
AN INTERFACE FOR EMBEDDING THE BLAS IN HASKELL

by

BOSCO NDEMEYE

A THESIS

Presented to the Department of Computer and Information Science
and the Graduate School of the University of Oregon

in partial fulfillment of the requirements
for the degree of
Master of Science

September 2020

THESIS APPROVAL PAGE

Student: Bosco Ndemeye

Title: An Interface for Embedding the BLAS in Haskell

This thesis has been accepted and approved in partial fulfillment of the
requirements for the Master of Science degree in the Department of Computer and
Information Science by:

Boyana Norris Chair

and

Kate Mondloch Interim Vice Provost and Dean of the
Graduate School

Original approval signatures are on file with the University of Oregon Graduate
School.

Degree awarded September 2020

ii

c© 2020 Bosco Ndemeye

iii

THESIS ABSTRACT

Bosco Ndemeye

Master of Science

Department of Computer and Information Science

September 2020

Title: An Interface for Embedding the BLAS in Haskell

Scientific algorithms have been built on top of linear algebra subprograms,

historically implemented in languages such as C/C++ or Fortran, to optimize

their performance, sometimes at the cost of their conciseness. Recent work in these

languages has sought to address the problem of optimizing the implementations of

the subprograms through the use of domain-specific languages (DSLs). However,

it has been shown that using various techniques such as fusion, concise yet

optimal implementations of array computation DSLs in functional languages —

such as Haskell— are possible. Consequently, we investigate an interface to a

library that supports subprogram computations in Haskell. We apply the delayed

fusion technique to separate data stored in memory and their delayed versions,

providing the user with the option to force computation as they deem fit. We

present implementations of several subprograms, abstracting over the choice of data

sparsity layouts in memory.

iv

CURRICULUM VITAE

NAME OF AUTHOR: Bosco Ndemeye

GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED:

University of Oregon, Eugene, OR
Hendrix College, Conway, AR

DEGREES AWARDED:

Master of Science, Computer and Information Science, 2020, University of
Oregon

Bachelor of Arts, Computer Science, 2018, Hendrix College

AREAS OF SPECIAL INTEREST:

Programming Language Foundations
Parallel Computing
High Performance Computing

PROFESSIONAL EXPERIENCE:

Graduate Research Aide, Argonne National Labs, Summer 2020

Graduate Research Fellow, University of Oregon, Summer 2019

Graduate Teaching Fellow, University of Oregon, 2018 – 2019

Undergraduate Research Assistant, Hendrix College, Summer 2017

v

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION . 1

II. BACKGROUND . 4

2.1. Haskell Type System Brief Overview 4

2.1.0.1. Boxed VS Unboxed Types 4

2.1.0.2. Concrete vs Abstract Types 5

2.1.1. ADTs . 5

2.1.2. Type Classes . 6

2.2. Sparsity . 8

2.3. Fusion . 11

2.3.1. build/foldr . 12

2.3.2. destroy/unfoldr . 14

2.3.3. Stream Fusion . 15

2.3.4. Delayed Fusion . 18

III. METHODOLOGY AND IMPLEMENTATION 20

3.1. Data Representation . 21

3.2. Vector Operations . 22

3.3. Delayed Instance . 22

3.4. Polymorphic Operations . 24

3.4.1. Conversion . 24

3.4.2. Collective operations . 25

3.4.3. Matrix-Vector Product 26

vi

Chapter Page

3.5. Manifest Instances . 27

3.5.0.1. COO . 27

3.5.0.2. CSR . 28

3.5.0.3. ELL . 28

3.6. Forcing . 31

3.6.1. COO . 32

3.6.2. CSR . 32

3.6.3. ELL . 34

3.6.4. Cross-Format Conversion 34

3.7. subprogram Implementations . 35

IV. RESULTS AND ANALYSIS . 37

V. CONCLUSION AND FUTURE WORK 42

REFERENCES CITED . 44

vii

LIST OF FIGURES

Figure Page

1. map/map rule pragma . 12

2. foldr, build definitions . 13

3. Lambda-list to Data-list illustration . 13

4. zip as limitation to build/foldr . 14

5. unfoldr definition . 15

6. destroy definition . 15

7. Stream data type . 16

8. stream, unstream definition . 17

9. stream/unstream rule pragma . 17

10. stream/unstream illustration . 17

11. Delayed lists example implementation 18

12. Problems with sharing when delaying 19

13. Sparse matrix, vector definition . 21

14. Delayed vector operations . 23

15. Delayed matrix Sparse instance . 24

16. Sparse matrix polymorphic operations 25

17. Generic Delayed Matrix-Delayed Vector Product 26

18. An implementation of A~x+ b . 27

19. COO and CSR Format unboxed instances 29

20. ELL format unboxed instance . 30

21. The Force type class . 31

22. COO Force instance . 32

viii

Figure Page

23. CSR Force instance . 33

24. ELL Force instance . 34

25. Cross-Format Conversions . 35

26. Example subprogram Implementations 36

27. The Problem of Timing Execution in Haskell 38

28. Force vs no-force DAXPY runtimes (µs) 38

29. Matrix-vector multiplication runtimes COO (µs) 38

30. Matrix-vector multiplication runtimes CSR (µs) 39

31. Small matrices atax/gemv runtime (µs) 39

ix

LIST OF TABLES

Table Page

1. subprogram specifications . 35

2. Example Operations . 37

3. Example matrix dimensions and sparsity. 38

x

CHAPTER I

INTRODUCTION

A collection of small, pure1 linear algebra functions and their compositions,

form the backbone of many computational algorithms. Due to their wide

applicability, specifications of such common subprograms as the Basic Linear

Algebra Subprograms [7] have been put forth to facilitate application optimizations,

and establish a standard interface. The main idea is that larger application

programs are built up from one or more of these subprograms as well as their

compositions; implying that optimizing an individual, or sequences of subprogram

calls, should permeate a bump in performance throughout applications using them.

This makes the subprograms well suited for a purely functional implementation.

Works such as Built-To-Order BLAS (BTO) [18] view optimizing these subprogram

subprograms as a compiler construction problem. By designing a Domain Specific

Language (DSL) that reduces a given subprogram—specified in MATLAB-like

syntax—to a form suitable for such different optimizations as fusion and data

parallelism, the authors are able to generate C code that sometimes performs

better than hand-optimized versions of the same subprograms or sequences of

subprograms. This indicates that type-directed compiler construction techniques

can and should still be used to tackle such problems.

The research question that still remains, however, is that of whether it is

absolutely necessary to compile down such intrinsically functional formulations into

mostly imperative languages such as C, C++, or Fortran. Because an embedding of

the subprograms into a purely functional language seems to imply unreasonable

space complexity— due to the fact that every function call in such a language

1A pure function is one which will return the same output given the same input every time,
without any side effects.

1

generates an intermediary structure which subsequent functions in the composition

chain can act upon—it is tempting to throw away the idea. However, advancements

in purely-functional-language-compiler-optimizations seem to indicate that there

are working solutions around the space complexity issue. Works such as [15], and

[17] tackling multi-dimensional array computations in the purely functional and

lazy language Haskell for example, seem to indicate that its most widely used

compiler—the Glasgow Haskell Compiler (GHC)—has matured into a powerful

compiler, ready to compete with imperative giants on the performance stage.

Therefore, it is not clear whether an embedding of the subprograms into a purely

functional language would not be just as beneficial. Moreover, the fact that GHC

has a backend for LLVM IR—which C/C++ clang implementations also support—

is yet another reason why an embedding of the BLAS in Haskell would be a

worthwhile investment. It would provide a foundation for not only Haskell linear

algebra applications, but also similar C/C++ projects.

