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Requirements engineering is a critical and yet poorly understood aspect of software

engineering and other complex design tasks. In this dissertation I focus on requirements
engineering for a particular class of designed artifacts, referred to as reactive systems,
which provide services in response to events in the environment. For this class of systems,
the requirements engineering task is to identify the set of services that best satisfy the
client’s requirements, and to ensure that the client understands and agrees to any trade-offs
between competing concerns such as functionality, performance, ease of use, and cost.
Coming to consensus requires bridging the gap between the client’s requirements, which
describe states in the application domain, and the functional specification, which describes
the services to be provided by the target artifact.

My thesis is that the process of constructing and validating a functional specification
of a reactive system can be carried out using artificial intelligence planning techniques.
The client’s requirements can be expressed as a set of planning problems: finding a
sequence of actions that lead from an initial state to a goal state. The sequence of actions
required to reach the goal state may include actions to be performed by the target artifact.

These actions determine the services that must be provided by the target artifact.
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I have implemented an automated planner and used it to explore the role of planning
in the requirements engineering process. In this dissertation I first describe how require-
ments engineering can be viewed as a planning problem in which actions are composed
into sequences that achieve goal states. I then show how the automated planner can be
used in several parts of the requirements engineering process: proposing action sequences
that satisfy the requirements, constructing functional specifications based on those
sequences, and critiquing the functional specifications by showing violations of client
restrictions. I describe an extended example of using the antomated planner to develop a
functional specification of a benchmark problem, a library database. I evaluate the
strengths and weaknesses of the planning approach to requirements engineering based on

experience with the automated planner.
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CHAPTER 1
INTRODUCTION

The work reported here addresses the formalization and automation of portions of
the requirements engineering process. In particular, this dissertation focuses on the con-
struction and validation of a functional specification of a target artifact based on the objec-
tives and preferences expressed by a client.

My thesis is that artificial intelligence planning techniques can be used to automate
portions of the requirements engineering process. One consequence of this thesis is that
much of the existing work in the domain of automated planning can be applied to require-
ments engineering problems. As a result, we can avoid a great deal of duplicated effort. A
primary goal of this dissertation is to show how automated planning techniques can be
applied to requirements engineering. However, requirements engineering introduces its
own set of issues. A secondary goal of this dissertation is to identify the areas in require-
ments engineering where standard planning methods fall short and new techniques are
needed.

I argue that with the right perspective and set of assumptions, work in Al planning
may be brought to bear on three aspects of requirements engineering: proposing a func-
tional specification, analyzing a proposed specification for deficiencies, and modifying a
specification to remove deficiencies. I describe a program called OPIE which automates
portions of the requirements engineering process.

In the following section I begin by describing the scope of this work, reviewing the
requirements engineering process and defining the terms I will use throughout the disser-

tation. In the next section I introduce the planning approach that I have taken. I then dis-



cuss the benefits of formalizing and automating requirements engineering, describe the

contributions of this research and present an overview of the rest of the dissertation.
ifyi Ivi vi Functional Artifact

Requirements engineering is one of the early phases in the development of func-
tional artifacts. In this dissertation I focus primarily on a particular sub-process of require-
ments engineering, which I refer to as specification engineering.

In this dissertation, I define gpecification engineering as the process of composing
and validating a functional specification. A functional specification is an abstract model of
an artifact being developed. The functional specification describes the services to be pro-
vided by the artifact. A service is an externally observable action of the artifact in response
to a stimulus from its environment. For example, an elevator provides services such as
moving from floor to floor and opening and closing its doors. A primary goal of specifica-

tion engineering is to ensure that the artifact provides the services the client needs.
Scope: What Kinds of Problems Does the Planning Approach Address?

The approach described here applies to a particular class of requirements engineer-
ing problems, those concerned with reactive systems. Reactive systems are artifacts that
provide a variety of services in response to events in the environment. Reactive systems
contrast with transformational systems, in which all inputs are supplied at once and no fur-
ther interaction with the environment occurs until processing is completed. This distinc-
tion is also described as dynamic vs. static input (Davis, 1990). In dynamic applications,
input continues to arrive during processing which affects the final outcome.

Reactive systems respond to and interact with their environment in a non-trivial
way. Reactive systems contrast with batch systems which typically have a small number

of well-defined inputs and no other interaction with their environment. The behavior of a



reactive system depends on the behavior of the environment (Ledru, 1991). Most systems
in which the interface design is a large part of the system design are reactive systems.

One of my basic assumptions is that a functional artifact is intended to help the
potential user(s) of the artifact to achieve certain goals (Freeman & Newell, 1971). In gen-
eral, reactive systems are designed to allow the user to carry out certain plans which will
achieve his/her goals. The development task, then, is to come up with an artifact which
provides services which assist the artifact users to achieve certain goals.

A reactive system can be seen as a component of a composite system. Composite
systems are those which include components which may be software, hardware and
human (Fickas, Anderson, & Robinson, 1990). Specification complexity does not depend
exclusively on the size of the resulting implementation, but also on the difficulty of pre-
dicting the interactions between the as-yet unbuilt artifact and the environment in which it
will be placed. The ability to model the environment, including the actions of externat
agents, is a difficult but necessary part of representing the composite system.

External agents can play both positive and negative roles in the functioning of a sys-
tem. Most goals are achieved through the cooperation of external agents and the designed
artifact. In the library domain, the patron supplies some information about a book and the
card catalog supplies its call number. The check-out operation generally involves actions
by the patron, a clerk, and one or more mechanical or electronic devices.

While an analyst can only directly influence the functions of the artifact(s), she must
take the actions of all of the actors into account. In particular, interface design deals with
providing the information (and possibly motivation) required by each actor in carrying out
their portion of the overall task. For example, recall notices remind patrons to return books
and fines encourage them to do so.

These reactive systems may be faced with multiple conflicting requests, and the ana-

lyst must specify a satisfactory strategy for responding to those requests. For example, in



the library, more than one patron may want to check out the same book. Another example
is an elevator, which has to provide service for passengers going in opposite directions,
from any floor to any other floor. Resolving potential interactions is a key aspect of the

specification engineering process.
Context: Developing an Artifact

Software engineering and similar development processes can be viewed as the pro-
duction of a series of models beginning with a completely world-oriented (application-ori-
ented) model and progressing towards models that are more and more machine-oriented
(implementation-oriented) (Greenspan, 1984). At the same time that the models are pro-
gressing from the application domain to the implementation domain, they are also pro-
gressing from a problem description to 2 solution description. Each phase of the artifact
development process involves producing a model that is slightly closer to the final solu-
tion than the last. In addition, each phase of the process can be associated with a particular
kind of reformulation. An overview of the development process is depicted in Figure 1.1.

The artifact development process can be divided into three primary sub-processes:
defining the problem, designing the solution, and implementing the solution. Require-
ments engineering addresses the first of these sub-tasks: determining what problem the
solution should solve (Thayer & Dorfman, 1990). Requirements engineering can be fur-
ther divided into three sub-steps: modeling the application domain, formulating the
requirements, and constructing the functional specification.

The key participants of the development process are:

= the client who is requesting the artifact;
» the requirements analyst, who constructs the functional specification;
» the designer, who designs the artifact to conform to the functional specification;

 the implementer, who builds the artifact following the design.
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Figure 1.1 The development process begins with an application domain. A model of
the domain is constructed and a client describes his requirements in terms of that mod-
el. The analyst composes a functional specification which satisfies the requirements.
This is the portion of the development process referred to as specification engineering.
Finally, the designer designs an artifact which satisfies the functional specification and
the implementer constructs the artifact itself from the design.

First an environment model is built to abstract essential aspects of the application
environment. This model describes objects found in the application environment, includ-
ing a description of the properties of the objects and their behavior. The environment

model describes relevant aspects of a portion of the world that encompasses the problem



situation, including relevant existing “systems’ and their environment (Greenspan, 1984).
The model of the application environment is constructed from descriptions provided by
the client, textual descriptions, direct observation and participation by the analyst, and
whatever other sources might be available.

A requirements model is built using elements in the environment model. Client
requirements are expressed in terms of states and behaviors in the application domain,
without regard for eventual implementation. The objects in the model should be applica-
tion-domain concepts and not computer implementation concepts such as data structures.
A good model can be understood and criticized by application experts who are not pro-
grammers (Rumbaugh, Blaha, Premerlani, Eddy, & Lorensen, 1991).

The client describes a set of requirements in terms of states and transitions between
states. The client’s view of what constitutes desirable and undesirable states and behaviors
are the client’s requirements. For example, a client describing the requirements for a
library database might include checking out books as a desirable state transition and unau-
thorized access to a borrowing record as a transition to be avoided.

The next step is to compose a functional specification that satisfies the requirements.
The analyst constructs an abstract description of the target artifact in terms of the services
it provides to its users. The functional specification describes services needed in order to0
satisfy the client’s requirements. The analysis model is a concise, precise abstraction of
what the desired artifact must do, not how it will be done.

The output of specification engineering is a description of the system to be con-
structed. The functional specification defines the external behavior of the target artifact
(Davis, 1990).

The analyst and client evaluate the specification by considering ways in which the
specified artifact might fail to meet the client’s requirements. Two types of failure might

be detected: situations in which a desirable behavior is prevented, and situations in which



an undesirable behavior is allowed.

After validation, design decisions are made and details are added to the artifact
model to describe and optimize the implementation of the specified services. The applica-
tion-domain objects form the framework of the design model, but the artifact is imple-
mented in terms of computer-domain objects. Finally the design model is implemented in

a programming language, database, or hardware.
Specification Engineering

In this dissertation I focus on the process of constructing the functional specification
and ensuring that it matches the requirements. The initial description of the requirements
provided by the client defines the tasks that must be performed, without saying how those
tasks are to be accomplished. It is typically easiest for the client to state requirements in
terms of application domain objects and actions, whereas a designer can best interpret
requirements stated only in terms of artifact objects and services and an interface. Thus, an
analyst’s job is bridging the gap between a statement of client requirements, which might
not mention the target artifact at all, and a specification of artifact services, which need not
mention the application environment at all.

Requirements describe the ends to be achieved; the services that are available deter-
mine how easily the requirements can be met. The dialog between client and analyst corre-
sponds roughly to the dialog between requirements and services. First the client states his
requirements at a high level and the analyst points out potential conflicts and difficulties,
based on her knowledge of possible services that could be provided by the artifact. The
client then clarifies or revises his requirements and the analyst points out additional prob-
lems. Hopefully this process will eventually lead to convergence on a consistent set of
requirements that can indeed be satisfied by a set of services that can be implemented in an

artifact. “Design is a dialectic between goals - what is desired - and possibilities - what is



actually realizable” (Tong, 1988, p. 1).

The inputs and outputs of the specification engineering process are shown in Figure

1.2
Client requirements Environment Possible
model artifact services

Specification engineering

Functional
Specification

Figure 1.2 Inputs and outputs of the specification engineering process as formulated in
the planning approach.

Modeling to Predict Interactions between Environment and Artifact

Requirements engineering benefits from constructing abstract models of the pro-
posed artifact. In the planning approach, the focus of the functional specification model is
on the services provided by the artifact.

Modeling is a critical component of the requirements engineering process. Model



construction and evaluation provide one means for predicting the interactions between the
target artifact and its environment. Understanding the interactions is necessary in cases
where the interactions are likely to have an effect on the success or failure of the artifact.

Even with the best elicitation efforts, the requirements engineering process remains
incomplete. The information gathered from interviews, observations, and direct participa-
tion provide information about the situation prior to the artifact’s introduction, but not
about the situation that will exist once the artifact is introduced.

In order to predict the interaction between the artifact and its environment, we need
to place the model of the artifact in the model of the environment. The resulting model is
not a functional specification, but is needed to interpret the functional specification

(Greenspan, 1984).

Getting Feedback from Client

One reason for building intermediate models is to allow intermediate feedback from
the client, before resources have been expended on developing an artifact which does not
do what the client expects. Those decisions that significantly affect the role of the artifact
user should be modelled in a way that the client can interpret and evaluate. In order to
determine whether or not the behavior of the target artifact is appropriate it is necessary to
also model the environment it is responding to. Capturing the interactions between the
artifact and its environment involves reasoning about sequences of actions, the states they

produce, and the reactions to those states.
ifact in its Envirgnmen

The functional specification is used by the analyst as a model which helps in the
understanding of the ramifications of certain design decisions. A model allows the analyst

to test feasibility of ideas and to evaluate decisions prior to actually building the artifact.



10

Many researchers have proposed constructing conceptual models to aid understand-
ing (Balzer, Cheatham & Green, 1983; Duggins, 1991; Greenspan, 1984). Due to the com-
plexity of systems today, an additional layer of understanding is needed between the real
world and the functional specification. Constructing a composite model assists the analyst
in understanding the problem situation before the solution system is described.

The composite model is generally viewed as an absiract model of the application
reality, i.e., the system within its environment. It describes the users’ views of the context
of the system, and typically identifies major user services, important relationships, and alt
external properties of the system. It depicts abstraction, assumptions, and constraints
about the application and usually views the application in an extended time perspective. In

short, the model forms the semantic basis for the contents of the system (Bubenko, 1980).

Why Scenarios?

Client requirements are non-operational. They cannot be directly implemented, nor
is there a direct means for determining whether a given functional specification supports
them (Fickas & Nagarajan, 1988).

I view a requirements analyst’s task as a kind of composition problem: from a given
set of possible services, select a subset that can be used to satisfy a set of requirements.
The analyst must understand what plans the user is likely to employ and specify artifact
services which will accommodate those plans.

In constructing and validating a functional specification, the properties of primary
interest are the services provided by the artifact. Scenarios provide a means of determining
whether or not those services satisfy the client’s requirements. A scenario represents a
sequence of actions that transforms one state into another. The link between client require-
ments and specified services is made by analyzing sequences of actions to determine

whether a particular transition between two states can possibly occur. If the transition is
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desirable, then failure to find a plan is a deficiency in the functional specification. If the

transition is undesirable, then finding a plan is a deficiency.

The context for this work began with empirical studies (Fickas, Collins, & Olivier,
1987) that revealed that analysts frequently used example scenarios in their discussions
with clients. The scenarios were used both to confirm understanding, and to point out
potential problems with the client’s requirements.

The analyst’s experience allows her to arrive at an illustrative scenario, or rule out
the possibility of such a scenario much faster than would the client left on his own. How-
ever, once the scenario is described in terms of effects in the application domain, the client
is easily convinced that a deficiency exists.

I decided to investigate the use of scenarios in requirements engineering in greater
detail. As one means of investigation, I decided to construct a computer model of the spec-
ification engineering process, built around existing artificial intelligence planning tech-
niques. The objectives of such a study include leaming more about the role of scenarios in
requirements engineering, proposing an initial model of the specification engineering pro-
cess for evaluation and examination, and to show how scenarios could be constructed and

manipulated automatically using existing work in Al planning.

The Planning Approach

My goal is to model the process of using scenarios to compose and validate a speci-
fication. The validation process consists of two parts: first, ensuring that it is possible for
the client requirements to be met, by finding scenarios in which the required tasks are
completed. Second, uncovering deficiencies in the specification by showing scenarios in

which undesirable states can be reached.
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The planning approach takes a state-oriented view of requirements: clients express
their objectives in terms of state transitions to be accomplished. A state transition
describes a change from an initial state to a final state. Similarly, restrictions are expressed
in terms of states: avoid transitions which result in states in which undesirable conditions
hold.

In order to model reasoning about transitions between states, 1 employ planning
techniques developed in the artificial intelligence community. The basic artificial intelli-
gence planning task is to find a sequence of actions that will lead from an initial state to a
goal state. The sequence of actions is composed by selecting actions from a predefined set.
Actions are introduced which reduce the difference between the initial and goal states.

I view specification engineering as a similar sort of problem. The goal is to select a
set of services from a predefined set. The task is to find the right combination of services
such that client requirements are met and client restrictions are not violated. We are not
looking for novel solutions in the sense that a new service must be defined. We are looking
only at the problem of finding a workable combination of existing services. The novelty, if
any, is finding a particular combination of services that had not been considered before.

In the planning approach, the knowledge that the analyst uses is encoded in the form
of operators, together with the objects and relations manipulated by those operators. The
analyst finds a set of operators that can be used to achieve the client’s goals, and ensures

that the preconditions of those operators can be established and maintained.

The test domain for my system is that of physical resource management systems,
such as libraries. Objects in this domain are things like books, video tapes, patrons, cus-
tomers, staff. Relations are things like item-borrowed, password-of. Typical operators are

check-out, check-in, query-for-who-has-what-item. The domain knowledge we use is
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taken from (1) texts and articles on analyzing problems in the domain, and (2) protocols of
human analysts, familiar with the domain, constructing and critiquing specifications (Fic-

kas et al., 1987).

Example Problem: Library Priv

An example will illustrate the types of problems the planning approach is intended
to address. Suppose we are trying to come up with a functional specification of a library
record-keeping system.

The first version of the specification contains a variety of services to be provided by
the system, such as recording the checking out and returning of books, querying for vari-
ous types of information, etc.

We can see how additional services might be added to the functional specification in
the following example. Suppose one requirement is that borrowers have a way of being
reminded of what resources they have checked out. One scenario is as follows:

borrower A checks out resource R;

A forgets the identity of R;

A queries the record-keeping system to find what resources A has checked out;
the system displays the list of resources checked out to A, including R;

A is reminded that A has checked out R;

A checks resource R back in (eventually).

If borrowers are to be allowed access to their own borrowing records, then this plan
or another like it must be made available. The “forgetting” and “reminding” actions are
part of the environment model, and are therefore available regardless of what services are
provided by the record-keeping system. The query operation, on the other hand, is a ser-
vice provided by the record-keeping system. Therefore, the ability for a user to access

their borrowing records is included in the functional specification as a service to be pro-
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vided.

Next, suppose that the client wants to restrict the record-keeping system to prevent
one user from finding out what resources another user has borrowed. In order to prevent
users from violating other users’ privacy, the query action has a precondition that users
can only query on their own borrowing record.

The planner finds a plan which achieves the prohibited condition. Given an initial
state of two borrowers A and B, and a resource R to be borrowed, the plan for reaching
this prohibited condition is as follows:

borrower A checks out resource R;

B queries the system to find what resources A has checked out,

the system displays the list of resources checked out to A, including R;
B learns that A has checked out R.

We have an undesirable situation: a prohibited condition is shown to be achievable
with a particular plan. Can we modify the plan to avoid the bad outcome from being
reached?

One solution would be to simply remove the query operator from the specification,
thus squashing the plan once and for all. However, it would then be necessary to find an
alternative plan for satisfying the original requirement, that of allowing borrowers to be
reminded of what resources they have checked out.

Another solution is to use a password scheme to prohibit access to someone else’s
records. This is the solution typically found in computer-based systems.

By reasoning about scenarios in which services participate to achieve either desired
or undesired results, the analyst may eventually be able to find a combination of services
that satisfies the client’s requirements. If the analyst is successful, then the resulting func-
tional specification can then be given to the designer for further refinement and implemen-

tation.
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Motivation for This R h

This research is aimed at modeling portions of the requirements engineering pro-
cess. The resultant model has two benefits: first, as a means of understanding and discuss-
ing the requirements engineering process; and second, as a basis for building automated
tools to support portions of the process.

The notion of “requirements engineering” is similar to that of “‘software engineer-
ing.” That is, a process that was once poorly understood and somewhat mystical is deemed
critical enough that a concerted effort is made to understand and formalize the process.
Once the process is understood, tools can be provided which serve to support it and reduce

the burden on humans.
ing is Im Di ly Underst

The success of the entire project depends on the quality of the functional specifica-
tion. It serves as the basis for communication among clients, users, designers, and imple-
mentors of the target artifact. The design and implementation must be verified against the
specification (Yeh, Zave, Conn, & Cole, 1984).

The consequences of errors made in the requirements engineering phase carry
throughout the entire software development process. Emrors made in requirements and
design are the most costly to detect and correct (Boechm, 1981). Errors introduced in the
earliest phases of development take 1.5 to 3 times the effort of an implementation error to
correct (Yeh et al., 1984). There is little advantage to building the system right, if you are
not building the right system.

Unfortunately, the process of how requirements evolve from a client’s “wish list” to
a formal specification of the target artifact is poorly understood and poorly supported by
automnated tools (Davis, 1990; Fickas & Nagarajan, 1988; Thayer & Dorfman, 1990).



16

Problems Due to Poor Requirements Engineering

While demand for software is increasing, software production continues to be
plagued by failures and cost overruns, A significant percentage of delivered software sys-
tems are completely unsatisfactory, extremely late, far over their budgets, and poorly
suited for the intended users of the systems (Blum, 1992; Boehm, 1984; Davis, 1990;
Duggins, 1991; Greenspan, 1984).

Typically, the reasons for these failures can be traced to inadequacies in the require-
ments analysis and specification phase of the software life-cycle. Poorly defined require-
ments are believed responsible for software project failures and for software that does not
meet user needs. According to Blum, “Requirements analysis is the most important step in
the entire software process. Most projects fail or exceed costs because this initial activity
is not carried out properly” (Blum, 1992).

The problems associated with software development will only get worse as larger,
more complex projects are attempted. One view is that the core challenge in requirements
engineering is the analyst’s need to deal with the large volume and wide diversity of
knowledge associated with the requirements engineering process (Harris, Johnson, Ben-
ner, & Feather, 1992). This knowledge includes domain models, initial requirement con-
ceptions, abstracted views of requirements, formal descriptions of systems, and

stereotypical ways to modify these descriptions.
Arguments for Automating Requirements Engineering

Requirements engineering is a worthwhile task to try to automate for several rea-
sons. The benefits of automation include reduction in clerical errors, increased optimiza-
tion, better documentation and reusable software (Balzer, Cheatham, & Green, 1983).

Mechanizing design may increase productivity and reduce errors (Mostow, 1985). Auto-
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mation provides an explicit record of assumptions and choices (Balzer, Goldman & Wile,
1978).

In very large systems, no one understands the whole system, so explicit representa-
tion is critical and automated support for accessing, querying and manipulating the models
is needed (Devanbu, Ballard, Brachman, & Selfridge, 1991). Furthermore, large systems
involve large quantities of diverse information, requiring knowledge-based systems rather
than traditional tools (Harris et al., 1992).

The advantage of representing design methods as computer programs is that no
information or process is hidden as “experience” or “judgment”. All of the representations
and processes are explicit and open to review (Simon, 1981).

Many of the tasks associated with manipulating all of this information are relatively
routine. If these routine tasks can be formally defined, they can also be automated. By pro-
viding automated tools to handle routine tasks, we leave programmers free to focus on
more difficult parts of the problem (Rich & Waters, 1986).

Eventually, automated tools may help carry out portions of the design process.
Automatic requirements engineering would help with the search for specifications. Main-
tenance at the requirements level rather than lower levels would reduce the large costs cur-
rently associated with maintaining large systems. Finally, incorporating sufficient
knowledge into automated tools would allow their use by non-programmers (Steier,

1989).
Requirements Engineering is Not Well Understood

The main body of knowledge of specification construction resides with human
experts who use informal “seat of the pants” techniques, supplemented by a variety of
guidelines and design languages used to record the outcome of whatever internal delibera-

tions might be occurring. Practical methodologies that do exist supply notation and guide-
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lines which can be interpreted by a human software analyst, but are not adequate for a
formal model of the requirements engineering process (Fickas & Nagarajan, 1988). We do
not fully understand the process we are trying to assist (Maarek & Berry, 1989).

