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THESIS ABSTRACT

Austen Kelly

Master of Science

Department of Computer and Information Science

December 2019

Title: Exploiting Domain Structure with Hybrid Generative-Discriminative Models

Machine learning methods often face a tradeoff between the accuracy

of discriminative models and the lower sample complexity of their generative

counterparts. This inspires a need for hybrid methods. In this paper we present

the graphical ensemble classifier (GEC), a novel combination of logistic regression

and naive Bayes. By partitioning the feature space based on known independence

structure, GEC is able to handle datasets with a diverse set of features and achieve

higher accuracy than a purely discriminative model from less training data. In

addition to describing the theoretical basis of our model, we show the practical

effectiveness on artificial data, along with the 20-newsgroups, MNIST, and MediFor

datasets.
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CHAPTER I

INTRODUCTION

Machine learning tasks often involve incorporating information from a

variety of sources. For example, it is useful to consider network status information

along with email text when attempting to identify spam emails, or to incorporate

pixel information and metadata such as a photo’s caption or the user’s information

when searching for falsified or inappropriate images that have been posted on

social media. A common approach to integrating these different feature types

into one machine learning system is to build complex data pipelines and custom

infrastructure for the given dataset (Sculley et al., 2011). Such methods are often

well tailored to the problem at hand but do not generalize well to changes in the

input feature relationships or different datasets, which can lead to large overhead

as code needs to be reorganized for new use over time (Sculley, Holt, Golovin,

Davydov, & Phillips, 2015).

In this paper, we present a general framework which can be used to

efficiently and effectively integrate domain structure for use with arbitrary

classification tasks. Our key observation into this problem is that multi-modal

feature spaces create an inherent independence structure. In particular, given

a task with a known feature independence structure, we propose the graphical

ensemble classifier (GEC), which leverages those independences in order to train

smaller models, each over a subset of the original feature space.

As inspiration for the GEC design we look to a simple setting: logistic

regression (LR) and naive Bayes (NB). These classic models form a well known

generative-discriminative pair of probabilistic models. In particular, for a data set

X ∈ Rn×m with binary class labels Y , logistic regression discriminatively models
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the posterior distribution P (Y |X) by learning weights for each feature in X. Naive

Bayes, on the other hand, attempts to estimate P (X, Y ) under the assumption

that the attributes in X are conditionally independent given the class label Y .

Discriminative models are typically preferred because they tend to perform better

at classification, but their generative counterparts reach asymptotic accuracy after

seeing fewer training examples and thus can be useful when data is limited (Raina,

Shen, Ng, & McCallum, 2003). The GEC framework that we present represents

a class of models which span the space between purely generative and purely

discriminative form depending on the true independence structure of the feature

space.

Our method has a variety of useful properties. Firstly, it is a linear

combination of traditional models, making it simple to implement. Additionally,

it is not limited to problems with multi-modal feature spaces; it conveniently

generalizes to any task where independence structure between the features is

known or can be well approximated. We also explore a variant based on creating an

ensemble over randomized partitions for situations where domain knowledge of the

feature space is unknown. Finally, we note that because of the hybrid nature of the

GEC model, it will have a lower sample complexity than a strictly discriminative

method would without sacrificing accuracy (given a perfect partitioning). This

makes it particularly useful in domains where the amount of training data is low.

As a real-world example, we apply GEC to the DARPA Media Forensics (MediFor)

project dataset. The MediFor project aims to create a state-of-the-art, robust

system for detecting if alterations have been made to images. Teams from across

the country have developed algorithms, each tuned to detect a subset of possible

manipulations; our contribution in this paper is using the GEC framework to
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synthesize the predictions of those models to create a system capable of detecting

the full set of manipulations.

