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Human-computer interaction typically displays single-initiative interaction in which
either the computer or the human controls the conversation. The interaction is largely
preplanned and depends on well-formed language. In contrast, human-human
conversations are characterized by unpredictability, ungrammatical utterances, non-verbal
expression, and mixed-initiative control in which the conversants take independent actions.
Traditional natural-language systems are largely unable to handle these aspects of "feral”
language. Yet human-human interaction is coherent for the participants; the conversants
take turns, make interruptions, detect and cure misunderstandings, and resolve ambiguous
references. How can these processes of control be modeled formally in a manner sufficient
for use in computers?

Non-sentential aspects of conversation such as nods, fragmentary utterances, and
correction can be seen reflecting control information for interaction. Such actions by the
conversants, based on the context of their interaction, determine the form of the
conversation. In this view ungrammaticality, for example, is not a problem but a guide to

these “meta"” acts. This dissertation develops a theory of "meta-locutionary" acts that



explains these control processes. The theory extends speech-act theory to real-world
conversational control and encompasses a taxonomy of meta-locutionary acts.

The theory of meta-locutionary acts was refined and validated by a protocol study and
computational simulation. In the protocol study, subjects were given a codperative
problem-solving task. The conversants' interaction, both verbal and non-verbal, was
transcribed as illocutionary and meta-locutionary acts. The computational model was
developed using a rule-based system written in Prolog. The system represents the
independent conversational knowledge of both conversants simultaneously, and can
simulate their simultaneous action. Simulations of the protocol conversations using the
computational model showed that meta-locutionary acts are capable of providing control of
mixed-initiative discourse. The model agents can, for example, take and give tums. A
single agent can simultaneously take multiple acts of differing control. The simulations
also confirmed that conversations need not be strictly planned. Rather, mixed-initiative
interaction can be plausibly controlled by contextually determined operators.

This research has application to natural language processing, user interface design and
multiple-agent artificial intelligence systems. The theory of meta-locutionary acts will

integrate well with existing speech-act-based ﬁatural-language systems.
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CHAPTER 1
INTRODUCTION

This dissertation presents the motivation, methodology, and results of a qualitative
study of mixed-initiative conversational interaction. The study examines speech meta-acts
which handle the various functions of cotrdinating and producing conversational
discourse. It addresses the problem of multi-agent computer and computer-human
interaction by examining human-human interaction. In the day-to-day experience of
ordinary human interaction, people encounter and deal with multi-agent communication
situations all of the ime. If the processes humans use to produce conversation can be
understood, these insights may facilitate human-computer interaction that conveniently
resembles the interactive discourse of independent human agents.

Human-computer interaction tends to be fragile and frustrating while human-human
interaction displays robustness over a wide variety of circumstances (Hayes & Reddy,
1983). Some of the differences between the two forms of interaction are summarized in
Figure 1. In human-computer interaction, typically either the human or the computer
controls the flow and structure of the interaction. This is single-initiative interaction in the
sense that only one of the parties is empowered to initiate exchanges. This form of
interaction is largely pre-planned, either by the human or by the designers of the program.
Even so, it is largely because they are forced by the interface (or have learned from earlier
frustration) to use well-formed language that the human and the computer are able to
understand each other at all. In contrast, human-human conversations are characterized by

unpredictability, ungrammatical utterances, non-verbal expression, and mixed-initiative
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FIGURE 1. Differences between interaction modes. Human-human interaction (HHI) is
generally more flexible than human-computer interaction (HCI).

control in which the conversants take independent actions. In the face of an unexpected
shift of conversational context, somehow humans are able to understand that the shift has
occurred. Qur every-day language is notoriously ill-formed, full of improper usages,
mismatched agreements, halts and starts, in-line correction of self and other, and utterances
that may not even be words. Moreover, we interpret and express a wide range of
non-verbal behaviors as a concomitant of verbal interaction. In human-human
conversation, both conversants have the power to seize the initiative to meet their own
needs and expectations. If the language of human-computer interaction seems stilted and
tame, the language of ordinary human-hurnan conversation is wild and untamed.
Traditional natural-language systems—even those based on speech acts—are largely
unable to handle these aspects of “feral” language because they mainly rely on parsing
sentence-level interaction and fail to account properly for the context created by the
conversation itself. Conversational processes are apparently not characterized by top-down
planning; they are made up of actions which are responsive to the dynamic conversational

situation.



A striking aspect of conversational discourse is its coherence——the character of making
sense to the conversants. What accounts for the coherent nature of conversation? Despite
the incoherence of human-human interaction to an observer to whom only the words are
given, the interaction is coherent for the participants; the conversants take turns, make
interruptions, detect and cure misunderstandings, and resolve ambiguous references. How
can these processes of control be modeled formally in a manner sufficient to bring this sort
of coherence to human-computer interaction? Although speech act theory adds clarity to the
role of intention in interactive discourse, and implies a central function for intention in
making discourse coherent, intention is not sufficient to explain the coherent nature of
interactive discourse. I argue in this dissertation that shared models play a key role in the
mechanics of conversation and creation of coherence. If interactive discourse is achieved
through a process of maintenance of a shared model, the conversants will have to use
feedback in their discourse as a process control. This feedback is contained in
non-sentential aspects of conversation such as nods, fragmentary utterances, and
correction. Such actions by the conversants, based on the context of their interaction,
determine the form of the conversation. These actions are thus “meta” to the conversation
because they are about the conversation itself rather than constituting its primary substance.
In this view ungrammaticality, for example, is not a problem but evidence of these “meta”
acts.

This dissertation develops a theory of meta-locutionary acts that explains these control
processes. The theoretical approach developed and used here is based on a synthesis of

two schools of thought with respect to natural language. The first, speech-act theory, is a



branch of the philosophy of language.l The second, conversational analysis, is a branch
of the sociology of language. The differences between these approaches results in what I
term the integration problem. 1 propose a solution to the integration problem and then use
this result to build an operator-based model of conversation. The theory, which
encompasses a taxonomy of meta-locutionary acts, thus extends speech-act theory to
real-world conversational control.

The theory of meta-locutionary acts was refined and validated by a protocol study of
human-human interaction and a computational simulation of this interaction. In the
protocol study, subjects were given a codperative problem-solving task in a simple domain
which necessitated linguistic interaction. The conversants’ behaviors, both verbal and
nonverbal, were transcribed, and their interaction was mapped into illocutionary and
meta-locutionary acts. The simulation was developed using a rule-based system written in
Prolog; it embodies a system which, based on the theory of meta-locutionary acts, shows
that the theory has practical explanatory power. It extends the work of Power (1979) to
meta-locutionary phenomena. Power produced a simulation of two robots who used and
recognized illocutionary force in simple conversations. The system for this dissertation
contains independent knowledge bases for both conversants and can represent their
separate conversational knowledge simultaneously. The conversants simultaneous actions
can then be simulated in the rule-based system on a cycle-by-cycle basis. Simulations of

illocutionary and meta-locutionary acts in the conversations obtained in the protocol study

1Spev.ech-act theory is the source of the terms locution, illocution and perlocution. The
spoken words are a locution; illocution is the rhetorical force of the utterance; and
perlocution is the change wrought by the illocution. The term meta-locution is an invention
of the author's which refers to speech about speech. A meta-locutionary act is an
illocutionary act which has as its intended perlocutionary effect a change in the the
conversation in which the act itself occurs.



showed that meta-locutionary acts are capable of providing contextually appropriate control
of mixed-initiative discourse.

The dissertation concludes with an assessment of the computational model, including
proposals for extension, and a discussion of the implications of meta-locution for

understanding human-computer interaction.
Speech-Act Theory

When language is viewed as a series of assertions about the world, the reasons for
speaking and the way language is comprehended are difficult to understand. A
breakthrough in understanding the functions of language was made by the development of
a theory of speech acts. Austin (1962} noticed that some utterances are more than
statements about something; these utterances actually effect changes in the world. For
example, the locution “I now pronounce you husband and wife.” is not an simply an
assertion about the world which can be logically evaluated; rather, under the proper
circumstances this statement actually creates the status of marriage between the bride and
groom. Austin called this kind of utterance a performative. He saw that performatives
were acts by speakers, and extended this insight by considering all speech as
intention-based attempts to bring about changes in the world. Thus saying “Please pass the
salt.” is an act of requesting in which the speaker intends that the result of the act will be the
listener’s passing the salt. This is an appealing approach to multiple-agent interaction
because the process of interactive discourse is given motivation and made explicit. Using
Austin’s terminology, the spoken words are a locution; they embody an illocutionary act
which represents the rhetorical force of the utterance; and the result of the speech act is the
perlocutionary effect. The theory of speech acts was substantally extended by Searle

(1969), who presented a formalized account of the conditions and roles of acts. Viewed as



the basis for a computational model of interactive discourse, speech act theory seems to
imply a number of requisites for the representation and process. These requirements for
conversants include intentions, the ability to reason from intended perlocutionary effects to

illocutionary acts, and the ability to respond to illocutionary acts.
Problems of Speech-Act Theory

Speech-act theory has not been without critics. Levinson (1981) argued that speech
acts are inadequate for modeling dialogue. First, he argued, the immense variety of surface
utterances cannot be reduced to a limited set of acts. Second, speech acts do not appear to
correspond neatly to sentences. Third, assignment of meaning to acts cannot be
accomplished by a set of rules expressing conventions; rather, this process must involve
inferential techniques that take many aspects of context into account. Fourth,
sequence-oriented speech-act models are too simple to account for the complexity of
real-world exchanges, and coherence cannot, as matter of principle, be explained by
rule-based systems. The first three points are addressed directly by the theory advanced in
this dissertation. It is plausible that speech acts are specialized by domain. This is
analogous to observations of development of sublanguages in communities of speakers
with specialized interests or needs. In this case, viewing the process of conversation as a
domain itself leads to the observation that speech acts need not correspond to sentence-level
discourse units. The circumstance that early speech-act models were simple does not mean
that more sophisticated rule-based speech-act models cannot embody sitated action in
response to complex contexts. As I argue in this dissertation, the fault is not in the idea of
speech act theory but rather in confining its application to sentence-level meaning. Finally,
Levinson’s argument about the computational properties of rule-based systems are

mistaken. One could dispute matters such as convenience of representation, but



Levinson's observation that simple rules cannot explain some exchanges does not
reasonably lead to the conclusion that this problem is an inherent one. For example,
rule-based systems are not inherently limited to modeling adjacency-pair exchanges.
Bowers and Churcher (1988), for example, have shown that a rule-based system modeling
speech acts can account for complex situated communicative actions. They do so by
extending the theory of illocutionary acts from individual performance to social
accomplishment; illocution is understood in “dialogical” terms.

Another problem with speech-act theory has been the difficulty with what are called
indirect speech acts (Perrault & Allen, 1980). The problem which indirect speech acts
address is that of explaining why an utterance which on its face appears to be one sort of
act and which is nevertheless easily understood as an altogether different sort of act.
Indirect acts are often the result of social conventions for seemly behavior and politeness.
For example, “Gee, that cake sure looks good.” is apparently an act of assertion when the
conversants both understand the act as a request: “Please give me a piece of that cake.”
Understanding and explaining indirect acts is a major open problem for speech-act theory.
The protocol analysis in Chapter V makes a modest gain in this area; the evidence suggests
that indirect speech acts have utility in terms of efficiency of conversational communication.

There is also a continuing argument over whether conversants must have the ability to
recognize illocutionary acts as such (Bach & Harnish, 1979; Cohen & Levesque, 1986),
but the outcome of this debate is not critical to the points made in this dissertation. What is
important about speech acts here, though, is a view of language as a series of acts with
effects on listeners, or even as cotperative acts which have effects on a jointly constructed
conversational structure. Construed broadly, speech acts can be seen as the principal units
of of inter-agent interaction; they are the acts which build conversations. Winograd and

Flores (1986) describe language as form of human social action. Language as acts, they



argue, creates a consensual domain—interlinked patterns of activity. While Austinian
speech-act theory was developed to explain overt effects of sentence-level utterances, these
requirements can be relaxed to include mental effects in the hearer and sub-sentence level
utterances. As I will show in this dissertation, such extensions of speech act theory lead to

plausible computational models for interactive discourse.
Extension of Speech-Act Theory

Tying speech acts to sentence level utterances appears to be a limitation which does not
take adequate account of the relationship between acts and language. Some acts are
physical acts masquerading as speech acts. Others are speech acts which look like physical
acts. For example, a light switch which reacts to loud noises might turn itself on when
someone yells “Lights on!” but would also work if they yelled “I now pronounce you
husband and wife.” Conversely, a cough might embody a request for someone to be quiet.
In particular, not all effects which speakers intend to cause through their illocutionary acts
are physical in nature like passing the salt. As we have seen, some illocutions can make
changes in legal relations. Other illocutions have as their effect another speech act. Thus
speaking “Do you have the time?” may lead to the hearer saying “Yes, it’s ten of two.”
Indeed, as is centrally important to this dissertation, the perlocutionary effect of an
utterance may involve the conversation itself. Thus, for example “Shut up!” may be
intended by the speaker to cause the hearer to stop talking. In a more pleasant and
coperative context, speaking “Go on.” may be intended by the speaker to cause the hearer
to continue speaking (and maybe even effect some purely mental change in the hearer’s
beliefs about the speaker’s level of comprehension). Such utterances can be viewed as
meta-locutionary acts because they concern and affect the process of their own

conversation. This dissertation, then, develops a framework for research into speech



meta-acts which handle the various functions of cotrdinating and producing discourse as
well as research developing semantics and pragmatics for these meta-acts which are
sufficiently complete to permit computational modeling of simple interaction in

conversational discourse.

Mutuality of Knowledge

The model proposed in this dissertation is based on the idea that the meta-locutionary
acts of participants in a conversation are directed toward maintenance of some set of mutual
beliefs. Before tackling the problem of what knowledge is shared, though, the question of
what constitutes sharing must first be addressed. This issue was studied by Clark and
Marshall (1981) in their research on definite reference. They noted what they termed the
mutual knowledge paradox: People clearly understand definite reference in a finite time,
but this ought to take infinite time because to be certain of a reference the conversants are
caught in an infinitely recursive evaluation of the form “... B knows that A knows that B
knows that A knows that p.”

Clark and Marshall resolved the mutual knowledge paradox through use of copresence
heuristics. In the simplest case, direct copresence creates mutual knowledge when both
parties simultaneously observe a domain feature and are aware that the other party is also
observing the feature. For example, two people sitting across from each other at a dinner
table observe simultaneously a candle in the center of the table, thus also observing each
other observe. Copresence heuristics eliminate the infinite recursion of the mutual
knowledge paradox by allowing the parties to have direct knowledge of the conclusion.
These direct copresence heuristics are supplemented (and here the supplements may be far
larger than the original corpus) by indirect copresence heuristics that provide an equivalent

basis for concluding mutual knowledge. That is, direct copresence is not necessary where
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the circumstances or the parties’ general knowledge about each other provide a substitute
for physical copresence. Clark and Marshall described an extensive set of indirect
copresences, the details of which are far beyond the scope or needs of this dissertation. As
an example, though, I note the case where two conversants can infer that they are both
memobers of a community (University of Oregon CIS graduate students, perhaps) and from
that know that they have mutual knowledge about matters which are generally known to
members of the community.

In the case of interactive discourse, the notion of mutual knowledge through
copresence heuristics applies directly to conversants’ sharing of knowledge about the
conversation itself, In conversing, the direct copresence heuristic applies to the utterances
of both parties because they hear both their own and the others’ utterances while in each
other’s presence. Thus the conversants have mutual knowledge of their conversation (and
they know it, because the mutuality is “on the table™). The conversants also share directly
copresent knowledge not only of the individual utterances but also of the contextual
structure which the utterances create for the conversation. This, then, is what I mean
generally when I refer to a shared model of interactive discourse. Note that this exposition
covers only what is meant by sharing and does not reach the issues of what specifically is
shared or what is significant in what is shared.

Even though Clark and Marshall’s work was based on resolving a problem of
understanding definite reference, their concept of mutual knowledge is straightforwardly
extensible to other aspects of the domain and the conversants’ view of the domain.
Moreover, even the nominally limited field of definite reference is broad enough to support
reasonable inference about the role of shared structures in interactive discourse. When a
conversant makes a reference to a (conversational) domain referent, the effect in the hearer

might be a simple one of affording recall of or attention to some specific and insular thing.
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More likely, though, is that the referent is one part of a complex memorial structure. If
there is a specific and definite referent with copresence, the speaker can reasonably infer the
hearer’s shared knowledge. But even in such a case the referent is likely to have
remindings and shadings of meaning for the hearer which differ from that of the speaker.
To the extent that copresence heuristics are available for these remindings (community,
shared experiences, “our song”) the remindings are part of the shared knowledge of the
conversation; beyond this extent, the conversants’ knowledge is a matter for inference at
best and more likely ignorance. That is, there are often remindings about which the other
party has little or no knowledge, and the parties presumably know this.

My point here that the the boundary between shared and unshared knowledge is not
sharp. Rather a field of imprecision and conjecture exists where shared dissolves into
unshared as the inferences of indirect copresence become increasingly implausible. Thus a
shared model of a conversation will be clearest for the facts of the utterances themselves
(because of direct copresence) and increasingly indistinct for the memorial extensions of
reference and the semantics of the conversants’ actions. For another conversant, as for any
observer, the imprecision of ascertaining the meanings of a conversant’s actions in
response to illocutionary acts is exacerbated to the extent that the action is a mental one.
That is, some responsive actions are physical—like opening a door or passing the salt;
other actions are mental—Ilike remembering Paris or hoping for rain. The speaker who
intended to effect a mental action in the hearer has no a priori knowledge of the extent to
which an action has occurred.

Given these fundamental concepts of speech acts and mutuality, I can begin to address
the research question around which this proposal is centered. A vocabulary, though, does
not in itself constitute a theory. In the next chapter, then, I examine the state of related

research and the frontier at which my own problem is formed. Specifically, Chapter I



looks at the problem of applying speech-act theory to real-world language, examines
evidence for shared models of conversations, and discusses the role of repair in
maintaining coherence. Chapter III presents the theory of meta-locutionary acts as a way of
explaining coherence in terms of conversational acts analogous to domain-level
illocutionary acts. Chapter IV discusses the methodology of a protocol study of
human-human conversation. In the study, the results of which are reported in Chapter V, a
conversational protocol is analyzed in terms of meta-locutionary acts. Chapter VI presents
a sirulation of the protocol conversation using rule-based operators. The operators
represent an application of the theory of meta-locutionary acts; they are able to rely on the
theory to account for significant parts of the interaction observed in the protocol. Finally,
Chapter VII summarizes the results of the dissertation research, discusses issues of
intentionality which arose out the research, and presents thoughts about related future

work.
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CHAPTER II

SURVEY OF RELATED WORK
The Integration Problem

In addressing the question of what language is, speech-act philosophy was
spectacularly successful. It solved many problems in linking language to the world and
explained why people use language. Speech-act theory has been useful as a basis for some
aspects of computational modeling of interactive discourse, particularly in matters relating
to intention and planning (see, e.g., Power, 1979; Cohen & Perrauit, 1979; Allen &
Perrault, 1980; Cohen, 1981). Speech acts could explain in terms of goal-directed
behavior how conversants codrdinated when and what they said. Speech-act theory
reintroduced communication and purpose into analysis of planning in language. It did not,
however, prove as successful in explaining how language is used. That is, the
feedback-suffused protocol evidence of actual speakers was often difficult or impossible to
explicate using speech acts (Cohen, 1984; Clark & Wilkes-Gibbs, 1986; Clark & Schaefer,
in press). This meant that things like the codrdination of real turn-taking could not be
modeled with speech acts because the turns frequently did not contain utterances which
could be classified as speech acts.

At the same time, socio-linguistic research (see e.g., Schegloff, Jefferson & Sacks,
1977) was uncovering the very linguistic behavior which posed problems for speech-act
theory. However, they did not propose computational models. Clark and Wilkes-Gibbs

(1986) noted that for both sociologists and speech-act philosophers, the central issue is
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codrdination: How do conversants codrdinate on the content and timing of what is meant
and understood? The two divergent research traditions had approached the same problems
from different directions, equally unsuccessful:

The issue cannot be resolved by either tradition alone. In the [speech-act]
tradition conversation is idealized as a succession of illocutionary acts—assertions,
questions, promises—each uttered and understood clearly and completely [citations
omitted]. Yet from the [sociological] tradition we know that many utterances
remain incomplete and only partly understood until corrected or amplified in further
exchanges. How are these two views to be reconciled? (Clark & Wilkes-Gibbs,
1986, p.2)

This problem, which I call the integration problem, also bothered Cohen (1984) in his
examination of the use of referring expressions in interactive discourse. According to
Searle, to perform an illocutionary act an act of predication is required, and the predicate
must be uttered. How then, Cohen asked, can one explain the following dialogue where
there is no apparent predication for a completed utterance containing only a noun phrase:

A: Now, the small blue cap we talked about before?

B: Uh-huh.

A: Put that over the hole on the side of that tube .... (Cohen, 1984, p. 104}

The only apparent effect of A’s initial utterance can be to direct B’s attention to the
referent. A does not say anything about the referent here. Equally perplexing, Cohen
argues, are predications without expressed referents. For example, Sherlock Holmes
might lean over a body on the floor and exclaim to Watson “Dead.” Conversely, Searle
would claim that utterances like “There is a little yellow piece of rubber.” contains no act of
referring at all and are simply predications. The problem, then, is again that the traditional
view of speech acts cannot be reconciled with the linguistic evidence. Cohen noted that the
requirement that the act of referring be jointly located with some predication in a sentence or

illocutionary act is too restrictive. The functions of reference and predication can be

embodied in separate utterances which have, in effect, different though related



perlocutionary effects. His solution to this particular part of the problem was to break
down Searle’s unitary acts into separate acts with separate functions. Thus he suggested
that referring, in and of itself, is a kind of request that speakers make of hearer (i.e., to
direct attention). But where lies the solution to the general problem of integrating speech
acts with the actual character of interactive discourse? The principle of breaking down
exchanges involving reference into segments characterized by their goals might be extended
to the general phenomenon of interactive discourse by recognizing that each utterance

fragment reflects its own proper purposes.

The socio-linguistic line of research on interaction is part of a large field which is
broadly known as conversational analysis. This research has described a wide range of
conversational characteristics which are not directly representable in Austinian speech-act
theory. These characteristic behaviors include laughter, fragmentation, turn-taking,
correction, gaze, and nonverbal communication generally.

The prevalence in conversation of laughter and fragmentation was shown by Allen and
Guy (1974). There are distinct regularities associated with these phenomena. For
example, in conversations between a male and a female, the male tends to laugh twice as
often as the female. Although fascinating, laughter is really beyond the scope of the
present research. Fragmentation, however, is one of the central characteristics of language
for which this dissertation attempts to account. This includes uncompleted sentences and
words, plus non-word utterances such as “uh,” “ah,” and “eh.” Fragmentation is
sometimes associated with correction (Allen & Guy, 1974). More generally, they represent
sub-lexical, incomplete sentential thoughts, or complete conversational contributions which

are expressed in non-sentential form. These include, for example, referential and
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confirmatory utterances such as “OK, now, the small blue cap we talked about before?”
(Cohen, 1984, p. 104) and “Uh-huh.” That is, while fragmentation sometimes results
from correction, it is a general functional characteristic of natural discourse. Thus despite
their part-formedness, fragments are used in utterances which are nevertheless understood
by conversants.

Turn-taking (Sacks, Schegloff, & Jefferson, 1974; Duncan, 1980) is a
control-oriented account of conversation that explicates patterns of mixed-initiative
interaction in terms of conversational turns. This represents an organizational substrate for
domain-level, intentionality-based interaction. It is maintained through a wide set of
behaviors and acts, including nonverbal communication (Ekman & Friesen, 1981),

In conversation, repair of language and interaction has been observed in two forms:
self- and other-correction. There is an apparent preference for self-correction (Schegloff et
al., 1977; Clark & Wilkes-Gibbs, 1986}, which leads to fragmentation of utterances as
speakers in effect erase parts of their utterances and replace them with substitute phrases.
As a sub-sentential phenomenon, self-correction is not accounted for by speech-act theory.
Other-correction, when lexical, for example, presents the same difficulty.

The role of gaze in conversation has been the subject of extensive—though largely
descriptive—analysis. Gaze performs multiple functions in human-human interaction
(Argyle & Cook, 1976; Argyle, Ingham, Alkema, & McCallin, 1981), and can be
described in terms of its temporal association with language use in dialogue (Beattie,
1981). Gaze was found to be organized in a codrdinated system with the plans underlying
speech and with the speech flow. Gaze was more highly associated with tum-yielding cues
than simply with syntactic clause boundaries.

Gaze is a significant part of a broader range of behaviors generally considered as

nonverbal communication. Extensive systems have been developed for noting physical
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states and actions associated with language (See e.g., Birdwhistell, 1970; De Long, 1983).
Indeed, there is much evidence in support of the proposition that nonverbal behaviors are
part of language. For example, Hoffer and Santos (1983) showed that patterns in and
meanings of nonverbal communication differed by culture and dialect. For American
English, the verbal and nonverbal channels cannot be unlinked:
All of the emerging data to me to support the contention that linguistics and

kinesics are infracommunicational systems. Only in their interrelationship with

each other and with comparable systems from other sensory modalities are the

emergent communication systems achieved. (Birdwhistell, 1970, p. 127)

Clearly, it would be difficult to explicate coherence in interactive discourse without taking

account of these characteristics of language as it is used; this is the heart of the integration
problem. Why, though, do conversants rely on these functions? In the next two sections,

I address this question by looking at models of mixed-initiative conversation which would

explain the use and necessity of these behaviors.
Evidence for Sh Models of Conversations

This section examines the role of feedback as a process control for interactive
discourse by discussing the following questions: How closely does the hearer track the
speaker’s utterances against their shared assumptions about the conversation? How do
conversants minimize and/or correct expectation failures?

The evidence is strong for the proposition that conversants in interactive discourse
share a model of their conversation. In informal terms, a weak version of this conjecture
would be that the conversants must have at least some knowledge necessary to the
conversation which is common to all conversants. A strong version is that the conversants
are jointly creating a single (though possibly complex) intellectual product. Suchman

(1987) characterizes conversation as an “ensemble” work:
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Closer analyses of face-to-face communication indicate that conversation is not
so much an alternating series of actions and reactions between individuals as itis a
joint action accomplished through the participants’ continuous engagement in
speaking and listening [references omitted]. (Suchman, 1987, p. 71)
Clearly, speakers of a language necessarily share lexical knowledge, even if their
internal representations of the lexicon differ in their extension. To what extent, then, must

conversants construct or share a mutual model of their jointly-created conversation?

Implications of the Interactive Process for Shared Models

Observation of interactive discourse suggests that when conversants share
information, their exchanges cover the range of conversational levels, from domain
information to turn-taking. As has often been noted, one of the central questions of
interactive discourse is how the conversants cordinate the timing of what is meant and
understood (see e.g., Clark & Wilkes-Gibbs, 1986). Clearly, a conversational model
common to the conversants would facilitate this cordination. This process has been
characterized as one of cotperation. The fact of codperation would seem to presuppose
something to codperate about. According to Clark and Wilkes-Gibbs (1986), Grice (1975)
observed that conversants codperate in their contributions to a conversation by directing
their contributions toward the accepted purpose or direction of their exchange.

Even in the simplest cases, though, it is apparent that some kind of mutually
understood model of the conversation is created. Consider the railway station protocols
discussed by Allen and Perrault (1980):

Patron: The 3:15 train to Windsor?

Clerk: Gate 10. (Allen & Perrault, 1980, p. 442)
Using the notion of mutual knowledge developed by Clark and Marshall, the clerk and the
patron mutually know that the patron has made an inquiry about the 3:15 train to Windsor.

This means that the clerk can rely on the patron’s reasonable acceptance of a codperative
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response by the clerk. Conversely, assuming that the clerk is being cobperative, the patron
can expect that the clerk’s next utterance will be responsive to the query the patron made.
Thus even in this terse exchange the conversants can be viewed as relying on a mutually
known model of the structure and direction of their conversation in the sense that they use
indirectly copresent community knowledge about exchanges between patrons and clerks.

Cohen and Perrault (1979) also described a model for possible intentions underlying
speech acts. Cohen and Perrault were interested in providing a theory of speech acts
which, among other things, answered questions about changes the successful performance
of a speech act makes in the speaker’s model of the hearer and in the hearer’s model of the
speaker. They proposed a planning approach which provided formal criteria for defining
speech acts in terms of intentions, abilities, and effects. Acts of requesting and informing
were then specified as operators which can be used by a planning system. This model
necessarily assumed a speaker’s model of hearer and vice versa. To the extent that these
are self-referential we have at least the raw basis for a shared model, whether or not the
authors recognized it as such.

To be coherent, a conversation must be about something. It follows that the discourse
segments which make up a conversation must have corresponding foci. The notion of
focus as a characteristic of interactive discourse was developed by Grosz (1977). These
studies were primarily based on task-oriented dialogues. In the context of shared models, a
practical interpretation of Grosz’s work is that focus really means the thing on which the
conversants are mutually focusing; otherwise the conversation would lose its coherence
(absent recurring and unbelievable coincidence). Grosz's idea of focus space implies that
this is a shared view or partitioning of the domain; indeed, discourse presumes mutual
focus. Another way of looking at focus spaces might be to consider them as shared models

of the real domain which provide necessary (1) common extensional meaning and
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(2) reference points for coherent discourse structure. Similarly, in the protocols studied by
Clark and Wilkes-Gibbs (1986), the conversants (have to) find a mutually acceptable
perspective. As I see this result, the parties have established an interpretive model of the
real domain that constitutes a suitable model of the domain for their achieving their
underlying intentions through discourse.

Of course, the role of focus and perspective need not be limited to physical domain
objects, definite referents of any kind, or even pragmatics. It has been noted that a
successful speech act is based on agreement or on continuing negotiation of what values
should prevail (Jernudd & Thuan, 1983). That is, the conversants must arrange to share
the meanings of their illocutionary acts, even if the process of understanding doesn’t
require that the acts be recognized explicitly. In order to maintain coherence, then,
conversants have {or are trying to obtain) a shared model of at least the semantics of the
illocutionary acts. This sort of negotiation may also be applicable (and probably much

more frequently) to the pragmatics of a conversation.
The Role of Meta-Locution in Conversation

Participants in interactive discourse presumably engage in their interaction because of
underlying intentions. While they may have private intentions which motivate their
communication, they present to each other apparent discourse purposes (Grosz & Sidner,
1986). Thus if the discourse purposes are not apparent, their meanings must be clarified.
This secondary discourse is a collaborative process which is meta to the subject of the
conversation. Similarly, negotiation of referential meanings becomes meta to the
conversation. For the meanings of illocutionary acts, the evidence of negotiation is
indirect. Jernudd and Thuan (1983) suggested that speech acts, to be successful in

language, require agreement by the conversants on the meaning of the acts. They observed
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that partners in communication generally codperate in the (meta-) communicative goal that
the speaker’s speech act is identical to that understood by the hearer. In other words, if
both conversants are striving to make sense of their conversation, they will try to get the
speaker’s and hearer’s identification of the speaker’s act to match up.

In the same way that the semantics of illocutionary acts are subject to negotiation and
agreement, so too is reference a collaborative process. This was shown experimentally by
Clark and Wilkes-Gibbs (1986). The conversants must mutually accept that the hearer
understands the reference before the conversation proceeds. As I understand this work
relative to possible shared models of the conversation itself, there is an incremental process
of building a mutually understood reference scheme that constitutes a shared model at least
as to extensional meanings.

Consistent with an interpretation of Clark and Wilkes-Gibbs’s work showing the
negotiation of the topic of a conversation (and thus suggesting a shared conversational
model) is Grosz's view that the knowledge of the participants in discourse can be
characterized by a common structure. She suggested that one can model focus in discourse
as a partitioning of a semantic net which encodes the domain of discourse (Grosz, 1977).
This network represents one conversant's model of the conversation, and it therefore
includes that part of the conversation which the conversant believes constitutes the shared
conversational structure. Of course, the conversants’ respective models need not be and
are not likely to be identical. This is like Clark and Wilkes-Gibbs’s notion that hearers
aren’t trying to assure perfect understanding of every utterance; they just need
understanding that is adequate under the circumstances. This was recognized by Grosz in
trying to distinguish knowledge from belief. It should be noted that Grosz presents what I
would call an extremely integrative view of the shared model. This view is an especially

appealing one in the context of Clark and Marshall’s notions of mutual knowledge because



it incorporates naturally the consequences of the application of direct copresence heuristics
to the conversation itself. Grosz’s (1981) analysis indicated that in their speech
conversants assurne a common focus; they usually do not have distinct models of each
other’s focus. This has the salutary effect of avoiding the infinite recursion of the mutual
knowledge paradox. She suggested that the speaker assumes that the hearer, in
understanding an utterance, has followed any shift in focus.

Grosz’s analysis looked at explicit indicators of shifts in focus; a similar analysis could
be applied to other utterances or acts which have specific model-maintenance functions, and
even to functions which conversationally propose lack of mutuality. Such
model-maintaining utterances are what I call have called meta-locutions, which
correspondingly embody meta-illocutionary acts. In other words, the intended
perlocutionary effects of such acts concern the process of conversation itself rather than the
underlying discourse purposes. The utterances are in this sense meta-locutions because
they are about the process of the very conversation in which they occur. For example, an
utterance like “Go on ...."” can be seen as a meta-locutionary act in which the illocutionary
meaning is something like “I’'m asserting that I don’t want to repair anything here and I'm
letting you keep your turn.” Similarly, looking away while talking could be construed as a
meta-locutionary act such as “I’'m holding on to my tum.” Such functions of gaze in
particular have been recognized as providing meta-information used in conversational
control. People link use of their verbal-auditory and nonverbal-visual channels:

(1) Since the vocal channel requires that people take turns to speak, signals
must be used to negotiate turn-taking; it would be difficult to contain these signals
in the vocal channel-—speakers would have to combine messages and
meta-messages, and listeners would have to speak at the same time. Therefore the
synchronizing signals are forced into the second channel. (2) While a person is
speaking he needs feedback on how others are reacting; this could be provided by

vocal comments, but that would involve double-talking, so feedback signals are
also relegated to the second channel. (Argyle & Cook, 1976, p. 124)
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The relatively broad range of behaviors which constitute communicative interaction, then,

suggest a pervasive and central role for meta-locution in the control of conversation.
Interactive Discourse Requires Monitoring by All Conversants

Jernudd and Thuan (1983, p. 81) reasonably contended that language is usually
expectation driven: “Norms of use are founded on expectations that users form.,
Obviously, interaction proceeds mainly in worn grooves and these generate reasonable
expectations.” Applying this principle to the maintenance of shared conversational models,
this suggests that conversants often share a large part of their conversational model
automatically or by default. A consequence of this is that if a conversation is to be coherent
each conversant must have a set of expectations which is consistent with the others’. These
sorts of structures have been recognized when conventionalized as analogous to the
well-known script models of conversations (Cohen, 1984). Yet not all, and maybe not
even most, conversations always follow the script exactly. Otherwise we would find,
contrary to experience, that we are always having the same conversations or fragments over
and over again. This means that along with the shared set of expectations, conversants
must detect and maintain the set of deviations from the well-wormn expectational grooves.
Thus Clark and Wilkes-Gibbs (1986) noted the prevalence of conversational feedback: the
hearer lets the speaker know how things are going. This implies that the hearer has a
model of what the speaker is #rying to say. This process of monitoring thus apparently
involves the hearer checking the actual utterances of the speaker for consistency against a
set of expectations. The deviations from the expectations are, as I've observed, frequent.
Moreover, no small set of expectations could possibly cover the variety of conversations in
which we might and do engage. As a consequence the identification and selection of

expectations also becomes important.



Repair-Based Conversational Interaction

We thus see that for conversation to be coherent in a manner consistent with the
observed process of conversational monitoring, the conversants must maintain adequate
models of the discourse. To the extent that the conversants are having the same
conversation (i.e., to the extent that the conversation is coherent), the model must be a
shared one. This does not mean that the models must be identical. Rather, if conversants
satisfice with respect to understanding, their conversation can be, for each of them,
coherent to the extent that their models are believed to overlap. For example, the sort of
conversation in which one person’s down-to-earth discussion is interpreted by the other
conversant as a metaphor or parable is coherent for both participants, even though their
models may share only an analogical structure. If a conversant detects too great a
divergence between her model and the apparent track of the conversation, she may take
remedial action to regain mutuality of conversational knowledge.

As previously noted, Grosz (1981) showed that in interactive discourse conversants
have a pervasive assumption that they share a common focus. This approach in effect
substitutes inference for actual mutual knowledge of focus. I note, though, that the word
“assumption’” may be distracting. The assumption of mutual focus is usually oue. This
phenomenon is associated with the highly predictive nature of discourse. The assumption
fails only when the expectations are not met (and thus the focus turns out not to be mutual).
How often does this occur? How do conversants minimize and/or correct these failures?
Moreover, the mutual-knowledge assumption applies not only to focus but to many (if not
all) aspects of interactive discourse. Grosz specifically demonstrated the existence of the
assumption for focus, but the factors which make the assumption occur with respect to
focus are also present for most of the aspects of a shared model of conversation. Grosz

observed that the speaker is always one step ahead of the hearer (simply because the
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speaker is speaking), and noted that communication only ensues if shifts in focus are in fact
clearly indicated to the hearer. Itis true that listeners’ predictions of what speakers say is
sometimes (or even often) correct; however, listeners cannot confirm their understanding of
their conversational model as mutual until their prediction has been realized. Grosz
suggested that the main avenue for understanding this process is through mechanisms that
distinguish the conversants’ beliefs and then reasoning about knowledge and beliefs. But
generalizing the shared focus process to the shared model process, if the speaker is one
step ahead of the hearer then how big are these steps? Keeping the steps small minimizes
the size of the failures of expectation. This is turn keeps the mutual knowledge assumption
true enough to obviate the need for an elaborate maintenance scheme.

Correction, Repair, and Feedback Generally, are Pervasive Phenomena

of Interactive Discourse

In one sense, all interactive discourse is feedback. That is, the utterances of one conversant
are recursively responsive to the utterances of the other (see e.g., Hobbs, 1983). This
view, though, is too broad to be useful. Much of this sort of recursion relates to
high-level, domain-based information. It is the purview of wraditional Austinian speech act
analysis. In contrast, [ am interested here in the kind of routine feedback which is below
the domain-knowledge level—the kind of feedback which concerns the process of the
interaction itself. For example, speakers have been shown to adjust their production of
language to account for the non-verbal actions of their hearers (Hopson-Hasham, 1983).
One might view conversation as an inter-dependent set of simultaneous conversations, with
each sub-conversation pertaining to a different level of interaction. Thus at the “top”
level—that of raditional speech acts—we see the body of conversation which is the focus

of conscious interaction, the point of the exchange. At lower levels we find conversations
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about the levels above until, at some “bottom™ level, there isn’t anything left to discuss.
Figure 2 depicts such a set of levels, whose attributes reflect identifications in the discourse
and socio-linguistic literature of skills or domains pertinent to mixed-initiative
conversational interaction. The levels are not hierarchical; rather, they are intended to
represent a set of simultaneous and mutually facilitating processes. Thus at the top level,
conversants interact in the realm of their underlying goals—the domain is the set of their
possible actions in the world and overall conversational intentions. As part of their
interaction, the conversants will need, following Clark and Wilkes-Gibbs (1986), to
resolve references to things in the top-level domain, hence the inclusion in the figure of a
separate level for acts which accomplish this. Next, following Jernudd and Thuan's
(1983) notion of dynamic interpretation of illocutionary acts, there is a level for
meta-locutionary acts to resolve these meanings. The ellipsis in the figure stands for a
broad range of levels corresponding to the sub-dornains of various conversational skills
which are accomplished though actions which affect the conversation. Finally—in the
figure, although not necessarily primitive in the real conversational process—there is a level
for the turn-taking acts reported by Sacks et al. (1974). The “lower” levels permit
conversants to accomplish the more complex tasks represented by “higher” levels by
maintaining coherence in the interaction. In its analysis of the processes of the control of
language, this dissertation, then, looks at feedback from the bottom up. The usual
problems of reasoning about domains are not presented.

