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THESIS ABSTRACT

Joseph Clevenger MCLaughlin

Master of Science

Department of Computer and Information Science

June 2021

Title: Analysis of a Mobile Computing System For Indoor Environmental
Monitoring

Sensor networks that collect indoor environmental (IEQ) data are frequently

used to drive building systems and to inform research and building standards.

The research that connects the trends in IEQ data with human factors is well

established and remains an active area of research. Conventional sensor systems

often require specialized building infrastructure and are cost prohibitive, making

them available primarily to large-scale indoor settings. In this thesis, we describe

an alternative sensor network which utilizes a mobile sensor to collect IEQ data

in traditionally under-served buildings. The sensor network is composed of

inexpensive components and minimally relies on specialized infrastructure. We

demonstrate that the sensor network maintains a uniquely fine spatial resolution,

illustrating a unique utility beyond static sensor networks in conventional settings.
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CHAPTER I

INTRODUCTION

The study of the indoor built environment—with regard to its effects

on those who occupy it—often involves simulation studies and controlled

field experiments to argue for causality. Recently works have demonstrated

that several attributes of the built-environment have measurable effects on

occupants (Amundadottir, Rockcastle, Khanie & Andersen, 2017; Bluyssen, 2013;

Lan, Lian & Pan, 2010). However the application of such research is limited

to newly constructed buildings and primarily in “large-scale” settings where

commercial environmental sensors and advanced environmental controls can

be installed. Existing low-density homes and commercial settings where people

spend a significant portion of their time indoors are unlikely to benefit from the

application of this research without an analogous environmental sensor system. In

this thesis, we discuss the development of a novel, low-cost mobile sensor. Through

our analysis we demonstrate that our sensor system is both suitable for under-

served locations and collects data has unique utility beyond the scope of traditional

sensors.

1.1 Motivation

Conventional indoor environmental sensor systems comprise networks of

environmental sensors (often measuring several environmental attributes), fixed

within a building. Environmental sensors can either be wired directly into the

building system or exist as part of an external system. Wireless sensor systems

have also been developed and are often less expensive upon initial purchase;

however, individual sensor packages have a fixed battery life and may be more

expensive over time due to networking and maintenance requirements (Cree et al.,

1



2013). Sensor networks can drive environmental systems (e.g. heating, cooling,

shading) or be used for diagnostic anomaly detection.

The motivation behind improving environmental sensing within the indoor

built environment can be bifurcated into two concerns:

(i) Energy Efficiency. Heating and cooling comprises 55% of residential

energy usage in the U.S. (U.S. Energy Information Administration, 2020).

Residential energy usage continues to grow year after year as a portion of

total U.S. energy consumption; in 2019 the sum of energy consumed by all

U.S. residential buildings was approximately 1.2 × 1020 J, a figure that is 22%

greater than the energy consumed by all commercial buildings (U.S. Energy

Information Administration, 2020). Low-density residential buildings also have

a greater surface area with more exterior walls to interior space compared to

commercial and industrial buildings, further increasing the cost of heating

and cooling. The U.S. Department of Energy (DOE) estimates that a series

of simple and non-invasive infrastructure improvements to U.S. homes would

reduce the cost of heating and cooling by 15% (U.S. Department of Energy,

2011).

(ii) Occupant Health & Comfort. People in upper middle-income economies

spend a majority of their time inside human-built structures, some estimates

placing it as high as 80%–90% (Baccarelli et al., 2011). Research has

established several relationships between the health, comfort, and productivity

of occupants and quantifiable elements of the indoor environment, including

temperature (C), relative humidity (%), illuminance (lx), and particulate

matter (µg/m3) (Amundadottir et al., 2017; Bluyssen, 2013; Lan et al., 2010;

Nezis, Biskos, Eleftheriadis & Kalantzi, 2019).

2



Ideally, a building system should optimize for both of these goals, ensuring

the comfort and health of occupants while meeting building performance goals.

Environmental sensor systems can facilitate this balance by detecting faults within

the environment or by influencing environmental controls to reduce waste. Sensor

systems are often able to maintain the optimal temperature of a space where a

human driven system might otherwise over-correct; however, building systems

with this degree of reliability are often only found in commercial or industrial

buildings. Small-scale residential and commercial settings often lack the necessary

infrastructure.

1.2 Constraints

Conventional environmental monitoring systems are the product of

industrial motivations, designed primarily for corporate and industrial settings

where minor shifts in building performance can represent a large and easily

identifiable cost. Some tools described as research-oriented are available for

purchase, but these tools are often expensive and inaccessible. In both cases, the

range of available sensing systems broadly under-serves many environments; where

a sensing system can be deployed, sensors must be fixed onto the environment,

requiring assumptions about occupant behavior and performance patterns. The

development of our mobile sensor is primarily motivated by two limitations of

conventional sensor networks:

(i) Performance constraints. As they are fixed to physical locations,

conventional sensor networks have a spatial resolution that is proportional to

the number of sensors in the network. The capacity of the sensor network to

detect faults or guide building performance depends upon where the sensors

are fixed. Recent work has demonstrated how appropriately positioning
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sensors can significantly improve fault detection tasks (Fernandez et al., 2017).

However, even a system performing within the parameters of acceptable

building performance requires several assumptions about occupant behaviors

and furniture layout. This suggests that there are a complex orchestration

of assumptions required to compose fixed sensor readouts to dynamic indoor

spaces.

(ii) Deployment constraints. Conventional sensor networks are most common

in large commercial and industrial buildings; smaller residential and

commercial buildings rarely have analogous sensor networks. The absence

of complex sensor systems in residential buildings can be attributed to the

individualized costs associated with these changes. Leaving this class of

buildings under-served ignores the potential effects of these environments on

their occupants as well any reductions in energy usage.