BTO is relatively successful in providing data parallelism as well as

subprogram fusion. Coincidentally, fusion has been a hot research topic in the GHC

community, and [15] has demonstrated that Haskell is indeed capable of handling

parallel computation. In addition to this, it is formulations that use Haskell’s

strong type system that popularized the Embedded Domain Specific Language

technique [14]. Consequently, it seems reasonable to ask whether BTO’s goals for

the BLAS couldn’t be achieved by an embedding in Haskell.

This thesis’ goal is to establish a starting point by designing a generic

interface for serial implementations of the BLAS. This means that we don’t seek

to provide explicit parallelism in the subprograms’, nor do we claim performance

improvements over existing implementations in other languages. Instead, we focus

on designing an interface that would allow for fusing intro-subprogram instructions

2

as well as subprogram compositions. Moreover, the interface is designed to

be agnostic in the memory layout of the matrices’ used thereby providing a

foundation for application specific space optimizations that takes advantage of

matrices’ different sparsity patterns. Haskell’s type system allows us to expose said

sparsity choice in the type, thereby leaving the choice of a matrix’s storage format

completely in the hands of the library’s client.

The specific contributions of this work can be summarized as follows:

1. A generic interface for matrices and vectors that encodes the choice of matrix

memory representation as well as the underlying elements2.

2. A review of the fusion optimizations problem in a functional context.

3. An implementation of three matrix storage formats as examples of how the

library supports different memory layouts, and can be extended.

4. An implementation of several subprograms using our interface.

5. A report of benchmark results on several real-world sparse matrices with a

relatively small number of non-zeros.

The rest of this thesis is structured as follows. Section II provides the

background necessary by reviewing Haskell’s type system, sparsity formats as well

as the fusion optimization. Section III dives into the details of the implementation,

while Section IV provides benchmark results for three subprograms (axpy, gemv,

and atax) on several matrices from the Suite Sparse Collection [6]. Finally, Section

V provides a summary of this work and directions for future work.

2The techniques used (i.e using type indices to guide computation) is well known in Haskell.
We have just applied to the specific context of the BLAS.

3

CHAPTER II

BACKGROUND

In the following sections, first we provide a brief overview of Haskell’s type

system summarizing features we use to achieve parametric polymorphism1 for the

subprograms. Second, we review sparse data compression formats we use as our

running examples, and last, we explore different techniques used to achieve fusion

in GHC. Section III puts all of this together as we discuss our implementation.

2.1 Haskell Type System Brief Overview

The complete features of Haskell’s type system are beyond the scope of this

thesis 2. This section provides a brief over-view of only those features we use as

part of our interface. These include boxed vs unboxed types, concrete vs abstract

types, algebraic data types or ADTs, and type classes as well as their associated

data types or type families.

2.1.0.1 Boxed VS Unboxed Types. Haskell distinguishes between

boxed and unboxed types. Unboxed types are the primitive types corresponding to

the normal C-like types such as int, double, float, etc. They are thus more suitable

for High Performance Computing (HPC) and they cannot be defined in Haskell

itself. The occupants of these types are represented by values, as opposed to boxed

types which are represented by pointers to objects in the heap. Objects similar to

C arrays are known as boxed unlifted3 types, and they are represented by a pointer

to the primitive array in the heap. This contrasts them from boxed lifted types

whose pointers, in GHC, point to heap thunks4 or indirections. Therefore correct

1The use of the same code for different types
2For features not discussed, interested readers are referred to [4].
3The difference between a lifted and an unlifted type is that undefined values (⊥) can inhabit

the former but not the latter.
4In its simplest definition, a thunk is a representation of an unevaluated expression.

4

use of unboxed or other unlifted types (such as primitive arrays) can yield better

performance than their boxed counterparts. However, their correct use is governed

by a strict list of rules [2], which can make them difficult to program. Thus, high-

level Haskell programming generally deals with boxed types.

2.1.0.2 Concrete vs Abstract Types. Abstract data types involve

type variables while concrete ones do not. For example:

Integer, Maybe Bool, Tree Double

are all concrete, while

data Maybe a = Nil | Just a

is abstract because type variable a hasn’t been specialized yet. Therefore, our

implementation will mostly use abstract data types due to the fact that they are

more suitable for generic interface design.

2.1.1 ADTs. Types in Haskell can be combined together to form a

larger type through an algebra of sums and products. The resulting type is known

as an Algebraic Data Type (ADT). Sums can be thought of as C unions with tags

and products as C structs with tags5. For example, a type that represents all days

in a week:

data Day = Monday | Tuesday | Wednesday | Thursday | Friday

is a sum type, whereas the type of points of a coordinate plane with integers

on the x and y axes is a product type:

data Point = P Int Int

5Because Sums and Products can involve more complex types, this analogy is a loose one.

5

These “tags” are known as constructors, and they can be thought of as

functions that accept values of the smaller types to produce values of the more

complex types. For example, P can be thought of as having the following type:

P :: Int -> Int -> Point

This type is read as: P accepts two values of type Int and produces one

value of type Point. Sums and Products can be combined to form even larger type.

In addition, Haskell supports the declaration of recursive data types. For example,

the type of Peano natural numbers can be defined as

data Nat = Zero | Succ Nat

Parametric polymorphism presents itself through the use of type variables as

parameters of type constructors. For example, the type of generic “tagged unions”

of two types can be declared as:

data Either a b = Right a | Left b

Thus, Either is a type constructor with parameters a and b whereas Right

and Left are data or value constructors.

Specialized manifest representation of data stored according to different

storage formats, use ADTs in our implementation of Section III.

2.1.2 Type Classes. Haskell supports ad hoc polymorphism, or

function overloading through the use of type classes. A type class declaration is a

parameterized interface that lays out the type signature of functions in the class,

whereas an instance declaration of the class provides implementations of the

interface. For example a type class Show that defines how to render a value to its

string representation can be declared as:

6

class Show a where

show :: a -> String

instance Show Nat where

show Zero = "0"

show (Succ n) = "Succ (" ++ show n ++ ")"

instance Show Point where

show (P x y) = "(" ++ show x ++ "," ++ show y ++ ")"

show :: Show a => a -> String

One implication of this is that calling the show function on any value that

is an element of a type with a Show instance is guaranteed to type check. GHC

extends the overloading idea by not only supporting functions, but also data

overloading. This is supported through the use of associated data types and type

families [8].

For example, [16] defines the class of generic map keys along with its

associated data type of generic finite maps as follows:

class Key k where

data Map k :: * -> *

empty :: Map k v

lookup :: k -> Map k v -> Maybe v

The star (∗), represents the kind6 of all types that can possess run-time

values. Thus, we can declare an instance Either of the Key class as follows:

6Just like we can talk about a type as containing values, we can talk about a kind as
containing types.

7

instance (Key a, Key b) => Key (Either a b) where

data Map (Either a b) elt = MS (Map a elt) (Map b elt)

empty = MS empty empty

lookup (Left k) (MS m _) = lookup k m

lookup (Right k) (MS _ m) = lookup k m

The important concept to note in the above example being that the k

parameter of the Map data type was abstract in the class declaration but has been

specialized to Either in the instance declaration. This lets the generic operations

of the class (empty, and lookup) be overloaded in the k parameter of the Map

type, allowing clients to define the specific form their data is allowed to take. Our

own Sparse type class definition of Section 3.1 defines a type class along with its

associated SparseData data type; which is what allows us to abstract over the

memory layouts of matrices.

2.2 Sparsity

The sparsity of a matrix can be thought to be a purely economic issue[12].

For computing purposes, a matrix is only considered sparse if taking advantage

of its zeros reduces either the application’s run-time or its storage space.

Consequently, there exist multiple sparse matrix storage formats, each suited

for a different type of application. In this section, we review three such formats:

the coordinate (COO), the compressed sparse row (CSR), as well as the ellpack

(ELL) format.

