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THESIS ABSTRACT

Sudharshan Srinivasan

Master of Science

Department of Computer and Information Science

June 2019

Title: Model-Based Algorithm Selection Techniques

With significant research going into the development of scientific software

over the years, there exist a plethora of toolkits using different algorithms to solve

the same problem. But the performance of these toolkits are very much problem

specific and depend on multiple factors, including experimental setup and hardware

configurations. This makes it very difficult to choose a suitable software beforehand

without testing them for specific problems while the wrong choice of software

contributes to severe performance downgrade. In this thesis, we address this

selection challenge by proposing a faster and reliable model-based approach instead

of empirically running time-consuming experiments to select suitable software

toolkits. In specific, we would be looking at selection for two classes of algorithms

that solve parallel graph processing applications and systems of linear equations.

Appropriate metrics have also been introduced to evaluate the quality of selection

techniques
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CHAPTER I

INTRODUCTION

The research behind developing software toolkits for scientific problems

has significantly improved along the years with a variety of tools available for

efficiently solving high volumes of mathematical computations. Several different

optimizations in algorithms have spawned a vast array of toolkits with each offering

a unique advantage to specific problem characteristics, but a silver bullet that

efficiently performs well across all unique problems and experimental setups remain

elusive. This brings about a new selection concern where the wrong choice of

an algorithm could lead to massive performance downgrades that adds up with

multiple iterations of the experiment performed across an application.

This is compounded by the fact that the selection is usually made by

researchers who are specialists in that application but have limited knowledge when

it comes to identifying the minor intricacies in experimental setups that could lead

to significant performance improvements.

In this thesis, we provide a model-based approach towards solving this

selection concern for two classes of algorithms, namely, selection of parallel graph

processing packages and solvers for linear systems. A web-based framework

using the proposed approaches was also developed for these applications. It is

essential for researchers to choose reliable algorithms and toolkits, and we aim to

provide this solution. Reliability refers to not only having consistent performance

improvements but also never to have experiments that fail, which in reality is a

common concern.

One way of ensuring reliability is to choose algorithms from the empirical

analysis of exhaustively running all combinations of experiment setups. But this
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scales up pretty quickly making it unfeasible to run experiments just for selection.

For example, there are over 120 solvers available for linear systems, and each can

be used on many different experimental setups. It would take weeks or months to

figure out which experimental setup and algorithm work best for all their linear

systems in an application. A model-based approach circumvents all this by using

machine learning techniques to predict the quality of solvers for specific systems

rather than explicitly running those experiments to determine quality.

The modeling is done on the metadata of the problem set, which tries to

capture the relation between the problem and the criterion variable. The criterion

variable for both the classes of algorithms is execution time while the metadata

acts as features of the learning models. The fundamental motivation behind our

approach towards selection is the fact that given a problem set, the time taken

to perform feature extraction and modeling for criterion variable is still less than

actually running that experiment.

Chapters two and three deal with background information and related

works, while chapter four presents our framework and its workings. In specific,

we provide both a predictive and classification modeling based approach towards

algorithm selection for the two mentioned classes of algorithm. For the latter class,

we have also provided a ranking framework that gives ranked list of solvers for

specific linear systems. Chapter four discusses and analyses the results we obtained

for all the experiments performed, followed by the conclusion chapter, which gives

us a holistic view of the framework and the final models selected for use. It also

offers details of the current and future work conducted by us along the same lines

and identifies where improvements could be made to the existing methodologies.
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CHAPTER II

RELATED WORK

Improving quality and performance of software toolkits is a really mature

field with a lot of active research going towards development of new algorithms

and techniques for efficiently solving various problems. But a lot of these solutions

are still application dependent and works with different degrees of performance for

each new application. The end performance is also a factor of the experimental

setup and the hardware configurations which are not extensively taken into account

when developing these toolkits. The combination of these facts have resulted in a

plethora of software toolkits available for most problems. But with that said, not

a lot of research has gone into selecting the best toolkits for specific problems with

the characteristics of application and experimental setup in mind.

In specific, the two classes of algorithms we would be looking at, namely,

algorithms for parallel graph processing and solving linear systems are further

unexplored when it comes to choosing the right software for varying experimental

setups. An extensive survey on large scale graph processing packages is done

by [2], analysing the performance metrics of various graph packages. Surveys of

iterative solvers and preconditioners are relatively more explored with [4] giving us

performance evaluations for solvers focusing on large linear systems. Likewise, [5],

[7], [6] also gives us a comprehensive survey of solvers and preconditioners.

But it is to be noted that all of the mentioned works are surveys on existing

solutions that runs empirical experiments to analyze performance. They provide

inferences on best performing solvers based on empirical evidence but none of them

suggest solvers for specific problems, let alone experimental setups. Papers [24] and
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[16] takes one step closer by providing a portfolio based approach for selecting SAT

solvers. But these are once again done through empirical evidences.

The closest work to us that uses machine learning based models for software

solver selections are [14] and [17]. The former uses K-nearest neighbor based

approach while the the latter is the closest to our research which uses a similar

feature selection and classification based approach for selection. But none of

them to the best of our knowledge, perform predictive modelling. In this thesis,

we look at selection of software toolkits with a machine learning model based

approaches that uses both predictive modeling and classification for fast and

accurate selection.
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CHAPTER III

BACKGROUND AND TOOLS

This thesis is at the intersection of HPC and data science, using a variety

of tools and other supporting material that readers need to be familiar with before

using our proposed framework. We can broadly classify these tools as:

3.1 Graph processing systems

For our first class of algorithms, we performed numerous experiments on

graph datasets using six parallel graph processing packages [18]. The first five

packages were implemented using shared memory parallelism while we included

one package that was implemented using distributed memory parallelism.

