
MPI PERFORMANCE ENGINEERING WITH THE MPI TOOLS

INFORMATION INTERFACE

by

SRINIVASAN RAMESH

A THESIS

Presented to the Department of Computer and Information Science
and the Graduate School of the University of Oregon

in partial fulfillment of the requirements
for the degree of
Master of Science

June 2018

THESIS APPROVAL PAGE

Student: Srinivasan Ramesh

Title: MPI Performance Engineering with the MPI Tools Information Interface

This thesis has been accepted and approved in partial fulfillment of the requirements
for the Master of Science degree in the Department of Computer and Information
Science by:

Allen D. Malony Chair
Sameer S. Shende Core Member

and

Sara Hodges Interim Vice Provost and Dean of the
Graduate School

Original approval signatures are on file with the University of Oregon Graduate
School.

Degree awarded June 2018

ii

c© 2018 Srinivasan Ramesh

iii

THESIS ABSTRACT

Srinivasan Ramesh

Master of Science

Department of Computer and Information Science

June 2018

Title: MPI Performance Engineering with the MPI Tools Information Interface

The desire for high performance on scalable parallel systems is increasing

the complexity and the need to tune MPI implementations. The MPI Tools

Information Interface (MPI T) introduced in the MPI 3.0 standard provides

an opportunity for performance tools and external software to introspect and

understand MPI runtime behavior at a deeper level to detect scalability issues. The

interface also provides a mechanism to fine-tune the performance of the MPI library

dynamically at runtime.

This thesis describes the motivation, design, and challenges involved in

developing an MPI performance engineering infrastructure using MPI T for

two performance toolkits — the TAU Performance SystemR©, and Caliper. I

validate the design of the infrastructure for TAU by developing optimizations

for production and synthetic applications. I show that the MPI T runtime

introspection mechanism in Caliper enables a meaningful analysis of performance

data.

This thesis includes previously published co-authored material.

iv

CURRICULUM VITAE

NAME OF AUTHOR: Srinivasan Ramesh

GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED:
University of Oregon, Eugene, OR, USA
Birla Institute of Technology and Science (BITS), Pilani, RJ, India

DEGREES AWARDED:
Master of Science, Computer and Information Science, 2018, University of
Oregon

Bachelor of Engineering (Hons.) Computer Science, 2014, BITS, Pilani

AREAS OF SPECIAL INTEREST:
High Performance Computing
Performance Optimization

PROFESSIONAL EXPERIENCE:

Graduate Research Fellow, Computer and Information Science, University of
Oregon, 2016-Present

Computation Student Intern, Lawrence Livermore National Laboratory,
Summer 2017

Research Assistant, Indian Institute of Science, 2015-2016

Software Engineer I, Amazon.com, 2014-2015

Intern, Optumsoft Research Pvt Ltd., 2013

GRANTS, AWARDS, AND HONORS:

Best Paper Award, EuroMPI, 2017

W.J. Cody Associate, Argonne National Laboratory, Summer 2018

Selected to attend the Argonne Training Program on Extreme-Scale
Computing, 2018

Selected to attend the International High Perfomance Computing Summer
School, 2017

v

Student Volunteer, Supercomputing, 2017

Student Travel Award, MVAPICH Users Group Meeting, 2017

Student Travel Award, MVAPICH Users Group Meeting, 2016

PUBLICATIONS:

Srinivasan Ramesh, Aurèle Mahéo, Sameer Shende, Allen D. Malony, Hari
Subramoni, Amit Ruhela, and Dhabaleswar K. Panda. “MPI performance
engineering with the MPI tool interface: the integration of MVAPICH and
TAU.” Parallel Computing. 2018.

Srinivasan Ramesh, Sathish Vadhiyar, Ravi S. Nanjundiah, and P. N.
Vinayachandran. “Deep and Shallow Convections in Atmosphere Models
on Intel Xeon Phi Coprocessor Systems.” HPCC. 2017.

Srinivasan Ramesh, Aurèle Mahéo, Sameer Shende, Allen D. Malony, Hari
Subramoni, and Dhabaleswar K. Panda. “MPI performance engineering with
the MPI tool interface: the integration of MVAPICH and TAU.” Proceedings
of the 24th European MPI Users Group Meeting (EuroMPI/USA). 2017.

vi

ACKNOWLEDGEMENTS

The research leading up to this publication could not have been possible

without the support of my family, advisors, close friends and well-wishers. My

mother for constantly reminding me of the importance of prioritizing my health,

my father for teaching me how to make difficult decisions and the art of financial

planning, my advisor, Prof. Allen Malony for his constant encouragement, trust,

and willingness to let me explore my research interests, my advisor, Dr. Sameer

Shende for his invaluable technical advice, and my co-author and collaborator, Dr.

Aurèle Mahéo for supporting and encouraging me to pursue my idealistic research

ideas. I would like to thank my co-authors and collaborators at The Ohio State

University — Dr. Hari Subramoni and Prof. Dhabaleswar K. (DK) Panda for

providing me with helpful advice and research direction. I would like to thank my

mentors at Lawrence Livermore National Laboratory — Dr. Martin Schulz, Dr.

Tapasya Patki, and Dr. David Boehme for their guidance and patience. Lastly, I

would like to thank all my close friends who have supported me in difficult times.

vii

For my family, friends, and anyone who is passionate about High Performance

Computing.

viii

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION . 1

Thesis Outline . 3

Coauthored Material . 5

II. BACKGROUND AND RELATED WORK 6

MPI Tools Information Interface 6

Software . 9

Related Work . 11

Summary . 14

III. DESIGN OF MPI T SUPPORT IN TAU 15

Enhancing MPI T Support in MVAPICH2 16

Enabling Runtime Instrospection and Online Monitoring 18

Runtime Tuning through MPI T 21

Target Applications . 30

Usage Scenarios . 32

Experiments . 40

Implementation Challenges and Issues 50

ix

Chapter Page

Summary . 52

IV. DESIGN OF MPI T SUPPORT IN CALIPER 53

Caliper Concepts . 53

MPI T Service: Supporting Performance Introspection 55

Service Registration . 56

PVAR Handle Allocation . 57

PVAR Classes and Notion of Aggregability 58

Creating Caliper Attributes for PVARs 60

Sampling and Storing PVARs in Snapshots 61

Target Applications . 62

Usage Scenarios . 63

Experiments . 68

Implementation Challenges and Issues 72

Summary . 72

V. DISCUSSION . 74

Design Differences Between TAU and Caliper 74

A Note on the MPI T Interface Specification 75

Summary . 76

VI. CONCLUSION AND FUTURE WORK 77

x

Chapter Page

REFERENCES CITED . 80

xi

LIST OF FIGURES

Figure Page

1. Integrated MVAPICH2 and TAU infrastructure based on MPI T 17

2. Online monitoring with BEACON/PYCOOLR 21

3. User-guided tuning with BEACON/PYCOOLR 23

4. Screenshot of PYCOOLR window to update CVARs 24

5. Plugin infrastructure . 29

6. 3DStencil: Vampir process timeline view before Eager tuning 36

7. 3DStencil: Vampir process timeline view after Eager tuning 37

8. PYCOOLR: Total VBUF memory with higher Eager threshold 41

9. PYCOOLR: Total VBUF memory after freeing unused VBUFs 41

10. Overhead in enabling MPI T for 3DStencil 49

11. Effect of MPI T sampling frequency on overhead for 3DStencil 50

12. Caliper annotated source code . 54

13. MPI profiling: Caliper service flow . 56

14. PVAR aggregated across MPI routines 66

15. PVAR aggregated across application routines 68

16. Effect of number of PVARs exported on MPI T overhead 70

17. Effect of snapshot trigger mechanism on MPI T overhead 71

xii

LIST OF TABLES

Table Page

1. AmberMD: Impact of Eager threshold and autotuning 43

2. SNAP: Aggregate time inside various MPI functions 45

3. SNAP: Average sent message sizes from various MPI functions 45

4. SNAP: Impact of Eager threshold and autotuning 46

5. 3DStencil: Impact of Eager threshold and autotuning 47

6. MiniAMR: Impact of hardware offloading on application runtime 47

7. Caliper: PVAR handle allocation routines for supported MPI objects . . . 58

xiii

CHAPTER I

INTRODUCTION

This chapter includes co-authored material previously published in

EuroMPI [1] and Parallel Computing [2]. These papers were the result of a

collaboration with Aurèle Mahéo, Sameer Shende, Allen Malony, Hari Subramoni,

Amit Ruhela, and Dhabaleswar (DK) Panda. I wrote the entire introduction

section. My co-authors contributed by suggesting edits to improve the content.

The Message Passing Interface [3] remains the dominant programming

model employed in scalable high-performance computing (HPC) applications. As

a result, MPI performance engineering is worthwhile and plays a crucial role in

improving the scalability of these applications. Traditionally, the first step in MPI

performance engineering has been to profile the code to identify MPI operations

that occupy a significant portion of runtime. MPI profiling is typically performed

through the PMPI interface [4], wherein the performance profiler intercepts the

MPI operation and performs the necessary timing operations within a wrapper

function with the same name as the MPI operation. It then calls the corresponding

name-shifted PMPI interface for this MPI operation. This technique generates

accurate profiles without necessitating application code changes. The TAU

Performance SystemR© [5] is a popular tool that offers the user a comprehensive list

of features to profile MPI applications through the PMPI profiling interface. PMPI

profiling using TAU is performed transparently without modifying the application

using runtime pre-loading of shared objects.

Although it plays a pivotal role in MPI performance engineering, using PMPI

alone has some limitations:

1

– The profiler can only collect timing and message size data — it does not have

access to MPI internal performance metrics that can help detect and explain

performance issues.

– Profiling through the PMPI interface is mostly passive — it provides limited

scope for interaction between the profiler and the MPI implementation.

Performance characteristics of underlying hardware are constantly evolving as

HPC moves toward increasingly heterogeneous platforms. MPI implementations

available today [6; 7; 8; 9] are complex software involving many modular

components and offer the user a number of tunable environment variables that

can affect performance. In such a setting, performance variations and scalability

limitations can come from several sources. Detecting these performance limitations

requires a more intimate understanding of MPI internals that cannot be elicited

from the PMPI interface alone.

Tuning MPI library behavior through modification of environment variables

presents a daunting challenge to the user — among the rich variety of variables

on offer, the user may not be aware of the right setting to modify, or the optimal

value for a setting. Further, tuning through MPI environment variables has a

notable limitation — there is no way to fine-tune the MPI library at runtime.

Runtime introspection and tuning are especially valuable to applications that

display different behavior between phases, and one static setting of MPI parameters

may not be optimal for the course of an entire run. In addition to this, each process

may behave differently, and thus have a different optimal value for a given setting.

These complexities motivate the need for a performance measurement system

such as TAU to play a more active role in the performance debugging and tuning

process. With the introduction of the MPI Tools Information Interface (MPI T) in

2

the MPI 3.0 standard, there is now a standardized mechanism through which MPI

libraries and external performance tuning software can share information.

This document describes a software engineering infrastructure that enables an

MPI implementation to interact with performance tuning software for the purpose

of runtime introspection and tuning through the MPI T interface. Specifically,

I describe the design of an infrastructure to enable performance monitoring,

runtime introspection, performance tuning, and recommendation generation of MPI

applications using TAU, and an infrastructure designed for runtime introspection of

MPI using Caliper [10].

Thesis Outline

While both the tools described in this document — TAU and Caliper offer

performance measurement and analysis capabilities, they differ in terms of the

data model used to store performance information, support for automatic program

instrumentation, and the level of integration with other performance profiling and

tracing toolkits. In terms of support for different performance engineering related

tasks, TAU offers the user a much broader and complete set of features. Caliper is

designed as a framework that relies on source-code annotation for data collection,

and plugin based services that can be combined to provide custom features to the

user.

Background and Related Work

In Chapter 2 of the thesis, I discuss background material and related work

in the areas of interfaces for runtime introspection, autotuning of MPI runtimes,

3

and tools that generate performance recommendations. I briefly introduce the

software that are a part of this study.

Design of MPI T support in TAU

In Chapter 3, I describe the design of the MPI T support in TAU for

performance introspection, monitoring, autotuning, and recommendation

generation. Although the TAU MPI T support is compliant with the MPI

standard, it was designed in close collaboration with the MVAPICH2 [6] MPI

implementation. Thus, this chapter describes the MVAPICH2-specific use cases

that were used to motivate the design of the infrastructure. This chapter ends with

a brief note on some of the challenges faced while implementing the design.

Design of MPI T support in Caliper

In Chapter 4, I describe the design of the MPI T support in Caliper for

performance introspection. This work was performed at the Center for Applied

Scientific Computing, Lawrence Livermore National Laboratory, during the summer

of 2017. Caliper support was designed specifically for use with OpenMPI [7]. This

shall conclude with a description of the unique design challenges encountered while

working with OpenMPI.

Discussion

In Chapter 5, I present a discussion focusing on the differences between

design and implementation of the MPI T support in TAU and Caliper. Specifically,

I focus on describing the differences in performance introspection alone, as Caliper

at the moment does not have a GUI-based performance monitoring or plugin-like

4

tuning support for MPI T. This discussion shall highlight the advantages and

pitfalls of one design methodology over the other, and suggest areas for future

work.

Conclusion and Future Work

In the concluding chapter, I shall present some directions for future work

with regard to the MPI T support in TAU. Specifically, I shall discuss my ongoing

research efforts in exploring the potential benefits of enabling extremely fine-

grained tuning of MPI point-to-point rendezvous protocols for non-blocking

communication at runtime.

