AUTOMATING NEGOTIATED DESIGN INTEGRATION:
FORMAL REPRESENTATIONS AND ALGORITHMS

FOR COLLABORATIVE DESIGN

by

WILLIAM N. ROBINSON

A DISSERTATION

Presented to the Department of Computer
and Information Science
and the Graduate School of the University of Oregon
in partial fulfillment of the requirements
for the degree of
Doctor of Philosophy

March 1993

Approved:

Qe

Dr.(Stephen F. Fickas

@ 1993 William N. Robinson

iv

An Abstract of the Dissertation of
William N. Robinson for the degree of Doctor of Philosophy
in the Department of Computer and Information Science to be taken March 1993
Title: AUTOMATING NEGOTIATED DESIGN INTEGRATION: FORMAL REPRESENTA-

TIONS AND ALGORITHMS FOR COLLABORATIVE DESIGN

st A28l T T

gx. Stephen F Fickas

This dissertation presents a methodology and automated algorithms for collaborative
design. The methodology calls for individuals to independently create designs achieving their
own goals, and then collectively derive a single unified design using automated negotiation tech-
niques. From a software engineering perspective, the methodology provides parallelism, simplic-
ity, rationale, and reuse. From a negotiation perspective, the methodology provides multiple agent
preference maximization and novel resolution synthesis. From an artificial intelligence perspec-
tive, the algorithms provide automation for the complex processes of conflict detection, resolution
synthesis, and resolution selection. This dissertation describes how the selfish interests of individ-
uals or subgroups can productively aid the derivation of robust collaborative designs through the

automated negotiation of their conflicts.

This dissertation describes formal representations for modeling individual perspectives,
design conflicts, and subtasks involved in negotiation. Specifically described are representations

for: (1) goals and preferences over domain operators, objects, and relations, (2) categories of

design and goal confiicts, and (3) categories of conflict resolutions. Automated processes can

manipulate these representations to aid group negotiation.

This dissertation describes formal algorithms for detecting conflicts and synthesizing resolu-
tions. Specifically described are algorithms for: (1) distinguishing between simple design differ-
ences and design interference, (2) mapping between goals and their supporting design compo-
nents, (3) detecting goal conflicts, (4) synthesizing analytic and heuristic resolutions, and (5) rein-
tegrating resolved goals into a design. Analytic resolution consists of compromise generation
using a multiple criteria linear programming method. Heuristic resolution consists of search
through domain hierarchies to synthesize dissolutions and compensations. These methods have

been implemented and applied.

This dissertation describes the implementation of our negotiation algorithms and their appli-
cation 1o library design problems. The design of library systems is a complex, multiple agent,
negotiation enterprise. We have represented portions of documented library designs in our imple-
mented collaborative design tool, Oz. Oz has been used to detect conflicts and derive negotiated
resolutions similar to those published by expert librarians. The implementation and its application
to the library domain support the central tenet of this dissertation: processes of negotiated design
can be automated through the representation of a generic domain model and specific representa-

tions of individual perspectives.

Vi

VITA

NAME OF AUTHOR: William N. Robinson

GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED:
University of Oregon
Oregon State University
Mt. Hood Community College

DEGREES AWARDED:

Master of Science, 1987, University of Oregon
Bachelor of Science, 1984, Oregon State University

AREAS OF SPECIAL INTEREST:
Artificial Inteiligence
Software Engineering

PROFESSIONAL EXPERIENCE:

Teaching Assistant, Department of Computer and Information Scicnces, Univer-
sity of Oregon, Eugene, 1991-1993.

Research Assistant, Department of Computer and Information Scicnces, Univer-
sity of Oregon, Eugene, 1986-1991.

Teaching Assistant, Department of Computer and Information Scicnces, Univer-
sity of Oregon, Eugene, 1985-1986.

Research Assistant, Department of Computer and Information Sciences, Univer-
sity of Oregon, Eugene, 1984-1985.

Programmer, Battelle Northwest Laboratories, Richland, Washington, Summcr
1984.

Vi

NORCAS Fellow, Battelle Northwest Laboratories, Richland, Washington, Sum-

PUBLICATIONS:

mer 1983,

Robinson W.N., Automating the parallel elaboration of specifications: pre-
liminary findings, CIS-TR-89-02, University of Oregon, 1989.

W.N. Robinson, A decision theoretic perspective of mulitiagent requirements
negotiation, In Automating software design: interaclive design: Workshop
notes from the ninth national conference on artificial intelligence, AAAI July
15, 1991, 154-161. (Also available as RS-91-287 from ISI/USC.)

M. Feather, S. Fickas, W. Robinson, Design as elaboration and compromise,
Proceedings of the AAAI-88 Workshop on Automating Software Design,
Kestrel Institute, AAAI-88, Si. Paul, MN, August 25, 21-22, 1988,

S. Fickas, J. Anderson, W.N, Robinson, Formalizing and automating require-
ments engineering, CIS-TR-90-03, University of Oregon, April 6, 1990.

Robinson W.N., Integrating multiple specifications using domain goals, 5th
International Workshop on Software Specification and Design, IEEE, 1989,
219-226. (Also available as CIS-TR-89-03 from the University of Oregon.)

W.N. Robinson, Negotiation behavior during requirement specification, Pro-
ceedings of the 12th International Conference on Software Enginecring, IEEE
Computer Society Press, Nice, France, March 26-30 1990, 268-276. (Also
available as CIS-TR-89-13 from the University of Oregon.)

W.N. Robinson, S. Fickas, Negotiation freedoms for requirements engineer-
ing, CIS-TR-90-04, University of Oregon, April 6, 1990.

W.N. Robinson, Negotiation in composite system design, CIS-TR-91-11, Uni-
versity of Oregon, May 1, 1991. (Presented at Stanford Spring Symposium,
March 26-28, 1991).

W.N. Robinson, Preference and function modeling in requirements mediation,
In Model-based reasoning: Workshop notes from thc ninth national confer-
ence on artificial intelligence, AAAI July 14, 1991.

Fickas S., Downing K., Novick D., Robinson B., The specification, design
and implementation of large knowledge-based systems, IEEE Northwest Con-
ference (NORTHCON), Computer Science, Portland, OR., October, 22-24,
1985, 8/3.

viii

Robinson W.N., Towards the formalization of specification design, Masiers
thesis, University of Oregon, June 1987.

in

ACKNOWLEDGMENTS

This dissertation would not have been possible without the help of my advisor (Stephcn
Fickas), committee members (Bob Clemen, Art Farley, Gary Meyer), KATE research group mem-
bers (John Anderson, Anne Dardenne, Brian Durney, Rob Helm), and outside rescarchers
(Stephen Easterbrook, Martin Feather, Anthony Finkelstein, Lewis Johnson). Specifically, [thank
Stephen Fickas for his gencrous support and guidance; Bob Clemen for his patience in explaining
decision theory; Stephen Easterbrook and Anthony Finkelstein for their insight{ul discussions

comparing our research; and Martin Feather for his originating research.

TABLE OF CONTENTS

Chapter Page

1. Design NEgotialionsccccocevieiimmivnnennmsboniisisisevesmensssssss st asssasssasss s ssas 3
2. ReSLATCH COMIBXLveeereereereereesessassnsannsnsssesssmanseissessnss tosestosrisnassnes srnassssensnes 8
3, Introduction to Automated MPDcoinininnnn e 13
4. DiSSErAtioN SUMITIATYcoovueeerieseeeraesreesnesmronsrroessessssessemssssssistas sosssssssnsssssniiana 29
5. Dissertation OULHNEc..oooiimiininimie e e s s 30

II. MULTIPLE PERSPECTIVE DESIGN ...t i 31

1. MEthOOIOZY ...cocorienrericriinerriresinsessessestsssisssssassesessassesss sansassansasbisssessase ssssases 33
2 EVAIUALION ..o.eoeeeveeeeerieereesecceses e se s bisas s bessnssbs b sh b e b s hae b an e e h e e b et e beans 52

III. MODELING INDIVIDUAL PERSPECTIVEScocoiiiiiniininccie s 61

1. Model CONSLIUCLIONcoveeuiiienircnnesnenresersesmetinsisissnesssves et anasssssasssises s sesens 64
2. SUIMINIATY 1ercceeeeeetret st e et stsasbsbr s sess st sstsb s s bes sae e nansnassnsssas s 83

1. A PEISPRCHVE ...cccocomeemimiciacmiacseescomrnccrnacssmsssubsetsasssssssssss ST s ot ase o sibiatia e ane s 85
2. Initial State DeSCHPHONccvvrirericcericerieniesiiesi s i s resasans 86
3. Partial Commitment PIANNINEcccciinimninnnnesi e, 87
4. InCOrporation LINKSccccciiiiniiecinneeseniensnesnns st s cneae 90
5. A NOtational ASIAEcoeveeeecerererererssnvesisiseirssesses e s asn s s 92
6. SUIMIMATYovveeerieeeerensessersosssssnssissssssssnessssssmssssssse s sssessaasssss ot thess hssssemssssnnssases 99

V. INTEGRATING DESIGNScoovveimmmmennmccnmsnncnnssnsssssmnssnssisssensnsnsnesnnse 100

1. CONMICE DEIECHON ..covveeieirreerrsreerrasssressssssnsareessnssees sessstesassnses rsannsanssssnce sosssssss 100
2. Interference DeterMINationNvveeovecrrecerseerieemsneessererirnstosssissanmnnsees s issstcssssians 107

3. Resolution Generation

4. Resolution Implementationememcernernnnnens
5. Evaluation ...,

6. SUMMATY .oeoveivcrnririsernns

V1. A DETAILED EXAMPLE

1. The Library Problemcccccciiiuiinns
2. The Derivalionsceeeremesieimeenmmenn
3. SUMMArY .oviierieenircsinneesenean

VII, CONCLUSIONSccoverrrnaens

1. Contributionscc..eeeeeeeeens
2. Limitationscc..eeveree.

3. FUIUTE RESCATCH .coviieeireresrrirvrnsesarressssnsssesrsssassanssssenenss
4, CONCIUSION .ooeeeeeivvverentircsrmnecrssncsssenssesssessessrasnrssrssassssenstses

APPENDIX

A. THELIBRARY MODELcineiciencinne

B. A DETAILED MCSM EXAMPLE

BIBLIOGRAPHYccovnmiiiiiatiieienacanens

.................................

xi

110
125
128
146

147

147
160
151

193

194
196
197
199

200

206

211

xii

LIST OF FIGURES

Figure Page

1. Implicit Stakeholder GOals. ... 17
2. The MPD Integration Paradifim.c.ccouevmrmriiinninrnisscs st 18
3. Providing Automated SUppPOrt: Oooeirriricnncni e 20
4, Some Library OPeralors.cocccoverisemeieseninmnressessnestsns et sisserass 23
5. A Loan Period DESIBN.oeercvirvninmiiciitiniiin i e st 24
6. MPD PIOCESSES. .ooveeeeereriesirssorssreroncseassmseseransisssssssssensbnotisnsssestassensesssssasscsssnsesranss 36
7. Operators which Produce ON_LOBN.ccovirmmemimiiimmonisistissniiemnniirs s 39
8. Initial Issue WEIghUNE.coiirrnrrrinim e s s 47
9. An Available SpecialiZation.cocuirmermrmiesnnerinienes e 48
10. Issue Weighting Afier the Specialization. ... 49
11. Hypothetical and Available Generalization. ..., 50
12. Issue Weighting after COMPENSation.eeceeresmsniscninnins e 51
13. Methodology ASSUMPLONS. ..ccovvrresvinirmmrienssaeeessenes e st 52
14, Novelty Induction from Selfish DESIgN. ..c.oeeienrrvniiini s 59
15. Oz Screen Depiction of Group Design.oovvenininiminn i 63

16. Perspective AcquiSition in OQZ. ... 64

17.

18.

19.

20.

21.

22,

23.

24,

25.

26.

27.

28.

29,

30.

31.

32

33.

34,

35.

36.

37.

A Library Borrow Operator.

Operators which Produce oN_LOAN. .

The Operator Generalization AIORAM. .ocooeriiiiii s
The Description of Some Library Object Hierarchies. ...
The Description of a Library Relation Hierarchy. ...,
An Oz Depiction of Library Relation Hierarchies. ...
Using IDEA for Preference Weight EXplOTation. ...,
An Oz Depiction of IDEA. ..

The Library Design Initial Plan State.occcoonnmniimminii e
Partial Commitment Planning in Oz’s OPIE. ...
Insertion of the First Operator.

Some Library Operators.

The Completed Plan. ...

Hierarchical Correspondence AIZOTIthM.coccvievvimernnnni e
Goal Conflict Detection Algorithm.occvviierene

Table of Goal Conflict Types.ccceueen.

Table Negotiated Components.

Interference Determination AlOrithm. ...
An Iustrate of a Conflict/Alternative ReCOrd.oovvvviimiiiiiniiciiin
Oz Initial Screen Depiction the Goal COnflicts.cooovviiiciniinniii

Interactive Resolution Display IHUSITAHON. ...ocoeviereiniennnninre s

xiii

65
66
67
67
70
71
78
80
87
87
88
89
90
14
105
106
107
108
110
112

115

38.

39.

40.

41.

42,

43.

45.

46.

47.

48.

49,

50.

51.

52.

53.

54.

55.

56.

57.

58.

Interactive Resolution Search AIZOITM.coccereericcrinirecnernre e ereenenens
Dynamics of the Displace Ideal.oceoveivinirivinninennenies
The Nondominated Search Space of Loan_per1ob with Risk and Cost.
The Specialization/Generalization Algorithm,

Oz Screen Depiction the of Generalizations (2).cccoveviviiiniiiiiinniicieen,
PANDORA's Intra-Agent Conflictscccoeveecevrrenennn

PANDORA's Intra-Agent ReSOIULONScociminvienreesivnrnnrrecine i inicinint e
CHEF'S CONlICLSoooiirinececcmrncitniinsin s s srsens
CHEF'S ReSOILIONScccoveriicrnrossrmsniisissnsisionissmesissesissnsanns
PURSUADER's Company Goal Beliefs
PURSUADER's Union Goal Beliefs.cvvivnviiiinvininnncns,
Student Resource Usage Graph. ...
Resource Renewal Cost Graph.ccoocnicniccincninccncnnn
Table of Overdue Notice Evaluation.cueiiiinni
Overdue Notice Cost Graph.c.ccvrmmeerninins

Overdue Notices Effectiveness Graph.ccccocvevennnene

The Librarian’s Perspective. ...

The Patron’s PErspective.cicninninmn
0Oz Screen Depiction of the Librarian’s Goals and Design. ...
Oz Screen Depiction the Library Development, ...,

A Library BORROW Operator.c.uveee

............................

............................

xiv

117

118

125

126

133

133

133

134

151

151

152

153

154

156

158

162

164

59.

61.

62.

63.

65.

66.

67.

68.

69.

70.

71.

A Library GIVE_NOTICE OPEIAOL.ccotveeeireemnrrnerncenreressciasnisnssssss s s
A Library access Operator. ...

Oz Initial Screen Depiction of the Goal Conflicts.cccocviiiiicininniinns
Oz Screen Depiction of the Compromised Loan Duration.ccccoonncnns
Table of Loan Period COMPIOMISES.cccceirecvmmrimnimimrinrsiresnetianainessnenssssssens
Oz Screen Depiction the Compromised Notice Number. ...
Table of Notice Number Compromises.

