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DISSERTATION ABSTRACT

Sara Riazi

Doctor of Philosophy

Department of Computer and Information Science

September 2019

Title: Distributed Memory Processing of Very Large Graphs

Big graphs such as social networks or the internet network, biological 

networks, knowledge graphs appear in many domains. However, processing these 

graphs rely on the accessibility of high-performance frameworks which are able

to handle these large graphs. One aspect of this accessibility is the usability of

the frameworks for a broad community of researches who do not have sufficient 

expertise to work with these frameworks. To address this issue, we introduce 

GraphFlow framework, a workflow-based framework that provides several graph 

mining components. GraphFlow benefits from data-parallel Apache Spark and

its GraphX library, as the back-end, so it processes very large graphs. GraphFlow 

also supports the construction of experiment pipelines that involve running several 

components.

Integrated into our GraphFlow framework, we also introduce a novel vertex-

centric network embedding algorithm, which can learn low-dimensional vectors for 

vertices of very large graphs. Our network embedding algorithm can scale to graphs 

with billions of edges, while previous algorithms do not scale to the graphs of this 

scale.
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GraphFlow also supports dynamic graphs using graph snapshots and batch

updates. We provide SSSPIncJoint, a novel algorithm for computing single-source

shortest paths (SSSP) for dynamic graphs. SSSPIncJoint is significantly more

efficient than running SSSP for each snapshot of a dynamic graph.
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CHAPTER I

INTRODUCTION

Many real-world problems are represented as graphs or networks in different

computational domains, such as bioinformatics (Borgwardt et al., 2005; Baldi

and Pollastri, 2003), chemical informatics (Ralaivola et al., 2005; Wale et al.,

2008), vision (Shi and Malik, 2000; Felzenszwalb and Huttenlocher, 2004), or

social networks analysis (Liben-Nowell and Kleinberg, 2007; Backstrom and

Leskovec, 2011; Agrawal et al., 2013). These graphs may scale to billions of vertices

and edges, for example, Facebook has more than one billion active users. The

complexity of graph algorithms is usually polynomial in the number of vertices of

the graph. As a result, running graph algorithms over large graphs is very time-

consuming. Few network analysis software tools support parallel algorithms, and

the set of available methods is also small.

Moreover, a single machine may not be able to load the entire graph

representation into memory, so processing very large graphs requires distributed

memory and out-of-core processing, which is not widely supported by graph

analysis frameworks. In response, distributed and parallel graph processing

frameworks have emerged recently, which benefit from advances in high-

performance and parallel computing. However, these frameworks have different

performance in the presence of resources available to them, such as the number of

processors, and the amount of available memory.
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FIGURE 1.1. An example of workflows in GraphFlow. This workflow is used to
create a coarse graph given some evidence nodes.

Unfortunately, in practice, there is a significant gap between the services

provided by the graph-parallel frameworks and the actual needs of the domain

experts. Most graph-parallel frameworks only offer a small set of algorithms that

can be used as a black box. However, with the increasing diversity of data formats

and solution requirements, there are no high-level reusable solution approaches.

Instead, each data analysis instance can have a different workflow based on the

underlying analysis framework, typically requiring domain expert involvement at

each step. Current graph-parallel frameworks do not provide sufficient support for

creating, reusing, and extending complex workflows required for analyzing large

diverse datasets. Moreover, they rarely provide support for auxiliary, but necessary

tasks, such as creating graphs from raw data, filtering metadata, selecting heuristics

and comparing multiple results.

Our response to the aforementioned problems is GraphFlow, a big graph

framework that is able to encode complex data science experiments as a set of

high-level workflows. GraphFlow combines the Spark big data processing platform

and the Galaxy workflow management system to offer a set of components for

graph processing using a novel interaction model for creating and using complex

2



FIGURE 1.2. Using graph embedding for visualizing the structure of a graph.

workflows. GraphFlow contributes an easy-to-use interface and scalable algorithms

for big graph analytic (see Figure 1.1. for an example). We discuss the architecture

and components of GraphFlow in Chapter III.

We also extend the fundamental graph algorithms provided by GraphX.

Among the added algorithms, one of the most challenging components is graph

embedding (a.k.a. network embedding). Graph embedding can be used as a major

component in many workflows providing vertex features for downstream tasks

such as link-predication and vertex classification. Figure 1.2. shows a workflow for

visualizing the structure of a graph using graph embedding.

However, supporting graph embedding in a data-parallel framework

is not trivial since it includes propagating of large messages across workers,

which prohibits learning meaningful embedding. In Chapter IV, we introduce

a novel algorithm that addresses the problem of using data-parallel frameworks

3



especially Apache Spark for training graph embedding, while learning a meaningful

representation.

Another important feature of GraphFlow is the support for very large

dynamic graphs. We advise a novel algorithm for computing SSSP over very large

dynamic graphs, while addressing the challenges of processing very large dynamic

graphs in Apache Spark. Chapter V discusses these challenges and our response to

them.

1.1. Contributions

The main contributions of this dissertation include

– We introduce GraphFlow framework, a workflow-based framework for

processing big graphs using Apache Spark. The GraphFlow framework

extends the map-reduce paradigm to high-level components, which maps a

graph to another graph, or reduce a graph to values. An example of this high-

level maps is coarsening component, which maps a graph to another graph

that is the coarse version of an input graph with fewer edges and vertices.

– We introduce vertex-centric network embedding (VCNE) to compute network

embedding for very large graphs. Network embedding becomes an integral

part of graph analysis pipelines such as vertex classification or link prediction.

However, most of existing network embedding approaches do not scale to very

large graphs. In response, we introduce VCNE: a vertex-centric approach that

is developed on top of Apache Spark and can scale to very large graphs.

– We introduce SSSPIncJoint, a data-parallel approach for computing single-

source shortest path (SSSP) for very large dynamic graphs. SSSPIncJoint
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addresses the problem of recomputing SSSP for every snapshot of big

dynamic graphs by introducing a novel algorithm that updates the SSSP tree

based on the incoming changes.

1.2. Dissertation Outline

Chapter II describes the graph-parallel frameworks, and in more details,

Apache Spark and its graph processing library, GraphX. We also describe

the necessary concepts such as map-reduce computation in this chapter. In

Chapter III, we introduce our GraphFlow framework including its architecture

and its components. We also show some case studies that motivate the usage of

GraphFlow. Chapter IV is dedicated to the graph embedding components, its

algorithm, and comparisons. We discuss the challenges of supporting dynamic

graphs in Apache Spark in Chapter V, and introduce a novel algorithm for

computing single-source shortest path for dynamic graphs. Finally in Chapter VI,

we conclude this dissertation and discuss the future direction for extending this

work.

5



CHAPTER II

BACKGROUND

Many real-world problems are described using networks and graphs such as

social networks, Internet maps, and protein interactions. These graphs may scale

to billions of vertices and edges, for example, Facebook has more than one billion

active users. The complexity of graph algorithms is usually polynomial in the

number of vertices of the graph.

As a result, running graph algorithms over very large graphs is very time-

consuming. Moreover, a single machine may not be able to load the entire graph

representation into the memory.

Therefore, to address the problem of processing very large graphs, many

distributed and parallel graph processing frameworks have emerged recently, which

benefit from advances in high-performance and parallel computing. However, these

frameworks have different performance in the presence of resources available to

them, such as the number of processors, and the amount of available memory.

Understanding the architectural properties of these frameworks is essential for

determining which framework is more suitable for different problems. For example,

if the ratio of graph representation size to the available memory is high, we need

a framework that supports out-of-core processing, which means that it partially

loads the graph into the memory of the machine, and writes back the updated

representation to its permanent external memory as soon as it requires to process

other parts of the graph.

In this Chapter, we study a set of well-known distributed graph processing

systems including Pregel (Malewicz et al., 2010), PEGASUS (Kang et al.,
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2009), GraphLab (Low et al., 2012), Powergraph (Gonzalez et al., 2012),

GraphX (Gonzalez et al., 2014), TurboGraph (Han et al., 2013), GraphCT (Ediger

et al., 2013), Pregelix (Bu et al., 2014). Moreover, we also consider two other

general approaches for distributed graph processing using GPUs (Harish and

Narayanan, 2007) and MPIs (Plimpton and Devine, 2011).

2.1. Data-Parallel Systems

One of the most significant advances in distributed data processing is the

map-reduce programming model (Dean and Ghemawat, 2008). In map-reduce, data

is converted to key-value pairs and then partitioned to nodes. A map-reduce system

consists of a set of workers that are coordinated by a master process. The master

process assigns partitions to workers, and then workers apply a user-defined map

function to the key-value pairs, resulting in intermediate key-value pairs stored on

the local disks of workers. The intermediate key-value pairs are passed to another

set of workers that group the key-values by keys and apply a user-defined reduce

function on the group of values associated with a particular key. The workers then

apply the reduce function and store the output on their local disks, so one can

combine different partitions of the output together and create a single output file,

or pass the output as the input to another map-reduce call.

Many graph frameworks are developed on top of data-parallel systems, in

order to benefit from their optimized parallel processing.

2.2. Distributed Graph Systems

In this section, we describe a set of important distributed graph processing

frameworks.

7



FIGURE 2.1. Finding connected components of a graph (figure from Tian et al.
(2013)). a) The original graph that placed over a cluster of two computers. b) The
vertex-centric computation. c) Graph-centric computation.

2.2.1. Pregel

Pregel (Malewicz et al., 2010) is a distributed graph processing framework,

which introduces the important think-like-a-vertex paradigm and vertex-centric

programming model for distributed graph processing.

The idea of the vertex-centric programming model is to distribute graph

algorithms over vertices, so the system runs the program or function associated

with each vertex in parallel. Vertices can communicate with each other in order

to produce the final result of the designed algorithm. For example, suppose we

want to find the connected components of a graph. Each vertex sets its value to be

its ID number, and then, sends the vertex value to all of its neighbors. A vertex

collects the messages from its neighbors and selects the minimum of the received

values, then it updates the vertex value using the new value. At this point, the

vertex sends the new value to the neighbors again if the updated value is different

8



from the previous value. Finally, after several communication steps, the value

of vertices shows their component ID which is the smallest ID of the vertices in

that component. The Figure 2.1. shows the message passing steps for finding the

connected components of a chain.

Pregel iteratively runs user-defined function compute for each vertex

simultaneously. Each iteration of the algorithm is called a superstep, in which a

vertex gathers all messages from the previous superstep, and prepares messages

for its neighbors that will be delivered on the next superstep. Each vertex can

decide to deactivate itself by voting to halt. A vertex is reactivated again if it

receives a message from other vertices. The program terminates when there are

no more messages and all vertices are inactive. To reduce the number of messages

passed among machines or workers, Pregel includes another user-defined function

called combine. The combine function, if provided, is applied to the messages that

have been sent for a vertex. Pregel also allows the users to provide a user-defined

aggregator function, which acts similar to fold semantic in functional programming

languages. The aggregator function is applied to the value of all vertices at the

end of each superstep and aggregates them together, for example by computing

sum or max value. The result of aggregation is available to all vertices in the

next superstep. Pregel includes a master node and a set of workers. The master

is responsible for coordinating the supersteps such that all workers complete the

current superstep, and then next superstep starts. To force synchronization, each

superstep ends with a barrier in which the workers wait for the master in order to

get the permission of entering the next superstep.

Each worker is responsible for a partition of the underlying graph and

calls the compute function for every vertex in its partition, and exchanges the

9



produced messages with the other workers. Pregel is only able to do the in-memory

computation, so the number of workers should be selected accordingly such that

each worker is able to keep the graph partitions and the corresponding messages in

memory.

Pregel achieves fault tolerance by putting checkpoints at the beginning of

each superstep. At each checkpoint, all workers are responsible for storing the

value of vertices, edges, and outgoing messages on their local disk. The master also

stores the value of aggregators. In the case of failure, the master coordinates the

workers to rollback to the last successful checkpoint. Pregel is developed by Google

Inc. as a closed source framework. However, Apache Giraph1 is an open source

implementation of Pregel that provides similar specifications.

2.2.2. GraphLab

GraphLab (Low et al., 2012) is another distributed graph processing

framework. Similar to Pregel, GraphLab is based on the vertex-centric

programming model, but instead of message passing it uses shared memory.

GraphLab defines a scope of a vertex to be the value of vertices and edges in the

graph that are needed for updating the value of the vertex. Two or more vertices

that have intersecting scope can be considered to communicate with each other

through the intersecting scope.

If two vertices that are located on different workers or machines have

intersecting scopes, then each worker keeps immutable copy variables of the shared

scopes. Whenever an original variable changes, its corresponding worker sends the

updated value to the workers that keep the copies of the variable.

1http://giraph.apache.org
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GraphLab is based on the pull model, in which a vertex uses the values in its

scope to update its value, unlike Pregel that each vertex pushes the messages for its

neighbors.

In GraphLab, users provide a stateless update function, which can be

applied on values in the scope of the vertex. Applying the update function on

two adjacent vertices may result in a collision, so GraphLab provides different

consistency methods to control the mutual-exclusion. Full consistency model

is the most restricted method, in which two neighboring vertices cannot run in

parallel. The other model is edge consistency, which allows two adjacent vertices

to run in parallel as long as each vertex is only read and modify the values that

are associated with the vertex and all incident edges. Finally, GraphLab provides

vertex consistency model that ensures each vertex only modifies its local values.

The users may select one of these consistency types based on their computation to

maximize efficiency.

When a vertex runs the apply function, it triggers its neighbors to call their

apply functions. Therefore, the execution of vertices is asynchronous, comparing to

synchronous supersteps in Pregel.

