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THESIS ABSTRACT 
 
Trevor Bergstrom 

Master of Science 

Department of Computer and Information Science 

August 2020 

Title: Understanding Human Object Interaction Detection 

Human-object interaction detection is a relatively new task in the world of 

computer vision and visual semantic information extraction. The goal of human-object 

interaction detection is to have machines identifying interactions that humans perform on 

objects. We provide a basic survey of the developments in the field of human object 

interaction detection. Many works in this field use multi-stream convolutional neural 

network architectures, which combine features from multiple sources in the input image. 

To provide insight to future researchers, we perform a study examining the performance 

of each component of a multi-stream architecture for human-object interaction detection. 

We examine the HORCNN architecture as a foundational work in the field. We also 

provide an in-depth look at the HICO-DET dataset, a popular benchmark in the field of 

human object interaction detection. Lastly, we begin the construction of a human-object 

interaction benchmarking platform.  
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CHAPTER I 

INTRODUCTION  
 

Achieving the goal of true machine intelligence requires an agent that can 

observe and understand its environment just as humans are able to. There has been a 

significant amount of excitement and progress around machine learning and its ability to 

solve problems related to emulating human understanding of our natural and social 

environments. The field of computer vision, in particular, has recently exploded with the 

advent of deep learning techniques that can solve complex object detection problems. 

However, simply identifying objects in an image is not what should be considered true 

machine intelligence. Striving towards the idea of more intelligent machines, researchers 

have created models and systems that can extract richer semantic information from 

images and videos. As humans, we are able to recognize relationships between objects in 

an image. These relationships can help an intelligent machine interpret the underlying 

meaning of the image or scene, and therefore, take one step closer to understanding the 

world around us.  

Visual scene understanding is a complex set of interpretations about what is 

happening in an image. Full understanding of a scene can be separated into two classes of 

understanding, perception, and context reasoning. Perception is defined as organization, 

identification, and interpretation of sensory information. Reasoning can be defined as the 

capacity of consciously making sense of things, applying logic, and adapting or justifying 

practices and beliefs based on new or existing information. Perception tasks in visual 

understanding include object detection and visual semantic segmentation. These tasks can 

be seen as observing and identifying visual information, though little reasoning is used to 
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help accomplish them. Context reasoning applications include visual relationship 

detection, visual questioning answering, and scene graph generation. These tasks seek a 

deeper understanding of what is happening in an image, using reasoning to interpret the 

harder to detect visual information that the image contains. It should be said that the latter 

task cannot be accomplished without the former. In other words, humans usually perceive 

first, then reason. Observe then interpret.  

Commonly, when humans seek to interpret their environment, they do so by 

observing other humans and how they interact with one another or objects. Object to 

object interactions, for the most part, deal with simple spatial or descriptive interactions 

such as book on top of table or chair on floor. Humans can provide a much richer set of 

interactions with objects, as there are visual and non-visual ways a human can interact 

with their natural environment. A benefit of examining humans is in the unique ways we 

display intent and interact. The appearance of a human performing an action can be 

viewed through fine-grained attributes such as body positioning and placement, or even 

gaze. All of these attributes give deeper and richer semantics that we can use to identify 

human actions. This work will focus primarily on the task of human-object interaction 

detection. The goal of human-object interaction detection (HOI), is to correctly identify 

humans, objects, and the actions that are occurring between them, if any, in an image. 

These action relationships are commonly represented in triplet form, {human, action, 

object}. The first step in discovering an HOI from an image is to detect objects. Object 

proposals recovered from the image should contain at least one human for an HOI to be 

present. Using these object proposals, a model for solving this problem must then 
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correctly identify an HOI between the humans present and any of the objects in the 

image.  

1.1 Proposed Work 

Human-object interaction detection is a relatively new field in the computer 

vision research community. Many models provide a good starting point but do not 

perform as well as many algorithms in other fields of computer vision. A foundational 

labeled dataset for this task is the HICO-DET [6] dataset created by Chao et al in 2018. 

HICO-DET has become a standard in benchmarking human-object interaction detection 

models, providing two separate data arrangements for evaluation. However, the dataset 

and its evaluation metrics are not easily compatible with modern deep learning 

frameworks.  

The first contribution of this work is a toolkit of software for human-object 

interaction detection, similar to that of mmdetection [8] which is used for object 

detection. The first major component of this is to address the dataset. By creating a data 

loader that seamlessly integrates with the PyTorch deep learning framework [46]. 

Secondly, since the first step of human-object interaction detection is object detection, a 

highly accurate and robust object detector is required in a detection pipeline. The data 

loader can be easily integrated with detectors providing proposals for human and objects, 

taken from images, in bounding box coordinate format. This integration will also pre-

compute these proposals for training rather than performing detection during training, 

freeing up GPU, and system memory for the main components of the detection pipeline. 

These components build the foundation for what we consider a toolkit for HOI detection 

tasks. We provide the user with pre-trained models, as well as training and testing 
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infrastructure for future models, with seamless dataset integration. We hope that this 

work can provide future researchers with a single platform, flexible toolkit to further 

develop and improve the field of human-object interaction detection.  

The second contribution proposed in this work is an in-depth study of the 

performance of individual model components. Since a majority of the state-of-the-art 

models use a multi-stream network, we want to examine the individual performance of 

each component separately. This investigation can provide useful information on how to 

develop future models, using this multi-stream method. Using the components from 

HORCNN [6], we conduct numerous tests on their ability to correctly classify human-

object interactions. 

1.2 Overview  

Chapter 2 of this work covers background information starting with an overview 

of machine learning techniques for computer vision tasks and including an overview of 

related work and datasets in human-object interaction detection. Chapter 3 provides in-

depth detail on building the data loader for the HICO-DET dataset, as well as our 

implementation of the HORCNN model [6]. Chapter 4 discusses the results obtained 

from our study into the separate components of the HORCNN model, chapter 5 discusses 

future work on this toolkit, and improvements to current and future models and datasets 

for the task of human-object interaction detection. Finally, chapter 6 is where we will 

draw our conclusions.  
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CHAPTER II 

BACKGROUND AND RELATED WORKS 
 

Human object detection is closely related to other fields in computer vision. Many 

of the current state-of-the-art human-object interaction models draw inspiration from 

these methods. This section will begin by introducing the building blocks for deep 

learning and computer vision. An overview of related tasks in computer vision will 

follow.  

