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THESIS ABSTRACT 
 
Yehui Zhang 
 
Master of Science 
 
Department of Computer and Information Science 
 
March 2019 
 
Title: Prediction of ICD-9 Code Assignment Using Attention-based Convolutional 
Neural Networks 
 
 

In intensive care units, most patients are usually in critical conditions which require 

physicians to make immediate diagnosis and treatments. However, not every patient could 

get the best treatment because it highly related to the physician’s expertise. With the 

development of the machine learning, many studies have started trying to develop models 

that can learn the representations in Electronic Health Records (EHR) and make accurate 

predictions on clinical tasks. On code assignment tasks, models based on convolutional 

neural networks (CNN) or Recurrent Neural Networks (RNN) have shown promising 

results but their performances are still insufficient to be applied on real-world applications 

due to (1) the large number of codes and (2) the length of the document. Here, we propose 

a Convolutional Neural Network with Multi-label attention mechanism (Multi-Label AT-

CNN) model that predict ICD-9 code assignments by learning the base representations of 

the clinical notes from EHRs.  
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CHAPTER I 

INTRODUCTION 

In intensive care units (ICUs), most patients are usually in critical conditions 

which require physicians to make immediate diagnosis and treatments. However, not 

every physician can deliver the best treatment to their patients. In fact, there are more 

than 12 million US adult who were misdiagnosed in outpatient medical care each year 

(Singh, Meyer, & Thomas, 2014) and more than 40,000 patients die annually due to the 

misdiagnosis made by physicians (Winters, Custer, & Newman-Toker, 2012). In order to 

provide fast and accurate diagnosis, people are in hope of relying on computers to solve 

the problem. With the development of the machine learning, many studies h (Liang, 

Zhang, Huang, & Hu, 2014) have started trying to develop models that can learn the 

representations in Electronic Health Records (EHR) and make accurate predictions on 

clinical tasks. On code assignment tasks, models based on convolutional neural networks 

(CNN) (Kim, 2014) or Recurrent Neural Networks (RNN) (Choi, Schuetz, Stewart, & 

Sun) have shown promising results but their performances are still insufficient to be 

applied on real-world applications due to (1) the large number of codes and (2) the length 

of the document.  

In this study, we propose a Convolutional Neural Network with Multi-label 

attention mechanism (Multi-Label AT-CNN) model that predict ICD-9 code assignments 

by learning the base representations of the clinical notes from electronic health records. 

To evaluate the performance of our model, we use the newest MIMIC-III database(v1.4) 

which is one of few publicly-available electronic health records databases for conducing 

scientific researches (Johnson, Pollard, Shen, & Lehman, 2016). All data in MIMIC-III 
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comes from over 40,000 patients who stayed in critical care units (ICUs) of the Beth 

Israel Deaconess Medical Center between 2001 and 2012 and those data had been 

deidentified before publishing. The dataset contains high temporal resolution data 

including laboratory results, clinical notes, discharge summaries, bedside monitor trends, 

and waveforms and other biomarkers. Here, we use the discharge summaries to make 

predictions on the code assignments. The discharge summaries are usually written by 

physicians at the end of treatment and such documents provides the most accurate and 

comprehensive information regarding to the actual health condition of patients. From the 

dataset, we observed that most discharge summaries contain five to twenty ICD-9 codes 

which makes our tasks as multi-label classification problem. In order to improve the 

performance on multi-label classification, we adapted per-label attention mechanism 

which allows our model to learn the distinct representation of each labels.  

The structure of the remaining thesis is organized as follows: In Chapter II, we go 

into details of the background of this study where we list the current challenges we are 

going to solve, and we briefly introduce the progress of current state-of-art researches 

that are related to our object. Within those studies, we summarized several recently 

published papers that are philosophically similar to our work. Chapter III go through the 

structure of our Attention-Based Convolutional Neural Network Model in details. In 

Chapter IV, we provide details on the implementation of our model and compare the 

performance with several baseline models. And the final chapter is the summary of this 

study with some constructive thoughts on the future works. 
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CHAPTER II 

BACKGROUND & RELATED WORKS 

INTERNATIONAL CLASSIFICATION OF DISEASES 

Over the past twenty years, electronic health records (EHR) systems, have been 

widely adapted in hospitals and clinics which routinely collects all health and medicine 

related data from patients (Adler-Milstein & DesRoches, 2015). Such histories consist of 

heterogeneous data elements, including patient basic information (age, race, habits, work 

type), laboratory test results, medicine prescriptions, diagnosis, clinical notes from 

physicians and nurses, and medical images. Within the system, all types of diseases have 

been categorized based on the ICD standards (International Statistical Classification of 

Diseases and Related Health Problems) which is regularized by World Health 

Organization (International Classification of Diseases, 2018). Although most hospitals in 

the world had started using the ICD-10 standard, which is more accurate and effective 

compared the ICD-9, for almost twenty years, most healthcare providers in the United 

States have less than 10 years history of using ICD-10 standard due to several constrains 

described in (Johnson G. , 2014). Since most publicly available EHR datasets on deep 

learning studies use ICD-9, to accurately evaluate the performance with other models, we 

decide to predict the ICD-9 code assignments based on the available clinical notes. 
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OVERVIEW OF DEEP LEARNING METHODS 

In recent years, deep learning has shown extraordinary performance on many 

data-related applications, such as machine translation, speech recognition, image 

classification, and recommendation systems. With its unique structure, deep learning 

models greatly reduced the efforts on feature engineering and compares to the traditional 

statistic models or machine learning models, it can learn patterns from very large amount 

of data in relatively short amount time. In the health care domain, interests in the deep 

learning methods have rapidly grown because they are capable of generating large 

complex models based on data that does not require labor-intensive feature engineering 

from professionals. In recent studies (Purushotham, Meng, Che, & Liu, 2017) (Xiao, 

Choi, & Sun, 2018) (Huang, Osorio, & Sy, 2018), deep learning models has shown 

promising performance on mortality prediction, length of stay, and ICD-9 code group 

production when the non-feature-engineered data were used to train the models. In deep 

learning, the most fundamental idea is of representation. Before the age of big data, the 

data used as input features to the machine learning algorithm usually must be hand-

engineered from the raw unprocessed data, which heavily relies on the practitioner’s 

expertise and domain knowledges to determine the explicit patterns that meet the interest 

of the experiment. Such process of creating, analyzing, selecting, or evaluating 

appropriate features can be extremely labor-intensive and time consuming. Thus, such 

processes are usually being considered as magic which required creativity with 

oftentimes luck (Domingos, 2012). Compares to the traditional machine learning 

methods, deep learning techniques has the ability to learn the optimal features directly 

from the raw data which does not requires any human guidance. It allows for automatic 



 

5 

discovery the relationship of data that might be difficult or impossible to learn. In this 

section, we will provide a brief overview of the commonly used deep learning methods 

on Electronic Health Records system.  