2.2.3. Powergraph

Powergraph (Gonzalez et al., 2012) is based on vertex-centric programming

model and supports both synchronous execution, similar to Pregel, and

asynchronous execution, similar to GraphLab.

The main difference of Powergraph with Pregel and GraphLab is that it

supposes that large natural graphs follow the power-law degree distribution, which

means that a small fraction of vertices is incident to a large fraction of the edges.

11



Power-law degree distributions define the probability that a vertex having degree

d (d neighbors) as P (d) = dα, where α is a positive constant that determines the

sparsity of the graph.

Since the complexity of the apply or compute function is linear in the degree

of a vertex, the graphs with power-law degree distribution suffer from imbalanced

workload and communication overhead. To address imbalanced workload,

Powergraph runs the program associated with each vertex (vertex-program) in

parallel in order to reduce the delay of processing on high-degree vertices.

Powergraph introduces Gather-Apply-Scatter (GAS) model, based on the

vertex-centric programming model of Pregel and GraphLab. In the GAS model, the

algorithm runs over three stages: data preparation, iterations of vertex-program,

and output generation. A vertex-program consists of gather, sum, apply, and

scatter. A vertex-program applies the gather function in parallel on the value of

every edge that is incident with the corresponding vertex and then aggregates

the values using sum function. Then the apply function is executed given the

aggregated value in order to update the value of the vertex. Finally, the vertex

program calls the scatter function in parallel for all edges incident to the vertex in

order to update their values.

Since the vertex-program can be executed in parallel for different edges

incident to the vertex, so in order to address the imbalanced network overhead,

Powergraph distributes the edges evenly among the workers and allows each worker

to keep a mirror of vertex data of each edge’s end-points if they are not located at

the same machines.

Distributing edges evenly among machines and mirroring the vertices is called

vertex-cut (Gonzalez et al., 2012) as opposed to edge-cut, in which the vertices of

12



FIGURE 2.2. Edge-cut vs. Vertex-cut. The shaded vertices are mirrors. (figure
from Gonzalez et al. (2012)).

a graph are evenly assigned to different machines, and mirroring happens for the

adjacent vertices located at different machines. Figure 2.2. shows an example of

vertex-cut vs. edge-cut. In the given example, distributing a graph of four vertices

over three machines needs five mirroring variables if edge-cut is used, while it needs

only three mirroring variables in the case of using vertex-cut.

Gonzalez et al. (2012) theoretically show that vertex-cut reduces the network

overhead needed for synchronizing copy variables in compare to edge-cut for

graphs with power-law degree distributions. so vertex-cut addresses the imbalanced

communication workload.

2.2.4. GraphX

GraphX (Gonzalez et al., 2014) is a distributed graph processing framework

developed on top of Apache Spark,2 which is a fast growing framework for large

data processing.

Spark supports a distributed architecture, in which an application is

running as a set of processes. The main program, called the driver, consists of an

object called SparkContext which coordinates the execution of the application’s

processes on Spark workers through a Spark master node, which manages the

2https://spark.apache.org/
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workers. The most important concept in Spark is its resilient distributed datasets

(RDDs). RDDs (Zaharia et al., 2012) are immutable collections of objects that are

partitioned across different Spark workers in the network.

Since Spark is a data-parallel computation system, GraphX implements graph

operations based on data-parallel operations available in Spark such as join, map,

and reduces. GraphX represents graphs using two RDDs, one for vertices and

another for edges.

However, handling graphs in a data-parallel computation system is more

complex than map-reduce operations since the vertices should be processed in the

context of their neighbors. To address that, GraphX introduces the triplet concept,

which joins the structure of vertices and edges. Each triplet carries the value of an

edge and the values of vertices that incident with that edge. Therefore, by grouping

triplets on the id of the source or destination vertex, one can access the value of

all the neighbors of each vertex. Moreover, since the triplets are distributed, if

the neighbors of a vertex are located on different machines, then Spark workers

communicate with each other to construct the group by the result. Therefore,

strategies for distributing graphs over different partitions become important in

terms of communication overhead and storage overhead. GraphX supports both

edge-cut and vertex-cut graph partitioning strategies.

2.2.5. Pregelix

Pregelix (Bu et al., 2014) offers the same vertex-centric model as Pregel, but

it is developed on top of Hyrack data-parallel system. Hyrack offers select, join, and

group by operators as external memory operations. These operators are used by

Pregelix to implement the message-passing model as it is provided by Pregel. For
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example, considering a table of messages that includes the destination vertex id and

the message value: (destId, msg), a group-by operator on the destId, groups all the

messages that are sent for each vertex together. Then it can combine the messages

using the combine user-defined function similar to Pregel.

Pregelix partitions the vertex data among the Hyrack workers using a

selectable partition function over vertex id. Each worker applies the same

operations as Pregel in each superstep using the relational operations and

distributes messages based on the same partition functions on the destination

vertex id. In this way, the message data that targets a vertex will locate at the

same worker.

The main advantage of Pregelix over Pregel is out-of-core support because of

using Hyrack. Therefore, Pregelix can scale better than Pregel if the graph size to

available memory ratio is high.

2.2.6. MR-MPI

MR-MPI (Plimpton and Devine, 2011) provides map-reduce functionality

using the message passing interface (MPI) for parallel processing. The framework

is not specific for graph data, but the authors provide different graph algorithms

such as random graph generation (with power-law degree distribution), PageRank,

single-source shortest path, and triangle count as well as performance evaluation

of the algorithm on random graphs with up to 268 million vertices and 2 billion

edges. The framework provides three main functions map, reduce, and collate.

The execution of these functions, similar to the other map-reduce frameworks, is

synchronous, which means all processors wait until one stage of map, reduce, or

collect gets completed before proceeding to the next stage.
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The data representation that is used by MR-MPI is either key-value or key-

multivalue pairs. A map function can generate key-value pairs or map existing

key-value pairs. Each processor stores the resulting key-value pairs. The collate

function first reassign the key-value pairs to different processors based on a hash

function on the key part. This data movement happens using MPI communication.

Then, the collate function identifies the unique keys on each processor and

combines the value part to create key-multivalue pairs. The reduce function, finally,

applies a function on the multivalue part of each pair, resulting in a key-value pair.

Since MR-MPI is intended to process large graphs, it supports out-of-core

processing, which needs that a processor stores some parts of key-value on a disk

because of memory limitation. The collate function becomes extremely expensive

for out-of-core processing since it needs to load pairs from disk to construct key-

multivalue pairs. By increasing the number of processors, the number of pairs that

are assigned to each process decreases, so we can control the amount of out-of-core

processing to boost the overall performance.

2.2.7. Giraph++

Giraph++(Tian et al., 2013) is similar to Pregel, but it introduces a graph-

centric model to reduce the number of supersteps and synchronization points,

and to increase the scalability and efficiency of the systems given a good graph

partitioning.

In graph-centric models, instead of running vertices in parallel, the system

runs subgraphs in parallel, and for each subgraph, it applies a sequential version of

the algorithm. If a subgraph spans over more than one machine, then each worker

keeps a mirror of the boundary variables. The workers need to synchronize the
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value of boundary variables. Figure 2.1..d shows an example of finding connected

component using graph-centric model for the partitioning given in Figure 2.1..c.

Subgraph A, B, C and subgraph D, E, F are located on machine P1 and P2,

respectively. Since C and D are connected in the original graph, then P1 keeps a

mirror of D, and P2 keeps a mirror of C as boundary variables in their subgraphs.

During a superstep, each worker runs breadth-first search as a sequential

algorithm for finding the connected components in its subgraph, then workers

communicate with each other similar to Pregel vertex-centric approach. Therefore,

at the first supper step, each worker finds the connected components in the

subgraph, and then the connected components exchange the component id using

the boundary variables. A component updates its component id if it is not smaller

than the received component ids through boundary variables.

Supposing the most vertices of a subgraph are located at the same

machine, the graph-centric model is significantly faster because it needs fewer

synchronization point. However, to optimize the efficiency using graph-centric

models, the system should use prior knowledge about the partitioning of the graph

and its subgraphs to reduce the number of copy variables.

2.2.8. PEGASUS

PEGAUSUS (Kang et al., 2009) offers generalized matrix-vector

multiplication, which can be used to efficiently implement many graph algorithms

such as PageRank, random walk, and diameter estimation. PEGASUS includes

three functions: combine2, combineAll, and assign. Suppose the mij represents the

entries of a matrix and vj represents the entries of a vector. Combine2 applies

a user-defined function on each pair of (mij, vj) and produces an intermediate
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results xi. Then, combineAll aggregates all xi values and produces the new value

v′i. Finally, an assign operator replaces the old value vi by v′i. If we define combine2

as a product, combineAll as a sum, then these three operations compute matrix-

vector multiplication.

For the algorithms that are representable using matrix-vector multiplication,

PEGASUS iteratively applies these three operations until it meets algorithm-

specific convergence criteria. PEGASUS applies these operators using Hadoop map

and reduce functions, so it inherently synchronous.

In the basic model, each edge is described as one line in the Hadoop data

file, which reduces the complexity of computation to be the same as vertex-

centric models, however, PEGASUS also provides more optimized matrix-vector

multiplication by encoding the matrix as block matrix through edge clustering.

2.2.9. TurboGraph

Similar to PEGAUSS, TurboGraph (Han et al., 2013) also provides matrix-

vector multiplication. However, TurboGraph is intended to process very large

graphs on a single PC using a disk-based approach. It uses adjacency list for

representing the graph, but since for very large graphs the adjacency list may not

fit in memory, TurboGraph uses fixed-size pages for storing adjacency lists and only

keeps a small record table in memory. The record table indicates the first vertex of

each page as well as the number of pages if adjacency list of one vertex spans over

more than one page. The pages are stored on FlassSSD, which offers asynchronous

parallel IO. TurboGraph has several threads that processing adjacency lists. When

a thread needs a page that is not resident in memory, it creates an asynchronous IO

request with a callback function for the buffer manager. Whenever the requested

18



page is ready a callback thread runs the passed function to process the page. After

processing a page, the page becomes unpin, so the buffer manager can replace it

with another page based on received requests. This process is called pin-and-slide.

TurboGraph implements matrix-vector multiplication as an engine-level graph

primitive based on the mention pin-and-slide model. It also includes the breadth-

first search for graph traversing, which takes a user-defined function and applies it

on every vertex in the graph.

2.2.10. GraphCT

GraphCT (Ediger et al., 2013) is based on Cray XMT multithread processors.

Cray XMT provides GraphCT with a massive global shared memory using several

physically distributed memories. This massive global shared memory eliminates

the requirements of evenly graph partitioning for huge natural graphs since it can

load the entire graph in the global memory and make it available to several threads

of programs. Cray XMT reduces the memory access time through a fast one-cycle

context-switch to the next ready thread. Therefore, to reduce the memory access

delays, the user program should benefit from fine-grained parallelism, so Cray XMT

offers many fine-grained primitives to instruct the compiler. For example, progma

instructs the compiler that the loop iterations are independent and each iteration

can be executed using separate threads. Cray XMT also offers coarse-grained

parallelism, for example, running multiple breadth-first-search in parallel on the

graph. For mutual-exclusion of shared memory, Cray XMT also includes many fine-

grained synchronization primitives to reduce the delay and increase the throughput

of threads.
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TABLE 2.1. Comparison of distributed graph processing systems using their
architectural properties. The list of used abbreviation for programming model
(PM): vertex-centric (VC), graph-centric (GC), General-purpose (GP), Matrix-
centric (MC), and for communication model (CM): message-centric (CM), shared-
memory (SM), data-centric (DC), and disk-based (DB).

Name PM Execution CM Partitioning Out-of-core Fault
Model Strategy support tolerance

Pregel VC Synch. MC Edge-cut No Yes
Pregelix VC Synch. DC Edge-cut Yes Yes
GraphLab VC Asynch. SM N/A No Yes
PowerGraph VC Both SM Vertex-cut No Yes
Giraph++ GC Synch. MC Edge-cut No Yes
GraphX VC Synch. DC Vertex-cut, Yes Yes

Edge-cut
GraphCT GP Asynch. SM N/A Yes Yes
PEGASUS MC Synch. DC Edge-cut Yes Yes
TurboGraph MC Synch. DB Edge-cut Yes Yes
MR-MPI GP Synch. MC Edge-cut Yes No
GPU-based GP Asynch. SM N/A No No

GraphCT provides an implementation for computing many graph metrics

such as diameter estimations, betweenness centrality, and clustering coefficients

benefiting from the fine-grained and coarse-grained parallelism and massive shared

memory.

GraphCT is also partially offered for parallel processing platforms other than

CrayXMT.

2.2.11. GPU-based

Harish and Narayanan (Harish and Narayanan, 2007) introduces a set of

graph algorithms using CUDA programming interface for Nvidia 8800 GTX

GPUs. 8800 GTX consists of 16 multiprocessor units and each multiprocessor

has eight processors, so 8800 GTX contains 128 processors in total. Each

multiprocessor provides shared memory for its all eight processors. Each processor
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FIGURE 2.3. Compact adjacency list representation (from Harish and Narayanan
(2007)).

of a multiprocessor executes the same instruction but over different data. Different

multiprocessors can communicate with each other using a device memory. The

main limitation of GPUs is that the amount of memory accessible for processors

is less than the maximum texture size supported by the graphic card, which is 768

MB on 8800 GTX.

CUDA (computed unified device architecture) is a programming interface

for using GPUs as multicore co-processors for general-purpose programming. The

CUDA interface offers all memory accessible to the processors to program without

any restriction on the data representation.