1.3 Thesis Statement

In this thesis, we perform an analysis of a mobile computing system

designed to measure the built-environment in a uniquely granular manner. Our

system collects indoor environmental quality (IEQ) data on a roaming mobile

device. This data has a considerably variable spatial resolution, finer than

conventional sensor systems while at the same time only requiring a single sensor

package. Our analysis captures both the construction of the device as well as a

pilot study designed to establish a baseline of the device’s performance. Through

this analysis we show that the sensor system demonstrates improved spatial

resolution over existing sensors and is well-suited to traditionally under-served

locations.
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1.4 Contents

Our analysis is preceded by chapter II (Background) in which an overview

of the mobile sensing system is introduced and our design objectives for the

system are discussed. Chapter III (Methodologies) details the procedures we

followed to construct and evaluate our mobile sensor, the construction of the

separate components in the completed system (e.g. physical components, software

components, computational methods), as well as the design of a pilot study from

which we collect an initial set of data. Chapter IV (Analysis) provides our analysis

of the data collected from the study. We define and assess both the performance

and viability of the device as well as the direct inferences that can be made from

the results. Following our analysis, chapter V (Related Works) compares our

device and our computational methods to other contemporary works in the area.

We conclude with a review of our analysis in chapter VI (Discussion), where we

evaluate the limitations of our approach and its implications for future work.
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CHAPTER II

2. BACKGROUND

2.1 Overview

Our sensor system is distinguished from conventional sensor networks in one

primary way: instead of depending upon a collection of fixed sensors, we depend

upon a single mobile sensor package. Here, a mobile sensor is one that has some

degree of mobile autonomy within the space. With this mobility we are able to

collect measurements across a highly variable spatial domain. Where conventional

fixed sensors would have to make assumptions about the data missing at the

locations between their fixed positions, a mobile sensor can directly observe those

locations. This distinction is illustrated in Figure 1.

From a high level, we accomplish this with a collection of inexpensive and

commercially available hardware components. The device is mounted on top of

an autonomous robotic vacuum cleaner. We attach a series of environmental

sensors to the vacuum cleaner and largely allow the vacuum to operate normally.

To determine the location of the sensor we use an external location estimation

network. A small, single-board computer coordinates the system.

2.2 Objectives

Our mobile sensor addresses the limitations we identified in existing,

conventional fixed sensor systems previously identified in §1.2 (performance

constraints and deployment constraints.) To address these constraints, we establish

three design objectives:

(i) Improved spatial resolution. The sensor system should improve upon the

spatial granularity of fixed sensor networks.

6



Figure 1. Fixed sensor and mobile sensor data illustrated.

(a) Fixed sensors. (b) Mobile sensor.

An illustration of the differences between data collected by fixed networks (a) and

data collected by mobile networks (b.) For the purposes of this illustration,

“position” has been reduced to a single axis while in practice it may comprise 2-D or

3-D coordinates.

(ii) Minimized interference. The deployed system should minimally disrupt

the existing environment. Further, it should seek to utilize common elements

within the indoor built environment.

(iii) Flexible deployment. The sensor system should be suited to several indoor

settings, in particular those under-served by conventional sensor systems.

The core of our design—the implementation of the vacuum as a host for the

sensor system—addresses the first two objectives. The vacuum is inherently mobile,

collecting data with a fine spatial resolution; the trade-off of a single mobile sensor

is the loss of consistent spatial data. The choice to use an autonomous vacuum as

the host for the sensor system is an explicit choice that emphasizes the utilization

of objects common to under-served residential buildings. This choice establishes a

dependence upon existing systems instead of developing a custom system that may

be more optimal. In the subsequent chapters we evaluate these trade-offs and how

our implementation fulfills these objectives.
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CHAPTER III

METHODOLOGIES

This chapters details the methodologies we developed in the construction

and analysis of our mobile sensor system. We describe the device’s construction

(both physical and software components) as well as a pilot study designed to

evaluate the operational capacity and utility of the system. Finally, we detail

the computational methods we derived to evaluate the data collected in the pilot

study.

3.1 Physical Construction

We selected a collection of common hardware components to compose the

final device. At a high a level, the construction of the device consists of a common

single-board computer, integrated with several inexpensive commodity sensors, all

mounted on top of a robotic vacuum cleaner. A photograph of the assembled device

is shown in Figure 2.

The component that illustrates our design objectives is the vacuum cleaner.

We selected this specific device (iRobot Roomba 600) because it is representative

of a class of devices (i.e. robotic cleaning devices) that are common in residential,

as well as commercial and industrial settings. In a broad sense, the vacuum acts

as a host for the sensor system, demonstrating that we can deploy such a system

without dramatically altering the configuration of the indoor environment. This

specific device is also robust, inexpensive, and the particular version we used came

with a programmable serial interface, which we utilized for remote control of the

vacuum’s operations.

3.1.1 Evaluation of Materials. Prior to the assembly of the device,

we performed an assessment of the different components we selected. The vacuum

8



Figure 2. Labelled photograph of the device.

An image of the physical device we constructed, including the single-board computer,

sensors, ultra wide-band radio, robotic vacuum cleaner, housing, and bumper

modifications.

was of particular interest, being a commercial product and fully functional in its

own. Our assessment considered the capabilities and limitations of the device that

may influence our assembly procedure.

The details of the vacuum’s pathing algorithm are proprietary; however

our assessment of the vacuum suggests that the algorithm largely just reacts to

obstructions in its environment, and upon an obstruction it selects a new heading.

The device primarily detects environmental obstructions through an array of both

optical sensors and physically actuating sensors, mounted on the bumper section of

the vacuum.

We evaluated the vacuum’s odometry through the vacuum’s serial interface

where we initiated a series of move and turn instructions. The specific instructions

can be found in the manufacture’s specification.1 For our purposes, we modified

the speed of the motors’ running the vacuum’s wheels proportionally, so that we

1https://www.irobotweb.com/~/media/MainSite/PDFs/About/STEM/Create/iRobot Roomba

600 Open Interface Spec.pdf
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either measured the distance travelled in a straight line, or a turn performed with

a zero turning radius (i.e. rotating about its central axis.) In general we found

that the measurements taken ex post from the move varied on the order of 20 cm

and measurements taken after the turn instruction varied on the order of 3
◦

from

the intended action. Error on this scale made the vacuum’s odometry information

unsuitable for our goal of reliably estimating the device’s location.