Artificial Neural Network 

 In now days, although new deep learning algorithms and architectures are being 

proposed continuously, nearly all of them are built upon the artificial neural network 

(ANN) framework which is composed of interconnected nodes that arranged in layers. In 

generally, the framework contains three types of layers: the input layer, hidden layers, 

and output layer. The input layer is start of all the data getting processed and output layer 

delivers the final prediction. For hidden layers, each layer contains one or mode hidden 

units which stores a set of weights that can be optimized by minimizing the loss function. 

The loss functions are usually optimized by the backpropagation algorithm, which is a 

mechanism for weight optimization that minimizes loss from. This mechanism goes from 

the final layer of the model backwards through the network. (Goodfellow, Bengio, & 

Courville, 2016)  

From this point, we will introduce several most successful deep learning 

algorithm and architectures that all developed based on the architecture and optimization 

procedure of Artificial Neural networks. Those variants been widely used in Electronic 

Health Record applications to learn the representation of data.  
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Multilayer Perceptron 

 Typically, the structure of a multilayer perception (MLP) is just like the ANN 

which is composed of several hidden layers. Within those layers, every neuron at the 

same layer is fully connected to neurons of the adjacent layer (Shown in Figure 1). 

Unlike the recurrent neural networks or undirected deep learning models, due to the 

limitation of the structure, multiplayer perceptron models usually have only a few hidden 

layers and data is only capable of flow in one direction. Compares to neuron’s updating 

strategy for artificial neural network, for each hidden unit within the MLP, each neuron in 

the hidden layer computes a weight sum of the output from the previous layer. Then the 

sum is applied to a nonlinear activation to generate the output of the neuron. The 

calculation is represented as the equation shown below:  

ℎ$ = 𝜎( 𝑥$𝑤$* + 𝑏$*)
.

/01

 

Here, 𝑁 represents the number of units in the previous layer, 𝑥/ is the output from the nth 

unit in the previous layer. 𝑤$* and 𝑏$* are the corresponding weight and bias that 

associated with each 𝑥*. Traditionally, to choose the appropriate activation functions, we 

would use either sigmoid and tanh. As proposed (Goodfellow, Bengio, & Courville, 

2016), the rectified linear unit (REL) function becomes more popular in modern MLP 

models.  
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Figure 1 A typical structure of multilayer Perceptron Network where each neuron is fully 
connected to every neuron of the next layer. 

 

 The association between the input data and the predicted values are learned after 

the weighted are optimized by training the model. As more hidden layers are being added 

to the model, the model would more likely to learn more complex pattern from the input 

data which would provide better performance. For multilayer perceptions, the 

computational cost and training time would also dramatically increase by adding more 

layers to the model. Hence, such models are generally used to learn relatively simple 

representation of data. 
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Convolutional neural networks 

 With the surging interest of deep learning, convolutional neutral networks 

(CNNs) have shown extraordinary performance in many domains such as image 

processing, speech recognition and video analysis. As illustrated in Figure 2, the basic 

structure of CNN consists of several convolutional layers and those layers are usually 

followed by its corresponding subsampling layers which is fully connected to the 

convolutional layer. It often starts with two types of layers: convolutional layers and 

subsampling layers. The convolutional layers perform convolution operations with 

several filter maps of equal size. The subsampling layer reduce the sizes of proceeding 

layers by averaging values within a small neighborhood.  

 

Figure 2 Illustration of typical stature of convolutional neural networks. Source: 
Wikipedia 

The equation for one-dimensional convolution is  

𝐶14 = 𝑥 𝑎 𝑤(𝑡 − 𝑎)
8

90:8

 

Here, x is the input signal and w is the weighting function which is often called as 

convolutional filter.  

Similarly, the equation for two-dimensional convolution is  
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𝐶;4 = 𝑋 𝑚, 𝑛 𝐾 𝑖 − 𝑚, 𝑗 − 𝑛
/A

 

Here, 𝑋 is a two-dimensional grid and 𝐾 is a filter. At such circumstances, a filter 

slides a matrix of weight across the entire input to extract the feature maps.  

In convolutional neural networks, each unit of the same convolutional layer 

receives the same input data which comes from the previous layer. Such structure is 

ideally to extract the lower-level features of the input data from different perspective. 

After the convolution process, the subsampling layer is applied to aggregate those 

entreated features. The key parameter to be decided are weights between layers, which 

are normally trained by standard backpropagation procedures and a gradient descent 

algorithm with mean squared-error as the loss function. Generally, CNN is designed to 

learn feature hierarchies without much human interfere which in result provides some 

degree of translational and distortional invariance.  

Recently, one of the most successful CNN models for sentence classification tasks 

was proposed by (Kim, 2014). It is a simple model with only one layer of convolution 

that learns the base representation of the document by taking the word vectors trained by 

word2vec method (Mikolov, Chen, Corrado, & Dean, 2013) as the input. This method 

allows for the use of both pre-trained and task-specific vectors by having multiple 

channels which greatly accelerates training time and results much better results compares 

to solely use task-specific vectors. We will use this model as one of the baseline models 

to compare the performance with our model.  
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Recurrent neural networks 

 Recurrent Neural Networks, as one of the most popular architecture being studies, 

are widely used to model sequential data, such as time series or text. As illustrated in 

Figure 3, They operate by sequentially updating the hidden state based on the activation 

of the current input at specific time and the previous hidden state. However, the original 

implementation of RNN with backpropagation through time algorithm is difficult to learn 

long-term dependencies due to the vanishing gradient problems. To overcome such 

problems, two variants of RNN were proposed: Long short-term memory (LSTM) and 

Gated recurrent unit (GRU). They effectively model sequences of different lengths and 

capture long range dependencies.  

 

Figure 3 Simple RNN model for multilabel classification. Source: Lipton, 2016 

 

Long Short-Term Memory Networks (LSTM) are one of the variants of Recurrent 

Neural Networks introduced by Hochreiter and Schmidhuber in 1997 (Hochreiter & 

Schmidhuber, 1997) which are explicitly designed to avoid the long-term dependency 

problems. Like the standard RNNs which has a chain of repeating modules structure 

shown in Figure 1, LSTMs inherited this basic characteristic of Recurrent Neural 
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Networks, but LSTMs have more complex repeating models than standard RNNs as 

shown in Figure 2. In this figure, the circles with X-mark inside are element-wise 

multiplication which are “valves” used to control how much old memory we would like 

to use from the previous module, how much new memories we generated from the 

current module should be combined with old memory that would eventually be passed to 

the next unit, and how much new memory should output to the next LSTM unit. Those 

implementations are the key ideas of LSTM that overcomes the vanishing gradient 

problem since we can now restore the shrinking gradient values back to the normal.  