Oz Screen Depiction the of Specializalions,ocvcvveiriinenecin,
Table of On Loan Specializations.c.oemeiiienninnein e
Oz Screen Depiction the Expanded Resolution Choice. ..o,
Oz Screen Depiction the of Generalizations (1), ...,
Table of On Loan Generalizations.cccmiiinienennen st

Oz Screen Depiction the Expanded Integrated Model.ccocoviinninnnn,

v

165

165

167

171

172

173

174

178

180

182

183

184

186

CHAPTER 1

INTRODUCTION

This dissertation describes the automation of negotiation processes within the context of
group design. Specifically, it describes: (1) a collaborative design methodology predicated on
negotiation, and (2) supportive algorithms which automate negotiation processes. This disserta-

tion argues for the effectiveness of the methodology and its automated support.

This research lies within the field of group design since it describes how to structure the
process of articulating and formalizing group goals. It lies within the field of artificial intelligence
(AD) since it describes how to automate an aspect of human behavior. Finally, it also lies within

the field of decision science since it describes, formalizes, and supports dccision procedures.

This dissertation provides a key link in the automated assistance of group design interaction.
Its most basic assumption is that group members engage in negotiation. Using this, 1 demonstrate
that one can create a mechanism which automates portions of negotiation. This claim itself has
been shown by others using different mechanisms (e.g., analytic procedures). However, this
research departs from others in its combination of negotiation mechanisms. Rather than exclu-
sively use numeric compromising or heuristic modification, it combines compromisc, specializa-
tion, and generalization via an interactive resolution search procedure. I show that this approach

can: (1) automate portions of negotiation, and (2) assist groups in deriving adeguate resolutions.

While negotiation automation is the heart of this dissertation, its impact upon group design

is of equal concem. The negotiation algorithms were not designed in a vacuum. Rather, they werc

developed to support group design. I argue that the existence of an effective automated negotia-
tion system for design will enable a new paradigm for group design. Heretofore, independent
design followed by integration has been intractable, not only becausc of the bookkeeping
involved, but also because of the complexity of the task and the limited number ol experts quali-
fied 10 derive resolutions. I present a new design methodology predicated on the existence of
effective negotiation support and use decision science arguments 10 show why such a methodol-

ogy can better the designs of a more centralized design methodology.

In this dissertation I consider what qualitative difference may be obtained from a design
methodology predicated on negotiation. Since this is the early stages of a new paradigm, experi-
mental evidence of its use cannot presented. Instead, I present my group design methodology,
called Multiple Perspective Design, and argue for its effectiveness using software engineering and
decision science arguments. After establishing the usefulness of a negotiation based methodology,
algorithms to support negotiation within a group design context are presented. I arguc that given a
formal set of goals and preferences, a planning system can be used (o producc satisfactory
designs, and more importantly, its derivation can aid in the negotiated integration of conflicting
designs. Finally, 1 demonstrate the effectiveness of the negotiation algorithms by applying them
to portions of documented library design problems and compare the results against documented
solutions. Unfortunately, documented designs often leave negotiations implicit; hence, 1 have
interpreted prior traces with regard 1o negotiated decisions. Additionally,] present the critiques

of an expert to confirm the effectiveness of the resolution mechanism.

The remainder of this chapter introduces conflict (§1.1) and resolution synthesis (§1.2) in
the context of design negotiations. Next, 1 argue that negotiation is an approprialc arca of study

for designers (§2.1) since its use will provide significant contributes for design (§2.2). Then, such

a contribution is illustrated with a brief automated design negotiation (§3). Finally, this chapter

closes with a summary (§4) and dissertation outline (§5).

1. Design Negotiations

Design conflict has both positive and negative effects. It can reduce the quality and timeli-
ness of designs. Conversely, it can increase: (1) problem comprehension, (2) solution alternatives,
(3) solution creativity, and (4) solution acceptance[71]. One must manage conflict to reduce its
negative impact while maintaining it virtues. Automated negotiation supports this goal. To pro-
vide an intuitive understanding of how it can, a library design conflict is presented, followed by a

description of my resolution synthesis method.

1.1. Design Conflicis

Collaboration among multiple, independent agents is a pervasive human activity. In the con-
text of design, collaboration is used to derive a consensus about issues, goals, and decisions.
Unfortunately, collaborative design raises difficulties: agents have multiple and conflicting goals;
finding an acceptable (not even optimal) compromise in what can be characterized as a large and

complex space of alternatives is extremely problematic.

As an example, suppose that a group of designers attempt to design a new artifact, say a
university library. The “‘designers” might be broken into technical staff, uscrs of the anifact, man-
agers, accountants, and even lawyers. Each person has his or her own perspective on what the
final library should look like and how it should function. Some people may be in direct conflict
with each other. For instance, patrons may like 24 hour service and extensive on-linc scarch. In

contrast, library administrators worry about holding costs down. Other groups may seem 10 be in

accordance — faculty and students both want access to library resources — but a more detailed
analysis may show them also to be in conflict; each has different uses of resources, and hence dif-
ferent requirements. In essence, libraries, as other real world artifacts, are often encumbered with
complex design trade-offs and compromises among interested parties. Tools that suppon collabo-
rative design should explicitly represent and reason about conflict and compromise. Perhaps just
as important, modemn design tools should record the history of compromise and trade-off that
leads to the production version of an artifact, and make this history available 10 maintainers of the

artifact.

There have been various attempts to provide computer support for collaborative design. The
majority attempt to avoid conflict among participants. They do so by pre-processing the goals or
requirements of a problem to remove confiicts before design begins. In this way, any conflict
turned up later is assumed to be an error either by one of the participants in carrying out his or her
assigned (and non-conflicting) tasks, or by the pre-processing step in removing conflicts.
Approaches that use this preventive conflict-removal step are silent on a formal basis of the con-
flict-removal process itself. However, even if one could devise a formal method of detecling and
removing conflicts in the goals/requirements that represent the pre-design state of a problem, the
preventive strategy can go awry in other ways: (1) what appear 10 be inhcrently conflicting goals
are not, i.e., the participants are not aware of all the designs possible and that a nonconflicting
design can be constructed, (2) users change their goals or preferences during design, thereby
reaching a design which may have been pruned under a preventive strategy, or (3) individuals
who construct their designs may raise or lower their commitments, thereby becoming less or

more agreeable to pre-design compromises among abstract goals.

In contrast, a small set of models eschew the preventive approach, and allow conflicts 1o
occur as they will. For instance, the gIBIS model of design allows conllicting positions to be
stated by participants in a design team(15]. Arguments can be madc for and against cach. Even-
tually one is chosen. The Persuader system captures conflicts between labor and management
negotiation teans[82]. While not linked to design, it iilustrates an aliemative to the preventive

strategy, that of resolution generation.

From a decision science point of view, unresolved conflict can prevent the satisfaction of
goals. When poorly resolved, dissatisfaction and inferior achievement arisc, perhaps even
accompanied by latent conflicts leading to newly manifest conflicts. Despite this antagonistic
relation, conflict can enhance group performance. The early (1930’s) traditional vicw reated con-
flict as dysfunctional behavior to be avoided. Later (1970’s), the behavioral view saw conflict as
natural consequence of member interactions. Now, the decision science community sces conflict
as positive; researchers encourage the identification and resolution of conflicts, bolstering the
generative approach (cf., [71]). The benefits of this approach are improved produclivity, satisfac-

tion and solution quality[50].

This research is based on the generative approach — the belief that the key to providing
effective support for collaborative design lies not in ignoring or squelching conflict, but in recog-
nizing it as a natural and even useful part of group activities. It promoles a style of group collabo-
ration that is based on the views of individual members. My approach is 1o allow each member to
express his or her goals and preferences uninhibited (uncompromised) by what others might want.
The outcome is a set of individual designs or decisions that reflect the sclfish views of cach mem-

ber. The challenge, of course, is to integrate selfish designs into a consistent whole.

1.2. Resolution Synthesis

As pant of the integration process, one must identify conflicts, characterize conflicts, and
synthesize resolutions. The resolution synthesis method is the major contribution of this disserta-
tion. It does not simply present pre-enumerated aitemnatives. Instead, it synthesizes an aliemative

from pre-enumerated components. The method is simple, general, and widely applicable.

In nutshell, decisions are represented as choices from sets of altematives, or domains. Con-
flicts result from differing choices. The altematives also form possible resolutions. The represen-
tations allows one to view a single choice from a variety of related domains, thereby enriching

one’s view of resolutions. A more concrete discussion will clarify.

1.2.1. Conflict

Any variation of choice is a conflict. For example, the following is an attribute value con-

flict;

Designer-1:
on_loan(faculty, resource, loan_period.duration=3653)

Designer-2:
on_loan{faculty, resource, loan_pericd.duration=14)

Designer-1 desires to achieve the relation on_roan. It describes the statc where flaculty have a
resource on loan for a specified loan period duration. Designer-1 specifies thal faculty should
have a loan period of 365 days, while designer-2 specifies they should have a loan period of 14

days. (DURATION is an attribute of the LOAN_PERIOD object.)

1.2.2. Conflict Characierization

After a conflict is identified, it is characterized. For example, the loan period duration con-
flict can be characterized as different choices from the domain number_of_days. Allemative
resolutions can also be taken from the number of_days domain. However, one can also char-
acterize the conflict as a choice from the domain pair (agent,number_of_days), where onc
choice was (faculty,365). Doing so allows us to consider a wider varicty of resolutions, ¢.g.,
(student,14) and (faculty,365). By recharacterizing a simple conflict over a domain likc
number_of_days to other domains and conjoined domains, one can synthesize a wide variely
of resolutions. Using this as a basis, the algorithms of chapter V derive negotiation methods of

compromise, dissolution, and compensation.

1.2.3. Synthesis

The resolution synthesis process consists of searching through altcmative conflict character-
izations. By carefully relating the characierized domains a priori, and with the aid of design prel-
erences, one can make resolution search simple and efficient. (In the case of design, the algo-
rithms use functional abstraction to relate domains.) Additionally, the method is general as il
only depends on one's ability 10 describe and relate domains. This framework can be applied
everywhere one makes choices and can characterize items within domains (c.g., individual
design, group design, etc.); however, it has only been applied to resolution gencration during

design integration.

2. Research Context

As can be seen by the juxtaposition of the previous subsections, the social problem of nego-
tiation and the technical aspect of resolution generation appear widely separated. However, the
two do come together in the negotiated design context. Here, I argue that negotialion rescarch
should be part of design and give example of benefits that follow naturally from negotiated

design.
2.1. Negotiation is Appropriate

Perhaps the most common overarching criticism of this research concems its appropriate-
ness. In software engineering circles, it is often implied, if not asked, “Is negotiation automation a
relevant and appropriate research topic?” The answer is affimnative, not only for the benefit of

software engineering, but also for antificial intelligence and decision scicnce.

To understand the obstacles of software development, one must consider its technical and
social context[48, 77]. For example, consider a field study of 17 large projects conducted by Cur-
tis et. al. {17). They found three major problems which affected the quality or productivity of

sofiware development:
(1) the thin spread of application domain knowledge,
(2) fluctuating and conflicting requirements, and
(3) communication and coordination breakdowns.

These problems are endemic to group software design. However, current tools do not address
these problems. Perhaps this explains why they have relatively low impact on productivity or

quality(6, 13,94). Moreover, actual programming is a relatively nonproblematic par of the

software life-cycle[58, 84, 85). *“Writing code isn’t the problem, understanding the problem is the
problem."—p. 1271({17]. Clearly, major improvements in software engincering will come from
assisting group interactions during problem understanding, goal formation, and conflict resolu-

tion. Negotiation methods are shown to help in just these cases.

Software engineering is difficult because of the varied and interacting demands placed on
software. Software systems involve physical, social, and software sub-sysiems; thesc sub-systems
and their interactions are not well understood[29, 30). Physical and social sub-systems are quile
varied (e.g., weather and people) and vary their needs dynamically. To maximizc system effec-
tiveness, software engineering must mode! and reason about sysiem interactions, design systems

meeting varied and conflicting needs, and facilitate the adaptation of systems.

The varied and interacting demands on software often arise from the varied goals it must
fulfill. Such goals, or system requirements, are ofien the result of negoliations between user
groups. In fact, many of the difficulties of requirements engine.ering can be traced io the goals of:
(1) multiple stakeholders and (2) multiple designers. Stakeholders arc the source of system
requirements; for example, patrons, administrators, and librarians of a library. Designers are the
agents which produce the system specification. Designers must communicate, coordinate, and
integrate their work, Furthermore, because they represent the varied nceds of stakeholders, con-
flicts must be resolved. Clearly, software engineering will benefit from an understanding, if not an

automation, of negotiation.

Decision science can assist the negotiations of software engineers and their clicnts. Decision
science does not advocate making decisions for individuals, rather it advocales assisting individu-
als in making decisions according to their own values. It provides methods for enumerating: indi-

vidual goals and preferences, means of achieving goals, altematives that result from applying

10

means, and evaluations for altemnatives according to individual preferences. Hence, decision sci-
ence aids an individual in choosing actions which result in states which are most desired accord-
ing to his preferences. This research also aids groups which interact 1o satisfy their goals. Such
group decision making can include negotiations over the means by which their goals will be satis-

fied, as well as what the group goals should be.

This research uses decision science modeling techniques to model stakeholder goals and
preferences. It uses decision science negotiation procedures (o integralc the conflicting designs.
One of these procedures is analytic (i.e., compromise generation) and can be shown Lo generate
nondominated resolutions (i.e., no worse than the best). Other negotiation procedures are derived
from characteristics of experts. Heuristics such as: “give things of value to stakcholders who
don’t get what they expect during negotiation” (i.e., compensation) and “dividc conflicling items
into subclasses and renegotiate” (i.e., dissolution) are encoded in algorithms using Al techniques.
The methods rely on decision science for prescriptive and descriptive accounts of ncgotiation

methods and use Al techniques as a means to operationalize them.

Software engineering must address how the varied desires of stakeholders can be under-
stood and met via managing software component interactions within a sofiware development pro-
cess. Such knowledge, panticularly conceming design integration, can be codified, represented,
and effectively applied. This research shows that decision science procedures can be an cffective

means of applying such knowledge to group design.

11

2.2. Contributions

Sofiware engineering has promised “power tools” which will reduce the software crisis;
these tools automatically do mundane tasks, thereby, leaving the programmer free to consider
complex tasks. Additionally, power languages have been promised to easc software construction;
these languages have constructs which ease the composition of software from simpler, indepen-
dently developed components. While partially successful, the sofiware crisis is still with us. |
believe that some tasks, heretofore consider too complex to automate, or tasks that simply
shouldn’t be automated, can and should be. Specifically, group design goals should be up for
negotiation throughout the development process. Additionally, automated tools can simplify the
negotiation task making it a common part of software construction, In fact, power will come from
tools which assist common, yet complex, decisions like requirements ncgotiations thalt go on

throughout the software lifecycle.

My research contributions are derived from an attempt to make power tools powerful.
Heeding the creed, knowledge is power, | believe knowledge of negotiation is powcrful. The sin-
gle most important contribution of this research has been expanding the discoursc on group
design negotiation. More specifically, however, the collaborative design methodology and inte-
gration automation algorithms have made in-roads into software automation and decision support.

These contributions are listed below:

» Methodology: Design in the Large
The methodology is based on design in the large, as opposed to design in the small. It sup-
ports independent distributed design. Design members can aclually design components
maximizing a subset of goals independent of others. Inier-designer communication can be

kept to a minimum, thereby allowing fully parallel development.

