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THESIS ABSTRACT

Mamtaj Akter

Master of Science

Department of Computer and Information Science

June 2020

Title: Towards Optimized Vector Instructions for High-Performance Functional
Programming

The Basic Linear Algebra Subprograms or BLAS provide the foundation

for much of the software used in scientific computing. To date, BLAS has been

implemented in C, Fortran, and directly in assembly. These languages allow the

implementations to be well optimized by hand ensuring when a BLAS routine is

called that it is as fast a possible.

Functional programming languages, and in particular Haskell, do not allow

the fine-grained control over memory, and their high-level features make it hard

to optimize a single function to the level of C or assembly. However, Haskell

has an advantage when optimizing combinations of container-based operations.

Because of this we explore both implementing BLAS in Haskell and comparing the

Glasgow Haskell Compiler’s ability to optimize scientific programs to that of a C

compiler.
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CHAPTER I

INTRODUCTION

Linear Algebra is a study of mathematics that involves mathematical objects

like scalars, vectors, and matrices. The application of linear algebra is widely

prevalent to solve the technical problems in the area of physics, mathematics,

engineering, and scientific software. Many general-purpose or specialized linear

algebra libraries are used by computer scientists and the major motivation behind

these libraries is to hide the low-level calculations of the linear equations from the

large scientific software implementations. Basic Linear Algebra Subprograms

(BLAS) [6] is one of the most popular cross-platform libraries that provides a set

of low-level routines to perform many common linear algebra operations like vector

scaling, vector sum, the dot product, vector-matrix multiplication, triangular solve

and so on.

The BLAS libraries are implemented in high-level imperative languages such

C or Fortran (a low-level language like Assembly is also used in optimized

versions) and therefore, these can be applied in any imperative language

applications. In general, imperative programming is a style of programming that

allows programmers to write a sequence of statements that helps the system to

reach a certain goal. As each of these statements gets executed, the state of the

program gets changed. To acquire the correct output, the program needs to follow

the exact procedure and so, any modification of the given inputs often leads to

confusing problems and errors in the code. Thus, the imperative language also has

fallen short in the aspect of code clarity and understandability.
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Functional Programming addresses the above-mentioned issues since it is a

different paradigm of programming that binds any problem to a pure mathematical

functional style. It mainly focuses on expressions that produce values depending

on what goal or output a program needs to achieve. Functional language like

Haskell brings three major benefits over imperative ones. First, with the help of

some specific higher-order functions [14] such as maps, zips, folds, functional

programs provide a more intuitive structure ensuring both modularity and clarity.

Such shorter and clearer code leads to improved development productivity, higher

quality and fewer bugs. Second, although Haskell lacks loops, programmers use

tail-recursive functions [2], and the GHC (Glasgow Haskell Compiler) does not

allocate memory for every recursive application; ratherm, it performs a tail call

optimization [19] to avoid running in linear space, similar to an imperative

language where a loop gets executed in constant space. Third, GHC offers stream

fusion [5]—a straightforward idea of transforming the recursive structures into

non-recursive co-structures to eliminate intermediate structures by combining

adjacent transformations and applying equational laws [17].

Nevertheless, with a functional language like Haskell, programmers struggle in

terms of program optimization due to features such as lazy evaluation, purely

functional data structures, and lack of memory control. On the other hand, C and

Fortran languages allow programmers to interact with memory in a low-level way.

This leads us to two research questions: (1) Can a functional language

implementation of the BLAS achieve performance comparable with imperative

languages? (2) If not, what is limiting performance? To find the answers, we

implement a linear algebra library titled HBLAS in Haskell and perform a

comparative study with an imperative BLAS application.

2



In this thesis, our contributions include: 1) A functional implementation of

the BLAS level-1 and level-2 interfaces; 2) Implementation of two linear iterative

solvers, in both C and Haskell; 3) Optimization of the HBLAS library and compare

the performance of the applications with the imperative applications.

The rest of the paper is organized as follows. Chapter 2 discusses the related

work on optimizing linear algebraic operations. In Chapter 3, background and

terminologies that we need to read the rest of the paper, are thoroughly described.

The methodology is presented in Chapter 4. Finally, Chapter 5 illustrates the

experimental results and analysis and Chapter 6 concludes the thesis and outlines

future work directions.
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CHAPTER II

RELATED WORK

Implementing the Basic Linear Algebra Subprograms (BLAS) in a functional

language is a relatively new idea; by contrast, imperative approaches have been

around for several decades. As functional language compilers begin to implement

an increasing number of performance-improving strategies, the performance of

functional programs may approach that of traditional HPC-language

implementations. To evaluate the current state and identify current shortfalls, in

this thesis, we implement the BLAS using Haskell (HBLAS). Moreocer, we create

several implemenmtations using different data structures and we also apply some

GHC language features to make the library as optimized as possible. In this

chapter, we discuss the related works that we found so far on functional linear

algebra libraries.

Mainland et al. in [8] proposed a novel efficient generalized stream fusion

framework. To express the operations on vectors, the abstraction mechanism they

used was a bundle of streams. The streams are chosen so that for any given

high-level vector operation there is a stream in the bundle whose representation

leads to an efficient implementation. Because the GHC eliminates intermediate

bundle structures, this bundle abstraction has no run-time cost. They

experimented on a BLAS level-1 function dot-product and showed that using their

proposed vector library with generalized stream fusion, Dot-product achieved a

better performance than the dot product of CBLAS.
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Accelerate [4] is a library that GHC has launched to efficiently deal with the

array-operations that needs superior performance. In this Data.Array.Accelerate

module Array or matrix computations are expressed as parameterized collective

operations, such as maps and reductions.

GHC also includes a simple way to access the BLAS library from Haskell and

to call the BLAS routines from Haskell, the Haskell programmers need a BLAS

and LAPACK binding that provides the full BLAS and LAPACK APIs. This

interface is named HBlas [18] by GHC.

None of the above work focused on a complete solution for linear algebra

computations with a functional language. Therefore we attempt to implement a

linear algebra library useful for programmers who can exploit the benefits of

functional language but also can achieve good performance with large data sets.
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CHAPTER III

BACKGROUND

In this thesis we implement a library for basic linear algebra operations in

Haskell and utilize different data structures to find an optimized solution. This

chapter introduces the concepts used in our research.

Since our library is broadly inspired by BLAS [6], we need to discuss its

functionality. BLAS is categorized into three levels- evel 1: scalar-vector and

vector-vector operations, level 2: vector-matrix operations, and level 3:

matrix-matrix operations.

BLAS level-1 consists only of vector-scalar and vector-vector operations.

Table-1 lists the scalar and vector operations that are included in level-1. This

table is organized with the scalar and vector reduction operations (Dot Product,

Vector norms, Sum, Min value and location, Max value and location, Max abs

value and location), the vector rotation operations (Generate plane rotation-

_ROT , Generate Givens Plane rotation- _ROTG, Modified Givens

Transformation- _ROTM , _ROTMG ) and the vector operations (Scaled vector

addition, scaled vector accumulation).

