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THESIS ABSTRACT

Konstantin Shvedov

Master of Science

Department of Computer and Information Science

June 2022

Title: Efficient Sparse Neural Network Training

Developments in neural networks have led to advanced models requiring

large amounts of training time and resources. To reduce the environmental impact

and to decrease the training times of models, acceleration techniques have been

developed. One method is neural network pruning, which removes insignificant

weights and preempts the generation of sparse models. This paper attempts

to improve and explore a method of training sparse neural networks efficiently

processing only non-zero values using optimized just-in-time kernels from the

Libsxmm library while randomly pruning network layers at initialization. The

algorithms explored within this paper show a proof of concept and the possibility

of improving training time beyond what the highly optimized PyTorch library

is currently capable of. Through the work in this paper algorithm’s processing

times are sped up over 100-fold. Further, this work provides additional evidence

that advanced pruning algorithms and other improvements can significantly reduce

training times and resources.
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CHAPTER I

INTRODUCTION

Humans produce a massive amount of information through technology,

and there is a growing need for understanding and processing this data. Although

neural networks are resource-intensive machine learning (ML) models, some neural

network architectures have become efficient enough to be used in handheld devices

like smartwatches. However, the more significantly advanced neural networks are

still incredibly difficult to train. For example, GPT-3, a 175 billion parameter

model [4], requires 34 days of training on 1024 GPUs at a cost of $4.6 million,

without including research and development pricing. On top of these expenses, the

training of GPT-3 has a massive environmental impact. The model uses ”several

thousand petaflops/s-days of compute” [4] just during pretraining. The petaflops/s-

days translate into massive electricity usage that not many companies, let alone

individuals, have the money and equipment to develop and train in the attempts of

creating an analogous network.

To reduce the costs and environmental impact (e.g., minimize electricity

use) of training resource-intense neural networks, computer scientists constantly

strive to find new ways to accelerate neural networks’ training and make it more

efficient. M6 [22] is a new, efficient ML model with 10 trillion parameters. By

using one percent of GPT-3’s energy cost after a training time of only ten days,

M6 demonstrates that there is still room for improvements even with the most

advanced models. One preprint even discusses cutting out the most important part

of neural networks, backpropagation [2]. Within the paper, a method is proposed

where gradients are computed based on directional derivatives. The updating

approach during forward propagation presented by Baydin et al. [2] can reduce
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training times by almost half, and the algorithm can be applied to almost all types

of neural networks.

An alternative solution to finding new ways of processing neural networks is

to reduce the amount of data being processed by the neural network. Sparsity has

been a critical area of research in neuroscience research, and it is always present

in the brain [27]. The activity of neurons is always sparse. On the other hand,

sparsity in neural networks is not always present. To introduce sparsity, neural

networks are pruned. Pruning is a method of compression where either weights are

set to zero or entire nodes are removed. Setting weights to zero is a much easier

process but require efficient sparse processing of the layer. Pruning can happen

in different ways and patterns, also called granularity [24]. For example, whole

filter levels or blocks may be pruned out. It is more typical for vectors or specific

values to be pruned out randomly or based on predetermined algorithms that

determine the least relevant values. By elevating the use of pruning post-training, a

network can be compressed. Such an approach was used in a paper in the 1990s

[19]. LeCun’s work [19] was the first to spark an interest and start the field of

neural network pruning. The field since then has progressed to significant extents

and led to highly cited works like Han et al.’s 2015 paper which reduces the size

of a neural network by first training a network, then pruning the less meaningful

connections and finally retraining the model to fine-tune the remaining weight [17].

Although Han et al.’s approach reduces the size of the final network, it does not

speed up the training. Molchanov et al. managed to also achieve smaller and more

efficient neural networks by also pruning after training. Molchanov et al. managed

to achieve a 40% FLOPS reduction while only removing 30% of the parameters

[25].
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Pruning is not only for reducing the neural network weight after training, as

it can also be used to reduce training time. Pruning during training is less common

due to the reduction of accuracy of the model. That said, pruning schedules are one

way to tackle accuracy concerns. In this paper, the neural network is pruned during

training. The PyTorch library is used to prune and set up the neural network

models. During training, each pass through the network takes three main steps:

forward propagation, backward propagation, and weight updates. The sparse

neural network layers utilize Libxsmms highly optimized just in time (OPT-JIT)

Kernels within each step which only process the non-zero values. Processing only

non-zero values should reduce training times, but the sample implementation

uses slow data access methods and redundant reinitializations. The goal is to

optimize the algorithm that handles data transformations for the kernels. Within

this paper, an average speedup of 96.8x times is achieved over the three steps of

the training process. Even though this is still not enough to exceed the PyTorch

dense layer training speed, the work done shows the library’s potential. Through

future improvements, the Libxsmm algorithm will be able to outperform the

PyTorch library. In addition to improving the algorithm, a bug is fixed within the

library code that calls the OPT-JIT kernels that caused invalid values to propagate

through iterations and ultimately crash the training.