12

» Methodology: Design via Composition
Design is viewed as composition rather than synthesis. Each designer constructs his design
by selecting from cataloged components. The catalog is arranged in an abstraction hierar-
chy, thereby allowing for abstract design. Designers design down io the level of specificity
required by their needs and no lower. In this way, the designer is frec from making arbitrary

design decisions which typically undermine conflict detection and resolution.

- Automation: Domain Model
Design decision making requires the identification of goals, identification of means (opera-
tors) to achieve those goals, and application of means to identify various design aliernatives.
The abstraction hierarchies provide a generic model for decision sysiems. Goals, means,
and their relationships are automaticaily abstracted and stored. Similarly, design altermatives

satisfying muitiple goals can be automatically derived using preferred means.

= Automation: Hybrid Negotiation Search
Negotiation is viewed as a interactive search process. An arbitrator is presented conflicting
goals and is assisted in searching through a complex space of altcmatives dcfined by three
generation methods: compromise, compensation, and dissolution. By weighting goals from

each perspective, the arbitrator can direct search toward better resolutions.

The basis of the approach is to allow unconstrained independent design and then apply knowl-
edge-based techniques to recover from conflicts. Using abstract planning methods 1o model com-
ponent interactions, design level conflicts are traced up to conflicts between abstract means or
even stakeholder goals. Once characterized, conflicts are resolved by goal modification or replan-
ning. The result is that every difference between designs is reconsidercd during design integra-

tion. Confiicts are resolved to maximize modeled stakeholder preferences. Finally, records arc

13

maintained for possible reuse and renegotiation.

3. Introduction 10 Automated MPD

This section introduces the design methodology and its automation. It describes how indi-
viduals’ design goals and designs are explicitly modeled. It describes how tLhe integration algo-
rithm automates negotiation to resolve conflicts. However, before prescnting specific examples,

the overall library domain is presented.

3.1. The Library Domain

Throughout this dissertation, library examples will be presented Lo illustralc negotiation
automation. For most readers, the library domain should be familiar; it has provided other
researchers with simple examples[45,89). However, the domain docs provide some interesting

complexity.

Libraries come in many forms (e.g., public, private) and serve a variety of needs. Their

charters are typically broad and demanding; a university library may bc responsible for{57]:

. providing a collection of information resources which meet most of the necds of the univer-

sity community;
. organizing, maintaining, and controlling collections; and
. providing bibliographic aids in identifying, locating, and using resources.

From such broad charters, more specific policy guidelines are developed (c.g., collection develop-
ment{55], circulation policies(4, 56], interlibrary loan policies[49]). Finally, from such policies,

specific library procedures are designed{65].

14

Deriving specific library policies and procedures is a process of negotiation. Librarians
(desk, circulation, collections), administrators, and patrons all have a stake in library operation.
Fees, fines, loan periods, check-out, and renewal policies all result from placating various stake-

holders. Some examples are:

» loan periods
From a patron’s perspective, loan periods should be as long as possible; this ensures their
ability 1o enjoy borrowed resources. On the other hand, a circulation librarian desires to
ensure equal access of resources to all patrons; hence, shorter loan periods provide higher
turnover which enables greater access to a large population of patrons. A variety of loan
periods result (e.g., 7 days 1o indefinite); they can vary according to patron type (c.g., child,
student, administrator, librarian); they can be extended (e.g., desk rencwal, phone rencwal),

they can be terminated (e.g., recall, revoked privileges).

« fines and fees
Patrons do not want fines. Librarians use fines only to encourage the prompt retumn of
undamaged materials. Administrators may use fines 0 raise revenucs. Like loan periods,
fines vary in magnitude according to patron and material type; fines may also be forgiven.
Fees are similar 1o fines except fees are levied to restrict access or raise revenucs rather than

to punish.

« information access
Patrons want information without restriction. Librarians wish 1o assist patron information
retrieval., However, the administration must protect the privacy of others. A library that
allows a patron to view her own borrowing record, but not that of others is a compromise; il

protects privacy, but leaves the possibility for illicit access through misrepresentation (e.g.,

15

stolen passwords).

Libraries try to satisfy the conflicting concerns of patrons, staff, and administrators; they cmploy
many mechanisms to deal with both errorful and irresponsible behavior; they involve complex
responsibility assignments among agents. Libraries are complex sysiems which require sophisti-

cated analysis to derive adequate specifications.

Rea! libraries are not simple. They involve more than just people, books, and a
database. They have policies according to who the borrower is, what kind of book it
is, what time of year it is, and, of course, exceptions 10 all of thesc policics[89].

In contrast, others view library specification as refinement of a generic database/firacking
schema[68, 69). This paradigm is based on: (1) capture and storage of library forms and (2)
retrieval and modification of such forms for specification. This paradigm appears 1o be productive
for routine situations; for example, primitive programming tasks such as sorting and search-
ing(70]. However, this paradigm must be extended for more exploratory tasks such as group
design, especially for informal domains such a library science. Even where significant forms can
be captured, the bulk of the requirements work lies in selection and modification. For tasks such
as library design, this means understanding policies, their derivation via negotiation, and their
effects on alternative designs. This negotiation-oriented paradigm has been combined with the
capture-and-modify paradigm for labor negotiations83]; it illustrates the need for knowledge

beyond data schemas for assistance in complex domains.

The library domain illustrates how an artifact’s complexity can result from its environmen-
tal interface rather than its intemal processing. The actual algorithms uscd in an automated circu-
lation and inventory system may be simple, but the policies they implemcnt may be the result of
complex negotiations between system stakeholders. Hence, system complexily may be due 1o

system design, rather than algorithmic derivation; algorithmic enhanccments arc simple, but

16

system changes must be negotiated with stakeholders.

3.2. Multiple Perspective Design

Originaily, this research on collaborative design was purely practice. It was conceived 10
automate the merging of independent specification design states{73]. Unlike many specification
projects, it did not to automate functional decomposition since its organizational philosophy is to
prevent conflicts. (In functional decomposition, members construct modules by maintaining carc-
fully defined boundaries[19].) Early efforts included specification by casc-based adaptation[27],
gradual elaboration[26}, and parallel elaboration{72}]. The integration of these approuches lead to

this dissertation[29, 30].

The current group design methodology, called Multiple Perspective Design (MPD), was
derived from Feather’s parallel elaboration model(23,24]. MPD supports the acquisition of mul-
tiple (conflicting) system perspectives, the subsequent derivation of designs, and the final interac-
tive process of design integration. It exploits group diversity and creativity by addressing conflict

recovery.

The methodology captures aspects of negotiation between system stakeholders. Commonly,
system requirements are developed through client interviews; somctimes the interviewees are
potential operators of system, but often they are presumptuous managers who imposc their own
requirements without any user consultation. In any case, multiple agent goals arc typically unrep-
resented in requirements engineering models. Figure 1 iflustrates how requirements modcls typi-
cally represent a single consistent requirements set, while the variation ol multiagent goals is

unrepresented.

L

(oo

Figure 1. Implicit Stakeholder Goals.

The MPD approach is more direct; it models system participants who might affect or be

affecied by the proposed system. Mumford calls such an approach participative sysicms design.

The argument for a participative approach therefore runs as follows. All change in-
volves some conflicts of interest. To be resolved, these conflicts need 1o be recog-
nized, brought out into the open, negotiated and a solution arrived at which largely
meets the interests of all parties in the sitvation. Differences of interest will not be
confined to management and subordinates but will occur between employees at dif-
ferent hierarchical levels as shown by grading systems, and in different functions.
Therefore successful change strategies require institutional mechanisms which en-
able all these interests to be represented, and the participative design group which
consists of representatives of all the different groups in a depariment will (ulfill this
function.—p. 112(61].

Mumford applies participative systems design as part of her socio-technical systems design[62].

Her approach is to separately consider social and technical aspects of a system. The social aspect

i8

Requirements Aoqulsition

1} % !
¥ ¥ ¥
Individual Desalgn

| ! *
¥ ¥ !
Multi-agent Negotiation (Integration)

<D

Figure 2. The MPD Integration Paradigm.

principly considered is job satisfaction. By way of five attributes, she diagnoses the (it between an
employee’s expectations and his job requirements. Similar analysis is indcpendently applied
between technical structures and their requirements. System alternatives are then cvaluated from
the social and technical views. Finally, compatible views are combined, followed by sclection of

the “‘best” system.

MPD is consistent with soci-technical participative design. Both advocaie independent con-
sideration of systems aspects from stakeholder perspectives. However, Mumford’s approach
restricts independent consideration along two issues: social and technical, whereas, MPD has no

issue restrictions. Multiple requirements and multiple designs are also unigue to MPD; ii is based

19

on the production of a design for each stakeholder. Finally, MPD advocales the integration of
“incompatible” designs; the process of their integration reveals the negotiation between stake-

holders and can be assisted.

MPD calls for: (1) representing stakeholder beliefs, (2) constructing separate designs for
each stakeholder, and (3) integrating designs using negotiation technigucs. Figure 2 illustrates the

MPD integration paradigm, while figure 3 illustrates where automated suppont is provided.

System support consists of: (1) agent modeling, (2) development “bookkeeping™, and (3)
negotiation assistance. A domain model is provided 10 model available goals, operators, and their

interactions. The domain model is requirements language for MPD.

Requirements acquisition consists of using the domain model 10 construct stakcholder per-
spectives. Perspectives represent the interests of stakeholders in the proposed sysiem: they arc
individual's requirements. Acquisition is supporied via the domain modcl and tiloring tools

aimed at assisting individual requirements representation.

Design consists of applying the automated planner to individual perspectives. The planner
ensures that each requirement is mapped (and linked) to some design components. Tools are also

provided for manual editing of designs and managing perspectives and designs.

Design integration consists of confiict detection and resolution peneration. For the most
part, this process is automated with a human serving to guide resolution search. Prcsented with
conflicting issues and preferences of stakeholders, the human arbitrator actively considers altema-
tive (implicit) preference weightings. Alternatives which appear superior then servc as a focus for
‘incremental improvement by the negotiation operators (compromise, spccialization, and general-
ization). Choosing a resolution ends this interactive process, Finally, an intcgrated design is out-

put.

20

Astomated Information Flow | | Supported

Figure 3. Providing Automated Support: Oz

3.3. A Brief Negotiation

To use the MPD model, Oz is provided to assist individual designers in working indepen-

dently. Oz is a computer-based system that provides four languages to a designer:

21

. A language of domain concepis.
. A language for stating goals. These can be goals local to the designer or global 1o the group.

. A language for stating goal-achievers or operators. The design process itself is one of

selecting particular operators for achieving goals that meet the designer’s preferences.

. A language for stating preferences. Preferences can be on valucs (e.g., maximize, mini-

mize), between goals, or between operators.

Each of these languages is based on an abstraction hierarchy. This allows a designer to stalc

abstract goals, abstract operators (and hence abstract designs), and abstract preferences.

3.3.1. Two Perspectives

As an example of goals from the library domain, consider the loan period duration goals of
a librarian and patron. Each prefer different values for library loan periods: the librarian perceives
a short loan length as beneficial to resource tumnover, whereas, the patron perceives a long loan
period as a necessity for research. Their preferences of 14 days and 365 days, respectively, can be

described as follows:

Librarian:
on_loan(patron,resource.loan_period.duration-14)

Patron:
on_loan(patron, resource, loan_period.duration=365)

Each goal states the desire to achieve a design state where a loan period is granted to a patron.
Additionally, the library domains contains patron subtypes, (e.g., faculty, graduate student, under-
graduate student). These goals state that for all library patrons, a specific loan period shoutd be
granted. Moreover, if the goal cannot be achieved, the nearest feasible substitute should be

achieved. For the librarian, this means that designs with loan period durations closer 10 14 are

preferred over those further away. Similarly, one can state goals in terms of maximizing or mini-
mizing along ordered items (e.g,. ON_LOAN (PATRON, RESOURCE, LOAN_PERIOD.DURATION=MAX)).
Such preferences can be applied to all modeled domain entities (e.g., goals, objects, and opera-

tors).

3.3.2. Two Designs

Given a goal, Oz must find a way to achieve it. Oz represents goal achicvement methods as
operators. In the library domain, the operators BORROW, RECALL, RENEW and others that allow
library users to achieve library usage goals are represented. Given that goals and preferences can
be abstract, abstract operators are represented as well. For example, GET_LOAN is an abstraction of
the operators BORROW, RECALL, and RENEwW. Figure 4 depicts a portion of a library opcrator hierar-
chy.

In figure 4, operators are shown as boxes. Each operator has zero or more of the following:

. Consumable preconditions. These are shown directly on the left of an operator. A consum-

able precondition is onc that enables the operator 1o activate, but is consumed (deleted) in

the activation process.

. Persistent conditions. These are shown direcily below an operator. A persistent condition is
one that must hold to enable a operator. It remains true (it is not consumed) afier the opera-

tor is activated.

. Produced postconditions. These are shown directly to the right of an opecrator. A produccd

postcondition is one that holds (is added) as the result of operator activation.

One of the operators in figure 5, GET_LOAN, is an abstract version of the two operators below il;

lines between operators denote abstraction. Abstraction is carried out by finding the set of all

P
Ewmml"""‘n. possess{eqerti rescurce) >

S posssssiegari2 mecurcs) . I?u(’tpﬂinnm) >
S ounlagert2 meouwve) | /[puh-(qmm))
enJosn{agarnt] reecuroe loan_period) >

S pomsesalagent recurs kanpeb) | O

posssas{agert1 resource loan_period) >

[onaniaodet e bapariod >
§wmnwnﬂ"m /-nmh-mth

WMDEUE)/
S onJowniagent? macurcs |p9i-(-wnmh-n.ubq>
rescurce loan perod)>>
S possssslagui| reecuce “""’mem)
S orUonaget) emcurcs [possssslagerti mecuros oan parod)>
[renewediagent! rescurce losn_period)>

Figure 4. Some Library Operators.

unique similarities between two operators, abstract or otherwise, and producing a new, morc
abstract operator that represents the similarities and eliminates the differences. (This process is
carried out automatically in Oz — as new operators are added to the model, they are automati-
cally compared with existing operators. Similarities are detected, and new operalors generated
and linked into the hierarchy(2).) As part of this process, hierarchies of objects (e.g., patron with
subtypes faculty, graduate, and undergraduate) are created. (Additionally, hierarchics of goals can

be described manually.)

With such library operators, Oz can begin the process of achieving a participant’s goals.

Goals are achieved by selection of operators. Using a tool called OPIE[28], Oz auwtomales design

24

in the following way:

(1) The most abstract operator O for achieving goal G is found. In the case of the patron's

goal, this is the GET_LOAN operator in figure 4.

(2) If there is a preference among the children of O, the most preferred child is chosen next,
and step 2 is repeated with the child becoming O. In this example, neither the patron nor

librarian expressed any operator preferences.

(3) If no preference is given among the children of O, or if O has no children, then O is
selected. Hence, a designer only makes design choices when necessary, otherwise leav-
ing designs in an abstract state. Since the patron wanted the resource for 365 days, the
operator GET_LoaN will be instantiated in the design with LoaN_PERIOD'S duration

attribute set at 365 days.