BLAS level-2 and level-3 include some important matrix-vector operations and

matrix-matrix operations respectively. Table-2 and Table-3 depict the subroutines

in detail. Both of these levels consist of the four most important vector-matrix

operations: general matrix-vector or matrix-matrix multiplication, symmetric

matrix-vector or matrix-matrix multiplication, triangular matrix-vector or

matrix-matrix multiplication and triangular solve vector or triangular solve matrix.
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Table 1. BLAS level-1 functions

Name Arguments Description Equation
axpy α,x,y update vector y = y+ αx
scal α,x scale vector y = αy
copy x,y copy vector y=x
swap x,y swap vectors y ↔ x
dot x,y dot product =

∑
x ∗ y

nrm2 x Euclidean norm = ‖x‖2
asum x 1-norm =

∑
| xi |

iamax x index of max(| xi |)
rotg a,b,c,s generate given rotation
rot x,y,c,s apply plane rotation
rotmg d1,d2,a,b,param generate modified plane

rotation
rotm x, y, param apply modified plane

rotation

In this thesis we test the performance of our HBLAS library in some

real-world linear algorithms. There are several iterative methods to solve the linear

equation though: x= A-̂1b. And so we utilize our proposed HBLAS in two such

iterative linear methods like Conjugate Gradient (CG) [3] and Transpose-Free

Quasi Minimal Residual (TFQMR) [7] Methods. CG Method is one of the most

prominent iterative algorithms for solving the system of linear equations A*x=b

for x. It takes the matrix A of size N X N and the vector b as input where A must

be a symmetric matrix and the vector b must have length N. It solves the linear

equation in n iterations and each iteration requires a few vector operations like

axpy, scale, dot product, euclidean norm, and matrix-vector multiplication. The

solution x = A−1b is obtained in the conjugate gradient through Gaussian

Elimination, so there is no need for matrix inversion which is a computationally

expensive matrix operation. Therefore, this algorithm requires less memory space

and so, it is particularly suitable for large scale systems. This method provides a

7



Table 2. BLAS level-2 functions

Name Arguments Description Equation
gemv α,A,x,β, y general matrix-vector

multiplication
y = αAx+ βy

symv α,A,x,β, y symmetric matrix-vector
multiplication

y = αAx+ βy

trmv A,x triangular matrix-vector
multiplication

y = Ax

trsv A,x,y triangular solve vector x = A−1y
syr α,A,x symmetric rank-1 update B = A+ αxx
syr2 α,A,x,y symmetric rank-2 update B = A+ αxy + αyx

monotonically improving approximation xk to the exact solution x, which may

reach the required tolerance after a relatively small (compared to the problem size)

number of iterations. And the number of iteration required is being controlled by

the euclidean norm of the residual r = b-A*x. On the other hand, the TFQMR

algorithm is used to obtain fast solutions for linear systems with very large and

very sparse coefficient matrices. It solves systems of the form A x = b where the

operator A is a square non-symmetric matrix of size N X N and b is a vector of

size N given as inputs and x is the output.

Table 3. BLAS level-3 functions

Name Arguments Description Equation
gemm α,A,B,β, C general matrix-matrix

multiplication
C = αAB + βC

symm α,A,B,β, C symmetric matrix-matrix
multiplication

C = αAB + βC

trmm α,A,B triangular matrix-matrix
multiplication

B = αAB

trsm α,A,B triangular solve matrix B = αA−1B
syrk α,A,β,C symmetric rank-1 update C = αAA+ βC
syr2k α,A,B,β,C symmetric rank-2 update C = αAB+αBA+βC
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We implement BLAS in Haskell using the higher-order functions [12] that

GHC provides. These functions are considered as the powerful abstraction

mechanism that makes Haskell programs more declarative and often much shorter

than their imperative counterparts. Let us consider the mathematical definition of

the matrix-vector multiplication to discuss the merits of functional programming.

In the equation below, A is a matrix of size m rows and n columns and x is a

vector of size n. The matrix-vector product A*x is defined to be the vector y=A*x

of size m. We also consider the Haskell and C code for the vector-matrix

multiplication below where the contrast in programming style is apparent- the

definition of the multiplication in Haskell has an intuitive structure whereas the C

code has a complex structure that lacks code clarity and modularity.

x =



x1

x2

.

.

xn


;A =



a11 a12 ... a1n

a21 a22 ... a2n

.

.

.

am1 am2 ... amn



y = A ∗ x =



a11x1 + a12x2 + ...+ a1nxn

a21x1 + a22x2 + ...+ a2nxn

.

.

.

am1x1 + am2x2 + ...+ amnxn


9



mult a x = [[ sum $ zipWith (*) ai x ] | ai <- a ]

for (i=0;i<rows;i++)

for (j=0;j<cols;j++)

y[i]+=a[i][j]*x[j];

Haskell offers three different data structures - List, Boxed Vector and Unboxed

Vector.For each of these data structures GHC provides three corresponding

libraries: Data.List [15], Data.Vector and Data.Vector.Unboxed. Data.List module

consists some very useful higher-order functions to do the list operations easily.

Take, Drop, Map, Filter, (++), head, last, tail, foldl, foldr, reverse, repeat,

zipWith are some examples of the functions. Data.Vector [26] module is used for

boxed vectors and it supports a rich interface of list-like functions. Boxed vector

data-structure provides the advantage of safe indexing and thus the complexity of

the update operations are O(1). It also provides all the functionalities that

Data.List library belongs. Data.Vector.Unboxed [13] library is a re-implementation

of the vector library and hence, it includes the same set of functions. This module

is used to take advantage of stream fusion, and GHC optimizations. In the

unboxed-vector data representation, the elements are stored directly in the

allocated array and therefore they bring a big advantage over boxed vectors - the

elements are all stored contiguously.

Nevertheless, Haskell also has an important characteristic that makes it not so

suitable in time-critical scientific computing. It follows a lazy evaluation strategy.

10



In strict evaluation, the function arguments are completely evaluated before

passing them to a function, but in lazy evaluation, the evaluation of function

arguments is delayed as long as possible. In the example code below, even though

the expression [1..] produces an infinite list and the singleton list [5] is supposed to

be appended at the end of the infinite list, the Glasgow Haskell Compiler (GHC)

[24] chooses not to expand [1..] at once, rather it takes one element at a time. This

very special attribute of functional programming causes inefficiency since it

accumulates all the operands before starting evaluating each value and it also

makes the code vulnerable to a stack overflow issue since evaluating an expression

like (((5+2)+2)+7) requires pushing 2 and 7 in the stack before evaluating 5+2

and then popping 2 from the stack, adding along the way. However, the laziness

feature of GHC makes variables to be evaluated only when they are needed and

that creates a series of binds stacked up which leads to space leak [11], [20], [16].

