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THESIS ABSTRACT

Abdulaziz Alabduljalil

Master of Science

Department of Computer Science

March 2024

Title: MCBench: A Multi-Cloud Benchmarking System

In today’s climate, there is a trend of enterprises moving their systems and

applications to the cloud, with systems working within multiple cloud providers.

However, as the trend continues, there remains a lack of a benchmarking system

to adapt benchmark applications to multi-cloud paths. We introduce MCBench,

a benchmarking system able to seamlessly work with any application which uses

microservices to containerize for easier usability. We also study the performance of

different applications in inter-region and intra-region multi-cloud paths, measuring

latency and throughput. We show MCBench’s performance is consistent whether

running a single or many sequentially run applications, and is affected slightly by

cross-traffic.
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CHAPTER I

INTRODUCTION

In the ongoing “Cloudification” of the Internet, the rapid adoption of

multi-cloud strategies by modern enterprises has become a defining trend.

Instead of building infrastructure around local servers, companies have sought

to connect servers across the world using the cloud. This trend is driven by a

several compelling advantages, including competitive pricing, mitigating vendor

lock-in risks, achieving global reach, and addressing the imperative need for data

sovereignty. A recent industry report underscores the magnitude of this trend,

revealing that over 85% of enterprises have already embraced multi-cloud strategies,

marking a paradigm shift in how organizations approach their digital infrastructure

[10].

However, as the multi-cloud trend continues, enterprises encounter a

challenge in the complexity associated with configuring and managing diverse cloud

application across multiple cloud providers. The complexity is born out of the

heterogeneous compute and network infrastructure across different cloud providers,

with the convenience of mixing cloud providers underlined by the difficulty of

configuring applications to perform according to different provider standards.

One of the duties of a network administrator is to continuously benchmark

their network and identify any anomalies to fix and repair. Running benchmarking

applications is one form of measuring a network’s performance. However, the

heterogeneous nature of multi-cloud networks makes it difficult to benchmark

these networks while navigating the complexity of constructing paths from one

cloud provider to another. There is a lack of a universal standard or general system

that works with different cloud providers, since such a system needs to conform
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to each cloud provider’s rules. Current benchmark systems have been built for

homogeneous networks and cannot measure multi-cloud paths [13].

What is needed is a benchmarking system that works universally with

any multi-cloud network and is extensible to allow developers to run their

benchmarking applications on it. The system needs to be lightweight, unaffected

by cross-traffic, and perform well when under stress running multiple application to

save time for developers.

In this work, we will introduce MCBench, a containerized multi-cloud

benchmarking system capable of running any application developers wish to

benchmark with. The system addresses the issues faced by state-of-the-art, and

is lightweight, extensible, and robust against cross-traffic. We also conduct a

characterization study that observes MCBench benchmarking many multi-cloud

networks through two analyses: (1) A longitudinal report of multi-cloud networks

through MCBench; (2) A before/after analysis of introducing cross-traffic to

MCBench.

After conducting our analyses, we find that MCBench is able to run

one benchmarking application or several sequentially with almost no loss in

performance. While there are many outliers in inter-region multi-cloud paths, we

find that MCBench does not lose latency or throughput in both intra and inter-

region networks. Finally we find that MCBench is able to withstand cross-traffic

that consumes 20% of the total bandwidth with only up to 10% increase in latency.
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CHAPTER II

BACKGROUND AND MOTIVATION

In this chapter, we will discuss the background of network measurement in

both mono and multi-cloud networks, as well as the challenges faced building a

multi-cloud benchmark system

2.1 Challenges

Many benchmarking systems have been built to measure a network’s

performance and pinpoint issues to the network’s administrators. The systems

strive to be timely and easily manageable for developers to use, with varying

degrees of success. However, as enterprises shift their infrastructure from private

to cloud to multi-cloud networks, the complexity of measuring networks rises.