The above presents the planning process from the patron’s perspective. The same process is car-
ried out independently from the librarian’s perspective. In this case, the same design is created;

however, the GET_LoaN operator is instantiated with LoaN_PERIOD’S duration attributc set at 14

days.
S posesslagart meiros oanperd) | 3% >
posssa(agent! rescurce boen_péiod) >
[posssseloruryi rescisosi oan_periodt) >
(e [poassse(lorwry! rescesos2 loan_periodi)>> Sen_jgar(agent! resouros! loan_period) |
Produosr =
ownibrary! ecuros() S posssss(agert! rescurce| loan_period]

Figure 5. A Loan Period Design.

25

3.3.3. A Negotiated Integration

Once the designs are created, one can attempt to integrate them. I there are no difference in

the designs, then no negotiation need take place. Otherwise, as in the example, design differences

must be characterized as goal conflicts and negotiated.

0}

(2)

The integration process consists of:

Conflict Detection and Characterization. Designs differences are identified. MPD applies
conflict detection to designs rather than the initial goals because, among other reasons,
different goals can lead to identical or non-interfering designs, i.c., designs that differ, bul
are compatible. In the example, the two GET_LOAN operators asscrt different values of loan
period duration. This interfering difference is characterized as an object attribute valuc

conflict, i.e., a conflict over the value 0f LOAN_PERIOD'S DURATION vaiue,

Conflict Resolution. After the goal conflicts are identified, an individual imeracts with
Oz's negotiation model to guide the resolution search. First, cither value of duration can
be chosen, i.e., 14 or 365. Additionally, at the direction of the uscr, compromisc valucs
can be generated (e.g., 189.5). Also, the conflict characlerization can be iransformed.
Conflicts can be generalized or specialized. For example, specializing the conliict charac-

terization suggests the new goal set (among others) of:

on_loan {undergraduate, resource, loan_period.duration=14)
on_loan{graduate, resource, loan_period.duration=365}
on_loan{faculty, resource, loan_period.duration=365}

In negotiation terms, this resolution can be considered a dissolution, i.c., a rcmoving ol
the conflict. Moreover, the methods can be combined. Applying compromisc o the above

specialization can create the following goals:

3

26

on_loan (undergraduate, resource, loan_period.duration=14)
en_loan(graduate, resource, loan_period.duration=189%.5}
on_loan(faculty, resource, loan_period.duration=365)

Generalizing conflict characterization is the opposite of specialization. It can be used dis-
solve conflicts between two similar objects. For example, an object conflict between grad-
vate and undergraduate can be dissolve by generalizing the object of conflict. The follow-
ing:

on_loan (undergraduate, resource,loan_period.duration=14)
on_loan (graduate, resource, loan_periocd.duration=14)

can be recharacterized as:

on_loan (patren, resource, loan_period.duration=14)

1o remove the conflict. The same approach can be used to suggest rcsourcc renewal (o

compensate for short loan periods.

Resolution Implementation. After the analyst chooses a resolution, the system conjoins
the original poals with the resolved goals and reapplies the design process. From the

example, the new goals are:

on_loan (undergraduate, resource, loan_period.duration=14}
on_loan (graduate, resource, loan_period.duration=189.5)
on_loan{faculty, resource, loan_period.duration=365)

Since the original goals were transformed to the above goals, only these goals are reap-
plied to the design process. The resulting design contains three borrow opcrators which

apply to the three different patron subtypes to give three different loan period durations.

27

The above illustrates how negotiation fits into MPD and the types of negotiations that Oz is capa-
ble of automating. All the automation shown above has been implemented (e.g., conflict detec-
tion, compromise, specialization, generalization, resolution implementation). In fact, unless other-
wise noted, all descriptions of automation and example presenied have bcen aulomated in the
implementation, Oz. The above example also illustrates the mode of user interaction. An Oz user
guides the generation and selection of resolutions, while Oz does the mundane work of analytic
compromise generation and conflict recharacterization. Oz automales all the tasks presenied in

addition to providing suppon for the bookkeeping aspects of independeni design and integration.

3.4. Automation Assumptions

To direct the automation efforts, Oz relies on the four assumptions listed below. The first
one describes simplifications which allow us to focus on resolution gencration. The second and
fourth are specific to the MPD design strategy for interactive design sysicms. The third is a com-
mon decision goal; however, it is not clearly demonstrated in many automated ncgotiation reason-

ing systems.

(1) Common Languages
It is assumed that one language represents all stakeholder perspeclives and designs. A
stakeholder’s perspective contains abstractions of operators, objects, and relations associ-
ated with stakeholder goals and preferences. The design language is a specialization of the
perspective language. Both are based on a predicate calculus planning formalism[2]. By
using one language, Oz do not address the process of converting between different perspec-
tive ontologies[22,79). Nor do it address the process of converting beiween different

design languages[42, 63].

28

(2) Independent Perspectives and Designs
It is assumed that designers independently describe and maintain perspectives and denved
specifications. These are selfish perspectives, representing uncompromised stakcholder pref-
erences, and selfish designs, representing uncompromised completc inslantiations of stake-
holder perspectives. The process of combining all stakeholder perspectives into a single uni-
fied perspective is applied only after designs are integrated. Resolution consists of weight-
ing stakeholder preferences in the context of their conflicting designs, and then making a
new group perspective, and finally deriving a design. Only thosc portions ol the perspec-
tives that cause conflicting specifications will be reconsidered, and possibly rcconciled, dur-

ing integration.

(3) Optimal Resolution
Within a given search space, it is assumed that an optimal resolution is desired. The arbitra-
tor has the option to expand the search space via introducing more issues. Such expansion
can make a previously optimal resolution appear dominated by new resolutions. Neverthe-
less, once the issues are fixed, an optimal resolution is chosen according to a weighting of

stakeholder perspectives.

(4) Interactive Perspectives
It is assumed that stakeholders have bounded rationality[5]. They have limited information
and processing abilities. This implies that the specific problem context can have significant
influence on an stakeholder's perspective. For example, the stakcholder may become aware
of other operators which can satisfy its goals. Conversely, the stakcholder may become
aware of constraints which limit goal achievement. In either case, the stakcholder may wish

to reconsider its perspective, i.e., its goals and preferences(25]. It is assumed that search,

29

during design and conflict resolution, may uncover new information which is feedback into
the stakeholder’s decision process which reconsiders designs, constraints, and their effect on
goals and preferences[40]. Modification of a stakeholder’s preferences is aided according to
context. In this way, interactive perspectives are supported; perspeclives which model

stakeholders and facilitate their modification by humans.

Using these assumptions, Oz provides languages by which to represent stakcholder perspectives
and algorithms by which to integrate independent designs. The resulling perspective representa-
tion language consists of preference annotated abstraction hierarchics. The resulting integration

algorithms combine analytic preference maximization with heuristic confiict recharacierization.

4. Dissertation Summary

This disseration:
(1) presents group design conflict resolution as a problem,
(2) suggests MPD as an appropriate methodology for addressing this problem,
(3) provides a representation and method for describing individual perspectives, and
(4) provides algorithms to integrate designs based on those representations.
This dissertation is evaluated by :
(1) its capacity to represent design goals and preferences,
(2) its ability to generate acceptable resolutions.
Specifically,

(1) the method is applied post-hoc to rederive portions a simple library case-study, and

30

(2) the resulting case is compared, by an expen, against the original derivation.
This evaluation leads to the following conclusions:

(1) preference modeling and process-oriented decision making can be cffectively combined

(i.e., the algorithms are effective and generate appropriate resolutions),

(2) group software engineering can benefit from this hybrid approach to conflict resolution

(i.e., the post-hoc rederivation did supply adequate resolutions).

5. Dissertation Qutline

The remainder of this dissertation is divided into three parts. The first two describe the
methodology and its automation, while the last presents it use. Throughout paris one and two, [
distinguish between the representational theory, and the current staic of the implementation;
unfortunately, the confines of this dissertation have not allowed for a complete implementation of
the theory. (Everything has been implemented except methods dealing with operator preferences.)
Chapter 1I presents the Multiple Perspective Design methodology. Chapters III and V are the
heart of the disseriation. They describe stakeholder modeling representations and negotiation-
based integration algorithms. Chapter IV describes the use of a planner Lo aulomatically derive
designs from the stakeholder perspectives. Finally, chapters VI and VII present an example of the

system in operation and draw conclusions.

31

CHAPTER 11

MULTIPLE PERSPECTIVE DESIGN

While many groups engage in negotiations, to their disadvantage, few arc trained in negoti-
ation techniques. I am interested in making these techniques more widely available. The remain-
ing chapters of this dissertation detail the MPD methodology and its automation in Oz. Before

diving into those details, I wish to motivate the use of automated negotiation.

This chapter briefly describe the MPD methodology in general terms. 1t presents: (1) acqui-
sition and modeling of multiple perspectives, (2) design from multiple perspectives, and (3) inte-
gration of multiple designs. Similarly, the negotiated design paradigm is evaluated in general
terms. Benefits perceived by two communities are presented: (1) software enginecring (paral-
lelism, simplicity, design rationale, reuse) and (2) decision science (preference maximization,

technological closure).

This chapter shows that the benefits derived from the MPD methodology can be had by
other methodologies. MPD does not have a lock on the benefits of negotiated design. Indeed,
many methodologies can benefit from incorporating even simple negotiation lechniques into their
support. Similarly, the more novel negotiation methods describe here can also be applied in more
conventional situations. To show the general applicability of Oz’s negotiation methods, this chap-

ter introduces a few example resolutions which, if represented in Oz, could also be automated.

(1) Dissolution: Law of the Sea

The nations of the world must agree on how to mine the intemational decpsca floor[67].

32

These undeveloped seafloors contain some of the worlds most abundant mineral resources.
Unfortunately, not all nations have the ability to mine the decpsca floor. To resolve this
inequality, the nations tenatively agree to a parallel mining systcm. An intemational Enter-
prise will mine on behalf of all nations, while individual nations mine independently and
share some of their profits with the Enterprise. Unfortunately, a few nations will still be
mote effective than the Enterprise. How can one assure the nations that the better sites
won't be taken by the more advanced nations? One resolution is bascd on dividing the con-
flicting element, the site, into subelements and renegotiate: a requester should pick two
sites. Then, the Enterprise can choose which site it will eventually develop while the

requester can immediately develop the remaining site.

(2) Compensation: Library Policy
Library patrons and administrators must be agree on a resource loan period[10]. To fully
benefit from library resources, some patrons need long loan periods. While administrators
support patron resource usage, they must balance the needs of all patrons. With long loan
periods, some patrons will keep resources beyond their useful period. Such “idle resources”
can be reduced with a short loan period. How can the administration balance the necds of all
patrons against the needs of a few patrons? One resolution is bascd on maintaining a shor
loan period, but providing another compensating mechanism by which patrons may gain
access to resources: a patron should be able to renew their resources. Then, the library

reduces idle time, but working patrons can still have access to needcd resources.

(3) Compromise: Group Scheduling
Two people desire 1o meet for two hours. After consulting their calendars, they realize only

one of them is free for two hours: however, both have 90 minutcs of free lime, as well as

i3

some single hour slots. How can the two meet for two hours? Onc resolution is based on

simple compromise: the two should meet for 90 minutes, rather than two hours.

The last example is the most common, and weakest, use of negotiation. The first two illustrate
more powerful, yet heuristic, forms of negotiation. They go by a varicty of names (e.g., lateral
thinking, value-focused thinking). These types of negotiation focus on fulfilling goals rather
relaxing them to remove conflict. They often include goal reformulation as in the first two exam-
ples, but may include lower level repairs, as in the last. Yet, while I advocate the combined use of
compromise, compensation, and dissolution, it should be recognize that cven simple compromise

assistance and recording can aid collaborative design.

1. Methodology

MPD distinguishs between two types of design agents: designers and their chicf. Designers
create designs which satisfy a subset of requirements. These subscts are chosen 1o model individ-
ual stakeholder's perspectives. Hence, designers have two tasks: (1) modeling individual stake-
holder’s requirements in terms of goals and preferences, and (2) creaiing designs fulfilling mod-
eled goals while maximizing modeled preferences. The chief designer has three responsibilities:
(1) assigning designers the task of modeling stakeholders, (2) ensuring designers complete their

designs, and (3) arbitrating over design integration.

The integration process itself consists of confiict detection, characterization, resolution, and
implementation, If designers produce identical designs, then intcgration simply outpuis the
design, However, if conflicts are detected, they are charactenized in tcrms of stakcholder goals
and preferences. Then, the chief guides the search for a satisfactory, mutually acceptable, group

goals. These are implemented, thereby creating a design maximally fulfilling all stakeholder

34

perspectives.

8)

)

(3

@

(5)

(6)

)

Figure 6 illustrates this process. The system depicted works as follows:

The Stakeholders give the Chief a problem description.
The Chief orders Designers 10 model the requirements of each stakcholder.

Each Designer develops a model of a stakeholder’s goals and preferences. Then, the
Design Assistant (i.e., planner) is applied to derive a design. Each design represents a fin-

ished design. Designers are allowed to work uninterrupted until completion.

Individual designs are collected by the Collector. MPD currently provides no guidelines
for when this should happen. In fact, I suspect designers may wish to engage in a series of
intermediate integrations before the final integration. That is, the group may work inde-
pendently, integrate their perspectives and designs, and then conlinue working indepen-
dently. Others have found such cross-talk a useful mechanism to control the design diver-

gence.

The Conflict Detector looks for conflicts among the designs. It does this pairwise across
all designs. If no conflicts are found, a design is passed along 1o thc Merger. If confiicts

are found, they are recorded and then passed to the Conflict Resolver.

The Conflict Resolver provides an interface for a human negotiator, the Chicf. The inter-
face provides control over the search process. By weighting individual goals and preler-
ences, the Chief can direct the application of the heuristic modifier and analytic prefer-

ence maximizer.

Once all conflicts are resolved, the results are passed to the Merger. The Merger outputs

the single, unified design.

35

(8) Finally, in a complete system, a Notifier would provide feedback to the stakeholder’s on
how their goals and preferences were incorporated into the design. (Even better, such
feedback would be provided to the arbitrator during the resolution process.) Also, an
Implementor would take the design as input and produce a (software) systcm. Neither of

these processes are automated in Oz.

The key components of this process are the inputs to the resolution process provided by the stake-
holder models, and the algorithms that use these inputs to generate resolutions. These are the top-
ics of chapters III and V. Now, an overview of stakeholder modeling, design, and design integra-

tion is presented.

The example presented is keep simple so that one may focus on the philosophy of the
methodology. From multiple perspectives, concrete designs, and their intcgration, this section

shows how good design characteristics can be derived.

1.1. Modeling Individual Requirements

« Stakeholder preferences are necessary for effective automated negotiation.
« Preference hierarchies are an effective means of representing stakcholder
preferences.

MPD simply requires that individuals be able to describe goal states which they desire Lo
achieve. Additionally, it is preferable that they be able to describe alternative goal states, as well
as which states are deemed better than others. An ordering of items is called a preference. Addi-
tionally, individuals may be able to state, on a relative scale, how much they prefer one item over
another. For example, a few goals can be ordered all around the same value, while other goals

which bring much less satisfaction are ordered around much lower valucs. Such description

36

T

=

AN —
oo

Figure 6. MPD Processes.

37

provides the negotiation system the means to substitute one item for another. For example, the
substitution of one goal achievement for another in the face of conflict. Design objects and opera-

tors may similarly be negotiated.