The rest of our paper is laid out as follows: In Chapter II we detail related

work on combining generative and discriminative models and other ensemble

methods. In Chapter III we go on to describe the framework of the classification

problem at hand and introduce our novel model in the context of clique trees. In

Chapter IV we present results on a synthetic dataset, followed by results on the

20-newsgroup, MNIST, and MediFor datasets showing the real-world applicability

and usefulness of our method, before making final conclusions and future remarks

in Chapter V.
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CHAPTER II

RELATED WORK

The relationship between the asymptotic accuracy and sample complexity

of generative and discriminative models was explored in the seminal paper by Ng

and Jordan (Ng & Jordan, 2001), who showed that while discriminative models

typically out-perform generative ones, the opposite is true when training data is

limited. Later work has attempted to bridge this learning gap between generative

and discriminative models in a variety of ways (Chang, Yih, & Meek, 2008; Hinton,

2002; Kittler, Hatef, Duin, & Matas, 1998; Raina et al., 2003; Webb, Boughton,

Zheng, Ting, & Salem, 2010). For example, in (Raina et al., 2003) Raina et. al.

present an algorithm for text classification which trains individual naive Bayes

models for each section of the corpus and then combines the predictions of each

sub-model using discriminatively learned weights.

The work which is perhaps most closely related to ours is (Chang et al.,

2008). They propose a model called partitioned logistic regression (PLR) which

combines the predictions of multiple logistic regression classifiers, each trained

over an independent subset of the features, using principles of naive Bayes.

Their method achieves greater accuracy than either logistic regression or naive

Bayes across a varying number of training examples, and continues to perform

surprisingly well even when their total independence assumption is weakened. In

this paper, we expand their model to explicitly account for some known dependence

between partitions, which we expect will allow for even better performance.

Further, our model can be applied to a much wider class of problems as we are

not limited to the case where features can be neatly partitioned into unrelated sets.
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We also note that our approach has strong connections to dropout

(Srivastava, Hinton, Krizhevsky, Sutskever, & Salakhutdinov, 2014). Dropout was

presented by Hinton et al. (2014) as a method of increasing the generalizability

of deep neural networks, wherein nodes within the neural network are randomly

omitted during training (Srivastava et al., 2014). Many papers have gone on to use

and explore variations of dropout, including by characterizing dropout as a form of

regularization and expanding the method to apply to other models such as logistic

regression and support vector machines (Ba & Frey, 2013; Chen, Zhu, Chen, &

Zhang, 2014; van der Maaten, Chen, Tyree, & Weinberger, 2013; Wager, Fithian,

Wang, & Liang, 2014; Wager, Wang, & Liang, 2013). However, little work has been

done exploring the space of dropout where nodes are omitted non-randomly or

the connections between dropout and ensemble methods. We argue that the GEC

method may be thought of as a Bayesian approach to dropout, aimed at preserving

sets of features based on their informativeness.
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CHAPTER III

METHODOLOGY

We begin this chapter by briefly defining clique trees in the context of

graphical models and go on to present our graphical ensemble classifier (GEC)

framework which uses clique tree inference over subsets of features to create a

general and statistically efficient approach to data classification.

Clique Trees

As a tool for modeling the relationship between features, we look to Markov

networks. Let X be a set of continuous or binary random variables, X1, X2, . . . , Xn,

with categorical class labels Y . A Markov network (MN), or Markov random field

(MRF), is an undirected graph G = (V,E) where each node V represents a feature

(Koller & Friedman, 2009). Pairs of features (vi, vj) in a MN are dependent if there

exists an edge eij between them and are conditionally independent given a path of

edges between them. MNs are thus a useful framework for describing dependence

between features in a dataset.

For the remainder of this paper, we will limit ourselves to considering

datasets with feature dependence structure described by MRFs which have tree

structure: clique trees. A clique tree H over the feature space of X ∈ Rn is an

undirected, singly-connected graph satisfying the following properties:

1. each node i in H is labeled with a clique of variables, Ci ⊂ X,

2. each variable xi ∈ X appears in at least one clique, and

3. if xi appears in two cliques, Ci and Cj in the tree, it must also appear on all

nodes in between them
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(Koller & Friedman, 2009). Conveniently, clique trees have the property that

they can be factorized to define the probability distribution:

P (X) =

∏
c∈C P (Xc)∏
s∈S P (Xs)

(3.1)

for a tree with cliques C and separator sets S (Koller & Friedman, 2009). Limiting

our dependence graph to clique trees in this way ensures that we can do exact

inference efficiently. However, this work can theoretically be expanded to include

arbitrary independence graph structure if some approximations are introduced.

