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THESIS ABSTRACT

Traditionally, programming languages based on lambda calculus such as
Haskell and ML do not support functions with a number of arguments (or arity)
greater than one. In these languages, currying emulates the passing of multiple
arguments by accepting one argument at a time and returning a closure that
accepts the next. This approach is inefficient from a performance perspective.
As such, Downen et al [A faster Curry with Extensional Types[2]] proposed the
addition of a primitive, extensional function type that accepts all of its
arguments at once. Though this new function type enabled optimization for
functions across known types, generic types could not enjoy this optimization.
In their follow-up paper [Kinds are Calling Conventions[1]] Downen et al
proposed a new kind of system which allows for statically tracking arity
information about generic types, thereby enabling faster currying and efficient
compilation for these generic types. This paper will discuss the implementation

of both of these changes in GHC (Glasgow Haskell Compiler).
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1 Arity

1.1 Currying

In functional programming languages, functions are just another type of
data to be passed around like an integer or a string. The type of a function is
denoted in Haskell with the -> (arrow) operator. Every arrow which occurs in a
type signature implies a parameter. The number of applications a function
expects before evaluating to an answer is known as the function’s arity. In
Haskell, all functions have an arity of one. Though functions may be able to
effectively receive multiple arguments, they must be passed in one at a time, in
separate function applications. This process is known as currying. Let’s look at
an example. In Fig. 1 below, is a javascript function “add” which has an arity
of two. It expects that two parameters (x and y) be passed in at once in order

to return their sum.

function add (x, y){
return x + y;

}
add(1,2);

(add (1)) (2);

Figure 1: Uncurried add in javascript

The curried “add” function below in Fig. 2 however, instead of accepting
both parameters at once, accepts the first, then returns a function that accepts

the second.

function add(x) {
return (function (y) {
return x + y,;
b
}
(add (1)) (2);

Figure 2: Curried add in javascript




Accordingly, the function call itself has been changed to reflect this; we call
“add” with the first argument 717, this returns a function which we then apply
to the second argument ”72”. If this seems clunky, consider Fig. 3 below which

shows the same curried “add” function in Haskell:

add :: Int -> Int -> Int
add x y=x +y

add 1 2

Figure 3: Curried add in Haskell

Fortunately for developers, Haskell curries functions automatically. We
merely list the parameters separated by a space (which denotes function
abstraction) and the compiler does the rest. Looking at the type of "add” (add

Int -> Int -> Int), we see that the function expects two integers to be
applied in sequence and returns a third integer, the result of the addition.
Though it may look syntactically similar to the "add” function the top of Fig.

1, under the hood, the Haskell “add” function is bound to a pair of nested
lambdas (as demonstrated by "add_c¢” at the bottom of Fig. 1). Though this
allows users to utilize currying and partial application, it is not as performant as
the "add” function in Fig. 1. The Haskell add” function involves the allocation
of an additional function (the intermediate function which accepts the second
parameter) and an additional function call. This is obviously less efficient. The
performance hit grows even larger as we increase the number of parameters.
Thus, it is desirable for the compiler to be able to detect the arity of a function
and transform the call to this curried "add” function to a single call that passes
both 1 and 2 at the same time without the need to allocate and call the
intermediate function. This would save both time and memory space. The
difficulty here is that arity is not as simple as counting the arrows in the type.
The type of function “f” in Fig. 4 seems to imply that “f” accepts two integers

and returns a third; which is to say that “f” has an arity of 2.



f :: Int -> Int —> Int
f x = let z = expensive x in \y -> z + y

g :: Int -> Int
g = f 100

Figure 4: An deceiving arity one function

However, after receiving the first parameter, the function “expensive” (some
arbitrary expensive function) is called and its value is bound to z. The function
will then return a closure that accepts the second argument. The intent of the
developer is for “f” to be a function of arity 1 which accepts the first integer and
returns the closure \y -> z + y as its answer. However, if “f” were treated as
an arity 2 function—so that its body is only executed when given arguments for
both "x” and 7y”—“expensive x” would be computed on every single call to “f”.
Instead, the “g” function treats “f” as a function of arity 1 and applies the first
argument to “f” and returns the resulting closure. This way, no matter how
many times “g” is called, “expensive x” is only computed once. This is an

example of how naively counting the arrows could cause a dramatic degradation

in performance, which is obviously undesirable.

1.2 Polymorphism and Arity

Another reason that counting arrows to obtain arity is problematic is

polymorphism. Fig. 5 below shows an example of a polymorphic function:

app :: (a -=>b) ->a ->b
app f x = f x

Figure 5: The polymorphic app function

The type of the app function above contains type variables ‘a’ and ‘b’. A
type variable is a placeholder for any arbitrary type. This means that “app”

accepts as its first parameter, a function (f : a -> b) which in turn accepts




an instance of an arbitrary type and returns another, (which confusingly, could
also be the same type as a). As its second parameter, “app” accepts some
element of type ‘a’ (named ‘x’) and then returns an element of type b by simply
applying ‘f’ to ‘x’. This allows us to instantiate a and b with whatever types we
like (within reason). if we were to call “app” with an anonymous function of
type (Int -> Int) and a parameter of type Int ,

app (\x -> x + 1) 1

a and b would be instantiated with Int. This call applies 1 to the increment
function we’ve provided in-line as the first parameter and returns the value 2. In
another call however we could pass as the argument f, a function which accepts
a boolean and flips it (of type (Bool -> Bool)) and an argument type Bool for
bool.

app (\x -> not x) True}

In this case, a and b would be instantiated to Bool.
The issue this presents is that a itself could be a function type, such as in
this next example:

app (\x y > x +y) 1

In the call to app, f has type (Int -> Int -> Int) which means that a is
instantiated with the type (Int -> Int) and the application done in the body
is a partial application to the function (applying only a subset of the required
parameters to return a value). Meaning that the call to ‘app’ returns a function
(bound to ‘curried’) which expects the second parameter ‘y’ of ‘f’. If we then
apply 2 to ‘curried’ (curried 2), we finally receive our answer (3). If we naively
counted arrows to determine the arity of f, we would have erroneously assumed
it to have an arity of one, however, we have shown with the ”curried” function

that because of polymorphism, f could in fact have a larger arity.



2 A New Function Type

The solution to the problem of determining function arity proposed by
Downen et al [A Faster Curry with Extensional Types[2]] is to introduce a
primitive, extensional function type (~>) (the squiggly arrow), into the
intermediate language alongside its extensional function application (which is
syntactically equivalent to traditional application). For functions to be
extensional, they must remain equivalent under eta-conversion (the adding or
dropping of a lambda abstraction and application pair that cancel each other
out). In the Fig. 6 below, loop2 is the eta-expansion of loopl and in order for

them to be eta-equivalent, loopl and loop2 must exhibit the same behavior.

loopl, loop2 :: Int -> Int
loopl = loopl

loop2 x = loop2 x -- eta expansion
x = loopl 1
y = loop2 1

Figure 6: Eta-equivalence

This usually holds true for functions in lazy languages such as Haskell as by
default, function calls are stored in the heap as thunks and are only evaluated as

needed.

Therefore, the terms x and y at the bottom of Fig. 6 are bound to similar
unevaluated thunks, both of which will enter an endless loop when forced. This,
unfortunately, is not the whole story; Haskell contains functionality that allows
users to force the eager evaluation of terms. One of these tools is the function
seq, which takes two arguments, eagerly evaluates the first to weak-head normal
form then returns the second argument. Therefore (seq loop2 True) will evaluate

to true, as loopl will be evaluated to a closure due to its single parameter, while



(seq loopl True) will loop forever. The presence of such functions means that in
general, eta-equivalence does not hold for Haskell terms.

A condition for eta-equivalence is that functions must never be evaluated,
only called. Therefore, the type system must reject calls to seq and other such
functions when invoked upon extensional functions.