This space leaks issue is a major reason why functional programs take larger

execution time and its mostly due to the data immutability feature which forces

the compiler to produce a lot of temporary data. To mitigate these issues, GHC

packages provide some strict version of higher-order functions like foldr’ and foldl’

[22] that tells the system that the inner redex must be evaluated and reduced first

before the outer ones.

print (take 4 ([1..] ++ [5]))

take 4 ([1..] ++ [5])

take 4 (1 : ([2..] ++ [5]))

11



1 : take 3 ([2..] ++ [5])

1 : take 3 (2 : ([3..] ++ [5]))

1 : 2 : take 2 ([3..] ++ [5])

1 : 2 : take 2 (3 : ([4..] ++ [5]))

1 : 2 : 3 : take 1 ([4..] ++ [5])

1 : 2 : 3 : take 1 (4 : [5..] ++ [5])

1 : 2 : 3 : 4 : take 0 ([5..] ++ [5])

1 : 2 : 3 : 4 : 5 : []

However, GHC offers some solutions that help to improve time-critical

functions like our HBLAS subprograms. To force GHC to be more strict in its

evaluation, GHC supports an extension of pattern matching called bang pattern

[23], written as !x when x is a parameter of a function. To activate the bang

pattern feature, we add {−#LANGUAGEBangPatterns#−} to the top of our

program file. Let’s take the following simple add method with a bang pattern

where function b gets evaluated without cluttering all the intermediate outputs

together until the end.

{-# INLINE add # -}

add:: Int ->Int ->Int

add !m !n = m+n

a= add 2 (1+4)

b= add a 5

12



b= add (add !2 (1+4)) 5

b= add (add 2 5) 5

b= add 7 5

b= 12

To write performant functional programs, GHC has an optimization technique

like inliner [25]. GHC can decide whether to inline a particular function or not, it

looks at its size and assigns some sort of weight to that function. It considers

several internal factors before inlining a function, for example- How much code

duplication inlining would cause or how much work duplication would inlining

cause. Therefore, we use INLINE pragma to exploit GHC’s optimization.

13



CHAPTER IV

METHODOLOGY

In the previous chapter, we briefly discussed the supporting features and tools

that we needed to implement and optimize our HBLAS. This chapter provides an

in-depth discussion of the methodologies used in the implementation of HBLAS

and we also discuss the optimization techniques that we used to get the best

runtime performance. The HBLAS implementation can be accessed from our

GitHub repository at [1].

We organize this chapter in the following sections: 1) Implementation of

BLAS levels 2) GHC libraries, 3) Implementation of two iterative linear solvers,

and 4) GHC optimization techniques.

4.1 Implementation of BLAS Levels

This section summarizes the vector and list operations of HBLAS. We

implement levels 1 and 2 of HBLAS since our example applications extensively

used scalar-vector, vector-vector, and vector-matrix operations.

4.1.1 HBLAS Level-1.

HBLAS level-1 addresses the scalar-vector and vector-vector operations. It

includes the following functions:

– scal: Vector-scalar product, x=α x

– axpy: Scaled vector accumulation, y = α x + y

– copy: Copy vector, y = x

14



– swap: Vector-vector swap, y <-> x

– dot: Dot product, =
∑
x ∗ y

– nrm2: Vector 2-norm (Euclidean norm), = ‖x‖2

– asum: Sum of vector magnitudes, =
∑
|x|

– iamax: Index of the maximum absolute element of a vector

– iamin: Index of the minimum absolute element of a vector

– rot: Plane rotation of points

– rotg: Generate Givens rotation of points

– rotm: Modified Givens plane rotation of points

Now we discuss the Haskell implementation of the ;evel-1 subprograms with

Vector data structure. Scal function takes a scalar value alpha and a vector x and

using the higher-order function fmap, the function (* alpha) is applied to each

element of the vector and returns a scaled vector. On the other hand, axpy

function does both scaling and addition - it takes two vectors xs, ys, and a scalar

value alpha and zipWith applies the function ( y + alpha * x) pairwise on each

member of both vectors. axpy returns element-wise addition of vector ys and

scaled vector of xs (by alpha). dot function provides a scalar value that is the dot

product of two input vectors using the zipWith method. The nrm2 function

returns the euclidean norm of an input vector using the function composition of

three functions: fmap (i*i), sum, and sqrt.

15



scal :: (Num n) => n -> Vector n -> Vector n

scal alpha x= fmap (alpha *) x

axpy :: (Num n) => n -> Vector n -> Vector n

-> Vector n

axpy alpha xs ys =zipWith (\x y -> y+alpha*x) xs ys

dot :: (Num n) => Vector n -> Vector n -> n

dot a b = sum (zipWith (*) a b)

nrm2 :: (Num n, Floating n) => Vector n -> n

nrm2 = sqrt . sum . fmap (\i -> i * i)

asum :: ( Num n) => V.Vector n -> n

asum y= foldr ’ (\x a -> abs x + a) 0 y

iamax :: (Num n, Ord n)=> Vector n -> Maybe Int

iamax a = elemIndex

(maximum (fmap abs a)) (fmap abs a)

iamin :: (Num n, Ord n)=> V.Vector n -> Maybe Int

iamin a = elemIndex

(minimum (fmap abs a)) (fmap abs a)

swap :: (a, b) -> (b, a)
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swap (x, y) = (y, x)

copy :: ( Eq n, Num n) => Vector n -> Vector n

-> Vector n

copy xs _ = xs

4.1.2 HBLAS Level-2.

Level-2 addresses the matrix-vector operations like matrix-vector

multiplications and ranked updates. The functions that HBLAS level-2 includes

are listed below:

– gemv: General Matrix-Vector Multiplication

– symv: Symmetric Matrix-Vector Multiplication

– trmv: Triangular Matrx-Vector Multiplication

– trsv: Triangular Solve

– ger: General Rank-1 Update

– syr: Symmetric Rank-1 Update

– syr2: Symmetric Rank-2 Update

We now discuss the gemv (general matrix-vector multiplication), symv

(symmetric matrix-vector multiplication), trmv (triangular matrix-vector

multiplication) and trsv (triangular solve) functions of HBLAS level-2.

17



gemv :: (Num n) => Vector (Vector n) -> Vector n

-> Vector n -> n -> n -> Vector n

gemv A x y a b=

let x1 = fmap (dot x) A

y1= scal b y

in axpy a x1 y1

The equation of the general matrix-vector multiplication is y = αAx+ βy

where A is an n X n matrix, x is an n sized vector and α and β are two scalars. In

the above function, (dot x) is applied to the matrix A by the higher-order function

fmap and the resultant vector is called x1. The vector y gets scaled by scalar b

with the use of level-1 function scal. Lastly, the axpy operation produces the final

output vector using the intermediate vectors x1 and y1 and the scalar input a.

trmvLower :: ( Num n, Fractional n) =>

Vector (Vector n) -> Vector n ->

Vector n -> Int ->Int -> Vector n

trmvLower a x b i n

| i>=n = x

| otherwise = let ai= take (i+1) (a ! i)

bi= take (i+1) b

xi = trmvHelper ai bi

nx = update x (pure(i, xi))

in trmvLower a nx b (i+1) n

where trmvHelper veca vecx =
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sum ( zipWith (\x y -> x*y) veca vecx)

trmvUpper :: ( Num n, Fractional n) =>

Vector (Vector n) -> Vector n ->

Vector n -> Int ->Int -> Vector n

trmvUpper a x b i n

| i>=n = x

| otherwise = let ai= drop i (a V.! i)

bi= drop i b

xi = trmvHelper ai bi

nx = update x (pure (i, xi))

in trmvUpper a nx b (i+1) n

where trmvHelper veca vecx =

sum ( zipWith (\x y -> x*y) veca vecx)

The equation of the triangular matrix-vector multiplication is x = A * x. The

main challenge here is that matrix A here comes as either an upper triangular or

lower triangular. An example of the lower triangular matrix is shown below.
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A =



a11

a21 a22

a21 a22 a23

.