The difficulty of working with multiple cloud providers while avoiding traffic

from multiple sources has born a lack of benchmarks that work with multi-cloud

networks. Heterogeneous computing and network infrastructure has created more

requirements are needed from these benchmarking systems.

Due to the fast changing climate of network infrastructure, benchmarking

systems need be lightweight and easily switch from one system to the next.

Systems need to be easily installable, movable, and quick to use. Next, with new

benchmarking applications being developed to address the rapid change, the system

also needs to be extensible for developers to quickly swap in their applications and

run their benchmarks. Lastly, as more multi-cloud networks are used, increased

traffic, chances of congestion, and interfering noise occur. New benchmarking

systems need to address the problem by being robust against cross-traffic so as

to keep benchmarking results pure.
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2.2 State-of-the-Art

Current state-of-the-art systems that tried to address benchmarking multi-

cloud networks try to simplify the cloud infrastructure rather than work with it.

One system, Invisinets [9], has tried to reduce the complexity for cloud operators by

removing the abstractions set by the cloud providers. A developer only need to deal

with a set of computing parameters through Invisnets API which then translates

to the different building blocks of cloud providers. While Invisinets works well with

mono-cloud networks, not only does the API require a relationship between the

cloud provider and many enterprises, when multi-cloud networks are considered,

configuring for thousands of enterprises all with their own set of desired parameters

will be unnecessary work for cloud providers.

Other benchmarking systems [4, 5, 6, 7, 11] perform well with multiple

multi-cloud networks. easily installable and lightweight. However, they tend to

serve one benchmarking purpose and do not allow developers to use their own

applications. These systems also require a noiseless path to test and perform poorly

when cross-traffic is introduced.

2.3 Requirements of An Ideal Solution

As discussed in the challenges faced (§ 2.1), what is critically lacking in

the cloud climate is a benchmarking system able to work across different cloud

providers. The benchmarking system has to be lightweight and user-friendly to

avoid adding to the complexity inherent in using different cloud providers. The

system must also be easily extensible by developers who wish to use their own

application benchmarks and accommodate their diverse needs. Lastly, an absence of

a benchmarking capability aggravates the critical gap in understanding multi-cloud

paths, necessitating a thorough characterization study.
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CHAPTER III

OVERVIEW OF MCBENCH

In this paper we introduce MCBench1: a user-friendly benchmarking

system capable of running on different multi-cloud paths. The system seeks to

revolutionize the benchmarking landscape by providing a unified and streamlined

approach to managing and configuring application benchmarks in a multi-cloud

environment. To build this approach, MCBench leverages micro-services using

Docker [2] to significantly lower difficulty barriers, while making the benchmarking

system lightweight and extensible. Using Docker empowers any developer to

seamlessly add their preferred application of choice. The lightweightness of

MCBench can also save enterprises time with the system’s quick installation and

fast use, and save on cost as Docker is free

3.0.1 Characterization Study. This work also addresses the

aforementioned characterization study by conducting two types of analyses. The

first involves presenting a longitudinal performance report of multi-cloud paths

derived from our benchmarking system, offering valuable insights for enterprise

developers. The second analysis introduces cross-traffic considerations, studying the

impact of cross-traffic on multi-cloud paths through a before-after style analysis.

This holistic approach provides a nuanced understanding of multi-cloud dynamics,

enabling organizations to make informed decisions in their pursuit of optimized

multi-cloud strategies.

1The code and current implementation for this project is in https://gitlab.com/onrg/mcbench
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CHAPTER IV

MCBENCH: DESIGN AND IMPLEMENTATION

In this chapter, we describe the details of MCBench’s implementation and

the methodology of our evaluations, including the tools used and steps taken to

conduct our analyses.

4.1 Implementation

To abide by the three standards we set for a capable benchmarking system

(lightweight, extensible, and robust), we built MCBench around Docker to be both

lightweight and extensible.

Figure 1. MCBench’s architecture

The system’s architecture in Figure 1 shows how MCBench is extensible.