To illustrate the woven nature of these layers of interactive discourse, here is a brief
excerpt from a protocol of an English-as-a-second-language lesson. The layers and the
analysis are set out here for observational purposes rather than as a specific theory of

linguistic interaction. This protocol is interesting because the context necessitates that the
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Conversation effectuating domain_intentions

Perlocutionary effect: domain-level actions and changes in belief structures

Illocution: Austinian speech acts

Locution: sentence-level utterances

Conversation effectuating domain reference

Perlocutionary effect: changes in extensional reference

Illocution: attention-directing speech acts

Locution: interjected phrases, deixis

Conversation resolving illocutionary meanings

Perlocutionary effect: agreement on meanings of language acts

Dlocution: indications of understanding or misunderstandin g

Locution: corroborative restaternent, repetition

Conversation managing turn-taking

Perlocutionary effect: agreement on who should be talking

Illocution: interruption or indication of super-level agreement

Locution; start and stop mgnals such as directed gaze, gesture, nodding

FIGURE 2. Possible levels of conversational interaction. Each level represents interaction
which maintains models of the levels above.

conversants arrive at new agreements about the labels and meanings and roles of various
things, including illocutionary acts. The English-speaking teacher (T) and the
non-English-speaking student (S) sit on opposite sides of a small table. Various cardboard

tiles, depicting geometric shapes which are large or small, blue or red, circular or square,
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lie at one edge of the table.2 The teacher and the student engage in the following discourse

(non-verbal actions are described in brackets and emphasis is indicated by underlining):

(1) T: [Puts cards LBC LRC SRS in the center of the table.]

(2)
3
C)
(%)
(6)
)
(8)
9)
(10
(11)
(12)
(13)
(14)
(15)

T:
T:

T:

First can you show me [Makes ‘pointing’ gestures.] the circle.
Which one—

[Glances down and up.] I'm sorry the square—
which one is the square.

[Looks confused. Looks at T, arms at side.]
Square.

Uh huh.

[Points to LRC.]

The square.

[Points to SRS.]

OK, that's right.

That’s a square. [Pointing to SRS.]

This is a circle. [Pointing to LRC.]

These are the circles. [Pointing to LBC and LRC.] (Novick, 1986, p. 1)

This exchange exhibits a number of interesting features which can present the reader a

more concrete idea of the general role of layers of discourse and the phenomena they

represent. These features include the rapid establishment of the meaning of “show” in (2);

T’s self-correction in (4); T's confirming repetition in (5); S’s initial failure to take his turn

in (6); S’s indication of non-comprehension by repetition in (7); S’s purely deictic language

21n the transcript, the notation refers to L(arge) or S(mall), B(lue) or R(ed), C(ircle) or
S{quare) shapes. Thus the LBC is the large blue circle, the LRC is the large red square,
and the SRS is the small red square.
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acts in (9) and (11); T’s indication of failure by repetition in (10); and T’s holding on to her
turn in (13), (14), and (15). We know that in this exchange a person is teaching English to
a non-English speaker. Thus (2) encompasses both locutions and meta-locutions, and (6)
is clearly some sort of communicative act but must be meta-locutionary. Interestingly, in
the absence of deixis, none of these utterances can be considered standard Austinian speech
acts. That is, contextually determined or physically indicated references stand in for the
explicit references which would be needed for Austinian analysis. Rather, T and S
demonstrate a kind of mutual control of their discourse through a heterogeneous mixture of
acts, most of which appear to wrack the conversants’ comprehension and acceptance of
previous acts.

Even though it turns out that we engage in this sort of feedback-saturated
conversational behavior every day, rarely are we conscious of it. Schegloff, Jefferson, and
Sacks (1977) pointed out that, although the phenomenon has largely been ignored by
linguists, the phenomena of correction and repair occur massively in conversation, the most
common use of language. Feedback is more than a surface effect, and more than a window
into the mechanisms of natural language understanding and generation (albeit a valuable
one through which I propose to peer). Feedback is, in fact, part of the mechanism or
process of conversation in itself. Although some research has looked at positive feedback
(see citations in Clark & Marshall, 1986), most studies of feedback in interactive discourse
have focused on issues of correction and repair. Thus while the comments of researchers in
this area are largely phrased in terms of correction and repair, I think it is fair to extend the
thrust of their conclusions to feedback generally . One reason for such extension is the
recognition that positive feedback is likely to be simply a conversant’s assurance that repair
isn’t needed. An emerging sociological view of language recognizes feedback as an

important part of the conversational process. Jernudd and Thuan (1983) suggested that
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correction, conceived of in the broadest sense, is built into the core of language and is
integral to the structure of all communicative acts. Speakers’ resources include the ability to
make use of such built-in correction devices; a correction system that permits them to repair
utterances; and variable access to a more rigorous societal system of correction in the form
of language treatment and language planning. Conversants cannot anticipate every possible
miscommunication in advance of its occurrence. Rather, they work moment-by-moment to
identify and remedy the troubles which inevitably arise in mixed-initiative discourse
(Suchman, 1987). In other words, when conversants use the broad set of tools available to
them, they use tools which are built around the notion of feedback.

Why should feedback play such an important part in the process of interactive
discourse? While some aspects of discourse are settled before a conversation begins, many
others remain to be determined as part of the interaction itself. Aspects of discourse that are
usually not the subject of correction or repair may nevertheless involve feedback, either
through positive feedback indicating acceptance of normative values or in the exceptional
case through repair. Thus conversants normally consider parts of discourse like the lexicon
and the set of speech acts to be relatively fixed. They can indicate agreement (or at least not
indicate disagreement) as long as they do not encounter new words or acts, or as long as
previously encountered words or acts are used with their conventional meanings. Thus a
successful speech act is based on agreement—the normal case—or on ongoing negotiation
of what values shall prevail (Jernudd & Thuan, 1983). In other words, the conversants’
valuations, beliefs, and purposes may converge or conflict with each other’s. To the extent
they converge, the discourse will manifest agreement; to the extent they diverge or are
unclear, the discourse will manifest negotiaton. Where, after all, do the meanings of
things like speech acts come from? Conversants need to find out each other’s expectations

of the meanings of speech acts, need to express their own such expectations, and need to
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find a way to agree on these. The extent to which a speaker is successful in producing a
speech act depends on the extent to which the conversants agree it shall be so. This
agreement depends on shared expectations of speaking and language. The conversants’
understanding of the speech act reflects the (historical) resolution of negotiation of fairly
permanent expectations (Jernudd & Thuan, 1983).

Some aspects of discourse are of course not susceptible of normative
predetermination. One such aspect is reference. It turns out, even in situations where both
conversants can perceive the referents used in their discourse, that definite reference in
interactive discourse is a collaborative process requiring actions by both speakers and
hearers (Clark & Wilkes-Gibbs, 1986). Another aspect requiring feedback is the
turn-taking behavior characteristic of interactive discourse described by Schegloff et al.
(1977).

Other aspects of interactive discourse requiring feedback include most if not all of the
structural qualites of discourse. The speaker’s generation process may even include a sort
of self-feedback or “monitoring” as he listens to himself talk. With respect to
repair-oriented feedback, Jernudd and Thuan (1983) pointed out that kinds of feedback
from hearers to speakers include production errors that escape the speaker’s monitor,
nonreceipt of what was said, incomprehension, miscomprehension, disapproval, and
perhaps more. With respect to positive feedback, Clark and Wilkes-Gibbs (1986), along
with many others, observed that sociologists have shown that when one person speaks, the

others not only listen but let the speaker know they are understanding—with head nods,

? % &t

“yes’s,” “uh-huh’s,” and other so-called back-channel responses.
The role of feedback seems to be linked directly to process of language generation.
Sociologists of language have observed that speakers have to have a repertoire of ways of

following their own generational processes. This repertoire will involve speakers’ abilities
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to monitor, correct, evaluate, and correct what they are producing even as the process takes
place. They need a way of checking that what they are actually saying is consistent with
what they intend to say. Additionally, they need to cope with the reactions of the hearers
(Jernudd & Thuan, 1983). A large class of nonverbal behaviors is used by conversants for
such feedback. Ekman and Friesen (1981) described a class of nonverbal behaviors which
they termed regulators:
These are acts which maintain the back-and-forth nature of speaking and

listening between two or more interactants. They tell the speaker to continue,

repeat, elaborate, hurry up, become more interesting, less salacious, give the other

a chance to talk, etc.... The most common regulator is the head nod, the equivalent

of the verbal mm-hmm; other regulators include eye contacts, slight movements

forward, small postural shifts, eyebrow raises, and a whole host of other nonverbal

acts. (Ekman & Friesen, 1981, p. 90)
These behaviors convey feedback so intrinsic to interaction that conversation stops if one of
the conversants suppresses them (Ekman & Friesen, 1981).

Schegloff et al. (1977) also pointed out that because of the overwhelming evidence for
correction and repair in conversation, any adequate theory of the organization of natural
language will have to account for how natural language handles its intrinsic troubles,
including the organization of repair. In this view, repair (specifically, and, I suggest by
extension, feedback generally) is an inherent part of the process of interactive language.
Douglas (in press) examined protocols of interactive communication between tutors and
students; she suggested that the protocol data indicate that conversational breakdown and
consequent repairs may affect the selection and sequence of domain-level content. This
interaction displays a local organization that is dynamic—not pre-planned—and yet through
the repair process generates global coherence.

“Non-grammaticality” and apparent errors in discourse are thus not to be explained or

erased by grammars of non-grammaticality that derive spoken language from a perfect
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formulation3. These characteristics of interaction are the result of performance and cannot
be accounted for by extension of competence-based sentential grammars. Rather, these
“imperfections” are phenomena to be explained in and of themselves, and are thus useful

objects of study in the search for scientific understanding of language.

Intention, Action. and Language

An enormous amount of work in natural language processing, and in artificial
intelligence generally, assumes the existence and utility of human intentionality. This work
suggests, more or less explicitly, that actions in the world are the result of humans'
intentions. Speech-act theory itself is based on this sort of assumption because
illocutionary acts are produced by speakers to achieve intended perlocutionary effects: use
of language is a form of intentional action (Searle, 1969). Nevertheless, the relationship
between intention, action and language is not well understood. For the research presented
in this dissertation, two issues are particularly problematic: First, what (linguistic)
behaviors are intentional? Second, how do people act on intentions to produce

conversational interaction? T address each of these problems in turn.
Acts and Signals

Aside from the occasional case like someone crying out in surprise or fright, verbal
acts are largely considered to be intentional. At the same time, there is a class of behaviors,
including communicative behaviors, which are widely regarded as unintentional or
unconscious. As I have discussed, there is a wide range of nonverbal behaviors in

conversational interaction. These behaviors can be interpreted either as intentional acts or

3Cohen (1984) presents a brief account of grammar-based approaches to ill-formed
input.
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as unintentional signals. To some analysts, the majority of this massive stream of
communication is unconscious on the part of the agent (Allen & Guy, 1974). To others,
significant aspects of nonverbal behavior are directly intentional (Argyle & Cook, 1976;
Birdwhistell, 1970). It is certainly true that the kinds of routinized behavior relevant to
conversational control are in an indistinct zone with respect to intentional action. They
seem to be on the periphery of awareness (Ekman & Friesen, 1981). Some communicative
behaviors seem to be in the province of autonomic response; pupil dilation and contraction
have been observed in response to informational content (Argyle & Cook, 1976).
Nonverbal behaviors are also interpreted as involuntary because they convey or reveal
things which the agent has no intention of communicating (Allen & Guy, 1974). Yet other
behaviors seem to be part of the same action that we associate with production of an
utterance; the rise or drop in pitch at the end of English sentences is invariably accompanied
by a raising or lowering of the eyelids, head, or hands (Scheflen, 1980).

The issue is further complicated by the possibility that conversants can consciously
display behaviors that would ordinarily be unconscious. This can be done for emphasis
(e.g., looking up in frustration) or as a deception (e.g., looking blank to feign lack of prior
knowledge of a reference).

From the standpoint of understanding, nonverbal communication the situation is
equally perplexing. Actions which could be taken as cues are not always noted by the
partner (Allen & Guy, 1974). For example, the extent of people’s attention or perception
of gaze appears 1o vary widely (Argyle & Cook, 1976). In short, the role of intention in
producing nonverbal communicative acts is an unsettled matter:

What is actually intentional and what is not need not by any means be the same
as the way it is treated by others. Accordingly, although it is fruitless to try to
decide what messages a person actually intends to convey and what he does not,

how people treat each other in this regard should neverthless be carefully attended
to. That is, it is very important to consider what aspects of of the flow of
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information participants treat as if they have been provided intentionally and what
aspects they treat as if they are unintentional. As a corollary to this, it then becomes
a matter of great interest to investigate which features actions must have to be
treated as intentional and which they must have to be treated otherwise. To the best
of my knowledge, this question remains one to be investigated systematically.
(Kendon, 1981, p. 10).

There is no getting around the fact that intentionality is a difficult subject. How, then,
is intention to be interpreted in a computational model of conversation? The
characterization of much communicative behavior as unconscious is the product of
introspective analysis in which the analyst cannot locate any specific intent or purpose for
motor activity. In my view, this conclusion is the product of an ill-founded assumption
that unconscious equals unintentional. In defining intentionality, for example, Ekman and
Friesen (1981) specifically refer to the “deliberate™ use of a nonverbal act to communicate a
message to another informant, although they do note that it may not be possible to
determine the intentionality of every instance of nonverbal behavior. To shed some modest
light on this matter, I obtained from a variety of adult informants descriptions of their own
processes of linguistic production. All felt that they had little or no conscious control over
the process of actually producing speech; they could not explain how they talked. This
experience, I feel, is the product of the routinized nature of linguistic production; people
spend a great deal of time using language. Yet none of the informants would characterize
their speech as involuntary. Even if they were unable to articulate their intentions, they
surely had motivations for speaking, even on an utterance-by-utterance basis. There is no
reason to distinguish the nonverbal acts associated with these utterances as any less the
product of such motivations. It is not necessary to specify goals for the acts in order to
describe them (Duncan, 1980). But to understand their part in the process of interaction,

one needs to connect them to the motivational structure which accounts for the utterances

which they accompany or affect.
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There is perhaps a reasonable analogy here between the production of language and the
performance of other motor activity. If I walk from my desk to the bookshelf to geta
book, I am performing an action in service of my intention to get the book. The overall
intention may or may not be conscious, but certainly the individual actions which
accomplish it—using my legs and feet, maintaining my balance—are not consciously
performed. But neither are these actions involuntary; they are simply easy and routine. It
is possible that I might move my leg reflexively if, for example, someone spilled ice-water
on it. Similarly, I might blink if dust irritated my eyes. But in a purposive context, both
moving my leg and blinking help me to achieve non-reflexive goals. They are the
consequences of intention and constitute its embodiment. That is, while the act of walking
to bookshelf can be said to embody my intention to get the book, this “act” is a composite;
it has no existence outside our interpretation of the sum of a large number of smaller acts
which together produce it. Even if attenuated, intentionality must underlie each constituent
sub-act. Thus while the distinction between voluntary and involuntary linguistic action is
not clear, a reasonable model of conversation will interpret displayed behaviors in terms of
intentional acts unless (1) they can be shown reflexive because of physical factors or
(2) they do not occur in—or appear to be reasonably related to—a context of larger,

intentional action.
Planned vs. Siwated Action

How do people's intentions produce conversational acts? More specifically, how does
intention get translated into a sequence of acts that produce coherence in the organization of
conversation? A strong thread in artificial intelligence has involved production of rationally
organized actions through planning. Planning systems have been proposed for the

production of text (McKeown, 1985) and for interactive conversation (Power, 1979;
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Hobbs & Evans, 1980; cf., Johnson & Robertson, 1981).4 Other computational models
of interactive discourse suggest that conversants use similar processes which rely on
depth-first tree search. Grosz (1981, 1982) implied this by using a stack-based process for
changing focus spaces in conversation. It should be noted, though, that Grosz does not at
all claim that conversation is pre-planned. The structure of a discourse, she observed,
tends to arise naturally out of the structure of the discourse task. Itis the focus-space
structure which models the conversation as it develops that is stack-based. Reichman
(1985), though, directly proposed an ATN-based model for conversational exchanges.

It is unlikely that simple planning or stack-based models of interactive discourse are
adequate for modeling mixed-initiative conversational discourse. The importance of
conversants being able to change the structure of their conversation in unforeseen, flexible
ways is underlined by the observation that although some tasks produce neatly stacked
discourse structures, everyday interaction requires an enormous variety of structures for
which stack-like models are inadequate. The principal problem is that planning involves
searching a state space, yet for most conversation the future states of the conversation are
not reasonably calculable. For example, Birnbaum (1986) pointed out the case where a
conversant refutes an argument on the grounds that the other conversant has used a
supporting fact which is demonsirably false. To have planned this exchange from the
beginning, the conversant's original state space would have had to include not only the
universe of all relevant facts which support her opponent’s argument but also all other
possible facts which are false as well. This unknown state space precludes the direct use of

a planning model.

4Appclt (1981, 1985) also proposed planning models for conversational discourse.
This work, however, principally concemned intra-utterance planning rather than inter-
utterance conversational planning.
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Power (1979) found that his stack-based planning system for conversation would run
into problems because of (1) incompleteness and (2) insufficient flexiblity in adjusting to
changes in context:

Let us turn now to the second fault of the control stack as representation of the
dialogue state: namely, insufficient explicitness. What this means is that the
relations between elements of the dialogue state are not represented
systematically.... The result is that the dialogue state can be interpreted just one
way; it cannot be interpreted by several different procedures for several different
purposes. The robots therefore cannot respond flexibly to unexpected turns in the
conversation; an unexpected remark throws them completely. (Power, 1979, pp.
133-134).

To help solve this problem, Power proposed marking the elements of the dialogue state
with explanatory relations that could be used inferentially to rework the plan. In effect, this
would mean trying to replan the conversation at each state. This approach is not
parsimonious and tries to graft skills for opportunism onto a fundamentally top-down
structure. It does notreally address the underlying issue of producing conversational
organization from a system which is fundamentally flexible.

Cohen (1984), working with earlier research, reported that discourse analysis of
human-computer interaction reveals that users do not follow the strict embedding of
subdialogues required by an ATN model. Rather, a more flexible “demand” model was
needed. Cohen also reports research indicating that efficiency in referential communication
is a function of user feedback. ATN's, as a stack-based method, are considered too rigid
for even sentential grammars and thus are unlikely to be capable of representing dialogue
processes (Frederking, 1988).

Indeed, the planning model has been characterized as a post-hoc rationalization of

actions; it is an artifact of reasoning about actions rather than a mechanism for producing
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them (Suchman, 1987). Plans, Suchman suggests, are simply a restatement of intention.?
She proposes that the coherence of action is not adequately explained by either stored plans
or scripts; rather, the organization of the conversants’ actions is an emergent property of
moment-by-moment interactions between actions, and between conversants and their
context. That is, global coherence is the result of situated application of locally meaningful
operators. This extends Birmbaum’s (1986) notion of opportunistic planning

This does not preclude the use by conversants of high-level reasoning about their
context and actions they might take to achieve their goals. This is, after all, a large
component of what we perceive as conscious thought. Therefore, as I understand the
implications of Suchman's thesis, we can produce conscious plans (based on some known
state-space), act on them, and then react to changed or unanticipated circumstances as
needed. More typically, we do not formulate an explicit plan; rather, we take some initial
action to achieve our goal, and thereby create a set of expectations about what will follow.
It does not matter (from the standpoint of conversational control) if the expectations are not
met because we can again produce from our intentions a new action which is responsive to
the new situation. To the extent that our expectations are met, we can routinize the

selection and application of operators.

ngma; Y

In this Chapter, I presented the integration problem: resolving speech-act theory with
the ragged character of real conversation. Socio-linguistics has identified characteristics of

linguistic interaction that (1) are difficult to explain in speech-act theory and (2) indicate

SSuchman also rejects speech-act models as begging the question of siruated
interpretation. As I attempt to show in this dissertation, speech acts and situated action are
not incompatible. Speech acts can be viewed as the product of contextually sensitive
operators.
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the presence of meta-messages for conversational control. I then discussed techniques and
assumptions which conversants use to maintain coherence. The evidence suggests that
coherence is a product of a joint process in which the parties judge their understanding with
respect to a mutual model of the conversation. When conversants detect significant
differences between their beliefs about the mutual model of the conversation, they use
feedback and repair to restore coherence. This process of feedback and repair can be
viewed as consisting of meta-locutionary acts which control the interaction. As a result, the
non-grammatical features of conversational interaction can be interpreted as embodying
meta-locutionary acts which promote coherence. Finally, I discussed the role of intention
in conversation, with particular attention to issues of interpreting expression and
conversational structure. While the distinction between voluntary and involuntary linguistic
action is not a clear one, a reasonable model of conversation will interpret displayed
behaviors as acts. As to structure, the spontaneous nature of conversation suggests that
planner-based models should be disfavored; global coherence may be produced through
situated application of locally meaningful operators. In the next chapter, I more fully

develop the idea of meta-locutionary acts as a theory of action in language.
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CHAPTER I
A THEQCRY OF META-LOCUTIONARY ACTS
Approach he In ion Problem

If the descriptive requirements for speech acts are too restrictive, in what useful way
might some requirements be relaxed? How could the resulting entities still be characterized
as acts? One way to approach this problem is to enlarge the domain of the acts. Typically,
speech acts concern the general domain of the conversation—the subject of the
conversants’ shared model. That is, traditionally defined speech acts have been applied to
effectuating changes in the extra-conversational context, which is what I earlier called the
“top” level of conversation. This means that speech acts have not been applied to actions
concerning the conversation itself, or to human cognitive mechanisms such as recollection
or focus of attention. As Cohen’s (1984) work made clear, Austinian speech acts cannot
adequately explain attention-focusing utterances independent of some act of predication.
This failure does not invalidate the theory of the process of generation and comprehension
of language which is implicit in speech-act theory. Under this theory, speakers are
goal-directed independent agents whose instrumentalities for achieving their goals include
language acts. Recall that Austin’s original idea was to explain how people did
extra-conversational things with words. As I earlier suggested, this idea can as well be
applied to things which people do which are intra- or meta-conversational. Thus as
conversants through interactive discourse create a shared model of their conversation, they

undertake a sequence of acts which effect changes in the model by (1) making acts within



the directly copresent mutual knowledge of the conversants and (2) understanding the
effects of these acts on the other conversants.

The conversants share responsibility for the maintenance of the model. Note that here
I am referring specifically to the conversants’ model of their own interaction rather than a
model of their mutual beliefs about the subject of the conversation. Jemudd and Thuan
(1983) characterized the behavior of conversants in this way, noting that the social aspects
of language provide a set of shields or protocols which allow conversants (and here the
emphasis is of course on hearers) to employ a wide variety of correction (i.e., maintenance)
resources. These protocols, they stated, allow for shared responsibility for speaking.
Clark and Wilkes-Gibbs independently proposed a principle of mutual responsibility:

The participants in a conversation try to establish, roughly by initiaton of each
new contribution, the mutual belief that the listeners have understood what the
speaker meant in the last utterance to a criterion sufficient for current purposes.
(Clark & Wilkes-Gibbs, 1986, p.33)

Clark and Wilkes-Gibbs described the operation of the principle of mutual
responsibility in the case of definite reference but, as Jernudd and Thuan suggested, such a
principle is appropriate for most aspects of interactive discourse. For definite reference,
this process involves initiation and iterative expansion, replacement, or repair until the
conversants arrive at 2 version of the reference they mutually accept. The conversants try
to minimize collaborative effort. Thus if the speaker utters an elementary noun phrase the
hearers can presuppose their acceptance without taking an extra turn. Clark and
Wilkes-Gibbs noted Schegloff’s finding that speakers are usually allowed to present
utterances without interruption; repair communications come in the interstices between

utterances. Schegloff et al. (1977) in fact stated that other-initiation is withheld in order to

allow speakers an opportunity to initiate repair themselves. Clark and Wilkes-Gibbs (1966)
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then observed that this explains why allowing a new contribution to proceed is tantamount
to a mutal acceptance of the old one.

Cohen’s (1984) approach to this problem was to separate the goals of reference and
predication and to satisfy them separately. He suggested that in the case of apparent
predication without reference the solution is to understand the utterance as an indirect
speech act of reference. In either case, there has to be an action of referent identification.
Thus Cohen argued that referent identification should be treated as an action that speakers
request, and that the speech act of referring should be considered a kind of request. In all
three instances (Jernudd & Thuan, 1983; Clark & Wilkes-Gibbs, 1986; Cohen, 1984), the
solution to the integration problem comes through applying speech-act-like analysis to
various intra-conversational aspects of discourse. They in effect break up speech acts to
cover the particulars of their respective problems studied. The theory of meta-locutionary
acts presented in this dissertation extrapolates this method to a generalized approach to
interactive discourse.

Although the extension of speech-acts to meta-communication is novel, the idea of
meta-communication as a factor accounting for coherence has been the subject of at least
preliminary research. It appears that the choice of a direct speech act for embodying an
indirect act is, at least in part, a function of social relationship. The form of act then
conveys as meta-communication the nominal social statuses of the conversants (Sanford &
Roach, 1987). Conversants can then use this meta-information to interpret indirect speech
acts. Note, though, that this approach does not involve relaxing constraints of Austinian
speech acts. Rather, Sanford and Roach are describing the choice of Austinian acts as
conveying meta-information. For conversants, this is part of the process of reasoning

about acts.



There is some empirical evidence in support of techniques which break down
domain-level speech acts. Schegloff et al. (1977) found that where one conversant initiates
repair of another’s utterance, the operations of locating the repairable discourse units and
supplying a candidate repair are separated. The techniques for initiating a repair of
another’s utterance are technique for locating the *“trouble source.” In this case the actions
of maintaining the shared model of the conversation can be broken down at least into
actions which shift the (sub-) focus to a problem with the model and actions which repair

the problem.
A Com ional -Locutionary A

In the previous discussion I have reviewed the fundamental reasons for computational
models of interactive discourse which follow the successful route of speech-act theory but
which relax the theory by applying it to the shared model of the conversation itself. This is
the consequence of the principle of shared responsibility. However, the discussion so far
has been synthetic, in that it has attempted to extrapolate from various approaches to the
integration problem yet has largely remained in the realm of motivation rather than
extension. Here, then, the discussion becomes developmental. In this section, I outline
the areas in which computational models of interactive discourse can be used to analyze this

problem.
Requirements for a Model

The search for a meta-locutionary model does not begin in a vacuum. Schegloff and
others have shown how repair has structure. This structure is not coextensive with chunks
of linguistic expressions such as lexical items, intonations, or syntactic constructions.

Rather, as I understand the import of this work, it is the relationship among these chunks
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which creates a repair structure through the local dynamics of the communication itself
(Jernudd & Thuan, 1983; Suchman, 1987).

One way in which the mechanism of the feedback process has been examined is
through timing and coérdination of correction utterances. (This is a sort of
meta-codrdination issue.) The socio-linguistic research examining how people direct the
course of conversation and repair its inherent troubles has shown that conversants manage
who is to talk at which times through an intricate system of turn-taking. It turns out that
there is a pattern and structure to initiation of repairs which can be described in terms of
domain-level tum-taking:

The ‘repair-initiation opportunity space’ is continuous and discretely bounded,
composed of initiation-opportunity positions at least some of which are discretely
bounded. The positions are adjacent, each being directly succeeded by a next,
some being themselves composed internally of a set of ‘sub-positions’. [Footnote
omitted.] {Schegloff et al., 1977, p. 375)

I expect that instances of positive feedback will fall neatly into these positions as well,
indicating prophylactically to the speaker that the shared model is consistent thus far.

Feedback in interactive discourse displays other procedural regularities. Schegloff et
al. (1977) noted that repairs are subject to two strong preferences: speakers prefer to repair
their own utterances rather than let hearers do it; and speakers prefer to initiate their own
repairs rather than let hearers prompt them to do it. As a result, conversants repair their
own utterances as soon as they detect problems. This is consistent with the results of Clark
and Wilkes-Gibbs (1986), who found that speakers prefer to make their own expansions of
noun phrases without prompting. There are places in the conversational flow which the
conversants mutually recognize in which repair initiation ought to occur if repair were

needed. A place-marking act which does not initiate repair can then be understood as

indicating comprehension (Suchman, 1987).
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At this point I want to interject, though, some methodological perspective on these
results. From the published research, it appears that Schegloff et al. studied ranscripts of
verbal interaction. These transcripts at best coded pause, intonation, and audible breath;
although “non-linguistic” behavior such as gesture may be parenthetically noted, they may
have missed other extra-linguistic aspects of discourse such as gaze. As a result, the only
attempts at correction which are reflected in the research analysis are verbal ones. It may
be, and preliminary protocol analysis of my own so suggests, that nonverbal (but
nonetheless linguistic) communication may contain a significant level of correction, repair,
and other feedback information. As a consequence, other-initiated repairs may be
underreported and the preference for self-repair correspondingly over-reported. To the
extent which they are true, though, do the reported aspects of the process have any
advantage for interactive discourse? Clark and Wilkes-Gibbs {1986) observed that
conversants also try to avert potential exchanges as the hearer tries to correct any
misunderstanding; that is, the conversants strive to achieve mutual acceptance of a reference
with minimal conversational cost. These preferences have the effect, then, of minimizing
collaborative effort. Accordingly, we can develop a number of standards by which
computational models of feedback in discourse can be evaluated. Is the model a
performance model with respect to repair opportunities? Does the mode! inherently serve to

minimize collaborative effort?
Levels of Feedback for Modeling

There are differences among kinds of feedback, in the sense of supportive versus
corrective, or self-repair versus other-initiated repairs. Goodman (1986) found four kinds
of communicative failures in the water-pump assembly conversations he studied: erroneous

specificity, improper focus, wrong context, and bad analogy. There are also differences in
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the level of the feedback with respect to the multi-stratification of conversation. Some
corrections and assurances are obvious because they are embodied in sentence-level
utterances. For example, Grosz reported the following fragment:

S1: The lid is attached to the container with four 1/4-inch bolts.

S2: Where are the bolts? (Grosz, 1977, p. 353)

Very typical of the dialogues reported by Cohen is this exchange:

S: Take that red piece. It’s got four little feet on it.

J: Yeah.

S: And put the small end into that hole on the air tube—on the big tube.

J: On the very bottom.

S: On the bottom, yes.

J: Okay. (Cohen, 1984, p. 140)

In the first example, the request for clarification is at the extra-conversational level of
Austinian speech acts. In the second exchange, we begin to see fragments: utterances
which cannot be coded directly as speech acts. This exchange, even though purely textual,
shows the beginning of the journey down through the layers of the conversational
structure; it can still be coded reasonably through a minimally relaxed set of speech acts.
There are some kinds of perlocutionary effects, though, which can be achieved
linguistically, but not through communication of intent (Cohen, 1984). These are farther
down in the structure. It is not clear where the bottom is. Do conversants recognize intent
for fundamentally intra-conversational acts? Actually, this question is not settled even for
domain-level acts (cf., Allen & Perrault, 1980). Recognition, as with other conversational
processes, need not be conscious. At some point, though, we will reach another set of

not-usually-negotiated communicative units through which the collaborative structure is

created.



48

Forms of Computational Models

The goal of this research is to identify and to model computationally a set of acts
relative 1o the conversational levels. The set of acts which we choose as a representation
for the real acts in the world of actual conversants depends on the computational structures
within which the acts are used in the processes of comprehension and generation. Is the
process simply pattern-matching? Parsing? Inferential?

Clark and Wilkes-Gibbs (1986) stressed that the principle of mutual responsibility
operates in a context of widespread, natural ambiguity and uncertainty. Conversants need
not assure perfect understanding of each utterance but only understanding to a criterion
sufficient under the circumstances. The dynamics of the collaborative process encourage
minimizing the collaborative effort, thus implicitly encouraging some measure of
uncertainty in understanding., Certainly, hearers will accept uncertainty when they
anticipate that the gaps in their understanding will be filled in later. But, as Clark and
Wilkes-Gibbs pointed out, the hearer has to tolerate uncertainty always: Although
conversants might like to accept each element mutually, second by second as they proceed,
this represents an impractical ideal. First, there is the probability that some definite
references cannot be understood fully until later in the utterance. Second, I note thateach
part of the utterance itself is a case of the speaker being ahead of the hearer. This is exactly
what Grosz (1981) described as the speaker always being one step ahead of the hearer.
This suggests two further points about the nature of feedback itself: First, no matter how
the observed discourse units are subdivided or aggregated (and they always can be), the
speaker is always this unit ahead of the hearer and both speaker and hearer may be
depending on the hearer’s feedback to maintain their model of the conversation. Second,
the simultaneous presence of discourse segments, units, fragments, and atoms of various

sizes, almost always overlapping of others, suggests that feedback with respect to the
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mutual model of the conversation must itself be multi-layered, with related temporally and
referentially dependent communicative functions. Adequate computational models of

interactive discourse, then, must reflect this multi-layered, simultaneous character.

Meta-Locutionary Acts

To determine a set of illocutionary meta-acts, I start with the taxonomy of acts
proposed by Searle (1969) that form the foundation of speech-act theory. Searle suggested
that the types of illocutionary acts are promise, request, assert (or affirm), question, thank,
advise, warn, greet, and congratulate. For each type, Searle defines the act’s propositional
content, the conditions preparatory to its use, the intent (which Searle calls the sincerity) of
the speaker, and the act’s essential meaning. Can these acts be applied directly in a

meta-locutionary way?

The Role of Acts in Language

Some of Searle’s acts do not have obvious analogs for the control processes of
conversation, For example, greeting and congratulating seem inherently tied to the domain
of social relations. The mere existence of other acts might be questioned. What, after all,
are acts in language? The easiest act to understand is a request. Requests have an obvious
motivation for the speaker; namely, a goal that the hearer perform the requested act. Butin
what sense is an assertion an act? Searle says that a “propositional act” can be a constituent
part of an illocutionary act of asserting. The apparent, surface motivation for assertions is a
goal that the hearer know something. Yet is it ever the case that the speaker really wants as
an end in itself that the hearer should know something? Typically, one might surmise, the
speaker really wants the hearer to know something because the speaker believes that this

will bring about some further, elaborated state which is the speaker’s greater goal. If a
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child wants someone to bring it a drink, the child might say “Hey, I'm thirsty.” This is an
act of assertion which has as its immediate goal the state that the hearer should know of the
speaker’s thirst. It can further be seen as act of requesting, where the speaker’s goal is to
get the hearer to bring the speaker a drink. This case is a clear example of an indirect
speech act. Thus, one can ask, is an assertion ever an act in itself? Actually, examples of
assertion are not hard to find. A tutor’s statement, under the usual circumstances, that “The
capital of Delaware is Dover.” is an act of assertion that has as its intended effect the
acceptance of the content of the statement by the tutor’s student.5 The student’s might in
return say “OK,” thus making an assertion that she understands the tutor’s statement. In
the context of the control of conversations, an act analogous to the student’s confirmation

would be a conversant’s acknowledgment that it was the other conversant’s turn to speak.
Domain- ific A

If meta-locutionary acts are the extension of illocutionary acts to subsentential,
meta-locutionary phenomena in conversation, then are these acts the same acts which are
used at the sentential, domain level? One possibility is that the set of acts is the same, and
that the instantiation of the acts with meta-locutionary states differentiates them from acts
instantiated with domain states. The other possibility is that the acts are different in
themselves. That is, there is one set of acts which is peculiar to meta-locutionary
phenomena and another set for domain knowledge. In fact, this position might even be

extended by the idea that every different domain has a different set of acts and that

OThe fact that the tutor’s act may be a pure assertion does not imply that the tutor lacks
more complex intentions which are served by the act. The tutor may have intentions, for
example, that the student will pass an examination. However, the tutor cannot achieve this
directly through an act. Rather, the tutor—through assertion—takes an act which has a
change in the mental state of the student as its immediately intended effect.



51

meta-locutionary phenomena simply comprise a particular, recurrent domain. The first
position I will call universalist; the latter situated, in the spirit of situated-action analysis
(Suchman, 1987).

The existence of different sets of acts for different domains postulated in the
situational position is not as bleak a representational prospect as might be imagined.
Specialization of acts does not negate the idea of ontological structure for classes of acts.
Just as we can apply old words in new domains, or understand new words in old domains,
SO (00 can we interpret unfamiliar acts. It may also be the case that acts are reified by
specialized use. In other words, the constant use of particular (perhaps partial)
instantiations of certain acts may lead to general acceptance of these instantiations as acts in
and of themselves. Jernudd and Thuan (1983) pointed out that speech acts and their
meanings may be negotiated between conversants. Of course, a huge number of
pre-negotiated acts is part of the language as we leam it. As a consequence, one would
expect to find the greatest levels of specialization in the domains which we most frequently
use. If the process of conversation is itself considered as a domain, then the use of
specialized meta-locutionary operators should be highly developed.

Note that ontological relationships should still hold among acts which are specialized
for the meta-domain of conversational control. Suchman’s (1987) situated action
hypothesis, that conversants have highly developed operators which respond to local
context, also leads to the conclusion that the acts used in the experimental domain may
fairly be represented as domain-specialized acts. Indeed, meta-locutionary acts ought to be
derivable as instantiations of more basic acts. Accordingly, at the turn-taking level,
suggest that there are specialized acts which take into account the particulars of these

behaviors. These acts include acknowledge-turn, give-turn, request-turn, and hold turn.
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Each act should, in theory, be derivable from some set of more general acts. For example,
request-tum could be expressed as
act ( Me, request ( Other, act { Other assert ( belief ( turn ( Me )))).

The concept of turn itself might be then be explicated further. The point here, though, is
that there are domain-specific acts which have an ontological relationship to a more abstract
set of acts upon which conversants might rely in an unfamiliar context. Givén (1984)
observed that as languages develop, they grow gradually less ambiguous and more richly
coded. Thatis, in their early stages languages tend to be highly polysemous. As linguistic
functions become routinized, specialized functionality develops. In the context of speech
acts, then, the general acts identified by Searle represent the ontological primitives from
which the specialized meta-acts developed as the functions they facilitated became routine.

A form of taxonomy of meta-locutionary acts can be developed using the general
classifications of speech acts as an outline. More precisely, there is a forest of taxonomies
where each tree corresponds to a conversational level. I will follow the taxonomic outline
proposed by Bach and Harnish (1979) for communicative illocutionary acts.” Constarives
express the conversant’s belief and her intention that the other conversant have or form a
like belief. Directives express the conversant's attitude toward some prospective action by
the other conversant and the first conversant's intention that her utterance, or the attitude it
expresses, be taken as a reason for the second conversant's action. Commissives express
the conversant's intention and belief that her utterance obligates her to do something

(perhaps under certain conditions). Acknowledgments express feelings regarding the other

7In addition to communicative acts, Bach and Harnish (1979) also described
“conventional” illocutionary acts, which are not relevant to the theory developed in this
dissertation. Briefly, conventional illocutionary acts include effectives and verdictives,
which mainly concern socially conventional acts such as vetoing a bill or finding a
defendant guilty.
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conversant or convey formal or perfunctory expressions that social obligations be met. The
use of Bach and Harnish’s particular taxonomic system is intended as an explanatory aid; it
is the identification of (and the relationships among) the various meta-locutionary acts
which matter most. Using these distinctions then, Figures 3, 4, 5, and 6 present
taxonomic trees for certain meta-locutionary levels of the conversational process;
respectively, these are turn-taking, repair of mutual models, reference/information, and

attention.

communicative illocutionary acts: turn-taking

I I I

constatives directives commissives acknowledgments

hold-turm(<person1>)
give-tum(<person1>,<person2>)
take-turn(<personl>)
accede(<person 1>,turn{<person2>))

FIGURE 3. Taxonomy of meta-locutionary acts for turn-taking.

communicative illocutionary acts: repair of mutual models

constatives directives commissives acknowledgments
repeat(<personl1>,Act>)
clarify(<personl1>,Siate)
confirm-mutual(<personl>,<person2>,5tate)
comprehend(<personl>,State)

FIGURE 4. Taxonomy of meta-locutionary acts for repair of mutual models.
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communicative illocutionary acts: referencefinformation

constatives directives cOmmissives acknowledgments
assert{<person1>,<person2>,State) acknowledge{<personl>,Act)
deny(<person1>,State)
request{<personl>,<person2>,Act)

FIGURE 5. Taxonomy of meta-locutionary acts for information.

communicative illocutionary acts: atlention

constatives directives commissives acknowledgments

attend(<person1>,<person2>)
unatiend(<personl>,<person2>)

FIGURE 6. Taxonomy of meta-locutionary acts for attention.