Models will help us to understand the process of requirements engineering. The pro-
cess of requirements engineering is not well understood, and is usually taught by example.
As with other complex tasks, building a model of requirements engineering precise
enough to automate should ultimately contribute to education and practice in the field
(Steier, 1989).

As a means for understanding, computer models provides a way to develop and test
ideas in addition to observation (e.g., Curtis, Krasner, & Iscoe, 1988; Lubars, Potts, &
Richter, 1993) and controlled tests with experts and novices (e.g., Soloway & Ehrlich,
1984).

Requi Engincering is an Il { Probl

Building an automated requirements engineering system can also drive progress in
artificial intelligence. Requirements engineering is an ill-structured problem (Newell,
1969), since the exact form of the desired solution is unknown at the start of the problem.
Many decisions must be made heuristically, on the basis of incomplete knowledge. Any
robust specifier must make conjectures about appropriate design steps, test out those con-
jectures, and back up and try again if an inital guess proves incorrect. Although this kind
of search among alternatives is a classic part of Al systems, it is still difficult to control

such search when the relevant knowledge may come from several sources (Steier, 1989)
R h 1

The thesis proposed and investigated here is that techniques from artificial intelli-

gence planning can be usefully applied to the problem of requirements engineering. Spe-
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cifically, I am looking at requirements engineering for a class of artifacts known as
reactive systems. Planning techniques are useful in composing functional specifications
and analyzing those specifications with respect to safety requirements.

In addition to determining the extent of the role of planning in requirements engi-
neering, I am also interested in identifying the remaining pieces: if one assumes that plan-
ning addresses part of the requirements engineering problem, what additional processes

are required to complete the picture?

Research Methodology

My approach to investigating the thesis was to implement a state-of-the-art planner,
apply it 10 a specific requirements engineering problem, and analyze the strengths and
weaknesses of the resultant process. The research project has involved designing and
developing the prototype system, identifying interesting domains, developing the knowl-
edge base for the domain, running tests, and evaluating the results. 1 provide an initial
claim for feasibility and demonstrate how the system operates on a relatively small test
problem. Finally, I evaluate the limitations and issues that arise in using the prototype and

suggest directions for future research.

Contributi

My primary contribution is the application of automated planning techniques to the
construction and manipulation of scenarios in specification engineering. This work con-
sists of several parts.

« A formulation of the requirements engineering problem that allows artificial intel-
ligence planning techniques to be applied.
« An approach to the composition and analysis of specifications.

« An implementation of the planning approach.
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« Evaluation of the implementation and the approach.

This dissertation presents one model of the requirements engineering process and
discusses the merits and demerits of that model. The model is based on transferring and
extending work in artificial intelligence planning to the domain of requirements engineer-
ing.

In this dissertation I make two primary claims. First, reasoning about scenarios is a
useful way of composing and validating functional specifications. Second, existing plan-
ning techniques can be employed to construct and manipulate scenarios for use in specifi-

cation engineering,

The dissertation has three major goals: first, I introduce one view of the require-
ments engineering task seen from a planning perspective. I introduce the terminology and
definitions needed to formulate the requirements engineering problem so that a planner
can be applied. Second, given this problem formulation, 1 describe how an automated
planner can be used to generate scenarios which, in turn, are used to select functions to
incorporate into the target artifact. Third, I evaluate the planning approach by applying it

to a benchmark problem in the requirements engineering community, the library problem.

Chapter 2: Problem Formulation

Chapter 2 presents the specification engineering problem formulated in such a way
that it can be addressed by an automated planner.

A planning problem is expressed in terms of an initial state and a goal state. A solu-
tion is a sequence of actions which leads from the initial state to the goal state. The prob-
lem is solved by searching in the space of plans for a plan that solves the problem. In order

to construct plans, a set of predefined operators is provided as input. New operators are



21

added to the plan in response to deficiencies detected. In a planning problem, a deficiency
is a goal which is not achieved in the current plan.

A specification engineering problem can be expressed as a set of planning problems.
The client describes a set of desirable states and behaviors and a set of undesirable states
and behaviors. These are represented in terms of initial and final states. A solution is a set
of services to be provided by the artifact being specified. The problem is solved by search-
ing in the space of functional specifications for a set of services that satisfies the require-
ments. In order to construct functional specifications, a set of predefined services is
provided as input. New services are added to the functional specification in response to
deficiencies detected. A deficiency is a desirable state transition which cannot be achieved
by the current functional specification. The search space is pruned by rejecting functional

specifications which allow the violation of safety constraints.
: Planpning A h ification Engineerin

Chapter 3 gives an overview of the planning approach. It presents the high-level
decision model used in the planning approach. The process model relies on search through
a space of specifications. The search is driven by the detection and elimination of deficien-
cies in the current specification, and guided by the constraints imposed by the client’s
requirements and by selection rules that take those requirements into account.

In the planning approach to specification engineering, deficiencies are incomplete-
ness and unsafeness. Incompleteness occurs when a desired behavior cannot be achieved
with existing services in the functional specification. Unsafeness occurs when an undes-
ired behavior can be achieved with services in the functional specification.

Addressing incompleteness can be formulated as a planning problem. The desired
state transition is presented to the planner as an initial state and a final state. The planner

atternpts to construct a plan which leads from the initial state to the final state. If a plan is



22

found, those artifact services that contribute to the plan are included in the functional spec-
ification.

Detecting unsafeness can also be formulated as a planning problem. A state transi-
tion which represents a safety violation is presented to the planner as an initial and final

state, If a plan is found, the functional specification fails to meet the client’s requirements.
Chapter 4: Structured Knowledge

Chapter 4 is a more detailed description of my planner, OPIE. I describe how knowl-
edge is represented and organized in OPIE so that decisions are made as intelligently as
possible, but can be made using weak methods if selection knowledge is not available. |
then describe how the techniques used to reduce search ir planning can be extended for
reducing search in specification engineering.

Any problem solving method that relies on search needs to be concerned with com-
binatorial explosion. Combinatorial explosion refers to the exponential growth in size of
the search space relative to the depth. The size of the search space can be approximated as
O(bd), where b is the branching factor (number of children at each node), and d is the
depth of the search tree.

Structuring the knowledge base helps to reduce search. Using macro-operators
shortens the depth of the tree for solutions which use the macro-operators (while increas-
ing the branching factor and therefore making performance worse on other problems).
Using generalized operators allows greater control over the branching factor, moving
deterministic choices higher in the tree, reducing the overall branching factor within the
tree. Abstract macros can be used to divide the problem into semi-independent sub-prob-
lems. While each sub-problem requires a search space which is O(bY), the size of the over-
all search space is the sum rather than the product of these search spaces. I then describe

how knowledge-based approaches allow decisions to be made without search.
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1 describe how each of these techniques has been applied in the planning domain. 1
then describe how the techniques can be extended for reducing search in the space of func-
tional specifications. I describe how the use of generalized operators is useful in repairing

specifications with safety violations.

I have implemented a state-of-the-art planner and applied it to a specific require-
ments engineering problem, the library problem. In chapter 5 I present the results of run-
ning the prototype system on the library problem.

My evaluation of the planning approach to specification engineering is divided into
five parts. The first is expressiveness: while the use of preconditions and post-conditions
to describe actions is important, it is not sufficient for expressing everything we might
want to say about a functional specification. The second section discusses ambiguity
issues. These issues were first raised in Wing'’s (1988) review of a dozen papers (IWSSD4,
1987) discussing alternative approaches to the library problem. The third section is also
based on Wing’s review. This section discusses issues that Wing referred to as incomplete-
ness issues. The fourth section discusses limitations of the approach for guaranteeing a

complete, correct functional specification. The fifth section discusses efficiency.

Chapter 6: Conclysion

Chapter 6 summarizes the dissertation, presents my conclusions and discusses future
work. The results of my experience indicate that planning is indeed a central component in
requirements engineering. In addition, my experience also provides insight into those
aspects of requirements engineering that cannot be accomplished by the planner, but
which must interact with the planner to complete the overall requirements engineering

process.
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CHAPTER II
FORMULATING THE SPECIFICATION ENGINEERING PROBLEM

The purpose of this chapter is to describe the specification engineering problem
from the perspective of artificial intelligence planning.

In order to better understand a complex process, it is useful to decompose that pro-
cess into smaller pieces that can be examined individually. I propose a decomposition of
the specification engineering process that includes planning as a central component. I
explore this view by describing how planning fits into the overall process of requirements
engineering.

A planning problem is expressed in terms of an initial state and a goal state. A solu-
tion is a sequence of actions which leads from the initial state to the goal state. The prob-
lem is solved by searching in the space of plans for a plan that solves the problem. In order
to construct plans, a set of predefined operators is provided as input. Operators from this
set are added to the plan in response to deficiencies detected. In a planning problem, a
deficiency is a goal condition which is not achieved in the current plan. The search space
is pruned by rejecting partial plans which contain a constraint violation.

A specification engineering problem can be expressed as a set of planning problems.
The client describes a set of desirable states and behaviors and a set of undesirable states
and behaviors. These are represented in terms of initial and final states. A solution is a set
of services to be provided by the artifact being specified. The problem is solved by search-
ing in the space of functional specifications for a set of services that satisfies the require-
ments. In order to construct functional specifications, a set of predefined services is

provided as input. New services are added to the functional specification in response to
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deficiencies detected. A deficiency is a desirable state transition which cannot be achieved
by the current functional specification. The search space is pruned by rejecting functional
specifications which allow the violation of safety constraints.

In the first section of the chapter I present a brief review of the iraditional definitions
of planning as used by the artificial intelligence community. I then present the specifica-
tion engineering task and discuss it in terms of planning processes. I describe the inputs
and outputs of specification engineering in planning terms. I then take a step back to look
at what parts of the requirements engineering process have been included and what parts

have been left out of the formulation.
Planning: Overview

The purpose of this section is to present a brief review of the planning concepts
required to understand the point of view taken in the dissertation. This section presents the
planning task, defines the terminology, and describes the process used to automatically
compose a plan to achieve a given goal.

The view presented here is somewhat simplified. A more detailed description of the
planner used in this work, called OPIE, is given in chapter 4. There are numerous sources
of general information on the current state of artificial intelligence planning research, such
as (Hendler, Tate, & Drummond, 1992; Allen, Hendler, & Tate, 1990; Genesereth & Nils-
son, 1987).

lassical ificial Intelligence Planning Task

The input to a planner consists of an initial state description, a set of goal conditions,
and a set of operators. The planner’s task is to find a sequence of actions which will trans-
form the initial state into a state which satisfies the goal conditions, as shown in Figure

2.1
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Figure 2.1 The purpose of planning is to find a sequence of actions that lead from an
initial state to a final or goal state.

Definitions of Plan Elements

A plan is a model describing actions in the world that lead from one state to another.
In order to describe the process of constructing a plan, I use a meta-model: a model used to
describe another model. Entities, relationships, and actions in the world are represented by
objects, persistences and operators in a plan, respectively. Objects, persistences and opera-
tors are plan elements manipulated by a planner. In this dissertation plan elements are
given the same names as the things they represent, but use a different type face: a book is

a plan element that represents a book.

A plan is a description of a set of actions, the entities affected by the actions, and the

26
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relationships that are altered or required by the actions. A plan consists of objects, persis-
tences, and operators. The operators in a plan may be partially or totally ordered.

Objects represent physical entities and, more generally, anything which can be acted
upon. In the library domain which I will use to illustrate the planning approach, the object
types include books, id cards, patrons,and staff. A special sub-class of objects
is that of actors, which represent entities that are capable of initiating actions, such as
patrons and staff.

A persistence represents a relationship between entities that holds over some contin-
uous period of time (McDermott, 1982; Dean & McDermott, 1987). Persistences in the
library domain include things like available (book), responsible (patron,
book), author-of (author, book).I treat persistences as individuals, making it
possible to distinguish between different occurrences of the same relationship. For exam-
ple, if Abigail checks out Gone With the Wind, then returns it, and later checks it out
again, two separate persistences of responsible (Abigail, Gone With the
Wind) are required.

Finally, an gperator represents an action. An action occurs whenever the state of the
world is changed. For example, check-out (patron, book), return ({patron,
book), list-books-by-author (author)} are operators in the library domain.

Operators can describe actions of any granularity, from “pick up a book™ to “get a
college education.” Macro-operators, which are large-grained operators composed of
smaller-grained operators, are treated like any other operators. The only difference is that
a macro-operator can be decomposed, that s, replaced by its component operators.

The effects of actions are described in terms of the persistences which are produced
and consumed by the operator. An action description also indicates the preconditions
which must be true if the action is to be performed successfully, but are not actually

altered by the action. These persistences are psed by the operator.
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For example, Figure 2.2 presents a graphical representation of a simple check-out

operator.

available \consumed-by check-out | produces responsible
(book) j " | (patron, book) (patron, book)

Figure 2.2 Example operator: check out, which consumes “available (book)” and pro-
duces “responsible (patron, book)”

‘Consumed-by’ and ‘produces’ are relations between plan elements (i.e., between an
operator and a persistence). A relation between plan elements is referred to as a ‘meta-
relation’ to distinguish it from a relation in the world described by a persistence. A meta-
relation is part of a meta-model and describes a type of relationship between elements of a
model.

An operator produces a persistence if the corresponding relation becomes true dur-
ing the action. An operator consumes a persistence if the corresponding relation becomes
false during the action. An operator yses a persistence if the corresponding relation must
be true for the action to occur, is true throughout the action, and continues to be true after
the action.

The input to the planning problem includes descriptions of types of entities, rela-
tions and actions for a particular domain. A description consists of a symbol plus all of the
symbols directly linked to it. Such a description is called a schema. Schemas represent
long-term knowledge that carries over between problem solving sessions. Schemas
encode knowledge used in the model construction process. They are used as templates for
creating new model elements and defining their relationships with other elements.

A state describes the world at a particular point in time. A state description can be

derived from a plan description by collecting the set of persistences which were produced
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prior to the time of interest and were consumed later.

The initial state of a plan is a set of persistences that are declared to hold when the
plan begins. The goal is a set of persistences which are required to hold when the pian
ends. That is, the goal persistences must either hold in the initial state or be produced in
the plan.

In some cases a planning problem can include a set of global path constraints that
must be satisfied in order for a solution to be acceptable. A path constraint is essentially a
predicate on a partial solution sequence, rather than on a single state or operator. For
instance, a path constraint may disallow particular subsequences of operators, or require
that the plan be completed in a specified amount of time (Carbonell, 1983).

Figure 2.3 summarizes the planning problem. The inputs are a description of a
desired transition between an initial and final state and a set of operator schemas that indi-
cate the possible actions that can be included in a plan. The planner attempts to find some
sequence of operators from the input set that will lead from the initial state to the final

state.
The Planning Process

The process of finding a sequence of operators that achieves the desired transition is
a constraint satisfaction problem. Constraint satisfaction problems take the form “find a
point x in a space X such that x satisfies the constraints C;(x) and maximizes an objective
function F(x)” (Freeman and Newell, 1971, p. 621). Solving constraint satisfaction prob-
lems is an incremental search process.

Planning can be viewed as search in a space of plans for a plan which leads from the
initial state to the final state, as shown in Figure 2.4. The root node is the null plan, i.e., do

nothing.
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Figure 2.3 Inputs and outputs of the planning process.
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Figure 2.4 Each node in the search space represents a different sequence of actions.

ing i nfiguration Problem

Planning can be viewed as belonging to a class of problems known as configuration
problems (Mittal & Frayman, 1987). A configuration problem is one of specifying a set of
components and the interconnections among them such that the configuration satisfies a
set of requirements.

The input for a configuration problem consists of: (A) a fixed, pre-defined catalog of
component schemas, where a component is described in terms of its required and possible

connections to other components; and (B) some description of the desired configuration.
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Originally the term “configuration problem™ was used to refer to configuring physi-
cal components into structures. Documented systems configure computers, networks,
operating systems, buildings, circuit boards, keyboards, printing presses, and trucks (Mit-
tal & Frayman, 1987). In planning, operators and persistences are first-order elements and
can be “configured” as well. The connections between elements are the produces, con-
sumes and uses links between operators and persistences. The requirements to be satisfied
are that the goal persistences and all operator preconditions are produced, either by opera-
tors in the plan or by the initial state.

Planning requires a knowledge base of object, persistence, and operator schemas
and some means of accessing and assembling the relevant plan element descriptions given

a problem description.
Persistences Wi Pr ficienci

We use the notion of slots and fillers to drive the planning process. Goal persistences
begin with an empty slot for a producer.

Persistences with empty producer slots play a special role in planning. These unpro-
duced persistences represent deficiencies of the current plan: relations which need to be
achieved, but are not yet attributed to a particular producer. The primary task of a planner
is to find a producer for each unproduced persistence.

In order to repair a deficiency, a planner must have a way of determining possible
fillers for slots. This requires storing information about the possible associations among
objects, relations and actions in a knowledge base.

Deficiencies (i.e., empty slots) are the primary retrieval index into the operator set.
For example, suppose we are trying to achieve the goal can-use (patron, book).We
use pattern-matching on can-use (patron, book) to access the corresponding persis-

tence schema in the knowledge base. We then follow the produced-by link to find possible
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producers of that schema. Each producer is a potential filler for the slot. Suppose we have
stored the knowledge that check-out is an operator that produces can-use (patron,
book). Check-out becomes a candidate for inclusion in the plan.

When an operator is added to the plan, its preconditions become additional deficien-
cies which the plan must address. For example, checking out a book requires locating the
book, which may in turn require that the patron have access to a catalog of books in the
library. Each of the preconditions must be linked to a producer. That producer may have
preconditions as well. This results in a chaining process leading backward from the goal to
the initial state. The process of identifying differences and selecting operators to reduce
them is called means-ends analysis (Nilsson, 1980). A solution is found when all persis-
tences in the final state and all operator preconditions are either produced by an operator in

the plan or are contained in the initial state.

Specification Engineering

According to the planning approach which I am proposing, the output of the specifi-
cation engineering process is a functional specification. The primary input to the process is
the client’s statement of requirements, which defines the problem to be solved. Additional
input comes from knowledge about the problem domain. Domain knowledge includes
knowledge about the environment into which the artifact will be placed, and knowledge
about what kinds of artifacts can be built. In particular, we are interested in the actions that
can be performed by actors in the environment, and the services which might be provided
by the artifact being specified. These inputs and outputs are shown in Figure 2.5.

1 next describe the process used to construct a functional specification given these

inputs and outputs.
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Figure 2.5 Inputs and outputs of the specification engineering process.

Search for a Functional Specification

Like planning, the process of determining which set of services satisfy the client’s
requirements is a constraint satisfaction problem. Specification engineering can be viewed
as search in a space of functional specifications for a specification consistent with the cli-
ent’s requirements, as shown in Figure 2.6. The root node may be the null specification,

i.e., an empty set of services, or it may be a partial specification.



35

Figure 2.6 Each node in the search space is a functional specification defining a differ-
ent set of services.

We need to consider two issues: how do we choose which set of services to consider
at each node of the search space, and how do we determine whether or not that set of ser-
vices satisfies the requirements?

In the worst case, the search would involve repeatedly taking an arbitrary set of ser-

vices and determining whether or not that set satisfies the requirements.
Specification Engineering is a Configuration Problem

Specification engineering can be viewed as being closely related to the class of con-
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figuration problems. The specification engineering task is to identify the required services
of a target artifact. The inputs include requirements which the target artifact must satisfy
and a large set of possible services. The output is a functional specification of a set of ser-
vices which the target artifact must provide.

The requirements analyst tries to select the best combination of services to satisfy all
of the requirements. For example, there might be a variety of ways to check out a book;
the analyst would select the method that best fits with the other services to satisfy the
requirements.

A similar view of specification engineering can be found in D’Ippolito & Plinta
(1987) and in Goedicke, Schumann, & Cramer, 1989). A similar approach is taken in the
Requirements Apprentice (Reubenstein, 1990; Reubenstein & Waters, 1991). Kramer dis-
cusses an approach that treats software design as a configuration problem (Kramer,
Magee, & Sloman, 1989).

In the remainder of this chapter I describe the specification engineering problem in
greater detail, showing how the inputs and outputs can be described in planning terminol-
ogy. In the next section I describe the requirements. In the following section I discuss the
output, a functional specification. Then I discuss the domain knowledge needed to con-

struct a functional specification that satisfies the requirements.

Client Requirements

In the planning view, the specification engineering process is one of determining
what set of services best satisfies the client’s needs.

One input is a set of requirements which the target artifact must satisfy. Require-
ments identify behaviors which are either required or prohibited in the target context.

Clients typically formulate requirements in terms of tasks to be accomplished (Fic-

kas and Nagarajan, 1988). Clients often say “I need a (better) way of getting from point A
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to point B”, where “point A” and “point B” refer to states of the world. “Getting from state

A to state B” can be expressed formally as a desired transition between an inital state and

a final or goal state.

Tnitial State

Figure 2.7 Requirements can be expressed as state transitions.

The desired transitions described by clients generally represent a large class of simi-
lar tasks. For example, obtaining a book from a library is a generic ansition that
describes a large class of specific tasks involving many different patrons and many differ-
ent books. The initial state is one in which a patron wants access to a book and the book is
available in the library; the goal state is one in which the patron has the use of the book.

Figure 2.8 presents an example set of requirements for the library domain. This
description was used at the 4th International Workshop on Software Specification and

Design as a common problem for researchers to illustrate their specification languages and

methodologies.
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The library problem (TWSSD4, 1987):

Consider a small library database with the following transactions:

1- Check out a copy of a book / Return a copy of a book;

2- Add a copy of a book to / Remove a copy of a book from the library;

3- Get the list of books by a particular author or in a particular subject area;
4- Find out the list of books currently checked out by a particular borrower
5- Find out what borrower last checked out a particular copy of a book.

There are two types of users: staff users and ordinary borrowers. Transactions 1,2,4,
and 5 are restricted to staff users, except that ordinary borrowers can perform transac-
tion 4 to find out the list of books currently borrowed by themselves. The data base
must also satisfy the following constraints:

1- All copies in the library must be available for checkout or be checked out.
2- No copy of the book may be both available and checked out at the same time.

3- A borrower may not have more than a predefined number of books checked out at
one time.

Figure 2.8 Initial statement of requirements for the library problem.

Safety Reaui Restrictions:

In addition to describing state transitions that should be enabled or made easier,
requirements may include state transitions that should be prevented or made difficult. The
analyst is not only concerned with helping potential artifact users achieve their goals, but
also with preventing certain undesirable conditions.

For example, books should not be stolen or mis-shelved. Furthermore, revealing
information about a patron may constitute invasion of privacy. A client might add “do not

allow an unauthorized patron to access another patron’s borrowing records” as a restric-
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tion on the target system. Although not stated explicitly, this restriction is contained in the
requirements in Figure 2.8.