3.1.2 Ultra Wide-Band Networks. Ultra wide-band (UWB) radio

devices have emerged as a mechanism for short-range communication (i.e. within

the range of 1—100 m.) Ultra wide-band broadly applies to radio spectrum

communication with a bandwidth >500 MHz; the UWB designation originates with

the U.S. Federal Communications Commission (FCC) though is commonly used to

refer to high bandwidth radio devices for short-range communication.

While this remains an active area of active research, UWB networks for

location estimation are broadly based on the principle of Time-of-Arrival (ToA)

estimation (Falsi, Dardari, Mucchi & Win, 2006). Under a ToA estimation regime,

location is derived from the time taken for a message to reach its destination

through a medium (e.g. radio waves) from a known source location. Using at least

3 known sources, the position of the destination can be derived. Other factors may

impede the location estimation task, such as the speed of the medium; though

effectively constant through air, the speed of UWB communication may vary

through other mediums. UWB is particularly suited to this task because the

bandwidth is great enough to encode the information necessary for a ToA regime

(i.e. source location, emission timestamp.) Research into UWB location estimation

through similar methods has made cm-level indoor positioning possible (Zafari,

Gkelias & Leung, 2019).
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To determine the location of the host device, we used an existing UWB-

based location estimation network (Decawave, 2020). The network is composed

of at least three UWB transmitters configured as anchors (i.e. radios with known

locations) and at least one UWB transmitter configured as a tag (i.e. a destination

where the ToA is calculated.) The devices are configured and polled through a

serial interface. In practice we found that the network accurately determined the

location of the tag within a range of 10–15 cm.

3.1.3 Miscellaneous Components & Assembly. We constructed the

physical system using a single-board computer, inexpensive commodity sensors, and

a location estimation network composed of UWB radios. The computer, sensors

and UWB radio are all attached to the top of the vacuum. The vacuum contains

programming to allow users to schedule it to navigate and clean the room once

a day, but we utilized the vacuum’s exposed serial port to remotely initiate the

cleaning cycle from the single-board computer. Though our goal is to minimally

disrupt the typical configuration of the built environment to enable our device, we

must accept that this arrangement adds an artificial presence to the space. The

device has the capability to run the vacuum’s cleaning cycle for longer durations

and at greater frequencies than a user would expect; however, we accepted these

limitations as a part of this design.

For our implementation we used a Raspberry Pi single-board computer and

DWM1001 UWB radios (Decawave, 2020). We attached the anchor radios to the

walls of the space and the tag radio to the vacuum. The tag radio interfaces with

the computer over a USB (virtualized serial) interface. UWB radios operate best

with line-of-sight communication, so we elevate the anchors 1 m above the floor to

increase the likelihood that line-of-sight is maintained between the anchor and tag.
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We attached two sensors to the computer, a BME280 which captures the illuminance

(lx) and a TSL2561 which captures air temperature (C) and relative humidity (%.)

Both devices communicate with the computer over a general purpose input-output

(GPIO) interface.

The physical structure of the vacuum was modified to accommodate

the components attached on top. An elevated tray was attached to the top of

the vacuum to store the computer and a lithium-ion battery which acts as the

computer’s primary power source. We raised the tray to not interfere with the

manual button interface of the vacuum located on the top of the vacuum. An

antenna arm extends off of the tray to anchor the environmental sensors and the

UWB tag.

Since we are utilizing the vacuum’s pathing algorithm, we had to modify

how the vacuum registers collisions to account for the components attached on top.

To do this, we built and attached a vertical extension to the vacuum’s bumper.

The extension is composed of heat moulded ABS plastic that allows for collisions

with the extension to be communicated as collisions to the vacuum. Without the

extension, the components mounted onto the top of the vacuum would likely collide

with objects in the environment without communicating the collision with the

vacuum. Figure 2 shows an annotated photograph of the final device.

3.2 Software Systems

We developed a suite of software responsible for the concerns of: (i) the

host, (ii) remote data storage and retrieval, and (iii) data processing, analysis,

and visualization. We largely adhered to common industry tools, developing the

majority of the software in Python3. This section details the capabilities and

constraints each of these three systems.

12



3.2.1 Host Software. The host software system is deployed locally

on the single-board computer and coordinates all connected components (GPIO

sensors, ultra wide-band radio, vacuum), as well as with the remote data storage

system. Each component reads-out information at a different rate, and with a

different reliability; necessarily, the host software system gives special consideration

to the constraints of each individual component. Generally we found that the ultra

wide-band radio had the smallest latency (on the order of milliseconds;) the ultra

wide-band radio also reports a confidence interval that rates the confidence of

the estimated location. We saw that if the host navigated too far beyond of the

line-of-sight of the anchor radios, the confidence interval dropped significantly.

Without line-of-sight, high confidence location estimations still occurred, but were

less frequent. The latency of the GPIO sensor readouts for illuminance, humidity,

and temperature were unequal, though all on the order of 1×103 ms.

To accommodate the variability between GPIO sensors and the UWB

radio, we poll all GPIO sensors at once and any attempted sensor readout that

captures at least one sensor readout is paired with the next location estimation

with a confidence ≥50%. Paired readouts are added to a thread-safe queue, to

be consumed by a separate thread that dispatches the results to the remote data

storage system. Calls to the remote system can vary in duration, dependent on

the state of the network; the interactions with the remote system are placed on

their own thread to prevent the main thread from blocking on slow network calls.

This process occurs on a loop, dependent upon some time threshold, δ s.t. δ > 0.

The loop condition executes until the current time t, exceeds the halting time,

t0 + δ where t0 is the initial time. The whole process thus far is preceded by a

clean command from the single-board computer, which initiates the vacuum’s

13



cleaning cycle. Similarly, a seek_dock command is sent to the vacuum following

the completion of the cleaning cycle; the seek_dock command is sent twice, once

to terminate the cleaning cycle, and again to initiate a procedure in the vacuum’s

programming to seek out its charging dock. This process is illustrated in Algorithm

1. This system was written in Python3 and was dispatched by configuring the

single-board computer’s crontab.