By rewriting the app example with squiggly arrows, as shown below in
Fig.7, the types tell us that “f” is an arity 1 function and “app” is an arity 2

function.

app :: (a ~>b) ~>a~>b
app £ x = f x

Figure 7: Extensional app

As a result, extensional functions are not invoked until all of their
arguments have been passed, and those arguments must all be passed at once
(i.e. no partial applications).Naively translating our “f” function from Fig. 4 to
be extensional (ie replacing all of the regular arrows with squiggly arrows), as

shown in Fig. 10 below,

:: Int ~> Int ~> Int

f
f x = \y ~> let z = expensive x in z + y

Figure 8: Extensional f

results in a new version of “f” that cannot be invoked until both ‘x” and ‘y’ are
passed in (making it an arity 2 function). This would mean that “expensive x”
would necessarily be re-computed for every invocation. In answer to this,
Downen et al [A Faster Curry with Extensional Types[2]] also introduced a way
for users to denote explicit currying in the type. The bracket ({}) syntax, used
in Fig. 11 below, breaks up the arity of the function and signals to the compiler

that “f” is in fact an arity one function that does “real” work after the first



argument is applied and should return a closure which in turn accepts the

second argument.

f :: Int ~> {Int ~> Int}
f x = let z = expensive x in Clos \y ~> z + y

Figure 9: Signaling true arity with square brackets

Another restriction imposed upon extensional functions in [A Faster Curry
with Extensional Types[2]] is to disallow generic types in extensional functions
from being instantiated with another extensional function type, thereby
sidestepping the problem presented in the “Polymorphism and Arity” section
completely. Though this restriction maintains the compiler’s ability to count
squiggly arrows to deduce arity, it bars potential optimizations [See Calling

Convention].

3 Polymorphism and Compilation

Another challenge that polymorphism presents is in compiling generic
functions to machine code. The difficulty is that the shape of types at runtime
may vary wildly. For instance, in Fig. 5 we specialize “app” to use Ints as well
as Chars, which have different runtime representations. In many languages,
ASCII characters are represented as a single byte, while integers are represented
with 32 or 64 bits. Thus, generating a single piece of machine code that could
handle both shapes (amongst all other types that may be applied to the
function) would be a challenge. Languages such as C++ compile generic
functions (called templates) by generating a different version of the function for
each type with which the function is called in the codebase.

For example, if the calls to app we discuseed in the polymorphism section
(shown below in Fig. 10) were written using C++ templates, the compiler

would generate two app functions; one corresponding to (app :: (Int ->
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Int) -> Int -> Int) and one corresponding to (app :: (Bool -> Bool) ->

Bool -> Bool.)

app (\x > x + 1) 1
app (\x -> not x) True

Figure 10: Calls to polymorphic app function

Though this might not seem like a dramatic cost, a “real world” codebase
may have ten or even a hundred times more specialized calls which would cause
a significant amount of bloat in the generated machine code. As such it would
be more efficient to compile generic functions to a single block of machine code.
A common solution to this, used by GHC and other implementations of
polymorphic languages, is to “box” types (stick them behind a reference to a
heap-allocated object) by default so that all functions merely accept and return
pointers of uniform size and representation. With this change it becomes trivial
to generate generic machine code (as there is only a single shape to deal with),
however this layer of indirection, while more space-efficient in terms of generated
code, is less performant as anytime a parameter is accessed, the function must
reach into the heap, ostensibly do some work on it, and then allocate a new
object in the heap to return it.

To mitigate this issue GHC provides “unboxed” types that don’t sit behind
a pointer. Functions that operate over these unboxed types don’t expect a
pointer to a type but rather the type itself. This fix, however, is not applicable
to generic functions as the shape of the input and output types is unknown at
compile time. One solution is to hide every generic type behind a pointer such
that every input and output has a uniform (pointer) representation. With this
approach, however, generic functions take the significant performance hit of
having to reach back and forth into the heap when doing work. To solve this

problem, GHC separates polymorphism of type and representation, allowing



functions to be polymorphic over a type but monomorphic over its
representation, meaning that the generated function can be used for any type of

a specific shape. As such, this shape information must be embedded somehow in

a type.

3.1 TYPE and RuntimeRep

In GHC this representation information is modeled in the RuntimeRep

datatype (shown below in Fig.11):

data RuntimeRep = VecRep VecCount VecElem
| TupleRep [RuntimeRep]
| SumRep [RuntimeRep]
| LiftedRep
| UnliftedRep
| IntRep
| WordRep
| FloatRep
| DoubleRep

Figure 11: The RuntimeRep type

Every type is classified by an instance of RuntimeRep, which tells the
compiler the size, representation, and location of a piece of data at runtime.
Values may be stored as an immediate value (e.g. IntRep, FloatRep, WordRep
etc), as a pointer to a heap-allocated object (LiftedRep or UnliftedRep), or as a
combination of multiple runtime representations (TupleRep and SumRep).

In Haskell, types are further classified by kinds (the “type of a type”). An
instance of RuntimeRep is embedded in the kind of a type. The kind of all
types in Haskell are in the form:

TYPE (rr :: RuntimeRep)

where TYPE is a type constructor (a function that accepts a type and returns a
new one) and rr is the representation of a type, i.e how members of a type

should be stored and accessed in memory. If a generic type ‘a’ for example, has



a kind of “TYPE IntRep”, we’'d know that ‘a’ is represented as an immediate
integer value. Or if the kind of ‘a’ was “TYPE TupleRep [WordRep, FloatRep]”
we’d know that ‘a’ is represented as a combination of an ordinary data register
(WordRep) and floating-point register (FloatRep).

The default kind for all Haskell terms is (TYPE LiftedRep) or * for short.
Types of kind (TYPE LIftedRep) or (TYPE UnliftedRep) correspond to
“boxed” values (a pointer to a heap-allocated object). If however the parameter
to TYPE is IntRep, WordRep, FloatRep, or DoubleRep, etc, then that kind
corresponds to an “unboxed” value which means that instead of a pointer to the
object, the object itself is expected. Boxed values are then bifurcated into Lifted
and Unlifted values. The “liftedness” (or levity) of a term informs whether it is
always a value or might be a thunk (an unevaluated, nullary function that will
return the value).

Unlifted types correspond to ordinary values such as the integers 0,1,2, etc,
or pointers to arrays of those values. Lifted types however correspond to
unevaluated expressions called thunks. Because these expressions are
unevaluated, it’s possible that their computation may diverge and never return a
value. Due to this, lifted types have an additional bottom element \» which
corresponds to such a non-terminating computation. As Haskell is lazy by
default, parameters passed to functions are normally not evaluated right away
but stored as thunks in the environment only to be evaluated if the term is
needed in the body of the function (Call-By-Need). This means that a boxed
value could be lifted (reference to a heap allocated thunk) or unlifted (a
reference to a heap allocated value) however unboxed (non-referenced) values

cannot be thunks and thus must be Unlifted.

3.2 Representation Polymorphism

Going beyond types, would it be possible to extend polymorphism to the

representation as well? Traditionally, polymorphism refers to type
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polymorphism: functions that operate over all types. In the previous section, we
presented a way to compile type polymorphic functions by monomorphising
(forcing a concrete representation or shape) of the input and output types. This
extra constraint allows the compiler to efficiently compile generic functions but
would it be useful to have a function that has input or outputs that are
polymorphic over the representation as well? Let’s take a look at the ‘error’

function in Haskell whose type has historically been:

error :: [Char] -> a

What ‘error’ does is accept a string (an error message) and then outputs it to
the screen instead of returning an output (which can be any type as it is bound
to the generic ‘a’). What this allows developers to do is output debug data to
users without breaking typing rules. As such, ‘error’ has a polymorphic output
to allow developers to insert it for debugging purposes into any function. The
interesting thing about error however, is that it never actually returns a value of
type ‘a’, but instead halts execution and outputs to a device. Therefore it never
actually reads or writes a value of a and consequently does not need to know
anything about the shape of a.