3.1.1 The Graph 500. This package provides reference OpenMP

implementations for benchmarking graph algorithms using shared memory

parallelism. They also provide distributed memory and cloud/MapReduce

implementations but we focus only on shared memory for this package. It accepts

graphs in compressed sparse row (CSR) formats.

CSR is used to represent sparse matrices by using three vectors for storing

the non-zero elements along with their count and indices, thereby removing the

redundancy of storing zero elements.

3.1.2 The Graph Algorithm Platform (GAP) and GraphBIG

benchmark suite. Both are graph benchmarking suites developed that aims

at providing standardized graph processing evaluations and optimized reference

implementations for shared memory parallelism [3] [?]. They also use a CSR

representation to store input graphs.
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3.1.3 GraphMat. GraphMat is a library that provides OpenMP

reference implementations for graph algorithms similar to GAP but it uses a doubly

compressed sparse row representation for input graphs [23].

3.1.4 Galois. Galois is a multilevel programming model that also uses

shared memory parallelism for it’s reference implementation. It provides its own

execution model for implementing algorithms on parallel setups.

3.1.5 PowerGraph. Unlike the other five chosen packages,

PowerGraph uses distributed memory parallelism for reference implementations

of the mention algorithms [9]. It also provides shared memory implementations but

we focus only on the former variant in this framework. For storage, it uses its own

novel schema on top of CSR.

3.2 Algorithms

For the graph processing applications, we look at four different graph

theoretic algorithms that the framework incorporates while for linear systems, we

consider around 70 different solvers, which are in turn 70 different algorithms out

of which, we will discuss the two baseline solvers used across our thesis. The four

graph theoretic algorithms are briefly described in the remainder of this section.

3.2.1 Breadth-first search (BFS). It is a search algorithm that

iteratively traverses a tree or graph data structure for any specific query node[25].

Starting at the root vertex, all the neighbouring vertices within the same depth

level are explored before going deeper into a specific branch unlike depth-first

search which does the opposite. It has a computational complexity of O(V + E)

where V and E denote the number of vertices and edges respectively.

3.2.2 Single-source shortest path (SSSP). It is a graph theoretic

algorithm that identifies a path between any two vertices such that the sum of
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weight of edges between the two vertices are minimized [13]. It has a computational

complexity of O(V + E)logV .

3.2.3 Page rank. It is another graph theoretic algorithm that

identifies and ranks nodes based on their impotence which is defined by the degree

of the node [20]. The computation complexity of page rank is O(V + E).

3.3 Machine learning models and validations

In this thesis we concentrate on a machine learning based approach towards

selection so we will look at multiple learning models. In specific, we will discuss two

classification models and one predictive model.

3.3.1 Linear regression. It is a modeling approach for capturing

the relationship between dependent and independent features linearly [22]. By

capturing this relationship, a model can now predict the independent feature given

the dependent features. We implement it using SKlearn’s python based library [21].

3.3.2 Logistic regression. Similar to linear regression, this model

also finds the linear relation between dependent and independent features but it

fits as a classification problem rather than predictive modeling [11]. This is also

implemented using SKlearn [21].

3.3.3 Random Forest. Is a supervised learning algorithm that can

be used for both predictive modeling and classification. It models its application

by creating an ensemble of decision trees or namely, a ’forest’ which are aggregated

to give a more stable prediction than normal decision trees [15]. The general idea

behind this is the fact that a combination of learning models improve accuracy

as different splits in decisions can cause massive difference in predictions and one

would ideally want the mean across all possible trees generated.
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3.4 Miscellaneous

Some general tools that does not belong to any of the previous classifications

were also used across this thesis.

3.4.1 Portable, Extensible Toolkit for Scientific Computation

(PETSc. PETSc is a framework that provides data structures and routines

for solving partial differential equations used by scientific applications [1]. The

framework contains scalable routines that can run in a parallel environment using

MPI standard for all inter-process communications. The routines we use for solving

the linear systems are from PETSc.

3.4.2 Multi-physics object oriented simulation environment

(MOOSE). It is a multi-physics framework that provides high level interface

and real-time applications for mathematical models given by the PETSc library

[12]. We use the various linear systems offered by MOOSE as one of learning set for

the class of algorithms that solves system of linear equations. We use the MOOSE

learning set for serially execution experiments.

3.4.3 SuiteSparse Matrix Collection. It is a growing set of sparse

matrices from real-life applications that is used to evaluate and benchmark matrix

algorithms by the linear algebra community [8]. It consists of applications ranging

from structural engineering, computational fluid dynamics, model reduction,

electromagnetics, semiconductor devices, thermodynamics, materials, acoustics,

computer graphics/vision, robotics/kinematics, and other discretizations. We use

the SuiteSparse collection for creating the training set of parallel experiments.