Summary

In this chapter, I presented the foundations and elaboration of a theory of
meta-locutionary acts. The theory arises from the principle of mutual responsibility in
conversation, which holds that conversants share the responsibility for maintaining the
coherence of their interaction. This implies, among other things, that conversants must
have means for confirming copresence and the effects of conversational acts on the other
conversants. These control functions can be modeled as speech acts through relaxation of
constraints on Austinian speech acts. In particular, going beyond the mapping of speech
acts to domain (i.e., extra-conversational) matiers permits the acts to reference and affect
the conversation itself; that is, for these acts, the conversation is the domain. Such

meta-locutionary acts, then, are reflected in a computational model which proposes to
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encompass the processes of repair and feedback which maintain the conversational models.
These acts cross conversational levels and are simultaneous. Finally, I presented a
taxonomic account of the meta-locutionary acts, with particular application to turn-taking,
repair of mutual models, information, and attention.

Given the theory, though, two questions arise. First, does the theory correspond to
and account for the interaction observed in actual conversations? Second, is the theory
adequate for computer-based interaction? The question of the explanatory power is
addressed in Chapters IV and V. The question of the applicability of the theory is

addressed by the computational simulation in Chapter VI
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CHAPTER IV
METHODOLOGY

In the preceding chapters I considered that the general question of coherence is posed
in the integration problem, examined a range of prior work which provided foundations for
attacking the problem, and proposed a theory of meta-locutionary acts for explaining the
control processes of conversation. In this chapter I discuss the specifics of a study for
assessing the theory. In particular, I look at the effects to be studied, and the mechanics of
the protocol analysis of conversation. The computational modeling of the observed

behaviors is discussed in chapters V and VI.

.

Methodol in Cognitiv ien

Although the field is not settled (Suppes, 1984), methodology in cognitive science has
produced some agreement on what constitutes adequate work. Unfortunately, research into
the processes of conversation has (at least) two major methodological pitfalls. The first is
the lure of introspection. Introspection seems inexpensive and easy; virtually every human
being communicates interactively with others. But one cannot simply present one’s
intuitions as a descriptive study. It is precisely because mixed-initiative discourse is so
familiar to us that its processes are transparent to the introspective observer. The observed
behaviors must be explained in the context of a theory that proposes a coherent model
(Miller, Polson, & Kintsch, 1984). What sort of theory is adequate? Miller, et al., (1984)
suggest that there is a continuum between a naked idea and an explicit process model. In

the center of this continuum lie “middle ground” theories in which structures and processes
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have been specified in sufficient detail to support both the instantiation of the theory as a
computer program and qualitative experimental study. In this chapter, I explain how the
theory of meta-locutionary acts can be validated in both regards; it thus avoids the first
pitfall. The second pitfall is that of failure to explain behavior as a process. Although all
studies must inherently look back at behavior that is now—because it occurred in the
past—static, a good model will explain the behavior on the basis of real-time factors: those
factors which were available in the actual context of the observed interaction (Swinney,
1984). Although this view has been criticized as overly restrictive (Charniak, 1984), its
essential truth is that the model cannot embody in its explanation the kinds of
post-perceptual processes which are available to observers rather than to the participants. I
have tried to address this concemn through (1) minimizing domain-level, real-world
knowledge in the experimental task, (2) using temporally-significant acts to explain the
observed behaviors, and (3) trying to replicate the behaviors with a simulation of the

model.
Effects to be Swdied

The eventual goal of this study is to test the theory of meta-locution through
computational modeling of actual interactive discourse. Within the general philosophical
framework of the speech-act approach to language, most of the discourse theories we have
discussed have looked at basically sentence-level (or utterance-level) interaction. Ata
minimum, the discourse unit of interest has been the noun phrase, where the noun phrase
has been characterized as a act of assertion or the subject of negotiation. As I have tried to
show in Chapter II, both Cohen (1984) and Clark and Wilkes-Gibbs (1986) took
constructive steps toward solving the integration problem through partial reduction of the

units of discourse. Taking this research as leads or indications of the proper direction for
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more general solutions of the integration problem, one can go much farther in atomizing
discourse for purposes of both understanding and generation. In Chapter V, I extend the
analytical techniques such as those used by Grosz, Allen, Clark, and Cohen to sub-domain
levels of discourse.

I thus seek to examine sub-domain levels of conversational interaction. As the
socio-linguistic literature has described the features of conversation which apparently lead
to coherence, this study concentrates on aspects of language which are related to these
observations. Thus the model should explain turn-taking, negotiation of reference, and

confirmation of the mutuality of knowledge.
General Approach

I have argued that maintenance of a conversational model is clearly part of any
reasonably sophisticated approach to generational simulation of conversation, yet our initial
observations of conversations suggest that maintenance of the model is a continuous,
multi-level process of incremental addition and revision rather than a post-utterance
assessment. This set of behaviors of the speaker and hearer is (1) at a more finely grained
level than that of the standard illocutionary act and (2) about the process of conversation
itself. They are, broadly speaking, locutions which embody illocutionary acts in the sense
that they are intended to produce a change of state in the world outside the speaker, and are
meta-acts in the sense that in combination they effect Austinian speech acts but individually
are specifically directed to changes in the state of the conversational model itself. That is,
these are illocutionary acts which correspond to intended perlocutionary effects performed
on the shared conversational structure. The feedback-suffused basis of coherence in
conversation is a critical fact (VanLehn, Brown, & Greeno, 1984) which the theory of

meta-locutionary acts should better explain than traditional speech-act theory.
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Given a theory of the meta-(il)locutionary act as a maintenance device for a
multi-layered shared conversational model, what is the immediate program of research to be
followed? Cohen (1984) states that one should derive the illocutionary acts as a rational
strategy of action, given attributions of participants’ beliefs, goals, and expectations at the
point in the discourse in which the illocutionary acts actually occurred. Accordingly, I first
identify a set of speech acts which (1) comprise illocutionary acts and (2) handle the
micro-tasks of turn-taking, negotiation of reference, and confirmation of the mutuality of
knowledge. This is accomplished through analysis of conversation protocols at a
sufficiently small granularity that the acts can be discerned. Second, I develop, using these
acts, a computational model of the belief structures of the conversants. The structures,
with a suitable set of operators, are sufficient to account for most of the observed

meta-locutionary behavior.
Study of Spoken, Face-to-Face Conversation

The effects of meta-locutions, as I have defined them, are peculiar to real-time
interaction and especially to spoken conversation. However, not all discourse is interactive
or spoken, much less face-to-face. In fact, there are a number of dimensions which
characterize the various modalities of discourse. The character of the discourse changes in
ways corresponding to the characteristics of the modality.

Why then should one conduct research into computational models of meta-locutions
using spoken, face-to-face conversation? It appears that the most efficient (in temporal
terms, anyway) form of interactive communication for human beings is spoken
conversation. Itis certainly easier. Why should users of interactive computer systems be
limited to the capabilities of computing technology circa 19657 Moreover, it may be

difficult or impossible to understand the processes of lanugage and interaction without
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starting with face-to-face, spoken conversation. While the precise nature of the
contributions of verbal and nonverbal communication to interaction are not known, they are
ascertainable through research:
This notion, though simple and intuitive, carries a strong implication for
research: we can fully understand language only by examining its functioning as an
aspect of face-to-face interaction, and not be treating it as an autonomous entity,
unsullied by contact with everyday social processes, including co-occurring
“nonverbal” actions. (Duncan, 1980, p. 67).

Looking at the advantages of conversation to interfaces, cross-modal research on
discourse as surveyed by Cohen (1984) found significant efficiencies in spoken
conversation. In particular, a series of cross-modality studies was conducted by Chapanis,
Ochsman, Parrish, & Weeks (1972, 1977). They found, inter alia, that problems are
solved twice as fast in vocal modalities as they are in written ones, even though
conversants use twice as many words when speaking. Cohen (1984) also cited a thread of
psychological research on cross-modal comparisons of reference. These studies showed
that for spoken interaction the length of noun phrases tends to decrease as subsequent
references are made; this decrease is not as sharp for non-interactive spoken modalites.
Cohen concluded that these results indicate that efficiency in referential communication is a
function of conversants’ feedback.

Many of the differences between narrative and interactive discourse are well known.
People looking at conversational language often remark on its apparently ill-formed and
“ungrammatical” qualities. Not only are what one often considers speakers’ mistakes more
prevalent, correspondingly abundant are the opportunities for repair. Thus Goodman
(1986) suggested that the study of miscommunication is a necessary task for building
natural language understanding systems since any computer capable of communicating with

humans in natural language must be tolerant of the complex, imprecise, or ill-devised

utterances that people often use. Interactive systems which aspire to live in the real world
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of feral language must be able to cope with its perplexing characteristics. Among the
factors affected by modality of discourse is the conversants’ ability or opportunity to
maintain their model of the conversation. Clearly, authors of novels do not depend on
real-time feedback from their readers to check uncertainty in the readers’ models, nor can
authors negotiate the meaning of acts, lexical items, and references. Thus Jernudd and
Thuan (1983) observed that discourse represents a continuous process of accommodation
among conversants.

The relationship between conversants can vary greatly, from the great distance of
written discourse to closeness of face-to-face conversation, which brings the question of
accommodation into sharp focus (Jernudd & Thuan, 1983). If one is to study the shared
mode! created by discourse and its maintenance through negotiation and accommodation,
then one should study conversational rather than textual discourse. Other modalities of
discourse, such as keyboard input, can be interactive but not spoken. It turns out that the
presence of speech itself in place of written interactive language is significant for the
structure and processes of discourse. Cohen (1984) found that keyboard communication is
distinctly different from other modalities of discourse like face-to-face conversation. In
particular, among other differences, keyboard interaction emphasized optimal packing of
information into the smallest linguistic space. As a result, keyboard communication alters
the normal organization of discourse. Of course, non-textual information represents some
sort of (presumably most efficient) lexicalization of an underlying meta-locutionary act. To

the extent that acts can be lexicalized in the alternate modality, the meta-locutionary content



can be transmitted. However, this may require a new vocabulary; unless recognized
though social acceptance or immediately negotiated, new lexemes will not be understood.8

Modality-induced differences in discourse also include the way conversants use
reference. For example, voice-only communication removes some of the forms of acts of
reference (e.g., deixis and common visual context) which keep the interaction coherent.
When these acts are not available, the interaction can easily break down:

0O.K., uh ... now, we need to attach the um ... conduit to the motor ... the
conduit is the uh ... the covering around the wire that you ... uh ... were working
with earlier. Um, there is a small part um ... oh brother ... (Grosz, 1982, p. 88)

Accordingly, cross-modal studies have shown that different modalities of communication
lead to different uses of referring expressions. Analysis of protocols from teletype and
telephone interactions shows marked differences in the use of explicit requests for
identification. As a consequence, systems which understand spoken language will have to
be prepared for language which differs from that observed in teletype interaction {Cohen,
1981). If the goal of research in natural language processing is either (1) understanding
how people actually converse or (2) developing systems which converse with people, the

evidence with respect to differences in conversational characteristics from differences in

modality suggests that spoken conversation would be a fruitful area of study.
The Study

The methodological strategy of this study, then, is to examine conversational
interaction in some reasonable domain, and then to derive the underlying illocutionary acts

as a rational strategy of action, given attributions of the participants’ beliefs, goals, and

8Some new lexemes may be slowly evolving for textually based computer interaction.
For examples the smiley-face icon *:-)” and its variants convey the meta-locutionary sense
of satire or irony.
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expectations at the points in the discourse in which the illocutionary acts actually occurred
(Cohen, 1984). I thus turn to the particulars of the design of the study that instantiate this

strategy.
main k

The first part of the empirical work involved development of a suitable domain for the
observed conversations. The general requirements were that the conversation produce acts
by the conversants which included wurn-taking, negotiation of reference, and determination
of mutuality of knowledge. In order to facilitate ready experimental determination of
mutuality, the domain should be a simplified one in which as much of the mutuality as
possible is created through direct rather than indirect copresence. That is, if the knowledge
becomes mutual to the conversants during the conversation itself, the fact of the mutuality
can be more easily ascertained by an experimenter-observer. In contrast, if the subject of
the conversation is something which is mutual through indirect copresence, then the
experimenter has virtually no basis from which to determine the knowledge confirmed or
the extent of the confirmation. Unfortunately, extreme reduction in domain complexity
may also lead to unrealistic interaction that exhibits artificial effects. In reaching a balance
here, one may simply have to qualitatively evaluate the resulting conversation for
verisimilitude.

A second factor in selecting the domain concerns deixis. I sought to reduce confusion
over gestures which were referential by minimizing circumstances which called for deictic
reference. This meant that a task such as jointly building a structure would have to be
limited to structures which were wholly mental rather than physical or visual. However,
the advantages of reduced confusion from deictic gestures are not obtained without cost.

DeLancey (personal communication, February 23, 1988) has pointed out that a shared
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physical work serves as a default place for gaze; thus where the conversants have
something other than each other to look at, direction of gaze toward each other may be
more significant than in the case where they look at each other more or less continuously.

A third factor which influenced the choice of both the domain and the task was a need
to keep the conversations reasonably short—around two minutes at the most. At the
fine-grained level of transcription which this study requires, longer protocols would simply
be impractical to transcribe. Experience with a pilot study suggested that to transcribe fully
ten seconds at the appropriate level of detail takes about six hours. Thus forty seconds of
protocol requires three working days to transcribe. It would be also be possible to elicit
longer conversations with greater structure and then choose short sections for analysis.
However, this would lead to more speculative analysis in initializing the conversational
models. Accordingly for this initial study, the domain and task had to revolve around
concepts and activities that could have fairly rapid closure.

Given these constraints, I chose for the domain the task of jointly reconstructing a
sequence of random letters. Thus a typical protocol involves two subjects, each of whom
has a copy of the same sequence of 15 letters. Some of the letters have been replaced by
blanks. The blanks do not overlap. Thus if one had both copies of the sequence, the entire
sequence could be determined. The sequences of letters and the positions of the blanks
were chosen randomly. Figure 7 depicts the copies of the sequences which subjects
received in one of the trials.

The tasks were structured as follows: The subjects were given, by random choice,
their copies of a sequence. The subjects then had one minute in which to memorize their
respective sequences. After the minute expired, the subjects turned over the pieces of paper
on which the sequences were printed and were instructed to recall jointly the entire

sequence. This task was repeated two additional times, so that for each pair of subjects I
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obtained three conversations. In the third task, the copies of the sequence were altered so
that toward the end of the sequence the copies differed by one letter. Copies of this kind

are depicted in Figure 8.

Copy of sequence given to subject A:

isutwrqgld _ _ _ _ go
Copy of sequence given to subject B:
o_sutwrqg__fwwdgo

FIGURE 7. Example of random-letter sequences used in protocols. Neither copy contains
the entire sequence. The blanks do not overlap. Therefore, the entire sequence
can be reconstructed if the information in both copies is used.

Copy of sequence given to subject A:

n bw _ eguqtyvoxue

Copy of sequence given to subject B:

i k bwfegugqgty_ _ _ye

FIGURE 8. Example of non-identical sequences used in third task. The copies of the
sequences give to the subjects differ toward the end. In this example, the
difference occurs in the next-to-last position. This stimulus was used to induce
apparent failure of the subjects’ models of the conversation.
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The rationale for the three tasks is that the first provides familiarization to the subjects,
the second lets the subjects interact proficiently, and the third uses the subjects’
expectations garnered in the first two tasks to induce apparent failure of the subjects’ model
of the conversation. The domain has the needed characteristic that all of the knowledge will
be directly copresent, because the entire domain-level knowledge structure is contained in
the sequences. Moreover, because the sequences are memorized, the resulting
conversations revolve entirely around mental rather than physical constructions. The
relatively short length of the sequences meant both (1) that memorization and recall
would be feasible tasks and (2) that the conversations could conclude rapidly. These

assumptions were confirmed in a series of pre-experimental tests.

Protocols

Protocols were obtained from two sets of subjects. Each set consisted of two persons
who performed the three tasks described above. The subjects sat roughly at a
ninety-degree angle to each other so as to face each other and still be visible to the camera.
An overhead view of the situation is presented diagramatically in Figure 9.

The subjects were recorded on half-inch VHS videotape during all instructions,
preparations, and the actual tasks. The subjects completed, from their subjective
standpoint, all of the tasks, although objectively they did fail on occasion to recall the
sequences accurately. However, their accuracy in the task was sufficient for the analysis.
The conversations typically lasted about two to three minutes. In all, then, I obtained six

protocols.
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Table Chairs

Camera

FIGURE 9. Overhead view of the experimental set-up for the letter-sequence protocols.

i nversational Interaction

In the preceding section, I discussed the rationale, design, and coliection of the
protocol data for this research. I now turn to the analytical methods applied to the
protocols. Useful sections of the protocols were transcribed for both verbal and non-verbal
behaviors. The verbal portions were transcribed with the aid of the SoundCap™ digitizing
program on an Apple Macintosh computer. The sounds were resolved down to a precision
of about a tenth of a second. Ambiguous words were resolved by listening to the original
videotape. Sounds that could not be resolved into words were noted phonetically.
Intonation was coded through punctuation. The subjects’ physical actions were transcribed
using an editing videotape recorder with slow-motion control. The actions were resolved,
where necessary, on a frame-by-frame basis down to a thirtieth of a second. A notation for
the physical actions was developed to the extent necessary to impart the general nature of

the actions observed; while accuracy in timing is important, accuracy in the specifics of the
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motions is not needed if the gist of the action can be discerned. I used a partial adaptation
of the notation developed by Birdwhistell (1970). This feature of the transcription process
was facilitated by the fact that the study does not examine nor does it make claims about
lexicalization of physical action (or of verbal acts either, for that matter). A transcript of the
particular protocol analyzed in this dissertation is set forth in Appendix A.

Once the verbal and physical behaviors had been transcribed, I then assigned
identifiers to the behaviors which I deemed could be considered acts. These included
virtually all of the behaviors observed. Only later in the study were behaviors classified as
acts; the motivation for this approach is that it was better to over-include acts as significant
rather than risk ignoring a behavior which might have been a significant within the context
of the conversation. As Birdwhistell (1970) observed, no behavior ever carries meaning in
and of itself; it is the context which provides the meaning, if any. For example, in the
protocol reported in Appendix A, B’s behavior of leaning back was initially coded as a
separate act identified as Bi3; subsequent analysis of the interaction suggested no
reasonable basis for finding this action as an act distinct from its other associated actions,
and so the notation of Bi3 was deleted. As it turned out, though, very few behaviors were
found insignificant. Conversely, in some cases additional acts were noted where, on
further analysis, the behaviors appeared to require decomposition. In the protocol reported

in Appendix A, act Ai6a was added in this way.

Summgg s

In assessing the validity of the theory of meta-locutionary acts, the effects to be studied
should include turn-taking, negotiation of reference, and confirmation of the mutuality of
knowledge. Accordingly, a domain was developed in which these meta-conversational

phenomena could be observed and modeled. The domain task required face-to-face,
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spoken conversation between the conversants, maximized the use of directly copresent
knowledge, and minimized deictic gestures. The actual task given the conversants in the
experimental protocols—joint recall of a random sequence of letters—met these
requirements. Protocols were obtained of three trials each of two pairs of subjects. The
protocols were transcribed for verbal and non-verbal behaviors, and the behaviors were
noted as possible meta-locutionary acts.

In the next chapter I describe how the behaviors were connected to the acts developed
as part of the theory of meta-locutionary acts. These acts, and the conversational models

which they affect, explicate the conversation in meta-locutionary terms.
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CHAPTER V
RESULTS OF THE PROTOCOL STUDY

In this chapter I focus on the part of the protocol reported in Appendix A. This
protocol was the second of the three protocols obtained from these subjects. Recall that the
first protocol was intended as a introduction to the problem, and that I expected that in the
second protocol the subjects would have a good notion of the task and how to accomplish

it.

Modeling the Conversation

Having transcribed the protocol as described in Chapter IV, the illocutions of the acts
noted in the transcripts were then developed through interpretation of (1) the specifics of
the verbal and non-verbal behaviors associated with the act, (2) the known context of the
conversation, and (3) the context of the conversation reasonably imputable to the subjects.
In Cohen’s (1984) terms, I derived the illocutionary acts as a rational strategy of action,
given attributions of the the participants’ beliefs, goals, and expectations at the point in the
discourse in which the illocutionary acts actually occurred. Note that the apparent
subjectiveness of this method is both unavoidable and unobjectionable. It is unavoidable in
a qualitative study which seeks to model otherwise unobtainable mental states;
post-elicitation of subjects’ mental states about comprehension and production are likely to
produce confabulations, because the states and acts are generally unconscious ones. The
subjectiveness is unobjectionable because there really is no single objective account of the

conversation. Although the the conversants are repairing a shared model of the
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conversation, the sharedness is a subjective quality; they do not really share the actual
verbatim states. Therefore, an interpretation of the interaction which plausibly explains the
interchange can be taken as both valid and useful. This approach is consistent by recent
work in understanding language as an action situated in its context (Suchman, 1987). In
this view, the aim of research into language as action is not to produce formal models but to
explore the relation of knowledge and action to the particular circumstances in which
knowing and acting occur. This approach requires changes in the methodology of research
on purposeful linguistic action:

The first [change] is a fundamental change in perspective, such that the
contingence of action on a complex world of objects, artifacts, and other actors,
located in space and time, is no longer treated as an extraneous problem with which
the individual actor must contend, but rather is seen as the essential resource that
makes knowledge possible and gives action its sense. The second change is a
renewed commitment to grounding theories of action in empirical evidence: that is,
to building generalizations inductively from records of particular, naturally
occurring activities, and maintaining the theory’s accountability to that evidence.
Finally, and perhaps most importantly, this approach assumes that the coherence of
action is not adequately explained by either preconceived cognitive schema or
institutionalized social norms. Rather, the organization of situated action is an
emergent property of moment-by-moment interactions between actions, and
between actors and the environment of their action. (Suchman, 1987, p. 179)

Accordingly, based on the hierarchy of illocutionary acts in conversation presented in
Figure 2, and its elaboration in Chapter III into a taxonomy, an initial interpretation of the
illocution of the conversants’ acts was determined. This set of acts and their mapping onto
conversational phenomena were refined in successive passes back over the protocol. The

final set of acts is listed in Appendix B, Predicate Representations.
Modeling of Meta-Locutionary Acts

From the transcribed and coded protocol, I developed a representation of one of the
conversants’ model of their conversation. That is, as described in Chapter II, the

conversants are viewed as jointly constructing a conversation. Each conversant is checking



his or her model of the constructed conversation against the actual evidence of the
conversation, namely the utterances themselves in their context. Although the terms may
be slightly confusing here, the representation which I developed of A’s model 1s, in effect,
a hypothesis as to a set of beliefs which would permit a rational agent to achieve this
particular coherent conversation under the contextual circumstances. Thus beginning with
some reasonably inferred state, A’s model can be updated act-by-act to reflect additions and
deletions from the state of the conversation. Figure 10 shows the initial second of the
protocol, the initial state of A’s model (after B’s act Bil, which is directed to the
experimenter and is not further considered here), the changes in A’s model resulting from
A and B’s conversational acts, and the state of A’s model after A’s act Ai2.9 The initial
state reflects A’s immediate domain knowledge and her immediate domain goal. The
changes in A’s model due to the acts of both A and B represent A’s perceptions of the
effects on the shared conversational model. Note that a similar set of perceptions, changes,
and states can be constructed for B. Both A and B’s models, though, should be viewed as
representing what A and B respectively believe the state of the conversation to be. Thus
from an initial state of (i) A’s not knowing the first letter of the sequence and (ii) A wanting
B to inform her of the first letter, the sequence of acts Bi2, Ail, Ai2 results in the state of
A’s model being that (i) A does not know the first letter of the sequence, (ii) A wants B to
inform her of the first letter, (iii) it is A’s turn in the conversation, and (iv) A has informed

B that A does not know the first letter.

9In Figure 10 and in the discussion, these notational conventions are followed:
Indices: T time, Av A's verbal, Bv B's verbal, Ap A's physical, Bp B's physical, Ai A's
illocution, Bi B's illocution; Body: h head, e eyes, a arm, ah hand, rright, 1 left, f finger,
m mouth; Directions: U up, D down, L left, R right; Referents: A conversant, B
conversant, O object, E experimenter; Actions: W forehead-wrinkles, C forehead-clear, O
open-mouth, § close-mouth; Notation: () previous state, ... duration.
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Using this technique, the state of A’s model of the conversation was determined after each
act identified in the transcribed segment of the protocol. This account of A’s model is set

out in Appendix C.

T 00.0 00.2 00.4 00.6 00.8 01.0...

Av blank....ceeieiiosnnsnss
Ap (burn'g-hUBeB)hDB. ..
Al Ail Ai2
By "Kay...ooiivasrarasssens
Bp (hAed, rlhU) rlhD, together, leaning-back
Bi Bil Bi2
Bil: {indicating that conversation can start}

not (know (&, <first letter>))
wants (A, inform(B,A,<first letter>))

Bi2: give-turn(B,A)
+ accedes (B, (turn(a})}
Ail: acknowledge-turn (A)
- accedes (B, (turnia})}
+ turn(A)
Ai2: inform(A,B, {?X = doesn't have first letter})
+ informed{A, B, not (know (A, <first letter>)))

not (know (A, <first letter>))

wants (A, inform(B,A,<first letter>))

turn (i)

informed (A, B, not (kxnow (A, <first letter>}))

FIGURE 10. Illocutionary interpretation of the protocol. The figure contains the first
second of the protocol, the initial state of A’s model (after B’s act Bil, which
is directed to the experimenter and is not further considered here), the changes
in A’s model resulting from A and B’s conversational acts, and the state of A’s
model after A’s act Ai2. ‘=" denotes a predicate initially part of the state, ‘+’
denotes addition of a predicate to the state, and ‘-* denotes removal of a
predicate from the state.
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Conversational Operators

From the illocutionary acts and the state-models representations of the conversational
structure, I initiated development of a set of operators for the acts, as delineated in
Appendix D. The representation used here and in Appendix D is a simplification for
purposes of clarity of the more complex form of rule actually used in the simulation
discussed in Chapter VI. An example of one of the conversational operators is presented in
Figure 11. The left-hand side “IF” part of the operator represents a set of felicity
conditions for execution of the operator. The right-hand “THEN" clause of the operator
identifies the act (or acts) to be taken if the “IF’ conditions are satisfied. These acts
constitute the conversant’s contribution to the structure of the conversation. The changes in
the conversant’s account of the mutual model of the conversation are noted in the

“EFFECTS” part of the operator.

IF not {mutually-known (me, Other,wants (me, Act) )
request (me, Other,Act)
turn (me)

THEN repeat (request (me, Other,Act) )

EFFECTS - not {mutually-known (me,Cther,wants (me,Act))
+ mutually-known (me,Other,wants (me,Act))

FIGURE 11. Operator repeat-act-1. The left-hand-side clauses are matched against the
conversants model. If all clauses are true and the operator is executed, the acts
“repeat” and “give-turn” are performed, with their variables instantiated as
matched in the “IF” clauses. The conversant’s model is modified by the
accordingly instantiated “EFFECTS” clauses.

Thus given the state of A’s model of the conversation just after act Bi6, the “IF”’ part
of the operator matches clauses 7 and 2 of the model, plus Act Ai4 of the conversation.
This instantiates the operator as shown in Act Ai5. The instantiated “EFFECTS” clauses

are then applied to the state, resulting in the new state following the act. The details of
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process are set out in Figure 12. Examples of meta-locutionary conversational operators

developed from analysis of the protocols are presented in Appendix D.

A's state after act Bié6:

(1)
{2)
(3)
(4)
(5)
(6)
(7

wants (A, inform(B,A,<first letter>})

turn (A}

informed (3, B, not (know (A, <first letter>)))
mutually-known (wants (B, turn(B))}

wants (B, clarify (A, ?X)

mutually-known (not (know (A, <first letter>}))

not (mutually-known (wants (A, inform (B, A, <first letter>))))

A's act AiS:
repeat (A, request (A, B, inform(B,A, {?Y = first letter})))
give-turn (A, B)

Effects on A's model:

- not (mutually-known (wants (A, inform(B,a,<first letter>))))

+ +

mutually-known (wants (B, turn(B)))

turn(A)

mutually-known (wants (A, inform(B,A,<first letter>)))
turn (B)

A's State after act AiS:

(1)
(3)
(3)
(6)
(8)
(9)

wants (A, inform(B, A, <first letter>)}

informed(a, B, not (know (A, <first letter>)))

wants (B, clarify (A, ?X)}

mutually-known (not (know (A, <first letter>}})
mutually-known (wants (A, inform(B,A,<first letter>)))
turn(B) .

FIGURE 12. Application of operator repeat-act-1 after act Bi6. The enumerated facts

represent the state of A’s active memory. At the beginning of the figure, A’s
state of understanding of the conversation is portrayed immediately after B
takes act Bi6. Based on this state, then, A takes the acts which make up act
Ai5. The effects of these acts on A’s model of the conversation are then set
out. The figure concludes with A’s new model of the conversation, after
application of the effects of act Ai5. Note that the changes in conversants’
turns are effected through a simultaneous application of a give-turn operator

From these operators conversational plans can be developed. Such plans are not

intended to describe multiple tums but rather are intended to show how different operators

can be combined through a planning process to achieve complex acts within a turn. For
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example, if the conditions for application of repeat-act-1 were present except for turn(me)
then an operator such as T1 might be applied to facilitate repeat-act-1. I want to stress here
that the use of operators which can be embodied in rules does not mean that I have
proposed a planning system. In the set of operators which were developed from the
protocol study and were adapted into the simulation, none relied on backchaining or
chained through a single cycle. Rather, the operators were constructed to model
(1) situated responses to local context, (2) goal-directed inference reflecting intendonality,
and (3) understanding. Conversations resuiting from application of the operators as
written achieve their interactive behavior entirely through recognition of situations and then
consequently posting goals. Suchman (1987) has observed that real conversations are not
planned top-down, although later analysis can usuaily parse them into plan-like structures:
While the organization ... of any interaction can be analyzed post hoc into a

hierarchical structure of topics and subtopics, or routines and subroutines, the

coherence that the structure represents is actually achieved moment by moment, as a

local, collaborative, sequential accomplishment. This stands in marked contrast to

the assumptions of students of discourse to the effect that the actual enactment of

interaction is the behavioral realization of a plan. Instead, every instance of

coherent interaction is an essentially local production, accomplished collaboratively

in real time, (Suchman, 1987, p. 94)

Accordingly, the operators proposed here are to be interpreted as constituting local
behaviors which, in the aggregate, produce coherent linguistic action. In the
implementation of the model as a rule-based system, as discussed in Chapter VI, the felicity
of every operator is assessed on each cycle. Of course conversations have structure; they
are intentional processes. In the model proposed here, intentionality is represented by the
posting of goals in active memory. Whether a goal is subsequently attained is not a
function of the operator that posted the goal. Rather, achievement or abandonment of a

goal is a consequence of matching and executing of later instantiation of operators in

response to the local conditions then existing. A person may enter into a conversation
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intending to ask after the health of the other party’s spouse but never attain that goal
because other more urgent matters capture the conversational focus. The person is not
stuck with a stack-based planning model which prevents the person from concluding the
conversation without mentioning the other’s spouse. Such goals are simply abandoned in
the face of later local situations. The meta-locutionary model, then, despite relationships
among operators, has more of an opportunistic control structure than that of traditional
planning systems. The overall structure of a conversation certainly exists in the sense that a
given initial—or subsequent, for that matter—state of a conversant’s memory plus his set
of operators create, in effect, an expectation as to the conversation’s path. Yet the
coherence of the interaction does not depend on that specific path being followed. Each
change in the state as a result of interaction creates a new implicit path for the conversation
(which could be the same as the old path if the interaction follows expectations). Itis also
important to note that the conversants’ acts noted in the protocol are complex: they are
effected through multiple simultaneous acts at different conversational levels. For example,

A’s act Ai5 shown in Figure 12 consists of acts at both the repair and turn-taking Ievels.

Application of the Model

The modeling techniques described above permitted development of plausible
explanations of a number of interesting aspects of the conversation. Here I analyze a
portion of the protocol in terms of meta-locutionary acts involving reference, turn-taking,
and repair. The relevant section of the transcript is presented in Figure 13. The analysis
suggests that even in such an apparently simple domain as the joint-recall task, the
conversants encounter coherence difficulties which require relatively complex

meta-locutionary interaction to resolve. Further, the conversants’ speech acts demnonstrate



an information-systemic rationale for the use of indirect speech acts; this arises from the

conversants’ mutual responsibility for maintenance of the conversational belief structure.

T 00.0 O0D.2 O00.4 0Q0.6 0QO.B Q1.0 01,2 Q1.4 Q1.6 (1.8
aAv STl B e SRR B0 0 a0 0 a0000000000600000

Ap (turming-hUBeB) hDB...

At Af1ad2

o e S ppappupaps

Bp (hAeA,rlhl} rlhD,together,leaning-back mO.......

Bi Bil Bi2 Bi4

T 02.0 02.2 02.4 02.6 02.8 03.0 03.2 03.4 03.6 03.8...
Av is...the..... first...one....s0....what...was.the.first
Ap eBlink

Al Ai3 Aid . ALS

Bv B

Bp mo

Ei BiS Bi6

T 04.0 04,2 04.4 04.6 04.8 05.0 05.2 05.4 05.6 05.8
AV e OB iiaan (6.5 a00000000

Bp eBlink

Al A6 AiGa

Bv "M ... an'.I.....
Bp eBlink

Bl Bi7 Bi8 Bi10

T 06.0 06.2 06.4 06.6 06.8 07.0 07.2 07.4 07.6 07.8...
Av T e vesoornnassnnes MY et ceeseeraas "gr....
Ap hNed Nod/eBlink HNod/eBlink
Al A17ni8 A9  Ail0 Aill
Bv . IIU"' .
Bp HiNod, Hidod/eBlink hod
Bi Bil0 Bill Bilz

FIGURE 13. Partial transcript of experimental protocol. This conversation is the

beginning of the second trial for subjects A and B.
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Reference/Information Acts

One level of the taxonomy of meta-locutionary acts presented in Chapter IIT was the
reference/information level. I begin the analysis of the protocol section by looking at

various acts at this level.

Request

A’s act Ai2, about 0.5 seconds on the transcript timeline in Figure 13, is an act of
requesting that B provide information about the first symbol in A’s sequence, a blank.
This interpretation is plausible in light of the following factors: (1) We believe that A
understands the experimental task of joint recall because she competently performed the
task for the first trial. Accordingly, she will have as a goal the act of confirming the entire
sequence as mutual. (2) Moreover, we believe that A knows that her first symbol is a
blank (because she says so). This leads to the reasonable assumption that A has developed
a subgoal of obtaining from B the letter which corresponds to the blank. Therefore, A’s act
is probably something like request(A,B,{first letter is “blank”}).10 After act Ai2, A’s
active-memory model of the conversation will then be something like11

not(know(A,<first letter>))
goal(A,assert(B,A,<first letter>))

turn(B)
mutually-known(A,B,not(know(A,<first letter>))).

10Actually, Ai2 is somewhat more complex in that it also has a turn-taking
component. The turn-taking aspects of the act are discussed later in this section.

11The notation used in these examples is more abstract than that used in the
simulation. Conversants no doubt keep track of additional information about these states,
including temporal information. For purposes of understandability, the memorial
predicates used here are simplified to make clear their most relevant features.
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Assert

At Bi6, B’s act—in response to A’s act Ai4—is assert(B, A, first letter is “O"). This
interpretation is a plausible one in light of three factors. First, B apparently understands the
experimental task and can be construed as having the goal that both conversants have
mutual knowledge of the first letter of the sequence. Second, A’s request (combining Ai2
and Ai3) was made as part of the conversation, so the conversants have directly copresent
knowledge of the request; it would be plausible in the conversational context, then, for B to
have responding to A’s request as a specific goal. Third, B’s first letter is, in fact, “0.”
His act at Bi6, then, can be seen as an assertion which provides information about a
conversational referent, namely the first letter of the sequence. B’s active-memory model
of the conversation is now probably something like

asserted(B, {first letter is O})
turn{B).
A wl

At Bi8, B has (again) asserted that the first letter was “0Q.” At A’s next act, Ai6, she
confirms that she understood that the first letter was “O.” Her act is probably something
like acknowledge(A, { first letter is O}), confirm-mutual(A,B, {first letter is O}). Note that
the second part of the act is at the mutual-knowledge-repair level, for reasons discussed
with respect to repair below.

Another example of an acknowledge act is at Ai7. B has, at BilQ, just said “an 1...”
Thus as A knows that the next letter is in fact “I” she acknowledges B’s assertion with her

act Ai7, which might be coded as acknowledge(A,assert(B, [ next letter is I})).12

121t turns out that B’s act Bil0 could not have been assert(B,<next letter is I>)
because he did not know the next letter was “L.”" I examine the consequences of this in the
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Turn-Taking Acts

The protocol contains examples of situations both where turn-taking occurred and
where it might have occurred. At Ai3 A could have given a turn but does not do so. The
context for this act is that B has invited A to speak, A says “Blank,” B indicates that he
wants to take a turn, and then A blinks. At this point A does not give the turn to B,
though, since she goes on to extend her verbal utterance. In the meta-locutionary
interpretation of the protocol, B’s act Bi4 constitutes a control act for the conversation, and
A’s subsequent act Ai3 is an acknowledgment of this.13 Note though, that this
acknowledgment, as lexicalized, is more of a place-holder than a full-blown expression of
comprehension. This act is, in a sense, a vestigial one: it marks a place in the conversation
where A would have interposed an indication of miscomprehension had she failed to
understand B’s act. As A in fact did understand the act, no indication of
miscomprehension was needed. It aids the conversational process, though, for A to mark
this place in the conversation because, absent such a marker, B may be forced to wait an
indefinite period for the miscomprehension indicator before he continues. Accordingly,
A’s act at Ai3 can be seen either as an acknowledgment of B’s act at Bi4 or as holding her

turn—because B didn’t respond for almost a second after A said “Blank.”

discussion of repair acts below. Nevertheless, A’s act Ai7 is still valid, because it depends
on her interpretation of what B meant at Bil0.

13The analysis here of A’s blink at Ai3 as an act of acknowledgment does not imply
that blinks can be uniformly interpreted as having this meaning. First, the meaning of
action is provided by its context; a blink under different circumstances will communicate
different information to the other conversant—even “I've got some dust in my eye.”
Second, actions may be involuntary concommitants of communication. See the discussion
of intention and action in Chapter 11T and the discussion of lexicalization in Chapter VL.
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A’s act at Ai2, where she utters “Blank,” can be viewed as a complex act. Itis not
only a request, as discussed above, but also the giving of a turn. The fact that A expects B
to take the turn after Ai2 is apparent from A’s subsequent pause between 01.6 and 02.5
seconds on the protocol timeline. A’s complete act at Ai2, then, is probably something like
request(A,B,(first letter is “blank™}), give-turn(A,B). This is a logical consequence of the
circumstance that A is making a request of B.

Similarly, A’s act at Ai6a can also be viewed as something like give-turn(A,B). Here
A has just acknowledged at Ai6 that she understands B’s assertion that the next letter is
“Q.” In the absence of a turn-taking or turn-giving act, the control of the conversation
would appear to rest with A. B’s subsequent picking up of the conversation at that point is

evidence that the turn has been given to him.
Acts Repairing the Mutual Model

As was seen to be the case with turn-taking, there were contexts where an act occurred
and other contexts where an act might have occurred but did not. Similar circumstances
occur with respect to acts which repair the conversants’ mutual model of their interaction.
The experimental protocol is replete with occasions where one or both of the conversants is
in a position to detect divergence of their models of the conversation. In some cases, repair
acts are undertaken; in others, repair is apparently deemed not necessary. The following

discussions examines examples of both cases.
larification Repairs Ma

A’s acts at Ai4 and AiS can both be viewed most plausibly as acts of repair of the

mutual model of the conversation. At Ai2, A has—she believes—made a request for B to
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assert the first letter of the sequence because she has a blank. She waits, she acknowledges
that B seems to want a turn, and yet B doesn’t say anything. At Ai4, then, A elaborates her
utterance to make explicit the informational content of her act at Ai2.

