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THESIS ABSTRACT

Shravan Kale

Master of Science

Department of Computer and Information Science

September 2018

Title: Understanding Perceived Sense of Movement in Static Visuals Using Deep
Learning

This thesis introduces the problem of learning the representation and the

classification of the perceived sense of movement, defined as dynamism in static

visuals. To solve the said problem, we study the definition, degree, and real-world

implications of dynamism within the field of consumer psychology. We employ

Deep Convolutional Neural Networks (DCNN) as a method to learn and predict

dynamism in images. The novelty of the task, lead us to collect a dataset which we

synthetically augmented for spatial invariance, using image processing techniques.

We study the methods of transfer learning to transfer knowledge from another

domain, as the size of our dataset was deemed to be inadequate. Our dataset is

trained across different network architectures, and transfer learning techniques to

find an optimal method for the task at hand. To show a real-world application of

our work, we observe the correlation between the two visual stimuli, dynamism and

emotions.
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CHAPTER I

INTRODUCTION

We introduce the problem of learning the representation and classification

of images that have a perceived sense of movement. The movement is defined as

dynamism and its absence is defined as still. Dynamism is a stimulus in static

visuals as it affects the retention of attention towards the said visual. It induces

a sense of motion which engages the viewer to a visual in which the motion is only

implied. The study of this engagement, its improvement, and the stimuli that affect

it are of interest in the field of marketing and psychology. We intend to study it to

emulate the human understanding of the presence or absence of dynamism using

Deep Learning. Our image classification task is different from the popular Object

Recognition (OR) task since OR deals with recognizing the category of the object

using its physical properties. Our task consists of understanding and recognizing

the perception of the sense of movement and its relative absence. Affective Image

Classification (AFIC) is another domain that we consider similar to the task of

our domain since it includes the study of emotion as another stimulus affecting the

viewer of a static visual. From AFIC we understand that along with the category

of objects in the movement, the mood, personality and even the environment of the

viewer affects the emotion evoked by an image. Though dynamism is studied only

with respect to the movement. The rest of the probable properties of images and

the perception of the images by the viewer are left to human intelligence, verified

by the effect of dynamism. Towards the further understanding of dynamism, we

study the novel task of classification of the presence and absence of movement in

images using Deep Learning.
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Problem Definition

Within the literature of the field of consumer psychology, Dynamism is

seen as a tool to increase consumer engagement with static visual (or images)

used for marketing products or services by various brands. The emergence of

marketable platforms such as social media and brand-specific websites has led to

the monetizing of consumer engagement which values the retention in engagement.

Since dynamism is relative in nature, researchers and the industry have always

turned to survey groups to determine its presence or absence and its degree.

A considerable effort as seen in the study by Cian et al. (2014) is required to

determine the dynamism in existing images and the new images that an artist or

marketers create to increase the said engagement. There is a requirement to make

this process more efficient, accessible and robust along with defining a method of

understanding said classification, the factors that dynamism is affected by and the

factors it directly or indirectly affects.

To meet some of these requirements we turn to Artificial Intelligence,

specifically, image classification using Deep Learning. The goal is to construct

(train) a classifier that has learned the ability to detect dynamism, and its degree.

Such a model can be made easily available to artists or marketers that may or

may not have resources like a survey group of a needed kind, size and/or even the

complete domain knowledge of dynamism. These models can be made efficient and

robust as they can be created for a larger and general target audience or even a

smaller specific target audience. The idea is to create a generic model initially that

can be then trained on an image dataset with properties as required by the task.

Given the construction of such a model, it would enable us to study the effect of

dynamism on other properties of images such as the emotions evoked by an image.
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Looking further ahead, such models could spur studies in understanding the factors

that affect dynamism, the methods of understanding the reasoning behind the

classification and even the generation or addition of dynamism and its degrees to

images that lack it.

Solution Approach

The first approach considered towards this problem was the classical machine

learning approach but it would have required different handcrafted features

required for the said approach. The understanding of such features would require

an additional study in the features from other domains such as psychology. Even if

such set of features were obtained, they would be lower level features compared to

what a DCNN would obtain. Hence we chose Deep Learning, specifically DCNN,

due to its excellent ability to extract higher-level abstract features which we intend

to exploit since dynamism cannot be distinguished based only on the lower level

features such as edges and shapes.

Due to the novelty of the study such datasets are not available and even if

constructing such a dataset is attempted, it is not yet feasible to construct it in the

magnitude of ImageNet Deng et al. (2009a) which is a requirement for the efficient

training of millions of parameters of a DCNN.

To tackle the above-mentioned problem, we look at the concepts of Data

Augmentation in the study by Krizhevsky et al. (2012). Augmentation helps for

synthetically increasing the size of the dataset, while maintaining type variation

and adding spatial invariance. These methods assist to improve the performance

by adding more data. Then to further compensate for the lack of a large dataset

and over-fitting, we look into the concepts of Transfer Learning as a method to

3



transfer knowledge(or lower level features) from a task in another domain to the

one mentioned in our problem.

Outline

This thesis will delve into the definitions and important concepts of the

above-mentioned problem and solution. Followed by, explanations for the list of

experiments, their results, and observations. We would conclude with suggested

scalable improvements and possible future work.
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CHAPTER II

PERCEIVED SENSE OF MOVEMENT

Concept of Dynamism in Consumer Psychology

The definition of the term dynamism in the context of consumer psychology

is the perceived sense of movement in static visual or images as mentioned in Cian

et al. (2014). This definition leads to a term still for the absence of a perceived

sense of movement. This concept is studied in consumer psychology because

consumers are the recipients of dynamism as a stimulus when they view visuals

such as images which are meant to be engaging in the manner of advertisements or

posters. The effect of this stimulus is measured with respect to the engagement and

attitude they have towards the target object or associated brand in the said visual.

In our quest to build a DCNN which has the ability to distinguish between images

with or without the perceived sense of movement, we found the study by Cian et al.

(2014) on the effect of dynamism on static visuals, specifically brand logos, in terms

of consumer engagement and the consumer attitude towards the brand. We study

the various experiments in Cian et al. (2014) to understand the types of dynamism

and its effects.
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Examples

FIGURE 1. Jackal Sculptures from Cian et al. (2014)

Dynamism as a stimulus has been around since the humankind learned to

depict art in the form of paintings and sculptures as mentioned in Cian et al.

(2014). An excellent example as seen in figure 1 is that of a sculpture of a jackal

that seems to have been frozen in motion. Even though the sculpture is an

inanimate object, the sculpting of the foxs lifted tail and separated legs lead to

the perception of motion.
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FIGURE 2. Dynamism examples from Pavan et al. (2011)

The pictures in figure 2 is another example of dynamism. The image of the

leopard in A is considered dynamic as it captures the animal in motion whereas the

image of the dog is still due to its stationary position. The image of the goalkeeper

in B is relatively still compared to the baseball player in A.

Previous Literature

Most of the literature that was published before Cian et al. (2014) focussed

on only the comparison of the concept of dynamism, its absence, and the precursor

to the perception of movement. An interesting definition is given in the study

by Cian et al. (2014) defines Still images as the ability of the brain to generate

representations of stationery and fixed objects that facilitate the recognition of

the figure in the said image and the judgement about the objects visual properties

whereas dynamic images as a representation of objects in implied motion such

that the brain simulates the motion. This is an appropriate representation of

7



our experiment since our DCNN would create representations of these images

and distinguish between them similar to the human mind. The literature such

as Leborg (2006) and Dondis (1974) from the fields of art and design includes

dynamism along with features of objects such as shape, color, and texture are

known as the visual grammar. In section 3.1 we discuss the adaptation of these

features as a classical machine learning experiment in a different domain.

Hypothesis

One of the hypothesis suggested in Cian et al. (2014) is that dynamism

is directly proportional to the engagement with an image. It is so because the

viewers of said image are able to imagine the implied motion in dynamism

such that it holds their attention longer than a comparative still image. The

rationalization behind the hypothesis is that the bounds of human imagination

supersede a stimulus provided by the creator of that image. The authors also

state that engagement is proportional to the attitude towards the brand related

to the said image as proved by Pieters and Wedel (2007) and Teixeira et al.

(2012). They add to the statement hypothesizing that dynamism in images is also

proportional to the attitude towards the brand due to their proportionality with

engagement. Although, they also mention some exceptions to the above-mentioned

proportionality such that if dynamism is inconsistent with the characteristic (eg.

modern or traditional oriented) of the brand termed as congruency, then the

proportionality may not be maintained.
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Dynamism, Its Types, and Effects

Various studies are conducted by Cian et al. (2014) to prove the above

hypothesis. Since these studies do not use Deep Learning or any Artificial

Intelligence algorithm, they rely on human survey groups for analysis. They

conduct a pre-test for selecting images such that they have distinct higher

and lower dynamism by keeping other variable characteristics constant for the

experiment.

Studies on Dynamism

FIGURE 3. Relative dynamism from Cian et al. (2014)

9



For the pretest, two logos of a fictitious brand are created instead of a real

brand to make sure there is no bias against a known brand which might affect the

outcome of the experiments. The logo with the seesaw at equilibrium has a lower

dynamism and the logo with the seesaw at an angle frozen in motion has higher

dynamism as seen in figure 3. The first survey was conducted to make sure that

the other factors such as visual appearance, complexity, informativeness, familiarity,

and novelty had the least difference on a custom rating scale. The second survey

was done on a two-item scale, the amount of movement seen in the logo and its

dynamism. The pre-test images were concluded to have a significant difference in

dynamism.