2.1 Background 
 

For an intelligent agent to begin to understand its environment it must first make 

observations, gathering data to process. One of the first perceptions of an environment 

humans make is to look and make visual observations. This may be a simple task for 

humans, but it poses numerous complex problems for a computer to replicate this 

process. The field of machine vision, or more commonly computer vision, is a subfield of 

artificial intelligence in which researchers and engineers seek to teach a computer to 

make complex visual observations. The first step is to create a visual representation that a 

computer can interpret. Digital images are an example of this, consisting of stacked two-

dimensional matrices of pixels that represent color intensity, known as channels, in a 

finite and discrete numerical representation. Each channel represents a color, typically 

red, green, and blue. See Figure 2.1 for an illustration of this. From the numerical 

representations, computers are able to use this data as input. Using this most basic form 

of data, it is possible to teach a computer to find interesting parts of an image, known as 

visual features, to begin processing this visual data. Visual features can include edges, 

blobs, or corners that help distinguish sections of an image. Given these most basic 
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building blocks of digital visual representation, computers are able to make more 

complex observations of their environment.  

 
Figure 2.1: Images stored as 3D matrices.  

 

2.1.1 Convolutional Neural Networks 
 

Convolutional neural networks (CNNs) are frequently used for visual 

understanding tasks, they show improved performance over multi-level perceptron neural 

networks (MLPs), due to the fact that they don't suffer from the loss of spatial 

information while interpreting an image [69]. Intuitively, convolutional layers pass filters 

over two-dimensional patches of the input image to extract learned features, such as 

edges of an object. Conversely, a standard fully connected neural network would need to 

vectorize the image into a single dimension to process, losing the spatial relationships 

between the pixels in an image. A convolutional network usually involves a few parts. 

HEIGHT

WIDTH

CHANNEL DEPTH
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The Convolution layer will perform the aforementioned convolutional operations, in 

which an output, referred to as a feature map, is generated. The feature map represents 

only specific features of the data that are needed for the task at hand, filtering some 

unnecessary information from the input. Next, a rectified linear unit (ReLU) layer 

follows, acting as the activation layer, this transforms the output feature map by 

removing negative pixel values. The last component is the pooling layer, which performs 

a form of non-linear down-sampling [10]. This layer scales the image size down, 

providing an abstracted representation of the image features which can help avoid 

overfitting. It also reduces the overall computational and storage costs of the network. 

Typically, after a series of these layers, classification is performed using fully connected 

layers to get the final output values of a network [39]. The breakthrough ability of 

convolutional networks is, through extensive training, the convolutional layers learn to 

generate the correct features for the dataset [26]. Before convolutional neural networks, 

features for many computer vision tasks needed to be painstakingly hand-engineered. 

This difficult process provided poor generalization across datasets and various categories 

of images [69]. One of the first advances in convolutional network design was that of 

AlexNet [32], the architecture of this network is shown in Figure 2.2 for a reference.  
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Figure 2.2: Architecture of AlexNet convolutional neural network for image 

classification.  

 

2.2 Visual Perception Tasks 
 

Visual perception is the starting point of understanding a scene or image. To 

begin to understand the scene, perception such as identifying the objects in the scene is 

imperative. The following tasks, image classification, and object detection are 

fundamental for more elaborate visual understanding. In this section, a basic overview of 

each is provided.  

2.2.1 Image Classification 
 

Image classification is a foundational task in computer vision. In image 

classification, the goal is to identify the object contained in the image. Most datasets for 

this task are easy by modern standards, usually containing just the object in question and 

very little background noise. A typical model for image classification contains a series of 

convolutional layers followed by max-pooling operations that downsample the feature 
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maps. Finally, a series of fully connected layers perform final object classification on the 

feature map [69].  

2.2.2 Object Detection 
 

The task of object detection seeks to locate and identify specific classes of objects 

in the image. The maturation of this field has allowed researchers to accelerate progress 

in other more complex areas of computer vision such as visual understanding. Human-

object interaction relies heavily on its first step of object detection. With the 

popularization and rise of deep learning methods, models are able to perform very well 

on large and complex datasets [69]. Object detection can be thought of as another 

abstraction on top of image classification. Object detectors need to first find an object 

within an image, then classify that object. These two steps are commonly referred to as 

localization and classification. The goal of localization is to find regions of an image in 

which an object might exist, we call these areas region proposals. The classification step 

employs methods similar to image classification, where convolutional features are used to 

determine the class of the object.  

Region proposals are defined by a bounding box, a set of spatial coordinates 

within the image, and a class label identifying the object. Finding the object is a complex 

task. One naive way of finding regions would be to sample all areas and all bounding box 

sizes in the image. However, this would be computationally inefficient as there could be a 

near-infinite number of bounding boxes to perform classification on. There has been a 

great deal of effort and research into the task of localization, and consequently, models 

handle region proposals generation differently. See Figure 2.3 for an example of localized 
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objects in an image. Commonly, modern object detection algorithms are divided into two 

classes; two-step detectors and single-shot detectors [69].  

Some examples of two-step detectors are the RCNN [15] [16] [52] family of 

detectors. Two-step detectors, as the name implies, require two separate steps 

(localization and classification) to detect objects from a given image. Region proposal 

generation can be accomplished in a number of different ways. In the case of RCNN [16], 

a selective search algorithm is used, which employs pixel similarity metrics to determine 

possible connected pixel groupings. Faster-RCNN [52] uses a CNN-based approach 

called the region proposal network, which discovers region proposals from convolutional 

feature maps. After localization is performed, classifying these regions can be 

accomplished by simple feedforward neural network classifiers. Two-step detectors 

typically show better accuracy than their single-shot counterparts, however, the detection 

time is much higher [69].  

Single-shot detectors operate by performing bounding box localization and object 

classification at the same time. Some well-known models that use this method of object 

detection are the Single-Shot Detector (SSD) [41] and the You Only Look Once (YOLO) 

family of models [51]. The SSD uses feature maps at multiple sizes. These feature maps 

are the outputs of the convolutional layers after each max-pooling downsampling 

operation. On these feature maps, multiple default bounding boxes of assorted sizes are 

laid over the feature map to create the region proposals. These regions are then classified 

using the convolutional features already existing within them. Since both classification 

and localization are done in a single step, single-shot detectors are very fast at prediction 

and can perform object detection on high-frame-rate videos. However, single-shot 
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detectors typically must trade accuracy for the speed increase, as they fail to recognize 

small objects [69].  

 

 
Figure 2.3 Object detection results using FasterRCNN. Image taken from HICO-DET 

dataset. 

 
2.2.3 Human Pose Estimation 

One other visual perception task that pertains to this work is human pose 

estimation. The goal of pose estimation is to locate and identify the different parts of a 

human body from a static image or video. Pose estimation can be a valuable tool 

entertainment sports and medical fields, showing similarities and differences in the way’s 

humans move and orient their body parts [11]. For the task of human-object interaction 
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detection, we are very focused on human body positioning and appendage placement as 

they can determine the different ways humans interact with objects. 

Training of pose estimation algorithms is a highly supervised task requiring large 

datasets of humans in various activities [19]. The keypoint map acts as the ground truth 

for evaluation, with points labeled in the image that represent the joints of the human 

body [18]. These joints include knees, elbows, neck, and ankles. This can be seen in 

Figure 2.4 with the labeled image of a runner in action. The keypoint map is overlaid 

over the human with the yellow connecting lines representing the appendages that 

connect the joints on the runner’s body.  