For example, consider the following matrix.

8

A =

13 2 0 0 0 0 0

0 3 44 0 0 0 0

0 0 54 53 72 0 0

0 0 0 0 0 83 0

0 0 0 0 0 0 92

1. The Coordinate Format (COO):

Perhaps the most intuitive format, COO uses three arrays to store a sparse

matrix. As the matrix is traversed in row major order its non-zeros are stored

in Anz, their corresponding row indices in Ar, while the corresponding column

indices are stored in Ac. Therefore, A will be stored as:

Anz = 13, 2, 3, 44, 54, 53, 72, 83, 92

Ar = 0, 0, 1, 1, 2, 2, 2, 3, 4

Ac = 0, 1, 1, 2, 2, 3, 4, 5, 6

If a matrix contains nz non-zeros, the COO format will use 3nz space to

store it. The row major order traversal insures that both Ar and Ac are

column-sorted, facilitating individual elements look up times.

In addition to the COO format being good for easy construction of sparse

matrices, conversion to and from the format to other schemas such as CSR is

fast. This convenience makes COO the default format for popular scientific

computing packages such as SciPy [5].

2. The Compressed Sparse Row Format (CSR):

Similar to the COO format, the CSR format uses three arrays to store a

sparse matrix, Anz for non-zeros, Ar for rows, and Ac for its columns. In CSR

9

however, Ar is compressed: If k is an index in Anz, and Anz(k) = Aij where

Aij is the element at row i and column j in A, then Ar(i) ≤ k ≤ Ar(i+ 1). By

convention Ar(0) = 0. Consequently, matrix A will be stored as:

Anz = 13, 2, 3, 44, 54, 53, 72, 83, 92

Ar = 0, 2, 4, 7, 8, 9

Ac = 0, 1, 1, 2, 2, 3, 4, 5, 6

Thus, if a sparse matrix contains nz non-zeros, and is of height h, the CSR

format will use 2nz + h + 1 space to store it. Compressing Ar allows for

efficient row slicing, which in turn allows for fast matrix-vector multiplications

as well as an efficient element to element operations such as addition. Our

implementation expounds on this topic in section III of this thesis.

3. The Ellpack Format (ELL):

The ELL format compresses a sparse matrix into two arrays. The first stores

the matrix’s non-zeros, while the second stores their corresponding column

indices. Zero values are padded at the end of rows whose non-zeros are less

than the maximum number of non-zeros per row. For example, A will be

10

stored as:

Anz =

13 2 0

3 44 0

54 53 72

83 0 0

92 0 0

Ac =

0 1 0

1 2 0

2 3 4

5 0 0

6 0 0

Consequently, if M is the maximum number of non-zeros per row, and the

sparse matrix has h rows, 2hM space will be used to store it. Assuming w

columns for the matrix, this is still less than wh for most sparse matrices.

In the discussion of Section III, we present how each of these formats is encoded

as a type index which a client can specialize according to the needs of their

application.

2.3 Fusion

As alluded to in the introduction, [20] and [18] seek to tackle the problem of

fusing subprogram call sequences in the context of imperative languages. However,

fusing sequences of subprogram calls in functional programming is a different

problem. Without any compiler optimizations, every operation in the paradigm

generates an intermediary structure and thus leads to unreasonable space usage.

However, optimizations to eliminate these intermediaries have been studied for

years and this Section reviews several such systems in the context of GHC.

11

Figure 1. map/map rule pragma

�
1 {-# RULES
2 "map/map" forall f g xs. map f (map g xs) = map (f.g) xs
3 #-}

[19] presents a mechanism through which equivalence laws could be

instructed to the compiler to transform programs, without modifying the compiler

itself. The work was encapsulated in a new RULES pragma that lets library writers

use domain-specific knowledge about their work to define such laws using standard

Haskell notation. Among the first potential applications presented for the rules was

list fusion, capturing well-known laws such as that of Listing 1.

2.3.1 build/foldr. [13] identifies a single such rule general enough for

the purposes of a list library by “standardising the way in which lists are consumed,

and standardising the way in which they are produced."

As an algebraic data type, a list is constructed recursively by a nil ([])

constructor and a cons (:) constructor. For example, a list such as [1, 2, 3, 4] is

constructed as (1 : 2 : 3 : 4 : []). Therefore, standardizing the consumption

of lists boils down to specifying how consumption works for each constructor. This

done by use of the standard function foldr (Listing 2).

The opposite to foldr, is a build (Listing 2) function which works by

replacing all the occurrences of the cons and nil constructors in a function-

representation of a list, such as func1234 (Listing 2), with their data equivalents.

The universal quantifications in the type signature of build, ensure that

its input is indeed a function-representation of a list and not perhaps some more

12

Figure 2. foldr, build definitions

�
1 foldr :: (a -> b -> b) -> b -> [a] -> b
2 foldr g y [] = y
3 foldr g y (x:xs) = g x (foldr g y xs)

4 func1234 = \cons nil ->
5 1 ‘cons ‘
6 (2 ‘cons ‘
7 (3 ‘cons ‘
8 (4 ‘cons ‘ nil)))

9 build :: forall a.
10 (forall b. (a -> b -> b) -> b -> b) -> [a]
11 build g = g (:) []

Figure 3. Lambda-list to Data-list illustration

�
1 lst1234 = func1234 (:) []
2 = (\cons nil ->
3 1 ‘cons ‘ (2 ‘cons ‘
4 (3 ‘cons ‘ (4 ‘cons ‘ nil)
5))) (:) []
6 = 1 : 2 : 3 : 4 : []

complex function that involves manipulating its sub-components (such as reversing

the list, for example).

The build/foldr rule thus, works by omitting to construct the intermediary

list generated by applying build to its function-representation, if that same list is

immediately consumed by foldr. That is

foldr f z (build g) = g f z

13

Figure 4. zip as limitation to build/foldr

�
1 zip xs ys = foldr f (_ -> []) xs ys
2 where f x g [] = []
3 f x g (y:ys) = (x, y) : g ys

Therefore, as long as a list is constructed with build and is immediately

consumed with foldr, all compositions of these functions can be fused by the

foldr/buildr. This encompasses functions such as sum, and, map, ++, as well as

expressions such as [x..y]. However, limitations for the system exist, and among

them are functions like zip.

Although, as Listing 4 illustrates, zip can be specified in terms of foldr,

by consuming xs and constructing a function which takes ys as an argument and

produces the zipped list, even if both xs and ys are constructed with build, only

xs can be eliminated by the system since ys is never directly used by foldr.

2.3.2 destroy/unfoldr. The destroy/unfoldr system [21] seeks to

solve the shortcomings of the previous system, introduced by zip-like functions, by

shifting the focus from how a list is consumed, to how it is constructed. From the

list’s “folding” to its “unfolding”:

Much like foldr specifies how to consume consecutive elements of a list to

build a new value, unfoldr (Listing 5), expresses how to construct consecutive list

elements when a “seed” value is provided.

Thus, the fusion system’s goal is to find a function that composes with

unfoldr to eliminate its resulting list without modifying the underlying semantics

of the composition. As [21] demonstrates, destroy (Listing 6) is that function.

14

Figure 5. unfoldr definition

�
1 unfoldr :: (b -> Maybe (a, b)) -> b -> [a]
2 unfoldr f b = case f b of
3 Nothing -> []
4 Just (a, b1) -> a : unfoldr f b1

Figure 6. destroy definition

�
1 destroy :: (forall a.
2 (a -> Maybe (b, a)) -> a -> c)
3 -> [b] -> c
4 destroy g xs = g listpsi xs
5 where listpsi :: [a] -> Maybe (a, [a])
6 listpsi [] = Nothing
7 listpsi (a:as) = Just (a, as)

Thus the same reasoning used in Section 2.3.1 results in the

destroy/unfoldr equivalence rule written down as:

destroy g (unfoldr psi e) = g psi e.

