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Given a finite group G and a prime p, a Sylow p-subgroup of G is a subgroup whose
order is the largest power of p dividing |G|. Sylow’s theorem asserts that such
subgroups exist and that any two such are conjugate. This theorem is a fundamental
tool in group-theoretic investigations. Similarly, in computational group theory
there is an important role for efficient constructive analogues of Sylow’s theorem.
For computational purposes, it is typical to deal with large groups by specifying a
permutation action, storing only a small set of generating permutations. This leads

naturally to the following computational problems.

SYLFIND(p, G)
Given: a prime p and generators for a group G,
Find: generators for a Sylow p-subgroup P < G.
SYLCONIJ(P, P, G)
Given: generators for G and for two of its Sylow p-subgroups P, and P,

Find: an element g € G for which P} = P,.
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In a recent series of papers, Kantor has shown that these problems have polynomial-
time solutions. His methods exploit both a well-developed library of polynomial-time
procedures for permutation groups and consequences of the classification of finite
simple groups. The impressive nature of the machinery used for sequential solutions
left open the question of whether there are methods that can take advantage of
parallel machines. Following the prevalent paradigm, the question arises whether
such problems are in the complexity class NC; i.e., are they solvable in polyloga-
rithmic time (O(log® n) steps) using a polynomial number of processors working in
parallel? This dissertation establishes an affirmative answer, placing SYLFIND and
SYLCONJ into NC.
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CHAPTER I

INTRODUCTION

Historical Background

Interest in computational group theory initially arose in the 1960s when group
theorists began to find the computer a useful tool in their investigations, especially
in the construction of large simple groups. By the 1970s and 1980s whole software
systems had been designed to aid in group-theoretic computation, notably CAYLEY
and GAP. The group theoretic algorithms themselves became a fertile field of investi-
gation in the early 1980s when Luks employed group theoretic techniques to develop
efficient algorithms for restricted versions of the problem of graph isomorphism, a
problem whose complexity is one of the central open questions in theoretical com-
puter science [21]. This sparked extensive research into group theoretic algorithms
within the computer science community.

Over the last two decades, sequential, polynomial-time algorithms were found
for a variety of basic permutation group problems, including determining the order
of a such a group, testing membership, and finding some of the important subgroups
such as the center and commutator subgroup. The study of group theoretic algo-
rithms has continued to influence theoretical computer science. For example, Babai’s
study of matrix group problems led to the development of “Arthur-Merlin” games
and a new complexity hierarchy that collapses above NP; this work also contributed

to the development of interactive proof systems [5].
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There has also been an interplay between pure and computational group the-
ory. Algorithms have become progressively more complex, employing recent group
theoretic results that give, for example, bounds on the length of subgroup towers in
permutation groups (Babai {3]), bounds on the order of primitive solvable groups
(Pélfy [28]), and bounds on the order of primitive groups with bounded nonabelian
composition factors (Babai, Cameron, and Palfy [4]). These purely mathematical in-
vestigations were actually inspired by the computational complexity arguments that
require them. Perhaps the most striking use of deep mathematical results in group-
theoretic algorithms is the use of consequences of the classification of finite simple
groups in two fundamentally important algorithms: Luks’s algorithms for finding
composition factors of permutation groups [22], and Kantor’s sequential, polynomial
time algorithms for SYLFIND, SYLCONJ, and related problems [16, 17, 18].

Just as Sylow subgroups play a fundamental role in group theory, efficient
algorithms for Sylow subgroup computations have played, and can be expected
to play, an analogous role in computational group theory. Sylow subgroups have
already been used by Kantor and Luks in [19] for finding centers in quotient groups
and for a variety of other problems (see also [25]). A restricted version of SYLFIND
also played a role in Luks’s development of a polynomial time algorithm for bounded

valence graph isomorphism testing [24].

Parallel Algorithms for Permutation Group Problems

Inspired by new generations of machines, new theoretical models were devel-
oped to describe and analyze parallel computation. In particular, the class NC
consists of those problems with algorithms that employ O(n®) processors that com-

municate via shared memory and require O(log® n) time steps, where n is the input
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size and c and k are constants. This class was first described by Pippinger in [29], and
gives a useful framework in which to study the inherent parallelizability and logical
structure of computations independent of any interprocessor connection network. In
the case of permutation group algorithms, many of the known techniques appeared
to depend on inherently sequential methods. In a series of papers by McKenzie
and Cook [26], Luks and McKenzie [23], Luks [24], and Babai, Luks, and Seress
[6], entirely new machinery was developed for parallel permutation group compu-
tation. It ultimately brought a sizable portion of the collection of polynomial-time
algorithms, including finding composition factors, into NC. However, a number of
critical questions remained open. As pointed out by Babai, Luks, and Seress in [6],
a leading one of these problems was the parallelization of the problem of finding
Sylow subgroups. This dissertation gives an NC algorithm for this problem, as well
as the problem of computing an element that conjugates one given Sylow subgroup
to another.

Most of the sequential permutation group algorithms exploit a tower of sub-
groups, G =Gg 2 G 2 --- 2 G, = 1, that is either a series of pointwise stabilizers
or a composition series for G [13, 16, 17, 31]. Membership testing, for example, uses
a series of point stabilizers and reduces membership testing for G; to membership
testing for G4, [31). Kantor’s polynomial-time sequential Sylow algorithms used a
composition series for G.

Both of these towers can have length linear in the degree n of G, and hence may
be too long for computation in NC. The parallelization of order and membership
testing as well as the new NC Sylow algorithms utilize a different (normal) series
G=Ky b Ky b - b K, =1 for G whose length r is polylogarithmic in n.

The quotients K;/K;,, of successive groups in the series are semisimple, i.e. direct
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products of simple groups. The existence and NC-constructability of such a normal
semisimple series are demonstrated by Luks in [24], and by Babai, Luks, and Seress
in [6].

Groups in this tower arise from two different divide and conquer strategies.
The first involves only a naive construction of a structure forest described by Luks
and McKenzie in [23], a data structure based on the orbits and imprimitivity blocks
of the group. This reduces to the primitive group case, which requires a second
divide and conquer approach based on the internal structure of primitive groups,
Luks’s composition factors algorithm, and consequences of the classification of finite
simple groups. The tower can be refined so that successive quotients K;/I;;; are
direct products of simple groups that are either all abelian or all nonabelian.

One can then describe the algorithm for SYLFIND, for example, as the com-
putation of a series of subgroups G = Fy > P, > --+ 2 P, where P;/K; is a Sylow
p-subgroup of G/K; and G =Ky b K; b --- b K, =1 is a tower of polylogarith-
mic length as described above. As noted above, such a semisimple tower is available;
indeed it is intrinsic to the basic machinery for NC computation, including mem-
bership testing [24, 6]. However, it simplifies the exposition to avoid repeated and
explicit reference to a precomputed tower. Thus, we compute suitable K; as they
are needed. Given a group K Q G that appears as one of the groups in the (implicit)
tower, we compute a subgroup L 9 K (where also L 9 G) such that K/L is either
abelian semisimple, or nonabelian semistmple. In fact, L is the successor of K in
some polylogarithmic semisimple tower for G. In addition, in the case where K/L
is nonabelian semisimple, we require that either all the simple factors are divisible
by p, or none are.

An important ingredient is the ability to find an NC-efficient representation
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domain for I{/L. If K/L is abelian, we represent it as a product of vector spaces, oth-
erwise we build a faithful permutation representation for /L. NC-representation
domains, and procedures for their construction, are discussed in Chapter IL.

In solvable groups, all the quotients are abelian semisimple, and SYLFIND
reduces to the following two problems, which are described in Chapter III: 1. given
L 94 K 9 H where H/K is an elementary abelian p-group and K/L is an elementary
abelian p’-group, find a group P < H for which P/L is a Sylow p-subgroup of H/L;
and 2. given L 4 K 94 H 94 G and P < H where L,K,H,P are as in 1., find a
subgroup G* < G that normalizes P and contains a Sylow p-subgroup of G. The
latter problem is an algorithmic form of the Frattini argument. These permutation
group problems reduce to the problem of solving systems of linear equations over
finite fields. This problem was shown to be in NC by work culminating with Mul-
muley [27]; significant contributions toward this result were made by Berkowitz [7],
Csanky [11], Chistov [10}, and Borodin, von zur Gathen, and Hopcroft [8).

The technique of translating group theoretic conditions in abelian semisim-
ple quotients into systems of linear equations appeared first in [23), and was later

exploited by Luks to give an NC algorithm for SYLFIND in solvable groups.

The Reduction to the Simple Case

Chapter IV gives reductions of SYLFIND and SYLCONJ to the case where G is
simple. The reduction involves computing in nonabelian semisimple groups, where
parallelism arises in a natural way by working within all simple factors indepen-
dently. As an intermediate step, Chapter IV introduces two problems, SYLFIND-
Ly and SYLCONJ-L,, which, respectively, solve the problems of finding and conju-

gating Sylow p-subgroups for the class £,/ of groups whose nonabelian composition
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factors have orders relatively prime to p. Introducing the class £, allows algorithms
for finding and conjugating Sylow p-subgroups for solvable groups, £,-groups, and
general permutation groups to share a common logical structure, and permits the
timing arguments for each of these algorithms to be handled in a uniform manner
that exploits the polylogarithmic length of a normal series for G as described above.
Here, as in the solvable case, an algorithmic form of the Frattini argument plays an

important role.

Handling Simple Groups

‘The NC Sylow algorithms for handling simple groups follow Kantor in using a
case analysis based upon the classification of finite simple groups. Kantor’s concern
was establishing polynomial-time Sylow algorithms; in fact his overall approach
leads to natural parallelizations. To describe these parallelizations, we first give an
overview of the techniques involved.

If G is an alternating group, we construct a natural action for G, i.e., an action
of G on a set A upon which G acts as Alt(A). Then, Sylow p-subgroup computations
use a wreath product construction (in effect, building complete p-ary forests on §2).

If G is a classical simple group, we also construct a natural action for G, i.e.,
an action of G on a permutation domain Y that corresponds to the set of 1-spaces of
a vector space involved in the abstract definition of G. For example, if G = PSp(V),
then there is a bijection from Y to the set of 1-spaces of V, where the action of G on
Y is permutation-isomorphic to the action of PSp(V) on the 1-spaces of V. Once we
construct this natural action, we identify G (i.e., determine the name and associated
parameters of the simple group to which G is isomorphic), and translate questions

about the original permutation action for G to questions about this natural action.
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This new domain is coordinatized by exploiting geometric properties of finite
projective spaces. The actions of the original generators of G on this domain are
determined using elements of GL(V), and a form involved in the definition of G
is constructed. Finally, the algorithms exploit the structure of a Sylow p-subgroup
P of G and the decomposition of V into P-invariant subspaces, then translate this
information to the original permutation action of G on .

The parallelizations of these techniques critically depend on the relatively small
size of the natural actions constructed. If G is given by generating permutations on
a set §1, then the vector space V' has size polynomial in |2], and hence dim(V) is
logarithmic in |{2|. These two facts permit all vectors in V to be examined in paral-
lel in constant time, and allow algorithms to proceed sequentially over sequences of
subspaces of length dim(V). Despite the straightforwardness of the parallelizations,
many of the procedures given by Kantor in [16, 17, 18] have undergone significant re-
vision in Chapter V of this dissertation, and the structure of their logical dependence

has been substantially reoganized.



CHAPTER II

DEFINITIONS AND BASIC TECHNIQUES

This chapter describes tools for NC computation in permutation groups. We
describe semisimple quotient groups and show how to find a subgroup H of a given
group G < Sym(Q?) for which G/H is semisimple. We also describe how to construct
NC-effective representation domains for such a quotient group. A basic tool used in
Chapters III and IV is a semisimple tower for G modulo a normal subgroup N, i.e.,
atower G=Gp G b -+ b G, = N in which quotients G;/G;iy1 of successive

subgroups are semisimple and have NC-effective representation domains.

Primitive NC Operations for Permutation Groups

Permutation-group problems require three basic permutation operations:
computing the product of two permutations, computing inverses of permutations,
and computing large powers of permutations. The first two are straightforward. To
form a power a® of a permutation a, where b is represented in binary (in practice, b
may be O(n!) where n is the degree of a), form a® independently on each cycle of
by reducing b modulo the cycle length (see [26]). Note that, for sequential compu-
tation, one does not need to emphasize such powering as a “primitive” operation,
for it is accomplished by repeated-squaring, therefore by a polynomial number of
multiplications. However, the number of successive squarings would be prohibitive

for an NC result.



Basic NC Permutation Group Algorithms

An action of G on a set f is a homomorphism G — Sym(Q). If this ho-
momorphism is injective, the action of G on Q is faithful. If M < G, then G/M
denotes the set of right cosets of M in G. The action of G on G/M is given by
g — ¢y € Sym(G/M) where (Ma)*» = Mag for each Ma € G/M. If G < Sym(Q),
then |Q| is the degree of G. If a € Q, then the orbif of a is theset {3 € Q[ af =
p for some g € G}. This orbit is denoted a®. The set of orbits of G partition .
If O C Q is an orbit for G, then the group G induces on O is denoted G©, and is
called a constituent of G. If G is has only one orbit, then the action of G on 9 is
said to be transitive. The subgroup of G that stabilizes a point o € § is denoted
Ga; the subgroup of G that stabilizes a subset A (the set stabilizer of A) is denoted
Gia). If G acts transitively on £, and it is possible to partition 2 into disjoint
subsets } = A U---UA,, where 1 < |A;| < || and for each ¢ € G and each A,
AINA; =9 or A;, then the action of G on § is said to be imprimitive. In that case,
each set A; is called a block of imprimitivity and the collection C = {A,,...,An}
is called a block system for G. A block A C Q is a minimal block for G if G{a)
acts primitively on A. A block system C for G is called minimeal if G acts on C
primitively. See, [14], [30], or [33] for additional discussion of primitivity.

An NC algorithm for the following problem is given in [6]. It uses the classifi-
cation of finite simple groups.

Problem I1.1 MEMBER(G, z)

GIVEN: a permutation group G = (S) < Sym(Q2) and an element z € Sym({2),

DETERMINE: whether z € G.



10

Remark I1.2 The membership test given in [6] sequentially computes sets of per-
mutations § = S, &y, Sy, ..., S, where r is polylogarithmic in [©], and for each
t=1,...,r, |Si| is polynomial in ||, and each permutation in &; is an inverse or
a power of a permutation in UjZ}S;, or the product of two permutations in Ujzase.

and where z € S, if and only if z € G. Hence the membership test is constructive,

i.e., it gives an NC procedure to compute z from S, for any = € G.

Remark I1.3 Some applications require the ability to form liftings of elements and
subgroups. Specifically, suppose we are given a permutation group G = (S) <
Sym(f2) and an additional action of G on another set A, i.e., a homomorphism
6 : G — Sym(A). The image of G under § is denoted G#, and the image of
any element g € G is denoted g*. The homomorphism § may be specified by the
set $4 = {g® | g € S}, i.e., the set of images of the generators of G under the
homomorphism 8. The set §2 is sufficient to determine the map §: given any
g € G, compute g® by applying the same operations to S2 that yields ¢ € G in an
NC constructive membership test (see Remark I1.2).

Moreover, the process may be reversed: given any element g* € G® < Sym(A),
we can find an element g € G for which g = g (i.e., a lifting of g*). The action
on A of set of generators suffices to compute a lifting of any g* € G®: apply the
same operations to & in Sym(f?) that yields g* € G from S in an NC constructive
membership test (see Remark [1.2).

Furthermore, if H* = (T")} < G®, we can find generators for H < G < Sym(f1)
for which H® = H* (i.e., a lifting of H*). If T is comprised of generators for the
kernel of the action of G on A (found using Problem IL.18) together with liftings
of each of the generators in 7° for H*, then 7 will generate H. Hence we can find

liftings of both elements and subgroups given in terms of auxiliary actions. We will
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write LIFT(g") or LIFT(H*) when the action § is clear from the context.
Remark I1.3 permits the following:

Remark II.4 Let G = (§) € Sym(f) and suppose G also acts on a set A. The
phrase “find the action of G on A” means: find the image in this action of a

generating set for G, i.e., find S = {g° | g € §}.

In problems IL5 - 11.12, we assume G is given by a set of generating permuta-
tions: G = (§) < Sym(1).
Problem IL.5 ORBITS(G)
GIVEN: a group G < Sym(2),

FIND: the orbits of G on (.

Lemma I1.6 ORBITS is in NC.

Let I be the graph with vertex set  and edge set {(a,8) | a® = § for some g €
S}. The orbits of G are the connected components of T, found by computing the

transitive closure of I'. [0

Definition I1.7 Let H be a subgroup of G. A transversal for H in G is a complete

sel of coset representatives for H in G.

Problem II.8 FIND-TRANSVERSALI{(G, L)

GIVEN: a point stabilizer L of G = (S) < Sym(2),

FIND: a transveral for L in G.
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Lemma I1.9 FIND-TRANSVERSALI is in NC.

Proof: Let @ = {1,...,n} and let T be the graph with vertex set { and edge set
{(«,8) | a® = B for some g € S}. Add the identity to the set of generators S, and
maintain a table T'[4,5], 1 < 4,7 < n of entries in G, where initially T[i,j] = ¢
if there is some g € S such that i? = j, otherwise, Tz, ] is empty. Proceed in a
succession of rounds; in each round, do the following. For each empty entry T, j]
in parallel, for each k£ = 1,...,n in parallel, if T[z, k] and T'[k, j] are both nonempty,
then set T'[z, j] to Tz, k|T'[k, j]. After ! rounds, T'[i, j] is nonempty if there is a path
in I’ from 7 to j of length less than or equal to 2'. Since the diameter of T is less

than ||, after log || rounds, the first row of T contains a desired transversal. O

Problem 1I.10 MINIMAL-BLOCKS(G)

GIVEN: a transitive group G < Sym(Q,

FIND: a block system C for G where, for any block A € C, G4} acts primitively
on A. '

Lemma I1.11 MINIMAL-BLOCKS is in NC.

Proof: Fix a € Q. For each 8 € Q in parallel, find a block system in which the
blocks have size as small as possible and a and £ are contained in the same block
as follows. Form the graph I' with vertices ) and edges {(a?,89) | ¢ € G} (by
computing the orbit of (a, ) in the action of G on §} x Q using Problem IL5).
Let Cs be the set of connected components of I' (found using transitive closure on
graphs). Then Cg is a block system for which « and # are contained in the same
block. Let C be such a block system for which the blocks are of minimal size. The
blocks in C cannot be unions of smaller blocks of another block system, hence for

each block A € C, G{ay is primitive. [
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Problem IL.12 MINIMAL-BLOCK-SYSTEM(G)

GIVEN: a transitive group G < Sym(f),

FIND: a block system C for G where the induced action of G on C is primitive.

Lemma I1.13 MINIMAL-BLOCK-SYSTEM is in NC.

Proof: Use Problem I1.10 to find a block system C in which the blocks have minimal
size. If G acts primitively on C, then return C. Otherwise, replace  with C, and
recurse. In a given recursive call, the size of the block system is at most half the
size of the block system in the previous call, so no more than log |Q| recursive calls

are possible, 0

Remark I1.14 If at each stage in the algorithm, we view each block A of C as a
verter va in a tree, and we view the points of Q contained in A as children of va,
then we obtain a tree with leaves consisting of the points of . In an intransitive
group, one oblains a forest, with one tree per orbit. Such a forest is called a structure
forest for G (see [23]). Problems I1.5, I1.10 and II.12 show that a structure forest
for G may be found in NC.

NC algorithms for the following permutation group problems I1.15 - I1.21 are
given in [6]. These algorithms use the classification of finite simple groups. As
above, we assume G = (S) < Sym(0).

Problem I1.15 ORDER(G)

GIVEN: a group G < Sym(f),

FIND: |G|.
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Problem I1.16 COMMUTATOR(G)
GIVEN: a permutation group G = {S) < Sym(Q},

FIND: the commutator subgroup G’ of G.

Problem I1.17 FACTOR(z, H, N)

GIVEN: H, N < Sym(Q}) where N = (Y') is normalized by H = (X) and z € HN,

FIND: A € H,n € N such that z = hn.

Problem II.18 KERNEL(G, A)

GIVEN: a group G < Sym(f2) and an action of G on an additional set A,

FIND: the kernel of the action of G on A.

Problem I1.19 POINTWISE-STABILIZER(G, A)

GIVEN: a group G < Sym((2) and a subset A C 0,

FIND: the pointwise stabilizer of A in G.

Remark II.20 In particular, POINTWISE-STABILIZER includes the problem of
finding kernels of actions (Problem I1.18) as a special case. For, if G < Sym(f) also
acts on a set A, we can view G as a subgroup of Sym(2UA). Then the kernel of the
action of G on A is the pointwise stabilizer of A. In fact, the NC permutation group
machinery developed in [6] gives a simpler algorithm for finding kernels independent

of POINTWISE-STABILIZER.
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Problem I1.21 INTERSECTION(H, N)

GIVEN: permutation groups H, N < Sym({2), where H normalizes N ,

FIND: HN N.

An important application of FACTOR (Problem I1.17) that is used later in
Chapter V is:
Problem I1.22 COSET-INTERSECTION(H, ¢, N)
GIVEN: H, N < Sym(2), ¢ € Sym(f2), and H normalizes N,

FIND: HcnN N.

Lemma I1.23 COSET-INTERSECTION is in NC.

Proof: HcN N is either empty or a coset of HNAN. HeN N # § if and only if
he = nfor some h € H,n € N, i.e.,if and only if c € HN, which can be tested using
Problem IL.1. If ¢ € AN, then use FACTOR (Problem IL17) to find k€ H,n € N
such that ¢ = hn. Note that He = Hn, so HcN N = (H N N)n. Return (H N N)n.
0

Problem II.24 FIND-TRANSVERSAL2(G, M, H, Ry)
GIVEN: H < M < G £ Sym(Q) and a transversal Ry for H in G,

FIND: a transversal Rps for M in G.

Lemma I1.25 FIND-TRANSVERSAL? is in NC.

Proof: To find a transversal Ry for M in G, define an equivalence relation on Ry
by a ~ b & a~'b € M (using Problem IL1 in parallel) and return a collection Ry

that contains one representative from each equivalence class. 0
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Problem I1.26 MINIMAL-SUBGROUPS(G, H, Ry)

GIVEN: H < G £ Sym(Q2) with [G : H] polynomially bounded, and a transversal
Ry for H in G,

FIND: the set of all pairs of the form (M, Ry) where M is a minimal subgroup
of G that properly contains H (i.e., M < G and H is maximal in M),

and Rjs is a transversal for M in G.

Lemma I1.27 MINIMAL-SUBGROUPS is in NC.

Proof: For each pair g1,9o € Ry \ H in parallel, if {g1,H) < (g2, H) (tested
using Problem II.1), then discard g,. For each nondiscarded g, H is maximal in
M = (g,H). Let Ry = FIND-TRANSVERSAL2(G, M, H, Ry) (Problem 11.24).

Return the set of pairs of such groups and their transversals. [

Problem IL.28 MAXIMAL-SUBGROUP(G, H, R)

GIVEN: H < G £ Sym(f?) with [G : H] polynomially bounded, and a transversal
Ry for H in G,

FIND: a maximal subgroup M < G containing H, and a transversal Ry for M

in G.

Lemma I1.29 MAXIMAL-SUBGROUP is in NC.

Proof: If A = (g, H) # G for some g € Ry (all |Ry| such tests can be performed in
parallel using Problem I1.15) then let R4 = FIND-TRANSVERSAL2(G, A, H, Ry)
be a transversal for A in G (Problem II.24), and recursively return (M, Rp) =
MAXIMAL-SUBGROUP(G, A, R,); otherwise (i.e., (g, H) = G for each g € Ru),

return (H, Ry).



17

Each recursive call at least doubles the size of the subgroup of G containing H
being considered. Since [G : H| is polynomially bounded, the number of recursive

calls is logarithmic, hence the algorithm is in NC. 0

Alternatively, we may also find a maximal subgroup as follows. Find the
action of G on the right cosets of H (Problem I1.30), and find a block system for
this action upon which G acts primitively (Problem I1.12), obtain a point stabilizer

in this action, and lift this stabilizer to the given action of G on Q.

Problem I1.30 BUILD-ACTION(G, L, Ry)

GIVEN: a subgroup L of a group G = (S) < Sym(2) of index polynomial in [},
and a transversal Ry, for L in G,

FIND: the action of G on G/L (see Remark I1.4).

Lemma I1.31 BUILD-ACTION is in NC.