Reconsider the library loan situation of chapter I. The patron may wish to specify his prefer-
ence over several goals. For example, he may have two goals: own and oN_Loaw, and prefer
oN_Loan over owning. To represent this in Oz, the current perspective must first be set (lo distin-
guish the patron’s preferences from others). The function, in-perspective sels the perspec-
tive. Next, the preferences can be described. This is done by modifying a componcnt from one of
the domain hierarchies. In this case, the relation hierarchy. The following code fragment illus-
trates this. It uses the :order keyword to describe accEss relation preferences. (Relations further
down the list, toward the right, are more preferred.) The rejations owN and on_roan are children of

the Access relation in the relation hierarchy.

{in—perspective 'Patron)

(def_mod_relation access (patron,resource)
:order ' (own{patron, resource)
on_loan (patron, resource, loan_period}))

First note that owN (PATRON, RESOURCE) describes a state where a patron has bought a resource;
similarly, oN_LoaN is a state description, or relation. These two relations are specificd as special-
izations of the Access relation. Within the ordered list (defined by thc keyword :order) they
denote the patron’s desire 1o borrow resources, but if that is not available, buy resources. This
preference describes the preferred order in which goals should be dropped in the fuce of conflict.
Similarly, the patron can order, or scale, other entities. For example, thc patron could specify that

his preference for loan periods falls off linearly from a target value of 180 days:

38

{in-perspective 'Patron)

(def_mod_object loan_periocd
cattributes * ({duration :min O :max 365 :goal 180})})

This denotes that the patron desires long loan periods (i.e., around six months). Additionally, this
preference is scaled linearly: 180 days is scaled at 100 percent. Periods above and below 180 days
will be scaled at lower values. The range of which is defined by the min/max arguments; they are

not negotiable, i.e., they must be the same in every perspective.

In addition to goal preferences, individuals may state operator prefcrence. That is, the pre-
ferred means by which goals are to be achieved. For example, the patron could specify his prefer-

ence over several operators:

{(in-perspective ‘Patron)

(def mod_op get_resource
:order ‘' (recall, renew, borrow))

RECALL, RENEW, and BORROW are operators, each of which can produce thc on_roan relation. In

this way, an individual can state BoRRoW was the most preferred, while RECALL was Lhe least.!

In fact, Oz supports the description of abstract goals, operators, and object preferences. For
goals Oz provide for two types of abstraction: (1) relation abstraction, and (2) goal aggregation.
Relation abstraction allows one to arrange a hierarchy of relations where lower relations are
deemed more specific than those above (e.g., AccESs is more general than on_voan). Goal aggre-

gation allows the conjunction of multiple relations to be considered as a (composite) goal.

1Such preferences can be stated, but their use in negotiation algorithms has not becn imple-
mented.

39

Figure 7 illustrates the hierarchy of operators which produce on_roan. Operators, objects,

and relations are stored in such taxonomic abstraction hierarchies. In the operator hierarchy, spe-

cialized operators form the leaves, while abstract operators are formed representing common

added (right side), deleted (left side), or persistent (middle) relations. Such abstraction is the

result of pairwise comparison and is automated[2].

Oz employs a knowledge-based approach. Prior to design, it has a cache of operators,

obijects, and goals. As part of stakeholder preference acquisition, a designer makes a copy of these

= posssss(agant reecurce loan_pariod)

possess{agert! mecrce) >

Operators RECALL, RENEW, and BORROW are specializations of the GET_Loan.

S ownlaganz meouoe) | ljuﬁ-(mﬂmm)

< — E:, WMMLM)

possess{agert! resource ber_perod) >
Im}(ﬁnu?hum)
S pommsm(agert? sourcs [pogadesiagnti /sscurce toan_period) >

mmimj/

S poseeagurt2 seeouros boar_perbodf MJWMW
S ousesowt2 Reciroe ben puod]] [Pysesslagarti meoce foanpeiod)>
ageni! reacurce loan_period)>
S rosmmeslagurtt e barperdf [onoan(agent? rescuros loan pariod >
gm«nmu\uxﬁl (posssssisgerti rescrce ban_perod)>
[renwwed{agent! mecurce loen_period)>

Figure 7. Operators which Produce on_roax.

40

hicrarchies and annotates them with stakeholder preference.

Such hierarchies are effective because stakeholders need only state their preferences down
to the level of specificity at which they are concemed. Without such abstraction, stakeholders
must use concrete descriptions where they have no vested interest. That is, languages without
abstraction may require one 1o state preferences at levels more specific than one is interested in
stating. Such languages can produce arbitrary decisions which result in confliclt and unnccessary

negotiation.

Additionally, hierarchies are effective because they suggest substitulc goal achievement in
the face of conflict. When stakeholders prefer an abstract goal achievement, any relation below is
satisfactory. For example, any specialization of paTRoN in (hc goal
ON_LOAN (PATRON, RESOURCE, LOAN_PERIOD), would be acceptable. Howecver, il nonc of the spe-
cializations can be achieved, achievement of a related relation is a reasonable heuristic substitu-
tion. For example, the owWN (PATRON, RESOURCE) relation may be appropriale; it can be had by

looking through the operator hierarchy.

Through successive specialization during design, members commit to more detailed design
preferences. Conversely, abstract commitments may be successively undone and reconsidercd
during integration. Negotiation methods can use abstraction hierarchics to gencrate resolution

altematives of varying generality.

In summary, Oz provides a knowledge-base of operators, objects, and goals relevant 10 a
design domain. Stakeholder acquisition consists of associating prefercnces with these entities.
While the a priori knowledge-based simplifies design-time work and the abstraction hierarchies
make negotiation search more efficient, multiple stakeholder preferences are the essence of nego-

tiated design.

41

1.2. Specification Design

» Independent design aids individual preference understanding.
» Independent design allows for maximal parallelism.

Given goals as state descriptions and preferences over operators, objects, and goals, it is
(relatively) simple for an abstract planner to derive a plan (i.e., a behavior description) to achieve
the goals. Goals are mapped to primitive design operators by successively specializing abstract
operators, or by inserting and then specializing operators 10 satisfy goals(2]. Failure indicatcs
insufficient operators or conflicting individual goals. Currently, Oz do not address cither of thesc
issues; however, in the case of conflicting goals, it would be simple to apply Oz’s resolution

mechanism.

Clearly, independent design allows maximal parallelism. Designers necd not consult regard-
ing global constraints nor interface boundaries. Each designer has the fiexibility to reconsider
requirements in the context of the developing design and ensure the stakcholder's preferences are

the correct ones and that such preferences, at least in the ideal independent case, arc feasible.

Independent design allows stakeholders 10 see the consequences of their preferences inde-
pendent of others. Each stakeholder derives a complete design from his own selfish perspective.
Thus, a perspective contains a stakeholder’s ideal goals and prefcrences free of group
biases[5, 25,40]. Any compromises will be derived from conflicts within a siakeholder’s prefer-
ences, not from conflicts with other stakeholder perspectives. Therefore, negotiated design aids
in the accurate acquisition and recording of stakeholder perspectives. This process itself can elim-

inate conflicts over abstract, infeasible goals.

i=
-

1.3. Integrating Designs

» Design conflicts are characterized as stakeholder prefercnce conflicts.
« Preference conflicts are resolved by choosing mutually acceptable compro-
mised and/or substituted values.

The following discussion presents the integration of two designs. Again, the emphasis here
is not on how integration is done. Instead, just the basic elements arec demonstrated. Essentially,
integration consists of characterizing design conflicts as conflicting stakeholder preferences.
Then, an automated procedure assists deriving mutually acceptable group goals and prelerences.

Finaily, the planner is applied to the integrated perspective 10 creaie a single satisfaclory design.

The first design is generated from the patron preferences shown previously in section 1.1;
they simply denote the desire for six month loan periods. The second design is gencrated from
similar opposing preferences of the librarian: The librarian has the goal of loaning resources and
prefers shorter loan periods (since they reduce resource “idle time™ and increase resource accessi-
bility). On the other hand, the librarian adds preferences for library risk and cost, the combination
of which must be restricted. The librarian’s minor variation in scaling loan period is used (o indi-
cate his target value of two weeks (i.e., 14 days); his preference falls off lincarly in both dircc-
tions. The added scales for risk and cost describe the desire to reduce loss and damage risks and
processing costs associated with borrowed resources. We've made the simple assumption that
both rise linearly with the number of days borrowed. Moreover, their combination is restricted
using a linear constraint. Unlike goals, constraints are non-negotiable; the final resolution will

have limited risk and cost.

43

The following code fragments represent these perspectives. The first perspective describes
the antributes of the LoaN_PERIOD object for the generic library model: these are inherited by the
patron and librarian perspectives. Using the keyword :attributes the atribulcs DURATION,
cost, and RISK are described in order and have their ranges defined. Below, using the keyword
:att_constraints, linear relations between the attributes are defined. In each case, there arc
three constants (one for each attribute) followed by a relation (e.g., <=, =, or >=) followed by
another constant. The constants are in the same order as the attributes and associale muliipliers

for the attributes. For example, the first constraint can be rewritten as:

1 * DURATION + O * COST -1 * RISK = O

This indicates that risk directly increases with duration.

(in-perspective ‘Library-model)

(def_mod_object loan_pericd
attributes ’ {("Duration” :min 0 :max 365}
{("Cost" min C :max 100)
{"Risk" :min 0 :max 100))
:att_constraints ‘({1 0 -1 = 0} ;Direct increase of risk
{1 -1 0=20) ;and cost with duratien.
(0 0.6 + 0.8 <= 365)})

The following code fragments describe the patron and librarian prefercnces. For the patron, they
indicate the desire to maximize loan period duration (e.g., :objective max), while indicating

indifference concemning cost and risk.

{in-perspective ‘Patron)

{def_mod_object loan_peried
rattributes {((duration :min 0 :max 365 :objective max)
(cost :min 0 :max 365 :objective nil)
{risk :min 0 :max 365 :objective nil)})

(def_mod_relation access{patron, resource)
:order ' (own (patron, resource)
on_loan (patron, resource, loan_period)))

(def_mod op get_rescurce
torder ‘ (recall, renew, borrow})

For the librarian, they indicate the desire to achieve a 14 day loan period duration (e.g., :geal

14), while minimizing cost and risk.

{in-perspective ‘Library)
(def_mod_object loan_period
rattributes ’ ((duration :min 0 :max 365 :objective 14)
(cost :min 0 :max 365 :;objective min)
(risk :min 0 :max 365 :obiective min))}
After the two designs are constructed, integration begins. It is divided into four subtasks: (1)

identifying correspondences and conflicts, (2) forming issues, (3) rcsolving conllicts, and (4)

implementing resolutions. While they are not entirely sequential, it’s easicst 10 consider them so.

1.3.1. Correspondences and Conflicts

In the library example, the stakeholders had corresponding entitics. Resources, loan peri-
ods, and the borrowing operation all corresponded. However, as cormrespondences are made, two
distinct “conflicting” loan periods are discovered. Nlustrated below is an abbrevialed atiribute
conflict record for the loan period duration conflict. It describes the conflict as a difference
between object attribute values (LOAN_PERIOD.DURATION) used by corresponding operators (BOR-

ROW),

45

TYPE: OBJECT-ATTRIBUTE
DIFF_OP: BORROW
INTERFERENCE: (RELATIONS:
(LIBRARIAN.LOAN PERIOD.DURATION: 14,
PATRON.LOAN PERIOD.DURATION: 130))

The record denotes that two designs differed in a relation asserted by their corresponding BORROW
operators; both stakeholders used Borrow to fulfill their loan period preferences. The patron’s
design contained a six month loan period while the librarian’s design contained a two week loan
period. Hence, the object LOAN_PERIOD.DURATION is ascribed issue status. (An issue is a descrip-

tor denoting alternative values in which conflicting values are found.)

1.3.2. Issues

Given the conflict over their loan period values, one could focus cntirely on their specific
values: six months vs. two weeks. Such a narrow characterization is incffective; it limits resolu-
tions to the two altematives. Instead, it is better to satisfy the goals from which the designs arose.
To do so, one can characterize conflicts using abstractions, in this case, the range of loan period
duration values. This conflict record characterizes the two loan period durations as different
choices from the set of loan periods durations. Hence, LoAN_PERIOD.DURATION is ascribed issue
status; thus, it requires resolution. Such characterizations focus on goals, or subgoals, rather than

their final means of achievement.

1.3.3. Resolutions

Oz implements three resolution generation methods. These methods arc also used by human
negotiators(66]. Compromise generation maximizes multiple goals under linear constraints. Spe-
cialization recharacterizes the conflicting relation in terms of more specific relations. Generaliza-

tion recharacterizes the conflicting relation in terms of more abstract relations. Both of these

46

method produce resolutions which can be interpreted as types produced by humans. For exampie,
generalization can produce compensation by giving “losing” perspectives altemative goal satis-
faction. Similarly, some conflicts can be “dissolved” by distributing conflicting values over a

number of more specialized cases. Each of these methods is demonstrated below.

In the example, loan period duration compromises will be gencrated first. Nexi, the arbitra-
tor will pick a duration of 14 days and then choose specialization to recharacterize the conflict.
Specialization will suggest introducing the patron subtypes of graduate and faculty, thereby
allowing two different loan period durations of 14 and 180 days. Finally, compensation will be

given to patrons. By generalizing the conflict, book selling will be introduced into the library.

Compromise Application. Given the preferences and constraints, compromise generates

nondominated loan durations between 0 and 365 days.

As shown in figure 8, the arbitrator is visually presented with threc nondominated altema-
tive loan period durations: 0 days, 97, and 365 days. The display shows four preferences for each
altemnative; three are the librarian’s (L.cosT, L.RISK, L.DURATION) and onc is the patron’s
(p.puraTION).2 The more a preference is shaded, the higher the satisfaction. For cxample, RISK

and cosr are at 100% satisfaction when there are no loans (e.g., 0 days).

The arbitrator considers compromises and attempts to raise the satisfaction of impornant
preferences. In so doing, the arbitrator can observe the interactions between multiple (conflicting)
goals in context (e.g., raising .DURATION also raises P.DURATION, L.COST, and L.RISK). After

considering various alternatives and understanding the relationships between goals, the arbitrator

These figures are not generated by Oz. They are provided here as a tutorial simplification of
the actual figures produced by Oz. For example, the patron’s preferences associated with cost and
risk are not shown. Actual screen images are shown in the following chapiers.

47

O € =D —0 X

e

T

L

i

~o20JO0o<o—~F0>

|..Cost L Risk L.DURATION P.DURATION

Do days. RV days. M o7 days. 365 days.

Figure 8. Initial Issue Weighting.

will settle on an altemnative. This also indicates an implicit weighting between goals (and between
stakeholders); the more satisfaction goals derive from a resofution, the more weighting is
implied.>

After considering the two extreme sotutions and the mean of 97 days, the arbitrator is unsat-
isfied. He realizes all loan periods are between 0 and 365 days, where risk and cost increase with

loan period. With 14 days (the librarian’s goal) as the current altcrnative, he specializes the con-

flict characterization.

3In a more complete implementation, feedback from the stakeholders would be used to de-
rive consensus. Instead, in Oz, this process is outside the automated support.

48

Available (template)} Specialization

1. Relation: ON_LOAN {PATRON, RESOURCE, LOAN_PERIOD)
Issue: LOAN PERIOD.DURATION
New Issue/Values: (GRADS, LOAN PERIOD.DURARTION=14}
(FACULTY, LOAN_PERIOD.DURATION=180}
Use Operator: BORROW
Consumes: GRADS | FACULTY
Produces: (GRADS, LOAN_PERIOD.DURATION=14)

(FACULTY, LOAN PERIOD.DURATION=180)

Figure 9. An Available Specialization.