This fusion7 system is strong enough to optimize compositions of multiple

standard functions including some of those that stumped the build/foldr systems,

such as functions with accumulating parameters and zip-like functions. However,

it is incapable of handling functions with nested lists such as concatMap and is

inefficient in its handling of filter-like functions.

2.3.3 Stream Fusion. Similar to destroy/unfoldr, stream fusion

achieves its goal by focusing on list co-structures or streams. However, it sets itself

7To complete the fusion system, [21] defines a second rule: destroy/destroy. Readers are
referred to the original work for more details about the interplay between the two rules and their
use to fuse most list operations

15

Figure 7. Stream data type

�
1 Stream :: forall s a. (s -> Step a s) -> s -> Stream a
2 unfoldr :: forall s a. (s -> Maybe ~a, s)) -> s -> [a]

3 data Stream a = exists s. Stream (s -> Step a s) s

4 data Step a s = Done | Yield a s | Skip s

apart by explicitly defining a Stream data type and providing functions to convert

to and from lists to the new data type. List operations are thus re-implemented as

Stream operations that result in Stream values, in the confidence that constructors

for the values will be eliminated by GHC’s general-purpose optimizations.

The constructor for the Stream data type (Listing 7) is similar in signature

to unfoldr, relying on a provided initial state and a function to produce subsquent

elements.

Stream’s algebraic data type is defined as in Listing 7. The two functions

stream and unstream used to inter-convert between the list structure and the

stream structure are defined as in Listing 8.

Although the stream fusion system is designed to allow general-purpose

compiler optimizations on operations involving the Stream data type, it also

provides one rewrite rule that helps eliminate intermediate list conversions. For

example, in the composition of the two list map’s of Listing (10), the rule gets

applied resulting in the removal of an intermediate list structure.

Since by design all Stream producers are non-recursive, by transforming

a pipeline of list function compositions into their equivalent Stream versions, the

compiler is allowed to use existing general-purpose optimizations that eliminate

intermediate Step constructors, thereby achieving the proposed fusion. Our

16

Figure 8. stream, unstream definition

�
1 stream :: [a] -> Stream a
2 stream xso = Stream next xso
3 where
4 next [] = Done
5 next (x:xs) = Yield x xs

6 unstream :: Stream a -> [a]
7 unstream (Stream nexto so) = unfold so
8 where
9 unfold x = case nexto s of

10 Done -> []
11 Skip s’ -> unfold s’
12 Yield x s’ -> x : unfold s’

Figure 9. stream/unstream rule pragma

�
1 {-# RULES
2 "stream/unstream" stream . unstream = id
3 #-}

Figure 10. stream/unstream illustration

�
1 (map f) . (map g) = unstream . map_s f
2 . stream . unstream
3 . map_s g . stream
4 -- becomes
5 (map f) . (map g) = unstream . map_s f
6 . map_s g . stream

17

Figure 11. Delayed lists example implementation

�
1 data FList a = L Int (Int -> a)

2 map :: (a -> b) -> FList a -> FList b
3 map f (L len g) = L len (f . g)

4 zip :: (a -> b -> c) -> FList a -> FList b -> FList c
5 zip f (L len g) (L _ h) = L len (\i -> f (g i) (h i))

6 map f (map g l) = map (f. g) l

implementation relies on vectors from the vector library [9] which fuses its

operations by stream fusion.

2.3.4 Delayed Fusion. As another option, a popular work-around

to generating intermediate structures is to avoid generating them at all, by

manipulating their index transformations instead. For example, rather than

representing a list as an algebraic data type with an “nil” and a “cons” constructor,

a pair comprised of a pure function whose domain equates the list index range

and the length of the list could be used, as Listing (11) illustrates. Using this

representation, standard functions such as map and zip operate by composing

their appropriate argument functions with the list’s indexing function, and as a

consequence, fusion becomes nothing more than function composition.

[15] generalizes this pattern of programming to multi-dimensional arrays and

discusses different shortcomings of this approach, among them sharing (Listing

12).

In the example of 12, computing x will cause f to be applied to the

appropriate element of y. But, considering that f might be an expensive operation,

an implementation such as the above that calls f more times than necessary should

18

Figure 12. Problems with sharing when delaying

�
1 let x = map f y in zip3 x x x

2 -- introduce force
3 let x = force $ map f y in zip3 x x x

be avoided. To get around this problem, a function that force’s computation of

the delayed form to its raw data equivalent is usually provided. As a result, in the

example of Listing (12), f is only called once per element of y; speeding up the

program by a factor of three. As described in section III, our own implementation

follows the design presented in [15] and delays computation to avoid unnecessary

intermediaries. This means that we also provide a mechanism to force any

sequence of subprograms, thereby gaining subprogram fusion by leaving the choice

of when to perform computation in the hands of the application writer.

19

CHAPTER III

METHODOLOGY AND IMPLEMENTATION

Because the matrix is at the core of computational linear algebra, existing

systems such as MATLAB center around this structure in order to provide

direct adaptations of subroutines from high-level linear algebra specifications

such as LINPACK1 [10, 12]. This means that standard linear algebra operations

like addition and constant multiplication are expressed as high-level collective

operations in order to provide clear implementations that stay faithful to their

specifications. However, it is also well known that these operations can be

implemented in terms of the zipWith, and map functions at the core of functional

programming. This section describes the design of an interface to such an

implementation. The main contributions of the design is that, in addition to

abstracting over the memory layout of the matrices as well as their elements, all

operations are expressed as pure functions; meaning that all fusion is nothing more

than function composition2. Using Haskell’s type system, our interface represents

matrices in terms of their indexing functions (in delayed form) so that the

implementation of an operation such as A~x + p~y is nothing but a chain of function

compositions. However, since eventually these functions need to be computed into

actual data, we also provide an overloaded operation (force) that evaluates a

matrix’s function representation into its memory (manifest) representation.

This separation between delayed representations versus manifest

representations of data, means that optimizations such as data parallelism can be

added to the system by only modifying the force function.

1LINPACK relies on the BLAS for clarity and efficiency
2Repa[15] does this in the context of dense array computations, but as far we know, we are the

first to extend this design to tackle BLAS computations in Haskell

20

Figure 13. Sparse matrix, vector definition

�
1 type SVector a = (Int -> a, Int)
2 data RepIndex = U | D
3 class (Unbox a, Num a, Eq a)
4 => Sparse r (ty :: RepIndex) a where
5 data SparseData r (ty :: RepIndex) a :: *
6 index :: SparseData r ty a -> (Int , Int) -> a
7 dim :: SparseData r ty a -> (Int , Int)

3.1 Data Representation

Similar to [15], the matrices and vectors in our implementation are delayed

by default. This means that all computation is expressed as a chain of function

compositions until the user decides they want to force the delayed representation

into what [15] calls its manifest representation. For manifest data storage, we

employ unboxed vectors provided by Haskell’s vector library [9], to reap the

various benefits it provides such as constant array indexing as well as stream

fusion. We use type classes for operation overloading, and their associated data

types feature [8] for data type overloading. The distinction between manifest and

delayed arrays is achieved though the use of datatype kind promotion using GHC’s

-XDataKinds extension [3]. Listing 13 defines our vectors’ type, as well as the type

class capturing our generic matrices.

Delayed vectors (SVector) are represented as a pair of the manifest vector’s

indexing function and its length (similar to Section II’s FList), and generic

matrices are represented as an associated data type of a Sparse type class with

three type indices: r for sparsity formats, ty to indicate whether the matrix is in

its delayed (D) or manifest (U) form, and a for the underlying element type.