At about 3.3 seconds into the conversation, at act Bi6, B asserts that the first letter of
the sequence is “0.” A, however, goes on at act Ai5 to request explicitly that B tell her the
first letter of the sequence. Why, then, does A take act Ai5?

Conversant A naturally enough does not have access to either B’s actual intentions in
saying “O” or to any genuinely objective account of the shared conversational structure.
Rather, she depends on her own interpretative faculties to place B's utterance coherently
into their conversation. In this case, A’s action can be accounted for by realizing that she
interpreted B’s utterance “O” as “Oh"”—that is, acknowledging A’s statement at Ai4 but not
telling her what the letter actually is. The effect of this misunderstanding can be traced
through A’s model of the conversation. Before B’s act Bi6, A’s model is

wants(A,inform(B,A,<first letter>))

turn(A)

asserted(A,B,not(know(A <first letter>)))
mutually-known(wants(B,urn(B)})
wants(B,clarify(A,?X)
mutually-known(not(know(A <first letter>))).

At Bi6, B’s act (from B’s point of view) is assert(B, A, (first letter is “0”}), but A
hears “Oh.” and thinks that B’s act is mutually-known(A,B,not(know(A,<first letter>))),
but not acknowledge(B,request(A,B,assert(B,A, [first letter))))). As a consequence, A
updates her model of the conversation as follows:

- not(know(A,<first letter>))
+ mutually-known(not(know(A,<first letter>)))
+ not(mutually-known(wants(A,assert(B,A,<first letter>}))).

Applying these changes, A’s model is now:

wants(A,assert(B,A,<first letter>))
turn{A)
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asserted(A,B,not(know(A,<first letter>)))

mutually-known(wants(B,turn(B)))

wants(B clarify(A,?X)

mutually-known(not(know(A,<first letter>)))

not(mutually-known(wants(A,assert(B A, <first letter>)))).

Note that A and B’s models have diverged significantly at this point, since B’s model

of the conversation, as discussed above with respect to assert acts, presumably contains
something like

asserted(B, A,{first letter is “O"})
mumally-known(A,B, { first letter is “O”}).

In A’s version of the conversation, though, the state is that A has told B that her first letter
is blank, B has indicated that he has understood this, but B has not told her what the letter
was. A thus concludes that B must not have interpreted her utterance at Ai4 as a request.
This leads her to then repeat her request in act Ai5. When B in turn repeats “O,” A
presumably realizes their misunderstanding and updates her model accordingly.

It could be argued that B’s long pause (between 01.5 and 02.5 seconds of the
transcript) before A again begins speaking represents his non-comprehension of A’s act at
Ai2. This interpretation, however, is implausible in light of the express negotiation of
interaction patterns which had just taken place a few minutes before in the previous
“training™ protocol. It is consistent with the negotiated forms of interaction from the first
protocol for B to understand that A had a blank for her first letter. If anything, B’s pause
should be ascribed to an expectation that A was going to continue recounting her sequence.

It may also be true that physical constraints on cognition are determining some aspects
of A’s utterance at Ai5. If she hears B say “O” while she is producing the utterance, she
may simply finish her utterance. In either case, though, B hears A make a clarification of

her original request.



Implicati jonal Views of Indir h A

The modeling and explication of this exchange also has some implications for the
theory of indirect speech acts. Unlike indirect acts resulting from politeness (as discussed
in Chapter I), here we see evidence of indirection arising from coupling an interest in for
efficiency with the creation of the conversation as a shared structure. A’s act at Ai2, where
she opens the verbal part of the conversation with "Blank," is indirect. Her direct act is, on
its face, an assertion, but she clearly intends the utterance to function as a request. B
certainly interprets it as a request. Thus if the underlying logical structure of A’s act was
really request(A,B,inform(B,A, 7Y = first letter))), why didn’t she just make a direct
request or question along the lines of “What’s the first letter?”

The reason for A’s indirection comes from the meta-character of A’s discourse
interaction. She is engaged in the process of building with B a mutual model of the
context. For both A and B to have mutual knowledge of the true character of the sequence,
A needs to tell B that she has blank for her first letter. But, if this is the case, why then did
A not say something like “I have a blank so what’s the first letter?” Here the reason
appears to be efficiency. It is more efficient just to assert “I have a blank” because this
utterance also functions as an indirect speech act constituting a request. A’s striving for
efficiency is apparent from the form of her actual locution, which is simply “Blank.” When
A then misapprehends that B has perceived only her direct act and has failed to perceive the
indirect act, she then produces the request as a direct act: “... so what is the first letter?”

This analysis thus suggests that some indirect speech acts may resuit from
meta-locutionary attempts to maintain the shared model of the conversation while
interacting efficiently. This is a systematic, as opposed to a socially conventional,

motivation for indirect speech acts. That is, while some acts appear to establish social
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relationships or conform to social expectations of politeness, the indirect act taken by A

here appears to arise directly from the nature of language as a medium for interaction.
larification Repairs Not M.

In the preceding discussion, I suggested that at Bi6 B intends to tell A that the first
letter is “O” but A understands B as meaning “Oh” and simply confirming that he
understood her. Having just gone through this miscommunication and minor repair, B is
again coincidentally misunderstood by A in his act Bil0. Interestingly, the
misunderstanding is precisely the converse of what they had just experienced. At Ai6a
gives the turn back to B. B then says “an’ I ...” and A immediately confirms at Ai7 and
Ai8 that the next letter is indeed “L” A’s further recitation of the succeeding letters is
evidence that she believes that their understanding is mutual that the second letter is “I.” At
Bil0, then, it is probable that A interprets B’s act as something like inform(B,A, {next letter
is “I"’)). As aresult, A’s model of the conversation is plausibly in this state:

mutually-known(A,B, { first letter is O})
turn(B)
mutually-known(A,B, { second letter is I}).

However, A’s interpretation, which then leads to her acts at Ai7 and Ai8, is mistaken.
Obviously, she does not have direct access to B’s sequence and therefore did not know that
B’s second letter was a blank! In other words, if we were following B’s model instead of
A’s, B's act at Bil0 is actually the start of something like inform(B,A, {my next letter is a
blank}. Lexicalized, the full locution of B’s aborted utterance would probably have been
“and I... have a blank.” Through coincidence, A’s second letter turned out to have been

“L,” so she heard B’s utterance not as a word but as a letter. Note that this is virtually the

exact converse of her misunderstanding about “0.”
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In this case, though, no repair utterances ensue. This appears to be the result of fairly
rapid inference on B’s part. A stretches out her locution confirming “I”" and after 0.5
second B nods twice rapidly and blinks (perhaps in astonishment). B does not need to
repair the conversation because at that point B knows that the knowledge that “I” is the
second letter is mutual. At this point, then, the conversants have different models of what
they think the discourse is, but only B knows this. He's satisfied to continue confirming
the recitation of the subsequent letters because the future path of the conversation is not
likely to be adversely affected. Eventually the conversants complete their joint recall of the

sequence without A ever learning that B’s second symbol was a blank.

The attenuated acknowledgment at Ai3 is quite a contrast to the explicit verbal
acknowledgment given by A after B’s act Bi8. When at Bi8 B repeats “0,” A responds at
Ai6 with “OK.” In both cases A is effectively confirming the mutuality of the shared model
of the conversation. Why, then, are the acts she takes so different? The answer, as
suggested in the model set out in Appendix C, is that in Ai6 A was coping with the
consequences of the preceding misunderstanding. If this had been a response to B’s first
utterance “O” at Bi6, a normally vestigial response might well have been appropriate, since
in this case there would have been no miscomprehension. The actual circurnstances at Ai6,
though, were that miscomprehension had in fact been communicated by A, so a
place-marker response could be seen as ambiguous; could be expecting additional
clarification. Thus an explicit affirmative response was thus called for.

These differences can be seen in the particulars of the acts which A takes at Ai3 and
Ai6. At Ai3, A’s act is simply assert(A, B, comprehend(A, take-turn(B))). At Ai6, her act

is necessarily more complex: acknowledge(A, (first letter is O}) and confirm-mutual(A,
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B, first letter is O). It is the addition of the confirm-mutual act which results in the explicit

acknowledgment.

The Computational Utility of Meta-Locutionary Acts

In looking at examples of various meta-locutionary acts at different conversational
levels, [ have tried to point out how explication of the interaction in terms of these acts
provides a plausible, rational basis for reconstruction of the conversants’ linguistic
behaviors. In considering turn-taking, for example, the analysis suggests that
meta-locutionary acts at the turn-taking level can be applied to a representation of the
conversational context to produce an adequate explanation of control. These qualities might
be extended to actual control of interaction through appropriate implementation of the
operators. In Chapter VI, then, I present a partial implementation of the model in order to
show that the theory is sufficient to produce behaviors that, under simulated conditions
similar to those encountered and created by the actual conversants, reasonably replicate the

kind of interaction observed in the protocol.
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CHAPTER VI
THE SIMULATION STUDY

To test whether meta-locutionary operators would plausibly explain or reproduce the
behaviors observed in the protocols, a forward-chaining rule-based simulation was built
following the computational model developed through protocol analysis. The simulanon
was a partial implementation of the theory as a rule-based system. This work was done in
two parts: first, the creation of a meta-interpreter in Prolog in which to write and execute
rules; and second the development and running of rules which represent the
meta-locutionary operators. The goals of the simulation were to determine if the theory and
model actually produced plausible control in interaction and to serve as an experimental
environment for meta-locutionary operators. The systern has some similarities with that
written by Power (1979), who modeled a plan-based conversation between two robots
named John and Mary. Here, for example, is the beginning of an exchange:14

1. JOHN: MARY. (call by name)
MARY: YES. (acknowledgment)
JOHN: I WANT TO SUGGEST A GOAL. (ANNOUNCE 1)
MARY: GO AHEAD. (ANNOUNCE 2)
JOHN: WILL YOU HELP ME GET IN? (AGREEGOAL 1)
MARY: BY ALL MEANS. (AGREEGOAL 2) ...

ChUE S

141, this transcript Power added parenthetical information about which conversational
procedure was being used. This information was not used by the agents in his system and
is provided only for the convenience of the reader.
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7. JOHN: SHALL WE MAKE A PLAN? (ANNOUNCE 1)

8. MARY: JOHN. (call by name)

9. JOHN: YES. (acknowledgment)

10. MARY: MAY I ASK YOU SOMETHING? (ANNOUNCE 1)

11. JOHN: GO AHEAD. (ANNOUNCE 2)

12. MARY: ARE YOU IN? (ASK 1)

13. JOHN: NO. (ASK 2) (Power, 1979, p. 116)
The simulation which is described in this chapter is similar to that by Power, except that the
meta-locutionary simulaton (1) goes beyond representation of illocution to address control
issues, (2) uses sitnated action in place of top-down planning; and (3) models observed

instead of idealized interaction.

Representation

Both development of the rule-based system and creation of rules embodying the
meta-locutionary operators depended on a representational scheme for conversational
models of conversants. The representation for both the mental states and the operators was
necessarily more complex than that for the more abstract states and operators used for the
protocol analysis. Natral language was not used directly as the representation of either
states or operators. With respect to the internal representation, there is no reason to believe
that language is a plausible representation for mental states. Stucky (1988) pointed out that
utterance structures, even translated into predicate logic, are unlikely to be the key to
adequate representations of successfully understood utterances. Such successful states
must be formed in such a way that they can tie indexicals in an utterance to features of the
context. That is, the situated character of language action must be accounted for in the

representation. With respect to the operators and their output,
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A difficulty in writing programs of this kind is that to understand the point of a

remark one must normally begin by understanding its literal meaning. Assuming

that the programmer has nothing to say about the latter, he must either: (a) run the

conversation in the program’s internal semantic notation, (b) translate between this

notation and English by unprincipled short cuts. (Power, 1979, p.109)
Thus the meta-locutionary simulation expresses its actions in its internal representation; to
do otherwise would be misleading, because the model does not really address issues of
lexicalization at all.15 There would be an appearance of linguistic skill not actually found
in the model. Interestingly, it would have been possible to express the output acts of the
simuladon in natural-language form, perhaps making the exchanges more immediately
understandable.

In the rule-based simulation, the conversants’ mental states were represented as
aggregations of currently-active individual states. These states were either beliefs or acts.
Of course, the mental representation of an act in some sense is also a belief. However, the
propositional content of acts seems distinct from other statements about the world. Acts
have an inherent temporal aspect; they occur rather than exist. An act of clarification has
exists while it is happening, but then has no existence independent from its recollection. It
may have been true that an act took place, but it is no longer a part of the world except for
its effects, including its own recollection. In contrast, beliefs about the world may have a
temporal element, but they generally also have a continued existence that is dependent on
but not derived from memory. For example, the belief that someone is confused has
validity beyond the moment of recognition of the state; such a belief has existence over

some period of time.

Accordingly, the computational model represents acts and beliefs as follows:

15 Actually, Power (1979) took the second approach so that observers could more
easily follow the conversational flow. He built a simple expectation-based parser which
looked for key words.



state (act (Actor, <act>(<act args>), Belief_state), Cycle_added,
Cycle_deleted)

state (believe (Actor,<belief>(<belief args>), Belief_state), Cycle_added,
Cycle_deleted)

This notation is similar to the Prolog-style syntax used in representing the protocol.
Lower-case names represent predicate labels, capitalized names are variables, and
<bracketed> items represent either predicate labels for acts or beliefs (give_turn,
next_letter), or values for arguments to the predicates.

The Belief_state variable contains a value expressing the truth value of the belief or act.
This approach has a number of advantages. It permits the direct and explicit representation
of belief in falsity rather than relying on non-existence to stand for falsity. It also encodes
intentionality. The full set of values for belief state are true, false, mutually_known_true,
mutually_known_false, goal_true, goal_false, goal _mutually_known_true, and
goal_mutually_known_false. 16

The Actor variable is filled by the name of one of the conversants. The cycle values
indicate when a state entered and left memory. They do not indicate that a fact became true
or false; truth values are a function of the Belief_state variable. A negative value for
Cycle_deleted indicates that the state is still in active memory.

Using this notation, then, the state

state ( act ( angela , give_turn ( phil ), goal_true ), 5, 8)

16This list of belief values does not contain explicit provisions for dealing with
uncertainty. In practice, a conversant’s noting in memory that some fact about the
conversation is rue can serve as a hypothesis which is later confirmed as
mutually_known_true. Adding additional levels of (real) uncertainty would have been
difficult to handle gracefully in the rule-based system without adding near-duplicate rules to
handle alternative truth values. However, a reasonable use for qualitative muth values
might involve meta-control in conflict resolution, where choices of what action to take
could depend—either way—on the certainty of the conversant’s knowledge.
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means that the conversant in whose memory this state is placed had as an active fact from
cycles 5 to 8 a belief that Angela wants to give the turn to Phil. This state alone does not
indicate why the fact was removed from active memory. It may have been that the fact was
simply no longer relevant through the action of an operator. It may have been that the fact,
which expressed an intention, was not needed after cycle 8 because the goal was no longer
being sought. In the current implementation of the system, the cycles are used by the
matcher and conflict resolver, but are not available to the operators. The implications of
this limitation are discussed below.

A conversant's memory, then, consists of a bag of such states, where the cycles
indicate what is currently believed and what was believed before. Nothing in the system
automatically prevents the insertion of conflicting states. It is left to the operators to assure
that the states achieved are rational ones.

The sequence-recall-task domain also presented issues for knowledge representation.
It was apparent from the protocols that although the conversants could recite the entire list
of letters, they dealt locally with confirmation and communication. Typically, conversants
would go through a short part of the sequence of letters, and then explain that these letters
were followed by N blanks. In effect, they created subsequence substructures from the
sequence as whole using the apparent features of the otherwise random sequences. This
behavior is consistent with that observed in psychological studies of the ability to recall or
to predict sequences. People tend to induce pattern descriptions from the sequences and
rely on notions of same and next alphabetic characters, iteration of subpatterns, and
hierarchic phrase structure (Simon, 1972). The maximal length of the subsequences in the
model was set to either (1) the extent to which the symbols were of the same sort (i.e.,
letter or blank), or (2) a chunking constant representing the capacity of short-term

memory. In this study, the chunking constant was set to five, which appears to be a
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psychologically plausible value for sequence recall (Simon, 1974). The domain-related
functions which created the subsequences are listed in Appendix J. As implemented,
subsequences and letters have indexes back into their super-sequence.

The operators are represented in standard rule form, as shown in Figure 14. The “if”,
“not”, and “test” parts of the rule represent a differentiation of functions grouped together
in the simpler “IF’ part of the conversational operators discussed in Chapter V. If the “if”
clauses are true, the “not” clauses cannot be proved, and the *“test” predicates are true, then
the operator is instantiated because its felicity conditions obtain. If the operator is executed,
the “action” acts are posted to the memories of both conversants and the “effects” states are
added or deleted as indicated from the memory of the conversant executing the operator.
The attributes contain name and level information useful to readers and to the conflict

resolver; the levels are intended to correspond to the levels of illocutionary acts presented in

Figure 2.

if ([ <statel>, <state2>, ... 1),

not {[ <state3>, <stated>, ... 1},

test ([ <predicatel>, <predicate2>, ... ]},

action ([ <actl>, <act2>, ... 1),
effects ([ add (<state5>), del (<stateé>}), ... 1),
attributes ([ name (<operator_name>), level ( <illocutionary level>)] ).

FIGURE 14. Form of rule representing meta-locutionary operator. The “if”” clauses are
matched against the conversant's active memory. The “not” clauses succeed if
they cannot be matched against memory. The “test” clauses are predicates,
written in Prolog, which must succeed if the rule is to be fired. If all clauses
are true and the rule is fired, the acts contained as “action” clauses are added to
the memories of both conversants, with their variables instantiated as matched
in the “if” clauses. The conversant's model is modified by the accordingly
instantiated “effects” clauses.
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The Rule-Based System

I now turn to a description of the forward-chaining rule-based system with which the
computatonal model was tested. I first discuss the specifications for the system generally,

and then report on how the specifications were met with the system as implemented.
Specifications

In the abstract, the rule-based system had to meet certain criteria. First, it had to be
capable of reasoning from the predicate representations of its facts. Second, it had to have
independent knowledge bases for the different conversants while allowing for
communicative action. Third, it had to be capable of simulating simultaneous action by the
conversants. And fourth, it had to allow customizable functions for conflict-resolution. To
be able to reason from the predicate representation of the facts, the system was built on top
of Prolog. It turns out that as implemented, virtually all of the domain and meta knowledge
was contained directly in the operators rather than in a separate planning or reasoning
subsystem.

Having independent knowledge bases was critical to the simulation. The concept of
conversation as a jointly constructed entity meant that each conversant maintains their own
model of the conversation while believing the model to be shared one. To the extent that
divergences in the models are detected by the conversants, repair interaction should occur.
This means that the knowledge bases had to be set up so that operators could be written
generally enough to apply to both conversants yet avoid matching on memorial structures
of the other conversant. At the same tirne, a path between the agents has to exist in order
for the acts to be communicated. In the operator representation, the actions are posted as

acts in both conversants' knowledge bases.
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Simultaneous action has three aspects: inter-agent, intra-agent, and mental-process.
Inter-agent simultaneity means having both conversants take their actions at the same
mythical time as the other. A normal cycle-by-cycle alternate execution of the conversant’s
operators would not have permitted simulation of simultaneous action. That is, the model
agents must be able to take action on every cycle irrespective of the implemented order of
their actual execution. This can be achieved in a specialized rule-based system by
designing the cycling functions to take account of the two agents and their independent
knowledge bases. In contrast, Power’s (1979) agents, named John and Mary, were not
capable of simultaneous action. They were separate programs which were explicitly given
sequential turns.

Intra-agent simultaneity means allowing the agents to execute more than one
instantiated rule per cycle, unlike, for example, YAPS (Allen, 1983) or OPS5 (1981). The
hierarchical nature of illocutionary acts suggested by the feedback-based control of natural
conversation implies that acts on the various levels are occurring at the same time. Cohen
and Levesque {(1982) observed that a single utterance may contain multiple acts. This
requires special handling of the conflict set. The agents written by Power (1979) did not
have this problem because they were plan-based rather than rule-based.

By mental-process simultaneity I mean that the system has to recognize that
understanding, reasoning, and action all have temporal extent, and all have to be able to
occur both sequentially and simultaneously. That is, while an agent is taking one action, it
may also be recognizing an action by the other agent and reasoning about states and goals.
Power (1979) did not address this issue.

Finally, the control knowledge needed for conflict resolution has to be domain
specific. Aside from the need for executing multiple instantiations, the conflict resolver has

to be able to reason about consistent and conflicting acts and effects, and the relationships
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among different classes of acts. Moreover, conflict resolution may need to be tuned as
more experience is gained with the simulation or different hypotheses are tested with
respect to reasoning about actions. For example, if there are conflicting effects among acts
at different conversational levels, should the system execute the lowest-level operator or the
highest-level? Or perhaps the system should use some other, situation-based meta-rules
(see Davis, 1980). Although the system is not able to handle meta-rules, it does rely on
customizable conflict resolution in the spirit of McDermott and Forgy (1978) and ORBS
(Fickas & Novick, 1985). The basic conflict resolution strategy used in the simulation was
(1) reduce the conflict set to avoid multiple instantiations of operators at the same
illocutionary level; (2) find the lowest-level instantiation, and prefer it; and (3) eliminate
any instantiations whose acts and effects conflict with those of the preferred instantiation.
The specific functions which handle conflict resolution can be found under the “select_ops™

clauses in Appendix G.
Implementation

The rule-based system in which the simulations was conducted was written in SICStus
Prolog (Swedish Institute of Computer Science, 1988), running on a VAX 11-750
computer. SICStus Prolog is similar in syntax and essential semantics to DECsystem-10
PROLOG and Quintus Prolog. A listing of the system is presented in Appendix G
(although utlity clauses commonly used in Prolog programs are omitted).

Basically, the system consists of a set of conventions about representation of states, a
rule-matcher, a conflict resolution function, a driver for cyclic action, some I/O functions,
and some development tools. The conventions for representation are exactly as discussed
above. They had been prototyped as objects in KEE 3.0 and then unfolded into predicate

representations for purposes of clarity. The separation of the knowledge bases for the two
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conversants (named Adam and Barney, representing subjects A and B) was implemented
through the use of the names of the conversants as a key into Prolog's internal database.
Facts in memory are considered active if they were added before the current cycle and either
(1) never deleted or (2) deleted after the current cycle.

The rule matcher takes a straightforward brute-force approach rather than using a
rete-style approach. Given the current number of rules (fewer than 40) and the number of
facts in the knowledge-base (fewer than 1000 after 20 cycles), the matcher's performance
is acceptable. It relies on Prolog's internal unification functions. Note that the operators’
“not” clauses refer to the inability to match facts in the memory rather than explicit falsity.
This means that the nots-matcher will find explicitly false states in active memory but will
also find any non-existent state. This approach is much more efficient than the altemmative
in representing knowledge in memory. The tests are simply evaluated in Prolog directly,
with the variables in the test predicates instantiated from the “if”’ and “not” clauses. The test
predicates can also be used to generate values used in the right-hand-side clauses of the
operator. A set of predicates for use as test predicates in the experimental domain are found
in Appendix J.

The conflict resolution function is called by the predicate select_ops/2. The arguments
are the conflict set and a subset selected for execution. In the present implementation, the
work of resolving conflicts among the matched instantiations is performed by making sure
that only one act an any conversational level is chosen. This choice was made (1) in the
interests of simplicity, and (2) as a way of expressing, as observed in the protocol
discourse, that the conversants utterances generally focus on one theme. A problem with
this function as implemented is that it simply uses rule order to determine which of the acts
in any given level should be executed. This is an area where meta-rules for conflict

resolution, representing processes for determining intentional choices, would be of value.



99

It would also be interesting to relax this constraint and see what happens if, for example,
multiple domain-level acts were permitted simultaneously. This might reproduce the
indirect speech-act behavior observed in the protocol at Ai2. In the present function,
having reduced the conflict set in this manner, each act is assigned a priority corresponding
to its level. Currently, the system chooses the lowest-level act as the most important. The
rationale for this design decision was to preserve to coherence of the flow of the discourse,
keeping up the feedback, even if it meant that domain-level actions were sometimes
deferred. This reflects the behaviors observed in the protocol, where the confirmations of
mutuality of knowledge continue even as a conversant is re-evaluating his or her domain
goals. Finally, the conflict resolution function makes sure that the selected instantiations of
operators have actions and effects which are consistent with each other. That is, one
operator should not be adding a state which is being deleted by another. Only those
operators whose effects are consistent with those of the priority operator are selected. The
implementation of this function is reasonably straightforward; it is the design choice
underlying it which still needs thought. It numns out that some operators will take an
action—thus adding it to the conversant's own knowledge base—and then immediately
delete it because a record of the action turns out not to be needed in active memory. The
operator give_turn_1 (listed in Appendix H) is an example of this. In other cases,
variations in belief states may cause apparent inconsistency to be found where the operators
are really in substantial agreement. For example, an act added as a goal might also be
added as a known act. Both of these problems would be minimized or eliminated by
expansion of the system's capability to reason about oppportunistic action and the
conversant's own intentionality.

The driver for the rule-based system runs the match-resolve-execute cycle for one

conversant and then the other, using the same cycle number. Actions taken by the first
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agent are not used by the second agent in processing on the same cycle. This was
implemented via the definition of active memory as those states which had been added
before the current cycle. Drivers for single-cycle, multiple-cycle, and indefinite execution
are available. These are run_single_cycle, run_to_cycle, and run, respectively. The
indefinite execution halts when the system completes a cycle in which neither conversant
has had any rule fire.

The I/O clauses create two output forms, a short trace and a full trace. The short trace
is displayed on the screen as the system runs and is also incrementally appended into a file.
The short trace shows which operators fired and what actions were taken. A short trace of
a simulation of the protocol described in Chapter V is set out in Appendix E. The full race
is incrementally appended into a different file. This trace contains a cycle-by-cycle listing
of active memory and full representations of all of the operators executed on each cycle. A
full wrace of the simulation protocol is set out in Appendix F.

The development tools for the system include clauses to check matching of a given
operator for a conversant, to display active memory, to display other states in memory for
other cycles, to display an operator, to run a cycle with full output to the terminal, to
reinitialize memory and the operators, to add and delete states in the knowledge base, and
to back the system up to a previous cycle state. These tools proved useful in both refining

the operators and simulating miscomprehension by changing states in memory.
Implementation of th 1 as Rul

In building a computational system which models the meta-locutionary acts, one might
begin by recognizing that there is a correspondence between the action-producing rules and
the acts themselves. That is, the firing of a rule which has as its consequence an act

represents an actualization or embodiment of the situated act. There might be, though,
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situations which produce the same sort of act which differ by more than mere instantiation
of their premises; wholely distinct sets of premises might cause the taking of the same act.
As aresult, acts should typically be represented by a corresponding ser of rules (or
operators, as they are called in the theory) rather than a single rule. In the particular system
I have built, the rules create an instantiation of the act as a record of its being taken.
Through the process of developing the rules, intermixture of actions of different levels
in the same rule was reduced and eventually eliminated. That is, rules represent operators
at specific levels of the discourse hierarchy. The effect of one utterance embodying acts of
different levels was produced through refinement of the left-hand-sides of the rules for the
different-level operators. For example, an instantiation of the rule do_request, an
information-level rule, is typically accompanied by an instantiation of one of the give_turn

rules, which are turn-level rules.
Meta-Locutionary Rules

The simulation modeled meta-locutionay operators for tum-taking and utterance
expression. The operators were written as rules in the turn-taking and information classes,
respectively. For both levels, there were three basic types of rules: reasoning about
intention, doing an act, and recognizing an act by the other agent. Figure 15 shows a rule
for the act of assertion and Figure 16 shows a rule for recognizing an assertion by the other
agent. The complete set of meta-locutionary rules used in the simulation is presented in
Appendix H.

The rule shown in Figure 15 has one action, namely the asserting, and changes the
belief state of the triggering clause from goal_true to true (via automatic posting of the
action into the conversant's own active memory). The rule in Figure 16 has no action. It

captures part of the process of reasoning about the other agent's knowledge. The effect of



executing an instantiation of assertion_received_1 is to add to the conversant's active
memory a state which represents the conversant's belief as to the belief of the other agent.
This rule is naive, because it is possible that the other agent is not telling the truth, but as no
one in the protocols was found to have intentionally not spoken the truth, a more

sophisticated rule was not needed for the simulation.

op( % do_assert

if({ conversants(Me,Other),
act(Me,assert(Info,Other),goal_true),
believe{Me,turn(Me),mutually_known_true) ]),

not([]),

test([]),

action([ act{Me,assert(Info,Other),true) ]),

effects([ del(act(Me,assert(Info,Other),goal_true)) 1),

aus([ name{do_assert),
Ievel(information) ]) ).

FIGURE 15. Meta-locutionary rule do_assert. The rule is represented as a Prolog clause.
Comments are marked by the ‘%’ symbol. There are three ‘if’ clauses for the
operator; these are are matched against a conversant's active memory. There is
only one ‘action’ clause; it is added to the memory of both conversants.

op( % assertion_received_1

if ([ conversants(Me,Other),
act(Other,assert(believe(Other,Info,Belief_value),Me),true),
believe(Me,turn(Other),mutually_known_true) ]},

not([ believe(Other,Info,Belief_value) ]),

test([1),

action([]),

effects([ add(believe(Other,Info,Belief_value)) 1),

atts([ name(asserdon_received_1),
level(information) ]) ).

FIGURE 16. Meta-locutionary rule assertion_received_1. The rule is represented as a
Prolog clause. Comments are marked by the ‘%’ symbol.

The simulation showed that the number and complexity of rules needed to handle these

basic functions is quite small. In all, 15 meta-locutionary operators were used in the
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simulation. Of course, these rules represented only two meta-locutionary conversational
levels in addition to domain-knowledge levels. The other conversational levels implied in
Figure 2 would have corresponding sets of additional operators in a more complete
conversational simulation. Thus to the extent that additional skills for interaction are
needed for coherence of more complex conversation, many more new operators might have
to be added. The operators developed in this dissertation constitute perhaps 35 percent of
the operators at their own conversational level. Accordingly, they certainly constitute no
more than 10 percent of the total number of conversational operators for all

meta-locutionary conversational levels from turn-taking up.
Dornain Rules

Representing the illocutionary knowledge of the conversants turned out to be a more
difficuit task than representing the meta-locutionary knowledge, even in a such an
apparently simple domain. Fifteen meta-locutionary rules were used in the simulation.
Eighteen domain rules were written, of which 16 were used in the simulation whose trace
is presented here. Again, there were rules for reasoning, taking, and recognizing acts.
Figure 17 shows an example of a domain rule which reasons about acts to be taken. The
rule, confirmed_next_letter, is instantiated if the agent (1) is trying to confirm mutual
knowledge of a subsequence, (2) is trying to confirm mutual knowledge of a letter
(presumnably in that subsequence), and (3) now believes that the letter is, in fact, mutually
known true. As a result, this operator will then remove the goals about the current letter
and establish goals for the next letter to be confirmed. If there had been no next letter (i.e.,
if this had been the last letter in the subsequence), the test clause would have failed; I expect

that the rule cenfirm_last_letter would then have been instantiated instead.
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The biggest problem with the domain rules was prevention of repetitious and
redundant instantiations. This was caused by the system’s design using the situated action
approach rather than a stack-based planner. That is, if a rule could be executed on one
cycle, it would be likely to fire on the next cycle as well. This problem was tempered
through the use of not clauses, which took account of the operator’'s own history in posting
to the knowledge base. Such extensive use of nots, however, seems (1) unduly
cumbersome and (2) unrealistic as a representation of human memory. Much of this

process could be moved to the conflict resolution process if that process could use

op( % confirmed_next_letter

if([ conversants(Me,Other),
act(Me,confirm_mutual(subsequence(S_index,List)),goal_true),
act(Me,confirm_mutual(next_letter(letter(Index,Letter))),goal_true),
believe(Me,next_letter(letter(Index,Letter)),mutually_known_true) ]),

not([),

test{[ get_next_letter(Index,List,New_letter) 1),

actions([1]),

effects([
del(act(Me,confirm_mutual(next_letter(letter(Index,Letter))),goal _true)),
add(act(Me,confirm_mutual(next_letter(letter(Index,Letter))),true)),
del(believe(Me,next_letter(letter{Index,Letter)},mutually_known_true)),
add(believe(Me,next_letter(New_letter),true)) D,

atts([ name(confirmed_next_letter),
level(domain) ]) ).

FIGURE 17. Domain rule confirmed_next_letter. The rule is represented as a Prolog
clause. Comments are marked by the ‘%’ symbol.

meta-logic to take account of the agent's intentional state. In other words, although an
agent could repeat an action indefinitely, the fact that the agent has already performed an
action usually means that the agent does not consider doing it again; changes in
circumstances (which could include lack of response) might cause an action to be repeated.

Thus as a strategy for conflict resolution, it might be possible choose actions on the basis
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of what the agent believes it is currently doing in the conversation. This implies that the
conflict resolution strategy would have to be tied to the agent's history.

Another helpful approach to the control issue would be the addition of additional
meta-rules which specifically had memory maintenance responsibilities. Thus, for
example, a representation of focus structure could allow the operation of rules which
removed facts from active memory when they pertained to a matter not in focus; other rules
would restore facts to active memory when their subject again became the focus of the

conversation.
s of the Simulation

After development of the rule set, the system was used to simulate the conversation
reported in the protocol analyzed in Chapter V. The initial state of the system is listed in
Appendix K. In brief, for each agent the initial state identified the conversants, set up goals
of confirming mutually their respective sequences, identified the first subsequence, and set
an initial turn state. In addidon, Adam’s initial state included an act Barney’s giving the
turn to Adam; this brought the simulated conversation up to the point of A’s act Ail, and

the simulation proceeded from there.
Simulation of Experimental Protocol

The first simulation looked at what the agents’ conversation would be like in the
absence of the misconstruals caused by homophony observed in the experimental protocol.
Short and full traces of this simulation are presented in Appendices E and F. Figure 18
shows the first two full cycles of the short race.

For cycle 1, the trace shows Adam reasoning that he should try to request the next

subsequence. (Recall that A’s first letter was a blank.) At the same time, Adam takes an
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act: acknowledgment of Barney’s initial-state act of giving Adam the turn. Simultaneously,
Barney is reasoning that he should try to confirm the next subsequence of his sequence.
(B’s sequence began with a letter.) For cycle 2, Adam, using his turn, takes an
information-level act: requesting that Barney assert the first subsequence because he,
Adam, has a blank. At the same time, an operator at the turn level fires, taking the act of
giving Barney the tum. This is, clearly enough, a salutary effect, as Adam would want

Barney to be able to respond to his request. Meanwhile, Barney is still reasoning about

adam's acts for cycle 1:
goal_request_next_subsequence —
acknowledge_my_turn —
act(adam,acknowledge_turn(turn(adam),mutually_known_true),true)

barney's acts for cycle 1:
goal_confirm_next_subsequence —

adam's acts for cycle 2:
do_request —
act(adam,request(act(barney,assert(subsequence(1,[blank]),adam),goal_true),
barney),true)
give_turn_3 —
act(adam,give_turn(bamey),mutually_known_true)

barney's acts for cycle 2:
goal_confirm_next_letter_1 —
others_turn_acknowledged —

FIGURE 18. Trace of simulation of protocol. This figure shows the first two complete
cycles of a multi-cycle interaction. The reasoning and acts of each conversant
are considered to be simultaneous with those of the other conversant for a
given cycle. The first level of indentation presents the names of the operators
which were executed on the that cycle. If any acts were take, the acts follow
the dash after the operator at the second level of indentation.

what to do next. He realizes that he will need to confirm the next (which in this case is the
first) letter of the subsequence. At the same time, he recognizes that Adam has the tum on

this cycle. At this point, the simulation has progressed up through act Ai2. In later cycles,
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Barney then asserts that the first letter is "I." Without the miscommunication engendered
by homophony, he then requests that Adam tell him the second letter, giving Adam the
turn. Adam does so. The agents then go on to begin to confirm the next subsequences. At
this point, as can be seen in the traces in Appendices E and F, the conversation begins to
break down. Atcycle 19, the conversation stops. This failure is attributable to (1) the lack
of domain rules for proper handling of the confirmation of individual letters, and (2) the
lack of rules for agreement on which subsequence is being looked at. With the refinement
and addition of these rules, it appears that the conversation would have continued until the
sequences were mutually confirmed. As it was, the simulation was able to get through the

first three or four exchanges in a meaningful (to us), plausible way.
Control Issues

The results of this simulation indicate that meta-locutionary operators can plausibly
provide the control processes which lend coherence to mixed-initiative discourse. The
traces of the simulation show the agents requesting, taking, giving, and holding turns as
needed to accomplish their domain goals. This control was accomplished without the use
of semaphores.17 Rather, the agents had only their own understanding of what they
believed the state of the conversation to be. Additionally, the simulation showed situated
action being used successfully to drive the agents’ responses. Until the exchanges began to
break down due to domain-rule failures in the later cycles, a form of global coherency in

the conversation was achieved entirely through the use of local, context-driven operators.

174 semaphore is a protected variable whose value can be accessed only by two
indivisible operations. They are used in computing systems with multiple processes (1) to
ensure mutual exclusion and (2) to implement process synchronization (Deitel, 1984).
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It is possible that the turn-taking operators could create a state in which the agents
repeatedly try to take or give turns, thus finding themselves in a loop. However, this sort
of thrashing did not occur in any of the simulation runs in this experiment. To be certain of
avoiding thrashing, more sophisticated use of the conversational history would be needed.
If the agents had memorial operators which checked for fruitless repetition in tumn-taking,
they could cause the agents to, in effect, step back and try something else. Such control
would, in effect, be meta-meta because it causes changes in the conversation’s processes of
control. The major point here is that to avoid ineffectual actions, the agent should have
operators which reflect knowledge about the relationship between action patterns and
intention.

The converse situation of thrashing is also a concern. In the simulation, each agent
expects that if they take an action that the other agent will eventually react. For example, if
an agent makes a request, they will wait for the other agent to respond. Thus if the other
agent does not respond then the conversation will come to an unintended end. This
situation is made possible mostly by lack of temporal awareness in the simulation. That is,
none of the operators has an explicit representation of or responsibility for the passage of
time. To overcome this problem of stalling, then, the system ought to have operators
which note failure of timely response. Such effects were in fact observed in the protocols.
For example, a reasonable interpretation of A’s illocutionary act at Ai4 (in Figure 13) is that
A has waited for a response to her request-act Ai2; when B fails to make a timely response,
A then takes Ai4 to renew the request by trying to repair a problem which she infers B must

have encountered in interpreting Ai2.
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Simulation of Miscomprehension

The rule-based system was also used as an experimental environment for simulating
the miscommunication observed in the protocol. The system was given the same initial
state, and ran through the end of cycle 4. At this point, Adam’s knowledge base was
modified by changing the substance of B’s act (as indicated in the discussion in Chapter 5
with respect to act Bi6). The simulation was then resumed. As it turned out, the
simulation proceeded in a manner virtually identical to that reported above. The principal
reason for this appears to be that Adam had no rule available analogous to the R1 operator
of Appendix D, which would have permitted the agent to repeat its request as an explicit
act. In the absence of operators which explicitly concern actions of correction and repair, it
appears that the simulation will not produce remedial feedback. Accordingly, one might
quite reasonably conclude that the repair phenomena reported in the socio-linguistic
literature are the result of meta-acts specialized for this purpose. In other words,
conversational repairs can be seen as constituting a domain in which persons often have
tasks; as a consequence, conversants develop domain-specialized skills for particular kinds
of repairs. The lack of operators representing these skills in the simulation left the agents

unable to effect direct repairs.