Specialization Application. Figure 9 illustrates a single specialization of the loan period
conflict. Here it is assumes that two subtypes of PATRON (GRADS and FACULTY) arc already repre-

sented. Since, these are subtypes of PATRON, BORROW Will still apply.

The altemative is displayed in context with a list of issues, values, add objects, and add
operators. The alternative suggests that GRADS and FACULTY be consumed by BORROW which
should distribute LOAN PERIOD based on the subtypes. This altemative provides for long loan
periods acceptable to patrons, and shorter loan periods acceptable to cost and risk minded librari-
ans. In general, each altemative is displayed with the relation to which it responds. The loan
period conflict is the result of interference associated with the oN_roaN relation; hence, ON_LOAN

is displayed to provide context.

The figure notes that alternatives are displayed in template form. This is a reminder that the
initial issue/value assignments are arbitrary; e.g., the assignment of GRADS = 14 is the result of
mapping previous altemative values or goal values (e.g., 180) to the ncw objects. Rather than
choose among the possible assignments in the specialization procedure, value search is confined
to the interactive compromise procedure. Hence, the arbitrator may choosc the dissolution (GRADS

14) (FACULTY 180) and modify this by manipulating a display like that in figure 10.

Figure 10 depicts the new search space. Previous alternatives arc displayed, giving the

search procedure continuity and context. The preferences for the new issucs, GRAD . LOAN_PERIOD

49

100%
A
Rc
eh :
11 : ;
av :
te : ‘
im AHEE
ve “ : ;
en o ;
t :
“g s 5 8 % %% %
8§ = g2 g b :
S 5 g £ 8 % & £
e &€ 6 &6 3 3§
8 8 o — o w
4 o e -
: 0 days, Grad: . : : :
" gﬁnﬁ 0 dy:ys. - F:wdlwoggagys. O ggllygz-lodgay;s. n g;iudliyv!ggyghys

Figure 10. Issue Weighting After the Specialization.

and FACULTY.LOAN_PERIOD, are displayed for the new altemative. Also, since the loan period
duration has be decomposed into GRAD. LOAN_PERIOD and FACULTY.LOAN_PERIOD, DURATION Nnow

displays the average satisfaction for GRAD and FACULTY.

While the arbitrator considers the new resolution, GRAD 14 ~ FACULTY 180, a good resolu-
tion, he wishes to give the patron compensation for the 14 day loan period. Next, he calls for

compensation.

Generalization Application. Figure 11 illustrates hypothetical and available compensa-
tions. Observing the operator hierarchy of figure 7, one can see that owt is a rclation added by an
operator near the operator that produced on¥_LOAN; i.e., BUY is in the same GET_LOAN subtree as
BORROW. Since no operator produces owN in the integration, this allemnative is suggested. This first

altemative suggests that the BuY operator produce own,

50

The second alternative suggests that a new relation, x, be added as a sibling of oN_LoaN and
a new operator be added to produce x. Informally, the first aliemative suggests selling resources
1o compensate for undesirable loan periods, whereas the second suggests the invention of a new

type of access mechanism. Currently, only available resolutions are prescnted in Oz.

The two alternatives can be considered compensation because they achieve a goal similar 10
one which is unachieveable. The hierarchies are used to determine relevance. Children of the nth
ancestor may substitute for a relation because they are functionally similar; that is, they are ncar
each other in the operator hierarchy. However, the greater the n the less relevant the compensa-
tion.

Figure 12 depicts the new search space after altemative 1 of figurc 11 is choscn. The prefer-
ences L.BUY and p.BUY are displayed for the new alternative. Again, this is a Lutorial simplifica-
tion for preferences which may be attached to the Buy operator (¢.g., cosT, RIsk). (Il no prefer-
ences were specified, they could be acquired now.) Regardless of Buy preferences, for all loan

period alternatives, BUY is unchanged; selling resources does not depend on loan periods and is

Available {template) Generalization
1. Generalize (level |)

Relation: ON_LOAN (PATRON, RESOURCE, LOAN_PERIOD)
Issue: LOAN_PERIOD.DURATION
New Issue/Values: OWN (PATRON, RESQURCE)
Use Operator: BUY
Consumes: PATRON
Produces: OWN (PATRON, RESOURCE)

Hypothetical (template) Generalization
2. Generalize (level I)

Relation: ON_LOAN(PATRON,RESOURCE,LOAN_PERIOD!
Issue: LOAN_PERIOD.DURATION
New Iasue/Values: X (PATRON, RESOURCE, LOAN_PERIOD}
Add Relatien: ACCESS->X
Add Operator: X_ACCESS
Consumes: PATRON, RESOURCE, LOAN_PERIOD
Produces: X (PATRON, RESOURCE, LOAN PERIOD)

Figure 11. Hypothetical and Available Generalization.

51

regarded as good.

Finally, the arbitrator is satisfied with this resolution. The integrated library will sell
resources and loan resources for periods of 14 and 180 days. In the final step, an integrated per-
spective must be produced and then applied to the planner. This is a non-trivial step which
involves reasoning about the given designs to properly transform the goals. This is described in

chapter V.

t.4. Methodology Summary

Above, a methodology for distributed negotiated design was demonstrated. In doing so, the
type and location of automated support provide by Oz was shown. The description of the actual

algorithms is put off until the following three chapters. Now the bencfits of such a negotiation-

D<= =0 X
~30JdO0o<O—TO0D

L.Cost
L.Risk

LFUNCTION [
P.FUNCTION

L.SOLD

P.SOLD

B Grad: 0 days, {ll Grad: 0, days. [] Grad: 97 days. [l Grad. 14 days.
Faculty: O days. Faculty 57 days. Faculty: ¢ days. Faculty. 1680 days

T Figure 12. Issue Weighting after Compensation.

based methodology are presented.

2. Evaluation

The MPD methodology is based on the six basic assumptions summarized in figure 13. The
following retorical evaluation presents two research perspectives which support these assump-
tions and the benefits which they derive. Only recently has sofiware cngineering research explic-
itly advocated negotiated design; however, even moderate positions implicitly support negotiated
design. Conversely, decision science explicitly provides both methodology and aulomated means
for negotiations; however, their arguments for negotiations also carry over to design. Next, these

perspectives are considered in tum.

2.1. A Software Engineering Perspective

Sofiware engineering methodologies are largely concerned with increased productivity and
quality. Solutions are typically based on divide and conquer. The design process is decomposcd

into smaller, independent problems, each of which is solved by a designer, and then composed to

» Stakeholder preferences are necessary for effective automated negotiation.

« Preference hierarchies are an effective means of representing stakeholdcr preferences.
» Independent design aids individual preference understanding.

« Independent design allows for maximal parallelism.

« Design conflicts are characterized as stakeholder preference conflicts.

« Preference conflicts are resolved by choosing mutually acceptablc compromised and/or substi-
tuted values.

Figure 13. Methodology Assumptions.

33

form the final solution. Methodologies vary on methods and orderings of their decomposition
and compositions. However, all are intended to (1) increase parallel design activity, (2) simplify
individual design. Additionally, some may include mechanisms which provide for: (3) design

rationale, and (4) design reuse. Negotiated design provides similar benefits.

2.1.1. Parallelism

Functional decomposition and object-oriented design are examples of divide and conquer
methodologies. First, abstract module interfaces are fixed. Next, designers, in parallcl, fulfill the
interface specifications. Finally, the modules are combined to form the finished software. Such
methodologies gain from the rigid interfaces which allow parallel development and compartmen-

talizes simple errors and their fixes to a subset of modules.

Negotiated design has the benefit of parallel design. The MPD methodology calls for inde-
pendent design based soley on individual perspectives. Clearly, this allows for maximal paral-
lelism between designers. However, in some cases, designers wasle their effort constructing

design components which must be removed during integration.

There is a tradeoff between the a priori fixed interfaces of modular decomposition methods
and the laissez faire style of independent design. Fixed interfaces guarantee simple module inte-
gration at the expense of design flexibility. Adaptable perspectives allow maximal design flexibil-
ity at the expense of module integration complexity. I choose the latter not only for its flexibility,

but also for its superior rationale modeling (§2.1.3) and decision support (§2.2).

54
2.1.2. Simplicity

Simplicity is another argument for compositional methodologies. Large problems are
decomposed into smaller problems, each of which is simpler to solve. Experts take advantage of
composition. They are observed retrieving abstract templates, instantiating, composing and modi-
fying them to solve problems. Similarly, negotiated design can benefit from composition.

Designs can be created via composition of simpler components.

Additionally, negotiated design need only model an individual’s perspective. A more tradi-
tional method is not so simpie. It requires that all individual perspectives be combined into a sin-
gle requirements model. Subsequently, these global requirements are decomposed into moduics
for design. In contrast, negotiated design explicitly represents multiple requirements perspectives.
Hence, it supporis two complementary forms of abstraction: (1) module abstraction, and (2)
requirements abstraction. Negotiated design methodologies benefit from the simplicity of com-

positional design as well as simplified requirements and assisted requirements integration.
2.1.3, Rationale Record

Design rationale provides the ability to answer “how" a design came (o exist. Comprehen-
sive design rationale answers “why" a design exists as it does. Rationale may simply contain the
sequence of operators applied to arrive at a design. More detailed rationale lists allematives con-
sidered for each design decision along with criteria used to choose among them. The more com-

prehensive the rationale, the simpler the task of answering “how™ and “why” questions.

Often, designs are the result of compromises or other negotiation mcthods. The methods
take multipie, conflicting, perspectives and derive a solution. Oficn, such solutions make no

sense on their own, but must be understood in the context of the negotiations. For cxample, many

35

cars only have a driver’s side air bag. By itself, this makes no sense considering the goal of pas-
senger safety and the associated components of ail passenger seatbelts. However, it is casily
explained as a compromise between safety and costs; all passenger air bags are deemed 100
expensive for their perceived benefit. Hence, only a methodology which represents these multiple
perspectives and their negotiations will be able to adequately explain such negotiated design com-

ponents.

2.1.4. Design Reuse

Design reuse provides the ability to use past efforts 1o solve current problems. In its sim-
plest form, problems are characterized according to parameters. Solutions are derived or retricved
according to their parameters. More sophisticated reuse mixes new goals with past problems.
Where applicable, old derivations are used directly or are modified, otherwise ncw derivations arc
constructed. Generally, this paradigm is based on: (1) capture and siorage of design abstractions

and (2) retrieval and modification of such abstractions.

As a design paradigm, reuse has been productive in well understood domains. For example,
primitive programming tasks such as sorting and searching[70]. However, this paradigm must bc
extended for exploratory design. In exploratory design, overlap between design problems is
slight. Also, design goals change as solution alternatives become apparcnt. Hence, even where
significant design abstractions can be captured a priori, the bulk of the exploratory design lies in
modification. For tasks such as library design, this means understanding policies, their derivation
via negotiation, and their effects on altenative designs. Therefore, reusc will become more viable
as rationale records become more complete, thereby enabling accurate matching and modification

of previous abstractions 10 new situations.

56

The integration mechanism used in negotiated design provides a possibility for an gxpand-
ing the role of reuse. Since negotiated design provides the rationale 0 understand previous
designs, old designs may be modified 10 achieve new goals. Additionally, the integration mecha-
nism may provide a way to combine vastly differing designs (e.g., different domains) to achieve a
new goals[74]. This is because in both design and reuse, one must: (1) analyze current design(s),
(2) characterize designs in terms of their goat achievement, (3) derive a conflict free goal set, and
(4) derive a satisfying design. The integration mechanism of negotiated design provides a single

vehicle for both design via integration and reuse via integration.

2.2, A Decision Science Perspective

Decision science is concerned with describing and perfecting decisionmaking methodolo-
gies. From a decision science perspective, negotiated design has two important decision charac-
teristics: (1) preference maximization, and (2) technological closurc. From these characteristics,
one can redetive the maxim: “two heads are better than one™. That is, multiple perspectives can
produce better decisions than single perspectives. Unfortunately, the reverse can also be true due
to social influences. However, if one assumes accurate, honest, cooperative stakcholders, one can
apply the following decision theoretic arguments to show that MPD can producc better designs

than those from a single perspective.

2.2.1. Preference Maximization

MPD is based on the basic assumption of decision theory: individuals that engage in a ratio-
nal decision method will produce better results than individuals who do not. A rational decision
method for an individual consists of enumerating goals and preferences, identifying alternatives,

evaluating altematives, and choosing the best altemative. Similarly, groups benefit from the

57

enumeration of multiple goals and preferences followed by assisied trade-off analysis.

Groups benefit from the independent description of individual goals prior to negotiation,
Simply enumerating individual preferences identifys the decision context and prevents compro-
mised goals before search. That is, adding a perspective can increase the decision context, thereby
introducing new alternatives. For example, given the current goal of a two week loan period, one
can expand the decision context by introducing a six month loan goal. Even though the two goals
may conflict, hence apparently reducing the mutual feasible allernatives to nil, the decision con-
text contains more alternatives. In such a situation, it is the task of negotiation to determine if the
two goals do indeed conflict. That is, do the stakeholders really hold mutually exclusive goal, or
will they accept both goal states. If the latter is tsue, then the group bencfited from the indepen-
dent goal descriptions. New alternatives enrich the decision context by providing more choice and
allowing decisionmakers to reconsider their preferences. Once all goais and preferences are iden-

tified, a decision procedure can identify the best altemative.

Unfortunately, preference enumeration followed by maximization is gencrally not part of
design. Few researchers consider a single set of preferences, hardly any consider multiple con-
flicting preferences. Such preferences can help explain a design and expand the aiternatives. They

can also produce novel aliematives.

2.2.2. Technological Closure

Innovative designs can be derived using the negotiated design paradigm. First, individuals
derive designs from their own goals and preferences. During integration, the group attempts to
reconcile conflicting components. Rather than simply choosing one component over another in

“tit-for-tat”” fashion, individuals demand that their components be included in the final design. To

58

do so, they may be able to conditionalize the way components conflict {c.g., on a contingency
basis) to combine the components. In the past, this method has becen used to predict new lech-
nologies[41]. More recently, it has been suggested as a paradigm for introducing novel altema-
tives through “dissclution”[92]. This method can assist resolution gencration as part of negoti-

ated design.

Design novelty is derived from two sources: individuals and the integration of their designs.
First, multiple individuals seeking similar solutions increase the chance that someone will gener-
ate a novel design. Second, individually different design fragments can be joined in an integrated
design by conditicnalizing conflict occurrence[41,92]. Rather than choose one conflicting design
fragment over another, rather than compromise an individual's satisfaction, onc can derve a
novel design by combining “conflicting” design fragments. Through ncgotiation, “conflicting”

design fragments can be combined to form novel designs.

As an example, consider figure 14. It illustrates perspectives of the patron and librarian. The
two axies each represent their preferences over the loan period: preferred loan periods are toward
the top right comer. The shaded line through the plane represents both stakcholders choosing the
same loan period; hence, it describes obviously feasible altematives. The remaining unshaded
region is infeasible, since constraints (preconditions) of the loan operator prevent different loan
periods from simultaneously being part of a design. The compromise in part (a) illustrates the
patron appeasing the librarian to resolve the conflict. Alternatively, the librarian could have
appeased the patron by redefining his perspective: by reordering his preferences, the librarian
could make six months become the preferred feasible altermative. Best of all, the stakeholders can
create a novel design by conditionalizing their constraints. By predicating how *‘conflicting” enti-

ties are to be part of a design, conflicts can be dissolved. In the casc of two conflicting loan

59

period, one can predicate their use on the type of patron: faculty patrons receive a longer loan
period while student patrons receive shorter a loan period. Part (b) of figure 14 illustrates such a

dissolution. It represents the integration of the two loan periods.