The algorithms within this paper are only implemented and used on Intel

CPUs, but similar approaches can be used for GPUs. There is also a possibility of

reducing training times by half if backpropagation can be eliminated by using the

methodology mentioned in the paper “Gradients without Backpropagation” [2]. We

hope that our work promotes research and more uses of the technologies covered.

3



CHAPTER II

RELATED WORKS

The technique of introducing sparsity to neural networks has been around

since their creation in the 1940s. There are four main techniques that have been

explored and used in multiple papers:

1. Pruning before training or at initialization

2. Pruning during training

3. Pruning after training

4. Pruning utilizing the architecture of a neural network

Each of the pruning methodologies can also vary based on different pruning

granularity [24]. One-Cycle Pruning [13] is a new technique that binds pruning

during training with neural network architecture search. The method utilizes non-

random pruning to introduce sparsity into neural networks during training and has

considerable potential.

Granularity, within pruning, has two main categories. The first is

structured pruning, where either complete blocks of weights, vectors or kernels are

removed. Structured pruning can also remove specific weights based on metrics to

heuristically preserve the most significant values [13]. The methods of leaving the

most significant weights aim at finding “The Lottery Ticket” from The Lottery

Ticket Hypothesis (LTH) [9]. LTH theorizes that in a randomly initialized dense

neural network, there is a subnetwork that can be independently trained to match

the accuracy of the full network, and it will do so in, at worst, the same number

of iterations as it takes to train the full network [9]. The second category is
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unstructured pruning, which is when the pruning happens randomly in an attempt

to remove weights without the intention of keeping any specific structure [16]. Both

categories can produce sparse weight matrices, which can be utilized to reduce

computational costs and increase the speed, just like in the preprint paper. Both

granularities can be and are used for the compressions of a neural network.

Several methods of pruning before training or at initialization have

been proposed. One of these methodologies was proposed alongside the LTH

by Frankle and Carbin [9] within the second paper on the topic by Frankle et

al.[10]. Unfortunately, this method is highly expensive as the “Lottery Ticket” is

challenging to find within a neural network.

Pruning after training is one of the more common methodologies. It is

a less difficult process where all network weights are known after training. The

post-training pruning is done to reduce costs during the use of the network. For

example, Molchanov et al. managed to achieve a 40% FLOPS reduction while

only removing 30% of the parameters [25]. Within the scope of pruning during

training, structured pruning is the go-to method to avoid losing connections within

a neural network that could be part of the LTH. One proposed technique is pruning

on a fixed interval schedule. Feature relevance scores guide the pruning process.

It is tested within a paper [1] and produces positive results displaying drops in

processing times while achieving less than 1% drop in accuracy with significant

model compression over CIFAR-10 [14], CIFAR-100 [15], and ImageNet [6] datasets.

A recent paper by Hubens et al. [13] also uses feature relevance scores in

their One-Cycle pruning technique. Hubens et al. approach scheduling with a math

formula that gradually increases the pruning done at each step and reduces pruning

rates when approaching high sparsity. The method achieves higher accuracy under
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80%, 90% and 95% sparsity than One-Shot, Iterative and Automatic Gradual

pruning on the CIFAR-10 [14], CIFAR-100 [15] and Caltech-101 [8] datasets using

the ResNet-18 [11] network.

While pruning remains the most significant element that has to be optimized

in the future to achieve high accuracy, there are alternative methods of handling

sparse data. As an alternative to the kernels used within this paper, Lewis et al.

[20] developed a technique where data is efficiently routed to “expert” kernels

that had a fraction of the model’s parameters and were specialized working with

those parameters. Another method utilizes exponentially smoothed gradients

(Momentum)[7]. The momentum is used to redistribute pruned weights across

layers using the mean momentum magnitude of each layer. Dettmers and

Zettlemoyers methodology manages to achieve up to a 5.61x faster training than

dense layers.

Future works with techniques from this paper should include testing on

GPUs and with deep neural networks. Marcin Pietroń, Dominik Żurek explore such

techniques in their paper [26].
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CHAPTER III

SPARSE JIT KERNELS

Training a sparse neural network involves three kernel-related steps. The

first step is forward propagation. The backwards pass within neural networks

consists of the two remaining steps: backwards propagation and weight updates.