Graphical Ensemble Classifier (GEC)

Using clique trees as our underlying graphical model for describing feature

independence structure allows us to handle overlapping groups of variables, for

we can then factorize the learning problem according to the factorization of the

given clique tree. In particular, let X ∈ Rn×D be a dataset with binary class labels

Y ∈ [0, 1]n. Let the feature space of X satisfy a clique tree independence structure

with cliques C and overlapping (separator) sets S. If Xc represents the data with

features limited to those present in the clique c ∈ C (or Xs for separator s ∈ S),

then we have that:

P (X) =

∏
c∈C P (Xc)∏
s∈S P (Xs)

. (3.2)

For classification problems, we are interested in the discriminative task of

predicting P (Y |X). Conditioning the above equation on the class label Y and
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applying Bayes’ rule we obtain that:

P (Y |X) ∝ P (X|Y )P (Y )

=

∏
c∈C P (Xc|Y )∏
s∈S P (Xs|Y )

P (Y )

∝
∏

c∈C P (Y |Xc)/P (Y )∏
s∈S P (Y |Xs)/P (Y )

P (Y )

=

∏
c∈C P (Y |Xc)∏
s∈S P (Y |Xs)

P (Y )1+|S|−|C| (3.3)

Using eq. (3.3), we fit linear sub-models P (Y |Xc) and P (Y |Xs) for each

partition Xc and each overlapping set Xs, respectively.

The result is the GEC model. Given model weights Wc and Ws trained over

each clique c and separator set s, respectively, we have that the log odds are:

l̂o(X) =
∑
c∈C

Wc ·Xc −
∑
s∈S

Ws ·Xs

+ (1− |C|+ |S|) log ô (3.4)

where ô = P̂ (Y = 1)/P̂ (Y = 0) is the prior odds.

Relation to Existing Models. To put this into context, we note three

interesting cases of this model:

1. If there is only one partition so that |C| = 1 and X1 = X, then S = ∅ and

eq. (3.3) trivially reduces to classic logistic regression.

2. If each partition Xi contains exactly one variable, then again S = ∅, |C| = n

and Xi = xi for all 0 < i ≤ n. Hence, eq. (3.3) reduces to:

P (Y |X) ∝ P (Y )
∏
xi∈X

P (Y |xi)
P (Y )

= P (Y )
∏
xi∈X

P (xi|Y ),
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which is simply naive Bayes.

3. If the XC sets consist of a partition into k non-overlapping sets, then the

equation reduces to:

P (Y |X) ∝ P (Y )
k∏

i=1

P (Y |Xi)

P (Y )

= P (Y )1−k
k∏

i=1

P (Y |Xi),

which is the case of this problem handled by PLR (Chang et al., 2008).

Thus, depending on the nature of the underlying feature dependencies, the GEC

model spans the space between being a generative and being a discriminative

model, along with successfully encompassing a broad class of models.

Randomized GEC

While the above GEC framework is especially useful in a setting wherein the

feature relationships are known, such information is often not known in practice.

Inspired by the success of ensemble methods, we show that even when little to no

structure is known, it is possible to leverage ensembles of randomly partitioned

features and obtain accurate results without overfitting.

To accomplish this, we propose randomized GEC (Rand-GEC). Since no

groupings are known or present, we instead randomly group features into k non-

overlapping sets of equal size and run GEC on those random partitions. We then

average the results over s such random groups to reduce bias. The procedure is

described in Alg. 1.
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Algorithm 1 Randomized GEC

1: procedure RandGEC(N, d, k, s)
2: Given data X ∈ [0, 1](N,d).
3: for trial t ∈ {1, . . . , s} do
4: Partition d features into k random groups, f1, . . . , fk.
5: Train LR models Mf1 , . . . ,Mfk .
6: Sum weights of sub-models using eq. (3.4) to make predictions on test

set.
7: Calculate test accuracy.
8: end for
9: Average accuracy of s trials.
10: end procedure

10



CHAPTER IV

RESULTS AND ANALYSIS

To display the capabilities of the graphical ensemble classifier, we present

results on artificial data, 20-newsgroups, MNIST, and our Media Forensics

(MediFor) dataset. In each case we compare the accuracy of Bernoulli naive Bayes

(NB), logistic regression (LR), partitioned logistic regression (PLR), graphical

ensemble classifier (GEC), and randomized-GEC as a function of the number of

training examples. Since GEC is designed specifically to break the independence

assumption of PLR, we additionally consider a model (PLR-split) which takes the

set of dependent features and divides them randomly between partitions so as not

to count them twice.