 

Figure 4 Standard RNN structure contains a single layer, tanh, where 𝑋$ are the inputs 
and ℎ$ are the outputs 

Overall, for each LSTM unit, it consists of four different layers: 

The first layer is used to generate the vector for the forget which will be used to 

control how much old memory from previous unit to be passed to the next layer by 

applying vectors of memory and output from the previous LSTM unit and the input for 

the current time step to the sigmoid function.  

The second layer generates the new memory by applying the output from the 

previous block and the input of this time step to the tanh as the activation function.  
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The third layer takes exactly same inputs as the first layer, but the output vector is 

used as the memory valve which controls how much new memory should be applied on 

the old memory and the combined memory will eventually be passed to the next LSTM 

unit. And finally, the last layer is used to generate a vector by applying the same inputs 

we used in the second layer to the sigmoid as activation function, and then use this vector 

to control how much newly generated memory from the third layer to be used as output 

of this block. 

Similar to Long Short-Term Memory models, Gated Recurrent Unit (GRU) 

model, as shown in Figure 5, was designed to adaptively reset or update its memory 

content. Compares to input and forget gate in LSTM, each GRU has a reset gate and an 

update date. Differently, GRU fully exposes its memory content at each timestep. By 

applying the leaky integration, the content from the previous memory unit is balanced 

with the new memory content.  

 

Figure 5 Standard Gated Recurrent Unit Structure which combines the input and forget 
dates into a single update gate. 
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DEEP LEARNING APPLICATION ON ELECTRONIC HEALTH 

RECORDS 

In this section, we will provide a thorough review on current state-of-art advances 

of deep learning methods on Electronic Health record domain.  

EHR Information Extraction 

 The Electronic Health Record (EHR) data is usually consists of structured and 

unstructured data. The structured data is usually used for billing and administrative 

purposes such as the admission dates, medication record, and etc. However, most records 

about the patient’s condition are still recorded in the clinical notes which are generally 

considered as unstructured data. There are several types of clinical notes, such as 

admission notes, laboratory summaries, discharge summaries, or transfer orders. Since 

those documents usually are written in free-text style, extracting the useful information 

from them is usually non-trivial. Before the huge development of deep learning, 

extracting the information from free-text usually relies heavily on the feature engineering 

and ontology mappings which makes the cost of such tasks enormously large. 

 From several recent studies, deep learning methods have been applied on the EHR 

information extraction domain and the current major tasks are listed in Figure 6. 
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Figure 6 Information Extraction from Electronic Health Record and their relevant tasks. 

 

Single Concept Extraction 

Typically, the most valuable information that contained in the clinical notes are 

related to the disease type, procedure produced, and treatment applied. In recent years, 

although natural language processing (NLP) techniques had achieved big success on 

language processing, the results on the information extraction from clinical notes are still 

not satisfying to be applied in real world applications. In (Jagannatha & Yu, Structured 

prediction models for RNN based sequence labeling in clinical text., 2016) and 

(Jagannatha & Yu, Bidirectional RNN for medical event detection in electronic health 

records., 2016), the single concept extraction can be transformed into the sequence 

labeling tasks which aims to assign predefined clinical tags to each word exists in the 

document. Those predefined tags were split into medication and disease categories. For 
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medication category, they have tags such as prescription name, dosage, usage, and etc. 

For disease categories, they have tags such as disease name, data of occurrence, severity 

and etc. In those studies, several Recurrent Neural network variants were development 

and evaluated which includes traditional LSTM, GRU, bidirectional LSTM. They also 

tested the model that combines the deep learning models with conditional random fields. 

In their experiments, their RNN variants models greatly outperformed all of the baseline 

models and in some specific subdomains, such as extracting the disease severity or 

duration which related to extracting the numeric values from the free text, their models 

performed extraordinary performance. A similar research conducted by (Wu, 2015) 

provides a convolution neural network model which aims to recognize named entity in 

clinical text also achieved great performance compared to the baselines.  Differently, a 

pre-trained word embedding on clinical text was applied which could be one of the major 

factors that contributed on the great performance. 

Temporal Event Extraction 

In general, a temporal event is an event that occurs at the specific time. The 

extraction of such events is usually more difficult than non-temporal events. In  (Fries, 

2016), Fries proposed an RNN model which extracts medical events and their 

corresponding times from the text-text clinical documents. In their study, they utilized a 

pre-trained word embedding algorithm, word2vec, proposed by (Mikolov, Chen, 

Corrado, & Dean, 2013), which was already trained with two large clinical corpora. In 

addition, they used the DeepDive system, developed by Stanford and proposed in (Shin, 

2015) for structured relationships and predictions. 
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Relation Extraction 

Similar to the temporal event extraction which extract the association between the clinical 

events and their corresponding time, the relation extraction tries to find the association 

between clinical events. In (Lv, Guan, Yang, & Wu, 2016), Lv developed an autoencoder 

model to learn the data coding in unsupervised manner. In their study, the Unified 

Medical Language System to utilized to perform the word-concept mapping which allows 

the autoencoder to generate features. Then the output data was feed in a Conditional 

Random field classifier.  

 

As discussed in (Liu, Ge, Ji, & McGuinness, 2015), most deep learning 

architectures proposed on EHR information tasks are evaluated on metrics such as 

precision, recall, and F1 score. For studies that share similar tasks and evaluation metrics, 

the reported performance is usually incomparable since they use different dataset on the 

evaluation step which could product great impact on the performance.  
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Representation Learning on EHR 

 As described in previous sections, Electronic Health Record system contains 

enormous information regarding to medical codes. Those codes were originally used for 

administrative or billing purposed. Since those codes are closely related to patient’s 

health condition, we can utilize those codes to learn the hidden patterns beneath the data. 

Inside the EHR system, each medical concept is assigned with a distinct code and those 

codes usually reflects the relevant ontology of those medical concepts. However, the such 

relationships represented in hierarchical order failed to represent the similarities between 

the elements from different coding schemes. Fortunately, due the nature of deep learning 

models, those hierarchical relationships and representations can be learned by mapping 

those medical codes into vector space and learned by using deep learning models.  

 In his section, we will focus on providing an overview of encoding methods on 

transforming discrete medical codes into vectors with customizable dimensions. Such 

methods usually rely on unsupervised deep learning architectures which focus on 

clustering those medical codes based on their natural or designated relationships. Then, 

we will go over the most recent researches on representing patients using those vectors. 