The analyst must anticipate user actions that, accidentally or intentionally, might
result in an unacceptable state. To the extent possible, opportunities for those actions must

be eliminated. The analyst must deal with both errorful and irresponsibie behavior

Performance Constraints

Finally, requirements include non-functional preferences such as “minimize cost”
and “maximize reliability”. These preferences are used to rank alternative designs.
Resource limitations are a source of constraints on the set of permissible services. As an
example, what would be the cost of having a staff person oversee (or actually carry out) all
queries to a library’s borrowing records as a means of avoiding violations of patrons’ pri-
vacy?

Functional requirements establish the essential behaviors for all correct implementa-
tions. Nonfunctional requirements establish operational properties for the delivered imple-
mentation (e.g., response time, storage constraints, ease of use) (Blum, 1992; Roman,

1983).

Broadly speaking, the specification engineering process is one of finding a balance
between functionality, safety, and cost. While in the ideal case we would like o enforce all
of the client’s requirements, the cost of enforcing a requirement can often be greater than
the cost of allowing the requirement to be violated. Explicit representation of the cost of
the operators and plans used in satisfying a requirement is needed in order to evaluate the
cost of enforcing that requirement.

The task is to ensure that the desired effects can in fact be achieved and the undes-
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ired effects cannot be achieved, while at the same time keeping the cost of satisfying the
requirements as low as possible. There are frequently conflicts between giving users what
they want and stopping them from carrying out undesirable behavior or over-running
available resources. In addition, the ideal solution is often very expensive but an alterna-
tive exists which is much cheaper but less satisfying. Part of getting the specification right
is determining what trade-offs between different requirements, and between requirements
and costs, are acceptable to the client.

Our challenge as software engineers is to identify the functional requirements
clearly and verify that no decisions violate them, and to document the nonfunctional
requirements and choose design alternatives that have the highest probability of being able
to meet them (Blum, 1992),

In this dissertation the focus is primarily on functional requirements. In order to sim-
plify dealing with non-functional requirements, I treat all non-functional requirements as
being collected in a single cost or “utility” value. This value is used in choosing between
two options that meet the same functional requirements: the option with the greater utility

value is preferred.
Representation of Requirements

A client’s requirements are expressed in terms of states and transitions between
states in the application domain. These requirements fall into two primary classes: transi-

tions which result in desired states and transitions which result in undesired states. I refer

to these as gchievement and safety requirements, respectively.

Achievement Requirements

An achievement requirement is very similar to a traditional planning problem: from

a given initial state, reach a state in which a desired persistence is true. For example, the
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requirements model for a library might include the transition shown in Figure 2.9 as an
achievement requirement. This transition says that it should be possible for a book which
is available in the library to be obtained by a patron, who is then responsible for the book

until it is returned.

available (book) can-use
wants (patron, book) (patron, book)

Figure 2.9 An achievement requirement: if a book is available in the library, then it
should be possible for a patron who wants that book to obtain it.

Safety Requirements

Safety requirements describe transitions that either consume states which should be
maintained or produce states which should be avoided. A requirement to maintain a partic-
ular state can be expressed as a transition to be prevented: any transition in which a persis-
tence to be maintained is consumed should be avoided. For example, a library might

require that reference books remain in the library.

in-library ~in-library
(reference-book) (reference-book)

Figure 2.10 A state to be maintained: reference books should remain in the library.
This can be represented as a safety requirement: avoid transitions that result in refer-
ence books leaving the library.
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Similarly, the client may want to prohibit certain states from occurring. In this case,
the requirement can be expressed as a transition in which an undesirable persistence is
produced. For example, a library might want to avoid stolen books. Transitions in which
states to be maintained are consumed and transitions in which states to be avoided are pro-
duced are prohibited transitions.

It is important for an artifact to provide services which enable transitions contained
in the achievement requirements while preventing prohibited transitions. The goal of spec-
ification engineering is to identify a set of artifact services which simultaneously satisfy
all of the client’s requirements.

Thus, in the planning approach, requirements are initially expressed in terms of the
state transitions that an artifact is intended or expected to affect, both positive and nega-
tive. This could be viewed as expressing requirements in terms of a set of test cases that
the artifact is required to satisfy. The artifact meets the requirements exactly if it passes all

of the test cases.
Library Requirements

Figure 2.11 presents a state transition representation of the requirements in the

library problem.

In the planning view of specification engineering, a functional specification is a
description of the services that must be provided by the target artifact if the client require-
ments are to be satisfied (Greenspan, 1984). Requirements are defined by the IEEE as “the
capabilities necessary to satisfy a need” (Davis, 1990). A functional specification defines
the inputs to the target artifact and defines and constrains the outputs of the artifact.

Services are represented as STRIPS-style operators, that is, in terms of their pre- and
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Requirements Restrictions
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Figure 2.11 Requirements for the library problem
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post-conditions. A functional specification, then, is represented as a set of operators to be
implemented in the target artifact. Figure 2.12 presents a set of operators representing
some of the services to be provided by a library record-keeping system. The services

include storing, displaying and deleting records pertaining to borrowing transactions.

entered
Cborrow record) )

store

(borrow record)

—

stored

(borrow record) )

stored

display

{borrow mcordﬂ

—(,

stored

(borrow record) )

OITOW recordD
displayed

OITow record)

delete

(borrow record)

( {borrow record

~stored

2)

Figure 2.12 Example operators representing services which have been selected to be
provided by a target artifact. These operators make up the functional specification of

the artifact.

Domain Model

Requirements engineering requires a significant body of information about the

domain of the system being required (e.g., general information about libraries, patrons,

and books). Since this information is shared by all of the systems in a given domain, itis a

potential target for reuse.
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Potential Artifact Services

In specifying the behavior of an artifact, a key input is knowledge of the possible
behaviors of this class of artifacts. The analyst must know something about how the arti-
fact will be constructed and what the range of possible implementations might be. Without
this knowledge, it would be impossible to ensure that the specified system could actually
be built.

In most mature engineering domains, a central part of the design process is selecting
appropriate components from a pre-defined set. The selection process may occur at a vari-
ety of levels. For example, in electrical engineering a component may be a single transis-
tor, a chip containing many transistors, a printed circuit board containing many chips, or a
complete system containing many printed circuit boards.

In specification engineering, the “components” to be assembled are the services to
be provided by the target artifact. Services refer to those functions of the target artifact
which respond to and affect conditions in the environment. These are the external, as
opposed to internal, functions of the ariifact. They represent the visible behaviors of the
artifact, which are of concem to the client. The internal functions which are used to pro-
duce the visible behaviors are not of interest during the specification engineering phase of
development. They will come into play during the design phase.

The domain model contains pre-defined operators which represent the set of ser-
vices that could potentially be incorporated into the target artifact. Typical examples in
software systems are services which store information, retrieve it, and modify it. As with
components in other engineering disciplines, services provided by functional artifacts
come in a variety of grain sizes. For example, editing a document or deleting a single char-
acter are services of an editor, at two different levels of granularity.

The representation for possible artifact services is the same as the representation of
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services in a functional specification as presented in Figure 2.12.
Environment Actions

Understanding the problem means modeling the environment. It is more or less
accepted that the target artifact cannot be modeled independently of the environment in
which it resides (e.g., the particular library in which a record-keeping system is to be
placed). Indeed the boundary between the environment and system may not be fully
defined until later stages of software development. The input to the specification engineer-
ing process must provide sufficient knowledge about the environment for the boundary to
be precisely positioned and the interface to be defined (Finkelstein and Waters, 1989).

The knowledge base includes operators which describe the actions of external
agents in the domain, which I call gnvironment actions. This set includes the normal
things that people do every day such as move from place to place, pick objects up and put
them down, and push them about. Environment actions would be available whether or not
the artifact is built.

Figure 2.13 presents examples of the kinds of actions that are available in the library

environment.
mmary: Definin ification Engineering Task

In this chapter I have presented a planning-oriented formulation of the specification
engineering task: from a set of requirements, construct a functional specification.

In summary, the input to the specification engineering process is a set of require-
ments, expressed in terms of desirable and undesirable state transitions. The output is a set
of services that make up the functional specification of the target artifact, represented as
operators. The purpose of specification engineering is to specify a set of services which

satisfy all of the requirements.
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on (object, pick up (objcct)l held
surface) (object)
held put down on (object,
{object) (object) surface)
at (mover, move (mover, at (mover,
locl) locl, loc2) loc2)
displayed read (reader, knows (reader,
(information) information) information)

Figure 2.13 Example operators representing actions of actors in the environment in
which the target artifact is to be placed.

Figure 2.14 presents an overview of the specification engineering process, as

defined in this chapter.

The key points to be taken from this chapter:

» A central part of any design process is selecting components from a predefined set.

In constructing a functional specification, the “components” to be selected are the

services of the artifact. From a large set of possible services, select a subset that

satisfies the requirements. The selected services become the functional specifica-

tion of the target artifact.

In order to determine what the necessary services should be, the analyst has to rea-

son about the client’s enterprise-wide objectives. However, the services to be pro-

vided by the artifact should be expressed in terms of inputs and outputs of the
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Figure 2.14 Overview of the specification engineering process: inputs and outputs.
The goal is to find a subset of the possible artifact services that satisfies the client re-

quirements.
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target artifact: when a user does x, the response should be y. Every such x and y
pair represents a service to be provided by the target artifact. The task is to take a
description of a client’s needs, expressed in terms of the client’s environment and
experiences, and replace it with a description of a solution system, expressed en-
tirely in terms of characteristics of the solution system.

» The requirements analyst must find a set of services that enable users to achieve
their objectives but do not allow users to bring about unacceptable conditions. This
tension between desirable and undesirable behaviors is a central issue in the plan-

ning approach to specification engineering.

Specification Can be Seen as Planning Process

We now have a definition of a specification problem and criteria for a satisfying
solution. Given that one is willing to live under these assumptions and definitions, I argue
that construction of a functional specification can be viewed at least partly as a planning
process. The next chapter describes how planning is used as a central part of specification

engineering.
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CHAPTER Il
THE PLANNING APPROACH TO SPECIFICATION ENGINEERING

In this chapter, I describe the planning approach to specification engineering. The
approach uses artificial intelligence planning techniques for composing and analyzing
functional specifications.

In order for the analyst to ensure that the services are consistent with the behaviors
desired by the client, the analyst must reason about the effects of the actions allowed by
the services.

I view the problem solved by requirements analysts as being similar to that solved
by planners. In planning, the input is in the form of a problem, which can be expressed as
a transition between an initial state and a final state. The output is a sequence of operators
that can be used to solve the problem. In specification engineering, the input is actually a
set of planning problems, and the output is not a sequence of actions, but a set of services
to be provided by the target artifact. However, the necessary services can be identified by
first constructing plans that solve the individual problems.

In the next section I give a more detailed description of the specification engineering
process and show how it can be decomposed into a set of planning tasks. These planning
tasks fall into two categories: state wansitions which are desired and state transitions
which are prohibited. In section 3 I describe how an initial functional specification is com-
posed by addressing desired state transitions. I then describe how the resultant functional
specification is critiqued with respect to the prohibited transitions. If problems are
detected during the critiquing phase, the specification must be modified to address these
problems. The planner itself is not able to make these modifications directly. In section 5 1

describe ways the planner might be extended to address these problems.



k)|

Decomposing a Specification Enginecring Problem into Planning Tasks

In this section, I show how the specification engineering task can be decomposed
into a set of planning problems. As in any approach to problem solving that involves
decomposition, we must show how the decomposition is accomplished, how the sub-prob-

lems are solved, and how the results are integrated into a solution to the overall solution.
Deficiency Driven Problem Solving

Both planning and specification engineering belong to a class of problems in which
search is driven by finding and repairing deficiencies in the current partial solution. The
general solution to this class of problems is to represent, detect, and eliminate deficiencies
[IBIS). This is similar to the deficiency-driven model of algorithm design proposed by
Steier and Kant [TSE85]. The generic algorithm for solving this class of problems is
shown in Figure 3.1.

The process begins with a deficient solution model. A model is deficient with
respect to a particular set of requirements if there are problem requirements that are not
satisfied in the model.

The first step is to identify deficiencies in the model and select one to address. The
next step is to repair the deficiency. This involves accessing possible repairs, evaluating
the alternatives, and selecting one. The repair is then applied to transform the model into a
new model.

Repairing one deficiency may introduce new deficiencies, or restrict the possible
repairs for another deficiency due to interactions between the repairs. These restrictions
are expressed in the form of constraints on the final solution.

Once the constraints have been introduced, the model is evaluated for constraint vio-

lations which result from unforeseen interactions among components. If constraint viola-
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tions are found, the solution model must be revised by retracting a previous commitment

and making an alternative choice.

Algorithm

1) Identify deficiencies

2) Choose a deficiency to address

3) Access possible repairs

4) Evaluate repairs

5) Select repair

6) Apply repair

7) Propagate constraints - prune incompatible repairs for other deficiencies

8) Evaluate resultant model - may need to backtrack / explore alternative branches of
search space

Gotol

Figure 3.1 Algorithm for solving problems using deficiency driven techniques.

Dilicieacy Driveil Sisiicasion Enslosan

Deficiency driven specification engineering is an incremental process of generating
a functional specification by addressing individual deficiencies of the current specifica-
tion.

The search is carried out by repeatedly detecting and correcting deficiencies as
shown in Figure 3.2. Each move in the search space begins with an analysis process which
reveals deficiencies in the current specification, i.e., ways in which the specification fails
to meet the client’s requirements. The next step is to propose alternative repairs for a defi-

ciency, and select a repair to be applied. Deficiencies are addressed by adding and remov-
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Figure 3.2 Deficiency driven specification engineering involves a cycle of detecting
deficiencies and modifying the set of services to address the deficiency.

ing services to and from the functional specification. Applying the repair generates a new
functional specification node in the search space. If all deficiencies are eventually elimi-
nated, the resulting specification is a solution.

ficiencies in ification Engineerin

To satisfy the requirements, the services included in the functional specification

must achieve the desired behaviors, must not achieve the prohibited behaviors, and must
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be implementable given available resources.

A functional specification is said to be deficient when a requirement can be violated.
In specification engineering, a deficiency is a mismatch between requirements and specifi-
cation: a desired transition which cannot be achieved given the specified services, or a pro-
hibited transition which can be achieved given the specified services. These two kinds of
mismatches comrespond to two broad classes of deficiencies: incompleteness and unsafe-
pess [Fickas). A functional specification is considered incomplete if a desired state transi-

tion cannot be accomplished. It is considered unsafe if a prohibited state can be achieved.

Incompleteness

Incompleteness is a type of deficiency that occurs when a desired transition cannot
be achieved {from an accessible state ) using operators in the specification. For example, if
patrons should be allowed to check out books but the functional specification does not
contain any means for doing so, the specification is incomplete.

Figure 3.3 shows the requirement that a patron be able to obtain a book from the

library.

C available (book)) :> ( has-book )
) (patron, book)

Figure 3.3 A desired state transition which cannot be achieved is a completeness defi-
ciency.

Incompleteness is the basic deficiency in most modeling problems. For example, a
traditional artificial intelligence planning problem is a model of a desired transition, miss-

ing the action(s) required to achieve the transition.
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Unsafeness

Unsafeness occurs when a prohibited transition can be achieved using operators in
the specification. For example, if patrons should not be allowed to access other patrons’
borrowing records, but the current functional specification can be shown to allow it, the

specification is unsafe.

Cvailablc (bookD @ ( stolen (book))

Figure 3.4 A prohibited state transition which can be achieved is a safety deficiency.

It is not only important for an artifact to enable certain goals of potential users; it is
also often important to disable the goals of potential mis-users. It is important that the ana-
lyst have knowledge of potentially harmful plans that should be prevented or at least made

difficuit to achieve.

The goal of specification engineering is to ensure that for every achievement
requirement, a sequence of operators which accomplishes the transition must be available
given the available services and environment actions. At the same time, no sequence of
operators which accomplishes a prohibited transition should be available.

Incompleteness drives the search forward, adding new services to the specification.
Unsafeness serves to limit the range of acceptable solutions. Achievement requirements

are treated as primary requirements to be achieved, and safety requirements are treated as
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secondary requirements which influence the choice of methods for achieving the primary

requirements.
Use of Scenarios

In order to detect and correct deficiencies in functional specifications, we reason
about scenarios. A scenario is a sequence of actions showing how a transition from one

state to another might occur (as illustrated in Figure 3.5).

Requirement: desired or prohibited state transition

Initial State transition Final State

\N

s

-~

&
Z R

action —-Gtate —t action —-(Slate — action

Scenario: actions and intermediate states

Figure 3.5 The relationship between requirements and scenarios. Scenarios show how
state transitions can or cannot occur.

The possible actions in a scenario are deterrnined by the services of the target arti-
fact and the actions of the agents in its environment.

If a combination of environment operators and artifact services can be found which
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accomplish a desired transition, that requirement is satisfied. On the other hand, if a
sequence of environment and artifact operators can be found which achieve a prohibited
transition, that requirement is violated. Scenarios serve to bridge the gap between require-
ments expressed in terms of states of the world and services provided by the target artifact.

Given this representation, we can use an automated planner to determine whether or
not a given set of services allows the achievement of a particular transition. Finding action
sequences which accomplish a given state change is exactly the standard artificial intelli-
gence planning problem. The knowledge required is causal information linking actions to
their preconditions and effects. The only difference between a scenario and a plan is that
the analyst does not intend to execute the scenario. The analyst simply uses scenarios to
predict possible events that the artifact will be involved in.

Knowing what transitions can and cannot be achieved telss us whether or not the

functional specification satisfies the client’s requirements.
Summary: Scenarios Bridge the Gap between Requirements and Services

A functional specification describes the services that an artifact should provide.
Constructing a functional specification involves finding services which allow desirable
events and disallow undesirable events. In order to bridge the gap between requirements
and services, the analyst must reason about the effects of actions.

The approach to specification engineering proposed in this dissertation is based on
the use of planning as a means of detecting and eliminating deficiencies in a partial speci-
fication. My approach uses planning to composing the functional specification by finding
services that will enable artifact users to achieve their goals. It also uses plans to critiquing
the functional specification by determining whether the services provided will have unde-
sirable applications.

In the next section of the chapter I describe how OPIE, an automated planner, can be
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used to detect and correct incompleteness in a functional specification. The following sec-
tion discusses how OPIE is used to detect unsafeness in a functional specification.

Although OPIE is not able to correct safety violations directly, section 4 describes ways in
which artificial intelligence problem solving techniques can be applied to modify a speci-

fication found to be unsafe.

The first phase in composing a functional specification is selecting operators which
achieve the desired transitions in the client’s requirements. The inputs to this process
include the requirements plus a catalog of possible artifact operators and environment
operators, as seen in Figure 3.6.

The functional specification is composed by planning. The set of operators required
to accomplish the desired transitions will include both environment operators and artifact
services. The artifact services make up the functional specification of the artifact. Thus,
the planner selects a subset of the possible artifact services for actual implementation in

the target artifact.

Detecting and Addressing Incompleteness

Achievement requirements drive the initial operator selection process. First, OPIE
ensures that every goal state mentioned in an achievement requirement can actually be
achieved. For each transition mentioned in an achievement requirement, OPIE is given
the task of finding a plan to achieve the transition. If the planner is successful, there exists
a method for achieving the goal.

The analyst selects a desired transition from the requirements and asks OPIE to find

a plan showing how that transition can occur. For example, consider the requirement from
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Figure 3.6 Composition phase: ignoring safety requirements, the planner finds plans in
which a combination of environment and artifact operators achieve desired transitions.



the library problem that patrons be able to obtain books, shown in Figure 3.7..

A

available (book) |:> ( can-use (patron, book)

Figure 3.7 Example achievement requirement from the library problem. The planner is
given this transition as a planning problem. The planner looks for a sequence of envi-
ronment and ariifact operators to achieve the transition.

j
/

-

To construct a plan, the planner is given the set of possible artifact services plus the
complete set of environment actions as its operator set. Together, these two sets of opera-
tors represent the composite domain model of the possible implementations of the artifact
and its environment. Using a composite model allows an analyst to reason about the inter-
actions between the artifact and the environment in which it is used.

OPIE searches in the space of plans consisting of any combination of environment
and artifact operators. It tries to find a sequence of operators that achieves the state transi-
tion from the book being available in the library to the patron having possession of the
book. This is a standard artificial intelligence planning problem and we omit the details of
how the search is carried out. One plan for accomplishing the transition is shown in Figure

3.8.
Plans Involve Both Artifact and Environment Actions

Some of the actions in the plan will be performed by agents in the environment, oth-
ers by the artifact being specified. For example, in the check-out plan in Figure 3.8, the

patron selects a book and brings it to the counter, a staff person enters identifying informa-
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Check out patron fetches book, staff enters information in database

fetch enter-info record-info confirm hecked-ou
(p, b) (s,1,d) (d, 1) (d) (b)

Actions > Conditions
patron enters library

> patron in library
patron looks up book in catalog

> patron knows location of book
patron finds book on shelf

> patron has book
patron takes book to counter

> patron and book at counter
staff enters book-id and patron-id

> book-id and patron-id entered
database creates borrow-record

> patron responsible for book
patron takes book out of library

> patron can use book

Figure 3.8 Example plan for checking out a book. The plan includes a combination of
environment and artifact operators which achieve the transition.

tion about the book and the patron, and the database creates and stores a record of the
transaction.

Any artifact operator in the plan becomes a part of the initial functional specification
as shown in Figure 3.9. Essentially, the requirements analyst has identified a particular
way in which the required transition can be achieved. The artifact will be required to pro-

vide services such that the analyst’s solution can be carried out.
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Figure 3.9 Those operators in the plans that represent artifact services are placed into
the functional specification.

Typically there are a variety of plans which achieve any particular transition. Figure
3.10 shows some of the plans for checking out a book. All of these plans satisfy the
requirement that patrons be able to obtain books from the library. However, it is not
enough to simply find an acceptable plan for each requirement in isolation. It is necessary
to coordinate the services so that all requirements are satisfied by a single set of services.
The next section describes how interactions between achievement and safety requirements

are used to eliminate some possible artifact services from consideration.
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Check out patron fetches book and records info, staff checks and accepts \\
fetch record submit check accept
. b) (p. 1) (.1, 8) (s, 1) (s, 1 j

Check out staff fetches book and records info N

call fetch enter-info record-info print-label
@, s) (s, b) (s,i,d) d, 1) (d, 1) }
J

Check out patron fetches book and records info ™
fetch enter-info record-info confirm Checked-oud) i
(. b) (p.1,d) @,1) d (b) /

Check out patron fetches book and writes in notebook ™
{gt%li w(ritq-'mn{o _ thcl{gii-og

’ p, l' H
o J

Figure 3.10 Representative plans that might be produced for achieving the check-out
transition.

Detect Safety Violations

The next phase of the specification engineering process is to critique the specifica-
tion. While incompleteness drives problem solving forward, unsafeness serves to limit the
range of acceptable solutions. The specification must be evaluated to ensure that none of
the safety requirements are violated. The inputs and outputs of the critiquing phase are
shown in Figure 3.11.