21

Consequently, a delayed matrix with Double elements, stored using the COO

format will be specified as SparseData COO D Double whereas a manifest matrix

with Int elements, stored using the CSR format will be specified as SparseData

CSR U Int.

To provide an instance of the Sparse class means to specify a manifest

representation for a given r index, a delayed representation for a ty index, a

function to retrieve an element stored at a given row and column (index), and a

function to retrieve the dimensions of the matrix 3 (dim).

3.2 Vector Operations

We discuss vector operations first, as they are relied upon by the rest of the

implementation: Conversions between unboxed vectors (Vector) and their delayed

counterparts (SVector) are provided by Listing (14). To convert a delayed vector

to its unboxed form means to apply its indexing function for all indices in the range

of the vector’s length. This is achieved by use of the generate function provided

by the vector library. Conversely, to delay an unboxed vector means to pair up its

indexing function and its length. The retrieval of the indexing function—through

partial application of the vector’s indexing operation to the vector—and the length,

both take place in constant time courtesy of the vector library.

The map and zipWith vector functions are similar to those provided in

Section II. Scalar multiplication, element-wise addition, subtraction, as well as the

dot product of vectors can thus all, also be defined as the listing illustrates.

3.3 Delayed Instance

Because there are practically no distinctions between delayed versions of

matrices with different memory layouts (they are all functions that return the

3As [15] illustrates, it is possible to encode the dimensions of the matrix in the type thereby
preventing unnecessary runtime checks, and maybe providing a performance boost. This is a
feature we are considering for future work.

22

Figure 14. Delayed vector operations

�
1 to_vector (f, len) = generate len f

2 from_vector vec = let len = length vec
3 in ((!) vec , len)

4 vmap f (g, len) = (f . g, len)

5 vzipWith f (g, len1) (h, len2) = (\i -> f (g i) (h i)
6 , len1)

7 (!+!) = vzipWith (+)
8 (!-!) = vzipWith (-)
9 (!*!) x = vmap (* x)

10 -- this takes twice as long
11 -- as summing up unboxed vectors
12 vsum = sum . to_vector

13 (!.!) v1 = vsum . vzipWith (*) v1

23

Figure 15. Delayed matrix Sparse instance

�
1 import qualified Data.Vector as B
2 instance (Unbox a, Num a, Eq a) => Sparse r D a where
3 data SparseData r D a = SDelayed (Int , Int)
4 ((Int , Int) -> a)
5 index (SDelayed _ f) (r, c) = f (r, c)
6 dim (SDelayed (h, w) _) = (h, w)

element stored at a given row and column), the r index of the type class should

be abstracted over to provide a generic delayed instance that works for all sparsity

formats. As Listing 15 shows, we do this by defining: (1) The data representation

as a product type with a constructor that accepts the dimensions of the matrix,

and the indexing function that takes a row and column as a parameter and

returns the corresponding non-zero element; (2) The indexing operation as directly

applying the indexing function stored in the constructor; and (3) By directly

returning the matrix’s dimensions for the corresponding operation of the class.

3.4 Polymorphic Operations

This section provides implementations of a number of overloaded operators

which are later used for generic implementations of larger linear algebra operations

(see Section 3.7). All of these operations leave their results in delayed form

to facilitate fusion through function composition, while also leaving actual

computation responsibilities to one function (force). This is partly to make it

convenient for extension with data-parallelism.

3.4.1 Conversion. An operation that converts manifest data

representations to their delayed equivalents is needed in order for the matrices to

interact with the outside world. Our definition for this operation shown in listing

24

Figure 16. Sparse matrix polymorphic operations

�
1 delay arr = SDelayed (dim arr) (index arr)

2 map f arr = case delay arr of
3 SDelayed (h, w) g -> SDelayed (h, w) (f . g)

4 zipWith f arr1 arr2 = SDelayed (h1, w1) get
5 where
6 SDelayed (h1 , w1) f1 = delay arr1
7 SDelayed _ f2 = delay arr2
8 get val = f (f1 val) (f2 val)

9 transpose mat = let
10 (h, w) = dim mat
11 index ’ m (r, c) = index m (c, r)
12 in SDelayed (h, w) (index ’ mat)

13 (#+) = zipWith (+)
14 (#-) = zipWith (-)
15 scale n = map (* n)

(16) as delay4, assumes indexing for the representation argument has been defined

and partially applies it to the matrix to extract the index transformation.

Conversion in the other direction, which we call force, is the topic of

Section 3.6.

3.4.2 Collective operations. Listing (16) illustrates how

collective operations such as map, zipWith, and transpose can also be

defined polymorphically to work with the provided delayed representation by

mainly reusing the same logic used for delayed vectors. Consequently, similar

4Type signature have been omitted in preference for readability

25

Figure 17. Generic Delayed Matrix-Delayed Vector Product

�
1 (#.) mat v@(_, len) = case mat of
2 (SDelayed (w, h) m_index_f) -> ((B.!) dot_ps , len)
3 where
4 row_funcs = B.map (\ri ->
5 ((curry m_index_f) ri
6 , w))
7 $ B.enumFromN 0 h
8 dot_ps = B.map (\r -> r !.! v) row_funcs

straightforward definitions of operations such as scalar multiplication, addition and

subtraction can also be defined in equivalent terms 5.

3.4.3 Matrix-Vector Product. Recall that one of the goals of this

design is to be able to express subprogram computations such A~x + b in high-level

terms, without computing any manifest intermediaries. So far, we have set up a

generic representation of matrices in delayed form and defined the sum operation

for both matrices and vectors. Therefore, the only remaining operation in the

subprogram is the product between a delayed matrix and a delayed vector. This

is the subject of Listing (17).

The matrix-vector product between matrix A and vector ~x can be defined as

the vector whose entries are dot products between row vectors of A and the vector

~x. Indexing functions for these rows can be extracted by enumerating all the rows,

and partially applying the curried6 version of the index transformation of A. This

computation (extracting row index transformations) is bound to the row_funcs

5A quick comparison of lines 7,8,9 of Listing 14 and lines 13, 14, 15 of Listing 16 reveals that
they are in fact the same. Merging these two (rank polymorphism) is possible in Haskell. For
example, see [11]. Incorporating that into this work has been left as a subject for future work

6Currying refers to the transformation of a function taking a tuple of values as an argument,
into a function that takes each of the components of the tuple, one at a time. Functions in Haskell
are curried by default.

26

Figure 18. An implementation of A~x+ b

�
1 axb a x b = a #. x !+! b

variable in Listing 17. The dot product between each of these delayed functions

and ~x can thus be simulated by the (!.!) operation defined in Section 3.2—this is

the computation bound to dot_ps. Therefore, the function corresponding to the

resulting vector is the indexing function of dot_ps.

Note that although the final operation returns an indexing function to

elements of a boxed vector, any attempt to actually compute this function will store

the elements in an unboxed vector, de-referencing on pointer per element, as per the

specification also of Section 3.2.

The computation A~x + b can now be expressed as shown in Listing 18. For

more subprogram implementations, see Section 3.7.

3.5 Manifest Instances

In this section we describe our encoding of the COO, CSR, and CSR

sparse data compression formats as type indices in Haskell. These are the encodings

we use to store our data, and forcing a delayed representation of data involves

evaluating the data’s indexing function into one of these formats. We provide a

description of their respective Sparse instances that stays faithful to the discussion

of Section II. Overall, this section should provide a guide to how a new format can

be added to the system.

3.5.0.1 COO. As described in Section II, the COO compression

format stores a sparse matrix using three arrays. An array for all the non-zeros

of the matrix, an array for column indices of those elements, and one for the row

indices. Haskell’s vector library will store a vector of tuples of “unboxable” values

27

into consecutive memory slots the size of the vector. Consequently, our COO

data representation consists of a vector of tuples (a, Int, Int) , along with the

matrix’s dimensions as captured by Listing 19.