Evoked Dynamism and Attitudes

A study in Cian et al. (2014) was conducted to prove the hypothesis that

higher dynamism leads to a better attitude towards the brand in the test. The

attitude towards a brand was also rated on a custom scale. The test concluded

that the survey group reports a better or more favorable attitude towards the

brand with a higher level of dynamism. As a manipulation check, the survey group

separate from the one in pre-test was asked to rate the logos on dynamism similar

to the pre-test. The test showed similar results in all the studies mentioned further.
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Types of Dynamism and Mediation through Engagement

FIGURE 4. Types of dynamism from Cian et al. (2014)

The effect of dynamism on engagement and its effect on attitude towards the

brand is gauged in Cian et al. (2014). Two pairs of logos with a different type of

dynamism ie. frozen motion as seen in figure 4 and friction as seen in figure 5 is

used. For frozen motion, a logo consisting of a Newton’s cradle is used wherein the

one with lower dynamism is stationary and the with higher dynamism is frozen

in motion. Pretest similar to the section 2.2 was conducted for this study as well.

The new logos were put through the same test as in section 2.2 and an additional

test was conducted for engagement. The scale for engagement from Craig Lefebvre

et al. (2010) was used comprising of involvement, engagement, how boring and
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stimulating each image measured on a custom scale. The result of the study proved

the hypothesis that dynamism leads to higher engagement and a favorable or better

attitude towards the brand.

The hypothesis of engagement acting as a mediator for dynamism and

attitude towards the brand mentioned in Cian et al. (2014) is proven by using

mediation analysis. With controlled dynamism, engagement had a proportional

effect on attitude towards the brand, but with controlled engagement, dynamism

did not have a significant impact on the attitude towards the brand directly.

FIGURE 5. Dynamism as friction from Cian et al. (2014)

For friction, a pair of logos in figure 5 consisting of a horse and a text is

used wherein the one with lower dynamism has the horse and the text in contact

(friction) and the one for the higher dynamism has the horse and text separated by

some arbitrary distance. Pretest similar to pretest in section 2.2 was conducted

for this study as well. The survey group tested for attitude, engagement, and

dynamism similar to the previous test. The test concluded with the result that

dynamism was proportional to engagement and to the attitude towards the brand.

Akin to how in the previous test, engagement played a mediating role in dynamism

and attitude. The above tests conclude that the different types of dynamism does

not affect the role of engagement as a mediator and proves the above-mentioned

hypothesis.
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Effect: Moderation by Congruence

A study by Cian et al. (2014) was designed to prove that the congruence

between dynamism and characteristics of the brand moderates the effect of

dynamism on attitude towards the brand. The Newtons cradle logos were used

again wherein the company with a less dynamic logo was given a traditional and

classical music orchestra description whereas for the company with a more dynamic

logo was given a modern music orchestra description. After conducting pretests

similar to section 2.2 the survey group evaluated for attitude towards the brand,

engagement, and dynamism. The analysis on the evaluation proved that higher

dynamism along with a modern description and lower dynamism with traditional

description showed a higher level of engagement hence proving the moderation that

congruence offers on the effect of dynamism and the attitude towards the brand.
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Effect: Direction of Movement And Congruence

FIGURE 6. Dynamism with respect to direction of movement and company
characteristic from Cian et al. (2014)

The effects on the attitude of the company, by the metaphorical match

between the direction of the logo and the characteristic of the company (traditional

vs modern), was studied by Cian et al. (2014). Four combinations of logos were

14



created as shown in figure 6. This test does not involve a test for the amount of

dynamism as in previous studies but only the direction of the said dynamism.

Pretest similar to that of section 2.2 were conducted and the survey group was

evaluated for the attitude towards the brand. The analysis of the evaluation

revealed that for a modern description, the logo with a forward direction showed

the more favorable attitude towards the brand and for a traditional description,

the logo with a backward direction showed a more favorable attitude towards the

brand, hence proving the goal of the study.

Effect: Eye Tracking

Another study by Cian et al. (2014) was designed using eye tracking software

since most of the previous results were self-reports from the people who took

the survey. This was done to quantify the engagement with the pair of visuals

(advertisements) in the study; one with a higher dynamism logo and one with

lower dynamism logo. The engagement was quantified with the number of fixations

of minimum 60 ms and the duration of the fixations. The study concluded with

the result that logos with higher dynamism lead to more fixations than the ones

with lower dynamism and that logos with highers dynamism lead to higher fixation

duration than the ones with lower dynamism. It is stated by Cian et al. (2014)

that the logo with higher dynamism receives the highest attention compared to the

other elements in the advertisement.
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CHAPTER III

AFFECTIVE IMAGE CLASSIFICATION

Affective Image Classification is the classification of images that affect the

viewer of said images. Emotion is a stimulus in these images which is evoked in

the said viewer. One of the reasons we looked at AFIC is because of its similarity

with the kind of classification we wanted to do with our images of a perceived sense

of movement. AFIC formed the basis of our research when we tried to establish

the ability of a DCNN to learn the representation of images and classify on the

basis of the representation of the said images. Hence our research is inspired by the

techniques of AFIC. We will look at some existing research on the Deep Learning

methods for AFIC and a general introduction to the study under AFIC.

The studies of AFIC lead us to understand the representation system of

emotions and where they exist on the said system with respect to each other. This

resulted in the additional study of finding out where dynamism and its absence lies

on the said system with a scale of intensity called arousal and a scale of pleasure

called valence as studied in Osgood (1952)

Types of Affective Image Classification

There are two types of approaches for AFIC depending on the representation

of the emotions evoked by the images. The first method uses distinct categories of

emotions such as joy, fear, sad to name a few and the second method plots different

emotions on the valence and arousal scale.

16



AFIC using handcrafted features

The study in Machajdik and Hanbury (2010) mentions creating the best

possible low-level features to improve the task of AFIC. To do so they exploit

concepts in psychology and art theory to extract the said low-level features of

images. The study was done with the goal of creating a method to retrieve images

based on the affective level (emotion) compared to the then limitation of the ability

to query images based on only the cognitive level. It discusses the then state-of-

the-art that only consisted of a few low-level features such as the ones that were

extracted using generic image processing features. Whereas the features extracted

from psychology and art theory were more specific to the domain of the datasets

discussed in the next section. The study also critics the generic features, arbitrary

emotional categories, unpublished datasets and missing or unclear evaluations of

the then state-of-the-art.

Datasets for Handcrafted Features

The study in Machajdik and Hanbury (2010) uses the existing International

Affective Picture System (IAPS) dataset from Lang (2008), which has images of

snakes, landscapes, puppies, babies amongst other categories. These images are

labeled with their discrete emotional categories as labeled in Mikels et al. (2005).

The dataset is considered as one of the standards and has featured in subsequent

studies mentioned in this thesis. The second dataset is a collection of artistic

photographs that are labeled by their photographers or artists who created them.

The images in this dataset have been created with a conscious effort to evoke an

emotion in the viewer. The third dataset consists of abstract paintings that do not

contain objects as opposed to the previous two datasets. The third dataset was
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added due to the absence of the effect of objects on the emotions evoked as the

emotions evoked could then be attributed to features such as color and texture of

the scenery instead of the objects. The images in it were labeled with emotions

reported by participants of a survey.

Features Extracted from Psychology and Art Theory

The handcrafted features used for classification in the study by Machajdik

and Hanbury (2010) include mean saturation and brightness of the image, pleasure,

arousal, dominance values based on the saturation and brightness, and the name

of the color. Some features are based on the texture of image such as the wavelet

textures for saturation, hue and brightness. Other features include, the level of

detail in the image, number of faces, and amount of skin in the image. The values

of these features for every image are used to construct the dataset for classification.

AFIC Using Categorical Emotions

We study You et al. (2016) that largely deals with building a large scale

dataset for AFIC. Since a DCNN requires a large dataset similar to ImageNet to

train its millions of parameters, a custom dataset for images tagged with emotions

was created. A DCNN is used to train the said dataset and compared with the

methods of Machajdik and Hanbury (2010) that uses a classical machine learning

approach with handcrafted features such as color and texture

Existing Datasets for AFIC

The study in You et al. (2016) suggests that even though there were some

existing efforts towards building a dataset most of them were not only small but
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also had a skewed distribution. The smaller size of the sets would have led to

overfitting which we experience as well with the experiments that we conducted.

The skewed distribution would lead to an even smaller dataset on the application

of k-fold cross-validation as some categories would too few images. The existing

datasets are IAPS-Subset, where the images are from Lang (2008) which are

categorized into emotions by Mikels et al. (2005) and ArtPhoto from Machajdik

and Hanbury (2010) which have pictures labeled and created by professional artists.

Lastly, AbstractPhoto from Machajdik and Hanbury (2010) which has paintings

labeled by the community. These datasets are the same as section 3.1 with names

given by the study for an easier reference.