.

.

am1 am2 ... amn



symvLower :: (Num n) => Vector (Vector n) -> Vector n

-> Vector n -> n -> n -> Vector n

symvLower matA vecX vecY alpha beta =

let n= length vecX

mat= getLowerTotalMatrix matA 0 n

x1 = fmap (dot vecX) mat

y1= scal beta vecY

in axpy alpha x1 y1

getLowerTotalMatrix a i n

| i>= n= empty <> empty

| otherwise = pure (getLowerTotalRow a x i j n)

<> getLowerTotalMatrix a (i+1) n

where x= a ! i

j=i

getLowerTotalRow a x i j n
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| i>= n = x

| otherwise= let aij= ((a V.! i) V.! j)

x1= take i x

new_x= snoc x1 aij

in getLowerTotalRow a new_x (i+1) j n

The symmetric matrix-vector multiplication function covers both the

implementation challenge of gemv and trmv as the equation of symv function is

y = αAx+ βy where A is a lower or upper symmetric matrix.

trsvLower :: ( Num n, Fractional n) =>

Vector (Vector n) -> Vector n

-> Vector n -> Int ->Int ->

(Vector n, Vector n)

trsvLower a x b i n

| i>=n = (x,b)

| otherwise =

let nbi = trsvHelper (a ! i) x (b ! i)

nb= V.update b (pure (i, nbi))

aii = ((a ! i) ! i)

nx = update x (pure (i, (nbi/aii)))

in trsvLower a nx nb (i+1) n

where

trsvHelper veca vecx valueb=

valueb - sum ( zipWith (\x y -> x*y) veca vecx)
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trsvUpper :: ( Num n, Fractional n) =>

Vector (Vector n)-> Vector n ->

Vector n -> Int ->Int ->

(Vector n, Vector n)

trsvUpper a x b i n

| i<=n = (x,b)

| otherwise =

let nbi = trsvHelper (a ! i) x (b ! i)

nb= update b (pure (i, nbi))

aii = ((a ! i) ! i)

nx = update x (pure (i, (nbi/aii)))

in trsvUpper a nx nb (i-1) n

where

trsvHelper veca vecx valueb=

valueb - sum ( zipWith (\x y -> x*y) veca vecx)

To solve the equation of triangular-solve function ((x = A−1 ∗ b)), we utilize a

robust technique like Gaussian Elimination that solve this equation efficiently and

we follow the pseudocode of row-oriented forward substitution for Lower and

Upper Triangular Linear Systems [9].

4.2 GHC Libraries

Since we utilize both list and vector as data-structures, we have three different

implementations of HBLAS using the following three Haskell packages:
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– Data.List

– Data.Vector

– Data.Vector.Unboxed

4.2.1 Data.List.

Both of the HBLAS level-1 and level-2 implementations use the higher-order

functions of Data.List extensively. Some functions of List-HBLAS level-1 and

level-2 are given below.

scal :: (Num n) => n -> [n] -> [n]

scal alpha x= fmap (alpha *) x

axpy :: (Num n) => n -> [n] -> [n]

-> [n]

axpy alpha xs ys =zipWith (\x y -> y+alpha*x) xs ys

dot :: (Num n) => [n] -> [n] -> n

dot a b = sum (zipWith (*) a b)

nrm2 :: (Num n, Floating n) => [n] -> n

nrm2 = sqrt . sum . fmap (\i -> i * i)

gemv :: (Num n) =>

[[n]] -> [n] -> [n] -> n -> n -> [n]

23



gemv matA vecX vecY alpha beta=

let x1 = fmap (dot vecX) matA

y1= scal beta vecY

in axpy alpha x1 y1

4.2.2 Data.Vector.

The function definitions in the Boxed Vector version of the HBLAS have

already been discussed in section 4.2.1 and 4.2.2. There are no visible differences in

List-HBLAS and Vector-HBLAS except the type sinatures of the BLAS functions.

The important thing to notice here is that the matrices are represented as a vector

of vectors and therefore the type signature of a matrix is Vector (Vector n).

4.2.3 Data.Vector.Unboxed.

We got a major setback when we attempt to implement the HBLAS level-2

with this package. To apply the higher-order functions of the Vector.Unboxed

module on matrices, GHC requires Unbox (Vector n) which is not possible since

(Vector n) is not a primitive data type. An example level-2 function gemv given

below to show the difference with the function definition of gemv using

Data.Vector that was given in section 4.1.2.

gemv :: (Num n, Unbox n, Fractional n) =>

Vector n -> Vector n -> Vector n

gemv matA xs = h1 matA (replicate n 0) xs 0 n

where n= length xs

h2 veca vecx =
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sum (zipWith (\x y -> x*y) veca vecx)

h1 a x b i n

| i>=n = x

| otherwise = let

ai= take n a

xi = h2 ai b

nx = update x (singleton (i, xi))

na = drop n a

in h1 na nx b (i+1) n

4.3 Iterative Linear Solvers

We implement two real-world linear algorithms - Conjugate Gradient Method

(CGM) and Transpose-Free Quasi Minimal Residual (TFQMR) Algorithm since

both have largely called the level-1 and level-2 subprograms. In this section, we

describe these algorithms and discuss why it is worth to implement these to test

the performance of our HBLAS.

4.3.1 Conjugate Gradient Method.

We implement the CG Method importing our HBLAS level-1 and level-2. In

this cgm function, we see there are several HBLAS level-1 subroutines are used -

axpy, scal, gemv, dot, and the only function called from level-2 is gemv. There are

2 axpy operations, 3 dot products, 1 scaling, and 1 general matrix-vector

multiplication operation in each iteration.

import HBLAS.Level1

25



import HBLAS.Level2

cgm :: (Num n, Fractional n, Ord n, Floating n) =>

Vector(Vector n) -> Vector n ->

Vector n -> Vector n

cgm a b vec0= cg n ( r, y, z, s, t, x)

where tol = 1e-10

n = length b

minus1 = negate 1

ab = gemv a b

r = axpy minus1 ab b vec0

y = scal minus1 r

z = gemv a y

s = dot y z

t = (dot y r) / s

x = axpy t y b vec0

cg 0 ( _ , _ , _ , _ , _ , x1) = x1

cg m ( r1, y1, z1, s1, t1, x1) =

case (nrm2 r1 < tol) of

True -> b

False ->

let minust = minus1 * t1

rr = axpy minust z1 r1 vec0

in case (nrm2 rr < tol) of

True -> x1
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False ->

let bb = (dot rr z1) / s1

by = scal bb y1

yy = axpy minus1 rr by vec0

zz = gemv a yy

ss = dot yy zz

tt = (dot rr yy) / ss

xx = axpy tt yy x1 vec0

in cg (m-1) (rr,yy ,zz,ss,tt,xx)