OPIE works as a devil’s advocate, trying to poke holes in the specification by find-
ing plans which achieve states outlawed by a safety requirement. For each prohibited
transition in the client’s requirements, the planner is given the task of finding a plan that

violates the requirement.
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Figure 3.11 During the critiquing phase, achievement requirements are ignored. The
planner works as a devil’s advocate, trying to find plans in which safety requirements
are violated. If such plans are found, the specification must be revised.

Each of the prohibited conditions is treated as a goal to be achieved. In this way, the

set of safety requirements can be treated as a set of traditional planning problems. OPIE
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searches for plans in which a safety requirement is violated. For example, Figure 3.12
shows a safety requirement that says that patrons must not check out more books than the

limit set by the library.

4 A
available (book) can-use (patron, book)
at-limit (patron) over-limit (patron)

'3
K vy

Figure 3.12 Example safety requirement for the library problem. A patron should not
be able to check out a book if they have already reached their borrowing limit.

The inputs to the planner are changed slightly during the critiquing phase. Instead of
considering all possible artifact operators, the planner only considers those artifact opera-
tors actually selected for the functional specification. We still take all environment opera-
tors into account, however. This combination represents the composite model of the
proposed artifact and its environment.

If OPIE succeeds in finding a plan that achieves a prohibited condition, it has dem-
onstrated by counter-example that the safety requirement is not satisfied.

For example, one requirement in the library problem is that a patron cannot check
out more than a predefined number of books. OPIE would try to find a plan where a patron
checks out more than the allowed number of books, thus showing that the specification is
not consistent with the requirements. The same plan shown in Figure 3.8 that shows a

patron obtaining a book can be modified slightly to show a patron who is at her borrowing



limit checking out a book and going over her limit. This is because the plan contains no
check to see whether or not the patron is at or over their borrowing limit..
Once a safety violation is detected, the functional specification must be modified.

This process is discussed in the next section.
A fi iplation

Once safety violations are detected, the planner reaches its limit in terms of its abil-
ity to directly assist in the specification engineering process. However, experience in deal-
ing with interactions between plan steps and the need to satisfy multiple simultaneous
constraints can be transferred to the specification engineering domain.

There are a number of techniques for modifying the specification if safety violations
are detected. I discuss a variety of methods here. None of these methods are currently
implemented directly for the specification engineering problem. Rather, they are proposed
extensions of techniques that have been shown to be useful in other artificial intelligence
problem solving domains. For purposes of this dissertation the modifications are carried
out by hand. The planner is then used again to determine whether the modifications have

introduced any new deficiencies into the functional specification.
Retract Previous Commitment

One approach to modification is backtracking. If a safety violation is found, some
previous commitment has to be changed. Previous nondeterministic choice points must be
reconsidered in case some other option would avoid the violation. When OPIE finds an
inconsistency it backtracks, “undoing™ the addition of an operator used in the plan that
shows a constraint violation.

If a constraint violation is discovered during evaluation, the problem solver must

find a non-deterministic decision that contributed to the conflict. Two primary methods of
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backtrackiing are available [Chapman, Charniak and McDermott]. In chronological back-
tracking design decisions are retracted in inverse order to the order in which they were
made. Chronological backtracking can also undo beneficial changes and result in combi-
natoriat explosion.

In dependency-directed backtracking {McDermott] only decisions that directly con-
tribute to the conflict are retracted. However, every subsequent choice that depended on
that decision may need to be reconsidered. By saving the complete dependency history, it
is possible to retract only the suspect decisions while preserving other, unrelated decisions

made after the initial error.
Remove an Artifact Operator

If an operator causes a conflict in a specification, it can be removed from the set of
artifact operators by the analyst.

Removing an operator can be used if one of the operators leading to the prohibited
state is an artifact operator. (Environment operators are not under the control of the ana-
lyst, and cannot be removed or altered.) By removing an operator in the plan, we may
make it impossible to achieve the prohibited condition.

Unfortunately, there may be an alternative operator which completes the plan or
some other path to the same condition. Thus, simply removing an operator is not guaran-
teed to correct the problem. At best, we can try to find a single modification which

“breaks” as many undesirable plans as possible.
Repiace an Artifact Operator

Since every artifact operator was chosen to support an achievement requirement,
simply deleting an operator is likely to create a deficiency.

In most cases, the operator should be replaced with an alternative which still sup-
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ports the achievement requirement of the original operator, but is restricted in such a way

that the prohibited condition cannot be reached.
Restrict an Operator’s Applicability

Another approach to modifying the functional specification is to provide guards for
the services: restrict the class of states in which the services can be applied. This seems to
be a fairly common solution to safety problems.

The implementation must include not only operators, but control knowledge for
deciding when those operators should be performed. By adding control knowledge, the
analyst restricts the cases in which the operator will be applied. For example, by checking
to determine whether a patron’s borrowing limit will be exceeded prior to checking out a

book, the database satisfies both the required transition and its restriction.

Check out patron fetches book, staff enters info, database checks for violationy,

feich enter-info check record-info confirm
(p. b) (s,1,d) (d, 1) (d, 1) (d)

F

./

i

\

( Over limit patron fetches book, staff enters info, database checks for violatioﬁ
fetch

enter-info check eport violat hecked-ou
(p. b) (s, i,d) (d, i) (d, v) r_'c (b, p) ) )
A

-

Figure 3.13 Inserting a guard to prevent a prohibited transition while still allowing a
required transition. By checking to determine whether a patron’s borrowing limit will
be exceeded prior to checking out a book, the database satisfies both the required tran-
sition and its restriction.

One way to view the introduction of a guard is that preconditions of operators are
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made more restrictive in order to disallow certain prohibited conditions. This may be
viewed as a lower-grained composition problem: add additional checks and branches so
that the central action is not performed under certain conditions.

Unfortunately, introducing guards cannot be implemented in the standard planning
framework. The problem is that the guard does not itself contribute to the achievement of
any goals. Rather, it is put in place to keep certain states from being reached. This is out-
side the scope of traditional artificial intelligence planning problems.

One work-around to this problem that I have employed is storing operators in both
their guarded and unguarded forms. While this allows the planner to find a correct solu-
tion, in general it is not a satisfactory solution. The number of ways that a particular oper-
ator might be guarded is potentially very large, and the need to store so many versions of
the same operator causes problems both for storage and for retrieval. Implementing a sim-

ple mechanism for adding guards to services seems like a better solution.
Disable an Environment Operator

Not all prohibited conditions can be avoided by altering artifact operators. Some-
times the prohibited condition is achieved by environment operators. Environment opera-
tors are not under the control of the analyst, and cannot be altered or removed.

The only way to prevent their use is to disable their preconditions.

It is impossible to directly modify agents (people) to change their behavior and thus
change the functionality of the environment. Therefore, the analyst cannot simply remove
environment operators from the composite model and assume they will not occur. Remov-
ing operators from the model of the environment does not eliminate deficiencies. Instead,
it makes the model of the environment inaccurate.

Rather than remove such operators, the analyst can attempt to disable them through

a process of counterplanning.
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The operators can be disabled by removing operators that make their preconditions
true. They can also be disabled by adding operators which make their preconditions false.
Finally, they can be disabled by changing certain conditions that are relatively stable and
difficult to alter relative to the lifetime of the artifact. For example, by specifying pens
which are chained to the check-out counter, the analyst enables filling out check-out slips
while disabling taking the pens away.

In counterplanning, as in guarding services, the goal is to establish conditions that
prevent the execution of operators which would result in a prohibited state. In the case of
guarded services, the analyst has control over the execution of the artifact operator being
guarded. In the case of counterplanning, the analyst does not have direct control over the
actions of an extenal actor, and therefore must use either persuasion or deterence to elicit
behavior that conforms to the client’s requirements.

An environment operator can be permanently disabled by making one of its precon-
ditions a prohibited condition. Consider the problem of keeping patrons from stealing
books. The steal operator includes the precondition that the exit to the library be “free,” in
the sense that the thief is able to escape undetected. Thus, this steal operator can be perma-
nently disabled by enforcing the maintenance requirement that an observer is always at the
library exit. This might mean having a librarian watch everyone leaving the library, or
installing an electronic detection system.

This approach has been used as a means of preventing undesirable conditions by
McDermott [78] and Carbonell [81]. To prevent an event is to alter a state such that the
event’s preconditions are not all true, thus dis-enabling the event. [McDermott 78, p102]

Carbonell suggests a similar disable-precondition heuristic in his POLITICS system
to model pianning and counterplanning among human agents [Carbonell, 1981]. Along
the same lines, Wilensky defines a broad model of goal confiict and planning [Wilensky,

1983], again in the realm of interacting human agents. Taking the view that the system
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being specified is one active agent and the user the other, it appears that at least some of
the components of Carbonell’s and Wilensky’s planning models can be incorporated here.

Whatever solution is chosen, it is important to then reason about the effects that
decision might have on other services, such as the check-out and return operations. As an
extreme example, one way to prevent stealing is to simply not have any books in the
library. This will certainly have an effect on how easy it is for legitimate borrowers to
obtain the materials they want.

We might consider modifying the initial state of a plan that we are trying to prevent
from occurring. For instance, one library analyst suggested we could, in essence, simply
remove the borrowing record from a specification to prevent the case of one user gaining
access to another user’s borrowing record. As even more extreme measures, we could con-
sider removing the resource R or allow no more than one borrower B. Any or all of these

modifications to the plan’s initial state would keep the plan from being enabled.
mmary: The Planning A ht ification Engineerin

I have implemented an automated planner to investigate the role of planning in spec-
ification engineering. Specification engineering is viewed as a deficiency driven search
problem. We search in a space of functional specifications for one which satisfies the cli-
ent’s requirements. The search is driven by deficiencies in the current partial specification.

Deficiencies detected by the planning approach are incompleteness and unsafeness.
Incompleteness occurs when a desired state transition cannot be achieved with existing
services in the functional specification. Unsafeness occurs when an undesired state transi-
tion can be achieved with services in the functional specification.

Addressing incompleteness can be formulated as a planning problem. The desired
state transition is presented to the planner as an initial state and a final state. The planner

attempts to construct a plan which leads from the initial state to the final state. The plan
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may include operators from the environment and from the catalog of possible artifact ser-
vices. If a plan is found, those artifact services that contribute to the plan are included in
the functional specification.

Detecting unsafeness can also be formulated as a planning problem. A state transi-
tion which represents a safety violation is presented to the planner as an initial and final
state. The planner attempts to construct a plan which leads from the initial to the final state
using operators from the environment and from the functional specification. If a plan is
found, the functional specification fails to meet the client’s requirements.

Modifying a set of services to prevent a safety violation is not accomplished directly
by the planner. However, experience in artificial intelligence problem solving can be
applied to the problem in a number of ways. One is to backtrack: remove some artifact ser-
vice, and attempt to find an alternative service which satisfies the same positive require-
ments without violating the negative requirement. This can be accomplished using
existing search and planning techniques, but is very inefficient.

Another approach to modifying the functional specification is to provide guards for
the services: restrict the class of states in which the services can be applied. This seems to
be a fairly common solution to safety problems. However, it cannot be implemented in the
standard planning framework. It is a key issue for future work.

Finally, deficiencies can be addressed using counterplanning techniques to try to
alter the behavior of actors in the environment rather than restricting artifact services.

One benefit of using an automated system for specification engineering is that a per-
manent record can be kept of the reasoning behind the set of services in the functional
specification. The links between services and their roles in producing various behaviors

constitute the rationale for including or excluding certain services in the specification.
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CHAPTER IV
AVOID SEARCH USING STRUCTURED KNOWLEDGE

Traditional planners rely on search for most of their decision-making. Any problem
solving method that relies on search needs to be concerned with combinatorial explosion.
Combinatorial explosion refers to the exponential growth in size of the search space rela-
tive to the depth. The size of the search space can be approximated as oY), where b is the
branching factor (number of children at each node), and d is the depth of the search tree
(Korf, 1985).

Structuring the knowledge base helps to reduce search. Using macro-operators
shortens the depth of the tree for solutions which use the macro-operators (while increas-
ing the branching factor and therefore making performance worse on other problems).
Using generalized operators allows greater control over the branching factor, moving
deterministic choices higher in the tree, reducing the overall branching factor within the
tree. Abstract macros can be used to divide the problem into semi-independent sub-prob-
lems. While each sub-problem requires a search space which is O(Y), the size of the over-
all search space is the sum rather than the product of these search spaces.

The use of generalized operators is an example of the notion of partial commitment.
Partial commitment comes in a variety of forms. The underlying principle is that the plan-
ner is able to reduce the commitment made at a particular choice point, thus introducing
information that can be used to guide other decisions, without overcommitting in a way
that leads to subsequent backtracking and search. Partial commitment has been used in
reducing commitment to the sequence of operators in a plan, reducing commitment to the

entities which participate in an action, and, in our work, reducing commitment to the oper-
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ators themselves.

The kinds of complex, real worid problem solving that is required for large require-
ments engineering problems makes relying on weak search methods prohibitively expen-
sive. Instead, we must provide the capability of incorporating large amounts of domain
knowledge in order to avoid the high cost of blind search. The knowledge base should be
organized so that the problem solver can get the maximum leverage from the information
that is available.

The goal of this chapter is to describe how information is organized in OPIE and
how that organization of information contributes to the performance of the planner. The
knowledge base contains links between requirements and components which satisfy those
requirements, links between abstractions and their specializations, and links between a
whole and its parts. I describe how this organization of knowledge is useful during plan
construction. I also describe extensions that would go beyond planning to reduce search

during the modification phase of the specification engineering process.
Knowled nization

In OPIE, each of the three kinds of schemas (object, persistence, operator) are orga-
nized into a taxonomic hierarchy. For example, obt ain might be the parent of make, buy,
steal and check-out. Each child is a specialization of its parent. I use the terms taxo-
nomic hierarchy and generalization hierarchy interchangeably.

Furthermore, the schemas are also organized into a partonomic hierarchy. For exam-
ple, one form of check-out may be composed of the steps locate-book, bring-
book-to-counter, and record-transaction, Each child is a component part of its
parent.

The combined taxonomic and partonomic hierarchies form an AND / OR graph. The

knowledge base contains specialization and decomposition links to form these hierarchies.
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ion Hi hy = Index

Operators in the knowledge base are arranged in a taxonomic hierarchy so that they
can be easily retrieved when they are needed. Operators that produce the same effects are
linked to a common parent. For example, a portion the operator hierarchy related to
obtaining a book is shown in Figure 4.1. This organization makes it possible for OPIE to

find all operators that add, for instance, the can-use (patron, book) condition.

Obtain
(patron, book)

\

Bomrow Acquire
(patron, book) (patron, book)
Check-out Gei-from-friend
(patron, book) (patron, book)

Figure 4.1 Generalization hierarchy of operators which produce can-use (patron, book)

The operator taxonomy is formed by a generalization process. OPIE’s method of
organizing operator sets is described by Anderson and Farley (1988). The organization of

the knowledge base into a taxonomic hierarchy is based on the generalization of element



76

schemas (e.g., operators which produce common persistences). This provides an explicit
representation of every choice point the analyst might encounter, which in turn provides

an index to the alternatives and to selection rationale for choosing among the alternatives.
Vi Large-grai lution Element

Another approach to increasing efficiency is to use larger-grained components to
reduce the number of choices. Large-grained components are decomposed into smaller-
grained ones by following decomposition links. For example, possible decompositions of

check-out are shown in Figure 4.2.

Check out patron fetches book and records information, staff checks and accepts

check-out
(p.b)
fetch record subrmit accept
®, b) ® D ®. 1, 5) G.D
write-name write-address write-title write-call-#
(p,m) (p.a) {p. 1) (p, #)

Figure 4.2 Schemas are decomposed into more detailed components in & partonomic
hierarchy. p=patron, b=book, i=check-out information, s=staff

By storing large-grained solution fragments for frequently-encountered sub-prob-

lems, those solutions need not be re-derived each time. However, the fragments may
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require modification to fit the current requirements.
Large-grained operators are formed by composition. Plans that successfully achieve
commonly encountered goals are abstracted so that they cover as general a problem as

possible and then stored as new (composite) operator schemas.
Incremental Selection

Using search to explore all of the alternatives in a problem space is intractable for
complex problems with many choice points. In search-based problem solving, one of the
alternatives is selected arbitrarily and search is used to see whether that choice leads to a
solution or to a contradiction. The exponential complexity of search results from a
sequence of arbitrary choices, each choice requiring a separate branch in the search space.

The ideal case is to avoid the need for a problem solver to guess at any choice point.
In these cases backtracking can be eliminated entirely. If a problem solver always makes
the right choice, there is no need for exploring multiple branches of the search space and

search is linear in the depth of the solution.
Constraints

We distinguish primary goals from constraints, which influence the way in which
the primary goals are achieved. For example, the problem “Win the war without alienating
the middle class” includes a primary goal, win the war, and a constraint, avoid alienating
the middle class (McDermott, 1978). Constraints cannot be executed but influence conflict
resolution in deciding which method for accomplishing a primary goal should be selected.

Selecting a single option from a set of alternatives is a process of selection by elimi-
nation. Portions of the search space are gradually pruned as confiicts between constraints
and plan elements are discovered. Search can be reduced if, rather than trying each of the

options in turn, constraints are used to prune some of the options without explicitly con-
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sidering those options.

Each choice made by the planner may introduce new constraints on the plan being
composed. As decisions are made concerning the operators and objects that will be part of
the plan, new constraints are introduced that affect the rest of the plan. Each new con-
straint may influence the choices that can be made about other plan components. The con-
straints are propagated through the plan. For example, the need for reference books to be
continuously available might constrain the set of books that can be checked out. This in
turn might exclude versions of the check-out operator that contain no way to distinguish
reference bocks from other books.

The plan composition process is a cycle of:

+ Make a choice
* Post constraints

+ Look for constraint violations
nt to Allow Constraint In

Frequently, making a commitment at one choice point will introduce constraints that
prune one or more options at another choice point. If the constraints are introduced early
enough (i.e., before one of the pruned options is selected), some unnecessary search is
avoided.

A central objective of a constraint posting approach is to make the maximum
amount of information available in the form of constraints while making the fewest arbi-
trary decisions. More informed choices can be made if constraints are known as early as
possible. If a problem solver can avoid making an arbitrary choice until constraints from
other decisions are introduced, there is no need for searching alternative branches of the
solution space.

This is the fundamental idea behind constraint-based planning (Stefik, 1981; Chap-
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man, 1987). By delaying certain decisions until additional information is obtained from
other parts of the planning process, those decisions may become sufficiently constrained
that the ‘choice’ becomes deterministic: only one option remains. Even if the decision is
not deterministic, the more it is constrained, the smaller the branching factor of the search.

The difficulty with constraint satisfaction is that the only way to introduce new con-
straints is to make a selection for some slot filler. This is catch-22: we want to delay mak-
ing a decision until constraints can be propagated, but constraints can only be propagated
if a decision is made.

In some cases, there is a solution to this dilemma. It may be possible to make a par-
tal commitment to a set of alternatives. Partial commitment allows some of the conse-
quences of a decision to be explored. Partial commitment to a class of options allows the
problem solver to go on to other decisions without making an arbitrary choice. As other
decisions are made, constraints may emerge which prune some of the alternatives without
resorting to search.

Incremental selection is a form of partial commitment that both reduces the size of
commitment made in a single planning decision and at the same time allows constraints o
be discovered and used to prune alternatives at an earlier point in the planning process. As
a result, some decisions that might lead to a non-solution branch in the search space are
avoided.

The key difference between incremental selection and delayed commitment is that
incremental selection not only avoids making a choice, but also allows the introduction of
constraints. Any details true of all of the options under consideration can be immediately
introduced, since they will be true regardless of which option is finally selected. This
increases the likelihood that constraint violations will be discovered before effort is

wasted in search.
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Incremental Selection Reduces Search

Incremental selection is aimed at discovering interactions at an abstract level, before
the problem solver wastes effort in exploring a branch of the search space that ultimately
will be rejected.

The key advantage over search-based methods is that incremental selection allows
the introduction of constraints without making an arbitrary choice. Search efficiency
depends on the ability to detect interactions as early as possible, before arbitrary commit-
ments have been made. By avoiding arbitrary selections and using constraints to prune
alternatives, much of the work associated with search can be avoided. For some problems,
the difference between linear and exponential search lies in uncovering constraints which

prune a branch before that branch is explicitly explored.

izati i hy Permits Incremental Selection

Organizing the knowledge base into a taxonomic hierarchy supports incremental
selection, which can prune large portions of the problem space from consideration.

Generalized operators allow for partial commitment to operator selections. Using
generalized plan elements increases efficiency by allowing constraints to be introduced
into the plan without requiring an arbitrary choice to be made. Rather than selecting a par-
ticular operator, we use an abstract operator that generalizes all of the alternative operators
that achieve the same goal. The abstract operator represents a partial commitment: a com-
mitment to a class of operators, but not to a particular operator within that class. Guessing
is avoided by proposing a general solution element that covers all of the alternatives.

By selecting an abstract operator to achieve a goal, the planner identifies the class of
operators from which the actual operator will eventually be chosen. Using an abstract

operator to represent a class of operators that share certain properties allows the planner 10
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use information about a class of operators before it has made a commitment to include a
particular operator in a plan. It is thus possible for the planner to detect an interaction that
would arise regardless of which operator from the set was selected.

The use of generalized components also introduces a new type of deficiency, that of
ambiguity. Eventually a particular operator will have 1o be chosen. However, for now the
planner has avoided making an uninformed decision. Rather than immediately committing
to a particular method, OPIE is able to gradually prune the set of operators from which the
actual operator is chosen.

Ambiguity is solved by specialization, which depends on specialization links. The
generalizations can be incrementally specialized as propagated constraints reduce the
number of alternatives. In the ideal case, the constraints introduced by partial commitment
will be enough to determine the right choice for another decision. The outcome of that
decision, in turn, may rule out some of the altemnatives for the first decision. Thus, incre-
mental selection may be able to reduce search when two or more decisions are mutually

constraining.
Incremental Selection Exampl

For example, consider the case of a check-out operator that requires some identify-
ing information to be recorded about the borrower, but does not specify what information
should be recorded.

By using incremental selection, a decision need not be made immediately. Instead, a
general operator that represents all of the alternatives is used at first. Now suppose atten-
tion shifts to the recall operator. In order to recall a book, the borrower must be contacted,
which requires either an address or a phone number. This adds a constraint on the check-
out operator, that either the address or phone number of the borrower should be recorded.

Now attention shifts back to the check-out operator. Suppose one option is to use a per-



82

Check-out

What form of ID to
require?

« Social security

* Driver’s license

» Credit card S
What method of
notification to use?
* phone
* mail
heck- * email

Driver's license
includes address

Recall

Mail notices

Figure 4.3 Detecting interactions efficiently: incremental selection can be used to
gradually elaborate the details of a functional specification in such a way that arbitrary
commitments are avoided and constraints are introduced to guide decision making.

son’s driver’s license as proof of identity. Futhermore, suppose driver’s licenses include an
address but not a phone number. Now recording the address is preferred over recording the
phone number. Finally, attention goes back to the recall operator. Since it has been decided
that the address will be recorded rather than the phone number, the recall operator can be
specialized to using notification by mail. The complete example is shown in Figure 4.3.