Multiple preferences aid forming a “technological closure”[41]. Each perspective identifics
related criteria associated with an abstract, but apparently infeasible, objcct. Often, it is a matter
of technological ingenuity before the infeasible object becomes feasible. Jantsch used this obser-
vation for technological predication. For example, given the introduction of the jet cngine during
WWII and the existence of airplanes, it became of matter of ingenuity before the flying V2 bomb
became feasible. This same method can be used in a generative fashion. Using operator descrip-
tions, one can analyze constraints and predicates to suggest possible fixes lo allow infeasible

alternatives to become feasible. Hence, multiple conflicting perspectives can induce innovative

designs.

4 A
305 s
.
o

Comrtn comoroTm'sa Torerian ® dlesoiution
‘ 9 > He———
m E- 1 patron 885

Loan Period Loan Period

(a) (®)

In part (a), the patron compromises the preferred six month loan period by accepting the two
week period. In part (b}, stakeholders dissolve their conflict by conditionalizing consiraints,
thereby allowing both six month and two week loan periods in the design.

Figure 14. Novelty Induction from Selfish Design.

60

In negotiated design, individuals seek designs before compromising their perspectives. In
contrast, a decomposition methodology compromises perspectives before design construction
when perspectives appear to conflict. MPD ignores such a priori pruning and seeks designs in
any case. This strategy wins over the preventive strategy when: (1) the a priori knowledge is
wrong (e.g., nonconflicting designs can be constructed), or (2) the a priori knowledge becomes
wrong (e.g., a novel design is invented which satisfies the “conflicting” perspectives), or (3)
stakeholders change their preferences during design, thereby reaching a design which may have
been pruned under a preventive strategy[40,81,92). Moreover, individuals who construct their
designs may raise their commitments, thereby becoming less agreeable 1o compromise. However,

this may increase the likelihood that they will seek a novel design which satisfies all perspectives.

ol

CHAPTER HI

MODELING INDIVIDUAL PERSPECTIVES

Stakeholder goals and preferences must be formally represented before an automated sys-
tem can reason about them. In the Oz representations, a goal is first represented as a choice of an
item from a domain, while a preference is an ordering of items within a domain. Hence, (o repre-
sent goals and preferences, one must represent domains of items. In Oz, items are operators,
objects, and relations used to represent the area of concern. A set of such domains uscd to charac-

terize an area of study is called a domain model.

To represent individual perspectives, one: (1) creates a generic perspective, or domain
model, (2) creates copies of the domain model for each individual, and (3) specializes each copy
by attaching each individual’s goals and preferences. Afier individual designs are constructed io
satisfy the perspectives, the designs are integrated. Through the design integration process, the

group requirements are created. Finally, a group design is constructed.

Figure 15 illustrates this Multiple Perspective Design process. The figure shows a screen
image of the Oz design tool. Rectangles containing the five geometric shapes depict domain mod-
els. The intemal shapes represent, from left to right, initial conditions, operators, objects, rela-
tions, and goals. Circles linked below a domain model depict a design created from the model.
Designs which link into a trapezoid depict an integration; the trapezoid conlains negotiation infor-
mation. The small geometric shapes above domain models, designs, and integrations depict Oz

development operations (e.g., CreateModel CreateDesign); they record the order and

application operations used in the development process.

Figure 16 summarizes the process of perspective acquisition. In this process, designers for-
mally represent the goals and preferences of stakeholders. The desired states arc represented as
goal states which the automated planner understands. Model preferences arc used to guide the
planner when choices are available (e.g., among altenative operators). Finally, Oz allows the
specification of altemative resolution methods. In this chapter, two such methods are described:
interactive resolution and a priori resolution. However, Oz currently only supports interactive
resolution. (There is a Lisp function interface for programmers who wish 10 apply an altemative

method.)

Stakeholder perspectives contain the input required by Oz's automated planner to create
designs. Additionally, these domain models contain the basis for Oz's resolution generation
method. Hence, each perspective must have the same initial conditions, operators, objects, and
relations; furthermore, these items must be organized in the same hierarchies. That is, the special-
ized domain models must be the same except for the preferences. In the face of conflict, the indi-
vidual preferences over the operators, objects, and relations are used (o synthesize resolution

altemnatives.
In sum, Oz’s perspectives represent:
« a domain model of operators, objects, and relations
= goal states
« (optional) preferences of alternative goal states

« preferences of domain model components

63

a3y
1963y
3143

peo
BhEE

U0 | 30eaaju]

Ll A4S LyBpuup
Inode uaasag

€3 g

< OO0

11¢d 19
.VOODM_ == {00

o

ﬁﬂawmmq:ﬂﬁreﬁﬁ

Figure 15. Oz Screen Depiction of Group Design.

(1) Describe Goal States
Describe desired states using def_establish and undesirable states using def_avoid. Optionally,
order or scale these goals indicating the preferred order of relaxation in case of conflict.

(3) Describe Modsl Preferences
Modify the domain model to reflect individual preferences concerning operators, objects, and relations
The functions, def_mod_XX, where XX is a operator, object, or relation, modify such preferences.

(4) Describe Resolution Method
Optionally, define the resolution mathod using def_resolution_methed. Of the two described meth
ods, interactive and a priori, only the interactive is implemented.

Figure 16. Perspective Acquisition in Oz.
« (optional) resolution method

Next, Oz perspective representations are described.

1. Model Construction

Model construction consists of representing domain operators, objects, and relations. Per-
spective acquisition consists of specializing the domain model by attaching goals and preferences.

This section presents model construction, while the following presents perspective acquisition.

Oz model construction is greatly influenced by the the automated designer. Oz uses the
abstract planner developed by Anderson and Farley, called OPIE[2). OPIE automatically creates
a plan (ak.a. design) from a domain model and goals. The next subsection summarizes research

by Anderson and Farley on the operator hierarchy construction.

1.1. Domain Operators

OPIE domain operators are consistent with STRIPS-style planners(64). Each operator con-
1ains three lists of add, delete, and persistence relations. The term persistence is used for relation
instances which must exist before, during, and after operator application. A fourth list, the object
list, specifies the types of objects found in the other lists. Figure 16 illustrates the library borrow

operator.

65

{def_ operator "Borrow_Resource”
:description "A loanable RESOURCE is LOANED to an AGENT for LOAN_PERIQD.™
:objects ' {agentl agent2 resourcel timel time2 placel loan_periodl)
:persistences
* ({loan_period{agentl resourcel placel timel loan_periodl)}
(time_is{time2)))
:deletes ' ((possess(agent2 resourcel placel timel loan_periodl)))
:adds * ({possess(agentl resourcel placel time2 loan_periodl))
{on loan{agent2 agentl resourcel placel time2 loan periodl})}})

Figure 17. A Library Borrow Operator.

Operators are defined using the def_operator Lisp function. Specializations are auto-
matically determined by OPIE's classification algorithm. However, the objects, persistences,

deletes, and adds must be defined explicitly. The syntax for the system description is:

Syntax:

(def_operator <name>
:description <string>
:objects (<object>*})
:persistences {<relation>*)
ideletes (<relation>%)
;adds (<relation>*))

1.2. Operator Hierarchy Construction

OPIE's operators are stored in a taxonomic abstraction hierarchy. Primitive operators form
the leaves, while abstract operators are formed representing common addcd, dcleted, or persistent
relations. Figure 18 illustrates the abstraction of several library operators. Such abstraction is the

result of pairwise comparison and is automated(2].

From individual operator definitions, an operator generalization hierarchy is formed. It is
based on the similarity of operators according to their lists of relations and objects. Opcrators may
differ if they have: (1) identical relations names but use different objects, (2) identical objects but

within different relations, (2) or have an overiap of relations and objccts.

66

posssss(egent! resoros)

- e
et i o>
Sloan_parodipsiron] eeaurcst
/
S onJomn{egent? resource _I]Wmh\.@
ageck! rescurve ko pariod)>
< possssslaguTt] rescurce [snioeniagentt reoizcs toan_peried)>
§anu:ﬂm ||wmu@
[renewediagent1 rescurce loan_period)>

Figure 18. Operators which Produce ox_roar.

Figure 18 illustrates operators associated with library loaning. The three operators below
GET_LoAN all have on_LoAN in their add lists. They are also grouped by common relations on
their deletes and persistences lists.

The notation of figure 18 may be intuitive. The relations on the right of an operator are

added after operator application; relations on the left are deleted. Persistence relations are listed

below an operator; they must exist before, during, and after an operator application.

Figure 19 presents the operator generalization algorithm. It creates a hierarchy of related

operators. However, if operators do not share relations, they will be placed in a separate

67

hierarchy. Hence, Oz’s domain model contains sets of operator hierarchics. See[2] for more

details.

1.3. Object Hierarchy Construction

The object hierarchy simply classifies objects into categories. For example, a RESOURCE has

specializations BOOK, PERIODICAL, and SPECIAL. Similarly, GRAD, UNGRAD, and FACULTY are spe-

cializations of paTroN. Figure 20 illustrates how such categories are described.

For each operator NEW in the input set:
Let set S be those leal operators of the hierarchy which

share at least one add relation with NEW,
INSERT(NEW,S).

Define INSERT{NEW,S)
For each operator OP in S, GENERALIZE(NEW,OP).

Define GENERALIZE{NEW,OP)
¥ NEW is a specialization of OP,
Then LINK_PARENT_CHILD(OP,NEW).
Elseli NEW is a generalization of OP,
Then LINK_PARENT_CHILD(NEW,OP) and
INSERT(NEW, parent of OP).
Elself NEW and OP share relations.
Then create TMP with their common relations,
If TMP maiches existing abstract cperator AB,
Then LINK_PARENT_CHILD(AB,NEW) and discard TMP.
Else LINK_PARENT_CHILD{TMP,NEW),
LINK_PARENT_CHILD(TMP,OP), and
INSERT(TMP,parants of OP).
Else {New and OP have no shared relations].

Figure 19. The Operator Generalization Algorithm.

{def_object "resource”
:description "Resource types.”
:specializes ' ("book" "periodical" “special™})

(def_object "patron”
:description "Patron types."”
:specializes ' ("grad" "ungrad" "faculty"))

Figure 20. The Description of Some Library Object Hierarchies.

68

Relationships between objects can be described via the object hierarchy. This hierarchy is
used to: (1) allow the description of abstract objects, and (2) describe altemative objecls for con-
flict resolution. When an abstract object is part of a goal, it, or any specialization of it, may be
established in the design. In this way, goals containing abstract objccts allow multiple acceptable

concrete designs.

The object hierarchy is also used during conflict resolution. If a goal cannot be established,
generalization attempis to achieve a related goal. One way to do this is to use the same relation,
but consider alternative yet similar objects. The object hierarchy provides this information.
Objects closer in the hierarchy are consider more similar than those farther apart. If a goal canriot
be established, generalization initially considers siblings objects. In this fails, more remotc
objects are considered. This is one way in which substitute goals are cstablished in the face of
goal failure. Hence, the object hierarchy not only describes how relations arc abstracied, but how

generalization is sought.

Using the hierarchies as a basis of similarity, and hence substitution, is a common theme in
the Oz approach. Oz uses the same approach to describe relations and allow for their substitution.
Additionally, one could apply the same approach to operators. If operators themselves were
allowed as goals (e.g., the goal is use Borrow) then one could use the operator hicrarchy 1o sug-
gest altemnative operators both during individual design and during integration. Instead, Oz only
allows the statement of goal states, thereby indirectly specifying operators. Hence, Oz only nego-

tiates over goals, thereby indirectly affecting the choice of operators.

Objects are defined using the def _object Lisp function, Specializations are defincd

explicily with the : specializes keyword. The syntax for sysiem descriplion is:

6oy

Syntax:

{def_object <name>
:description <string>
:specializes (<object>*))

1.4. Relation Hierarchy Construction

Relationships between relations can also be described via a hierarchy. The relation hierar-
chy is used to: (1) allow the description of abstract relations, and (2) describe alternative relations
for conflict resolution. When an abstract goal is part of a perspective, i, or any specialization of
it, may be established in the design. Abstract goals allow more operalors (o be applicable during

design.

The relation hierarchy is also used during conflict resolution. If a goal cannot be established,
generalization attempts attempis to established a sibling relation. In this fails, parent relations and
their siblings are sought. In this way, substitute goals are established in the face of goal failure.
Hence, like the object hierarchy, the relation hierarchy not only describes how relations arc

abstracted, but how generalization is sought.

Figure 21 illustrates two ways in which a relation hierarchy may be specificd. In cither case,
the relation name and its objects are specified. In the case of possEss, ils specializations are
explicitly described. In the case of Loan_peRIOD, all relations which can bc made from the spe-
cialization of the objects in the object list {as defined by the object hierarchy) are formed into a
hierarchy whose root is LOAN_PERIOD (AGENT RESOURCE PLACE TIME LOAN_PERIOD). Figure 22

illustrates a portion of the LoaN_PERIOD relation hierarchy.

The significance of an explicit resolution description will become apparent during resolu-

tion generation. However, the choice of explicit, as opposed to implicit, does not effect the design

70

(def_ relation "possess"
:description "Agent physically has resource.”
:objects ' ("agent" "resource" "place" “time" "loan_period"))
:specializes ' (("possess” (library resource place time loan_period)}
("possess" (patron resource place time loan_period}))}

{def_relation_all “loan_period"
:description "A patron can borrow rescurce for a loan pericd DURATION"
tobjects ’ ("agent" “resource"” "place" “time" "loan periocd”))

Figure 21. The Description of a Library Relation Hierarchy.

process. The relation POSSESS(LIBRARY RESOURCE PLACE TIME LOAN_PERIOD) dcfined in the
figure 21 implicitly also allows relations using the specializations of its objects. An operator
using it in a relation list can always be specialized based on the object hicrarchy. However, il
does effect resolution. Oz only uses the explicitly described relations during resolution genera-
tion. Hence, explicit relation description forms the basis of a simple resolution control mecha-
nism.

Relations are defined using the def relation and def_ relation_all Lisp func-
tions. Specializations are defined explicitly with the :specializes keyword or through the

def_relation_all function. The syntax for system description is:

Syntax:

{def_relation <name>
:description <string>
:objects (<object>*)}
:gpecializes (<relation>*))

1.5. Domain Preferences

After the hierarchies are specified, they are manually modified to contain the goals and pref-
erences of stakeholders. In annotating the hierarchies, Oz distinguishs between aitributes and
preferences. An ordering of items is a preference. For example, objects can be ordered. However,

item themselves can be annotated with attributes. Attributes are nonfunctional annotations used Lo

71

diay

Jasay

K3
peoy

uo19edaju]

Ly 3ubpuBiuug
04 uaIIIg

SJ03RJBdg
APIOINH

(PoLI3aTHEO| |e1portad A} NIy)pelsad” w.uo___

(Fo130™uen| [e13ads a.._:um.,-va.._un _.....

(perazd uco| yoeq Ayproe)jpessdio).
N

(po142d " ueo| Yo0q pelsiporiza”

vmr_ :wyzau._uo.._un pesbun)poliad”
(Potaed™ uroy |#2)Po|4ad peIB)poy _.