There are a few popular approaches to the task of human pose estimation, with 

almost all based on deep convolutional neural networks. One approach is formulating the 

problem as a regression problem where joints or key-points are identified and the location 

prediction error is progressively fed back through the network, as seen in [2], [9] and 

[54]. Similarly, to this approach the authors of Densepose [1] use a method of semantic 

segmentation of the human body, to identify the appendages. The second approach to 

pose estimation is known as the heat-map based approach, where heat-maps are 

generated to represent pixel-based probability of a key point in that location. The heat 

map approach can be seen in [11] and [58]. Examples of this method can be seen in [44], 

[54], and [55]. The output of such models generates a keypoint map as seen in Figure 2.4. 
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Figure 2.4: Image of a runner overlaid with a human keypoint map, as generated by pose 
generation algorithms.  

2.3 Visual Understanding Tasks 
 

As object detection matured as a research field, interest began to grow in other 

areas of computer vision. Robust object detectors gave researchers the ability to move 

beyond perception tasks, and into understanding tasks. In a scene, there could be a lot of 

information that is not easily identified by simple perception and identification of objects. 

Visual understanding seeks to extract fine-grained information from a scene. Human-

object interaction is an example that fits within the umbrella of visual understanding. 

Very closely related is the task of visual relationship detection. Human-object interaction 

detection should be considered a subset of visual relationship detection. A brief overview 

of visual relationship detection follows and is worth understanding due to the numerous 

similarities between the two fields.  
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2.3.1 Visual Relationship Detection 
 

Visual relationship detection seeks to discover the relationships between objects 

in an image. The discovery of a relationship can commonly be expressed as a triplet in 

the form of subject, predicate, object. While perception tasks like object detection seek a 

general idea of what is physically present in the image, context reasoning tasks such as 

visual relationship detection, attempts to find a deeper understanding of what this image 

means [40]. Take for example the image in Figure 2.4a. Initial perception can identify a 

man and a horse in the image, but through a better understanding of actions and 

relationships, we know that this image shows a person riding a horse. In a simple image 

with a limited number of object proposals, as in the previous example, the number of 

possible relationships is small. But it is common to have many objects in an image, 

increasing the size of the search space exponentially. Visual relationships are easily 

identified by spatial relationships between objects in the image, and many state-of-the-art 

models heavily weight spatial information between the two objects in the image to 

attempt to reduce the massive search space that can be present [30]. Another hurdle to 

visual relationship detection is the long tail distribution that the predicates can exhibit 

[27] Since most state-of-the-art models are highly supervised approaches, they depend on 

data previously observed. It is common for datasets to express the real-world 

commonality of actions or relationships. Given the example images in Figure 2.4b ad 

2.4c, human feeding horse is a common image, therefore datasets can have many 

examples of this relationship. However, consider the relationship human feeding zebra. 

As a very uncommon relationship, a dataset could contain very few, if not zero of these 

training examples. However, it does exhibit similarities to the relationship of human 
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feeding horse. There are many state-of-the-art models and datasets that attempt to tackle 

the issue of these unseen relationships. The survey by Liu et al. [40], provides a deeper 

description of visual relationship detection.  

 

   
 
 

 

 
2.4 Related Work 
 

There have been prior works and introductory developments in human object 

detection such as [12], but we will focus on convolutional neural network based 

developments. We have classified the methods of solving HOI detection problems into 

the two classes: multi-stream architectures and graph networks. Multi-stream 

architectures produce promising results and are easily augmented with supplemental 

information detection methods such as pose and gaze. This section will provide further 

insight into how each of these approaches identifies human-object interactions, as well as 

their strengths and drawbacks.  

Figure 2.5: Examples from the HICO-DET Dataset. a) Human riding horse b) Human 
feeding horse c) Human feeding zebra 
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2.4.1 Multi-stream Approaches 
 

A widely used strategy for creating models that perform well on HOI detection 

tasks is a multi-stream neural network architecture. Multi-stream convolutional neural 

networks were first proposed for the task of human object interaction detection by Chao 

et al. as HORCNN [6]. HORCNN includes three "streams", based around CNN 

architectures, to extract features from different sources in the image. Using object 

proposals from the RCNN [16] object detector, the human and object streams extract 

appearance queues from the image. The human stream can interpret human pose at an 

elementary level. For example, a person riding a bike is most likely to be in a sitting pose 

rather than standing. Similarly, the object stream can interpret the appearance of the 

object involved in the interaction. Again, using the riding-bike example, a bicycle being 

ridden has a higher probability of being occluded by the person in the image. The final 

stream in HORCNN extracts spatial information between the human and object. This 

may be one of the more obvious queues when inferring human object interactions. 

Reusing the riding-bike example, a human riding a bike is more likely to be located on 

top of the bike rather than to either side if they were instead standing-next-to-bike. Both 

the human and object streams are based on CaffeNet [23] implementations, pretrained on 

ImageNet. Each stream performs a classification for the possible HOIs, and an element-

wise sum is taken for their feature vectors for final classification scores. Due to the multi-

tasking nature of humans, HOI detection should be considered a multi-label classification 

problem, as a person can be performing more than one interaction on an object at a time. 

The individual streams and network architecture of HORCNN can be seen in Figure 2.6.  
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Figure 2.6 Diagram of the HORCNN architecture.  

 

Building on this method of multi-stream approach, Gkioxari et al. [17] use a 

similar architecture for detecting HOIs, InteractNet. They use three branches based on 

Faster R-CNN: an object detection branch, a human-centric branch, and an interaction 

branch. The object detection branch is identical to Faster R-CNN [52]. Bounding box 

regression for humans and objects is performed as well as computing a classification 

score for the detected objects. The human-centric branch performs two tasks, action 

classification, and target object localization. Similarly, to HORCNN, human appearance 

is used to compute an action classification score or the probability that the human in 

question is performing a specific action. Target localization again uses human appearance 

features to the probability density of the action’s target object location in the image. The 

final branch of interaction recognition combines the features detected for the human-

centric branch with appearance features from the target object. The score is computed by 

preforming sigmoid activation from the outputs from human action and target action 

classification which are represented as vectors. For inference, InteractNet uses a cascaded 

+
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inference strategy, in which rather than computing the scores for every single action-

object pair, they compute the bounding box for the object that maximizes the score for a 

specific action. For actions with no object interaction, the score from action classification 

in the human-centric branch is used. A diagram of the InteractNet architecture can be 

found in Figure 2.7.  

 

Figure 2.7 Architecture from InteractNet.  