3.2.2 Remote System Software. We designed the remote data

storage system with a few requirements. Primarily, that the system should

maintain asynchronous access (for both creation and retrieval) to the data created

by the host software. Further, the system should support several host devices in a

manner that can be viewed as generic. Generic in this sense refers to the capacity

of the system to accept input indiscriminately. These requirements are fairly

common for modern web services, as is the methodology we follow is development

of this system.

The system comprises an web representational state transfer (REST)

API, accessible to both the host software and external data consumers. The API

integrates with a database for persistent storage (in practice we chose postgres.)

The API was written primarily in Python3 using the Flask web framework library.

We deployed the system on Google Cloud Platform, which manages the scale of

the application in the event that several hosts or consumers make API calls to the

system at once.

We categorize every spatiotemporal measurement taken by the host system

as an annotation. Every annotation is associated with a collection that represent

an instance of the host system collecting new measurements. The database field,

annotation has a column for the associated collection the location and time
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of the measurement taken, as well as a blob data column for the associated

measurements. The specific sensor readouts are variable, and leaving this field

flexible suits both the variability of the current implementation and supports

additional sensor data in future devices.

Algorithm 1 Host software system.

Require: Initialize queue, δ, running
1: procedure Main thread
2: token ← login(remote)
3: if token = NULL then return
4: write(SerialPort, CleanCommand)
5: launch(Network thread)
6: epoch ← systime()
7: halt ← epoch + δ
8: while epoch < halt do
9: readouts ← read(GPIO)
10: if readouts 6= NULL then
11: position, confidence ← read(SerialPort)
12: while confidence < 0.5 do
13: position, confidence ← read(SerialPort)

14: push(queue, pair(epoch,position,readouts))

15: epoch ← systime()

16: write(SerialPort, SeekDockCommand)
17: running ← false
18: wait(Network thread)
19: return
20: procedure Network thread
21: while length(queue) > 0 or running do
22: pair ← pop(queue)
23: POST(token, pair)

24: return

Access to the system is authorized with a JSON web token. Upon a

successful login, the device (host or consumer) is passed a token from the remote

service that is exchanged in the HTTP header of messages from the device to

validate its origin. Though there are other mechanisms for authorizing REST calls,
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JSON web tokens are fairly simple to implement. A downside to JSON web tokens

is that the token must be exchanged with every REST call, adding a bandwidth

overhead with every message.

3.2.3 Analysis Software. To evaluate the data created by the host

software we developed a collection of analysis tools. These tools are primarily

developed in Python3 and facilitate the requisition of data stored on the remote

system, and the analysis and visualization of that data.

Data from the remote system is collated by its collection and saved in a

static data format. Analysis tasks may involve several collections, as collections

may only span minutes, so the analysis software was developed with the capability

to consume multiple collections for a single analysis. We include several libraries

to support different inference and prediction tasks including numpy, scipy, and

scikit-learn (Harris et al., 2020; Pedregosa et al., 2011; Virtanen et al., 2020).

For visualization tasks we included two mechanisms: a real-time visualisation

scheme using matplotlib, and an open vector graphics format for high-resolution,

post hoc visualizations Hunter (2007).

3.3 Pilot Study

To evaluate the performance of the device we designed a pilot study.

Performance captures the aspects of the system’s functionality and reliability, as

well as the quality of the data that we are able to capture. We evaluated whether

or not the device experienced any operational failures as well as whether the data

collected in the study is suitable for prediction or inference.

Given our focus thus far on the practical nature of the device, our choice

of environment was one that represented a more natural approximation of a real

indoor environment. We piloted the device in a laboratory space, approximately
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Figure 3. The floor plan of the room used in the pilot study.

The floor plan of the approximately 70 m2 space used in the pilot study. Location of

the vacuum’s docking station is labelled; furniture layout is illustrated;

measurements are given in meters.

70 m2, at The University of Oregon. The room was on the second floor of the

building and was fitted with two south facing windows. The room also had a west

facing window, but this window was obscured for the duration of the study. Below

the two south facing windows were a pair of wall-mounted heaters. The room was

also equipt with ceiling mounted air circulators. The space was laid out in with

several desks, chairs, and other laboratory equipment; the furniture and equipment,

as well as the frequent occupants of the space, provided a suitable representation of

a “real-world” indoor space. A floor plan of the space is illustrated in Figure 3.

The device’s charging dock was fixed at the south-east corner of the room,

against the southern wall. Three UWB radios were configured as anchors and

fixed to the walls of the room, approximately 1 m above the floor. The network

was configured such that the south-east corner of the room was fixed as the 3–axis
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origin (i.e. (0, 0, 0)) and all anchors were configured with their location relative to

the origin.

3.4 Computational Methods

Time-series data using parsed, fixed sensors is well studied in fields such

as Geographical Information Systems (GIS) where it has been utilized from a

host of applications such as habit monitoring and flood monitoring (Castillo-

Effer, Quintela, Moreno, Jordan & Westhoff, 2004; Mainwaring, Culler, Polastre,

Szewczyk & Anderson, 2002). The data collected by the mobile sensor is unique

from other common sensor time-series data in that it is collected by a mobile

device; this means that there will only be value at any point in time, but over

longer time intervals the data over space can emerge to cover the entire area at a

high resolution. This data is distinct from data collected in fixed sensor networks

and requires a distinct method of evaluation.

This has been viewed previously as an optimization problem wherein the

goal is to find a function that best estimates the value of an unexplored location at

a certain time, given a time series of locations and values

T = {t1, p1, v1} . . . {tn, pn, vn}

where tk, pk, vk are time, location, and value accordingly (Jin, Liu, Schiavon

& Spanos, 2018). The authors’ use a common prediction model (e.g. random

forest, K-NN) to extract local trends in the spatiotemporal data, then refine

this prediction with the residuals of a linear model. The details of this method

are discussed in §5.1. This assumes that obvious global trends emerge in

spatiotemporal IEQ data. An example of this intuition is such: on cold days, a

room is likely to trend cooler than on warm days.
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Our intuition challenges this notion with the following: on cold days, the

presence of the heater will manifest as a distinct “lumpiness” of temperature within

the room. Anecdotally, we experienced this in space used in the pilot study; the

lower-left corner of the room was consistently cool and the locations near the

window were consistently brighter.