3.4.4 Beautiful soup. The BeautifulSoup library is used for web

scraping in python. We use beautiful soup to extract the metadata of real world

graph datasets from SNAP and KONECT. A regular HTTP request is made to the

8



server which returns HTML page as the response. The response is then parsed to

BeautifulSoup format so we can use BeautifulSoup to work on it. Using functions

on the BeautifulSoup object like “find all” and “get” can help in getting the desired

object.
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CHAPTER IV

METHODOLOGY

In the previous chapters, we gave a short synopsis of what the framework

tries to achieve and why we need it. We also briefly discussed the supporting

concepts required for understanding the framework. In this chapter, we describe

the in-depth concepts behind the framework along with explaining why we

implemented a particular technique and all the other alternative techniques that

we tried or contemplated trying. Although this chapter covers details about all

implementations and techniques we tried, information on why some of the methods

failed or problems with implementations are discussed in the results and analysis

section.

We have previously mentioned that our framework provides selection

techniques for two broad classes of problems, namely, parallel graph processing and

system of linear equations. To maintain the specified structure, this chapter will be

sub-categorized into each of those problems.

4.1 Selection of parallel graph processing packages

It has already been established that with a plethora of available parallel

graph processing packages, selection based on hard empirical evidence of various

experiments are time and resource consuming to obtain and as a result, we are

introducing machine learning based package selection.

In terms of what we can achieve with a machine learning based framework

for package selection, we could either perform execution time prediction or a binary

classification of packages for a particular graph and hardware features. Hence, this

section is further categorized into two subsections, with each detailing one of the

aspects.
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4.1.1 Execution time prediction of graph processing

experiments. The objective here is to efficiently and accurately predict the

execution time of a particular experiment without explicitly running those

experiments. An experiment in this context is one specific package running

one specific algorithm over one specific graph dataset across given hardware

configurations.

Machine learning-based projects differ from each other in various ways, but

the two universally common requirements is a dataset and a model. To distinguish

between a machine learning dataset and graph dataset, throughout this thesis, we

would be referring to the former as a learning set and the actual graph dataset as a

dataset.

The learning set in this case is a collection of individual runs of experiments

which consists of three components, i.e.) dataset, algorithm, and package along

with its features and ground truth. The dataset is any graph dataset in edge-

view format. Datasets come in two flavors. One is a synthetic dataset which we

auto-generated. We use the Graph500 synthetic graph generator which creates

a Kronecker graph with initial parameters of A = 0.57, B = 0.19, C = 0.19, and

D = 1(A + B + C) = 0.05 and set the average degree of a vertex as 16. Hence,

a Kronecker graph with scale S has 2S vertices and approximately 16 ⇤ 2S edges.

Kronecker graphs are a generalization of RMAT graphs. The RMAT takes the

scale as a parameter. Most of our experiments have a scale of 22, which is 4,194,304

vertices and an average of 16 edges per vertex.

Another flavor of the dataset is real-world dataset. These are the graph

datasets that that are modeled from real-world applications like connectivity map

of Facebook and Google. These real-world datasets are obtained from scraping
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Figure 1. Multiple levels of abstractions in the learning set

the web sources using Beautiful soup. The web sources include SNAP and Konect

databases. Overall, we have managed to get 450 different graph datasets that are a

combination of real-world and synthetic graphs.

The next component is the algorithm. In our framework, a list of four

algorithms which includes breadth-first search (BFS), triangle count (TC), single

source shortest path (SSSP), and page rank (PR) is implemented on each dataset.

More details on these algorithms are explained in the background section. Each of

these algorithms is performed by six different parallel graph processing packages

that include GAP, GraphMat, Graph500, GraphBig, Galois, and Powergraph,

which are again explained in detail in the background section.

4.1.1.1 Learning set. Figure 1 shows us the multilevel abstraction

in our learning set, where each graph dataset has four possible algorithms, and six

different graph processing packages can implement each algorithm. As a result,

24 different experiments need to be conducted for each graph dataset bringing

our total experiment count to 4000, which is the size of our learning set. Each

experiment in the learning set is accompanied by the features of the graph and

its ground truth value, which in this case is the execution time of that particular

experiment.
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Figure 2. First 20 rows of learning set

Since different algorithms have different execution times, it won’t really be

fair if we trained our model across all algorithms. For this purpose we also filter the

datapoints with respect to each algorithm. The learning set with the first 10 entries

can be seen in figure 2

4.1.1.2 Feature selection. The metadata of each experiment acts as

the features upon which a prediction model is implemented. The features are a

mix of both metadata of the graph by itself and hardware configurations. Based

on regression analysis, the 12 features that had coefficients above 0.2 were finally

chosen in the learning set. Features with high coefficients signify high correlation

with execution time and are more likely that they would contribute more towards

an accurate prediction by the model. The first three features with the highest

coefficients are physical properties of the graph and hardware:

1. Number of vertices

2. Number of edges

3. Number of Threads

13



Figure 3. Average clustering coefficient

Figure 4. Connected components

The number of vertices has a correlation coefficient of 0.86 with respect to

execution time. This is expected since execution time is largely dependent on the

size of the graph.

Similarly, the number of edges is correlated with execution time with a

coefficient of 0.81. The number of threads follows behind with a coefficient of 0.77

as it determines the communication complexity and time lost in transferring data.

The next set of features relates to the density and connectivity of the graph:

Average clustering coefficient

The clustering coefficient is a measure of how well the neighbors of a node

are connected. 3 depicts an example calculation of the clustering coefficient. The

local clustering coefficient of the green node is computed as the proportion of

14



connections among its, which are realized compared with the number of all possible

connections. In the figure, the green node has three neighbors, which can have a

maximum of 3 connections among them. In the left part of the figure, all three

possible connections are realized (thick black segments), giving a local clustering

coefficient of 1. In the middle part of the figure, only one connection is realized

(solid black line), and two connections are missing (dotted red lines), giving a

local cluster coefficient of 1/3. Finally, none of the possible connections among

the neighbors of the green node are realized, producing a local clustering coefficient

value of 0. The average across all nodes in the graph gives an average clustering

coefficient. This feature has a correlation coefficient of 0.67.