Contrasts with Power’s System

As Power (1979) observed, the real achievement of his conversational simulation
between the robots John and Mary was that it was able to represent the point of an
utterance. His system represented a major advance in this area, in that he was able to
produce a form of coherent interaction based on recognition of illocutionary meaning. The
current research also represents the illocutionary meaning of actions but does not follow

Power in producing English text. However, the simulation reported here is a significant
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advance in three principal respects First, the simulation models control: the agents control
and modify the flow of their own interaction. Power’s robots relied on an executive to
allocate control between them. This meant that their turns were explicit and did not have to
be recognized. Additionally, they were unable to modify their interaction because the flow
of the robots’ conversation was basically pre-planned.

Second, the agents in the meta-locutionary simulation use locally situated acts to
produce, without top-down planning, globally organized interaction. Power’s robots had
control stacks that recorded and executed conversational planning procedures. Indeed, the
robots explicitly discussed their actions in terms of plans and intended plans. In the
meta-locutionary simulation, the agents are guided by their intentions but do not have to be
so explicit about developing plans; they are able to react more flexibly to context.

Third, the simulation models more realistic conversation instead of idealized speech.
Power’s work was directly in the tradition of speech-act theory. The conversations he
modeled were fictional, idealized interactions between robots. The robots’ acts were
accordingly stylized. In contrast, the current work attempts to mode! the kinds of
exchanges actually observed in human-human interaction. The acts used by the agents

correspond to acts obtained from analysis of the experimental protocols.

Limitations and Extensions

The simulation as implemented had a number of limitations. Here I describe those
limitations and suggest ways in which the system could be improved and extended. The
limitations include over-specificity in matching operators against the agents’ memory,
separation of different cognitive processes into different cycles of the rules system, and a

simplified representation for time. Going beyond the specifics of the implementation of the
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simulation, it would be possible to add other conversants and to push the notion of

meta-locutionary action to include processes of lexical choice.
Implementation Issues

I begin this review of the simulation's limitations by examining the implementation of
the of the simulation as a rule-based system. One problem, then, with the computational
implementation so far is over-specificity in the operator-matching process. For example,
operators may match and execute because a clause just happens to hanging around from
some long-previous part of the conversation. The rules were written in such a way that
they tried to prevent this problem by consistent deletion of states from active memory. This
technique, though, suffers from drawbacks similar to those encountered with coding “not”
clauses to prevent repetitious execution. This suggests that the conversant's models should
be structured to provide appropriate contexts for matching. Such structure may arise from
the multi-layered, hierarchical model of interaction presented in Figure 2. At the same
time, there may be discourse-segment structure more closely allied with domain structure,
along the lines of the focus spaces developed by Grosz (1981). This could be handled
either by increasing the complexity of the key into the database or by adding cross-state
references. It may be that explicit structures for focus are required. In the simulation, a
lack of focus was most acutely noticed in the divergence of the agents’ models of the
concept of next subsequence: the agents had different patterns of blanks and letters, and so
they divided their sequences into correspondingly different subsequences.

Another problem involved the design choice to spread the reasoning process over
multiple cycles. This was intended to correspond to processing times for mental processes
of conversants. In some cases this proved reasonable. In others, however, the multiple

cycles needed for recognition, reasoning, and then action caused the agents to continue



behaviors that in the protocols are immediately suspended. This suggests that the rules
should be typed not only for level but for function as well. That is, rules would be of
recognition, reasoning or action type. Then for each major cycle, the rule-based system
would first fire each set of function-type rules in order, with later sets able to use the results
of the earlier ones. This would necessitate reworking of the system for inter-agent
simultaneity, but this should not be a difficult problem. In turn, if the temporal cost of the
operators could be declared, then the system could keep track of inter-cycle dependencies in
a more sophisticated manner than that currently used.

A third problem with simulation also has to do with time. In the system as
implemented, all acts take unit time. For complex phenomena, this assumption is probably
unwarranted. For example, uttering "O" may possibly be a unit act; reciting a poem surely
is not. If the system is to represent processes like interruptions, then, there will have to be
an explicit account of the temporal constraints on the physical processes of speech and
understanding. Complex utterances will have to be produced over a sequence of cycles.

At the limit, this could involve phoneme-by-phoneme (or at least word-by-word)
production, and would constitute a logical extension of the meta-locutionary theory to
speech production. This would also enable representation of self-correction. Absent an
adequate representation for temporal extent, then, it will not be possible to build an

adequate model of interruption or self-correction.
Possible Extensions

I turn now to issues beyond the those peculiar to the simulation’s implementation. The
systemp is not inherently limited to two conversants. The predicates representing the acts
were developed so as to permit multiple conversants. For example, acts like give_turn, and

do_request have slots for the “receiving” agent. Changing the rule-based system's driver
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clauses for multiple agents would be trivial. However, multi-agent protocols, even in the
sequence-recollection domain, have proven harder to transcribe and map into acts.

The system could also be extended to encompass issues of lexical choice. In its
current form, the model does not address the problem of transforming illocutionary acts
into locutions; the acts are communicated directly, without being expressed as specific
verbal and nonverbal language. If the use of the system is broadened to include human
agents interacting with the simulation agents, such issues will have to be resolved. What
sort of solutions would be reasonable? Straight act-to-utterance mappings would not be a
good choice. While some physical actions have societally conventional “emblematic”
meanings (Ekman, 1980), no action has meaning without context (Birdwhistell, 1970).
That is, while under the right circumstances raising the shoulders together is understood as
a physical lexeme generally called a shrug, there cannot be any universally appropriate
action for conveying a particular meaning usually embodied by a shrug. Thus for
meta-locutionary acts that are normally expressed through non-verbal channels, the system
cannot simply look up the turn-holding behavior in some table; rather, an expression must
be chosen which the context will then provide the needed meaning. Indeed, the problem of
lexical choice can viewed as a conversational level in itself: the idea of meta-locutionary
processes then might be extended to encompass operators which produced the expression

of specific lexemes—verbal and nonverbal—as their acts.
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CHAPTER VII
CONCLUSION

The results of this study, stated broadly, suggest that it is feasible to extend speech-act
analysis to meta-locutions, that humans use feedback to maintain coherence, and that
irregularities in speech are clues to understanding rather than noise to be cleaned away. A
computational model of meta-locutionary acts was developed and validated through both a

protocol study and a rule-based simulation.

Summary

This dissertation began by posing a question which I called the integration problem:
how can the speech-act theory of conversational action be reconciled with the sociological
view of the irregularities of actual interactive discourse? In response, I suggested that
conversants maintain a shared model of their conversation; that is, they are jointly creating
a single conversation and each conversant has a model of the conversation they believe
themselves to be creating. In light, then, of the coGperative, feedback-infused,
locally-controlled nature of conversation, I suggested that the conversational repairs which
maintain the shared model can be seen as acts akin to speech acts, except that they
specifically affect the process of the conversation itself rather than more general aspects of
the world related, for example, to conversants’ underlying needs.

The view of conversational coherence as being produced by meta-acts of the
conversants establishes the goal of the research reported in this dissertation: trying to

identify and to model computationally a set of acts relative to these sub-sentential levels of
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conversation. I then described a set of conversational effects, as reported in the
sociological literature, which formed a basis for ascribing meta-acts to the conversants. I
presented an experimental technique to observe these acts.

1 applied the theory of meta-locution to the protocols which I had obtained. That is,
given the theory, did it and account for the interaction observed in actual conversations?
The theory suggested that meta-locutionary acts—acts by a conversant which control the
process of the conversation—could be modeled at several different conversational levels,
ranging from domain actions to turn-taking. In the case of turn-taking specifically, for
example, the set of directive acts included hold-turn, give-turn, take-tumn, and accede(turn).
The interaction observed between the conversants could be explained computationally in
terms of this set of meta-locutionary acts. Examples of operators were presented which,
given the state of a conversant’s model of the conversation, would account for the observed
acts. In three specific cases, I used the meta-locutionary analysis to explain otherwise
anomalous utterances. The protocol analysis also confirmed the observation that humans
use feedback to maintain coherence. Indeed, most of the acts accounted for in the protocol
are not domain-level acts but rather concern and affect the control and comprehension of the
conversation itself. It is also true that the conversation obtained in the protocol contains all
kinds of interruptions and sentence fragments. The meta-locutionary analysis of the
protocol evidence is consistent with a view that each utterance, however fragmentary, has
meaning in the conversational context. In understanding human communication, the
individual fragments of the conversation are valuable as clues to coherent interpretation. [
note that in the observed interaction, the production of utterances is inherently tied to
understanding of the other conversant’s utterances. Moreover, a number of the utterances
are contemporaneous, suggesting that iming of utterance production is a mutually

determined process, as might be expected in a coherent mixed-initiative dialogue. This
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suggests that in analyzing interactive discourse, language production and language
understanding cannot be separated.

The computational model developed through the protocol analysis was tested through a
rule-based simulation. Note that the simulation did not constitute the theory; rather, the
theory was partially implemented as a rule-based system to evaluate its adequacy for
computer-based interaction. The simulation presented in Chapter VI showed that
meta-locutionary operators can control mixed-initiative discourse in a manner that
resembles the kind of interaction observed in natural conversation. Meta-locutionary acts
specifically modeled in the simulation included the requesting, taking, giving, and holding
of con.versational turns. The simulation also showed situated action producing a form of

global coherency through the use of local, context-driven operators.

OQpen Issues

The research presented in this dissertation represents a set of first steps in
understanding the control of mixed-initiative discourse. The central thesis of accounting
for coherence through meta-locutionary acts appears well-founded. That the particular acts
proposed here represent the ultimate expression of the theory seems less certain. The
simulation study made clear the need for specialized operators (and presumably acts)
dealing with correction and repair. Other classes of acts will probably emerge. Aside,
though, from the obvious future work in this area involving the expansion and refinement
of the acts, and aside from the design issues discussed with respect to the implementation
of the simulation, there are other issues to address. Some of these issues are
representational, and have to do with understanding what we are observing in
conversations recorded in protocol studies. Other issues arise with respect to what other

kinds of human-human interaction might this methodology be applied.
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Representation Issues

With respect to the process of transcribing and encoding the protocols, there remain
aspects of the conversations which are as yet unrepresented. First, pauses, while implicitly
represented in the time-line transcript, are not specifically noted as either things or acts. It
is possible that pauses may, in and of themselves, be acts. The interpretation of pauses as
possible acts seems subjective in the extremne, however. Chafe (1986) suggested, in the
context of generation, that pauses correspond to the process of memorial retrieval; that is,
concepts have activation levels which determine the retrieval costs for related concepts.
According to Chafe, patterns in discourse are shaped by the speaker's costs of retrieval
corresponding to active, semi-active, and inactive concepts. In any event, the problem of
accounting for pauses remains unsatisfactorily addressed by the meta-locutionary model.

Another problem arises out the subjective nature of the coding of acts from the
utterances, which is necessarily a process of interpretation. In a qualitative study in which
rules for coding acts from lexical representations have not been expressed, it falls upon the
coder to make a subjective interpretation of the act in the context of the conversation. In the
case of the protocol analyzed in this dissertation, this process has been an iterative one,
with successive refinements and alterations of the encodings of the acts and the states in
order to produce a rational account of the observed conversation. Does not this process
result in an encoding for the conversation which must work, under the circumstances?
The answer to this question is in three parts. First, although the acts are motivated by
accounts in the socio-linguistic literature, the development of the specific acts and their
computational representations is the express goal of this research. That is, this process is
the one which Cohen (1984) proposes. Second, the set of acts, their representations, and
the operators, are validated by application in the simulation. Third, there is a need for

future work in applying the acts developed on the basis of the protocol reporter here to
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other protocols. If effectiveness outside of the context of their development can be

observed, then the acts may reasonably considered valid.
Other Voices, Other Rooms

The theory may also have application for other sources of human interaction and other
contexts. Clearly, the theory of meta-locutionary acts could be applied in other domains.
If the theory is true, then meta-locutionary acts should be consistent among different
speakers of a given language; otherwise we would find it hard to converse at all.
Moreover, the acts should be fairly domain-independent. The dissertation research looked
at two different pairs of speakers, both in the sequence-recollection domain. The main
obstacle to application of the theory to other domains is difficulty of representing the
domain knowledge with sufficient exactness to permit the simulation to run. The
complexity of even the sequence-recollection domain, especially as compared to the
meta-locutionary knowledge, tumned out to have been daunting. The problem is not that it
is hard to find some representation which would permit a computer program to perform the
domain task in the abstract. Rather, the problem is in linking the representation of the
domain to mental states which can form the basis for linguistic action (Stucky, 1988).

Speech act theory has also been applied to communication within organizations
(Winograd & Flores, 1986). There may meta-locutionary analogs for communicative
control and coherence in this interaction. This may be actually be a fruitful domain because
of the relativel).r formalized and statically represented nature of intra-organizational

communication.
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Cognitive Constraints

The protocol analysis and simulation suggest two areas of inquiry as to the role of
cognitive constraints in conversation. Understanding these constraints would aid
explication of the observed discourse and would immediately serve to improve

communication through computer-human interfaces.

Language Units

One of the issues to which the simulation forced attention was that of the size of the
units of communication. How much can people understand at once? For computers this is
generally not a problem; if the agents were simply Prolog programs they could have just
transferred their sequences to each other and merged them. Obviously, most people cannot
do this; the protocol subjects certainly didn’t. The human cognitive constraints which
determine how much we can absorb at a time thus have consequences for the design of
mixed-initiative interfaces. The computer program must accommodate the human’s limited
capacity. Conversely, there may be constraints on the human capacity for linguistic
production. Systems which are receiving information from humans may be better equipped
to understand the interaction if they can relate the size of the units of language produced to
factors associated with the production process.

The variation in human skills for interaction is large (see e.g., Argyle & Cook, 1976).
Presumably conversants take account of and adapt for these differences, which inject a
correspondingly large measure of uncertainty into the interaction process: Is the other
conversant really attending? Was that a nod? Variation in the size of the units of language
which conversants can produce or understand creates uncertainty as to (1) the degree of
understanding and (2) the degree to which conversants believe that they have been

understood. These factors, then, suggest reasons why feedback is such an important part
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of conversadon. Conversants are continually faced with issues of understanding which are
not ordinarily resolvable through one-sided inference. Thus greater understanding of the
limits of human cognitive capacity would better allow modelers of interaction to base

operators on the underlying reasons for the use of meta-locutionary acts.

Having observed that conversation is replete with sources of uncertainty, I now turn to
the some of the issues of how conversants manage the uncertainty they encounter. The
central question I want to ask is: How tolerant of uncertainty are conversants? The answer
to this question has important implications for problems such as deciding when to initiate
conversational repairs. In the model and simulation, uncertainty was reduced to qualitative
simplifications such as true and mutually_known_true. Yet conversants apparently proceed
with imperfect knowledge of the state of the conversation or, when faced with obvious
differences in their conversational models, will continue without repair if the differences are
not too great. How much imperfection is too much? How great a difference is too great?

In addition to uncertainty with respect to mutuality of knowledge, there is uncertainty
as to whether purely mental perlocutionary effects have been achieved. If a tutor asserts
some fact to a student is the tutor justified in assuming that the students now knows the
fact? How well is well encugh? These are issues which might be addressed by
psycho-linguistic experimentation. Conversations could be induced in which responses
indicating various degrees of comprehension are returned to the subjects.

Finally, if conversants are not certain of the other’s knowledge, they are also uncertain
as to their own knowledge—or at least their understanding of their knowledge. As they
listen, conversants seem to assume that if they are momentarily off track they will

eventually recover using later information. Thus they may continue to give affirming



121

signals to the speaker despite imperfect understanding of what is being said. Again, this
phenomenon seems to be a matter of gradation. The level of tolerable uncertainty probably
varies with context. To what extent, then, are conversants apt to defer repair? In
interacting with computers, the perceived (or real) bother of repair may lead people to defer
it to point of irreparability; the program’s limited ability to track the conversant’s

knowledge may have been quickly exhausted.
Modality

The bandwidth limitations of human-computer interaction appear to limit the richness
and ease of meta-locutionary action. Differences in modality cause changes in interaction
patterns (see e.g., Argyle & Cook, 1976; Chapanis, et al., 1972, 1977; Grosz, 1982;
Cohen, 1984). The changes are not always straightforward:

Under telephone or no-vision conditions, utterances are often shorter,

some studies find more pauses, and less mutual influence, but there are fewer

interruptions. There is some evidence of poorer synchronizing (more pauses),

and for transfer of function to other signals (more attention signals). There is a

reversal of a clear-cut expectation about interruptions, suggesting either that

people leamn to use different cues over the telephone, or that the shift of gaze

cue is not very helpful. Evidently people either do not or cannot interrupt each

other if they cannot see each other. (Argyle & Cook, 1976, pp. 163-164)

This evidence suggests that with present technology the human-computer interface is at
an inherent disadvantage for mixed-initiative interaction. There are a number of approaches
for possible solutions to this problem. The first approach would involve alternate
lexicalization of meta-locutionary acts which are expressed in the physical channel. The
idea here is to provide, through design, a set of verbal lexemes that correspond to physical
kinemes. Unfortunately, the history of artificial languages in human use is dim. The
languages which thrive are those created through conventional acceptance of negotiated

units and meanings. This suggests a second but more difficult approach: provide the
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computer program with (1) the skills to negotiate the use of meta-locutionary interaction
and (2) connections to the community of programs in which the language is being
negotiated. Human beings would have, I surmise, great difficulty in developing language
skills (and the language itself) if isolated from the general community of language users. If
anything, computer programs are more susceptible to failure on this account because their
language-learning skills are at best rudimentary.

Beyond alternate lexicalization, it may be that different modalities lead to the use of
different meta-locutionary acts altogether. That is, conversants do not simply express the
same acts in different ways; rather, they actually interact differently. This is, I think, a fair
inference from the results described by Argyle and Cook (1976) and Grosz (1982). Some
of the observed differences may not arise directly out of the limitations on the kinds of
comrunication permitted. Instead, there may be second-order effects from, for example,
declines in the speed of feedback. That is, feedback would still be possible through the
available channels, but the process of conversion would be too slow. Such effects
certainly might lead to significant changes in the naturalistic feel of the interaction.
Furthermore, it may be the case that the feedback-based production processes are, through
nature or through entrenched habit, dependent on prompt interaction for their effectiveness.
In this case, substitute acts for feedback would have to account for speed of interaction. In
computer-human interaction through graphically and aurally based interfaces, the ease and
speed of feedback is asymmetric. The computer program can provide feedback much more
rapidly than it can interpret it. This suggests that if meta-locutionary acts are to be useful
for computer interfaces greater efforts should be made in the technology of physical input

devices.
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Over the course of the preceding chapters, I have tried to account for the differences
between human-human and human-computer interaction. Many of these differences, [
argued, can be explained by understanding mixed-initiative discourse as a mult-level
process which uses meta-acts to produce coherence. Inreaching these conclusions (and in
applying them), though, we again face the limits of our knowledge of fundamental aspects
of mind. In the case of intention, for example, the model presented in this dissertation
achieves a reasonable level of success by ascribing intentionality to meta-behaviors. The
upper levels of the conversational process rely on fairly diffuse intentions which are then
translated into smaller and more more specific intentions. In this process, planning is not
used (although it might be useful in generating the high-level intentions); rather, the
intentional acts set up expectations which are taken into account as part of the
conversational context for later action. But as I discussed in Chapter III, the limits of this
approach are near. It may be that intention itself is not a useful concept for inducing action.
Suchman (1987) suggested that plans are a post-hoc rationalization of the organization of
behavior rather than the mechanism which produces it. How can we exclude, then, the
possibility that intention itself is simply a post-hoc rationalization of the causes of behavior
rather than the mechanism which leads to it? The problem, though, is that at this point we
simply do not have an alternative theory of action. If not for intention, how else—or why
else—would people do things?

Another fundamental limit arises out of what we perceive to be mixed-initiative
interaction. In this dissertation, I have attempted to explicate mixed-initiative discourse
through meta-acts. But if these acts are all co-temporally related behaviors at different
conversational levels, the problem of mixing initiative also may arise at the

meta-locutionary levels. I have suggested that the “lower” levels of conversational



interaction represent a set of base cases for this recursion, but this cannot be concluded
with confidence absent further research.

Yet even if we are reaching limits of knowledge, I hope that these limits are better
defined and better illuminated as the result of this work. In the issues which I discussed,
the fundamentals come down to the fact that research into human-computer interaction must
tell us more about what it means to be a human being, what it means to be a computer, and

what it means to interact.



125

APPENDIX A

PROTOCOL TRANSCRIPT



INDEX: Ttme
Av A's verbal
Bv B's verbal
Ap A's physical
Bp B's physical
Al A's illocution
Bi B's illocution

KEY: thing direction object
h head Uup A conversant
€ eyes D down B conversant
a arm L left O object
ah hand Rright E experimenter
rright
1left
f finger
action notation
W forehead-wrinkles () previous state
C forehead-clear ... duration

O mouth-open
S mouth-shut



T 00.0 00.2 00.4 00,6 00.8 01.0 01.2 0l1L.4 0l.6e 01.8...
Av Y9 A S e S R R a s o n oo a0 000 Gas 6000

Ap (buning-hiUBeB) hDB...
Al

Ai1A42
2 =
Bp (hAeA,rlhU) rihD, together, leaning-back mo.......
Bi Bil Bi2 Bi4

Bil: {indicating that conversation can start}
Bi2: give-turn(B,A)

Ail: take-turn(A)

Ai2: inform(A,B, {?X = doesn't have first 1letter}
Bid: take-turn(B)

T (2.0 02.2 02.4 02.6 Q2.8 03.0 03.2 03.4 03.6 03.8...

Av is...the..... first...one....so....what...was.the.first
Ap eBlink

Al Ai3 Aid ... Al5

Bv L L

Bp mO

Bi BiS Bis6

Ai3: Ainform(A,B, comprehend(A,take-turn(B)))

Ai4: clarify(A,?X¥); request(A,B,inform(B,A,{?Y = £first
lettexr}))

Bi5: take-turn(B)

Bi6é: inform(B,A,?Y = first letter is "O")

Ai5: repeat (A,request{(A,B,inform(B,&,{?Y = first letter}})),
give-turn (A, B)



T 04.0 04.2 04.4 04.6 04.8 05.0 05.2 05.4 05.6 05.8
AV ....0NC.. vt nns OK.vvevnnnenns

Ap eBlink

Ai Ai6é Aiefa

Bv ROLIS an'.I.....
Bp eBlink

Bi Bi7 Bi8 Bil0

Bi7: confirm-mutual (request(A,B,inform(B,A,{?Y = first
lettexr}))))

Bi8: repeat (B,inform(B,A,?Y = first letter is "0Q"})

Ai6é: confirm-mutual (A,B,?Y)

Aisa:; give-turn(A,B)

Bil0: inform(B,A,{?Z = second letter is "I"})

T 06.0 06.2 06.4 06.6 06.8 07.0 07.2 07.4 07.6 07.8...
Av A S 000000 00G006a 0 B R R T U,
Ap hNod hNod/eBlink hNod/eBlink
Al Ai7Ai8 ai9% Ailo0 aill
Bv ... nygw
Bp hNod, hNoed/eBlink. hNod
Bi Bil10 Bill Bil2
Ai7: acknowledge (A,B10)

AiB:; confirm-mutual{(A,B,?Z)

Bil0: confirm-mutual{B,A, ?Z)

Ai9: take-turn(a)

Bill: accede(B,take-turn(i))

Ail0Q: inform({A,B, {?M = next letter is "8§")

Aill: take-turn(A), inform(A,B, {?N = next letter is "U"}

Bil2: accede(B,turnhA) [implicitly accepting ?M as mutual]



T 08.0 08.2 08.4 08.6 08.8 09.0 09.2 09.4 09.6 09.8
AV ..oienn.. T e

Ap 11 ) B S G000 606000000006 00000
Al ailz Ail3 ail4

BV trinnnnnnn. 30 505 50800060006 500 0050000004900
Bp hNod hNod hnod/eBlink.........
Bi Bil3 Bild4 Bil5Bi 16

Ail2: take-turn({d), inform(A,B,{?0 = next letter is "R"})

Bil3: accede(B,take-turn{A)) [implicitly accepting ?N as
mutuall

Ail3: take-turn{iA), inform(A,B,{?P = next letter is "T"})

Bild: accede(B,take-turn{A)} [implicitly accepting ?0 as
mutual]

Aild: request(A,B,confirm-mutual (B, ?P))

Bil5: take-turn(B)

Bilée: confirm-mutual (B, ?P)

T 10.0 10.2 10.4 10.6 10.8 11.0 11.2 11.4 11.6 11.8...
Av lelel 000000000000 mine...went...
Ap eBlink/hShake eBlink

eD@1fs,

ai ails5 Ail6Aail7

Bv I.had.a.."T".......

Bp ....... hNod, hiNods....... eBlink

Bi Bil7 Bils Bils
Ail5: deny (B, ?P)

Bil7: xrepeat(B,Bil6)

Ailée: take-turn(A)

Bil8: acceed{take-turn(i))

Ail7?: inform{A,B,{?0 = initial sequence})

Bil8: hold-turn{A)
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T 12.0 12,2 12.4 12.6 12.8 13.0 13.2 13.4 13.6 13.8...
Av .... blank......oveeeeananss so..its....... g
Ap 1lfs-riffle...... eUB eD@fs,hD. ..

Al Ail9 Ai20 AiZ21ni22

Ai23

Bv B - L

Bp eBlink........

Bi Bil9 Biz20

Ail9:; give-turn(A,B)

Bil9: inform(B,A,{?Q = intitial sequence})

Ai20: inform(A,B, ?X)

Bi20: give-turn(B,A)

Ai2l1: inform(A,B,{A will discuss ?Q})

Ai22: hold-turn(A)

Ai23: confirm-mutual{A,B, {first letter is "I"} [wrong]

T 14.0 14.2 14.4 14.6 14.8 15.0 15.2 15.4 15.6 15.8
BV L iirivrcerraranenns - L g S e 0G0 a0 e n0e 06

Ap eUBhU. eBlink eBlink
Al aiz4 Ai25 Ai26  Ai27 Ai2g
Bv

Bp

Bi

Ai24: check(A,B}

Ai25: confirm-mutual(A,B, {second letter is "S8"})

AiZ26: confirm-mutual (A,B, {third letter is "U"})

Ai27: check(A,B)

AiZ28: hold-turn{(d) [I'm thinking]



T 16.0 16.2 16.4 16.6 16.8 17.0 17.2 17.4 17.6 17.8...

Av L h B o B e CaG008 600000000 "R"......
I n R 000 aa0: eDist eBlink, hlLB,eB..

Ai Ai29 Ai30 Ai3l Ai32

Bv puhbuh

Bp hu.......
Bi BiZl BiZ22

Ai29: heold-turn(a) [I'm still thinking]

Ai30: confirm-mutual(A,B, {fourth letter is "T"}}
Bi2l: take-turn(B),request (B,A,attend(A,6B))
Ai3l: attend(A,B)

Ai32: confirm-mutual (A,B, {next letter is "R"})
Bi22: attend(B,A)

T 18.0 18.2 18.4 18.6 1l8.8 19.0 13,2 19.4 19.6 19.8...

£ 61 Dol 8 68 08 0808000000000 d00080800000 hu, hC eBlink,eDist
Ai Ai33 Ai34 Aii35

Bv

Bp hD......... hNod/eBlink.............

Bi Biz3 Bi2

Ai33: request (A,B,confirm-mutual (B,A, {next letter is "R"}})
Bi23: confirm~-mutual{A,B, {next letter is "R"})

Bi24: repeat(Bi23)

Ai34: confirm-mutual (A,B, {next letter is "R"})

Ai35: hold-turn(A)



APPENDIX B

PREDICATE REPRESENTATIONS



Meta-locutionary illocutionary acts:

accede (<personl>, turn (<person2>) )

acknowledge (<personl>, Act)

attend (<personl>, <person>)
clarify{<personl>, State)
comprehend (<personl>, State)

confirm-
mutual (<personl>, <person2>, State)

deny (<personl>, State)
give-turn(<personl>, <person2>)

hold~turn (<personl>)

inform (<personl>, <personZ>, State)

repeat (<personl>,Act>)

request (<personl>, <prsonz>,Act)

take-turn (<personl>)

133

<personl> lets <person2> take
turn

<personl> recognizes act

<personl> pays attention to
<personz>

<persconl> elaborates knowledge
of state

<personl> understands State is
true

<personl> says both
conversants know that state is
true

<personl> denies the truth of
state

<personl> gives turn to
<person2>

<personl> holds on to turn

<personl> asserts to <person2>
that state 1s true

<personl> repeats act

<personl> requests <person2>
to perform act

<personl> takes turn



134

APPENDIX C

CONVERSATIONAL MODELS
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Bil: {indicating that conversation can start}

not (know (A, <first letter>)).
wants (A, inform (B, A,<first letter>))

Bi2: give-turn(B,A)

not (know (3, <first letter>)}.

wants (&, inform(B,A,<first letter>)}
accedes (B, (turn(a)).

Ail: take-turn(a)

not (know (A, <first letter>)}.
wants (A, inform (B,A,<first letter>})
turn(a).

Ai2: inform(A,B,{?X = doesn't have firzt letter}

not (know (A, <first letter>)).

wants (A, inform(B,A,<first letter>))
turn(a).

informed (A, B, not (know (A, <first letter>))).

Bi3: inform(B,A,comprehend(B, ?X))
not (know (A, <first letter>)).

wants (A, inform(B,A,<first letter>))
turn(a).

informed (A, B, not (know (A, <first letter>))).

Bid: take-turn(B)

not (know (A, <first letter>)}).

wants (A, inform (B, A, <first letter>))
turn(a).

informed (A, B, not (know (A,<first letter>))).
wants (B, turn(B)}.

Ai3: inform(A,B, comprehend(A,take-turn(B)))
not (know (A, <first letter>)).

wants (A, inform (B, A,<first letter>))

turn(a) .

informed (A, B, not (know (A, <first letter>))).
mutually-known (wants (B, turn(B))).

Aid: clarify(A,?X):; request(A,B,inform(B,A,{?Y = £first
letter}))

not (know (A, <first letter>)).

wants (A, inform(B,A,<first letter>))

turn (A} .

informed (A, B, not (know (&, <first letter>)})).
mutually-known (wants (B, turn(B})).

wants (B, clarify (A, ?X} .,



136

Bi5: take-turn(B)

not (know(A,<first letter>}).

wants (A, inform(B,a,<first letter>))
turn(a).

informed (A, B, not (know (A, <first letter>))).
mutually-known (wants (B,turn(B)}).

wants (B, clarify (A, 7X) .

Bi6; inform(B,A,?Y = first letter is "O")

wants (A, inform(B,A,<first letter>))

turn{a).

informed (A, B, not {(know (A, <first letter>)}).
mutually-known (wants (B, turn{(B)}) .

wants (B, clarify (A, 7X) .

mutually-known (not (know (&, <first letter>))}.

not (mutually-known(wants (A, inform(B,A,<first letter>)))).

AiS: repeat(A,request(A,B,inform(B,A,{?Y = first letter}))).,
give-turn(A,6B)

wants (A, inform (B, A, <first letter>))

informed (2, B, not (know (A, <first letter>)})..

wants (B, clarify (A, ?X) .

mutvually-known (not (know (&, <first letter>))).

mutually-known (wants(a,inform(B,A,<first letter>))).

turn (B) .

Bi7: confirm-mutual (request(dA,B,inform(B,a,{?Y = first
letter}))))

wants (2, inform(B,A,<first letter>))
informed(A, B, not (know (A,<first letter>))).
mutually-known (not (know (A, <first letter>))).

mutually-known (wants (A, inform (B, A, <first letter>)}}).

turn(B).

Bi8: repeat(B,inform(B,A,?Y = first letter is "QO"}))
informed (A, B, not (know (A, <first letter>})}.
mutually-known (not (know (&, <first letter>})).
mutually-known (wants (A, inform(B,A,<first letter>))).
knows{(a,B,?Y = first letter is "O").

turn(a)

Ai6: acknowledge (A, ?Y), confirm-mutual(A,B, ?Y)
mutually-known (A, B, <first letter is "QO">)
turn{a).

Aida: give-turn(A,B)
mutually-known (A,B,<first letter is "0O">)
turn(B).
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Bil0: inform(B,A, {?Z = second letter is "I"})
mutually-known(A,B,<first letter is "Q">)

turn(B) .

mutually-known (A, B,<second letter is "I">)



138

APPENDIX D

CONVERSATIONAL OPERATORS
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Information/Reference-Level T,

PERATOR :
level: information/reference
IF wants (Me,assert (Me, Info,Other))
turn (Me)
THEN assert (Me, Info, Other)

EFFECTS - wants(Me,act (Me,assert (Info,0Other))

level: information
IF act (Other, assert (believe (Other, Info),Me})
turn (Other)

not (believe (Other, Info))
EFFECTS + believe (Other, Info)

level: information

IF wants (Me, request (Me, Info,Other) )
turn (Me)
THEN request (Me, Info, Cther)

EFFECTS - wants (Me,request (Me, Info, Other})

o — v -
level: information
IF request (Other, act (Me,Act) ,Me))

wants (Me, act (Me,Act))
EFFECTS - request (Other,act (Me,Act) ,Me)}



Tum-Level r
W T .

level: turn
IrF turn (Other)

give_turn(Other,Me)
THEN acknowledge_turn(Me, turn(Me))
EFFECTS - give_turn(Other,Me)

- turn (Other)

+ turn (Me)

level: turn

IF turn (Me)
take turn(Other)
not (wants (Me, act (Me,Act) })

THEN acknowledge turn(turn(Other))
EFFECTS - take turn(Other)
- turn(Me)

+ turn (OCther)

OPERATOR ize-my-turn=-1:
level: turn
IF give_turn(Other,Me)

turn (Cther)

not (request_turn (Me))
EFFECTS - turn(Other)
- give turn(Other,Me)

+ turn (M2)
QPERATOR recoanize-my—turm-2:
level: turn
IF give turn(Cther,Me)
request-turn (Me)
turn (Other)
EFFECTS = turn(Other)

- request-turn(Me)
- give_turn(Other, Me)
turn (Me)

+

140
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level: turn

IF wants (Me,act (Other,act))
turn (Me)
THEN give turn{Me,Other)

EFFECTS - turn(Me)
+ turn{Other)

R : — -/
level: turn
IF request turn{Other)
turn (Me}
not (wants (Me, act (Me, Act)
THEN give_turn (Me, Other)

EFFECTS - turn{Me)
- request_turn{Other)
+ turn{Other)

level: turn

IF request (Me, Info, Other)
turn (Me)
THEN give_turn(Me,Other)

EFFECTS = turn{Me)
+ turn{OCther)

OPERATOR request-turn:

level: turn

IF wants (Me, act (Me, Act})

turn (Other)

not (request_turn(Me))

{Act = assert (Me,Info,0Other)} or (Act = recuest (Me,Req,Other))
THEN request_turn(Me)

OPERATCR hold-turn:

level: turn

IF wants (Me, act (Me,Act))
turn (Me)

not (hold_turn(Me))
{(Act = assert (Me,Info,0Other)) or (Act = request (Me,Req,Other)}
THEN hold turn(Me)
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APPENDIX E

SHORT TRACE OF SIMULATED CONVERSATION
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adam's acts for cycle 1:
goal_request_next_subsequence --
acknowledge_my_turn --
act(adam,acknowledge_turn(turn(adam),mutually_known_true),true)

barney's acts for cycle 1:
goal_confirm_next_subsequence --

adam's acts for cycle 2:
do_request --

act(adam,request(act(barney,assert(subsequence(1,[blank]),adam),goal _true),barney),true)
give_turn_3 --
act(adam,give_turn(bamey),mutually_known_true)
barney's acts for cycle 2:
goal_confirm_next_letter_1 --
others_turn_acknowledged --
adam's acts for cycle 3:
bamey's acts for cycle 3:
goal_assert_next_subsequence_2 --
recognize_my_turn_1 --
adam's acts for cycle 4:
barney’s acts for cycle 4:
do_assert --
act(barney,assert(believe(barney,subsequence(1,[o]),true),adam),true)
adam's acts for cycle 5:

bamey's acts for cycle 5:
asserted_next_subsequence --

adam's acts for cycle 6:

barney's acts for cycle 6:
goal_request_next_subsequence --

adam's acts for cycle 7:

barney's acts for cycle 7:
do_request --

act(barney,request(act(adam,assert(subsequence(2,[blank]),barney),goal_true),adam),true)
give_turn_3 --
act(barney,give_turn(adam),mutually_known_true)
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adam’s acts for cycle 8:
goal_assert_next_subsequence_1 --
recognize_my_turn_1 —

barney's acts for cycle 8:

adam’s acts for cycle 9:
do_assert --
act(adam,assert(believe(adam,subsequence(2,[i,s,u,t,w]),true),barney),true)
request_turn -- :
act(adam,request_turn,true)

bamey's acts for cycle 9:

adam's acts for cycle 10:
asserted_next_subsequence --

barney's acts for cycle 10:
informed_of_next_subsequence_by_other --
assertion_received_1 --

adam's acts for cycle 11:
goal_confirm_next_subsequence --

barney's acts for cycle 11:
goal_confirm_next_subsequence --

adam'’s acts for cycle 12:
goal_confirm_next_letter_1 --

barney's acts for cycle 12:
goal_confirm_next_letter_1 --

adam's acts for cycle 13:
do_assert --
act(adam,assert(next_letter(letter(1,r)),barney),true)

barmney's acts for cycle 13:
goal_confirm_next_letter_1 --
request_turn --

act(barney,request_tumn,true)

adam's acts for cycle 14:
give_tum_2 --
act(adam,give_turn(barney),true)

barney's acts for cycle 14:
regain_turn --
act(barmey,hold_turn,mutually_known_true)
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adam's acts for cycle 15:

barney's acts for cycle 15:
acknowledge_my_turn --
act(barney,acknowledge_turn(turn(bamey),mutually_known_true),true)

adam's acts for cycle 16:
barney's acts for cycle 16:
do_assert --
act(barney,assert(next_letter(letter(1,0)),adam),true}
adam's acts for cycle 17:
barney's acts for cycle 17:
do_assert --
act(barney,assert(next_letter(letter(1,s)),adam),true)
give_tumn_2 --
act(barney,give_turn(adam),true)
adam's acts for cycle 18:
acknowledge_my_turn --
act(adam,acknowledge_turn(turn(adam),mutually_known_true),true)
barney's acts for cycle 18:
adam's acts for cycle 19:

barney's acts for cycle 19:
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APPENDIX F

FULL TRACE OF SIMULATED CONVERSATION
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Initial State:

barney: state(believe(barney,next_subsequence(subsequence(1,[0])),rue),0,-1)

barney: state(believe(barney,sequence([o,blank,s,u,t,w,r,q,g,blank,blank.f,w,w.d,g,0]),
goal_mutually_known_true),0,-1)

barney: state(act(barney,confirm_mutual(sequence([o,blank,s,u,t,w,r,q,g,blank,
blank,f,w,w,d,g,0])),goal_true),0,-1)

barney: state(believe(barney,turn(adamy),true),0,-1)

barney: state(conversants(barney,adam),0,-1)

adam: state(act(barney,give_turn(adam),true),0,-1)

adam: state(believe(adam,next_subsequence(subsequence(l,[blank])),true),0,-1)

adam: state(believe(adam,sequence([blank,i,s,u,t,w,r,q,g,1,d,blank,blank,blank,
blank,g,0]),goal_mutually_known_true),0,-1)

adam: state(act(adam,confirm_mutual(sequence([blank,i,s,u,t,w,r,q,g,l,d,blank,
blank,blank,blank,g,0])),goal_true),0,-1)

adam: state(believe(adam,turmn(barney),mutually_known_true),0,-1)

adam: state(conversants(adam,bamey),0,-1)



adam's acts for cycle 1:

op( % goal_request_next_subsequence
if([ conversants(adam,barney),
act{adam,confirm_mutual{sequence([blank,i,s,u,t,w,r,q,8,1,d,blank,blank,blank,
blank,g,0])),goal_true),
believe(adam,next_subsequence(subsequence(1,[blank])),true) 1),
not{[ act(adam,request{act(barney,assert(subsequence(l,[blank]),adam),goal_true),
barney),goal _true),
act(adam,request(act(barney,assert(subsequence(1,[blank]),adam),goal_true),
barney),true) ]),
test([]),
action([]),
effects([ add(act(adam,request(act(barney,assert(subsequence(1,[blank]),adam),
goal_true),barney),goal_true)) 1),
atts([ level(domain),
name(goal_request_next_subsequence) ]) ).

op( % acknowledge_my_turn
if([ conversants(adam,barney),
believe(adam,turn(bamey),mutually_known_true),
act(barney,give_turn(adam),true) ]),
not([]),
test([D),

action([ act(adam,acknowledge_turn(turn(adam),mutually_known_true),true) 1),

effects([ del(act(barney,give_turn(adam),true)),
del(believe(adam,turn(barney),mutually_known_true)),
add(believe(adam,turn(adam),mutually_known_true)) 1),

atts([ level(turn),
name(acknowledge_my_tumn) ]) ).

barmey's acts for cycle 1:

op{ % goal_confinm_next_subsequence
if([ conversants(barmey,adam),
act(barney,confirm_mutual(sequence([o,blank,s,u,t,w,r,q,g,blank,blank,f,w,w,d,
g,0])),goal_true),

believe(barney,next_subsequence(subsequence(l,[0])),true) ]),

not({[ act(barney,confirm_mutual(subsequence(1,[0])),goal_true),
act(barney,assert(believe(barney,subsequence(l,_4140),true),adam),goal_true),
act(barney,assert(believe(barney,subsequence(l,_4156),true),adam),true) ),

test([ not(o = blank} ]),

action([]),

effects([ add(act(barney,confirm_mutual(subsequence(1,[0])),goal_true)),
add(believe(barney,next_letter(letter(1,0)),true)) 1),

atts([ level(domain),
name(goal_confirm_next_subsequence) ]) ).