Coauthored Material

This thesis includes previously published co-authored material.

Chapter 2 and Chapter 3 include co-authored material previously published in

the Proceedings of the 24th European MPI Users’ Group Meeting (EuroMPI/USA

2017) [1], and the Journal of Parallel Computing [2].

5

CHAPTER II

BACKGROUND AND RELATED WORK

This chapter includes co-authored material previously published in

EuroMPI [1] and Parallel Computing [2]. These papers were the result of a

collaboration with Aurèle Mahéo, Sameer Shende, Allen Malony, Hari Subramoni,

Amit Ruhela, and Dhabaleswar (DK) Panda. Hari Subramoni is the lead developer

of the MVAPICH2 project and Sameer Shende leads the development of the TAU

project. Aurèle Mahéo was instrumental in writing the related work section where I

was minimally involved. This chapter describes the important software used in our

study.

MPI Tools Information Interface

In order to address a lack of a standard mechanism to gain insights into,

and to manipulate the internal behavior of MPI implementations, the MPI

Forum introduced the MPI Tools Information Interface (MPI T) in the MPI 3.0

standard [3]. The MPI T interface provides a simple mechanism that allows MPI

implementers to expose variables that represent a property, setting or performance

measurement from within the implementation for use by tools, tuning frameworks,

and other support libraries. The interface broadly defines access semantics of two

variable types: control and performance. The former defines semantics to list, query

and set control variables exposed by the underlying implementation. The latter

defines semantics to gain insights into the state of MPI using counters, timing data,

resource utilization data, and so on. Rich metadata information can be added to

both kinds of variables.

6

Control variables (CVARs) are properties and configuration settings that are

used to modify the behavior of the MPI implementation. A common example of

such a control variable is the Eager Limit - the upper limit until which messages

are sent using the Eager protocol. An MPI implementation may choose to export

many environment variables as control variables through the MPI T interface.

Depending on what the variable represents, it may be set once before MPI_Init

or may be changed dynamically at runtime. Further, the interface allows each

process freedom to set its own value for the control variable provided the MPI

implementation supports it. The MPI T interface provides API’s to read, write and

query information about control variables and external tools can use these API’s to

discover information about the control variables supported.

Performance variables (PVARs) can represent internal counters and metrics

that can be read, collected and analyzed by an external tool. An example of one

such PVAR exported by MVAPICH2 is mv2_vbuf_total_memory which represents

the total amount of memory used for internal communication buffers within the

library. In a manner similar to CVARs, the interface specifies API’s to query and

access PVARs. MPI T interface allows multiple in-flight performance sessions so it

is possible for different tools to plug into MPI through this interface.

The MPI T interface allows an MPI implementation to export any number

of PVARs and CVARs, and it is the responsibility of the tool to discover these

through appropriate API calls, and use them correctly. There are no fixed events

or variables that MPI implementations must support - complete freedom is granted

to the implementation in this regard.

7

Creating a Performance Session

In order to use MPI T, a tool must first create a performance session and

associate handles for the performance variables and control variables it wishes to

read or write. Performance sessions allow the MPI library to distinguish between

multiple tools/software modules that may be simultaneously querying the MPI T

interface.

Handle Allocation for PVARs and CVARs

Before a tool can read the value of a PVAR (CVAR), it must first allocate

a handle for the PVAR (CVAR). The MPI T interface specifies a function that

allows a tool to know the number of PVARs (CVARs) exported by an MPI

implementation at any given point in time. Two important points need to be kept

in mind when allocating PVAR handles:

– Number of PVARs (CVARs) can change at runtime: The number of PVARs

(CVARs) exported by the library can change at any point during runtime.

Typically, MPI libraries export additional PVARs (CVARs) after MPI_Init.

A tool must be able to support and account for dynamic expansion and

invalidation of PVARs (CVARs) at runtime as and when they become

available and fall out of scope respectively.

– PVARs (CVARs) can be bound to MPI objects: The MPI_pvar_get_info

function returns the bind type for the PVAR. The idea here is that PVARs

(CVARs) can be associated with a specific object such as a communicator

or message. As a result, there can be multiple handles allocated for a PVAR

(CVAR) at any given index. These handles must be allocated appropriately

8

depending on the bind type. Additional detail regarding bind types shall be

provided in Chapter 4.

It is worth noting that the only MPI implementation that exports PVARs

and CVARs bound to MPI objects is OpenMPI. As of the time of publishing this

document, all of the other popular MPI libraries that support MPI T — namely

MPICH, MVAPICH2, and Intel MPI export PVARs and CVARs that have a bind

type none. As we shall see in Chapter 4, the need to support variables bound to

MPI objects significantly enhances the complexity of the design on the tool side.

Software

This work targets the development of an integrated software infrastructure

that enables the use of MPI T for performance introspection and online tuning.

Here I describe the functionality of the key software components used in this study.

TAU Performance SystemR©

TAU [5] is a comprehensive performance analysis toolkit that offers

capabilities to instrument and measure scalable parallel applications on a variety

of HPC architecture. TAU1 supports standard programming models including

MPI and OpenMP. It can profile and trace MPI applications through the PMPI

interface either by linking in the TAU library or through library interposition. TAU

includes a tool for parallel profile analysis (ParaProf), performance data mining

(PerfExplorer), and performance experiment management (TAUdb).

1http://tau.uoregon.edu

9

Caliper

Caliper [10]2 is a general purpose application introspection system developed

at Lawrence Livermore National Laboratory that relies on source-code annotation

for performance data collection. It provides users with a measurement API and

a flexible key-value data format for storing performance information, along with

a host of services that be combined to offer the user a customized performance

measurement and analysis solution. Unlike TAU, Caliper does not offer GUI-

based tools for performance analysis. It is designed as a framework rather than a

comprehensive toolkit, and it can be integrated with other existing performance

tools through Caliper’s tool API to leverage their capabilities.

MVAPICH2

MVAPICH2 [6]3 is a cutting-edge open source MPI implementation for

high-end computing systems that is based on the MPI 3.1 standard. MVAPICH2

currently supports InfiniBand, Omni-Path, Ethernet/iWARP, and RoCE

networking technologies. It offers the user a number of tunable environment

parameters and has GPU and MIC optimized versions available.

BEACON

BEACON (Backplane for Event and Control Notification) [11] is a

communication infrastructure, originally part of the Argo project [12]. BEACON

provides interfaces for sharing event information in a distributed manner, through

nodes and enclaves - a group of nodes. It relies on a Publish/Subscribe paradigm,

2https://github.com/LLNL/Caliper

3http://mvapich.cse.ohio-state.edu/download/mvapich/mv2/mvapich2-2.3rc2.tar.gz

10

and encompasses backplane end-points (called BEEPs) which are in charge of

detecting and generating information to be propagated throughout the system.

Other BEEPs subscribe to this information and can generate appropriate actions.

Events are exchanged between publishers and subscribers through user-defined

topics. Examples of such topics are power, memory footprint and CPU frequency.

These interfaces allow BEACON to be called and used by external components

such as performance tools for exchanging information. BEACON also includes a

modular GUI named PYCOOLR that provides support for dynamic observation of

intercepted events. PYCOOLR subscribes to these events by using the BEACON

API and is able to display their content during application runtime. Through the

GUI, the user can select at runtime the events that represent the performance

metrics he wants to observe, and the GUI plots the selected events on the fly.

Related Work

The existing body of research on MPI performance engineering techniques

has revolved around a few common themes. These include design and usage of

interfaces similar in spirit to MPI T, user interactions with performance tools for

the purpose of tuning, and automatic tuning of MPI runtimes. We describe some

contributions addressing these areas below.

Interfaces for Runtime Introspection

Throughout MPIs history, it has always been of interest to application

developers to observe the inner workings of the MPI implementation. Early

attempts to open up an implementation for introspection gained some traction in

the tools community. PERUSE [13] allows observation of internal mechanisms of

11

MPI libraries by defining callbacks related to certain events, illustrated by specific

use cases. For instance, the user can have a detailed look at the behavior of MPI

libraries during point-to-point communications. This interface was implemented

inside OpenMPI. But it failed to be adopted as a standard by the MPI community,

mainly due to a potential mismatch between MPI events proposed by PERUSE and

some MPI implementations.

With the advent of the MPI T interface, Islam et al. introduce Gyan [14],

using MPI T to enable runtime introspection. Gyan intercepts the call to

MPI_Init through the PMPI interface, initializes MPI T and starts a PVAR

monitoring session to track PVARs specified by the user through an environment

variable. If no PVAR is specified, Gyan tracks all PVARs exported by the MPI

implementation. Gyan intercepts MPI_Finalize through PMPI, reads the values of

all performance variables being tracked through the MPI T interface, and displays

statistics for these PVARs. Notably, Gyan collects the values of PVARs only once

at MPI_Finalize, while our infrastructure supports tracking of PVARs at regular

intervals during the application run, in addition to providing online monitoring and

autotuning capabilities.

Performance Recommendations

Other contributions, focusing on tuning MPI configuration parameters,

provide performance recommendations to the users. MPI Advisor [15; 16] starts

from the idea that application developers do not necessarily have sufficient

knowledge of MPI library design. This tool is able to characterize predominant

communication behavior of MPI applications and gives recommendations on how

the runtime can be tuned. It addresses the following parameter categories: (i)

12

point-to-point protocols (Eager vs Rendezvous), (ii) collective communication

algorithms, (iii) MPI task-to-cores mapping, and (iv) Infiniband transport protocol.

The execution of MPI Advisor comprises three phases: data collection, analysis,

and recommendations. MPI Advisor uses mpiP [17] to collect application profiles

and related information such as message size and produce recommendations to

tune MPI T CVARs. It requires only one application run on the target machine

to produce recommendations. While our recommendation engine is similar

in functionality to MPI Advisor, our infrastructure leverages TAU’s profiling

capabilities to give us access to more detailed application performance information.

This enables us to implement more sophisticated recommendation policies.

The focus of our work is a plugin infrastructure that enables recommendation

generation as one of many possible usage scenarios, and not a sole outcome.

Another tool, OPTO (The Open Tool for Parameter Optimization) [18], aids

the optimization of OpenMPI library by systematically testing a large number of

combinations of the input parameters. Based on the measurements performed on

MPI benchmarks, the tool is able to output the best attribute combinations.

Autotuning of MPI Runtimes

Some tools introduce autotuning capabilities of MPI applications by deducing

best configuration parameters, involving different techniques for searching.

Periscope and its extensions [19; 20], part of the AutoTune project, provide

capabilities of performance analysis and autotuning of MPI applications, by

studying runtime parameters. Starting from different parameter configurations

specified by the user, the tool generates a search space. It then searches for the

best values, by using different strategies involving heuristics such as evolutionary

13

algorithms and genetic algorithms. Based on measurements obtained by running

experiments, the tool finds the best configuration parameters. ATune [21] uses

machine learning techniques to automatically tune parameters of the MPI runtime.

The tool runs MPI benchmarks and applications on a target platform to predict

parameter values, via a training phase. To the best of our knowledge, there exists

no prior work of autotuning MPI runtimes using the MPI T interface.

Policy Engine for Performance Tuning

Outside the scope of MPI, APEX [22] was developed as a part of the

XPRESS project, which includes a parallel programming model named OpenX, and

a runtime implementing this model, HPX. APEX provides runtime introspection

and includes a policy engine introduced as a core feature: the policies are rules

deciding the outcome based on observed states of APEX. These rules can thus

change the behavior of the runtime — such as changing task granularity, triggering

data movements or repartitioning.

Summary

This chapter has described the background concepts, prior work, and software

used in our study. The next chapter shall focus on describing the design of the

MPI T support in TAU.

14

CHAPTER III

DESIGN OF MPI T SUPPORT IN TAU

This chapter includes co-authored material previously published in

EuroMPI [1] and Parallel Computing [2]. These papers were the result of a

collaboration with Aurèle Mahéo, Sameer Shende, Allen Malony, Hari Subramoni,

Amit Ruhela, and Dhabaleswar (DK) Panda. I implemented the plugin support in

TAU and integrated BEACON and TAU. Hari Subramoni is the lead developer

of the MVAPICH2 project and Sameer Shende leads the TAU project. Aurèle

Mahéo implemented the GUI support in PYCOOLR for performance monitoring.

Sameer Shende designed and implemented the initial version of the MPI T based

performance introspection in TAU and provided critical guidance in designing the

plugin support in TAU. I designed and implemented the experiments described

in this chapter. For the autotuning experiments on AmberMD and 3DStencil, I

received support from Hari Subramoni and Amit Ruhela.

The existence of MPI T provides an opportunity to link together the

components above. However, each component must be extended to interact through

the MPI T interface, as well as in concert with each other. Although applicable

to any standard-compliant MPI implementation, the design of the MPI T support

in TAU was performed in close collaboration with the MVAPICH2 MPI library.

Below, we describe the design approach for MVAPICH2 and TAU integration to

enable runtime introspection, performance tuning, and recommendation generation.

Figure 1 depicts the infrastructure architecture and component interactions. We

then present sample usage scenarios for this infrastructure.

15

Enhancing MPI T Support in MVAPICH2

MVAPICH2 exports a wide range of performance and control variables

through the MPI T interface. A performance variable represents an internal

metric or counter, and setting a control variable may alter the behavior of the

library. Current support for MPI T variables in MVAPICH2 broadly fall under

the following categories:

Monitoring and Modifying Collective Algorithms

For collective operations such as MPI_Bcast and MPI_Allreduce, there are

a variety of algorithms available and the right algorithm to use depends on a

number of parameters such as system metrics (bandwidth, latency), the number

of processes communicating and the message size. MVAPICH2 exports CVARs that

can be used to determine the collective algorithm based on the message size. It also

supports PVARs that monitor the number of times a certain collective algorithm is

invoked.