To index into a matrix represented with the COO format thus boils down

to finding the triple whose second and third element match the provided row and

column, and returning its first element. We use vector’s find function to traverse

the array of triples and return the first one that matches the predicate. In the

worse case, this operation will take O(h+ w) time.

3.5.0.2 CSR. As opposed to the COO format, arrays used to store a

sparse matrix using CSR (Listing 19) are not necessarily of the same length; thus

prohibiting the concise use of triples for representation. The compressed row offsets

are stored in an array of their own, and so are columns and non-zero values.

Indexing into the matrix involves first slicing both the columns and non-zero

arrays by a size equal to the difference between the offset stored at the given row

and the element after it in the compressed array, then returning the element stored

at the column index in the slice. In the worst case, this operation will take O(|s|)

time, where |s| is the size of the slice7, making this operation significantly faster

than its COO correspondent for large matrices.

3.5.0.3 ELL. As described in Section II, two arrays of the same length,

one for non-zeros and one for column indices, are used to store a matrix using the

ellpack format (ELL) (Listing 20). The size of each of these arrays equals the

maximum-elements-per-row multiplied by the number of rows. Rows with non-

zero values less than the maximum are padded with zeros. Thus, to capture these

7This is under the assumption that zip and indexing take constant time, and that fusion
works. The vector library makes all of this possible.

28

Figure 19. COO and CSR Format unboxed instances

�
1 -- COO instance
2 data COO
3 instance (Unbox e, Num e, Eq e) => Sparse COO U e where
4 data SparseData COO U e
5 = COO {
6 coo_vals :: Vector (e, Int , Int)
7 , width :: Int
8 , height :: Int }
9 index (COO nnz w h) (r, c) = e

10 where
11 e = case find (\(a, x, y) ->
12 and [x == r, y == c]) nnz of
13 Nothing -> 0
14 Just (a1, _, _) -> a1
15 dim (COO _ w h) = (h, w)

16 -- CSR instance
17 data CSR
18 instance (Unbox e, Num e, Eq e) => Sparse CSR U e where
19 data instance SparseData CSR U e
20 = CSR { row_offsets :: Vector Int
21 , columns :: Vector Int
22 , nnz :: Vector e
23 , height :: Int
24 , width :: Int}
25 index (CSR row_offs cols vals h w) (r, c) = el
26 where
27 to_slice = row_offs ! r
28 to_start = case row_offs !? (r - 1) of
29 Nothing -> 0
30 Just n -> n
31 vec = slice to_start (to_slice - to_start)
32 $ zip cols vals
33 el = case find (\(x, _) -> x == c) vec of
34 Nothing -> 0
35 Just (_, a1) -> a1
36 dim (CSR _ _ _ h w) = (h, w)

29

Figure 20. ELL format unboxed instance

�
1 -- ELL instance
2 data ELL
3 instance (Unbox e, Num e, Eq e) => Sparse ELL U e where
4 data instance SparseData ELL U e
5 = ELL { max_e_row :: Int
6 , columns :: Vector Int
7 , nnz :: Vector e
8 , height :: Int
9 , width :: Int}

10 index (ELL max_e_r col_ind vals h w) (r, c) = el
11 where
12 to_start = r * max_e_r
13 vec = slice to_start max_e_r
14 $ zip col_ind vals
15 el = case find (\(x,_) -> x == c) vec of
16 Nothing -> 0
17 Just (_, a1) -> a1
18 dim (ELL _ _ _ h w) = (h, w)

30

Figure 21. The Force type class

�
1 class (Sparse r D e, Sparse r U e) => Force r e where
2 force :: SparseData r D e -> SparseData r U e

properties, the maximum-elements-per-row value, a vector for the non-zeros, and

one for the columns are encapsulated by a product type.

Indexing into a matrix stored with this format is thus similar to the CSR

format in the sense that they both involve slicing a zipped structure comprised of

column index, non-zero value pairs. The only difference being that in ELL, the size

of the slice equals the number of maximum elements per row. Thus, to retrieve the

correct element, first, the slice’s starting position is found, the slice is applied, and

finally the non-zero element returned from the slice is the second element of the

pair whose first element equals the column argument.

Consequently, in the worst case, indexing takes O(max) time, where max is

the maximum number of elements per row in the matrix.

3.6 Forcing

To define an overloaded operator that encodes the action of forcing any

delayed representation of a matrix stored with any sparsity format, we define

the Force type class (Listing 21). This makes it easier to extend this work

with parallelism because all that is needed is to embed the data parallelism

implementation into the force function associated with this class. As a consequence,

restrictions are put in place to use only collective functions provided by the vector

library, so that parallelizing those operations should imply the parallelization of

force.

31

Figure 22. COO Force instance

�
1 instance (Sparse COO D e
2 , Sparse COO U e) => Force COO e where
3 force (SDelayed (h, w) func) = COO vals w h
4 where
5 vals_r r = unfoldrN w (\c ->
6 if func (r, c) /= 0
7 then Just ((func (r,c)
8 , c), c + 1)
9 else Nothing) 0

10 rows = Prelude.map (\r -> U.map (\(x, c)
11 -> (x, r, c))
12 (vals_r r)) [0..h-1]
13 vals = concat rows

3.6.1 COO. To force an index transformation into a COO encoded

matrix (Listing 22), first we calculate a function val_r to generate all the

elements of a row by looping over the range of all columns applying the indexing

transformation. Next, we compute a list comprised of a vector per row—with values

of the row as well as their associated column and row indices—by looping over

all the rows applying val_r. Last, these vectors are concatenated into one large

vector.

3.6.2 CSR. To force an index transformation into a CSR encoded

matrix (Listing 23), a similar first, second and third step is taken, by defining

a function to generate all the elements of a given row, looping over all the rows

applying the function to generate the rows as vectors, and concatenating these into

one large vector containing all non-zero values. However, an extra step involving

counting the number of elements per row is taken, and a left scan performed to

obtain the compressed array of row offsets.

32

Figure 23. CSR Force instance

�
1 instance (Sparse CSR D e
2 , Sparse CSR U e) => Force CSR e where
3 force (SDelayed (h, w) func)
4 = CSR r_offs cols vals h w
5 where
6 vals_r r = unfoldrN w (\c ->
7 if func (r, c) /= 0
8 then
9 Just ((func (r,c)

10 , c)
11 , c + 1)
12 else Nothing) 0
13 rows = Prelude.map (\r -> vals_r r)
14 [0..h-1]
15 all_vals_c = concat rows
16 r_counts = Prelude.map length rows
17 r_offs = scanl (+) 0 r_counts
18 (vals , cols) = unzip all_vals_c

33

Figure 24. ELL Force instance

�
1 instance (Sparse ELL D e
2 , Sparse ELL U e) => Force ELL e where
3 force (SDelayed (h, w) func) = ELL r_max cols vals h w
4 where
5 vals_r r = unfoldrN w (\c ->
6 if func (r, c) /= 0
7 then Just ((func (r,c)
8 , c), c + 1)
9 else Just ((0, c)

10 , c + 1)) 0
11 rows = Prelude.map (\r -> vals_r r)
12 [0..h-1]
13 all_vals_c = concat rows
14 r_max = let len_list = Prelude.map length rows
15 in if not $ Prelude.null len_list
16 then Prelude.maximum len_list
17 else 0
18 (vals , cols) = unzip all_vals_c

3.6.3 ELL. Similar to the other two formats, computing into a ELL

encoded matrix, involves evaluating the rows and concatenating them into one large

vector of values. However, to support indexing, an extra step is done to find the

row with the maximum number of elements and store that number along with the

non-zeros, column indices, the height and the width.