Nodes and edges in largest connected components

A set of nodes are said to be strongly connected if there is a path between

all pairs of nodes within the set. In Figure 4, it can easily be seen there are three

strongly connected components (SCC). The number of nodes in the largest SSC

tells us how big the most connected part of the graph is. This feature has a

correlation coefficient of 0.61 towards execution time. Likewise, a set of nodes are

said to be weakly connected if there is any path regardless of direction between

all pairs of nodes within the set. In the same figure 4, all of the nodes belong to

one large weakly connected component as there exist some path between all pairs

of nodes which doesn’t necessarily need to be direct like SCC. This feature has a

correlation coefficient of 0.52.

Number of triangles and fraction of closed triangles

A triangle is three nodes that are connected by either two (open triangle) or

three (closed triangle) undirected ties. The fraction of closed triangle is the ratio

of closed triangles to the total number of triangles. The number of triangles has a

15



correlation coefficient of 0.44, while the fraction of closed triangles has a correlation

coefficient of 0.48.

Diameter and effective diameter

The diameter of a graph is the maximum eccentricity of any vertex in the

graph. That is, it is the greatest distance between any pair of vertices. To find the

diameter of a graph, first, find the shortest path between each pair of vertices. The

greatest length of any of these paths is the diameter of the graph. The effective

diameter is the shortest hops in which 90% of the nodes are covered. They have a

correlation coefficient of 0.32 and 0.39, respectively.

The graph density based features tend to have a high correlation to the

execution time as they determine the number of iterations for the algorithms we

chose. More iterations correspond to more execution time.

Apart from these features, other graph properties were not selected as their

correlation coefficient was less than 0.3, which we used as a threshold for selected

features. These include :

– Wedge count - A wedge is defined as a path with two hops. A triangle has 3

possible wedges.

– Square count - Similar to triangles, a square is a closed loop enclosed by 4

edges.

– Fill - It is a metric to measure the fraction of existing edges to total number

of possible edges

– Spectral norm - It is the largest absolute eigenvalue of the graph’s

adjacency matrix.
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4.1.1.3 Prepossessing. Although we have learning set with graph

data, hardware configurations, and its execution time as ground truth, it is still

not ready for a model to be trained on. That requires a series of additional

prepossessing steps to clean the learning set fully. The prepossessing steps in its

respective order are:

Removing noise The most basic step in any data cleaning is removing noise.

A noise comes in multiple types, but the most common type is missing features.

For synthetic datasets, this isn’t a problem as all the features are manually

generated, and as a result, we have control over what features are needed. But

for real-world graphs, this can be a problem as we scrubbed the features provided

by SNAP and Konect for each of its datasets. Since we are getting our real-world

graphs from two different sources, the features provided don’t necessarily match.

One such example is the wedge count feature. Konect offers wedge count for its

datasets, but SNAP doesn’t. Hence we had to interpolate wedge count for the

experiments with SNAP dataset or drop those points entirely from the learning

set. Dropping data points mean a smaller learning set, and since we already don’t

have too many points to spare, we resort to imputing those missing values rather

than dropping them.

In general, there are some excellent multi-feature imputers available, but

since only a fraction of experiments uses Konect datasets, a simple imputer does

fine with this learning set. The sklearn’s simple imputer uses one of three methods

to fill missing, e.g., mean, median, mode while for our framework, we used a simple

imputer with median fill.

Another typical type of noise comes from features that have infinity as its

value. This mostly occurs for features that rely on convergence for its final values.
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During feature computation, when models don’t converge, it sets its default value

as float max, which can be considered as infinity. The only way to handle data

points with unconverged features is to drop that data point entirely. But on a

positive note, we ended up losing only 30 data points due to unconverged data.

Feature normalization Another important step for accurate predictions

is for all the features to be scaled within the same range. Before normalization,

different features have values in different ranges. For example, the value of the

average clustering coefficient ranges between 0 and 1, while the number of edges

and vertices are absolute counts. An ideal normalization would be to scale down all

features between 0 and 1. For this purpose we use min-max scaling

Converting nominal data to numeric Learning set columns like algorithm

and package have nominal categorical data but using a regression model(discussed

ahead in the section) requires only numeric data, so we assign a unique numeric

value to each category within a feature column. For example, there are four

different algorithms; hence, we assign them unique values between 0 and 3.

Likewise, we also assign values for the six packages.

One-hot encoding Now that the categorical data have been assigned numeric

values, this promotes a new problem where the model doesn’t recognize it as

categorical data and treats those feature to scale rather than taking it for its face

value. By not doing so, the value of category influences the weights assigned to

features. For example, we have assigned the package GAP with category 2 and

Galois with category 3. Although there is no underlying significance of the category

number, the model treats Galois better than GAP.
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Figure 5. Example of 1-hot encoding

To avoid this problem, we encode the category into a 1-hot vector where

the position in a vector addresses each category with its size being the number of

categories. Figure 5 gives us an excellent example of how 1-hot encoding is done.