Monitoring and Controlling Usage of Virtual Buffers

Virtual Buffers (VBUFs) are used in MVAPICH2 to temporarily store

messages in transit between two processes. The use of virtual buffers can offer

significant performance improvement to applications performing heavy point-to-

point communication, such as stencil-based codes. MVAPICH2 offers a number

of PVARs that monitor the current usage level, availability of free VBUFs in

different VBUF pools, maximum usage levels, and the number of allocated VBUFs

16

FIGURE 1. Integrated MVAPICH2 and TAU infrastructure based on MPI T

17

at process level granularity. Accordingly, it exposes CVARs that modify how

MVAPICH2 allocates and frees these VBUFs at runtime.

Enabling Runtime Instrospection and Online Monitoring

MPI T makes it possible to inquire about the state of the underlying MPI

implementation through the query of performance variables. While it is the

prerogative of the MPI implementation what PVARs are published, the tool must

be extended to use MPI T for access. Similarly, control variables are defined by the

MPI implementation but set by the tool using MPI T. Below we discuss how this is

done in TAU to realize introspection and tuning.

Gathering Performance Data

TAU has been extended to support the gathering of performance data

exposed through the MPI T interface. Each tool that is interested in querying

MPI T must first register a performance session with the interface. This object

allows the MPI library to store separate contexts and differentiate between

multiple tools/components that are simultaneously querying the MPI T interface.

Along with a performance session, a tool must also allocate handles for all the

performance variables that it wishes to read/write. Within TAU, the task of

allocating the global (per-process) performance session and handles for PVARs

is carried out inside the TAU tool initialization routine. However, this design

has a caveat — an MPI library can export additional PVARs during runtime as

they become available through dynamic loading. A tool must accordingly allocate

handles for these additional PVARs if it wishes to read them. TAU currently does

18

not support this — we are restricted to reading PVARs that are exported at TAU

initialization. We plan to support the dynamic use case in a future release.

TAU can use sampling to collect performance variables periodically. When

an application is profiled with TAU’s MPI T capabilities enabled, an interrupt is

triggered at regular intervals. Inside the signal handler for the SIGALRM signal, the

MPI T interface is queried and the values of all the performance variables exported

are stored at process level granularity. TAU registers internal atomic user events

for each of these performance variables, and every time an event is triggered (while

querying the MPI T interface), the running average, minimum value, the maximum

value, and other basic statistics are calculated and available to the user at the end

of the profiling run. These statistics carry meaning only for PVARs that represent

COUNTERS or TIMERS. Thus, we define TAU user events to store and analyze PVARs

for these two classes. The MPI T interface allows MPI libraries to export PVARs

from a rich variety of classes — timers, counters, watermarks, state information,

and so on. MVAPICH2 and TAU have been primarily designed to support PVARs

from the TIMER or COUNTER classes. As part of future work, we plan to export a

richer variety of PVAR classes and design appropriate methods for storage and

analysis of each of these classes.

TAU also provides an application-level API to query all exported PVARs as

and when the application desires (i.e., in a synchronous manner). However, we have

chosen not to demonstrate this method of sampling PVARs in our experiments.

Online Monitoring

Runtime introspection naturally extends to online monitoring where certain

performance variables are made viewable during execution. Figure 2 depicts the

19

interaction between TAU and BEACON to enable online monitoring of PVARs

through the PYCOOLR GUI.

To interface TAU and BEACON, TAU defines a BEACON topic for

performance variables and publishes PVAR data collected at runtime to this topic.

Any software component interested in monitoring PVARs can then subscribe to this

topic and receive live updates for all performance variables exported by the MPI

implementation.

To monitor PVARs on PYCOOLR, the PYCOOLR GUI acts as a subscriber

to the PVAR topic — thus it receives updated values for all PVARs from TAU’s

sampling-based measurement module. The GUI has been extended to offer the

user the ability to select only those PVARs that he/she is interested in monitoring

— this is a useful feature as an MPI library can export 100’s of PVARs, not all of

which may interest the user. The GUI plots the values for the selected PVARs at

runtime as and when it receives them through BEACON.

Viewing Performance Data

ParaProf is the TAU component that allows the user to view and analyze

the collected performance profile data post-execution. This profile information

is collected on a per-thread or a per-process level, depending on whether or not

threads were used in the application. ParaProf has existing support for the analysis

of interval events as well as atomic user events. Interval events are used to capture

information such as the total execution time spent inside various application

routines. Atomic user events are used to store information such as hardware

counter values.

20

FIGURE 2. Online monitoring with BEACON/PYCOOLR

PVARs are treated as atomic user events. ParaProf’s existing support for

analyzing atomic user events has been leveraged to display PVAR data for each

process. Performance variables collected from the MPI T interface during execution

are displayed on ParaProf as events that include markers indicating high variability.

Runtime Tuning through MPI T

Complementary to providing an API for runtime introspection, the MPI T

interface also enables a mechanism to modify the behavior of the MPI library

through control variables. MPI implementations can define control variables for

configuration, performance, or debugging purposes. MPI libraries may implicitly

restrict the semantics of when CVARs can be set — some may be set only once

before MPI_Init, and others may be set anytime during execution. Further,

there may be restrictions on whether or not CVARs are allowed to have different

values for different processes — this decision is left entirely up to the MPI library.

21

Therefore, a tool or a user interacting with the MPI T interface for the purpose of

tuning the MPI library must be aware of the particular semantics associated with

the CVARs of interest.

User-Guided Tuning through PYCOOLR

Our infrastructure provides users the ability to fine-tune the MPI library

by setting CVARs at runtime. As depicted in Figure 3, we use the BEACON

backplane communication infrastructure to enable user-guided tuning. TAU and

BEACON interface with each other in a bi-directional fashion. Aside from acting

as a publisher of PVAR data, TAU is a subscriber to a BEACON topic used for

communicating CVAR updates. The PYCOOLR GUI has been extended to enable

the user to set new values for multiple CVARs at runtime — Figure 4 displays a

screenshot of the PYCOOLR window that enables this functionality.

Together with the online monitoring support provided by PYCOOLR,

this user-guided tuning infrastructure can enable a user to experiment with

different settings for CVARs and note their effects on selected PVARs or other

performance metrics. We must note that this infrastructure has one significant

limitation — the value that the user sets for a CVAR is uniformly applied across

MPI processes. In other words, each MPI process receives the same value for the

CVAR — this may not be ideal, as it is likely that each process displays a different

behavior and thus may have a different optimal value for a given setting. We

argue that this infrastructure is nevertheless useful in the experimentation phase,

wherein the user is trying to determine the CVAR that is important for a given

situation/application.

22

FIGURE 3. User-guided tuning with BEACON/PYCOOLR

Plugin Infrastructure in TAU

TAU is a comprehensive software suite that is comprised of well-separated

components providing instrumentation, measurement and analysis capabilities.

Our vision for performance engineering of MPI applications involves a more active

involvement of TAU in monitoring, debugging and tuning behavior at runtime. The

MPI T interface provides tools an opportunity to realize this vision.

Recall that the MPI T interface allows MPI implementations complete

freedom in defining their own PVARs and CVARs to export. However, this

freedom comes with a cost to tool writers for MPI T — each MPI implementation

will require its own custom tuning and re-configuration logic. From a software

infrastructure development standpoint, it would be preferable to design a

framework that will allow multiple such customized autotuning logic to co-exist

outside of core tool logic, and be appropriately loaded depending on the MPI

library being used. With this motivation in mind, we have added support for a

23

FIGURE 4. Screenshot of PYCOOLR window to update CVARs

generic plugin infrastructure in TAU that can be used to develop and load custom

logic for a variety of performance engineering needs. The latest version of TAU

supports this plugin infrastructure.

Design Overview

In the current design, plugins are C/C++ modules that are built into separate

shared libraries (Dynamic Shared Objects). The path to the directory containing

the plugins is specified using the environment variable TAU_PLUGINS_PATH. The list

of plugins to be dynamically loaded at runtime is specified using the environment

variable TAU_PLUGINS separated by a colon as a delimiter.

In keeping with the general design of plugin frameworks, the TAU plugin

system has the following stages:

– Initialization: This is invoked during TAU library initialization. During

this phase, TAU’s plugin manager reads the environment variables

TAU_PLUGINS_PATH and TAU_PLUGINS and loads the plugins in the order

24

specified by TAU_PLUGINS. Each plugin must implement a function called

Tau_plugin_init_func. Inside this function, it can register callbacks for a

subset of plugin events it is interested in. Note that each plugin may register

callbacks for more than one event. The plugin manager maintains an ordered

list of active plugins for each event supported.

– Event Callback Invocation: We define some salient plugin events in TAU

that could be interesting or useful from a performance engineering standpoint.

These events are discussed in detail in the section that follows. When these

plugin events occur during execution of an application instrumented with

TAU, the plugin manager invokes the registered callbacks for the specific

event in the order in which the corresponding plugins were loaded. Each

event that is supported has a specific, typed data object associated with it.

When the event occurs, this data object is populated and sent as a parameter

to the plugin callback.

– Finalize Phase: When TAU is done generating the profiles for the

application, the plugins are unloaded, and all the auxiliary memory resources

allocated by the plugin manager are freed.

Plugin Events Supported

Plugin events are entry points into the plugin code that performs a custom

task. Currently, TAU defines and supports the following events:

– TAU_PLUGIN_EVENT_FUNCTION_REGISTRATION: TAU creates and registers a

FunctionInfo object for all functions it instruments and tracks. This event

marks the end of the registration phase for the FunctionInfo object that was

created.

25

– TAU_PLUGIN_EVENT_ATOMIC_EVENT_REGISTRATION: TAU defines atomic

events to track PAPI counters, PVARs and other entities which do not follow

interval event semantics. This plugin event marks the end of the registration

phase for the atomic event and is triggered when the atomic event is created.

In the context of our MPI T infrastructure, this plugin event is triggered once

for every PVAR that is exported by the MPI library.

– TAU_PLUGIN_EVENT_ATOMIC_EVENT_TRIGGER: When the value of an atomic

event is updated, this event is triggered. This plugin event is triggered once

for each PVAR, every time the MPI T interface is queried.

– TAU_PLUGIN_EVENT_INTERRUPT_TRIGGER: TAU’s sampling subsystem relies

on installing an interrupt handler for the SIGALRM signal, and performs the

sampling within this interrupt handler. When TAU is used with its sampling

capabilities turned on, this plugin event is triggered within TAU’s interrupt

handler (10 seconds is the default interrupt interval).

– TAU_PLUGIN_EVENT_END_OF_EXECUTION: When TAU has finished creating and

writing the profile files for the application, this plugin event is triggered.

There may be other supported events added in future releases.

Use Case: Filter Plugin to Disable Instrumentation at Runtime

To demonstrate a sample usage scenario for the plugin architecture, we have

created a plugin that filters out instrumented functions from being profiled at

runtime, based on a user-provided selective instrumentation file. This situation

arises when the application has been instrumented using either the compiler or

TAU’s source instrumentation tool — the Program Database Toolkit (PDT) [23].

26

PDT works by parsing the input source file to detect function definitions and

function call sites, and automatically adds the TAU instrumentation API calls

to these sites. The user may want to prevent certain automatically instrumented

functions from being profiled — these functions may be frequently invoked but

not have a significant impact on overall runtime. They may pollute the generated

profiles and more importantly, add to the measurement overheads without

providing any real benefit. From a profiling standpoint, there is solid motivation

to provide a mechanism that allows such functions to be excluded from profiling.

We use our plugin infrastructure to provide this functionality — our filter

plugin registers a callback for the TAU_PLUGIN_EVENT_FUNCTION_REGISTRATION

plugin event. Recall that this event is triggered once for every function

instrumented by TAU. Within the callback for the

TAU_PLUGIN_EVENT_FUNCTION_REGISTRATION event, we read a user-provided

selective instrumentation file that contains a list of functions to be excluded

from profiling. The data object for this plugin event contains the function name

information. If there is a match between the function being registered and the list

of function names in the selective instrumentation file, we set the profile group for

the function to be TAU_DISABLE, effectively switching off profiling for this function.

Plugins for Autotuning

Figure 5 depicts TAU plugins in the context of our MPI T infrastructure.

As discussed earlier, TAU samples PVAR data from the MPI T interface inside a

signal handler for the SIGALRM signal. TAU can use this collected PVAR data to

perform an autotuning decision inside the signal handler — this is realized through

plugins that install callbacks for the TAU_PLUGIN_EVENT_INTERRUPT_TRIGGER event.

27

This event is triggered every time TAU samples the MPI T interface, and the

registered plugin callbacks are invoked. Inside the callback, the plugin has access

to all the PVAR data collected and performs a runtime autotuning decision that

may result in updated values for one or more CVARs (knobs). Plugins can make

use of core TAU modules to interact with the MPI T interface to update CVAR

values.

Note that the plugin infrastructure allows the user to specify more than

one plugin — this feature can be utilized to load multiple autotuning policies,

each of which is built into a separate shared library. While plugins use common

functionality defined inside TAU to read or write to the MPI T interface, the

autotuning logic itself is custom to each plugin — in the future, we plan to support

a high-level infrastructure to express autotuning policies that reduce duplicated

code across plugins. Our starting point for developing autotuning policies relies on

users with background or offline knowledge about specific domains, applications,

and libraries.