3.6.4 Cross-Format Conversion. Note that, as Listing 25

illustrates, conversion between any two matrices, whether they be delayed or not

is fairly straightforward. Conversion between delayed formats requires no extra

work but to specify the correct type for the target format, while conversion between

manifest versions first delays the structure to be converted, then converts it to the

appropriate target index, to which the force function of Section 3.5 gets applied.

34

Figure 25. Cross-Format Conversions

�
1 convert :: (Sparse r1 D e, Sparse r2 D e)
2 => SparseData r1 D e
3 -> SparseData r2 D e
4 convert (SDelayed (w, h) func) = (SDelayed (w, h) func)

5 manifest_convert :: (Force r1 e, Force r2 e)
6 => SparseData r1 U e
7 -> SparseData r2 U e
8 manifest_convert = force . convert . delay

subprogram Operation
AXPY ~x← α~x+ p~y
VADD ~x← ~w + ~y + ~z
WAXPY ~x← α~x+ β~y
ATAX ~y ← ATA~x
BICGK ~q ← A~p, s← AT~r
DGEMV ~z ← αA~x+ β~y

Table 1. subprogram specifications

3.7 subprogram Implementations

To illustrate that the interface does indeed achieve the proposed genericity

goal of Section I, implementations of the subprograms of 1 are provided by

Listing 26.

35

Figure 26. Example subprogram Implementations

�
1 axpydot w v u alpha = (z, r)
2 where
3 z = w !-! (alpha !*! v)
4 r = z !.! u
5 vadd v1 v2 v3 = v1 !+! v2 !+! v3

6 waxpby a x b y = a !*! x !+! (b !*! y)

7 twiceAxpyNoForce a x p y = let n = axpy a x p y
8 in axpy a n p n

9 twiceAxpyForce a x p y = let n = to_vector
10 $ axpy a x p y
11 in axpy a (from_vector n) p
12 (from_vector n)

13 atax a x = (transpose a) #. (a #. x)

14 bicgk a p r = (a #. p, transpose a #. r)

15 smvm_xpy mat vec1 vec2 alpha = ((alpha !*! mat)
16 #. vec1) !+! vec2

17 gemv alpha beta a x y = (alpha ‘scale ‘ a #. x)
18 !+! (beta !*! y)

19 gemvt alpha beta a y z = let x = force
20 $ (beta !*!
21 ((transpose a)
22 #. y)) !+! z
23 in (delay x, alpha
24 !*! (a #. (delay x)))
25 gesummv alpha beta a b x = (alpha !*! (a #. x))
26 !+! (beta !*!
27 (b #. x))

36

CHAPTER IV

RESULTS AND ANALYSIS

First, let us note that, because Haskell is a lazy language, the usual manner

of timing execution involving the time difference between recorded starting and

ending points, such as shown in Listing 27, does not quite work. For example,

the compiler is free to choose not to execute function f, if its result never gets

used. Consequently, it is possible to get bogus benchmark results if one is not

cautious about the laziness aspect of the language. To allow users to control the

laziness/strictness of their programs, Haskell does provide functions to control how

deeply expressions get computed. To compute an expression into their weak head

normal form1, the language provides the seq function, whereas computation into

normal form is provided through deepseq. These functions are rarely used, but can

be critical for performance.

For our performance analysis, we use the Criterion library[1] which requires

the result of a benchmark to either be in weak head normal form or normal form

before it can proceed. The library uses an Ordinary Least-Squares (OLS) regression

model to estimate execution time for a single loop iteration of a given benchmark.

It reports the mean execution time, as well as the standard deviation statistics

and an R2 goodness-of-fit value indicating how accurately the regression model fits

1Expressions in weak head normal form have been computed up until the outer most
constructor whereas expressions in normal form have been fully computed. Therefore, all
expressions in normal form are also in weak head normal form, but not vice versa.

subprogram Operation
DAXPY x← α~x+ p~y
ATAX y ← AT (Ax)

DGEMV z ← αAx+ βy

Table 2. Example Operations

37

matrix width height non-zeros percentage (%)
rdb800l 800 800 4640 0.725
rdb450 450 450 2580 1.27
rdb200 200 200 1120 2.8
bcsstk03 112 112 640 5.1
bcsstk09 1083 1083 18437 1.57
bcsstk11 1473 1473 34241 1.57
bcsstk14 1806 1806 63454 1.94
tub100 100 100 396 3.96
bcsstm03 112 112 72 0.57
pores_1 30 30 180 20
LF10 18 18 82 25

Table 3. Example matrix dimensions and sparsity.

Figure 27. The Problem of Timing Execution in Haskell

�
1 start = time.time()
2 y = f()
3 end = time.time()
4 print (end - start)

Figure 28. Force vs no-force DAXPY runtimes (µs)

Figure 29. Matrix-vector multiplication runtimes COO (µs)

38

Figure 30. Matrix-vector multiplication runtimes CSR (µs)

Figure 31. Small matrices atax/gemv runtime (µs)

39

the observed measurements. According to the authors, for non-bogus results, the

R2 number should lie between 0.99 and 1. Finally, Criterion reports and plots a

subprogram density estimate of time measurements to indicate the probability of

any given measurement occurring.

We report the results of running experiments involving the three linear

algebra algorithms of Table 2 on an Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz

processor with L1 data and instruction caches of 32K each, an L2 cache of 1024K

and L3 cache of 28160K. ATAX can be used in numerical algorithms as part of

solutions to least-squares equations [20], and involves two matrix-vector operations

applied in sequence. DAXPY is part of the BLAS level-1 specification, while

DGEMV is part of level 2. DAXPY is composed of scalar multiplication followed

by vector addition, while DGEMV captures matrix-vector multiplication followed

by vector addition.

To benchmark these operations, we use real-world matrices from the popular

SuiteSparse matrix collection[6]; we have preserved their names in this report,

and their statistics are displayed in Table 3. Figure 28 shows box plots of running

DAXPY once, then twice when the forcing function has been called, and when it

has not2. As the figure shows, sharing (see Listing 12) gets lost if computation does

not get forced.

Figures 30 and 29 present the execution times for sparse matrix-vector

multiplication. Even though the matrices we use for our benchmarks are relatively

small (Table 3), CSR still introduces an observable small performance boost

(≈ 3µs) as its indexing function generally runs faster.

Figure 31 shows the results of running both the ATAX and GEMV

subprograms on several matrices of table 3. Because these matrices are not large

2The implementation of these functions is shown in Listing 26.

40

enough, the effects of changing their storage format is not directly visible. For

future work, we plan on running experiments on matrices of larger dimensions

and larger non-zero counts. However, the figure does show that the execution

times of both the GEMV and the ATAX routines increase almost linearly with

the number of rows/column but not the density of the matrix. Among other

things, this can be attributed to the fact that the implementation of matrix-vector

product we provided will generate a function for each row and try to get its delayed

dot product with the vector, regardless of whether the dot product evaluates to

zero (i.e., the row is made entirely of zeros). This means that, under the current

implementation, any matrix with a larger number of rows will always run slower

than one with a smaller number. This is only a hypothesis that has not been

confirmed. If this is the issue, one starting point would be between sparse and

dense vectors where zero values of a sparse vector could be omitted by storing the

vector as a pair of indices and non-zero elements.

The use of Criterion for benchmarking is quick and simple but it has its

drawbacks. For example, one of the reasons for evaluating smaller benchmark

problems is because Criterion takes an unreasonably long time to perform its

experiments before returning, and it is not clear how to control this excessive

overhead.

Overall, our matrices are not large enough for any big noticeable effects.