 

Another implementation of the multi-stream architecture is presented by Gao et 

al. instance centric attention network (iCAN) [14], proposes using an attention-based 

mechanism for their architecture streams. As seen in HORCNN, the three streams used 

are a human, object, and spatial configuration stream, and generating proposals from the 

Faster R-CNN detector. The difference in the streams from HORCNN is the use of the 

proposed instance-centric attention network, replacing the conventional CNN 

architectures. Unlike extracting object appearance and human appearance as individual 
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queues, iCAN aims to extract contextual features from both the human and object 

instances in the image. iCAN begins by extracting the appearance features from the 

localized object to dynamically generate an attention map on that object instance. This is 

accomplished by embedding the appearance features and convolutional feature maps and 

measuring similarity using a dot product operation. The attention map is generated using 

a softmax function. A contextual feature is extracted from the attention map through the 

weighted average of convolutional features. The iCAN module outputs a concatenation of 

the instance level appearance features and the contextual appearance features. A diagram 

of the architecture for the iCAN module can be seen in Figure 2.8. Scores for each action 

are computed similarly to InteractNet and treated as a multi-label classification problem. 

 

 

Figure 2.8 Architecture of the iCAN module. GAP signifies global average pooling, and 
res5 signifies the 5th residual block.   

 
 
2.4.2 Fine-Grained Information Retrieval 
 

It can be seen from the iCAN implementation that more information than 

appearance and spatial relations benefit the goal of HOI detection. There has been 
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considerable research into using finer- grained contextual information extracted from the 

detected human to enhance HOI models. Researchers have experimented with language 

models providing supplemental information such as in [3], but we will focus on visual 

information extraction. Pose information from the human in the image can supply very 

important characteristics specific to that action [36]. One of the models to investigate 

these methods is a model using the individual body-part attention as proposed by Fang et 

al. [13]. The authors note that just using individual body-part attention does not capture 

the correlation between different body parts used in a specific interaction. Therefore, they 

propose generating attention maps from pairs of body parts and select specific pairs that 

best fit the interaction in question. Many works have proposed using human pose 

estimation to aid in detection results, some of the first being Gupta et al. [21] and Li et al. 

[34]. Li et al. propose generating a heat map of human joint key-points in their model 

referred to as the Interactiveness Network, which is used as an add-on module for 

existing HOI detection models. This module uses three streams as in HORCNN, with 

appearance features from humans and objects. The difference is in the spatial information 

stream, where the pose map is incorporated with the spatial configuration map. A 

convolutional architecture is used to extract the feature representing both pose and spatial 

configurations. This output is concatenated with the human and object streams to create 

an interactiveness score, which is integrated with the interaction classification scores 

from an existing model. It should be noted that the interactiveness score only applies to 

HOIs in which the human physically interacts with an object to produce the interaction. 

Therefore, only these interactions can benefit from this method. Li et al. also incorporate 

a knowledge transfer training mechanism that influences the Interactivness Network 
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module. This mechanism provides learned information from multiple datasets to produce 

a highly accurate inference on a testing image. 

Another model that uses pose estimation is the Pose-aware Multi-level Feature 

Network or PMFNet proposed by Wan et al. [56]. This approach utilizes a different 

architecture than previously examined in this survey. PMFNet builds upon the method of 

body part attention maps, but not constrained to pairs as in the Interactiveness Network. 

Additionally, spatial relations between body parts and the object in question are 

computed to encode fine spatial configuration information. The multi-stream architecture 

employs three modules, a holistic module, a zoom-in module, and a fusion module. Using 

human, object, and union (interaction area) proposals detected using Faster R-CNN [52] 

as an object detector, a conventional CNN architecture is used to extract appearance 

features. This same CNN also extracts a spatial configuration map between the human 

and the objects. The authors use the CPN pose estimator developed by Chen et al. [9]. 

The spatial features, appearance features, and pose estimation are fed to the 

holistic and zoom-in modules. The holistic module aims to capture object level and 

related context information. It consists of four streams: human, object, union, and spatial 

con- figuration. Each stream is responsible for embedding respective output features. 

These are concatenated to create a holistic feature representation. The zoom-in module is 

responsible for extracting fine-grained information from the human pose spatial 

configuration. These are considered human body part-level features. This module 

contains three branches that extract human part level appearance features, human part 

level spatial configuration features, and an attention component to enhance relevant 

human parts to each specific interaction. These features are concatenated to result in the 
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local feature representation. In the final fusion module, both the local features and the 

holistic features are used to fuse relation reasoning from both the coarse level and fine 

level features. The first benefit of this module is the ability to use coarse features as a 

contextual cue to suppress interactions that cannot exist in the current set of human and 

object proposals, this is denoted as an interaction affinity score. The other benefit is an 

ability to use both object level and part-level features to determine the relation score from 

fine-grained representations, denoted as the local relation score. Both the interaction 

affinity score and the local relation scores are fused to create a final score for the 

interaction given the human and object proposals. PMFNet is trained in an end to end 

manner using cross-entropy loss, with the exception of the Faster R-CNN [52] and the 

CPN [9] modules. 

One method of note proposed by Xu et al. [60], intention driven human object 

interaction detection or iHOI, incorporates the features obtained from human gaze 

following. This is done through another multi-stream architecture. First, a set of visual 

and spatial features are extracted using established methods. As is common in human-

object interaction detection, Faster-RCNN [52] is used to create human and object 

proposals. A pose estimation network from [9], and a gaze direction detector borrowed 

from [55], are trained on other datasets and used to extract human body joint locations 

and gaze target location respectively. These features are combined into three separate 

streams in the model. An individual stream for extracting appearance features from both 

the human and object, a human-object pairwise stream for extracting features from the 

spatial configurations and appearances of the human and the object together, and finally a 

gaze driven context-aware branch that aims to infer the focus area of the human through 
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body positioning and through the gaze location. These features are then combined to 

create a final human object interaction prediction. However, iHOI does not improve 

performance of human-object interaction detection much beyond its contemporary 

counter parts. There has been some discussion of integrating more modern gaze 

following algorithms such as [45], [62], or [64] However, these approaches are 

considered slow, needing many network streams and extra processing to make a final 

prediction. 

A recent model by Zhou et al. in [67] proposes a very complex multi-stream 

network architecture, incorporating language priors, geometric features, and visual 

features to achieve a high score on the V-COCO dataset. Their visual feature module 

includes using gaze type cues as well as pose estimation features to create a very robust 

prediction based on just the visual information present in the image. The geometric 

feature branch is strikingly similar to the spatial or pairwise streams of previous models 

like [6] and [17]. Another work called Parallel Point Detection and Matching (PPDM) 

[37], use purely spatial features to predict the interaction class between humans and the 

objects. They also implement a novel hourglass shaped neural network backbone for their 

model. PPDM performs well on HICO-DET dataset. 