We will find that by adding a simple restriction we can in fact compile
representation polymorphic code. If we were to maintain our monomorphic
representation constraint, we would have to introduce a version of error for
every possible representation despite the fact that the compiled code for all of
the versions would be identical (because no data corresponding to those shapes
is actually touched by the ‘error’ function). To solve this problem we could relax
the monomorphic representation constraint in cases where the function does not
read or write values of the polymorphic type. That would mean in these special
cases, we can have functions which are not only polymorphic in the type but in
the representation as well. As such with representation polymorphism we can

define ‘error’ with the type:

error :: forall (r :: RuntimeRep) . forall (a :: TYPE r)
=> [Char] -> a

11



Above, the type a above, has the kind ‘TYPE 1’ where ‘v’ stands for all possible
RuntimeRep values. Though now we can define a single ‘error’ function which
will work for all representations, our new constraint of limiting representation
polymorphic functions to functions which don’t read or write polymorphic
values seems to render this feature useless. One area where representation
polymorphic functions shine is in typeclasses.

Typeclasses in Haskell are similar to interfaces in Java. They provide users
a way to define polymorphic functions or operations (an interface) which can
then be implemented for specific types. This is a different kind of polymorphism
than the generic functions presented so far in the paper. In previous sections we
discussed generic functions which compiled to a single block of code that
handled a range of types. This is known as parametric polymorphism; type
variables, or parameterised types are used to specify the behavior of a function.
Typeclasses embody what’s known as ad-hoc polymorphism. Similar to the
polymorphism provided by C++ operator overloading, ad-hoc polymorphism
involves maintaining a set of independently defined, monomorphic functions
which are invoked by the runtime system based upon the usage context. Let’s

look at Haskell’s most commonly used typeclass (shown below in Fig. 12), Num.

class Num a where

(+) :: a->a->a
(¥) :: a->a->a
negate :: a -> a

Figure 12: The Num typeclass

The reason that the Num typeclass is useful is that there are multiple
distinct numerical types for which we need the addition function. It would be
tedious to have to create a different addition, multiplication and negation
function for floats, 32-bit integers and 64-bit integers, so instead we define the

typeclass Num which ranges over all of the numerical types and allows the user

12



to perform arithmetic operations upon all of them with a unified syntax. In
order to accomplish this users must create an instance of the Num typeclass for
every type which is a member of the class. The Num instance for Integer, for

example, looks something like this:

instance Num Integer where
(+) = plusInteger
(¥) = timesInteger
negate = negatelnteger

The code above declares that Integer is a member (or instance) of the Num
typeclass and provides the appropriate integer addition, multiplication and
negation functions for each. Users would also provide an instance for float, Int32
and whatever other numerical types are relevant. The compiler maintains a
record of all of the members of a typeclass and their corresponding arithmetic
operations and can then substitute the appropriate operation at a call site based
upon the type of the arguments passed to the operation. Traditionally the kind
of the type variable ‘a’ in the specification of Num has been monomorphic in the
representation, meaning that all members of a typeclass must have the same
representation. This creates an issue similar to the one presented with the
‘error’ function; a new class would need to be created for every representation,
meaning a separate Num class for every single unboxed representation (ie
IntRep, FloatRep, DoubleRep).

It turns out that it is in fact possible to utilize representation
polymorphism to create a definition of Num which ranges over numerical types
of any representation. The code below specifies that the kind of ‘a’ can have any

representation.

class Num (a :: TYPE r) where

(+) ::a->a->a
(¥*) ::a->a->a
negate :: a -> a

But how can we do this if we cannot read or write representation-polymorphic

data? The answer is that this generic function doesn’t do any of the real work

13



at runtime. It instead merely cross references the types in the context with the
list of records corresponding to the functions defined by the members of num
and returns the appropriate, monomorphic instance definition. In the typical
case where a typeclass instance is specialized to a concrete type, like Num
Integer, the compiler statically knows the representation of arguments passed to
those functions. As such, with this change, we can add unboxed types to the

Num typeclass.

3.3 Calling Convention

So far we have established that representation information is needed for
compilation, but is this enough? As mentioned in the “New Function Type”
section, the new kind of primitive functions introduced by Downen et al [A
Faster Curry with Extensional Types|2]] must have all of their arguments passed
at once. In order to accomplish this, the arity of functions must be known
statically. For concrete function types, the compiler can merely count the
number of squiggly arrows and generate code which will pull the appropriate
number of arguments off of the stack.

Once again, however, polymorphism rears its ugly head; this is to say that
when the return or parameter type of a function is not known, or generic, the
compiler cannot generate the corresponding machine code. The solution
proposed in [A Faster Curry with Extensional Types[2]] is to simply disallow
generics to be instantiated with extensional functions. The implication is that in
the code in Fig. 13 below, the type ‘a’ in ‘app’ cannot be expanded to be of the

form (x ~> y), in effect constraining ‘f’ to be of arity 1.

app :: (@ ~>Db) ~>a ~>b
app f x = f x

app (\x ~> \y > x +y)) 12

Figure 13: Extensional app with single arity add function
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This means that if we modified our definition of “app” from Fig. 5 to use
the squiggly arrows, the first argument to “app” in call such as (app (y -> x +
y) 1) could not be translated to (x ~> y ~> x + y) as that would violate the
constraint. Thus, the second arrow would need to be a regular (->) arrow (x ~>
y => x + y), barring us from passing both ‘x” and ‘y’ at once. In [Kinds are
Calling Conventions[1]], Downen et al propose that the kind of a type should
encode not only its representation, but its calling convention (or arity) as well.
Thus, TYPE would accept an additional parameter corresponding to the calling
convention of a type. Let’s modify our definition of app to include a calling
convention for ‘b’. In the first line of Fig. 14 below, we are signaling to the
compiler that ‘b’ is an arity 1 function which means that ‘f’ is expected to be of
arity 2: arity 1 from the kind signature of ‘b’ plus the single squiggly arrow in

the signature of f.

app :: (b :: TYPE BoxedRep Call[1]) (a ~> b) ~> a ~> b
app f x = f x

three = app (\x ~> \y ~> x + y)) 1 2

Figure 14: Extensional app for arity 2 functions

And now, because f is an arity 2 function, ‘app’ becomes an arity 3
function: it must accept ‘f” as well as its two arguments. But the definition of
app only has two arguments defined (‘f” and a single argument ‘x’) and
according to the rules of extensional functions we must pass in all of the
arguments at once and cannot return a partial application, so what gives?
Remember that as discussed previously, extensional functions enjoy
eta-equivalence meaning that ‘app’ can be soundly eta-expanded; so behind the
scenes, the compiler will expand the definition of app to include the missing

parameter (Show in Fig. 15 below).
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app :: (b :: TYPE BoxedRep Call[1]) (a "> b) "> a "> b
app f x y = f x y -—— eta expansion
three = app (\x "> \y "> x + y)) 1 2

Figure 15: Eta-expanded app

Now, even though the compiler does not know the specific type of ‘a’ it
knows its arity and can therefore generate machine code for applying f. But
what would the calling convention be for terms that are not extensional
functions? Regular functions (->) are merely pointers to heap allocated thunks
so were therefore represented as the default kind (TYPE LiftedRep), but is a
term’s levity the same thing as its representation? Both terms with LiftedRep
and UnliftedRep are represented by pointers to the heap: LiftedRep signifies
pointers to thunks in the heap which must be evaluated to a value (lazy
evaluation) and UnliftedRep signifies pointers to already evaluated objects in
the heap (eagerly evaluated). Therefore the difference between LiftedRep and
UnliftedRep is not one of representation, but rather, of evaluation strategy.
Because we know that extensional functions are by definition never evaluated
but only called, terms will either have, in the case of extensional functions, an
arity, or for everything else, an evaluation strategy. Thus Downen et al [Kinds
are Calling Conventions|1]] propose collapsing LiftedRep and UnliftedRep into a
single representation corresponding to a pointer (BoxedRep),and adding an
additional constructor (Eval) to the calling convention which accepts an
evaluation strategy (Lifted or Unlifted). Therefore, the default kind changes
from (TYPE LiftedRep) to (TYPE BoxedRep (Eval Lifted)).