4.3.2 Transpose-Free Quasi Minimal Residual Solver.

TFQMR algorithm requires 2 matrix-vector products, 2 dot products, 2 vector

norms, and 10 axpy operations per iteration. And therefore, like the CGM, it

needed to utilize the subprograms from HBLAS level-1 and level-2.

import HBLAS.Level1

import HBLAS.Level2

tfqmr :: (Num n, Fractional n, Ord n, Floating n) =>

Vector (Vector n) -> Vector n -> n ->

Vector n -> Vector n

tfqmr a b tol vec0= qmr k (m, r, w, y1, d, v, u1,

theta , eta , tau , rho , x)

where x = vec0

r = b
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w = r

y1 = r

k = 1

d = vec0

v = gemv ’ a y1

u1 = v

theta = 0

eta = 0

tau = nrm2 r

rho = tau * tau

m = 0

qmr 100 (_,_,_,_,_,_,_,_,_,_,_,x’) = x’

qmr k’ (m’,r’,w’,y1’,d’,v’,u1’,theta ’,eta ’,

tau ’,rho ’,x’) =

let sigma = dot r’ v’

alpha = rho ’ / sigma

j = 1

mm ’ = 2 * k’ - 2 + j

ww ’ = axpy (( negate 1) * alpha) u1’ w’

dd ’= axpy (theta ’ * theta ’ * eta ’

/ alpha) d’ y1’

ttheta ’ = (nrm2 ww ’) / tau ’

c = 1 / sqrt (1 + ttheta ’ * ttheta ’)

ttau ’ = tau ’ * ttheta ’ * c

eeta ’ = c * c * alpha
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xx ’ = axpy eeta ’ dd ’ x’

in case ((ttau ’ * sqrt (mm ’ + 1)) < tol) of

True -> xx’

False ->

let jj = 2

yy2 = axpy (( negate 1) *

alpha) v’ y1’

uu2 = gemv ’ a yy2

mm = 2 * k’ - 2 + jj

ww = axpy (( negate 1) *

alpha) uu2 ww’

dd = axpy (ttheta ’ * ttheta ’ *

eeta ’ / alpha) dd’ yy2

ttheta = nrm2 ww / ttau ’

cc = 1/sqrt (1+ ttheta*ttheta)

ttau = ttau ’ * ttheta * cc

eeta = cc * cc * alpha

xx = axpy eeta dd xx’

in case ((ttau * sqrt (mm + 1)) < tol) of

True -> xx

False ->

let rhon = dot r’ ww

beta = rhon / rho ’

rrho = rhon

yy1 = axpy beta yy2 ww
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uu1 = gemv ’ a yy1

vv = axpyaxpy ’ beta beta

v’ uu2 uu1

in qmr (k’+1) (mm,r’,ww,yy1 ,

dd ,vv,uu1 ,ttheta ,eeta ,ttau ,

rrho ,xx)

4.4 GHC Optimization Techniques

This section discusses the optimization techniques that we applied to get the

best runtime performance from HBLAS. Several optimization techniques have been

followed, for example- Bang Pattern and Function Inlining.

Instead of using a two-dimensional matrix (list of lists or vector of vectors) in

the Unboxed version, we implemented HBLAS level-2 with plain/flattened

one-dimensional vectors. Next, we applied several GHC language features to work

around the issue Haskell language possesses.

The example use of bang patterns and function inlining in level-1 subprograms

are shown below:

{-# LANGUAGE BangPatterns #-}

module HBLAS.Level1 where

import Data.Vector
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{-# INLINE scal #-}

scal :: ( Num n) => n -> Vector n -> Vector n

scal !a !x= fmap (a*) x

{-# INLINE axpy #-}

axpy :: ( Num n) => n -> Vector n -> Vector n

-> V.Vector n

axpy !a !xs !ys =zipWith (\x y -> y+a*x) xs ys

{-# INLINE dot # -}

dot :: ( Num n) => Vector n -> Vector n -> n

dot !a !b = sum (V.zipWith (*) a b)
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CHAPTER V

RESULTS AND ANALYSIS

In this chapter, we evaluate the performance of the proposed functional linear

algebra library, followed by a discussion of the results. We organize this chapter in

six sections: 1) Experiment setup, 2) Performance of the HBLAS level-1

subprograms, 3) Performance of the HBLAS level-2 subprograms, 4) Performance

of CGM and TFQMR using HBLAS, 5) Performance comparison of CGM and

TFQMR using HBLAS and CBLAS, and 6) Discussion.

5.1 Experiment Setup

We consider execution time as the performance metric to analyze the

performance of HBLAS functions and its applications. To measure the time taken

by the functions, we import GHC’s Data.Time [21] package. We then preserve the

current time using getCurrentTime IO action and then call a HBLAS function to

execute. We pass the HBLAS function as a parameter in the deepseq function [10]

to force it to get executed first and store the time afterward. To get the difference

between two time values in seconds we call diffUTCTime function. we repeat the

HBLAS function call r=3 times with the help of nTimes function and then

measure the average time taken through dividing the time difference by r. We also

set a timeout value at 600 to halt executing any function that takes more than 10

minutes. The nTimes function and the code snippet of the execution time

measurement are shown below:

nTimes 0 _ = return ()
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nTimes !n !action =

do

action

nTimes (n-1) action

t <- getCurrentTime

t’ <- deepseq (nTimes r (tfqmr a b x)) getCurrentTime

putStrLn $ (show (diffUTCTime t’ t) )

We measure the performance of the HBLAS functions using Float vectors and

matrices of a variety of sizes ranging from 1e6 to 1e10. We generate 20 values that

are uniformly spaced between 1e6 and 1e10 to set the vector sizes. For matrices,

we get 20 square matrices sized between 1e3× 1e3 and 1e5× 1e5 through the same

technique of uniform distribution.

5.2 Performance of the HBLAS Level-1 subprograms

In this section, we measure the execution time of the HBLAS level-1 functions

with three different data structures: list, boxed vector, and unboxed vector. Since

we get very insignificant amount of execution time for the functions axpy, scal and

rot, we measure only the rest of the four functions - Dot, asum, nrm2, and idamax.

In Table 4, with the increase of vector size, we see a linear increase of

execution time for the dot product - a sum of the products of two vector elements.

As expected, we find the most efficient version of HBLAS is of the Unboxed vector.