Artificial data

In this section we present results and analysis of the GEC model on an

artificial dataset. We first describe the process we use to generate this data and

then go on to show results on that artificial data.

Data Generation. Since our model assumes known clique tree

structure over features, we create an artificial dataset to test the GEC model under

a controlled setting where the data’s feature independence structure is known and

controllable. Our artificial data generation ensures that we can purposefully vary

the feature independence tree and amount of dependence between partitions. We

base this generation process on the methodology presented in (Chang et al., 2008).
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Let Y ∈ {0, 1} be the class label of a random example X ∈ {0, 1}d. For a

given number of partitions k we generate random examples X using:

Y ∼ Bernoulli(0.5)

X̂ = (X̂1, . . . , X̂k) ∼ N(~µy,Σy)

X = (X1, . . . , Xk) =
(
f(X̂1), . . . , f(X̂k)

)
,

such that N(~µy,Σy) is a multivariate normal with parameters based on the

class label y ∈ Y . In particular, ~µ0 = {−
√
d}d and ~µ1 = {

√
d}d. To simulate k

independent partitions, we generate each Σy by first creating a Gram matrix Gy

and then zeroing out the covariance terms between the classes, as described below.

For example, when k = 2:

Gy =

 A B

BT C

 becomes Σy =

A 0

0 C


This process ensures that variables from each partition Xi are independent

from variables in different partitions Xj for i 6= j.

Each Gram matrix Gy is formed from k ∗ d vectors of size 10 with entries

drawn uniformly at random between -1 and 1. After zeroing out the covariance

terms, this creates a unique, positive semi-definite d × d covariance matrix for each

class label, which we use in the generation of X̂ ∼ N(~µy,Σy).

After generating X̂ using the process described above, we expand the real

valued samples from X̂ into a binary representation. Using a sign bit and the

bits corresponding to 22, 21, 20, 2−1, and 2−2 we obtain the expanded samples

X = (X1, . . . , Xk) of size 6n. This expansion process makes some features more

informative than others. We use f(X̂i) to denote this expanded set of features.

The above process results in a dataset consisting of k independent

partitions, and mirrors the data generation process presented in (Chang et

12



Figure 1. A visual representation of the process of creating the overlapping sets in
the artificial data generation process, where the size of overlapping sets, o, is 1. In
this case, the model has k = 3 partitions (X1, X2, X3) over 3 features each and ends
up with two separator set models (X12, X13) over o = 1 feature each.

al., 2008). We introduce a final step in the data generation to create a chain

structure of dependence between the partitions. For each original pair of partitions

(Xi, Xi+1) we pair o features from each and create dependence between them.

Concretely, let x
(i)
j denote the jth element in partition i. Then, we pair sets

Oi = {xi6n−o, . . . , xi6n} ⊂ Xi and Oi+1 = {x(i+1)
1 , x

(i+1)
2 , . . . , x

(i+1)
o } ⊂ Xi+1, to create

the overlapping partition Xi(i+1) where each element x
i(i+1)
j is the maximum of the

jth elements of Oi and Oi+1. This process is visually depicted in Fig. 1 for clarity.

This allows us to control the level of dependence between partitions, varying from

complete independence (o = 0) to full overlap (o = d).

For each experiment we run 5-fold cross validation on the training data

in order to choose the `2-regularization constant, C, for logistic regression. For

simplicity, we choose C ∈ [0.01, 0.1, 1, 10, 100] to be the same for each sub-model

of a given model. (In preliminary experiments, we find that the results are not

very sensitive to this tuning process.) For the randomized splits, we randomly

divide features into k groups and average the results over s of these random splits

to reduce bias. Results are averaged over 10 random datasets, with randomized

groupings additionally averaged over s = 3 random splits per dataset.