Proof: For each s € S in parallel, for each pair k, k& € Ry in parallel, use Problem
IL.1 to test if hsk™! € L. If so, then s maps Lh to Lk (since Lhs = Lk). Hence the
action of G on A is computable in NC, where A is the set of cosets G/L. Return

the set A, together with this action (see Remark I1.4). [
Problem I1.32 PRIMITIVE-ACTION(G, )

GIVEN: G £ Sym(Q)

FIND: a primitive action of G on a set A (see Remark I1.4).
Lemma IL.33 PRIMITIVE-ACTION is in NC.

Proof: Let H be a point stabilizer of G (Problem I1.19) and let Ry be a transversal
for H in G (Problem II.8). Let (M, Ry) = MAXIMAL-SUBGROUP(G, H, Ry)
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(Problem I1.28) and let A = G/M. Then the map G — Sym(A) given by g — 4,,
where ¢, : Mz +— Mzg gives a primitive action of G on A. This action is returned

by BUILD-ACTION(G, M, Rps) (Problem 11.30; see also Remark I1.4).

Alternatively, a primitive action of G may also be found by finding a minimal
block system C (Problem [1.12), determining the induced action of G on C, and
lifting the result back to the given action on 2 (Remark I1.3). The method given
in the proof utilizes available machinery already developed for other other purposes
(see, for example, Problem V.27).

Note that if G is simple, PRIMITIVE-ACTION produces a faithful action of
G.

Problem I1.34 FIND-TRANSVERSAL3(G, L)

GIvEN: L < G < Sym(2) where |G| is quasipolynomial in |2 (i.e., |G| =
O(exp(log® |2])) for some constant ¢), and [G : L] is polynomial in |§,

FIND: a transversal for L in G.

Lemma I1.35 FIND-TRANSVERSALS is in NC.

Proof: Let H be a point stabilizer in G for which H < G (Problem I1.19) and let
R4 be a transversal for H in G (Problem I1.8). Obtain the action of G on G/H using
BUILD-ACTION(G, H, Ry) (Problem I1.30). Find L; = L N H as the stabilizer in
L of H in the action of L on the cosets of H in G. Recursively find a transversal
Ry, of L, in H. The recursion has polylogarithmic depth, because the length of any
point stabilizer tower for G is polylogarithmic in |(}| since |G| is quasipolynomial in
12| by hypothesis. Since we can find a transversal Ry of H in G (using Problem
I1.8), we obtain a transversal of L, in G by forming the set {ab|a € Rr,,b € Ry}.

Since L; < L < G, we may obtain a transversal for L in G using Problem I£.24. O
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Semisimple Quotient Groups and Their Representations

Semisimple groups (groups that are direct products of simple groups) play a
major role in the NC algorithms for SYLFIND and SYLCONJ, as they do in many
of the fundamental algorithms given in [6]. If we know H/K is semisimple, we define
an NC-effective representation domain for H/K and indicate how to construct one.
Later, in chapters III and IV, we will use these domains in the Sylow algorithms.
Since the methods for working with abelian semisimple groups differ from those
for handling nonabelian semisimple groups, we treat them separately in the two

following subsections.
Abelian Semisimple Quotient Groups

Let p’ denote the set of primes other than p.

Definition II.36 An abelian semisimple group is a direct product of elementary
abelian groups for various primes. If w is a set of primes, an abelian semisimple =-
group is an abelian semisimple group whose order is a product of powers of primes in
7. We view an abelian semisimple group G as a direct product of vector spaces over
different prime fields. For convenience, we refer to such a group as a generalized

vector space.

Definition I1.37 A generalized basis for a generalized vector space H = Pyx--+x P
(where P; is an elementary abelian p;-group and p; # p; fori # j) is the union U;B;
where B; is a basis for P,. Similarly, if the quotient H/K is abelian semisimple, a
subset B C H is called a generalized basis for H modulo K if {Kb| b€ B} isa
generalized basis for H/ K.
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Lemma I1.38 Given groups K < H = (T) with H/K abelian semisimple, a gen-
eralized basis B for H modulo K can be found in NC.

Proof: Let pi,...,p: be the prime factors of [H/K| (Problem II.15). Let = =
MM pi, let 7 = 7/p;, and let C; = {t™ | t € T} foreachi=1,...,I. Let P, =
(CiyK). Then H/K = P,/K % --- x P,/ K where each P,/ K is an elementary abelian
pi-group for z = 1,...,[. To obtain a basis B; of P, modulo K for all i = 1,...,1
in parallel, suppose C; = {t1,...,tm}, and let B; = {t; € C; | ; & (t1,-..,tj-1, K)}.
These membership tests are each in NC (Problem II.1) and may be performed in

parallel. B = U!_,B; is a generalized basis for H modulo k. 0

Definition I1.39 If H/K is an abelian semisimple group, a generalized vector space
representation for H/K is a pair (V,¢) consisting of a generalized vector space V
together with an epimorphism ¢ : H — V with kernel K. A generalized vector space
representation (V,¢) for H/ K is NC-effective if ¢ is en NC-computable function,

i.e., there is an NC procedure that can compute ¢(h) for any given h € H.

We use F;' to denote the d-dimensional vector space over Fj, a field of ¢

elements, and {e;,...,eqs} to denote the standard basis.

Lemma II.40 Given groups K 4 H where H/K is abelian semisimple, an NC-
effective generalized vector space representation (V, ¢) for H/ K can be found in NC.
Moreover, for any v € V, a preimage of v in H, i.e., an element h € H for which

¢(h) = v, can be found in NC.

Proof: Let B = U!_,B; be a generalized basis for H modulo K (Lemma I1.38),
where B; = {ba,...,bis;}. Let P, = (B;, K}, so {Kb| b € B;} is a basis for the

vector space P;/K; let p; and d; be the characteristic and dimension, respectively, of
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this vector space. Then H/K = P,/K x---x B/K and P;/K = V;, where V; = F;,’f.",
fori=1,...,I. Let V.=V x--- x V. Let {ei,...,eis;} be the standard basis of
Vi. We specify an NC-computable function ¢ : H — V with kernel K as follows.
Let h be an element of H. For all b;;, 1 <i <I,1 < j < d;, in parallel: test, for
all @, 0 < a < p; — 1, in parallel, whether k=1 - b%; € (B \ {b;}, K) (tested using
Problem II.1) and let a;; be the unique a satisfying this condition. Then & = [T; by’
(mod K). Define ¢(h) = T;; aije;;. Hencethe map ¢ : H — V is an NC-computable
function with kernel K. The pair (V, ¢) is an NC-effective representation for H/K.

Furthermore, let v be any element of V. If we express v as v = 7_;; aijei; € V,
then the element & = [J;; b?;’ € H satisfies ¢(k) = v. Hence we may compute

preimages in H of elements of V in NC. [

We also require the ability to perform basic operations of linear algebra within

generalized vector spaces in NC.

Definition IT.41 A generalized linear transformation of a generalized vector space
V=W x-.-xV;isa direct product of linear transformations L = L, x -++ x Ly,
where each L; is a linear transformation of V;. Hence Lv = (Lyvy,---, Lyvg), where

v=(vy,+,v4) € V.

Lemma I1.42 Given a generalized linear transformation L = Ly x --- x Ly of a
generalized vector space V = V) x --- x V3 and an element b= (by,...,bs) €V, a

solution of Lz = b can be found in NC, if one exists.

Proof: A solution X; to the equation L;z; = §; may be found in NC using [27], if

one exists. Then the element (Xi,---,X4) € V is a solution we seek. 0

Definition I1.43 A set of equations of the form described in Lemma I1.42 is called

a system of generalized linear equations.
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Nonabelian Semisimple Quotient Groups

Definition I1.44 A nonabelian semisimple group is the direct product of nonabelian
simple groups. A nonabelian p-semisimple group is the direct product of nonabelian
simple groups each of which has order divisible by p. A nonabelian p’-semisimple
group s the direct product of nonabelian simple groups each simple factor of which

has order relatively prime to p.

Note that the simple factors of a nonabelian semisimple group are uniquely

determined.

Definition I1.45 Suppose K 4 H < Sym(Q). If H/K is an nonabelian semisimple
group, a semisimple permutation representation for H/K is a pair (S, ¢) consisting
of a semisimple permutation group § = 5y x -+ x S4 < Sym(A,;) x -+~ x Sym(Ay)
where each S; is simple, together with an epimorphism ¢ : H — S with kernel K.
A semisimple permutation representation (S, $) for H/K is NC-effective if ¢ is an
NC-computable function, i.e., there is an NC procedure that can compute #(k) for

any given h € H.

Lemma I1.46 Given groups K 4 H where H/K is nonabelian semisimple, an NC-
effective semisimple permutation representation (S, ¢) for H{ K can be found in NC.
Moreover, for any s € S, a preimage of s in H, i.e., an element s € H for which

é(h) = s, can be found in NC.

Proof: Let M = {M,..., M,} be the set of maximal normal subgroups of H that
contain K. By Lemma 7.4 and Theorem 8.3 of [6], one can find M. For each
such M; € M in parallel, find a permutation representation ¢; : H — Sym(A;)
with kernel M; Then K = NM; and H/K has a faithful permutation representation

H — AyU---UA, given by h s (¢i(h), .., ¢(k)). O
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Constructing Semisimple Quotients

We give techniques for computing a subgroup K of a group H (Definition 11.49)
for which H/K is abelian semisimple or nonabelian semisimple (see Definitions I1.36
and 11.44). Lemmas I1.40 and 11.46 then apply to construct a representation domain

for H/K.

Definition I1.47 Let L, denote the class of groups each of whose nonabelian com-

position factors has order relatively prime to p.

Definition I1.48 Fiz a prime p. We adopt the following designations for classes

of simple groups closed under isomorphism:

Ty = simple p-groups,
T, = simple abelian groups,
T3 = simple L, -groups, and

Ty = all simple groups.

We adopt the following designations for later convience:

A =T

N = nonabelian simple groups.

If T is one of the above classes of simple groups, a group G is a T-semisimple if it
is semisimple and all of its simple factors are in the class T; G is a T-group if all

ils composition factors are in the class T.

Definition I1.49 For a class of simple groups T given in Definition I1.48, Rr(G)

denotes the smallest normal subgroup H Q G for which G/H is T-semisimple. In
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addition, we use the following designations as useful aliases:

Ry (G) = Rgp(G)
R4(G) = Rgp(G)
Re,(G) = Rg(G)
R(G) = Rg(G).

For a class of simple groups 7 as given in Definition 11.48, R7(G) is well defined
since if G/H and G/K are both T-semisimple groups, then so is G/{H N K), since
g — (gH,gK) gives an injective map from G/(H N K) into G/H x G/K that is
onto each factor.

Note that R(G) < G for any G # 1.

Definition II.50 For T as in Definition I1.48, let OT(G) be the smallest normal
subgroup H Q G such that all the composition factors of G/{H are in T. Note that

O%(G) =1 and O%(G) = OA(G) is the last term in the derived series of G.

For T as in Definition 11.48, O7 (G) is well defined since if H and K are normal
in G and G/H and G/K are both T-groups, then G/(H N K) is also a T-group.

Definition IL.51 For eny class T in Definition II.48, let R%(G) = G and RF'(G) =
Rr(Ri(G)). Let d7(G) denote the smallest integer r for which Ry (G) = RFYG).
For g fized j € {2,3,4} let dr, 1,_,(G) denote the smallest integer s for which
(R, 0T5-1)'(G) = (R, 07~ )**Y(G). Where convenient, we will use the aliases
given in Definition I1.49, for ezample, we write d,(G) in place of dr,(G), dap(G)

in place of dr, 1;(G), and so forth.

Lemma I1.52 Let r = d7(G). Then O7(G) = R5(G).
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Proof: Let R = R7(G). Then O7(G) < R since all the composition factors of G/R
are in T. But if O7(G) < R, then Rr(R) < R, contrary to the choice of R. The

lemma follows. O

Before describing algorithms for computing Rr(G) and O7(G) for each class
T of simple groups described in Definition I1.48, we turn our attention to semisimple

towers. Our purpose in doing so is two-fold:

1. to show the dr(G) is polylogarithmic in the degree of G {see Lemma II.59),
so that O7(G) can be computed in NC (see Lemma I1.62), and

2. to show that the towers

G v Rqr,.O“"(G) (-3 (RQ:O‘]:.-I‘ )2(G) [T (R’.KO?;—I)’(G) - O‘];(G)

(for 7 = 2,3,4), have length polylogarithmic in the degree of G, i.e., that
d7,,1,_,(G) (Definition IL.51) is polylogarithmic in the degree of G {Lemma
I1.61), a fact which will be used to prove the polylogarithmic time complexity

of the Sylow algorithms in Chapters II] and IV,

Semisimple Towers and Their Lengths

Definition II.53 Let N 4 G < Sym({1). A semisimple tower for G modulo N is
a tower of subgroups G =Gy B Gy B --+ B G, = N where G;/Giy1 is semisimple
and G; 4 G fori=0,...,7r—1. The length of this tower isr. If N = 1, this tower

is called a semisimple tower for G.

Note that if O7(G) = 1, each quotient G;/Gis1 of successive groups in a

semisimple tower for G is a T-semisimple group.
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Fact I1.54 IfG < Sym(S), then there ezists a semisimple tower for G whose length
is polylogarithmic in || [24, 6].

Lemma IL.55 R7(G) is a characteristic subgroup of G where T is any class of
semisimple groups listed in Definition I1.48. Moreover, R:-(G) is a characteristic

subgroup of G for each i =2,...,d7(G).

Proof: Let Mr be the set of all normal subgroups N of G for which G/N is a
T -semisimple group. Any automorphism of G acts on My, and so preserves the
intersection of the subgroups in M7, which is equal to R7(G). Hence Rr(G) char G.

The second assertion of the Lemma follows from the fact that a characteristic

subgroup of a characteristic subgroup of G is characteristic in G. [

Lemma I1.56 If H 9 G, then Rr(H) 9 R7(G) where T is any class of simple
groups defined in Definition II.48.

Proof: Let R = Ry(G). Ris the smallest normal subgroup of G for which G/ R is 7-
semisimple. Since a normal subgroup of a T-semisimple group is also 7-semisimple,
we conclude that HR/R = H/(H N R) is T-semisimple. This implies Ry (H) <
HNR< R= Rr(G). Since Rr(H)char H @ G, it follows that Rr(H) 4 G, and
so Rr(H) 94 Rr(G). O

Lemma II.57 The tower G > R(G) b R}G) b --- b R(G) =1 of a group
G has length r less than or equal to the length of any semisimple tower of G. In

particular, if G £ Sym(f1), then the residual tower has length polylogarithmic in |(2|.
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Proof: Let G=Go b Gy b --- b G, = 1 be a semisimple tower of G. It suffices to
show R'(G) 9 G; for all i. Since G/G, is semisimple, R(G) < G, by the definition
of B(G). Inductively assuming R'(G) 4 G, we have

R¥(G) = R(R(G))
Q4 R(G;) by inductive hypothesis and Lemma I1.56
< Gip since G;/Gi4 is semisimple.

Also R*Y(G) is characteristic in G (by Lemma IL55), so in particular R*(G) g

Git1- If G < Sym(R2), then the length r is polylogarithmic in || by Fact I1.54. 0

The following lemmas permit us to prove Proposition I1.61, which plays an

essential role in the time complexity analyses of algorithms presented in Chapters

III and IV.

Lemma I1.58 Let N4 G £ Sym(Q2). There exists a semisimple tower for G modulo

N (Definition 11.53) of length polylogarithmic in Q).

Proof: Let G=Go > Gy b --- b G, =1 be a polylogarithmic length semisimple

tower (see Fact I1.54). Note that

~

G:N _ Gi(GiaN) G; ~ Gi/Gin
GipnN ~  GinN GiN(GiaN) ~ (GiN(GisaN))/Gipy

IR

is a quotient of the semisimple group G;/Gi41, so is semisimple. Hence the tower
G=Go BGiN B GsN B ... B G,.N = N is a polylogarithmic length semisimple
tower for G modulo N. 0

An immediate consequence of this lemma is the following:
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Corollary IL.59 Let G < Sym() and let T be any of the classes of simple groups

given in Definition I1.48. There is a semisimple tower for G modulo O7(G) of

length polylogarithmic in |Q| in which the quotients G;/G;41 of successive groups in
the tower are T -semisimple groups. Namely, the tower G b R7(G) b R%(G) b
-« b RE(G) = O7(G) is such a tower.

We next note the following
Lemma I1.60 If H 9 G, then R;;0%-'(H) 9 Rz(G), fori=2,3,4.

Proof: O%-1(H) 9 G, since O%-'(H)char H 4 G by Lemma IL55. The result

follows from Lemma I1.56. O
Proposition I1.81 If G £ Sym(?), the tower
G > (RrO™)(G) > (REO™)X(G) > -+ > (Rx0™)*(G) = 0%(G)

has polylogarithmic length, fori=2,3,4.

Proof: Inductively, assume H = (R;; 0T~ )j(G) d R,’,;(G) Then by Lemma IL.60,
R;,O™-(H) = (Rz0™)*(G) 9 RF(G).

The result now follows, since the length of the tower G b Rr(G) b R:(G) b
- b Ry (G) = O7(G) is polylogarithmic in || (Lemma 11.59). O

Computing R7(G)} and O7(G)

Lemma II.62 Given a permutation group G = {8) < Sym(Q2) and a prime p, the
subgroups groups Ry, = R,(G), O (G) = OP(G), Rg(G) = Ra(G), O%(G) =
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04(G), Rw(G), R5(G) = R ,(G), and OB(G) = O%'(G) can each be computed
in NC.

Proof: R,(G) = (G',{s” | s € §}) and R4(G) = (G',{s? | s € S}) where ¢ is
the product of the primes that divide |G|, so each of these groups may be found in
NC (see Problem I1.16). Computing Rx(G) is shown to be in NC in [6], Lemma
7.4 and Theorem 8.3. To find R, (G), first compute N = Ry(G) and construct a
representation (5, ¢) for G/N (see Lemma I1.46). Suppose ¢(G) = Sy x---x S4. Use
Problem IL.15 to determine the order of each S; and let U = {S; | p divides |S:|}.
Re,(G) = LIFT(U) where U = [Isey S. (See Remark I1.3.)

Since O7(G) = R}(G) where r = dr(G), O7(G) may be found by computing

Ry (G) for 1 = 1,...,r sequentially, where T is any of 7}, T, or T3. This is an NC

computation since r is polylogarithmic in [2] by Corollary [1.59. O
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CHAPTER III

THE SYLOW ALGORITHMS FOR SOLVABLE GROUPS

A Base Case and the Frattini Argument

Finding and conjugating Sylow subgroups of solvable groups give rise to two
particular subproblems: (1) finding a subgroup P of a group H where Lad K4 Ha G
such that P/L is a Sylow p-subgroup of H/L, where K/L is an elementary abelian p'-
group and H/K is an elementary abelian p-group, and (2) finding a subgroup G* <
G that normalizes such a group P and contains a Sylow p-subgroup of G. The latter
problem is an algorithmic form of the “Frattini argument” ([30, p. 61]). This sec-
tion describes procedures BASECASE1-SOLVABLE and FRATTINI-SOLVABLE
for these problems.

The essential technique in both these procedures is to transform a group the-
oretic condition into the problem of solving systems of generalized linear equations,
for which there exist NC algorithms (Lemma I1.42). Linear transformations arise
since L and K are both normal subgroups of G, K/L is abelian semisimple, and an
NC-effective generalized vector space representation (V, ¢) for K/L is constructible.
Then each element ¢ € G induces a generalized linear transformation T, on V/, given
by ¢(z) — ¢(g™" zg).

For later use in Chapter IV, the algorithms given here handle solvable quotients
of a permutation group. For example, if we are given a permutation group G and a

normal subgroup N for which G/N is solvable, then SYLFIND-SOLVABLE finds a
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subgroup P of G for which PN/N is a Sylow p-subgroup of G/N.
Problem II1.1 BASECASE1-SOLVABLE(H, X, L)

GIVEN: L 9 K Q H <Sym(Q), L & H, H/K is an elementary abelian p-group,

and K/L is an abelian semisimple p'-group,

FIND: a group P for which L < P < H and P/L is a Sylow p-subgroup of H/L.

Proposition II1.2 BASECASE1-SOLVABLE is in NC.

Proof: If P is such a group then H = PK and, since PN K = L, H/K = P/L.
In particular, P/L is elementary abelian. Suppose H = (S). Then for each s € S,

there exists 2, € K such that sz, € P. Hence,
1. foralls € S, (sz,)? € L
2. for all s,t € S, [sz,,tz) € L.

Conversely, if {z, | s € §} C K satisfies (i) and (ii), then we can take P = ({sz, |
s € 8}).

Let ¢ : K — V induce a generalized vector space representation of K/L
(see Lemma I1.40) and for ¢ € G, let T, be defined as above. Since [sz,,tz;] =

xs_l(xt-l)’[s, t]Iix,,

¢([szsy tze]} = —$(2,) — Tad(ze) + ¢([s,1]) + Ted(z,) + b(z1)-

Thus [sz,,iz,] € L if and only if each pair of elements in {¢(z,) | s € S} satisfies

the following system of |S|? generalized linear equations:

Vs,t€ S, (Ti— DX, — (T — D)X, = —¢([s, 1])-
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Hence, a set {z, | s € S} satisfying (ii) is obtained by solving this system for
{X,} C V (see Lemma I1.42) and letting z, be a preimage of X, in K (see Lemma
11.40).

We can modify this set to satisfy (i), while maintaining (ii), by replacing each

z, by s7)(sz,)™ where m is chosen so that |K/L| dividesm and m =1 (mod p).

Recall the Frattini argument (see [30, p. 61]): if P < K 9 @ with P a Sylow
p-subgroup of K then G = Ng(P)K, where Ng(P) is the normalizer of P in G.

Problem III.3 FRATTINI-SOLVABLE(G, H, K, L, P)

GIVEN: L4 K a4 H 9 G < Sym(f), each of L, K is also normal in G, K/L is
an abelian semisimple p’-group, H/K is a p-group, and P/L is a Sylow

p-subgroup of H/L,

FIND: a subgroup G* < G that normalizes P and contains P for which G*/L

contains a Sylow p-subgroup of G/L.

Proposition IT11.4 FRATTINI-SOLVABLE is in NC.

Proof: We are given G = (S), P = (T). By the Frattini argument, for any s € §
there exists z, € K such that sz, € Ng(P). For any such collection, {z, | s € S},
we can take G* = (P, {sz, | s € §}); to see that G*/L contains a Sylow p-subgroup
of G/L, we observe that |G"K/L| = |G/L|, but the p-part of |G"K/L| equals the
p-part of |G*/L| since (|K/L|,p) = 1.

To find such z, (in parallel for each s € §) it suffices to ensure that ¢*** € P
for each t € 7. For each t € T, write t* = a;k,, with a; € P, k; € K (see Problem

I1.17). The required z, must therefore satisfy aj*k, € P. But, ai*k; = a,[a:, z,}k; and
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[as, z,]k € K. Since PN K < L, the condition on z, is equivalent to [ae, zs)k: € L,

or, if ¢ : K — V induces a vector-space representation of K/L, to

¢(z,) = B(25') + ¢(ke) = 0.

Therefore, ¢(z,) is a solution to the system of |T| generalized linear equations

vi € T! (I - Tau)X + ¢(kt) = Oa

where T, is defined just before Problem IIl.1. Hence, z, is obtained by solving this
system for X € V (see Lemma I1.42) and letting z, be a preimage of X in K (see
Lemma I1.40). 0

SYLFIND-SQLVABLE

Before giving a procedure for SYLFIND-SOLVABLE, we describe another spe-

cial case.

Problem II1.5 BASECASE2-SOLVABLE(G, K, L, p)
GIVEN: L 9 K 9 G < Sym(f2), where L 4 G, G/K is a p-group, and K/L is

an abelian semisimple p’-group,

FIND: a subgroup P < G containing L for which P/L is a Sylow p-subgroup of
G/L.

Proposition II1.6 BASECASE2-SOLVABLE is in NC.

Proof: Let Gy = R,(G)L (see Lemma II.62). Note that K < G;. If G; = G, then
G = K, and |G/L} = |K/L] is relatively prime to p so G/L has no nontrivial Sylow

p-subgroup. In this case, return P = L.
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Otherwise, recursively find , = BASECASE2-SOLVABLE(G,, K,L). The
group G* = FRATTINI-SOLVABLE(G, Gy, K, L, P,) normalizes P, and contains a
Sylow p-subgroup of G. We seek a group P for which P/P; is a2 Sylow p-subgroup of
G*/P;. Find the group U = R,(G")L (see Lemma I1.62) . By definition, G*/U is an
elementary abelian p-group. Also note that U/P, is an elementary abelian p'-group
since, letting W = U N K, we have U/, = LW/P, 2 W/(ANW) = W/L <
K/L, which is an elementary abelian p’-group. Hence BASECASE1-SOLVABLE
(see Problem III.1) applies, and P = BASECASE1-SOLVABLE(G*,U, P,) is the
group we seek.