2.4.3 Graph Neural Networks 
 

An image with human object interactions can be interpreted similarly to a scene 

graph [24], in which the nodes represent objects and humans while the edges connecting 

the nodes represent relations between them. A comprehensive survey of graph neural 

networks and their use in visual understanding tasks can be seen in the work by Wu et. al 

[59]. This method is very similar to the task of scene graph generation, such as the work 
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seen in [24], which is followed very closely in the human object interaction detection task 

by [61], breaking the task down into a graph. Qi et al. [50] propose a novel model using a 

graph neural network based on message passing. The goal of the model, called the Graph 

Parsing Neural Network (GPNN), is to take a complete human-object graph of the image 

that includes all possible interactions between the human and the objects and remove 

edges that represent non-existing interactions in the image. This structure enables the 

model to preserve spatial relationships while detecting human-object interactions. GPNN 

generates the graph structure through the use of a link function. Then the message, 

update, and readout functions are used in belief propagation. The message function is 

used to summarize messages or information coming from other connected nodes, while 

the update function updates the hidden node states according to the incoming 

information. The final readout function generates an output label based on the hidden 

node states. Each function uses various neural network architectures as detailed in their 

paper. The probability of an HOI occurring between nodes is a product of the final output 

probabilities between the human and object nodes.  

Using the idea of graph neural networks, Zhou et al. [66] provide an improvement 

on the GPNN [50] model. Known as the relation parsing neural network (RPNN), this 

network focuses around two graphs, an object body part graph and a human body part 

graph. The object body part graph describes the relationships expressed in the image 

between body parts of a specific human and the surrounding objects in the image. The 

human body part graph models the relationship between the human and their body parts, 

similar to the task of pose estimation, to describe the actions and movements of the 

human as they relate to a specific interaction. The two graphs are fused using a message 
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passing mechanism like in GPNN to convey information for a final interaction class 

prediction. This network body part contexts to predict actions. RPNN performs very well 

on HICO-DET and V-COCO. A more recent work into graph neural networks was 

conducted by Liang et. al [35], earning this paper a top mAP score for the HICO-DET 

dataset. However, unlike GPNN, they use a dual graph strategy with semantic 

information coming from the class labels and visual information to construct a final 

optimized scene graph of each object and human in the image. This model currently has 

the highest performance score on the HICO-DET dataset. Graph neural networks seem to 

be outperforming other methods for human object interaction detection, there have been 

many recent works that exploit them as well as other information such as pose estimation, 

[65] is a good example of this.  

2.4.4 Weakly Supervised and Zero-Shot Approaches 

An interesting area of computer vision research is in the area of weakly 

supervised and zero-shot approaches to learning. Weak supervision entails that a learning 

algorithm is given very few training examples of a specific task, such as identifying 

objects. Zero-shot signifies that the specific example has never been seen by the 

algorithm. Both weak supervision and zero-shot approaches for more classical tasks of 

computer vision, such as object detection [33], have been well documented throughout 

the years, even without the use of deep convolutional neural networks as in [5], and [7], 

and using autoencoders as seen in [29]. Interestingly [28] uses information learned from 

the task of human object interaction detection to aid in the task of object detection. 

Specifically, for human object interaction detection, zero-shot and weakly 

supervised learning techniques are useful due to most datasets expressing a long-tailed 
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distribution of image data. The long-tailed distribution describes the greater prevalence of 

common examples in the data than that of more uncommon examples. For example, there 

are many more examples of human-ride-horse than examples of human-ride-zebra, both 

because of the rarity of zebras and the rarity of scenarios where a human would be riding 

a zebra.  

However, the example of human-ride-zebra is not an impossible scenario, and a 

well generalized model should be able to identify these rare relationships just as humans 

can. This long-tailed distribution in datasets reflect the real-world, where we know that 

some interactions are rarer than other. For visual understanding tasks this process 

becomes more difficult as it is harder to rely on well-defined visual features such as those 

generated by SIFT [42] features or convolutional neural networks [63]. However, some 

distribution issues can be attributed to the dataset, as seen in the study [27], exploring 

HICO-DET and some of the multi-stream models covered in this survey. An attempt at 

the task of zero-shot recognition and weakly supervised learning is seen by Pyere et al. in 

[47], incorporating semantic language information from large text databases that provide 

probabilities for the interaction in question. One very early example of a weakly 

supervised approach is seen by Prest et al. in [49] using a probabilistic type model, 

however it has not been tested on modern datasets such as HICO-DET. 

More recent work seems to focus on improving these zero-shot interaction 

classes, and these improvements even help overall generalization on most datasets, this 

improvement can be seen in works such as [4], [25], and [57]. Hou et al. [22] propose the 

visual compositional learning framework for human object interaction detection. Their 

network learns shared object and verb features, breaking down verbs to relate to specific 
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objects. This process learns shared object and verb features from across all human object 

interactions. Their framework uses another multi-stream process containing three 

streams. Specifically, their main contribution is their verb- object branch that extracts 

verb or interaction class features from the union of both the human and object bounding 

boxes. They show superior performance on the HICO-DET dataset using this method. 

Another interesting recent work on improving generalization across the lesser seen 

interaction examples is done by Song et al. in [53]. They propose using adversarial 

domain generalization to encourage predictions on the unseen or longer tailed examples. 

Specifically, they focus on improving the spatial stream in a network similar to that of 

HORCNN [6] as this branch is object invariant by design. They create a type of zero-shot 

learning dataset by reorganizing examples in the training and test sets of HICO-DET [6] 

and using parts of the UnRel dataset [48] as a validation set. They do show great 

performance on zero-shot interaction categories, however we cannot rank their approach 

as they do not rank their improvements against other models on HICO-DET. They 

propose their learning framework as an add-on to existing models.  

We show the mAP scores on the HICO-DET dataset for most of the key models 

covered in this section in Table 2.1. The scores listed were found by their authors and 

listed in their papers. We can see the performance improvement by adding finer-grained 

features from the image to the prediction models. HICO-DET offers several evaluation 

setups and difficulties shown in this Table. More information on this can be found in 

section 2.5.4. 
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Table 2.1: Model comparison evaluated in %mAP 

 Default Setting Known-Object Setting 

Model Full Rare Non-Rare Full Rare Non-Rare 

HO-RCNN [6] 7.81 5.37 8.54 10.41 8.94 10.85 

InteractNet [17] 9.94 7.16 10.77 - - - 

GPNN [50] 13.11 9.34 14.23 - - - 

iCAN [14] 14.84 10.45 16.15 16.26 11.33 17.73 

Interactiveness 
Net [34] 

17.03 13.42 18.11 19.17 15.51 20.26 

PMFNet [56] 17.46 15.65 18.00 20.34 17.47 21.20 

VS-GAT [35] 20.27 16.03 21.54    

 
2.5 Datasets and Evaluation Metrics 
 
 This section introduces the most common datasets used in the task of human 

object interaction detection and provides insights on how they differ. Machine learning 

models rely on previously seen data to guide predictions for a specific inference task. 