148
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barney: state(believe(bamey,next_letter(letter(1,0}),true), 1,-1)

barney: state(act(barney,confirm_mutual(subsequence(l,[c])),goal_true),1,-1)

barney: state(act(adam,acknowledge_turn(turn(adam),mutually_known_true),true),1,-1)

barney: state{believe(barney,next_subsequence(subsequence(l,[0])),true),0,-1)

barney: state(believe(barney,sequence([o,blank,s,u,t,w,r,q,g,blank,blank,f,w,w.d,g,0]),
goal_mutually_known_true),0,-1)

barney: state(act(barney,confirm_mutual(sequence([o,blank,s,u,t,w,r,q,g,blank,
blank,f,w,w.d,g,0])),goal_true),0,-1)

barney: state(believe(bamey,turn(adam),irue),0,-1}

barney: state(conversants(barney,adam),0,-1)

adam: state(believe(adam,turn(adam),mutually_known_true),1,-1)

adam: state(act(adam,acknowledge_turn(turn(adam),mutually_known_true),true),1,-1)

adam: state(act(adam,request(act(barney,assert{subsequence(1,[blank]),adam),goal_true),
barney),goal _true),1,-1)

adam: state(believe(adam,next_subsequence(subsequence(l,[blank])),true),0,-1)

adam: state(believe(adam,sequence([blank,i,s,u,t,w,r,q,2,1,d,blank, blank,
blank,blank,g,0]),goal_mutually_known_true),0,-1)

adam: state(act(adam,confirm_mutual(sequence{[blank,i,s,u,t,w,r,q,g,l,d,blank,blank,
blank,blank,g,0])),goal_true),0,-1)

adam: state(conversants(adam,barney),0,-1)
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adam's acts for cycle 2:

op( % do_request
if([ conversants(adam,barney),
act(adam,request(act(barney,assert(subsequence(1,[blank]),adam),goal_true),
barney),goal_true),
believe(adam,turn(adam),mutually_known_true) ]),
not([]),
test([]),

action([ act(adam,request(act(barney,assert(subsequence(1,[blank]),adam),goal_true),
barney),true) ),
effects([ del(act(adam,request(act(barney,assert(subsequence(1,[blank]),adam),
goal_true),barney),goal_true)),
del(believe(adam,turn(adam),mutually_known_true)),
add(believe(adam,turn(bamey),mutually_known_true)) ]),
atts([ name{do_request),
level(information) ]) ).

op( % give_tum_3
if([ conversants(adam,barney),
act(adam,request(act(barney,assert(subsequence(1,[blank]),adam),goal _true),
barney),goal_true),
believe(adam,turn(adam),mutually_known_true) ]),
not([]),
test([]),

action([ act(adam,give_turmn(bamey),mutually_known_true) }),

effects([ del(believe(adam,turn(adam),mutually_known_true)),
del(act(adam,give_turn(barney),mutuaily_known_true)),
add(believe(adam,turn(barney),true)) 1),

atts([ name(give_turn_3),
level(turn) ]) ).

barney's acts for cycle 2:

op{ % goal_confirm_next_letter_1
if([ conversants(barney,adam),
act(barney,confirm_mutual(subsequence(1,[0])),goal_true),
believe(barney,next_letter(letter(1,0)),true) 1),
not([ act(barney,confirm_mutual(next_letter(letter(1,0))),goal_true) ]),
test([1),

action([]),
effects([ add(act(barney,confirm_mutual(next_letter(letter(1,0))),goal_true)),

add(act(barney,assert(next_letter(letter(1,0)),adam),goal _tue)) 1),
atts([ level(domain),
name(goal_confirm_next_letter_1) ]) ).
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op( % others_turn_acknowledged

if([ conversants(barney,adam),
believe(barney,turn(adam),true),
act(adam,acknowledge_turn(turn{adam),mutually_known_true),true) ]),

not([]),

test([D),

action([]),

effects([ del(believe(bamey,turn{adam),true)),
add(believe(barney,turn(adam),mutually_known_true)),
del(act(adam,acknowledge_turn(tum(adam),mutually_known_true),true)) ]),

atts([ level(turn),
name(others_turn_acknowledged) 1) ).



bamey:
barney:
barney:
barney:
bamey:

barney:
barney:
barney:
barney:
barney:

barney:
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state(believe(bamey,turn(adam),mutually_known_true),2,-1)
state(act(barney,assert(next_letter(letter(1,0)),adam),goal_true),2,-1)
state(act(barney,confirm_mutual{next_letter(letter(1,0))),goal_true),2,-1)
state(act(adam,give_turn(barney),mutually_known_true),2,-1)
state(act(adam,request(act(barney,assert(subsequence(1,[blank]),adam),goal _true),
barney),true},2,-1)
state(believe(barney,next_letter(letter(1,0)),true),1,-1)
state(act(barney,confirm_mutual(subsequence(1,[0])),goal_true),1,-1)
state(believe(barmey,next_subsequence(subsequence(1,[0])),true),0,-1)
state(believe(barney,sequence([o,blank,s,u,t,w,r,q,g,blank,blank,f,w,w.d,g,0]),
goal_mutually_known_true),0,-1)
state(act(barney,confirm_mutual(sequence({o,blank,s,u,t,w,r,q,g,blank,
blank,f,w,w.d,g,0])),goal_true},0,-1)
state(conversants(barney,adam),0,-1)

adam: state(believe(adam,tum(barney),true),2,-1)
adam: state(believe(adam,turn(barney),mutvally_known_true),2,-1)
adam: state(act(adam,request(act(barney,assert(subsequence(1,[blank]),adam),goal _true),

barney),true),2,-1)

adam: state(act(adam,acknowledge_turn(turn(adam),mutually_known_true),true),1,-1)
adam: state(believe(adam,next_subsequence(subsequence(1,[blank])),true),0,-1)

adam:

adam:

state(believe(adam,sequence([blank,i,s,u,t,w,r,q,g,1,d,blank,blank,

blank,blank,g,0]),goal_mutually_known_true),0,-1)

state(act{adam,confirm_mutual(sequence([blank,i,s,u,t,w,r,q,g,1,d,blank,blank,

blank,blank,g,0]})),goal_true),0,-1)

adam: state(conversants(adam,barney),0,-1)



adam's acts for cycle 3.

barney's acts for cycle 3:

op( % goal _assert_next_subsequence_2
if([ conversants(barney,adam),
believe(barney,sequence([o,blank,s,u,t,w,r,q,g,blank,blank,f,w,w,d,g,0]),
goal_mutually_known_true),
act(adam,request{act(barney,assert(subsequence(1,[blank]),adam),goal _true),
barney),true),
act(barney,confirm_mutual(subsequence(1,[0])).goal _true),
act{bamey,confirm_mutual(next_letter(letter(1,0))).goal_true),
act(barney,assert(next_letter(letter(1,0)),adam),goal_true),
believe(barney,next_subsequence(subsequence(l,[0])),rue) ]),
not({[ act(barney,assert(believe(barney,subsequence(1,[0]),irue),adam),goal_true) ]),
test([ get_subsequence(l,sequence([o,blank,s,u,t,w,r,q,g,blank,blank,f,w,w,d,g,01),
subsequence(1,[o])) 1D,
action([]),
effects([ del(act(adam,request(act(barney,assert(subsequence(1,[blank]),adam),
goal_true),barney),true)),
del(act(barney,confirm_mutual(subsequence(1,[o])),goal_true}),
del(act(barney,confirm_mutual(next_letter(letter(1,0))),goal_true)),
del(act(barney,assert(next_letter(letter(1,0)),adam),goal_true)),
add(act(barney,assert(believe(barmey,subsequence(l,[o]),true),adam),goal _true)),
del(believe(barney,next_subsequence(subsequence(1,[0])),true)),
add(believe(barney,next_subsequence(subsequence(l,[0])),.true)) 1),
atts([ level(domain),
name(goal_assert_next_subsequence_2) 1) ).

op( % recognize_my_turn_1

if([ conversants(barmey,adam),
act(adam,give_turn(barney),mutually_known_true),
believe(barney,turn(adam),mutually_known_true) ]),

not([ act(barney,request - turn,true) ],

test([]),

action([]),

effects([ del(believe(barney,turn(adam),mutually _known_true)),
del(act(adam,give_turn(barney),mutually_known_true)),
add(believe(bamey,turn(barmney),mutually_known_true)) 1),

atts([ name(recognize_my_turn_1),
level(turn) ]) ).
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barney: state(believe(barney,turn(barney),mutually_known_true),3,-1)

bamey: state(believe(bamey,next_subsequence(subsequence(1,[o])),true),3,-1)

bamey: state(act(barney,assert(believe(barney,subsequence(1,[0]),true),adam),
goal_true),3,-1)

bamney: state(believe(barney,next_letter(letter(1,0)),true),1,-1)

barney: state(believe(barney,sequence({o,blank,s,u,t,w,r,q,g,blank,blank,f,w,w,d,g,01),
goal_mutually_known_true),0,-1)

barney: state(act(barney,confirm_mutual(sequence([o,blank,s,u,t,w,r,q,g,blank,
blank.f,w,w,d,g,0])),goal_true),0,-1)

barney: state(conversants(barney,adam),0,-1)

adam: state(believe(adam,turn(barney),true},2,-1)

adam: state(believe(adam,turn(barney),mutually_known_true),2,-1)

adam: state(act(adam,request(act(barney,assert(subsequence(1,[blank]),adam),goal_true),
barneY);“‘-le)!z" 1)

adam: state(act(adam,acknowledge_turn(turn(adam),mutually_known_true),true),1,-1)

adam: state(believe{adam,next_subsequence(subsequence(l,[blank])),true),0,-1)

adam: state(believe(adam,sequence([blank.i,s,u,t,w,r,q,g,1,d,blank,blank,
blank,blank,g,0]),goal_mutually_known_true),0,-1)

adam: state(act(adam,confirm_mutual(sequence([blank,i,s,u,t,w,r,q,g,1,d,blank,blank,
blank,blank,g,0])),goal_true),0,-1)

adam: state(conversants(adam,barney),0,-1)
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adam's acts for cycle 4:

barney's acts for cycle 4:

op( % do_assert
if([ conversants(barmey,adam),
act(barney,assert(believe(barney,subsequence(l,[0]),true),adam),goal _true),
believe(barney,turn(barney),mutually_known_true) ]),

not([]),

test([1),
action{[ act(barney,assert(believe(barmey,subsequence(l,[o]),true),adam),true) ]),

effects([ del(act(barney,assert(believe(barney,subsequence(l1,{0]),true),adam),
goal_true)) ),
atts([ name(do_assert),
level(information) ]) ).
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barney: state(act(barney,assert(believe(barmney,subsequence(1,[0]),true),adam),true),4,-1)

barney: state(believe(barney,turn(barney),mutually_known_true),3,-1)

barney: state(believe(barney,next_subsequence(subsequence(l,[0])),true),3,-1)

barney: state(believe(bamey,next_letter(letter(1,0)),true),1,-1)

barney: state(believe(barney,sequence([o,blank,s,u,t,w,r,q,g,blank,blank,f,w,w,.d,g,0]),
goal_mutually_known_true),0,-1)

barney: state(act(barney,confirm_mutual(sequence([o,blank,s,u,t,w,r,q,g,blank,
blank,f,w,w,d,g,0])),goal_true),0,-1)

barney: state(conversants(barney,adam),0,-1)

adam: state(believe(adam,turn(barney),true),2,-1)

adam: state(believe(adam,turn(barney), mutually_known_true),2,-1)

adam: state(act(adam,request(act(barney,assert{subsequence(1,[blank]),adam),goal_true),
barney),true),2,-1)

adam: state(act(adam,acknowledge_turn(turn(adam),mutually_known_true),true),1,-1)

adam: state(believe(adam,next_subsequence(subsequence(l,[blank])),true),0,-1)

adam: state(believe(adam,sequence{[blank,i,s,u,t,w,r,q,g,1,d,blank,blank,
blank,blank,g,0]),goal_mutually_known_true),0,-1)

adam: state(act(adam,confirm_mutual(sequence({blank,i,s,u,t,w,r,q,g,1,d,blank,blank,
blank,blank,g,0])),goal_true),0,-1)

adam: state(conversants(adam,barney),0,-1)
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adam's acts for cycle 5:

barney's acts for cycle 5:

op( % asserted_next_subsequence
if([ conversants(barney,adam),
believe(barney,sequence([o,blank,s,u,t,w,r,q,g,blank,blank.f,w,w,d,g,0]),
goal_mutually_known_true),
believe(barney,next_subsequence(subsequence(l,[0])),true),
act(bamey,assert(believe(barney,subsequence(1,[o]),true),adam),true) ]),
not([]),
test([ length({o],1},
length{[o,blank,s,u,t,w,r,q,g,blank,blank,f,w,w.d,g,0],17),
1+1=<17,
get_next_subsequence([o,blank,s,u,t,w,r,q,g,blank,blank,f,w,w.d,g,0],
subsequence(1,[0]),subsequence(2,[blank])) 1),
action([]),
effects([ del(believe(barney,next_subsequence(subsequence(1,[0])),true)),
del(act(barmey,assert(believe(barney,subsequence(1,[c]),true),adam),true)),
add(believe(barney,next_subsequence(subsequence(2,[blank])),true)) ]),
atts([ level(domain),
name(asserted_next_subsequence) ]) ).

barney: state(believe(barney,next_subsequence(subsequence(2,[blankj)),true),5,-1)

barney: state(believe(barney,turn(bamey),mutually_known_true),3,-1)

barney: state(believe(barney,next_letter(letter(1,0)),true),1,-1)

barney: state(believe(barney,sequence([o,blank,s,u,t,w,r,q,g,blank,blank,f,w,w.d,g,0]),
goal_mutually_known_true),0,-1)

barney: state(act(barney,confirm_mutual(sequence([o,blank,s,u,t,w,r,q,g,blank,
blank,f,w,w.d,g,0])),goal_true),0,-1)

barney: state(conversants(barney,adam),0,-1)

adam: state(believe(adam,turn(barney),true),2,-1)

adam: state(believe(adam,turn(barney),mutually_known_true),2,-1)

adam: state(act(adam,request(act(barney,assert(subsequence(1,[blank]),adam),goal_true),
barney),true),2,-1)

adam: state(act(adam,acknowledge_turmn(turn(adam),mutually_known_true),rue),1,-1)

adam: state(believe(adam,next_subsequence(subsequence(l,[blank])),true),0,-1)

adam: state(believe(adam,sequence([blank,i,s,u,t,w,r,q,2,l,d,blank,blank,
blank,blank,g,0]),goal_mutually_known_true),0,-1)

adam: state(act(adam,confirm_mutual(sequence([blank,i,s,u,t,w,r,q,8,1,d,blank,blank,
blank,blank,g,0])),goal_true),0,-1)

adam: state(conversants(adam,barney),0,-1)
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adam's acts for cycle 6:

barney's acts for cycle 6:

op{ % goal_request_next_subsequence
if([ conversants(barney,adam),
act(barney,confirm_mutual(sequence([o,blank,s,u,t,w,r,q,g,blank,blank,f,w,w,d,
g,01)),goal_true),
believe(barney,next_subsequence(subsequence(2,[blank])),true) ]),
not([ act(barney,request(act(adam,assert(subsequence(2, [blank]),barney),
goal_true),adam),goal_true),
act(barney,request(act(adam,assert(subsequence(2,[blank]),barney),
goal_true),adam),true) ]),
test([]),
action([1),
effects({ add(act(barney,request(act{(adam,assert(subsequence(2,[blank]),barney),
goal_true),adam),goal_true)) 1),
atts({ level(domain),
name(goal_request_next_subsequence) ]) ).
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barney: state(act(barney,request(act(adam,assert(subsequence(2,[blank]),barney),
goal_true), adam),goal_true),6,-1)

bamey: state(believe(bamey,next_subsequence(subsequence(2,[blank])),true),53,-1)

barney: state(believe(barney,turn(bamey),mutually_known_true),3,-1)

bamney: state(believe(barney,next_letter(letter(1,0)}),true),1,-1)

barney: state(believe(barney,sequence([o,blank,s,u,t,w,r,q,g,blank,blank,f,w,w,d,g,0]),
goal_mutually_known_true),0,-1)

barney: state(act(barney,confirm_mutual(sequence([o,blank,s,u,t,w,r,q,g,blank,
blank,f,w,w.d,g,0])),goal_true),0,-1)

barney: state(conversants(barney,adam),0,-1)

adam: state(believe(adam,turn{barney),true),2,-1)

adam: state(believe(adam,turn(barney),mutually_known_true),2,-1)

adam: state(act(adam,request(act(barney,assert(subsequence(1,[blank]),adam),goal_true),
barney),true},2,-1)

adam: state(act(adam,acknowledge_turn(turn(adam),mutually_known_true),true),1,-1)

adam: state(believe(adam,next_subsequence(subsequence(l,[blank])),true),0,-1)

adam: state(believe(adam,sequence([blank,i,s,u,t,w,r,q,g,1,d,blank,blank,
blank,blank,g,0]),goal_mutually_known_true),0,-1)

adam: state(act(adam,confirm_mutual(sequence([blank,i,s,u,t,w,r,q,g,l,d,blank,blank,
blank,blank,g,0])),goal_true),0,-1)

adam: state(conversants(adam,barney),0,-1)
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adam's acts for cycle 7:

barney's acts for cycle 7:

op( % do_request
if([ conversants(bamey,adam),
act(barney,request(act(adam,assert(subsequence(2,[blank]),barney),
goal_true),adam),goal_true),
believe(barney,turn(barney),mutually_known_true) ]),
not([}),

test([]),
action([ act(barney,request(act(adam,assert(subsequence(2,[blank]),bamey),

goal_true),adam),true) ]),
effects([ del(act(bamey,request(act(adam,assert(subsequence(2,[blank]),barney),
goal_true),adam),goal_true)),
del(believe(barney,turn(bamey),mutually_known_true)),
add(believe(barmey,turn(adam),mutually_known_true)) 1),
atts([ name(do_request),
level(information) 1) ).

op( % give_turn_3
if([ conversants(barney,adam),
act(barney,request(act(adam,assert(subsequence(2,[blank]),barney),
goal_true),adam),goal_true),
believe(barney,turn(barney),mutually_known_true) ]),
not([]),

test([]),
action([ act(barney,give_tumm(adam),mutually_known_true) ]),

effects({ del(believe(barney,turn(barey),mutually_known_true)),
del(act(barmney,give_turn{adam),mutually_known_true)),
add(believe(barmney,turn{adam),true)) ]),

atts([ name(give_turn_3),
level(turn) 1) ).
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barney: state(believe(bamey,turn(adam),true),7,-1)

barney: state(believe(bamey,turn(adam),mutually_known_true),7,-1)

barney: state(act(barney,request(act(adam,assert(subsequence(2,[blank]),barney),
goal_true),adam),true),7,-1)

barney: state(believe(barney,next_subsequence(subsequence(2,[blank])),true),5,-1)

barney: state(believe(bamey,next_letter(letter(1,0)),rue),1,-1)

barney: state(believe(barney,sequence([o,blank,s,u,t,w,r,q.g,blank,blank,f,w,w.d,g,0]),
goal_mutually_known_true),0,-1)

barney: state(act(barney,confirm_mutual(sequence([o,blank,s,u,t,w,r,q,g,blank,
blank,f,w,w.d,g,0])),goal_true},0,-1)

barney: state(conversants(barney,adam),0,-1)

adam: state(act(barney,give_turmn(adam),mutually_known_true),7,-1)

adam: state{act(barney,request(act(adam,assert(subsequence(2,[blank]),barney),goal_true),
adam),true),7,-1)

adam: state(believe(adam,turn(barney),true),2,-1)

adam: state(believe(adam,turn(barney),mutually_known_true),2,-1)

adam; state(act(adam,request(act(barney,assert(subsequence(1,[blank]),adam),goal_true),
barney),true),2,-1)

adam: state(act(adam,acknowledge_turn(turn(adarn),mutually_known_true),true),1,-1)

adam: state(believe{adam,next_subsequence(subsequence(1,[blank])),true),0,-1)

adam: state(believe(adam,sequence([blank.i,s,u,t,w,1,q,8,l,d,blank,blank,
blank,blank,g.0]),goal_mutually_known_true),0,-1)

adam: state(act(adam,confirm_mutual(sequence([blank.i,s,u.t,w,r,q,g,1,d,blank,blank,
blank,blank,g,0])),goal_true),0,-1)

adam: state(conversants(adam,barney),0,-1)



adam’s acts for cycle 8:

op( % goal_assert_next_subsequence_1
if([ conversants(adam,barney),
believe(adam,sequence{[blank,i,s,u,t,w,r,q,8,1,d,blank,blank,blank,blank,g,0]),
goal_mutually_known_true),
act(barney,request(act(adam,assert(subsequence(2,[blank]),barney),
goal_true),adam),true),
believe(adam,next_subsequence(subsequence(1,[blank])),true) 1),
not{{ act(adam,assert(believe(adam,subsequence(2,[i,s,u,t,w]),true),barney),goal_true),
act(adam,confirm_mutual(subsequence(2,_506)),goal _true) ]),
test([ get_subsequence(2,sequence([blank.i,s,u,t,w,r,q,g,1,d,blank,blank,blank,
blank,g,0]),subsequence(2,[i,s,u,t,w])) 1),
action([]),
effects([ del(act(barney.request(act{adam,assert(subsequence(2,[blank]),barney),
goal_true),adam),true)),
add(act(adam,assert(believe(adam,subsequence(2,[i,s,u,t,w]),rue),
barney),goal_true)),
del(believe(adam,next_subsequence(subsequence(1,[blank])),true)),
add(believe(adam,next_subsequence(subsequence(2,[i,s,u,t,w])),true)) 1),
atts([ level(domain),
name(goal_assert_next_subsequence_1) ]) ).

op( % recognize_my_turn_l

if([ conversants(adam,barney),
act(barney,give_turn(adam),mutually_known_true),
believe(adam,turn(barney),true) 1),

not([ act(adam,request - turn,true) ]),

test([]),

action([]),

effects([ del(believe(adam,um(barney),true)),
del(act(barney,give_turn{adam),mutually_known_true)),
add(believe(adam,turn(adam),mutually_known_true)) ]),

atts([ name(recognize_my_turn_1),
level(turn) ]) ).

barney's acts for cycle 8:
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barney: state(believe{barney,turn(adam),true),7,-1)

bamey: state(believe(barney,turn(adam),mutually_known_true),7,-1)

barney: state(act(barney,request{act(adam,assert(subsequence(2,[blank]),barney),
goal_true),adam),true),7,-1)

barney: state(believe(bamey,next_subsequence(subsequence(2,[blank])),true),5,-1)

bamney: state(believe(barney,next_letter(letter(1,0)),true),1,-1)

barney: state(believe(barney,sequence([o,blank,s,u,t,w.r,q,g,blank, blank.f,w,w.d,g,0]),
goal_mutually_known_true),0,-1)

barney: state(act(barney,confirm_mutual(sequence({o,blank,s,u,t,w,r,q,g,blank,
blank,f,w,w,d,g,0])),goal_true),0,-1)

barney: state(conversants(barney,adam),0,-1)

adam: state(believe(adam,turn(adam),mutually_known_true),8,-1)

adam: state(believe(adam,next_subsequence(subsequence(2,[i,s,u,t,w])),true),8,-1)

adam: state(act(adam,assert(believe(adam,subsequence(2,[i,s,u,t,w]),true),barney),
goal_true),8,-1)

adam: state(believe(adam,turn{barney),mutually_known_true),2,-1)

adam: state{act(adam,request(act(barney,assert(subsequence(1,[blank]),adam),goal_true),
barney),true),2,-1)

adam: state{act(adam,acknowledge_tum(turn(adam),mutually_known_true),toue),1,-1)

adam: state(believe(adam,sequence([blank,i,s,u,t,w,r,q,g,1,d,blank,blank,
blank,blank,g,0]),goal_mutually_known_true),0,-1)

adam: state(act(adam,confirm_mutual(sequence([blank,i,s,u,t,w,r,q,g,1,d,blank,blank,
blank,blank,g,01)),goal_true),0,-1)

adam: state(conversants(adam,barney),0,-1)
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adam's acts for cycle 9:

op( % do_assert
if([ conversants(adam,barney),
act(adam,assert(believe(adam,subsequence(2,[i,s,u,t,w]),true),barney),goal_true),
believe(adam,turn(adam),mutually_known_true) ]),
not([D,
test([1),

action([ act(adam,assert(believe(adam,subsequence(2,[i,s,u,t,w]},true),barney),true) 1),
effects([ del(act(adam,assert(believe(adam,subsequence(2,[i,s,u,t,w]),true),barney),
goal_true)) ]),
atts([ name(do_assert),
level(information) ]) ).

op{ % request_tum
if([ conversants(adam,barney),
act(adam,assert(believe(adam,subsequence(2,[i,s,u,t,wl),true),barney),goal_true),
believe(adam,turn(barney), mutually_known_true) ]),
not({ act(adam,request_turn,true) ]),
test([ assert(believe(adam,subsequence(2,[i,s,u,t,w]),true),barney) =
assert(believe(adam,subsequence(2,[i,s,u,t,w]),true),barney) ;
assert(believe(adam,subsequence(2,[i,s,u,t,w]),true),barmney) =
request(_320,bamey) 1),
action([ act(adam,request_turn,true) ]),
effects([1),
atts([ name(request_turn),
level(turn) ])).

barney's acts for cycle 9:
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barney: state(act(adam,request_turn,true),9,-1)
barney: state(act(adam,assert(believe(adam,subsequence(2,[i,s,u,t,w]),true),barney),

true),9,-1)

barney: state(believe(barney,turn(adam),true),7,-1)

barney:
barmney:

barney:
barney:

state(believe(barney,turn(adam),mutually_known_true),7,-1)
state(act(barney,request(act(adam,assert(subsequence(2,[blank]),barney),
goal_true),adam),true),7,-1)
state(believe(barney,next_subsequence(subsequence(2,[blank])),true),5,-1)
state(believe(barney,next_letter(letter(1,0)),rue),1,-1)

barney: state(believe(barney,sequence([o,blank,s,u,t,w,r,q,g,blank, blank,f,w,w,d,g,01),

goal_mutually_known_true),0,-1)

barney: state(act(barney,confirm_mutual(sequence([o,blank,s,u,t,w,r.q,g,blank,

blank,f,w,w,d,g,0])),goal_true),0,-1)

barney: state(conversants(barney,adam),0,-1)

adam:
adam:

adam:
adam;
adam:
adam;

adam:
adam:

adam:

adam;

state(act(adam,request_turn,true),9,-1)
state(act(adam,assert(believe(adam,subsequence(2,[i,s,u,t,w]),true),barney),
true),9,-1)
state(believe(adam,turn(adam),mutually_known_true),8,-1)
state(believe(adam,next_subsequence(subsequence(2,[i,s,u,t,w])),true),8,-1)
state(believe(adam,tumn(barney),mutually_known_true),2,-1)
state(act(adam,request(aci(barney,assert(subsequence(1,[blank]),adam),goal _true),
barney),true),2,-1)
state(act(adam,acknowledge_turn(turn(adam),mutually_known_true),true),1,-1)
state(believe(adam,sequence([blank,i,s,u,t,w,r,q,g,1,d,blank,blank,
blank,blank,g,0]),goal_mutually_known_true),0,-1)
state(act(adam,confirm_mutual(sequence([blank,i,s,u,t,w,r,q,g,l,d,blank,blank,
blank,blank,g,0])),goal_true),0,-1)
state(conversants(adam,barney),0,-1)



adam's acts for cycle 10:

op( % asserted_next_subsequence
if([ conversants(adam,bamey),
believe(adam,sequence([blank.,i,s,u,t,w.r,q,g,l,d,blank,blank,blank,blank,g,0]),
goal_mutually_known_true),
believe(adam,next_subsequence{subsequence(2,[i,s,u,t,w])),true),
act(adam,assert(believe(adam,subsequence(2,[i,s,u,t,w]),true),barney),true) 1),
not([]),
test{ length([i,s,u,t,w],3),
length([blank.,i,s,u,t,w,r,q,g,l,d,blank,blank,blank,blank,g,0],17),
2+5=<17,
get_next_subsequence([blank,i,s,u,t,w,r,q,g,1,d,blank,blank,blank,blank,g,o0],
subsequence(2,{i,s,u,t,w]),subsequence(7,[r,q,2,1,d])) 1),
action([]),
effects([ del(believe(adam,next_subsequence(subsequence(2,[i,s,u,t,w])),irue)),
del(act(adam,assert(believe(adam,subsequence(2,[i,s,u,t,w]),true),barney),true)),
add(believe{adam,next_subsequence(subsequence(7,[r,q,g,1,d])),true)) 1),
atts([ level(domain),
name(asserted_next_subsequence) ]) ).

barney's acts for cycle 10:

op( % informed_of_next_subsequence_by_other
if([ conversants(barney,adam),
believe(barney,sequence([o,blank,s,u,t,w,r,q,g,blank,blank,f,w,w,d,g,01),
goal_mutuailly_known_true),
believe(barney,next_subsequence(subsequence(2,[blank])),true),
act(adam,assert(believe(adam,subsequence(2,[i,s,u,t,w]),true),barney),true) 1),
not(f]),
test([ length([blank],1),
length([o,blank,s,u,t,w,r,q,g,blank,blank.f,w,w.d,g,0],17),
2+ 1=<17,
get_next_subsequence([o,blank,s,u,t,w,r,g,g,blank,blank,f,w,w.d,g,0],
subsequence(2,[blank]),subsequence(3,[s,u,t,w,r])) D),
action([]),
effects([ del(believe(barney,next_subsequence(subsequence(2,[blank])),true)),
del(act(adam,assert(believe(adam,subsequence(2,(i,s,u,t,w]),true),barney), true)),
add(believe(barney,next_subsequence(subsequence(3,[s,u,t,w,r])),true)) 1),
atts([ level(domain),
name(informed_of_next_subsequence_by_other) 1) ).
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op( % assertion_received_1

if([ conversants(barmey,adam),
act(adam,assert(believe(adam,subsequence(2,{i,s,u,t,w]),true),barmney),true),

believe(barney,turn{adam),mutually_known_true) 1),
not([ believe(adam,subsequence(2,[i,s,u,t,w]),true) 1),

test([1),

action{[]),
effects([ add(believe(adam,subsequence(2,[i,s,u,t,w]),true)) 1),

atts([ name(assertdon_received_1),
level(information) 1) ).
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bamney: state(believe{adam,subsequence(2,[i,s,u,t,w]),true),10,-1)

barney: state(believe(barmey,next_subsequence(subsequence(3,[s,u,t,w,r})),true),10,-1)

bamey: state(act(adam,request_turn,true),9,-1)

barney: state(believe(barney,urn{adam),true),7,-1)

barney: state(believe(bamey,turn(adam),mutually_known_true),7,-1)

barney: state(act(barney,request(act(adam,assert(subsequence(2,[blank]),barney),
goal_true),adam),true),7,-1)

barney: state(believe(bamey,next_letter(letter(1,0)),true),1,-1)

barney: state(believe{barney,sequence([o,blank,s,u,.t,w,r,q,g,blank,biank,f,w,w.d,g,0]),
goal_mutually_known_true),0,-1)

barney: state(act(bamey,confirm_mutual(sequence(fo,blank,s,u,t,w,r,q,g,blank,
blank.f,w,w,d,g,0])),goal_true),0,-1}

barney: state(conversants(bamey,adam),0,-1)

adam: state(believe(adam,next_subsequence(subsequence(7,[r,q,g,1,d]}),true),10,-1)

adam: state(act(adam,request_tum,true),9,-1)

adam: state(believe(adam,turn{(adam),mutually _known_true),8,-1)

adam: state(believe(adam,turn(barney),mutually_known_true),2,-1)

adam: state(act(adam,request(act(barney,assert(subsequence(1,[blank]},adam),goal_true),
barney),true),2,-1)

adam: state(act(adam,acknowledge_turn(turn(adam),mutually_known_true),true),1,-1)

adam: state(believe(adam,sequence([blank,i,s,u,t,w,r,q,g,1,d,blank,blank,
blank,blank,g,0]),goal _mutually_known_true),0,-1)

adam: state(act(adam,confirm_mutual(sequence([blank,i,s,u,t,w,r,q,g,1,d,blank,blank,
biank,blank,g,0])),goal_true),0,-1)

adam: state(conversants(adam,barney),0,-1)
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adam's acts for cycle 11:

op( % goal_confirm_next_subsequence

if([ conversants(adam,barney),

act(adam,confirm_mutual(sequence([blank,i,s,u,t,w,r,q,8,1,d,blank,blank,blank,
blank,g,0])),goal_true),

believe(adam,next_subsequence(subsequence(7,[r,q,g,1,d])),true) 1),

not([ act(adam,confirm_mutual(subsequence(7,[r,q,g.1.d])),goal_true),
act(adam,assert(believe(adam,subsequence(7,_307),true),barney),goal_true),
act(adam,assert(believe(adam,subsequence(7,_323),true),barney),true) ]},

test([ not(r = blank) 1),

action([]),

effects([ add(act(adam,confirm_mutual(subsequence(7,[r.q,g.1,d])),goal_true)),
add(believe(adam,next_letter(letter(1,r)),true)) 1),

atts({ level(domain),
name(goal_confirm_next_subsequence} ]) ).

barney's acts for cycle 11:

op( % goal_confirm_next_subsequence
if([ conversants(barney,adam),
act(barney,confirm_mutual(sequence([o,blank,s,u,t,w,r,q,g,blank,blank,f,w,w.d,
8,01)),g0al_true),

believe(barney,next_subsequence(subsequence(3,[s,u,t,w,r])),true) 1),

not([ act(barney,confirm_mutual(subsequence(3,[s,u,t,w,r])),goal_true),
act(barney,assert(believe(barney,subsequence(3,_2558),true),adam),goal _true},
act(barney,assert(believe(barney,subsequence(3,_2574),true),adam),true) 1),

test([ not(s = blank) ]),

action{[]),

effects([ add(act(barney,confirm_mutual(subsequence(3,[s,u,t,w,r])),goal _true)),
add(believe(bamey,next_letter(letter(1,s)),mue)) 1),

atts([ level(domain),
name(goal_confirm_next_subsequence) ]) ).
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barney: state(believe(bammey,next_letter(letter(1,s)),true),11,-1)

barney: state(act(barney,confirm_mutual(subsequence(3,[s,u,t,w.r])),goal_true),11,-1)
barney: state(believe(adam,subsequence(2,[i,s,u,t,w]),true),10,-1)

barney: state(believe(barney,next_subsequence(subsequence(3,[s,u,t,w,r])),true),10,-1)
barney: state(act(adam,request_turn,true),9,-1)

bamney: state(believe(barney,turn{adam),true),7,-1)

barney: state(believe(bamey,turn(adam),mutually_known_true),7,-1)

barney: state{act(barney,request(act(adam,assert(subsequence(2,[blank]),barney),

goal_true),adam),true),7,-1)

bamney: state(believe(bamey,next_letter(letter(1,0)),true),1,-1)
barney: state(believe(barney,sequence([o,blank,s,u,t,w,r,q,8,blank,blank,f,w,w.d,g,0]),

goal_mutually_known_true),0,-1)

barney: state(act(barney,confirm_mutual(sequence([o,blank,s,u,t,w,r,q,g,blank,

blank.f,w,w,d,g,0])),goal_true),0,-1)

barney: state(conversants{barney,adam),0,-1)

adam:
adam:
adam:
adam:
adam:
adam:
adam:

adam:
adam:

adam:

adam:

state(believe(adam,next_letter(letter(1,r)),true),11,-1)
state(act(adam,confirm_mutual(subsequence(7,{r,q,g,1,d])),goal_true),11,-1)
state(believe(adam,next_subsequence(subsequence(7,[r.q.g,1,d])),true),10,-1)
state(act(adam,request_turn,true),9,-1)
state(believe(adam,urn(adam),mutually_known_true),8,-1)
state(believe(adam,turn(barney),mutually_known_true),2,-1)
state(act(adam,request(act(barney,assert(subsequence(1,[blank]),adam),goal_true),
barney),true),2,-1)
state(act(adam,acknowledge_turn(turn{adam),mutually_known_true),true),1,-1)
state(believe(adam,sequence([blank.i,s,u,t,w,r,q,g,l,d,blank,blank,
blank,blank,g,0]),goal_mutually_known_true),0,-1)
state(act(adam,confirm_mutual(sequence([blank,i,s,n t,w,r,q,g,1,d,blank,blank,
blank,blank,g,0])),goal_true),0,-1)
state(conversants(adam,barney),0,-1)
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adamn's acts for cycle 12:

op( % goal_confirm_next_letter_1

if([ conversants(adam,barney),
act(adam,confirm_mutual(subsequence(7,[r,q,g.1,d])),goal_true),
believe(adam,next_letter{letter(1,r)),true) 1),

not([ act(adam,confirm_mutual(next_letter(letter(1,r))),goal_true) 1),

test([1),

action([]),

effects(] add(act(adam,confirm_mutual(next_letter(letter(1,r))),goal_true)),
add(act(adam,assert(next_letter(letter(1,r)),barney),goal_true)) 1),

atts([ level(domain),
name(goal_confirm_next_letter_1) 1) ).

bamey's acts for cycle 12:

op( % goal_confirm_next_letter_1

if([ conversants(barney,adam),
act(barney,confirm_mutual(subsequence(3,[s,u,t,w,r})),goal_true),
believe(barney,next_letter(letter(1,s)),true) 1),

not([ act(barney,confirm_mutual(next_letter(letter(1,s))),goal_true) ]),

test([]),

action{f]),

effects([ add(act(bamey,confirm_mutual(next_letter(letter(1,s))),goal _true)),
add(act(barney,assert(next_letter(letter(1,s)),adam),goal_true)) 1),

atts({ level(domain),
name(goal_confirm_next_letter_1) ]) ).