Dataset Collection

The dataset in You et al. (2016) is created by fetching 3 million images from

Social Network platforms such as Flickr and Instagram termed as the weakly

labeled dataset. It is labeled so because its labels are not verified by humans.

This dataset is also initially skewed but this would take care of the overfitting

problem as there is a large number of images per category of emotions. Images with

duplicate emotion tags and duplicate images are filtered out of the set. Thereafter

Amazon Mechanical Turk (AMT) is employed after a verification task for workers

that included verifying the emotion of at least 10 of the 20 images designed for

the verification task. After selecting 22.5% of the workers the 11,000 images

per category are selected for verifying the emotions already labeled by querying

Flickr/Instagram. Images whose tags were affirmed by at least 3/5 workers were

added to the new strongly labeled dataset which eventually had approximately

23,000 images.
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Methods for Classification

The method for learning the distribution of the 8 emotions was a DCNN

using Fine-Tuning.

The category labels of emotions are classified using a DCNN from a reference

architecture in Jia et al. (2014). In this method, the last layer of the DCNN pre-

trained on ImageNet is removed and a layer with only 8 units instead of the 1000

units, is added. The 8 units represent the emotions in the strongly labeled dataset.

The DCNN is retrained with the strongly and weakly labeled dataset with the

validation done with the same dataset as they are trained with. As a baseline,

a DCNN trained on ImageNet is used for feature extraction only after which

Principal Component Analysis (PCA) is used to reduce the dimensionality. Finally,

a Support Vector Machine (SVM) is used for classification of the features into the

previously mentioned 8 emotions.

Performance of the Methods

The baseline model on the strongly labeled dataset does not perform well

with an accuracy of only 32%, whereas the DCNN fine-tuned on the weakly labeled

dataset has an accuracy of 46% and the same DCNN on the strongly labeled

dataset has an accuracy of 58%. It is analyzed from the confusion matrix that the

true negative rates were the best when fine-tuned using the strongly labeled dataset

and true positive rate of fear was the highest in the baseline and not the DCNN

finely tuned on the strongly labeled dataset. The feature extraction of the above

DCNN models is compared with that of traditional methods of handcrafted feature

extraction similar to Machajdik and Hanbury (2010) using the existing datasets

mentioned in section 3.1. It is concluded that feature extraction using DCNN
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performs better than the handcrafted features. The features extracted from the

fine-tuned DCNN with strongly labeled dataset has the best performance, though it

does perform poorly on two of the emotions on the ArtPhoto dataset.

AFIC using Emotions on the Valence-Arousal Scale

The study in Kim et al. (2018) takes a different approach to represent

emotions wherein instead of using the categorical approach, it uses the Valence-

Arousal scale to represent the emotions in a two-dimensional space. Instead of

using a single DCNN as mentioned in the section 3.1, it uses a fusion system of

different DCNNs and lower level features as a method of feature extraction and

then trains it on a custom Deep Neural Network (DNN). The argument made

towards this approach is that the learning process of AFIC should be more fine-

grained compared to a general image classification. This is because even when

the images appear similar, they can affect the viewer differently, evoking different

emotions. Images that appear dissimilar could affect the viewer similarly, evoking

the same emotion. The second argument is made towards bridging the affective

gap between the extracted features of the static visuals and the expected emotion

evoked by the person viewing the said static visual.

The suggestions made by the study include that the there is a correlation

between the objects and emotion evoked by the object. Similarly, there could be

a variation in the emotion evoked between objects having different backgrounds

hence suggesting that the semantic information in the background correlates to the

emotions evoked. The above-mentioned features are combined with low-level hand-

crafted features such as color statistics to create a larger feature extraction function
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which is then given as an input to a DNN for classification of the said emotions on

the Valence-Arousal scale.

Creating a New Dataset

Similar to the study in You et al. (2016) the study in Kim et al. (2018)

uses Flickr to fetch images that are tagged with 22 keywords including basic,

prototypical emotions and affective states. About twenty thousand images are

collected and then they are filtered through a process were three human subjects

rated the images on their qualification of evoking emotions. After selecting images

that were selected by a majority of human subjects, 6844 images were added to the

dataset. This dataset was augmented by 3236 images from You et al. (2016) out of

the approximately 23,000 images, thereby creating a larger dataset of 10766 images.

Then the images were labeled with their Valence-Arousal ratings represented

by Self-Assessment Manikin (SAM) from Bradley and Lang (1994) using AMT. The

images were tagged relative to the previous image tagged by the AMT worker so

that the worker need not have the difficulty of choosing absolute ratings. The rated

images obtained had a higher number of images on the Valence scale and were well

distributed on the Arousal scale except for low frequencies on the extremes of the

arousal scale. When compared to the IAPS dataset, the newly acquired dataset had

a much better image distribution on the Valence-Arousal scale. As an additional

analysis to validate the dataset. the Valence-Arousal 2Dspace is divided into four

discrete subcategories including low valence, high valence, low arousal and high

arousal The tags of the images are then mapped according to their emotional

ratings. The resulting tags are related to the scales of the emotions across the
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Valence-Arousal Scale. This concluded the validity of the dataset created for the

classification task.

Feature Extraction

The study in Kim et al. (2018) suggests that the colors in an image are

one of the best descriptors of emotions in an image and while it is not the only

way to predict the emotion of an image it forms a good heuristic along with

the other features. The first set of features is extracted by extracting the mean

RGB and HSV color-space values and the quantity of the basic colors from the

color histograms of the images. As proposed by Valdez and Mehrabian (1994)

saturation and brightness of images are introduced as a function of Valence,

Arousal, and Dominance which are then added as additional low-level features.

Another suggestion comes in the form of local feature extraction which includes

GIST descriptor from Borth et al. (2013) for detecting scenes and a local binary

pattern descriptor for detecting textures. These set of features are not as extensive

as in section 3.1 but are complemented with object and scene detection features.

The objects in the feature is another important feature to predict emotions.

This suggestion is backed by an experiment where the tags containing the name

of the object in the IAPS dataset is mapped to the valence-arousal score from the

word emotion dictionary from Warriner et al. (2013) which has associated valence-

arousal ratings for words. The valence-arousal ratings of the words are mapped

to the valence-arousal ratings of the images in IAPS and it is found that there

is a high correlation between the emotion evoked by the object then that by the

image itself. On the basis of this conclusion, a DCNN pre-trained on the ImageNet
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dataset is used to predict the object. The output of the final layer is used as a

feature vector.

Another feature included the semantic features from the background which

the study in Kim et al. (2018) claims has the ability to part take in emotion

prediction. This is achieved by using a DCNN as mentioned in Wu et al. (2016)

which does semantic segmentation of the pixels in the image to 150 semantic

categories which are used as a feature vector in addition to the previously

mentioned vectors.

Emotion Prediction Model and its Performance

The model that is used to train the above-mentioned feature vectors is a

DCNN with an input, output, and three hidden layers. It uses Stochastic Gradient

Descent (SGD) for optimization and Mean Squared Error (MSE) as a loss function.

The output of the final layer predicts the valence or arousal ratings.

The performance of the model was judged by comparing the 3 models namely

AlexNet from Krizhevsky et al. (2012), VGG16 from Simonyan and Zisserman

(2014) and ResNet from He et al. (2016), Targ et al. (2016), and Deng et al.

(2009b) used for feature extraction of object categories and additional category-

level features from Yu et al. (2013). VGG16 performed the best in terms of valence

and arousal. The performance of the features was judged by training every feature

type with a similar model as proposed for the emotion prediction. The object

detection feature extracted from VGG16 performed best for valence, and from

AlexNet for arousal. Expectedly, the lower-level features performed the worst.
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Comparing with Transfer Learning

The study in Kim et al. (2018) compares the performance of their emotion

prediction model with that of a pre-trained AlexNet and VGG19 from Simonyan

and Zisserman (2014). Most of the hyperparameters are kept constant but the

Transfer Learning is done using two methods. In the first method called frozen,

all the convolutional layers are frozen and only the fully-connected layer is allowed

to be trained. By doing so, they make sure that the lower and higher level features

learned from the pre-training are not changed thereby not changing the feature

extraction and only allowing the classifier to change. In the second method termed

train, the entire CNN is allowed to train. The final layer is a single unit kept

consistent across all the models. From the experiments, it was concluded that

the second method train performs better than the first method as the loss is the

lowest. The pre-trained VGG19 performs much better than the AlexNet with

the train method. When compared with a Linear Regression Model and Support

Vector Regression they both outperformed the AlexNet and VGG19 models but

underperformed compared to the emotion prediction model.
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CHAPTER IV

TRANSFER LEARNING

Given the unavailability of a large-scale dataset for our problem defined

in chapter I, and studying the successful use of transfer learned DCNNs with

AFIC, Transfer Learning was considered as a probable solution for our problem

as well. This warranted a study into Transfer Learning so that we could devise

methodologies and hyperparameters for our own experiments.