Let us now translate our definition from Fig. 14 to this new kind
representation. In Fig. 16 below, we have replaced UnliftedRep with BoxedRep
in kind signature for ‘b’(as Call[1] implies an extensional function and therefore
unliftedness) and we have specified the default kind for ‘a’; (which is redundant

as (TYPE BoxedRep (Eval Lifted)) is the default kind).
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app :: (b :: TYPE BoxedRep Call[1])
(a :: TYPE BoxedRep (Eval Lifted))
(a ~>b) ~>an~>b

app f x = f x

three = app (\x ~> \y ~> x y)) (\x ~> x) 2

Figure 16: Extensional app with default a

Given this default kind, we expect that the value 'x’ of type ’a’ is
represented as a pointer to a heap-allocated thunk. However, the call to app on
the third line of Fig. 15 tries to pass the extensional function (x ~> x) for 'x’
which is a kind error because (x ~> x) of type (Int ~> Int) has the
convention ”Call[1]” instead of "Eval Lifted” as expected by 'app’s type. Can
we fix this by making a polymorphic in the convention? Making the convention
of 7a” polymorphic, as it is below in Fig. 17, means that "app” cannot call 'x’
because it has no way of knowing how many arguments 'x’ expects at run-time.
The compiler can’t generate code for calling an extensional, primitive function

of unknown arity.

app :: (b :: TYPE BoxedRep Call[1]) (a :: TYPE BoxedRep c)
(a ~>Db) ~>a~>hb
app £ x = f x

three = app (\x ~> \y ~> x y)) (\x ~> x) 2

Figure 17: Extensional a with convention polymorphic a

However, if a convention-polymorphic value is not being called, but is just
passed around like ”x” is inside the body of "app”, then the compiler doesn’t
need to know how to generate code for calling ”"x”. In this case, it is permissible
to allow a generic type to have a polymorphic convention, just like ’a’ does in
Fig. 17. Even though the convention of a is polymorphic in the definition of

app, in our call to app, a is instantiated by the function (x ~> x) whose type
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will be inferred as (Int ~> Int) and will therefore have a concrete arity of 1.
As such, at the point of its invocation, its arity is known and the function can

therefore be applied.

4 Implementation

4.1 The Extensional Arrow

We first introduce the extensional function type into Core (the intermediate
representation of Haskell) alongside the normal function type. As we are
introducing the new function only in Core and not in the Haskell source, these
extensional arrows will only be introduced after the source Haskell program has
already been translated into Core; meaning that we will effectively be
transforming regular functions to extensional functions in a manner transparent
to the user. But can we just do this arbitrarily and replace any and all

occurrences of regular functions with extensional ones?

4.2 The Worker/Wrapper Transformation

Let’s look at a simple example with unboxed types. In this scenario, we
want to improve the performance of the double function by modifying it to
operate upon unboxed integers rather than boxed ones. In Fig. 18 "double” is
the original function and "double’” is the naively transformed, unboxed

version.

double :: Int -> Int
double x = x * 2

double’ :: Int# -> Int -- naive substitution
double’ x = x * 2

Figure 18: Naive unboxing transformation
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The code generator would, based upon type of double’ (Int -> Int),
generate code for manipulating a raw integer value rather than a pointer. This
would save time as instead of reaching into the heap and evaluating a thunk, we
can refer directly to integer values stored inside of a register (theoretically). The
issue with this transformation, however, is that although the generated code for
double’ now expects a raw integer value, none of the call-sites have been
updated to reflect this change. Thus, double’ will be invoked with boxed
integers and the code will treat the pointers as literal integer values. This would
undoubtedly result in undesirable behavior. Now let’s take a look at an example
with extensional types.

The function “plus3” in Fig. 19 below, accepts an unboxed integer (x ::

Int), then returns a closure that accepts a second Int.

plusx :: Int# -> Int# -> Int#
plusx = \x -> \y -> addInt# x y

plusx 1 1

plusx :: Int# ~> Int# ~> Int# -- naive subsitution
plusx = \x ~> \y ~> addInt# x y

plusx 1 1

Figure 19: Naive extensional transformation

When the second integer is applied to this new closure, a third closure will
be returned which accepts the final integer argument, then calculates the sum of
the arguments. Just below the definition of plus3, we have defined plus3” where
we have naively substituted in extensional function arrows. The code generated
for plus3’, guided by its type, expects two registers with unboxed integer values
which it must accept at once. Instead, only one of those registers will have an
integer value and the other will likely have bits leftover from a previous call.
This will result in erroneous and unexpected output. As we can see, arbitrarily

changing types naively in this manner is unsound. To make this substitution
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safely, we must instead use the worker /wrapper transformation. This involves
introducing an outer “wrapper” function that maintains the original type and

.

acts as interface to the “worker” function which has the new modified type.
Below in Fig. 20, we have the worker/wrapper transformation for the ‘plusx’

function.

plusx :: Int# -> Int# -> Int# -- wrapper
plusx = \x -> \y -> \z -> wplusx x y z

wplusx :: Int# ~> Int# ~> Int# -- worker
wplusx = \x ~> \y ~> \z ~> addInt# (addInt# x y) z

Figure 20: Extensional worker/wrapper transformation

The wrapper function ‘plus3’ accepts 3 parameters one at a time and then
invokes the extensional worker function ‘wplus3’ once the call is saturated. The
wrapper function acts as a guard against under-application as any partial
applications of the functions will be translated to partial applications of the
conventional wrapper function rather than the extensional worker function
which must receive all its arguments at once. In this way the wrapper acts as an
eta-expansion layer between applications of the original function and the new
extensional workers generated by the transformation.

Through function inlining and beta reduction (as show in Fig. 21 below),
the compiler can then translate the call ‘plus3 1 1 1’ to the more efficient call

‘wplus3 1 1 17 in a type-safe manner.

plusx 1 1
-—> (((\x => \y => wplusx x y) 1 ) 1) -- inlining
-=> wplusx 1 1 -- beta reduction

Figure 21: Inlining and beta-reduction of worker/wrapper

We implemented this worker wrapper transformation as an optimization

pass in GHC’s Core-to-Core pipeline. After a source Haskell program has been
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typechecked, it is translated to GHC’s intermediate language, Core, which
closely resembles lambda calculus. Once this translation occurs, the compiler
will optimize the generated Core code in a series of Core-to-Core
transformations. In Core, all top level function definitions are represented as let
bindings. The transformation works by inspecting all let expressions which bind
functions, doing an arity analysis of the function, and then breaking up the
function into a wrapper function with the original type and an extensional
worker function whose type encodes the arity obtained from the analysis. The
arity analysis we used is a fairly naive technique which involves counting
lambdas for first order functions and for higher order functions,inspecting the
call sites of functions passed in as arguments, and calculating a lower bound of
each arity.In the simple (first order function) case, we can merely replace the
arrows in the original function type to obtain the type of the worker as outlined
in the plus3 example above. In the case of higher-order functions we must

inspect the body of the function to obtain the type of the worker.

foo £ =

If we look at the higher order function above, our original inferred type
would be ((Int -> Int -> Int) -> Int). Our arity analysis function then
would inspect the body of foo and observe that f is called twice; once with a
single argument, and once with two. To err on the side of caution, we assume
the lower of arity to be one. Accordingly (as shown below in Fig. 22), we create
a worker function, fooWorker, which accepts an arity one function (the second
argument of f is applied in the traditional fashion) and a wrapper, fooWrapper,

which constructs the extensional function to pass to the worker.
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fooWrapper :: (Int -> Int -> Int) -> Int
fooWrapper f = fooWorker (\x ~> f x)

fooWorker :: (Int ~> Int -> Int) ~> Int
fooWorker
let a = f

b=1f
ina+ b3

f =
12
2

Figure 22: Worker/Wrapper transformation of higher order function

4.3 Runtimelnfo and Friends

Though we have justified the existence of calling-convention as its own
additional argument to the TYPE constructor, the declarations of many
kind-polymorphic function types (such as the function type constructor above)
become more cumbersome to write out. Instead of needing to quantify over two

kind variables, we must now quantify over four (shown in Fig. 23 below).