For the graph representation, the authors used a vertex array and an edge

array to represent compact adjacency list. The edges that are incident with each

vertex are located at consecutive entries in the edge array, and the vertex keeps the

index of the first edge of its incident edges. Figure 2.3. demonstrates an example

of a compact adjacency list. In the given example, vertex 0 has an edge to vertex 8

and 6, and vertex 2 has only one neighbor, vertex 9.

The authors provide asynchronous algorithms for breadth-first search, single-

source shortest path, all shortest path. All the algorithms run one thread for each
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vertex and are rely on atomic read and write to global memory for ensuring the

consistency. Each thread is executed until the algorithm converges, and based on

the nature of the implemented algorithms the final results do not depend on the

execution order of threads.

The larges graph used by the authors has six million vertices and 15 million

edges.

2.3. Comparison and Discussion

In this section, we compare the discussed distributed graph processing

frameworks and libraries in the Section 2.2. based on their design properties.

Scalability analysis of these frameworks and libraries also would be beneficial, but

it is out of the scope of this paper. We compare the distributed graph processing

systems, based on their programming model, execution model, communication

model, graph partitioning strategy, their support of out-of-core computation

and fault tolerance computation. Table 2.1. summarizes these properties for the

surveyed frameworks.

2.3.1. Programming Model

Programming model determines how a framework offers the graph processing

functionalities to its users. In other words, it shows the logical view of the

framework for parallelizing the computation over the distributed framework.

The surveyed frameworks support vertex-centric, matrix-centric, graph-

centric, and general-purpose programming models.

Vertex-centric based frameworks such as Pregel, Pregelix, GraphLab, GraphX,

and PowerGraph run a user-defined vertex-program in parallel for each vertex
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in the graph. It is also possible to distribute the vertex-program to improve the

efficiency of the algorithm, as it is suggested by Powergraph (Gonzalez et al., 2012).

In order to distribute the vertex-program, it must be decomposable over the edges

of each vertex. Therefore, Powergraph gains extra parallelism in compare to the

other vertex-centric models, especially for natural graphs with power-law degree

distributions.

In frameworks that support matrix-centric models, the graph is represented

as a sparse matrix of edges and a vector of vertex values such that the designed

graph algorithm is representable as matrix-vector multiplication. PEGASUS and

TurboGraph are two frameworks that work based on the matrix-centric model.

The graph-centric model, introduced by Giraph++ (Tian et al., 2013) is

a generalization of vector-centric model, which is based on think-like-a-graph

paradigm instead of think-like-a-vertex paradigm. Graph-centric approaches

define subgraph-program instead of vertex-program, and the subgraph-programs

run a sequential algorithm over the vertices in the subgraph. Subgraphs also

include a set of boundary variables from other subgraphs if they have common

vertices. These boundary variables are mirrored, so they need synchronization.

This generalization reduces the number of synchronization points in compare to

vertex-centric models, and in turn, speed up the execution of parallel algorithms.

However, the performance of graph-centric models in general and Giraph++

specifically depends on graph partitioning.

General-purpose approaches do not have any specific model for parallelizing

the computation, and they are mostly based on data-parallel processing frameworks

or fine-grained level of parallelism. GraphCT (Ediger et al., 2013) and GPU-based
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libraries (Harish and Narayanan, 2007) are categorized as examples of general-

purpose models.

2.3.2. Execution Model

The scope of the vertex-programs or subgraph-programs are the values in the

graph representation that are accessible to the programs. For example, in a vertex-

centric model, a vertex-program can only access the value of its vertex, the value of

out-going edges, and the values of its neighbors.

If two programs that are running in parallel have shared scope, then the race-

condition may happen. The execution model discusses how different frameworks

control the execution of the parallel programs in order to avoid race-conditions.

The main execution models are synchronous and asynchronous.

In synchronous models, the execution of the processes is separated

using synchronization points. A synchronization point stops a program from

passing it while the execution of the other programs has not reached the same

synchronization point yet. In the Pregel framework, the synchronization points

happen at the end of each superstep.

The synchronous model is simple, scalable, and provably correct since each

process only accesses the previous value of the other processes, so running processes

in parallel in synchronous models generates the same result as running them

sequentially.

The main disadvantage of the synchronous model is that all programs must

wait for the slowest program in the system to pass the synchronization point,

which introduces a considerable delay when the amount of computation needed

for different programs varies significantly.
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GraphX, PEGASUS, Pregelix, and in general, the distributed graph

processing systems that are running on top of data-parallel systems are based on

synchronous execution model since data-parallel systems run one stage on all data

before executing the next stage.

Asynchronous models, on the other hand, do not stop programs at

synchronization points, and each program can determine which programs will

be executed next as soon as it finishes with its computation. For example, in

GraphLab, when a vertex completes its execution, it becomes inactivate until

another vertex activates it by sending a message to it.

Asynchronous models lead to faster execution comparing to synchronous

models, specifically when the workload of processes are imbalanced. However, race-

condition may happen for accessing shared memory, so the system may restrict the

parallel execution of programs with shared scope.

GraphLab is the most famous framework that uses asynchronous execution

model. PowerGraph can use both asynchronous and synchronous models.

2.3.3. Communication Model

The communication model discusses how the parallel programs in the

distributed systems communicate with each other. The communication models

of the surveyed frameworks can be categorized to data-centric, message-centric,

shared-memory, and disk-based.

Distributed graph processing systems with data-centric communication

models usually run a logical view of a program using the data-parallel functions

such as a map and reduce. If a program applies map or reduce functions over data

that is not local to the worker, the data-parallel system is responsible for moving
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the requested data to the worker. GraphX, PEGASUS, and Pregelix use a data-

centric model for communicating among programs.

In the message-centric model, different programs communicate with each

other through messages. Message-centric model relies on the synchronization

points, so the programs can make sure that they received all of the necessary

messages. Pregel and MR-MPI are based on message passing. However, MR-

MPI uses message passing to provide parallel-data processing functions for the

algorithms on top of it.

Shared-memory is the other common communication model, in which the

programs have common access to a set of shared variables. If two programs

that need communication are not on the same worker, then each uses some copy

variables that shadow that state of the other programs. The framework makes

sure that the copy variable is consistent with the original variable. GraphLab,

Powergraph, GraphCT, and GPU-based library Harish and Narayanan (2007) are

using shared memory for communication.

Frameworks with disk-based models serialize the state of programs at every

iteration of the computation, so each program can access the previous state of

the other programs through loading the previously serialized data. TurboGraph

uses disk-based communication in order to process very large graphs using a single

PC. Since the graph representation of a very large graph is usually larger than the

available memory of a single PC, the data needed by two programs usually do not

reside in the memory at the same time. Therefore, each program needs to load the

required data, runs the program, and updates its value.
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2.3.4. Graph partitioning

Two main partitioning strategies exist for graphs: edge-cut and vertex-cut.

In edge-cut, the vertices of a graph are evenly assigned to different machines, so

the edges may span across different machines. We can optimize the partitioning to

reduce the number of edges that span on different machines (reduce the number

of cuts). Vertex-cut, on the other hand, evenly distributes the edges over the

machines and may keep multiple copies of a vertex on different machines if the

edges that incident with the vertex are assigned to different machines. Here, the

communication overhead is to synchronize the information of copied vertices on the

machines that store the copies.

Using vertex-cut reduces the communication overhead for a natural graph

with power-law degree distributions. Pregel, GraphLab, GraphCT, and Pregelix

using edge-cut, while GraphX and Powergraph are using vertex-cut.

2.3.5. Out-of-core computation

When the graph representation is very large, compared to the available

memory, out-of-core computation allows the frameworks to use external memory

in order to be able to run the programs. Therefore, the frameworks that support

the out-of-core computation scale better in existence of the huge amount of data.

Pregelix, TurboGraph, MR-MPI, and PEGASUS support out-of-core computation.

2.3.6. Fault tolerance

Fault tolerance is an important feature of any distributed systems since any

worker may fail or become inaccessible during its execution. It is more important

for distributed graph processing systems to be fault-tolerant since re-running the
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graph algorithms on very large graphs is very time-consuming. The frameworks

that are developed on the top data-parallel systems such as GraphX, PEGASUS,

and Pregelix relies on the data-parallel systems for keeping track of data in case

of failure. Other frameworks such as Pregel and GraphLab, Powergraph uses

checkpoints for serializing the state of programs into local disks, so in the case of

failures, they can restart the execution from the last successful checkpoint. MR-

MPI and GPU-based library are not fault-tolerant, so in case of failures, the whole

algorithm should be executed again.

2.4. Conclusion

In this chapter, we reviewed a set of distributed graph processing systems and

analyzed their architectural aspects. These architectural properties are important

in order to choose an appropriate framework for analyzing very large graphs. Based

on the discussed properties especially out-of-core processing and fault-tolerance,

also the community support and availability of the required hardware, we have

decided to use Apache Spark and GraphX as the platform for processing our very

large graphs.
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CHAPTER III

GRAPHFLOW

The work presented in this chapter has been previously published in Riazi

and Norris (2016), and Riazi is the primary contributor to the paper.

In this chapter, we introduce GraphFlow, a workflow-based big graph

processing toolkit. The GraphFlow toolkit is a set of new Galaxy compatible

tools and offers the rich GraphX graph algorithm API through the higher

level of abstraction of Galaxy workflows, which improves usability, reuse, and

reproducibility of graph analysis tasks while adding fine-grained parallelism to

Galaxy for the first time.

Using GraphFlow we can construct complex data science experiments as a

workflow of Spark-based components. Although throughout this paper we focus

on Spark as the data-processing engine, we can incorporate other data-processing

frameworks in the future.

Figure 3.1. shows the general architecture of GraphFlow. Each new Galaxy

tool submits a Spark application to cluster systems or a local machine through the

cluster-adapter. The cluster-adapter is a set of cluster system dependent scripts

that prepares the inputs of Spark application and wraps the application call from

Galaxy with cluster dependent information such as the address of the Spark master

and accessible memory to Spark nodes. The cluster-adapter is also responsible to

provide Galaxy with the output of the application. This new architecture enables

GraphFlow to separate the workflow interface from the data processing. Therefore,

Galaxy workflow can be placed on a local machine, e.g., a laptop, while the data

engine resides on the cluster system.
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FIGURE 3.1. The architecture of GraphFlow. The Spark-based tools in Galaxy
interact with Spark nodes on the cluster system using a cluster-adapter.

3.1. Data Description

The input data provided by Galaxy must be made accessible to Spark

applications and output data generated by Spark applications must be accessible

to Galaxy. The new cluster-adapter is responsible for this data migration.

In addition, Galaxy expects the input data to be stored as single local file in a

conventional file system (not a distributed file system such as HDFS). By contrast,

Spark partitions data into multiple files, which may also be distributed over many

separate machines (virtual or real).

To address this inconsistency in a MapReduce context, Pireddu et al. (2014)

introduce a new functional and extensible integration layer, which enables the users

of Galaxy to combine Hadoop-based tools with conventional sequential tools in

their workflows.

Their adaptation layer combines the HDFS address of input data files as a

pathset, which is the list of URIs that defines the input dataset, and passes the

constructed pathset to a Hadoop-based tool, which outputs another pathset for

the output dataset. The output pathset can be the input of another Hadoop-based

tool.
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We build on this indirect referencing and introduce the Metafile as the input

and output format of GraphFlow components. A Metafile is an XML description of

the objects, the address type, and object address. By using the information about

the address type, the cluster-adaptor can determine whether the object is stored

locally, on HDFS, or on a network file system, and can then post the application

to the requested cluster system or local machines if the data is available to it.

Moreover, to avoid data migration, the address type is used for allocating space

for the output data at the same file server as the input data.

Metafiles also include the schema of the data, which helps users attain general

understanding about the underlying values because only Metafiles are accessible to

users through the Galaxy experiment history.

3.2. Interaction Model

The ultimate goal of GraphFlow is to provide a workflow-based environment

that is capable of encoding complex graph analytic experiments. Each GraphFlow

component is a Spark application that manipulates a distributed collection

of objects stored as dataframes. By using this representation, we define each

GraphFlow component as either: (a) a complex map function that transforms a

dataframe or a graph object to another dataframe, graph or a combination of these;

or (b) a reduce function of a dataframe or a graph into a single data file, a set of

aggregated values or charts.

Loading and storing typed collection objects such as RDDs reduces the

generalization of the each component because RDDs have to be manipulated

differently based on the type of the objects they are encapsulating. For better

generality, each GraphFlow component expects the input to be in a named column
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format, such as a CSV file. Each GraphFlow component loads the input CSV

file into a dataframe and maps it to another dataframe. Finally, the component

stores the dataframe as another CSV file. The CSV files are multi-part files, so

GraphFlow components expect a Metafile as input that contains the schema of

these CSV files and their addresses, and outputs another Metafile. The schema of

an output Metafile may be different from the schema of the input Metafile. We use

the Spark-CSV library1 for I/O of dataframes.

3.3. GraphFlow Components

The GraphFlow components are grouped into general input/output

tools, graph analytic tools, relational tools, and plotting tools. All GraphFlow

components return a log file in addition to their expected output. This log output

is a single text file understandable by Galaxy. The log files usually includes a

small sample of output dataframes and the execution log of the tool (useful for

debugging). For simplicity, we do not explicitly mention the log output in the

description of each tool. Next, we describe GraphFlow components in more detail.

GraphFlow’s I/O tools include components used to convert single-file

data into dataframes and graph objects, and also to convert them back to single-

file data. Since the aim of GraphFlow is to process big graph data, we expect

GraphFlow’s users to upload their big data files directly to the cloud storage

(e.g., Amazon S3 if using Amazon AWS) instead of uploading through the Galaxy

Web interface, and use their corresponding Metafile of their data as input to the

GraphFlow’s components. Therefore, we provide a basic MetaLoader component,

which takes the file information from users and constructs a Metafile for it. The

1https://github.com/databricks/spark-csv
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MetaLoader component can be used as the initial component of any workflow.