4.1.1.4 Fitting the model. After completing prepossessing, the

learning set is ready for training. In this thesis, we will discuss four different

configurations of models used with each one slightly tuned based on the previous.

Results from each configuration and its analysis are discussed in the next chapter.

1. Linear regression with unnormalized learning set

2. Linear regression with normalized learning set

3. Ridge regression with unnormalized learning set

4. Ridge regression with normalized learning set

By analyzing the data points, we can see that they are not linearly

separable. But going ahead in that direction, we initially tried using linear

regression. Before exploring options for normalizing the learning set, we wanted

to see how the models fared on raw data to identify new strengths and weakness
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of each. The configurations with unnormalized learning set include features that

aren’t scaled to a 0-1 range.

Another problem we notice after analyzing the learning set is that the

features undergo the phenomenon of multicollinearity. A collection of features

are said to be multicollinear if they are linearly proportional to each other to

a certain extent. In that case, the features can derive themselves from each

other. This creates a problem as the main objective of regression analysis is to

isolate independent features from each other and tune one feature at a time until

predictions improve with keeping other features constant and thus finding the

relationship between the dependent and independent features. But it’s hard to

estimate this relationship if the independent features change in unison.

For example, the synthetic graphs are generated with 16 edges per vertex

on an average. As a result, the number of edges can be linearly derived to a

certain extent from the number of vertices. Dropping one of these features is also

not an option as when dealing with execution times in such small margins, the

minor differences in the size of the graph contribute significantly towards the final

predictions.

To solve this problem, we chose a ridge regression model, which is a class

of regression that uses l2 regularization. Here the size of coefficients is limited

by adding a penalty equalling the square of the magnitude of coefficients. To

simplify, it adds a bias to each feature to avoid division by zero encountered

by multicollinear features. Ridge regression on normalized and unnormalized

learning sets make up the last two configurations. More on ridge regression and

multicollinearity is given in the background section.
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4.1.1.5 Experiments and Validation. To validate the accuracy of

the model, the learning set is further divided into training and testing set. The

split in data points consists of a 70% allocation to training set and 30% allocation

to the testing set from a total of 4000 data points. This is done by Sklearn’s

test_train_split() with splits into random test-train subsets.

4.1.2 Classification of graph processing experiments. Predictive

modeling of execution time is great, but interpreting and coming to a conclusion

with such small values can be challenging. Minor inaccuracies in predictions will

significantly add up across the course of an application running thousands of

experiments. But instead, a user would greatly benefit if he or she knows whether a

specific package is worth using for a particular experiment. For this reason, we have

implemented a classification framework that predicts a binary class label of “good”

or “bad” based on the features of the graph dataset and hardware configurations.

4.1.2.1 Preprocessing. To perform classification, we must perform the

same preprocessing steps as the regression framework except for converting nominal

to numeric. Apart from that, we must also add a class label for training.

Traversed edges per second We could use execution time solely as the

metric for classifying between a good and bad experiment, but that wouldn’t

take the size of graph datasets into account. To use an appropriate metric that

scales with the size of the dataset and is also a function of execution time, we use

traversed edges per second(TEPS) as a metric for classification. TEPS is defined by

:

TEPS =
Number of edges

Execution time

TEPS is a useful metric for this problem as it not only scales with execution

time but also captures both the computational and communication capabilities of
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the experiment and hardware. One must note that larger TEPS indicates better

performance as it’s a factor of execution time rather than a multiple of it.

Binary label classification

For this framework, we decided to use a binary classification of “good” and

“bad” for a particular experiment based on the TEPS value. For any experiment n,

it’s binary class label could be defined as:

label(n) =

8
>><

>>:

good , if x > 2/3((
PN

n=1 xn)/N)

bad , if x < 2/3((
PN

n=1 xn )/N)

,where N is the number of experiments in the learning set and x is the TEPS value

of a particular experiment. Intuitively, this function classifies an experiment as

“good” if it has a TEPS value of less than 2/3 times the mean across all the TEPS

values in the learning set and “bad” otherwise. This split approximately labels 30%

of the learning set as “good” and 70% as “bad”.

4.1.2.2 Classification model. Similar to predictive modeling, we will

have two configurations of models with the latter improving upon the former.

1. Logistic regression with normalized learning set

2. Random forest with normalized learning set

Even though it was established that the learning set is not linearly separable, our

first model is logistic regression just for the sake of comparison with our random

forest model. More details on the two models are given in the background section.

4.1.2.3 Experiment and validation. To validate the accuracy of

the model, the learning set is further divided into training and testing set. The

split in data points consists of a 70% allocation to training set and 30% allocation
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to the testing set from a total of 4000 data points. This is done by Sklearn’s

test_train_split() with splits into random test-train subsets.

4.2 Selection of solvers for a system of linear equations

For any software selection framework, a classification model based on

performance is a great first step, but a binary classification has significant

drawbacks on its own. First off, users need to provide their choice of package for

which the framework will classify as “good” or “bad” based on the experiment setup.

This is added work for a user who doesn’t really care about the package and wants

a good one to use. But more importantly, a binary classifier may yield a lot of

possible good packages giving the user further decisions to make, thereby defeating

the primary purpose of this framework. It would be a significant improvement if

the framework could provide what the best package would be for that experiment.

Or better yet, a ranked list of packages for that experiment.

4.2.1 Ranking framework. To achieve the goal mentioned above,

we look at a different class of application to the previous graph processing one.