In each recursive call, L < G, < G, so the number of recursive calls is bounded
by d,(G/L). Since d,(G/L) < dp(G) (see Definition I1.51), which is polylogarithmic
in |2] by Corollary I1.59, the algorithm for BASECASE2 is in NC. 0

Problem III.7 SYLFIND-SOLVABLE(G, p)
GIVEN: a group G < Sym(f2) and a prime p that divides |G|,

FIND: a subgroup P of G for which P > R and P/R is a Sylow p-subgroup of
G/R, where R = 04(G).

Theorem III.8 SYLFIND-SOLVABLE is in NC.

Proof: Let K = OP(G) and L = R4(K) (see Lemma I1.62). If L = K (tested
using Problem II.1) then R,(K) = R4(K), which implies K = R, so return G.
Otherwise let P = BASECASE2-SOLVABLE(G, K, L, p) and recurse by returning
SYLFIND-SOLVABLE(P, p).

To analyze the running time of SYLFIND-SOLVABLE, note that L = R407(G)
so the group P that is passed in the recursive call satisfies R4OP(P) = R4OP(L) =

(R40P)*(G). Hence the depth of the recursion is logarithmic by Proposition IL61.
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Moreover, the procedures BASECASE1-SOLVABLE and FRATTINI-
SOLVABLE are in NC. Hence SYLFIND-SOLVABLE is in NC.D

SYLCONJ-SOLVABLE and SYLEMBED-SOLVABLE

We now describe a procedure SYLCONJ-EMBED-SOLVABLE which can be
used for conjugating Sylow p-subgroups and embedding a p-subgroup into a Sy-
low p-subgroup. Specifically, we obtain SYLCONJ-SOLVABLE as a special case
of SYLCONJ-EMBED-SOLVABLE by leiting P, and P, be Sylow p-subgroups of
G. Similarly, SYLEMBED-SOLVABLE can be implemented by first letting P; =
SYLFIND-SOLVABLE(G, p), then setting

g = SYLCONJ-EMBED-SOLVABLE(G, P, P,)

and returning P-f-j, a Sylow p-subgroup of G containing P,.

Problem II1.9 SYLCONJ-EMBED-SOLVABLE(G, Py, F;)
GIVEN: a group G £ Sym(f?), a p-subgroup P, of G, and a Sylow p-subgroup
Pg Of G,

FIND: an element z € G for which PFR/R < PR/R where R = O4(G).

Theorem III.10 SYLCONJ-EMBED-SOLVABLE is in NC.

Proof: Find H = 0?(G) (see Lemma I1.62), so that A H/H < G/H = P,H/H.
Find K = R4(H) (see Lemma I1.62). f K = H,then H=Rand P, < P,=G. In
this case, return z = 1.

We may assume K < H. We first show that we can find z € H such that

Pf < PK. Suppose P, = {S). Since G = P,H, for each s € §, we can factor
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s = bh with b € P;,h € H (see Problem I1.17). For z € H, s* € P,K if and only
if b-1s% = (z7')°zh* € P K; since h* = hlh,z] € RK, this happens if and only if
(z~')zh € KN H < K. Thus, if ¢ : H — V induces a generalized vector space
representation of H/K (see Lemma I1.40), then s* € P,K if and only if ¢(z) is a

solution to the system of |S| linear equations

Vs€S, (I-T,)X + ¢(h,) =0,

where s = b,h, with b, € P, h, € H, and where T}, is defined just before Problem
II1L.1.

Hence, z is obtained by solving this system for X € V and taking a preimage
of X in H (see Lemma I1.40).

Let G* = (Pf, P;) and recursively solve SYLCONJ-EMBED(G", P?, P,) for
y € G* such that (Pf) < P,. Return the element zy.

To analyze the running time of SYLCONJ-EMBED-SOLVABLE, note that the
group K computed in SYLCONJ-EMBED-SOLVABLE is equal to R 40?(G). Hence
the group G* that is passed in the recursive call satifies R4OP(G*) = R4 0P(K) =
(R40%)*(G). Thus, the depth of the recursion is logarithmic by Proposition II.61.
Therefore, SYLCONIJ-EMBED-SOLVABLE is in NC. 0
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CHAPTER IV

REDUCTION TO THE SIMPLE GROUP CASE

A Frattini Argument

Problem IV.1 FRATTINKG, K, L,q)

GIVEN: L a4 K 4 G = (§) £ Sym(R), G/K a p-group, K/L a nonabelian
semisimple group such that either p divides the order of each simple

factor of /L and ¢ = p, or p does not divide |K/L| and ¢ = 2,

FIND: a group G* < G for which G* contains a Sylow p-subgroup of G and G*/L

normalizes a Sylow ¢-subgroup of K/L.

Theorem IV.2 FRATTINI is in NC.

Proof: Use Lemma I1.46 to construct an NC-effective semisimple permutation rep-
resentation (S,¢) for K/L where ¢ :  — § = §; x .- x S, with kernel L.
Each element ¢ € G induces an automorphism T, of S via conjugation. For each
t=1,...,r in parallel, let ¢; = SYLFIND-SIMPLE(S;,q), @ =@ x --- x @,, and
Q = LIFT(Q) (Remark I1.3). By the Frattini argument, for any s € S there exists
z, € K such that sz, € Ng(Q). To find such z, (in parallel for each s € §), for
each ¢ = 1,...,r in parallel, let s; = SYLCONIJ-SIMPLE(S;, @, @;), where j is
such that T,(S;) = S;, and let z, be a preimage in Q of s;+-- 8, € Q (Remark I1.3).

For any such collection {z, | s € §}, we can take G* = (Q, {sz, | s € S}); to

see that G* contains a Sylow p-subgroup of G, note that § 9 G* and observe that
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[G*K : Q] =[G : Q), so the p-part of [G*K : (] equals the p-part of [G" : Q] since
(p,[K : Q]) = 1. Return G*. 0O

SYLFIND
Problem IV.3 SYLFIND-L,(G,p)

GIVEN: a group G < Sym(£2) and a prime p that divides |G|,

FIND: a subgroup P of G for which P > R and P/R is a Sylow p-subgroup of
G/R, where R = 0% (G).

Theorem IV.4 SYLFIND-L, is in NC.

Proof: Let K = O4(G) (Lemma IL62) and P = SYLFIND-SOLVABLE(G, p)
(Problem IIL.7), so P/K is a Sylow p-subgroup of G/K. Let L = R ,(K) (Lemma
11.62). If L = K (tested using Problem IL.1) then R4(K) = Re,(K), which
implies X = R, so return P. Otherwise, note that p # 2 since p does not di-
vide |K/L| (since K/L is nonabelian semisimple, it has even order; see [12]), so
the group G* = FRATTINI(P, K, L,2) contains a Sylow p-subgroup of P (Prob-
lem IV.1). Also, G*/L normalizes a Sylow 2-subgroup @/L of K/L. @/L is in
fact a Sylow 2-subgroup of P/L, since |P/K| is a p-power and p # 2. Hence
G*/L is contained in the normalizer of a Sylow 2-subgroup of P/L, and is there-
fore solvable. Hence O4(G*) < L, so P*L/L is a Sylow p-subgroup of G*/L
where P* = SYLFIND-SOLVABLE(G*,p). Hence we may recurse by returning
SYLFIND-L,(P*L,p).
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To analyze the running time of SYLFIND-£,/, note that [ = Rc, O04(G) so

the group P* that is passed in the recursive call satisfies
R, 0*(P") = Rc ,04(L) = (Rc,,0%)'(G).

Hence the depth of the recursion is logarithmic in || by Proposition I1.61. Moreover,
the procedures SYLFIND-SOLVABLE and FRATTINI are in NC. Hence SYLFIND-
Ept is in NC. 0O

Problem IV.5 SYLFIND(G, p)

GIVEN: a group G < Sym({2) and a prime p that divides |G|,

FIND: a Sylow p-subgroup P of G.

Theorem IV.6 SYLFIND is in NC.

Proof: Let K = O%(G) (Lemma I1.62) and P = SYLFIND-£,(G,p) (Problem
IV.3), so P/K is a Sylow p-subgroup of G/K. Let L = Ry(K) (Lemma I1.62). If
L = K (tested using Problem II.1) then R, ,(K) = Rx(X), which implies K = 1, so
return P. Otherwise, p divides the order of each simple factor of Ii{/L (by choice of
K and L), so we may let G* = FRATTINI(P, K, L, p) (Problem IV.1). G* contains
a Sylow p-subgroup of P; let P* = SYLFIND-L,(G*,p). P" contains a Sylow p-
subgroup of G*, and hence of G. G*/L is an Lp-group since it normalizes a Sylow
p-subgroup of X/L. Then O%(G*) < L, so P*/L is a Sylow p-subgroup of G*/L.

Hence we may recurse by returning SYLFIND(P~, p).
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To analyze the running time of SYLFIND, note that L = R7,0%(G) so the

group P~ that is passed in the recursive call satisfies
Ry, OF(P"L) = R, 0%(L) = (R, 0%)X(G).

Hence the depth of the recursion is logarithmic in [ by Proposition I1.61. Moreover,
the procedures SYLFIND-L,» and FRATTINI are in NC. Hence SYLFIND is in NC.
1

YLCONJ

We now turn to the reduction of SYLCONJ to the case where G is simple.
As in the reduction for SYLFIND, there is a subproblem, SYLCONIJ-L,. We first
describe algorithms for two problems used by SYLCONJ-L,.
Problem IV.7 FIND-NORMALIZED-SYLOW-SEMISIMPLE(G, K, L, S, P)

GIVEN: groups L 9 K 9 G < Sym(f?) where L 9 G and K/L is a nonabelian
semisimple L,-group; a Sylow p-subgroup P of G; and an NC-effective
semisimple permutation representation (S, ¢) for K/L where § = §; x

-++ X 54 and each S; is simple,

FIND: a direct product @ = @, x -+ x Qg where @; < S; is a Sylow g;-subgroup

of S; for some g; that divides |S;|, @ is normalized by P, and Ng(@) is

solvable,

Lemma IV.8 FIND-NORMALIZED-SYLOW-SEMISIMPLE is in NC.

Proof: P acts on the set A = {5),...,S54} by conjugation. Let O be the set of

orbits of this action. For each P-orbit O € O, pick some element S; € 0. Find
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P* = Np(5,), the stabilizer in P of S; in the action of P on A, find G* = Ng(5,),
the stabilizer in G of S; in the action of G on A (Problem I1.19), and find K* =
LIFT(Sy), the lifting in K of S; (Remark I1.3). Let @; = FIND-NORMALIZED-
SYLOW-SIMPLE(G*, K*, L, 5, P*) (Problem IV.9). Find a transversal C for P*
in P (Problem I1.8) and let Qo = (Qf | ¢ € C). Note that for any two distinct
elements ¢,d € C, §¢ and 5¢ are distinct simple factors of S in the P-orbit O. Since

Q: < S, it follows that Q¢ < Sf and Q¢ < SZ. Hence Qo is in fact the direct

product [[.ec @f. Return @ = [Joeo @o. O

Problem IV.9 FIND-NORMALIZED-SYLOW-SIMPLE(G, K, L, S, P)

GIVEN: groups L 9 K 9 G £ Sym(9) where L 9 G and K/L is a nonabelian sim-
ple L,-group; a Sylow p-subgroup P of G; and an NC-effective semisim-

ple permutation representation (S5, ¢) for K/L,

FIND: a Sylow g-subgroup @ of S normalized by P such that Ng(@Q) is solvable,

for some prime ¢ that divides |S|.

The proof that Problem IV.9 is in NC is postponed until Chapter V (Lemma
V.112).
Problem IV.10 SYLCONJ-L,(G, B, P,)

GIVEN: a group G < Sym(§1) and two Sylow p-subgroups P, P; of G,
FIND: an element g € G for which PPR/R = P,R/R, where R = 0% (G).
Theorem IV.11 SYLCONJ-L, is in NC.

Proof: Let K = O*(G) (LemmaIl.62) and let = SYLCONJ-EMBED-SOLVABLE
(G, Py, P2) (Problem II1.9), so PFK/K = P,K/K. We seek an element that con-
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jugates P to P, within G* = (P§, P, K); note that G*/K is a p-group. Let
L = R, (K) (Lemma I1.62). If L = K (tested using Problem II.1) then R4(K) =
Rc ,(K), which implies K = R, so return the element z.

Otherwise, compute an NC-effective semisimple permutation representation
(S, ¢) for K/ L (Lemma IL.46), such that § = S; x- - - x S; where each S; is nonabelian
simple and (|S;,p) = 1. G¥, and hence P7 and P, all act on S via conjugation. Let
Q' = FIND-NORMALIZED-SYLOW-SEMISIMPLE(G, K, L, S, PF) and let Q" =
FIND-NORMALIZED-SYLOW-SEMISIMPLE(G, K, L, 5, P;) (Problem IV.7; n.b.
here Q' does not indicate the derived group), so @' = @} x - - - x @/, is normalized by
Py, and Q" = Q7 x--- x QY is normalized by P, where for each i = 1,...,d, @’ and
Q7 are Sylow ¢;-subgroups of S;, and Ns(@'} (and hence Ns(Q")) are both solvable.
For each i = 1,...,d in parallel, let s; = SYLCONJ-SIMPLE(S;, @}, @7), and let
y be a preimage in K of s,:--33 € § (Remark 11.3) so that P{¥/L normalizes Q".
Let G* = (P;¥, P, L). Since P{*/L and P,/L both normalize Q”, it follows that
(G"NK)/L=((P*,P)NK)/L < Ng(Q") = Ng(Q"), which is solvable; hence
(G" N K)/L is solvable. Moreover, G*/(G* N K) = G*K/K < G/K = G/0A(G),
so G*/(G* N K) is also solvable. Hence G*/L is solvable. Recursively find z =
SYLCONJ-L,(G", P{'¥, P;) and return g = zyz.

To analyze the running time of SYLCONJ-L,, note that L = RcP,OA(G) SO

the group G that is passed in the recursive call satisfies
Rc,04(G") = R, 0(L) = (R, 0%)*(G).

Hence the depth of the recursion is logarithmic by Proposition I1.61. O

Problem IV.12 SYLCONI(G, P, P;)
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GIVEN: a group G < Sym(f2) and two Sylow p-subgroups P,, P, of G,

FIND: an element ¢ € G for which P} < P,.

Theorem IV.13 SYLCONJ is in NC.

Proof: Let X = 0% (G) (Lemma IL62). and let z = SYLCONIJ-L,(G, Py, P,)
(Problem IV.10),so PFK/K = P,K/K. Let L = Ry(XK) (LemmaIL.62). If L = K,
then Rgp,(f( ) = Rpr(K), which implies = 1, so return the element z.

Otherwise, compute a semisimple permutation representation (5, ¢) for K/L
(Lemma I1.46), and S = S; x -+ x Sy where S; is nonabelian simple and p divides
|S;| for each ¢ = 1,...,d. Fori = 1,...,d we find Sylow p-subgroups P! and P/
of S; as follows: P/ = ¢(Pf NK)NS; and P’ = ¢(P, N K)N S; (Problem I1.21).
For each i = 1,...,r in parallel, let s; = SYLCONJ-SIMPLE(S;, P!, P"), and let y
be a preimage in K, of s;:--s, € S (Remark 11.3). Then PPN K = PN K. Let
G* = (P{¥, P, L). Note that G*/(G* N K) =2 G*K/K < G/K is an L-group, and
(GNK)/L = (P, P)nK)/L = (P,nL)/L, which is a p-group, and so also an L-
group. Hence G*/L is is an L -group. Recursively find z = SYLCONJ(G*, P[*¥, ),
and return g = Ty=.

To analyze the running time of SYLCONJ, note that L = R7,0%(G) so the

group G* that is passed in the recursive call satisfies
Rp,0™(G") = R, 0% (L) = (R, 0%)(G).

Hence the depth of the recursion is logarithmic in |2} by Proposition 11.61. 0
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CHAPTER V

SYLFIND AND SYLCONJ FOR NONABELIAN SIMPLE GROUPS

Qverview of the Algorithms

This chapter presents algorithms for finding and conjugating Sylow subgroups
in nonabelian simple groups. Before delving into the technicalities, we give a brief
overview of the algorithm for SYLFIND-SIMPLE, Problem V.135 {the algorithm for
SYLCONJ-SIMPLE, Problem V.148, has a similar overall structure). The reader
unfamiliar with the classical simple groups may consult the next section, where their
definitions are recalled.

Given a nonabelian simple group G < Sym(f2) and a prime p, we first construct
a set X upon which G acts primitively (using procedure PRIMITIVE-ACTION,
Problem I1.32). If |G| < )X |®—a condition that holds if G is sporadic or excep-
tional ([16] Lemma 6.1)—we find a Sylow p-subgroup P of G by brute force (using
procedure SYLFIND-SMALL) and lift P to a Sylow p-subgroup of G in the original
action on (2.

Otherwise (|G| > |X|®), G must be either an alternating group or a classical
simple group ([16] Lemma 6.1). We construct an action of G on a set Y (using pro-
cedure NATURAL-ACTION; see Definition V.26) that is permutation-isomorphic
to a natural action of G. If G is an alternating group, we find a Sylow p-subgroup
PY of GY using procedure SYLFIND-ALT, lift PY to a group P¥ acting on X, and

finally lift PX to a Sylow p-subgroup P of G in the original action on 2 (see Remark



45

I1.3).

If G is a classical group defined over a vector space V, we coordinatize the set
Y, i.e., we identify with each point in Y the coordinates, relative to a fixed basis, of
some nonzero vector in a 1-space of V' (or possibly of V*, the dual space of V). If
for example, G = PSp(V), then the action of PSp(V) on the 1-spaces of V induces
the action of G on Y via this identification (and similarly for the other classical
groups).

Next, we find a group G* that acts linearly on V and induces G on V, the
set of 1-spaces of V (or if G = PSL(V), possibly V=, the set of 1-spaces of V*),
for which G* = G*' (using procedure TRANSLATE-GROUP), and use procedures
SYFIND-GL or SYLFIND-CLASSICAL to find a Sylow p-subgroup P* of G*. We
lift the group P* to a group PY acting on Y, then lift P¥ to a group PX acting on

X, and finally lift PX to a Sylow p-subgroup in the original given action on .
Preliminaries Concerning Classical Groups

Much of this chapter assumes some familiarity with classical groups. For
convenience, the essential definitions are included here. For more information about
the material given in this section, consult [9], Chapter 1, and [32], Chapters 8, 10,
and 11.

In the following, let F;, denote a field of ¢ elements.

Definition V.1 The group of all linear transformations of a vector space V to itself
with nonzero determinant is the general linear group on V' and is denoted GL{V).

If V. = F7, this group is also denoted GL(n,q).

Definition V.2 The group {T € GL(V) | det(T) = 1} is the special linear group
and is denoted SL(V). If V = F7, this group may also be denoted SL(n,q).
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Note that SL(V) 9 GL(V), and SL(V) is the kernel of the map GL(V) — F;
given by T — det(T).

Fact V.3 The center of GL(V) is Z = {al |a € F;}.

The set of 1-spaces of a vector space V is denoted V. The action of GL(V) =
GL(n,q) on V via (v) = (Tv), for T € GL(V) and v € V, gives a homomorphism
GL(V) — Sym(V) with kernel Z.

Definition V.4 The group GL(V)/Z is the projective general linear group and is
denoted PGL(V) or PGL(n,q). The group SL(V)/(SL(V) N Z) is the projective
special linear group and denoted PSL(V) or PSL(n,q).

Fact V.5 |GL(n,q)| = ¢""V/23(g" — 1)(g" ' = 1)---(g—=1).
Fact V.6 |SL(n,q)} = |PGL(V)| = ;};IGL(V)L

Fact V.7 |PSL(n,q)| = F;:-_—U|SL(V)|.

Definition V.8 Let 8 be an automorphism of a field F'. A sesquilinear form on V

with respect to 8 is a function f:V x V — F which satisfies: Vu,ve V,Va € F,
1. f(uy + ug,v) = f(uy,v) + f(u2,v) and f(u,vy + v2) = f(u,v1) + f(u,vs)
2. flau,v) = af(u,v) and f(u,av) = a’ f(u,v)

Definition V.9 A function f is a bilinear form if f is sesquilinear and 8 = 1.

Definition V.10 Two forms f and g on V are equivalent if there is some nonzero
¢ € F and some nonsingular linear transformation T : V — V, for which g(u,v) =

cf(Tu,Tv) forallu,v e V.
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For conciseness, we will sometimes use the notation (, ) instead of f(, ) to de-
note a bilinear or sesquilinear form, when the meaning is clear. We restrict ourselves

to reflezive forms, i.e., we require (u,v) = 0 = (v,u) = 0.
Definition V.11 A bilinear form on V is
1. symmetric if (u,v) = (v,u) for all u,v e V,

2. alternating (or skew-symmetric) if (u,v) = —(v,u) for all u,v € V.

A sesquilinear form on V with respect to 8 is

3. Hermitian if (u,v) = (v,u)? for all u,v € V and |0] = 2; in this case, af is

denoted @, fora € F.

Definition V.12 Fiz ¢ bilinear (or sesquilinear) form (,). If S C V, let §* =
{veV|(v,s)=0Vs €S} V! is called the radical of V. If VL =0, then V and

the form (., ) are called nonsingular.

Definition V.13 Let (, ) be a nonsingular form on V. A linear transformation

T € GL(V) is an isometry of V if (u,v) = (Tu,Tv) for all u,v € V.

If a form (, ) on V is identically zero (i.e., (u,v) = 0 for all u,v € V), then
the group of isometries of V is GL(V). Including this form will permit us to handle

PSL(V) and the other classical groups more uniformly.
Definition V.14 Let V a vector space over a field F.

1. If (, ) is a nonsingular allernating form on V, then the group of isomeliries of
V is called a symplectic group, and is denoted Sp(V'). If |F| = q and V 2 F",
this symplectic group is also denoted Sp(n,q). V is referred to as a symplectic
space with respect to the form. The dimension of a symplectic space is always

EVETL.
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2. If (,) is a nonsingular hermitian form on V, then the group of isometries
of V is called a unitary group, and is denoted U(V). V is called a unitary
space with respect to the form. The field size of a unitary space is always a
square. If |F| = ¢* and V = F", the unitary group is also denoted U(n,q).
The isometries of determinant 1 form a normal subgroup SU(n,q) of U(n,q),

called the special unitary group.

3. A function Q : V — F is a quadratic form on V if, for all v,v € V, Qau+
bv) = a?Q(u) + 8*Q(v) + ab{x,v) where (, ) is a symmetric bilinear form on
V and a,b € F. A bilinear form (, ) delermines a unique quadratic form
Q(u) = 3(u,u) unless char(F) = 2. A quadratic form is nonsingular if the
associated bilinear form is nonsingular. If Q is a nonsingular quadratic form,
an isometry of V (with respect to @), is a nonsingular linear transformation
T for which Q(Tv) = Q(v) for all v € V. The group of isometries of V is
called an orthogonal group, and is denoted O(V). V is called an orthogonal

space with respect to the form Q.

Definition V.15 A subspace U of V is called totally isotropic (resp. totally singu-
lar if V is an orthogonal space} if (u,w) = 0 for all u,w € U (resp. Q(u) =0 for
all u € U if V is orthogonal). If (u) is a totally isotropic (resp. totally singular)
space, then u is called an isotropic vector (resp. singular vector). All mazimal to-

tally isotropic or lotally singular subspaces of a space V have the same dimension,

which is celled the Witt index of V.

Remark V.16 Let V = F? be an orthogonal space. If n is odd, then the Witt

index is 3(n — 1) and all quadratic forms are equivalent, i.e., they induce equivalent

bilinear forms (Definition V.10). In this case, O(V) is also denoted O(n,q). If n is
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even, there are two inequivalent quadratic forms depending on the Witt index of V/,

which may be either § or § — 1. These two forms give rise to two nonisomorphic

orthogonal groups which are denoted O*(n,q) and O~ (n, q), respectively.

Orders of the Classical Simple Groups
The center of Sp(2m, q) consists of the transformations v +— av, where a = 1.
The groups PSp(2m, q) = Sp(2m, q)/ Z(Sp(2m, q)) are simple except for PSp(2,2),
P5p(2,3), and PSp(4,2).