The Docker image, running Ubuntu Linux, acts as the heart of the system,

installing all necessary Linux and Python packages needed to run a developer’s

applications. Although the first build time proportionally long to the amount of

packages installed and their memory, all packages are then cached in the system’s
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storage to enhance subsequent build times and allow developers to tweak their

applications between runs without long wait times. The cache is implemented

using Docker’s code in the dockerfile, telling Docker to install packages, cache them

in storage, and remove any unnecessary installation-helping packages to save on

memory.

MCBench requires some pre-configuration in knowing the credentials of both

endpoints of the path to be benchmarked, including SSH usernames, IP addresses,

or whatever an application might need. The Docker image will then read the

credentials collected as arguments and insert them into the applications. Because of

this structure, developers only need to run the image with the necessary arguments

for their applications without needing to interact further with MCBench during

runtime.

The main shell file includes the applications themselves, running them based

on the arguments inserted while running the docker container. The shell file also

imports any external data from files necessary to run the developers’ applications.

An example would be our PyTorch model application training and testing in

separate .PY files before their contents imported into the shell file and sent over

an SSH connection to begin benchmarking.

4.2 Measurement Setting

In order to evaluate the performance of MCBench, we have to consider its

versatility and endurance. Thus, two analyses were conducted: (1) Performance

of multi-cloud paths bench-marking applications; (2) Comparison of impact

before/after cross-traffic introduction. To conduct our experiments, we deploy

MCBench on pairs of Virtual Machines (VMs) on different cloud providers. Each

pair acts as sender and receiver while benchmarking the connection the pair shares.
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We conduct our experiments in a series of collective batches, with each pair run

bidirectionally to account for path asymmetry, to performance measurements

including latency and throughput.

4.3 Scenarios and Cloud Regions

As MCBench is meant to perform on multi-cloud networks, several cloud

operators have been chosen to conduct tests on. The evaluations were done in

intra-region and inter-region fashions to showcase MCBench’s performance in close

and far linked networks. For intra-region tests, each cloud provider is connected to

a different cloud provider in the same region, and connected to different regions for

inter-region tests.

The choices for the regions shown in Table 1 were done due to the cost of

renting VMs and close proximity when conducting intra-region tests. Each VM

runs on at least 2 vCPU cores, 1 GB of memory, and Ubuntu server 22.04 LTS.

We also cap the VMs interface to 100 Mb/s to reduce inconsistent results to a

minimum.

4.3.1 Scenarios. The tests revolve around using three

applications/benchmarks: (1) Wrk, an HTTP benchmarking tool; (2) Training

and transferring a PyTorch model over SSH; (3) Sending MySQL data using

HammerDB. The benchmarks are then run in three different scenarios:

– Single Scenario, where each benchmark is run in a separate evaluation and

acts as a baseline.

Cloud Provider East Region West Region
GCP Virginia Oregon
AWS Virgina Oregon
Azure Virgina Arizona

Table 1. Cloud providers and their regions
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– Sequential Scenario, where the three benchmarks are run one after the other.

– Cross-Traffic Scenario, where cross-traffic is introduced while the Sequential

Scenario is running, possibly impacting performance.

4.3.1.1 Sequential Scenario. We run the three applications one

after the other in this scenario by including all three applications in MCBench. The

trio’s performance is compared to the Single Scenario’s performance to estimate

MCBench’s ability to run multiple applications in the same session without much

loss in performance.

4.3.1.2 Cross-Traffic. For cross-traffic, we generate traffic through

Cisco T-Rex [1], an open-source simulated network traffic generator, and introduce

the traffic while MCBench runs its sequential scenario (3 applications sequentially).

We simulate simple HTTP traffic during the entire run limiting the cross-traffic

throughput to 20 Mb/s, 20% of the experiments’ total throughput. The threshold

of 20% was decided by testing increasing amounts of cross-traffic on MCBench’s

performance, with lower thresholds having no effect on the system, and higher

thresholds halting the system’s performance to unacceptable levels.