The sparse OPT-JIT kernels from the Libxsmm library are the basis of the

algorithms that are optimized within this paper. The kernels are optimized for

sparse matrices and multi-core CPUs. The algorithms for the three steps are

written in C++ using PyTorch structures (tensors) but have a connecting layer

of Python. Python allows for easy data access, model building and training. In the

future, when the algorithms are fully optimized, they may be added to the PyTorch

library.

Within a dense neural network, all matrices are stored in either a row-major

or column-major format. Each steps algorithm transforms the data into appropriate

formats for each kernel before transforming it back. Once internal improvements

are complete, interlayer communication optimization should be explored since the

removal of extra transformations of data will lead to a significant speedup of the

algorithms.

The forward propagation algorithm focuses on transforming data for the

kernel. It accepts the batch input vectors I (size M × N) that are multiplied with

the weight matrix W (size N × A), producing the output vectors O (size M × A).

Within the forward kernel, all parts are in the column-major format. The forward

kernel executes the following:

I ×W = O (3.1)
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The backward propagation algorithm uses a kernel that multiplies dO a

column-major differential of the output matrix with W T , a row-major transposed

weight matrix. The output is dI a column-major differential of the input matrix.

The differential matrices have the same sizes as the original matrices.

dO ×W T = dI (3.2)

The update algorithm uses a kernel that multiplies IT a row-major

transposed input matrix with dO a column-major differential of the output matrix,

and the output is dW a column-major differential of the weight matrix.

IT × dO = dW (3.3)

In neural networks with sparse inputs there are multiple ways to store sparse

weight matrices in order to decrease the size and increase processing speeds during

forward and backward passes. The Libxsmm library uses Compressed Sparse Row

(CSR) and Compressed Sparse Column (CSC) formats, which are complementary

to each other in the way that row-major and column-major formats are to each

other. The CSR and CSC store the data using three one-dimensional arrays:

values, rowptr/colptr, and colidx/rowidx. The values array contains the values of

all non-zero elements from the sparse matrix. The rowptr/colptr arrays contain the

indices of the first element in each row/column. The colidx/rowidx arrays contain

the column/row index of each non-zero element.

To maintain the consistency of the formats through the forward and

backward passes during training, the forward kernel multiplies column-major input

I with the W matrix stored in a CSC format (sparse), producing a row-major
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output matrix O. The backward kernel multiplies the output dO, a column-major

differential, with the transposed CSR weight matrix W T (sparse). This produces

a column-major differential of input IT . The update kernel multiplies a row-major

input matrix IT a column-major differential of the output matrix dO and produces

the differential weight matrix dW in CSC format (sparse).

The Libxsmm library uses common optimization techniques for the

algorithm and for the kernels, such as loop unrolling. On top of the common

techniques, the kernels use Just-in-Time techniques (OPT-JIT) to hard code indices

for CSC and CSR formats and save addresses. This is done to reduce overhead.

The hard-coding of these values is justified by the unchanging sparsity pattern over

100 to 1000 iterations.

Within each of the three steps of the training process, the Libxsmm library

transforms the full size, pruned matrices into compressed formats. The compressed

data is then split into processing blocks that are passed to kernels that calculate

the results in parallel. The final step of each algorithm is to transform the results

back into full size matrices, before passing them back. Each of the kernels that are

used at each step, were initially optimized through C before applying just-in-time

techniques.

3.1 Forward Kernel

To achieve high performance, the forward kernel must process I ×W = O,

where I is in CSC format while the other two matrices are dense. The multiply

and add operations are fully unrolled within the kernel to avoid instruction

latency. The sparse multiplication that is completed is a sparse matrix by matrix

multiplication (SpMM) and can be bound by computation. To tackle the possibility

of computational bottlenecks, the multiply and add operations are implemented
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as Single Instruction/Multiple Data (SIMD) operations to increase instruction-

level parallelism (ILP). Cache locality is improved through the blocking of the

matrices; specifically, they are blocked along the rows of the input matrix and the

columns of the weight matrix. The executions of the blocks are then parallelized by

assigning them to different threads. To further reduce execution times of the kernel,

a temporary vector is used to accumulate results and only writes the vector back

after the final results are calculated.