Another distinction between the authors’ conditions and our own, is that our

mobile sensor travels on a path that is completely opaque to us. Jin et al. (2018),

however used a device with fairly deterministic path circling around a room.

We model the regional trends we observed, deriving residuals from a K-

MEANS classifier, training on every attribute as a predictor (James, Witten,

Hastie & Tibshirani, 2013). The residuals refine a predictive model using using

the measured quantity as a response. The procedure for this method follows:

(a) Train a K-MEANS classifier using the spatial, temporal, and measured values

as predictors,

Ŷ = KMEANS(T )

where Ŷ is a classification with respect to one of j. We use j to refer to

the k clusters we select in K-MEANS to not conflict with subsequent

usage of k in K-NN. In practice, we chose to optimize j with the silhouette

method (Rousseeuw, 1987).

(b) All spatiotemporal values sharing the same classification ŷi ∈ Ŷ are fitted with

LOWESS regression,

fi = LOWESS(yi).

The residuals ri, i ≤ j are determined from the LOWESS fit line for that class

ri = fi(yi)− yi.
19



(c) The value at a given spatiotemporal location t, p, is determined by training

weighted K-NN with spatial, temporal, and values as predictors and measured

values as the response.

ˆ̂y = KNN(t, p).

Post hoc, ˆ̂y is refined with the residuals from LOWESS smoothing.

This allows the residuals from multiple regions to influence a particular inference,

particularly when samples come from several classes and if k is large.

20



CHAPTER IV

ANALYSIS

In this chapter we evaluate the result of our pilot study. The parameters we

fixed in the study discussed, as well as the performance of the space and systems

we utilized. Then, we consider the results we collected, explore any trends that

emerge, and the validity of those trends. Through our analysis we demonstrate

fulfillment of our design objectives defined in §2.2.

4.1 Pilot Study

The pilot study occurred over five days, from 6 January to 10 January 2021.

Summing all 20 minute collection periods, the device collected 10 hours worth of

data. The periods occurred on 2 hour intervals, beginning at 8:00 and ending at

16:00 everyday. We recorded approximately 70 000 illuminance measurements

and 109 000 temperature and relative humidity measurements. The discrepancy

between the total number of measurements is due to hardware limitations (i.e.

readout rate) in the different sensors. Illuminance measurements are consistently

read at a lower rate than temperature and relative humidity. Each 20 minute

collection period consists of 2 000–4 000 annotated measurements, resulting in a

dataset of the measured attributes across space and over the time interval of the

collection period.

4.1.1 System Performance. Each consecutive day saw similar

performance, with approximately 20 000–26 000 measurements taken per day.

The notable exception was the first day, 6 January, where the device encountered

obstructions during two its six cleaning cycles; the cause of the obstructions were

determined to be a low battery in the vacuum, as it did not return to its dock at

the end of the previous collection period. Table 1 displays the daily totals over the
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Table 1. Total daily measurements recorded during the study

Date 6 Jan. 7 Jan. 8 Jan. 9 Jan. 10 Jan.

Total Measurements 11 918 20 214 26 269 23 916 26 160

The number of measurements recorded by the device during the pilot study, totaled

by the date; typically 20 000–26 000 measurements are taken per day except for the

first day, 6 Jan. 2021, which recorded significantly fewer; the variance in the

number of measurements taken on 6 Jan. 2021 was due to the device encountering

obstructions during two of its cleaning cycles.

entire study. For the purposes of this analysis, we include the obstructed collections

in the 6 January result when evaluating trends over the data. While the total daily

measurements for 6 January is low, it is still below 2 (1.82) standard deviations

(5 358) from the mean (21 695.)

The variance in the remaining daily totals can be attributed to uncertain

location estimations that are rejected by the host system. The UWB radio’s

mechanism for determining the confidence of a prediction employs an internal

uncertainty mechanism which often benefits from momentary acceleration to

determine a more certain location (Li et al., 2017). In some instances, the host

happens to travel in steady, straight paths reducing the number of high confidence

location estimations; instances where the host collided with several objects in

its path or performed turns is likely to cause more high confidence location

estimations. Given this assumption, the varied frequency of measurements in the

results should not significantly influence our analysis because they represent a

greater frequency of measures in recently visited regions.

Further variance can be attributed to a lack of line-of-sight in some

areas of the room. Discontinuities emerge when the UWB radio is completely
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Figure 4. An example of a data discontinuity, plotted as a time-series.

Temperature plotted over time from 14:17 — 12:18 local time, 8 January 2021; this

plot contains a data discontinuity caused by low-confidence location estimations.

obstructed in its line-of-sight from the remaining anchors in the network; line-of-

sight obstructions most commonly occur when the host navigates below furniture.

Figure 4 plots a data discontinuity in temperature data caused by the device

moving below a desk. This discontinuity appears as a gap in the frequency of

points in the center of the plot. Notably, the location estimation network is

still able to determine the position of host without line-of-sight, but at a slower

rate. Also notable is that the measurements taken during the discontinuity are

very slightly cooler than the neighboring measurements, suggesting that the air

temperature under the desk was cooler.

Figure 5a illustrates the raw, annotated measurements over a single

collection period. Every circle on the plot represents a single measurement in

space. Every measurement is captured at a unique point in time within the 20

minute window, though time is not communicated in this figure. In this instance

the vacuum did not reach the nook in the lower left corner of the room in its 20

minute period. We found that this area of the room was missed in roughly half

of all collections. We attribute this to complexity of the room, and in particular

because this area is only accessible by an approximately 1.5 m wide path. Further,

23



Figure 5. Raw and interpolated illuminance measurements plotted.

(a) Raw. (b) Interpolated.

Illuminance as measured over space from a single collection period (12:00 — 12:20

local time, 7 January 2021;) raw measurements (a) are plotted at their annotated

location; the result of interpolating with our regional interpolation method to 12:00

(b;) log scaling used for lux.

the device’s dock is located on the other side of the room, making it the most

remote location in the space.