4.4 Data Collection

We conduct our tests over a 2 month long period, where we run each VM

pair bidirectionally 50 times averaged over both directions. The time conducted

for each run is 3.5 minutes on average for Single Scenario runs and 12 minutes on

average for Sequential and Cross Scenario runs. Each run is measured to collect

latency and throughput measurements. We report the latency using 10 ping probes

over 1-second intervals. For packet loss rate and throughput, we use the iperf3 [3]

tool configured to transmit data over TCP connections in 5-second intervals.
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CHAPTER V

RESULTS

In this chapter, we will use our discussed methodology to observe

MCBench’s performance in the three different scenarios via intra-region and inter-

region paths. We examine the RTT, packet loss rate, and throughput of both single

and sequential runs, where sequential runs are three applications run one after the

other, and compare them for performance differences. We will also observe the

impact of introducing cross-traffic while running a sequential run of MCBench.

5.1 Single vs Sequential Scenarios

We run each application alone and measure their performance. We then

run them sequentially and measure their performance collectively. The single

applications and sequential runs are compared observe the performance difference

when using many applications with MCBench.

5.1.1 RTT. There seems to be no difference in latency in Figure

2 when running the benchmarks on their own versus sequentially in order. As

MCBench acts as a container system for running benchmark applications, the lack

of difference could be attributed to the applications themselves cleaning and closing

connections before the next benchmark is run. The higher average of HammerDB

runs could be the result of sending test packets before establishing a connection to

decide whether said connection is safe and stable.

The choice of path does not seem to have an effect on the latency of these

benchmarks. An assumption could either be the clean construction of these

benchmark applications or the lack of a substantial congestion in any data center

while collecting data.
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Figure 2. RTT of single application runs vs. sequential application runs
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5.1.2 Packet Loss Rate. Figure 3 similarly exhibits little

performance deviations between single and sequential runs. We do notice however

many outliers in inter-region paths, with upwards of 5% and 8% packet loss rate,

while intra-region paths entertain few outliers. While switching cloud providers

does not seem to be a contributor to packet loss, the distance of the path can be

observed as proportional to packet loss. An assumption could be the longer the

distance, the more possible interfering connections along the way, especially with

multi-cloud paths.

5.1.3 Throughput. Figure 4 show the same observations as Figure

2 and Figure 3 with little to no performance difference. Like with packet loss,

throughput sees a lot of low outliers in inter-region paths. We can assume the cause

is the same as for packet loss, long distances allow for more chances for the path to

be hit with noise and congestion.

5.2 Cross-Traffic Scenario

Figure 5 shows that there is little difference in performance runs with no

cross-traffic is on average better by 5 ms for inter-region paths and 0.5 ms for

intra-region paths. The results show MCBench is relatively robust against cross-

traffic, the benchmarks performing without an issue. Cross-traffic consuming 20%

of the available bandwidth while seeing only a 7% increase in latency in inter-region

paths can be chalked up to everyday traffic increase. The 10% increase in intra-

region paths however can be challenging to ignore depending on the application

used. Lowering the network consumption of MCBench by establishing longer wait

times between applications and make closing connections mandatory after each

application runs can probably address the issues see here.
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5.3 CP & Region Trends

During the first month of data collection, we observed a congestion in each

path connecting to Azure’s Virginia data center that caused high latency and low

throughput. We tried to change the day and time we conducted our experiments,

yet the irregularity persisted for an entire month before resolving on its own.

Another trend we observed during the second month was the relatively higher

latency in the Arizona region, again an Azure data center. While the difference

in latency between regions was much lower than the Virginia congestion, it was still

interesting to see both problems occur within Azure’s data centers.