Artificial Results. Our first experimental setting is designed to

compare the effectiveness of GEC and PLR when there are known groups and

some overlap (Fig. 2). In the case of no overlap (Fig. 2a), we observe as expected

13



that PLR, PLR-Split, and GEC are all equivalent and significantly out-perform the

other models in most cases. As the amount of dependence between the two groups

increases (Figs. 2b, 2c, 2d), we see that PLR does not remain as competitive.

Interestingly, PLR-split continues to succeed, particularly in the mid-range of

number of training examples. However, in nearly all cases our GEC method obtains

higher accuracy on held-out test data after seeing enough examples.

Next, we analyze the impact of the number of random partitions, k, on

accuracy when an underlying group structure is not present. Fig. 3 shows a

heatmap of accuracy for training set size versus number of partitions, k. Results

are again averaged over 10 random datasets of dimension d = 600 with no forced

independence structure (one group). Each model is averaged over 3 random

groupings. It is clear from this figure that given enough training data, logistic

regression (1 group) is the superior choice. When the number of training examples

gets smaller (∼ 100 − 1500), it becomes progressively better to use larger numbers

of partitions. This reflects the notion that logistic regression over n features needs

O(n) samples to converge to asymptotic accuracy (Ng & Jordan, 2001); splitting

into more groups allows each partition to be over a smaller number of features,

decreasing the effective sample complexity to O(n/k) for each partition.

20 Newsgroups

The 20-newsgroups text dataset, as used in (Wang & Manning,

2012), consists of thousands of text documents relating to 20 different topic

groups. We consider the task of distinguishing the topic pairs alt.atheism

versus soc.religion.christianity, rec.sport.hockey versus rec.sport.baseball, and

comp.windows.x versus comp.graphics. Since this text data has no particular

natural grouping, we choose to group words by their parts of speech for PLR. We

14
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Figure 2. Accuracy versus number of training examples on artificial data for
varying dependence between groups on a semi-log scale. Each partition originally
contains d = 240 features. From top left to bottom right, the number of dependent
features: (a) 0, (b) 60, (c) 120, (d) 180.
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Figure 3. Heatmap comparing accuracy of number of random splits for varying
number of training examples on artificial data with d = 600 features.

only consider randomized GEC for this set of experiments, and omit PLR-split

since there is no overlap in part of speech tagging.

In Fig. 4 we select the top 3000 most common words in the given training

set as features and average all results over 10 random train-test splits. An

important takeaway from this set of figures is that the answer of which model

is best is very dependent on the data. Looking at Fig. 4a, alt.atheism versus

soc.religion.christianity, we observe that using smaller numbers of groups

is preferable to using more groups, but in Fig. 4b, rec.sport.hockey versus

rec.sport.baseball, we see the opposite trend. The reasoning behind this stark

difference comes from the fact that the task of differentiating the topics atheism

and Christianity is harder than of hockey and baseball, as seen in an about 10%

lower accuracy for the former. Some of the most common words for atheism

versus Christianity include “god” and “believe,” which on their own do not give

much information to distinguish between the categories. For hockey and baseball,
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Figure 4. Accuracy versus number of training examples on the 20-newsgroups
data. Newsgroup pairings from left to right: (a) alt.atheism versus
soc.religion.christianity, (b) rec.sport.hockey versus rec.sport.baseball, (c)
comp.windows.x versus comp.graphics.

however, standalone words such as “pitcher” for baseball or “goalie” for hockey can

alone be strong evidence for classification. Datasets which require modeling of more

complex relationships between features will often see better results with smaller

numbers of groups, so that those interactions are not lost. It is thus important to

be aware of the expected properties of a dataset before choosing what number of

random GEC groups to use.
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MNIST

Next, we explore the classic hand-written digit recognition task, MNIST

(LeCun, Bottou, Benigo, & Haffner, 1998). The MNIST dataset consists of 60000

training examples of black-and-white hand-written digits 1-9, sized to 28x28

pixels each. For our experiments, we consider the binary task of differentiating

two given numbers. We choose the pair4&9, which is classically more difficult to

differentiate than most other pairs due to the visual similarity of the two numbers.

