, the pie chart reveals that some of most common topics

associated with profane words are configuration and build-related. The pie charts

for PETSc, SPACK, and LINUX are shown in Figure 8.

The contributors are also different in all the above-mentioned projects. Not

every developer curses or the curse word in one mail chain may be used in different

ways from other conversations. An interesting aspect to explore would be the usage

of gender-biased words. In this study we considered individual projects separately,

but we could also study the same developers across all their open-source projects.

Much interesting information can be observed by these sunburst charts for PETSc,

SPACK, LINUX that are represented in Figure 9. We can easily see the most

favorite curse word for each of the developers.
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(a) PETSc (b) LINUX (c) SPACK

FIGURE 9. Developers’ usage of profanity. The inner ring represents the
developer’s name and the outer ring is the profane word used by each.

We have encoded both the developers’ names and the curse words for publication
purposes.

Estimating Developer Effort

Many measures have been defined in an attempt to quantify software

developer efforts, such as the number of commits, days of activity, number of

changed files or lines of code, the frequency of commits, etc. All these measures

may work fine in the traditional project environment. For scientific software,

the stakeholders are different. Developers are from different domains and have a

different level of expertise. Thus, we decided to average out the development effort

of a single developer in a team and analyze it.

The plots in Figure 10 represents the moving average of one of the top

developers in each team at a certain time range. The little peaks we see in the plots

are probably for the time when the projects are having alpha releases.

As mentioned earlier, the sentiments may have some correlation with the

development effort. Can the positive correlation stating the negative a person goes,

more likely he/she loses interest in the project? Or a contributor started being
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(a) PETSc (b) SPACK

FIGURE 10. Individual developer effort estimate.

(a) PETSc (b) VTK

FIGURE 11. Developer sentiment vs effort.

frustrated with some functionality and eventually end up resolving the issue and

started liking the project. Do high motivated people influence other on the team?

It is interesting in finding a correlation between the two. The plots in Figure 11

show these correlations.

Developer - Code Graph

Every contributor touches a certain piece of code as a core developer or

as a contributor. There is a difference in the patterns for the different types of

projects. Scientific software projects like PETSc and FLASH don’t have specific
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(a) PETSc (b) VTK

(c) SPACK (d) FLASH

FIGURE 12. Developers to code relations (scientific software).
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customizations for specific users, whereas projects like CouchPotato contain much

more customer-specific code. The graphs are generated by creating a directed edge

from a developer to a file they commit. Graph measures such as density, in-degree,

out-degree, and centrality depict some important characteristics of the project. We

intend to explore more graph analysis techniques in the near future.

Table 2 projects the maximum topological coefficient and eccentricity of the

developer to code graph representation. Topological coefficient is a relative measure

for the extent to which a node shares neighbors with other nodes. Eccentricity is

the maximum distance between a vertex to all other vertices. Just with these two

measures, we can conclude that the graphs are densely connected. We will explore

more such metrics in near future.

Project Maximum Topological Coefficient Maximum Eccentricity

PETSc 0.5834 12

VTK 0.526 14

SPACK 0.714 12

FLASH 0.53 11

TABLE 2. Graph measures for developer to code graph.

For scientific software the graphs are shown in Figure 12 and for more open

source projects in Figure 13.

We observed that all scientific software had at most five developers who are

more active than most of the other developers, which is far fewer than in typical

product-oriented industry software projects.

Developer - Contributor Graph

Some humans are proactive, some are reactive while some are extreme

introverts. It is interesting to study the influencer in the team. We plotted the
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(a) LINUX

(b) l2met (c) COUCHPOTATO

(d) Kindle2Pdf (e) FAMOUS

FIGURE 13. Developer to code relations.
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(a) FLASH

FIGURE 14. Developer to developer relation

developer to contributor graph, weighing the edge on a number of emails exchanged

between them. Some developers are more keen on interacting among themselves,

while some take charge to respond to users. Does this indicate a team strategy or

is it just human nature? Can someone be gender-biased and not respond to others

selectively? Does not responding impact the users? We studied these aspects for

both the traditional projects and scientific projects.

Figure 14 shows the developer-developer graph for FLASH. In most of the

team, there is only one or two developers who respond to end users, others usually

interact among themselves. The out-degree centrality shows the same. We also

observe completely disconnected subgraphs, indicating small groups of people who

communicate among themselves but not with the overall team.

48



Developers Self Loops Partner of Multi-Edged Node Pair

Developer1 686 143

Developer2 259 124

Developer3 870 112

Developer4 396 89

TABLE 3. Graph metrics for PETSc developer to contributors graph.

Table 3 represents some metrics for PETSc graph generated by creating

directed graph from one developer to another (the developer names are omitted

for privacy reasons). It is difficult to visualize the graph statically, so we have

listed these measures. We observe that some developers use “respond to all” more

frequently and hence have a lot more self loops.