Such works usually are supervised deep learning models which aims to make predictions 

on specific tasks. 
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Concept Representation 

In recent studies such as (Choi, Schuetz, Stewart, & Sun) (Nguyen, Tran, 

Wickramasinghe, & Venkatesh, 2016), several unsupervised learning methods were 

developed to derive medical concept vectors by capturing the latent similarities between 

those concepts. For different medical codes that share similar concepts, their 

corresponding vectors have relatively close values in lower dimensional vector space. 

Those vectors then can be analyzed with techniques such as t-Distributed Stochastic 

Neighbor Embedding, code similarity heatmaps (Mehrabi, Sohn, Li, & Pankratz, 2015) or 

word-cloud visualization as proposed in (Pham, Tran, Phung, & Venkatesh, 2017). 

 

Distributed Embedding 

Within the electronic heath record, a lot of medical events were recorded with 

time stamps which records the change of the patient’s health condition. Such data can 

form a time series data which can be applied with Natural Language Processing 

techniques to learn the representation. Generally, for such data structure, NLP techniques 

can transform the data into fixed-size vector format which often referred as the skip-

gram. The skip-gram model was proposed in (Mikolov, Chen, Corrado, & Dean, 2013) as 

one of the two major implementations for the word embedding framework word2vec. 

This framework is an unsupervised Artificial Neural Network which transforms large 

corpus of text into the vector representations. Currently, this framework has been widely 

used in many deep learning models for text pre-processing and embedding. In (Choi, 

Bahadori, Searles, Coffey, & Sun, 2016), skip-gram model was used to convert medical 

codes into distributed code embedding. In the conversion, the skip-gram model heavily 
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relies on the sequential ordering of the codes. However, in practice, many medical events 

happen concurrently. To still generate good representation for events happened at the 

same time, one solution was to group such events as a block. Then for each block, the 

order of the events is first randomized and then learn the representation for each block. 

(Choi, Chiu, & Sontag, 2016). 

 

Latent Encoding 

Although NLP embedding methods are currently the most popular techniques to 

learn the representation of the document, other techniques, such as the variant of 

restricted Boltzmann machine, proposed by. (Tran, Nguyen, Phung, & Venkatesh, 2015), 

can also delivers promising results. Similarly, from (Lv, Guan, Yang, & Wu, 2016), Lv 

proposed an autoencoder model which generates the concept vectors from the words 

extracted from the documents. Their evaluation results demonstrated that autoencoder 

models outperforms most traditional linear models on representation learning.  
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Clinical Outcome prediction 

   

Traditionally, there are two major types of approaches for representation learning 

on electronic health records. One of them is rule-based approach which usually requires 

medical experts to create the rules based on all the documents (Farkas & Szarvas, 2008). 

Although this approach is extremely labor intensive and becomes impossible when 

dealing with massive amount of data, but it is still the most accurate model on ICD-9 

assignment tasks. Another type of approach is learning-based approach which usually 

does not require the model designer have any medical backgrounds. Such approach 

purely relies on the learning algorithm to find the hidden pattern from the datasets. From 

one of the previous researches (Lita, Yu, Niculescu, & Bi, 2008), support vector machine 

(SVM) was used on ICD-9 prediction tasks which shows the potential of learning-based 

approach on such tasks. One of the major drawbacks of SVM or other machine learning 

models is that the such models are too “shallow” which is incapable of learning more 

complex representation from data. 

In deep learning studies on Electronic Health Record, the clinical outcome 

prediction is always one of the most popular subjects which can be divided into two parts. 

The one part is called static prediction which utilize all the information in the EHR 

system to make the final prediction. Another part is called temporal outcome prediction 

where income data keeps feeding into the model, so it has to make predictions 

continuedly. In general cases, such tasks are handled with unsupervised data modeling 

techniques, such as the clinical concept representation we presented previous.  
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Static Outcome Prediction 

 Compares to the temporal outcome prediction, static outcome prediction is 

relative easier duo to such tasks does not need to consider the temporal constraints within 

the data. In  (Choi, Schuetz, Stewart, & Sun) , Choi evaluated several models which 

consists of different Artificial Neural networks with linear models to predict heart failure. 

They used word embedding method to convert raw clinical documents into word vectors. 

As the result, they found out that the standard multilayer perceptron outperformed all 

other ANN variants on heart failure prediction. 

 From (Tran, Nguyen, Phung, & Venkatesh, 2015), Tran used a different approach 

on word embedding. They developed a modified Restricted Boltzmann Machine model 

which takes different set of records from EHR system and output a vector which 

represents the patient. Then, they used a simple logistic regression classifier to make the 

prediction on suicide risk prediction task. From their experiment, they reported that the 

model achieved best performance when all the data related to the patients are used on 

learning.  

 In (Miotto, L. Li, Kidd, & Dudley, 2016), Miotto presented a novel unsupervised 

deep learning method on features that derive a general-purpose patient representation 

from Electronic Health Record data. They named this method as Deep Patient that 

facilitates clinical predictive modeling. In this study, the patient vectors are generated 

with three-layer autoencoder. Then those vectors are used to predict a wide variety of 

ICD-9 code assignment tasks. Their model showed superior performance on unprocessed 

clinical features and achieved outstanding result on precision at k metrics. 
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 Similar to the Deep Patient model, in (Liang, Zhang, Huang, & Hu, 2014), Liang 

used Deep Belief Network to generate patient vectors. The Deep Belief Network is a 

probabilistic generative model that are composed of several layers of stochastic latent 

variables. Similar to autoencoders or Restricted Boltzmann machine, each hidden layer of 

the sub-network within the DBN is visible to the next layer. The generated vectors are 

feed into a support vector machine for disease code prediction. Similarly, (Li, Li, 

Ramanathan, & Zhang, 2014) used a two-layer DBN for identifying osteoporosis. The 

framework used a discriminative learning approach where top risk factors were identified 

based on DBN reconstruction errors. By utilizing all the identified risk factors, the model 

resulted the best performance over all other baseline models.  

 Compare to the studies above that utilizes heterogeneous data from the EHR 

system, some studies used clinical note solely on the clinical outcome prediction tasks. In 

(Jacobson & Dalianis, 2017), they proposed a stacked Restricted Boltzmann Machine 

model and stacked Autoencoder with word2vec word embedding approach to make 

predictions on the healthcare associated infections. Their result showed that the stacked 

RBM model yield the best F1 score with raw clinical and the stacked autoencoder model 

achieved best performance when the documents are embedded with word2vec.  
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Temporal Outcome prediction 

 Empirically, the temporal outcome prediction tasks can be categories into two 

types. One type is to predict the outcome within a certain time interval which is similar to 

the static outcome prediction. Another type is to make prediction based on time series 

data.  