According to the study in Oquab et al. (2014), it is acknowledged that

DCNNs perform better than traditional algorithms on image classification

specifically object recognition tasks. This is largely due to the feature extraction

process of DCNNs which performs better than feature extractors such as SIFT

from Lowe (2004) and HOG from Dalal and Triggs (2005). Graphics Processing

Units (GPUs) have enabled faster training due to the embarrassingly parallel

matrix computations which are the fundamental computations of a DCNN. This

scalable computing ability has made training millions of parameters of a DCNN on

large-scale datasets feasible. Given that GPUs are easily available and scalable the

performance capability of a DCNN is largely attributed to the availability of large

datasets such as ImageNet, Caltech256 from Griffin et al. (2007), Pascal VOC from

Everingham et al. (2010). It is argued in Oquab et al. (2014) that it is infeasible

to construct an ImageNet scale dataset for every image classification or object

recognition task. Hence the need for methods to transfer knowledge from a task

in one domain to another task in the same domain or to another task in a different

domain.
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Tasks in the Same Domain

The databases mentioned in the above section have differences between them

since they were collected by different people. Datasets such as Caltech256 and

ImageNet have categories of images where the object referencing the category

label is centered whereas in datasets such as Pascal VOC images have more spatial

invariance in terms of different backgrounds or positioning hence affecting the

performance of the DCNN they are trained on. Since Pascal VOC is a much

smaller but a different dataset compared to Caltech256 and ImageNet, transfer

learning is considered as a solution to mitigate the problem of the dataset size and

in an effort to improve object recognition performance with Pascal VOC.

The Model Architecture

The base DCNN architecture in Oquab et al. (2014) has 5 convolutional

layers along with 3 fully-connected layers. The model is modified by replacing

the last fully-connected layer with two other fully-connected layers. The last layer

of the modified model is remapped to represent the categories of the Pascal VOC

dataset for the object classification task. The weights of all the convolutional layers

and the first fully-connected layer are unchanged in the modified model. The key

idea is to train the base DCNN on a large-scale dataset such as ImageNet, and

then use the weights of the base model to act as mid-level feature extractor for the

modified model.

Training and Classification Strategy

Images in ImageNet are preprocessed and the object to be recognized in the

images is in the center whereas in the Pascal VOC dataset images have objects
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situated in a scene with varying backgrounds and with multiple objects in the

same image. This adds what is called a database capture bias as mentioned in

the study by Yosinski et al. (2014). To address this difference in the datasets, the

independent training of the last two fully connected layers is done using a sliding

window object detector.

As mentioned in Oquab et al. (2014), the sliding window object detector

method consists of creating patches of various scales extracted from the images

to be trained. The patches are then labeled by what they contain which could be

a partial or entire object and/or just the backgrounds. The labeling is done by

comparing the area of the bounding boxes of the patch and the ones in the original

image. The qualification for a label is based on two thresholds, for a complete

match or a partial match with the condition of no-overlap between more than

two objects. The unqualified patches are tagged as background which are then

resampled to create a more balanced training set. This method brings the dataset

closer to the kind in ImageNet in terms of having the object in the center. These

patches are then used to train the model architecture. A separate set of patches are

used for testing in which they are scored by the confidence of the class the patch

belongs to. The score is adjusted to classify patches that have a higher confidence.

Transfer Learning Experiments

The base model is trained and an adaptive learning rate is used where its rate

is reduced until the loss function for training is stabilized. The model is trained on

the previously mentioned ImageNet with over a million images across thousands

of categories. The training on the then available hardware took about a week,

and an 18% top-5 error rate was achieved. After transferring the weights from
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the base model to the modified model, it is retrained with the Pascal VOC 2007

dataset which achieves a better score per class accuracy compared to the then pre-

existing models, for example, the 2007 image recognition challenge winners. The

modified model retrained on the Pascal VOC 2012 dataset does not perform as well

as compared to the pre-existing models, only outperforming them in a few classes.

In the effort to determine the effect of the overlap of categories across the

ImageNet and Pascal VOC datasets, the base model is pre-trained on two different

sets of the ImageNet categories. As a baseline, the base model is trained with

random 1000 categories of images. The weights are transferred to the modified

model and the per class accuracy on the retrained Pascal VOC 2012 dataset is

reduced. The same modified model when pre-trained on an augmented set of

categories containing the random 1000 and overlapping categories, is retrained

on the Pascal VOC 2012 dataset, outperforms the baseline and the winner of the

competition for which the dataset was created. Thereby concluding that there was

a benefit from the overlapping categories.

The size of the final layers was fine-tuned for the modified model. It was

observed that removing or adding a layer, resulted in a marginal drop and increase

of 1% of the accuracy respectively. Thereby concluding that the selected number of

finals layers was appropriate for the task.

Tasks in a Different Domain

To demonstrate the ability to learn tasks in a different domain, the pre-

trained classifier in Oquab et al. (2014) was used to retrain on the task of action

recognition in the Pascal VOC dataset. This dataset consisted of images of humans

performing a certain action or interacting with an object. The said classifier was
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able to outperform the model used without any pre-training. They were able to

achieve better performance when the final fully connected layers were allowed to

retrain. We have also seen from our previous study in AFIC from chapter three

that it is possible to transfer knowledge from a task in one domain to a task in

another domain.

Transferability of Layers

Given that we now know the benefits of Transfer Learning by empirically

understanding its performance differential compared to training from random

initialization of neurons, we look at a study concerning the transferability of

features across tasks. A typical DCNN contains a series of layers across which

weights are adjusted using a back-propagation algorithm. The layers with their

weights act as feature extractors for the network which in turn act as input to the

successive layers. Every layer extracts different features with increasing complexity.

In terms of transfer learning, the lower-level features of a DCNN trained on

datasets such as ImageNet extract generic features. The higher-level features

tend to more specific to the dataset with which we retrain the DCNN. As we have

learned from our studies in AFIC, given a small dataset in our domain, transfer

learning is more likely to not overfit compared to random weight initialization.

Hence we look at the transferability of this layers in order to understand, how

many layers we can transfer or fine-tune.

As mentioned in the study by Yosinski et al. (2014), the lower layers of a

DCNN extract more generic features that are common to Gabor Filters as opposed

to the higher layers. The last layer of a DCNN is specific to the categories or

classes of the dataset with which we retrain the DCNN. The study suggests that
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the lower-level features are common to all DCNNs trained on a natural image

dataset such as ImageNet irrespective of the type of classification supervised

or unsupervised. It would be safe to assume that the networks we train in our

experiments would have learned the same generic features as well, in their lower

layers. Given the concept of lower layer being generic and higher layer being

specific the study by Yosinski et al. (2014), explores the degree of the said concept

and the layer where the split between the two kinds of layers occurs in a DCNN

The study suggests two methods of performing the transfer of knowledge from

ImageNet to another domain. The first method, generally referred to as frozen

involves the transfer of weights from a DCNN trained on ImageNet for some x

layers, where x is a hyperparameter. Here x is less than n where n is the total

number of layers in the DCNN. After transferring x layers the rest (x-n) layers are

trained on the new dataset. The x layers which are frozen act only as a feature

extractor and do not adjust their weights in backpropagation when the (x-n) layers

are trained. The second method is referred to as fine-tuning in which the previously

mentioned x layers are allowed to adjust their weights in backpropagation when

the (x-n) layers are trained. The study suggests that the one way to decide which

method to use is a function of the size of the new dataset to be trained and the

number of parameters of the architecture. If the new dataset is small and the

number of parameters is large then fine tuning might overfit the network in which

case freezing the layers is preferred but if the new dataset size is large and the

no.of parameters are relatively small then the x layers can be fine-tuned. These

suggestions contain many hyperparameters and the only way to determine them is

empirically, as we do in our experiments.
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Degree of Generality

The study by Yosinski et al. (2014) experiments with the generalizability of

layers in a DCNN. Two tasks are created, namely A and B such that A and B

each have half of the images in ImageNet. Since ImageNet has categories which

have similar images such as a different breed of an animal, both the datasets have

some similarity in their images. Two replicated DCNNs of eight layers are trained

with each of the dataset named baseA and baseB respectively. Multiple networks

called transfer learned networks are created using the naming scheme (dataset A)-

n-(dataset B) where n defines the layer number until which the layers are frozen

from the input. Layer 0 to Layer n have weights transferred from dataset A and

Layer (n+1) to the layer before the final layer are trained on the dataset B with

randomly initialized weights. Networks that have weights transferred from the same

dataset on either side are referred to as the control network. The same study is

conducted by fine-tuning the layers instead of just freezing the layers. These studies

are conducted for all layers. The reason behind the study was that if the network

(dataset A)-n-(dataset B) performs as well as the control network (dataset B)-

n-(dataset B) then the layer nl is generic or else it is specific. According to the

study in Yosinski et al. (2014), fine-tuning reveals the fragile co-adaptations of

neighboring neurons. Co-adaptation, in this case, means the ability of neighboring

neurons to efficiently transform features (or any such interaction) from one layer to

the other.

The accuracy of the baseline network baseB is at 0.62. The control network

is trained using the freezing method. When the initial or last layers of the control
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network are spliced 1, the neurons are able to co-adapt to the different weights just

as in the base network. Splicing of the middle layers leads to a performance drop.

This effect is mitigated by fine-tuning as the fine-tuned control network performs

similarly as the base network. The transfer learned network, trained using freezing,

initially performs as good as the base network. Though, when the higher layers of

the network are spliced, the performance drops due to the fragile co-adaptation

of the neurons in the layers that were transferred from the base dataset. As the

spliced layer level is increased, the network fails to generalize as the lower layers

have transformed from generic layers to layers specific to the base dataset. The

transfer learned network, on fine-tuning, shows an improved performance compared

to the base network. The fragility of the co-adaptations of neurons is intact or

strengthened since the transferred layers are also allowed to retrain. This shows

that fine-tuning can be used instead of randomly initializing weights when both the

datasets are similar to some degree.