This example illustrates how search is avoided by gradually refining operator
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descriptions rather than generating all possible pairs of check-out and recall operators and

testing to see whether they are consistent with each other.
Incremental Selection: Method

As discussed in Chapter 2, in order to find a plan which leads from an initial state to
a goal state we must have a way of determining possible fiilers for slots. This requires stor-
ing information about the possible associations among objects, persistences and operators
in a knowledge base. The planner must have a library of operators which are indexed by
the goals which they achieve. Schemas provide the information required for proposing

candidates.

Access Repairg

The first step of the process is to map goals onto the operators that achieve them.
This is shown in Figure 4.4. To select the operators, OPIE first matches each of the goals
mentioned in an achievement requirement with an abstract persistence schema in its per-
sistence hierarchy. Persistence schemas are linked to general operator schemas. OPIE then
follows the produced-by link to find possible fillers for the slot.

For example, consider the goal of allowing a patron access to a book: can-use
(patron, book).Suppose we have stored the knowledge that check-out is an action
that produces can-use (patron, book}.OPIE uses pattern-matching on can-use
(patron, book) to access the corresponding persistence schema in the knowledge
base. OPIE then follows the ‘produced-by’ link to find possible fillers for the slot.

Rather than matching every applicable operator, we match a single abstract operator
which is a generalization of every operator which achieves the matching goal. For each
unproduced persistence, the one “most general” operator is selected from the taxonomy.

When an operator is needed to produce a particular persistence, a single abstract
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Figure 4.4 An empty slot in a plan element is filled by first tracing from the plan ele-
ment to its type in the knowledge base, then finding the filler for the corresponding
slot, creating a new plan element from the filler schema, and using that instance to fill
the slot.

operator can be used to represent all of the alternatives. The descendants of the general
operator represent alternative methods for achieving the same goal. For example, can-
use (patron, book) is linked to a general obtain~book operator whose specializa-

tions might include buy, steal, and check-out (patron, book).
iali n Tat

We are still faced with the task of selecting a single operator from among the spe-
cializations of the abstract operator schema. OPIE simply has to seiect from among the

alternatives. The selection process is one of filtering out altemnatives that will fail, and
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selecting the “best” from the remaining alternatives. This is shown in Figure 4.5.
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Figure 4.5 A plan element is specialized by first tracing from the element to its type,
then from the type to its specializations. If all but one of the specializations are pruned,
then the remaining specialization is selected without search. If more than one choice
remains, the planner makes an arbitrary choice and marks the decision as a backtrack-

ing point.

Rather than immediately resolving a deficiency, OPIE can place the deficiency on a
list of unresolved deficiencies and go on to other parts of the problem. An advantage of
suspending work on a deficiency is that constraints may be discovered while resolving
other deficiencies that restrict the acceptable repairs for this deficiency. As constraints are

propagated from other decisions that the planner makes, the number of consistent special-
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izations of the abstract operator is reduced.

In the ideal case, all but one of the options will eventually be eliminated by con-
straint propagation. Whenever only one option remains for a choice point, that option is
automatically selected. Since the selection was done deterministically, there is no need for
backtracking and search is avoided. To the extent that choices can be pruned in this way,
unnecessary consideration of alternative branches during search is significantly reduced.

If more than one alternative remains and additional constraints are not forthcoming,
all options are considered equally acceptable. In this case one of the remaining alternatives
can be selected at random. However, it might turn out that the selected alternative conflicts
with a constraint that is introduced later. Therefore, whenever an arbitrary choice is made
it is marked as a potential backtracking point.

Each time a new specialization is selected, new constraints are introduced and prop-
agated to the other decision points. This information may reduce the set of options for

some other decision.
Incremental Selection: Related Work

A major theme in the evolution of planning systems has been the notion of parnal
commitment as a means of reducing search. The general notion is that by only making a
choice when forced to do so, one avoids needless search. My work extends previous
research which has shown that over-commitment can lead to unnecessary search in plan-
ning problems. Previous work has proposed partial commitment to the order of operators
in a plan and to the particular objects used in a plan. OPIE uses an additional form of par-
tial commitment: to the operators used in the plan.

NOAH (Sacerdoti, 1977) uses least commitment to temporal ordering of operators.
NOAH also uses a partonomy to reduce search. MOLGEN (Stefik, 1981) uses least com-

mitment to the objects that are used by operators, but not to the operators themselves.



87

Friedland's MOLGEN planner (Friedland & Iwasaki, 1985) is the most similar to OPIE.
His planner seiects skeletal plans which are filled in by specialization.

A few authors have described ways in which an operator taxonomy can be used to
help select the right operator for a goal (Friedland & Iwasaki, 1985; Tenenberg, 1986;
Alterman, 1988). Tenenberg focused on the structure of the operator taxonomy in (Tenen-
berg, 1986), but did not actually implement a planner that used his ideas. A process similar
to incremental selection has been simulated in other automated systems using hand-coded

refinement rules (Tong, 1988; Barstow, 1979).
A Plan

In addition to the use of specialization, OPIE uses decomposition as a way of reduc-
ing search, The notion is that large-grained components are introduced into the plan at
first, then decomposed into their component parts.

Using large-grained components has two advantages over reasoning exclusively in
terms of “atomic” components. First, since one compound component represents several
choices, the total number of choices made is reduced. Since the pieces of the compound
are known to fit together, this reduces the number of interactions that must be considered.

When combined with specialization, decomposition has another advantage. “Skele-
tal plans” are useful in problem reduction: they divide a problem into several sub-prob-
lems which can be solved (almost) independently. Any interactions are represented as

constraints which further control search.
Fri g n n -plannin

The most complete treatment of operator specialization is in Friedland's MOLGEN
planner (Friedland & Iwasaki, 1985). Friedland’s MOLGEN planner was the first to use an

explicit operator taxonomy. In order to specialize operators, MOLGEN stores an operator
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hierarchy in which executable operators are the leaves of the hierarchy and abstract opera-
tors are the internal nodes. The planner starts with a general plan consisting of abstract
operators and refines each step of the plan unil it is executable. Refinement consists of
selecting one of the children of the abstract operator from the operator hierarchy. MOL.-
GEN uses a combination of heuristics to rate the alternatives. The-one with the highest
tota! score is selected.

In Friedland’s MOLGEN, the refinement process proceeds recursively until the plan
consists of only executable operators. If an executable operator cannot be found for a par-
ticular step, MOLGEN makes whatever condition the step was supposed to achieve into a
sub-goal. The planner is then called recursively to solve this sub-goal. If it is successful,
the resultant plan is placed into the overall plan and the planner continues the refinement
process.

If no such sub-plan can be found, the entire abstract plan is rejected and MOLGEN
attempts to find an alternative general plan. The reason that a specific plan may not be
found even though a general plan exists is that there may be interactions between the exe-
cutable operators that do not appear at the abstract level. Many of the preconditions and
effects of the operators have been “abstracted out” of the abstract operators, so it is not
always possible to detect interactions until the operators have been specialized. Therefore,
the fact that the planner finds a general plan to solve the problem does not guarantee that a
executable solution actually exists.

Skeletal plans are useful not only in the domain in which they are produced, but
often in other domains as well. Thus, the same general plan can be refined to solve a vari-
ety of similar problems. This is a form of leveraging control knowledge: using the same

control knowledge in solving multiple problems in multiple domains.
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OPIE is able to use assignment, specialization and decomposition as methods for
refining a plan.

One refinement method is to assign a filler to a slot. The most important type of
assignment is attributing an unproduced persistence, that is, find a producer for it. The pro-
ducer may be an operator already in the plan or a new operator introduced into the plan.
This is the method used in classical means-ends analysis.

An abstract plan serves as a general method of solving a problem. The plan is
refined by replacing abstract operators with specific operators from the taxonomic hierar-
chy (Friedland & Iwasaki, 1985). For example, we might start with a general borrow
operator and then refine it to a check-out operator.

Frequently, after a filler is specialized the next step is to decompose the specializa-
tion into parts. For example, the check-out operator might be subdivided into the steps

of locating the book, bringing the book to the counter, and recording the transaction.
m f lan Composition

Figure 4.6 presents the algorithm used in OPIE to compose a plan.

A plan is deficient if it contains unfilled slots and/or abstract elements. The first step
is to select a deficiency to address: either a slot to fill or an element to specialize. If the
deficiency selected is a missing component, the next step is to insert the component. If the
deficiency selected is an abstract element, the next step is to specialize it. If the newly spe-
cialized element is composed of sub-parts, it is decomposed. Introducing or specializing
an element may introduce new slots to be filled. Also, a new or specialized element may
add constraints to existing slots.

The next step is to introduce and propagate constraints based on the slots associated
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Pl ition aleorii]

0) Create a node containing the initial producer and final consumer and place it in the
search queue.

1) Select a node from the search queue.

1.a) If the search queue is empty, fail.

1.b) If the node satisfies the success criteria, report success and return the node.
2) Refine the node:

2.1) Select a plan component to refine.

2.2) Generate a child node for each possible refinement.
Refinements are assignment, specialization, and decomposition.
2.3) Complete each new node by propagating constraints.

3) Evaluate each new node:

3.1) If any constraint is violated, reject the node.

3.2) Else add the node to the search queue.

4) Go to step 1.

Figure 4.6 Plan composition algorithm.

with the new filler or specialization. These constraints may prune non- solution compo-
nents without search. Once the constraints have been introduced, the plan is evaluated for
unforeseen constraint violations. If found, the plan must be revised by retracting a previ-
ous commitment and making an alternative choice.

In order to be considered finished, a plan must be complete (all slots are filled),
unambiguous (all elements are completely specialized), and consistent (no constraints are

violated).

ud . Evaluate Options Usine Stored Selection [nformati

The most successful method for reducing search is informed commitment: storing

guidelines for making decisions based on previous problem solving experience.
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It is possible to store guidelines for selecting which partial plan to refine, which defi-
ciency within that plan to address next, and which repair for that deficiency to select.
OPIE takes advantage of all of these forms of information to make planning as efficient as
possible. For well defined domains, problem solving can be reduced to linear complexity

by storing the right guidelines for all of the decisions encountered.

Select a Partial Plan to Refine

Every plan cycle starts with the selection of a node to be refined. OPIE is capable of
using a variety of search strategies. The simplest strategies are standard weak methods:
breadth-first and depth-first search. OPIE can also use a variety of best-first search sirate-
gies, where “best” is determined using different measurements. One is the length of the
plan produced so far, another is the depth of the planning process used to reach the node,
another combines the number of operators in the plan with the number of remaining defi-
ciencies. Furthermore, the human analyst is able to write arbitrary domain specific evalua-

tion functions for ordering nodes in the search queue.
Select a Deficiency to Address

Once a node has been chosen, the problem solver must select one of the deficiencies
to address. A problem solver needs a mechanism to tell it what part of problem to work on
next (Stallman & Sussman, 1977).

Strategies for choosing a deficiency to address include:

« Arbitrary selection of deficiency

+ Last in, first out (LIFO) (Fikes, Hart, & Nilsson, 1972)

« Address critical deficiencies first (Sacerdoti, 1974; Knoblock, 1990)
» Address independent goals first (Christiansen, 1990)

« Make deterministic choices first (Stefik, 1981)
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 Select deficiency with fewest remaining options (Anderson & Farley, 1990)
« Treat selecting a deficiency to address as a problem to be solved (Laird, Rosen-

bloom, & Newell, 1987)

Evaluate Alternative Repairs

Once it has been decided which deficiency to address, the next step is to select an
option to address the deficiency. For any decision, there are a variety of means for deter-
mining which alternative to choose.

+ Arbitrary selection (search)

» Select an altemative using selection rules

« Rank alternatives on some scale

» Submit choices to a higher authority (ask client for preference)

The most general selection method is search: try each alternative in turn, and see
whether a conflict results. Search requires the least knowledge and is the least efficient.

Another alternative is selection rules. A selection rule tells which alternative to
choose under a particular set of circumstances. Selection rules are the most efficient
method of selection, but require the most knowledge.

An intermediate approach is the use of heuristic selection rules, with search as a
backup option. The use of heuristics allows the efficiency of selection rules whenever a
rule can be found, but also gives the generality of search when no rule is available or when
the rule is incorrect. This approach varies in both efficiency and knowledge requirements,

depending on what rules are provided.

Selectors: Filters and Promoters

In planning, selection rules can be associated with individual operators to determine

whether that operator is appropriate under a particular set of circumstances.
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When the test conditions are used to prune a candidate from the set of alternatives,
they are called filters. A match filter, if true in the current state, indicates that the operator
should not be considered. A non-match filter, on the other hand, indicates that the operator
should not be considered if it is not true in the current state.

A non-match filter is just like a precondition, except that, if it is not true in the cur-
rent state, instead of being posted as a subgoal, it simply eliminates the operator from con-
sideration (Charniak & McDermott, 1985). Either there is no operator to achieve the pre-
condition, or there is some other operator that would be more appropriate.

When a precondition of an operator is not achievable, there is no point in posting
that precondition as a goal. If a planner cannot add a door between two rooms, it is point-
less to consider an operator that requires a door that does not already exist.

The inverse of a filter is a promoter, which would make its candidate an automatic
winner if its test condition was true (Laird et al., 1987). There are match and non-match

selectors as well as filters.
T Provides Fr work for Storin lector.

The ideal case would be to have a rule for every choice point that a problem solver
might encounter. However, storing a rule for every choice point in a search space is equiv-
alent to storing the entire search space, which is not possible for complex domains. How-
ever, one can associate choice rules with the individual choice points contained in the
generalization hierarchy.

One benefit of the generalization hierarchy is to allow OPIE to store the choice
points and to attach the rules to the appropriate points. Generalization is a simple way of
collecting the alternative methods together. By attaching locally relevant heuristics to
abstract operators, domain-specific knowledge can be used to guide a general-purpose

planner (Friedland & Iwasaki, 1985). The same approach is used in (Tong, 1988) in the
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domain of circuit design.

Extension i ion Engineerin

The techniques for reducing search described in the previous sections have been
implemented in OPIE and are useful for reducing search in the process of planning. My
experience with OPIE suggests that these same techniques can be extended outside of the
planning process itself and can be used more generally during the composition and modi-
fication of a functional specification. The extensions described in this section have not
been implemented and tested specifically for specification engineering, but are fairly

straight-forward extensions to the techniques that have been implemented in OPIE.
Adaptive Specification Using a Taxonomic Hierarchy

If an operator is used to achieve a user goal, but also achieves a prohibited condi-
tion, it may be possible to find a closely related operator in the generalization hierarchy
which still achieves the goal but does not achieve the prohibited condition.

Suppose that a particular artifact operation altows a prohibited condition to be
reached. One option is to replace that operator with a similar operator that achieves the
same positive effects, but not the negative ones. The second operator will be in the same
branch of the operator hierarchy as the first, since they share some effects. Thus, the
replacement can be found by first moving up in the taxonomy, and then down again. The
problem solver systematically examines nearby operators to find one which achieves the
same purpose without the negative side-effect.

The basic idea for this approach has been described as adaptive planning {(Alterman,
1988). The idea is to find some other operator in the taxonomy which satisfies the achieve-
ment requirement without violating the prevention requirement.

For example, consider the situation in which a person gains access to another
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patron’s borrowing record by querying using that person’s name. The usual solution is to
require some form of password before the information can be accessed. In the generaliza-
tion hierarchy, the modified query (using a password) can be viewed as a sibling of the

original query (without a password) which satisfies the goal of the original query without

allowing the invasion of privacy.
Compositional Specification: Using Constraints to Prune Options

Using incremental selection, it may be possible to avoid the backtracking required in
the previous solution. Rather than choosing an operator and then replacing it when it turns
out to be inadequate, in some cases we may be able to introduce a general operator and
gradually refine it as interactions with other parts of the problem are identified.

For example, consider the interaction between the check-out and recall operators
presented earlier in Figure 4.3. As long as the interaction occurs within a single plan,
OPIE is able to use incremental selection to refine both operators without unnecessary
search. However, if the two operators do not appear in the same plan, OPIE currently does
not have any way to propagate constraints between them.

The key modification needed to extend the incremental selection approach outside
of a single planning problem is to allow constraints to be propagated not only within a sin-
gle planning session, but between plans as well. This extension seems like a fairly

straight-forward project for future work.
Detecting and Addressing Safety Deficiencies at an Abstract Level

Most traditional Al planners stop when they have found a single plan that achieves a
goal state. In detecting deficiencies in a functional specification, however, we would like
to know about all plans that lead to a prohibited condition.

Some work can be saved if critiquing a functional specification occurs at regular
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intervals during the composition phase. Detecting safety violations at the abstract level has
two advantages. First, since less work has been done in filling out details, less has to be
undone if a deficiency is detected. Second, if a plan that leads to a prohibited condition can
be disabled at an abstract level, a variety of concrete plans may be disabled at once.

If possible, we would like to know if there is one change that will disable all of the
prohibited plans at the same time. Thus, it would be useful to know the common elements
of all of the prohibited plans. If one precondition can be disabled or one operator can be
removed to disable many or all of the undesirable scenarios, many cycles of modify and
test may be avoided.

A feature of OPIE described in (Anderson & Farley, 1988) is a mechanism that gen-
erates abstract plans from executable plans by replacing the primitive operators with
abstract operators.

An abstract scenario allows OPIE to find the most general plan which leads to a pro-
hibited state. By dropping the details that are unique to one plan and preserving those
aspects common to several plans, we can identify key changes which will disable a large
number of similar plans. Rather than try to patch a problem shown in one particular sce-
nario the analyst can attack the problem in abstract. OPIE can create an abstract version of

the plan and can attempt to solve the more comprehensive problem.
Macro Services

The notion of macro-operators can be extended outside of planning to the more gen-
eral case of macro-decisions (Tong, 1988). One application of this idea is to group related
services together into a single package. For example, the check-out and return services are
highly interrelated, and typically should be selected so that they work together. The notion
of macro-services is to avoid costly search when most of the plausible solutions end up

being rejected due to detailed interactions.
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Combining macro-decisions with generalized services provides the benefits of each,
as well as dividing the search space into independent sub-spaces. For example, by select-
ing an abstract check-out and return macro-service, which includes a detailed description
of the shared objects and persistences, the selection of particular check-out and return

operators can be made independently, so long as the constraints are respected.
umm

Three different approaches to reducing search have been proposed in the artificial
intelligence planning community. The approaches are using composite solutions to reduce
the depth of the search, general solutions to control the branching factor of search, and
domain specific search control knowledge to guide the choices made by the planner. All of
these methods are integrated in OPIE and have significant effects on the efficiency of plan-
ning in many domains.

While the use of these methods within the planner is helpful, there is additional
room for extending the methods beyond a single planning problem to assist in specifica-
tion engineering decisions outside of the planner. The primary mechanism required for
implementing such extensions is a means of propagating constraints between planning
sessions as well as within a planning session. This extension appears to be a fairly straight-

forward exercise for future work.
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CHAPTER V
RESULTS AND EVALUATION

The expected output of the specification engineering process is a functional specifi-
cation of the target artifact. The inputs include a problem definition consisting of a client’s
requirements plus knowledge of the actions which can be performed by either the artifact
or actors in the environment.

I have described the role of an automated planner in producing a functional specifi-
cation given the necessary inputs. In order to evaluate the proposed theory, I have imple-
mented a state-of-the-art planner and applied it to 2 number of small test problem. In this
chapter I discuss the results of using the planner in solving a benchmark problem from the
requirements engineering domain. The first section of this chapter presents results of run-
ning the planner on a variety of test problems which illustrate how the planner assists a
human analyst.

Following the presentation of results I evaluate the planning approach to specifica-
tion engineering. The evaluation of the approach is divided into five parts. Section 2 dis-
cusses expressiveness: while the use of preconditions and post-conditions to describe
actions is important, it is not sufficient for expressing everything we might want to say
about a functional specification. The third section discusses issues related to resolving
ambiguity in the client requirements. The fourth section discusses issues related to filling
in missing pieces in the client requirements. The fifth section discusses limitations of the
approach for guaranteeing a complete, correct functional specification. The sixth section
discusses efficiency issues.

The results of my experience indicate that planning is indeed a central component in
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requirements engineering. However, extensions are needed to adapt standard planning
techniques to solve requirements engineering problems. In addition, my experience pro-
vides insight into those portions of the requirements engineering process that cannot be
accomplished directly by the planner. These other activities indicate the need for addi-
tional modules that must interact with the planner to complete the overall requirements

engineering process.
: The Li Problem

In order to evaluate the planning approach, I have applied it to a standard problem in
the requirements engineering domain, the library problem.

The library problem is as close as we come to having a benchmark problem for
requirements engineering. Many researchers have used the library problem to illustrate
and evaluate their languages, tools and techniques for requirements engineering. A variety
of different specifications of the library problem have been published. This problem was
used in IWSSD4 as a benchmark problem that contributors would all use to illustrate their
approaches, thus providing a common ground to help in comparing the various tech-
niques. Furthermore, after the workshop, Jeanette Wing wrote a summary article compar-
ing and evaluating the papers that appeared in the workshop proceedings (Wing, 1988).
Other aunthors have continued to publish descriptions of the library problem.

Thus, the library problem is a useful problem for comparing the types of results that
my automated system produces to what others believe a reasonable specification should
look like. Furthermore, Wing has identified a number of issues that help to further reveal
underlying assumptions and characteristics that are useful in understanding a particular
approach to requirements engineering.

In the following sub-sections I discuss the results of applying the prototype system

to the library problem. Figure 2.8, which presents the original problem as presented in the
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call for papers of IWSSD4, is reproduced as Figure 5.1 for easy reference.

The library problem (IWSSD4, 1987):

Consider a small library database with the following transactions:

1- Check out a copy of a book / Return a copy of a book;

2- Add a copy of a book to / Remove a copy of a book from the library;

3- Get the list of books by a particular author or in a particular subject area;
4- Find out the list of books currently checked out by a particular borrower
5- Find out what borrower last checked out a particular copy of a book.

There are two types of users: staff users and ordinary borrowers. Transactions
1,2,4, and 5 are restricted to staff users, except that ordinary borrowers can per-
form transaction 4 to find out the list of books currently borrowed by themselves.
The data base must also satisfy the following constraints:

1- All copies in the library must be available for checkout or be checked out.
2- No copy of the book may be both available and checked out at the same time.

3- A borrower may not have more than a predefined number of books checked out
at one time.

Figure 5.1 Original problem statement for the library problem.

Results

In this section I present the results of running OPIE on several problems which illus-
trate its role in the specification engineering process. The first problem shows that multiple
functional specifications can be found for the same set of requirements. The second prob-
lem shows how more detailed requirements can distinguish between alternative specifica-
tions. The third problem illustrates the use of the planner in finding deficiencies in a

functional specification.
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Multiple Functional Specifications for the Same Requirements

In order to explore the use of OPIE in specification engineering, we developed spec-

ifications for two different library record-keeping systems, one a manual system and one

an automated system. The high-level descriptions of these systems are given in Figures

5.2and 5.3.

- e wy W

e we

e

Manual library system:
- look-up: use card catalog

check-out: write on check-out slips

recall: staff looks for check-out slip by book

remind: staff looks for check-out slips by patron
return: find and remove check-cut slips upon return

dual check-out slips, one indexed by patron, one by book

Figure 5.2 Overview of the manual library system.