Plugins for Recommendations

We take advantage of the plugin mechanism to develop performance

recommendations for the user. MPI libraries can export a large number of control

variables — many of which are also environment variables whose default settings

may not always be optimal for a given application/situation. Moreover, the user

may not even be aware of the existence of certain settings or MPI implementation-

specific features that can improve performance. A profiling tool such as TAU is

28

FIGURE 5. Plugin infrastructure

29

in an ideal position to fill this gap with the MPI T interface acting as an enabling

mechanism.

Performance data gathered by TAU through the MPI T and PMPI interface

can be analyzed by a recommendation plugin to provide useful hints to the user at

the end of the application execution. Recommendation plugins register callbacks

for the TAU_PLUGIN_EVENT_END_OF_EXECUTION event that is triggered when TAU

has finished collecting and writing profile information. Currently, TAU supports the

generation of recommendations as part of the metadata that is associated with each

process. This metadata is available for viewing on ParaProf.

Target Applications

AmberMD

AmberMD [24] is a popular software package that consists of tools to carry

out molecular dynamics simulations. A core component is the molecular dynamics

engine, pmemd, which comes in two flavors: serial and an MPI parallel version.

We focus on improving the performance of molecular dynamics simulations that

use the parallel MPI version of pmemd. A substantial portion of the total runtime

is attributed to MPI communication routines, and among MPI routines, calls

to MPI_Wait dominate in terms of contribution to runtime. However, in terms

of number of MPI calls made, MPI_Isend and MPI_Irecv dominate. The use of

non-blocking sends and receives explicitly allows the opportunity for a greater

communication-computation overlap.

30

SNAP

SNAP [25] is a proxy application from the Los Alamos National Laboratory

that is designed to mimic the performance characteristics of PARTISN [26].

PARTISN is a neutral particle transport application that solves the linear

Boltzmann transport equation for determining the number of neutral particles in

a multi-dimensional phase space. SNAP is considered to be an updated version of

the Sweep3D [27] proxy application and can be executed on hybrid architectures.

SNAP heavily relies on point-to-point communication, and the size of messages

transferred is a function of the number of spatial cells per MPI process, number of

angles per octant, and number of energy groups.

Specifically, a bulk of the point-to-point communication is implemented

as a combination of MPI_Isend/MPI_Waitall on the sender side, and MPI_Recv

on the receiver side. This explicitly allows the opportunity for communication-

computation overlap on the sender side.

3DStencil

We designed a simple synthetic stencil application that performs non-

blocking point-to-point communication in a cartesian grid topology. In between

issuing the non-blocking sends and receives and waiting for the communication

to complete, the application performs arbitrary computation for a period of time

that is roughly equal to the end-to-end time for pure communication alone. The

goal is to evaluate the degree of communication-computation overlap. In an ideal

scenario of 100% overlap, the computation would complete at the same time as

communication, so that no additional time is spent in waiting for the non-blocking

31

communication requests to complete. For the purposes of this experiment, point-to-

point communication involves messages of an arbitrarily high, but fixed size.

MiniAMR

MiniAMR is a mini-app that is a part of the Mantevo [28] software suite.

As the name suggests, it involves adaptive mesh refinement and uses 3D Stencil

computation. MiniAMR is a memory bound application, and communication time

is dominated by MPI_Wait for point-to-point routines involving small messages

(1-2 KB range) and MPI_Allreduce. The MPI_Allreduce call involves messages

of a constant, small size (8 bytes) making it latency sensitive. This call is part of

the check-summing routine and increasing the check-summing frequency or the

number of stages per timestep impacts the scalability of this routine and thus the

application.

Usage Scenarios

MPI T in combination with the TAU plugin architecture makes it possible to

do powerful operations that would be difficult to realize otherwise. The following

describes the design of a recommendation to enable hardware offloading of

collectives, and an autotuning policy to free unused MPI internal buffers using

MPI T. These policies are implemented using plugins.

Recommendation Use Case: Hardware Offloading of Collectives

MVAPICH2 now supports offloading of MPI_Allreduce to network hardware

using the SHArP [29] protocol. Hardware offloading is mainly beneficial to

applications where communication is sensitive to latency. As the MPI_Allreduce

32

call in MiniAMR involves messages of 8 bytes, it is a prime candidate to benefit

from hardware offloading.

During the profiling phase, TAU collects statistics about the average message

size involved in MPI_Allreduce operation. It also collects the time spent within

MPI_Allreduce versus the overall application time. If the message size is below a

certain threshold and the percentage of total runtime spent within MPI_Allreduce

is above a certain threshold, through ParaProf, TAU recommends the user to

set the CVAR MPIR_CVAR_ENABLE_SHARP for subsequent runs. Note that this

recommendation policy was implemented using plugins. The same infrastructure

can be used to support multiple recommendation policies.

Autotuning Use Case: Freeing Unused Buffers

MVAPICH2 uses internal communication buffers (VBUFs) to temporarily

hold messages that are yet to be transferred to the receiver in point-to-point

communications. There are multiple VBUF pools which vary in size of the VBUF.

At runtime, MVAPICH2 performs a match based on the size of the message

and accordingly selects a VBUF pool to use. Specifically, these VBUFs are used

when MVAPICH2 chooses to send the message in an Eager manner to reduce

communication latency. Typically, short messages are sent using the Eager

protocol, and longer messages are sent using the Rendezvous protocol, which

does not involve the use of VBUFs. The primary scalability issue with using

Eager protocol is excessive memory consumption that can potentially lead to an

application crash.

Depending on the pattern of message sizes involved in point-to-point

communication, the usage level of these VBUF pools can vary with time and

33

between processes. It can be the case that the application makes scarce use of

VBUFs, or uses VBUFs only from one pool (3DStencil is one such use case). In

such a scenario, unused VBUFs represent wasted memory resource. There could be

significant memory savings in freeing these unused VBUFs.

For this use case, specific CVARs include:

– MPIR_CVAR_IBA_EAGER_THRESHOLD: The value of this CVAR represents the

message size above which MVAPICH2 uses the Rendezvous protocol for

message transfer in point-to-point communication. Below this message size,

MVAPICH2 uses the Eager protocol

– MPIR_CVAR_VBUF_TOTAL_SIZE: The size of a single VBUF. For best results,

this should have the same value as MPIR_CVAR_IBA_EAGER_THRESHOLD

– MPIR_CVAR_VBUF_POOL_CONTROL: Boolean value that specifies if MVAPICH2

should try to free unused VBUFs at runtime. By default, MVAPICH2 will try

to free from any available pool if this variable is set

– MPIR_CVAR_VBUF_POOL_REDUCED_VALUE: This CVAR specifies the lower limit

to which MVAPICH2 can reduce the number of VBUFs. This is an array,

and each index represents the corresponding VBUF pool. This CVAR takes

effect only if pool control is enabled. This CVAR allows more fine-grained

control over freeing of VBUFs, potentially reducing unnecessary allocations

and freeing of VBUFs, if the usage pattern is known in advance

Correspondingly, PVARs of interest include:

– mv2_vbuf_allocated_array: Array that represents the number of VBUFs

allocated in a pool specified by an index

34

– mv2_vbuf_max_use_array: Array that represents the maximum number of

VBUFs that are actually used in a given pool specified by an index

– mv2_total_vbuf_memory: Total VBUF memory (in bytes) used for the

specified process across all pools

Autotuning Policy

When we increase the value of the Eager limit specified by

MPIR_CVAR_IBA_EAGER_THRESHOLD, there is an opportunity for increased overlap

between communication and computation as larger messages are sent eagerly. As

a result, the overall execution time for the application may reduce. Figure 6 is

an enlarged Vampir [30] summary process timeline view for one iteration of the

3DStencil application before applying the Eager optimization. Figure 7 is a Vampir

summary process timeline view for one iteration of the 3DStencil application after

applying the Eager optimization. The timeline view focuses on the phase of the

iteration where there is an explicit opportunity for communication-computation

overlap through the use of non-blocking sends and receives. The X-axis represents

time and the Y-axis represents the percentage of MPI processes inside user code

(green) and MPI code (red) respectively at any given instant in time — larger

areas of green indicates a higher amount of useful work (computation) performed

by processes as a result of a larger communication-computation overlap.

Figure 7 shows the effect of an increased Eager threshold — a 20%

increase in the number of MPI processes inside user code during the phase where

communication is overlapped with computation. This increase is due to the

fact that less time is spent waiting for the non-blocking calls to complete at the

MPI_Wait barrier. With a larger eager threshold, the MPI library can advance

35

FIGURE 6. 3DStencil: Vampir process timeline view before Eager tuning

36

FIGURE 7. 3DStencil: Vampir process timeline view after Eager tuning

37

communication in the background while the sending process is busy performing

the computation. The extreme right edges of Figure 7 are to be ignored as they

represent the phase where the application is performing pure communication.

Increasing the Eager limit may have the following two distinct effects:

– Larger VBUFs may need to be allocated. Note that this does not mean that

more VBUFs are allocated — it only means that the size of each individual

VBUF in the affected pool has increased in order to hold larger messages.

Recall that MVAPICH2 has four VBUF pools — the VBUFs from different

pools vary in only their size.

– As a result of the increased Eager limit, larger messages would be transferred

through the Eager protocol instead of the Rendezvous protocol. Depending

on the communication characteristics of the application, this may lead

to increased usage of VBUFs from one or more VBUF pools. If there is

a shortage of VBUFs in a given pool, MVAPICH2 may need to allocate

additional VBUFs.

A combination of these two factors may lead to an increase in the total VBUF

memory usage inside MVAPICH2. Figure 8 is a PYCOOLR screenshot illustrating

this increase in total VBUF memory usage (across all four pools) for AmberMD

application when the Eager threshold is raised. We see a similar increase in total

VBUF memory usage for the 3DStencil application as well. The X-axis represents

time and the Y-axis represents memory in bytes with 107 as the multiplier. Each

red dot represents the instantaneous mv2_total_vbuf_memory (in bytes) for

one MPI process. If MPI processes have the same VBUF memory usage at any

point in time, then the red dots would overlap. From Figure 8, it is evident that

38

there are two classes of processes — one with a VBUF memory usage of roughly

3 MB (before Eager tuning), and another with a VBUF memory usage level of

roughly 6 MB (before Eager tuning). The eager threshold is raised by setting the

CVAR MPIR_CVAR_IBA_EAGER_THRESHOLD and MPIR_CVAR_VBUF_SIZE statically,

during MPI_Init. Figure 8 shows that the mv2_total_vbuf_memory increases to

approximately 12 MB for the processes with a lower VBUF memory usage, and

approximately 23 MB for the class of processes with a higher VBUF memory usage.

While one pool sees an increase in VBUF usage, it is possible that other

VBUF pools may have unused VBUFs that can be freed to partially offset

this increased memory usage inside MPI. In applications such as 3DStencil or

AmberMD where the message size is fixed or in a known range, VBUFs from only

one pool is used. In such a scenario, freeing unused VBUFs from other pools leads

to significant memory savings. The usage levels of VBUF pools would vary from

one application to another depending on the particular characteristics of the point-

to-point communication.

MPI T offers a mechanism to monitor pool usage at runtime. Our autotuning

policy implemented as a plugin monitors the difference between the array PVARs

mv2_vbuf_allocated_array and mv2_vbuf_max_use_array — each pool has

a unique ID, and this unique ID is used to index into these two arrays. The

difference between these two quantities at a given pool index represents the

quantity of wasted memory resource in that pool. If this difference breaches a

user-defined threshold for at least one pool, the autotuning policy sets the CVAR

MPIR_CVAR_VBUF_POOL_CONTROL to enable MVAPICH2 to free any unused VBUFs.

In order to enable more fine-grained control over freeing of unused VBUFs,

MVAPICH2 exports an array CVAR MPIR_CVAR_VBUF_POOL_REDUCED_VALUE.

39

This CVAR is used to communicate the minimum number of VBUFs that must

be available in each pool after enabling pool control. When the threshold for

unused VBUFs is breached for at least one pool, the autotuning plugin enables pool

control and simultaneously sets this array CVAR to be equal to the array PVAR

mv2_vbuf_max_use_array — this is a heuristic that is employed to determine the

new values for the various VBUF pool sizes. If on the other hand, this threshold

is not breached for any pool, the TAU autotuning plugin unsets the CVAR

MPIR_CVAR_VBUF_POOL_CONTROL effectively turning off further attempts to free

unused VBUFs by MVAPICH2 until the next time the threshold is breached.

Alternatively, both these CVARs can be set at runtime through the

PYCOOLR GUI as well — however, the advantage of using an autotuning plugin

for this purpose is that these values can be set individually and independently for

different processes. It can also be more responsive without incurring the delay

of communicating with the PYCOOLR GUI. Setting different CVAR values for

different processes is not possible through the PYCOOLR GUI.

Figure 9 depicts the decrease in mv2_total_vbuf_memory for AmberMD when

only MPIR_CVAR_VBUF_POOL_CONTROL is enabled through the PYCOOLR GUI,

instructing MPI to free any unused VBUFs. Note that the autotuning plugin is

not employed here. The CVAR for pool control is enabled at around the 150-second

mark, and at this point, the VBUF memory usage levels drop as a result of unused

VBUFs being freed.