4.1.2 Data Properties

The effects of daylight at noon can be seen through the raw measurements

in Figure 5a. Bright illuminance measurements are taken near the windows of

the room and become less bright as distance from the window increases. This

relationship is particular to a north/south-facing window; east/west-facing windows

will typically allow more light at morning/evening hours.

On occasion, illuminance measurements display artifacted features—where

significant variance occurs for short intervals during the collection period. This

can be seen in Figure 6b. In general, brief and extreme variance in illuminance

measurements can occur for two reasons: (i) the natural variability of daylight

and (ii) the dynamic interactions between objects in the environment. Greater

values that appear varied (i.e. in the range of 1×103—1×104 lx) may be more likely
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an effect of the variability of daylight. The effects of daylight are more notable

in Figures 5 & 6 because they were captured at 12:00. However, extremely low

and varied values (i.e. 0–50 lx) may be more likely an effect of host’s interactions

with the environment; instances of the device traveling through the shadow of an

occupant or under furniture would account for exceptionally low illuminance values.

We demonstrate this relationship in Figure 6, which highlights the locations where

illuminance measurements of less than 31.62 (i.e. 1×101.5) lx were recorded. The

locations where illuminance is highlighted in Figure 6a are inside of the known

furniture objects labelled on the floor plan.

Figure 6. Fixed sensor and mobile sensor data illustrated.

(a) Floor plan plot. (b) Time-series.

Illuminance as measured over space from a single collection period (12:00 — 12:20

local time, 7 January 2021). The plots are bifurcated by values greater than 31.62

(i.e. 1×101.5) and less than 31.62. The latter consists of locations that are below

desks, chairs, and tables.

Evidence of the relationship between the data discontinuities, artifacted

features, and obstructions with furniture is shown in Figure 7; Figure 7 emphasizes

an artifact that emerges in the both illuminance and temperature data. The

location of these measurements reveal that they occurred in the desk cluster in
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the lower portion of the floor plan. Here, it is also clear how the artifact emerges

differently depending on the sensor readout: Illuminance drops to near zero almost

immediately while temperature trends down in a continuous manner.

Discussion of the variability and properties of the dataset, as well as

additional auxiliary figures is continued in Appendix A.

4.2 Interpolation Performance

Figure 5b shows the result of interpolating with the K-MEANS residuals

smoothing method; the method is fixed to a 10 spatial discretization and is

solved for 12:00, 7 January. Most notable here is that the result recovers values

in the nook, where none were taken in the raw readout. We accomplish this

by interpolating over space and time, and derive predictions for this area from

measurements taken in neighboring collection periods. This allows us to recover

lost measurements, but may produce a result that is less reliable. Between 12:00—

14:00 often represented a peak average in bi-hourly illuminance measurements, this

is shown in Table 2. As the averages of the prior are hours are likely to be lesser

than those taken at noon and subsequent hours may be similar, the results that we

recover may not be highly representative.
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Table 2. Mean hourly illuminance on 7 January.

Time of Day 8:00 10:00 12:00 14:00 16:00 18:00

Mean (lx) 14.8 49.7 284.3 302.3 61.1 10.0

Figure 7. Time-series of illuminance and of temperature.

(a) Illuminance (b) Temperature.

Illuminance (a) and temperature (b), plotted as a time-series as measured over

space from 8:00—8:20 local time, 8 January 2021. The analogous section artifacted

features are emphasized in each plot.

In Figure 5b, we have limited our predicted values to those with a Euclidean

distance of less than 30 cm from a sampled location; though we could feasibly

predict any spatiotemporal position, predicting positions that are sufficiently

distant from the K-MEANS produces striated values with a limited predictive

capacity. Further, the only valuable positions are those within the bounds of the

physical space. Limiting predictions to those that are near sampled locations does

not guarantee form in our predictions (i.e. that the predicted locations fall within

the bounds of the physical space,) but it does reduce the likelihood of predicting

values with highly uncertain data.
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Figure 8. Hourly illuminance and temperature, plotted against HOBO mean.

(a) Illuminance. (b) Temperature.

Illuminance (a) and temperature (b) (mean and variance) taken over 5 days (8:00

— 18:00) from 6 January 6 to 10 January 2021. Summed over each collection

period (log scaling used for lux.) Includes HOBO fixed sensor readout.

4.2.1 Predictive Experiment. To evaluate the performance of the

regional interpolation method we evaluate the illuminance and temperature data

collected on 8 January. We split the data into a training sets and test sets for

each respective response and used the following predictors: x-axis position, y-

axis position, date-time. The K-MEANS model and the K-NN were trained only

on the test set and evaluated and the result was evaluated on the test set. The

only preprocessing on the data was to convert the illuminance measurements to

log10 space. This was done to allow sufficiently large illuminance measurements

to contribute to the model. These values were incidental enough that randomly

sampling the data did not result in representative splits. When moved to log-space,

the splits were more representative..

The models predicted illuminance with a root mean square error (RMSE)

of 0.93. Illuminance was converted to log-space space so the error term must be

understood in orders of magnitude in lx. The temperature model performed with a

RMSE of 1.06 on the test set.
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4.2.2 Comparative Analysis. Concurrent to the study, we fixed six

HOBO data loggers in the space. These devices are small battery powered sensors

capable of measuring IEQ data for weeks at a time. Their application yields an

approximation of a fixed sensor network to which we compare our mobile sensor

data with. The fixed sensors were located on walls, chair legs, and desks across the

room, and approximately 15 cm above the floor to put them at the same height

as the mobile sensor system. Their orientation did not gather illuminance data

with a similar profile to the mobile sensor’s illuminance data. Illuminance is the

measure of incidental light that strikes a surface, so this result is not surprising.

As the mobile sensor travels throughout the space, it was able to collect a robust

profile of incidental light as it behaves dynamically in throughout the space,, not

only on walls and surfaces of the room.