Therefore, the quality and quantity of the data the model learns from are important for 

making good predictions. High-quality datasets commonly contain localization and class 

labels on each of the objects or humans in the image. Human object interaction detection 

requires image data to be labeled not only for objects but also for the relationships 

between the human and objects. For images with many instances of an interaction, these 

all must be separately labeled. Human object interaction datasets must contain enough 

training data for all object classes as well as all relationship classes. Data for all possible 

real-world combinations of objects and relationships are impossible to obtain, therefore 

datasets typically pick a number of objects and interactions to focus on. There are many 
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datasets used for this task, however, each dataset uses specific methods of providing 

ground truths, as well as different object and interaction classes. Each dataset also 

provides its own method of evaluating model performance. Table 2.2 summarizes the 

datasets and their properties, as discussed in this section.  

 

Table 2.2: Summary of dataset properties 

Name Images Interaction Classes Object Classes 

HICO 47,774 600 80 

HICO-DET 47,776 600 80 

V-COCO 10,346 26 80 

HCVRD 52,855 927 1824 

 

Arguably, one of the first purpose-built datasets for the task of human object 

interaction detection is the HICO [7] dataset, created by Chao et al. This dataset was 

constructed from the MS-COCO [38] dataset commonly used for object detection 

evaluation. HICO uses 80 object categories from MS-COCO and commonly used verbs 

to create the interaction categories for each object. Each object is also given a "no 

interaction" action, for a total of 600 human-object interactions. Each human object 

interaction category has at a minimum of six images, and the test set should contain at 

least one image for that category. 

The HICO dataset does not provide instance level groundtruth annotations for 

every HOI occurring in each image. Another problem is the fact that images with 

multiple humans present are not exhaustively labeled. For example, in the case of a 
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person-riding-in-airplane, there could be many people seated on board an airplane in the 

image, yet the HICO dataset would only require detecting a single HOI that fits that 

description. That is to say, that the HICO dataset proves image level groundtruth 

annotations. With these issues in mind Chen et al., the same authors of the HICO dataset, 

augment HICO to create HICO-DET [6]. HICO-DET contains groundtruth labels for 

every human, and object participating in an annotated interaction class. The authors took 

the original HICO dataset and augmented it by crowd-sourcing the instance level 

groundtruth labeling via Amazon Mechanical Turk. 

The verbs in COCO (V-COCO) dataset [20], is another commonly evaluated 

dataset for human object interaction detection. Similar to HICO, the object classes are 

taken from the COCO [38] dataset. But unlike HICO, the authors use the images already 

found in the COCO dataset. COCO has human-labeled and verified captions on each 

image, these are where the interaction classes are derived from. Using a simplified 

vocabulary, they designate 26 common actions amongst the different object classes. The 

COCO dataset contains ground truth labels for each object and human in the image, and 

the authors of V-COCO were able to reuse these. 

Another dataset, although less commonly used, for human object interaction 

detection is the HCVRD dataset created by Zhuang et al. [68]. This dataset is far more 

diverse in terms of labeled interactions and objects than the previously covered datasets. 

The images for HCVRD were gathered from the Visual Genome dataset [31], which 

contains object labels and bounding boxes, image captions, and labeled relationships 

between objects. The interactions included in HCVRD were drawn from the VG dataset 

where one of the objects is labeled as human. The authors took special care in "cleaning" 
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the interactions by removing ambiguous actions and combining interactions with close 

similarity as a single interaction class. 

In human-object interaction detection, mean average precision (mAP) is most 

commonly used as an evaluation metric. For each image, the model should output a 

classification score for each interaction class. For each class, average precision is 

calculated from the entire test set of images. The mAP is computed as the average of the 

average precision scores. The authors provide an easy setting for evaluation called the 

"Known Object" setting. In this setting the verified positive images are used as positives 

with the verified negative images used as the negatives, skipping both the unknown and 

ambiguous images [7]. This removes the uncertainty of an imperfect object detector, by 

removing the images without the subject from the human object interaction in question. 

For a more realistic setting, the authors propose adding the unknown category of images 

back as extra negatives. Benchmarking on the HICO and HICO-DET datasets are done 

on both the Known Object setting as well as the realistic setting. 

Two common metrics for evaluation of models on the V-COCO dataset are agent 

detection and role detection [20]. For agent detection, the task is to detect the humans 

performing a queried action. Average precision is used in this task as a performance 

metric, where humans labeled with the correct interaction category are marked positives. 

For role detection, the goal is to detect the human and objects participating in the given 

interaction. A model should produce a bounding box for the human and for the role. 

Using the intersection-over-union between the detected bounding box and the ground 

truth labels, average precision is computed and scored as the metric for this task. Models 

trained on HCVRD are tested against three metrics: predicate recognition where the 
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interaction is detected given the bounding boxes for the human and object. Phrase 

detection in which, given the human and object bounding boxes, the interaction as well as 

a union bounding box that encompasses the entire interaction or activity is predicted. For 

the final test metric relationship detection, measured in terms of recall, the model must 

localize the human and objects, as well as perform phrase detection. 

One last dataset to mention is the UnRel dataset [48]. UnRel is specifically 

created to evaluate unrealistic relationships between objects and people. However, it 

specifically focuses on spatial relationships such as person-ride-dog or elephant-on-top-

of-car and includes non-human object interactions. It can be used for add-on module 

training or in the case of [53] where they manually filter out interaction classes that do 

not pertain to humans, as supplemental data. It is worth mentioning that a dataset of 

unrealistic interactions could help benefit future zero-shot and weakly supervised 

learning approaches to human object interaction detection. 
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CHAPTER III 

METHODS 
 
3.1 Building the Toolkit  
 

We use the PyTorch deep learning framework [46] as it is standard in industry 

and academia for machine learning research. The primary motivation behind PyTorch is 

the ease of use compared with other deep learning frameworks such as Caffe, MXNet, 

and Tensorflow. All of these packages are centered around the idea of automatic 

differentiation to efficiently compute the gradients in the model for the essential gradient 

based optimization at the core of deep learning. A simple yet efficient Python API for this 

framework makes creating and setting up training routines with PyTorch relatively easy 

and straightforward, freeing up researchers from software engineering tasks and allowing 

them to focus on advancing research in their fields. In order to avoid trading speed for 

ease of use, the core of the PyTorch framework is written in C++ for fast execution 

compared to native Python programs. It also enables the use of hardware acceleration 

from GPU (graphics processing unit), utilizing the massively parallel architecture to 

provide the computational power for training deep learning models, all without the need 

for complex graphics programming constructs such as those supplied in Nvidia’s CUDA 

packages. PyTorch also includes streamlined multi-GPU integration into their API, for 

systems utilizing more than one hardware accelerator. Since the opensource release of 

PyTorch in 2017, the number of deep learning researchers that to transferred to this 

framework is increasing exponentially, making it the top choice for deep learning 

frameworks. One of our goals for this project is to provide researchers with an easy to use 
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set of tools to advance the research in the area of human-object interaction detection and 

using PyTorch as our deep learning framework seems like an obvious choice. 