DFDump can be used for converting a distributed dataframe back to a single file,

which is downloadable through Galaxy interface. GraphFlow has two more similar

components GraphLoader and GraphDump for loading a distributed graph object

from a single file and for dumping a graph object into a single file, respectively.

GraphFlow provides a collection of graph tools that include algorithms

for generating and processing big graphs: GraphGen, PageRank, DegreeCount,

TriangleCount, Subgraph, LargestCC, GraphCluster, ClusterEval, and

GraphCoarsen. The GraphGen components support generating random graphs

using log-normal degree distribution and RMAT (Chakrabarti et al., 2004).

PageRank is a well-known graph vertex ranking algorithm introduced by

Google for ranking Web pages. GraphFlow’s PageRank component takes a graph

object and outputs a dataframe with two columns of vertex IDs and rank value,

for which the rank values are computed using the PageRank algorithm provided by

Apache Spark’s GraphX library.

Similar to the PageRank component, the DegreeCount and TriangleCount

components take a graph object and return a dataframe of vertex IDs and degree

counts, and a dataframe of vertex IDs and triangle counts, respectively.

The subgraph function in GraphX constructs a subgraph of the original

graph. The user must provide either an edge or a vertex indicator function. The

purpose of the indicator function is to determine whether the given edge or vertex

belongs to the resulting subgraph. In order to utilize the indicator function, we

represent any discrete function f as a dataframe of x and f(x). For the vertex

indicator, x is a vertex ID, and f is a boolean function. The Subgraph component

in GraphFlow takes a graph object and a dataframe representing an indicator
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function, and returns two graph objects: one for the subgraph corresponding to the

indicator function and the other for the complement of that. Another component is

LargestCC, which outputs the subgraph of a graph’s largest connected components.

GraphFlow also includes a set of graph clustering algorithms such as PIC (Lin

and Cohen, 2010), spectral clustering (Spielmat and Teng, 1996), and label

propagation. We use the Spark implementation for PIC and label propagation, and

add our implementation for spectral clustering. GraphCluster takes a graph and

returns two outputs. The first output is a graph object called a cluster graph, in

which the attribute of each vertex is the cluster number of that vertex. The other

output of GraphCluster is a dataframe of vertex IDs and cluster numbers, which

can be transformed to an indicator function using the query component (described

later), so one can easily create a subgraph of nodes belonging to a particular

cluster.

To measure the quality of a clustering, we created a GraphFlow ClusterEval

component that implements two clustering metrics, modularity (Brandes et al.,

2008) and normalized cut (Shi and Malik, 2000). This tool takes a cluster graph

(as described above) and computes the modularity and normalized cut. We can

consider the ClusterEval component as a reduce function that reduces a distributed

graph object to a single value. We implemented the modularity and normalized cut

computations using the Spark GraphX API.

Finally, we created a GraphCoarsen component that can be used to simplify

a big graph. GraphCoarsen takes a cluster graph as input and replaces a set of

vertices in a cluster with a super vertex. The output is a graph object where each

super vertex attribute is the number of vertices that form the supper vertex. The
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FIGURE 3.2. The Query tool expects a table name and query on the given table
name. Providing the Query tool with the output schema is optional.

coarsening implementation is based on the pseudocode provided in Gonzalez et al.

(2014).

The Relational tools consist of Info, Query, JoinQuery, and

PredefinedQueries components and are an important part of every workflow

represented in GraphFlow because we can use them to transform or constrain

dataframes or to join the output of multiple components.

The Info tool collects the schema, the number of available data points, and

some samples of data points from the given dataframe in order to guide the user in

constructing valid queries.

The Query component runs an SQL query over the given input dataframe.

In order to run a query over a dataframe, it first registers the input dataframe

as a relational table with the given name, and then executes the query on the

relational table. Figure 3.2. shows the parameter of page of the Query tool and an

example SQL query. The Query component also expects the schema of the output

dataframe in order to construct appropriate named columns. The given names are

specifically useful when we want to run other queries on the output dataframe.
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To simplify using the relational queries, we provide a set of common queries in

PredefinedQueries.

The JoinQuery component is similar to Query, except it accepts two

dataframes as inputs, so we can run join queries on both dataframes. Similar to

Query, we provide names for the tables, schema for the results, and the SQL query.

JoinQuery is specifically useful when we want to combine the information of two

dataframes.

Statistics tools: the goal of these components is to collect statistics from

the dataframe. Cumulative density function (CDF) has been extensively used in

practice to study the data distribution, which is also provided here.

Plotting tools: includes different plotting components such as ScatterPlot,

and HistogramPlot which summarizes a dataframe for further analytic studies.

We can also create more complex components by combining these tools,

for example, we can create a hierarchical clustering workflow by unrolling few

iterations of the recursive calls of GraphCluster 2 in combination with Subgraph,

and Query components as shown in Figure 3.3.. In this workflow, the GraphCluster

is configured with a maximum of two clusters. Then, we use the cluster assignment

to select the vertices that belong to one cluster and feed that to Subgraph along

with the cluster graph. Subgraph partitions the given graph into two subgraphs,

each belonging to one cluster. Finally, we apply GraphCluster to each of these

subgraphs.

2Galaxy workflow engine do not support recursive diagrams.
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FIGURE 3.3. The workflow of hierarchical clustering using Subgraph,
GraphCluster, and Query.

3.4. Use Cases

In order to show the expressiveness of the GraphFlow components, we

construct different workflows to study the structural properties of graphs

constructed from the Wikipedia datasets3. This dataset is a crowd-source gathered

information from Wikipedia and includes several data files such as page links and

abstracts. Each line in the page link dataset contains a pair of URIs such that the

second URI appears in the Wikipedia Web page of the first URI. As an example of

URIs, ”http://dbpedia.org/resource/Stanford University” is the URI of Stanford

University Wikipedia page. The abstracts includes the URI of a Wikipedia page

and the main section of each page.

3http://wiki.dbpedia.org/
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In order, to construct the Wikipedia graph, we assign a unique ID to each

URI, which identifies a vertex in the graph. Two vertices are connected if the

pairs of their URIs appear together in the page links dataset. We simply ignore

the order of URIs in each pair, so the final graph is undirected. The constructed

graph consists of more than 20 million vertices and 159 million edges. Moreover, we

keep the URIs and the assigned IDs in a CSV file as URI data file, which we use for

finding the corresponding URI assigned to each vertex.

For these experiments, we ran the cluster system (Figure 3.1.) on the ACISS

cluster4, and we ran the Galaxy front-end on a laptop. We used five Spark nodes,

each running on an Intel(R) Xeon(R) CPU X5650@2.67GHz with access to a total

of 50GB of memory.

3.4.1. Degree Distribution

Degree distribution is well-studied metric for graphs. In order to find the

degree distribution, we first use the Node Degree components to get the degree

of each vertex as a CSV file with schema ”vertex,degree”, then the following SQL

queries gives us the distribution:

SELECT degree, count(degree)

FROM degreeTable

GROUP BY degree,

where the degreeTable is the relation name that we use to register the input degree

CSV file. Finally we redirect the output to the plotting component.

The degree distribution of Wikipedia graphs mostly follows power-law degree

distribution, Figure 3.8..

4http://aciss-computing.uoregon.edu/
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FIGURE 3.4. CDF of the shortest path length from the all nodes of the graph
to vertices of Harvard University, Stanford University, University of Oregon, and
Seattle University.

FIGURE 3.5. The workflow of finding the CDFs of shortest paths.

FIGURE 3.6. The workflow of coarsening a graph using clustering.
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FIGURE 3.7. CDF of the shortest path length in the coarse graph.

FIGURE 3.8. The degree distribution of Wikepedia graph along with the
corresponding workflow.
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3.4.2. Shortest-Path Length Distribution

Shortest paths length in a graph has been used for defining the closeness

centrality, which shows the relative positions of a given vertex with respect to

all other vertices in the graph. However, looking at the shortest-path length

distribution is more informative. The ShortestPath component generates the

shortest path lengths from each vertex in the graph to a set of predefined

landmarks. We use the set of vertices corresponding to different universities as

landmarks, and generate the cumulative density function (CDF) for each of these

universities. Figure 3.4. shows these CDFs, which indicate the closeness of the

landmarks with respect to other vertices in the graph. For example, approximately

45% of shortest paths toward the Standford University page have length smaller or

equal to 3, while this value is only 20% for Seattle University.

3.4.3. Coarsening

Coarsening of very large graphs enables analysis with fewer resources.

However, the coarsening process should preserve the properties of the original

graph. For example, suppose we are interested in a subgraph of the Wikipedia

graph that includes the pages of universities, colleges, institutes, and related pages.

We select the pages if their URIs include University, Institute, or College, and refer

to them as academic pages. Using the Subgraph component may result in removing

all pages not belonging to set of vertices of the interest and ignoring their effect

on the coarse graph. For example, the Oregon Ducks Football team page will

not appear in the set of vertices and Subgraph ignores the paths that connected

University of Oregon to universities thorough their football pages. Therefore, we

need to find a community around each page of interest. This is similar to local
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clustering. For this purpose, we modify the label propagation algorithm and put a

weight on each label. Setting uniform weights reduces the local label propagation to

original label propagation. For our purpose, we set the weights of labels belonging

the academic pages to large values, while all other weights are set to one. This

forces communities to be formed around the academic pages.

We feed the output of the local label propagation algorithm, which is a cluster

graph (where the attribute of every vertex is its cluster ID) to the coarsening

component and obtain its largest connected components. This workflow is shown

in Figure 3.6.. There are 140K academic pages, however, the largest connected

component of the coarse graph has only 14K vertices, compared to the 20M vertices

of the original Wikipedia graph. To check whether the coarse graph preserves the

structure, we look at the CDF of the shortest paths of the same universities studied

in previous section. We can easily feed the output of the coarsening workflow,

Figure 3.6. to the shortest path workflow, Figure 3.5.. Figure 3.7. shows the

resulting CDF of the shortest paths to the given landmarks, indicating that the

coarse graph has structure similar to that of the original graph.

3.4.4. Pagerank Centrality

PageRank is a well-known variation of eigenvector centrality. With PageRank,

we can sort the vertices based on their rank score. Our goal in this use case is to

rank universities based on their appearance in the Wikipedia using the PageRank

algorithm Lages et al. (2015). Therefore, the rank of a university depends on

the Wikipedia pages that have links to the Wikipedia page of the university and

importance of those pages based on the ranking.
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FIGURE 3.9. The workflow of ranking universities using Wikipedia graph.

To find the Wikipedia pages of universities we simply use the URI name

and look for related words such as University, Institute, or College. An alternative

approach would be to use the abstract file, but here the URI name seems sufficient.

Therefore the result of the search is a dataframe that includes the ID and URI of

universities.

Figure 3.9. shows the workflow of the experiment. The graph dataset points

to the edge-view of the Wikipedia graph constructed from the Pagelink file, and the

CSV dataset points to the URI data file.

The PageRank tool ranks the vertices of the Wikipedia graph, and the output

dataframe is given to JoinQuery tool. The SQL query given to the JoinQuery joins

two dataframes, so we access the URI of each vertex as well as its rank. We can

then restrict the results to the URIs. The JoinQuery register the output of the
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TABLE 3.1. Top 10 universities found using workflow of Figure 3.9. compared
to Wikipedia university ranking from Lages et al. (2015) and the survey-based
rankings Times Higher Education (2016).

Ranking from GraphFlow QS Ranking
Lages et al. (2015) Times Higher Education

(2016)
1st Univ. of Cambridge Harvard Univ. MIT
2nd Univ. of Oxford Univ. of Oxford Stanford Univ.
3rd Harvard Univ. Columbia Univ. Harvard Univ.
4th Columbia Univ. Univ. of Cambridge Univ. of Cambridge
5th Princeton Univ. Yale Univ. CalTech
6th MIT Stanford Univ. Univ. of Oxford
7th Univ. of Chicago UC Berkeley Univ. College London
8th Stanford Univ. MIT ETH Zurich
9th Yale Univ. Univ. of Michigan Imperial College London
10th UC Berkeley Princeton Univ. Univ. of Chicago

PageRank and Query tools as relational tables ranks and univ, respectively, and

runs the following SQL query on them:

SELECT name, rank from uri, ranks

WHERE ranks.vertex = uri.vertex

AND (name LIKE "%University%"

OR name LIKE "%Institute%"

OR name LIKE "%College%" )

ORDER BY ranks.rank DESC limit 100

Table 3.1. includes the top 10 of the final ranking result produced by

our example workflow, the Wikipedia ranking reported by Lages et al. Lages

et al. (2015), and the QS survey-based ranking Times Higher Education (2016).

The Wikipedia-based top 10 lists have nine common entries. The difference in

Wikipedia-based rankings is most likely attributable to the fact that we only used

English Wikipedia pages while Lages et. al use all provided Wikipedia pages.
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3.5. Conclusion

We introduced the GraphFlow toolkit, a workflow-based system for large-scale

distributed graph analysis. GraphFlow provides the user with a set of Spark-based

tools that can be combined together using the intuitive Galaxy workflow manger in

order to describe complex data science experiments. Using GraphFlow, researchers

can re-run their complex experiments with different parameter settings and over

different input data. Moreover, workflows can be shared, reused, or composed into

larger applications, as shown in the case studies. GraphFlow hides the complexity

of interacting with cluster systems and data-parallel processing frameworks,

significantly simplifying large-scale graph analysis.
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CHAPTER IV

GRAPH EMBEDDING

Most of the work presented in this chapter has been previously published in

Riazi and Norris (2019), and Riazi is the primary contributor to the paper.