However, from the examples provided, we have shown that the original goal of

fusing intro-subprogram instructions as well as different subprograms themselves

can be achieved with the interface presented. For future work, we plan to perform

experiments on larger matrices before we tackle the introduction of data parallelism

into the system.

41

CHAPTER V

CONCLUSION AND FUTURE WORK

Keeping in accordance with the Basic Linear Algebra Specifications,

we have shown that we can write element-type and memory-layout-agnostic

implementations of linear algebra subprograms using Haskell. We have also shown

that through the technique of separating delayed and manifest representations of

matrices and vectors, we can enable users to control when a given subprogram

or chains of subprograms get computed. We have used this approach to provide

implementations of subprograms that use the coordinate format, the compressed

sparse row format, as well as the ellpack format. Finally, we have presented

performance figures highlighting the potential loss of sharing that could arise if

computation is not forced, as well as the difference in run-times between different

formats’ indexing functions.

Although our implementation is entirely serial, the interface was designed to

be easily extensible with data parallelism by modifying the function used to force

a delayed representation of a matrix into its manifest equivalent. As such, several

steps can be taken to extend the presented design for the future. These include

running more tests to observe the behavior of the current implementation across

cache lines, using Haskell’s type system to check for dimension mismatches at

compile rather than run-time, looking into providing data-parallel implementations

of functions from Haskell’s vector library we use as part our force function,

and last, comparing the performance our implementation with already existing

implementations.

If a high-performance embedding of linear algebra computations in Haskell

was successful, its strong type system would not only ensure their purity but

would also open up more compiler-specific optimizations. Moreover, as Haskell has

42

an LLVM backend, this would be a step towards a cross-paradigm, cross-lingual

standard interface for the BLAS set of functions and other numerical computations.

We have presented one step towards that goal.

43

REFERENCES CITED

[1] A criterion tutorial. http://www.serpentine.com/criterion/tutorial.html.
(Accessed on 08/28/2020).

[2] Ghc users’ guide section 7.2. unboxed types and primitive operations.
https://downloads.haskell.org/~ghc/7.0.3/docs/html/users_guide/
primitives.html. (Accessed on 08/25/2020).

[3] Ghc users’ guide section 7.8. kind polymorphism and promotion.
https://downloads.haskell.org/~ghc/7.4.1/docs/html/users_guide/
kind-polymorphism-and-promotion.html. (Accessed on 08/28/2020).

[4] Haskell online report: https://www.haskell.org/onlinereport/haskell2010/.
https://www.haskell.org/onlinereport/haskell2010/. (Accessed on
08/25/2020).

[5] Sparse matrices (scipy.sparse) — scipy v1.5.2 reference guide.
https://docs.scipy.org/doc/scipy/reference/sparse.html. (Accessed
on 08/02/2020).

[6] Suitesparse matrix collection. https://sparse.tamu.edu/. (Accessed on
08/28/2020).

[7] L Susan Blackford, Antoine Petitet, Roldan Pozo, Karin Remington, R Clint
Whaley, James Demmel, Jack Dongarra, Iain Duff, Sven Hammarling, Greg
Henry, et al. An updated set of basic linear algebra subprograms (blas).
ACM Transactions on Mathematical Software, 28(2):135–151, 2002.

[8] Manuel M. T. Chakravarty, Gabriele Keller, Simon Peyton Jones, and Simon
Marlow. Associated types with class. In Proceedings of the 32nd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’05, page 1–13, New York, NY, USA, 2005. Association for
Computing Machinery.

[9] Duncan Coutts, Roman Leshchinskiy, and Don Stewart. Stream fusion: From
lists to streams to nothing at all. In Proceedings of the 12th ACM SIGPLAN
International Conference on Functional Programming, ICFP ’07, pages
315–326, New York, NY, USA, 2007. ACM.

[10] Jack J Dongarra, Cleve Barry Moler, James R Bunch, and Gilbert W Stewart.
LINPACK users’ guide. SIAM, 1979.

[11] Jeremy Gibbons. Aplicative programming with naperian functors. In European
Symposium on Programming, pages 556–583. Springer, 2017.

44

http://www.serpentine.com/criterion/tutorial.html
https://downloads.haskell.org/~ghc/7.0.3/docs/html/users_guide/primitives.html
https://downloads.haskell.org/~ghc/7.0.3/docs/html/users_guide/primitives.html
https://downloads.haskell.org/~ghc/7.4.1/docs/html/users_guide/kind-polymorphism-and-promotion.html
https://downloads.haskell.org/~ghc/7.4.1/docs/html/users_guide/kind-polymorphism-and-promotion.html
https://www.haskell.org/onlinereport/haskell2010/
https://docs.scipy.org/doc/scipy/reference/sparse.html
https://sparse.tamu.edu/

[12] John R Gilbert, Cleve Moler, and Robert Schreiber. Sparse matrices in matlab:
Design and implementation. SIAM Journal on Matrix Analysis and
Applications, 13(1):333–356, 1992.

[13] Andrew Gill, John Launchbury, and Simon L. Peyton Jones. A short cut to
deforestation. In Proceedings of the Conference on Functional Programming
Languages and Computer Architecture, FPCA ’93, pages 223–232, New York,
NY, USA, 1993. ACM.

[14] P. Hudak. Modular domain specific languages and tools. In Proceedings. Fifth
International Conference on Software Reuse (Cat. No.98TB100203), pages
134–142, 1998.

[15] Gabriele Keller, Manuel M.T. Chakravarty, Roman Leshchinskiy, Simon
Peyton Jones, and Ben Lippmeier. Regular, shape-polymorphic, parallel
arrays in haskell. SIGPLAN Not., 45(9):261–272, September 2010.

[16] Oleg Kiselyov, Simon Peyton Jones, and Chung-chieh Shan. Fun with type
functions. In Reflections on the Work of CAR Hoare, pages 301–331.
Springer, 2010.

[17] Ben Lippmeier and Gabriele Keller. Efficient parallel stencil convolution in
haskell. In Proceedings of the 4th ACM Symposium on Haskell, Haskell ’11,
page 59–70, New York, NY, USA, 2011. Association for Computing
Machinery.

[18] Thomas Nelson, Geoffrey Belter, Jeremy G Siek, Elizabeth Jessup, and Boyana
Norris. Reliable generation of high-performance matrix algebra. ACM
Transactions on Mathematical Software (TOMS), 41(3):1–27, 2015.

[19] Simon Peyton Jones, Andrew Tolmach, and Tony Hoare. Playing by the rules:
rewriting as a practical optimisation technique in ghc. In 2001 Haskell
Workshop. ACM SIGPLAN, September 2001.

[20] Jeremy G Siek, Ian Karlin, and Elizabeth R Jessup. Build to order linear
algebra kernels. In 2008 IEEE International Symposium on Parallel and
Distributed Processing, pages 1–8. IEEE, 2008.

[21] Josef Svenningsson. Shortcut fusion for accumulating parameters & zip-like
functions. In Proceedings of the Seventh ACM SIGPLAN International
Conference on Functional Programming, ICFP ’02, pages 124–132, New
York, NY, USA, 2002. ACM.

45

	 Introduction
	 BACKGROUND
	Haskell Type System Brief Overview
	Boxed VS Unboxed Types
	Concrete vs Abstract Types

	ADTs
	Type Classes

	Sparsity
	Fusion
	build/foldr
	destroy/unfoldr
	Stream Fusion
	Delayed Fusion

	 Methodology and Implementation
	Data Representation
	Vector Operations
	Delayed Instance
	Polymorphic Operations
	Conversion
	Collective operations
	Matrix-Vector Product

	Manifest Instances
	COO
	CSR
	ELL

	Forcing
	COO
	CSR
	ELL
	Cross-Format Conversion

	subprogram Implementations

	 Results and analysis
	 Conclusion and future work
	REFERENCES CITED