In Figure 8 we plot the daily averages of illuminance and temperature over

the five days of the study. Here, the most notable anomaly is in Figure 8a where

the first day has a distinctly different shape than the rest of the days. While 6

January was the day where two obstructions in the collection process occurred,

these obstructions do not account for this pattern. We note that on 6 January,

the weather was particularly cloudy and may have contributed to the difference.

Figure 8b plots a similar series of temperature means, alongside the fixed sensor

means. This figure is notable because the mobile sensor’s means are consistently

greater than the fixed sensor means. This is attributed to the mobiles sensor’s

fine spatial resolution that allows it to directly record the values at various heat

sources. A fixed sensor system would require assumptions about the space, such as

the location of a heat source, to make predictions about its behavior.
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4.3 Distribution & Reliability

Utilizing the vacuum as our navigational host to the mobile sensor has the

inherent quality of introducing uncertainties in the results. The host system does

not control where the host travels to, only when the host should begin and cease

travelling. Often, the 20 minute collection periods did not provide enough time for

the vacuum to circumnavigate the entire space, as demonstrated in Figure 5 where

the lower-left nook was not visited. Our observations conform with the assumption

that spaces with fewer obstructions and more open spaces are more likely to be

represented in the results. Figure 9 illustrates the frequency of measurements taken

with the mobile sensor, with respect to location (discritized into a 50 cm2 grid)

across different collection periods and within a single day. Frequency in this context

increases when measurements are taken at the same location, but across different

collection periods, excluding repeated sampling within the same period. In this

figure we only count a grid square as “visited” if at least ten measurements were

taken within its bounding box.

From Figure 9 we see that 49% of the navigable regions (those with floor

access) appeared in at least three of six collection periods and that 29% of all

navigable regions appeared in at least four of six collection periods; further, the

regions that appeared in at least five collection periods are thoroughly distributed

about the room, suggesting the host is traversing the room with some degree of a

normal distribution within any given collection period. The exception to this is the

lower-left nook, which is both narrowly obstructed and the furthest path from the

host’s docking station.
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Figure 9. Frequency of measurements taken on a single day, plotted.

(a) Overlay plot.
(b) Histogram.

The frequency of measurements taken from 50 cm2 regions of the space, over a

single day (6 total collection periods on 8 January 2021.) Regions are counted if

more than 10 measurements occurred in its bounding box.

From the overlay plot in Figure 9a we determine that the device covered

all of the navigable floor space in the room over the six collection periods. Some

locations in the floor plan appear to have been missed by all collections, but these

locations were not navigable in practice because they were blocked by temporary

objects (e.g. boxes, equipment.) While an significant portion of the space was

only covered by one period, it’s unlikely to be due to some physical obstruction

or complexity in the space. Given that four of six collection periods sampled the

remote, lower-left nook, it’s unlikely that the host did not have the opportunity to

explore this region; rather, the variance in sample consistency is probably due to

the nuances of the vacuum’s navigation method.

Only 2.75 m2—a relatively small portion of the space—was covered by every

collection period. The area most represented by every collection period is nearest

to the host’s docking station. While the host has the capacity to broadly survey

the majority of the space, it cannot do so in a single collection period. From Figure
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9b we suggest that at least three surveys were necessary to visit a majority of the

space. This room contains certain challenges, such as a desks, chairs and small

corridors for the device to have to navigate around; simpler rooms may not have

the same constraints.
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CHAPTER V

RELATED WORKS

5.1 Mobile Sensing

The use of mobile devices to collect IEQ data has been explored previously

with similar motivations. Work by Jin et al. (2018) proposed a mobile sensor

that is capable of autonomously navigating throughout a room with a positioning

system. The authors chose to use Simultaneous Location and Mapping (SLAM)

implemented with a Microsoft Kinect. The mobile portion of the sensor was

developed with a configurable robotic base, allowing sensors to be mounted at

multiple heights. The device periodically polled the sensor data, associating it

with approximate locations in space. The authors performed an experiment to

evaluate the device’s performance by activating it in a controlled space, gradually

introducing CO2 into the space, and measuring the result. Their experiment was

controlled by placing fixed sensors at known locations in the space to verify the

fidelity of sensor data and of the location data The authors use this experiment to

argue for their global trend interpolation method that weights local values against

global trends to refine to a more accurate result. Their experiment measuring CO2

concentration validates this, but its application in other respects may less obvious.

Reggente et al. (2010) provide an analysis of mobile device called a DustBot,

that navigates through public spaces, cleaning paths and collecting waste. The

devices we equip with a sensor capable of measuring several properties including

NO2, O3, CO, and PM concentrations. Their analysis demonstrates the unique

capability of a mobile sensor to directly measure the source of a environmental

attribute where fixed sensors may otherwise struggle. The authors model their data
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with a gaseous distribution kernel Lilienthal, Reggente, Trincavelli, Blanco and

Gonzalez (2009).

5.2 Human-Aided Sensing

Research by Ulaganathan, Read, Collins and Vincent (2017, 2019) preformed

mobile IEQ data collection using sensors attached to human participants. The

participants wore a Phillips Actiwatch 2, which periodically recorded illuminance

over several days. This approach raises the sensor to a human scale, allowing the

authors to associate their measurements directly with human activities. In practice,

they consider measurements greater than 1 000 lx to represent outside daylight

exposure. Where the goal human health and comfort is concerned, this approach

eliminates the building as a constraint to collecting data.
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CHAPTER VI

DISCUSSION

Our analysis demonstrates that a single mobile sensor reliably can collect

IEQ data; further we have shown that the IEQ data we collected can be used to

representatively characterize a space. This is done with significantly fewer expenses

and minimal alterations to the existing built environment. The balance between

utility and minimal interference contributes to the overall viability of our design.

This chapter discusses how we utilized the mobile sensor, as well as the limitations

of our methods and any future work in this area.

6.1 Utilization

The study occurred over a relatively short duration of five days. To

optimally evaluate the mobile sensor we operated the system on a frequency

that is not typical for most autonomous vacuum cleaners. The vacuum’s existing

programming only even allows for a single hour long cleaning cycle once per

day. However, our method utilizes the non-standard operation frequency we

deployed fairly heavily. This is a trade-off that we are faced in this study in favor of

demonstrating the viability and reliability of the sensor system.