Algorithm 1: Forward Kernel

Input : Sparse matrix W stored in CSC format (size N x A), Input
Matrix I[M ][N ]

Output: Output Matrix O[M ][N ]
1 // parallel
2 for k = 0 to A by AB do
3 for m = 0 to M by MB do
4 for ab = 0 to AB by 1 do
5 aa = a+ ab
6 colstart = W.colptr[aa]
7 colend = W.colptr[aa+ 1]
8 // Initialize a vector of length MB to zero
9 O vector ← 0.0

10 for i = colstart to colend do
11 j = W.values[i]
12 k = W.colidx[i]
13 // loop unrolling and SIMD
14 O vector[m]+ = I[m][k] ∗ j
15 end
16 O[aa][m] = O vector[m]

17 end

18 end

19 end

In order to leverage just-in-time code generation to handle sparse data,

finite element method (FEM) simulations are used from other works [3], [12]. The

underlying idea is that sparsity patterns of the FEM operator are hardcoded into
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the instruction stream. The last piece of the puzzle is to transform the data into

a five-dimensional set. Each three-dimensional block is handled separately by a

kernel that is created specifically for its patterns. The five-dimensional data storage

is required to avoid instructional cache overflow. Each of the kernels is scheduled

to different cores. To improve the kernel even more, the result matrix columns are

treated as scratchpads, which allows the implementation of completely unstructured

access and higher levels of parallelization.

3.2 Backward Kernel

Algorithm 2: Backward Kernel

Input : Sparse matrix W T stored in CSR format (size A x N),
Differential of Output Matrix dO[M ][A], Index translation from
CSR to CSC idxmap[y], W T ’s rowptr, W T ’s colidx

Output: Differential of Input Matrix dI[M ][A]
1 // parallel
2 for n = 0 to N by NB do
3 for m = 0 to M by MB do
4 for nb = 0 to NB by 1 do
5 nn = n+ nb
6 rowstart = rowptr[nn]
7 rowend = rowptr[nn+ 1]
8 // Initialize a vector of length MB to zero
9 dI vector ← 0.0

10 // loop unrolling and SIMD
11 for i← rowstart to rowend do
12 j = W.values[idxmap[i]]
13 k = colidx[i]
14 dI vector[m]+ = dO[m][k] ∗ j
15 end
16 dI[nn][m] ← dI vector

17 end

18 end

19 end

The backwards kernel that is used during the backwards pass executes dO ×

W T = dI, where W T is a sparce matrix in CSR format, while the other two are
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dense matrices. In comparison to the forward kernel, due to the format used to

store the sparse matrix, the backward kernel needs a separate approach to avoid

the either loading W T multiple times or read and write to each location in dI.

Due to the sparsity patterns being the same over many iterations, an

idxmap is created that stores the index translations from CSR to CSC of non-

zero values and stores them in an array. The rowptr and colidx arrays are also

precomputed. With these edits, the W T matrix can be treated as a CSC matrix

allowing the optimizations used in the forward kernel to be applied to the backward

kernel. The index lookup is done before executing the SpMM computations. The

OPT-JIT kernel for the backwards propagation is identical to the one in forwards

propagation.

3.3 Update Kernel

Algorithm 3: Update Kernel

Input : Sparse matrix dW stored in CSC format (size N x A),
Differential of Output Matrix dO[M ][A], Input Matrix IT [N ][M ],
Column Index kidx[y]

Output: Differential of sparse weight Matrix dW
1 Initialize all points in dW.values to zero
2 for m = 0 to M by MB do
3 // parallel
4 for i = 0 to y by Y B do
5 n x = dW.cidx[i+ x] (x=1,...,YB)
6 a x = kidx[i+ x] (x=1,...,YB)
7 // Initialize Y B vectors to zero
8 dW x ← 0.0(x=1,...,YB)
9 // loop unrolling and SIMD

10 for mb = 0 to MB by 1 do
11 mm = m+mb
12 dW x+ = IT [n x][mm] ∗ dO[mm][a x]

13 end
14 dW.values[i+x] += sum(dW x) (x=1,...,YB)

15 end

16 end
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The update kernel that is used during the backward pass executes IT ×

dO = dW where dW is a sparse matrix in a CSC format of size N x A while the

other two are dense matrices. The update kernel is only required to produce the

non-zero values of the output matrix when multiplying the input matrix. Just as

in previous kernels the multiplication and addition operations are fully unrolled

and implemented as SIMD operations to increase instruction-level parallelism.

But under the circumstances of when A is small, the algorithm may not be able

to provide the high levels of parallelism that the kernel relies on. In order to

circumvent this issue, each non-zero values position index needs to be known,

and the matrix is stored as Coordinate list format (COO) instead. Since the row

indices are known, column indices are calculated. The values are then grouped

and executed in parallel on different threads using the unrolled SIMD operations

mentioned earlier.

Overall, the OPT-JIT kernel has not changed from the update kernel. The

sparsity pattern is still hardwired into the kernel. The inner product is computed

as a real inner product, not as an outer product how it was in the forward kernel.

This is due to the chosen memory layout.