TYPE :: RuntimeRep -> CallingConv -> Kind
(=>) :: forall (rl :: RuntimeRep) (cl :: CallingConv)

(r2 :: RuntimeRep) (c2 :: CallingConv).
TYPE rl cl1 -> TYPE r2 c2 -> Type

Figure 23: TYPE as specified in Kinds are Calling Conventions[1]

In order to ease this burden, we have introduced the Runtimelnfo kind
(shown in Fig. 24 below), which has a single constructor RInfo that takes a
RuntimeRep as well as a CallingConv; and instead of having TYPE accept a

RuntimeRep and a CallingConv, it now accepts a single Runtimelnfo kind.

data RuntimeInfo = RInfo RuntimeRep CallingConv

* = TYPE (RInfo LiftedRep ConvEval)

Figure 24: The Runtimelnfo kind
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With this change, the default kind changes from (TYPE LiftedRep
ConvEval to (TYPE (RInfo LiftedRep ConvEval)) !. Though this makes the
default kind a bit more cumbersome, we can once again express the type of (=>)

with only two kind variables (shown below in Fig. 25).

TYPE :: RuntimeInfo -> Kind

(->) :: forall (rl :: RuntimeInfo) (r2 :: RuntimeInfo).
TYPE r1 -> TYPE r2 -> Type

Figure 25: The Definition of -> with new TYPE

The problem that this creates is that in some cases, we want to access the
representation or convention field of Runtimelnfo. Below in Fig. 26, we have the
type constructor for unboxed tuples of size 2, which accepts two RuntimeReps
and two CallingConventions (a pair for each element) and uses the
RuntimeRep’s to build to the representation of the resulting unboxed tuple, via

the TupleRep constructor.

(#,#) :: forall (rl :: RuntimeRep) (cl :: CallingConv)
(r2 :: RuntimeRep) (c2 :: CallingConv).
TYPE (RInfo rl cl)
-> TYPE (RInfo r2 c2)
-> TYPE (’RInfo (’TupleRep ’[rl, r2]) ’ConvEval)

Figure 26: The type constructor for unboxed pair

Thus, to get around having to instantiate two kind variables for every
element, we must have some way of extracting the fields of a Runtimelnfo type

variable. Using closed type families we created the type-level functions (GetRep

I'Note that in our implementation we preserved the LiftedRep constructor in RuntimeRep
rather than moving levity information to the CallingConvention field. This is because this area
of GHC is currently in flux. Thus, we have left the moving the levity information to future
work.
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RuntimeInfo -> RuntimeRep) and (GetConv :: RuntimelInfo ->

CallingConv) (shown below in Fig. 27).

type family GetRep (ri :: RuntimeInfo) :: RuntimeRep where
GetRep (’RInfo rep _) = rep

type family GetConv (ri :: RuntimeInfo) :: CallingConv where
GetConv (’RInfo _ conv) = conv

Figure 27: The GetRep and GetConv type families

Then, using GetRep, we can extract the RuntimeRep from a Runtimelnfo
type variable directly in the declaration of the type constructor in our previous
example (show below in Fig. 28), enabling us to only quantify over a single

Runtimelnfo variable per element in the unboxed tuple.

(#,#) :: forall (rl :: RuntimeInfo) (r2 :: RuntimeInfo).
TYPE r1
-> TYPE r2
-> TYPE (’RInfo (’TupleRep °’[GetRep rl, GetRep r2]) ’ConvEval)

Figure 28: The unboxed pair type constructor with GetRep

4.4 Wiring in New Types

In GHC there are a set of types that are known globally within the
compiler, either just by their unique identifier (known-key types), or by both
their identifier and their definition (wired-in types). The unique identifiers for
these types are available globally and defined in the
compiler/GHC/Builtin/Names.hs module; these identifiers are then used to
instantiate TyCon’s (type constructors) which represent the type, and then are
ultimately converted to types using the mkTyConTy function from
compiler/GHC/Core/TyCo/Rep.hs. It is important to note that within the
compiler, all wired-in types are of type Type and can only be differentiated by

querying the unique identifier with which they were instantiated, effectively
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making them untyped within the compiler. To wire-in a type, its corresponding
TyCon must be added to the wiredInTyCons list in
compiler/GHC/Builtin/Types.hs. Wired-in types include several ubiquitous
types like Int, Bool, String, and kind constructors such as TYPE and
RuntimeRep. The constructors for these types are defined in

GHC.Builtin. Types, not with traditional Haskell syntax, but rather, directly in
Core via the GHC.Core.DataCon data type.A subset of these types, which are
used to denote kinds (such as TYPE and RuntimeRep), are promoted to the
kind-level using the “promoteDataCon” function from

compiler/basicTypes/DataCon.hs.

4.4.1 Type Definitions

Our first order of business was to add the new types corresponding to
CallingConv, Runtimelnfo, GetConv and GetRep to GHC.Builtin. Types
(alongside their unique identifiers in GHC.Builtin.Names). Below in Fig. 29, we
have the definition of our new CallingConv type and its Haskell source

equivalent below.?

ZNote: Though the Kinds Are Calling Conventions[1] paper specified that the LiftedRep
and UnliftedRep constructors be extracted to a field in the Eval constructor in the new
CallingConvention type, we have left them in RuntimeRep. This area of the GHC codebase
is currently under flux (see GHC Proposal 203), so as such, we deferred this specific change to
later work. In our implementation Eval is a nullary constructor.
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convEvalDataCon = pcSpecialDataCon convEvalDataConName []
callingConvTyCon
(CallingConv $ \_ -> [ConvEvall)
convCallDataCon :: DataCon

convCallDataCon = pcSpecialDataCon convCallDataConName
[ mkListTy runtimeRepTy ]
callingConvTyCon (CallingConv prim_conv_fun)
where
prim_conv_fun [rr_ty_list]
= ConvCall (concatMap (runtimeRepPrimRep doc) rr_tys)
where

rr_tys = extractPromotedList rr_ty_list
doc

text "convCallDataCon" <+> ppr rr_tys
prim_conv_fun args
= pprPanic "convCallDataCon" (ppr args)

convCallDataConTyCon :: TyCon
convCallDataConTyCon = promoteDataCon convCallDataCon

callingConvTyCon :: TyCon
callingConvTyCon = pcTyCon callingConvTyConName []

[convEvalDataCon, convCallDataCon]

-- Haskell source equivalent
data CallingConv = ConvEval | ConvCall [RuntimeRep]

Figure 29: Definition of CallingConv and its constructors

Its constructors, convEvalDataCon and convCallDataCon are defined with

the pcSpecialDataCon function which accepts a unique identifier, a list

corresponding to the argument types of the constructor, the TyCon (or type) to

which it belongs, and finally a term of type RuntimeRepInfo which encapsulates

a function that converts the entire term to its corresponding primitive form for

code generation purposes. In the case of the nullary ConvEval constructor, the

list of argument types is an empty list. As ConvCall constructor accepts a list of

RuntimeRep’s its argument list is specified with (mkListTy runtimeRepTy).