Fact V.17 The sizes of the symplectic groups are given by the following formulas:
1. |Sp(2m, q)| = ¢™(¢"™ - 1)(¢*™ 2~ 1)---(¢* — 1) and
2. |PSp(2m, 9)| = ip; 1Sp(2m, 0)| ([32), p.70).
The center of U(n,q) consists of the transformations v — av, where a@ =

1. The group PSU(n,q) = SU(n,q)/Z(SU(n,q)) is simple except for PSU(2,2),
PSU(2,3), and PSU(3,2).

Fact V.18 The sizes of the unitary groups are given by the following formulas:
1 |U(n,q)| = ¢""W/3(q" = (=1)")--- (¢* + 1)(¢* — 1)(g + 1)
2. |SU(n, q)l = 1U(n, g}l
3. IPSU(nt‘I)I = (T‘;J,._l)ISU(nsQ)I ([32]1 P 118)‘
The determinant of an orthogonal transformation in O(V) = O(2m + 1,q)

or O*(2m,q) is £1, and the orthogonal transformations of determinant 1 form a

subgroup SO(2m+1, q) or SO%(2m, q). The center of O(V') consists of the isometries
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v — av where a = 1, provided n > 2. The corresponding projective groups are

defined as

PSO(2m +1,9) = SO(2m + 1,9)/Z2(S0(2m + 1, q)),
PO*(2m, q) = 0*(2m, q)/Z(0*(2m, g)), and
PSO*(2m1 q) = Soi(va Q)IZ(SOt(2m7 q)) ([32]:.”'140)'

Unlike the symplectic and unitary cases, the groups PSO(2m+1, q) and PSO%*(2m, q)
are not always simple. However, if we let }(2m + 1, ¢) be the commutator subgroup
of O(2m + 1, ¢) and let Q*(2m, g) be the commutator subgroup of O*(2m, q), then

the projective groups

PQ(2m + 1,q) = Q(2m + 1,9)/2(2(2m + 1,q)),
PQ*(2m, q) = O*(2m, q)/2(2*(2m, q))

are simple if 2m > 6. For brevity, we sometimes use PQ(V) to refer to any of
PQ(2m+1,q), Pt (2m, q) or PQA~(2m, q), where the isometry group of V is O(2m +

1,q), O*(2m, q) or O~ (2m, q), respectively.

Fact V.19 The sizes of the orthogonal groups are given by the following formulas:

Ifn is odd, let n = 2m + 1. There is only one orthogonal group, whose order is
1. [PQ2m +1,9)| = griyq™ (¢*™ = 1)+ (¢* — 1)(¢* — 1)

Ifn is even, let n = 2m. There are two inequivalent quadratic forms that give rise
to the nonisomorphic orthogonal groups PQ1*(2m,q) and PQY~(2m, q) whose orders

are
1. |PQ*(2m, )| = e g™ = (@2 = 1)+ (¢ - 1le* - 1),

2. 1PQ™(2m, 0)] = g™ ™ g™ + (@ = 1)+ (¢* = 1)@ - 1).
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For later reference, we note the following:

Lemma V.20 Let G be a classical simple group defined abstractly in terms of a
vector space V. Then |G| is quasipolynomial in |V| (i.e., log |G| = O(log® |V]) for

some constant ¢},

Proof: |G| < [SL(V)| = ¢""=D/3(g"=1)(¢"" 1)+ (¢2=1) < (¢")" = |V |3V
(recall ¢" = |V| so n = log, |V|). O

Let V be a vector space with a nonsingular form ¢ over a field F of size q. Let
G* be a classical group defined in terms of V and ¢. Let G be the group induced
by G* on V.

Fact V.21 If dim(V) > 2, then V is spanned by its isotropic or singular points,

Proof: [32] 11.21. O

Fact V.22 Ify is isotropic or singular, G, induces a classical group on yt/y. Ify

is nonisotropic or nonsingular, G, on y* is a classical group.

Proof: [32], Ex. 8.11,10.13. 0

Fact V.23 The set of isotropic points is the unique G-orbit on V of ¢'-size.

Proof: By [32], Lemma 10.4 and Theorem 11.5, the set of isotropic peints has
q' size in the unitary or orthogonal case. In the symplectic case, all points in V
are isotropic, and |V| is ¢'. Witt’s Theorem ([32], Theorem 7.4), implies the set
of isotropic or singular points is an orbit. If G is unitary, the nonisotropic points
comprise a single orbit. In the orthogonal case, the set of nonsingular 1-spaces form

either one or two orbits. In either case, the sizes of these orbits are multiples of q. 0
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Fact V.24 Let V be a vector space where dim(V) > 3. If y € V is nonisotropic or
nonsingular, there is a unique G-orbit on the set of isotropic or singular points of
q' size, and this orbit spans y*. Ify € V is isotropic or singular, then the unique

smallest orbit of G, on the set of isotropic or singular points spans y*.

Proof: If y is nonisotropic or nonsingular, y* is a nonsingular space by Fact V.22.
The isotropic vectors span this space and form a ¢"-orbit by Facts V.21 and V.23.
If y is isotropic or singular, y*/y is a nonsingular space by Fact V.22. The isotropic
points span this space; the number 7 of such points is given by [32], Lemma 10.4
and Theorem 11.5. Preimages in V are isotropic points in Gy, and the number of
preimages is qi. From the values of ¢ given in [32), it follows that y* is the smallest

orbit of G, on the set of isotropic points. [I

Obtaining Natural Actions

Definition V.25 Throughout the remainder of this chapter, if V is a vector space,

V will denote the set of 1-spaces of V.

Definition V.26 I[fG = A, (n > 6), the natural action of G is e faithful permu-
tation representation as All(A) on a set A. If G = PSp(V),PSU(V) or PQV)
where dim(V) > 8, the natural action of G is its action on V. If G = PSL(V),

there are two natural actions, on V and V=,

Excluding alternating groups A, for n < 6 and classical groups where dim(V) <
8 from consideration eliminates ambiguities that would otherwise arise from the
nonuniqueness of some standard natural actions for certain groups (e.g., due to

PSp(4,q) = PQ(S, q) reflecting two different but equally “natural” actions).
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If G = PSL(n,q), we cannot distinguish the two natural actions based on the
abstract group G or based on any properties of the available permutation represen-
tation. The procedure NATURAL-ACTION (Problem V.35) finds one of these two
actions, and the procedure COORDINATIZE (Problem V.69) constructs a coordi-
natization of it. Either action suffices for our purposes; the one we find arises from
a vector space which we rename V.

Furthermore, since PSp(2m,q) = PQ(2m + 1,4q) if ¢ is even, an ambiguity
arises when we refer to a “natural action” of one of these groups. Our algorithms
resolve this ambiguity: the procedure DOUBLE-PAIRING will always construct
PSp(2m,q) rather than PQ(2m + 1, q).

The requirement that |G| > | X|® not only ensures that G is not exceptional or
sporadic, as noted above, but also guarantees that if G is a classical group defined
on a vector space V, then dim(V) > 8 ({16], Lemma 6.1 (iii)).

The following two procedures, PAIRING and DOUBLE-PAIRING, are given in
[16], p. 493, and shown to be in polynomial time. These procedures are reproduced
here; some details left implicit in [16] are included to make clear that the procedures

are in fact also in NC.
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Procedure V.27 PAIRING(G, X)

{ G is a simple group acting faithfully and primitively on X, and |G| > [X|® }
choose z € X
for each y € X in parallel
K — G(z4) (Problem IL.19) { K is a point stabilizer of the action of G on
the set of unordered pairs of elements of X }
let Ry be a transversal for K in G (Problem I1.8)
Yk « MINIMAL-SUBGROUPS(G, K, Ri) (Problem I1.26)
{ each element of YV is a pair consisting of a subgroup H and a transversal
Ry for Hin G }
if Yk is empty then Vi — {(K, Rx)}
for each (H, Ry) € Vi in parallel
Zy — MINIMAL-SUBGROUPS(G, H, Ry)
{ each element of 2y is a pair consisting of a subgroup H* and a transversal
Ry. for H* in G }
if Zy is empty then Zy — {(H, Ry)}
for each (H*, Ry.) € Zy in parallel
(My+, Rmy.) — MAXIMAL-SUBGROUP(G, H*, Ry+) (Problem II.28)
My — {(ﬂ‘IH-,RMH.) | H* € 2y}
Nk = Uney My

return M(G;) = {(N,Ry) € UkNk | [G: N] < 2|X]} <P

Procedure V.28 DOUBLE-PAIRING(G, X)

{ G is a simple group acting faithfully and primitively on X, and |G| > | X|® }
C — PAIRING(G, X) (Procedure V.27)

return M’ = Ugy.p,,jec PAIRING(BUILD-ACTION(G, M, Rar)) (Problem 11.30)
o

Lemmas 6.1, 10.1, and Theorem 6.2, in [16] combine to give

Theorem V.29 Let G < Sym(X) be a simple, faithful, primilive group with |G| >

!Throughout this chapter, this symbol denotes the end of a procedure.
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|X|®%, and let M' =DOUBLE-PAIRING(G,X). Let (My, Rp,) be a pair in M’ for
which [My| is mazimal. If there exists (M2, Rar,) € M' with |G : My| < |G : Ma| <
2|G : M|, then let M = M, and Ry = Ry, ; otherwise let M = M, and Ry = Ry, .
Let the set of cosets of M in G be denoted Y'. Then ezactly one of the following
holds:

1. G is an alternating group, and G acts on Y’ as A(Y");

2. G = PSL(V) (resp. PSp(V)) for some vector space V, and G acts on Y’ as
PSI(V) (resp. PSp(V)) acts on V (see Definition V.25) (or possibly V* in
the case G = PSL(V)).

3. G = PSU(V) or PV for some vector space V, and G acts on Y respectively
as PSU(V) or PQY(V) acts on the orbit of isotropic or singular 1-spaces of V.

With M as in Theorem V.29, BUILD-ACTION(G, M, Rp) yields the action
of G on Y’. This call to BUILD-ACTION, and the calls within PAIRING to
MINIMAL-SUBGROUPS and MAXIMAL-SUBGROUP, are valid because in each

case the second argument is a subgroup of G whose index is polynomial in the degree

of G.
Corollary V.30 PAIRING and DOUBLE-PAIRING are in NC.
Proof: The procedures they invoke are in NC. 0

The following definition provides a succinct notation for a class of permutation

groups that arise frequently in the remainder of this chapter.

Definition V.31 Let G denote the set of pairs (G, X) where G is a classical simple

group, G acts on X, |G| > |X|®, and GX is permutation-isomorphic to a natural



56

action of G (Definition V.26). Similarly, let G denote the set of pairs (G*, V) where
G* =G < SL(V) and (G*V,V) €.

In fact, it is desirable to include forms in the definition of G*. However, forms
are not yet available, so they are absent in Definition V.31. Nevertheless, until forms

become available, Definition V.31 will be of much use. Following the construction of
forms in CONSTRUCT-FORM (Problem V.87) and CONSTRUCT-QUAD-FORM
(Problem V.89), the symbol “G*” will refer to the following modified definition:

Definition V.31" Let G* be the set of triples (G*,V, ¢), where G* = G*' < SL(V),
(G‘V,V) € G (Definition V.31), and ¢ is the form on V involved in the definition
of the classical group G*; hence, ¢ is nonsingular unless G* = SL(V), in which case

¢ is the zero-form.

Remark V.32 We restate a point made prior to Problem V.27 in terms of the
notation just defined: If (G*, V) € G* then dim(V) > 8.

Problem V.33 MAKE-POINTS(G,Y")

GIVEN: a classical {non-PSL) simple group G < Sym(Y”) where the action of G
on Y’ is the restriction of the natural action of G to the orbit of isotropic

or singular points of the natural action, and |G| > |Y"[?,

FIND: an action of G on a set Y such that (G,Y) € G.

The following procedure for MAKE-POINTS is given in [16], p. 505-506, and
shown to be in polynomial time. It is reproduced here with some details left implicit

in [16] included to make clear that the procedure is in fact also in NC.
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Procedure for Problem V.33:

choose y € Y’

let Oy and O; be the two orbits of G, (other than {y}) with |04] < |03}

let g be the size of a minimal block in the action of G on O,

choose z € 0, {s0 z g y' }

if Gy, has an orbit on Y’ — {y, z} of size /g — 1 then ¢ — /g

{ z & y*, G,. fixes the 2-space (y, z); an orbit has size +/G— 1 only if G is unitary }

L — (Gy: N (Gy)) N (G.) { Problem I1.21; note L = (G,) N(G.)' }

{ [G : L] is polynomial in |Y’| since

[G:(Gy)] =[G :(G:)] =[G : GG, : (G,)] < [Y']? ([16], p. 497) }

let Ry be a transversal for L in G (Problem 11.34) { valid by Fact V.20 }

L — {L"|r € Ry} { the set of G-conjugates of L, since L < Ng(L) }

{ this requires removing duplicates; L* = L* can be tested using Problem II.1 }

{ I£]| has size polynomial in |Y”| since |[£] = [G: Ng(L)] £ [G: L] }

£~ {(L,L*) | L € L,{L, L") # G}

M — {M <G| (M,Ry)= MAXIMAL-SUBGROUP(G, L*, R;-), where L* € L*,
Ry = FIND-TRANSVERSALY(G, L*, L, Ry}, and [G : M] < ¢3|Y"|}
(Problems I1.28, 11.24)

return the action of G by conjugation on Y = Upyrema{M" | r € Rpr} (Remark I1.4)

{ this requires removing duplicates; M™ = M* can be tested using Problem IL1 }

{ Y is the set of conjugates of all M € M since M < Ng(M) for each M € M }

<&

Lemma V.34 MAKFE-POINTS is correct and in NC.

Proof: The correctness is proved in [16]) Theorem 10.5. MAKE-POINTS is in NC

since the procedures it invokes are in NC. [

As noted above, if G is an alternating, projective special linear, or a symplectic
group, the action of G on the set Y’ found by DOUBLE-PAIRING is the sought-
after natural action. If G is a symplectic, unitary or orthogonal group, the natural
action is not transitive and DOUBLE-PAIRING finds only the orbit of of G on the

isotropic or singular points. Invoking the procedure MAKE-POINTS constructs the
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the additional orbit(s) of nonsingular points of G in a natural action, if any exist.
(If G is symplectic, G acts transitively on Y7, each y € Y is isotropic, and Y’ = Y
[16], 6.1, 6.2.)
The preceding discussion of finding natural actions for simple groups can be
summarized by the following;
Problem V.35 NATURAL-ACTION(G, X)
GIVEN: a simple group G acting faithfully and primitively on X and |G| > | X|®

FIND: the action of G on a set Y which is a natural action of G.

Procedure for Problem V.35:
M'" — DOUBLE-PAIRING(G, X) (Procedure V.28)
choose (M, Ry, ) € M such that |M,;| is maximal
if there exists (Mg, Rar,) € M’ for which |G : My| < |G : Ma| < 2|G : M|
then (M, Rar) «— (Ma, Rap,) else (M, Rat) « (My, Rag,) { f. Theorem V.29 }
let Y’ = G/M and find the action of G on Y’ via BUILD-ACTION(G, M, Rpy)
choose y € Y’
if G¥' is 2-transitive
then return the action of G on ¥’ (Remark I1.4)
{ no need to call MAKE-POINTS if G is alternating or a PSL }
else return the action of G on a set ¥ found by MAKE-POINTS(G, Y’)
(Problem V.33) ©

Remark V.36 We have just shown how to find a set ¥ upon which a group G acts
in its natural action if G is known to be a classical group. This set can be identified
with the set V of 1-spaces of a vector space V over a field F; subsequently, this
identification of ¥ with ¥ will be assumed. Even before constructing V explicitly,
we show how to find the span of a given subset of Y'; more precisely, given a subset
A C Y, we show how to find a subset [A] C Y such that under the identification of Y’
with ¥, [A] is identified with the span of the set with which A is identified. We will

then be able to speak, for example, of the line containing two points a, b € Y, without
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explicitly remarking that Y is identified with V (see, for example, the statement of
LINE, Problem V.41). We also show how to compute the characteristic and size of
F, the the dimension n of V, an independent set of points, and the set A% for any
set A C Y. For these computations, we do not require an explicit identification of
Y with V i.e., a coordinatization. (In COORDINATIZE, Problem V.69, we give an
NC algorithm for making this identification explicit.) The following observations

will be used to prove that these computations are in NC.

Remark V.37 Let G < Sym(2) be a simple classical group, let X be the set found
by PRIMITIVE-ACTION(G,?) (Problem 11.32), and let ¥ be the set found by
NATURAL-ACTION(G, X} (Problem V.35). Then |X| = O(|f}]), by construction.
Also, by the constructions in DOUBLE-PAIRING and MAKE-POINTS, the size
of the set ¥ produced by MAKE-POINTS (and hence by NATURAL-ACTION) is

polynomial in |X|. Hence we have:

Lemma V.38 Let G < Sym(Q) be a simple classical group, let X be the set
found by PRIMITIVE-ACTION(G,), and let Y be the set found by NATURAL-
ACTION(G, X), so Y is identifiable with V for a vector space V. Then dim(V)
= O(log |9]).

Proof: We have dim(V) = O(log |[V|) = O(log [Y]) = O(log|X¢]) = O(log | X|) =
O(log |€}|) by Remark V.37. 0

To prove that the running time of a procedure is in NC with respect to the
size of the original given input set ©, it suffices, by Lemma V.38, to show the time
required by the procedure is polylogarithmic in the size of V, or in particular, is

polynomial in dim(V'}.

Definition V.39 Suppose (G,Y) € G.
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1. If a,b are two distinct points € Y, let [a,b] = {c €Y | G. 2 G.'nNGy'}.

2. IfACY, let [A] be the smallest subset of Y containing A such that for any

pair of distinct points a,b € [A],[a,b] C [A].

Fact V.40 [A] is the set of 1-spaces of (A) (see Remark V.36).
Proof: [16] Lemmas 8.3 and 10.6. 0

Fact V.40 implicitly assumes an identification of ¥ with the l-spaces of a
vector space. This identification is also assumed in the following Problems V.41-
V.53. In particular, [a, ] is the set of 1-spaces of (a, b), which we refer to as the line

containing the points ¢ and b. This definition and fact suggest the following:

Problem V.41 LINE(G, Y, a, b)

GIVEN: (G,Y) € G and two distinct points a,b € Y,

FIND: {a,b] C Y, the line containing a and &.

Procedure for Problem V.41:
L — (Gab N (G4)') N (Gy)' { Problems I1.19 and I1.21; note L = (G.)' N (Gy)' }
return the set of fixed points of L on Y (Problem IL.5) <

Lemma V.42 LINE is correct and in NC.

Proof: Correctness follows at once from Fact V.40 and Definition V.39; LINE is in

NC since Problems I1.5, I11.19, and I1.21 are in NC. 0O

The following two procedures, FIND-FIELD-SIZE and SPAN-POINTS are

immediate applications of the procedure LINE.
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Problem V.43 FIND-FIELDSIZE(G,Y)

GIVEN: (G,Y) € G,
FIND: the size of the field over which G is defined.

Procedure for Problem V.43:
return |[LINE(G,Y,y,z)| — 1 (Problem V.41) ¢

Lemma V.44 FIND-FIELDSIZE is correct and in NC.

Proof: Correctness follows from the observation that the number of points on a
line is one greater than the size of the field; FIND-FIELDSIZE is in NC since LINE
(Problem V.41) is in NC.[]

Problem V.45 SPAN-POINTS(G,Y, A)

GIVEN: (G,Y)€EGand ACY,
FIND: [A], the set of points in {A).

Procedure for Problem V.45:

t+—0

B; <10

while A\ B; is not empty
choose g}, € A\ B;
Biy1 — Upep,LINE(G,Y, ai41,b) (Problem V.41)
te1+1

return B; <©

Lemma V.46 SPAN-POINTS is correct and in NC.

Proof: Correctness follows from Definition V.39 and Fact V.40. To show polyloga-
rithmic running time, note that “B; = [ay,...,a;]” is a loop invariant, so the number

of iterations is bounded by dim(V’), and hence is logarithmic in |Y| by Lemma V.38.
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Moreover, in each iteration there are a polynomial number of calls to LINE which

may all be performed in parallel. 0

Problem V.47 FIND-INDEPENDENT-SET(G,Y)
GIVEN: (G,Y) € G,

FIND: a maximal set of independent points in V = Y.

Procedure for Problem V.47:

A+~ {a} forsomea €Y

while SPAN-POINTS(G,Y,A) # Y (see Problem V.45)
choose a € Y \ SPAN-POINTS(G, Y, A)
A~ AUa

return A o

Lemma V.48 FIND-INDEPENDENT-SET is correct and in NC.

Proof: Correctness is clear. Since dim(V') is logarithmic in |V| = |Y| (see Lemma
V.38), FIND-INDEPENDENT-SET is in NC. 0

Problem V.49 FIND-DIMENSION(G,Y)

GIVEN: (G,Y) € G,
FIND: dim(V) where Y = V.

Procedure for Problem V.49:
B «— FIND-INDEPENDENT-SET(G,Y) (Problem V.47)
return [B| ¢

Lemma V.50 FIND-DIMENSION is correct and in NC.
Proof: Clear. 0

As noted prior to Problem V.41, Y is implicitly identified with the set of 1-

spaces of a vector space V. G can be defined abstractly in terms of V and a form
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¢onV. Fory €Y, let (v,) € V be the 1-space identified with y. Define y* to be
the subset of ¥ that is identified with the set (v,)* € V. Although V and ¢ have
not yet been constructed, the set y* C Y can nevertheless be found from the orbit

structure of G and G, as described in the procedure for the following:

Problem V.51 PERP-POINT(G,Y,y)

GIVEN: y € Y, (G,Y) € G and G ¢ PSL(V),

FIND: the set of points in y*.

Procedure for Problem V.51:
g — FIND-FIELDSIZE(G,Y) (Problem V.43)
T + the unique orbit of G on Y of size relatively prime to ¢
ify e Y\ T then

O « the unique Gy-orbit on I of size relatively prime to ¢
else O « smallest orbit of G, on T \ {y}
return SPAN-POINTS(G, Y, O) (Problem V.45) <

Lemma V.52 PERP-POINT is correct and in NC.

Proof: The space y* is spanned by its isotropic or singular points (Fact V.21). One
of the orbits of G, on I consists of the set of isotropic or singular points in yt. The
set O = {w €T |(w,y) =0,w# y} is an orbit of G, since for any w,v € O, there
is an isometry from (y,w) to {(y,v), which extends to an element of G by Witt's
Theorem. The set O is equal to the set O found in the procedure by Fact V.24.

The procedure is in NC since the problems it invokes are in NC. [

Problem V.53 PERP-POINTS(G, Y, A)

GIVEN: (G,Y) e G,G# PSL(V),andaset ACY,

FIND: the set of points in AL,
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Procedure for Problem V.53:
B + FIND-INDEPENDENT-SET(SPAN-POINTS(G, Y, A)) (Problem V.47)
for each b € B in parallel
Sy — PERP-POINT(G, Y, b) (Problem V.51)
return NycpsS, <

Lemma V.54 PERP-POINTS is correct and in NC.

Proof: Let V be a vector space for which G acts on V as it does on Y. Let
dim(V) = n, and let (, ) be the form on V. Let U be the subspace of V spanned by
the points of A and let B = {b,,...,b} be as in the procedure. Let B = {f,,..., 6}
be a set of vectors in V' such b; = (8;) for each ¢ = 1,...,k (hence B is a basis for
U). Note that U+ = (B)* = n;i{v | (Bi,v) = 0} = N;B+. Hence A+ = N;b+. These
k —1 intersections may be performed in O(log &) rounds, but to show this procedure

is in NC, it suffices to perform them sequentially by Lemma V.38. O

Identifying Nonabelian Simple Groups

If G = Alt(Y) or (G,Y) € G (i.e., G £ Sym(Y) and |G| > |Y]?), then G is

isomorphic to one of the following groups:

An

PSL(n,q)

PSp(n,q) (n even)
PSU(n,q)

PQ(n,q) (n odd,q even)
PQ*(n,q) (n even)
PQ=(n,q) (n even)
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Given such a group G < Sym(Y') acting in its natural action on Y, the following
procedure determines which of the groups listed above is isomorphic to G, together
with the relevant parameters indicated in the list above: n, ¢ (if G is not an alter-
nating group), and a sign (+ or —) if G is isomorphic to an orthogonal group on an

even dimensional space.

Problem V.55 IDENTIFY(G,Y)

GIVEN: G < Sym(Y'), where G is Alt(Y) and |G| > |Y{®, or (G,Y) € G

FIND: the name and appropriate parameters (n, also ¢ if (G,Y) € G), of the
group in the preceding list to which G is isomorphic.