The dot product takes only 19.4 seconds for unboxed-vectors of size 1e10 whereas
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Table 4. Execution Time of DOT

Vector
Size

Execution Time
(s) for List-HBLAS

Execution Time (s)
for Boxed HBLAS

Execution Time (s)
for Unboxed HBLAS

1.00E+06 0.0136 0.0154 0.0014
5.27E+08 8.0943 9.1221 0.8772
1.05E+09 16.3426 18.4440 1.9399
1.58E+09 23.6761 27.1380 3.0490
2.11E+09 35.3366 36.4823 3.6983
2.63E+09 40.1223 45.8592 4.8141
3.16E+09 53.3720 54.9276 6.1904
3.69E+09 67.6957 63.9520 7.2231
4.21E+09 63.4449 75.7353 10.3639
4.74E+09 92.8163 83.4776 9.1747
5.26E+09 93.3068 93.0513 10.2221
5.79E+09 114.1341 102.0565 11.2512
6.32E+09 125.2438 112.4046 12.2793
6.84E+09 137.0837 121.9609 13.2954
7.37E+09 146.5888 133.6974 14.3776
7.90E+09 141.8912 139.3538 15.2830
8.42E+09 GHC Error 148.2027 16.3740
8.95E+09 GHC Error 163.5955 17.3894
9.47E+09 GHC Error 167.5684 18.3276
1.00E+10 GHC Error 183.1827 19.4313

the boxed vector version took 183.2s. On the other hand, we get a GHC bug for

lists sized more than 7.9e9.

IDAMAX is the level-1 function that returns the index of the maximum

absolute element of a vector. In Table 5, we see The unboxed version of HBLAS

take the least amount of time among the three versions and List-HBLAS takes the

longest.

The euclidean norm or 2-norm of vectors follows the same pattern as we

experienced in the previous two experiments. We get the Unboxed-HBLAS
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Table 5. Execution Time of IDAMAX

Vector
Size

Execution Time
(s) for List-HBLAS

Execution Time (s)
for Boxed HBLAS

Execution Time (s)
for Unboxed HBLAS

1.00E+06 0.0053 0.0026 0.0005
5.27E+08 2.9471 1.4872 0.2449
1.05E+09 6.8902 3.3882 0.7758
1.58E+09 9.1315 4.7014 1.1588
2.11E+09 12.0890 6.6664 1.5491
2.63E+09 15.5308 7.8993 2.1619
3.16E+09 17.4125 9.6859 2.5942
3.69E+09 21.1626 11.0257 3.0444
4.21E+09 22.7281 12.4104 3.4682
4.74E+09 34.1058 13.8142 3.4988
5.26E+09 31.4762 15.5977 3.8647
5.79E+09 34.6712 16.9950 4.2605
6.32E+09 46.0119 18.5506 4.7478
6.84E+09 40.8549 20.0590 5.1636
7.37E+09 54.7667 22.0947 5.4112
7.90E+09 57.8944 23.0230 5.8253
8.42E+09 GHC Error 24.9393 6.3091
8.95E+09 GHC Error 26.3779 6.5727
9.47E+09 GHC Error 28.0681 6.9984
1.00E+10 GHC Error 30.0006 7.3248

performing significantly better than any of the other two versions, List-HBLAS

and Boxed-HBLAS.

With the increase of vector sizes, the execution time of the function ASUM in

Table 7 soar dramatically in both the list and boxed vector HBLAS whereas it

rises very steadily in unboxed-HBLAS and peaks at only 21.8s for the largest

vector of size 1e10.
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Table 6. Execution Time of NRM2

Vector
Size

Execution Time
(s) for List-HBLAS

Execution Time (s)
for Boxed HBLAS

Execution Time (s)
for Unboxed HBLAS

1.00E+06 0.0032 0.0025 0.0014
5.27E+08 2.2649 1.4551 0.8759
1.05E+09 4.2411 3.2340 1.7486
1.58E+09 7.1917 5.0766 3.0399
2.11E+09 8.3546 6.4659 3.9387
2.63E+09 10.3598 8.1863 5.1044
3.16E+09 12.4184 9.7532 6.1418
3.69E+09 15.2242 11.3082 7.2762
4.21E+09 17.7859 12.9274 8.1493
4.74E+09 18.7108 14.5031 9.2102
5.26E+09 20.7409 16.8757 10.1641
5.79E+09 37.8415 18.1681 11.3601
6.32E+09 50.9295 20.2054 12.2363
6.84E+09 27.5107 22.4048 13.2626
7.37E+09 59.4244 26.7350 14.2167
7.90E+09 34.6751 25.7963 15.3669
8.42E+09 GHC Error 30.9421 16.2560
8.95E+09 GHC Error 32.4590 17.3098
9.47E+09 GHC Error 34.4061 18.2856
1.00E+10 GHC Error 38.5329 19.4023

5.3 Performance of the HBLAS Level-2 subprograms

In this section, we measure the execution times of HBLAS level-2 functions

with different data structures. Here we measure the matrix-vector multiplications -

GEMV (General Matrix), TRMV (Triangular Matrix), and the Triangular Solve

TRSV.

Table 8 illustrates the execution time taken by the GEMV function of Boxed

Vector and Unboxed Vector. Here the execution time of List version of HBLAS

shows an sharp rise and went up to 90.8 seconds with the largest matrix. We do
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Table 7. Execution Time of ASUM

Vector
Size

Execution Time
(s) for List-HBLAS

Execution Time (s)
for Boxed HBLAS

Execution Time (s)
for Unboxed HBLAS

1.00E+06 0.0199 0.0139 0.0017
5.27E+08 6.8488 8.1325 1.0445
1.05E+09 13.8728 16.3640 2.2635
1.58E+09 21.4626 25.6532 3.2902
2.11E+09 26.1160 33.6896 4.4473
2.63E+09 35.1102 40.5713 5.6156
3.16E+09 46.4950 50.9036 6.9157
3.69E+09 60.4777 59.4162 8.1242
4.21E+09 62.5723 68.2004 9.3574
4.74E+09 59.5461 79.9798 11.1118
5.26E+09 69.6402 89.1633 12.2816
5.79E+09 71.7132 95.2222 13.1444
6.32E+09 83.5791 103.9076 14.9425
6.84E+09 101.6129 112.8902 16.0592
7.37E+09 112.0052 125.0961 17.3368
7.90E+09 118.7160 134.1248 18.5501
8.42E+09 GHC Error 144.3305 18.6361
8.95E+09 GHC Error 153.3626 20.1479
9.47E+09 GHC Error 163.5726 20.7134
1.00E+10 GHC Error 172.0216 21.8049

not include the performance results of the Vector version since it went beyond the

timeout limit for the fourth matrix (2.7e8). Conversely, the unboxed HBLAS

showed a very gradual increase with the execution time over the matrix sizes.

We see a moderate increase in the execution time of Triangular Matrix-Vector

Multiplication with Boxed Vector and it peaked at only 25 seconds for the largest

matrix. On the other hand, we find a sharp rise in the List version of HBLAS and

hit a high of 527.9s for 1e5X1e5 matrix. And, because of using the recursive

functions in the implementation of Unboxed version, we get a significantly worse
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Table 8. Execution Time of GEMV

Matrix
Size

Execution Time
(s) for List

Execution Time (s)
for Unboxed Vector

1.00E+06 0.0072 0.0024
3.86E+07 0.2671 0.0783
1.30E+08 0.9710 0.2718
2.77E+08 2.1528 0.6485
4.77E+08 3.8342 1.1246
7.32E+08 6.0211 1.9356
1.04E+09 8.7557 3.0208
1.40E+09 11.8806 4.0661
1.82E+09 15.5568 5.1779
2.29E+09 19.8963 6.5477
2.82E+09 24.4420 8.2411
3.40E+09 29.9740 9.1727
4.04E+09 35.5228 11.4703
4.73E+09 41.4560 13.6859
5.47E+09 49.1067 16.0442
6.27E+09 56.3178 18.2436
7.12E+09 63.4974 21.0443
8.02E+09 72.2399 23.3883
8.99E+09 81.1139 25.1283
1.00E+10 90.8859 27.7812

performance compared to the List-HBLAS and Boxed-HBLAS and therefore, we

fail to measure time for the TRMV of Unboxed-HBLAS.