In recent studies, both LSTM and GRU have shown promising performance on 

code assignment tasks. In (Lipton, Kale, Elkan, & Wetzell, 2016), authors used LSTM to 

classify 128 diagnoses based on 13 frequently but irregularly sampled clinical 

measurements. Those measurements are sampled time series data which includes body 

temperature, heart rate, diastolic and systolic blood pressure, and blood glucose. In their 

study, they achieved best performance by applying ensemble method on the combination 

of Long Sort Term Memory with a standard three-layer multilayer perceptron. In (Cheng, 

Wang, Zhang, Xu, & Hu, 2015), Cheng trained a convolutional neural network on 

temporal matrices of clinical codes. Its model aims to predict the onset of both congestive 

heart failure and chronic obstructive pulmonary disease.  

 In (Choi, Bahadori, Searles, Coffey, & Sun, 2016), they developed a system 

called Doctor AI which is a generic predictive model that aims to perform multilabel 

prediction over time while sequence labeling task predicts a single label at each step. A 

Gated Recurrent Unit network was trained which aims to predict the next coded event by 

taking the previous observed time sequence. As they claimed, their system could produce 

similar accuracy compared to human physicians. They also tested their model on publicly 

available dataset MIMIC-III and outperformed all other similar models on the same 

dataset.  On MIMIC-III dataset, they first pre-train their model with their private dataset, 
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then evaluate their model. In addition, they also trained a Gated Recurrent Unit network 

on the sequences of clinical event vectors that was derived from word2vec skip-gram 

implementation. They claimed that their model achieved superior performance over other 

baselines models for predicting the onset of heart disease during various prediction 

windows. 

 In (Pham, Tran, Phung, & Venkatesh, 2017), Pham proposed a Deep Care 

framework which derives clinical concept vectors by using the word2vec framework to 

embed the clinical document. Differently, they created two separate vectors for each 

patient admission. The first vector is used for diagnosis codes and the second one is for 

intervention codes. Then they concatenated those vectors into one and pass into an LSTM 

network for predicting the next diagnosis and next intervention for both diabetes and 

mental health cohorts. They model disease progression by examining precision @ k 

metrics for all prediction tasks. They also predict future readmission based on these past 

diagnoses and interventions. For all tasks, they found the deep approaches resulted in the 

best performance. 

 In (Nguyen, Tran, Wickramasinghe, & Venkatesh, 2016), they developed a 

system that uses the Convolutional neural networks for predicting the unplanned re-

admission after the patients was being discharged from the hospital. Like other outcome 

prediction models, it utilizes the discrete clinical event codes as the input data. They 

claimed that their model is superior to the bag-of-codes model and other traditional 

machine learning baseline models because their model could still achieve good 

performance when the gap between the nearest two clinical events are far part. Similarly, 

in (Esteban, Staeck, Yang, & Tresp, 2016), they proposed several deep learning models 
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for predicting the onset of complications relating to kidney transplantation. From the 

EHR system, they derived both static and dynamic features into vectors and used them as 

input for various variants of RNN architecture. After the experiments, they found that the 

Gated Recurrent Unit network works best than other RNN variants and baseline models 

when only static features were used as the input data. They claimed that if long term 

dependencies were not considered as important relations, using embedded static features 

results in improved performance. Otherwise, the dynamic embedded data could perform 

better if time dependencies matter.  

 In (Che, Purushotham, Cho, Sontag, & Liu, 2018), they developed a variation of 

the recurrent gated unit model which tried to overcome the performance drop when there 

are missing values on the clinical time series data. The model takes two representations 

of the miss pattern: masking and time interval that captures the long-term temporal 

dependencies in time series. Their evaluation showed that their model improved AUC on 

two real-word ICD-9 classification and mortality prediction tasks. 

 While there are numerous ways of making clinical outcome predictions, most 

methods that involved deep learning architectures are evaluated with standard 

classification metrics such as AUC, accuracy, and precision, recall, and F1 score. For 

temporal prediction tasks, precision and recall are the two major matrices are being used.  
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In this study, we are especially interested in predicting the ICD-9 codes based on 

the clinical notes from Electronic Health Records databases. It is the ninth revision of 

International Statistical Classification of Diseases and Related Health Problems which 

was widely used in U.S. hospitals before 2014. In the EHRs, clinical notes are usually 

written by physicians or nurses in free-text format. Such format indicates that the data in 

the notes are not structured. Since almost all the EHR systems contains private 

information about patients and de-identifying those records are extremely labor intensive, 

they are only a few publicly available datasets can be used. MIMIC-III, Medical 

Information Mart for Intensive Care 3rd revision, is one of the best publicly available 

datasets which contains complete EHRs from more than 4,000 patients who stayed in 

critical care units of the Beth Israel Deaconess Medical Center between 2001 and 2012 

(Johnson, Pollard, Shen, & Lehman, 2016).  

On multi-label prediction tasks, the major drawback of the traditional CNN 

approaches is that they simply encode all the words appears in the document and feed 

them into the model all at once regardless of the sequence of the data. Since the sequence 

of the data is also critical on such tasks, using RNN models would be considerable. 

However, one potential issue of training the RNN models with the clinical notes is that 

since each document consists of thousands of words, if each unit of the RNN only takes 

one word as the input, the training time of the model would be unacceptable.  To 

overcome this problem, a hierarchical Attention-bidirectional Gated Recurrent Unit 

model (HA-GRU) was recently proposed by (Baumel, Nassour-Kassis, Cohen, & 

Elhadad, 2017) which uses two Gated Recurrent Unit that encodes both words and 
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sentences which greatly reduces length of the sequence to the model so it can be trained 

much faster and still produces promising results.  

As shown in Figure 7, initially, each word in the document was embedded by 

using Continuous Bag-of-Words method (Mikolov, Chen, Corrado, & Dean, 2013). Then 

the first GRU is used to encode those embedded words into vectors where each vector 

represents one sentence. The vector is then encoded using a neural attention mechanism. 

Since problem is categorized as multi-label classification, each sentence vector would be 

feed into the different attention layers to generate class-specified encoding. Then those 

outputs are applied to a fully connected layer with softmax for each classifier to 

determine the label. In this model, attention mechanism is applied to both sentence 

encoder and classifier. In (Shen et al 2014. Gao et al 2014), authors demonstrated that 

deep learning models with attention mechanisms usually results in better performance 

since it provides the insight of which elements serves more important than others on the 

prediction. In Baumel’s study, the attention model in the classifier was used to track the 

sentences with the attention score for each label. Sentences with higher attention score 

usually contributes the most on the decision making of the label prediction. Similarly, the 

attention model in sentence encoder can be used to track the word that contributed most 

to the final prediction. With both attention models, the final prediction becomes 

explainable which greatly helps medical experts to better understand the causes of the 

symptoms.  