Graph embedding (a.k.a. network embedding) is an important step in solving

many graph problems including link prediction, vertex classification, and clustering.

Network embedding aims to learn a low dimensional vector representation for

vertices of a graph. However, existing approaches do not scale to very large graphs

with billions of vertices and edges. One solution is to use distributed memory

systems and out-of-core computation. Among distributed memory systems,

frameworks such as the Apache Spark-based GraphX (Gonzalez et al., 2014) are

of particular interest to us because they offer a map-reduce-based approach to

expressing distributed-memory parallel algorithms for graph computations.

However, to take advantage of such distributed graph processing frameworks,

we need to design new map-reduce (Dean and Ghemawat, 2008) network

embedding algorithms. In general, following the previous work for learning general

network embedding (Perozzi et al., 2014; Tang et al., 2015; Grover and Leskovec,

2016), we use the structural properties of a network to train an embedding. A

common assumption underlying existing methods and our new algorithm is that

we expect that the embedding of a vertex is more similar to the embeddings of

its neighbors rather than to the embedding of a random vertex outside of its

neighborhood. We enforce this objective with approximate maximum likelihood

training of the embedding in which the partition function is approximated using

negative samples. This training requires lookup access to the embedding of
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vertices in a neighborhood, as well as vertices that lie outside of the neighborhood.

However, lookup access in map-reduce frameworks is prohibitively expensive,

which necessitates careful consideration in developing a map-reduce based network

embedding algorithms. In this chapter, we introduce such an algorithm and

experimentally show that we can train network embedding for very large graphs.

We evaluate the new algorithm’s accuracy and parallel scalability on a set of real-

world networks.

4.1. Sequence Representation

The structure of graphs can be captured by sets of random walks starting at

every vertex of the graph. Each of these random walks forms a sequence of vertices.

Therefore, the algorithms for word representation that uses sequences of words

(sentences) as the input can also be exploited for graph representation (Perozzi

et al., 2014). Word representation or word embedding is an important tool in

language modeling Bengio et al. (2003), which helps algorithms to extract similar

words. The idea is that given a corpus, similar words would appear within similar

context. A context of a word is the set of surrounding words in the same sentence.

The basic word representation is a 2-gram or one-word context, in which we

only care about the co-occurrence of a word and its context that includes only one

word. Basically two words are similar if they appear within similar context more

often. An N-graph is the generalization of 2-gram which focuses on the appearance

of similar words in similar contexts that have more than one word. The most

well-known word representation learning algorithm is Skip-gram (Mikolov et al.,

2013b,a), which we discuss in more detail.
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Given a corpus with n words, originally each word w is represented using

an one-hot-encoding vector, which is an n-dimensional binary vector that has one

entry for each word in the corpus. The one-hot vector representation of w has

only one non-zero element located in the column corresponding to word w. The

objective is to learn a d-dimensional vector representation for each word, such that

d� n and similar words have close vector representations.

Skip-gram measures the similarity of words based on their context. The

context of a target word w is a window of words surrounding the target word,

which is called the context words c. The objective function of Skip-gram is to

maximize the probability of predicting the context words given target words:

max
∑
w∈V

∑
c∈Vc

logP (c|w), (Equation 4.1)

where V is word vocabulary and and Vc is the context vocabulary, which may be

considered to be equal to V . Skip-gram estimates P (c|w) using a softmax function:

P (c|w) =
exp(Φ(w)TΦ(c))∑
c′∈V exp(Φ(w)TΦ(c′))

, (Equation 4.2)

where Φ(.) is a function from vocabulary space to a d-dimensional vector

representation.

However, because the size of the context vocabulary is often very large,

computing the denominator in the above softmax is prohibitive. To overcome

this obstacle hierarchical softmax (Morin and Bengio, 2005) and negative

sampling (Mikolov et al., 2013c; Dyer, 2014) have been widely used.

The idea of hierarchical softmax is to group words into classes in order to

reduce the summation. If we can predict the class of each word, then we only
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have to do the summation for the words belonging to that class, which reduces

the required computation significantly. Morin and Bengio (2005) propose using

hierarchical clustering, in which they form a binary tree of classes, and each

intermediate node only predicates whether the word belong to the left or right sub-

classes. They use softmax, for prediction at intermediate node:

P (bl = 1|w) = σ(Ψ(bl)
TΦ(w)), (Equation 4.3)

where Ψ(.) is the vector representation of each intermediate node and σ(.) is the

sigmoid function: σ(x) : 1/(1 + exp(−x)). Since the variable of the intermediate

nodes are binary, we don’t need to compute the normalization constant by simply

selecting P (bl = 0|w) = 1 − P (bl = 1|w). Using hierarchical softmax,

Relation Equation 4.2 can be computed using:

P (c|w) =

dlog |V|e∏
l=1

P (bl|w), (Equation 4.4)

which needs evaluating dlog |V|e different softmax functions and is exponentially

more efficient than computing Equation 4.2. For example, Figure 4.1. shows a

factorization for computing P (v3|Φ(v1)) as P (b1 = 0|Φ(v1))P (b2 = 1|Φ(v1))P (b5 =

0|Φ(v1)).

Mikolov et al. (2013c) introduce negative sampling as another way to deal

with the computational complexity of the normalization constant of the softmax

relation (Equation 4.2). Negative sampling penalizes the co-occurrence of random

context words and the target words. Therefore, the objective function of skip-gram
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FIGURE 4.1. (Perozzi et al., 2014) Hierarchical softmax for computing P (vi|Φ(v)).
Each intermediate node defines P (bl|Φ(v)), which be trained using logistic
regression.

becomes the following:

σ(Φ(c)TΦ(w)) +
k∑
i=1

Ec′∼PD
[log σ(−Φ(w)TΦ(c′))], (Equation 4.5)

where PD is an empirical unigram distribution: PD(c) = #(c)
D

.

Levy and Goldberg (2014) show that optimizing the above objective function

is similar to factorization of matrix M, whose elements, Mij, are shifted point-wise

mutual information (PMI) of words and contexts: Mij = log #(w,c)|D|
#(w)#(c)

− log k. To

learn the representation using matrix factorization the goal is to reconstruct the

matrix M as the linear product matrix U ∈ R|V|×d and V ∈ R|V|×d:

min
U,V

M − UV T , (Equation 4.6)

where there rows of U and V are the vector representations of target words and

context words, respectively.
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4.2. Network Embedding

Similar to word representation, the goal of network embedding (a.k.a graph

representation) is to learn a low-dimensional vector for each vertex in the graph

such that the vector representation carries the structural properties of the graph.

Formally, for graph G(V , E) of vertex set V and edge set E , we want to learn a d-

dimensional vector representation Φ(v) for each v ∈ V such that d� |V|.

DeepWalk (Perozzi et al., 2014) suggests using a model similar to the Skip-

gram model for learning Φ(v), which maps vertex v to its vector representation.

DeepWalk relates each vertex to one word and the set of random walks on the

graph G to the corpus. Using this relationship, DeepWalk successfully applies the

Skip-gram model for learning the graph representation. DeepWalk generates a set

of fixed-length random walks Rv starting at every vertex v of the graph. Then for

every vertex vj of random walk Rv, it considers the vertices surrounding vj (in a

window centered at vj) as the context of vj. Finally, the representation vector of vj,

Φ(vj), is calculated by optimizing the following relation:

max
Φ

∑
i∈{j−w,··· ,j−1,j+1,···j+w

logP (vi|Φ(vj)), (Equation 4.7)

where the size of the window is 2w.

DeepWalks uses hierarchical softmax to compute the probability of

P (vi|Φ(vj)).

Node2vec (Grover and Leskovec, 2016) is another successful representation

learning approach for graphs which is similar to DeepWalk in term of objective

function and using random walks, however it uses negative sampling instead of

hierarchical softmax to overcome the intractability of Equation 4.2. Moreover,
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Node2vec defines the neighborhood of node vj as its context, and introduce

methods for extracting the neighborhood of a vertex. The main difference between

the random walk exploration and neighborhood exploration is in introducing a

search bias α, which controls selecting the next node to visit not only based on

the current node, but also on the previous node. To select the next node to visit we

need to sample from:

P (vj = x|vj−1 = v, vj−2 = t) =


α(t,x)wxv

Z
if (v,x) ∈ E

0 otherwise

 , (Equation 4.8)

where Z is the normalization constant, and α is defined based on the shortest path

distant dtx between node t and x as the following:

α(t, x) =


1
p

if dtx = 0

1 if dtx = 1

1
q

if dtx = 2

 , (Equation 4.9)

where p and q are positive parameters that control neighborhood exploration. p

controls how often the random walk revisits the previous node, and q controls how

often the random walk explores nodes that are not immediate neighbors of the

previous node. For example, for p � 1 and q � 1 results in random walks which

are more likely emulating depth-firth search, while the random walks generated

with p > g � 1 are more likely emulating breadth-first search.

Although DeepWalk and Node2vec are successful in learning graph

representations, they mostly suffer from the fact that random walks only capture

local structural properties of graphs; therefore, what they learn mostly depends

on what random walks can capture. Moreover, to learn the representation of
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FIGURE 4.2. (Grover and Leskovec, 2016) Neighborhood exploration using search
parameters p and q. The goal is to select the next node to visit given that the
current and previous nodes are v and t, respectively.

large-scale graphs, they may need many random walks for each vertex which is

prohibitive.

Tang et al. (2015) address these problems by defining an objective function

which directly depends on the structure of graph instead of relying on random

walks for capturing the structure of input graphs. This objective function is based

on the definition of proximity in graphs, which includes first-order proximity and

second-order proximity.

First-order proximity is the pairwise similarity between two vertices vi

and vj, defined as the joint probability distribution over both of them: P (vi, vj) =

σ(Φ(vi)
TΦ(vj)).

Second-order proximity is the pairwise similarity between two vertices vi

and vj that share similar context or neighborhood, and is defined using P (vi|vj):

p(vi|vj) =
exp(Φ(vi)

TΦ(vj))∑|V|
k=1 exp(Φ(vk)TΦ(vj))

(Equation 4.10)
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Tang et al. (2015) define empirical distributions based on the graph structure

for both P (vi, vj) and P (vi|vj), and then minimize the distant between empirical

distribution and the model defined as KL-divergence.

The empirical distribution for P (vi, vj) is defined as
wij

W
, where W is the total

weights of the edges in the graph and wij is the weight of the edge between vertex i

and vertex j. Similarly, the empirical distribution for P (vi|vj) is defined as
wij∑
i wij

.

Therefore, minimizing KL-divergence for these two models results in the

objective functions O1 and O2 for the first-order and second-order proximity,

respectively:

O1 : min
Φ
−

∑
(i,j)∈E

wij logP (vi, vj)

O2 : min
Φ
−

∑
(i,j)∈E

wij logP (vi|vj) (Equation 4.11)

Tang et al. (2015) experimentally show that optimizing either O2 or O2 + O1

is learning a better representation comparing to DeepWalk.

4.3. Vertex-Centric Network Embedding

The existing network embedding algorithms do not scale to very large graphs,

so to address this problem we introduce vertex-centric network embedding based

on GraphX. The goal of vertex-centric network embedding is to learn a low-

dimensional vector for each vertex in the graph such that the vector representation

carries the structural properties of the graph. Formally, for graph G(V , E) of vertex

set V and edge set E , we want to learn a d-dimensional vector representation ui for

each i ∈ V such that d� |V|.
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Many approaches have been introduced to learn a vector representation (Perozzi

et al., 2014; Tang et al., 2015; Grover and Leskovec, 2016; Hamilton et al., 2017;

Veličković et al., 2018) aiming to encode a vertex’s neighborhood (its structural

properties) into a low-dimensional space. Other properties of vertices, such as

attributes, labels, and relations can also incorporated into the vector representation

of the vertex (Duran and Niepert, 2017; Lin et al., 2015; Yang et al., 2015; Pan

et al., 2016).

In general, a graph embedding approach is vertex-centric friendly if the

embedding of each vertex is a function of only the embeddings of its neighbors. For

example, LINE-1st (Tang et al., 2015) computes the embedding using first-order

proximity by optimizing the following objective function:

max
u

∑
(i,j)∈E

wijσ(uTi uj), (Equation 4.12)

in which ui and ui are vector representations of vertex i and j, respectively, σ is a

sigmoid function, and wij is the edge weight. We can rewrite Equation 4.12 as

max
u

∑
i

∑
j∈N(i)

wijσ(uTi uj), (Equation 4.13)

where N(i) is the set of neighbors of vertex i.

More powerful representation learning methods, such as LINE second-order

proximity, consider the embeddings of neighbors and the embeddings of random

vertices selected among non-neighbor nodes (negative samples), contrasting them to

learn the embedding of each vertex:
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max
u

∑
j∈N(i)

wijσ(uTi uj) +
−1

k

k∑
j /∈N(i)

wijσ(uTi uj) (Equation 4.14)

Negative samples make sure that the objective function does not find a trivial

solution (e.g., the embedding of all vertices become the same). Negative sampling

simply forces the embeddings of non-neighbor nodes to become different.

In a vertex-centric paradigm, we are required to decompose the algorithm

such that each vertex is responsible for its part of the objective function evaluation,

providing all the necessary information, e.g., the current state of its neighbors.

In other words, we look at the computation from a vertex point of view. We can

simply view network embedding of Equation 4.14 in a vertex-centric paradigm:

“As a vertex, I want my embedding to be similar to my neighbors’ embeddings,

while it differs from the embeddings of other non-neighbor vertices”. A vertex-

centric network embedding requires the objective function to decompose as partial

objectives computable at individual vertices, but unfortunately the objective of

Equation 4.14 does not decompose over vertices.