For the triangular solve function that solves the linear equation x = A−1b we

get a moderate increase in the execution time with the Boxed vector version of

HBLAS. However, we see an exponential rise in List-HBLAS and the execution

time went above the timeout limit with only 5.31e4X5.31e4 = 2.8e9 sized matrix.
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Table 9. Execution Time of TRMV

Matrix
Size

Execution Time
(s) for List

Execution Time (s)
for Boxed Vector

1.00E+06 0.0338 0.0008
3.86E+07 1.6797 0.0365
1.30E+08 6.2925 0.1332
2.77E+08 14.2730 0.3112
4.77E+08 24.1936 0.5930
7.32E+08 33.5384 0.9810
1.04E+09 50.7913 1.3745
1.40E+09 65.5770 2.1034
1.82E+09 77.7311 2.6959
2.29E+09 111.2142 3.9815
2.82E+09 127.8541 5.0256
3.40E+09 143.2380 6.0537
4.04E+09 201.2461 7.2296
4.73E+09 219.8811 11.3527
5.47E+09 254.4297 12.8577
6.27E+09 269.1939 15.0296
7.12E+09 413.7953 17.0665
8.02E+09 499.2131 19.2780
8.99E+09 521.3274 21.2068
1.00E+10 527.9201 25.3213

5.4 Performance of Iterative Solvers using HBLAS

In this section, we experiment on the performance of our implemented HBLAS

in two real-life applications. We implement two linear iterative solver algorithms

that called the HBLAS levels 1 and 2 functions extensively. The two algorithms

are CGM (Conjugate Gradient Method) and TFQMR (Transpose-Free Quasi

Minimal Residual) algorithm.

We measure the execution time taken by the CGM using the three HBLAS

versions. For Boxed Vectors, we get the execution time more than the timeout
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Table 10. Execution Time of TRSV

Matrix
Size

Execution Time
(s) for List

Execution Time (s)
for Boxed Vector

1.00E+06 0.0538 0.0035
3.86E+07 4.2761 0.1458
1.30E+08 17.6554 0.4836
2.77E+08 45.4645 1.4950
4.77E+08 83.8043 2.0436
7.32E+08 129.3425 3.1405
1.04E+09 187.3335 4.0442
1.40E+09 250.6146 6.6485
1.82E+09 359.5572 7.2996
2.29E+09 462.6991 9.5906
2.82E+09 Timeout 11.8592
3.40E+09 Timeout 13.5047
4.04E+09 Timeout 18.3504
4.73E+09 Timeout 21.8102
5.47E+09 Timeout 23.3611
6.27E+09 Timeout 25.8556
7.12E+09 Timeout 36.4585
8.02E+09 Timeout 40.5659
8.99E+09 Timeout 43.4525
1.00E+10 Timeout 44.7483

limit for a small matrix of size 2.7e8, and therefore we do not include the boxed

vector version here. The Unboxed CGM showed a gradual increase with the

increase of matrix sizes and peaked at 163.8s for 1e5X1e5 matrix. However, we get

a very high execution time values for the List version of CGM.

In the performance measurement table (Table-12) of the iterative solver

TFQMR, as expected, we find the Unboxed version of TFQMR performing much

better than the List version. For the largest matrix, Unboxed-TFQMR takes only

83 seconds whereas we get the List-TFQMR quite slower and crossed the timeout

threshold with only 3.40e9 matrix.
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Table 11. Execution Time of CGM using HBLAS

Matrix
Size

Execution Time
(s) for List

Execution Time (s)
for Unboxed Vector

1.00E+06 0.08 0.01
3.86E+07 4.54 0.37
1.30E+08 8.57 1.32
2.77E+08 47.23 2.87
4.77E+08 71.57 6.00
7.32E+08 57.91 9.36
1.04E+09 220.88 13.43
1.40E+09 266.49 19.45
1.82E+09 314.89 23.57
2.29E+09 219.23 31.56
2.82E+09 585.59 36.56
3.40E+09 308.41 52.75
4.04E+09 Timeout 51.66
4.73E+09 Timeout 64.19
5.47E+09 Timeout 81.77
6.27E+09 Timeout 80.92
7.12E+09 Timeout 109.50
8.02E+09 Timeout 124.29
8.99E+09 Timeout 143.01
1.00E+10 Timeout 163.82

5.5 Performance comparison between HBLAS and CBLAS

In this section we compare the performance of both the iterative solver

algorithms CGM and TFQMR with respect to iterative implementation and

functional implementation. The former is a hand-written C program that calls the

LAPACK subprograms using the cblas interface. The latter one is the same

Haskell programs that we considered in the previous section. In the

implementation of CGM and TFQMR with C, we measure the execution time with

the same set of matrices.
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Table 12. Execution Time of TFQMR using HBLAS

Matrix
Size

Execution Time
(s) for List

Execution Time (s)
for Unboxed Vector

1.00E+06 0.04 0.00
3.86E+07 3.41 0.22
1.30E+08 6.76 1.05
2.77E+08 42.46 2.38
4.77E+08 47.87 4.25
7.32E+08 32.27 6.89
1.04E+09 166.11 9.95
1.40E+09 190.34 12.69
1.82E+09 119.21 21.37
2.29E+09 443.55 21.17
2.82E+09 434.68 25.26
3.40E+09 Timeout 30.84
4.04E+09 Timeout 47.28
4.73E+09 Timeout 43.23
5.47E+09 Timeout 59.09
6.27E+09 Timeout 69.32
7.12E+09 Timeout 80.79
8.02E+09 Timeout 72.59
8.99E+09 Timeout 83.00
1.00E+10 Timeout 93.84

In Figure 1, we depict the performance comparison between the CGM

implementation using CBLAS and using Unboxed-HBLAS. With the increase of

matrix sizes, the HBLAS-CGM shows a consistent sharp rise in the execution time.

In the case of CBLAS, we see a fluctuation in the execution time with a very

minimal increase. CBLAS is so optimized that the execution time never went

above 50 seconds whereas with Unboxed HBLAS, the execution time increases

exponentially and hit the level of around 165s.

Figure 2 illustrates the performance comparison between the two version of

TFQMR implementation—one with the C language calling CBLAS subprograms
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Figure 1. Performance Comparison between CBLAS CGM
and HBLAS CGM.

Figure 2. Performance Comparison between CBLAS
TFQMR and HBLAS TFQMR.

and the other with Haskell through calling HBLAS functions. In Unboxed HBLAS,

we see the similar upward curve as we saw in Figure 1. However, we find the

execution time of CBLAS rises very minimally and stays below 25s even for the

largest matrix. One interesting finding we get here, for the matrix of size

8.99E+09, we get an execution time that is larger than the timeout limit and

therefore we discard that value.