Experiments

In this section, we present the results obtained from applying the autotuning

and recommendation policies to our target applications — AmberMD, SNAP,

40

FIGURE 8. PYCOOLR: Total VBUF memory with higher Eager threshold

FIGURE 9. PYCOOLR: Total VBUF memory after freeing unused VBUFs

41

3DStencil, and MiniAMR. We describe results from a study of overheads involved

in enabling MPI T in MVAPICH2 and TAU.

Experimental Setup

Our experiments with AmberMD, SNAP, and 3DStencil were performed

on Stampede, a 6400 node Infiniband cluster at the Texas Advanced Computing

Center [31]. Each regular Stampede compute node has two Xeon E5-2680 8-core

“Sandy Bridge” processors and one first-generation Intel Xeon Phi SE10P KNC

MIC. We chose to run all our experiments using pure MPI on the Xeon host with

16 MPI processes on a node (1 per core) with MV2_ENABLE_AFFINITY turned on so

that MPI tasks were pinned to CPU cores. For SNAP, we used a total of 64 nodes

(at 16 processes per node, a total of 1024 processes). For our experiments with

AmberMD and 3DStencil, we used a total of 32 nodes (at 16 processes per node, a

total of 512 processes).

Experiments with MiniAMR and those involving a study of sampling

overheads using 3DStencil were performed on the ri2 Infiniband cluster at The

Ohio State University. Each compute node on ri2 has two 14-core Intel Xeon E5-

2680 v4 processors. The HCA on all nodes in the cluster is the Mellanox CX-4 100

Gigabit adapter. The OFED version used is MLNX OFED LINUX-4.1-1.0.2.0 and

the Linux kernel version is 3.10.0-327.10.1.el7.x86 64. We ran all our experiments

using pure MPI on Intel Xeon hosts with 28 MPI processes on a node (1 per core)

and pinned the MPI processes. We used a total of 2-16 nodes (at 28 processes per

node, a total of 56 to 448 processes) for our experiments with 3DStencil, and a

total of 8 nodes (at 28 processes per node, a total of 224 processes) for experiments

with MiniAMR.

42

Results

Amber

Table 1 summarizes the results of modifying the Eager threshold and

applying the runtime autotuning policy for AmberMD. The threshold is set

statically right after MPI initialization, using MPIR_CVAR_IBA_EAGER_THRESHOLD.

We noted that increasing the Eager threshold from the MVAPICH2 default value

to 64000 bytes had the effect of reducing application runtime by 19.2%. This was

achieved at the cost of increasing the total VBUF memory across all processes

by 320%. Please note that the total VBUF memory usage reported here is the

average value across the number of times that this metric was sampled (once every

10 seconds). The third row shows results of applying the user-defined policy of

freeing unused VBUFs at runtime, on top of the Eager threshold optimization. We

saw a sizeable reduction in total VBUF memory used while the runtime remained

unaffected.

SNAP

SNAP application relies heavily on point-to-point communication, and the

message sizes involved in communication depend on a number of input factors. We

followed the recommended ranges for these input factors:

TABLE 1. AmberMD: Impact of Eager threshold and autotuning

Run
Number of
Processes

Eager
Threshold
(Bytes)

Timesteps
Runtime
(secs)

Total
VBUF

Memory(KB)

Default 512 MVAPICH2 Default 8,000 166 4,796,067
Eager 512 64,000 8,000 134 15,408,619

TAU autotuning 512 64,000 8,000 134 15,240,073

43

– Number of angles per octant (nang) was set to 50

– Number of energy groups (ng) was set to 150

– Number of spatial cells per MPI rank was set to 1200

– Scattering order (nmom) was set to 4

We gathered the message sizes involved in MPI communication. Table 2 lists the

five MPI functions that account for the highest aggregate time spent. MPI_Recv

and MPI_Waitall together account for nearly 17% of total application time or 60%

of MPI time. Table 3 lists the message sizes involved in various MPI routines. It is

evident that the bulk of messages are point-to-point messages with a message size

of roughly 18,300 bytes.

The fact that the application spends a lot of its communication time inside

MPI_Recv (callsite ID 5 in Table 2) and MPI_Waitall (callsite ID 16 in Table

2) suggests that the receiver in the point-to-point communication is generally

late as compared to the posting of the corresponding MPI_Isend (callsite ID 1

in Table 2) operation. As a result of the relatively large message size of 18KB

involved in this case, the data is transferred using the Rendezvous protocol after

the receive is posted — in this specific context, this data transfer happens when

the sender reaches the MPI_Waitall call. Even though there is an opportunity for

communication-computation overlap through the use of non-blocking routines, no

overlap actually happens in the application because of the conditions necessary for

the transfer of large messages using the Rendezvous protocol.

By increasing both the inter-node and intra-node Eager threshold to

20KB, the transfer of these point-to-point messages is initiated when the sender

posts the MPI_Isend operation. As a result, the application sees an increase in

44

TABLE 2. SNAP: Aggregate time inside various MPI functions

MPI routine name Callsite ID
Portion of

Application Runtime (%)
Portion of MPI Time (%)

MPI Recv 4 13.31 47.50
MPI Barrier 5 5.20 18.55

MPI Allreduce 7 3.84 13.72
MPI Waitall 16 3.09 11.02
MPI Isend 1 1.21 4.33

TABLE 3. SNAP: Average sent message sizes from various MPI functions

MPI routine name Callsite ID Count Average Message Size (Bytes)

MPI Isend 1 114348672 18300
MPI Allreduce 7 25600 1200

MPI Send 18 2400 1920
MPI Bcast 11 1024 120
MPI Bcast 15 1024 120

communication-computation overlap, and this manifests itself as a reduction

in overall application runtime. The second row of Table 4 summarizes this

improvement in performance with 1024 processes — we note a reduction of 10.7%

in application runtime when increasing the Eager threshold to 20 KB. However,

increasing the Eager threshold also meant that the total VBUF memory usage

across all processes went up by 12%.

The TAU autotuning plugin ensures that VBUFs from unused pools are

freed to offset this increase in total VBUF memory usage. The third row of

Table 4 summarizes the reduction in total VBUF memory usage when the TAU

autotuning plugin is enabled. It is important to note that the plugin does not

disturb application runtime even at this scale.

45

TABLE 4. SNAP: Impact of Eager threshold and autotuning

Run
Number of
Processes

Eager
Threshold (Bytes)

Runtime (secs) Total VBUF Memory(KB)

Default 1024 MVAPICH2 Default 47.3 3,322,067
Eager 1024 20,000 42.2 3,787,050

TAU autotuning 1024 20,000 42.9 2,063,421

3DStencil

Table 5 summarizes the results of these experiments with our synthetic

3DStencil code. We designed the application in such a way that non-blocking

point-to-point communications involve messages of an arbitrarily high, but fixed

size. We measured the communication-computation overlap achieved. The first row

describes results for the default run, where a very low communication-computation

ratio of 6.0% was achieved as messages are sent using the Rendezvous protocol.

The reason for setting a high, but fixed value for message size was to ensure

that only VBUFs from one pool are utilized. In a manner similar to AmberMD,

this application benefited from an increased value for the Eager threshold. The

communication-computation ratio went up from 4.6% to 79.9% and as a result,

there was a corresponding drop in application runtime by 26.2%. However, the

total VBUF memory utilized went up by 1.6 times as compared to the default

setup. We noted significant benefits in implementing the runtime autotuning policy

of freeing unused VBUFs, although it still was 1.49 times of the original.

It is important to note that the actual amount of memory freed through

the autotuning logic depends on the usage levels of various pools. With both

AmberMD and 3DStencil, the message sizes involved in the communication were

relatively large — as a result, smaller size VBUFs were freed.

46

TABLE 5. 3DStencil: Impact of Eager threshold and autotuning

Run
Number of
Processes

Message
Size

(Bytes)

Eager
Threshold
(Bytes)

Overlap
(%)

Runtime
(secs)

Total
VBUF

Memory(KB)

Default 512 32,768 MVAPICH2 Default 4.6 198.1 3,112,302
Eager 512 32,768 33,000 79.9 146.6 4,893,712

TAU autotuning 512 32,768 33,000 80.0 146.4 4,644,691

MiniAMR

Table 6 summarizes the results of enabling SHArP for MiniAMR. Both the

default and optimized runs were performed under similar conditions, with increased

values for check-summing frequency and stages per timesteps to better demonstrate

the potential benefits of enabling hardware offloading of collectives. Under these

conditions, we saw an improvement of 4.6% in runtime when enabling SHArP on 8

nodes.

TABLE 6. MiniAMR: Impact of hardware offloading on application runtime

Run Number of Processes Runtime (secs)

Default 224 648
SHArP enabled 224 618

Overhead in Enabling MPI T

MVAPICH2 does not enable tracking of MPI T PVARs by default. This

feature is enabled by configuring MVAPICH2 with the --enable-mpit-pvars

flag. Enabling and tracking PVARs has a cost associated with it, and we sought

to quantify this cost for small-scale experiments using our infrastructure. Recall

that when TAU is configured to track PVARs, TAU samples PVARs at regular

intervals — the default value for the sampling interval is 10 seconds. TAU reads

47

every PVAR exposed by the MPI implementation — this implies that the overhead

with sampling is directly proportional to the number of the PVARs exported.

Using a version of MVAPICH2 with MPI T disabled as the baseline, we set

up experiments to measure the following overheads:

– Overhead of enabling MPI T within MVAPICH2

– Overhead of sampling PVARs at regular intervals using TAU

In our first set of experiments, we sought to quantify the cost of enabling MPI T

within MVAPICH2, and the cost of sampling at the default rate inside TAU (once

every 10 seconds). We measured the execution time for the 3DStencil application

on the ri2 cluster — with 28 MPI processes per node, we ran experiments using 2

to 16 nodes. Each experiment was repeated 5 times, and the average execution time

was calculated. The results of these experiments are depicted in Figure 10.

At small-scale, we see negligible overheads with our infrastructure. The

execution times for MVAPICH2 configured with MPI T are nearly identical to the

execution times for the baseline. When sampling at the default rate of once every

10 seconds, TAU’s sampling system does not seem to add any noticeable overhead

to the execution time — we see a maximum of 4.7% overheads when using 2 nodes.

With other node counts, the overheads are low enough to be indistinguishable from

the run-to-run variability that is dependent on non-deterministic factors.

In our second set of experiments, we studied how runtime is affected by

sampling more frequently from the MPI T interface. We measured the execution

time of the 3DStencil application on the ri2 cluster using 16 nodes (at 28 processes

per node, a total of 448 processes). Each experiment was repeated 5 times, and

the average execution time was calculated — we have not presented the error

48

FIGURE 10. Overhead in enabling MPI T for 3DStencil

bars with the results because there was negligible variation between runs. Figure

11 shows that the overheads are negligible even when sampling at a rate of once

every second. In summary, the overall runtime for the 3DStencil application is not

affected noticeably when the sampling rate is increased. Although it may not be

the most suitable method for all usage scenarios, this study suggests that sampling

provides a low-overhead solution for tracking PVARs. These experiments suggest

that our infrastructure is likely to scale to large node counts. Overhead studies

with large node counts will be part of our future work.

49

FIGURE 11. Effect of MPI T sampling frequency on overhead for 3DStencil

Implementation Challenges and Issues

Deadlock Inside Signal Handler

The sampling mechanism inside TAU works by installing a signal handler to

the SIGALRM signal. In order to prevent deadlocks, it is vital that all the callpaths

inside the signal handler (TAU routines) are signal-safe, and only make signal-safe

library calls. Our initial implementation of the autotuning plugin made free use of

the malloc and calloc library calls — these are not signal-safe.

As it turned out, when running the TAU autotuning plugin with a large (300

or more) number of MPI processes, some processes were interrupted while inside

a call to malloc from within the MVAPICH2 MPI library. As the plugin itself

invoked malloc, this led to a deadlock on the heap-lock. This issue was mitigated

by using TAU’s custom memory manager to request for heap memory. A valuable

lesson was learned in the process of detecting and resolving this issue — a tool

50

using interrupt-based sampling must make no assumption about the use of signal-

unsafe routines inside the MPI library. In order to ensure proper functionality, tool

writers’ must always pessimistically assume that the library makes use of signal-

unsafe routines, and design around this assumption.

Supporting Dynamic Expansion of MPI T variables

Recall that the number of PVARs and CVARs exported by the MPI library

can increase (or decrease) at runtime. Supporting the case where the number

decreases at runtime is trivial — the tool just invalidates the PVARs (or CVARs)

at the specific indices, and doesn’t query the interface for variables at these indices.

Supporting the scenario where the number of variables increases at runtime,

however, is a more tricky task. As discussed earlier in this chapter, TAU maintains

a user event for every PVAR exported. In the default setup where TAU samples

the MPI T interface inside a signal handler, TAU becomes aware of the increase

in the number of variables only inside the signal handler. As a result, it needs to

allocate the PVAR (CVAR) handles for the additional PVARs (CVARs), and create

a TAU user event for each of these additional PVARs (CVARs). Unfortunately, a

call to the MPI T routine that allocates PVAR (CVAR) handles invokes a malloc

call inside MVAPICH2.

This leads to the same deadlock problem discussed previously. Moreover, at

the time of detecting this issue, it was discovered that a lot of routines that lie in

the callpath for the creation of a TAU user event were signal-unsafe. As a result,

it was decided that TAU would not support dynamic expansion of MPI T variables

for the time being.