Both constructors belong to the CallinvConv type and therefore have

callingConvTyCon as their third argument. Finally the CallingConv type is

specified (as CallingConvTyCon) with the pcTyCon function which accepts a
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name, a list of type variables and a list of data constructors. We pass an empty
list for the type variable argument as CallingConv is a completely monomorphic
type, then we pass in our newly defined ConvEval and ConvCall constructors.

The Runtimelnfo type is defined in a similar manner.

callingConvTy :: Type
callingConvTy = mkTyConTy callingConvTyCon

runtimeInfoTy :: Type
runtimeInfoTy = mkTyConTy runtimeInfoTyCon

These types are then promoted to the kind level using the mkTyConTy

function.

4.4.2 PrimRep and RuntimeReplnfo

As mentioned in the previous section, our wired-in constructors encapsulate
functionality for converting themselves to their primitive forms. These primitive
forms are used in the code generation stage of the compiler and exist at a lower
level of abstraction than RuntimeRep and CallingConv. For example, a
RuntimeRep of the form (TupleRep [IntRep, WordRep]) would be converted
to just ([IntRep, WordRepl) because an unboxed tuple is represented in
memory as the just concatenation of its elements’ representations. The primitive
form of a representation is all the compiler needs to know in order to store the
data in memory or a set of registers, for example ([IntRep, WordRepl) says
that the value is stored in two different registers, one containing a machine
integer and the other containing just one machine word.

Below in Fig. 30, is the definition of the RuntimeRepInfo type which
encapsulates conversion functions from the level of RuntimeRep and
CallingConv to their primitive equivalents (note that terms of RuntimeRep and

CallingConv are of type Type as they are wired-in).
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data RuntimeRepInfo

= NoRRI

| RuntimeRep ([Typel -> [PrimRepl)

| VecCount Int

| VecElem PrimElemRep

| RuntimeInfo ([Type]l -> [PrimInfo])
| CallingConv ([Type] -> [PrimConv])

Figure 30: The RuntimeRepInfo type

Though all wired-in constructors must be specified with an instance of
RuntimeReplnfo, only a subset of special types which will be promoted to the
kind level must contain this conversion functionality. All other non-promoted

wired-in types can be specified using the NoRRI constructor of RuntimeReplInfo.

prim_conv_fun [rr_ty_list]
= ConvCall (concatMap (runtimeRepPrimRep doc) rr_tys)
where
rr_tys = extractPromotedlList rr_ty_list
doc text "convCallDataCon" <+> ppr rr_tys

In the conversion function we specified for the ConvCall constructor (which
accepts a list of RuntimeReps) we call runtimeRepPrimRep with each argument,
concatenate the results and pass them to the primitive ConvCall constructor.
The runtimeRepPrimRep function merely pattern matches on the
RuntimeReplInfo argument of the data constructor and recursively calls its

conversion function upon it.

4.4.3 GetRep and GetConv

In addition to wiring in our new types, we must also wire in the type
families (GetRep and GetConv) we specified in the previous paragraphs such
that they are available within core. They are defined in GHC.Builtin. Types in a

manner similar to CallingConv and Runtimelnfo (shown below in Fig. 31).
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getRepTyCon :: TyCon

getRepTyCon = mkFamilyTyCon getRepTyConName binders runtimeRepTy
Nothing
(BuiltInSynFamTyCon trivialBuiltInFamily)
Nothing
NotInjective

where

binders = mkTemplateAnonTyConBinders [runtimeInfoTy]

getConvTyCon :: TyCon

getConvTyCon = mkFamilyTyCon getConvTyConName binders callingConvTy
Nothing
(BuiltInSynFamTyCon trivialBuiltInFamily)
Nothing
NotInjective

where

binders = mkTemplateAnonTyConBinders [runtimeInfoTy]

Figure 31: The GetRep and GetConv type families expressed in Core

The mkFamilyTyCon (from GHC.Core.TyCon) accepts a name, a list of
kind arguments, an output kind and some additional meta-data. Both GetRep
and GetConv accept an argument of kind Runtimelnfo. And as their names
would suggest, GetRep returns a type of kind RuntimeRep, and GetConv
returns a type of kind Runtimelnfo.

One might ask why these type families need to exist within Core. Why
couldn’t we just destruct a Runtimelnfo and extract the appropriate field if we
needed its value? The problem is that in many cases the field does not exist yet.
If a type is still in the process of being inferred, it is possible that the
Runtimelnfo we are attempting to extract a field from is merely a meta type
variable (a placeholder type which will be inferred at a later time). Our

representation accessor getRep’, shown below in Fig. 32,
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getRep’ :: Type -> Type
getRep’ rinfo
| Just rep <- extractRep rinfo
rep
otherwise
mkTyConApp getRepTyCon [rinfol

Figure 32: The GetRep simplification function

first attempts extract the RuntimeRep field of a Runtimelnfo (using the
extractRep function) and if that fails (if for instance Runtimelnfo is a type
variable),it returns the application of the getRepTyCon type constructor to the
opaque rinfo, so that it can be beta-reduced at a later time when rinfo has been
simplified (perhaps by substitution of a generic type variable or some other

reductions inside rinfo) to a concretely constructed Runtimelnfo object.

getRep’ (rl :: RuntimeInfo) --> GetRepTyCon [r1]

GHC preserves applications of type families as ”coercions” that provide
specific evidence that each change of type (be it by reducing a type family
instance or by converting between two types that are equivalent at run-time but
not compile-time), which is essential to the soundness of its type system3. For
example, reducing the application of a type family function is not reduced by
the type checker, but appears as an explicit coercion in the syntax of a program.
Following suit, applications of GetRep and GetConv need to be preserved (and
not beta-reduced) until code generation. This presented a problem in the
isKindLevPoly function (the check for levity-polymorphism) which would return
false positives in the presence of GetRep applications in the kind. To remedy
this, we defined a simplifyRep function which would beta-reduce GetRep
applications for the purposes of this check. It should be noted thatthis function
MUST not be used in any context where a type is returned (i.e. as part of the

typechecking pipeline), but merely within checks that return a boolean.

3This issue of type soundness was decided in discussions with Simon Peyton Jones and
Richard Eisenberg.
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4.5 Modifying TYPE and its Accessors

Next we modified the TYPE constructor to accept, instead of a type of
kind RuntimeRep, a type of kind Runtimelnfo. The TYPE constructor is
defined within GHC.Builtin.Types.Prim using the mkKindTyCon function found
within GHC.Core.TyCon (shown below in Fig. 33).

tYPETyCon :: TyCon
tYPETyConName :: Name

tYPETyCon = mkKindTyCon tYPETyConName
(mkTemplateAnonTyConBinders [runtimeInfoTy])
liftedTypeKind
[Nominal]
(mkPrelTyConRepName tYPETyConName)

Figure 33: Definition of the TYPE constructor

mkKindTyCon accepts a unique identifier, a list of type arguments (which
in this case is the singleton list containing our promoted Runtimelnfo type), a
result kind, and some additional meta-data. Accordingly, we also have the new
default (the definition of which is shown below in Fig. 34) kind which is defined
using the buildSynTyCon function (“syn” for synonym) which accepts a name
for the binding, a result kind (the default kind itself; hurray for laziness) and a
right hand side for the binding; the right hand side of the synonym binding is a
type constructor application of the TYPE constructor applied to LiftedRep and
ConvEval, thus making our new default kind (TYPE (RInfo LiftedRep

ConvEval)).