In a vertex-centric setting for optimizing based on Equation 4.14, each vertex

needs to access the embeddings of vertices that are not directly connected to it

(negative sampling). Parallel graph frameworks do not provide efficient lookup of

random vertices that are distributed among different machines. Moreover, each

computing node does not have a lookup dictionary that can be used to locate and

ship the attributes of required vertices, but there are routing tables for vertices

based on the edges that are connecting them, so accessing the neighboring vertices

is efficient (compared to random lookup access).
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To benefit from this efficiency, we define a random graph, in which each

vertex is connected to k randomly selected vertices in the graph with a negative

weight, which can be uniformly set to one. We construct a new graph as the union

of the current graph and the random graph. In the new augmented graph, each

vertex has access to the embedding of k randomly chosen vertices. Therefore, we

can rewrite Equation 4.14 with our augmented graph:

Oi = max
u

∑
j∈A(i)

wijσ(ewuTi uj), (Equation 4.15)

where ew is negative one for negative samples and positive one for the actual

neighbors, and A(i) is the set of neighbors of vertex i in the augmented graph. We

can derive Equation 4.15 from Equation 4.14 by using the symmetry in the sigmoid

function: σ(−x) = −σ(x) and absorbing k in the weights.

The objective function of Equation 4.15 decomposes over vertices in the

augmented graph, so it can be computed in a vertex-centric approach unlike the

negative sampling-based approach in the original graph, whose objective function is

not decomposable.

4.3.1. Vertex-Centric algorithm

A data-parallel vertex-centric graph algorithm typically involves three steps:

sending messages among neighbors (sendMessage), reducing all the messages to

a single vertex to one message (mergeMessage), and executing a vertex related

function given the final reduced message and the current state of the vertex

(vertexProgram).
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In order to compute the partial objective Oi on each compute node, a naive

implementation sends the embedding of each neighbor to vertex i as sendMessage,

keeps the union of embeddings as the reduceMessage, and optimizes Oi in the

vertexProgram. However, in a map-reduce framework, combining the embedding

vectors can result in prohibitively large collections since there is no bound on the

degree of the vertices.

We use a simple trick to avoid the construction of these large collections by

propagating the gradient instead of the embeddings. However, we first have to

make sure that the total gradient of Equation 4.15 can be computed by the vertex

programs.

The gradient of Oi can be written as

∇Oi =
∑
j∈A(i)

∇Oi←j, (Equation 4.16)

where

∇Oi←j = ew ∗ uj ∗ σ(ew ∗ uTi uj)(1− σ(ew ∗ uTi uj). (Equation 4.17)

Finally we can update the embedding using gradient ascent:

ui = ui + η∇Oi (Equation 4.18)

Using edge triplets, each vertex in the augmented neighborhood A(i) has

access to data structures needed for computing ∇Oi←j. Therefore, defining ∇Oi←j

as a sendMessage function and sum as the mergeMessage operation, the final

reduced message for vertex i is Equation 4.16. Finally, vertexProgram executes
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Algorithm 1 Vertex-Centric Network Embedding

//eji : edge from j to i.
//d: embedding dimension
//msg: (m: |R|d)
//vertex attributes: (u: |R|d)
//mi→j : means the message from i for j
procedure sendMessasge(eij , ui, uj)

mj→i : ∇Oi←j //Eq. Equation 4.17
end procedure
procedure MergeMessages(mi→j , mk→j)

mi→j + mk→j //Eq. Equation 4.16
end procedure
procedure vertexProgram(u, m)

u← u+ ηm // Eq.Equation 4.18
end procedure

the gradient update. In this vertex-centric design, the size of the data structures

remains bounded and no large collection would be constructed in the intermediate

steps. Therefore, we can optimize Equation 4.15 for very large graphs with large

vertex degrees. Algorithm 1 shows the definition of these functions.

4.4. Experiments

We compare our network embedding algorithm, VCNE, with LINE (Tang

et al., 2015), Node2vec (Grover and Leskovec, 2016) and PyTorch-BigGraph (Lerer

et al., 2019) on mid-size datasets to show the capability of VCNE to learn

meaningful representation. Then, we apply VCNE to very large graphs for the task

of link prediction. Table 5.1. reports the characteristics of the graphs used in our

experiments.

4.4.1. Vertex Classification

The goal of vertex classification is to place each vertex into different groups,

which includes both multi-class and multi-label classification. In multi-class
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TABLE 4.1. The number of vertices and edges of the real-world graphs in our test
suite.

Name Num. of Vertices Num. of Edges

Friendster 68,349,466 2,586,147,869
Twitter-MPI 52,579,682 1,963,263,821
Twitter 41,637,597 1,453,833,084
LiveJournal 5,193,874 48,682,718
Reddit 232,965 11,606,919
PPI 56,944 793,632

classification, the problem is to label a vertex with one of the possible classes, while

in multi-label classification, the problem is to assign a subset of possible labels to a

vertex. For the multi-label setting, we can allocate one class variable for each label

that can be on if the label present in the subset and off otherwise.

We use two datasets of protein-protein interaction (PPI) and Reddit posts. In

PPI, the goal is to assign a set of activated protein functions to each vertex, which

are represented using positional gene sets, motif gene sets, and immunological

signatures (Hamilton et al., 2017). The total possible protein functions are 121

and the vertex feature set size is 50.

Reddit is an online discussion forum in which people publish posts and

comment on others’ posts. In the Reddit graph, the vertices are the posts and two

vertices are connected with an edge if a user comments on the posts corresponding

to the vertices (Hamilton et al., 2017). The node features include the average

word embedding of the title, all comments of the post and the score of the post

as well as the number of comments on the posts. The total number of features is

602, and the goal is to assign each vertex to one of 41 communities. For both PPI

and Reddit, we used the same set of train/val/test as provided by Hamilton et al.

(2017). Table 5.1. shows the characteristics of these two graphs.
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We first generate vertex embedding using LINE, Node2Vec, Pytorch-

BigGraph and VCNE, and then concatenate the vertex embedding to the vertex

features, and use it as input to a logistic regression classifier to predict labels. As a

baseline, we also train logistic regression using only the vertex features. Although

more complex classifiers such as multi-layer perceptron would be possible and may

result in higher accuracy, we use simple logistic regression to better isolate the

impact of vertex embedding.

We used an embedding dimension of 100 for all algorithms.

TABLE 4.2. F1 score of vertex classification tasks using different embedding
algorithms.

PPI Reddit
Vertex features 43.3 51.2
LINE 53.08 63.9
Node2vec 49.8 65.4
PyTorch-BigGraph 52.70 66.3
VCNE 53.28 66.7

Table 4.2. shows the performance VCNE, LINE, Node2Vec, and raw vertex

features in terms of F1 score. For all embedding algorithm, using embedding

in addition to vertex features helps, so we can conclude that the embedding is

meaningful and encodes structural properties of the graph. For both Reddit and

PPI, VCNE is more accurate than all the baselines. We also show the learned

embedding by VCNE using t-SNE (Maaten and Hinton, 2008) in Figure 4.3..

VCNE can capture clear clusters in the graph.
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FIGURE 4.3. The embedding of the Reddit graph generated by VCNE.

4.4.2. Link Prediction

Link prediction is an import graph analytic problem, in which we wish to

predict the potential edges in the network. This problem is of particular interest for

social network friend suggestion or predicting the evolution of graphs in the future.

We constructed a synthetic link prediction dataset, for which we dropped

one percent of the current edges of the graph and kept the dropped edges as the

test set combined with another set of vertex pairs as the true negative. The size of

our negative set is equal to the size of the dropped set making sure that we have

balanced test set. We generate a similar train and validation set. The remaining

edges of the graph constitute the core graph, which the network embedding

algorithms have been trained on. We emphasize that the training algorithms

have not seen the dropped edges. We first compare LINE, PyTorch-BigGraph and

VCNE on the LiveJournal graph.
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TABLE 4.3. Link Prediction for LiveJournal

Precision Recall F1

Jaccard 99.9 82.6 90.4
LINE 90.8 84.9 87.8
Pytorch-BigGraph 92.0 80.7 86.0
VCNE 93.3 88.1 90.6

TABLE 4.4. The performance of link prediction using VCNE

Precision Recall F1

Friendster 84.8 93.5 88.9
Twitter MPI 87.5 84.4 85.9
Twitter 80.7 90.0 85.1

We also use Jaccard index to predict an edge: J(u, v) = N(u)∩N(v)
N(u)∪N(v)

, where

N(u) is the set of neighbors of vertex u. Computing the Jaccard index requires

constructing triplets whose vertex attributes are sets of neighbor IDs, and for very

large social networks, this results in prohibitively large messages given the power-

law degree distribution of social networks. Nevertheless, we could compute the

Jaccard index for LiveJournal graphs, but not for the other larger graphs. The cut

threshold for deciding the existence of an edge is selected based on the validation

data. For LiveJournal, using the Jaccard index results in 99.2% precision, 71.1%

recall, and F1 score of 83.1%. For the link prediction using embeddings, we train a

2-layer multi-layer perceptron, with 500 hundred hidden units and train it using the

training pairs. We pick the best model based on the performance on the validation

set, and report the model performance on the test set.

Table 4.3. the performance of link prediction for LiveJournal graph. Jaccard

index has the highest precision, while VCNE has the best performance in overall F1

score.
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Next, we apply VNCE to the very large graphs and report the results in

Table 4.4..

4.4.3. Scalability

To measure the scalability of VCNE over Apache Spark, we run VCNE for

Friendster, Twitter MPI, Twitter, and LiveJournal with different numbers of

Spark workers: 10, 20, 30, and 40. Each worker has access to 20 cores and 75GB

of memory (for a total number of cores ranging between 200 and 800 and memory

ranging from 750GB to 3TB). The University of Oregon Talapas cluster where we

peformed the experiments consists of dual Intel Xeon E5-2690v4 nodes connected

with an EDR InfiniBand network.

Figure 4.4. reports the average runtime for one learning iteration, which

includes generating the random graphs, combining the random graphs with the

original graph, and updating the embedding using Algorithm 1. We observe that

the overhead of using data-parallel systems such as Apache Spark for processing

mid-size graphs such LiveJournal is considerable, but increasing the number of

workers significantly helps the processing of larger graphs such as Twitter-MPI

and Friendster.

We also study the effect of the dimension of embedding and the number of

negative samples on the running time of VCNE. These two factors directly affect

the performance of the underlying map-reduce paradigm. As we increase the

dimension of embedding the local memory required for map-reduced operation

increase, thus imposing more overhead on the system. We measure the running

time of 10 iteration of training VNCE for the LiveJournal graph. We used

10 workers with 20 cores and 80G of memory each. Figure 4.5. reports the
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FIGURE 4.4. Average runtime for one training step of VCNE with 10 to 40 Spark
workers.

FIGURE 4.5. The effect of embedding dimension on the running time for the
LiveJournal graph.

results, which shows the running time of VCNE with respect to the dimension of

embedding.

We also study the effect of negative sampling by comparing the running times

of VCNE on the LiveJournal graph with different numbers of negative samples.

Negative samples increase the size of augmented graph, thus increasing the number

of messages and increase the running time (see Figure 4.6.).
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FIGURE 4.6. The effect of the number of negative samples on the running time for
the LiveJournal graph.

4.4.4. Implementation Details

Working with iterative algorithm over very large graphs may result in

replicating large collections such as EdgeRDDs in the memory. It is very important

to unpersist the collection from memory in order to avoid exceeding the available

memory capacity. For example, in the pipeline operations such graph construction

followed by groupEdge, Apache Spark materializes the first graph and we lose

the pointer to it as it is followed by map operation. It is necessary to observe the

storage memory profile provided by Apache Spark as part of its Web UI to make

sure that no large collections are left behind in an iteration.

We observe that unpersisting the RDDs may not force evacuating the memory

and some RDDs may reside in the memory, waiting for the garbage collector.

This behavior becomes critical for iterative algorithms: increasing the memory

usage and activating out-of-core processing, when it is not necessary. Therefore,

to enforce evacuating the memory, we serialize the working RDDs and close the

Spark session at the end of each iteration. This trick is not necessary for mid-size

graphs, however, for the consistency we apply it all of the reported experiments.
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Moreover, operations such as aggregateMessage, which is used for message

passing over graphs requires significant amount of data shuffling for shipping vertex

attributes (embeddings) among workers. This results in a large amount of out-of-

core data, which is stored in local storage accessible to the workers; this limits the

size of vertex attributes given a fixed number of workers.

4.5. Conclusions

In this chapter, we introduced a new distributed-memory parallel vertex-

centric algorithm for learning network embedding for very large graphs using

GraphX and Apache Spark. Our algorithm, VCNE, can easily scale to handle very

large graphs (billions of vertices and edges or larger) by increasing the number of

Apache Spark workers that are accessible to it. We also show the VCNE can learn

meaningful representations as demonstrated by the performance of classification

and link prediction.
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CHAPTER V

PROCESSING BIG DYNAMIC GRAPHS

The work presented in this chapter has been previously published in Riazi

et al. (2018), and Riazi is the primary contributor to the paper.

Real-world graphs such as social networks, citation networks, road networks,

or communication networks evolve as new edges and vertices come, and some

of the existing ones are removed from the existing graphs. For an evolving or a

dynamic graph, one needs to re-run static or sequential graph algorithm such as the

single-source shortest path algorithm every time that the network changes. These

changes are associated with a timestamp of their occurrence, so we can define static

snapshots for a dynamic graph as the state of a graph at a specific time. Therefore,

we can re-run the sequential graph algorithm for the latest or a specific snapshots.