51

The lesson here is — sampling-based techniques for MPI T are bound to be

limited by the use of signal-safe routines, and this tends to increase the complexity

of the tool implementation. For instance, one workaround for TAU would have

been to store the fact that the number of MPI T variables has increased (state

information), and then invoke the handle allocation routines from within the

PMPI wrapper for the next MPI call. In order for this solution to work perfectly,

this check must be performed inside the PMPI wrapper for every MPI routine,

thereby increasing the overall overheads for the TAU PMPI wrapper when MPI T

is enabled. This solution was abandoned owing to the potential performance risks,

and the manual work involved in implementing it.

Summary

This chapter has described the design and implementation of the MPI

performance engineering architecture in TAU. We have also described the usage

scenarios for this architecture and validated the design by performing experiments

on synthetic and production scientific applications. The next chapter shall describe

the MPI T based performance introspection support in Caliper.

52

CHAPTER IV

DESIGN OF MPI T SUPPORT IN CALIPER

Caliper is an application introspection tool that relies on source code

annotations to collect information and perform profiling related tasks. I shall first

provide a basic overview of relevant Caliper concepts before describing the MPI T

support in Caliper.

Caliper Concepts

Caliper API

Caliper provides an application level API that acts as the portal for carrying

out performance measurements. Caliper also provides high-level annotation

macros that are user-friendly. The basic idea behind the source-code annotation

API is to associate performance measurements with user-defined, high-level

context information. These source code annotations act as hooks for background

processing. Caliper is built into a library and linked into the application. Figure

121 is an example of a Caliper-annotated C++ source code.

Attributes: Caliper’s Building Blocks

Caliper provides a generic key-value data model for storing performance data

of all kinds. Caliper attributes are the basic elements of the Caliper data model.

The keys need to have a unique name and a type. They can also optionally have

properties which determine how the attributes get processed. An example would be

1Image taken from: https://llnl.github.io/Caliper

53

FIGURE 12. Caliper annotated source code

an attribute to track PAPI counters or an attribute to track the total time spent

inside a routine or code section.

Among all the properties that an attribute can have, the most important

property in the context of MPI T is the AS_VALUE property. Attributes with the

AS_VALUE property set to true cannot be nested. For example, the attribute to

track PAPI counters cannot be nested, but the attribute to track the time spent

inside a routine is nested.

Blackboards and Snapshots

Whenever a performance measurement is made by use of Caliper’s

measurement API, the values of one or more attributes are updated in an internal

54

data-structure referred to as the blackboard. This blackboard is a runtime buffer

that is used to combine active attributes, and is updated by Caliper data providers

(annotations).

A snapshot saves the current context of the blackboard. A snapshot can be

triggered independently of blackboard updates. Additional information can be

added to the snapshot via callbacks to snapshot events.

Services

Caliper services are the basic building blocks that can be combined freely to

realize advanced profiling/tracing capabilities. Services are essentially plugins that

register callbacks for events of interest. During Caliper initialization, the registered

initialization function of each required service is invoked, and the service then

performs start-up related tasks inside this initialization function.

An example of a service is the MPI service. The MPI service keeps track

of the time spent inside MPI calls by utilizing the PMPI interface. The recorder

service writes Caliper snapshot records into a file using a custom text-based I/O

format. The recorder service in conjunction with the MPI service can be used to

gather a basic profile of an MPI application. Figure 13 is an illustration of this use

case.

MPI T Service: Supporting Performance Introspection

This section describes the design of the MPI T service that performs runtime

MPI library introspection through the MPI T interface. As of the time being, this

55

service does not support performance monitoring or tuning through the MPI T

interface.

Service Registration

During the registration phase for the MPI T service, the MPI T performance

session is created. The handles for all the PVARs exported at the time of service

registration are allocated. It is important to note that service registration may

happen before MPI_Init is invoked. If this is the case, the number of PVARs

exported may be zero. The design should account for this scenario.

In the next section, I shall discuss the complexities that arise with allocating

handles for PVARs in detail, and how the design addresses these issues.

FIGURE 13. MPI profiling: Caliper service flow

56

PVAR Handle Allocation

Before a tool can read the value of a PVAR, it must first allocate a handle for

the PVAR. The MPI T interface specifies a function that allows a tool to know the

number of PVARs exported by an MPI implementation at any given point in time.

Recall that the number of PVARs exported can dynamically increase, and that

PVARs can be bound to MPI objects. Like TAU, Caliper only supports PVARs

that are exported immediately after MPI_Init by invoking the handle allocation

routine inside the PMPI wrapper for MPI_Init. Any increase in the number of

PVARs after this point is ignored by Caliper.

PVARs can be bound to MPI objects, and such PVARs can provide fine-

grained detail about MPI. For example, a PVAR representing the number of

messages sent can potentially be bound to an MPI communicator object. This

way, it would be possible for a tool to distinguish the quantity of communication

across communicators/process groups instead of presenting an aggregated view to

the user.

Handles for PVARs not bound to any object (MPI_T_BIND_NO_OBJECT) can

be allocated at any time — specifically, this is done inside the registration phase

for the MPI T service, and inside the PMPI wrapper for MPI_Init. In order to

allocate handles for PVARs bound to MPI objects, we need a reference (address)

to the MPI object in question. The ideal location for the MPI T service to grab

these references would be during MPI object creation. Briefly, the following steps

are necessary to allocate such handles:

– Identify the corresponding MPI object creation routine for the object in

question

57

– Intercept the object creation routine (through PMPI)

– Allocate handles for all PVARs bound to the given object type

It is possible that multiple handles are associated with a PVAR bound to an MPI

object — one for each such MPI object created. The supported MPI object types

in MPI T and their corresponding object routines used to allocate handles are

presented in Table 7.

TABLE 7. Caliper: PVAR handle allocation routines for supported MPI objects

MPI Object Type MPI Object Creation Routine

MPI Communicator MPI Comm Create
MPI Error Handler MPI Err handler

MPI File MPI File open
MPI Groups MPI Group create

MPI Reduction Operators MPI Op create
MPI Info Objects MPI Info create

MPI Window Objects MPI Win create
MPI Datatypes Not Supported

MPI Message Objects Not Supported
MPI Request Objects Not Supported

PVAR Classes and Notion of Aggregability

Depending on what they represent, PVARs are categorized by the MPI

standard into counters, state variables, watermarks, etc., and are handled

differently by Caliper. We define the notion of aggregatability as follows: Any

PVAR on which it is meaningful to apply one or more of the operators — SUM,

MAX, MIN, AVG, COUNT is defined as aggregatable.

Along with other information, a call to MPIT_pvar_get_info returns the

CLASS to which the PVAR belongs. Below we describe the various PVAR classes

supported by the MPI standard and how each class is handled by Caliper:

58

– MPI_T_PVAR_CLASS_TIMER, MPI_T_PVAR_CLASS_AGGREGATE,

MPI_T_PVAR_CLASS_COUNTERS: These are free-counting, monotonically

increasing values. As such, they are not aggregatable, but by storing the

previous value for these counters and timers, the difference between the

current and previous value is a derived metric that is aggregatable by use

of SUM, MAX, MIN, AVG operators. Storing this difference is more useful

than just the raw counter values, as one would typically be interested in the

change caused to any of these PVARs rather than the raw value itself.

– MPI_T_PVAR_CLASS_STATE: Represents MPI state at any instant in time.

Non-aggregatable value.

– MPI_T_PVAR_CLASS_SIZE: Represents size of an MPI resource. Non-

aggregatable value.

– MPI_T_PVAR_CLASS_LEVEL, MPI_T_PVAR_CLASS_PERCENTAGE: Represents

the instantaneous level or percentage utilization of an MPI resource. It is

meaningful to apply the AVG, MIN, MAX operators, and hence these classes

are aggregatable.

– MPI_T_PVAR_CLASS_HIGHWATERMARK, MPI_T_PVAR_CLASS_LOWWATERMARK:

As such, these classes are non-aggregatable. However, one can define

aggregatable derived metrics out of these PVARs. Specifically, Caliper defines

two derived metrics — A boolean that tells us if the watermark has gone

up from the last time it was read, and a double value specifying the change

in the value between successive reads. Both of these derived metrics are

aggregatable quantities as one can apply the COUNT and/or SUM operator

to them.

59

– MPI_T_PVAR_CLASS_GENERIC: PVARs that do not fall into any of the above

classes. These PVARs would need to be handled on a case-by-case basis, and

thus, for now, we define these to be non-aggregatable.

Creating Caliper Attributes for PVARs

The basic data unit in Caliper is an attribute. An attribute is a key-value

pair that has certain properties. For each PVAR exposed by the MPI library,

Caliper defines an attribute with the same name as the PVAR. Each PVAR

attribute has the following properties:

– CALI_ATTR_AS_VALUE - We do not want ”stacking” semantics for PVAR

values. They should be treated much the same way as PAPI counters.

– CALI_ATTR_SCOPE_PROCESS - PVARs are defined on a per-rank basis

– CALI_ATTR_SKIP_EVENTS - We do not want callbacks to be triggered every

time the attribute for a PVAR is updated

– Metadata (class.aggregatable) - Boolean value specifying if the PVAR

is aggregatable or not. Aggregatability is determined based on the class to

which a PVAR belongs.

Apart from creating a Caliper attribute for each PVAR exported, two additional

attributes are created for each watermark class PVAR exported — one that

represents the number of times the watermark changes, and another that represents

the cumulative change in the watermark PVAR.

60

Sampling and Storing PVARs in Snapshots

All PVARs exported by the MPI library are queried when a snapshot is

triggered. For example, when the MPI service is enabled, snapshots are taken every

time an MPI call is made. By integrating the MPI T service along with the MPI

service, we would be able to determine how various MPI function calls contribute

to changes in PVAR values. One can gather meaningful information by aggregating

PVAR values using MPI function names or annotated code regions as keys — this

would be particularly helpful in attributing MPI inefficiencies down to source code

sections or MPI routines.

Depending on the class of the PVAR, we either store the raw value read

from the interface in the snapshot, or a derived metric. Below, we describe various

PVAR classes are represented in the snapshot:

– MPI_T_PVAR_CLASS_TIMER, MPI_T_PVAR_CLASS_AGGREGATE,

MPI_T_PVAR_CLASS_COUNTERS: We store the difference between the current

value and the previous for such PVARs in the snapshot. Storing and

aggregating this derived value is more meaningful than storing the raw value

— it helps us answer questions such as:

∗ How do different MPI functions contribute to this PVAR?

∗ Which MPI function is responsible for the highest value?

– MPI_T_PVAR_CLASS_STATE, MPI_T_PVAR_CLASS_SIZE: The raw values of

such PVARs are stored in the snapshot. It may be more meaningful to view

changes of these PVARs over time, such as in a trace.

61

– MPI_T_PVAR_CLASS_HIGHWATERMARK, MPI_T_PVAR_CLASS_LOWWATERMARK:

Along with storing the raw value for watermark PVARs, we store the derived

metrics that represent the number of times the watermark changed, along

with how much the watermark changed in the snapshot. By aggregating

across MPI functions for example, we can answer questions such as:

∗ Which function most frequently pushed up/down a watermark?

∗ Which function was responsible for the highest cumulative change in a

given watermark?

– MPI_T_PVAR_CLASS_LEVEL, MPI_T_PVAR_CLASS_PERCENTAGE: The raw values

of such PVARs are stored in the snapshot. It maybe meaningful to view the

average, maximum, or minimum value for these PVARs aggregated across

MPI functions.

Target Applications

LULESH

LULESH [32] is a mini-app developed at the Lawrence Livermore

National Laboratory (LLNL). It is a typical hydrocode, and approximates the

hydrodynamics equations discretely. LULESH has been ported to multiple

platforms and programming models. In this study, we use the CPU-only version

that uses MPI for parallelization. We use an LLNL-internal version of LULESH

that has been annotated using Caliper. Specifically, all MPI functions along with

some important application-level routines and loops are annotated using Caliper.

Due to restricted access to Caliper-annotated applications, our study has been

limited to only one application.

62

Usage Scenarios

As of the writing of this document, Caliper only supports performance

introspection through the MPI T interface, so the set of usage scenarios is limited

in variety. The design of the performance introspection support in Caliper was

carried out with one specific goal — to analyze PVAR values across annotated code

sections using the aggregate service.

In other words, we would like to attribute changes in PVAR values to specific

code regions or function invocations. In this way, we hope that MPI T would allow

us to narrow down performance inefficiencies to specific locations in the source

code. The following two usage scenarios are an attempt to showcase this design.

Detecting Performance Inefficiencies in MPI

With this use case, we would like to answer this specific question — What are

the contributions of different MPI routines to PVARs that represent an aggregatable

quantity such as memory allocated within MPI?

Sampling and storing PVARs is likely to be more effective if the context

information is stored along with it for analysis later on. If we are able to identify

the contributions of various MPI routines to the final sampled value of a PVAR

at the end of a run, this could aid in narrowing down causes for performance

inefficiencies within the MPI library itself.

As discussed in an earlier section introducing Caliper concepts, services act

as basic building blocks for realizing more advanced functionality. Below, I briefly

discuss the key services (apart from the MPI T service) that are used to enable

such a functionality:

63

Event Service

The event trigger service triggers snapshots when attributes are updated.

Recall that whenever a snapshot is triggered, the MPI T interface is queried.

Through the environment variable CALI_EVENT_TRIGGER, the user can specify

a list of attributes whose updates triggers a snapshot. Attributes that have the

CALI_ATTR_SKIP_EVENTS property set do not trigger snapshots. PVAR attributes

have this property set to true.

MPI Service

This service records MPI operations and the MPI rank. This service utilizes

the PMPI interface to keep a track of the program execution time spent inside

MPI. MPI function names are stored in the special attribute mpi.function and

the MPI rank in the mpi.rank attribute.