Our hypothesis for this dataset is that partitioning the image into smaller regions

will allow our model to out-perform logistic regression. Since the numbers are

centered in each image, we focus on the middle region as our overlapping set.

We consider three different partitioning schemes: focal, diagonal, and 9-grid, as

depicted in Fig. 5.

An interesting point in the results of Fig. 6 is that PLR does not get much

higher accuracy than random splits into a few groups, and GEC does worse than

either. This indicates that in many cases it is better to use a series or random

groups than to attempt to use this method with a poorly designed group.

MediFor

The Media Forensics (MediFor) project is an ongoing effort into improving

our capability and accuracy at detecting if manipulations have been made to

images. This issue has become of critical importance over the past few years as

Figure 5. Visual representation of partition schemes used for PLR and GEC on
MNIST dataset. From left to right: focal, diagonal, and 9-grid.
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Figure 6. Accuracy versus number of training examples on MNIST data. Solid,
dashed, and dotted lines represent focal, diagonal, and grid groupings, respectively.

social media has become increasingly prevalent and influential across the world,

making it easier to spread false information and images. The MediFor project

consists of a group of industry and university teams who have been independently

developing methods for detecting certain image manipulations, such as crops,

recaptures, blurs, and splices. Rather than develop another algorithm for directly

detecting alterations, we are interested in the task of synthesizing the outputs

of the existing algorithms, with the hope of getting better overall accuracy than

any individual algorithm. We thus create a dataset whose features are the output

confidence scores of each algorithm for the given image. Since our inputs are the

outputs of each algorithm, we then group features using domain knowledge of

algorithm similarity.

Since current information about each algorithm is limited, we have

manually chosen a sequence of groupings to represent a variety of possible

relationships between the algorithms. We begin with each algorithm in it’s own
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group (equivalent to naive Bayes) and sequentially choose the two most similar

groups to merge until all of the algorithms make up one group (equivalent to

logistic regression). The hierarchy of groupings we have chosen are displayed in

the dendrogram in Fig. 7.

In Fig. 8 we present results of accuracy and area under the receiver

operating characteristic curve (AUC ROC) as we increase number of partitions

(following the groupings described in the dendrogram) when training on 20% and

80% of the dataset. As before, random groupings are averaged over 5 trials, and all

values represent an average over 5-fold cross validation.

In this setup we find that logistic regression (one group) is the best option

for this task, with accuracy dropping off as we increase the number of groups.

We can also see that the partitions made manually with knowledge of algorithm

similarity achieve higher accuracy and AUC ROC than random partitions do.

These two observations both indicate that using the relationships between the

algorithms is a better approach than assuming that they are all independent.

20



Figure 7. Dendrogram describing groupings chosen for MediFor dataset.
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Figure 8. Accuracy and AUC ROC versus number of groups when training on 20%
and 80% of the MediFor data. Green lines represent manual partitions based on
domain knowledge, and red lines represent random groupings. From left to right:
(a) accuracy, (b) AUC ROC.
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CHAPTER V

CONCLUSION

In this paper we presented the graphical ensemble classifier as a hybrid

between logistic regression and naive Bayes and showed that it can obtain higher

accuracy than baseline methods when an overlapping set structure is present in the

data. In addition to requiring less data to fit an accurate model, GEC is simple to

implement, for it is a simple linear combination of traditional logistic regression

models. This means that it can be applied to a wide range of datasets with low

implementation overhead. We believe that this method shows promise and may be

of use with datasets where structured domain information is known.

It should be noted that GEC is very sensitive to the chosen partitioning, as

seen in the 20-newsgroup and MediFor results. If a given grouping fails to capture

key relationships in the features, the accuracy of GEC may decrease substantially

as compared to a traditional logistic regression model. Averaging over models

trained on random partitions (as in randomized GEC) is a simple and surprisingly

effective method for counteracting that property, and is favorable to settling for one

inaccurate partition. Nevertheless, our artificial data results indicate that using a

proper grouping with GEC is more effective than random splits.