3.4 Bug in Update Kernel

During testing of neural networks, a problem was found that during training

of a small three-layer neural network. The crashing of the training process was

happening at random times and random epochs. To find the problem, seeded

randomizers were used to reproduce the problem. The problem persisted with high

levels of randomness. In order to find the error, multiple techniques of debugging

were used. The Libxsmm library algorithms were dissected in order to find the

error.
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The bug location was found within the C++ library code and related to how

memory is allocated to the PyTorch tensors that are transferred in from Python.

The empty() function is used, which allocates memory without setting any of

the values to a default value. The solution was to use zeros() function, which

set all allocated memory to zero values. Without this change, the values cause

propagation and exponential growth of values during training. The change also

brings a 19x increase in allocation times even though both allocation time values

are below 0.3 milliseconds. The change is insignificant in the current state of the

algorithm and processing times, but in the future will be addressed through the

allocation of space during model construction.

The most likely reasoning for the implementation that was causing problems

during testing for this paper is that the library sample was only tested with a

one-layer neural network, and then the work was dropped. The library sample

on git currently does not have the implementation and code that is used within

the preprint paper. The design of the neural network tested within the scope of

this paper is a 3-layer neural network. The three layers need to have zeroed out

values to be able to operate within a model properly. All extra layers used in the

model are not intended for sparse processing and use the incorrect values due to the

library’s sample implementation.

3.5 Algorithm Improvements

The improvement of the algorithms and the discovery of future

improvements within the code connecting PyTorch to the kernels is the primary

goal of this paper, as they show the proof of concept needed to continue with

this work. The code has the potential to exceed the speed of PyTorch executions,
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especially when the neural networks become extremely large. There are currently

four problematic areas within the algorithms:

1. PyTorch C++ API

2. Access to data in PyTorch tensors

3. Structure and data reinitialization

4. Backward propagation

Firstly, the PyTorch C++ API, which is used everywhere, is slow due to it

imitating its python counterparts to ease the use of the API. Secondly, the access

to all the data within the PyTorch tensors is a bottleneck. Thirdly, within the

current implementation, many structures are reinitialized at each epoch, which

minimizes the reuse of structures. As the fourth and final point, the backwards

propagation is split into two sections that do not communicate with each other.

The initial implementation of the Libxsmm algorithm that this paper

is working with uses the PyTorch API as an easy way to implement and test

solutions for their kernels. The kernels are optimized and outperform many other

libraries like Intel MKL SpMM. On the other hand, the use of the PyTorch API

dramatically reduces efficiency. The API is aimed at smoothing the boundaries

between C++ and Python but is not intended to be called hundreds of times.

This is the case in the Libxsmm library during the transformation of matrices

from dense to sparse and back after the execution of the kernels. In order to

counter the relatively slow translations of the API to access data, an alternative

is used. Specifically, the data is accessed through flat pointers, even in the case of

5-dimensional data. The flat pointers allow for quick, direct access to the values
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without the need for convoluted API calls. Furthermore, a few transformations like

reshape and permute from the PyTorch API are used multiple times within each of

the three algorithm steps. These algorithms are easily translatable into C++ and

could improve the algorithm significantly once all other bottlenecks are handled.

The current version of the algorithm recreates all structures required by

the model layer on each call. The reinitialization of different structures, especially

kernels, is quite slow and is done at every epoch. As mentioned in the kernel

descriptions, the sparsity does not change for 100 to 1000 epochs currently and

therefore, the reinitialization of structures is redundant. Since each layer is kept as

an object, saving the structure and reinitializing them at specific epochs is a change

that can be implemented without having significant changes within the algorithm of

Libxsmm.

Within the implementation initially taken from the Libxsmm library, the

backwards pass is split into a backwards function and an update function, which

are called directly one after another. Considering the preprint, this could be

explained that each of the kernels described earlier had to be handled separately

to remove any kind of overlap. Each kernel and the code around it had to be

optimized independently. The combination of the sparse backwards function and

the sparse update function would lead to significant improvements. The unity of

the two functions would remove redundant variables and structure reinitializations

within the same epoch. The unity of the two functions would also lead to fewer

structures being saved for each epoch. The algorithm within the Libxsmm function

has other possible improvements that could be found after the four problems

described above are addressed. If the four problems are resolved, the sparse layers
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will outperform the PyTorch library layers. In the future, sparse layer interactions

can be explored to avoid full matrix operations.
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CHAPTER IV

NEURAL NETWORK AND SPARSIFICATION

The Libxsmm sparse library code used in this paper is not as flexible as

its dense python counterpart. One of the most significant constraints is that

the input size has to be the same size as the output, which brings in a couple of

issues, especially when timing. To overcome the issue within the parameters of the

algorithm’s acceleration, the data used for testing, drawn from the IMDb dataset

[23], was created to accommodate specific input parameters. The sparsification used

for testing is also very limited and had to stay at relatively high percentages due to

the library’s constraints.