Aggregate Service

The aggregate service accumulates aggregation attributes (e.g. time

durations) of snapshots with a similar key, creating a profile. The environment

variable CALI_AGGREGATE_KEY is used to specify the colon-separated list of

attributes that are used for the aggregation key. It is important to note that these

attributes can not have the AS_VALUE property set to true. An example of such an

attribute would be mpi.function or mpi.rank.

Through the environment variable CALI_AGGREGATE_ATTRIBUTES, the user can

specify the list of aggregation attributes. These attributes must have the AS_VALUE

property set to true. All PVARs are candidates for attributes to form this list.

64

The aggregate service aggregates values of aggregation attributes from all input

snapshots with similar aggregation keys.

Report Service

The report service aggregates, formats, and writes collected Caliper records

into files or stdout on Caliper flush events (typically, at program end). By

default, the report service prints a tabular, human-readable report of the collected

snapshots.

I now describe how these services enable us to detect performance

inefficiencies within MPI. The event service is used to trigger snapshots with

the mpi.function attribute set as the CALI_EVENT_TRIGGER. This means that

snapshots are triggered, and PVARs are sampled every time an MPI call is made.

The values of these PVARs are stored in the snapshot along with value of the

mpi.function attribute (MPI call) that triggered the snapshot. In this way,

context information is stored along with the actual the values of the PVARs.

The CALI_AGGREGATE_KEY is a combination of the mpi.function and

mpi.rank attributes. The CALI_AGGREGATE_ATTRIBUTES can be any combination of

PVAR attribute names. Unfortunately, Caliper does not offer a good visualization

tool that allows us to visualize the situation where multiple aggregate attributes

are used. So we are limited to using one PVAR as the aggregation attribute. The

report service writes out the profile files (one per MPI rank) in a form that is

human-readable.

The MVAPICH2 MPI library exports a PVAR with the name

num_free_calls that represents the number of times the free library

routine was invoked from within MPI. This PVAR belongs to the class

65

FIGURE 14. PVAR aggregated across MPI routines

MPI_T_PVAR_CLASS_COUNTER, and is thus a free-flowing counter whose value

monotonically increases. Recall that Caliper stores the difference between the

current and last value for such PVARs in the snapshot, and not the raw value

of the counter itself. By using the mpi.function attribute as the key, we can

aggregate this PVAR across snapshots to give us a sense of which MPI function

was responsible for contributing to the value of this PVAR the most.

Figure 14 is a screenshot of the Caliper profile generated for an MPI process

when enabling the MPI T service with the other services mentioned in this

section. The application being profiled is LULESH (annotated with Caliper),

and the MPI library being used to run the application is MVAPICH2 version

2.3b. The profile displays various basic statistics associated with aggregating the

PVAR num_free_calls with mpi.function as the key. It is evident that the

MPI_Wait routine was responsible for a disproportionately high contribution to

the value of the PVAR at the end of the run. If this behavior is common across

MPI applications, an MPI library developer could look into the implementation of

MPI_Wait for inefficiencies, as each invocation of free (and the associated malloc

call) is a time-consuming operation that can degrade application performance.

66

Detecting Application-Level Performance Inefficiences

Consider the situation where an MPI application developer has optimized

the MPI implementation to a level where further optimization yields diminishing

returns. In spite of having an optimized MPI library, the application may be using

a sub-optimal combination of MPI routines in order to execute a specific task. One

simple example is the use of point-to-point routines to implement collectives instead

of the highly optimized, library-supplied collective routines. Assuming that the user

is aware of the specific PVARs to analyze in order to detect such a scenario, but is

unaware of the specific code locations in the application where such an inefficiency

exists, we need a way to associate PVARs to specific code locations (or routines).

With an application that has been annotated using Caliper (such as the

LULESH application used in our study), this goal is easy to achieve. The set of

services is identical to the previously described usage scenario with two important

changes. One, we now trigger the snapshots from every annotated source function

(instead of every MPI call invocation). It is assumed that an attribute with the

name function is created for annotating the source code. Each time a function

call is made, the value of this attribute is updated with the name of the function

being invoked. Naturally, this attribute would have stacking semantics. Two,

the aggregation key contains the attribute function. This way, we can see how

different application-level functions contribute to the value of the PVARs.

Figure 15 is a screenshot of the Caliper profile generated for the LULESH

application using this setup. The PVAR num_free_calls is aggregated across

application-level routines. It is evident that the CalcQForElems and the

67

CalcForceForNodes routines were responsible for a large share of the final sampled

value for this PVAR. By annotating the source code appropriately, one could use

this setup to narrow down inefficiencies to specific loops or even line numbers.

Although the two usage scenarios presented above are similar with respect to

the set of services used, the MPI T sampling overheads involved vary significantly.

I shall present these results in the following section.

Experiments

In this section, I present results from a study focused on determining the

sampling overheads for the MPI T support in Caliper.

Experimental Setup

All the experiments with LULESH were carried out on Quartz — a 2600-

node cluster at LLNL. Each node has two Intel Xeon E5-2695 18-core processors,

providing a total of 36 cores and 128 GB of main memory. All our experiments

were run using 27 MPI processes on one Quartz node — a single node was

sufficient for studying sampling overheads. In order to prevent performance

FIGURE 15. PVAR aggregated across application routines

68

variation between runs, the MPI processes were pinned to cores by setting

MV2_ENABLE_AFFINITY to true. Each experiment was performed three times, and

the runtime reported here is the averaged value. Two MVAPICH2 versions were

used in this study — MVAPICH2 version 2.3b and MVAPICH2 version 2.3rc2.

Results

Overhead in Enabling MPI T

We first study how overheads vary when the number of PVARs exported by

the MPI implementation differs. MVAPICH2 version 2.3b exports 73 PVARs, while

MVAPICH2 version 2.3rc2 exports 402 PVARs. For this experiment, snapshots

were triggered (and MPI T subsequently sampled for all PVARs) whenever an MPI

call was made. We define the following terms:

– Baseline — Caliper-annotated LULESH profiled without any services

enabled

– Without MPI T — Caliper-annotated LULESH profiled with the MPI,

report, timestamp, aggregate, and event services enabled

– With MPI T — Caliper-annotated LULESH profiled with the MPI, MPI T,

report, timestamp, aggregate, and event services enabled

Figure 16 depicts an expected outcome — the overheads are directly proportional

to the number of PVARs exported. For MVAPICH2 version 2.3b, this corresponds

to overheads of 76% over the baseline, whereas for MVAPICH2 version 2.3rc2,

overheads are 143% over the corresponding baseline. None of these numbers are in

an acceptable range — this suggests that it is too expensive to sample all PVARs,

every time an MPI call is made.

69

As alluded to in the section on usage scenarios, the snapshot-triggering

mechanism has a significant impact on the MPI T sampling overheads. Specifically,

we consider two situations:

– Snapshots triggered when an MPI call is made

– Snapshots triggered when a Caliper-annotated application routine is invoked

For this experiment, the MVAPICH2 version 2.3rc2 was used. Figure 17 suggests

that the overheads involved in triggering a snapshot and sampling MPI T from

application-level routines are even higher than the situation where snapshots are

triggered every time an MPI call is made. Specifically, we see overheads of 207%

when triggering snapshots from application-level routines, and overheads of 143%

when triggering snapshots from MPI routines.

FIGURE 16. Effect of number of PVARs exported on MPI T overhead

70

This is a sobering result — even when the level of application instrumentation

is low-to-moderate (such as in LULESH), MPI T sampling overheads are not

acceptable. This would likely be the case in other scientific applications that are

iterative (or depend on a timestep loop). A compromise solution in this situation

may be to sample only a subset of PVARs — perhaps by providing the user an

environment variable to specify such a subset. But such a solution assumes that the

user is already aware of the exact names (or indices) of the PVARs — this is a poor

assumption to make in the context of MPI T.

FIGURE 17. Effect of snapshot trigger mechanism on MPI T overhead

71

Implementation Challenges and Issues

Crashes with OpenMPI

The MPI T support in Caliper was designed to be specifically used with the

OpenMPI implementation. When this research was being carried out, OpenMPI

was the only MPI library that had support for PVARs bound to MPI objects.

However, we noted that the application crashed when we were trying to allocate

handles for PVARs bound to MPI objects. This issue was communicated to the

developers of the OpenMPI library. Unfortunately, this issue was not resolved in

time, and we had to use MVAPICH2 for testing purposes.

Lack of GUI support in Caliper

When this research was being conducted, Caliper did not have GUI support

for visualizing profiles, nor did it have support for writing out traces in a standard

format. Caliper had basic text-based support for viewing and analyzing the

collected performance data. Given the relatively large number of PVARs exported

by MVAPICH2 (order of a 100), the basic text-based support was not sufficient to

display all the data. We had to resort to viewing only a subset of PVARs at any

given time.

Summary

This chapter has described the design and implementation of the MPI T

support in Caliper. Through experiments, we have demonstrated the capabilities

and limitations of the performance introspection support in Caliper. In the next

72

chapter, we shall present a discussion focusing on the design differences between the

MPI T support in TAU and Caliper.

73

CHAPTER V

DISCUSSION

MPI T allows a performance profiler such as TAU or Caliper to play a

more active role in MPI performance engineering. As I have demonstrated

with experiments with TAU on AmberMD, SNAP, and 3DStencil, there can be

significant memory savings in tracking and freeing unused virtual buffers inside

MVAPICH2. Such opportunities for fine-tuning MPI library behavior would not

have been possible without a close interaction between this two software.

Design Differences Between TAU and Caliper

Although both TAU and Caliper offer MPI performance introspection

capabilities through MPI T, they differ significantly in the design and

implementation of this support. TAU primarily relies on an interrupt-based

mechanism to sample the MPI T interface, while Caliper relies on an event to

trigger the MPI T sampling routine. This has far-reaching consequences to the

overheads involved in introspecting the MPI T interface.

TAU’s interrupt-based mechanism is extremely light-weight — it adds almost

no noticeable overhead to application runtime even when sampling at the rate of

once every second. The event-based scheme implemented in Caliper is expensive —

the overheads generated by both the snapshot triggering mechanisms discussed in

this document are prohibitively high.

Although TAU has support for context events, PVARs are stored as user

events (they are treated as regular counters) — as a result, it is not possible in

the current design to add metadata information when sampling PVARs. Caliper,

74

on the other hand, has a more flexible API — the user can define attributes with

a set of properties. Specifically, the snapshotting mechanism in Caliper offers a

convenient way to add rich context to PVAR data that is collected. This enables

a more meaningful analysis of PVAR values at the end of a profiling run — a user

can attribute PVAR contributions to specific code sections.

TAU clearly has a broader level of support for MPI T— it supports

performance monitoring, autotuning, and recommendation generation through

MPI T in addition to performance introspection. The plugin design in TAU

specifically enables support for a broader range of MPI implementations. Caliper

at the moment does not support any of these additional features.

The lack of a GUI for performance analysis in Caliper makes in particularly

hard to analyze PVARs effectively. Moreover, the profile and trace files are written

in a custom format — the use of well-established tools to view these files is

therefore limited. However, it must be noted that Caliper has support for a tool

API that enables other tools such as TAU to ”plug-in” to Caliper at runtime to

extract the collected performance data. This support has not been explored in this

work.

A Note on the MPI T Interface Specification

Both these tools rely on a PMPI wrapper to generate MPI profiling

information. In addition to performing this task, the wrapper in Caliper allocates

handles for PVARs that are bound to MPI objects. Although not currently

implemented, it is certainly feasible to implement such a functionality within TAU

as well. This feature of the MPI T specification is particularly interesting as it

enables a more fine-grained performance analysis of MPI. However, support for

75

this feature is limited — OpenMPI is the only implementation that supports this

feature.

The MPI T standard specification allows an MPI library to dynamically

export additional PVARs as and when they become available (through dynamic

loading of shared objects). In my opinion, this feature can be supported by tools

only by incurring a significant cost in terms of implementation complexity and

performance degradation. The solution that would ensue would invariably be ugly

by design. As it involves memory allocation, a tool must be careful about when

it allocates handles for the additional PVARs (CVARs). Based on the experience

with TAU, this certainly cannot be done inside an interrupt handler. Restricting

MPI implementations in a way that ensures that they export all PVARs (CVARs)

during MPI_Init can significantly reduce this complexity.

Summary

In this chapter, we have described how TAU and Caliper differ in their

approach to implementing MPI T based performance introspection. We have also

discussed how these design choices affect runtime overheads. In the concluding

chapter, we will describe current efforts in advancing the MPI T support in TAU

and touch upon future directions for research.

76

CHAPTER VI

CONCLUSION AND FUTURE WORK

This thesis presented an infrastructure dedicated to MPI Performance

Engineering, enabling introspection of MPI runtimes. To serve that purpose, this

infrastructure utilized the MPI Tools Information Interface, introduced in the MPI

3.0 standard.

I discussed how the TAU Performance System and MVAPICH2 could be

extended to fully exploit features offered by MPI T. I demonstrated different

usage scenarios based on specific sets of MPI T Performance and Control

Variables exported by MVAPICH2. The results produced by our experiments on

a combination of synthetic and production applications validate our approach and

open broad perspectives for future research.

With Caliper, I presented an infrastructure that enables performance

introspection through MPI T. As compared to TAU, I chose to experiment with

a different strategy to sample PVARs. I demonstrated how this strategy could lead

to a more meaningful way to analyze PVARs, even if the overheads associated with

this strategy were high.