5.4 Summary of Key Results

Our work gives us several key observations for multi-cloud networks. The

portability of MCBench in a Docker container allows for quick installation and easy

handling, making the system lightweight while solving the management complexity

faced with multi-cloud networks. Figure 2, 3, and 4 show that MCBench has

no performance loss when running one application vs. several at the same time,

confirming MCBench is extensible to other applications with no issue. Lastly,

Figure 5 shows no influence of cross-traffic on MCBench, showcasing that MCBench

is robust against cross-traffic.
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Figure 3. Packet Loss Rate of single application runs vs. sequential application
runs
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Figure 4. Throughput of single application runs vs. sequential application runs
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Figure 5. RTT of sequential application runs with cross-traffic vs. no traffic
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CHAPTER VI

DISCUSSION AND OUTLOOK

In this chapter we will first discuss an outline of introducing path

optimization to MCBench, using the most optimal path in the multi-cloud network.

We will then discuss further studies on different methods for path optimization to

integrate into MCBench, as well future work that can improve MCBench from a

user-friendliness standpoint.

While MCBench is able to run benchmarking applications over multi-cloud

networks, the system is currently unable to switch to another network path if it

faces congestion or a large packet loss rate. Even if path hopping is currently out

of this work’s scope, we would like to mention works that are exploring the subject

and how their solutions could integrate nicely with MCBench.

6.0.1 Path Optimization. A recent characterization study [12] has

been exploring the differences between public, private, and cloud internet routes in

terms of latency and throughput. While conducting their evaluations, the authors

use different path discovery methods to ”maximize the amount of responsive

hops” along the way using both scamper [8] and ICMP probes. The inclusion of

these tools within MCBench’s initialization can help find an optimized path for

benchmarking before running its applications. Developers who wish to test a clean

noiseless path or their network at its current best could use a path optimization

path. A yet unpublished paper currently being written, Stratocore, is researching

different path optimization methods that change networks in real-time to meet

demand. The techniques described within the paper can possibly be integrated

into MCBench so benchmarks change to an optimized path their studying during

runtime without disruption to avoid cross-traffic and growing congestion.

17



6.0.2 Enterprise Cross-Traffic Thresholds. In our analysis,

we determined MCBench has little performance loss with a 20% bandwidth of

cross-traffic. However, that 20% threshold only acts as a baseline for MCBench’s

performance. The next to take would be discussing with developers in the industry

on what is the average tolerable performance loss a company will accept for their

network. Those discussions could be used to test MCBench’s limits by increasing

the cross-traffic threshold and observing if the system’s performance falls within the

discussed acceptable levels.

6.0.3 Docker Optimization. As MCBench is built right now, a

developer needs to install their application to the system and any packages it

requires to run. These packages are cached when installed to prevent a long build

time after the first build, saving developers time when making changes to their

application. MCBench’s current flaws lie in the first build time being too long and

the amount of memory the image takes when built. We used three applications (1)

Wrk, (2) PyTorch, and (3) HammerDB for our evaluations, including the packages

needed to run them. Using all three applications, it took a staggering 12 minutes

to build the docker image the first time and 9 GB of space. While later build times

averaged 2.5 seconds, the 12 minutes might be too much to ignore for developers.

A proposed solution to this problem could be looking at pulling Docker

images containing those packages and copying them over to local storage. These

Docker images must be prepared ahead of time, but if the most used packages were

already installed in them, time would be saved by copying these images rather than

installing the packages again in MCBench. Another solution is to use Docker Slim

to produce smaller containers and an image with less layers.
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CHAPTER VII

CONCLUSION

In this thesis we built a user-friendly benchmarking system MCBench using

micro-services that is able t navigate the complexity of measuring the performance

of multi-cloud networks. The system is lightweight, extensible to other applications,

and robust against interfering cross-traffic. The system is made to run using simple

commands, and allows developers to use their own benchmarking applications. We

ran evaluations of MCBench that found its consistent performance across multiple

cloud providers, regions, and applications. Finally we proposed several studies

and ideas to improve the system including possible optimized path detection and

a lower Docker first build time.
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