31



-- type Type = TYPE (‘RInfo ’LiftedRep ‘ConvEval)

liftedTypeKindTyCon :: TyCon
liftedTypeKindTyCon = buildSynTyCon liftedTypeKindTyConName
liftedTypeKind rhs
where rhs = TyCoRep.TyConApp tYPETyCon [mkTyConApp
runtimeInfoDataConTyCon
[1iftedRepTy, convEvalDataConTy]]

Figure 34: Definition of new default kind

Given the new kind structure, we must also change the signature of many
existing type constructors such as the arrow (->) which constructs function
types. The previous function type constructor accepts two RuntimeRep’s (rl
and r2; the representations of the input and output types respectively) and
constructs the resulting function type of the form (TYPE r1 -> TYPE r2 ->
Type).

(=>) :: forall (rl :: RuntimeRep) (r2 :: RuntimeRep).
TYPE r1 -> TYPE r2 -> Type

As such, the definition is RuntimeRep polymorphic. Given that our new TYPE
constructor accepts a Runtimelnfo rather than a RuntimeRep, this definition of
the arrow constructor will no longer be general enough. We could, for instance,
use those RuntimeRep arguments to construct Runtimelnfo’s to pass to the
TYPE constructors in the resulting type with the ConvEval constructor
hardcoded (as shown below).

(->) :: forall (rl :: RuntimeRep) (r2 :: RuntimeRep).
TYPE (RInfo rl ConvEval) -> TYPE (RInfo r2 ConvEval) -> Type

This approach however, has two main drawbacks. Firstly, the definition of
ConvEval will eventually be changed to contain a Levity field and once that
change is made, this definition will no longer typecheck. Second, we may want

to be polymorphic in representation as well as convention. Because we are
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merely constructing a type and don’t need to generate code for invoking our
convention polymorphic type, we are well within our rights to do; after all more
polymorphism is always better.

(->) :: forall (rl :: RuntimeRep) (cl :: CallingConv)
(r2 :: RuntimeRep) (c2 :: CallingConv).
TYPE (RInfo rl cl1l) -> TYPE (RInfo r2 c2) -> Type

We could then, for both input and output, quantify over both RuntimeRep and
CallingConv to construct our Runtimelnfo types in the resulting function type.
This approach though, as previously discussed, is overly verbose and more
cumbersome to write out.

(->) :: forall (rl1l :: RuntimelInfo) (r2 :: RuntimeInfo).
TYPE r1l -> TYPE r2 -> Type

As Runtimelnfo is merely a product containing a RuntimeRep and a
CallingConv, it would be semantically equivalent to merely quantify over a

Runtimelnfo for each argument.

5 Results

Below in Fig. 35, we have the performance results of our worker-wrapper
transformation according to NoFib; the official performance benchmarking test

suite used by the GHC maintainers.
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NoFib Results

Program Size Allocs Runtime Elapsed TotalMem

¢ -—— - ————= === =

CSD +0.0% 0.0% +1.7% +2.0% 0.0%

S +0.0% 0.0% +1.0% +1.1% 0.0%

atom +0.0% 0.0% +1.9% +1.9% 0.0%

awards +0.0% +0.9% 0.000 0.000 0.0%
banner +0.0% +0.0% 0.000 0.000 0.0%
binary-trees +0.0% +0.0% -0.4% -0.47, 0.0%
boyer2 +0.0% +0.6% 0.005 0.005% 0.0%
calendar +0.0% +0.0% 0.000 0.000% 0.0%
cichelli +0.0% 0.0% 0.028 0.028 0.0%
clausify +0.0% 0.0% +3.9% +3.9% 0.0%
compress2 +0.0% +3.8% 0.170 0.170 0.0%
cryptarithml 0.0% 0.0% 0.181 0.182 0.0%
cryptarithm2 +0.0% 0.0% 0.003 0.003 0.0%
digits-of-el +0.0% 0.0% -3.2% -3.1% 0.0%
digits-of-e2 +0.0% +0.0% +0.2% +0.2% 0.0%
eliza +0.0% +0.5% 0.001 0.001 0.0%

exp3_8 +0.0% 0.0% +3.5% +3.4% 0.0%
fannkuch-redux +0.0% +0.0% +0.6% +0.2% 0.0%
fasta +0.0% +0.0% +2.2% +2.2% 0.0%

fft2 +0.0% +0.1% +0.3% +0.4% +16.7%

fulsom +0.1% 0.0% +2.6% +2.6% 0.0%
gamteb +0.0% 0.0% +1.5% +1.4% -3.47

ged +0.0% 0.0% -4.7% -4.6% 0.0%
gen_regexps +0.0% 0.0% -0.1% +0.0% 0.0%
integer +0.0% 0.0% -4.7% -4.5% 0.0%
k-nucleotide +0.2% +2635.5% +33.5% +33.6% 0.0%
kahan +0.0% 0.0% 0.118 0.118 0.0%
knights +0.1% +0.0% +0.3% +0.9% 0.0%
last-piece -0.0% -2.0% 0.170 0.170 0.0%
lcss +0.0% 0.0% +0.3% +0.3% 0.0%

life +0.0% +0.0% 0.082 0.082 0.0%

linear +0.1% +0.0% +3.2% +3.4% +33.3%
maillist +0.0% +0.0% 0.017 0.017 0.0%
mandel +0.0% 0.0% 0.024 0.024 0.0%
mandel2 +0.0% 0.0% 0.002 0.002 0.0%
mkhprog +0.0% -0.0% 0.001 0.001 0.0%
n-body +0.0% 0.0% +0.2% +0.3% 0.0%
nucleic2 +0.0% +0.0% 0.027 0.027 0.0%
paraffins +0.0% +0.0% -1.8% -1.7% +2.3%
pidigits +0.0% 0.0% +0.1%, -0.3% 0.0%
power +0.0% -0.0% =7.1% =7.2% 0.0%

pretty +0.2% +0.8% 0.000 0.000 0.0%
primes +0.0% 0.0% -0.3% -0.1% 0.0%
primetest +0.0% +0.0% -2.1% -2.1% 0.0%
puzzle +0.1% 0.0% 0.047 0.048 0.0%
queens +0.0% 0.0% -0.6% -0.6% 0.0%
reverse-complem +0.0% 0.0% -4.2% -3.9% 0.0%
rfib +0.0% 0.0% -1.7% -1.7% 0.0%

rsa +0.0% 0.0% -3.6% -3.8% 0.0%

sched +0.0% 0.0% +2.0% +2.1% 0.0%
sorting +0.0% 0.0% 0.001 0.001 0.0%
spectral-norm +0.0% 0.0% +0.5% +0.6% 0.0%
sphere +0.1% -0.1% +2.4% +2.4% 0.0%

tak +0.0% 0.0% +0.9% +0.9% 0.0%

treejoin +0.0% 0.0% 0.041 0.041 0.0%
wheel-sieve2 +0.0% 0.0% +1.7% +1.6% 0.0%
x2n1 +0.0% 0.0% 0.168 0.168 0.0%

Min -0.0% -2.0% =7.1% =7.2% -3.4%

Max +0.2% +2635.5% +33.5% +33.6% +33.3%
Geometric Mean +0.0% +6.1% +0.7% +0.7% +0.8%

Figure 35: Performance benchmarking results

NoFib, for a series of Haskell programs, measures the size on disk, number
of memory allocations, user running time, system running time and size in
memory. The program runs the benchmark once without our optimization
enabled and a second time with it enabled. It then compares the performance
numbers of the two runs and outputs the change in percentage from the first run

to the second. It is evident that there is an issue with our optimization. Though
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there are multiple cases such as reverse-complem, integer, and power which see
speedups of 5-7%, there are also cases, most notably, k-nucleotide which see a
dramatic increase in memory allocations (+2635.5%) and runtime (+33.5%).
These pathological cases drive down our average speedup across all cases to
-0.7%. After analysing the “optimized” Core outputs of these cases, we observed
a combinatorial explosion of worker-wrapper transformation. That is to say that
the interaction of our optimization with other worker-wrapper transformations
(namely the strictness analysis pass) caused an exponential number of
worker-wrappers to be allocated. As each new function created by the
transformation corresponds to a thunk being allocated on the heap, the number
of memory allocations for a few cases exploded by multiple orders of magnitude.
Below, in Fig. 36, is an example of a worker-wrapper transformation that may
be done by the strictness analysis optimization. The original “double” function

accepts an Int which is represented by a pointer in the heap and doubles it.