The key features of the manual system that distinguish it from the automated system

are the card catalog, the need to fill out paper check-out slips, and the need to use those

slips for accessing information. The detailed definitions of these operators are given in

Appendix A, Figure A.1.

Automated library system

look-up: on-line catalog

check-out: enter patron-id and book-id

recall: staff queries borrowing records by book-id
remind: patron queries borrowing records by patron-id
return: delete check-out record

borrow records are indexed by patron-id and by book-id

Figure 5.3 Overview of the automated library system.
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The automated system uses an on-line catalog rather than a card catalog, allows
scanning of identification codes for the patron and book, and allows access to borrowing
records by querying an on-line database. The detailed definitions of these operators are
given in Appendix A, Figure A.2.

While there are differences between these two record-keeping systems, they both
satisfy the basic requirements for a library record-keeping system, when combined with a
set of environment operators. The environment operators include such things as going to
the library and carrying a book from place to place. The detailed definitions of the envi-
ronment operators are given in Appendix A, Figure A.3.

Figure 5.4 presents a planning problem used as input to OPIE that represents the
fundamental problem of using library resources to complete some project. The problem

definition includes definitions of the objects available and relationships among them.

(def_prob “c3”

:d “be able to complete project”

to ‘{ (Alice patron) (TheBook book)
(CardCatalog catalog) (JANUS catalog)
(Alice-id patron-id) (TheBook-id book-id} )

:i Y( (available (TheBook)) {(on-shelf (TheBook})
{(patron-id-of (Alice-id Alice))
{book-id-of (TheBook-id TheBook))
{(library-owns {(TheBook)) {(card-catalog (CardCatalog))
(online-catalog (JANUS)) )

:g ‘( (completed-project (Alice TheBook)) ) )

Figure 5.4 Problem definition for completing a project using a library book.

Figure 5.5 presents the solution to the problem using the manual approach. The
patron goes to the library, looks up the book in the card catalog, finds the book on the

shelf, checks out the book, takes the book out of the library and completes the project.
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**%%* Problem: c3.1
Description: be able to complete project

*kx* Solution found in round 23

/=---- Solution Found m7.17 {rank: 6) -- e e e y
| | Init

| = ed:{go to library} (alice)

| = e6:{look up book]} (alice thebock cardcatalog)

I = @5: {get book} (alice thebook)

I - e3:|{check-out} ({(alice alice-id thebook thebook-id)

I

|

!

= e2: {Take-book-out} {(alice thebook)
- el: (complete project] (alice thebook}
| Final

Figure 5.5 Plan for completing a project requiring a library book in the case of a li-
brary with a manual record-keeping system.

Figure 5.6 presents the solution to the problem using the automated record-keeping
system. The only difference visible at this level of description is that the patron looks up
the book in the on-line catalog prior to going to the library. Other differences in terms of
how the check-out operations are actually accomplished in the two approaches can be seen
by taking a more detailed view of the plans.

One issue that needs to be addressed is that more than one patron may need the same
resource. The next problem is used to ensure that it is possible for two patrons to complete
their projects, where the projects both require the same resource. This problem is pre-

sented in Figure 5.7.

The solution for the manual system is presented in Figure 5.8. The solution for the
automated system is similar, with the exception that looking up the book occurs before

going to the library in each case.
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2) Automated library record-keeping system

*%*x%x problem: c3.1
Description: be able to complete project

**x* Splution found in round 22

f==——- Solution Found mé.17 (rank: ) =———=——mmeeceecccccc e ——— \
| } Init

| - e6:[loock up book on-line} {(alice thebook janus)

| - ed:{go to library} {alice)

| - e5: {get book} {(alice thebook)

| - e3:{check-out} (alice alice-id thebook thebook-id)

| - e2: {Take-book-out} {(alice thebock)

| - el:{complete project] (alice thebook)

| I Final

Figure 5.6 Plan for completing a project requiring a library book in the case of a li-
brary with an automated record-keeping system.

{def prob “c4¢”
:d “two patrons complete projects”
:0 ‘({ (Alice patron) (Alice~id patron-id)
(Bill patron) {Bill-id patron-id)
(TheBook book) (TheBook-id book=-id)
{CardCatalog catalog) (JANUS catalog) )}
:i Y{ (available (TheBook})) {(on-shelf (TheBook))
(patron-id-of (Alice-id Rlice)) (patron-id-eof (Bill-id Bill))
{(library-owns (TheBook)) (book-id-of (TheBook-id TheBook))
{card-catalog (CardCatalog)) (online-catalog (JANUS})) )
:g ‘({ (completed-project (Alice TheBook))
{completed-project (Bill TheBook)) ) )

Figure 5.7 Problem definition: two patrons have projects which require the same book.

The solution given in Figure 5.8 shows one aspect of the planner which is useful in
many cases of specification engineering: plans need not be totally ordered. Action e% and
€14 occur simultaneously. This is indicated by the overlapping dashes at the left of the

action description.
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In standard mode the planner does not actually try to discover all of the ways that
actions can be performed in parallel, but allows actions to be unordered. In order to avoid
potential conflicts, actions which affect the same object cannot occur simultaneously. A
more sophisticated method of determining which actions can and cannot be performed

simultaneously could be provided with additional effort.

*x4% Problem: c4.l
Description: two patrons complete projects

*x%%x Solution found in round 51

/=——= Solution Found ml6.38 (rank: 12) —=————emmmmmemm e AN
| | Init

| - el0:{go to library} {alice)

| - eB:{look up book]} (alice thebook cardcatalog)

| - e6: {get book) (alice thebock)

| = ed: {check-out} (alice alice-id thebook thebook-id)

| - el2: {Take-book-out} (alice thebook)

| = e2: {complete project]) (alice thebook)

| - e9:{go to library} (bill)

i - eld: [return} (alice alice-id thebook thebook-id}

| - e7:{look up book} (bill thebook cardcatalog}

| - e5: {get book} (bill thebook)

| - e3:{check-out} ({(bill bill-id thebook thebcok-id)
] = ell: |{Take-book-out} (bill thebook)

I - el: (complete project} (bill thebook)

| | Final

\

Figure 5.8 Plan for two patrons to complete projects requiring the same book.

Distinguishing Between Functional Specifications

Figure 5.9 presents a problem that distinguishes between the manual and automated
record-keeping systems. The problem is one of finding out that a book is currently
checked out of the library. Both systems can satisfy this goal, but the automated system

allows the patron to find out without actually going to the library. Thus, given a rudimen-
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tary notion of relative cost, the planner can show non-functional as well as functional

characteristics of plans.

(def_prob “£29”

:d “know book is not available, be in office”

:0 ‘{ (TheBook book) (TheBook-id book-id)
{(CardCatalog catalog) {OnlineCatalog catalocq)
(Bill patron) (Alice patron) (Alice-id patron-id) )

:i Y( (library-owns (TheBoock))
(card-catalog (CardCatalog))
(online-catalog (OnlineCatalog))
{patron-id-of (Alice-id Alice))
(book~id-of {TheBook-id TheBook))
{off~-shelf (TheBook))
{chkout-record {TheBook-id Alice-id))
{in-office (Bill)) {at-terminal (Bill)) }

:g ‘{ (knows-book-is-out {(Bill TheBook)}
{in-office (Bill)) ) )

Figure 5.9 Problem definition for finding out that a book is not available.

Figure 5.10 presents the solution found for the manual library. In this case, a “dura-
tion” value was given to each action, indicated by the length of the dashed line to the left

of the action. The total time required for this sequence is 20 minutes.

***% Problem: £29.1
Description: know book is not available, be in office

*x** Splution found in round 26

/===-= Solution Found ml0.1l1l (rank: 20) --—-—————--——-————————m——o \
| | Init

| =———— e2:{go to library} (bill)

| === e3:{look up book] (bill thebook cardcatalog)

lr mme—— el:{3ee book is out} (bill thebook)
S e6:(Go to office} (bill)

| | Final

Figure 5.10 Plan for finding out that a book is not available in the manual library.
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Figure 5.11 presents the solution for the automated record-keeping system. This
solution assumes that the patron has a terminal in their office which can be used to access

the library record-keeping system. In this case, the time required is 4 minutes.

**%x* Problem: £29.1
Description: know book is not available, be in office
*%k* Spolution found in round 19
/~~== Solution Found m3.14 (rank: 4) =—-—=-—————————————————e——————r—— \
| | Init
- e6:{log on to catalogl {bill onlinecatalog)
e e2:{look up boock on-line} (bill thebook onlinecatalog)

|
|
| - el:{see book is out on-line} (bill thebook)
| | Final
A\

Figure 5.11 Plan for finding out that a book is not available in the automated library.

Finding Deficiencies in a Functional Specification

The next problem illustrates the use of the planner in finding deficiencies in a func-
tional specification. One of the requirements is that patrons not be allowed to check out
more than some predefined number of books at a time. In order to show that this require-
ment can be violated, we give the planner the goal of finding a plan that results in a patron
having more than the allowed number of books checked out.

The complete problem definition is shown in Appendix A, Figure A.8. Briefly, the
library has a check-out limit of two books, and the goal is to show a single patron with
three books checked out.

Figure 5.12 presents the plan found by OPIE for this planning problem. Because the

plan indicates a deficiency in the functional specification, some change must be made.
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*%%* Problem: cl2.1

Description: over limit, has book

*%x** Solution found in round 34

/===-= Solution Found ml2.25 ({rank: 3) === \
| | Init

I = e2: {check-out} {alice alice-id Bookl Bookl-id}

| - e3: (check-out} {(alice alice~id Book2 Book2-id)
I - el:{check-cut)} (alice alice-id Book3 Book3-id)
| | Final
\

Figure 5.12 Plan showing violation of borrowing limit requirement.

Figure 5.13 shows the revised check-out operator used to address this deficiency.
The key change is that a record is kept of how many books a patron has checked out, and

the operator is only allowed to be used when the patron is under their limit.

; patron goes over limit

{def_op ‘Restricted-check-out
:d “Check out a book from the library”
t0 ‘{patron patron-id book book-id counterl counter2 counter3)
:= Y({ (available (book})
{ready-to-check (patron bocok})
{books-outl (patron counterl)}
{books-checkedl (patron-id counterl)) }
i= V{ {(book-id-of {book-id book))
{patron-id-of (patron-id patron))
{check-out-limit (counter3))
{(follows {(counter2 counterl))
{less-than {(counterl counter3)) )}
:+ ‘( {can-use (patron boock))
{chkout-record (book-id patron-id))
{books-outZ (patron counter2))
{books—checked2 (patron-id counter2)) } }

Figure 5.13 Revised operator representing a restricted form of check out. This operator
cannot be applied when the patron has reached their borrowing limit.
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When this operator is used to replace the original check-out operator, the safety vio-
lation no longer occurs. The planner searches in vain for a plan in which three books are
checked out by the same patron at the same time.

Because the number of plans which do not violate the requirement is very large, the
planner may continue indefinitely. Typically there is some time limit set on the planner. If
the planner does not find a plan within that amount of time, there may still be plans which
violate the safety requirement. All that the planner can tell us is that there are no plans

within a bounded region of the search space.

2) restricted check-out

*x%* pProblem: cl2.1
Description: over limit, has book

**Roundsoof*****************************
Queue: ml75.35 v.. (137 more)

**TIMEOUTFAILURE***********l‘*t***tt*******
/—-—--- Best model: ml75.35 (rank: §) ~-——-——————m—me—mccc————— - \
| Events:

lel0: {~etyp23]) (alice alice-id Book2 Book2-id zerc one)

|le2: {restricted-check-out} (alice alice-id Bookl Bookl-id one two
two)

le43: {~etyp23) (alice alice-id Book2 Book2-id two zero)
{eld:|{restricted-check-out} (alice alice-id Book2 Book2-id zero one
two)

|eSl: (~etyp23] (alice alice-id 0337 0338 one zero)

|lel: {restricted-check—-out} {alice alice-~id Book3 Book3-id zerc one
two)

e e e e e — e /

Figure 5.14 Using the restricted check-out operator, the planner fails to find a plan
which violates the borrowing limit within a specified time limit.

We have shown how a planner can be used in specification engineering. The remain-

ing sections of this chapter deal with the evaluation of the planning approach to specifica-
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tion engineering.
Representation

The specification of functional specification in terms of preconditions and postcon-
ditions is a popular and generally accepted format (Wing, 1988). Of a dozen papers
describing specifications of the library problem (TWSSD4, 1987), all of the papers used
some sort of precondition / post-condition representation for their target specification. The
common practice of describing routines in terms of their inputs and outputs is subsumed
by the use of preconditions and postconditions. Thus, our output clearly fits into an accept-
able format. Furthermore, given appropriate inputs, the planning approach is capable of
generating specifications which are essentially the same as some of the published specifi-
cations produced by hand.

Other examples of the use of preconditions and postconditions for specification
inciude (Reubenstein, 1990; Barstow, 1979; Kant, 1985; and Lubars & Harandi, 1989).
This suggests that the output of OPIE fills the needs of designers.

Requirements Expressed as State Transitions

Any task can be expressed in terms of a transition between pre- and post-conditions.
Furthermore, any requirement to maintain or avoid certain states can also be expressed as

a prohibited transition. This is shown in Figure 5.15.
Limitation: Expressiveness

While the precondition / post-condition format is acceptable, other aspects of the
representation language were inadequate. I adopted the STRIPS formalism (Fikes et al.,
1972) because it was designed for planning and because it is a simple language 1o use.

Unfortunately, this choice tumed out to be less than ideal for purposes of specification.
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Achieve

( ~good (state) ) produceg( good (stalc))

Maintain

C good (state) consumes ~good (state))

Avoid

( ~bad(state) produces< bad(state) )

Figure 5.15 Representation of tasks as initial and final states.

The qualities demanded of a proposed representation for a model include expres-
siveness and analytic power. These are often in conflict because, in general, the larger the
class of systems that can be described, the less is analytically decidable about them. A
third important quality is naturalness of expression (Cohen, Harwood, & Jackson, 1986).

The basic STRIPS formalism is quite simple to use, but lacks some expressiveness.
The STRIPS language is a restricted subset of FOL. It is possible to extend the language to
increase expressiveness, but at the cost of added complexity. One trade-off is that, with a
more expressive language, there is less guidance for novice users trying to use the lan-
guage. Thus, while the simplicity of the language was an advantage at first, it caused prob-
lems when I tried to express more interesting problems.

The most significant lack in the STRIPS language appears to be the lack of mecha-

nisms for manipulating sets. Universal quantification and enumeration over sets is a useful
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abstraction that is used frequently in specification. In STRIPS it is assumed that sets are
pre-enumerated in the initial state of the problem, so that all operators apply to individual
elements rather than a set as a whole. Thus, it is not convenient to define tasks such as
“find all books by an author” in the STRIPS formalism.

The use of the STRIPS language is a limitation of the current implementation, but
does not appear to be an inherent problem of the planning approach. A variety of specifi-
cation languages have been proposed which combine the precondition / post-condition
aspects of the STRIPS formalism with mechanisms for describing operations on sets. Pos-
sible languages include VDM (Ledru, 1991), Larch (Wing & Zaremski, 1991), or a num-
ber of others (Dubois, 1989). RML (Greenspan, 1984) may be the specification language
most closely aligned with the planning approach. It will be necessary to modify our sys-
tem to handle these additional language constructs, but there are no obvious reasons why

the extensions should not be possible.
larification: Resolving Ambiguit

In her analysis of the library problem, Wing (1988) lists a variety of issues under the
heading of “ambiguity”. I classify these issues under three sub-headings:
» ambiguous system boundaries
« ambiguous intention

« ambiguous reference

Caveat

One caveat is that the goal of the planning approach differs from the goal of most of
the other papers. Wing's emphasis, like most of the published reports, is on moving from
an informal specification to a formal one. In most cases, the specification produced was

intended to be a more formal restatement of exactly the information contained in the orig-
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inal.

My emphasis, on the other hand, is on going from an application-oriented descrip-
tion to an artifact-oriented description. The information provided by the client should be in
terms of the tasks to be performed in the application domain. The specification, on the
other hand, is restricted to only those functions performed by the artifact. Therefore, we
expect the information content of the two descriptions to be quite different. The analyst
has the freedom to make design decisions about what functionality is required to achieve
the application tasks. Thus, our system does more than simply restate the initial descrip-
tion in a more formal way.

As a result of this difference in views, some of the issues raised are not directly rele-
vant to the planning approach, and some of the interesting aspects of the planning
approach fall outside the list of issues raised by Wing. Nevertheless, there is sufficient
overlap for the exercise of discussing the issues to offer useful insights into the planning
approach.

In the planning approach, the English problem statement is treated as a description
of the client’s objectives, rather than as an informal specification. [ restated the problem
formally in terms of initial and final states. This part of the process was done manually,
and therefore was where most ambiguities due to natural language interpretation were
resolved. However, other types of ambiguity are explicitly addressed by the planning

approach.
Ambiguous System Boundaries

The first issue Wing deals with is whether it is the library itself or a library database
that is being specified. In the planning approach, the library represents the application
domain and the database is the artifact to be specified. Thus, the initial description is of the

library itself; that description is used to constrain the description of the database. In order
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for the specification to be validated, it is important to have an integrated view of how the
database interacts with the actors associated with the library.

In order to understand the tasks in which the database will be involved, we must
model a significant part of the library as well. Any part of the library that interacts with the
database constrains the database. At the same time, the existence of the database may
force changes in the operation of the rest of the library.

In the initial stages, the boundary between the artifact and its environment is not
clear. We intentionally allow the boundary to be ambiguous at first. At the top level, we
have actions that involve more than one agent; the specification is not considered com-
plete (unambiguous) until these actions have been decomposed into actions that can be
performed by a single actor (Feather, 1987).

Part of the specification process, in the planning view, involves making trade-offs
about whether particular operations will be performed by the artifact or by an actor (typi-
cally a human) in the environment. The trade-offs are generally decided on economic
grounds: is it cheaper to try to automate this function, or to make a human responsible for

this aspect of the task?
Ambiguous Intent

One statement in the informal specification is ambiguous with respect to what the
intended action should be: what the appropriate outputs should be under different precon-
ditions. Scenarios are useful for resolving this type of situation.

The issue is the statement that it should be possible to get a list of the patron who
last checked out a book. It is unclear whether this means that, while the book is checked
out, it should be possible to find out who has it (Figure 5.16a), or whether, once the book is

returned, it should be possible to find out who was the last patron to have checked it out

(Figure 5.16b), or both (Figure 5.16¢).



(a) “last” = “current”
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(Checked-out (b,p) }———s={ Find-last

4>@isplayed ) )

G\va.ilable (b) )__, Find-last

—»@isplayed 0 j

(b) “last” = “previous”

@hecked-out (b,pD—» Find-last

—>@sp1ayed 0 3

(Available (b) ~ }———! Find-last

-4>@isplaycd (p) )

(c) “last” = “current or previous”

@heckcd-out (b@—> Find-last

——»(Displayed (p) )

Q\vaﬂablc (b) )—> Find-last

———»(Displayed (p) )

Figure 5.16 Three different interpretations of the requirement of finding out what
borrower last checked out a particular copy of a book

The client requirement would have been clearer if it had been expressed in terms of

initial and final states. Describing exactly what information is expected when the book is

checked out and when it is not conveys the intended meaning of this statement.

This ambiguity allowed me to investigate one of the features of the planning

approach that I feel is significant: the ability to produce different specifications given dif-

ferent requirements. I ran three tests, one using “last” = “current”, one using “last” = “pre-

vious” and one using “last” = “current or previous”. As it turns out, this distinction affects

both the check-out and return scenarios, since different information must be recorded in
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each case. For “last” = “current”, check-out simply records the name of the patron and
return deletes it. For “last = previous”, check-out deletes the previous name and return
places the name on the “last” record. In third interpretation, “last” = “current or previous”,
check-out has to replace the last name with the new name; return does not affect the

record.
Ambiguous Reference

Wing points out two places where the requirements are ambiguous in terms of what
a phrase refers to. The first is the distinction between a book and a particular copy of a
book. The second is the restriction that books be either available or checked out.

The initial, informal specification uses the terms “book” and “copy of a book™ as
separate concepts. A “copy” is a physical instance of a book, “‘book™ refers to the abstrac-
tion over all copies with the same author, title and content. In transaction 4, the informal
specification uses the term “book” where “copy” seems more appropriate: “get a list of all
books checked out by a patron™ should be “get a list of all copies checked out by a patron”.
This is an example of ambiguous communication: we can assume that the specifier had
something specific in mind, but there is some question about the communication. This is
the type of ambiguous reference that humans are able to resolve without conscious effort:
we typically use “book” to refer to either a specific copy or to the abstraction, without
much trouble.

In general, 1 do not claim to be able to resolve communication ambiguities. OPIE is
not intended to deal with natural language issues. In this case, it does appear that using a
scenario could resolve the question: a scenario in which someone lists what they have
checked out could contain information about either each copy or the abstract book. A deci-
sive scenario would be one in which the patron had two copies of the same book: presum-

ably a list of copies would show both copies, a list of books would show just one book.
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The notion of “available” seemed to need further refinement in our scenarios in
order to accurately describe the period between when a book is returned and the time it is
back on the shelf. We could stretch the point and consider a book available as soon as the
check-out record is updated, but allowing the state of “in process™ seems to better describe
the situation. In fact, it seems useful to have more precise descriptions of a number of sit-
uations: after the patron has retumed the book, but before the database has been updated;
after a new book has been obtained, but before it has been recorded; while a patron has the
book in hand, but before it has been checked out.

Our approach also revealed the notion of “exists but not owned by the library” when
looking for scenarios covering what to do when a patron queries about an author not listed

in the database.

Resolving Incompleteness

The issues Wing raises under the heading of incompleteness are items missing from
the initial specification that various analysts felt should have been included. Two key
questions are: if the information is not in the client’s initial statement of needs, where does
it come from? And how is it recognized that the information is missing? Some of the items
appear to be programming knowledge that should not be expected from the client, but
must be provided by the analyst’s programming knowledge. Other items require that the
analyst have knowledge about the domain in order to suggest additional items that are
commonly found in libraries. The analyst should ask the client whether these common
items were intentionally left out or should be included. Thus, the analysts serves as a sec-
ond opinion about what the requirements should include.

The incompleteness issues are: initialization of the program, missing operations,

error handling, missing constraints, change of states, and non-functional requirements.
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Initialization

There is no reason for the client to be concerned with initialization of the database.
However, the analyst should recognize the need and, according to Wing, include appropri-
ate requirements in the specification.

The planning approach to specification gives explicit support for identifying the
required initial state of the artifact. The preconditions of every action can be achieved in
one of two ways: either by the application of another action, or by being true in the initial
state. Thus, every precondition that has no producer in the combined artifact and environ-
ment action sets must be true in the initial state.

The issue of initialization has been a difficult one for my research. In the original
planning approach (Anderson & Fickas, 1989) we proposed that the initial conditions of
the artifact be an explicit part of the specification. This was a result of our attempts 10 use
means-cnds analysis to determine the artifact operators.