A study in Yosinski et al. (2014) shows a drop in accuracy as the level of

the spliced layers is increased for a transfer learned network trained on dissimilar

datasets. This behavior occurs as the network is unable to generalize because the

weights are transferred from dissimilar datasets. Since the images are different

in the dissimilar datasets, the features learned by the network could be distinct

depending on the images. Networks with randomly initialized weights tend to

perform worse compared to the transfer learned networks trained using dissimilar

datasets. Even though it might be possible to find the optimal randomly initialized

weights to train the network, the weights of the transfer learned network are a

better heuristic.

1Spliced: The word spliced is a synonym for the word attach and in the context of the thesis it
is used to denote the layer which differentiates the weights of the two datasets
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CHAPTER V

NETWORK ARCHITECTURE AND AUGMENTATION

Network Architectures

Introduction

In an effort to use DCNNs for the problem defined in chapter I, we study

their architecture. The reason we use reference architectures is so that we have a

heuristic of its performance on standard datasets and some of its hyperparameters.

Towards this, we select two popular architectures namely VGG16 and Inception V3

from Szegedy et al. (2016). Both these architectures have deep convolutional layers

that have shown benchmark performance on various standard datasets. We discuss

the architectures of both the models and some of its differences.

VGG16

The VGG16 architecture first appeared in the study by Simonyan and

Zisserman (2014) and it was built in an effort to improve upon the existing

eight layer architecture from a study in Krizhevsky et al. (2012), which won the

ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) in 2012. The

architecture mainly deals with exploring the performance effect on standard

datasets such as ImageNet by increasing the depth of the layers. This architecture

turned out to very successful after its victory in the ILSVRC held in 2014 in the

localization and object classification tasks. It is considered as one of the benchmark

architectures in computer vision tasks. The architecture was designed by the Visual

Geometry Group (VGG) at the University of Oxford and the 16 its name stands
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for the number of layers in the architecture. The 16 layer architecture used in our

experiments is given in figure 7
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FIGURE 7. Architecture of VGG16
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As seen in figure 7, the first layer called the input layer takes a fixed input

of 224x224xn pixels where the first two values are the width and the height of

the images fed to the network and n is the number of channels where n could be

1 (for grayscale) or 3 (for color or RGB images). This network normalizes the input

by subtracting every pixel with the mean pixel value of the image. Next in the

architecture are the convolutional layers and the final classification layers. The

convolutional layers act as feature extractors and the classification layers learn to

classify the features of images given as inputs. The convolutional layer consists of

convolutional blocks which has trainable filters of the size 3x3. The size 3x3 was

selected in the study by Simonyan and Zisserman (2014) arguing that that is the

smallest size of a filter that is able to capture the notion of the four directions

on the image. These filters are moved across the images with a stride 1 in this

architecture and for every move the filters convolute the image. The filters have

learned the values which are then multiplied by the pixel values the filter mask’s

over, to generate a convoluted map of that patch of the image. These patches are

padded by 1 pixel to maintain the spatial resolutions of the image patch. These

maps generated by the filters are then pooled by the max-pooling layers where

the maximum value of a 2x2 pixel window is computed to highlight the most

significant value of that map. These windows are moved over a stride of 2 pixels in

this architecture. As the images is convoluted throughout the convolutional layers

the size of the features decreases whereas the size of the channel increases. Such

convolutional layers are stacked together and some are followed by the max-pooling

layers. This stacking forms the integral part of the architecture as it determines the

features extracted from the image. The lower layer features are known to be more

general whereas the higher layer features are known to extract higher-level features
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which are more specific to the images. Followed by the convolutional layer is the

classification layer which contains two fully-connected layers which has all neurons

connected to all neurons in the successive layer unlike in the convolutional layers.

In this architecture the two fully connected layers have 4096 neurons each with

the final layer having 1000 units for ImageNet classes or as suited for the trained

application. The final layers have softmax activation which generates the class

probabilities while the fully connected layers have Rectified Linear Unit (ReLu)

activation unit as used in Krizhevsky et al. (2012).

Inception V3

The creation of networks such as AlexNet and VGG16 whilst proving their

performance at ILSVRC competitions also spurn research in the architectures of

the DCNN. According to the study in Szegedy et al. (2016), the direct performance

improvement with these networks led to improvements in real-world applications.

Though there was still a need for network design that was able to train equal or

fewer parameters thereby offering computational efficiency with equal or better

performance. VGG16 or AlexNet offer structural simplicity so that they are

easy to design, understand and modify. We came across this same problem with

our experiments where it was easier to decide how to transfer knowledge from

VGG16 than it was from Inception V3. Though we still included Inception V3

in our experiments as the study in Szegedy et al. (2016) states that it performs

better in image classification task when compared to AlexNet or VGG16. The

biggest potential performance boost was offered by the marginally less number of

parameters required by Inception V3 to perform better than AlexNet or VGG16

when it came to image classification performance. AlexNet has approximately
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63 million parameters and VGG16 has 134 million parameters whereas Inception

V3 has only 21 million parameters a third of AlexNet and a sixth of VGG16

while offering better performance. This computational efficiency allows the use

of such networks in constrained environments such as mobile operating systems. As

mentioned in the chapter I we wanted the eventual accessibility of the perception of

the sense of movement we implemented Inception V3 in our experiments.

This optimization in the number of parameters is achieved by using the

Inception Module mentioned in GoogleNet from Szegedy et al. (2014) and then

applying certain optimization techniques such as Factorized Convolutional and

Aggressive Regularization explained in the study Szegedy et al. (2016) to scale up

the original network in an efficient way. It is argued that naively increasing the

number of layers or filter sizes will only negatively affect the number of parameters

and computational efficiency due to the inflexible structure of GoogleNet. We will

not be describing the structure of the inception modules and/or the optimization

offered by Inception V3 as they are better explained by Szegedy et al. (2014)

and Szegedy et al. (2016) respectively. The actual figure of an Inception V3 is

not included for spatial constraints of the thesis. Instead, a brief summary of the

network is provided in table 1 where the Inception modules are abstracted. The

rest of the network contains layers similar to that of VGG16 mentioned in the

previous section with the difference that only one convolutional layer is padded

in the non-Inception layers along with the different size of the input image in the

input layer.

1The Inception modules have variable patches as mentioned in Szegedy et al. (2016)
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Type Patch Size/Stride Input Size

conv 3*3/2 299*299*3
conv 3*3/1 149*149*32

conv padded 3*3/1 147*147*32
pool 3*3/2 147*147*64
conv 3*3/1 73*73*64
conv 3*3/2 71*71*80
conv 3*3/1 35*35*192

3*Inception variable 1 35*35*288
5*Inception variable 17*17*768
2*Inception variable 8*8*1280

pool 8 * 8 8 * 8 * 2048
linear logits 1 * 1 * 2048

softmax classifier 1 * 1 * 1000

TABLE 1. Inception V3 architecture recreated from Szegedy et al. (2016)

DCNN for Augmentation

We use a standard architecture from Chollet et al. (2015) in our data

augmentation experiments. The architecture consists of 3 convolutional layers

with 3x3 filters, ReLu as its activation function, and a max pooling layer in every

convolutional block with a pool size of 2x2. This network is similar to AlexNet but

has fewer convolutional blocks. The output of the convolutional layer is given as

an input to the fully-connected layer of 64 units. The last layer has a single output

unit as we use a sigmoid activation function for our binary classification task.

Augmentation

DCNNs have a deep architecture that allows millions of parameters to be

trained but this feature can be exploited only if there is an equivalent amount

of Big Data to train it on which is not often the case. Even though now we have

large datasets such as ImageNet and Caltech-256 from Griffin et al. (2007), these
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images are constrained by their domain and there still is a lack of data in other

domains without which we can not take advantage of the deep architectures of a

DCNN. This lack of availability of data leads to overfitting of the neural network

as it is not able to generalize well enough to be used on test images. There are

other techniques such as dropout and batch normalization which have shown to

reduce overfitting as shown in the study by Krizhevsky et al. (2012) and data

augmentation has also found itself in image preprocessing pipelines.

Image Augmentation is a technique of augmenting or amplifying image

data from existing images such that a DCNN is able to learn the features of the

image without adding image biases, for example, classifying bananas that are only

right tilted because that is how they appear in the dataset. These techniques are

functionally efficient as they are label preserving and do not transform images into

something that they are not. They improve the training performance of said models

as well as the testing performance.

The technique of Image Augmentation, that has shown benefits in DCNN,

has been limited to few basic techniques such as translations and rotations. Most of

the studies do not delve into the reasoning for the use of particular techniques, how

they are selected and or the hyper-parameter selection related to them. Hence we

study other techniques that might be useful for a given task and the technique or

combination of techniques that work for the given task. We would be tackling the

former question to find other techniques in image processing to augment the data.
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Related Work

Even though data augmentation techniques have been used before in machine

learning models, deep learning is where they have shown considerable performance

improvement due to the scale of the very task.