Procedure for Problem V.55:
if G acts 3-transitively on Y then
return (“G is the alternating group Al{(|Y])")
else
n + FIND-DIMENSION(G,Y) (Problem V.49)
g +— FIND-FIELDSIZE(G,Y) (Problem V.43; cf. line (*) below)
let Y’ be the unique orbit of ¢'-size
if G is transitive on ¥ — {y} then
return (“G = PSL(n,q) ")
else if G is transitive on ¥ then
return (“G is the symplectic group PSp(n, q)")
{ G must now be either orthogonal or unitary; hence G may be determined
by the size of the orbit of isotropic or singular points }
else if n =2m + 1 is odd, and Y| = (¢*™ —1)/(¢ — 1) then
return (“G = PQ(n, q)")
else if n = 2m is even, and |Y'|=(¢™ F1)(¢™ ' +1)/(g —1) then
return (“G = PQ%(n,q)")
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else { here G must be unitary }
79— 3 (*)
if n=2m+1is odd, and |V'| = (¢>™*! +1)(¢*™ — 1)/(¢* — 1) then
return (“G = PSU(2m +1,49)")
else if n = 2m is even, and |Y'| = (¢°™ — 1)(¢*~! +1)/(¢® ~ 1) then
return(“G = PSU(2m,q)") ©

Lemma V.56 IDENTIFY is correct and in NC.

Proof: See [16] B1-B4 (p. 486), Lemma 10.1. The values of |Y”’| in the unitary and
orthogonal groups are always distinct. (Note the values of “n™" for PSU(2m +1, q)
and PSU(2m, q) are reversed in the table above Lemma 10.1 in [16].) O

Sylow Subgroups of the Symmetric and Alternating Groups

Before describing algorithms for Sylow subgroups of the classical simple groups,
we first give algorithms for the symmetric and alternating groups. The procedures
for the symmetric and alternating groups are closely related. These algorithms
are used not only to solve SYLFIND-SIMPLE (Problem V.135) and SYLCONJ-
SIMPLE (Problem V.148) when the given group is an alternating group, but also
in the algorithms for SYLFIND-CLASSICAL (Problem V.133) and SYLCONJ-
CLASSICAL (Problem V.146).

To describe a Sylow p-subgroup P of the symmetric group Sym((1), we make

the following definitions.

Definition V.57 ([14], p. 81) Let H < Sym(A) and let K < Sym(T'). The wreath
product of H and K, written H | K, is a subgroup of Sym(A x ') consisting of

elements of the form

(8,7) — (6",+%), for (6,7) € A x T,
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where hy € H (the permutations h, may be different for different choices of v} and
ke K.

Remark V.58 In the context of the above definition, let A, = A x {7} for each
7 €T, and view A x T as the disjoint union C = U,erA,. Then H) K < Sym(C)

and

1. H} K contains a normal subgroup [],er H,, where H., induces H on A, and
induces the identity on each Ag, for 8 # 7. (This is the subgroup of H 1 K of

all permutations with k¥ = 1 in Definition V.57.)

2. For each k € X < Sym(T') define an action of k on C that maps
A, — A, foreachy €T
via
(6,7) = (6,~), for each § € A.

(This is the subgroup of Sym(A x I') where each A, = 1 in Definition V.57.)

3. If H and K are transitive, then so is H} K; moreover, H1 K acts imprimitively
on C since {A, | ¥ € '} is a system of blocks for this action. H} K is generated
by the actions of H., and K given above in 1. and 2. where 7 is any element

of I
4. |H1 K| = |H|"|K].

5. If H < Sym(A), K € Sym(T'), and L < Sym(A), then (HIK)IL = H)(K L),
where we identify (A X T') x A and A x (T x A).
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The following is a classical construction given in {14}, Sect.5.9, p. 82, and [15],
Lemma 2.12.2. First, we make the following notational conventions, which will be
in effect throughout this section. Let P* = (p) be a Sylow p-subgroup of Sym(Y),
whereY = {1,...,p}, and for n > 1, inductively define Wr(P,n) = Wr(P,n—1)1P".
By Remark V.58, for each n > 0, Wr(P,n) acts on theset Y* =Y x .+. x Y (n
factors).

Fix n > 0. We find a convenient set of generators of Wr(P,n) as follows.
For notational convenience, identify Y* with Y* x Y*~¢ for each k = 2,...,n and
i=1,...,k=1 Fori=1,...,n, define r; € Sym(Y*) by (4,7) — (6, ) for each
6 € Y1 and each j € Y, and define p; € Sym(Y™) by

(6,00 = (6",)\) whered€ Y and A=(1,...,1) e Y™
’ (6,)) where6€Yiand A#(l,...,1) € Y i

The set ®.(p) = {p,...,pn} generates Wr(P,n), by Remark V.58.3. We refer
to ®,(p) as a set of standerd generators for Wr(P,n). Note that given Y™, each
permutation in ®,(p) may be found independently, so ®,(p) may be found in NC.

By Remark V.58.4, |Wr(P,n)| = p*"~ ++7+1 which is the p-part of (p")!.
Hence Wr(P, n) is a Sylow p-subgroup of Sym(¥™). To construct a Sylow p-subgroup
of Sym(Q2), write [ =ap+ a1jp+ -+ a,p’ with0<ag; < pforeachi=1,...,v0.
Let C be a collection of ag + - - - + a, disjoint subsets of Q such that a; subsets have
size p' for [ = 0,...,v. Proceed as follows for each A in C in parallel. Suppose
|A] = p'. Let ¢ : Y — A be an arbitrary bijection, and identify A with Y* via ¢.

Hence, for any o € Sym(Y'), we obtain a permutation o of A given by

& — 6°7'°% for each 6 € A.
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Then Wr(£P,1)* is a Sylow p-subgroup Py of Sym(A). Moreover, if {py,...,p} is a
set of standard generators for Wr(P,!), then {p{,...,p} is a set of generators of
Py. Given ¢, this set may be found in NC.

Let P be the direct product of the groups Py for each A € C. Note that [P
equals the p-part of |[Q]!, so P is a Sylow p-subgroup of Sym(f2) (see [14], p. 82).

Hence, the following is in NC:

Problem V.59 SYLFIND-SYM(Q,p)

GIVEN: a set § and a prime p,

FIND: a Sylow p-subgroup of Sym().

Suppose P is a Sylow p-subgroup of Sym(f2). If p > 2, P is also a Sylow p-
subgroup of Alt(f2}, and if p = 2, then P N Alt(R) is a Sylow p-subgroup of Alt(Q).
This intersection may be formed in NC since P normalizes Alt({2) (Problem II1.21).

Hence the following problem is in NC:

Problem V.60 SYLFIND-ALT(Q, p)

GIVEN: a set  and a prime p,

FIND: a Sylow p-subgroup of Alt(2).

We now consider the problem of SYLCONJ for symmetric groups. We exploit
our knowledge that a Sylow p-subgroup P of Sym(f) is the direct product [Jpeo P9,
where O is the set of orbits of P, and each P° is isomorphic to a wreath product
Wr(P,i) = P*---1 P* (i terms), for some i < log, |92

In the algorithm given above for finding a Sylow p-subgroup of Sym(Q), we
identified subsets of § that are orbits of some Sylow p-subgroup, thereby reducing
to the case where || is a p-power, say p*. In that case, we noted that a Sylow

p-subgroup is isomorphic to Wr(P,n) = P*}]---| P" (n terms), which acts on the set
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Y™ (see Remark V.58.5). Hence any bijection ¢ : Y™ — Q yields a Sylow p-subgroup
Wr(P,n)* of Sym(f).
Now consider the following:

Problem V.61 SYLCONJ-SYM(Q, P, )

GIVEN: Sylow p-subgroups P, P, < Sym(),
FIND: an element g of Sym({2) for which P{ = P,.

The algorithm for Problem V.61 has an overall structure similar to the al-
gorithm for Problem V.59. First, we reduce to the transitive case by finding
h € Sym(f2) that maps the set of orbits of P, to the set of orbits of P,, replac-
ing P, by P}, and handling each orbit independently in parallel.

So we may assume P, and P, are transitive on (2, where [} = p"; we seek
g € Sym(f2) such that P = P,. Our approach is to find two bijections ¢; : Y™ =
with the property that Wr(P,n)¥? = P;, for j = 1,2. Finding such bijections
suffices, since the permutation ¢ = 7', € Sym(Q) satisfies P/ = P,. Hence

Problem V.61 is in NC by the following:

Lemma V.62 Let || = p", LetY = {l1,...,p}, let p be a p-cycle in Sym(Y), and
let Wr(P,n) < Sym(Y™) be defined as above. Then given a Sylow p-subgroup P of
Sym(1), a bijection ¢ : Y™ — Q for which Wr(P,n)¥ = P can be found in NC.

Proof: Let ®,(p) = {p1,...,pn} be a set of standard generators for Wr(P,n) <
Sym(Y™). Find a system D = {A,,...,A,;} of blocks for P (Problem II.12; each
block of size p"~'), and find an element o, of P that induces a p-cycle in Sym(D).
Relabel the elements of D, if necessary, so that o, induces the permutation given
by A; — Aje. P{AA‘l] is isomorphic to Wr(P,n — 1). Recursively, label each point

v € Ay with an (n — 1)-tuple in Y™! so that Wr(P,n — 1) induces P{AA‘I} via
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the identification of each point in A; with its label; furthermore, this identification
associates the set of standard generators ®,_,(p) = {p1,...,pn-1} of Wr(P,n —1)
with a set of generators {oy,...,0,-1} of Pﬁ;l}. For each point v € A,, suppose the
label of v is § € Y"~?; relabel v as as (§,1). Foreach j =1...,p—1 in parallel, and
for each (4,1) < A, in parallel, label (6,1)”’ € A i as (6,17'). Note that p, induces
0 on D, but not on . Let 7 be the permutation in Sym(f2) that fixes pointwise
Q\ Ay and 721 = (6?)®'. Note that o? € Pa, x -+ x Pa,, the subgroup of P that
stabilizes each block in D. Hence (¢2)*! = 721 ¢ Pa,. Replace o, by a,7~1. Now
o}, is the identity on Q. Hence Wr(P,n)¥ = (Wr(P,n — 1)%, p%) = (P(a,},0.) = P,
so this labelling of (1 provides a desired bijection.

This procedure is in NC because the depth of the recursion is n = O(log |0]).

Let p be an odd prime. Suppose P, and P; are two Sylow p-subgroups of
Alt(£2), and hence of Sym(f2). The above algorithm for SYLCONJ-SYM is inad-
equate for finding an element in Alt(f2) that conjugates P, to P,, since the per-
mutation g returned by SYLCONJ-SYM may be odd. We therefore show how to
construct an odd permutation h that normalizes P,, so that the product gh is odd
and satisfies P?* = P,. Our approach will be to find an odd permutation that nor-
malizes the group generated by a single p-cycle in P;, and to use the wreath product
structure of P, to obtain a permutation that normalizes P,.

Let P be a Sylow p-subgroup of Sym(f) (g odd), |©2| = p". To find an
odd permutation that normalizes P, it suffices to find an odd permutation h that
normalizes Wr(P,n) on Y™ by Lemma V.62, since if ¢ be a bijection from Y™ — 2
for which Wr(P,n)” = P, then h¥ is an odd permutation of Q that normalizes P.

Let Y = {1,...,p}, and let p be a p-cycle in Sym(Y). Recall that r; € Sym(Y") is
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defined by (8, 7) — (6,7°) for each § € Y'~! and each j € Y, and that p; is defined

to act on Y™ by

(6,2)% = (67,A) where6€ Y and A=(1,...,1) € Y™~
, (6,A) wherede Y and A#(1,...,1) e Y™

For each § = (42,...,6,) € Y"1, let 55 be the p-cycle pf;z""f‘", andlet N=(s; |6 €
Y"1'). Note that ps is a p-cycle on the set Cs = {(,68) | i € Y}, for each § € Y1
The sets Cy, for § € Y"1, comprise a collection of p"~! pairwise disjoint subsets
of Y", each of size p. Hence N is an elementary abelian p-subgroup of Wr{P,n) of
order p*"~'. Each of pg, ..., ps acts on the set {s; | § € Y"1}, so N <« Wr(P,n).

Let & be a permutation in Sym(Y) that normalizes {p) so that p* = p for some
7 =1,...,p— 1. Define hs analogously, i.e., let hs = h"gz““’f'"; note that hs induces
h on Cj, and the identity on Cjs for 8 # §. Let h be the product of such h;, i.e.,
h = [seyn-1 hs. Then h normalizes N because it normalizes each (ss); furthermore,
k normalizes Wr(P,n) because it normalizes (p1) and it centralizes each ps,...,pn.
If & is an odd permutation, then so is k. Hence it suffices to find an such an A that
is odd.

Suppose two permutations «,f each consist of a single n-cycle, i.e., a =
(e1,...,a,) and B = (by,...,b,). A permutation h for which a* = B can be
found easily: let h be a permutation that maps a; to &; for each z: = 1,...,n.
Then h~'ah = B. Thus, to determine an odd permutation h € Sym(Y), that
normalizes P* = (p}, for each | = 2,...,p — 1 in parallel, let & € Sym(Y)
satisfy p™ = p/. One such h; is an odd permutation (in fact, half are), since
Sym(Y) = Al(Y )Ngym(v)(P"), by the Frattini argument.

We have proved
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Lemma V.83 Given an odd prime p and a Sylow p-subgroup P of Sym(R), an odd

permulation o € Sym(Q) that normalizes P can be found in NC.

We now have the tools to describe an NC algorithm for the following:

Problem V.64 SYLCONJ-ALT(Q, P, P,)

GIVEN: Sylow p-subgroups P, P, < Alt(Q),
FIND: an element g of Alt(Q?) for which P} = P,.

If p=2, and P, P; are Sylow p-subgroups of Alt(f), then, for j = 1,2, find
Sylow p-subgroups P! of Sym(f2) with P; < P; as follows. For j = 1,2, find a
minimal block A; for P;, let s; be the permutation that transposes the two points
of A; and fixes all other points in ©, and set P} = (P}, s;).

Let g = SYLCONJ-SYM(Q, P, P;) (Problem V.61). If g is an odd permuta-
tion, then let 2 be a generator of P} that is an odd permutation, and replace g by
gh. Note that both Py and P; are Sylow p-subgroups of Alt({?) that are contained
in Alt(Q2) N Py, but Alt(Q?) N P; = P,, so P{ = P;, hence we may return g.

If p > 2, P, and P, are Sylow p-subgroups of Sym({1), so we can find g =
SYLCONIJ-SYM(R?, P, P,;). If g is odd, let k be an odd permutation that normalizes

P; (Lemma V.63), and replace g by gk. Return g.

Sylow Subgroups of Small Groups

For a group G = (S) < Sym(f2) where |G} < |§|¢ for some constant c, there
are brute force algorithms for finding and conjugating Sylow subgroups of G. The
elements of such a group G can be enumerated in NC: Let S; = SU{1}, and proceed
in a succession of rounds; in the i-th round, let S; be the set obtained by forming

the set of products {gh | g,k € S;—;} (the set of products of elements of S of length
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less than or equal 2'), and removing duplicate permutations. This process ends after
log, |G| rounds, since every element in G can be expressed by a word in S of length
no greater than |G| (an upper bound on the diameter of the Cayley graph of G
formed with §).

The following two procedures exploit the NC enumerability of polynomially
sized groups. Each procedure is correct by construction and in NC because |G| is
polynomial in |QQ].

Problem V.65 SYLFIND-SMALL(G, 2, p)

GIVEN: G = (§) < Sym(Q) where |G| < [2|° for some constant ¢, and a prime p,

FIND: a Sylow p-subgroup of G.

Procedure for Problem V.65:

enumerate G

let P = {1}

while possible (sequentially)
choose ¢ € G\ P of p-power order that normalizes P
{test all such elements in parallel }
P — (P,g)

return P O

Problem V.66 SYLCONJ-SMALL(G,Q, A, P,)

GIVEN: Sylow p-subgroups P, P, of G < Sym(f)), where |G| < |©?J° for some

constant ¢,

FIND: an element g of Sym(Q) for which P} = P,.

Procedure for Problem V.66:
enumerate G
for each g € G in parallel
test if P/ = P, (Problem II.1)
return one such successfully tested g <



(5]

Coordinatization

Earlier in this chapter, we obtained an action of classical simple group G on
a set Y that is permutation-isomorphic to a natural action of G on a projective
(n — 1)-space over a finite field F. The set of points of this projective space is the
set V of 1-spaces of an associated n-dimensional vector space V. We now make this
permutation-isomorphism explicit by assigning to each point in Y the coordinates
of a vector in V (relative to some basis), so that the action of G on V induces the
given action of G on Y. For example, if G = PSL(n,q), then Y is identified with
V where V & Fp, such that the action of PSL(n,q) on V induces the action of G
on Y. Such coordinates are “homogeneous coordinates”; for each point, we choose

an appropriate scalar multiple so that the last nonzero coordinate of is 1.

Definition V.67 Let (G,Y) € G. A coordinatization of Y is a function f:Y —
F™ that associates to each pointy € Y a vector f(y) € F™, such that the induced map
y — (f(y)} is an isomorphism of the projective spaces Y and F", i.e., it preserves

collinearity (collinearity in Y is via Problem V.{1).

Remark V.68 In subsequent problems, V or V appear as parameters. The reader
should bear in mind that V and V arose from a coordinatization of some (G,Y) € ¢
(Problem V.69). The action of G on Y remains available, if implicit, since Y and
V are identified. Hence, an element (resp. subgroup) of GY, in effect, is an element
(resp. subgroup) of GY. Moreover, an element (resp. subgroup) of G¥ induces
an element (resp. subgroup) of GV, and hence of GY. (See SYLFIND-SIMPLE
Problem V.135, and SYLCONJ-SIMPLE Problem V.148).
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Problem V.69 COORDINATIZE(Y,G)
GIVEN: (G, Y)€ G

FIND: a vector space V and a coordinatization f: Y — V.

Procedure for Problem V.69:
let {zy,...,2,} = FIND-INDEPENDENT-SET(G, ¥} (Problem V.47)
{ {z1,...,2.} is maximal such that z;4; § W; = [z,...,35],fori=1,...,n=1}
let u be a point of W3 not on any of the lines [y, z3), [z1, 3], or [T2, 23]
(Definition V.39 and Problem V.41)

let F be a set of size |[z3,u]| — 1
let ¢ be an arbitrary bijection from [z3,u] — (W2 N[z, ) to F
for each point p of [z3,u] — (W; N [z4,22]) in parallel

label p as (i(p), t(p),1)
define 0 = a € F' where 13 has been labeled above as (a,a,1)
define 1 = B € F where u has been labeled above as (3, 8,1)
label z; as (1,0,0) and z; as (0,1,0)
{ we may view [z1,z;] as the line at infinity of the projective plane W3, 3 as the
“origin,” [z1,z3] as the “z-axis”, [z, 73] as the “y-axis,” and [z3,u] as the line
“z = y;” we have labeled the (finite) points of the line z = y and points at infinity
of the z— and y—axes }
{ label the z— and y-axes }
for each point p, = (a,a,1) € [z3,u] in parallel

label the point [z, 23] N [p4, 2] as (a,0,1)

label the point [z2, 3] N [pa, 21] as (0, a,1)
{ label the remaining “finite” points of W3 }
for each point p € W3 \ [z,, ;] in parallel

label p as (a,b,1)

where [p, 23] N {21, 23] = (a,0,1) and [p, z1] N [z2, 23] = (0, b, 1)

{ now label the points on the “line at infinity” }
for each point p = (a,1,1) € [z1,u] — {z,} in parallel

label [z3,p] N W; as (a,1,0)
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{ now define field operations on F' consistent with the geometry of W5 }
for each pair a,b € F in parallel
define a + b = ¢; where {¢),¢,1) = [(0,5,1),(1,1,0)] N [(a, a, 1), z,)
for each pair a,b € F in parallel
define axb=01if a or b is 0, otherwise
define a * b = ¢; where (¢1, ¢2,1) = [23,(1,,1)] N [z2, (5,0, 1)]
{ coordinatize W;, i = 4,...,n — 1, sequentially }
for i =4,...,n — 1 (sequentially) (*)
{assume points of W; are labeled with i-tuples with last nonzero coordinate 1}
relabel each point y = (a,...,q;) € W) as the i + 1-tuple (ay,...,a;,0)
label z;4, as (0,...,0,1)
{ it is helpful to consider W; as the “hyperplane at infinity” of W;y,,
and z;y; as the “origin” of Wiy,. }
let u be any point on [zi41,(1,...,1,0)] other than x4, or (1,...,1,0)
label u as (1,...,1)
for each unlabeled point = € Wiy, \ [zi41,u] in parallel
label it as follows:
find y = (ay,...,a;,0) = [z,z:a] N W;
find z = (b;,...,6;,0) = [z,u] N W,
find ¢;,¢; € F such that z = ¢y + cou; (where u; = (1,...,1,0))
(by brute force, since | F| is small)
h — —cifcz (e2 # 0 since z € [z41,u])
label z as (ha,, ..., ha;, 1)
{ z=(ha; —1,...,ka; — 1,0), so (hay,...,ha;,1) is on both [u,z] and
[Zi+1,¥], so it must be the unique point of intersection of these two
lines, namely, z }
for each unlabeled point = € [z;4;,u] in parallel
findy= (a+1,qa,...,a,1) =[z,2] N[(1,0,...,0,1), ]
label z as (a,...,qa,1)
let f:Y — F™ be the function that maps each y € Y to the n-tuple with which it
has been labelled
return V=F"tand f O

Lemma V.70 COORDINATIZE is correct and in NC.



78

Proof: COORDINATIZE is correct by construction. See [17), Proposition 11.1 and
also [14], Sect.20.3, p.353.
By Lemma V.38, dim(V') is logarithmic in |Y|. Hence, the one sequential loop

(line (*) in the procedure above) has a logarithmic number of iterations. 0
COORDINATIZATE (Problem V.69), leads to the following:

Remark V.71 In subsequent problem statements, the phrases “given a vector
space V" and “given (G, V) € G*” (Definition V.31) mean that we are given all of

the following;:
1. the characteristic and size of a field F over which V is constructed,

2. the set of elements of F, together with addition and multiplication tables for

F,
3. the dimension n of V over F,

4. the set of vectors in V, together with scalar multiplication and vector addition
tables for V.
Also, the phrases “given a form ¢ on V” or “given (G*,V, ¢) € G*" (Definition

V.317) mean, in addition to the above,

5. a complete table of values ¢(u,v) for all u,v € V (or ¢(v) for all v € V if ¢ is

a quadratic form).

Finding G* < SL(V) that Induces G on V.

Recall from Definition V.31 that G denotes the set of pairs (G, X') where G is

a classical simple group acting on X in its natural action, and G* denotes the set of
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pairs (G*, V') where G* = G*' < SL(V) and (G'V,V) € G, where GV is the group
G* induces on V.

If (G,V) € G, there exists a unique group G* < SL(V) such that (G*,V) € G*
and G* induces G on V. In particular, if G = PSL(V), PSp(V), PSU(V), or
PQV), then G* = SL(V), Sp(V), SU(V), or Q(V), respectively. (Recall that
dim(V') > 8 by Remark V.32, so we never consider nonsimple groups such as Sp(4, 2)
and SU(3,2).)

Since the elements of the group G* are linear transformations which act on a
vector space V, while G is isomorphic to the quotient group G*/Z(G"), it is more
natural to work with the group G*. We will compute a Sylow subgroup P* of G* in
the action of G* on V, then obtain the group P that induces a Sylow p-subgroup
P of G in the action of G on V (and hence on Y, since ¥ and V are identified by
COORDINATIZE). This induced group (P')V is a Sylow subgroup of G.

Given generators for G < Sym(V'), we show in this section how to find gener-

ators for G < SL(V) and find, for each element ¢ € G, an element ¢* € G* that

induces g on V.

Lemma V.72 Given a vector space V and (G,V) € G, we can find a basis for V
in NC.

Proof: Selecting one nonzero vector from each of the 1-spaces found by FIND-

INDEPENDENT-SET(G, V) (Problem V.47) yields a basis of V. O

The following two lemmas describe how we can translate between linear trans-

formations on V and the permutations of V they induce.

Lemma V.73 Let T € GL(V). If we are given the matriz [T)g of T with respect to

a basis B, then we can compute in NC the action of T on V and the action induced
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byT on V.

Proof: For each v € V in parallel, compute [Tv]s = [T]s{v]s, where [v]s denotes
the coordinate (column) vector of v with respect to B. This suffices for the actions of
T on both V and V—knowing Tv implies knowing (Tv). This is in NC by Remark
v.37.0

Lemma V.74 Suppose g € Sym(V) and there exists some linear transformation
T € GL(V) that induces g on V. A matriz [T)g for T with respect to a given basis

B = {vi,...,vn} can be computed in NC.