We chose to implement a data loader for the HICO-DET dataset using PyTorch. 

HICO-DET is commonly used as a benchmarking dataset for human-object interaction 

[43] detection, and its related precursor HICO was a foundational dataset to the field. 

This dataset is publicly available online, utilizing MATLAB for performance analysis. To 

integrate HICO-DET into our toolkit, we began by converting the annotations in the 

dataset from the supplied MATLAB files to data structures that are easily parsed and read 

by Python. However, the annotations supplied by the dataset are fairly complex. 

Bounding boxes for humans and objects engaging in a specific interaction in the image 

are listed, and multiple humans and objects can participate in an instance of this 

interaction. Therefore, the connection is utilized to connect two bounding boxes as 

participating in an interaction. We treat each one of these connections as a separate 

proposal.  

After assembling the ground truth annotations, while training and testing, an 

object detector needs to search the image being sampled for humans and objects. As 

mentioned, HICO-DET uses the same classes of objects as found in the popular MS-

COCO [38] dataset. This allows us to use any object detector pre-trained on MS-COCO, 

as the head of our data pipeline. We integrate an option for the user to add their chosen 

object detector as the proposal generator, or supply annotations any other way. The 

bounding boxes proposed by the detector are passed to the data loader to be used as 

proposals. We set up our toolkit training for optimal training speed and use of the GPU 

memory. Keeping the object detector and the interaction detection model in GPU 
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memory during training could be infeasible due to the amount of resources a specific 

system has available and would slow down training considerably. Since we are not 

training the object detector, we precompute a list of human and object proposals to keep 

ready when those instances are needed during training. This should speed up training 

times considerably.  

3.2 HORCNN Implementation 
 

For the HORCNN model, and various others surveyed in chapter 2, an image-

centric sampling strategy is used, where each batch contains a fixed number of human-

object proposals from a single image [6]. Our data loader follows a similar strategy, 

enabling the user to specify a specific number of proposals per image to use in a batch. 

Furthermore, the image-centric sampling strategy uses proposals of three types; true 

positives where both the human and object proposal box have an Intersection over Union 

(IoU) overlap greater than 0.5 and the interaction label contains the object in the box, 

type-1 negatives where the IoU is between 0.1 and 0.5 again where the interaction in 

question contains the object in the bounding box and type-2 negatives where the object in 

question is not included in the bounding box. A random distribution from the three 

proposal classes form the image proposal batch. Furthermore, PyTorch allows the user to 

easily specify the batch size for training the model, which in this case, would be the 

number of images to sample from. Our HICO-DET PyTorch data loader allows for us to 

load the training and testing set in the same manner, given user specified constraints on 

the batch sizes.  

The task of human-object interaction detection should be considered a multilabel 

classification problem, as humans can perform multiple actions on an object at once. To 



 
 

36 

generate ground truth vectors for each positive prediction, we must search the dataset for 

similar bounding boxes, identified by an IoU > 0.5 for both human and object, and 

provide a positive label for the interaction class in the ground truth. We create these 

labels before training the human-object interaction detection model before training to 

speed up the process.  

To demonstrate the dataset, and to add a baseline model to the tool kit, we 

implemented the HORCNN detection model in PyTorch as a baseline comparison model. 

Implementing in PyTorch allows researchers to test their own models against a baseline 

implemented in the same framework, as long as they use PyTorch. Following the 

implementation details, we re-created the model, which was originally built using Caffe. 

Other than the change in framework, a few deviations should be noted. The original 

authors use Fast-RCNN [52] or individual RCNN detectors for each object for their 

object detectors. While these are fairly accurate and robust detectors, Faster-RCNN has 

been proven to outperform both. Using a high performing object detector is important for 

this task since the very first step in the detection pipeline is object detection. As 

previously stated, the data loader allows the user to integrate any object detector they 

choose so that improved algorithms can be used in the future. We chose to use Faster-

RCNN due to its immediate availability as a module included with PyTorch, pre-trained 

on the MS-COCO dataset which uses the same object classes from HICO-DET. Another 

deviation is the use of AlexNet [32] rather than CaffeNet [23]. For their implementation 

of HORCNN, the authors use CaffeNet pre-trained on the ImageNet dataset for the 

human and object convolutional streams. For all intents and purposes, AlexNet and 

CaffeNet are the same architecture, with CaffeNet being modified for single GPU use. To 
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avoid having to perform costly ImageNet pretraining, we used the pre-trained AlexNet 

implementation provided by Torchvision, widening the output feature vector to 600 

classes to match the output classes of the HICO-DET dataset. We will make available 

several versions of pre-trained HORCNN models for researchers to perform baseline 

tests.  
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CHAPTER IV 

RESULTS AND DISCUSSION 
 
4.1 Performance of Model 
 

For the re-implementation of the HORCNN model, we see a close but slightly 

reduced mAP on the HICO-DET dataset, close to that of the original papers. Differences 

could be explained by hyperparameter adjustments. Due to computational constraints, our 

implementation was trained with a batch size of four images, containing four randomly 

sampled proposals from the true positive, type I negative, and type 2 negative proposal 

sets, listed in the previous section of this paper. Using the batch sizes results in a total 

batch size of 16 proposals. In the original work, eight images are selected per batch, with 

8 proposals per image, for an overall batch size of 64 proposals. We trained four times as 

long as the original work due to the reduction in proposals from our training parameters. 

We trained for 400k iterations at a learning rate of 0.001, and 200k iterations at a learning 

rate of 0.0001. Results and comparisons can be seen in Table 4.1. The model was trained 

for ~20 hours on a single Nvidia TitanXp GPU.  

Table 4.1: Performance (%mAP) of re-implemented model vs. published results 

Model Full Rare Non-Rare 

Ours 5.87 3.06 7.08 

HORCNN 7.81 5.37 8.54 

 

4.2 Performance of Individual streams 
 

The three streams of the HORCNN model, human, object, and pairwise streams, 

extract fine-grained features from their subjects. However, these feature weights are 
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summed when making a final prediction on whether a human-object pair is engaged in an 

interaction. From a general understanding of human interaction, we know that fine-

grained features such as body placement and pose can influence a decision on whether or 

not a human is interacting with an object. We perform studies on each individual stream 

and selected combinations to see if one performs best in the overall task of identifying an 

interaction. We evaluate performance similar to the authors of HORCNN, by following 

the mAP criteria from the PASCAL VOC classification competition. Results of these test 

can be seen in Table 4.2. 