In future work, we hope to develop a strategy for automatically finding

possible partitions based on feature correlations or other similarities. In

addition, we aim to extend our method to accept different, non-linear underlying

discriminative models, such as support vector machines or even feed-forward neural

networks. The super-linear complexity of such models should mean that reducing

the size of the feature space will allow for even greater accuracy gains than we see

with logistic regression.

22



REFERENCES CITED

Ba, L., & Frey, B. (2013). Adaptive dropout for training deep neural networks. In
Proceedings of the 26th international conference on neural information
processing systems (Vol. 2, p. 3084-3092).

Chang, M.-W., Yih, W.-T., & Meek, C. (2008). Partitioned logistic regression for
spam filtering. In Proceedings of the 14th ACM SIGKDD international
conference on knowledge discovery and data mining (p. 97-105).

Chen, N., Zhu, J., Chen, J., & Zhang, B. (2014). Dropout training for support
vector machines. In Proceedings of the twenty-eighth AAAI conference on
artificial intelligence.

Hinton, G. (2002, August). Training products of experts by minimizing contrastive
divergence. Neural Computation, 14 , 1771 - 1800.

Kittler, J., Hatef, M., Duin, R., & Matas, J. (1998, March). On combining
classifiers. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 20 , 226-239.

Koller, D., & Friedman, N. (2009). Probabilistic graphical models: Principles and
techniques. The MIT Press.

LeCun, Y., Bottou, L., Benigo, Y., & Haffner, P. (1998). Gradient-based learning
applied to document recognition. In Proceedings of the IEEE.

Ng, A., & Jordan, M. (2001). On discriminative vs. generative classifiers: A
comparison of logistic regression and naive bayes. In Proceedings of the 14th
international conference on neural information processing systems: Natural
and synthetic (p. 841-848).

Raina, R., Shen, Y., Ng, A., & McCallum, A. (2003). Classification with hybrid
generative/discriminative models. In Proceedings of the 16th international
conference on neural information processing systems (p. 545-552).

Sculley, D., Holt, G., Golovin, D., Davydov, E., & Phillips, T. (2015). Hidden
technical debt in machine learning systems. In Proceedings of the 28th
international conference on neural information processing systems (Vol. 2,
p. 2503-2511).

Sculley, D., Otey, M., Pohl, M., Spitznagel, B., Hainsworth, J., & Zhou, Y. (2011).
Hidden technical debt in machine learning systems. In Proceedings of the
17th ACM SIGKDD international conference on knowledge discovery and
data mining (p. 274-282).

23



Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R.
(2014, January). Dropout: A simple way to prevent neural networks from
overfitting. The Journal of Machine Learning Research, 15 , 1929-1958.

van der Maaten, L., Chen, M., Tyree, S., & Weinberger, K. (2013). Learning with
marginalized corrupted features. In Proceedings of the 30th international
conference on international conference on machine learning (Vol. 28,
p. I-410-I-418).

Wager, S., Fithian, W., Wang, S., & Liang, P. (2014). Altitude training: strong
bounds for single-layer dropout. In Proceedings of the 27th international
conference on neural information processing systems (Vol. 1, p. 100-108).

Wager, S., Wang, S., & Liang, P. (2013). Dropout training as adaptive
regularization. In Proceedings of the 26th international conference on neural
information processing systems (Vol. 1, p. 351-359).

Wang, S., & Manning, C. (2012). Baselines and bigrams: simple, good sentiment
and topic classification. In Proceedings of the 50th annual meeting of the
association for computational linguistics: Short papers (Vol. 2, p. 90-94).

Webb, G., Boughton, J., Zheng, F., Ting, K., & Salem, H. (2010). Decreasingly
naive bayes: Aggregating n-dependence estimators (Tech. Rep.). KNOWSYS
Lab, Monash University.

24


	 Introduction 
	 Related Work 
	 Methodology 
	Clique Trees
	Graphical Ensemble Classifier (GEC)
	Relation to Existing Models

	Randomized GEC

	 Results and Analysis 
	Artificial data
	Data Generation
	Artificial Results

	20 Newsgroups
	MNIST
	MediFor

	 Conclusion 
	REFERENCES CITED