However, this re-running is expensive especially for very large dynamic graphs.

In this chapter, we focus on computing single-source shortest path for

dynamic graphs to discuss the challenges of applying a sequential algorithm on

evolving or dynamic graphs. We propose a novel distributed computing approach,

SSSPIncJoint, to update SSSP on big dynamic graphs using GraphX. Our approach

considerably speeds up the recomputation of the SSSP tree by reducing the number

of map-reduce operations required for implementing SSSP in the gather-apply-

scatter programming model used by GraphX.

5.1. Introduction

Discovering the single-source shortest path (SSSP) tree is a classical graph

theory problem with many real-world applications such as finding routes in maps
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and social network analysis. However, many graphs evolve over time, which

necessitates the recomputation of the SSSP tree. For very large dynamic graphs,

this recomputation requires significant resources and is time consuming, thus

motivating the development of new algorithms that can quickly recover the updated

SSSP tree without recomputing it from scratch.

This problem is exacerbated when graphs are so large that they do not fit

in the memory of a single machine. In these cases, the graphs are analyzed using

scalable parallel approaches that can use distributed memory and out-of-core

processing. An example of such distributed memory software is GraphX Gonzalez

et al. (2014), which has been developed on top of Apache Spark. GraphX enjoys

the fault-tolerance and distributed computing provided by the data-parallel

environment of Apache Spark. Apache Spark supports map-reduce (MR) operations

over immutable distributed data structures called resilient distributed dataset

(RDD) (Zaharia et al., 2012), which requires the algorithms such as SSSP to be

defined as a set of (expensive) MR operations over RDD representation of graphs.

However, GraphX does not come with built-in support for dynamic graphs; instead,

we can apply batch updates by mapping the current snapshot of a graph to the

next snapshot.

We can re-execute the SSSP algorithm on the new snapshot to obtain the new

SSSP tree. However, reusing the computation from the previous snapshot may save

significant execution time, especially for very large graphs. Reducing the execution

time is even more critical when expensive computing services are being used for

parallel processing.

In this chapter, we explore an algorithmic approach toward reusing the

computation from previous snapshot in order to compute the SSSP tree for
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the current snapshot. Specifically, we introduce SSSPIncJoint, a new parallel

incremental SSSP algorithm, which recovers the SSSP tree over a series of graph

snapshots that represent a dynamic graph. Our key contribution is this new

algorithm, which reduces high-overhead data-parallel operations by tracking the

changes among snapshots that affect the SSSP tree.

We experimentally show that SSSPIncJoint is more efficient (up to 2.2x

speedup) than recomputing the SSSP for every snapshot of large dynamic graphs.

5.2. Related Work

GraphTau (Iyer et al., 2016) proposes a paradigm of pause-shift-resume, in

which whenever a new batch of updates is ready, GraphTau pauses the current

computation and updates the underlying graph and resume the computation with

the previous state of the vertices. GraphTau cannot guarantee the correctness of

the computation.

Chronos (Han et al., 2014) and ImmortalGraph (Miao et al., 2015) optimize

GAS operations across different snapshots. They suppose accessing to all snapshots

in advance and batch the operations for each vertex/edge over different snapshots

and run batches in parallel using a locality-aware batch scheduling. In the

incremental setting, when given a set of graph snapshots, it processes the first

snapshot and batches the other snapshot reusing the computation of the first

snapshot.

Similarly, Tegra (Iyer, 2017) operates over all snapshots, however, Tegra does

not batch all snapshots together but runs every GAS round over all snapshots

before continuing with the next round, so save the redundant computation.
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BLADYG (Aridhi et al., 2017) is a block-centric framework, which partition

the graph into blocks and assigns each block to a worker. When a new edge comes,

it updates the corresponding block and the corresponding worker may communicate

to other workers to propagate the update.

In Cai et al. (2012a) they use GraphInc which uses memoization and is not

scalable for large networks which we use for our experiments. Among other related

papers Wickramaarachchi et al. (2015) and Fan et al. (2017) do not report any

experimental scalability results and their code base is not available for comparison.

There are a few implementations of sequential SSSP on dynamic networks

such as Ramalingam and Reps (1996) and Narvaez et al. (2000). Bauer and Wagner

(2009) propose SSSP algorithm for dynamic networks using batch updates. Vora

et al. (2017) have proposed an approach that uses approximation while calculating

SSSP on streaming graphs. Srinivasan et al. (2018) recently propose an approach

for finding SSSP on dynamic networks, however it is based on shared-memory

parallelism. Ingole and Nasre (2015) have proposed a GPU implementation of SSSP

on dynamic networks.

5.3. Static SSSP on Spark

To enable computations on large graphs that do not fit in a single machine’s

memory, GraphX provides a vertex-centric gather-apply-scatter (GAS) distributed-

memory parallel programming model (first introduced by Pregel Malewicz et al.

(2010)). In a GAS model, an algorithm is developed from a vertex point of view,

and in general includes three different steps: (i) gathering messages from its

neighboring vertices, (ii) updating its state, and (iii) generating messages for its

neighbors. GraphX iteratively executes these steps, and each iteration of these
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steps is called a superstep. GraphX stores a graph as two RDDs, one for edges

and another for vertices. It also provides triplets view as a joint representation of

an edge attribute and the attributes on its incident vertices. As it provided by the

name view, the triplets are dynamically constructed by shipping vertex attributes

to the computation nodes where the corresponding edge partitions are located.

This makes MR operations on triplets more expensive than MR operations on edge

or vertex RDDs.

Each superstep of a GAS model can viewed as a set of MR operations over

the triplet, edge and vertex RDDs. To gather the messages for each vertex, each

triplet is mapped to messages using a sendMessage function that has access

to edge and vertex attributes of its source and destination vertices, and then a

reduceMessage function combines the messages to generate an RDD containing

pairs of vertex ID and message data. To apply the messages, a new vertex RDD

for the vertices that received any message is constructed by joining the existing

vertex RDD and the new message RDD, and then the old vertex attributes and

the message data are mapped to new vertex attributes using a vertexProgram

function. Finally the graph’s vertex RDD is updated by joining the new vertex

RDD with the existing one to make sure that the vertex partitioning remains the

same, otherwise, constructing the triplet view becomes very expensive for the next

round.

5.4. Dynamic SSSP on Spark

Dynamic graphs can be viewed as a series of graph snapshots that evolve

over time, where each snapshot is constructed by applying an update batch to

its predecessor snapshot. In our setting, we assume that the update batches are
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FIGURE 5.1. a) The original graph, weights not shown for readability. b) The
SSSPBase algorithm based on GAS model. The gray nodes indicate the vertices
that participate in a superstep. The red arrows is the messages labeled with
shortest paths. c) The GraphInc execution after adding an edge between vertices C
and D. The dotted edges shows the memoized messages that have been saved.

queued until the computation on the current snapshot is completed. GraphX does

not have built-in support for dynamic graphs since it depends on immutable RDDs

for graph representation.1

An updated graph can be constructed by mapping the old edge RDD to the

new one to reflect the new changes (edge insertion and deletion) and constructing a

new graph using the new edge RDDs. A simple approach for computing SSSP over

dynamic graphs is to re-run SSSP for each snapshot separately. However, the main

goal is to expedite the repetitious computation on dynamic graphs by reusing the

state of vertices in the current snapshot as much as possible, so we have to transfer

the old vertex attributes to the new graph using the join operations over RDDs.

Reusing computation for GAS is introduced by GraphInc Cai et al. (2012b),

which memoizes received messages and vertex states from all supersteps. In each

superstep, a vertex participates in GAS if its current state is different from the

memoized state for the same superstep on the previous snapshot. A vertex runs the

1IndexedRDD (https://github.com/amplab/spark-indexedrdd) was introduced to expedite
modifying a graph, however, it is not officially supported by GraphX due to fault-tolerance issues.
Therefore, we focused on constructing dynamic graphs merely using the functionality provided by
GraphX.
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vertexProgram using the received messages and also using the memoized messages

from its neighbors that have participated in the same superstep of the previous

snapshot, but not in the current snapshot. Therefore, GraphInc runs SSSP for the

new snapshot for the same number of supersteps, but with fewer messages in each

superstep as shown in Figure 5.1.c.

A naive implementation of GraphInc on top of GraphX suffers from two

problems: first, it does not reduce the number of supersteps, which are executed

using expensive join operations over large RDDs, and second, in an MR framework

such as GraphX, we have to store the memoized information as the vertex

attributes and frequently ship them across different computation nodes (workers

in Spark), which makes memoization impractical for large networks, especially

for the social networks with power-law degree distributions. In order to scale to

large social networks, the size of vertex attributes must not depend on the degree of

vertices, which motivates using fixed-size attributes such as tuples. An example of

variable-size attributes would be if each vertex keeps the distance to source of all its

neighbors. We only store the distance to source, the parent of each vertex, and an

extra flag for capturing the affected vertices due to a batch update.

In contrast to GraphInc, our memoized state does not provide enough

information to recompute the state of vertices, thus requiring message propagation

to take place. However, we can limit the number of required messages by

considering the details of the SSSP algorithm.

An update batch includes a set of edge insertions and deletions.2 Inserting or

deleting edges directly affects the target vertices of the edges (immediate affected)

or indirectly affects the descendants of the target vertices (causal affected). We call

2For simplicity, we only discuss edge insertion and deletion, but the same reasoning applies for
weight decrease and increase.
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a vertex insert-affected or delete-affected if it is affected (immediate or causal) by

edge insertion or deletion, respectively.

If the update batch only includes edge insertions, the states of affected

vertices (both immediate or causal) converge to the correct states if we continue

running the SSSP algorithm. This happens because edge insertion can only shorten

the distance of a vertex to the source, and a vertex generates a message for its

neighbor only if it can reduce the distance-to-source (DTS) of the target vertex,

otherwise the vertex does not participate in the superstep. Therefore, the neighbors

of insert-affected vertices will participate in the message passing in order to adjust

the state of the insert-affected vertices. This update propagates to adjust the DTS

of all insert-affected vertices.

The situation for edge deletion is more complicated because deleting an edge

may increase the DTS of affected vertices, and in turn, the neighbors of delete-

affected vertices may not participate in message passing because the DTS of

delete-affected vertices is at least as large as their DTS before the edge deletion

happening.

If an update batch contains any edge deletion, the SSSP algorithm may not

correct the delete-affected vertices, so we have to mark or invalidate them to make

sure that we can correct their states using the SSSP algorithm. This marking phase

(invalidation) starts with the immediate delete-affected vertices and propagates

to their descendants in the SSSP tree using the GAS model. Therefore, in each

superstep of the invalidation phase, each marked vertex generates messages for its

children in the SSSP tree. If a vertex receives a message, it changes its status to

marked. After convergence, all the delete-affected vertices are marked.
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By setting the state of the marked vertices to ∞, we can make sure the SSSP

does converge to the correct values. Therefore, after the invalidation phase, we can

rely on the SSSP algorithm as a correction phase to adjust the state of all affected

vertices (insert-affected and delete-affected).

These two steps (invalidation and correction) comprise our vanilla SSSPInc

Algorithm 2, which exactly computes the SSSP tree for dynamic graphs. However,

the invalidation phase is also expensive since it requires join operations over large

RDDs to propagate the marks to all delete-affected vertices, and experimentally we

observe that the invalidation phase may take as long as the correction phase (that

considers all delete-affected and insert-affected vertices). Therefore, we introduce

two variations of the basic SSSPInc: SSSPIncApprox and SSSPIncJoint in order to

reduce the required time for recomputing SSSP for large dynamic graphs.

Algorithm 2 High-level SSSPInc

Run SSSP on the primary graph.
for each update batch do

Invalidate all delete-affected vertices.
Apply the update batch.
Adjust the state of vertices.

end for

Algorithm 3 High-level SSSPIncApprox

Run SSSP on the primary graph.
for each update batch do

Invalidate the immediate delete-affected vertices.
Apply the update batch.
Adjust the state of vertices.

end for
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5.5. SSSPIncJoint

The invalidation propagation phase of SSSPInc is extremely expensive

because it requires multiple MR and join operations over very large RDDs in

order to pass few messages (with respect to the size of the graph). The number of

required supersteps for the invalidation phase depends on the position of immediate

delete-affected vertices in the SSSP tree. Therefore, SSSPInc may have even more

supersteps than running the SSSP algorithm from scratch on the current snapshot.

To expedite the message propagation for the invalidation phase, one can

prune the graph to only the SSSP tree, which significantly reduces the size of the

edge RDD. But we should also note that pruning requires an MR operation over

triplets. The overhead cost of pruning may be amortized over message propagation

steps, but in our setting we didn’t find it useful.

An alternative approach is to ignore the incorrect state of causal delete-

affected vertices. In that case, the DTS of the causal delete-affected vertices is only

an approximation of the true value. We call this approach SSSPIncApprox, and is

described in Algorithm 3.

To achieve the same efficiency as SSSPIncApprox, but with more accurate

DTS values, we try to run the invalidation and correction phase jointly. Although

the joint execution may result in inexact values, we can guarantee that if it

converges, it would be to the exact values. We revisit the convergence assumption

after describing the algorithm.

To jointly execute the invalidation and correction, we must make sure that

the correction does not truncate the invalidation phase. We first mark all the

immediate delete-affected vertices. In each superstep, a marked vertex sends

marking messages to its children in the current SSSP tree. To make sure that a
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delete-affected vertex at least remains marked for one superstep, the neighbors of

a marked vertex do not send any DTS value for the marked vertex. Therefore, if a

vertex is marked it can propagate the mark to its children in one superstep. After

propagating the mark, the vertex clears itself and sets its DTS value to ∞, then

removes its parent in the tree. This happens in the vertexProgram. Therefore, in

the next supersteps, its neighbors start sending their DTS to the already cleared

vertex. To avoid loops, a vertex never sends DTS to its current parent in the SSSP

tree, however, longer cycles are still possible but less likely. Algorithm 3 shows the

GAS model for SSSPIncJoint.