The mobile sensor was robust enough that we largely remained absent while

the device operated over the five days. Access to the room was restricted, but the

space is shared by several other people. We cannot be sure that other occupants

did not interrupt the device, which threatens the validity of our study. Coexistence

with occupants is a common property of indoor spaces, representing challenges

that a mobile sensor would face in the real-world. Further, properties in the data

would emerge if the device was interfered with; physically moving the host would
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appear in the location estimation network’s results. We did not find any evidence

to suggest other occupants interfered with the device.

6.1.1 Design Objectives 1: Improved Spatial Resolution.

Through the analysis of the results we have demonstrated that the mobile sensor

system collects measurements that carry a finer spatial resolution than traditional

fixed sensors. This results in the capability to directly observe certain phenomena

in the space (e.g. heat sources) instead of assuming their behavior. We show that

our results in aggregate behave similar to fixed sensor data while only needing a

single sensor.

6.1.2 Objective 2: Minimized Interference. The use of robotic

vacuum cleaner allows the mobile sensor to largely “drop-in” to any environment

that already supports such devices. While the mobile sensor makes the vacuum

taller by approximately 10 cm, there are few other changes necessary for existing

environments to support the mobile sensor system. In this implementation we

utilized UWB sensors for their notable accuracy, however there may be more

accessible location estimation technologies that we have overlooked. For example,

WIFI-based positioning systems are similarly well established, but typically yield

less accurate results Ma, Guo, Hu and Xue (2015); Yang and Shao (2015).

6.1.3 Objective 3: Flexible Deployment. At the beginning of the

study we required approximately thirty minutes to assemble the components, select

a location of the host’s docking station, as well as locations for the UWB anchors.

Two additional steps were required. First, setting the crontab on the single-board

computer before to our desired interval. Second, programmed into each of the

UWB anchors, a relative position in space which it will occupy. This task is a

This is a small inconvenience, but it does represent an opportunity to introduce
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Table 3. Hardware expenses.

Item UWB
radio

Raspberry
Pi

BME280 TSL2561 Create 2
roomba

Cell
phone
battery

Amount 4 1 1 1 1 2

Unit Price $20 $30 $15 $15 $200 $10

human error; however, anchor self-localization methods such as Shi, Zhao, Cui,

Lu and Jia (2019) address this issue. At this point, the device was complete and

fully functional. The device could feasibly be deployed in any similar indoor space

with relative ease. There are limits to the size of the space the system will work in.

The UWB sensors have a limited range of approximately 100 m, which would rule

out excessively large spaces. Similarly, the host has a fixed battery life and cannot

navigate large rooms effectively. The study largely demonstrates that the mobile

sensor system is suitable for under-served locations similar to the room used in the

study.

6.1.4 Expenses. The hardware costs for each of the components in the

mobile sensor system total approximately $350 USD. A cost breakdown is provided

in Table 3. A promotional credit was used to cover the expenses of Google Cloud

Provider and an additional $10 USD was used to purchase the plastic material

and bonding agents used to create the bumper extension. Comparably, the Onset

HOBO sensors used in the study typically cost over $600 USD.

Cost is relevant here to both our practical capacity to perform research as

well as to the capability of this system to be utilized in under-served buildings.

Conventional systems often depend upon fairly expensive building systems, while
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our mobile sensor is reliant on a common robotic vacuum and a location estimation

network. The UWB location estimation network is likely the most uncommon

hardware component of the sensor system; however, they are fairly inexpensive

and UWB radios for other tasks are becoming common in consumer electronics.

6.2 Limitations

This sections discusses the limitations to the software components, physical

design, and general architecture that we have identified in our mobile sensor

throughout the pilot study.

6.2.1 Host System Implementation. The host software was written

such that the position, the available measured values, and timestamp are paired

together into a spatiotemporal value. By doing this, we are blocking our the

procedure, waiting on several separate hardware components to achieve the

spatiotemporal value. This adds inherent error—even if it is very minor—because

the values, though paired, may have been read out at slightly different times. In

practice this error is small, on the order of single milliseconds. Separating each

of these values into their own time-series, and discretizing into spatiotemporal

measurements post-hoc may provide a mechanism for mitigating this error. At

our scale with only a few sensor read-outs, this is mostly inconsequential; however,

a system that aims to collate a greater number of sensor read-outs see this error

accumulate.

6.2.2 Sensor Height. In the study we fixed the mobile sensor height,

as well as the fixed HOBO sensors at a height of 15 cm above the floor. We chose

this height because we wanted the device to be able to explore below furniture

objects as much as possible. For other applications, measurements at typical waist

height (300 cm), head height (600 cm), or ceiling height (800 cm) may be more
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desirable than floor height. For example, researchers interested in the effects of

daylight on productively most are likely interested in the illuminance at head

height.

6.3 Conclusion

This thesis gave an analysis of a mobile sensor, capable of measuring IEQ

data with a fine spatiotemporal resolution. This analysis has demonstrated that

the mobile sensor: (i) reliably collects spatiotemporal measurements, (ii) requires

minimal modification to the existing building environment, and (iii) is suitable

for environments that are traditionally under-served by existing sensor systems.

These performance criteria were evaluated through a pilot study, wherein the

sensor system collected approximately 100 000 measurements in ten hours over

a five day interval. The implementation of the system is detailed, along with the

computational methods used to evaluate the results.
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APPENDIX

THE FIRST APPENDIX

Below are time-series plots of illuminance and temperature data taken

on 8 January 2021; illuminance has been converted to log-space and illuminance

values less than 1 are clamped to 0. There is a greater degree of variance the

illuminance plots, given the natural variability of daylight. Discontinuities are

visible in both plots, though more easily identified in the temperature plots. Both

plots demonstrate consistent patterns consistent with daylight/heating behaviors.

Low variance in the illuminance data is notable here as it may represent the effects

of electric lighting absent daylight.

Figure A.10. Illuminance (log-space) time-series plots
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Figure A.11. Temperature time-series plots
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