Specifically, we aim to provide a framework that gives a ranked list of linear solvers

for a system of linear equation.

4.2.1.1 Learning set. Similar to the previous application, this also

contains experimental setup along with its features and ground truth value as

data points of the learning set. The experimental setup, in particular, is a system

of linear equation in the form of matrix A and right-hand vector B together

represented as system M. Each system M has a list of solvers and preconditioners.

We use two different learning sets with one each for parallel and serial execution.

4.2.1.2 Two stage ranking algorithm. After analyzing the results

of both classification and predictive modeling, both of which are discussed in the
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Figure 6. Overview of the ranking algorithm

next chapter, we provide a ranking algorithm that tries to benefit from the unique

advantages that both offer on the learning set.

The basic idea behind this algorithm is the fact prediction works well on

data that has been classified “good” or “bad”. When the class label is added as an

additional feature for predictive modeling, the quality of predictions improve. The

two stages refer to the two models for classification and prediction being used by

the algorithm. With a reasonable enough prediction accuracy of execution time for

different experiments, they could potentially be sorted to give a good ranked list of

solvers that work best for a particular system of linear equations. Figure 6 provides

us with the workflow of the two-stage algorithm.

Preprocessing and classification

The prepossessing done on the learning set for linear systems before we can

fit our models is similar to the steps done to the graph processing learning set

discussed in section 4.1.2.1 apart from the fact that there are no categorical data

and hence we don’t need to convert to 1-hot encoding. The classification is also
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similar to graph processing class of algorithms discussed in 4.1.2.2 but it uses a

C.45 model rather than random forest.

Fitting the model and hyperparameters After classification, the

learning set with a “good” or “bad” class label is ready for predictive modeling. By

analyzing the results from predictive modeling in the graph processing application,

We decided to use the final model configuration that uses ridge regression [10] on

the normalized dataset. Hyperparameter tuning was done with the help of 5-fold

cross-validation. After tuning, the best set values for hyperparameters were:

1. Regularization strength Since ridge regression uses L2 regularization, a

regularization strength must be provided. After tuning from cross-validation,

we settled on a value of 0.8.

2. Intercept This determines whether or not to fit an intercept for this model.

Data that centered don’t need an intercept, but that wasn’t the case with our

learning set. Hence we decided to use an intercept.

3. Normalize Because we performed our own normalization to the learning set,

we opted not to choose Sklearn’s default choice of L2-normalization.

4. Solver This determines what choice of solver must be used to compute the

ridge coefficients. For this problem, we used a singular value decomposition

(SVD) solver.

Sorting

After training, the model is ready for predictions and ranking. The ranking

is done by sorting the predicted values using the quicksort algorithm. It is well

established that quicksort is the fastest sorting algorithm with time complexity of

O(n log n).
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Table 1. Hyperparamets and its final value

Hyperparameters Values
Regularization strength 0.8

Intercept True
Normalize False

Solver SVD

Figure 7. Validation setup for testing

4.2.1.3 Experiment and validation. Our experimental setup for the

SuiteSparse matrix collection involves solving each system of equations by using a

set of 120 linear solvers and preconditioners offered by the PETSc library thereby

giving 127,569 different experiments. Similarly, systems in MOOSE are solved by a

set of 70 linear solvers-preconditioner combinations offered by PETSc.

The learning set is further split into one combined training set and

individual testing sets with 1 per each system of equations. This can be visualized

by figure 7, which is the setup used to validate the experiment. After, classification

and before predictive modeling, experiments that are tagged “good” make up 85%

of the training set while the rest is made up of “bad” experiments. The selection of

good experiments for training is made in random.
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The idea behind having a training set dominated by “good” experiments is

that it is a lot harder to predict those experiments since the execution times are to

the power of -5 or lesser. This means even the slightest of inaccuracies can lead to

drastic speed downs. On the other hand, “bad” experiments are to the power of -3,

thereby reducing the impact of slight inaccuracies making it much easy to predict.

To make sure the model isn’t over-fitting to “good” experiments, we

made the testing sets entirely with “bad” experiments and just a single “good”

experiment. Although in reality, one would rarely encounter a system of equation

with only the choice of bad solvers, we wanted to simulate how the ranking

framework performs in the worst conditions.
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CHAPTER V

RESULTS AND ANALYSIS

In this chapter, all possible results and metrics to evaluate the proposed

framework, followed by its respective interpretations are provided. Final conclusions

on the framework as a whole with its strengths and weaknesses are given in the

conclusion chapter. We will first look at evaluation metrics for predicting the

execution time of parallel graph processing experiments followed by metrics for

evaluating its respective classification. Lastly, we will discuss the evaluation metrics

for predicting and ranking experiments a for system of linear equation.

5.1 Parallel graph processing experiments

We have proposed solutions for two different classes of problems within

graph processing experiments. The prediction problem is evaluated using three

metrics, namely the R2 value, Root-Mean Squared (RMSD) and Normalized Root-

Mean Squared Deviations (NRMSD). We evaluate the classification problem on the

number of false positive and negative predictions. This can be visualized using a

confusion matrix. We also introduce a new metric that measures the improvement

in performance resulting from choosing the experimental setup provided by the

framework.

5.1.1 Execution time prediction. Figure ?? shows us a

consolidated comparison of all three metrics for each model configuration across

four different algorithms. The R2 value (left plot) signifies the goodness of fit in

contrast to a mean model, which uses the mean for every predicted value. This is

based on the observation that a well-fitting regression model results in predicted

values close to the observed data values, and the proposed regression model should,
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Figure 8. Linear regression with and without ridging and normalization

therefore, be better than the fit of the mean model. It ranges from 0-1 with higher

values indicating a better fit.