Miscellaneous

We also tried to perform politeness analysis in order to get correlation

with profanity, but the results show that there is no strong negative or positive

correlation between them. We also did interrogation analysis where we wished to

isolate the questions asked in the email conversation. This could help us evaluate

frequently asked questions, which could be documented. We were able to figure out

some of the questions asked, for example:

– Have you tried with the master branch?

– Do either of these not redistribute if asked?

– Can Cubit produce MED or be converted to MED?

– Hi Developers, Do we increase the patch number when pushing a new patch

into maint?
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– Is that a 3rd test run in addition to the above two?

Some of them were pretty much obvious questions, which a domain expert can

answer without knowing the context. The not obvious ones led to extended

conversation in the email chain. Thus, to understand the context we need to

perform anaphora (pronoun) resolution. In order to do so, we used the techniques

we had mentioned in section 2.12. However, both the libraries work best when the

sentences are grammatically correct. Since we are dealing with emails, the user is

free to express in any form they want. Thus, we have left this line of investigation

for further research.
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CHAPTER VI

CONCLUSION

A lot has been explored, yet there is much more we can do. We have seen

that the scientific software community is different than traditional software

development teams. We have tried to explore all sorts of repositories for this

work. For example, PETSc which is an older project with the average developer

community size, SPACK which is relatively new yet mature, Linux which is

probably the oldest open source and extremely large project, and small repositories

on git which are archived (not active). Some at least in part rely on government

funding, while others are not explicitly funded at all. Every repository has their ups

and downs. We have tried to explore projects using different metrics that vary over

time and correlations between some of these metrics.

Much of the productivity-relevant data in scientific software development

projects is in the form of emails. We have used NLP techniques to estimate

productivity metrics reflecting developer effort. We were able to auto-tag emails

as bugs or features and identify important information. The classification of emails

gave us a fair idea about what topics of discussions every project follows and a rate

at which each discussion ends. It could increase the productivity if the teams had

their issues and workarounds documented for future reference.

Since the unstructured dataset can give us so much information, imagine the

possibility if we have structured data. It is worth considering using organized and

precise emails and commits messages. This study also shows a use of issue trackers

is beneficial and we hope to motivate project teams to use them.
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Understanding the human behavior in terms of sentiment, profanity or

politeness helps understand team morale and identify topics that may have negative

impact on it or productivity. We proposed our own effort estimation metrics which

are not as complex as other existing standard effort estimation metrics and do not

require constant developer monitoring. Correlating these metrics with other helped

us identify a human pattern and may help predict behavior in future research.

There are a lot of factors such as gender, region, experience, age, highest earned

degree etc that are yet to be considered.

We have looked at various projects from a broader perspective. A

comprehensive study of developers with respect to team interaction and file

commits have given us patterns for both successful and archived projects. It is clear

that scientific software projects work as closed group communities. In future, we

plan to study all the repositories on git and apply the patterns we recognize to

estimate projects’ health.

We intend to explore more complex metrics, such as the rate of bug fixes, and

combine them with some traditional metrics. We plan to approach profanity from

a wider angle, i.e to understand how certain developers’ influence spreads. Some

of these studies involve psychological analysis and may require collaboration with

psychologists or social scientists.

We have established some ground metrics for future opportunities. The next

step would be to further analyze larger numbers of repositories. We plan to build

a predictive model based on this work that can help stakeholder monitor and

understand different aspects of the health of a project.

Another key aspect is enhancing software quality be it through software

testing, documentation, version control, building and installation, and good design
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as part of improving overall scientific productivity. We hope this work motivates

people to conduct research not only for traditional projects but also for research

software projects.
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Emitza Guzman, David Azócar, and Yang Li. Sentiment analysis of commit
comments in github: An empirical study. In Proceedings of the 11th Working
Conference on Mining Software Repositories, MSR 2014, pages 352–355, New
York, NY, USA, 2014. ACM. ISBN 978-1-4503-2863-0. doi:
10.1145/2597073.2597118. URL
http://doi.acm.org/10.1145/2597073.2597118.

Bogdan Vasilescu, Vladimir Filkov, and Alexander Serebrenik. Perceptions of
diversity on github: A user survey. In Proceedings of the Eighth International
Workshop on Cooperative and Human Aspects of Software Engineering,
CHASE ’15, pages 50–56, Piscataway, NJ, USA, 2015a. IEEE Press. URL
http://dl.acm.org/citation.cfm?id=2819321.2819330.

Bogdan Vasilescu, Daryl Posnett, Baishakhi Ray, Mark G.J. van den Brand,
Alexander Serebrenik, Premkumar Devanbu, and Vladimir Filkov. Gender
and tenure diversity in github teams. In Proceedings of the 33rd Annual ACM
Conference on Human Factors in Computing Systems, CHI ’15, pages
3789–3798, New York, NY, USA, 2015b. ACM. ISBN 978-1-4503-3145-6. doi:
10.1145/2702123.2702549. URL
http://doi.acm.org/10.1145/2702123.2702549.
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