In summary, on multi-label prediction tasks such as predicting the ICD-9 codes 

based on the clinical notes, most current state-of-art models can either (1) achieve high 

accuracy on the but lack of explainable result and sometimes requires huge amount of 
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computational resources for training, such as (Kim, 2014) and (Choi, Schuetz, Stewart, & 

Sun) (2) provide explainable result on the prediction but lacks on the performance, such 

as (Song, Rajan, & Spanias, 2018) (2) provide explainable result but takes too long for 

training, such as (Baumel, Nassour-Kassis, Cohen, & Elhadad, 2017). Compares to the 

“black box” models that does not provide explainable result, we believe the explainable 

deep learning models on ICD-9 code prediction tasks can be much beneficial to medical 

community to better understand the causes of the disease. Thus, on top of developing a 

model can provides explainable results, we want to develop a model that achieve better 

performance and less processing time compares to the current state-of-art models.  

 

Figure 7 Hierarchical Attention-Bidirectional Gated Recurrent Unit model for code 
assignment tasks. Source: Baumel, 2017 
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CHAPTER III 

METHODOLOGY 

 In this section, we will go into details on the structure of our model. First, the 

input data are discharge summaries from EHRs which are in free-text format. After 

preprocessing the documents into arrays of words, we perform word embedding for each 

word and get 𝑋 ∈ ℝD∗. where k is the dimension of the word embedding and N is the 

length of the document. The details on word preprocessing and embedding are described 

in Chapter IV. For each input entry, it has the output data 𝑌 ∈ ℝG where c is the number 

of labels we will predict. 

CONVOLUTIONAL NEURAL NETWORK 

To learn the base representation in sentence level, we concatenate adjacent words 

from the document together to form 

𝑥$:$IJ:1 = 𝑥$ 	⊕ 𝑥$I1 	⊕ …	⊕ 𝑥$IJ:1 

where 𝑓 is the width of the filter and  𝑥$:$IJ:1 represents the concatenation of 𝑓 words 

start at position 𝑖. Then, we used the method proposed by (Kim, 2014) to embed adjacent 

word vectors by passing the input data through the convolutional neural network 

illustrated in where the filter  

𝑤 ∈ ℝD∗J  

 At each step 𝑛, we compute 

ℎ/ = 𝑓(𝑤 ∗ 𝑥$:$IJ:1 + 𝑏) 
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where 𝑏 ∈ ℝ, f is a non-linear function such as the hyperbolic tangent. In order to get the 

output 𝐻 ∈ ℝJ∗. where ℎ/ ∈ 𝐻 and 𝐻, we pad zeros at the end of the vector for all the 

𝑥$:$IJ:1 where 𝑖 + 𝑓 − 1 < 𝑁 so there would have exact N vectors being embedded by 

the CNN.  

 After the convolution, we want to apply a per-label attention mechanism which 

learns different part of the base representation based on the label it predicts. With such 

mechanism, we can also get the adjacent word vectors that are most relevant to the label 

we are trying to predict. Hence, for each label 𝑐, we want to get the distribution of the 

location for each label in the document by applying the softmax operation to the matrix-

vector product of the representation we get by convolution with a vector parameter for 

label c. To formalize, to compute the attention vector 𝐷G for label c, 

𝐷G = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝐻VℇG) 

where ℇG ∈ ℝJ is the vector parameter for c and 𝐻V ∈ ℝ.∗J is the transpose of the 

embedded adjacent words vector and 𝐷G ∈ ℝ𝑁.  

 Next, for each label, we can get the vector representation of the entire document 

by summing the product of the attention vector with each adjacent word vectors. 

𝑟G = 𝑑G,/ℎ/

.

/01

 

 where 𝑑G,/ ∈ 𝐷G and  𝑟G is the vector representation of label c in the document. 

Finally, we can compute the probability for each label c by applying a linear layer and a 

sigmoid transformation to the 𝑟G: 

𝑦G = 𝜎(𝛼GV𝑟G + 𝑏G) 
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where 𝛼GV is a vector of prediction weights and 𝑏G is the bias. 

To train the model, we are trying to minimize the binary cross-entropy loss with L2 norm 

using Adam optimizer. (Kingma & Ba, 2015) 

𝐿𝑜𝑠𝑠 𝑋, 𝑦 = − 𝑦G log 𝑦G + 1 − 𝑦G log	(1 − 𝑦G)
a

G01

 

where 𝑦G is the predicted probability label c and 𝑦G ∈ {0,1} is the actual value of label c. 

 

The overall model is illustrated in Figure 9 and Figure 8. 

 

 

 
Figure 8 Multi-Label AT-CNN: Part 2. For each label, we apply its corresponded 
attention vector to the encoded document to get the overall representation of document 
for the label. Then the linear model with sigmoid transformation are applied to make the 
final result in range 0 to 1.  
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Figure 9 Multi-Label AT-CNN: Part 1. Using CNN to encode the document and Attention 
Mechanism to learn the relevance of each adjacent word vectors to each label. 
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CHAPTER IV 

EVALUATION 

 DATA PREPROCESSING 

 Since all the discharge summaries from the MIMIC-III database are in free-text 

format and some components in the document would negatively impact the performance 

of the training model, we want to remove all the unwanted components from the 

documents before training. First, we split the entire documents by space into an array and 

we consider each element of the array as a token. For each token, we converted all the 

capital letters to lowercase, remove all the punctuation symbols and for simplicity and 

efficiency, we removed all the tokens that contains numeric values. Then we count the 

appearance of each word in the entire dataset and converted words that appeared less than 

5 times to the specifically designated token “UNK” which stands for unknown. After 

preprocessing each document, we perform word embedding using word2vec framework 

which converts the word into a k-dimensional vector. By applying word embedding, the 

vectors with similar meanings would have smaller difference than the difference with 

other words.  

  As described in the (Mikolov, Chen, Corrado, & Dean, 2013), word2vec model 

has two implementations: Continuous Bag-of-Words (CBOW) and skip-gram. The major 

difference between the CBOW and skip-gram is that CBOW uses the word sequences 

before and after the target word to make the prediction and skip-gram uses one word to 

predict the preceding word sequences. As compared in (Xiao, Choi, & Sun, 2018), skip-

gram usually serves better performance to represent infrequent words. However, 
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compares to CBOW, it takes longer time for training. In our study, we separately evaluate 

both implementations and their performances are reported in Appendix C.  