On the other hand, RMSD (middle plot) measures the closeness of predicted

values to the actual value. While R2 is a relative measure of fit, RMSD is an

absolute measure of fit. Lower values of RMSD signifies better fit. However, RMSD

is hard to compare across algorithms. Algorithms like BFS has a much lower

execution time compared to likes of TC. Thus, we use NRMSD (right plot).

It can be noted that for all algorithms across three metrics, the model

configuration with ridge regression and normalized learning set is always best

or at the very least tied for best. Although this configuration gives a significant

improvement in the quality of predictions, it still is not reliable enough to replace

empirical models that run experiments rather than predicting them. Based on the

size of our learning set, we must see R2 values above 0.7 for it to be considered a

reliable replacement.
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Figure 9. Confusion matrices for all algorithms

Poor prediction performances can be attributed to the fact that execution

times of experiments are minimal, specifically to the power of -5. To complicate

this, the range of possible values is also quite big, ranging anywhere between the

power of -2 and -5. This makes predictions more like finding a needle in a haystack.

5.1.2 Classification of experiments. The second model we propose

in the framework is a classification model that aims to categorize a particular

experiment as “good” or “bad” based on its traversed edges per second(TEPS).

Figure 9 (b) gives us the confusion matrix for the random forest model and

just for comparison, the confusion matrix for logistic regression in figure 9 (a).

The confusion matrix is used to measure the number of true and false positives

and likewise, its negative counterpart. The rows indicate class labels from actual

observations or ground truth while the columns indicate the class labels that were

predicted by the models. For example, the random forest model predicted 44

different experiments that run TC to be good but turns out only 43 were observed
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to be good while a single experiment was actually bad. This means the model made

43 true positive predictions and one false positive prediction. Likewise, the model

predicted 118 experiments to be bad, and indeed, all 118 experiments were actually

observed to be bad. This means the model made 118 true negative predictions and

zero false negative predictions.

A general rule of thumb for well-performing models is to have confusion

matrices with large leading diagonals and small non-leading diagonals. With that in

mind, one can see that random forest performs exceptionally for TC, BFS, and PR

with a maximum of one misplaced prediction from over 200 predictions. For SSSP

though, the predictions are not quite as accurate, but are nonetheless good with

only 20 misplaced predictions.

This gives us a total testing accuracy of 97% across four algorithms.

In comparison, one can see that logistic regression falls far behind with significant

misplaced predictions. Apart from the overall count of misplaced predictions, the

type of misplacement matters. Having more false positives is worse than having

more false negatives as users don’t mind having a few “good” experiments being

termed “bad” resulting in them not using a package. But on the other hand, having

“bad” experiments tagged as “good” leads them to go ahead and use a package

and as a result cause significant slowdowns. It is important to note that the end

objective of this framework is to provide reliable options for package selection, and

having few false negatives is fine at the cost of minimal false positives.

Another metric we introduce to evaluate the performance of the

classification model is improvement. This is mainly used to signify how much

of performance improvement a user gets by choosing a “good” labeled experiment
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Figure 10. TEPS for each algorithm

setup given by the framework rather than using any random experiment setup.

Improvement can be defined as

Improvement =
Mean(TEPS of data labeled as Good)

Mean(TEPS of all data)

Figure 10 gives us the performance improvement along with the min, max,

and mean across the four algorithms for the random forest model. It should be

noted that larger TEPS value indicates better performance since it is a factor of

execution time rather than its multiple. We can see that TC and SSSP have a

good performance improvement while BFS tops the chart with a remarkable 700%

improvement. The performance improvement for PR is not as high as the other

algorithms. The low variance explains this in execution time and TEPS of PR. The

coefficient of variation (standard deviation/mean) of TEPS for BFS is 1.5, and PR

is only 0.21.

5.2 Experiments on solving linear systems

The second class of algorithm in which we implemented our selection

framework is for solving linear systems. Similar to graph processing algorithms,

we have implemented predictive modeling but instead of classification, we have
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implemented a ranking framework which is discussed in detail in section 4.2.1. The

results for all the proposed models are discussed in detail in this section.

5.2.1 Predicting execution times for experiments. In this

section, we will first discuss the results for predicting execution times of different

experiments solving a system of linear equations. Once again, the three metrics,

namely, R2 values, root-mean-squared-deviation, and its normalized counterpart,

are used for evaluating the prediction accuracy. From ***, you can see that the R2

values are similar or even slightly worse compared to that of the graph processing

application. This is once again because the data points are not linearly separable,

and even a ridge regression model is not accurate enough. The RMSD and NRMSD

values are slightly better with all test sets having values less than 0.8.

With these results, we can say the predictions are not yet reliable enough.

But a critical aspect that we can observe from the learning set is that the range of

execution times across experiments is pretty big and ones that are considered good

have far smaller times than the ones considered bad. As a result, there is a strong

separation between them, even with the predictions. This was the key inspiration

behind the proposed ranking algorithm.