Like Wing, we originally considered the use of “create-artifact” actions which
would be used to set up the database in the first place. However, in the current application-
centered approach, I pay less attention to the initial state of the artifact and focus on spe-
cific tasks to be performed by the eventual users of the artifact. I have chosen to ignore the

issue of initialization for now, in order to focus on the services of the specification.
Missing Operations

There are two ways to view the operations that might be missing from a client’s ini-
tial problem description. One is that the client has left out specific tasks that need to be
accomplished. The other view is that the analyst needs to fill in steps for accomplishing
the client’s tasks.

The “operations™ that Wing suggests adding would be seen as “transitions™ in the
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planning view. For example, the operation of adding a new staff person is more easily seen
as a requirement that the client left out of the original problem description than as a way to
achieve one of the initial transactions. The current implementation does not contain any
support for the addition of new requirements. However, our view is that the analyst would
have stored scenarios that could be used to point out omissions to the client as well as
being used in their current role of validating against the known requirements.

I use a different notion of missing operations - operations required to satisfy the pre-
condition of one of the operators used to accomplish a task. Using backward chaining, a
planner fills in missing operations as needed to complete a plan.

There is one sense in which the two views can be merged: if, in trying to fulfill the
preconditions of the steps for one task, the analyst reveals another task. For example, if
one of the steps of check-out is that a staff person perform some action, then it is possible

that the question of where a staff person comes from might arise.
Error Handling

Wing incorporates checks which I would view as run-time checks: “if this situation
occurs then signal an error.” For example, if a person tries to check out a book when they
are already at their limit, report an error rather than allowing them to check out another
book. My emphasis has been on detecting errors at design time rather than at run time. If
the artifact can be designed to prevent the error from occurring, do so. If not, then the
types of error handling the Wing suggests is appropriate.

OPIE actively looks for the possibility of errors and recommends changes if they are
found. For example, in the case of checking out too many books, OPIE generates a sce-
nario in which a patron actually does check out too many books, and displays the plan
used. The analyst can then modify the check-out scenario to include a test for number of

books out, so that the check-out cannot be accomplished. This in tumn results in a new ser-
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vice in the specification: keeping a record of the number of books checked-out to each

patron.

Missing Constraints

The planning approach takes a knowledge-based approach to constraints: the analyst
should understand the implications of whatever actions are introduced as a means of satis-
fying the requirements. Most of these actions have constraints in addition to the client’s
requirements, in the form of physical and social laws. For example, the ability to list the
books checked out by a patron requires that that information be stored somewhere. The
client’s requirement that information be available after a book is checked out leads to con-
straints on the check-out operator. The information must be recorded during the check-out
process in order to be available later. For example, the addition of a recall operator might

require that a patron’s address or phone number be recorded when a book is checked out.

Change of State

The STRIPS approach is to only mention those persistences that are either modified
by the action (produced or consumed) or are explicitly required for the action to occur
(used). Wing's concern that it may not be clear in some specifications what changes and

what remains the same has been explicitly addressed in the STRIPS language.

Non-functional Behavior

Requirements often place constraints on artifact behavior in addition to desired and
prohibited transitions. Other constraints include cost, performance, and reliability. In the
current version of the planning approach I do not atiempt to handle non-functional

requirements, although I recognize the need to extend the model in the future.
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ness: What Can W ntee?

The planning process itself can be shown to be complete and correct under restricted
circumstances (Chapman, 1987; Waldinger, 1977). This has been shown for single agent
planning problems, given perfect knowledge and unlimited computational resources.
Given a complete domain model (actions, objects and persistences) and a complete and
consistent problem statement (initial and final states), a general purpose problem solver
can be guaranteed to eventually return a sequence of steps that transform the initial state
into the goal state, if such a sequence exists. Furthermore, if a solution is generated, it will
be correct.

However, a problem solver may be theoretically complete and yet fail to find a solu-
tion to a particular problem. There are practical limitations that result from the complexity
of the task and from having imperfect knowledge about a domain.

Planners have a general limitation that no plan can be proven correct in an environ-
ment with the potential for intervening events. Thus, every solution has the implicit caveat
“barring unforeseen events.”

The level of detail required to predict outcomes precisely is simply too fine-grained
to be computationally tractable in reasonable amounts of time. The primary reason for pre-
diction is to help determine which action to perform. Therefore, prediction does not need
to be complete. However, small details can sometimes have large effects on outcomes, so
even though exact prediction is not always necessary, the lack of exact prediction can
sometimes be costly.

Efforts to come up with a complete and correct logic of actions which actually allow
true inferences about future states are doomed to failure, since outcomes are determined
by empirical states, not by necessity (Simon, 1981).

Formal methods are necessary but not sufficient for zero-fault design (Gaudel,
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1991). There is reason to believe that validation is, in general, an unsolvable problem
(Smith, 1985, cited in Reubenstein, 1990).

The requirements phase is inherently nonterminating, just as science is (Popper,
1959). The analyst can never ascertain that his theory is absolutely correct, although he
can discover that it is not. Even to achieve the latter benefit, however, the analyst must
take great care in the presentation of his theory: it must, at least, permit the inference of
refutable consequences (Cohen et al., 1986).

One of an analyst’s tasks is to anticipate as many sequences of external events as
possible, but this is an intractable problem in the real world. One difficult aspect of this
process is ensuring that the specification covers all possible sets of initial conditions from
which a goal should be achieved. There is no way to guarantee correctness without consid-
ering every possible initial state. Although an artomated planner can determine whether or
not a condition is achievable from any particular state, it is not able to guarantee that the
condition can be achieved from all possible states.

A model of the possible behavior of a complex artifact and its environment includes
a virtually unlimited number of states. If we are trying to represent sequences of actions
performed by users, any possible state of the artifact and its environment would be a valid
starting point. There is no guarantee that the search space, or the test, is finite. OPIE can-
not examine these states exhaustively.

I do not expect the planning approach to guarantee a correct specification. If there
are unlimited resources available, a simpler search strategy will be just as effective. Our
goal is to approach a correct specification within the limitations of practical time and
resource constraints.

The solution described in this dissertation is to focus on known, high-risk safety
issues. I have found that a planner is useful for finding certain kinds of constraint viola-

tions. OPIE is useful for finding known difficulties, (i.e., “here is a test case that has
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caused a problem in the past: is it a problem for the current specification?”’). However, we
cannot guarantee that a planner will find all deficiencies in a given specification. Require-
ments such as “avoid condition x” can only be satisfied with respect to known operators

and known initial states.

Perf: nce an ili

If a program achieves its goal eventually, it is episternologically adequate. If a pro-
gram achieves its goal in reasonable time, it is heuristically adequate (McCarthy, 1977).

In addition to achieving its goals, an automated system must be economical to use.
There is little point spending more to find a problem than the problem was costing in the
first place. In this section I evaluate the planning approach with respect to cost. In particu-
lar, I am interested in understanding to what extent the process can be scaled to large prob-

lems.
Limitations: Exponential Size

An apparent problem with this approach is that the search space for finding all possi-
ble failure conditions seems exponential, if not infinite. The abstraction hierarchy reduces
the complexity of the search by grouping similar failure conditions into abstract classes.
The problem then becomes one of deciding how far down the hierarchy to search. One
solution would be to put a time-limit on the search, and to prioritize failures in terms of 1)}
seriousness of the outcomes and 2) frequency. This ieads to additional issues of how to

obtain and store this information.
ions v isficin

Finding the best solution to a problem generally takes exponential time; finding an

adequate solution may be done in linear time, provided that the problem is not intrinsically
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exponential and the problem solver has adequate selection criteria to make an acceptable
choice at each choice point.

The space of possible specifications grows exponentially with the number of choice
points. Modifying the specification involves a large number of choices. If a plan which
achieves a prohibited condition is discovered, which operator(s) in that plan should be
replaced? What operator(s) should be used instead to achieve the desired conditions with-
out achieving the prohibited conditions? If these choices are not guided by heuristic selec-

tion rules, the size of the search space makes the problem intractable.
: Planner n Very Long Plan

Unfortunately, there is no guarantee that the planner will halt if it does not find a
plan. Some plans can continue to grow in length indefinitely, without ever reaching a halt-
ing condition (success or failure).

One way to handle this is to take the cost of each operator into account. We place an
upper bound on the cost of plans that will be considered. Plans that exceed some threshold
cost can be ignored, whether considering achievement or avoidance requirements.

This opens up another opportunity for requirements violations to go undetected
because the planner would not find any plans beyond that upper bound. This is known as
the horizon effect in search. However, if costs are represented accurately, the plans that are
overlooked will be those least likely to happen.

This limitation is less important in finding incompleteness than in finding inconsis-
tencies because clients will often state constraints on the expense (e.g. number of steps or
time required) of a plan. For example, it should not cost more to check out a book than 10
buy it in the store. Similarly, in most libraries the possibility of armed robbery is not a

major concern.
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Scalability: Make the Right Choice or Decompose Problem

Traditional automated, general-purpose search-based problem solving methods
work reasonably well in toy domains but do not appear to scale up to complex, real-world
problems. The explanation is fairly straightforward. In small domains a problem solver
can afford to make arbitrary choices and, if the choice turns out to be wrong, backtrack
and try another option. In complex domains, the exponential cost of exploring non-solu-
tion branches makes this approach intractable.

There are two ways to scale the process of traversing a search space. The first is to
store enough information such that the decision made at every choice point is the correct
decision. This eliminates the need for backtracking and solution time is linear in the depth
of the solution (assuming a bounded time to make each decision).

The second is 10 decompose the problem into independent pieces, so that the deci-
sions made solving one section do not interact with the decisions made in another section.

When neither one of these options is available - i.e., not enough is known about the
solution to always make the right choice and the problem cannot be divided into indepen-
dent sub-problems, there is simply no way to guarantee a solution without investing the
computation resources required by search.

One benefit from using OPIE is that all three approaches are available in the same
problem solver. When there is information available, it will be used,; if the problem can be
sub-divided, it will be; and if weak methods are the only option, they are available as well.
The program automatically uses the best option available. The planning approach main-
tains the safety net of general search to fall back on when knowledge-based methods fail.

The advantages of using an abstract operator hierarchy include:

1) Pruning is more efficient using the hierarchy because whole sets of alternatives can

be pruned by a single constraint.
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2) In addition to representing the remaining alternatives, an absiract design element
introduces constraints that can restrict other design decisions.
3) The generalization hierarchy provides a place to store selection rules.

By itself, incremental selection improves problem solving performance to a certain
extent. However, even more importantly, the abstract representations and their specializa-
tions can be stored in a taxonomic hierarchy. This makes it possible to attach context-
dependent selection criteria to the abstraction. The selection information can be acquired
during one problem solving session and used to avoid guessing in subsequent problem

solving sessions.
Scenarios Must Integrate Domain and Programming Knowledge

A key prediction that this research makes is that the analyst must have integrated
knowledge of the domain and the type of artifact to be built. Without the integration of the
two types of knowledge, analysis becomes exponential in complexity and intractable for
large probiems.

By following a multi-step explanation, we reach the conclusion that analysis of large
specification engineering problems requires that scenarios showing the artifact in the con-
text of the environment must be available. It is not sufficient to supply two separate
knowledge bases, one for the domain and one for the artifact. Means ends analysis is
intractable for many real world problems. The general configuration task involves expo-
nential search in the worst case (Mittal & Frayman, 1987).

Planning methods based on incremental refinement are needed for reasonably large
problems, However, whereas means ends analysis can be used with arbitrary operators,
refinement methods require an integrated knowledge base. Incremental refinement is also
intractable in the worse case, but makes possible the storage of problem-specific control

knowledge that eliminate guessing.
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Thus, scenarios must include both environment and artifact actions. There are typi-
cally two ways to achieve this merger: the analyst can become an expert in the client’s
domain, or a prototype can be provided for the client to experience directly.

In the first case, the analyst can form an integrated model by combining knowledge
about how the artifact might assist in accomplishing the tasks encountered in the domain.
The analyst is able to make reasonable assumptions about how users will use the solution
system based on personal experience in the domain. The analyst may acquire knowledge
through observations of individuals working or by actually doing the work: the direct
experience method (Marca, 1991). (Note that the direct experience approach is not avail-

able to an automated specification engineering system given current technology.)
mmary: Evaluation of 1

The implementation is an existence proof that the planning approach works, given
appropriate input.

My conclusion regarding the effectiveness of the planning approach are for the most
part positive. The planning approach produce results that would be considered to be a rea-
sonable specification in a useful format for expressing the required services of a target arti-
fact. The use of STRIPS operators is consistent with accepted representations in the RE
community. The current representation language is less expressive for purposes of specifi-
cation than other languages designed expressly for specification, but it was not designed
for the same task. I expect that the planning approach can be extended by adopting a lan-
guage targeted at specification problems and making appropriate extensions to the planner.

The process appears to handle a variety of issues that arise during the requirements
engineering process, although my analysis has been limited to a small number of small
problems.

While we can make certain theoretical guarantees about the correctness of the plan-
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ning algorithms, in reality there are practical limitations that prevent us from obtaining a
specification which is guaranteed to satisfy all of the client’s needs. In general, the most
we can guarantee is sufficiency for a prescribed set of test cases, and satisfaction within a
bounded length (or cost) set of plans. Even so, the ability to automatically detect even a

single constraint violation has some value.
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CHAPTER VI
CONCLUSION

In the concluding chapter I summarnize the results of this work. In addition to pre-
senting the positive results, I discus the large amount of work still to be done and the hard

problems that still need to be addressed.
R h Summ

I have argued that it may be useful to view certain types of requirements engineering
problems from a planning perspective. In particular, if a functional specification can be
viewed as a set of services to be provided and the requirements as desired and prohibited
transitions between states, then results in Al planning may be brought to bear.

To support my arguments, I have presented a prototype system which uses planning
techniques for constructing and critiquing functional specifications. The planner is imple-
mented and has been used in constructing simple functional specifications. I have imple-
mented several test versions of my specification system; it is still an evolving,
experimental system. I have applied the approach in a number of domains, including
resource management (libraries), transportation (elevators, trains, intersections), and com-
munication (email).

My research has involved proposing a particular view of the requirements engineer-
ing problem in order to take advantage of existing automated problem solving techniques,
as well as proposing extensions to existing techniques to address the particular demands of
requirements engineering.

My overall assessment of this work is that I have made a small step, but it appears to
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be in a useful direction.

Research Goals

The thesis proposed and investigated here is that techniques from artificial intelli-
gence planning can be usefully applied to the problem of requirements engineering. Spe-
cifically, the planning approach addresses specification engineering for a class of artifacts
known as reactive systems. Planning techniques are useful in composing functional speci-
fications and analyzing those specifications with respect to safety requirements.

In addition to investigating the role of planning in requirements engineering, [ am
also interested in identifying the remaining pieces: if one assumnes that planning addresses
part of the requirements engineering problem, what additional processes are required 1o
complete the picture?

My approach to investigating the thesis was to implement a state-of-the-art planner,
apply it to a specific requirements engineering problem, and analyze the strengths and

weaknesses of the resultant process.

Scope of the Approach

I cannot make hard claims that this process always works or never works. Rather, |
make the claim that this is a useful approach for some situations, and try to outline charac-
teristics of the situations that it is useful for.

One distinction is between reactive and batch systems. The primary benefit of the
planning approach is detecting interactions between requirements and finding a specifica-
tion in which potentially conflicting requirements are resolved. In batch processing there
are typically very few interactions, so the need for the planning approach may not arise. In
reactive systems, users may potentially request services in any order in any combination,

making reasoning about interactions much more important.
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A particular type of situation in which a reactive system is used is called a compos-
ite system (Fickas, Anderson & Robinson, 1990). A composite system is one in which
human, hardware and software actors engage in interactive problem solving. One example
is an elevator, in which passengers contribute information about their destination and the
elevator controller has to determine which direction to go and which floors to stop at based
on the current set of passenger requests.

Another example is an intersection, where cars compete for a shared resource, the
intersection. A traffic light controller’s task is to enforce exclusive use of the intersection

while maintaining some reasonable measure of fairness and progress.
nts Engineerin Model

Requirements engineering is the first stage in the development of an artifact.

The client and analyst work together toward a shared environment model. The envi-
ronment model is an abstract description of the objects, relationships, and behaviors in the
application environment.

The client expresses his preferences in terms of the environment model. The prefer-
ences indicate which of the states and behaviors in the environment model are desirable
and which are undesirable. The requirements may also describe desired behaviors not
found in the current environment model.

The analyst composes an initial functional specification of the target artifact from
the client’s positive requirements. The analyst constructs plans which achieve the desired
states and accomplish the desired behaviors. For any step in a plan which is accomplished
using an artifact service, the corresponding service becomes part of the functional specifi-
cation.

The analyst then evaluates the resultant functional specification with respect to the

negative requirements. If the analyst can find a pian which achieves an undesirable state
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using the specified services plus environment actions, the specification is shown to be defi-
cient. Either the functional specification must be modified, or the client’s requirements
must be relaxed to maich the limitations of the artifact, or else the project should be aban-

doned.

A planning problem is expressed in terms of an initial state and a goal state. A solu-
tion is a sequence of actions which leads from the initial state to the goal state. The prob-
lem is solved by searching in the space of plans for a plan that solves the problem. In order
to construct plans, a set of predefined operators is provided as input. New operators are
added to the plan in response to deficiencies detected. In a planning problem, a deficiency
is a goal persistence which is consumed or used but not produced in the current plan. The
search space is pruned by rejecting partial plans which contain a constraint violation.

A specification engineering problem can be expressed as a set of planning problems.
The client describes a set of desirable states and behaviors and a set of undesirable states
and behaviors. These are represented in terms of initial and final states. A solution is a set
of services to be provided by the artifact being specified. The problem is solved by search-
ing in the space of functional specifications for a set of services that satisfies the require-
ments.

The view that we take is that the artifact provides a variety of services which are
employed by artifact users in achieving their objectives. The set of services provided must
match the needs of the user if the artifact is to be useful. That is, we are concerned with
building the right system (validation) rather than building the system right (verification).

Because building the right system requires knowing whether users will be able to
meet their goals, we must model and reason about actions in the application domain. It is

the combination of actions by external actors and by the artifact that combine to achieve
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client goals.

In order to construct functional specifications, a set of predefined services is pro-
vided as input. New services are added to the functional specification in response to defi-
ciencies detected. A deficiency is a desirable state transition which cannot be achieved by
the current functional specification.

At the same time we ensure that user goals can be achieved, we must ensure that
restrictions are not violated. The search space is pruned by rejecting functional specifica-
tions which allow the violation of safety constraints.

Both of these tasks involve reasoning about sequences of actions that lead from an
intial state of the world to a final state. Thus, it exactly fits the definition of a planning

problem in the classical Al planning view.
lanni h ification Engineerin

In the planning approach to specification engineering, deficiencies are incomplete-
ness and unsafeness. Incompleteness occurs when a desired state transition cannot be
achieved with existing services in the functional specification. Unsafeness occurs when an
undesired state transition can be achieved with services in the functional specification.

Addressing incompleteness can be formulated as a planning problem. The desired
state transition is presented to the planner as an initial state and a final state. The planner
attempts to construct a plan which leads from the initial state to the final state. The plan
may include operators from the environment and from the catalog of possible artifact ser-
vices. If a plan is found, those artifact services that contribute to the plan are included in
the functional specification.

Detecting unsafeness can be formulated as a planning problem. A state transition
which represents a safety violation is presented to the planner as an initial and final state.

The planner attempts to construct a plan which leads from the initial to the final state using
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operators from the environment and from the functional specification. If a plan is found,
the functional specification fails to meet the client’s requirements.

Modifying a set of services to prevent a safety violation can be accomplished in a
number of ways. One is to backtrack: remove some artifact service, and attempt to find an
alternative service which satisfies the same positive requirements without violating the
negative requirement. This can be accomplished using existing search and planning tech-
niques, but is very inefficient.

Another approach to modifying the functional specification is to provide guards for
the services: restrict the class of states in which the services can be applied. This seems to
be a fairly universal solution to safety problems. However, it cannot be implemented in the

standard planning framework. It is a key issue for future work.
nowl

Any problem solving method that relies on search needs to be concerned with com-
binatorial explosion. Combinatorial explosion refers to the exponential growth in size of
the search space relative to the depth. The size of the search space can be approximated as
O(bd), where b is the branching factor (number of children at each node), and d is the
depth of the search tree.

Structuring the knowledge base helps to reduce search. Using macro-operators
shortens the depth of the tree for solutions which use the macro-operators (while increas-
ing the branching factor and therefore making performance worse on other problems).
Using generalized operators allows greater control over the branching factor, moving
deterministic choices higher in the tree, reducing the overall branching factor within the
tree. Abstract macros can be used to divide the problem into semi-independent sub-prob-
lems. While each sub-problem requires a search space which is O(bd), the size of the over-

all search space is the sum rather than the product of these search spaces.
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Finally, when a problem is encountered, we can avoid backtracking in the space of
plans, and simply replace the individual component that is causing the problem.

We describe how each of these techniques has been applied in the planning domain.
We then describe how the techniques can be extended for reducing search in the space of
functional specifications.

The notion of macro-services can be used to select a set of complementary services
at the same time. For example, the check-out and return services are highly interrelated,
and typically should be selected together.

Allowing generalized services to represent a variety of different specializations also
gives the problem solver more control over the search space. By introducing a general
check-out service, but delaying commitment to exactly which version of check-out will be
provided, the problem solver increases the information content of the functional specifica-
tion without making unnecessary commitments. This increases the chances that unsatis-
factory alternatives will be pruned without a great deal of wasted search.

Combining macro-decisions with generalized services provides the benefits of each,
as well as dividing the search space into independent sub-spaces. For example, by select-
ing an abstract check-out and return macro-service, which includes a detailed description
of the shared objects and persistences, the selection of particular check-out and return

operators can be made independently.
Results

I have implemented a state-of-the-art planner and applied it to a specific require-
ments engineering problem, the library problem. The results of my experience indicate
that planning is indeed a central component in requirements engineering. In addition, my
experience also provides insight into those aspects of requirements engineering that can-

not be accomplished by the planner, but which must interact with the planner to complete
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the overall requirements engineering process.

My evaluation of the planning approach to requirements engineering is divided into
five parts. The first is expressiveness: while the use of preconditions and post-conditions
to describe actions is important, it is not sufficient for expressing everything we might
want to say about a functional specification. The second section discusses ambiguity
issues. These issues were first raised in Wing's (1988) review of a dozen papers (TWSSD4,
1987) discussing alternative approaches to the library problem. The third section is also
based on Wing’s review. This section discusses issues that Wing refered to as incomplete-
ness issues. The fourth section discusses limitations of the approach for guaranteeing a
complete, correct functional specification. The fifth section discusses efficiency, empha-

sizing the importance of structured knowledge in avoiding combinatorial explosion.
he Pi

A major weakness of the classical planning paradigm is the reliance on perfect
knowledge. The approach depends on the assumption that every possible operator is
described in the input set, and that the description of the initial state is complete. In reality,
neither of these assumptions hold. In this section, we address the issue of incomplete
knowledge within the context of our formulation of the requirements engineering prob-
lem. We propose addressing the problem by providing mechanisms for the incremental
acquisition of knowledge. This acquisition is deficiency-driven: rather than trying to
acquire all of the necessary information in advance, we provide methods for allowing rel-
evant information to be supplied on demand.