 After the tokens are being embedded, we get the output 𝑋 = [𝑥1, 𝑥;, … , 𝑥.] where 

N is the number of tokens in each document and 𝑥$ ∈ ℝD where k is the dimension of the 

word vector. We tried k with different values which includes 100, 200, 400, and 800 and 

as the result, when k = 400, our model works best.  

 For the label we are trying to predict, we extracted all the ICD-9 codes from the 

discharge summaries. For each document, we created a set which contains all the ICD-9 

code appeared in the document. Furthermore, we created another set associated with the 

document which contains the categories of the codes from the set we created.  Then, we 

sum up all the codes and categories, separately and the statistics is shown in Table 1. 

From the table, the Top-10 Codes dataset represents the top 10 most frequent diseases 

appeared in the overall discharge summaries. The names of top-10 codes and categories 

can be found at Appendix A Table 4. By comparing the most frequent codes with the 

code set we got for each documents and the most frequent categories with the category 

set, we noticed that those codes and categories shown in Table 4 are usually just the 

symptoms of the disease which appears much less frequently than others. Therefore, 

based on the experience from past and the report from (Huang, Osorio, & Sy, 2018), we 

know that although predicting the top-10 codes or categories would result much better 

result than predicting top-50s, the result from predicting the top10s has much less impact 

and meaning for real world applications. Hence, in this study, we would only predict the 

top-50 codes and categories and we built separately models for each dataset.  
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Datasets Number of Admission Coverage 

Top-10 Codes 40562 76.93% 

Top-10 Categories 44419 84.24% 

Top-50 Codes 49354 93.60% 

Top-50 Categories 51034 96.76% 
Table 1 The statistics of the datasets from MIMIC-III discharge summaries 

 

 To prepare the training and testing dataset, we used 10-fold cross-validation 

method from Scikit-Learn (Pedregosa, 2011) which is a publicly available python library 

for machine learning. 

PARAMETER TUNING 

Initially, we have the following hyperparameters setting: dropout rate = 0.5; 

learning rate = 0.001; filter size: 5; number of filters: 100. To fine tuning the parameters 

and rates of our model, we used the Spearmint which is a python package to perform 

Bayesian optimization according to the algorithms outlines in (Larochelle & Adams, 

2012). The final hyperparameters that delivers the best performance are as follow: 

dropout rate: 0.3; learning rate: 0.0001; filter size: 10; number of filters: 75; 

EVALUATION METRICS 

In this study, we used the same evaluation metrics that had been used in (Huang, 

Osorio, & Sy, 2018) (Purushotham, Meng, Che, & Liu, 2017) which includes Micro-

averaged and Macro-Averaged Area Under the Receiver operating characteristic curve 

(AUROC) score and F1 score. The macro-averaged AUROC computes the metric 
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independently for each object and then take the average of all objects. Differently, the 

micro-averaged AUROC compute the average metric after aggregate the contributions of 

all classes. The formula to compute Micro-AUROC and Macro-AUROC are as follow: 

𝑀𝑖𝑐𝑟𝑜𝐴𝑈𝑅𝑂𝐶 =
𝑃Ga

G01

𝑃G + 𝑁Ga
G01

 

𝑀𝑎𝑐𝑟𝑜𝐴𝑈𝑅𝑂𝐶 =
1
𝐶

𝑃G
𝑃G + 𝑁G

a

G01

 

where 𝑃G is the count of positive examples for label c and 𝑁G is the count of 

negative examples. 

   

RESULTS 

 The baseline models we used are Logistic Regression, Convolutional Neural 

Network and a hierarchical Attention-bidirectional Gated Recurrent Unit model (HA-

GRU). For the Logistic regression, we converted discharge summaries to embedded 

unigram vectors as input. Then we used the One-vs-rest logistic regression model 

implemented in (Pedregosa, 2011) to make predictions. The CNN model was 

implemented based on the (Kim, 2014) and the structure of the model that results the best 

performance is shown in Appendix A. Last, the RNN model, HA-GRU, which is 

currently one of the best models on ICD-9 code prediction tasks, was implemented based 

on (Baumel, Nassour-Kassis, Cohen, & Elhadad, 2017). 

 In Table 2 and Table 3, we list the best performance that our models could 

achieve. Although for some evaluation metrics, RNN models showed slightly better 
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performance. The model we proposed generally only uses 60% training time compares to 

most RNN models. The complete results of models with different size of the embedding 

dimensions are listed in Appendix B. From those tables, we observed that 400 

dimensions word embedding achieved best result on both CNN and RNN models. 

Moreover, our CNN models showed slightly better performance on predicting Top-50 

code than predicting Top-50 categories, but the RNN models showed better performance 

on predicting Top-50 categories. 

 

 

Models F1 
AUROC AUROC 
Macro Micro 

Logistic Regression 0.4026 0.65 0.918 
CNN 0.4224 0.778 0.924 

HA-GRU 0.4774 0.806 0.954 
Multi-Label AT-

CNN 0.4862 0.814 0.948 

Table 2 F1 and AUROC scores of ICD-9 Top-50 Code Prediction tasks on test set from 
MIMIC-III Clinical Notes 

 

 

 

Model F1 
AUROC AUROC 
Macro Micro 

Logistic Regression 0.417 0.674 0.927 
CNN 0.43 0.794 0.942 

HA-GRU 0.491 0.822 0.963 
Multi-Label AT-

CNN 0.485 0.837 0.962 

Table 3 F1 and AUROC scores of ICD-9 Top-50 category Prediction tasks on test set 
from MIMIC-III Clinical Notes 
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CHAPTER V 

CONCLUSION 

In this study, we proposed a learning-based automatic ICD-9 code assignment 

model that outperforms most rule-based and learning-based models on code assignment 

task. Our model consists a simple convolutional neural network with attention 

mechanism that performs multi-label prediction based on free-text documents. Our model 

yields strong improvements over previous metrics on several formulations of the ICD-9 

code prediction tasks, while providing satisfactory explanations for its prediction. 

Although we focus on the prediction of ICD-9 codes, our model can also made ICD-10 

code predictions without modification or perform real-time diagnosis recommendation 

based on the clinical notes. Compares to the recurrent neural network models, one of the 

advantages of our model is that it can also learn the base representation of document on 

sentence level, but our CNN model structure is much simpler than RNN models which 

greatly reduces the training time.  