Proof: Suppose T € GL(V) induces the same permutation in Sym(V) as g. For
each v; € B, choose a vector in the 1-space (v;)¢ and write it as a linear combination
3_; ai;v; of the basis vectors in B. T must map v; to some nonzero scalar multiple,
say c;(¥; aijv:), of this linear combination. There are only (|F| — 1) = |V| choices
for c1,...,¢cn. For each such choice in parallel, test if the matrix (cja;;) induces
the permutation g on V. The element g is induced by some linear transformation,
hence for some choice of scalars, so one of these tests must succeed, say for scalars

- --»¢n. Then the matrix (c}a;;) induces g. 0

The following problem, TRANSLATE-ELT is in NC by Lemma V.74. 1t is
used by TRANSLATE-GROUP.
Problem V.75 TRANSLATE-ELT(g,V,V, B)

GIVEN: an element ¢ € Sym(V')} induced by a linear transformation in GL(V); a
basis B = {v,...,v.} for V,

FIND: the matrix with respect to B of a linear transformation that induces g on

V (such a linear transformation is unique up to a scalar).
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An analogous lemma for Sym(V') is even more straightforward.

Lemma V.78 Suppose g* € Sym(V) and there ezists some linear transformation
T € GL(V) that induces g~ on V. The matriz [T)g for T with respect to a given

basis B = {v,...,v,} can be computed in NC.

Proof: Express each v{ as a linear combination 3_;ai;v; (an NC computation).

Then T = (a.-_,-). 0

Lemma V.77 LetT € GL(V). We can determine in NC whether or not T induces

the same permutation on V as some element of a given group G < GL(V).

Proof: Determine the permutation in Sym(V) induced by T. Apply MEMBER
(Problem II.1). D

Problem V.78 TRANSLATE-GROUP(G,V,V, B)

GIVEN: a basis B of a vector space V, (G, V) € G, and G = (A),

FIND: matrices, relative to B, of generators for the group G* for which (G*, V) €
G" and G" induces Gon V.

Procedure for Problem V.78:
for each generator g of G in parallel
T, «— TRANSLATE-ELT(g,V,V, B) (Problem V.75)
t, — (T,)" { the permutation in Sym(V) induced by the matrix T,}
(Lemma V.73)
G* — COMMUTATOR((t, | ¢ € A)) (Problem IL16)
{ use permutation action on V (Lemma V.73) }
for each generator g of G* in parallel
let M, be the matrix with respect to B that induces g on V (Lemma V.76)
return {M, | g a generator of G*} ©

Lemma V.79 TRANSLATE-GROUP is correct and in NC.
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Proof: Let @ be the kernel of the action of G* on V. If G*' < (, then G*' acts
trivially on V. This is impossible, however, since G*/Q is simple and acts faithfully
on V. Hence 1 < G'Q/Q < G*/Q = G, so G* = G~'. This procedure is in NC

since the procedures it invokes are in NC. [

Problem V.80 TRANSLATE-p-GROUP(P,G,V,V,B)

GIVEN: a vector space V = F", and a Sylow p-subgroup P = {S) of G where
(@, V)€ g, and a basis Bof V,

FIND: matrices, relative to B, of generators for the Sylow p-subgroup P- of G*
that induces P on V, where (G*,V) € G~ and G" induces G on V.

Procedure for Problem V.80:

let |F|—1 = ap", where (a,p) =1

let ¢t € F have order p" (Problem II.15; test all ¢ in parallel)
¥ «— {TRANSLATE-ELEMENT (s",V,V,B)* | s € S}
return P* = (¥, t]}) <

Lemma V.81 TRANSLATE-p-GROUP is correct and in NC.

Proof: Let G* = TRANSLATE-GROUP(G,V,V, B). P is the largest p-subgroup
of G* that induces P on V. The element r = TRANSLATE—ELEMENT(SV, V,V,B)
€ G" induces an element of P for each s € S; hence ¥ C P"Z. But P*Z is nilpotent,
so P*Z = P* x Q) for some @ < Z where || divides a. Hence r* < P*, and so
¥ C P*. If p divides |Z|, P*N Z is a nontrivial Sylow p-subgroup of Z. Z is abelian
(in fact, cyclic), so it has a unique cyclic Sylow p-subgroup, generated by tI. Hence,
P = (U,tI). TRANSLATE-p-GROUP is in NC since the procedures it invokes are
in NC.0O

Having shown how to construct (G*, V) € G*, given (G, V) € G, for which G*
induces G on V and G*’ = G* (Problem V.78), we will have occasion to find (S) and
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S+, given any S C V. We have already given algorithms for analogous problems
stated in terms of points in V (Problems V.45 and V.53); we recast these problems

here in terms of vectors in V.

Problem V.82 SPAN-VECTORS(G", V, A)
GIVEN: (G*,V) € G and AC V,

FIND: the set of vectors in {A).

Lemma V.83 SPAN-VECTORS is in NC.

Proof: Let A = {(a) | a € A}, let A* = SPAN-POINTS(G*7,V, A) (Problem V .45;
in NC by Lemma V.46), and return the set of vectors in the collection of 1-spaces
A~ 0
Problem V.84 PERP-VECTORS(G-,V, A)

GIVEN: (G*,V) e G*, G2 SL(V),and aset ACV,

FIND: At

Lemma V.85 PERP-VECTORS is in NC.

Proof: Let A = {{a) | a € A}, let A* = PERP-POINTS(G*",V, A) (Problem
V.53; in NC by Lemma V.54), and return the set of vectors in the collection of

1-spaces A*. [

Constructing Bilinear and Quadratic Forms

The SYLFIND-CLASSICAL and SYLCONJ-CLASSICAL procedures invoke
the procedure CONSTRUCT-FORM to obtain a bilinear or hermitian form on V.
If V is an orthogonal space over a field of characteristic 2, CONSTRUCT-FORM re-

turns a pair of forms, one bilinear and one quadratic. In that case, recall (Definition
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V.14) that the bilinear form ¢ is determined by the quadratic form Q via

¢(u,v) = Qu + v) — Q(u) — Q(v). (*)

In the remainder of this chapter, the phrases “given a form ¢” and “given (G*,V, ¢) €
G" mean a complete table of values ¢(u,v) (or ¢(v) if ¢ is quadratic) for all u,v € V
(Remark V.71). Furthermore, all forms considered are nonsingular or 0.

If G is a classical group, there is a form used in the definition of G. Forms
are used chiefly to construct isometries (e.g., in MATCH-BASES, Problem V.100)
and to test whether a given linear transformation is an isometry (e.g., in procedure
SYLCONIJ-IRRED-CYCLIC, Problem V.136). As we have seen in Problem V.84,
given any vector v or subspace U, we can form v and U' without the aid of forms.
Similarly, we may test whether a vector v is isotropic or singular without the use
of forms by testing if v € vt. Also, we may test whether a subspace U is totally
isotropic by testing if U < Ut. If G is orthogonal and the characteristic is 2,
we may use the quadratic form to test if a vector v is singular (Q(v) = 0), since
possibly @(v) = 0 while ¢(v,v) # 0 where ¢ is defined from @ as in (*) above.
Note, however, that we have already obtained the the orbit of isotropic or singular
vectors, since v is isotropic or singular if (v) is in the unique G-orbit on V of size
relatively prime to the characteristic of V, which is the set ¥’ constructed in the

procedure NATURAL-ACTION (Problem V.35).

Remark V.86 In the problem statements of several of the following procedures,
the phrase “a form ¢" will indicate either a bilinear (or Hermitian) form defined
on V x V, or a quadratic form, in the case that the group is orthogonal and the

characteristic of the underlying field is 2. In the latter case, the associated bilinear
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form (needed, for example, by MATCH-BASES) may be obtained directly from
the quadratic form via (*). Granting this minor ambiguity permits a considerable
simplification of notation and obviates the need to explicitly repeat this remark in

each relevant problem statement.

Problem V.87 CONSTRUCT-FORM(G", V)

GIVEN: (G*, V) € G~ (Definition V.31), where V is a vector space over a field F,

FIND: a bilinear or Hermitian form on V' preserved by G* (nonsingular, unless
G* = SL(V)), and in addition, a quadratic form preserved by G* if G*
is orthogonal and cher(V') = 2; i.e., a form ¢ such that (G*,V, ¢) € G*)
as in Definition V.31*,

Procedure for Problem V.87:
if G* = SL(V) then return the 0-form
else
if G* is orthogonal and char(V) = 2 then
return CONSTRUCT-QUAD-FORM(G*, V) and
the induced bilinear form (Problem V.89)
else
O « the unique G*-orbit on V of size relatively prime to char(V)
{ O is the set of isotropic or singular points of V }
choose u,,v, € O where u; € vi {Problem V.51)
choose a vector e, in the 1-space u; and a vector f) in the 1-space v,
H, « {e1, f1} (Problem V.82)
{ define ¢ on H, = (e, f1) }
let ¢ler,e1) = ¢(f1, f1) =0, d(er, fi) =1
if G is symplectic then
let ¢(f1,e)) = —1 else let ¢(f1,e,) =1
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choose (&2, f2) € (&1, 1)% N (Hit x Hi*) (Problems IL5, V.84)
Hy — {e1, f1, €3, f2) (Problem V.82)
{ extend by bilinearity (or sesquilinearity if G unitary) to H, }
for each pair u = aje; + by fi + aze; + b, f2 and
v =crey +difi + 26 + do f (ai, by ¢y di € F) in parallel
if G is orthogonal then let ¢(u,v) = a1d; + bicy + azds + byc,
if G* is symplectic then let ¢(u,v) = ayd; — bie; + azds — brey
if G is unitary then let ¢(u,v) = a1d; + 018, + a2d; + b,
{ in particular, ¢(ez, f2) = dlei, i) and ¢(f2, €2) = ¢(f1,€1),
and ¢(ez, €2) = ¢(f2, f2) = dler, f2) = dlez, i) =0}
for each (u,v) € V x V in parallel
A — (u,v)% N (H; x Hy) (Problem IL5; G~ acts on V x V)
let ¢(u,v) = é(e, f) for any (e, f) € A
return ¢ <

Lemma V.88 CONSTRUCT-FORM is correct and in NC.

Proof: Every G*-orbit of pairs of (u,v) € V x V meets H; x H; ([32] pp. 138-139),
so this procedure computes ¢(u, v) for each (u,v) € V x V. Moreover, G* preserves
the form ¢ by construction (cf. [17]), Lemma 13.1). The algorithm is in NC since
PERP-VECTORS (Problem V.84) is in NC, and since we may consider all [V|?

pairs (u,v) € V x V in parallel. 0

Problem V.89 CONSTRUCT-QUAD-FORM(G", V)

GIVEN: (G, V) € G* with G* orthogonal, char(V) = 2, and dim(V') even,

FIND: a quadratic form on V preserved by G*.
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Procedure for Problem V.89:
O « the unique G*-orbit on V of odd size {O is the set of singular 1-spaces of vV}
choose u,v; € O where u; ¢ vi' (Problem V.51)
choose ¢, fy € V where ¢, € u; and f; € v,
Hy, « {e1, f1} (Problem V.82)
{ define ¢ on H, }
for each u = aye; + b1 f; € H;
let ¢(u) = a;by { in particular, this implies ¢(e;) = ¢(f) =0}
{ extend to all of V' }
for each v € V in parallel

A — v N H,
let ¢(v) = ¢({u) for anyu € A
return ¢ <

Lemma V.90 CONSTRUCT-QUAD-FORM is correct and in NC.

Proof: Every G*-orbit of vectors meets H, ([32] p. 138-139), so this procedure
computes ¢(v) for each v € V. Moreover, G* preserves the form ¢ by construction
(cf. [17], Lemma 13.2). The algorithm is in NC since PERP-VECTORS (Problem

V.84) is in NC, and since we may consider all |V| vectors in V in parallel. 0

Remark V.91 Note that the form ¢ returned by CONSTRUCT-QUAD-FORM is

a complete table of values ¢(v) for each v € V.

QOperations with Standard Bases

Procedures in later sections require the ability to manipulate standard bases

for symplectic, unitary, and orthogonal spaces.

Definition V.92 An ordered basis B = {ey,..., e f1,---, fi;u1,...,u,} for a vec-

tor space V with a nonsingular bilinear (or Hermitian if V is unitary) form ¢ is
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called a standard basis if d(e;, e;) = o(fi, f;) =0 and é(e;, f;) = &; for 1 < i,7 <1,
and 5 < 2 with (u,,...,u,) anisotropic (0 if s =0). For an orthogonal space V of
characteristic 2 with nonsingular quadratic form Q, define a standard basis for V

using the bilinear form induced by Q, with the additional requirement that each e;

and f; must be singular, ie., Q&) = Q(f;) =0 fori=1,...,1t.

Note that ¢ and s are invariants of V, independent of the choice of standard

basis (see [16], 9.1); in fact t, is the Witt index of V.

Remark V.93 The input to the following problem, STANDARD-BASIS1 {Prob-
lem V.94), does not include a triple (G*, V, ¢) € G*, but only a vector space V and
a form ¢. This is a concession to FIND-IRREDUCIBLE (Problem V.123), which
calls STANDARD-BASIS] when no such group G* is available (in all other invoca-
tions of STANDARD-BASISI1, a suitable G* is, in fact, available). Hence, within
the procedure for STANDARD-BASISI, calls to SPAN-VECTORS (Problem V.82)
and PERP-VECTORS (Problem V.84) are not valid, since part of the input to
those problems is such a group G*. To handle this anomaly, the procedure for
STANDARD-BASIS1 computes spans and perps directly as needed. The properties
of the vector space listed in Remark V.71, which apply in this case as well, since

the procedure for FIND-IRREDUCIBLE explicitly constructs all the elements of

the vector space.

Problem V.94 STANDARD-BASIS1(V, ¢)

GIVEN: the set of vectors of a vector space V over a field F' as in Remark V.71, a
zero or nonsingular alternating or symmetric bilinear or Hermitian form
¢ on V; and a quadratic form @ that induces ¢ if V is an orthogonal

space of characteristic 2,

FIND: a standard basis B for V.
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Procedure for Problem V.94:
if ¢ is the zero-form, then return any basis of V
else if V =0 then return 0
else
W20
while possible
{ find W+, see Remark V.93 }
let W= {veV|é(v,w)=0forall w e W}
{ for each v in parallel, test all w in paralle} }
e; + a nonzero isotropic or singular vector in W+
{ ei is a vector for which ¢(e;,e;) =0 or Q(e;) =0}
fi + an isotropic or singular vector in (¥, &;)1 \ (e;) with é(e;, fi) =1
let (Wie., fi) = {w+ae; + 8fi | w € W,a, € F}
W — (W, fi) {nowdim(V)~-dim(W)<2}
m 1 {ie,m=dim(W)/2}
if W =V then
return B = {e1,...,em; fi,- .. fn; }
else { dim{(W) < dim(V) }
choose any vector u, € W+t
if (W,u;) =V then
return B = {e),...,em; f1,. -y fmit1}
else { must have dim(V) = dim(W) + 2 }
choose u; € W\ (u;)
return B = {ey,...,em} f1,--y fmiur, 2} ©

In this procedure m is the Witt index (Definition V.15), and (ey,...,e,) is a

maximally totally isotropic or totally singular subspace of V.

Lemma V.95 STANDARD-BASIS!1 is correct and in NC.

Proof: The correctness of the construction follows from the definition of standard

bases (Definition V.92). It is in NC by Remark V.37 and Lemma V.38. []
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The following procedure is used in procedure SYLCONJ-CYCLIC, Problem
V.138.
Problem V.96 STANDARD-BASIS2(G*",V, ¢, U, Us)

GIVEN: (G*,V,9) € G°, where G* % SL(V) (Definition V.31"; Remark V.71),
and two maximally totally isotropic or totally singular subspaces Uy, U,
such that V = U, & Uy,

FIND: a standard basis B = {e1,...,€m; f1,..., fm} for V where U) = (e1,...,em)
and Uy = (f1,..., fm)-

Procedure for Problem V.96:
choose e; € U; and f, € U, with ¢(e), i) =1
{ if ¢ is quadratic and char(V) = 2, then ¢(e;) = #(f)) = 0, since U; and U, are
totally singular in that case}
let W = {e,, f1)} (Problem V.82)
for i = 2,...,m (sequentially)
W1 — PERP-VECTORS(G*,V,W) (Problem V.84)
choose ¢; € Wt NU, and f; € Wt N U, with ¢(e;, fi) =1
W « (W, e;, fi) (Problem V.82)
return B = {e1,...,em; f1,..., fm;} ©

Lemma V.97 STANDARD-BASIS? is correct and in NC.

Proof: The correctness of the construction follows at once from the definition of

standard bases (Definition V.92). It is in NC by Remark V.37 and Lemma V.38. 0

Definition V.98 Two vector spaces Uy, U, with forms ¢,, ¢2, respectively, of the
same type, are isometric if there is an isometry o (with respect to ¢, ¢; for which
U = U,. Two bases By, By for Uy, U, respectively, are isometric of there is an

isometry o for which B = B,.

Remark V.99 Let ¢ be the zero-form on a vector space V. We make the following

conventions:
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1. “isometric” and “isometry” mean “isomorphic” and “isomorphism”;

2. all subspaces are regarded simultaneously as nonsingular, totally isotropic, and

totally singular;
3. V=V L V" means V = V; @ V4;

4. “a standard basis” (as in Definition V.92) means “any basis” (see Problem

V.94);
5. if E is a subspace ol V, E+t = V.

These conventions permit SYLCONJ-CLASSICAL (Problem V.133), and the other
problems it invokes, to be applicable when G* = SL(V), in addition to other classical

group cases.

Problem V.100 MATCH-BASES(V, ¢, By,...,B,)

GIVEN: a vector space V with a form ¢ (see Remark V.71), and standard bases
B; = {e{,. el ff,. .. ,ff;u{, ...,ul} for isometric subspaces U;, j =
1,...,a{t and s £ 2 are fixed parts of the input; see the remark following
Definition V.92),

FIND: standard bases C,,...,C, for Uy,...,U,, respectively, which are pairwise

isometric.
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Procedure for Problem V.100:
if s = 0 or ¢ is the zero-form return By,...,5,
else if s =1 then
for each B;, j = 2,...,a in parallel
if V is not an orthogonal space or char(V) # 2 then
choose v € (ul) such that ¢(v,v) = #(u},u}) (test each in parallel)
else { V is an orthogonal space and char(V) = 2 (4 is quadratic) }
choose v € (uj} such that ¢(v) = #(u}) (test each in parallel)
Ci —A{el,-...eli fi,- .o, fisw)
else if s = 2 then
for each B; j =2,...,a in parallel
if V is not an orthogonal space or char(V) # 2 then
choose v,w € (u],u}) such that
$(v,v) = d(u},u}), dw,w) = ¢(ul,ul), and (v, w) = ¢(u!,ul)
(found by testing all such pairs in parallel)
else { V is an orthogonal space and char(V) # 2 (¢ is quadratic) }
choose v,w € (ui,u}) such that
B(v) = $(ud), $(w) = (u), and B(v + w) = (u + u}) (+)
(found by testing all such pairs in parallel)
{ line (*) ensures the associated bilinear form satisfies
(v,0) = (ul, u}), since (u,v) = §(u + v) — §(u) - $(v) }
Ci—{el,...elifi, ... fi jv,w}
return ¢;,...,C. ©

Lemma V.101 MATCH-BASES is correct and in NC.

Proof: The procedure is correct, since for any 1 < ¢ < j < a, the map from C; =
p

{ef, el fiyoo o fhud, o ul} to G = {e],....el; fi,..., fi;u],...,ul} given by

e — ef;ff — fliulb — ul forall I = 1,...,4;k = 1,...,s is an isometry, by

construction. MATCH-BASES is in NC by Remark V.37 and Lemma V.38. 0
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Basic Operations with Flags

Definition V.102 A maximalflag of a vector space V is an ordered set {E,,..., E.}
of subspaces of V where Ey < +++ < En, dim(E;) =14, and E,, = V. If V is a space
with a form, then a maximal totally isotropic or totally singular flag of V is an or-
dered set {E,...,En} of totally isotropic or totally singular subspaces of V where

E) <--- < En, where dim(E;) =i and m is the Witt indez of the form on V.

Remark V.103 Let ¢ be the zero-form on a vector space V. We make the following

conventions, in addition to those already stated in Remark V.99:
1. “maximal totally isotropic or totally singular flag” means “maximal flag”;
2. “Witt index” means “dim(V)".

This convention allows Problems V.106, V.108, and V.110 to be applicable in the
case G~ = SL(V).

Lemma V.104 Let E be a subspace of V. Given the set of vectors of V, the set £
of dim( E) + 1-dimensional subspaces of V containing E can be enumerated in NC.

Moreover, if G < GL(V) the action of G(g) on € can be found in NC.

Proof: Any subspace U € £ is equal to (£,v) for some v € V' \ E. Moreover, one
can test in NC if (E,v) = (E,v;). So if V is the ordered set {v;,...,v]}, one can
form all subspaces U; = (E,v;} for v; € E. For any pair of such subspaces U;, U;, if
Ui=U; and i < j, then discard U;.

To obtain the action of G on £, for each generator g of G in parallel, for each
U; € € in parallel, determine U; € € such that U = U; by testing all elements of £

in parallel.
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Remark V.105 Let E be a totally isotropic or totally singular subspace of V. Each

9 € G(g) acls on the quotient space EL/E via E+ v (E+v)? = E + 9.

Given (G*,V,¢) € G*, the SYLFIND-CLASSICAL procedure requires the
ability to find suitable (maximal totally isotropic or totally singular) flags in V
that are stabilized by some Sylow p-subgroup, where p is the characteristic of of V.

Problem V.108 STABILIZE-FLAG(G",V, ¢, F)

GIVEN: (G*,V,¢) € G,

FIND: the stabilizer in G* of a maximal flag F = {E\, ..., E,} of totally isotropic
or totally singular subspaces (G = SL(V) permitted; see Remarks V.99,
V.103).

Procedure for Problem V.106:
let By =0; Lo =G";
for i = 1,...,m (sequentially)
let L; < L;_, be the stabilizer of E;_; + {e;) in the action of L;_; on E},/E;,
{ construct this action by using Lemma V.104, then use Problem I1.19 }
return L, <

Lemma V.107 STABILIZE-FLAG is correct and in NC.

Proof: For i = 1,...,m, let F; denote the flag {E,,..., E;}. Assume inductively
that L;_; is the stabilizer of F;_;. Note that L; < L;_; and that L; is the stabilizer
of E; by construction. Hence L; is the stabilizer of F;. It follows that L, is the
stabilizer of 7, = F. STABILIZE-FLAG is in NC by Remark V.37 and Lemma
v.38. 0
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Problem V.108 FIND-FLAG(G", P*,V, ¢)

GIVEN: (G*,V,¢) € G, a group P* acting on V that stabilizes a maximal to-

tally isotropic or totally singular flag of V (G = SL(V) permitted; see
Remarks V.99, V.103),

FIND: a2 maximal flag F of totally isotropic or singular subspaces of V stabilized
by P=*.

Procedure for Problem V.108:
let m be the dimension of a maximal totally isotropic or totally singular subspace
{ see Problem V.94, Remark V.103, and the remark following Problem V.94 }
let £ =0
for i = 1,...,m (sequentially)
choose ¢; such that E;_; + (e;) is fixed by the action of P* on EL./E,_,
{ use G* to construct this action using Lemma V.104 }
let E; = (ey,...,&)
return F = {E,,...,E,} ©

Lemma V.109 FIND-FLAG is correct and in NC.

Proof: By the choice of E,..., En,, the flag F is stabilized by P*. FIND-FLAG is
correct by construction. FIND-FLAG is in NC by Remark V.37 and Lemma V.38.
0

Problem V.110 MAP-FLAG(G*,V, F,F, ¢)

GIVEN: (G, V, ¢) € G" and two maximal totally isotropic or totally singular flags
F,F' of V (G = SL(V) permitted; see Remarks V.99, V.103),

FIND: an element ¢ € G* that maps F to F'.
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Procedure for Problem V.110:
let 7 = {E,, E,,...,E,}
let 7' = {E{,E,...,EL}
let By = E) =0; Lg = G*;
for i =1,...,m (sequentially)
let L; < G* be the stabilizer of E! in the action of L;_; on E';-,/E!_,
{ construct this action by using Lemma V.104, then use Problem II.19 }
let g; be an element of L; that maps EY' "' to E!
{ 9: € L;, hence stabilizes E},..., E!l_, }
return g, ---gn, <

Lemma V.111 MAP-FLAG is correct and in NC.

Proof: For i = 1,...,m, let F; denote the flag {E,,..., E;} and let F! denote
the flag {Ej,..., E!}. Assume inductively that g;---g;_; maps Fi_; to F/_;; in
particular, E1["'""" = E!_,. Hence E{*"*~ is a l-space of E';-, /E!_,. Inductively,
each L; induces a classical group on E';,/E!_, (by Fact V.22), and is therefore
transitive on the isotropic or singular 1-spaces of E';-,/E!_,.