barney: state(act(bamney,assert(next_letter(letter(1,s)),adam),goal_true),12,-1)

barney: state(act(bamey,confirm_mutual(next_letter(letter(1,s))),goal_true),12,-1)
barney: state(believe(barney,next_letter(letter(1,s)),true),11,-1)

barney: state(act(barney,confirm_mutual(subsequence(3,[s,u,t,w,r])),goal_true),11,-1)
barney: state(believe(adam,subsequence(2,[i,s,u,t,w]),true),10,-1)

barney: state(believe(barney,next_subsequence(subsequence(3,[s,u,t,w,r])),true),10,-1)
barney: state(act(adam,request_turn,true),9,-1)

barney: state(believe(bamey,turn{(adam),true),7,-1)

bamey: state(believe(bamey,turn(adam),mutually_known_true),7,-1)

barney: state(act(barney,request(act(adam,assert(subsequence(2,[blank]),barney),

goal_true),adam),true),7,-1)

bamney: state(believe(barney,next_letter(letter(1,0)),true),1,-1)
barney: state(believe(barney,sequence([o,blank,s,u,t,w r,q,g,blank,blank.f,w,w,d,g,0]),

goal_mutually_known_true),0,-1)

bamey: state(act(barney,confirm_mutual(sequence([o,blank,s,u,t,w,r,q,g,blank,

blank,f,w,w.d,g,0])),goal_true),0,-1)

barney: state(conversants(barney,adam),0,-1)

adam:
adam:
adam:
adam:
adam:
adam:
adam:
adam:
adam:

adam:
adam:

adam:

adam:

state(act(adam,assert(next_letter(letter(1,r)),barney),goal _true),12,-1)
state(act(adam,confirm_mutual(next_letter(letter(1,r))),goal_true),12,-1)
state(believe(adam,next_letter(letter(1,r)),true),11,-1)
state(act(adam,confirm_mutual(subsequence(7,[r,q,g,1,d])),goal_true),11,-1)
state(believe(adam,next_subsequence(subsequence(7,[r,q,g,1,d])),true),10,-1)
state(act(adam,request_turn,true),9,-1)
state(believe(adam,turn(adam),mutually_known_true),8,-1)
state(believe(adam,turn(barney),mutually_known_true),2,-1)
state(act{adam,request{act(barney,assert(subsequence(1,[blank]),adam),goal _true),
barney),true),2,-1)
state(act{adam,acknowledge_tum{turn(adam),mutually_known_true),rue),1,-1)
state(believe(adam,sequence([blank,i,s,u.t,w,r,q,g,1,d,blank,blank,
blank,blank,g,0]},goal_mutually_known_true),0,-1)
state(act(adam,confirm_mutual(sequence([blank,i,s,u,t,w,r,q,g,1,d,blank,blank,
blank,blank,g,0])),goal_true),0,-1)
state(conversants(adam,barney),0,-1)
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adam’s acts for cycle 13:

op( % do_assert
if([ conversants(adam,barney),
act(adam,assert(next_letter(letter(1,r)),barney),goal_true),
believe(adam,turn{adam),mutually_known_true) ]),
not([]),

test([]),
action([ act(adam,assert(next_letter(letter(1,1)),bamey),true) 1),

effects([ del(act(adam,assert(next_letter(letter(1,r)),barney),goal_true)) 1),
atts([ name(do_assert),
level(information) ]) ).

barney's acts for cycle 13:

op( % goal_confirm_next_letter_1

if{[ conversants(bamey,adam),
act(barney,confirm_mutual(subsequence(3,[s,u,t,w,r])),goal_true),
believe(barney,next_letter(letter(1,0)),true) ]),

not{[ act(barney,confirm_mutual(next_letter(letter(1,0))),goal _true) ]),

test(),

action([]),

effects([ add(act(bamey,confirm_mutual(next_letter(letter(1,0))),goal_true)),
add(act(barney,assert(next_letter(letter(1,0)),adam),goal _true)) ]),

atts([ level(domain),
name(goal_confirm_next_letter_1} 1) ).

op( % request_turn

if([ conversants(barney,adam),
act(barney,assert(next_letter(letter(1,s)),adam),goal_true),
believe(barney,turn(adam),mutvally_known_true) ]),

not({ act(barney,request_turn,true) ),

test([ assert(next_letter(letter(1,s)),adam) = assert{next_letter(letter(1,s)),adam) ;

assert(next_letter(letter(1,s)),adam) = request(_2442,adam) }),

action([ act(barney,request_turn,true) ]),

effects([]),

atts([ name{request_turn),
level(turn) ]) ).
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barney: state(act(bamey,request_turn,true),13,-1)

barney: state(act(barney,assert(next_letter(letter(1,0)),adam),goal _true),13,-1)

barney: state(act(barney,confirm_mutual(next_letter(letter(1,0))),goal_true),13,-1)
bamey: state(act(adam,assert(next_letter(letter(1,r)),barney),true),13,-1)

barney: state(act(barney,assert(next_letter(letter(1,s)),adam),goal_true),12,-1)

barney: state(act(barney,confirm_mutual(next_letter(letter(1,s))),goal _true),12,-1)
barney: state(believe(barney,next_letter(letter(1,s)),true),11,-1)

barney: state(act(barney,confirm_mutual(subsequence(3,[s,u,t,w,r])),goal_true),11,-1)
barney: state(believe(adam,subsequence(2,[1,s,u,t,w]),true),10,-1)

barney: state(believe(barney,next_subsequence(subsequence(3,[s,u,t,w,r])),true),10,-1)
barney: state(act(adam,request_turn,true),9,-1)

barney: state(believe(barney,tum({adam),true),7,-1)

barney: state(believe(bamey,turn(adam),mutually_known_true),7,-1)

bammey: state(act(barney,request(act(adam,assert(subsequence(2,[blank]),barney),

goal_true),adam),true),7,-1)

barney: state(believe(barney,next_letter(letter(1,0)),true),1,-1)
barney: state(believe(barney,sequence([o,blank,s,u,t,w,1,q,g,blank,blank,f,w,w.d,g,0]),

goal_mutually_known_true),0,-1)

barney: state(act(barney,confirm_mutual(sequence([o,blank,s,u,t,w,r,q,g,blank,

blank.f,w,w.d,g,0])),goal_true),0,-1)

barney: state(conversants(barney,adam),0,-1)

adam:
adam:
adam:
adam:
adam:
adam:
adam:
adam:
adam:
adam:

adam:
adam:

adam:

adam:

state(act(barney,request_turn,true),13,-1)
state(act(adam,assert(next_letter(letter(1,r)},barney),true),13,-1)
state(act(adam,confirm_mutual(next_letter(letter(1,r))),goal_true),12,-1)
state(believe(adam,next_letter(letter(1,r)),mue),11,-1)
state(act(adam,confirm_mutual(subsequence(7,[r,q,g,1,d])),goal_true),11,-1)
state(believe(adam,next_subsequence(subsequence(7,[r,q,g,1,d])),true),10,-1)
state(act(adam,request_turn,true),9,-1)
state(believe(adam,turn(adam),mutually_known_true),8,-1)
state(believe(adam,turn(barney),mutually_known_true),2,-1)
state{act(adam,request(act(barney,assert(subsequence(1,[blank]),adam),goal_true),
barney),true),2,-1)
state(act(adam,acknowledge_turn(tum{adam),mutually_known_true),true),1,-1)
state(believe(adam,sequence([blank.i,s,u,t,w,r,q,g,1,d,blank,biank,
blank,blank,g,0]),goal_mutually_known_true},0,-1)
state(act(adam,confirm_mutual(sequence([blank.i,s,u,t,w,r,q,g,1,d,blank,blank,
blank,blank,g,0])),goal_true),0,-1)
state(conversants(adam,bamey),0,-1)



adam's acts for cycle 14:

op( % give_turn_2

if([ conversants(adam,barney),
act(barney,request_turn,true),
believe(adam,turn(adam),mutually_known_true) 1),

not([ act(adam,assert(next_letter(letter(1,r)),barney),goal_true) 1),

test{[]),

action([ act(adam,give_turn(barney),true) 1),

effects([ del(believe{adam,iurn(adam),mutually _known_true)),
del(act(adam,give_turn(barney),true)),
del(act(barney,request_turn,true)),
add(believe(adam,urm(bamey),mutually_known_true)) 1),

atts([ name(give_turn_2),
level(turn) 1) ).

barney's acts for cycle 14:

op( % regain_turn
if({ conversants(barney,adam),
act(barney,assert(next_letter(letter(1,0)),adam),goal_true),
believe(bamey,turn(adam),true) }),
not{[ act(barney,hold_turn,mutually_known_true) ]),
test([ assert(next_letter(letter(1,0)),adam) =
assert(next_letter(letter(1,0)),adam);
assert(next_letter(letter(1,0)),adam)
= request(_2839,adam) ]),
action([ act(bamey,hold_turn,mutually_known_true) ]),
effects([ del(believe(bamey,turn(adam),true)),
add(believe(barney,turn(barney),true)) ]),
atts{[ name(regain_turn),
level{tumm) 1) ).
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bamney: state(believe(bamey,turn(barney),true),14,-1)

barney: state(act(barney,hold_turn,mutually_known_true),14,-1)

barney: state(act(adam,give_turn(barney),true),14,-1)

barney: state(act(barney,request_turn,true),13,-1)

barney: state(act(bamey,assert(next_letter(letter(1,0)),adam),goal_true),13,-1)

barney:

state(act(barney,confirm_mutual(next_letter(letter(1,0))),goal_true),13,-1)

barney: state(act(adam,assert(next_letter(letter(1,r)),barney),true),13,-1)

barney: state(act(barmey,assert(next_letter(letter(1,s)),adam),goal_true),12,-1)

barmey: state(act(barney,confirm_mutual(next_letter(letter(1,s))),goal_true),12,-1)
barney: state(believe(barney,next_letter(letter(1,s)),true),11,-1)

barney: state(act(barney,confirm_mutual(subsequence(3,[s,u,t,w,r])),goal_true),11,-1)
barney: state(believe(adam,subsequence(2,[i,s,u,t,w]),true),10,-1)

barney: state(believe(barney,next_subsequence(subsequence(3,[s,u,t,w,r])),true),10,-1)
barney: state(act(adam,request_turn,true),9,-1)

barney: state(believe(bamey,turn(adam),mutually_known_true),7,-1)

barney: state(act(barney,request(act(adam,assert(subsequence(2,[blank]),barney),

goal_true),adam),true),7,-1)

bamey: state(believe(barney,next_letter(letter(1,0)),true),1,-1)
barney: state(believe{barney,sequence([o,blank,s,u,t,w,r,q,g,blank,blank,f,w,w,d.g,0]),

goal_mutually_known_true),0,-1)

barney: state(act(barney,confirm_mutual(sequence({o,blank,s,u,t,w,r,q,g,blank,

blank,f,w,w.d,g,0])),goal_true),0,-1)

barney: state(conversants(barney,adam),0,-1)

adam:
adam:
adam:
adam;
adam:
adam:
adam:
adam:
adam:
adam:

adam:
adam:

adam:

adam:

state(act(barney,hold_turn,mutually_known_true),14,-1)
state(believe(adam,turn(barney),mutually_known_true),14,-1)
state(act(adam,assert(next_letter(letter(1,r)),barney),true),13,-1)
state(act(adam,confirm_mutual(next_letter(letter(1,r))),goal_true),12,-1)
state(believe(adam,next_letter(letter(1,r)),true),11,-1)
state(act(adam,confirm_mutual(subsequence(7,[r.q,g,1,d])),goal _true),11,-1)
state(believe(adam,next_subsequence(subsequence(7,[r,q,g,1,d]}),true),10,-1)
state(act(adam,request_tumn,true),9,-1)
state(believe(adam,turn(barney),mutually_known_tue),2,-1)
state(act(adam.request(act(barney,assert(subsequence(1,[blank]),adam),goal_true),
barney),true),2,-1)
state(act(adam,acknowledge_turn(turn(adam),mutually_known_true),true),1,-1)
state(believe(adam,sequence([blank,i,s,u,t,w,r,q,g,1,d,blank,blank,
blank,blank,g,0]),goal_mutually_known_true),0,-1)
state(act(adam,confirm_mutual(sequence([blank,i,s,u,t,w,r,q,g,l,d,blank,blank,
blank,blank,g,0])),goal_true),0,-1)
state(conversants(adam,barney),0,-1)
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adam's acts for cycle 15:

barney's acts for cycle 15:

op( % acknowledge_my_turn
if([ conversants(barney,adam),
believe(barney,turn(adam),mutually_known_true),
act(adam,give_turn(barney),true) 1),
not([]),
test([]),

action([ act(barney,acknowledge_turn(turn(barney),mutually_ _known_true),true) ]),

effects([ del(act(adam,give_turn(barney),true}),
del(believe(barney,turn{adam),mutually_known_true)),
add(believe(barney,turn(barney),mutually_known_true)) ]),

atts([ level(turn),
name(acknowledge_my_tum) }) ).



barney:
barney:

barney:
bamey:
barney:
barney:
bamey:
barney:
barney:
barney:
bamey:
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state(believe(barney,urn{barney),mutually_known_true),15,-1)
state(act(barney,acknowledge_turn(turn(barney),mutuaily_known_true),true),15,-

1)
state(believe(barney,turn{barney),true),14,-1)
state(act(barney,hold_turn,mutually_known_true),14,-1)
state(act(barney,request_turn,true),13,-1)
state(act(barney,assert(next_letter(letter(1,0)),adam),goal _true),13,-1)
state{act{barney,confirm_mutual(next_letter(letter(1,0))),goal_true),13,-1)
state(act(adam,assert(next_letter(letter(1,r)),barney),true),13,-1)
state(act(barney,assert(next_letter(letter(1,s)),adam),goal_true),12,-1)
state(act(barney,confirm_mutual(next_letter(letter(1,s))),goal_true),12,-1)
state(believe(barney,next_letter(letter(1,s)),true),11,-1)

barney: state(act(barney,confirm_mutual(subsequence(3,[s,u,t,w,r])),goal_true),11,-1)
barney: state(believe(adam,subsequence(2,[i,s,u,t,w]),true),10,-1)
barney: state(believe(barney,next_subsequence(subsequence(3,[s,u,t,w,r])),true),10,-1)

barney:
barmney:

state(act(adam,request_turn,true),9,-1)
state(act(barney,request(act(adam,assert(subsequence(2,[blank]),bamey),
goal_true),adam),true),7,-1)

bamney: state(believe(barney,next_letter(letter(1,0)),true),1,-1)
barney: state(believe(barney,sequence({o,blank,s,u,t,w,1,q,g,blank,blank,f,w,w.d,g,0]),

goal_mutually_known_true),0,-1)

barney: state(act(barney,confirm_mutual(sequence([o,blank,s,u,t,w,r,q,g,blank,

blank,f,w,w.d,g,0])),goal_true),0,-1)

barney: state(conversants(barney,adam),0,-1)

adam;
adam:
adan;
adam:
adam:
adam:
adam:
adam:
adam:
adam:
adam:

adam:
adam:

adam:

adam:

state{act(barney,acknowledge_turn(turn(bamey),muiually_known_true),irue),15,-1)
state(act(barney,hold_turn,mutually_known_true),14,-1)
state(believe(adam,turn(barney),mutually_known_true},14,-1)
state(act(adam,assert(next_letter(letter(1,r)),barney),true),13,-1)
state(act(adam,confirm_mutual(next_letter(letter(1,r))),goal_true),12,-1)
state(believe(adam,next_letter(letter(1,r)),true),11,-1)
state(act(adam,confirm_mutual(subsequence(7,[r,q,g.1.d])),goal_true),11,-1)
state(believe(adam,next_subsequence(subsequence(7,[r,q,g,1,d])),true),10,-1)
state(act(adam.request_turn,true),9,-1)
state(believe(adam,turn(barney),mutually_known_true),2,-1)
state(act(adam,request{act(barney,assert(subsequence(1,[blank]),adam),goal_true),
barney),true),2,-1)
state(act(adam,acknowledge_turn(turn(adam),mutually_known_true),true),1,-1)
state(believe(adam,sequence([blank,i,s,u,t,w,r,q,g,1,d,blank,blank,
blank,blank,g,0]),goal_mutually_known_true),0,-1)
state(act(adam,confirm_mutual(sequence([blank,i,s,u,t,w,r,q,g,1,d,blank,blank,
blank,blank,g,0])),goal_true),0,-1)
state(conversants(adam,bamey),0,-1)
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adam's acts for cycle 16:

barney's acts for cycle 16:

op{ % do_assert
if([ conversants(barney,adam),
act(barney,assert(next_letter(letter(1,0)),adam),goal_true),
believe(barney,turn(bamey),mutually_known_true) ]),

not([]),
test([]),

action([ act(barney,assert(next_letter(letter(1,0)),adam),true) ]),
effects([ del(act(barney,assert(next_letter(letter(1,0)),adam),goal_true)) ]),
atts([ name(do_assert),

level(information) 1) ).
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barney: state(act(barney,assert(next_letter(letter(1,0)),adam),true),16,-1)

barney:
barney:

barney:
bamey:
barney:
bamey:
barney:
bamey:
bamey:
barney:
barney:

state(believe(barney,turn(bamey),mutually_known_true),15,-1)
state{act{barney,acknowledge_turn{turn(barney),mutually_known_true),
true),15,-1)
state(believe(barmey,turn(barney),true), 14,-1)
state(act(barney,hold_turn,mutually_known_true),14,-1)
state(act(bamey,request_turn,true),13,-1)
state(act(barney,confirm_mutual(next_letter(letter(1,0))),goal_true),13,-1)
state(act(adam,assert(next_letter(letter(1,r)),barney),true),13,-1)
state(act(barney,assert(next_letter(letter(1,s)),adam),goal_true),12,-1)
state(act(barney,confirm_mutual(next_letter(letter(1,s))),goal _true),12,-1)
state(believe(barney,next_letter(letter(1,s)),true),11,-1)
state(act(barney,confirm_mutual(subsequence(3,[s,u,t,w,r])),goal_true),11,-1)

barney: state(believe(adam,subsequence(2,[i,s,u,t,w]),true),10,-1)
barney: state(believe(barney,next_subsequence(subsequence(3,[s,u,t,w,r])),true),10,-1)

barney:
bamey:

barney:

state(act(adam,request_turn,true),9,-1)

state(act(barney,request(act{adam,assert(subsequence(2,[blank]),barney),
goal_true),adam),true),7,-1)

state(believe(barney,next_letter(letter(1,0)),true},1,-1)

barney: state(believe(barney,sequence([o,blank,s,u,t,w,r,q,g,blank,blank,f,w,w,d,g,0]),

goal_mutually_known_true),0,-1)

barney: state(act(barney,confirm_mutual(sequence([o,blank,s,u,t,w,r,q,g,blank,

barney:

adam:
adam:
adam:
adam:
adam:
adam:
adam:
adam:
adam:
adam:
adam:
adam:

adam:
adam:

adam:

adam:

blank,f,w,w.d,g,0])),go0al_true),0,-1)
state(conversants(bamey,adam),0,-1)

state{act(barney,assert(next_letter(letter(1,0)),adam),true},16,-1)
state(act(barney,acknowledge_turn(turn(barney),mutually_known_true),true),15,-1)
state(act(barney,hold_turn,mutually_known_true),14,-1)
state(believe(adam,turn(barney),mutually_known_true),14,-1)
state(act(adam,assert(next_letter(letter(1,r)),barney),true),13,-1)
state(act(adam,confirm_mutual(next_letter(letter(1,1))),goal_true),12,-1)
state(believe(adam,next_letter(letter(1,r)),true),11,-1)
state(act(adam,confirm_mutual(subsequence(7,[r,q,g,1,d])),goal _true),11,-1)
state(believe(adam,next_subsequence(subsequence(7,[r,q,g,1,d])),rue),10,-1)
state(act(adam,request_turn,true),9,-1)
state(believe(adam,turn(barney),mutually_known_true),2,-1)
state(act{(adam,request(act(barney,assert(subsequence(1,[blank}]),adam),goal _true),
barney),true),2,-1)
state{act(adam,acknowledge_turn(turn(adam),mutually_known_true),true},1,-1)
state(believe(adam,sequence([blank,i,s,u,t,w,r,q,g,1,d,blank,blank,
blank,blank,g,0]),goal_mutually_known_true),0,-1)
state(act(adam,confirm_mutual(sequence([blank.i,s,u,t,w,r,q,g,1,d,blank,blank,
blank,blank,g,0])),goal_true),0,-1)
state(conversants(adam,barney),0,-1)



adam's acts for cycle 17:

bamey's acts for cycle 17:

op( % do_assert
if([ conversants(barney,adam),
act(bammey,assert(next_letter(letter(1,s)),adam),goal_true),
believe(barney,turn(barney),mutually_known_true) 1),

not([]),

test({1),
action([ act(barney,assert(next_letter(letter(1,s)),adam},true) 1),

effects([ del(act(barney,assert(next_letter(letter(1,s)),adam),goal_true)) 1),
atts([ name(do_assert),
level(information) ]) ).

op{ % give_turn_2

if([ conversants(barney,adam),
act(adam,request_turn,true),
believe(barney,turn{barney),mutually_known_true) ]),

not([ act(barney,assert(next_letter(letter(1,0)),adam),goal_true) ]),

test([]),

action([ act(barney,give_turn(adam),true) ]),

effects([ del(believe(barney,turn(barney),mutually_known_true)),
del(act(barney,give_turn(adam),true)),
del{act(adam,request_turn,true)),
add(believe(barney,turn(adam),mutually_known_true)) 1),

atts([ name(give_turn_2),
level(turn) ]} ).

181



bamney:
bamey:
barney:
barney:

bamey:
bamey:
barney:
barney:
bamey:
barney:
barney:
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state(believe(barney,turn(adam),mutually _known_true),17,-1)
state(act(barney,assert(next_letter(letter(1,s)),adam),true),17,-1)
state(act(barney,assert(next_letter(letter(1,0)),adam),true),16,-1)
state(act(barney,acknowledge_turn(turn(barney),mutually_known_true),
true),15,-1)
state(believe(bamey,turn(barmmey),true), 14,-1)
state(act(barney,hold_turn,mutually_known_true),14,-1)
state(act(barney,request_turn,true),13,-1)
state(act(barney,confirm_mutual(next_letter(letter(1,0))),goal_true),13,-1)
state(act(adam,assert(next_letter(letter(1,r)),barney),true),13,-1)
state(act(barney,confirm_mutual(next_letter(letter(1,s)})),goal_true),12,-1)
state(believe(barney,next_letter(letter{1,s)),true),11,-1)

barney: state(act(barney,confirm_mutual(subsequence(3,[s,u,t,w.r])),goal_true),11,-1)
barney: state(believe(adam,subsequence(2,[i,s,u,t,w]),true),10,-1)
barney: state(believe(barney,next_subsequence{subsequence(3,[s,u.t,w,r])),true),10,-1)

barney:

bamey

state(act(barney,request(act{adam,assert(subsequence(2,[blank]),barney),
goal_true),adam),true),7,-1)
: state(believe(barney,next_letter(letter(1,0)),true),1,-1)

barney: state(believe(barney,sequence([o,blank,s,u,t,w,r,q,g,blank,blank,f,w,w.d,g,0]),

goal_mutually_known_true),0,-1)

bamey: state(act(barney,confirm_mutual(sequence([o,blank,s,u,t,w,r,q,g,blank,

blank,f,w,w,d,g,0])),goal_true),0,-1)

barney: state(conversants(barney,adam),0,-1)

adam:
adam:
adam:
adam:
adam:
adam:
adam:
adam;
adam:
adam:
adam:
adam:
adam:
adam:

adam:
adam:

adam:

adam:

state(act(barney,give_turn(adam),true),17,-1)
state(act(barney,assert(next_letter(letter(1,s)),adam),true),17,-1)
state(act(barney,assert(next_letter(letter(1,0)),adam),true),16,-1)
state(act(barney,acknowledge_turn{turn(barney),mutuaily_known_true),true),15,-1)
state(act(barney,hold_turmn,mutually_known_true),14,-1)
state(believe(adam,turn(barney), mutually_known_true),14,-1)
state(act(adam,assert(next_letter(letter(1,r)),barney),true),13,-1)
state(act(adam,confirm_mutual(next_letter(letter(1,r))),goal_true),12,-1)
state(believe(adam,next_letter(letter(1,r)),true),11,-1)
state (act(adam,confirm_mutual(subsequence(7,[r.q,g,1,d])),goal _true),11,-1)
state(believe(adam,next_subsequence(subsequence(7,[r,q,g,1,d])),true),10,-1)
state(act(adam,request_turn,true),9,-1)
state(believe(adam,turn(bamey),mutually_known_true),2,-1)
state(act(adam,request(act(barney,assert(subsequence(1,[blank]),adam),goal _true),
barney),true),2,-1)
state(act(adam,acknowledge_turn(turn(adam),mutually_known_true),true),1,-1)
state(believe(adam,sequence([blank,i,s,u,t,w.r,q,g,1,d,blank,blank,
blank,blank,g,0]),goal_mutually_known_true),0,-1)
state(act(adam,confirm_mutual(sequence({blank,i,s,u,t,w,r,q,g,1,d,blank,blank,
blank,blank,g,0])),goal_true),0,-1)
state(conversants(adam,barney),0,-1)



183

adam's acts for cycle 18:

op( % acknowledge_my_turn
if([ conversants(adam,barney),
believe(adam,turn(barney),mutually_known_true),
act(barney,give_turn(adam),true) ]),
not([]),

test([]),
action([ act(adam,acknowledge_turn(turn(adam),mutually_known_true),true) ]),

effects([ del(act(barney,give_turn(adam),true)),
del(believe(adam,turn{barney),mutually_known_true)),
add(believe(adam,turn(adam),mutually_known_true)) 1),
atts([ level(turn),
name(acknowledge_my_tumn) ]) ).

barney's acts for cycle 18:
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bamney: state(act(adam,acknowledge_turn(turn(adam),mutually_known_true),true),18,-1)
barney: state(believe(barmey,turn(adam),mutually_known_true),17,-1)

barney: state(act(barney,assert(next_letter(letter(1,s)),adam),true),17,-1)

barney: state(act(barney,assert(next_letter(letter(1,0)),adam),true),16,-1)

bamey: state(act(barney,acknowledge_turn(turn(barney),mutually_known_true),

true),15,-1)

barney: state(believe(bamey,turn(barney),true),14,-1)
barney: state(act(bamey,hold_turn,mutually_known_true),14,-1)
barney: state(act(barney,request_turn,true),13,-1)

barney:

state(act(barney,confirm_mutual(next_letter(letter(1,0))),goal_true),13,-1)

barney: state(act(adam,assert(next_letter(letter(1,r)),barney),true), 13,-1)

barney: state{act(barmey,confirm_mutual(next_letter(letter(1,s))),goal_true),12,-1)
barney: state(believe(barney,next_letter(letter(1,s)),true),11,-1)

barney: state(act(barney,confirm_mutual(subsequence(3,[s,u,t,w r])),goal_true),11,-1)
bamney: state(believe(adam,subsequence(2,[i,s,u,t,w]),true),10,-1)

barney: state(believe(barney,next_subsequence(subsequence(3,[s,u,t,w,r])),true),10,-1)
barney: state(act(barney,request{(act(adam,assert(subsequence(2,{blank]),barney),

goal_true),adam),true),7,-1)

barney: state(believe(bamey,next_letter(letter(1,0)),true),1,-1)
barney: state(believe(barney,sequence([o,blank,s,u,t,w,r,q,g,blank,blank,f,w,w.d,g,0]),

goal_mutually_known_true),0,-1)

bamey: state(act(barney,confirm_mutual(sequence([o,blank,s,u,t,w,r,q,g,blank,

blank,f,w,w,d,g.0])),goal_true),0,-1)

barney: state(conversants(barmey,adam),0,-1)

adam:
adam:
adam:
adam:
adam:
adam:
adam:
adam:
adam:;
adam:
adam:
adam:
adam:
adam:

adam:
adam:

adam:

adam:

state(believe(adam,turn(adam),mutually_known_tue),18,-1)
state(act(adam,acknowledge_turn(turn(adam),mutually_known_true),true),18,-1)
state(act(barney,assert(next_letter(letter(1,s)),adam),true), 17,-1)
state(act(barney,assert(next_letter(letter(1,0)),adam),true),16,-1)
state(act(barney,acknowledge_turn(turn(barney),mutually_known_true),true),15,-1)
state(act(barney,hold_turn,mutually_known_true),14,-1)
state(act(adam,assert(next_letter(letter(1,r)),barney),true),13,-1)
state{act(adam,confirm_mummal(next_letter(letter(1,r))),goal_true),12,-1)
state(believe(adam,next_letter(letter(1,r)),true),11,-1)
state(act(adam,confirm_mutual(subsequence(7,[r,q,g,1,d])),goal_true),11,-1)
state(believe(adam,next_subsequence(subsequence(7,[r,q,g,1,d])),true),10,-1)
state(act(adam,request_turn,true),9,-1)
state(believe(adam,turn(barney),mutually_known_true),2,-1)
state(act(adam,request(act(barney,assert(subsequence(1,[blank]),adam),goal_true),
barney),true),2,-1)
state(act(adam,acknowledge_turn(turn(adam),mutually_known_true),true),1,-1)
state(believe(adam,sequence([blank,i,s,u,t,w,r,q,g,1,d,blank,blank,
blank,blank,g,0]),goal_mutually_known_true),0,-1)
state(act(adam,confirm_mutual(sequence([blank,i,s,u,t,w,r,q,g,l,d,blank,blank,
blank,blank,g,0])),goal_true),0,-1)
state(conversants(adam,bamey),0,-1)



adam's acts for cycle 19:

barney's acts for cycle 19:
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APPENDIX G

RULE-BASED SYSTEM: PROGRAM



% Metalocutionary rule-based system -- program
% David Novick
% October, 1988

ml_version(30).

% The state of a conversant's memory is represented by a set of state

% relations indexed by the conversant's name in Prolog’s internal

% database. These relations are of the form:

%

% state(Act_or_belief,Cycle_added,Cycle_deleted)

%

% The contents of the person's memory consists of a set of acts and beliefs which
% the person believes have some truth state. These relations are of the form:

%

% <act-name>(Actor,Act,Belief_state).

%
% When an agent performs a conversational act, the act is posted to the active

% memory of both conversants.

%

%

Yo% % %0 %o

%%% %% Program: major cycle

%o %0 % %0 %o

run :- % Execute multiple cycles
open(full_trace,append,Stream_1), % Begin by opening output streams
open(short_trace,append,Stream_2), % First arg is filename
Tepeat, % If any operator fires then do_cycle will fail
do_cycle(Stream_1,Stream_2), % thus causing do_cycle to repeat
close(Stream_1), % If do_cycle succeeds, then done
close(Stream_2). % so close the output streams

do_cycle(Stream_1,Stream_2) :- % Perform one conversational cycle for both agents
increment_cycle,
portray_active_memory(Stream_1), % Stream_1 is full trace
person_this_cycle(adam,A_acts), % Run the cycle for one agent
display_cycle_result(adam,A_acts,Stream_1,Stream_2), % and output results
person_this_cycle(barney,B_acts), % Run the cycle for the other agent
display_cycle_result(barney,B_acts,Stream_1,Stream_2), !, % Don't retry any of this
A_acts =[], % Succeed (thus ending repeat)
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B_acts = []. % else force repeat
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run_to_cycle(Cycle) :- % l.e., run through given cycle and stop
open(full_trace,append,Stream_1), % Begin by opening output streams
open(short_trace,append,Stream_2), % First arg is filename
repeat, % If any operator fires then do_cycle will fail
do_to_cycle(Cycle,Stream_1,Stream_2), % Actually do run the system
close(Stream_1), % Then close the output streams
close{Stream_2). % when done

do_to_cycle(Cycle,Stream_1,Stream_2) :- % Cycle arg is loop-test arg, not current cycle

increment_cycle, % Increment loop index
portray_active_memory(Stream_1), % Stream_1 is full trace
person_this_cycle(adam,A_acts), % Run the cycle for one agent
display_cycle_result(adam,A_acts,Stream_1,Stream_2), % and output results
person_this_cycle(bamey,B_acts), % Run cycle for other agent
display_cycle_result(barney,B_acts,Stream_1,Stream_2), !, % Don't retry above
cycle(Cycle). % Succeed (and thus quit) if end-test val is current cycle
run_single_cycle :- % Run system for one cycle for both agents
open(full _trace,append,Stream_1}, % Begin by opening output streams
open(short_trace,append,Stream_2}, % First arg is filename
do_single_cycle(Stream_1,Stream_2), % Actually run the system; no repeat needed
close(Stream_1), % Then close the output strreams

close(Stream_2).

do_single_cycle(Stream_1,Stream_2) :- !, % Actually do mechanics of a cycle
increment_cycle,
portray_active_memory(Stream_1), % Stream_1 is full wace
person_this_cycle(adam,A_acts), % Run the cycle for one agent
display_cycle_result(adam,A_acts,Stream_1,Stream_2), % and output results
person_this_cycle(barney,B_acts), % Run cycle for other agent
display_cycle_result(barney,B_acts,Stream_1,Stream_2). % and output resuls

display_cycle_result(Person,Ops,Stream_1,Stream_2) :- |, % Output results of a cycle

display_short_result(Person,Ops,user_output), % Send short trace to terminal
display_full_result(Person,Ops,Stream_1), % Send fuil trace to appropriate file
display_short_result(Person,Ops,Stream_2). % Send short trace to appropriate file
display_short_result(Person,Ops,Stream) :- I, % Qutput summary of cycle results
cycle(Cycle), % What cycle is this?
set_output(Stream), % Send output to appropriate stream
format("~a's acts for cycle ~d:~n",[Person,Cycle]), % Print header
list_ops_actions(Ops), % Print the names of operators fired (if any)

set_output(user_output), nl. % Send output back to terminal
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display_full_result(Person,Ops,Stream) :- !, % Output full trace of a cycle
cycle(Cycle), % What cycle is this?
set_output(Strearn), % Send output to appropriate stream
format("~2n~a's acts for cycle ~d:~n",[Person,Cycle]), % Print header
portray_ops{Ops), % Print full account of operators fired (if any)
set_output(user_output), nl. % Send the output back to terminal
list_ops_actions([]) :- . % If no more operators to print then done
list_ops_actions([OplOps]) :- !, % Print the name and actions of the first op of a list
get_attribute(name(Name),Op), % Get the operator's name
format(" ~a --~n",[Name]), % Print it
list_actions(Op), % Print any actions taken by the operator
list_ops_actions(Ops). % Do the same thing for the rest of the list
list_actions(op(_,_,_,action(Actions),_,_)) :- % Print any actions taken by an operator
list_actions_1(Actions). % Simplify predicate
list_actions_1([]) :- !. % If no more actions then done
list_actions_1([AlAs]) :- % Print a list of operator actions
format(" ~w~n",[A]), % Print the first action
list_actions_1(As). % And then print the rest of the list
portray_ops(f]) :- ! % If no more operators to print, then done
portray_ops([OplOps]) :- 1, % Print the full Prolog form of a list of operators
portray_op(Op), % Print the first operator
portray_ops(Ops). % And the print the rest of the list

portray_op(op(if(I),not(N),test(T),action(A),effects(E),atts(Atts))) :- !, % In Prolog form

member(name(Name), Atts), % Get the name of the operator from atts list
format("~nop{ % ~a",[Name]), % Print term-name and (as comment) operator name
portray_op_clause(if,I), % Then print the various sub-terms which make up the op

portray_op_clause(not,N),

portray_op_clause(test,T),

portray_op_clause(action,A),

portray_op_clause(effects,E),

portray_last_op_clause(atts,Atts), % atts term is special because it is the last one
format(" ).~n",[]). % Finally, close off the op term



portray_op_clause(Label,[]) :- 1,
format("~n ~a([]),",[Label]).

portray_op_clause(Label,[Term]) :- !,
format("~n ~a([ ~w ]),",[Label,Term]).

portray_op_clause(Label,[TermITerms]) :- !,
format("~n ~a([ ~w,",[Label,Term]),
portray_other_op_clause_terms(Terms),
format(" ]),",[]D.

portray_last_op_clause(Label,[]) :- !,
format("~n ~a([])",[Label]).

portray_last_op_clause(Label,[Term]) :- !,
format("~n ~a([ ~w ])",[Label, Term]).
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% If arg list is empty
% then just print term with empty arg list

% If term has arg list with one term in it
% then print it accordingly

% If term has arg list with multiple terms
% then print term name and first arg,

% then print the rest of the args,

% then close the list and the term

% This predicate is like portray_op_clause
% except that it leaves off the trailing comma

% because the op term is ending

portray_last_op_clause(Label,[TermITerms]) :- !,

format("~n ~a([ ~w,",[Label,Term]),
portray_other_op_clause_terms(Terms),
format(" 1)",[]).

portray_other_op_clause_terms([]) :- .

portray_other_op_clause_terms([Term]) :- !,
format("~n ~w",[Term]).

portray_other_op_clause_terms([TermITerms]) :- !,

format("~n ~w,",[Term]),
portray_other_op_clause_terms(Terms).