5.2.2 Ranking experiments for linear systems. This section will

provide the ranking results for the two different learning sets we ran experiments

on. The main metric we use to draw conclusions on is the speedup, which is given

by:

Speedup =
T ime taken by baseline solver

T ime taken by #1 solver

This definition signifies the speedup in execution time one gets by choosing

a solver recommended by our framework rather than choosing the default solver

offered by PETSc, which is our baseline. To clarify, the speedup isn’t actually from
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Figure 11. spread of speedups across testing sets

improving the solvers by themselves but rather from selecting better solvers for

that particular linear system and its experimental setup. We will also discuss other

metrics like average precision and reciprocal ranks to solidify our conclusions.

SuiteSparse Matrix Collection:

As previously discussed, we have trained our model with a training set

dominated by experiments labeled “good” and tested it across 1041 different linear

systems with each having its own testing set dominated by experiments labeled

“bad” From table 2, we can see that even the minimum speedup is 1.14, which

means the number one solver that the framework provides is better than the

baseline solver for all the testing sets, which in this case is GMRES with Block

Jacobi [17]. In fact, the proposed solver is way better than the baseline solver with

an average speedup of 746 and peaking at 92,464 across all testing sets.
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Table 2. Statistics of speedups across all testing sets

speedup stats Values
Min 1.14
Max 92464
Mean 746

Standard deviation 37

Figure 11, shows us the spread of speedups across 100 randomly chosen

testing sets (linear systems). The x-axis denotes all the systems in decreasing order

of execution time while y-axis indicates the speedup. We can note that speedups

decrease in proportion to the execution time. This can be attributed to the fact

that the prediction accuracy of our ridging model also decreases with execution

time, and as a result, the proposed rank positions are way off from their actual

rank positions. But considering speedups alone can be misleading.

As mentioned in the introduction, the objectives of the ranking framework

is to not only attain better speedups but to also ensure reliability. Reliability

here means always suggesting good solver selections. Average speedups amount

to very little if at the end of the day, the user still has to use a bad solver for an

experiment. The user is most likely to choose solvers in order of rank and we need

to ensure there isn’t a choice of bad solvers before good. Figure *** shows us the

top 10 ranked list of solvers for 1 example test set. It could be seen that the #1

and #2 ranked solvers are indeed solvers labeled “good” followed by the rest of bad

solvers. This trend has followed in all test sets where the #1 ranked solvers are

good. A good metric to signify this trend is Mean-Reciprocal-Rank (MRR). RR in

general for a particular test set is given by :

RR =
1

Highest rank of a good solver
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Figure 12. Top 10 ranked experiments

For example, from figure 12, we can see that the highest rank of a good

solver is #1 and as a result, it has a reciprocal rank of 1 which is the highest

possible value. Had the good solver been placed at #3, the RR would have a value

of 1/3. The mean value of RR across all testing sets is MRR. The MRR value we

got is again 1 which signifies that the predicted #1 solver is never bad. This goes a

long way in ensuring reliability.

Table 3. Statistics of speedups across all testing sets(MOOSE)

speedup stats Values
Min 1.2
Max 857
Mean 7.58

Standard deviation 34

MOOSE:

Likewise, the experiments run on our second learning set also yielded similar

results. For the model tested across 435 linear systems, table 3 shows us the

statistics of speedups across testing sets. Although the speedups are not as high

as that of SuiteSparse Matrix Collection, it still follows the same trend of always

having a positive speedup meaning, the #1 ranked solver is always better than

the baseline solver which in this case is GMRES with ILU, having a factor level

of 0. The relatively low speedup is mostly due to the smaller size of training set.

From the table, we can also say that on an average, our recommended solver is
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seven times faster than the baseline solver which PETSc offers, for any specific

experiment setup.
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CHAPTER VI

CONCLUSION AND FUTURE WORK

In this thesis, we have proposed a framework for suggesting high-

performance scientific toolkits catered to specific problems and experimental

setup by using a model-based approach. On the way to guarantee both improved

performances and reliability, we have explored a variety of models. Some models

are not as of yet reliable, but we have analyzed and discussed them in this thesis

nonetheless. In specific, predictive modeling has been a challenge due to various

constraints in available data.

But from our proposed results, we can also say that our framework

is reliable in classification. It can classify if a specific experimental setup for

processing a graph dataset in parallel is good or not with 97% accuracy. We

can also say that selecting the experiments which are predicted to be good by the

framework provides an average of 200% improvement in performance across four

algorithms.

Similarly, we can also say that our framework is reliable in ranking

experiments. In the previous chapter, we established that from our ranked list of

solvers for over 1,500 different test sets across two separate learning sets for parallel

and serial execution, the #1 ranked solver is never a bad solver. Also, the

the #1 ranked solver is always better than the baseline solver, which

is the default solver in PETSc. Based on the speedups for serial execution with

MOOSE learning set, we can say that the #1 ranked solvers are on average seven

times better than the baseline with a few solvers peaking at 800-fold improvement.

Likewise, we can say that for parallel execution with the SuiteSparse learning set,
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the #1 ranked solvers are 700 times better than the baseline with a few solvers

extraordinarily peaking with 90,000 times improvement in performance.

To summarize, we have provided reliable solutions for two of the three

objectives set out for the framework, thereby making it a much better alternative

for choosing HPC toolkits than choosing it based on empirical results from running

time-consuming experiments.

In the future, we plan to add auto-generated features that are created using

graph2vec embeddings [19] rather than hand crafted features we currently use. By

doing so, we are not restricted by the number of features and can create a much

larger feature set in the order of 100’s. A larger feature set also gives us the ability

to accurately run more complex deep learning models
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