Hence there exists an element g; € L; that fixes /_, and maps EJ*""! to
E}. Since g; stabilizes F{_,, the product g; - - - g; also maps F;_, to F!_,. Moreover,
E?% = EI, by the choice of g;, so g, - g; maps F; to F!{. Hence, by induction,
the element g; - - - gm found by MAP-FLAG maps F to 7. MAP-FLAG is in NC

by Remark V.37 and Lemma V.38. 0
We digress from the main development to prove that Problem IV.9 is in NC.
Lemma V.112 FIND-NORMALIZED-SYLOW-SIMPLE is in NC.

Proof: Construct a set X on which S acts primitively (using Problems 11.28 and

I1.32). In each of the following cases below, compute a Sylow subgroup @ < § using
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the action of § on X, but return the lifting of Q to a subgroup of KX in the original
action on £ (Remark I1.3).

Case 1: |S| < | X|® (this includes the cases where § is exceptional or sporadic;
see [16], Lemma 6.1). Compute a Sylow 2-subgroup @ of S using SYLFIND-SMALL
(Problem V.65).

Form the set Q of all Sylow 2-subgroups of S by conjugation by forming Q*
for each s € S in parallel and discarding any duplicates obtained (one can test if
Q* = Q* for any 51,3, € S using Problem II.1). Since P acts on Q, and since
p is relatively prime to |S], it is also relatively prime to |@|, a set upon which §
acts transitively. At least one element of Q is stabilized by P. Let Qo € @ be
such an element (Problem I1.19). Hence Qo € Q is normalized by P. Ns(Qo)/Qo is
solvable because it has odd order (see [12]). Then Ng(Qy) is solvable, since Qq and
Ns(Qo)/Qo are solvable. Return LIFT(Qo) < K < Sym(Q). This concludes Case
1.

If |S| > | X8, then S is either alternating or classical. Construct a set ¥ on
which the action of S is a natural action (Problem V.35, Definition V.26). If S is
alternating, |Y'| > 6; if S is classical, it is defined in terms of a vector space V with
dim(V) > 8 (cf. Definition V.26 and the comments following it).

Case 2: If Sis 6-transitiveon Y, then S is alternating. Since p does not divide
|S[, it cannot divide |Aut(S)| (see [17], p. 366). Hence P induces by conjugation
only trivial automorphisms of S, so P normalizes all Sylow subgroups of S. Let
@ = SYLFIND-ALT(S, 2), a Sylow 2-subgroup of S. Asin Case 1, Ns(Q) is solvable.
Return LIFT(Q) € K < Sym(Q?) (Remark I1.3).

Case 3: Neither Case 1 nor Case 2 applies, so § must be a classical group.

If ¢ is 2 prime and ¢* is the largest prime power that divides |S], then g is the
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characteristic of the field over which § is defined (see [1]). Coordinatize ¥ as the
1-spaces of a vector space V' using Problem V.69 (Definition V.67) and construct a
form ¢ on V using Problem V.87. P normalizes some Sylow g-subgroup Q, hence it
stabilizes a maximal flag of totally isotropic or totally singular subspaces (the same
flag stabilized by @).

Let 7 = FIND-FLAG(S, P,V,¢) (Problem V.108), so F is a maximal to-
tally isotropic or totally singular flag in V. Let B = STABILIZE-FLAG(S,V, ¢, F)
(Problem V.106) be the stabilizer of the flag F. Then B is a Borel subgroup ([16],
p- 499; [9], p. 104). Let @ = SYLFIND-SOLVABLE(B, q) (Problem II1.7). Then
Q is a Sylow g-subgroup of S. B is solvable and B = Ng(Q) ([9], pp. 172, 262).
Return LIFT(Q) £ K < Sym(f?) (Remark 11.3). 0

Decompositions Induced b low Subgroups

Theorem V.113 Let P be a Sylow p-subgroup of G where (G,V, ¢) € G (Definition
V.81). Let (G*,V,¢) € G (Definition V.831") where G* induces G on V. Let P*
be the largest p-subgroup of G that projecis onto P. Then there is a decomposition
V=WV4i1... LV, LV, with the following properties:

1. P gets on Q= {W,..., Va; Vo).

2. (p#2) Foreach j =1,...,aqa, (P-)}GV;} is cyclic and acts fired-point freely on
Vi. Also, either:

(a) Py, acts irreducibly on V;, or

(b) Each V; splits into the direct sum of two Pfy-irreducible totally isotropic

or totally singular subspaces of dimension  dim(V;).
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3. (p=2) Each V; has dimension < 2, and Pvy acts irreducibly on each V; # V..

4. Any V; # V. lies in V€ except possibly if p=2 and G is orthogonal, in which
case V. = 0 and there can be one or two subspaces V; g V€, each of dimension

L.
5. P induces a Sylow p-subgroup of Sym({V,,...,V,}).

6. The set stabilizer Gq induces the symmetric group on V. N Q and fizes each

member of Q1 not in VE N Q.

7. Ve=Cv(P"), e, V.= {veV|P* fizes v}. Note that V. may be 0.

Furthermore, if V; # V. and p > 2, then V; is a nonsingular subspace of
minimal dimension subject to the condition that p divides |(G')r{,l}| Also, in case
2.b. above, if G is symplectic or orthogonal, then }dim(V}) is odd, and if G is
unitary then dim(V;) is even.

Ifp=2and V. € V€, then V; is a nonsingular 2-space subject to the re-
quirement that 8 divides |(G")¥{,'}| If G is not orthogonal or has odd dimension,
then |(V1)9| = [ dim V]. In the case where G is orthogonal and even dimensional,
if V is the orthogonal sum of subspaces isometric to V; then |(W4)%| = 1dimV;

otherwise |(V1)%0| = 1dimV - 1.
Proof: [18] Theorem 5.7. O

Two important steps in the process of constructing a Sylow p-subgroup of G*,
where (G*,V, ¢) € G~, is to construct a decomposition of V' described in Theorem
V.113, and to construct a Sylow p-subgroup Fy, of (G')r{,',} (p # 2), where V; is one of

the subspaces in the decomposition of V. We describe algorithms for these problems
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in the next two sections, respectively. (If p = 2, then this Sylow p-subgroup Py is

smeall, and may be found by brute force using Problem V.65.)

Making a Decomposition

Let (G, V,¢) € G* and let p be a prime. Suppose V' & Fooot VEFLifG is
unitary. This section describes how to construct a decomposition for V induced by
some Sylow p-subgroup of G* as in Theorem V.113. Let U be a nonsingular subspace
of V in the standard decomposition (Theorem V.113) for a Sylow p-subgroup P* of
G* where U # Cv(P*). If p # 2, and e is the order of ¢ modulo p, then dim(U) is
given by the following table. The values in this table are obtained by determining
the dimension of the smallest vector space V for which the orders of the symplectic

group, orthogonal, or unitary groups, respectively, are divisible by p (using Facts

V.17, V.18, and V.19). If p = 2 then dim(U) is defined to be 2.

Dimension of U

symplectic  orthogonal  unitary

e odd e 2e 2e
e even 2 e
e £
3 Odd 2
£ even e

2

This table, and the fact that dim(U) = 2 when p = 2, justify the following
procedure COMPUTE-DIM-NONSINGULAR-SUBSPACE (Problem V.115). This
procedure is in constant time by inspection. The following lemma explains the

comments within the procedure for Problem V.115.

Lemma V.114 Let (G*,V,¢) € G™ and let U be a nonsingular subspace of V in the
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standard decomposition for a Sylow p-subgroup P* of G* where p # 2, and let e be
the order of ¢ modulo p. If e is odd, or if G* is unitary and 5 is even, then P* acts
reducibly on U (as in Theorem V.118.2.5); otherwise (i.e., if e is even and G* is
symplectic or orthogonal, or if G* is unitary and % is odd), then Py acts irreducibly

on U (as in Theorem V.113.2.a).

Proof: If e is odd, then by the above table, dim(U/) = 2e. In this case, Facts
V.17, V.18, and V.19 imply that |GL(e, q)| divides each of |Sp(2e,q)|, |U(2e, )|,
and |O%(2e,q)|. U has Witt index e in these cases, and has a standard basis
{e1,-..,€;61,...,8.}. Relative to this basis, the form has the matrix [ :I(:]I g ]
and GL(e, q) can be embedded into Sp(2e, q), U(2e¢, q), or Ot(2¢, q) via

X~ [ )0{ XO_, ] or [ )0{ -)-(—?-: ]if unitary.

The image of a Sylow p-subgroup of GL(e,q) is a Sylow p-subgroup of Sp(2e,q),
U(2e,q), or O*(2e,q), and this Sylow p-subgroup acts irreducibly on U; = {¢;, ..., €.)
and on U; = (4,...,6:). Similarly, if § is even, then |GL($, ¢?)| divides [U(e, q)|,
and U has Witt index £ and a standard basis {cl,...,e§;61,. . .,6§}, and a Sylow
p-subgroup acts reducibly on U.

Otherwise, [GL(e,q)| does not divide |Sp(e, ¢)| or [O*(e,q)|, and |GL(%, ¢?)|
does not divide |U/(£, ¢)|. Hence, an embedding as above is impossible, and P acts

irreducibly on U. ]
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Problem V.115 COMPUTE-DIM-NONSINGULAR-SUBSPACE(G*,V,p)

GIVEN: (G*,V,¢) € G, G~ # SL(V), where V = F" (or F% if G is unitary),

9
and a prime p dividing |G| but not dividing ¢,

FIND: the dimension of a nonsingular subspace U < V such that either p # 2 and
dim(U) is minimal such that p divides |(G')?U}|, or p =2 and 8 divides
(G™) (-

Procedure for Problem V.115:
if p=2 { so ¢ must be odd } then return 2
else { p#2}
e «order of ¢ mod p { e smallest positive integer for which p|(g* — 1) }
if G* is symplectic then
if e is odd then return 2e
{ there exists a nonsingular subspace U of dimension 2e such that some
Sylow p-subgroup splits U as U = U; & U, with U, U, totally isotropic
of dimension e }
else { e is even } returne
{ some Sylow p-subgroup acts irreducibly on a nonsingular subspace U of
dimension e }
if G* is orthogonal then
if e is odd then return 2e
{ there exists a nonsingular subspace U of dimension 2e such that some
Sylow p-subgroup splits U as U = U; & U, where Uy, U, are totally
singular of dimension e }
else { e is even } return e
{ some Sylow p-subgroup acts irreducibly on a nonsingular subspace U of
dimension e }
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if G* is unitary then
if e is odd then return 2e
{ there exists a nonsingular subspace U of dimension 2e such that some
Sylow p-subgroup splits U as U = Uy & U, where Us, U, are totally
isotropic of dimension e }
else { e is even }
if £ is even then return e
{ there exists a nonsingular subspace U of dimension e on which some
Sylow p-subgroup splits U as U, & U; with Uy, U, totally isotropic of
dimension § }
else { 7 is odd } return
{ there exists a nonsingular subspace U of dimension 5 on which some
Sylow p-subgroup acts irreducibly } <

Problem V.116 MAKE-NONSINGULAR-SUBSPACE(G", V, ¢, d, sgn)

GIven: (G*,V,¢) € G, G* 2 PSL(V), with dim(V) > d where d is the di-
mension of a nonsingular subspace in the decomposition of some Sylow
subgroup P~ of a classical group defined on V (except for Cy(P") if
P > 2, and except for 1-spaces if p = 2), and a sign sgn = £ if V is
orthogonal and d is even,

FIND: a nonsingular subspace W < V of dimension d, and a standard basis for
this subspace (see Definition V.92); moreover if V is orthogonal and d
is even, then the subspace W found has the isometry type sgn, i.e., the
Witt index of W is § if sgn is “+” or § — 1 if sgn is “—.
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Procedure for Problem V.116:
C={e1,- . rm;i fiy--es fmits,...,u,} — STANDARD-BASISI(V, ¢)
(Problem V.94)
if d is even then { — $ else | — 1(d - 1)
if d is even and
(V is symplectic or V is unitary or (V is orthogonal and sgn =“+")) then
{ here s =0, so 2! = d < dim(V) = 2m, hence l < m
so the following line is valid }

return ({e1,...,e; fi,..., fi), {ery-.se 0,020 f1})
else if d is odd then

{ d is odd, so V is unitary (see table preceding Problem V.115); hence 0 < s < 1,
so 2l +1 =d < 2m < dim(V) £ 2m + 1, hence [ < m so the following line is valid }

return ({e,...,e5 fr,..., fsw), {er,....e5f1,---, frim})
else { V is orthogonal, sgn =“—" (and hence d is even) }
{heres <2,502(I-1)+2=d < 2m < dim(V) < 2m + 2,
hence I — 1 < m, so the following line is valid }

return ((31,---,et—l;fh---,fl-l;uhﬂz), {el,“-:el-l;fh---:.fl—l;uhu2}) 3%
Lemma V.117 MAKE-NONSINGULAR-SUBSPACE is correct and in NC.

Proof: By construction, the space returned has dimension d, and has the correct
isometry type if V is an orthogonal space and d is even. The procedure is in NC

since STANDARD-BASIS1 (Problem V.94) is in NC. []

Problem V.118 MAKE-DECOMP(G*,V, é,p)

GIVEN: (G*,V,¢) € G*, G* ¥ PSL(V), and a prime p # char(V) that divides
1G°|,

FIND: a collection of pairs U = {(U1,B1),...,{Us,Bo); (U, Bc)}, where
{Ur,...,Ua; U} is the standard decomposition of V (Theorem V.113)

for some Sylow p-subgroup of G*, and B; is a standard basis (Definition
V.92) for U; for each i = 1,...,a;¢ (possibly U. = 0 and B, = §).
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Procedure for Problem V.118:
d «— COMPUTE-DIM-NONSINGULAR-SUBSPACE(G*, V, p) (Problem V.115)
{ (*) if p # 2, then d is the dimension of a minimal nonsingular subspace U < V
for which p||( G‘)t{"u}l; if p =2, then d = 2 and there exists a nonsingular 2-space U
such that 8|[(G")?U}I }
if G* is orthogonal and p = 2 then
if ¢ = 1 mod 4 then sgn «— “+” { so U will satisfy (G')?U} =0%2,q) }
else {g=—1mod 4} sgn «“~" { so U will satisfy (G‘)'{JU} =07(2,9), cf. (")}
if G orthogonal and p # 2 { so d is even (see table preceding Problem V.115) }
if {p|(q§ + 1)} then sgn «—“F” { so U will satisfy (G‘)({JU} = 0%(d,q), cf. (*}}
Up = 0; W VU «0;i ~— 1 { loop initialization }
while dim(W) > d do (sequentially)
ie—i+1; W (U,...,Ui)! (Problems V.82, V.84)
if dim(W) > d { get another subspace }
H* (G")?;,,} { pointwise stabilize a basis for a complementary subspace of
W in V (Problem I1.19); H" is a classical group by Fact V.22 }
if |H*| > |[W|® then
(Ui, B;) — MAKE-NONSINGULAR-SUBSPACE(H", W, ¢|w, d, sgn)
(Problem V.116)
else form a standard basis for W (Problem V.94) and find (U, B;) as in
Problem V.116
U~ {(U,B),...,(U;,Bi)}
if dm(W)=d
B; — STANDARD-BASIS}(W, ¢|w)
let m and m’ be the Witt indices of U; and W, respectively
{ standard bases for each are available }
if m =m’ (i.e.,, W and U, have same the isometry type) then
Ui = Wi U — {(Uh,B1),. .., (Uiz1, Bi-1), (U;, Bi); (0,0)}
else { W and U, have different isometry types }
if p=d =2 and G" orthogonal then { see Theorem V.113.4 }
let {w;,w:} be a basis for W with ¢(w;,ws) =0
U~ {(Ul,Bl)? cooy (Uicr, Bic1), ({wn), {wn}), ((w2), {w2}); (0,0)}
else U. — W;B, « B;; U « {(Uy,By),...,(Ui-y, Biy); (Ue, Bo)}
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if dim(W) < d { this occurs in the last iteration, if at all }
if p=d =2 (and hence dim(W) = 1) then
let {w,} be a basis for W

U = {(U1,B1),. .., (Uis, Biy), ({wr), {un})}
else
U. — (U |(U,B) e U)*
B, — STANDARD-BASIS1(U., ¢|u.)
U — {(th,B1),...,(Uiz1,Bim1); (U, B.)}
returnlf <

Lemma V.119 MAKE-DECOMP is correct and in NC.

Proof: The correctness follows from the construction and Theorem V.113. Note
that the only time we encounter spaces of the same dimension with different isometry
types is in the even dimensional orthogonal case. (Two odd-dimensional orthogonal
spaces might not be isometric, but this case does not arise, since if d is odd, V must
be a unitary space, by the table preceding Problem V.115.) Two even dimensional
orthogonal spaces Uy, U, have different isometry type if they have different Witt
indices (this can be determined by inspecting standard bases for U, and U;). The
procedure is in NC by Remark V.37 and Lemma V.38. 0

Finding Cyclic Sylow Subgroups

Given (G, V, ¢) € G, this section shows how to construct a Sylow p-subgroup
P? of (G‘)r{,'} (p # 2), where V; is one of the subspaces in the decomposition of V
described in Theorem V.113.

Let e be the order of ¢ modulo p. Let r be the highest power of p dividing
¢°—1 (so ¢° = lmodp). Let V = F;, and embed GL(1,¢°) — GL(e, q) as follows.
Since Fye = V as F,-spaces, we may identify Fye with V. Each element of GL(1, ¢%)

is Fye-linear, hence Fy-linear on V, hence induces an element of GL(e, g). Also, since
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|GL(1,4°)] = |Fg| = ¢* — 1 and |GL(e,q)] = ¢*=="/2(q* = 1)--- (¢* = 1){g — 1), p"
is the highest power of p that divides |GL(1,¢®)| and also |GL(e,q)|. Hence, the
embedding carries Sylow p-subgroups of GL(1, ¢°) to Sylow p-subgroups of GL(e, q).
Since GL(1,¢°) = F. and F. is cyclic, a Sylow p-subgroup of of GL(e,q) is cyclic

of order p".

Lemma V.120 Let P = (T} be a Sylow p-subgroup of GL(e,q). There ezists a

basis for V relative to which the matriz of T is a companion matriz

(00 ... 0 a )
10 ...0 (447
M(Qo,.--,ae-1)=

0 0 ... 0 ae

\0 0 ... 1 ac—l)
of a polynomial z° — a,_12°7! — ... — ap of degree e.

Proof: P must act irreducibly on V, otherwise there would be an invariant subspace
of dimension f < e, which would imply, by Fact V.5, that p| ¢/ — 1, a contradiction.
Choose any nonzero vector v € V. If T% € U = (T'v | 0 < i < j) for some j < e,
then U is a proper T-invariant subspace of V, contradicting the irreducibility of
V. Hence TV ¢ (T'v | 0 < i < j) for any j < e, so {v,Tv,T%,..., T v} is a
basis for V. Relative to this basis, the matrix of T is the companion matrix for the

olynomial z¢ — a,_y2°"! — - - - — @, where T*v = apv + ey Tv + -+ + @ T 0. 0
e ’
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Problem V.121 COMPANION(e,p, q)

GIVEN: a prime p, a prime power ¢ where p does not divide ¢, and the order e of
q mod p,

FIND: an e x e companion matrix over the field F, with order p", the largest
power of p that divides ¢° — 1.

Procedure for Problem V.121:

let r be the largest power of p that divides ¢® — 1

{ by Lemma V.120, there exists some companion matrix of order p" }

for each companion matrix T = M(aq,...,a.—;) (not all ¢; = 0) in parallel
let o7 = ORDER({T)) (Problem II.15) }

return any T for whicher=p" <

Lemma V.122 COMPANION is correct and in NC.

Proof: Correctness follows from Lemma V.120. COMPANION is in NC because

all ¢° — 1 companion matrices are tested in parallel, and Problem 1I.15 is in NC. O

Problem V.123 FIND-IRREDUCIBLE(U, ¢, B, p)

GIVEN: a vector space U of dimension d over F = F, (or F = F2 if U is unitary);
a nonsingular alternating, Hermitian, or quadratic form ¢ on U {both U
and ¢ as in Remark V.71); a standard basis B (see Definition V.113) with
respect to ¢, and an odd prime p such that Isom(U) has an irreducible
cyclic Sylow p-subgroup,

FIND: a generator for some Sylow p-subgroup of Isom({/).
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Procedure for Problem V.123:
if U symplecticor orthogonal then {d is even by the table preceding Problem V.115}
k — ‘5"
else { U is unitary; hence d odd by the table preceding Problem V.115 }
k « d { note that in either case, |U| = ¢** }

A — a d x d companion matrix of order [U| — 1 (test all, as in Problem V.121)
E — {(A)u {0} { E is an NC-enumerable subring of GL(U) isomorphic to Foar }
let €=e" Ve € E { so the map e+ € is the involutory automorphism of E }
let Tr(e) = $4-d elFl' for all e € E (T is the trace map E — F)
if (U, ¢) is symplectic then { construct an alternating form B’ over F, }

let X be an element of F' which satisfies X = —A # 0

let B’ be the map given by (u,v) — Tr(Auvw)
else if (U, ¢) is unitary then { construct a Hermitian form H' over F: }

let H' be the map given by (u,v) — Tr(u%) when |F| = ¢
else if (U, ¢) is orthogonal then { construct a quadratic form Q' over F, }

let Q' be the map given by u — T'r(uz)
let ¢’ denote B', H', or @', if U is a symplectic, unitary, or orthogonal space, re-
spectively
B’ — STANDARD-BASIS1(F, ¢') (Problem V.94; see Remark V.71)
(B,B') — MATCH-BASES((U L E),(¢ L ¢'), B, B") (Problem V.100)
let t : E — U be the linear map defined by ¢(B') = B { B, B are ordered bases }
choose g € {A) with order ¢* + 1
let g, € GL(E) be the map u — ug
{7 = 97" so g, preserves ¢'; t~1g,t € GL(U) preserves ¢ and has order ¢* + 1}
return the power of g; = t~1g;¢ that has the largest p-power order <

Lemma V.124 FIND-IRREDUCIBLE is correct and in NC.

Proof: As noted in the procedure, if U is unitary, d = dim(U) is odd. Then
e — € induces the involutory automorphism of F. It then follows that H’ is, indeed,
Hermitian: Tr(v@) = Tr(u%) = Tr(uv). Nonsingularity is straightforward here,
and in the symplectic and unitary cases too. By the proof of Proposition 15.2 in

[17], g2 € GL(U) preserves the form ¢ and has order ¢* + 1. FIND-IRREDUCIBLE
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returns an element whose order is the largest p-power that divides ¢* + 1, which is
the largest p-power that divides |Isom(U)|, by Facts V.17, V.18, and V.19. FIND-
IRREDUCIBLE is in NC since |E| is polynomial in |U|. Moreover, the procedures
FIND-IRREDUCIBLE invokes are in NC, as are the constructions of B’, H’, and
@". Only the cases considered in the procedure for Problem V.123 are relevant, by

Lemma V.114. 0

Problem V.125 SYLFIND-CYCLIC(G*,V, ¢,U, B, p)

GIVEN: (G™,V,¢) € G* where G* ¥ SL(V), V = Ftyor V = Fpoif
G" is unitary, an odd prime p # char(V), a standard basis B =
{h1,.o  hei by oo ke uy, ... u,) for a nonsingular subspace U of V,

where U is in the standard decomposition for some Sylow p-subgroup

P* of G* (but U # Cv(P"),
FIND: a Sylow p-subgroup of (G‘)?U}.