Table 4.2: Performance of the individual model streams (%mAP) 

Model Full Rare Non-Rare 

Full Model 5.87 3.06 7.08 

H 1.62 0.40 2.09 

O 4.65 2.78 5.67 

P 0.93 0.07 1.08 

HO 5.41 3.51 6.54 

HP 1.41 0.15 1.65 

 
4.3 Dataset  
 

The HICO-DET dataset is large and fairly diverse, however, there are a few issues 

present. First, for each object category, there is a ‘no interaction’ class. This provides 

samples for a model to learn how to distinguish when there are objects and humans in an 

image, but they are not interacting with each other. However, there are many more 

instances where there should be a no interaction category, but they are not labeled. Many 

of these instances stem from objects or humans that are detected by an object detector, 
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such as Faster-RCNN used in this study, but are not present in any ground truth as 

participating in an interaction with a human. While training with the image-centric 

sampling strategy, the model could be given these samples, since samples are chosen at 

random, without a label and will be penalized in the loss function since no ground truth 

exists. It is possible to hand label these human-object proposals with a ‘no interaction’ 

proposal while loading the data, but in doing so the dataset becomes 

imbalanced. Interestingly, there are some human-object pairs that are participating in an 

interaction class in images in the dataset, that are not labeled. For example, the image in 

Figure 4.1 is taken from the HICO-DET training set with bounding boxes representing 

detections from Fast-RCNN. The ground truth annotations only contain labels for four 

separate humans ‘sit at’ and ‘eat at’ dining table. But clearly, we see that one human is 

drinking from and holding a cup, as well as many cups and plates in the image that 

should be labeled with ‘no interaction’.   

 
Figure 4.1: Example of non-exhaustively labeled image from HICO-DET 
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The fact that human to human relationships are present in the HICO-DET dataset, 

provides an extra complexity when searching for proposals. Unfortunately, all images 

containing multiple humans does not have a ‘no interaction’ label between these human 

detections. Since the object detection selection must pair all humans with all objects, and 

all humans with all humans, it is likely that one of these unlabeled human to human 

relationships show up in the dataset. While it is possible to create these labels artificially 

in the data loader, it adds more unnecessary data preprocessing for the training. And it is 

not guaranteed that these labels are true ‘no interaction’ labels, instead of missed 

interactions. Figure 4.1 has examples of these missed interaction labels. We see multiple 

humans present, but as noted, the ground truths only contain human-dining table 

interactions.  

HICO-DET contains a number of rare human-object interaction classes, as 

evidenced by the ‘rare’ setting for evaluation. However, the quality of these examples 

leaves doubt in the ability of the human reviewers to filter out poor images, or images 

that do not display the interaction. For example, the image seen in Figure 4.2 contains 

training and test images labeled as containing the relationship of human-repair-mouse, 

mouse in this context referring to a computer mouse. It is clear from this picture that 

there is no human present in the image. An automated data-processing pipeline would not 

label this as the interaction class human-repair-mouse, and more troublingly, this is the 

one of two training examples for this interaction in the entire dataset. This issue could be 

present in other small objects in the dataset; however, we find this to be the most 

egregious error. This brings into question the quality of the HICO-DET dataset, and its 

ability to train high performing models for human object interaction detection.  
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Figure 4.2: Examples of the interaction class ‘human repair mouse’ from the HICO-DET 
dataset. 

 
Lastly, the image annotations for HICO-DET contains lists of interaction classes 

present in each image. Each interaction class present will have a list of humans and a list 

of objects participating in it. In the common case where there exists a human-object pair 

where two or more interactions exist, the annotations seem to have been performed 

separately for each interaction, shown by slight differences between bounding box 

coordinates. Figure 4.3 shows an example of this, where both ‘bboxhuman’ annotations 

refer to the same image, but the bounding box dimensions are off just slightly. This 

bounding box misalignment leads to greater data storage costs, and data-preprocessing 

requiring IoU (intersection over union) computation on each detection proposal and all 

other proposals. We suggest a better annotation scheme for the HICO-DET dataset as 

seen in Figure 4.3. Keeping a list of each human and object bounding box separate from 
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the interaction class label could make processing more straightforward and reduce 

training errors.  

 

 

 

5.2 HORCNN Model Discussion 
 
4.4 Model evaluation  
 

We evaluated several test cases for mAP score. The evaluation was done over the 

entire testing set, using 10 proposals from each image, similar to how the authors of 

HORCNN perform their evaluations. These cases and their results can be seen in Table 

Figure 5.1 Data set annotations, JSON format. a) Left, current HICO-DET 
annotation scheme, b) Right, proposed annotation scheme 
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4.2.  HOP denotes the full model including scores from the human, object, and pairwise 

streams. H, O, and P denote human, object, and pairwise streams respectively. HO 

denotes the score of the human and object branches combined. Finally, HP denotes the 

human and pairwise streams combined.  

Our original hypothesis was that the human stream would be more dominant in 

guiding predictions, however, the results show that the object stream has the best mAP on 

the test set and seems to be the dominant factor in the HORCNN model. We believe that 

this is caused by similar interactions between multiple object categories. For example, the 

interaction ‘carry’ is valid for 32 of the 80 object categories. While many of the human 

appearances could be similar for certain groupings of objects, it is likely that there is not 

enough information from the human appearances alone to differentiate between these 

exact object interaction classes. This can be seen in some of the results from test images 

on the trained model, where similar interactions between objects receive relatively high 

scores. When combining the human and the object streams, we see that the mAP 

improves slightly over just the object stream, however, it performs better against the 

combination of the human and pairwise streams. This shows the importance of the object 

stream in making predictions on the HOI classes. Unsurprisingly, the full model 

incorporating all the streams achieves the highest mAP score, this proves the importance 

of incorporating all three streams in the HORCNN model. Out of the previous works 

surveyed in the related works section of this paper, HORCNN achieves the lowest mAP 

scores, quite low for a good prediction model.  
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CHAPTER VI 

CONCLUSION 
 

In this work we have taken an in-depth examination of the task of human-object 

interaction detection, covering datasets and the baseline models. We performed studies 

on the baseline model for the HICO-DET dataset, HORCNN, to identify the most robust 

model components and features. We see that for the multi stream approach presented in 

HORCNN, the object appearance features provide the most accurate prediction on the 

dataset. However, it does not compare to the combination of the streams to provide 

accurate human-object interaction detections. We hope that the findings of these studies 

can influence future model design in this field of research. The HICO-DET dataset for 

human object interaction detection was also examined throughout this work. We have 

shown some concerning quality issues regarding this dataset. It is our opinion that this 

dataset should be more carefully examined for accurate labeling and higher quality 

images, especially for the crucial training segment of the dataset. With some updating, 

this dataset could become very valuable to researchers in this field.  

We have presented a basic set of tools for evaluating human-object interaction 

detection models using the PyTorch framework. We hope that these tools can be used by 

future researchers to evaluate their models against the baselines presented in the HICO-

DET paper. Although out of the scope of this current work, we would like to extend this 

toolkit to include more models to compare against. Providing these models would give 

researchers more baselines to compare against and examine. We would also like to 

include more human-object interaction detection datasets for easier evaluation. We hope 

that these contributions will accelerate the growth in this field.  
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