Proposition: SSSPIncJoint converges to the exact single-source shortest

path value or never converges.

Proof. Suppose that the edge euv is removed and also suppose that there

exists an edge eyv such that y belongs to the subtree rooted at v. Based on these

assumptions, there exists a cycle including v and y. Let z be any vertex in this

cycle, including u and v, with an edge exz such that x belongs to the subtree rooted

at the source of the original SSSP tree. Note that if the latter condition is not met,

the graph is not strongly connected after removing edge euv. In SSSPIncJoint, v

is marked, and y sends y.distance + eyv.weight to v and becomes the parent of

v. However, y is also a descendant of v, so it will receive the mark token and a

new DTS value from its parent based on the DTS of vertex v, and since node y

is the parent of v, it passes the mark token to v and the new DTS value. This

cycle monotonically increases the DTS values of vertices in the cycle. Therefore,

eventually x.distance + exz.weight < z.distance, so z changes its parent to x

and breaks the cycle. And after another round of message passing in the cycle,

all DTS values become exact. If there is no such vertex x (i.e. the graph is not
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strongly connected after removing the edges), then DTS values of vertices in the

cycle increase infinitely, and the algorithm never converges.

5.6. Experiments

We evaluate the performance of SSSPInc, SSSPIncApprox, and SSSPIncJoint

on three very large real-world social network graphs: Friendster, Twitter-MPI,

and Twitter3. We also run our experiments on a very large syntactic random

graph generated by R-MAT: with parameters: a=0.55, b=0.15, c=0.15, d=0.15.

Table 5.1. shows the characteristics of these datasets.

We assume that a primary graph and an update batch in the form of edge

events (insert or delete) are given as input. To construct a primary graph and

update batch from a static graph, we randomly select an α fraction of edges of

the static graph without replacement. β percent of events are edge deletion, and

the rest are edge insertion. A primary graph is formed by removing the edges

corresponding to insertion events from the static graph. The number of edge

insertions and deletions for each update batch is shown in Table 5.2..

Inserting an edge may introduce a new vertex if the source or destination

vertices are not in the graph. Therefore, we remove standalone vertices appearing

as a result of edge removal from the static graph; they will be added to the graph

as new vertices when we add the edges back.

The baseline is to re-run the SSSP algorithm for each snapshot without

considering the dynamic nature of the graph. We call this method SSSPBase.

We use the vertex with the highest degree as the source for the SSSP

algorithm. All algorithms are implemented using the GraphX library of Apache

3These graphs are the three largest graphs available on the Konnect graph repository:
http://konect.uni-koblenz.de/networks/
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Algorithm 4 SSSPIncJoint

//s: Source vertex for the SSSP algorithm
//euv : edge from u to v.
//msg: (source, distance, mark)
//vertex attributes: (isMarked, distance, parent)
//u→ v : msg means u generates msg for v
procedure sendMessasge(euv)

if u.isMarked then
if v.isMarked then

No message
else if v.parent = u then //v is a child of u

u→ v: (u, ∞, true)
else

No message
end if

else if v.isMarked then
if u.parent 6= v then //v is not the parent of u

u→ v: (u, euv.weight + u.distance, false)
else

No message
end if

else if euv.weight + u.distance < v.distance then
u→ v: (u, euv.weight + u.distance, false)

else
No message

end if
end procedure
procedure MergeMessages(a, b)

mark ← a.mark or b.mark
if a.distance < b.distance then

(a.source, a.distance, mark)
else

(b.source, b.distance, mark)
end if

end procedure
procedure vertexProgram(u, msg)

if u = s then
(false, 0.0, s)

else
if msg.mark then

(true, ∞, ∞)
else if u.distance > msg.distance then

(false, msg.distance, msg.source)
else

(false, u.distance, u.source)
end if

end if
end procedure
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TABLE 5.1. Vertices and edges of the real-world and synthetic graphs in our test
suite.

Name Num. of Vertices Num. of Edges Type

RMAT 339,201,984 4,252,445,904 Directed
Friendster 68,349,466 2,586,147,869 Directed
Twitter-MPI 52,579,682 1,963,263,821 Directed
Twitter 41,637,597 1,453,833,084 Directed

TABLE 5.2. The characteristics of update batches for different graphs.

α = 0.1%, β = 1% α = 0.1%, β = 10% α = 1%, β = 1%
Insert Delete Insert Delete Insert Delete

RMAT 4,250,418 42,647 3,867,390 429,833 42,521,392 429,474
Friendster 2,559,344 25,949 2,327,102 258,373 25,592,403 258,992
Twitter-MPI 1,941,750 19,856 1,764,937 196,681 19,444,189 196,481
Twitter 1,453,304 14,796 1,321,018 146,888 14,532,098 147,270

Spark v. 2.3. For GraphX, we use ten Spark workers on a cluster with ten dual

Intel Xeon E5-2690v4 processors. Each worker has access to 20 cores (for a total of

200 cores) and 120GB of memory (total 1.2TB memory).

We do not use GraphInc in our comparison because by using the suggested

memoization, we have to store all messages in attributes of vertices. This would

dramatically increase the size of vertex attributes, making shipping the vertices

to the computation nodes very costly. Moreover, the number of messages depends

on the degree of vertices, thus for social network graphs with power-law degree

distributions, some of vertices have to store prohibitively large number of messages.

5.6.1. Results and Discussion

We report the execution time of SSSPBase, SSSPInc, SSSPIncApprox,

and SSSPIncJoint for our three different update batches in Figure 5.2.. The

execution time depends on the number of supersteps, as well as the size of the
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FIGURE 5.2. The execution time (in seconds) of SSSPBase, SSSPInc,
SSSPIncApprox, and SSSPIncJoint for different update batches.

FIGURE 5.3. Total number of GAS supersteps for running each algorithm.

graph (number of edges and vertices), which determines execution time of each

superstep. Figure 5.3. shows the number of supersteps of different algorithms for

batch α = 0.1%, β = 1%. Comparing to the same execution time for the same

batch in Figure 5.2., we conclude that the ranking of algorithms with respect to the

number supersteps is often the same as their ranking with respect to the execution

time. The differences are explainable by the execution time of each superstep,

which also depends on the number of active vertices participating in the message

passing.

In general, SSSPInc is often slower than SSSPBase, and the difference is

significant when we increase the number of edge deletions as in the batch α =

0.1%, β = 10%. This happens because the invalidation phase is expensive since

it needs to run several supersteps. We also show the number of supersteps required

for the invalidation and correction phases, as well as the execution time for each
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FIGURE 5.4. Total number GAS supersteps (left) and execution time (right) for
invalidation and correction phase in SSSPInc.

FIGURE 5.5. Apache Spark workers participation in SSSPInc for update batch α =
0.1%, β = 0.1% for Friendster graph.

phase in Figure 5.4.. The reported numbers are for batch α = 0.1%β = 1%. The

execution time of invalidation phase is considerable comparing to the execution

time of the correction phase.

SSSPIncApprox, which only has one step of invalidation (for immediate

delete-affected vertices), is always better than SSSPInc by saving multiple

supersteps of invalidation phase. SSPIncApprox is also always better than

SSSPBase. The one-step invalidation of SSSPIncApprox has not been included

in the number of supersteps required for SSSPIncApprox. We notice, from

the execution of SSSPInc, that the number of invalidated vertices is negligible

compared to the number of the vertices in the graph (less than 0.001% of vertices),
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which indicates that the accuracy of shortest-path distance values found by

SSSPIncApprox is above 99.9% comparing to the exact SSSP.

SSSPIncJoint is always better or equivalent to SSSPIncApprox and is always

better than SSSPBase and SSSPInc. SSSPIncJoint and SSSPIncApprox often share

the same number of supersteps, which suggests that SSSPIncJoint successfully

combines the correction and invalidation phases.

As we mentioned earlier, SSSPIncJoint may not converge if deleting the edges

partitions the graph into disconnected components, but SSSPIncJoint in all of the

experiments converges and finds the exact DTS for all the vertices comparing to

our SSSPBase.

Finally, to see how balanced the workload distribution over the workers is, we

show the processing time of each worker for batch α = 0.1%, β = 1% applied to

the Friendster graph in Figure 5.5.. We find that the workload is evenly distributed

among the workers.

5.7. Conclusion

We introduce an algorithmic approach to compute the SSSP tree for dynamic

graphs on GraphX. Our approach, SSSPIncJoint,4 jointly finds the vertices with

incorrect state and corrects their states. SSSPIncJoint is computationally more

efficient than computing the SSSP from scratch and also more efficient than two-

phase approaches that complete finding the vertices with incorrect states before

start correcting their values.

4Source code and instructions to reproduce our scalability results are available on
https://github.com/DynamicSSSP/SSSPIncJoint-
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CHAPTER VI

CONCLUSION AND FUTURE DIRECTIONS

In this dissertation, we introduce GraphFlow as a framework for processing

very large graphs. GraphFlow encapsulates the detail of working with data-

parallel systems and introduces high-level components to process big graphs.

These components follow the same map-reduce paradigm, but they map a graph

to another graph or dataframe or reduce it to scalar values.

In order to expand the functionality of GraphFlow beyond traditional graph

algorithms, we introduce vertex-centric network embedding (VCNE) for learning

graph representation for very large graphs since existing algorithms do not scale

well.

In addition to static graphs, GraphFlow supports processing very

large dynamic graphs with batch updates. We developed a novel algorithm

SSSPIncJoint, which efficiently computes single-source shortest paths (SSSP) for

different snapshots of a graph (determined by the update batches).

GraphFlow has many potentials to facilitate social sciences, especially for

researches that they do not want to involve in complicated development of low-

level pipelines. Moreover, GraphFlow can be used for educational purposes, where

the goal is to mine graph data without requiring in-depth knowledge of big data

processing systems. Similar frameworks such as Weka1 has been widely used for

machine learning algorithms. GraphFlow can also provide components that store

intermediate graph data, such as learned embedding, which can be used in the

1https://sourceforge.net/projects/weka/
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pipelines in order to reduce required computation for repetitive experiments. This

reduction is significant for very large graphs.

6.1. Potential future directions

In this section, we discuss the potential future direction to extend this

dissertation. We can group these directions into framework extension and

algorithmic extension. The former regards the potential extension of the

GraphFlow architecture, while the latter target its functionality.

6.1.1. Workflow Expansion

Although GraphFlow has been developed over the Galaxy workflow system,

GraphFlow may benefit from ad-hoc workflow system that is aware of the

underlying data-parallel system, here Apache Spark. For example, two consecutive

components in the workflow may share a SparkContext, which allows the system

to keep the objects in memory. This reduces the overhead of serialization and de-

serialization of objects between two consecutive components. Apache Spark gains a

similar advantage over the Hadoop map-reduce by adding in-memory computation.

The other limitation of Galaxy is the lack of support for streaming data.

Galaxy runs each workflow component separately after executing its dependence.

However, for streaming data, all components should be executed in parallel. This

requires significant modification in the engine of the Galaxy workflow system.

6.1.2. Application of graph embedding for dynamic graph components

Graph embedding shows promising results on predicting the incoming edges

of an evolving graph. In advance knowledge of potential incoming edges can be
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used for pre-computation of target algorithms such as SSSP on the predicted future

graph. Therefore, we can reuse such computation when the actual graph arrives.

The predicted graph can be treated as the base snapshot for the actual new graph.

Therefore, we can reuse the computation similar to what discussed in Chapter V.

However, for these types of applications, we require to have embeddings with high

precision and low recall since for high recall and low precision results in predicting

more edges that may not appear in the actual arriving snapshots. Therefore, we

have to delete edges from the predicted base snapshot to get to the actual arriving

snapshots, and handling deleted edges in an incremental setting is more difficult in

general. Such an embedding can be achieved by increasing the negative sampling of

the proposed VCNE algorithm.

We may also need to re-train the embedding after visiting a new snapshot.

Recently, finding network embedding for dynamic graphs has gained more attention

from the community Sankar et al. (2018); Goyal et al. (2018); however, the current

algorithms are not scalable. Therefore, learning scalable network embeddings for

big dynamic graphs is also a potential extension to this dissertation.

6.1.3. Multi-resolution SSSP for large dynamic graphs

In Chapter V, we discuss computing SSSP for dynamic graphs with fixed

batch updates. However, for mining purposes, one may be interested in modifying

the batching window to study the behavior of the dynamic graph. For example, to

see how the distribution of shortest paths is modified yearly, monthly, or for an ad-

hoc interval. Similarly, we can share the computation among different windowing to

save computation. For example, if we have access to the shortest paths of daily

snapshots, we can construct the shortest paths of monthly snapshots without
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running SSSP algorithm by merely taking the computation of the last day of the

month. However, computing shortest paths for daily snapshots would be costly, so

we can capture some key snapshots in the evolution of the graph and compute the

shortest paths for those key snapshots. For example, as discussed in Chapter V,

handling edge insertion for computing shortest paths is cheaper than handling

edge deletion, so we can define a key snapshot as the one that has the most rate

of edge deletion with respect to the previous snapshot. We can define the rate as

the number of deleted edges over the difference in the current timestamp versus the

timestamp of the previous snapshot. Therefore, we can expect that any batch after

a key snapshot and before the next one has mostly edge addition. Consequently, we

can simply compute the shortest paths for each snapshot by updating the shortest

paths of a key snapshot.
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