4.1 Neural Network Testing Methodology

The neural network used for all testing has only three initially layers. The

layers are either dense linear PyTorch or the sparse Libxsmm layers. Each layer

is identical in size to the other two but, in some cases, sparsified using a different

random seed. The Modified National Institute of Standards and Technology

(MNIST) dataset [18] is used for its relatively large feature size (784) while still

producing helpful training results. Loss is used over the accuracy value because

the optimization of the network and testing of different models is not the target.

Therefore, the accuracy is irrelevant until the analysis of the effects of sparsification

in future works. The IMDb dataset [23] is used in conjunction with MNIST

during final testing due to the high malleability of data through an embedding

and a pooling layer. Embedding layers are mainly used for Natural Language

Processing as an alternative to one-hot encoding and help reduce dimensionality.

The embedding process turns each word into a fixed-length array of real values

instead of 0’s and 1’s. First, each word in the dataset is one-hot encoded into
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numbers that represent words. This paper uses a set that has already completed

that step. Then each input is padded with zeros in order to achieve the same

length. Next, each value in each input array is transformed and is embedded

and turned into an array. We now have a two-dimensional array of values. The

Libxsmm sparse layers only accept one-dimensional input. An average pooling layer

is used to downsize average values into a single dimension. The Global Average

Pooling averages each index with the same index of every array within a single

input. With these two layers, any size of input can be created, which is precisely

what is needed for timing the different layers and speedups.

To find the bottlenecks within the Libxsmm algorithm, the IMDb dataset

[23] was used with a single layer model. The one-layer allowed for a more

straightforward testing process and smaller wait times. Initially, each of the

three algorithms were divided into four sections. The sections were grouped

together based on there functionalities like initialization, dense to sparse matrices

translations, kernel creation and execution. Unfortunately, the values produced

from the timing of these sections provided minimal information and were all more

or less the same. Each algorithm was then divided into ten or more sections which,

each had individual times. This brought a clear understanding of the bottlenecks

since some sections took 0.03 seconds to execute while one would take 7 seconds

to execute. The largest values section were then looked at and dissected in the

attempt of finding a possible improvement.

4.2 Future Work of Sparsification

The specific pruning technique focused on and partially used in this paper

is unstructured gradual pruning. The pruning of matrices within neural networks

is common, especially between layers. Pruning strengthens some connections and
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allows for a better adjusted neural network. The pruning done in this paper is

not intended to optimize accuracy but aims to decrease the training time while

upholding similar loss values when compared to dense PyTorch layers. The testing

complete within the paper only executes unstructured pruning on the layers right

after creation. The pruning used is anywhere between 80 and 95 percent as this is

the best working range for the Libxsmm library.

The Kernels used for each of the three steps are optimized to be used with

sparse data. There is a problem with pruning right from the start, as it may

prevent the neural network from learning critical values that are needed further

down in testing. To avoid accuracy loss through pruning in the early stages of

training, alternative methods have been developed to solve the issue. There are

three types of pruning that are often used within neural networks during training.

The first type is One-Shot pruning. One-Shot pruning is one of the first pruning

methods adopted, where redundant weights are pruned within one step [21].

The second type is iterative pruning which was first used and tested in 1997 by

Castellano et al. [5]. Within the iterative pruning method, the pruning happens

based on a criterion and happens at specific intervals. After each pruning event,

weights are adjusted in order to lessen the impact on the network’s performance.

The third type that is still being developed and tested is Automated Gradual

Pruning [28]. The pruning quite often starts after a few full iterations and then

follows a logarithmic curve leading up to a specific sparsity level. AGP pruning

relies on effective scheduling. New methods of pruning are being developed

constantly. For example, a new pruning method was developed in April of 2022,

One-Cycle Pruning (OCP) [13]. Based on a mathematical equation, OCP is

scheduled and starts from the second training step. OCP holds a low sparsity
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while slowly pruning within the first 20% of training, then raises the sparsity levels

relatively quickly before slowing down the pruning closer towards the middle of

training. The schedule can be adjusted to fit different data. Overall One-Cycle

Pruning has the best performance out of all previously mentioned methods [13].

The only other pruning method that comes close is AGP.