One could attribute the popularity of data augmentation to a DCNN

constructed by the study in Krizhevsky et al. (2012) due to its citation for data

augmentation techniques in other studies in the literature. Even though the work

is focused on the architecture construction such as using overlapping pooling and

local response normalization a considerable effort was spent on reducing overfitting

due to its 60 million parameters. Other than dropout a technique that drops some

neuron outputs randomly, image data augmentation without which the network

suffers substantial overfitting as stated in the study by Krizhevsky et al. (2012)

was the primary technique to reduce overfitting. Translations and horizontal

reflections are applied by extracting 224x224 patches from their 256x256 images

which augment the images by 2048x. Another technique was altering the intensities

of the RGB channels in training images to capture an important property of

natural images that color variations do not change the labels of an image. This

particular technique reduced the top-1 error rate on the ImageNet Large Scale

Visual Recognition Challenge (ILSVRC) by a 1% though no improvement was

measured by the first technique.

The study of DCNNs used with ImageNet spawned many studies that

target a performance improvement over a previous system to compete in the

ILSVRC. One such study by Howard (2013) focuses on improving the translations

and rotations for data augmentation. It improves translational invariance by

changing the scaling and cropping images in such a way that object features are
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not sacrificed during rescaling. It also improves lighting invariance by randomizing

contrast, brightness, and color instead of just adding random lightning noise

similar to the systems before it. As mentioned before the augmentation techniques

help training data as well as. The testing images are augmented by doing a join

prediction on greedily selected predictions using three different scales and 10-15

other subsets of transformation instead of combining all predictions. The study

in Howard (2013) also deduces that compared to Krizhevsky et al. (2012), the

augmentation improves the error rate but adding another fully connected layer

does not improve the rate. Its greedy prediction selection also improves run time

while reducing the error rate compared to the same baseline, thereby attributing

the improvement solely to the augmentation.

Augmentation Techniques

These are some of the techniques that are regularly used and some additional

techniques from image processing techniques from imgaug 2

Rescaling

Images are rescaled so that the model can learn positional and size invariance

of the object as seen in figure 8.

2imgaug is an image transformations library built in python. The images in
the following section are used from the demonstration images from the library at
https://github.com/aleju/imgaug
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FIGURE 8. Example of Rescaling an Image

Translations

The images are translated so that the model learns to recognize the parts of

an object as a part of the object with labeled confidence as seen in figure 9

FIGURE 9. Example of Translating an Image

Gaussian Blur

It is a technique of blurring an image in image processing by using a Gaussian

function. It is used to reduce image noise and detail and to enhance image

structures in computer vision. Example of the technique is given in figure 10

FIGURE 10. Example of adding Gaussian Blur to an Image
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Elastic Transformation

It is an image transformation technique in which certain pixels are moved

around locally to create an elastic distortion as seen in figure 11

FIGURE 11. Example of adding Elastic Transformations to an Image

Dropout

It is a technique in which certain fraction of pixels or squares (coarse)

are set to zero or dropped as seen in figure 12. This technique is also used as a

regularization technique to reduce overfitting in DCNNs as it is applied in the

feature space by randomly turning some neurons off. We look into its applications

in the feature and the data space by applying to input images as seen in figure 12

FIGURE 12. Example of adding data-space Dropout to an Image
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CHAPTER VI

DATASETS, APPROACH, AND EXPERIMENTS

Image Collection for Our Dataset

To solve the problem of the perceived sense of movement in static visuals

our first intention was to find a pre-existing dataset of images. Though due to the

very novelty of the task were unable to do so and hence we had to build our own

dataset from scratch. We created our own dataset which was manually labeled by

us but collecting a large amount to train our DCNNs was infeasible as we did see

severe overfitting. Hence we chose to fetch the images using large image repositories

such as Flickr. We chose Flickr as the repository to download images from since its

a repository where people in the world upload their images and give it their own

tags. We were interested in these tags as these tags tend to be rather specific, in

terms of what the photos contain. Going into the collection of images, we knew

that the dataset we would collect would be weakly labeled as it would contain noise

to a certain extent. We use the adjective weakly labeled as the tags of the images

are not verified by humans and hence some tags could be disputed. Though the

images from Flickr would also help our DCNN to generalize due to the availability

of a large number of images. The collection of these images was made easier by the

Application Programming Interfaces (APIs) provided by Flickr.

To collect the images we modified the pre-existing Python scripts 1 using

Flickr’s APIs which fetches images by keywords. We chose the generic keyword

dynamism and not dynamic as the images return by dynamic seemed to have

1The pre-existing Python scripts were used and modified from https://github.com/bertcarremans/Vlindervinder/tree/master/flickr
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a lot more unrelated images than we expected. Querying Dynamism returned

images that had implied movement in the images. Since we intended to do binary

classification we used the keyword still to find images that had stationery objects.

This created a weakly labeled dataset as it also contained noise in terms of

incorrect classifications. Even though the keyword still returned millions of images

which would have added a lot to our training phase and the eventual performance

of the DCNN but we wanted to balance with the distribution of the images with

dynamism. Since there were only a few thousand images related to dynamism we

fetched an equally balanced set which also led to a faster training of our DCNNs.

We fetched about three thousand images with dynamism and three thousand

images that have an object that was still. The images were fetched by sorting with

relevance on Flickr, and with the best size available starting from the original size.

Given below in figure 13 and 14 are some examples of the dynamic images and

figure 15 and 16 are the example of images with ’still’ objects in them

FIGURE 13. Dynamic image from our dataset
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FIGURE 14. Dynamic image from our dataset

FIGURE 15. Still image from our dataset
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FIGURE 16. Still image from our dataset

IAPS and OASIS Datasets

IAPS - International Affective Picture System

The next dataset we needed, was to assess if the perceived sense of movement

or dynamism had an effect on emotion. We found the IAPS to be the standard

dataset used in Machajdik and Hanbury (2010), You et al. (2016), and Mikels et al.

(2005) amongst other studies, discussed in the chapter III of this thesis.

IAPS has 1183 images that are tagged on the emotional scale of valence and

arousal. Valence is the scale that ranges from unpleasant to pleasant and Arousal

is the scale that ranges from calm to excited. The images are tagged using the Self-

Assessment-Manikin from Bradley and Lang (1994) that has a figure representation

of the ranges of emotion on both the scales. The images are tagged by taking a

mean of the ratings, as reported by a survey group, on the emotional scale.
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OASIS - Open Affective Standardized Image Set

To compare our DCNN with different distributions of images tagged on

the emotional scale. We retrieved the OASIS dataset from Kurdi et al. (2017),

which contains 900 images similar to IAPS and is tagged with a similar valence-

arousal scale. The difference between the two datasets is that OASIS is more

freely available and contains recent images tagged by a group of people online.

This dataset contains broader categories of images compared to IAPS. We use this

dataset for the same experiment as IAPS.

Our Approach

We discuss our approach to solving the problem of classifying images with

a perceived sense of movement or dynamism. Our approach is inspired from the

understanding we have gained from the previous chapters covering the various

topics. The second chapter introduces our problem, its definitions, degrees, types,

and effects in the real world. To solve the said problem we look at AFIC as it is the

closest to the domain of our problem. Our methods of data collection are inspired

from the study in You et al. (2016), and Transfer Learning as a method for our

approach from the study in Kim et al. (2018), both studied in the chapter III.

We use the concept of emotion representation on the valence-arousal scale from

the study in chapter III to find if there is a correlation between the emotions in

an image, and dynamism. Establishing a correlation could potentially give static

visual creators such as artists, to vary the dynamism in an image to adjust the

emotion evoked by the image. We then delve deeper into an empirical study of

the theory of Transfer Learning along with its methods to transfer knowledge

from another domain to that of ours. In doing so we experiment with the different
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ways we could perform transfer learning to solve our said problem. Towards our

approach, we study the architecture of the networks we intend to use and study the

transformation of images to introduce spatial invariance. We augment our novel

dataset to compensate for its relatively smaller size compared to ImageNet. This

is followed by a brief introduction to the datasets we use in our experiments. We

discuss the pipeline of our experiments, the results, and observations of the said

experiments.

Experiment Pipeline

We begin our series of experiments by selecting the kind of image

transformations that we could apply to augment our dataset. We create a

baseline by applying no transformations and then gradually try a different kind

of transformations to see which one minimizes the validation loss. Once we have

a set of transformations that are optimal, we use them as constants in all our

experiments.

We then train our image dataset on multiple networks to observe which

returns the best result. We start with a basic DCNN and reuse the one we used

for the augmentation experiment. We decide to use the VGG16 architecture for its

structural simplicity and the Inception V3 for its performance optimizations over

networks similar to that of VGG16. We train a VGG16 that is randomly initialized

without Transfer Learning to see if our dataset with augmentations is enough to

learn the intended classification task. Thereafter we train the VGG16 and Inception

V3 using Transfer Learning.