Table-3 and Table-4 presents the normalized values of List-HBLAS and

Unboxed Vector - HBLAS. Here, we consider the cBLAS execution times as base

value and normalize the execution times of List-HBLAs and Unboxed-HBLAS to

analyze the ratio that how slow the HBLAS-CGM and HBLAS-TFQMR performed

compared to the CBLAS ones.
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Figure 3. Performance of CGM in List-HBLAS and
Unboxed-HBLAS normalized by CBLAS.

5.6 Discussion

In this section, we discuss the findings we get from the performance

experiments that we showed in the previous sections. In Figure-3 and 4, we see

both the List-HBLAS and the Unboxed-HBLAS are substantially slower than the

CBLAS. The Unboxed-HBLAS is on average 4.4 times slower than the cBLAS one

in Conjugate Gradient and 7.7 times slower in TFQMR. The List-HBLAS showed

a fluctuated performance in both CGM and TFQMR with the matrix increases.

However, the execution time with CBLAS has also shown an irregular oscillation

with a little increase.

The CBLAS we used in the implementation of the iterative solvers in C

language is an API and the underlying BLAS library we used is provided through

44



Figure 4. Performance of TFQMR in List-HBLAS and
Unboxed-HBLAS normalized by CBLAS.

LAPACK [28]. All the BLAS libraries are made optimized and numerically stable

by exploiting AVX and multi-threading and therefore they significantly boost

performance on large datasets. For example, we got a very minimal rise in the

execution times over the increase of the matrix sizes and it peaked at only 14

seconds with the largest matrix. We assume, CBLAS gets more optimized with the

matrix sizes increase.

The list-HBLAS showed an upward trend with abrupt fluctuation (figure-3

and Figure-4) and was much slower than the unboxed version. In both the CGM

and TFQMR, we found the execution time dropped with 3.4e9 matrix whereas it

was at the highest for the immediate smaller matrix (size 2.82e9). Haskell lists are
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single-linked lists and thus the insertion and update to the position i of a list of

length n have complexity O(i). And therefore, as the list size gets bigger, the

functions that process the large lists get slower. However, the explanation of why

the run-time performance got better for the matrix size of 3.4e9, is still not fully

understood. The server where we ran our HBLAS performance experiment has L1

cache size 32KB. And the memory usages of the matrix size of 2.82e9 and 3.4e9

are around 11.28GB and 13.61GB, respectively. For both matrices, we observe

similar L1 cache miss rates, 352584 and 425152.8, respectively. Although there

were more cache misses for the second matrix, the runtime was shorter. We ran

profiling to investigate why the larger matrix takes less execution time. Since the

large matrix profiling takes too much time, we took another pair of matrices

(4.77e8 and 7.32e8) that showed same trend. The time profiling reports are given

in Figure 5 and 6. Here we can see the only bottlenecked BLAS function is gemv

(matrix-vector multiplication). Even though the matrix is larger in Figure-6 we see

that the gemv functions took equal amount of time for either of the matrices. We

believe, the reason behind this unexpected behavior can be the list fusion [5].

In Figure-3 and 4, the Unboxed Vector version of HBLAS is shown to be

better version than the List. This data structure provides strict evaluation and so,

an unboxed value can never be unevaluated even though it is a functional language

with laziness feature. Unboxed Vectors provide O(1) insertion and update since

the values are stored more efficiently- consecutive memory slots without pointers.

However, the Unboxed Vector version of HBLAS showed slower execution

times than the CBLAS, although the performance difference is not that significant.

We already know that functional language suffers from the lazy evaluation problem
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Figure 5. Time Profiling Report of TFQMR with
List-HBLAS of matrix size 4.77e8.

which causes memory consumption and thus execution time latency. And to avoid

this limitation, we used techniques like deepseq, bang patterns, strict higher-order

functions. We suspect a few issues of Haskell can make our Unboxed-HBLAS

slower - data immutability, higher-order functions, and lack of memory

management. On the other hand, CBLAS not only uses vectorizations, but also

optimally exploits available vector extensions (SSE, AVX), multiple cores, and

cache reuse. We failed to do the profiling for Unboxed version of HBLAS

applications. Otherwise, we could get to know about the HBLAS function for

which the iterative solvers take the majority portion of the execution times.
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Figure 6. Time Profiling Report of TFQMR with
List-HBLAS of matrix size 7.32e8.

One important thing is that with the increase of matrix size, the ratio of the

execution time of Unboxed-HBLAS and CBLAs hovered around the same range in

the Figure-3 and 4. In CGM, we found that Unboxed-HBLAS is faster or almost

equal to the CBLAS for some matrices sized 3.86e7, 2.77e8, 7.32e8, 1.4e9, 2.29e9,

2.82e9, and 4.04e9. In summary, the Unboxed-HBLAS performance is significantly

better in CGM than in TFQMR. One possible reason of this is that the number of

called HBLAS subprograms from TFQMR iterations is more than in CGM. Apart

from this, there is a good chance that in TFQMR we did not get that much of

stream fusion done although we have utilized the most efficient data structure.
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CHAPTER VI

CONCLUSION AND FUTURE WORK

In this thesis, we attempted to recreate CBLAS with a Functional Language

Haskell and optimize it with the help of efficient data structures and GHC

optimization techniques. We named the basic linear algebra library HBLAS and

we also implemented two linear iterative solver algorithms, CGM and TFQMR,

that call the HBLAS subprograms. We applied different GHC language features

like bang patterns and function inlining to optimize the library subroutines. For

benchmarking, we considered the hand-written C programs of CGM and TFQMR

which calls CBLAS subprograms. We then compared the performance of the

functional iterative solvers with the performance of the imperative ones. We

developed the HBLAS with three different data structures: List, Boxed Vector, and

Unboxed Vector, to study and compare the performance of different data

structures. In the experimental results, we found the unboxed vector version of

HBLAS is faster than the list and boxed vector ones. With the known benefits of

the unboxed vector, we assume the use of one-dimensional matrices in the level-2

implementation helped us to get better performance than the other two HBLAS

versions. In the performance experiment, we found the execution times of

HBLAS-CGM and HBLAS-TFQMR are on average 4.4 and 7.7 times slower than

that of the CBLAS-CGM and CBLAS-TFQMR respectively. Though our purpose

was not to beat CBLAS, yet we intended to make HBLAS as much optimized as

possible.

There could be many new research directions we find from this thesis. One big

limitation that we failed to profile the unboxed-HBLAS applications leaves us with

49



a concrete question, which HBLAs function took the majority portion of run-time

and memory, and thus we could target those functions to optimize more. We also

plan to use the parallel arrays of repa package [27] where all numeric data is stored

as unboxed in the implementation of HBLAS. We hypothesize that with the use of

repa arrays, we can make our HBLAS’s performance far better than we have got in

this thesis work. we also intend to implement the BLAS level-3 and combine the

complete HBLAS package with the official GHC compiler. Our main goal is to

make HBLAS useful for the scientific programmers who require not only a

functional language’s code clarity but also need better performance.
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