In the case of our neural network, pruning scheduling is critical to be

addressed in future developments of the project. The idea is to switch to the

Libxsmm library layers after a specific point within training. The swap would

happen as soon as the improved Libxsmm algorithms would start outperforming

the PyTorch dense layers, approximated to be within the range of 50-70 percent

sparsity. Within the scope of the design of the Libxsmm kernels described in 3.1-

3.3 it may seem currently, that iterative pruning may be the only methodology to

follow. This is a false assumption. The Libxsmm speed and efficiency depend on

reusing the same sparsity patterns over 100-1000 iterations. When considering how

pruning happens within any schedule that is not One-Shot pruning, any additional

pruning after the initial pruning step is only the addition of ignored values to the

previous set of values (replaced by zero’s). Suppose the pruning of the layers is

done using One-Cycle pruning, but the sparsity patterns are update after 100-1000

iterations. In that case, there is a possibility of not only keeping the high levels

of accuracy while pruning but to also decrease training times through the use of

optimized JIT kernels from Libxsmm. Scheduling the pruning patterns updates on

an iterative schedule to match the sparsity patterns at certain iterations generated

by OCP should then be combined with swapping between dense PyTorch layers and

sparse Libxsmm layers. This complicated approach should reduce the training time
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while keeping high accuracy levels and using the kernels from Libxsmm to their full

potential.
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CHAPTER V

TESTING AND RESULTS

Testing was accomplished on two systems. After finding the bug and fixing

the issues, the testing of the neural network was conducted on Windows 11 within

a Windows Subsystem for Linux on an Intel i9-11900k CPU with sixteen 3.504GHz

cores and 64 GB of available RAM. Unfortunately, the system was deemed unstable

for speed testing purposes due to processes in the background that could have

potentially affected the resources and given uneven results. Therefore, the timings

were carried out on an isolated system on Azure servers with Intel Xeon Platinum

8272CL with eight 2.594GHz cores and 16GB of available RAM.

Figure 1. Testing of built neural network before pruning tests

The work done within the parameters of this paper is a continuation of the

existing work within the Libxsmm library. As the first step, as described in 3.4,
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the bug was found, and testing was done to ensure that the library was stable.

Real data was used as the data set for training the neural network for testing

purposes. This was done as a matter of progression from the artificially generated

dataset used prior within the library. The MNIST data set [18] was used as the

basis for testing of the stability of the Libxsmm library versus PyTorch. Each

training input image was flattened (784 parameters) and sent through a linear layer

with an output of 256. The linear layer was used as a means of preparation for

the Libxsmm library as it currently only handles the same size input and output.

Three more linear layers follow. Each of the three layers is either a Libxsmm sparse

layer or a PyTorch linear layer. Each of these three layers are also followed by

a ReLU activation function. The final layer is the PyTorch linear layer used for

prediction with an output of size ten since the MNIST dataset has 10 possible

outcome classes. The neural network is updated based on Cross-Entropy Loss, and

Stochastic Gradient Descent (SGD) is used as the optimizer. A run of a non-pruned

network was completed in order to get results to show the neural network worked.

The results of the run can be seen through the plotting of the loss value within

Figure 1.

In order to test if the Libxsmm library could run after the bug was found, a

pruning value of 80% was introduced to each of the three middle layers. The neural

network was then run with PyTorch pruned linear layers and afterwards ran with

sparse Libxsmm layers. As seen in Figure 2, both layer types had relatively similar

results staying within 0.0011 of each other. The goal of the first tests was not to

achieve high accuracy due to the simplistic nature of the neural network. The goal

was to achieve proof that the Libxsmm library can perform in a similar fashion to

PyTorch while both were pruned.
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Figure 2. Comparison of loss value of 20 epochs on 80% pruned layers of PyTorch
and Libxsmm

Many different tests were run to find the bug and increase the speed of

the algorithm. In order to have a proper testing platform for timing the three

steps of a single pass through, multiple data sets were generated from the Review

IMDB dataset [23]. The 32k word vocabulary preprocessed set was taken as the

starting point. The dataset was then sent through an embedding and pooling

layer (a separate neural network which did nothing else). It was set up so that

it could produce any size output, from a number of parameters to a number of

labelled inputs and then saved in a compressed NumPy format. The compressed

format allowed for fast loading speeds during testing. The training set consisted

of 1024 values within the speed tests, but only 256 were processed. Three sizes of

parameters were used in the final stages of timing: 2048, 4096 and 8192, with 95%
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Table 1. Improved sections and average improvement over five runs with 8192
parameters

Algorithm Step Section Average Original Average Improved Speedup

Forward Propagation

3 8.8879556 0.2492186 35.66329158
6 290.689211 1.0675274 272.3014051
14 10.1442202 0.0054376 1865.569406

Total Time 4.7637284 0.0045542 1046.007729

Backward Propagation

3 155.6714024 0.1494578 1041.574293
6 10.0698044 0.0072006 1398.467405
17 171.8117866 1.4448802 118.9107489