We perform the Transfer Learning experiments in two separate ways. As the

first method, we use the frozen method in which we do not transfer all the weights
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from a network trained on ImageNet, but only the weights of the convolutional

layers are transferred to our network. The rest of the remaining network is

essentially the fully-connected classifiers which are only initialized with random

weights. Our dataset is then retrained on the network where the frozen layers due

to their inability to learn then act as feature extractors. In the second method

called fine-tune’ we modify and use the fine-tuning technique. In this technique

unlike the previous one, we transfer all the weights from a network pre-trained on

ImageNet to our network. This is done so because as mentioned in section 4.3 the

weights of a DCNN are better initialized with weights of another DCNN from a

dissimilar domain than randomly initialized weights. We then fine-tune the layers

of the DCNN and also find the optimal layer to fine-tune until as to maximize the

performance of the network. All the above-mentioned networks are validated from

the images in our dataset but are different from the ones in training.

Once we have validated our networks, we select the best performing network

to be used in our experiment to observe the correlation between dynamism and

emotions. We perform this experiment by using our best performing network to

classify the images in IAPS and OASIS based on their dynamism or its absence.

We then plot the emotions of the images of IAPS and OASIS on the valence and

arousal scale and then visualize the classifications to observe a relationship between

emotion and dynamism.

Experiment Constants and Environment

In the following experiments, we make certain selections and choices that

we discuss in this particular section. Since we use Transfer Learning to transfer

knowledge from another domain to solve our problem, we choose ImageNet as the
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ideal dataset to transfer features. ImageNet has the highest probability of having

images similar to the ones we obtain from Flickr. Just as seen in the section 4.3,

ImageNet has shown the ability to add generic features to DCNN. Hence we have

used ImageNet to pre-train our DCNNs in the experiments.

The following experiments were programmed using Keras a popular

framework for deep learning that uses TensorFlow for tensor or matrix

computations. Keras supports a flexible and relatively easy way to parallelize the

experiments across Graphical Processing Units (GPUs). These experiments were

performed on the Talapas Supercomputer at the University of Oregon. Most of the

experiments are computationally expensive due to the size of the datasets and the

use of DCNNs. Every experiment was parallelized across four Nvidia K80 GPUs

along with a 28-core Intel CPU which made the experiments feasible.

In the following experiments, we keep the distribution of the training and

validation set constant where 70% of the dataset about 4200 images is used for

training and 30% or 1800 images are used for validation. The images are fed

to the network using a generator that yields batches of 100 images. We use a

generator here to avoid any out of memory exceptions as the size of the dataset

is at 6000x244x244 not accounting for the augmentations we have used. Most of the

experiments take about an average of 19 hours to finish when parallelized across

four GPUs.

Experiment Results and Observations

Transformations for Augmentation

In this experiment, we attempt to find a good heuristic of transformations

that we could apply to images, such that it maximizes the accuracy of the dataset
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trained on a DCNN. Since our collected dataset takes about 19 hours to train we

use a pre-existing dataset with a known performance so that we can tune the types

of transformations we would apply to our images. We use the dataset with images

of cats and dogs from CIFAR-10 obtained from Keras. It has 1500 images of cats

and 1500 images of dogs. For the purpose of this experiment, we split the dataset

into 70% for training and 30% for validation of the DCNN. We use the standard

architecture mentioned in section 5.1 that is able to learn the classification of cats

and dogs to an accuracy of approximately 0.81%. The model is compiled using

RMSProp as its optimizer for back-propagation and binary-cross entropy as its

loss function. The images in the validation and test phase were only rescaled as

mentioned in section 5.2.

Without Augmentation

In this experiment, a baseline was constructed using no image

transformations, we only rescaled the images. A dropout of 0.5 was used in the

final layer to reduce the expected overfitting. It can be seen from the figure 17

below that network converges well on the training data but ultimately the model

overfits even after using dropout. This is the result of having very fewer images

such that the network does not generalize over the dataset.
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FIGURE 17. Baseline Loss

With Augmentation

In the next experiment, we tested image transformations such as Elastic

Transformations described in section 5.2 where the network did converge but

validates to a low accuracy of 0.69% as the transformations were uniformly applied.

When only random images were elastically transformed and contrast normalized

the network validated to an accuracy of 0.75% which was only marginally better.

We applied dropout in data-space, feature-space, and in both, but the best

performance was obtained in the feature-space. We experimented with tuning the

parameter (gaussian blur sigma) of gaussian blur and even though we obtained an

optimal parameter, the accuracy of the network with the optimal parameter was

only at 0.76%. The best results were obtained when resizing was combined with
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horizontal flips, random zooms, rotations, width-height shifts, and dropout where

the network converged and validated with an accuracy of 0.80 though it had the

lowest validation loss of 0.56 as seen in 18.

FIGURE 18. Network with Augmentation

Observation

In the above experiments, we could not find the best singular transformation

to apply that could have improved the performance of the network. Even

though it may exist, it may not be computationally feasible to find the optimal

transformation or the optimal parameters for the transformation as the benefits

are very little. In the next set of experiments, we use the best performing

transformations in the above experiment that help augment our dataset and

introduce spatial invariance of the objects in the images.
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Network Architectures without Transfer Learning

Baseline DCNN

We continue to use the same network architecture as the one used in section

6.4 and described in section 5.1. We experiment without using Transfer Learning as

a baseline to our other network architectures. It can be seen in the figures 19 and

20 below that the network does not converge after 50 epochs as the training loss is

down to 0.53 but the accuracy is only at 0.73. The validation loss is down to 0.57

and accuracy only at 0.73.

FIGURE 19. Smaller DCNN
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FIGURE 20. Smaller DCNN

VGG16 with Randomly Initialized Weights

In this experiment we use the VGG16 network but with randomly initialized

weights. We train and validated our dataset using SGD and RMSProp. We set the

optimal learning rate for SGD at 0.0001 and momentum at 0.9, whereas RMSProp

has an adaptive learning rate. The augmentation parameters were the same as

above. Due to our last result, The experiment with RMSProp and SGD did not

converge where the training loss was reduced to only 0.55 with an accuracy of 0.75.

The validation loss and accuracy was at 0.57 and 0.75 respectively as seen in figure

21 and 22

58



FIGURE 21. Randomly Initialized Weights, Loss - VGG16
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FIGURE 22. Randomly Initialized Weights, Accuracy - VGG16

Observations

Both of the above networks do not converge even when the number of

parameters (layers) is increased with the VGG16 architecture, and when the

number of epochs is increased. This proves that our dataset is indeed limited

such that these networks of different parameters are unable to learn the required

features.
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Network Architectures with Transfer Learning

VGG16: Frozen Method

With the frozen method, the final classifier is unable to learn the features

extracted from the convolutional layers pre-trained on ImageNet.

VGG16: Fine - Tune Method

For this experiment, we use the SGD backpropagation algorithm along with

binary cross-entropy as our loss function using a sigmoid activation in the final

layer. The network was trained and validated over 75 epochs. We found that we

were able to achieve the best possible accuracy after freezing only all the layers.

As we tuned the layer to be frozen from the lower layers to the higher layers we

saw that our validation loss reduced considerably from 0.90 down to 0.36 for an

accuracy of 0.84%. When all the layers but the final layer was frozen the training

loss was reduced to 0.14 and the training accuracy was at 0.95% as seen in figures

23 and 24
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FIGURE 23. Fine Tuned, Loss - VGG16
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FIGURE 24. Fine Tuned, Accuracy - VGG16

The figure 25 shows the graph of fine-tuning the VGG16 network.
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FIGURE 25. Optimal Layer for Fine Tuning - VGG16

Inception V3: Frozen Method

In this experiment using the frozen method, a fully connected layer is added,

initialized with random weights, so that it can act as our classifier. Without adding

this layer we could not train the network using the frozen method. The classifier is

trained using RMSProp with just our dataset so that it learns the weights relative

to our dataset which is faster than SGD since it uses an adaptive learning rate. It

is trained to only 20 epochs since we wanted our final classifier to have weights pre-

trained on our dataset which would be better than randomly initialized weights.

We then use our convolutional layers as feature extractors which are given as input

to the classifier. Similar to the VGG16 frozen method experiment our final classifier

was unable to learn the features of our dataset extracted from ImageNet features.
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Inception V3: Fine-Tune Method

In this experiment, we do not have the structural simplicity of VGG16 and

therefore it takes a lot longer to empirically find the best layer to freeze until in

the network. We observe the best performance when the network is frozen until the

fourteenth layer as the training loss is down to 0.3 and accuracy up to 0.87% and

the validation loss is down to 0.35 and accuracy at 0.85% as seen in figure 26 and

figure 27

FIGURE 26. Fine Tuning, Loss - Inception V3
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FIGURE 27. Fine Tuning, Accuracy - Inception V3

The optimal performance of fine-tuning is shown in figure 28
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FIGURE 28. Optimal Layer for Fine Tuning - Inception V3

Observation

From the experiments in section 6.4 and section 6.4 we observe that just the

ImageNet features are not enough to classify the images in our dataset irrespective

of the architecture we use. Hence fine tuning is the appropriate method for our

task. The previously discussed architectural simplicity helped us find the optimal

layer until which its weights need to be frozen to get the lowest validation loss. It

can be seen from the figure 25 that as we freeze more layers the network holds on

to the features related to ImageNet, and not generalize over our dataset. Since our

dataset is small the network is unable to learn the higher-order features from our

dataset such that it performs the best on ImageNet features. When we compare our

fine-tuning method to that of our frozen method we observe that the final classifier
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of the fine-tuning method is able to learn unlike the frozen method because it is

pretrained on the ImageNet dataset. The weights updated by training the final

classifier with only our dataset was not sufficient for the network to learn.