During processing our datasets, we had noticed that the diagnosis codes in the 

documents are also have hierarchies. For example, a lot of ICD-9 code are medical 

condition, like hypertension. Sometimes, a patient could be assigned to numerous codes 

but sometimes only one code is the cause of all other codes. For examples, thrombus, also 

known as blood clot, is the final product of blood coagulation step in hemostasis. It could 

cause trauma, hypertension. Since those side effects are commonly shared with other 

diseases and are frequently appears in most ICU patients, if our model could only predict 

the symptoms without correctly predicting the causes, then our model could have much 

less usefulness for real world applications. In current studies, all the diseases codes are 
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treated equally. Therefore, in the future work, we should build a model that could assign 

weights to the labels based on the hierarchy of the codes.  

Moreover, most studies on the ICD-9 code prediction tasks uses discharge 

summaries which is usually written after the patient was finished the session. Although 

discharge summaries provide the information that is nearest to the ground truth of 

patient’s condition, we should also try to build the model that takes time series dataset to 

make the prediction, so it could continuously provide recommendation of diagnose to 

medical stuffs.  
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APPENDIX A 

 

 

Top-10 Codes Coverage Top-10 Categories Coverage 

Hypertension 38.01% Essential hypertension 39.15% 

Congestive heart failure 24.35% Cardiac dysrhythmias 31.81% 

Atrial fibrillation 23.87% Disorders of fluid electrolyte 27.90% 
Coronary 

atherosclerosis 23.09% Disorders of lipoid metabolism  26.95% 

Acute kidney failure 16.89% Other chronic ischemic heart 
disease 26.70% 

Diabetes Type II 16.65% Diabetes mellitus  26.20% 

Hyperlipidemia 16.12%  Heart failure  25.28% 
Acute respiratory 

failure 13.75% Other diseases of lung 24.65% 

Urinary tract infection 12.22% Other and unspecified anemias 23.52% 

Esophageal reflux 11.67% Acute kidney failure 21.14% 
Table 4 The coverage of most frequent disease code and categories in the MIMIC-III 
discharge summary 
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APPENDIX B 

 

Figure 10 Convolution Neural Network Architecture for ICD-9 code prediction 
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APPENDIX C 

 

Model Embedding method F1 
AUROC AUROC 
Macro Micro 

Logistic Regression 

CBOW(k=100) 0.368 0.543 0.853 
CBOW(k=200) 0.419 0.626 0.767 
CBOW(k=400) 0.399 0.597 0.948 
CBOW(k=800) 0.379 0.668 0.943 

CNN 

CBOW(k=100) 0.424 0.716 0.902 
CBOW(k=200) 0.422 0.778 0.924 
CBOW(k=400) 0.415 0.768 0.913 
CBOW(k=800) 0.425 0.754 0.915 

HA-GRU 

CBOW(k=100) 0.377 0.757 0.914 
CBOW(k=200) 0.421 0.727 0.868 
CBOW(k=400) 0.454 0.792 0.906 
CBOW(k=800) 0.425 0.716 0.902 

Multi-Label AT-
CNN 

CBOW(k=100) 0.380 0.715 0.904 
CBOW(k=200) 0.422 0.752 0.921 
CBOW(k=400) 0.486 0.814 0.948 
CBOW(k=800) 0.475 0.811 0.934 

Table 5 Performance of models on Top-50 Code Prediction with input embedded with 
Continuous Bag-of-Words method 
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Model Embedding method F1 
AUROC AUROC 
Macro Micro 

Logistic Regression 

SG(k=100) 0.390 0.571 0.856 
SG(k=200) 0.435 0.604 0.875 
SG(k=400) 0.425 0.634 0.905 
SG(k=800) 0.403 0.650 0.918 

CNN 

SG(k=100) 0.403 0.736 0.859 
SG(k=200) 0.425 0.708 0.847 
SG(k=400) 0.394 0.739 0.867 
SG(k=800) 0.404 0.790 0.873 

HA-GRU 

SG(k=100) 0.435 0.741 0.914 
SG(k=200) 0.474 0.765 0.932 
SG(k=400) 0.477 0.806 0.954 
SG(k=800) 0.462 0.804 0.950 

Multi-Label AT-
CNN 

SG(k=100) 0.355 0.691 0.859 
SG(k=200) 0.365 0.786 0.875 
SG(k=400) 0.462 0.841 0.815 
SG(k=800) 0.414 0.770 0.887 

Table 6 Performance of different models on Top-50 Code Prediction with input 
embedded with Skip-Gram method 
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Model Embedding method F1 
AUROC AUROC 
Macro Micro 

Logistic Regression 

CBOW(k=100) 0.381 0.550 0.771 
CBOW(k=200) 0.397 0.622 0.796 
CBOW(k=400) 0.407 0.630 0.814 
CBOW(k=800) 0.417 0.674 0.927 

CNN 

CBOW(k=100) 0.423 0.718 0.920 
CBOW(k=200) 0.430 0.794 0.942 
CBOW(k=400) 0.425 0.783 0.931 
CBOW(k=800) 0.426 0.779 0.930 

HA-GRU 

CBOW(k=100) 0.386 0.776 0.945 
CBOW(k=200) 0.429 0.741 0.885 
CBOW(k=400) 0.471 0.817 0.924 
CBOW(k=800) 0.442 0.725 0.920 

Multi-Label AT-CNN 

CBOW(k=100) 0.388 0.729 0.922 
CBOW(k=200) 0.430 0.767 0.939 
CBOW(k=400) 0.486 0.830 0.953 
CBOW(k=800) 0.485 0.837 0.962 

Table 7 Performance of models on Top-50 Category Prediction with input embedded with 
Continuous Bag-of-Words method 
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Model Embedding method F1 
AUROC AUROC 
Macro Micro 

Logistic Regression 

SG(k=100) 0.397 0.588 0.873 
SG(k=200) 0.404 0.606 0.893 
SG(k=400) 0.414 0.647 0.904 
SG(k=800) 0.425 0.675 0.916 

CNN 

SG(k=100) 0.411 0.721 0.863 
SG(k=200) 0.424 0.722 0.864 
SG(k=400) 0.405 0.747 0.871 
SG(k=800) 0.409 0.736 0.874 

HA-GRU 

SG(k=100) 0.444 0.750 0.923 
SG(k=200) 0.471 0.793 0.946 
SG(k=400) 0.491 0.822 0.963 
SG(k=800) 0.482 0.823 0.962 

Multi-Label AT-CNN 

SG(k=100) 0.361 0.705 0.866 
SG(k=200) 0.386 0.807 0.877 
SG(k=400) 0.471 0.845 0.832 
SG(k=800) 0.431 0.813 0.920 

Table 8 Performance of models on Top-50 Category Prediction with input embedded with 
Skip-gram method 
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