Total Time 171.8117866 1.4732346 116.6221501

Update

3 8.7762556 0.2540864 34.54043821
4 4.6152412 0.0051104 903.1076237
7 284.6178568 1.089135 261.3246813
17 16.3454872 0.1275142 128.1856232

Total Time 316.5985916 3.638552 87.01224872

of the values being pruned. The neural network was reduced to just one processing

layer, which was timed internally for Libxsmm cases and one output layer. The

layer had an exact input size of the number of parameters presented within the

data. In order to determine the areas of focus for improvement, each of the three

sections, forward propagation, backwards propagation, and the weight updates,

were split up into initially four sections that correlated with the allocation of data,

the transformation of data, kernel creation and kernel execution. Unfortunately,

this methodology didn’t bring enough insight. As a result, the forward pass was

divided into 15 sections, and the backward pass and update were divided into 17

sections. Each bottleneck was treated one step at a time from this point onwards.

As seen in Table 1, a total of 10 sections were addressed. The treated

section were all using PyTorch C++ API to access or interact with data in tensors.

The API that was used originally is intended for an easy way of interacting with

C++ code using similar formatting to Python but was not optimized. In order

to avoid the API, the structures were directly addressed through flat pointers.
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Table 2. Average time taken to execute a single pass over five runs

Execution Time (s)
Number of Parameters PyTorch Original Improved

2048 0.05687 57.76065 0.53287
4096 0.19420 149.1451566 1.9170886
8192 0.61506 799.42606 7.66747

In two cases, the flat pointers addressed five-dimensional structures (section 6 of

the forward pass and section 7 of the update). The next step is to address kernel

creation, as it is currently the largest bottleneck. Kernels are created at every call

of the algorithm, and the retainment of kernels is crucial to the speedup of the

algorithm.

Table 3. Comparison of speed over different implementations

x Times SpeedUp
Number of Parameters PyTorch over Original PyTorch over Improved Improved over Original

2048 1015.6407 9.3698 108.3953
4096 767.9916 9.8716 77.7977
8192 1299.7570 12.4663 104.2620

Average Speedup 1027.7964 10.5692 96.8184

Table 2, shows the time it took for each of the algorithms to execute with

95% sparsity. From Table 3, it can be seen that even though an x96.8 times speed

up was achieved, the improved algorithm is ten times slower than PyTorch. The

algorithm can outperform PyTorch, but it will require addressing the issue of

reusing structure with each pass. Currently, all structures are recreated. Avoiding

the reinitializations will reduce processing speed considerably.
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CHAPTER VI

CONCLUSION

The work completed in this paper in the direction of accelerating the

Libxsmm sparse layer algorithms to outperform the PyTorch dense layer

implementations has delivered a x96.8 times decrease in time to the original

code while maintaining similar values of loss to the PyTorch dense layers. With

the current increase in speed of the algorithms, there is a lot of potential for

improvement. There are a multitude of approaches that can be used in the

attempts of improving the code to be able to outperform PyTorch. The choice

should be made through finding the bottlenecks through the current timing scheme.

With the current state of the algorithm, the next step for improvement is to

develop a method of retaining structures and kernels from one epoch to another.

The bug that was initially the biggest concern in the project has been found and

corrected.

The improvements to the Libxsmm code, unfortunately, still are not close

enough to PyTorch values to say definitively how much of a speed up future

development to the code could have. Assuming the Libxsmm algorithm can

outperform PyTorch, the possibilities and potential of using the sparse algorithm

within different pruning schedules are very promising. Different strategies such as

iterative pruning, Automated Gradual Pruning and One-Cycle pruning should be

tested. The kernel implementations are essential to consider since they are designed

to reuse the same sparsity patterns over 100-1000 iterations. A possible solution is

to have separate schedules for pruning and for updating the kernels. This solution

entails pruning a network, possibly with One-Cycle pruning, and having the kernels

updated to catch up with the sparsity levels. Another area to explore is the swap
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between dense and sparse layers at a certain level of sparsity. The swapping of

layer implementations could considerably impact performance since dense layers

can outperform substantially any kind of sparse layer with sparsification densities

of below 50%. Research must be done into the comparison of the performances

depending on sparsity if a swapping approach is to be used at any point.

Future work centers around the improvement of the Libxsmm algorithm

using the optimized kernels to the point where it outperforms the PyTorch dense

layers for seventy percent sparsity and above. Once these improvements are

complete and all other possible improvements that were mentioned within 3.5. are

attempted, pruning scheduling can start. Overall, the work done is very promising.
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