From the figure 28, we can observe that we obtain the lowest validation loss

from the networks that are frozen until only its first few layers. This means that

unlike VGG16, the Inception V3 architecture for our task uses generic features of

ImageNet only until the first few layers. The rest of the network is allowed to fine

tune and learn the representation of our dataset. As we increase the layer until

which the weights are frozen we observed that the validation loss reduces to lower

than that of the training loss which means that the network is able to perform on

the features of ImageNet but the overall loss suffers as the network is unable to

learn and classify the representation of our images.

From the experiments in section 6.4 and section 6.4 it can be seen that

Inception V3 performs better than the VGG16 experiments as we see considerable

overfitting. Since Inception V3 was able to outperform VGG16 on our task, we

can state that the depth of the Inception V3 network was required to be able to

learn or fine-tune from the ImageNet features. We applied dropout to reduce the

overfitting as mentioned in section 5.2 though there was only a meager difference in

the validation loss, and the network performance degraded in terms of training loss.

From the experiments discussed above, we observe that the performance,

especially in terms of accuracy is lower than that of the state-of-the-art OR models.

It can be argued that the OR models have datasets such as ImageNet that are

curated by the community and are geared towards object recognition, and such a

dataset is not yet available for our task. The dataset is another reason why the

accuracy is much lower since it is a weakly labeled dataset as it is not verified by
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humans. It contains noise in terms of the class labels of the images which may not

be absolute and may be disputed. Though we are able to show that our DCNN was

still able to learn up to a certain extent the differences between dynamism and its

absence with respect to the distribution of images in our dataset. The performance

of these DCNNs would only improve given a strongly labeled dataset of images.

Effect of Dynamism on Emotion

As our Inception V3 implementation gives us the best results we use the

network as a classifier to classify the images as dynamic or ’still’ in the IAPS and

OASIS datasets.

Effect on IAPS Dataset

In figure 29 is the plot of the number of images classified as dynamic on the

valence ratings and in figure 30 is the plot of the number of images classified as

’still’ on the valence ratings.
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FIGURE 29. Valence Ratings of Dynamic Images - IAPS
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FIGURE 30. Valence Ratings of ’Still’ Images - IAPS

In the figure, 31 is the plot of the number of images classified as dynamic on

the arousal ratings and in figure 32 is the plot of the number of images classified as

’still’ on the arousal ratings.
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FIGURE 31. Arousal Ratings of Dynamic Images - IAPS
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FIGURE 32. Arousal Ratings of ’Still’ Images - IAPS

Effect on OASIS Dataset

In the figure, 33 is the plot of the number of images classified as dynamic on

the valence ratings and in figure 34 is the plot of the number of images classified as

’still’ on the valence ratings.
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FIGURE 33. Valence Ratings of Dynamic Images - OASIS
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FIGURE 34. Valence Ratings of ’Still’ Images - OASIS

In the figure, 35 is the plot of the number of images classified as dynamic on

the arousal ratings and in figure 36 is the plot of the number of images classified as

’still’ on the arousal ratings.
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FIGURE 35. Arousal Ratings of Dynamic Images - OASIS
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FIGURE 36. Arousal Ratings of ’Still’ Images - OASIS

Observations

We used our Inception V3 DCNN to predict the dynamism or ’still’ labels

on the IAPS dataset. The images in this set are different from the ones that were

used to train the DCNN. We found that the IAPS dataset had 20% of its images

classified as dynamic and the rest as ’still’.

It can be seen from the figure 31 that the images on the arousal ratings, range

from 1.55 to 1.88 have the most dynamism, and from the figure 29, that the images

on the valence ratings range from 4.8 to 5.4. This means that dynamic images

are found more on the neutral side of the mean intensities of the images in IAPS

and are lesser on the extreme ratings of arousal. On the valence ratings, dynamic
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images are more fairly distributed with higher frequencies from 4.8 to 5.4 of the

valence ratings.

For ’still’ images in figure 32, they have a higher frequency on the same range

of arousal ratings as images with dynamism. This seems counter-intuitive as ’still’

images and dynamic images are on a similar range. ’Still’ images are also much

lesser in frequency on the extreme ratings of arousal. Though, we see a higher

frequency of ’still’ images than dynamic images on the same range of arousal

ratings. For ’still’ images, as seen in figure 30 higher frequencies are seen on the

range of 5 to 7 on the valence ratings. The dynamic images on the valence ratings

are not as well distributed as the ’still’ images on the valence ratings. A drop in

the number of dynamic images can be seen in figure 30 around the rating 5 on the

valence ratings.

We use the same DCNN to predict the labels of the OASIS dataset. Similar

to the IAPS dataset, we found that 20% of the images were labeled as dynamic.

We can see from figure 35 that the dynamic images have a higher frequency in

the range of 0.9 to 1.1 on the arousal scale, and range of 5.2 to 5.8 on the valence

scale, as seen in figure 33. Similar to the distribution of images in the IAPS set we

see in figure 35 that dynamic images are in higher frequencies at the neutral side of

the mean arousal ratings and are lesser on the extreme scales of the arousal ratings.

On the valence ratings, dynamic images were found to be in higher frequencies

towards the higher valence ratings indicating that dynamic images evoke a higher

level of pleasure.

From the figure 36, it can be seen that the ’still’ images have a higher

frequency from 1.1 to 1.2 ratings on the arousal scale. When compared to dynamic

and ’still’ images on the arousal ratings, we see the same statistics as the IAPS
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dataset. The ’still’ images also have lower frequencies on the extreme sides of the

arousal ratings. It is observed that for the same arousal ratings, ’still’ images have

a higher frequency compared to dynamic images. From the figure 34 it can be seen

that images are found to be ’still’ at a higher valence rating of 4.5 to 6 which is

counterintuitive to the dynamic images found on the valence ratings in figure 33

From the above observations, it can be concluded that there are

counterintuitive results regarding the higher frequencies of dynamic and ’still’

images in both the datasets. We attribute these results to our DCNN which has

been trained on a different distribution of images compared to the IAPS and

OASIS datasets. We expect to find a better distinction in the ratings of dynamic

and ’still’ images when the test images are drawn from the same distribution as the

images used for training the DCNN.
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CHAPTER VII

CONCLUSION AND FUTURE WORK

Conclusion

To conclude, we have studied and understood the definition of perception

of the sense of movement in static visuals like images, its implications in the real

world, especially towards engagement and attitude. We have explained methods

to find a solution to the said problem by looking at another similar problem

in a domain of AFIC. Understanding the methods from AFIC we were able to

construct a pipeline of methods to solve the said problem. We follow that with a

study of the theory and empirical study to understand the concept of transferring

knowledge from one domain to another and employ methods that best fit our

problem. Towards understanding the methods that we employ, we delve into the

study of the network architectures we use and the spatial invariance we introduce

using data augmentation to avoid over-fitting. We gather our own dataset and

collect two other datasets to understand the effect of perception of the sense of

movement or dynamism on emotions. Then we conducted different experiments to

find the optimal way to train a classifier that has learned the ability to differentiate

between dynamism and still static visuals as mentioned in the introduction. We

then gauge our classifier to understand dynamism on the emotional scale of valence

and arousal.
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Future Work

Given that we have a classifier that is able to differentiate between dynamism

and its absence there are a couple of ways we are already looking to improve

the performance of the said classifier. We have identified certain methods of

improvements that we think could improve the model and find a correlation

between dynamism and emotions like we tried to do with this one.

Given that we now have a classifier that has the ability to differentiate

between the perceived sense of depth and its absence up to a certain extent. There

are a couple of methods we have identified to improve the performance of our

classifier. These improvements would also ultimately lead to a better understanding

of dynamism on the emotional scale of valence and arousal.

We look forward to improving the quality of the dataset by obtaining

a dataset that is manually verified by using human intelligence. Since we use

supervised learning, this would certainly improve the performance of our DCNNs.

Additionally, we intend to reduce the category variety of the images in the dataset

such that the model is able to learn the difference of sense of movement for the

same given object. Such datasets can also be created for different category types

like objects, humans, animals etc and for datasets with different demographics

like product advertisements. Our current work deals with building a classifier to

understand only the difference between a sense of movement and absence. We

further intend to study the different types of movement and its degree within static

visuals.

There are other DCNN architectures that employ different design decisions

which could improve the scale of performance. They have different depths of layers,

hyperparameters, and optimizations. Due to the very black box nature of DCNNs,
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the performance differential can only be determined empirically for our tasks.

These models can also be adapted for resource-constrained environments such that

their availability and usage is not constrained by available resources. Towards the

study of understanding the effect of dynamism on emotions, we intend to construct

handcrafted features from domain experts such that dynamism or its degree could

be altered to affect emotion and other factors like engagement, attitude etc.

An investment into such datasets, architectures and studies would spur

research within the domain of our task but even other tasks that deal with learning

the stimuli that affect a viewer of static visuals. A collaboration with researchers

from consumer psychology would help us build extensive methods to test our

models and build applications that have real-world effects. It would then be

possible to compare the performance of our models to those that employ human

intelligence.
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