% No more terms to print; so done
% Print the last term in a list
% Print the tail of a list

% by printing the first term of the tail
% and then the rest of the terms
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% %

%% Clauses which perform the match-resolve-execute cycle

% %

increment_cycle :- % Change the program to increment the current cycle number
retract(cycle(C)),
DisC+1,
assert(cycle(D)).

person_this_cycle(Person,Selections) :- I, % Mechanics of a single cycle for one agent
match_ops(Person,Matches), % Match the operators against the knowledge base
select_ops(Matches,Selections), % Resolve conflicts among the matching operators
do_ops(Person,Selections). % Then execute the selected operators

%

% Clauses which perform the "execute" functions of the cycle

%

do_ops(_[]) :- . % No ops to fire, so done

do_ops(Person,[op(_,_,_,action(A),effects(E),_)IOps}) :- 1, % Fire a list of operators
do_acts(Person,A), % For the first op, do the acts
do_effects(Person,E), % do the effects
do_ops(Person,Ops). % Then fire the rest of the ops

do_acts(Person,[]) :- !. % No acts to do, so done

do_acts(Person,[ActlActs]) :- % To do a list of acts
do_act(Person,Act), % Do the first act
do_acts(Person,Acts). % Then do the rest of the acts

do_act(Person,Act) :- !, Do an act; no need to retry
cycle(Cycle), % What is the current cycle?

recorded(Person,state(conversants(Person,Other},0,-1),_), % Who are relevant agents?
recorda(Person,state(Act,Cycle,-1),_), % Add the act to each agent's knowledge base
recorda(Other,state(Act,Cycle,-1),_). % indicating added current cycle and not deleted

do_effects(_,[]) :- L. % No effects to do, so done
do_effects(Person,[EffectlEffects]) :- % To do a list of effects
do_effect{(Person,Effect), % Do the first effect

do_effects(Person,Effects). % Then do the rest of the effects
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do_effect(_,[]). % Base case for completeness
do_effect(Person,add(State)) :- % Add a state to an agent's knowledge base
cycle(Cycle), % What is the current cycle?
recorda(Person,state(State,Cycle,-1),_). % Indicate added current cycle and not deleted
do_effect(Person,del(State)) :- % Delete a state from an agent's knowledge base
cycle(Cycle), % What is the current cycle?
recorded(Person,state(State,Cycle_added,_),Ref), % Remember the fact to be deleted
erase(Ref), % Really delete it

recorda(Person,state(State,Cycle_added,Cycle),_). % Re-record, showing deletion cycle

add_state(Person,State) :- % Used for initialization and debugging
del_if_exists(Personl,State), % Delete possible duplicate
add(Person,State). % Add the state on the current cycle

del_if_exists(Personl,act(Person2,Act, Truth_value)) :- % Delete an act
del(Personl,act(Person2,Act,_)).

del_if_exists(Personl,believe(Person2,Belief, Truth_value)) :- % Delete a belief
del(Personi,believe(Person2,Act,_)).

del_if_exists(_,_). % If nothing matches, succeed anyway

del(Person,State) :- % Used for initialization and debugging
cycle(Cycle), % What is the current cycle?
recorded(Person,state(State,Cycle_added,_),Ref), % Remember the fact to be deleted
erase(Ref), % Really delete it

recorda(Person,state(State,Cycle_added,Cycle),_). % Re-record, showing deletion cycle

add(Person,State) :- % Used for initialization and debugging
cycle(Cycle), % What is the current cycle?
recorda(Person,state(State,Cycle,-1),_). % Add the state on the current cycle

%

% Clauses which perform the "resolve-conflicts" part of the cycle

%

select_ops({1,[]) :- !. % No ops matched, so nothing to do

select_ops(Possible_ops,Chosen_ops) :- % To resolve conflicts among ops
check_for_opportunities(Possible_ops,Opp_ops), % Try to coordinate inter-level ops

check_consistent_effects(Opp_ops,Chosen_ops). % Make sure ops don't conflict
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check_for_opportunities(P,P). % Stubbed
check_consistent_effects(Ops1,0ps3) :- % To make sure ops don't conflict
unique_levels(Ops1,0ps2), % Discard multiple ops on any particular level
lowest_level_op(Ops2,Lowest,Others), % Find the lowest-level op and key off it

most_consistent_effects([LowestlOthers],Ops3). % Discard ops whose effects conflict

unique_levels(Ops1,0ps2) :- !, % Discard multple ops on any particular level
unique_levels_1{Ops1,0ps2,[]). % Set up predicate with empty list for level names
unique_levels_1([1.0},_). % No more ops to look at, so done
unique_levels_1([OplOps),Ops2,Levels) :- % To drop an op if already have same level op
get_attribute(level(Level),Op), % Get level of first op in list
member(Level,Levels), % Do we already have an op at this level?
unique_levels_1(Ops,Ops2,Levels). % If so, don't add this op to list returned
unique_levels_1([OplOps],[OplOps2],Levels) :- % Else op's level must be new
get_attribute(level(Level),Op), % So get the op's level

unique_levels_1(Ops,Ops2,[LevellLevels]). % And add the new level to the list of levels

lowest_level_op([Op].Op.[]) :- L. % Only 1 op left, so must be lowest
lowest_level_op([Op1,0p2I0ps1],0p3,[0Op2lOps2]) :- % To find lowest level op
lower_level_op(Op1,0p2), % check order of first two ops in list
lowest_level_op(Ops1,0p3,0ps2). % If lower, skip 2nd op & check rest
lowest_level_op([Op1,0p2I0ps1],0p3,{Op1lOps2]) :- % Else 2d op was lower
lowest_level_op([Op2I0ps1],0p3,0ps2). % So skip first op & check rest
lower_level_op(op(_,_,_,_,_.atts(Atts1)),op(_,_,_,_,_.atts(Atts2))) :- % Compare ops
member(level(D1),Atts1), % Get level of first op
member(level(D2),Atts2), % Get level of second op
level_order(D2,D1). % See if first level is higher than second

% level_order: as other levels are created in ops, additional clauses

% need to be added. Actually, a more efficient system will be needed for this,
% because the number of pairs will go up too fast. This could be changed, for
% example, to check relative positions in a list.

level_order(domain,turn).
level_order(domain,information).
level_order(information,turn).
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most_consistent_effects([OplRest],Consistent_ops) :-!, % Assuming first op has priority

most_consistent_effects_1(Op,Rest,Consistent_ops). % make sure rest don't conflict
most_consistent_effects_1(Op,[1,[OpD). % Just one op, so must be ok
most_consistent_effects_1(Opl,[Op2!Ops],[Op2I0k_ops]) :- % List of ops is ok if
consistent_effects(Op1,0p2), % First op is ok with priority op
most_consistent_effects_1(Op1,0ps,Ok_ops). % And the rest of the list is pruned
most_consistent_effects_1(Op,[_IOps],All_ok_ops) :- % If first op is not ok
most_consistent_effects_1(Op,0ps,All_ok_ops). % Skip it and prune rest of list
consistent_effects(op(_,_,_,action(Al),effects(E1), ), % 2 ops are consistent
op(__,_,_.action(A2),effects(E2),_)) :- % if
combine_acts_and_effects(A1,E1,C1), % taking first op's acts & effects together
combine_acts_and_effects{A2,E2,C2), % taking 2d op's acts & effects together
consistent_effects_1(C1,C2). % there isn't any conflict among them
combine_acts_and_effects(AE,C1) :- % To combine acts and effects into a list
actions_format(A,S), % put the acts into same format as effects
append(S,E,C1). % and then just append them
actions_format([],[]) :- !. % No more actions left, so done
actions_format([AlAs],[add(A)IRest]) :- % An act is always added, so wrap with add code
actions_format(As,Rest). % Then format the rest of the acts
consistent_effects_1([1,). No more effects left to check, so done
consistent_effects_1(fE1IR1],E2) :- % E2 is list of effects from 2d op
consistent_effect(E1,E2), % Check first effect of first op against all effects of 2d op
consistent_effects_1(R1,E2). % Check rest of effects of first op
consistent_effect(_,[]). % No more effects to check, so done

consistent_effect(add(S),[del(S)I_]) :- !, fail. % Not consistent to add and del same fact
consistent_effect(del(S),[add(S)|_]) :- 1, fail. % Not consistent to add and del same fact

consistent_effect(E1,[_IR2]) :- % Else effects are consistent so far
consistent_effect(E1,R2), % so check against rest of list of effects of 2d op
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%
% Clauses which perform the "match" part of the cycle
%o
match_ops(Person,Ops) :- % For a given person, there is a set of ops
cycle(Cycle), % which for the current cycle
bagof(Op,op_premises_true_for_cycle(Person,Op,Cycle),Ops). % matches in kb
match_ops(_,[]) :- 1. % Else no matches, so return empty set
op_premises_true_for_cycle(Person, % To match a particular op
op(if(I),not(N),test(T),action(A),effects(E),atts(Atts)),Cycle) :-
op(if(I),not(N),test(T),action(A),effects(E),atts(Atts)), % Find an op in memory
check_ifs(Person,l,Cycle), % Check the op’s if clauses
check_nots(Person,N,Cycle), % Check the op's not clauses
check_tests(T). % Check the op's test clauses
check_ifs(_,[],_) :- 1. % No more if clauses to check, so done
check_ifs(Person,[If_clauselRest],Cycle) :- % To check if clauses
recorded(Person,state(If_clause,Cycle_added,Cycle_deleted),Key), % match kb
true_for_cycle(Cycle_added,Cycle_deleted,Cycle), % make sure clause is currently true
check_ifs(Person,Rest,Cycle). % and check the rest of the clauses
true_for_cycle(Cycle_added,Cycle_deleted,Cycle) :- % A fact is true on a given cycle if
Cycle_added < Cycle, % it was added before this cycle
(Cycle_deleted =:=-1 ; Cycle < Cycle_deleted ). % and hasn't been deleted yet
check_nots(_,[1,.) :- L. % No more 'not’ clauses to check, so done
check_nots(Person,[Not_clauselRest],Cycle) :- % A 'not’ clause should succeed
\+ (recorded(Person,state(Not_clause,_,_),Key)), % if matching fact never posted to kb
check_nots(Person,Rest,Cycle). % Then check rest of 'not' clauses
check_nots(Person,[Not_clauselRest],Cycle) :- % If a matching fact had been posted
recorded(Person,state(Not_clause,Cycle_added,Cycle_deleted),Key), !,
not(true_for_cycle(Cycle_added,Cycle_deleted,Cycle)), % ‘not’ ok if not true now
check_nots(Person,Rest,Cycle). % Then check rest of 'nots'
check_tests([]) :- !. % No more tests to check, so done
check_tests([HIL)) :- !, H, check_tests(L). % Eval test, then check rest

get_attribute(Att,op(_,_,_,_,_,atts(Atts))) :- To get an attribute of an op
member(Att,Atts). % match against the ops atts list



% %% %0 %
%%%%% Development aids
% %% %0 %

reinitialize :-
reinitialize_ops,
reinitialize_memory.

reinitialize_ops :-
abolish(op,6),
consult([mlldo,ml1mo]).

reinitialize_memory :-
current_key(_,Key),
erase_facts_for_key(Key),
fail.

reinitialize_memory :- !,
consult{ml1si).

erase_facts_for_key(Key) :-
recorded(Key,_,Ref),
erase(Ref),
fail.

erase_facts_for_key() :- L.

memory :-
current_key(_,Key),

display_facts_for_key(Key),

fail.

memory :- .

display_facts_for_key(Key) :-
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% To set the simulation to its initial state
% make sure the ops are all up to date
% and reinitialize the knowledge base

% To get all ops up to date
% erase all op clauses in the system
% and read them in from their files

% To reinitialize memory

% find any key to the knowledge base
% erase all the facts for that key

% and force trying of some other key

% All keys must have been used, so kb is blank
% So read in initial state from its file

% To erase all facts in kb for a given key
% match agains the kb

% erase that fact

% and force rematches to erase other facts

% Must have erased all facts for this key, so done
% To display the entire knowlege base for all agents
% find any key in the kb (will be an agent's name)
% display all the facts for that agent

% and force rematch of key for other agents

% Must have matched all keys, so done

% To display the kb for a given agent

recorded(Key,Term,Ref), % find any fact for that agent
format("~n~a: ~w~n {~w]",[Key,Term,Ref}), % print it
fail. % and force rematches to print rest of facts

display_facts_for_key( ) :- I.

% Must have printed all facts for agent, so done



197

active_memory :- % To display active facts in kb for all agents
cycle(Cycle), % get the current cycle
current_key(_,Key), % find any key in the kb (will be agent)

display_facts_for_key_and_cycle(Key,Cycle), % display all the facts for agent this cycle
fail. % and force rematch of key for other agents

active_memory :- {. Must have matched all keys, so done
display_facts_for_key_and_cycle(Key,Cycle) :- % To display kb for agent on cyle
recorded(Key,state(S,Cycle_added,Cycle_deleted),Ref), % find any fact
Cycle_added < Cycle, % that was added before the cycle
(Cycle_deleted = -1 ;Cycle_deleted >= Cycle), % and not deleted until after cycle
format("~n~a: ~w~n {~w)",[Key,state(S,Cycle_added,Cycle_deleted),Ref]), % printit
fail. % and force rematches of facts to print rest
display_facts_for_key_and_cycle(_) :- !. % Must have printed all facts, so done
portray_active_memory(Stream) :- % To send display of active facts in kb to a stream
set_output(Stream), % direct output to the steam
cycle(Cycle), % get current cycle
current_key(_,Key), nl, ni, % find any agent, print some blank lines
portray_facts_for_key_and_cycle(Key,Cycle), % display the facts for that agent
fail. % and force rematch of key for other agents
portray_active_memory(_) :- Must have matched all keys
set_output(user_output), . % so redirect output to terminal
portray_facts_for_key_and_cycle(Key,Cycle) :- % Like display_facts, but
recorded(Key,state(S,Cycle_added,Cycle_deleted),_), % slightly simpler output

Cycle_added < Cycle,
(Cycle_deleted = -1 ;Cycle_deleted >= Cycle),
format("~a: ~w~n",[Key,state(S,Cycle_added,Cycle_deleted)]),

fail.

portray_facts_for_key_and_cycle( ) :- !. % Must have matched all facts, so done

back_to_cycle{Cycle) :- % To return the system to its state at start of some cycle
erase_facts_added_from(Cycle), % erase all the facts added on and after that cycle
undelete_facts_deleted_from(Cycle), % restore the facts deleted on and after that cycle
reset_cycle(Cycle), % change the state of the cycle index
format("{ Cycle is now ~D }",[Cycle]). % and tell user we've done it

reset_cycle(New_cycle) :- |, % To change the system's cycle index
retract(cycle{ )), % erase the current index

assert(cycle(New_cycle)). % and assert the new value
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erase_facts_added_from(Cycle) :- % To erase all facts added on and after cycle
current_key(_,Key), % find any key in the kb
recorded(Key,state(_,Cycle_added,_),Ref), % find any fact with that key
Cycle_added >= Cycle, % check if fact added on or after the cycle
erase(Ref), % if so, erase it from kb
fail. % and force rematch of facts and keys
erase_facts_added_from(_) :- I. % Must have matched all keys and facts, so done
undelete_facts_deleted_from(Cycle) :- % To restore facts deleted on and after cycle
current_key(_,Key), % find any key
recorded(Key,state(State,Cycle_added,Cycle_deleted),Ref), % find any fact with the key
Cycle_deleted >= Cycle, % check if key deleted on or after the cycle
erase(Ref), % if so, erase the fact and
recorda(Key,state(State,Cycle_added,-1),_), % set del cycle to show fact not yet deleted
fail. % and force rematch of facts and keys
undelete_facts_deleted_from(_) :- L. % Must have matched all keys and facts, so done
check_op(Person,Name) :- % See if named op will match on this cycle
cycle(Cycle), % Get the cycle
op(if(D),not(N),test(T),_,_,atts(Atts)), % Get an op
member{name(Name),Atts), % Make sure its the right one
undo(notrace), % On backirack turn off trace mode
trace, % Turn on trace mode
check_ifs(Person,],Cycle), % Look at system checking 'ifs' against memory
check_nots(Person,N,Cycle), % Look at system checking ‘nots' against memory
check_tests(T). % Look at system checking tests against memory
do_cycle :- % To run a single cycle
increment_cycle, % increment the cycle index
person_this_cycle(adam,A_acts), % run the cycle for adam
display_cycle_result(adam,A_acts,user_output), % show the results
person_this_cycle(barney,B_acts), % run the cycle for barney
display_cycle_result(bammey,B_acts,user_output), !, % show the results
A_acts =[], % succeed (thus ending any repeat)
B_acts=[]. % when both have nothing to do
display_named_op(Name) :- % To print a named operator
op(LLN,T,A,E atts(Atts}), % get an op
member(name{Name),Atts), % make sure its the right one

portray_op(op(L,N,T,A,E,atts(Atts))). % and print it out
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APPENDIX H

RULE-BASED SYSTEM: META-LOCUTIONARY
OPERATORS



% Meta-locutionary rule-based system -- meta-locutionary operators
% lastrev. 10-21-88

% %0 %0 %o %

% %% %% information-level operators
% %% % %

%

% do_assert

% assertion_received_1

% do_request

% request_received_2

%

op( % do_assert
if({ conversants(Me,Other),
act(Me,assert{Info,Other),goal_true),
believe(Me,turn(Me), mutually_known_true) ]),

not([]),

test([ ),
action([ act(Me,assert(Info,Other),true) ]),

effects([ del(act(Me,assert(Info,Other),goal_true)) ),
atts([ name(do_assert),
level(information) ]) ).

op( % assertion_received_1

if([ conversants(Me,Other),
act(Other,assert(believe(Other,Info,Belief value),Me),true),
believe(Me,turn(Other),mutually_known_true) 1),

not([ believe(Other,Info,Belief_value) ]),

test([1),

action([]),

effects([ add(believe(Other,Info,Belief_value)) 1),

atts([ namef{assertion_received_1),
level(information) ]) ).
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op( % do_request

if({ conversants(Me,Other),
act(Me,requesi(Info,Other),goal _true),
believe(Me,turn(Me),mutually_known_true) ]),

not([]),

test([]),
action([ act(Me,request(Info,Other),true) ]},

effects([ del(act(Me,request(Info,Other),goal_true)),
del(believe(Me,turn(Me),mutually_known_true)),
add(believe(Me,turn(Other),mutually_known_true)) ]),
atts([ name(do_request),
level(information) ]) ).

op( % request_received_2

if{[ conversants(Me,Other),
act(Other,request(act(Me,Act,goal _true),Me),true),
act(Me,Act,goal_true) J),

not([]),

test([]),

action((1),

effects([ del(act(Other,request(act(Me,Act,goal _true),Me),true)) ]),

atts([ name(request_received_2),
level(information) ]) ).

%% % %0 %o

%%%%% turn-level operators
%% % %%

%

% acknowledge_my_turn

% my_turn_acknowiedged
% acknowledge_others_tum
% others_turn_acknowledged
% recognize_my_turn_1

% recognize_my_turn_2

% give_tum_1

% give_turn_2

% request_turn

% hold_turn

%
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op( % acknowledge_my_tum

if([ conversants(Me,Other),
believe(Me,turn(Other),mutually_known_true),
act(Other,give_turn(Me),true) 1),

not([]),

test({]),
action([ act(Me,acknowledge_turn(turn(Me),mutually_known_true),true) 1),

effects([ del{act(Other,give_tum(Me),true)),
del(believe(Me,tum(Other),mutually_known_true)),
add(believe(Me,turn(Me),mutually_known_true)) }),

atts([ level(turn),
name{acknowledge_my_turn) ]) ).

op( % my_turn_acknowledged

if([ conversants(Me,Other),
believe(Me,turn(Me),rue),
act(Other,acknowledge_turn(turn(Me),mutually_known_true),true) 1),

not([]),

test([]),

action([]),

effects([ del(believe(Me,turn(Me),true)),
add(believe(Me,turn(Me),mutually_known_true)),
del(act(Other,acknowledge_turn(turn(Me),mutually_known_true),true)) 1),

atts([ level(turn),
name(my_turn_acknowledged) ]) ).

op{ % acknowledge_others_turn
if({ conversants(Me,Other),
believe(Me,turn(Me),mutually_known_true),
act(Other,take_turn,true) J),
not([ act(Me,Act,goal_true) ]),

test([]),

action([ act(Me,acknowledge_turn(turn(Other),mutually_known_true),true) ]),

effects([ del(act{Other,take_tumn,true)),
del(act(Me,acknowledge_turn(turn(Other),mutually_known_true),true)),
del(believe(Me,turn(Me),mutually_known_true}),
add(believe(Me,turn(Others),mutually_known_true)) 1),

atts([ level(turn),
name(acknowledge_others_turn) ]) ).
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op( % others_turmn_acknowledged
if([ conversants(Me,Other),
believe(Me,turn(Other), rue),
act(Other,acknowledge_turn(turn(Other), mutually_known_true),true} J),

not([}),

test([]),
action([]},

effects([ del(believe(Me,turn(Other),true)),
add(believe(Me,turn(Other),mutually_known_true)),
del(act(Other,acknowledge_turn(turn(Other),mutually_known_true),true)) 1),
atts([ level(turn),
name(others_turn_acknowledged) ]) ).

op( % recognize_my_turn_1

if([ conversants(Me,Other),
act{Other,give_turn(Me),mutually_known_true),
believe(Me,turn{Other),_} D),

not([ act(Me,request-turn,true) ]),

test([]),

action([]),

effects([ del(believe(Me,turn(Other),_)),
del(act(Other,give_turn(Me),mutually_known_true)),
add(believe(Me,turn(Me),mutually_known_true)) ]),

atts({ name(recognize_my_turn_1),
level(turn) 1) ).

op( % recognize_my_turn_2
if(( conversants(Me,Other),
act(Other,give_turn(Me),mutueally_known_true),
act(Me,request-turn,true),
believe(Me,turn(QOther),_) 1),
not([]),

test([]),
action([]),

effects([ del(believe(Me,turn(QOther),_)),
del(act(Me,request-turn,true)),
del{act(Other,give_turn(Me),mutually_known_true)),
add(believe(Me,turn(Me),mutually_known_true)) ]),
atts([ name(recognize_my_turn_2),
level(turn) 1} ).
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op( % give_tumn_1

if([ conversants(Me,Other),
act(Other,Act,goal_true),
believe(Me,turn{Me),mutually_known_true) ]),

not([]),

test([]),

action([ act(Me,give_turn(Other),true) ]),

effects([ del(believe(Me,turn(Me),mutually_known_true)),
del(act(Me,give_turn(Other),true)),
add(believe(Me,tum(Other),true)) 1),

atts({ name(give_tum_1),
level(turn) 1 ).

op( % give_tum_2
if([ conversants(Me,Other),
act(Other,request_turn,true),
believe(Me,turn(Me),mutually_known_true) ]),
not([ act(Me,Act,goal_true) 1),
test([]),
action([ act(Me,give_turn(Other),true) 1),
effects([ del(believe(Me,turn(Me),mutuaily_known_true)),
del(act(Me,give_turn(Other),true)),
del(act(Other,request_turn,true)),
add(believe(Me,turn(Other),mutually_known_true)) ),
atts([ name(give_turm_2),
level{turn) ]) ).

op( % give_turn_3
if{[ conversants(Me,Other),
act(Me, request(Info,Other),goal _true),
@ believe(Me,turn(Me),mutually_known_true) ]),
not{[],

test([1),
action([ act(Me,give_turn(Other),mutually_known_true) 1),

effects([ del(believe(Me,turn(Me),mutually_known_irue)),
del(act(Me,give_turn(Other),mutually_known_true)),
add(believe(Me,turn{Other),true)) 1),

atts([ name(give_turn_3),
level(turn) 1) ).



op( % request_tumn

if([ conversants(Me,Other),
act(Me,Act,goal_true),
believe(Me,turn{Other),mutually_known_true) ]),

not([ act(Me,request_turn,true) 1),

test{[ ( Act = assert(Info,Other) ; Act = request(Req,Other) ) 1),

action([ act(Me,request_turn,true) ),

effects((]),

atts([ name(request_turn),
level(turn) ]) ).

op( % hold_turn

if{[ conversants(Me,Other),
act(Me,Act,goal_true),
believe(Me,turn(Other),true) ]),

not([ act{Me,hold_turn,mutually_known_true) ]),

test([ { Act = assert(Info,0Other) ; Act = request(Req,Other) ) 1),

action([ act(Me,hold_turn,mutually_known_true) ]},

effects([ del(believe(Me,turn(Other),true)),
add(believe(Me,turn(Me),true)) 1),

atts([ name(regain_turn),
level(turn) 1) ).
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APPENDIX I

RULE-BASED SYSTEM:
DOMAIN OPERATORS



% Meta-locutionary rule-based system -- domain operators
% last rev. 10-21-88

%% % %0 %0

%%%%% Domain-level operators

%o %% %o %0

%

% goal_confirm_next_subsequence

% confirmed_next_subsequence

% confirmed_last_subsequence

% goal_confirm_next_letter_1

% goal_confirm_next_letter_2

% confirmed_next_letter

% confirmed_last_letter

% goal_request_next_subsequence

% obtained_next_subsequence

% obtained_last_subsequence

% obtained_next_letter

% obtained_last_letter

% goal_assert_next_subsequence

% asserted_next_subsequence

% asserted_last_subsequence

% informed_of_next_subsequence_by_other

% informed_of_last_subsequence_by_other

%

op( % goal_confirm_next_subsequence
if{[ conversants(Me,Other),

act(Me,confirm_mutual(sequence(Sequence)),goal _true),
believe(Me,next_subsequence(subsequence(Index,[LIR])),true) ]),

not([ act(Me,confirm_mutual(subsequence(Index,[LIR])),goal_true),
act(Me,assert(believe(Me,subsequence(Index,_),true),Other),goal _true),
act(Me,assert(believe{Me,subsequence(Index,_),rue),Other),true) 1),

test([ not(L = blank) ]),
action([]),

effects([ add(act(Me,confirm_mutual(subsequence(Index,[LIR])),goal_true)),

add(believe(Me,next_letter(letter(1,L)),true)) 1),

atts([ level(domain),

name(goal_confirm_next_subsequence) ]) ).
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op( % confirmed_next_subsequence
if([ conversants(Me,Other),
believe(Me,sequence(Sequence),goal_mutually_known_true),
believe(Me,next_subsequence(subsequence(Index,List)),true),
act(Me,confirm_mutual(subsequence(Index,List)),goal_true),
act(Me,confirm_mutual(next_letter(letter(L_index,Char))),true) ]),

not([]),
test([ length(List,Length),
L_index >= Length,
get_next_subsequence(Sequence,
subsequence(Index,List),
subsequence(New_index,New_list)) 1),
action([ act(Me,confirm_mumal(subsequence(Index,List)),true) ]),
effects({ del{act(Me,confirm_mutual(subsequence(Index,List)),goal _true)),
del(act(confirm_mutual(next_letter(letter(L_index,Char))),true)),
add(believe(Me,next_subsequence(New_index,New_list),true)) ]),
atts([ level(domain),
name(confirmed_next_subsequence) ]) ).

op( % confirmed_last_subsequence
if([ conversants(Me,Other),
believe(Me,sequence{Sequence),goal_mutually_known_true),
believe(Me,next_subsequence(subsequence(Index,List)),true),
act(Me,confirm_mutual(subsequence{Index,List)),goal_true),
act(Me,confirm_mutual(next_letter(letter(L_index,Char))),true) 1),
not([]),
test([ length(List,Lenl),
length(Sequence,Len2),
L_index »>=Lenl,
Index + Lenl > Len2 ]),
action([ act(Me,confirm_mutual(subsequence(Index,List)),true) 1),
effects([ del{act(Me,confirm_mutual(subsequence(Index,List)),goal_true)),
del(act(Me,confirm_mutual(next_letter(letter(L_index,Char))),true}) 1),
atts([ level(domain),
name(confirmed_last_subsequence) ]) ).

op( % goal_confirm_next_letter_1

if({ conversants(Me,Other),
act(Me,confirm_mutual(subsequence(_,_)),goal_true),
believe(Me,next_letter(Letter),true) 1),

not([ act(Me,confirm_mutual(next_letter{Letter)),goal_true) 1),

test([]),

action([]),

effects([ add(act(Me,confirm_mutual(next_letter(Letter)),goal_true)),
add(act{Me,assert(next_letter(Letter),Other),goal_true)) 1),

atts([ level(domain),
name(goal_confirm_next_letter_1) 1) ).



op( % goal_confirm_next_letter_2
if([ conversants{Me,Other),
act{Me,confirm_mutual(subsequence(_,_)),goal_true),
believe(Me,next_letter(Letter),true),
act(Me,confirm_mutual(next_letter(Other_letter)),goal_true) 1),
not([ act(Me,confirm_mutval(next_letter(Letter)),goal_true) ]),
test{[ not(Letter = Other_letter) ]),

action([]),
effects([ add(act(Me,confirm_mutual(next_letter(Letter)),goal_true)),

del(act(Me,confirm_mutual(next_letter(Other_letter)),goal _true)),
add(act(Me,assert(next_letter(Letter),Other),goal_true)) 1),

atts{[ level(domain),
name(goal_confirm_next_letter_2) ]) ).

op( % confirmed_next_letter

if([ conversants(Me,Other),
act(Me,confirm_mutual(subsequence(S_index,List)),goal_true),
act(Me,confirm_mutual(next_letter(letter(Index,Letter))),goal_true),
believe(Me,next_letter(letter(Index,Letter)),mutnally_known_true) ]),

not([1),

test([ get_next_letter(Index,List,New_letter) ]),

actions([]),

effects([
del(act(Me,confirm_mutual(next_letter(letter(Index,Letter))),goal_true)),

add(act(Me,confirm_mutual(nex:_letter(letter(Index,Letter))),true)),
del(believe(Me,next_letter(letter(Index,Letter)),mutually_known_true)),
add(believe(Me,next_letter(New_letter),true)) 1),

atts([ name(confirmed_next_letter),
level{domain) ]} ).

op( % confirmed_last_letter
if({ conversants(Me,Other),
act(Me,confirm_mntual(subsequence(S_index,List)),goal_true),
act{Me,confirm_mutual(next_letter(letter(Index,Letter))),goal_true),
believe(Me,next_letter(letter(Index,Letter)),mutually_known_true) 1),

not([]),
test([ length(List,Length),
Index >= Length ]),
action([]),
effects([
del(act(Me,confirm_mutal(next_letter(letter(Index,Letter)}),goal_true)),

add(act(Me,confirm_mutual(next_letter(letter(Index,Letter))),oue)),

del(believe(Me,next_letter(letter(Index,Letter)),mutually_known_true)) ]),
atts([ name(confirmed_last_letter),

level(domain) ]) ).



op( % goal_request_next_subsequence
if([ conversants(Me,Other),
act(Me,confirm_rmutual(sequence{Sequence)),goal _true),
believe(Me,next_subsequence(subsequence(Index,[blankiR])),true) 1),
not([ act(Me,request(act(Other,assert(subsequence(Index,[blank/R]},Me),
goal_true),Other),goal_true),
act(Me,request(act(Other,assert(subsequence(Index,[blankIR]),Me),
goal_true),Other),true) 1),
test([]),

action([]),
effects((
add(act(Me, request(act(Other,assert(subsequence(Index,[blankIR]),Me),
goal_true),Other),goal _true)) 1),
atts([ level(domain),
name(goal_request_next_subsequence} ]) ).

op( % obtained_next_subsequence
if({ conversants(Me,Other),
believe(Me,sequence(Sequence),goal_mutually_known_true),
believe(Me,next_subsequence(subsequence(Index,List)),true),
act{Me,request(act(Other,assert(subsequence(Index,List),Me),true),
Other),true),
act(Me,request(act(Other,assert(next_letter(letter(L_index,Char)),Me),
true),Other),true) 1),
not([1),

test([ length(List,Length),
L_index >= Length,
get_next_subsequence{Sequence,
subsequence(Index,List),
subsequence(New_index,New_list)) 1),
action([]),
effects([ del(believe(Me,next_subsequence(subsequence(Index,List)),true)),
del(act(Me,request(act(Other,assert(subsequence(Index,List),Me),true),
Other),true)),
del(act(Me,request(act(Other,assert(next_letter(letter(L_index,Char)),Me),
true),Other),true)),
add(believe(Me,next_subsequence(New_index,New_list),true)) 1),
atts([ level(domain),
name(obtained_next_subsequence) 1) ).



op{ % obtained_last_subsequence
if([ conversants(Me,Other),
believe(Me,sequence{Sequence),goal_mutually_known_true),
believe(Me,next_subsequence(subsequence(Index,List)),true),
act(Me,request(act(Other,assert(subsequence(Index,List),Me),true),Other),
true),
act(Me,request(act(Other,assert(next_letter(letter(L_index,Char)),Me),
true),Other),true) J),
not([]),

test([ length{List,Len1),
length(Sequence,Len2),
L_index >=Lenl,
Index + Lenl >=Len2 ]),

action([]),

effects([ del(believe(Me,next_subsequence(subsequence(Index,List)),true)),
del(act(Me request(act{Other,assert(subsequence(Index,List),Me),true),

Other),true)),
del(act(Me,request(act{(Other,assert(next_letter(letter(L._index,Char)),Me),
true),Other),true)} 1),

atts([ level(domain),

name{obtained_next_subsequence) ]) ).

op( % obtained_next_letter

if([ conversants(Me,Other),

act(Me,request(act(Other,assert(subsequence{_,List),Me),goal_true),
Other),goal_true),

act(Other,assert(next_letter(letter(Index,Char)),Me),true),
believe(Me,next_letter(letter(Index,blank)), true),
believe(Other,next_letter(letter(Index,Char)),true) 1),

not([]),

test([ length{List,Length),
Index < Length,
New_index is Index + 1 ]),

action({]),

effects([
del(act(Other,assert(next_letier(letter(Index,Char)),Me), true)),
del(believe(Me,next_letter(letter(Index,blank)),true)),
del(believe(Other,next_letter(letter(Index,Char)),true)),
add(believe(Me,next_letter(letter(New_index,blank)),true)) 1),

atts([ level(domain),
name(obtained_next_letter) ) ).
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op( % obtained_last_letter
if([ conversants(Me,Other),
act(Me,request(act(Other,assert(subsequence(_,List),Me),goal _true),
Other),goal_true),
act(Other,assert(next_letter(letter(Index,Char)),Me),true),
believe(Me,next_letter(letter(Index,blank)),true),
believe(Other,next_letter(letter(Index,Char)),true) 1),
not([]),
test([ length(List,Length),
Index >= Length ]),
acaon([]),
effects([
del(act(Other,assert(next_letter(letter(Index,Char)),Me),true)),
del(believe(Me,next_letter(letter(Index,blank)),true)),
del(believe(Other,next_letter(letter(Index,Char)),true)) 1),
atts([ level(domain),
name(obtained_last_letter) 1) ).

op( % goal_assert_next_subsequence_1
if(l conversants(Me,Other),
believe(Me,sequence(Sequence),goal_mutually_known_true),
act(Other,request(act(Me,assert(subsequence(Index,[blank|Rest]),Other),
goal_true), Me),true),
believe(Me,next_subsequence(subsequence(Old_Index,Letters)),true) ]},
not([ act(Me,assert(believe(Me,New_subseq,true),Other),goal _true),
act(Me,confirm_mutual(subsequence(Index,_)),goal_true) ]),
test([ get_subsequence(Index,sequence(Sequence),New_subseq) 1),
action([]),
effects([ del(act(Other,request(act(Me,assert(subsequence(Index,
[blankIRest]),Other),goal _true),Me),true)),
add(act(Me,assert(believe(Me,New_subseq,true),Other),goal _true)),
del(believe(Me,next_subsequence(subsequence(Old_Index,Letters)),true)),
add(believe(Me,next_subsequence(New_subseq), true)) 1),
atts([ level(domain),
name(goal_assert_next_subsequence_1) ]) ).
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op( % goal_assert_next_subsequence_2

if([ conversants(Me,Other),

believe(Me,sequence(Sequence),goal_mutually_known_true),
act(Other,request(act(Me,assert(subsequence(Index,[blankIRest]),Other),
goal_true),Me),true),

act(Me,confirm_mutual(subsequence(Index,_)),goal_true),
act(Me,confirm_mutual(next_letter(Letter)),goal_true),
act(Me,assert(next_letter(Letter),Other),goal_true),
believe(Me,next_subseguence(subsequence(Old_Index,Letters)),true) 1),

not([ act(Me,assert(believe(Me,New_subseq,true),Other),goal_true) 1),

test([ get_subsequence(Index,sequence(Sequence),New_subseq) 1),

action([]),

effects([ del(act(Other,request(act(Me,assert(subsequence(Index,

[blankIRest]),Other),goal_true),Me),true)),

del(act(Me,confirm_mutual(subsequence(Index,_)),goal_true)),
del(act(Me,confirm_mutual(next_letter(Letter)),goal_true)),
del(act(Me,assert(next_letter(Letter),Other),goal_true)),
add(act(Me,assert(believe(Me,New_subseq,true),Other),goal _true)),
del(believe(Me,next_subsequence(subsequence(Old_Index,Letters)),true)),
add(believe(Me,next_subsequence(New_subseq), true)) ]),

atts([ level(domain),
name(goal_assert_next_subsequence_2) ]} ).

op( % asserted_next_subsequence
if([ conversants(Me,Other),
believe(Me,sequence(Sequence),goal_mutually_known_true),
believe(Me,next_subsequence(subsequence(Index,List)),true),
act(Me,assert(believe(Me,subsequence(Index,List),true),Other),true) 1),
not([]),
test([ length(List,Len1),
length(Sequence,Len2),
Index + Lenl =< Len2,
get_next_subsequence(Sequence,
subsequence(Index,List),
subsequence(Next_index,Next_list)) 1),
action([]),
effects([ del(believe(Me,next_subsequence(subsequence(Index,List)),true)),
del{act(Me,assert(believe(Me,subsequence(Index,List),true),Other),
true)),
add(believe(Me,next_subsequence{subsequence(Next_index,Next_list)),
true)) J),
atts{[ level(domain),
name(asserted_next_subsequence) ]) ).



op( % asserted_last_subsequence
if([ conversants(Me,Other),
believe(Me,sequence{Sequence),goal_mutually_known_true),
believe(Me,next_subsequence(subsequence(Index,List)),rue),
act(Me,asseri(believe(Me,subsequence(Index,List),true),Other),true) 1},

not([]),

test([ length(List,Lenl),
length(Sequence,Len2),
Index + Lenl > Len2]),

action([]),

effects([ del(believe(Me,sequence(Sequence),goal_mutually_known_true)),
add(believe(Me,sequence(Sequence),mutually_known_true)),
del(believe(Me,next_subsequence(subsequence(Index,List)),true)),
del(act(Me,assert(believe(Me,subsequence(Index,List),true),Other),

rue)) 1),

atts([ level(domain),

name(asserted_last_subsequence) 1) ).

op( % informed_of_next_subsequence_by_other

if([ conversants(Me,Other),
believe(Me,sequence(Sequence),goal_mutually_known_true),
believe(Me,next_subsequence(subsequence(Index,[blank!Rest]}),true),
act(Other,assert(believe(Other,subsequence(Index,List),true),Me),

true) 1),
not([]),
test([ length({blankIRest],Lenl),
length(Sequence,len2),
Index + Lenl =< Len2,
get_next_subsequence(Sequence,
subsequence(Index,[blankIRest]),
subsequence(Next_index,Next_list)) 1),
action([]),
effects([ del(believe(Me,next_subsequence(subsequence(Index,[blank|Rest])),
true)),
del(act(Othz;,;',assert(belicvc(Other,subsequence(lndexList),true),Me),
frue)),
add(believe(Me,next_subsequence(subsequence(Next_index,Next_list)),
true)) 1),
atts([ level(domain),
name(informed_of_next_subsequence_by_other) ]) ).



op( % informed_of_last_subsequence_by_other

if([ conversants(Me,Other),
believe(Me,sequence(Sequence),goal_mutually_known_true),
believe(Me,next_subsequence(subsequence(Index,{blank|Rest])),true),
act(Other,assert(believe(Other,subsequence(Index,List),true),Me),

true) ]),
not([]),

test([ length([blankIRest],Lenl),
length(Sequence,Len2),
Index + Lenl > Len2 ]),
action([]),
effects( del(believe(Me,sequence(Sequence),goal_mutually_known_true)),
add(believe(Me,sequence(Sequence),mutually_known_true)),
del(believe(Me,next_subsequence(subsequence(Index,[blankirest])),
true)),
de1(act(Other,a)ssert(believe(Other,subsequence(lndex,List) Jtrue),Me),
true)) D,
atts([ level{(domain),
name(informed_of_last_subsequence_by_other) ]) ).



216

APPENDIX J

RULE-BASED SYSTEM: DOMAIN-SPECIFIC
CLAUSES



% Meta-locutionary rule-based system -- domain specific clauses
% DGN 10-18-88

% %% % %o
%%%%% Program: Domain-specific clauses
% %% % %o

get_subsequence(Index,sequence(Sequence),subsequence(Index,New_list)) :- !,
same_type_sublist(Sequence,New_list,Index).

get_next_subsequence(Sequence,
subsequence(Old_index,Last_list),
subsequence(New_index,Next_list)) :- 1,
length(Last_list,Length),
New_index is Old_index + Length,
same_type_sublist(Sequence,Next_list,New_index).

same_type_sublist(List,Sublist,Index) :- !,
sublist(List, Temp_sublist,Index),
complete_same_type_sublist(Temp_sublist,Sublist).

sublist(L,L,1) :- L.

sublist([HIT],S,Index) :- !,
JisIndex - 1,
sublist(T,S.I).

complete_same_type_sublist([blankiT1],[blankiT2]) :- !,
complete_blank_sublist(T1,T2,5).

complete_same_type_sublist([CharlT1],[CharlT2]) :- !,
complete_char_sublist(T1,T2,5).

complete_blank_sublist(_,[],1) :- .
complete_blank_sublist([blank!T1},[blankiT2],Index) :- I,
JisIndex - 1,
complete_blank_sublist(T1,T2,J).
complete_blank_sublist(_,[], ).

complete_char_sublist(_,[],1) :- L.
complete_char_sublist([},[],_) :- 1.
complete_char_sublist([blankiT1],[],_) :- \.
complete_char_sublist({CharlT1],[ChariT2],Index) :- !,
JisIndex - 1,
complete_char_sublist(T1,T2,1).

get_next_letter(Index,List,letter(New_index,New_char)) :- !,
New_index is Index + 1,
nth{New_index,List,New_char).



218

APPENDIX K

RULE-BASED SYSTEM:
INITIAL STATE



% Meta-locutionary rule-based system -- domain initial state
% DGN 10-18-88

%% % %o %

%%%%% Knowledge: base facts

%% %0 % %

cycle(0). % Initial value

person(adam). % The two conversants
person(barney).

conversants(adam,barney).
% Initial state
%
:- recordaladam,
state(conversants(adam,barney),0,-1),
:- add(adam,believe(adam,turn(barney),mutually_known_true)).

:- add(adam,(act(adam,confirm_mutual(sequence([blank,i,s,u,t,w,r,q,g,1,d,
blank,blank,blank,blank,g,0])),goal_true))).

:- add(adam,believe(adam,sequence([blank.i,s,u,t,w,r,q,g,l,d,blank,
blank,blank,blank,g,0]),goal_mutually_known_true)).

:- add(adam,believe(adam,next_subsequence(subsequence(1,[blank])),orue)).
:- add(adam,act(barney,give_turn(adam),true)).
:- recorda(bamey,
state(conversants{barney,adam),
0$ 'l)s
:- add(barney,believe(barney,turn(adam),true)).

:- add(barney,act(barney,confirm_mutual(sequence([o,blank,s,u,t,w,r,q,
g.blank,blank.f,w,w.d,g,0])),go0al_true)).

:- add(barney,believe(barney,sequence{[o,blank,s,u,t,w,r,q,g,
blank,blank,f,w,w,d,g,0]),goal_mutually_known_true)).

:- add(barney,believe(barney,next_subsequence(subsequence(l,[0])),true)).
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