Turning to the future, it is interesting to consider that MPI T provides

an opportunity to perform autotuning on an extremely fine-grained level —

right down to message-level granularity. MVAPICH2 exports an environment

variable called MV2_RNDV_PROTOCOL that determines the rendezvous protocol

used on RDMA capable systems — RDMA_WRITE or RDMA_READ. Our experiments

with microbenchmarks suggest that using the right RDMA protocol for a

77

communicating pair of processes at a given callsite can significantly improve

rendezvous nonblocking point-to-point performance.

Detecting the runtime ordering of the posting of the nonblocking send,

receive, and the corresponding wait operation is critical in determining the right

RDMA protocol to use for rendezvous communication. The rendezvous protocol

typically involves the exchange of control messages between the sender and receiver.

MPI T can potentially help in detecting this exchange of control messages and in

ultimately determining how to tune the protocol at a fine-grained level.

We must first verify that tuning the rendezvous protocol at a fine-grained

level can indeed lead to performance benefits. However, MVAPICH2 does not have

support for tuning the MV2_RNDV_PROTOCOL at a fine-grained level. The value of

this variable is common across MPI processes and MPI callsites and cannot be

changed at runtime. So, we resort to simulating the rendezvous protocol using a

trace-replay tool such as TraceR [33] in order to confirm or reject this hypothesis.

We hope to show that fine-grained tuning of the rendezvous protocol does indeed

lead to performance benefits by post-processing application traces. Through

simulation, we also hope to demonstrate a mechanism to profile and tune the

rendezvous protocol dynamically at runtime.

We plan to enrich our infrastructure by also exploring the following areas of

research:

– Develop an infrastructure to express autotuning policies in a more generic

fashion

– Enrich MPI T support in MVAPICH2 to enable introspection and tuning for

a wide range of applications and communication patterns

78

– Study the challenges in providing an interactive performance engineering

functionality for end users

With respect to future Caliper research, it currently lacks a mechanism

to tune the MPI library at runtime using the MPI T interface. We plan to

add support for MPI T based autotuning in Caliper. A prospective research

idea is to integrate Caliper with TAU through Caliper’s tool API. This way,

Caliper can leverage TAU’s MPI T infrastructure for performance autotuning

or recommendations. Caliper also lacks a proper tool for performance analysis

— through this integration, performance data collected through Caliper can be

analyzed using TAU’s rich support for profiling and tracing tools.

79

REFERENCES CITED

[1] Srinivasan Ramesh, Aurèle Mahéo, Sameer Shende, Allen D. Malony, Hari
Subramoni, and Dhabaleswar K. Panda. MPI performance engineering with
the MPI tool interface: the integration of MVAPICH and TAU. In
Proceedings of the 24th European MPI Users’ Group Meeting, EuroMPI/USA
2017, Chicago, IL, USA, September 25-28, 2017, pages 16:1–16:11, 2017. doi:
10.1145/3127024.3127036.

[2] Srinivasan Ramesh, Aurèle Mahéo, Sameer Shende, Allen D. Malony, Hari
Subramoni, Amit Ruhela, and Dhabaleswar K. (DK) Panda. MPI
Performance Engineering with the MPI Tool Interface: the Integration of
MVAPICH and TAU. Parallel Computing, 2018. ISSN 0167-8191. doi:
https://doi.org/10.1016/j.parco.2018.05.003.

[3] MPI Forum. MPI: A Message-Passing Interface Standard. Version 3.1, June 4th
2015. http://mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf (June.
2015).

[4] Edward Karrels and Ewing Lusk. Performance analysis of mpi programs.
Environments and Tools for Parallel Scientific Computing, pages 195–200,
1994.

[5] Sameer S. Shende and Allen D. Malony. The TAU Parallel Performance System.
Int. J. High Perform. Comput. Appl., 20(2):287–311, May 2006. ISSN
1094-3420. doi: 10.1177/1094342006064482. http://tau.uoregon.edu.

[6] Jiuxing Liu, Jiesheng Wu, Sushmitha P Kini, Pete Wyckoff, and Dhabaleswar K
Panda. High performance RDMA-based MPI implementation over InfiniBand.
In Proceedings of the 17th annual international conference on Supercomputing,
pages 295–304. ACM, 2003. http://mvapich.cse.ohio-state.edu/.

[7] Edgar Gabriel, Graham E Fagg, George Bosilca, Thara Angskun, Jack J
Dongarra, Jeffrey M Squyres, Vishal Sahay, Prabhanjan Kambadur, Brian
Barrett, Andrew Lumsdaine, et al. Open MPI: Goals, concept, and design of
a next generation MPI implementation. In European Parallel Virtual
Machine/Message Passing Interface Users Group Meeting, pages 97–104.
Springer, 2004.

[8] William Gropp, Ewing Lusk, Nathan Doss, and Anthony Skjellum. A
high-performance, portable implementation of the MPI message passing
interface standard. Parallel computing, 22(6):789–828, 1996.

80

[9] Marc Pérache, Hervé Jourdren, and Raymond Namyst. MPC: A Unified Parallel
Runtime for Clusters of NUMA Machines. In Proceedings of the 14th
International Euro-Par Conference on Parallel Processing, Euro-Par 08, page
7888, Berlin, Heidelberg, 2008. Springer-Verlag. ISBN 978-3-540-85450-0. doi:
10.1007/978-3-540-85451-7 9.

[10] David Boehme, Todd Gamblin, David Beckingsale, Peer-Timo Bremer, Alfredo
Gimenez, Matthew LeGendre, Olga Pearce, and Martin Schulz. Caliper:
performance introspection for HPC software stacks. In Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, page 47. IEEE Press, 2016.
https://github.com/LLNL/Caliper.

[11] Swann Perarnau, Rinku Gupta, Pete Beckman, et al. Argo: An Exascale
Operating System and Runtime, 2015.
http://sc15.supercomputing.org/sites/all/themes/SC15images/tech_

poster/poster_files/post298s2-file2.pdf.

[12] Swann Perarnau, Rajeev Thakur, Kamil Iskra, Ken Raffenetti, Franck Cappello,
Rinku Gupta, Pete Beckman, Marc Snir, Henry Hoffmann, Martin Schulz,
and Barry Rountree. Distributed Monitoring and Management of Exascale
Systems in the Argo Project. In Proceedings of the 15th IFIP WG 6.1
International Conference on Distributed Applications and Interoperable
Systems - Volume 9038, pages 173–178, New York, NY, USA, 2015.
Springer-Verlag New York, Inc. ISBN 978-3-319-19128-7. doi:
10.1007/978-3-319-19129-4 14.

[13] Rainer Keller, George Bosilca, Graham Fagg, Michael Resch, and Jack J.
Dongarra. Implementation and Usage of the PERUSE-Interface in Open MPI.
In Proceedings, 13th European PVM/MPI Users’ Group Meeting, Lecture
Notes in Computer Science, Bonn, Germany, September 2006.
Springer-Verlag.

[14] Tanzima Islam, Kathryn Mohror, and Martin Schulz. Exploring the Capabilities
of the New MPI T Interface. In Proceedings of the 21st European MPI Users’
Group Meeting, EuroMPI/ASIA ’14, pages 91:91–91:96, New York, NY, USA,
2014. ACM. ISBN 978-1-4503-2875-3. doi: 10.1145/2642769.2642781.
https://computation.llnl.gov/projects/mpi_t/gyan.

[15] Esthela Gallardo, Jerome Vienne, Leonardo Fialho, Patricia Teller, and James
Browne. MPI Advisor: A Minimal Overhead Tool for MPI Library
Performance Tuning. In Proceedings of the 22Nd European MPI Users’ Group
Meeting, EuroMPI ’15, pages 6:1–6:10, New York, NY, USA, 2015. ACM.
ISBN 978-1-4503-3795-3. doi: 10.1145/2802658.2802667.

81

[16] Esthela Gallardo, Jrme Vienne, Leonardo Fialho, Patricia Teller, and James
Browne. Employing MPI T in MPI Advisor to optimize application
performance. The International Journal of High Performance Computing
Applications, 0(0):1094342016684005, 0. doi: 10.1177/1094342016684005.

[17] Jeffrey Vetter and Chris Chambreau. mpiP: Lightweight, scalable mpi profiling.
2005. http://mpip.sourceforge.net.

[18] Mohamad Chaarawi, Jeffrey M. Squyres, Edgar Gabriel, and Saber Feki. A Tool
for Optimizing Runtime Parameters of Open MPI, pages 210–217. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2008. ISBN 978-3-540-87475-1. doi:
10.1007/978-3-540-87475-1 30.
https://www.open-mpi.org/projects/otpo/.

[19] M. Gerndt and M. Ott. Automatic Performance Analysis with Periscope.
Concurr. Comput. : Pract. Exper., 22(6):736–748, April 2010. ISSN
1532-0626. doi: 10.1002/cpe.v22:6. http://periscope.in.tum.de/.

[20] Anna Sikora, Eduardo César, Isáıas Comprés, and Michael Gerndt. Autotuning
of MPI Applications Using PTF. In Proceedings of the ACM Workshop on
Software Engineering Methods for Parallel and High Performance
Applications, SEM4HPC ’16, pages 31–38, New York, NY, USA, 2016. ACM.
ISBN 978-1-4503-4351-0. doi: 10.1145/2916026.2916028.

[21] Simone Pellegrini, Thomas Fahringer, Herbert Jordan, and Hans Moritsch.
Automatic Tuning of MPI Runtime Parameter Settings by Using Machine
Learning. In Proceedings of the 7th ACM International Conference on
Computing Frontiers, CF ’10, pages 115–116, New York, NY, USA, 2010.
ACM. ISBN 978-1-4503-0044-5. doi: 10.1145/1787275.1787310.

[22] Kevin Huck, Sameer Shende, Allen Malony, Hartmut Kaiser, Allan Porterfield,
Rob Fowler, and Ron Brightwell. An Early Prototype of an Autonomic
Performance Environment for Exascale. In Proceedings of the 3rd
International Workshop on Runtime and Operating Systems for
Supercomputers, ROSS ’13, pages 8:1–8:8, New York, NY, USA, 2013. ACM.
ISBN 978-1-4503-2146-4. doi: 10.1145/2491661.2481434.
http://khuck.github.io/xpress-apex/.

[23] Kathleen A Lindlan, Janice Cuny, Allen D Malony, Sameer Shende, Bernd
Mohr, Reid Rivenburgh, and Craig Rasmussen. A tool framework for static
and dynamic analysis of object-oriented software with templates. In
Supercomputing, ACM/IEEE 2000 Conference, pages 49–49. IEEE, 2000.

82

[24] David A Case, Thomas E Cheatham, Tom Darden, Holger Gohlke, Ray Luo,
Kenneth M Merz, Alexey Onufriev, Carlos Simmerling, Bing Wang, and
Robert J Woods. The Amber biomolecular simulation programs. Journal of
computational chemistry, 26(16):1668–1688, 2005. http://ambermd.org/.

[25] Robert J Zerr and Randal S Baker. SNAP: SN (discrete ordinates) application
proxy: Description. Los Alamos National Laboratories, Tech. Rep.
LAUR-13-21070, 2013. https://github.com/lanl/SNAP/.

[26] Ray E Alcouffe, Randal S Baker, Jon A Dahl, Scott A Turner, and Robert
Ward. PARTISN: A time-dependent, parallel neutral particle transport code
system. Los Alamos National Laboratory, LA-UR-05-3925 (May 2005), 2005.

[27] Lawrence Livermore. Los Alamos, and Sandia National Laboratories. The
accelerated strategic computing initiative (ASCI) sweep3d benchmark code,
1995.

[28] Michael A Heroux, Douglas W Doerfler, Paul S Crozier, James M Willenbring,
H Carter Edwards, Alan Williams, Mahesh Rajan, Eric R Keiter, Heidi K
Thornquist, and Robert W Numrich. Improving performance via
mini-applications. Sandia National Laboratories, Tech. Rep. SAND2009-5574,
3, 2009. https://mantevo.org/.

[29] Richard L Graham, Devendar Bureddy, Pak Lui, Hal Rosenstock, Gilad
Shainer, Gil Bloch, Dror Goldenerg, Mike Dubman, Sasha Kotchubievsky,
Vladimir Koushnir, et al. Scalable hierarchical aggregation protocol (SHArP):
a hardware architecture for efficient data reduction. In Proceedings of the
First Workshop on Optimization of Communication in HPC, pages 1–10.
IEEE Press, 2016.

[30] Andreas Knüpfer, Holger Brunst, Jens Doleschal, Matthias Jurenz, Matthias
Lieber, Holger Mickler, Matthias S Müller, and Wolfgang E Nagel. The
vampir performance analysis tool-set. In Tools for High Performance
Computing, pages 139–155. Springer, 2008. www.vampir.eu.

[31] TACC Stampede cluster. The University of Texas at Austin:
http://www.tacc.utexas.edu.

[32] Ian Karlin, Jeff Keasler, and JR Neely. Lulesh 2.0 updates and changes.
Technical report, Lawrence Livermore National Laboratory (LLNL),
Livermore, CA, 2013.

83

[33] Bilge Acun, Nikhil Jain, Abhinav Bhatele, Misbah Mubarak, Christopher D
Carothers, and Laxmikant V Kale. Preliminary evaluation of a parallel trace
replay tool for hpc network simulations. In European Conference on Parallel
Processing, pages 417–429. Springer, 2015.
https://github.com/LLNL/TraceR.

84