double :: Int -> Int
double y =y * 2

—-- optimization
double_wrapper :: Int -> Int
double_wrapper y =
case y of
I# x -> I# (double_worker x)

double_worker :: Int# -> Int#
double_worker x = timesInt# 2 x

Figure 36: Unboxing worker/wrapper transformation

The optimization then creates a worker-wrapper pair whose worker function
operates over unboxed integers, meaning that instead of needing to follow a
pointer into the heap, it deals with raw integer values which it extracts from a
register. The wrapper uses pattern matching to obtain the raw integer value
from the pointer and passes it to the worker. Just as we outlined in our

worker-wrapper transformation, this wrapper can be inlined at all the call-sites
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of “double” then be beta-reduced to a call to the worker; thus transforming the
original function to a more efficient version that deals with raw values. The
problem occurs when our worker-wrapper transformation is run against this
already optimized code. The effect, as shown below in Fig. 37, is that a new

worker-wrapper pair is created for both the worker and the wrapper.

double_wr :: Int -> Int
double_wr = \y -> double_wk y

double_wk :: Int "> Int
double = (\y ™>
case y of
I# x —> I# (double_worker x))

double_worker_wr :: Int# -> Int#
double_worker_wr x = \x -> double_worker_wk x

double_worker_wk :: Int# > Int#
double_worker = \x “> timesInt# 2 x

Figure 37: Combinatorial explosion of worker/wrappers

For the cases where the wrappers can be successfully beta-reduced to the
workers, though there would still be an increase in allocations as these extra
definitions would still be floating around, the performance should not be affected
negatively as the function calls would be short circuited to the innermost
worker. If however, for some reason, the calls to the wrapper could not be beta
reduced to a call to the worker, we would see an exponential increase in function

calls.

6 Future Work

6.1 Worker/Wrapper

Our most pressing matter for future work is to eliminate (or mitigate) the

worker /wrapper explosion issue discussed in the previous section. Our aim
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would be to combine the worker-wrapper transformations such that only a single
worker-wrapper pair is created across all optimization passes.

In Fig. 38 below, the worker is both extensional and unboxed. Accordingly,
the wrapper both unboxes the argument and uses the extensional function

application to invoke the worker.

double :: Int -> Int
double y =
case y of
I# x —> I# (double_worker x)

double_worker :: Int# ~> Int#
double_worker = \x ~> timesInt# 2 x

Figure 38: Combining worker /wrapper transformations

This can either be accomplished by combining both optimizations into a
single pass, or by allowing either pass to detect the presence of an existing
worker /wrapper pair and modify them in place rather than creating a new pair.
Our hope is that with this change we will eliminate the worker/wrapper
explosion and therefore the dramatic increase in allocation seen in some of the
test cases. If this issue is solved we are confident that the worker/wrapper
transformation will see a net gain in performance.

Another bottleneck in performance is our. There exists within GHC, more
robust arity analysis functionality which utilizes a graph based approach above
the level of syntax trees. If we utilized this existing arity analysis infrastructure
we would likely be able to achieve more aggressive lower bounds of arity to

guide the worker/wrapper transformation.

6.2 Give Extensional Function to Users

Though the extensional arrow we have introduced is a feature of Haskell’s

intermediate language, there is nothing stopping us from making it a user facing
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feature; In fact there would be multiple advantages for doing so. Firstly, if a
user were able to specify the arity of a function by manually specifying the
function type signature with the extensional arrow, the user could rely on the
guarantee that all calls to that function will be fully saturated at, thereby
eliminating the need for dynamic arity checks at run-time or the

worker /wrapper transformation at compile time . As there is an inherent cost
associated with this transformation in increased allocations and possible
increased function calls, bypassing it would allow for more dramatic speedups.
On top of making some of the existing optimizations more efficient, it would
enable optimizations which were previously not possible.

In the function appList shown at the top of in Fig. 39 below, it is currently
unsound for the worker/wrapper transformation to convert the first argument to
a list of arity two functions (as in the appList_w function at the bottom of Fig.
39). Given our current naive method of arity detection, we would look at the
body of appList and deduce from the application of f that the first argument is
a list of arity two functions. We would then use this arity to guide the creation
of the new extensional worker function seen above. The problem is that there
would be nothing stopping us from passing in a function such as g to our new
extensional appList_w (in Fig. 39). The issue with this is that though the type
of g may lead us to believe that it is an arity two function, in reality it is an
arity one function which returns a closure. Although in the context of the
original appList this difference would be immaterial as all normal functions
behave that way, our new extensional appList expects x and y to be applied at
the same time. This would cause a stack underflow at runtime if g were invoked
as an arity two function. If however the user was able to specify appList at the
source level as an extensional function, the typechecker would be able to verify
that all functions in the last passed to appList would be of the form (a ;b |
¢); thereby guaranteeing that all functions passed to it would be compiled to

arity two functions.
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appList :: [a -> a -> b] -> a -> [b]
appList [1 x = []

appList (f:fs) x = f x x : applList fs x
appList_w :: [a ~> a \~> b] -> a -> [b]
appList_w [] x = []

appList_w (f:fs) x = f x x : applList fs x

g x = let z = expensive x in \y -> z + y

y = applList [g] 1

Figure 39: Unsound worker/wrapper transformation

Another bottleneck in performance is our ad-hoc, expression based arity
analysis. There exists within GHC, more robust arity analysis functionality
which utilizes a graph based approach above the level of syntax trees. If we
utilized this existing arity analysis infrastructure we would likely be able to
achieve more aggressive lower bounds of arity to guide the worker /wrapper

transformation.

6.3 Finish changes to Kinds

As we noted in a previous section, we deferred the extraction of levity from
the RuntimeRep kind to CallingConv. Once that area of the codebase has
settled down, this change can be made more conveniently. This roadblock
however, illuminates a problem with the kind interface, in that the user interface
for specifying kinds is very tightly coupled to the inner-structure of kinds (ie the
TYPE constructor, RuntimeRep and CallingConv). If for example we wanted to
specify a function which ranged over all lifted types, our type signature would

look something like this:

f :: (c :: CallingConv) (a :: TYPE (RInfo LiftedRep c))
fx= ...

The specification of this type depends heavily on the structure TYPE,

RlInfo, RuntimeRep and CallingConv (not to mention it’s overly verbose). If for
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example we were to implement the change to RuntimeRep specified in Kinds are
Calling Conventions[1] and extract levity to the calling convention field, the

same kind specification would look something like this:

f :: (r :: RuntimeRep) (a :: TYPE (RInfo r (ConvEval Lifted)))
fx=..

Instead of quantifying over CallingConv, we now must quantify over
RuntimeRep. This would therefore be a breaking change for many users. It
would be better to instead provide an interface to users which is more loosely

coupled from the internal structure of kinds.

type IsPtr (a :: TYPE r) = Rep r ~ BoxedRep

f :: IsPtr a =>a ->b

fx= ...

We could, for example use type constraints, as above, to specify that a kind is
lifted without needing to construct a Runtimelnfo type in its signature. The
IsLifted type constructor above accepts a type and utilizes the GetLevity type
family to verify that the type’s kind is lifted. With this approach, if the levity
information were moved within the structure of kinds, we would merely need to

update our definition of GetLevity and leave the user none the wiser.
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