The knowledge that we are concerned with includes the requirements model, the
environment model, and the potential services model.

The environment model is incomplete because we do not know in advance which

aspects of the environment are relevant to the current problem. As new aspects of the
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problem are encountered, additional information about the domain is required.

The requirements model is incomplete because the client does not know in advance
which of his preferences are relevant to the current problem. The analyst may know that
certain scenarios are common, and specifically ask the client whether those scenarios are
acceptable.

Finally, the potential services model may be incomplete. Not every service may be
mentioned, and not every specialization of every service may be explicitly represented. If
certain achievement requirements are not being met, it is useful to ask an expert in that
specialty whether such a service is available. Thus, instead of &rying to store complete
knowledge about an area, we might instead store knowledge of who to ask about that area.

If certain safety requirements are not being met, it may be possible to provide a
guard for a service that violates the safety requirement. However, it may not be possible to
store in advance all possible guards for every service. Therefore, adding guards to services
should be on-demand: if a situation is encountered where a safety requirement is violated,

installing the appropriate guard should be done automatically or interactively.

Benefits of Research

The two benefits of building a computer model of a process are a) we learn to better
understand the process through the model, and b) the model serves as a prototype for
building tools to support the process.

While OPIE is far from being a commercially viable software engineering tool, the
planning approach is useful from a research perspective.

* raises questions about the requirements engineering process
« offers explanations for empirical results
+ gives detailed suggestions about what information is required for requirements en-

gineering to succeed
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The model developed in this thesis is based on applying artificial planning tech-

niques to specification engineering problems. This application has a number of benefits.

Benefits of Scenarios

My research provides evidence which supports the thesis that scenarios play an
important role in requirements engineering. This evidence adds to other work showing
that scenarios play an important role in requirements engineering (Benner, 1990; Kauf-
man, Thebaut, & Interrante, 1989; Rosson & Carroll, 1992).

Is the planning approach to manipulating scenarios as a means of composing and
validating specifications a feasible approach? The implementation serves as an existence
proof of the thesis: it is indeed possible to produce a specification using the techniques
which I have described and implemented. The planning technique seems useful for prob-
lems in which the artifact being specified must react to its environment.

The services provided by an artifact alter the problem space in which users do their
planning. Therefore, it is necessary to model the composite system consisting of the envi-
ronment and the artifact, and evaluate the composite model to determine whether client
requirements are met.

Simply comparing the static composite model does not teil us whether the client
requirements will be satisfied. Some method of examining the dynamic behavior of the
composite system is needed. The approach advocated here is to use scenarios to predict
possible consequences of fielding this artifact. Validation involves an attempt to predict
the future, comparing possible scenarios to client requirements to discover deficiencies.

1 believe that the basic premise proposed in the thesis is valid: planning is an essen-
tial component of the requirements engineering process. However, a number of additional
pieces have to be in place before the approach is adequate for modeling the entire require-

ments engineering process.
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Benefits of Automation

OPIE can be viewed as a prototype tool for supporting requirements engineering
using automated planning.

This work also provides some evidence regarding the use of a planner as an auto-
mated tool to perform the composition and analysis of functional specifications. What are
the costs and benefits of such a tool? I am less enthusiastic about the potential for automat-
ing requirements engineering than I am for describing it. The reason is that the knowledge
acquisition problem is extremely difficult.

The question can be stated as: under what conditions does the benefit of constructing
a model of the artifact environment, 2 model of the artifact, and alternative versions of the
artifact, and a task-oriented description of the requirements outweigh the cost? The answer
is, whenever having the model reveals errors and deficiencies that would have gone unno-

ticed without the model, and would have cost more to fix than the cost of the model.
I nd Limi

Requirements engineering is an ill-defined task. No single model is likely to explain
all approaches to all types of requirements engineering problems. A suite of models will
be required in order to cover the variety of techniques that can be applied by different ana-
lysts to different portions of a single problem, and to different kinds of problems.

There is still much that is manual about the planning approach. First, the human ana-
lyst must translate client objectives into requirements and restrictions. These must match
relations that are stored in the database of the system. In addition, modification of a non-
satisfying specification is currently more manual than automated. Finally, the generation
of new operators requires a great deal of user intervention.

The analyst does not have any control over the planning of the user. Therefore, there
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is no guarantee that the plan that the analyst selects will be the plan that the user selects. It
may be necessary 1o check multiple paths to the same goal, or to choose one path and then
inform the user of the correct steps to complete the plan (e.g., do-it yourself kits).

If you start with the right set of model components, then manipulating the model can
provide useful insights into the reality being modeled. I argue that the manipulation of
model components representing actions is fairly well understood for certain constrained
situations. There is a large community of researchers working to improve and expand the
scope of model manipulation techniques; we can benefit from that work.

However, ensuring that the model components are useful abstractions of reality is a
very difficult problem. Encoding and maintaining a knowledge base of schemas from
which model components are drawn is the primary bottleneck in most knowledge-based
systems; ours is no exception.

Continued exploration of the relative strengths, weaknesses, and possible integra-
tion of rule-based and schema-based techniques will be an important line of research for

the near future (Silverman & Mezer, 1992).

Future Work

» automated construction of guarded services
« language extensions: conditionals, set and member in same plan
« taking non-functional requirements into account
» knowledge acquisition mechanisms
- interactive construction of the requirements model
- interactive schema acquisition
- automated acquisition of judgment
One of the central issues we are investigating involve the use of abstraction and

analogy in requirements engineering. We are looking at three areas in which abstraction
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and analogy appear useful. First, adaptive planning may be used to suggest modifications
to the specification. Second, generalization allows extracting common features of a set of

plans. Third, operators can be generated for a new domain by analogy with other domains.
nclusion

» planning is a significant part of requirements engineering

+ decomposing requirements engineering into its information collection and model
construction components should encourage progress in both areas

» automated planning techniques are useful for composing and analyzing specifica-
tions

 extensions are required to planning languages in order to make them adequate for
requirements engineering problems

« the scenarios produced as a by-product of planning in specification engineering are
useful for testing, documentation, maintenance and reuse

« the knowledge acquisition bottleneck limits the cost effectiveness of knowledge

based systems
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APPENDIX

DEFINITIONS

(def_etyp “complete project”
:d “complete a project requiring a book”
Y{patron book)
*{ (in-office {patron)) (can-use {patron book)) )
Y( {completed-project {patron book)) ) )}

+ N 0

ETRE T I T

(def_etyp “go to library”
:d “go to a library”
; :at *( (duration :val 5} )
to0 *{patron)
:} Y{ (in-office (patron)) )
:+ Y{ {(in-library (patron)) ) )

{def_etyp “get book"”

:d “get a book from the shelves”

:0 ‘{patron book)

:= ‘{ (on-shelf (book)) )

:= V({ (in-library {patron))
{available (book)}
{knows-location-for {(patron book))} )

:+ *({ (ready-to-check {(patron book)) ) }

(def_etyp “Take-book-out” :d “take boock out of library”
:0 ‘Y(patron book)

; :at ‘{ ({(duration :val 5) )

1= Y({ {can-use (patron book)) )

- Y{ (in-library {(patron})) )}

+ '{ (in-office (patron)) ) )

e e 2

{(def_etyp “Remind-what-borrowed”
:d “patron finds out what they have borrowed”
0 ‘(“patron” patron-id book)
:= Y{ (knows-pid (patron patron-id)) (pid-of {(patron-id patron)}
(knows-has-book (patron book patron-id)) )
:+ ‘{ (reminded-has-book {(patron book)) } )

{def_etyp “Guess-borrower-from-id”
:d “patronl finds out that borrower of book is patron2”
:0 ‘(“patronl” book patron2 patron-id)
:= Y{ (knows-has-book {patronl book patron-id))
{pid-of {patron-id patron2}) }
:+ ‘{ {(knows-borrower (patronl book patron2)) } )
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(def_etyp “look up book”
:d “look up the location of a book”
; tat ¥( (duration :val 5} )
:0 Y{patron book catalog}
:= Y{ (card-catalog (catalog))
{in-library {patron})
{library-owns (book)) )}
:+ ‘({ (knows-location-for (patron book)) ) )

{def_etyp ‘Check-out
:d “Check out a book from the library”
o ‘(patron patron-id book book-id)
1= Y{ (available (book}) )}
Y{ (ready-to-check {(patron book))
(bid-of (book-id book))
(pid-of (patron-id patron)} )
:+ Y({ (can-use {(patron book))}
{chkout-record {book-id patron-id)) ) )

oo
[

{def_etyp “Query-books-out”
:d “staff queries for book checked out to id”
:0 ‘(staff patron-id book book-id)
:= '( (knows-pid (staff patron-id})
{chkout-record (book-id patron-id))
{bid-of (book-id book)) )
:+ ‘{ (knows-has-book (staff book patron-id)} )} )

(def_etyp “Query-books-out”
:d “patron queries for book checked out to id”
:0 ‘{patron patron-id book book-id)
:= Y{ (knows-pid (patron patron-id))
{chkout-record {book~id patron-id))
{bid-ocf (book-id bock})} }
:+ ‘( (knows-has-book (patron book patron-id))} )} )

(def_etyp “return”
:d “return a hook”
:0 ‘{patron patron-id book book-id)
t= '{ {can-use (patron book))
{chkout-record (book-id patron-id)) )
:= Y ( {bid-of (book-id book})
{(pid-of {(patron-id patron)) )
:+ ‘Y{ (available (book)}
{on-shelf (book)) ) )
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(def_etyp “look up book on-line”
:d “look up the location for a book”
; :at Y{ ({(duration :val 2) )}
:0 ‘(patron book catalog)
:= ‘( {(online-catalog (catalog))
{library-owns {(book))} )
:+ Y( {(knows-location-for {(patron book)) } }

(def_etyp ‘'‘Check-out :d “Check out a book from the library”

:0 ‘(patron patron-id book book-id}

:= Y{ {available (book)) (ready-to-check (patron book)}) )

:= Y{ (bid-of (book-id book)) (pid-of {(patron-id patron)) )

:+ '{ (can-use (patron book)) {chkout-record {book-id patron-id}} ) )

(def_etyp “Query-books-out” :d “patron queries for book checked out
to ia”
0 ‘(patron patron-id book book-id)
:= ‘( {(knowa-pid (patron patron-id))
{chkout-record (book-id patron-id))
{bid-of (book-id book)) }
:+ *{ (kxnows-has-book (patron book patron-id)} ) }

(def_etyp “return”

:d “return a book”

:0 ‘(patron patron-id book book-id)

:= Y( {chkout-record {(book-id patron-id)) (can-use (patron book)} }
:= V( {pid-of (patron-id patron)) (bid-of (book-id book}) )

:t+ *( {available ({(book)) ({(on-shelf (book})) ) )

; patron goes over limit

{def_etyp ‘Unrestricted-check-out
:d “Check ocut a book from the library”
:0 ‘{patron patron-id book book-id counterl counter2)
t= Y{ (available {(book})
{ready-to-check ({(patron book))
(books-outl (patron counterl)) )
= Y ( (bid-of {book-id book))
{(pid-of (patron-id patron})
{follows (counter2 counterl)) )
:+ ‘{ (can-use {(patron book})
{chkout-record (book-id patron-id))
{books—out2 {(patron counter?)) ) )
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{def_prob “cl”

:d “be able to use book”

:o0 ‘{ (Alice patron) (TheBook book) (CardCatalog catalog) (JANUS

catalog)
{Alice-id patron-id) (TheBook-id book-id) )

:i Y( (library-owns (TheBook}} (card-catalog (CardCatalog))
{online-catalog (JANUS))
{pid-of {(Alice-id Alice)) {(bid-of (TheBock-id TheBook))
{(available (TheBook)) {(on-shelf (TheBook)) )

:g *{ (can-use (Alice TheBook)) ) }

{def prob “c3”

:d *be able to complete project”

:0 ‘{ {(Alice patron) (TheBook book) (CardCatalog catalog) {JANUS

catalog)
{Alice-id patron-id) (TheBook-id book-id) )

i Y({ {available (TheBook)) (on-shelf (TheBook))
{pid-of (Alice-id Alice)) (bid-of (TheBook-id TheBook))
{library-owns (TheBoock)) {card-catalog (CardCatalog))
(online-catalog {(JANUS)) )

:g ‘{ (completed-project (Alice TheBook)} ) }

{def_prob “c4”
:d “two patrons complete projects”
:0 *( (Alice patron) (Alice~id patron-id)
(Bill patron} (Bill-id patron-id)
(TheBook book) {(TheBook-id book-id)
(CardCatalog catalog} (JANUS catalog) )
:i Y({ {available (TheBook))} {on-shelf (TheBook))
(pid-of (Alice-id Alice)) (pid-of (Bill-id Bill))
(library-owns (TheBook)) (bid-of (TheBook-id TheBook))
{card-catalog (CardCatalog}) {online-catalog (JANUS)) )
:g ‘{ {(completed-project (Alice TheBook))
{completed-project {Bill TheBook}) )} )
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; Operators for looking up the location and finding (or not finding) a
book

(def _etyp “go to library”
:d “go to a library”
:at ‘{ (duration :val 6) )
o0 ‘(patron catalog)
:] ‘{ (in-office (patron)) )
:= Y({ {(library~cataleog (catalog)) )
:+ ‘( (in-library (patron})
{has-access-to (patron catalog)) ))

{def_etyp “look up book”
:d “look up the location of a book”
:at *( (duration :val 3) )
:0 ‘{patron book catalog)
:= ‘({ (in-library (patron)) (has-access-tc (patron catalog))
{library-owns ({book)) )
:+ ‘( (knows-location-of (patron book)) ) )

(def_etyp “get book”

:d “get a book from the shelves”

rat ‘({ (duration :val 4) )

:0 ‘(patron book})

+= Y{ {on-shelf {(book}) )

1= ‘{ (in-library (patron))
(available (book))
{knows-location-of (patron book}) )

:+ ‘{ (ready-to-~check (patron book)} ) )

{def_etyp “see book is out”
:d “find out that a book is not available”
:at ‘{ (duration :val 5) )
:0 ‘(patron book)
:= ‘({ (in-library (patron)}
(off-shelf (book))
(knows-location-of (patron book)) )
:+ Y{ (knows-book-is-out (patron book)} )} )

(def_etyp “Go to office” :d “go to office”
:0 ‘{patron)
:at ‘{ (duration :val 6) )
:= Y{ (in-library (patron)) )
:+ ‘({ {(in-office (patron)) ) )
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; Operators for looking up the location and finding (or not finding) a
book

(def_etyp “log on to catalog”
:d “log on to electronic catalog”
:at ‘({ (duration :val 1) )
:0 Y(patron catalog)
¢= ‘( (online-catalog (catalog)) (at-terminal (patron)) )
:+ ‘{ (logged-onto (patron catalog)) )}

(def_etyp “look up book on-line”
:d “look up the location of a book”
rat ‘{ (duration :val 2) )
:o (patron book catalog)
:= Y( {at-terminal (patron}) (logged-onto (patron catalog))
{library-owns (book)}) {online-catalecg (catalog)} )
:+ ‘( (knows-location-for (patron book)) ) )

{def_etyp “see book is cut on-line”
:d “find out on-line that a book is not available”
:at ‘( (duration :val 1) )
:0 Y(patron book)
:= ‘Y( (at~terminal (patron)}
(off-shelf (book))
{knows-location-of (patron book)} )
:+ Y{ (knows-book-is-out (patron book)) ) )



{def_prob “£19”

:d “know location of book, be in office”

to0 ‘{ (Alice patron) (TheBook book)
{CardCatalog catalog) {(OnlineCataleg catalog}
{Alice-id patron-id) {(TheBook-id book-id) )

:1i *{ (library-owns (TheBook)) {(library-catalog (CardCataloq))
{online~catalog (OnlineCatalog))
{pid-of (Alice-id Alice)) (bid-of (TheBook-id TheBook})
{available (TheBook)) (on-shelf (TheBook)) (in-office (Alice))
(at-terminal {Alice)) )

:g ‘{ (knows-location-of (Alice TheBook}) ({(in-cffice (Alice)) } )

{def_prob “£29~

:d “know book is not available, be in office”

10 '({ {TheBook book) (TheBook-id book-id)
(CardCatalog catalog) {OnlineCatalog catalog)
(Bill patron) (Alice patron) {(Alice-id patron-id) }

:i Y{ (library~owns (TheBook)) (library-cataleg (CardCatalog))
(online-catalog (OnlineCatalog))
(pid-of (Alice-id Alice)) (bid~of (TheBook-id TheBook))
(off-shelf (TheBook)) ({(chkout-record (TheBook-id Alice-id))
(in-office (Bill)) (at-terminal (Bill)}) )

:g ‘( (knows-book-is-out (Bill TheBook}) (in-office (Bill)}) } )
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checkl.def
Operators for checking out a bock

e N

(def_etyp ‘Write-patron-id :d “Write patron id on check-out slip”
:0 ‘(patron patron-id boock)
:= ‘{ (pid-of (patron-id patron))
i+ Y( (pid-written {patron-id)) )

(ready-to-check (patron book)) )}

)

(def_etyp ‘Write-book-id :d “Write book id on check-out slip”

:0 ‘(patron boock book-id)
:= '{ (bid-of (book-id book)) (ready-to-check (patron book)) )

:+ Y{ {(bid-written (book-id)) ) }

(def_etyp ‘Check-out :d “Check out a book from the library”
10 ‘{patron patron-id book book-id}

:= ‘{(available {(book)) )

:= ‘{ (ready-to-check (patron book})
{pid-written (patron-id)) (bid-written (book-id})
{bid-of (book-id book)} (pid-of (patron-id patron)) )

:+ ‘({ (can-use (patron book)) (chkout-record (book-id patron-id)) ) ]



check2.def
- check-out: scan id card and barcode on book

; {def_etyp ‘Enter-patron-id :d “Enter patron id into database”

0 ‘({patron patron-id book)

:= ‘{ (pid-of (patron-id patron)} (ready-to-check (patron book})
:+ '{ (pid-entered (patron-id}} } )

wy wa wa

(def_etyp ‘Enter-book-id :d “Enter book id into database”

:0 ‘(patron book book-id)

:= V( {(bid-of {(book-id book)) (ready-to-check (patron book)) )
1+ ‘( {bid-entered (book-id)) ) )

. mg N

(def_etyp ‘Scan-patron-id :d “Scan patron id into database”
:0 ‘{patron patron-id book)

1= V( {pid-of (patron-id patron)) (ready-to-check (patron book)} )}

1+ ‘( {pid-entered (patron-id)) ) )

(def_etyp ‘Scan-book-id :d “Scan book id into database”

:0 ‘(patron book book-id)

= ‘{ (bid-of (book-id book}) {(ready-to-check (patron book)) }
:+ Y{ (bid-entered (book-id)) ) )

(def_etyp ‘Check-out :d “Check out a book from the library”

:0 ‘(patron patron-id book book-id)

:= ‘{ {(pid-entered (patron-id)) (bid-entered (book-id))
{available {(book)) (ready-~tec-check (patron book}) )

:= Y{ (bid-of (book-id book}) {pid-of (patron-id patron}) )

:+ ‘{ (can-use (patron book)) (chkout-record (book-id patron-id})

)

)
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; checkd4.def
; patron goes over limit

(def_ptyp “can-use” :o ‘{patron book) )

(def_ptyp “books-out” :o0 {patron counter)
rat ‘( (criticality :val 3) } )

; {(stability :val 3)

(def_etyp ‘Unrestricted-check-out :d “Check out a book from the
library”
:0 ‘(patron patron-id book book-id counterl counter2)
:~= Y( (available (book)) (ready-to-check (patron book})
(bocks-outl (patron counterl)) (books-checkedl (patron-id
counterl)) )
= Y( (bid-of (book-id book}) (pid~of (patron-id patron})
{follows {counter2 counterl)) )
:+ ‘{ (can-use {patron book)) (chkout-record (bock-id patron-id))
{books-out2 (patron counter2)}
{(books-checked2 (patron-id counter2)) )} )

(def_etyp “Return”

:d “return a book”

:0 ‘(patron patron-id book book-id counterl counterl)

:= Y{ {chkout-record (boock-id patron-id)} (can-use {(patron book))
{books-outl (patron counterl))
(books-checkedl (patron-id counterl)) )

:= Y ({ (pid-of (patron-id patren}) (bid-of (book-id book)}
(follows (counterl counterl)) )

:+ ‘( (available {(book)) (on-shelf (book))
(boocks-out2 {(patron counter2))
{(books-checked2 (patron-id counterl}) ) )



: check5.def
; patron goes over limit

(def_etyp ‘Restricted-check-out :d “Check out a book from the

library”

:0 ‘{patron patron-id bock book-id counterl counter2 counter3)
1= ¥{ (available (book)) {(ready-to-check (patron book))

(books-outl (patron counterl)) (books-checkedl {patron-id

counterl)) )
:= Y{ (bid-of (book-id book)) (pid-of (patron-id patron))

T+

bt

(check-out-limit (counter3d)) (follows (counter2 counterl))
{less-than ({counterl counter3)) )

{(can-use (patron book)} (chkout-record {(book-id patron-id))
(books-out2 (patron counterl))

{(books-checked2 (patron-id counter2)) ) )

(def_etyp "“Restricted return”
:d “return a book”
Y{patron patron-id book bock-id counterl counter?2)

0

hE

Y

A

{chkout-record (book-id patron-id)) (can-use (patron book))
{books—outl (patron counterl))

{books—-checkedl (patron-id counterl)) }

{pid-of (patron-id patron)} (bid-of (book-id book))
{follows (counterl counter?)) )

(available (book)) {(on-shelf (book))

{books-cut2 (patron counterl))

{boocks-checked2 (patron-id counter2)) ) )
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{def_prob “cl2”

:d “over limit, has book”

to ‘({ (Alice patron) (Alice-id patron-id) (TheCatalog catalog)
{TheBookl book) (TheBookl-id book-id)
{TheBook2 book) (TheBook2-id book-id)
{TheBook3 book) (TheBook3-id book-id)
(zero counter) {(one counter) (two counter) (three counter) )

V( (pid-of (Alice-id Alice)} ({(library-catalog (TheCatalog))
(library-owns (TheBookl)} (bid-of (TheBookl-id TheBookl))
(available (TheBookl)) (ready-to-check (Alice TheBookl))
(library-owns (TheBook2)) ({bid-of (TheBook2-id TheBook2))
(available (TheBook2)} {(ready-to-check (Alice TheBook2})
{(library-owns (TheBook3)) (bid-~of (TheBook3-id TheBook3))
(available (TheBook3)) {ready-to-check (Alice TheBook3))
{books-ocut (Alice zero)} (books-checked (Alice-id zero})
{follows (one zerc)) (follows {(two one)) (follows (three two)}
{less-than (zero one)) (less-than (zerc two))
{less-than {(zero three)) {(less-than {one two))
{less-than {(one three)) (less-than (two three)}
{check-out-limit (two)) )

:g ‘( {(can-use (Alice TheBookl)) ({(can-use (Alice TheBook2))

{can-use (Alice TheBook3)) ) )

[
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