Procedure for Problem V.125:
let e be the order of ¢ mod p
let r be the highest power of p dividing ¢% — 1
if ((G" is symplectic or orthogonal) and e is even) or
(G" is unitary and (e is even and £ is odd)) then { see Lemma V.114 }
{ find a cyclic Sylow p-subgroup of isometries acting irreducibly on U}
C «FIND-IRREDUCIBLE(U, ¢, B, p) (Problem V.123)
{ (C) is a Sylow p-subgroup of Isom(U) }
return (C) N (G')‘{JU} (Problem II.21, using the permutation action on U)
else { we seek a cyclic p-group that splits U inte Uy @ U,, each of dimension e }
A — COMPANION(e, p,q) (Problem V.121)

let Uy = {h1,...,h.) and Uy = (ky,..., k) { in this case s =0}
let M=| " 2 [V isuni 4 0 1 otherwi
et =|o 7t |HVis unitary, or [ 0 A ] otherwise

let T be the linear transformation of V such that [T']z = M
return (T) ©

Lemma V.126 SYLFIND-CYCLIC is correct and in NC.
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Proof: If G* is symplectic or orthogonal and e is even, or if G* is unitary and
e is even and § is odd, then we seek a group that acts irreducibly, by Lemma
V.114. SYLFIND-CYCLIC returns a Sylow p-subgroup of Isom(U/) because FIND-
IRREDUCIBLE returns a Sylow p-subgroup of the full isometry group of U. Oth-
erwise, the group we seek acts reducibly on U, and irreducibly on U, and U, by
Lemma V.114. T has order p", the p-part of ¢° — 1. The p-part of _|(G‘)'{”U}| is also
equal to the p-part of ¢° — 1, by Facts V.17, V.18, and V.19. Hence (T) is a Sylow
p-subgroup of (G‘)?U}. SYLFIND-CYCLIC is in NC since the procedures it invokes
are in NC, and by Lemma V.38. 0

SYLFIND for Classical Groups

This section presents algorithms to find Sylow subgroups of a group G* for
which (G*,V,¢) € G*. This is done using SYLFIND-PSL, if G- & PSL(n,q), or
using SYLFIND-CLASSICAL, if G* is symplectic, unitary, or orthogonal.
Problem V.127 INDUCE(G*,V,W, B, o)

GIVEN: (G*, V) € G*, a decomposition W = {W1,...,W,} of V, a set of pairwise
isometric standard bases B = {B,,...,B,} (see Definition V.98), where

W; = (B;)} for all {, and a permutation ¢ € Sym({1,...,a}) (G* = SL(V)
permitted; see Remark V.99),

FIND: an isometry h, of V such that B*s = Bi- foralli=1,...,a.
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Procedure for Problem V.127:
if G* = SL(V) then
let B; = {v],...,vi}forj=1,...,a
return the isometry h, induced by v} +» v!" fori=1,...¢ and ji=1,...,a
{ note Bf* = Bje fori=1,...,a}
else { G* is symplectic, unitary, or orthogonal }
let B; = {e],....el; fi,....f5;ud,... .} forj=1,...,a
return the isometry A, induced by (e;-i el s fi o 7, ui — u',’:'),
forj=1,...,a,i=1,...,t,and k=1,...,s { note B}* = B fori=1,...,a }

o

Lemma V.128 INDUCE is correct and in NC.

Proof: k, is an isometry because it maps a set of standard bases to isometric
standard bases, and by construction, A, induces o on W. INDUCE, in fact, runs in

constant time, and is hence in NC. [I

Problem V.129 SYLFIND-GL(V,p)

GIVEN: a vector space V = F' with n > 2 and a prime p,

FIND: a Sylow p-subgroup of GL(V).
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Procedure for Problem V.129:
let B = {v,,...,v,} be the standard basis for V
if p divides ¢ then
let M= {I+Ej{a)|1<i<j<n,acF,}
where Ej;(a) is the zero matrix except for an « in the 7, j position, and « € F,
let T = {T € GL(V) | [T)s € M}
{ T is the set of linear transformations with upper triangular unipotent
matrices with respect to B }
return (7)
else { p does not divide q }
if p > 2 then e — order of ¢ modulo p else e — 2
a e [2]
let V. = (B.) where B. = {vae41,-..,0a}
for each: =1,...,a in parallel
let W; = (B,) where B; = {v(g_l),.,.l, ces ,'U.‘c}
if p > 2 then M «— {COMPANION(e, p, q)} (Problem V.121)
else {p=e=2}
® « a set of generators for SYLFIND-SMALL(GL(W,),2)
let M = {[R]s, | R € ®} (Problem V.65)
{ [R]s, denotes the matrix of R with respect to the basis B;,
so M is a collection of e x e matrices }
T —{T € GL(V}| Tlw, = Iw, if j #4; [T|w]5, € M}
{ T is a set of | M| matrices which can be formed in paralle] }
let ¥ be a set of generators of SYLFIND-SYM({1,...,a},p) (Problem V.59)
for each o € ¥ in parallel
h, — INDUCE(G™, V, {W;}, {B:},¢) (Problem V.127)
{ h, normalizes (7;,...,T,) since 7}"" =T }
H e« {h, |0 €V}
{ H acts on {T;,...,T,}, hence normalizes (T;,...,T;) }
return P = (0),...,T;,H) <

Lemma V.130 SYLFIND-GL is correct and in NC.

Proof: The subgroup P < GL(V) returned by SYLFIND-GL is a p-group since the

p-group A normalizes the p-group (71,..., 7). PNSL(V) and the decomposition
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{Vi,..., Va; V.} satisfy all the conditions of Theorem V.113. SYLFIND-GL is in NC
since the procedures it invokes are in NC, and since the In2q elements E;;(a) can

be written down in NC, as can the sets 7;. 0

Problem V.131 SYLFIND-PSL(G,V, p)

GIVEN: (G,V) € G where G = PSL(V), and a prime p,
FIND: a Sylow p-subgroup of G.

Procedure for Problem V.131:

let £ be a basis for V found by choosing one nonzero vector from each of the
1-spaces found by FIND-INDEPENDENT-SET(G, V) (Problem V.47)

G* ~— TRANSLATE-GROUP(G,V,V, ) (Problem V.78)

PT «— SYLFIND-GL(V, p) (problem V.129)

P# — PN G" { note that G* = SL(V) } (Problem I1.21)

{ P# is a Sylow p-subgroup of SL(V) }

return (P¥)’ ¢

Lemma V.132 SYLFIND-PSL is correct and in NC.

Proof: Correctness follows from the definition of PSL(V); SYLFIND-PSL is in NC

because the procedures it calls are. 0

Problem V.133 SYLFIND-CLASSICAL(G,V,p)

GIVEN: (G,V) € G where G 2 PSL(V), and a prime p dividing |G|,
FIND: a Sylow p-subgroup P of G.
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Procedure for Problem V.133:
G* «— TRANSLATE-GROUP(G,V,V) (Problem V.78)
{G* < SL(V),G" = G*', and G" induces Gon V }
¢ «— CONSTRUCT-FORM(G",V) (Problem V.87)
{ now (G*,V, ¢) € G*; see Definition V.31%)
if p = char(V) then (Problems [1.16,V.106)
{er,- . vemi frao ooy fmswr, ..., u,} — STANDARD-BASISI(V, ¢)(Problem V.94)
let F be the flag {E,,..., En} where B; = (e,...,&),i=1,...,m
P* « SYLFIND-SOLVABLE(STABILIZE-FLAG(G", V, ¢, F), p)
else { p # char(V) }
{(U1,B1),...,(Ua, Ba); (Ue, Be)} — MAKE-DECOMP(G", V, ¢, p)
(Problem V.118) { U. may be 0 }
(By,...,B:) «— MATCH-BASES(V, ¢, By,...,B;) (Problem V.100)
let B; = {e{,...,ef;ff,...,ff;u{,...,u{} forj=1,...,a
if p=2 then P, «— SYLFIND-CYCLIC(G",V, ¢,Uy, By, p) (Problem V.125)
else P, — SYLFIND~SMALL((G")?{',I},U,-,2) (Problem V.65)
let P, be the group of isometries of V whose generators are obtained from
those of P, by requiring that they are the identity on U; for i # 1
for each j = 2,...,a for which U; is isometric to U; in parallel
g; — the isometry of V induced by the permutation
i, (e, )£, f7) T, (ud, ud) € Sym(Us_,B; U B.)
P; — Py"
if p = 2 and dim(U;) < 2 then P; «— SYLFIND-SMALL((G*)35,,, U:,2)
let ¥ be a set of generators of SYLFIND-SYM({1,...,a},p) (Problem V.59)
for each o € ¥ in parallel
h, — INDUCE(G", V, {U;}, {Bi},o) (Problem V.127)
{ ko normalizes (P,,..., P,; P.) since P’ = P for all i }
H — {hy | 0 € ¥} { H normalizes (P,,...,P; P.) }
P — (P --- PP, H)N G* (Problem I1.21, applied to the action on V)
return (P')V, the group P* induceson V. &

Lemma V.134 SYLFIND-CLASSICAL is correct and in NC.

Proof: The subgroup P* < G~ returned by SYLFIND-CLASSICAL is a p-group,

since the p-group H normalizes the p-group P. P" is a Sylow p-subgroup of G* since
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P* and the decomposition {U),...,U,;U,} satisfy all the conditions of Thecrem
V.113. SYLFIND-CLASSICAL is in NC since the procedures it invokes are in NC.
0

SYLFIND for Simple Groups

The following procedure, SYLFIND-SIMPLE, utilizes the machinery so far
developed in this chapter to solve SYLFIND for simple groups. This procedure is in
fact, a more detailed and formal version of the summary description of the algorithm
given in the opening section of this chapter.

Problem V.135 SYLFIND-SIMPLE(G, p)
GIVEN: a simple group G < Sym(f1) and a prime p,

FIND: a Sylow p-subgroup P of G.
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Procedure for Problem V.135:
X ~ PRIMITIVE-ACTION(G, Q) (Problem I1.32)
{ G acts primitively on X }
if |G| < |X|® then
PX «— SYLFIND-SMALL(GX, p) (Problem V.65)
P? — lifting of P¥ to 0 (Remark 11.3)
return P
else
Y «— NATURAL-ACTION(G, X) (Problem V.35)
N « IDENTIFY(G,Y) (Problem V.55)
if N is “alternating” then
PY « SYLFIND-ALT(Y, p) (Problem V.60)
PX « lifting of PY to X (Remark I1.3)
else {G is a classical group }
(V, f) — COORDINATIZE(G,Y) (Problem V.69)
{f:Y>VadY V)
if N is “PSL” then
PV « SYLFIND-PSL(G,V,p) (Problem V.131)
if N is “some other classical group” then
PY — SYLFIND-CLASSICAL(G, V, p) (Problem V.133)
P¥ — lifting of PV to X (Remark I1.3)
P® — lifting of PX to 0
return P ¢

SYLCONJ for Classical Groups

Problem V.136 SYLCONJ-IRRED-CYCLIC(V, ¢, Pr, P})

GIVEN: a vector space V = F?, 2 nonsingular or 0 form ¢ on V, and two cyclic
groups Py, Py that are Sylow p-subgroups of Isom(V') and act irreducibly
on V,

FIND: an isometry g of V for which P} = P,.
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Procedure for Problem V.136:
if p divides ¢ — 1 then { dim(V) £ 2}
{ q is the size of field over which V is defined }
obtain the permutation action of G* on V (see Lemma V.73) and
return SYLCONJ-SMALL(Isom(V), V, Py, P;) (Problem V.66)
else
let S be a generator for P;" and T be a generator for P;
choose a nonzero vector u € V
{ V =(u,Su, S%,...5" 1) since P} acts irreducibly on V }
for each j =1,...,|P| -1 in parallel
for each vector w € V in parallel
test if the linear transformation g given by
g:Su— (T 'w,i=0,...,n—1isan isometry

return one such successfully tested g ¢

Lemma V.137 SYLCONJ-IRRED-CYCLIC is correct and in NC.

Proof: S and T/ are conjugate in Isom(V) for some 0 < j < |P;|, hence have the
same orbit structure. Hence some choice of j and w yields a linear transformation g
which is an isometry. The procedure is in NC since all vectors of V, and all powers

of T, are considered in parallel. 0

Problem V.138 SYLCONJ-CYCLIC(G",V, ¢, Py, P;)

GIVEN: (G, V, ¢) € G" and two cyclic Sylow p-groups Py, P; of G*, where either
Py acts irreducibly on V, or V is the direct sum of two totally isotropic

or totally singular subspaces, on each of which P} acts irreducibly,

FIND: an isometry g of V for which P} = P,.



119

Procedure for Problem V.138:
if SPAN-VECTORS(G",V,0) = V for every orbit O of P; on V' \ {0} then
return SYLCONJ-IRRED-CYCLIC(V, ¢, P}, P;) (Problem V.136)
else { P and P; are reducible on V }
Vi « { SPAN-VECTORS(G",V,0) | O an orbit of P7 on V \ {0} }
{ each subspace in V; is Py-invariant }
V2 « { SPAN-VECTORS(G*,V,0) | O an orbit of P; on V' \ {0} }
{ each subspace in V, is P;-invariant }
Ui, Uy « distinct proper Py -invariant subspaces in V) such that V = U; @ U,
W1, W, « distinct proper Pj-invariant subspaces in V; such that V = W, @ W,
Bi={er,...,es fr,..., fi;} — STANDARD-BASIS2(G",V, ¢, Uy, Us)
(Problem V.96)
{so Uy ={(er,...,e) and Uz = {f1,..., f1) }
By = {e},-..,€; fi,..., fi;} — STANDARD-BASIS2(G*,V, ¢, W, W,)
{so Wi={e},...,et) and Wo = (f],....f) }
k « isometry defined by e; — ¢!, fi— fi,fori=1,...,t
h; — SYLCONJ-IRRED-CYCLIC(W,, ¢|w1,(P{‘):V“’,I}, (Pg)m,l})
let A be the matrix of by with respect to the basis {e},...,e!}

let M = [ 4 —0-¢ ] if V is unitary, otherwise [ g AO_, ] (*)

0 A
fll « the isometry on V with matrix M with respect to the basis B,
return g = kb; ©

Lemma V.139 SYLCONJ-CYCLIC is correct and in NC.

Proof: The isometry & maps U; and U, to W) and W,, respectively. Hence (Pl")"c
and P; have the same invariant subspaces, W) and W;. Any isometry on V that
maps W, to itself and W; to itself and conjugates (P{k)?;’yl} to (Pz)m,ﬂ is forced to
have the form given in line (*). P9 and P; both fix W; and W, and agree on W,
(and hence on W;). Hence P} = P,. [}
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Problem V.140 MAP-DECOMP(G*,V, é,U, Py, W, P;)

GIVEN: (G*,V,¢) € G*, two Sylow p-subgroups P;,P; of G* (where
(p,char(V)) = 1), and their respective decompositions U
{Uh,...,Us; U} and W = {W;,...,W,; W,} (Theorem V.113) (G*
SL(V') permitted; see Remark V.99),

FIND: an isometry g for which /¥ = W and a collection C = {B,,...,B,;B.}
of bases such that U; = B; for i = 1,...,a,c and if W, W; € W are
isometric, then B; is isometric to B;.

R n

Procedure for Problem V.140:
let O be the set of P;-orbits on &4
let O be the set of Ps-orbits on W
for each Py -orbit O € O in parallel
choose a F;-orbit O’ € O such that |O] = |0/
renumber so O = {lA,...,0;} and O’ = {W;,...,W,;}
for each: =1,...,b in parallel
let B; = {e},...,el; fi,..., fi;ul,...,u}} — STANDARD-BASISI(U;, ¢|u;)
let C; = {e},... el 8i,...,854i,...,4.} — STANDARD-BASISI(W;, é|w.)
(Problem V.94)
(B1,Cy) — MATCH-BASES(V, ¢, B1,C;) (Problem V.100)
(By,...,B;) — MATCH-BASES(V, ¢,B4,...,B.)
(C1,...,Ca) — MATCH-BASES(V, ¢,Cy,...,Ca)
(C ) ~— MATCH-BASES(V, ¢, B.,C.)
go + isometry of V that maps B; toC; forall j =1,...,a,c

i

(i.e.,ejHef,-,f‘r—ré’, uf —ptforl=1,...,tand form=1,...,s)

return the isometry ¢ = [Joco go and the collectlon of bases C = {C,...,C,,Cc}
o

Lemma V.141 MAP-DECOMP is correct and in NC.

Proof: After the calls to MATCH-BASES, all of the bases B,,...,B,,(1,...,Cq
are isometric; also the bases B, and C. are isometric. The element g is an isometry,

since 1t carries standard bases to isometric standard bases. 0
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Problem V.142 FIND-DECOMP(G*,V, ¢, p, P*)

GIVEN: (G*,V,¢) € G*, a prime p, and a Sylow p-subgroup P* of G* (G*
SL{V) permitted; see Remark V.99),

IR

FIND: the standard decomposition of V upon which P* acts.

Procedure for Problem V.142:
V « { SPAN-VECTORS(O) | O an orbit of P* on V \ {0} }
{ each space in V is P*-invariant }
W* «— minimal subspaces of V (under <)
for each subspace X in W* that is totally isotropic or totally singular in parallel
find a subspace X’ in W* not orthogonal to X
{ such a subspace exists by Theorem V.113.2b }
X — (X, X"
X «— {X | X totally isotropic or totally singular in W=}
let W be the union of A" and the set of nonsingular subspaces in W* not in Cy(P*)
{ W is the set of minimal nonsingular P*-invariant subspaces not in Cy(P*) }
for each W € W in parallel
for each nonzero v € W in parallel
W, « Cv(P]) (the set of vectors in V fixed by P;)
(W) — {W, | |P;| is maximal for nonzero v € W }
(W) — {W, | |P;] is maximal or next-to-maximal for nonzero v € W}
M3(W) « {{(V,,V;) | V;,V; € I{W) and (V;, V;) contains more than
two members of TI(W)}
M3 (W) — {{(V.,V;) | V,,V; e IY{W) and (V;,V;) contains more than
two members of TT!(W}}
if p # 2 or G symplectic then
return(Uwewll(W)) U Cy (P~}
else (p = 2 and G not symplectic)
if G = SL(d,g)and g =1 (mod 4) or G* = SU(d,q) and g= -1 (mod 4)
then return (Uwew IT'*(IW)) U { L-spaces of V fixed by P* }
else return (Uwew [I*(W))U { 1-spaces of V fixed by P*} ©

Lemma V.143 FIND-DECOMP is correct and in NC.

Proof: W* is the collection of minimal P*-invariant subspaces. Each subspace in
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W* is either nonsingular, the direct sum of two totally isotropic or totally singular
subspaces, or a I-space in Cy(P*). By construction, W is the set of minimal non-
singular P*-invariant subspaces not in Cy(P*). Having found the set W, Theorem
5.10 of [18] then applies, from which the correctness of FIND-DECOMP follows.
FIND-DECOMP is in NC since the orbits of P* (Problem I1.5) and the span of an
orbit (Problem V.82) can be found in NC. D

Problem V.144 FIND-ISOM(W,V, ¢)

GIVEN: a nonsingular subspace W of a vector space V and a nonsingular form ¢

onV,
FIND: the full isometry group Isom(W).

Procedure for Problem V.144:
B {er,....em; f1,.. ., fmst1,...,us} STANDARD-BASIS1(W, ¢|w)
(Problem V.94)

let M = {[ g 3 ] | Disa?2m x 2m diagonal matrix ;U is an s x s matrix }
let A= {T € GL(W)| [T]p— I has at most two nonzero entries, or [T]|s € M}
if ¢ is bilinear or Hermitian then

let S={TeA| ¢(Tu,Tw)= ¢(u,w)Vu,w € W} { test all u,w in parallel }
else { ¢ is quadratic }

let S={T € A| ¢(Tu) = ¢(u)Vu € W} { test all « in parallel }
for each T € § in parallel

let T" be the isometry of V that fixes each vector of V \ W and induces T on W

return $={T'|Te S} ©
Lemma V.145 FIND-ISOM is correct and in NC.

Proof: Correctness follows from [17] Proposition 14.3; the algorithm is in NC be-

cause W is part of the input. [}
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Problem V.146 SYLCONJ-CLASSICAL(G",V,p, P}, P;)

GIVEN: (G*,V) € G* (Definition V.31), a prime p, and Sylow p-subgroups
Pr,P; < G* (G* = SL(V) permitted; see Remark V.99),

FIND: an element g € G™ for which P? = FP;,

Procedure for Problem V.146:
¢ — CONSTRUCT-FORM(G", V) (Problem V.87)

{ now (G, V, ¢) € G* as in Definition V.31* }

if p # char(V) then

U={U,...,Us;;U.} — FIND-DECOMP(G~, Py, V, $) (Problem V.142)
W= {W,...,W,;; W.} — FIND-DECOMP(G", P;,V, ¢)
(9,.C) — MAP-DECOMP(G",V, ¢,U, P;, W, P;) (Problem V.140)
{C={C,...,Cs,C.} where C; is a basis for W; for eachi =1,...,a,c}
{ P/? and P; act on W and induce Sylow p-subgroups of Sym(W)

by Theorem V.113.5 }
o — SYLCONJ-SYM(W, (P{%)", (P;)") (Problem V.61)
h — INDUCE(G*,V,W,(,0) (Problem V.127)
{ P;*" and P} induce the same Sylow p-subgroup of Sym(W) }
K, « kernel of the action of P;*" on W (Problem I1.18)
K, « kernel of the action of P; on W
{ K" = (Pl'gh)m,'} and KV = (P;)}Y{,I_} foreachi=1,...,a,c

by Theorem V.113.2 }
for each W; € W in parallel { find f; s.t. (K%)= k¥ )

it p > 2 and [(G*)lf| > [Wil* then { (G")f, W) € 0" )

fi «= SYLCONJ-CYCLIC((G") {3, Wi, 8lw,, K1%, K3%) (Problem V.138)
else f; « SYLCONJ-SMALL(Isom(W;), W;, K{*¢, KJ¥)
(Problems V.66,V.144)

[Tl fi
L — Isom(W;) x - -+ x Isom(W,) x Isom(W,) (Problem V.144)
return any b € ghfL N G™ (Problem I1.22, using action on Sym(V))
{ ensure answer is in G* }

else { p=char(V) }

F1 — FIND-FLAG(G",V, ¢, P;'} { find a flag stabilized by P; }
F2 + FIND-FLAG(G",V, ¢, P;) { find a flag stabilized by P; }
g — MAP-FLAG(G",V, ¢,F1,F2) (Problems V.108 and V.110)
returng ©



124

Lemma V.147 SYLCONJ-CLASSICAL is correct and in NC.

Proof: First, consider the case where p is not the characteristic of V. Since ¢
maps the decomposition U to the decomposition W, P;? and P; both act on the
same decomposition W. P;?" also acts on W, and furthermore, P;*" and F7 induce
the same Sylow p-subgroup on W. The stabilizers of W; in P[** and P} may be
different, but the element f conjugates ( Pf’");t.:,.} to (P;)}vv{,._} for each W;. So P;o*/
and Py act the same on the decomposition W. The element ghf is an isometry, but
possibly not an element of G*. By construction of L, any isometry that conjugates
Py to P; must be in ghfL. By Sylow’s theorem, there exists some element of G*
that conjugates P; to P;, hence ghfL N G* must be nonempty.

If p is the characteristic of V, then every Sylow p-subgroup stabilizes a unique
maximal flag of totally isotropic or totally singular subspaces. Let g be an isometry

in G* that maps the flag stabilized by P to the flag stabilized by P;. Then (P})*

and P stabilize the same flag, and hence are equal. [

SYLCONJ for Simple Groups

The following procedure, SYLCONJ-SIMPLE, utilizes the machinery so far
developed in this chapter to solve SYLCONJ for simple groups. This procedure is
in fact, a more detailed and formal version of the summary description given in the

opening section of this chapter.

Problem V.148 SYLCONJ-SIMPLE(G, p, P, P, )

GIVEN: a simple group G < Sym(f?), a prime p, and Sylow p-subgroups P, P;,
FIND: an element ¢ € G for which P{ = P;.
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Procedure for Problem V.148:
X « PRIMITIVE-ACTION(G, ) (Problem I1.32)
{ G acts primitively on X }
if |G| < |X|® then
g% — SYLCONJ-SMALL(G, X, P,, P;) (Problem V.66)
g% « lifting of g% to O (Remark I1.3)
else
(G¥,Y) «— NATURAL-ACTION(G, X) (Problem V.35)
lift P, and P, to P}, PY (Remark I1.3)
N « IDENTIFY(G, Y) (Problem V.55)
if N is “alternating” then
¢¥ — SYLCONJ-ALT(GY, P}, P} Y)
else {G is a PSL or classical group }
(V. f) «— COORDINATIZE(G,Y) (Problem V.69)
{f:Y>VandY -V}
let £ be the standard basis for V
{ find groups that act on V that induce G¥,PY,PY onV }
G* — TRANSLATE-GROUP(GY, V,V,€) (Problem V.78)
Py «— TRANSLATE-p-GROUP(P,G,V,V, ) (Problem V.80)
P; — TRANSLATE-p-GROUP(~,,G,V,V, )
g" — SYLCONJ-CLASSICAL(G", P}, Py, V) (Problem V.146)
g¥ +— element induced by g"on Y =V
g% « lifting of g¥ to X (Remark I1.3)
g% « lifting of g% to
return g ¢

The above procedure is, in effect, a summary explanation of how the the
procedures developed earlier are used to solve Problem V.148 using a case analysis
depending upon the simple group type. This procedure is in NC because all the

procedures it invokes are in NC.
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