{porsad uko| |R1D308 peJt)p

(poliadugo| 2340824 PRIB)poIIad ..l.
(perasduco| P34n0sas A3 Ndey

{potaadTueD| F2N0SPI

{pouad™ueo| 3ol W) e 0ypo {.

{popssa”ueo| |€ f/..f/. ;

{polsad ueo| (Fraad)

Figure 22. An Oz Depiction of Library Relation Hierarchies.

72

differentiate items along multiple dimensions, or criteria. For example, operators may have dif-
ferent preferred orderings based on different attributes. An ordering based on availability may be
the inverse of that based on cost. Next, attribute definition is described. Preference definition fol-

lows.

1.5.1. Atributes

Attribute definition has two parts: name and range, and objective. They can be defined as
part of the generic model definition or as a modification of modeled operators, objects, and rela-
tions. For example, the loan period relation can be defined with an attribute in the generic modcl

as follows:

{def_object "loan_period”
:description "A pericd for which loans hold. Duration specifies length.")
:attributes ‘ (;;Ranges are the same for all models.

(duration :min 0 :max 365)))

Similarly, the duration attribute could have been defined as the modification of the loan period

relation during perspective acquisition as follows:

{def_mod_object "loan_period”
:description "A period for which loans hold. Duration specifies length."
:attributes ’ {;;Ranges are the same for all models.

(duration :min 0 :max 365 :objective 14})}

Notice, that during perspective acquisition an attribute preference was also specified. Generally,
there's no reason to define an attribuie in a stakeholder’s perspective unless the stakcholder has

some associated preference.

Attributes (and preferences) are defined using the def_XX and def_mod_XX Lisp func-

tions (where xx is one of operator, object, or relation). The syntax for sysiem description for

73

including attsibutes and preferences are the same as those for def_operator, def_object, and
def_relatiaon (and their def_mod's), except for the addition of the auribute clause which is

defined below.

Syntax:
rattribute (<attribute-def>*)

<attribute-def>
<obiective> :

: (<name> :min <value> :max <value> :objective <objective>)
<value> | min | max

.
S
-
B

1.5.2. Preferences

Preferences are used to create partial orders over operators, objects, and relations. An order
can be direct, as in the following description of Access relation preferences, where ON_LOAN is

preferred over OwN.

(def_mod relation access (patron, resource)
:order ' (own (patron, resource)
on_lean (patron, resource, loan_period)})

(items toward the right are preferred over items toward the left.) An altermative description of

this ordering is to attach an ordering vaiue to each relation:

{def_mod_relation access(patron,rescurce)
:order-by-value ' ((own {patron,resource) 40}
(on_loan {patren, rescurce, loan_period) 60}))

It is possible to describe such a preference since own and on_Loan are part of the same relation
hierarchy, i.e., they are children of access. In contrast, Oz does not allow the a priori description
of preferences between relations in different hierarchies. For example, assume SECURE_RECORDS
and xnow_RECORDS are in different relation hierarchies. In Oz, one can not state, a priori, that one

prefers secured records over known records (if the two conflict). However, assuming plans which

74

satisfy the two relations do conflict, then during conflict resolution one can choosc which goal

one wishes 1o achieve.

Preferences can be implied, as in the following description of loan period durations, where

longer durations are preferred over shorter durations.

{def_mod_object "loan_period"”
:description "A pericd for which loans hold. Puration specifies length."
;attributes * (;;Ranges are the same for all models.

{duration :min O :max 365 :cbjective max)})

In Oz, a preference is defined by an order among specializations of an item, or as an objective of
an attribute. By using the : order keyword of instead of the : specializes keyword, special-
ized items (operators, objects, and relations) are associated with a preference of usc. Altemna-
tively, one can use attributes 10 associate multiple orderings of items. An attributc, like duration
above, can have a specific preferred value (.c.g., 14) or a preferred direction of satisfaction (e.g.,
max or min). Associating maximize with loan period duration describes the preference for the
largest values possible within the range of values. These are the only ways Oz currently under-

stands preferences.

An direct expansion of Oz’s description of preferences would be (o allow the statement of
abstract relations using maximize or minimize. For example, given the following description of

resource objects and their preferred order of use, one could state a goal differently.

(def_object “"resource"
;:description "Resource types."
:order * ("special” "book" "periodical})

Instead of ON_LOAN {PATRON, RESOURCE, LOAN_PERIOD), onc could stalc

ON_LOAN (PATRON, max, LOAN_PERIOD) , thereby implying the desire to maximize the preference for

75

a type of resource loan. However, while Oz does not understand goals stated in this fashion,

ordering resource objects has the same effect during resolution.

1.5.3. Preference Consistency in Hierarchies

The interaction of the three hierarchies can be seen in the above cxample. A preference in
one hierarchy often implies an ordering in another. For example, the above resource ordering

implies the following relation hierarchy ordering:

(def_relation "on_loan”
:objects ' ("patron", "resource", "loan_period"}
:order ' ({"on_loan" (patron, special,loan_period}}
{("on_loan" (patron, book, loan_period)}
{("on_loan" (patron,periodical, loan_pericd)))}

Similarly, relation orderings can imply operator orderings. Oz does not explicitly check or resolve
inconsistencies between hierarchy orderings. Instead, as described in chapter V, it applies relation

preferences and object preferences; it currently does not consider operator preferences.

1.6. Functional Goals

Functional goals describe the desired result of the design process. The planning system will
attempt to find a plan which achieves the desired goals. Optionally, onc can use rclation prefer-
ences to describe alternative ways to “back-off” the desired goal state. (As noted in scction 1.5.2,

such a priori preferences can only be specified within a relation hierarchy.)

Functional goals are defined using the def establish Lisp function. The syntax for

system description is:

76

Syniax:
(def_establish (<relat ion>%*})

Example :

(def_establish
' {{on_loan{libraryl patronl resourcel placel time2 loan_periodl)}})

Notice, in the above example, objects have numbers appended to their names. These numbers
indicate the desire to achieve the oN_LoaN relation with specific instantiations of objects. For

example, PATRON! refers to a specific patron, not the abstract class of patrons.

In addition to specifying the desire 10 achieve particular goal states, one can specify the
desire to avoid particular states. Such states are specified similar to achievement goals. Thesc
avoidance goals are typically used in conjunction with achievement goals. They indicate to the
planner that the goal states should be achieved, but without the achiecvement of the avoidance

states.

Similar to achievement goals, avoidance goals are defined using the def_avoid Lisp

function. The syntax for system description is:

Syntax:
(def_avoid (<relation>*})

1.7. Preference Tradeoffs

Preferences are used during design and integration to guide decisions. During design, alter-
native component specializations may be available. Preferences are used Lo choose among them.
Similarly, during design some functional goals may block the achicvement of others. A priori
functional goal ordering can be used to choose among them. If all preferences do not indicate the

same altemative (incompatible preferences), one could choose at random, have a human make the

77

choice, or apply a predefined procedure to make such choices. One can apply this approach 10
both design and integration. However, Oz only provides suppon for human intervention via an
interactive resolution choice aid. To contrast this with a more conventional approach, a predefined

decision procedure using utility analysis is presented.
1.7.1. Interactive

Preference tradeoffs can be acquired during conflict resolution. They describe the relation-
ship between preferences. For example, cost preferences may have a higher priority than aesthetic
preferences. Rather than specify tradeoffs a priori, they can be acquired when they are needed,
i.e., when a confiict arises. For a particular design, two preferences may never be in conflict.
Hence, specification of their tradeoffs may be wasted effort; similarly, specification of the prefer-
ences themselves {the ordering) may be wasted, However, given a conflict, both preferences and
their tradeoffs can be used to choose a resolution. Oz’s interactive resolution method prompis for
tradeoffs only during conflict resolution. And, while Oz allows the specification of preferences

(i.e., the ordering of components), these too can be put off until conflict resolution.

When there are altematives, and preferences are incomplete or incompatible, an interactive
aid is used to derive tradeoffs. Oz implements Zeleny's Interactive Decision Evolution Aid

{IDEA)[92]). Figure 23 illustrates how IDEA graphically represents nondominated altematives
using bar diagrams." On the left is a normalized scale. A set of bars represents an altemative. The
shading of a single bar represents the achievement that an alternative provides 1o a preference.

Other possible degrees of achievement for a preference are indicated with hashed marks. A group

"While Zeleny outlined IDEA, its details and implementation remain unexplored.

78

of bars represents all the preferences of an alternative. The range of a bar represents the range of a
preference. (For example, in the first preference, zero percent is not feasible, while in the second
preference 100 percent is not feasible.) The higher all values are, the betier the alternative. The
ideal is achieved when all preferences are at the top of their range. The anti-ideal is achieved

when all preference are at the bottom on their range.

Initially, all preference achievements are at zero (the anti-ideal). The decision maker moves
toward the ideal by increasing the weight on particular preferences. Telling IDEA 1o increasc
achievement of the first preference causes the system to search through the altcrnatives and dis-
play an alternative with higher achievement of the first preference. By manipulating the prefer-
ence view of the altemative set, the user can consider preferences of various alternatives. Interac-
tions surface when increasing a preference’s achievement decreases another. For example, mov-
ing from (b) to (c) in figure 24 shows the interaction between the first and second preference.
Such interaction indicates that there does not exist an altemnative which achicves both preferences

at their highest level. Assuming a complete and accurate resolution generation procedure, this

4 pr— p— — o =
1T —_—] --
4 U T — a =

- -l }

i § — L L S5 I 51

(=) ®) «© (d)

Figure 23. Using IDEA for Preference Weight Exploration.

79

indicates that simultaneous achievement of all preferences is not feasible. Hence, the user must

decide which combination of preference achievement they want.
The Oz implementation of IDEA displays:
(1) The relation containing the conflict.
(2) The conflicts within the relation.
(3) The initial preferences for the conflict.
(4) Derived resolutions containing their relations and preferences.
Additionally, other information concerning the conflict can be had through queries to the system.

Figure 24 shows an screen dump of Oz’s interactive aid. The Oz implemcntation differs

from Zeleny's IDEA in that:

(1) Altematives are not created through interactive increases in preferences, instcad all alier-

natives (for a given generation method) are displayed at once.

(2) Aliemative values for preferences are not hash marked on each prefercnce bar. Insiead,

different preference values can be seen by viewing the displayed altematives.
(3) Multiple preference perspectives are displayed. Additionally, their average is displayed

(preceded by the “&" symbol).

Also, Oz displays the averaged preferences for: (1) the attributes of the relation (e.g., sON_LOAN),
and (2) the preferences over the relation itself (e.g., psol_Loan). When there are no preferences in

these two cases, the bar for that attribute is shaded at 100 percent (as shown in the figure).

When the decision maker has reached a satisfactory weighting, the associated allernative is

chosen. One can consider this process in terms of utility analysis. Each preference can be

80

uo]39R4au]

LY 48 IUB YL
IN0AL] UBBSIG

[P0y pumaie | anag)

I9uI04

B 4EsyUn
Paxuyun B LUSIH
saunsol] U S} LYBIH
LS IEELETY U T R T

SUA | AN OSAY Moy
FUOLIN|OSIY NI
I8 jU0IDWD]

UO4 N 0SS i]
uoj|Iesustuny
J3430uY PPY
H y23%d
yaqe,

spusnnuoy ubisag 3911Juon jeon)

[{powmed e | porsadTuRo) [aun Je0e|d

P2t

13
o
i
]

jwsuamsac
SAE S BaE

192un0ges jucned [A1guql|)uBo| uo

Ty]

Figure 24. An Oz Depiction of IDEA.

81

associated with the numerical value of its percent satisfaction (e.g., 50 for 50 percent). One
approach is to maximize the summation of all preferences. However, some prefcrence may be
more important than others. To indicate this, one can multiply each preference’s numeric value by
a weight between zero and one; preferences of less importance have less weight. Using such a
weighting scheme, the “best” alternative can be recognized by its high score. One can interpret
the interactive procedure in this light. In choosing an alternative, the decision maker has implic-
itly settled on a weighting of preferences; those preferences with less shading receive less weight.
The following section describes how such a weighting scheme may be defined a priori. How-
ever, I believe the interactive method is superior since: (1) only necessary preferences arc

acquired, and (2) preferences are acquired in the contexi of the conflict.

1.7.2. A Priori

One can apply an additive utility mode! to choose a resolution. Firsl, one nceds to specify
component preferences. Next, one needs to specify tradeoffs between those preferences. When a
conflict occurs, one can choose a resolution by picking the resolution whose summed weighted

preferences have the highest value. (In the case of ties, one is chosen at random.)

Here, it is assumed that preferences have been specified as described in the previous sec-

tions. Now, one needs to describe: (1) individual tradeoffs, and (2) perspective tradeof[s.

To describe individual tradeoffs, one needs to divide all preferences into subsets which can
be simultaneous involved in a conflict. For example, a model may contain the attributes cost and
risk throughout the model. Then one can globally specify the tradeoff between cost and risk, e.g.,
utility = 0.8 * cost + 0.2 * risk. The same can apply to component preferences. For cxample,

assume patron specializations and resource specializations are ordered. Further, assume they both

B2

can be involved in a conflict. Then trade-offs need to specified between patron specializations and

resource specializations.

For example, consider the following two (simplistic) resolutions of a loan period conflict:

Resolution-1:
on_loan(graduate, book, loan_periecd. duration=14}

Resolution-2:
on_lean(faculty, periodical, loan_period.duration=14)

In the first resolution, graduates receive books, while in the second faculty receive periodicals.
Assume books are preferred over periodicals, while faculty are preferred over graduates. Which
resolution is better? If a trade-off is specified between resources and patrons, the two categories,
then a resolution can be picked automatically. For example, if the tradeoff is defined as: utility =
0.9 * patron + 0.1 resource, then the second resolution would be picked. Specifying all such

tradeoffs for a large hierarchy is time consuming, tedious work.

To describe perspective tradeoffs, one can simply use global weights. For example, utility =
0.6 * perspective-1 + 0.4 * perspective-2. Alternatively, one can specify the tradcoff between
every preference in the perspectives. In any case, the general form of the utility procedure to

choose resolutions is:

Max 3P _, I P+ Lo * Vi Where

m=1 " nm
p is the number of perspectives,
i is the number of issues (preference domains),
P“'m is the perspective weight associated with an issue,

Inm is the individual weight associated with an issue,
V. is the value of a component.

Depending on how much one relies on global weights, specifying all numbers for this procedure

can be taxing. Instead, Oz simply acquires needed weights during resolution search.

83

1.8. An Example

This chapter closes by presenting patron preferences used to resolve a simple loan period

conflict.

{(in-perspective ‘Patron)

{def_establish
{on_loan (patronl, resourcel, loan_periodl)}
{knows_records (patronl, patronl, resourcel})}

{def_mod object loan_period
rattributes ! ({(duration :min 0 :max 365 :goal max))}

(def_mod_relation on_loan(patron,resource,loan_pericd)
rorder ' {(on_locan(patron,special,loan_period))
{on_loan{patron,book, loan_period))
(on_loan(patron,pericdical, loan_periocd))}
:objective ‘min)

This patron perspective states that the patron: (1) wants to achieve patron loaning and patron
knowledge of individual borrowing records, (2) prefers longer loan period durations, and (3) if

necessary, prefers special resources over books, and prefers books over periodicals.

2. Summary

In sum, Oz perspectives represent:
« a domain model of operators, objects, and relations
* goal states
« (optional) preferences of alternative goal states
« preferences of domain model components

+ (optional) resolution method

B4

Using such perspectives, the Oz planner can automatically creaie designs and the resolution

methods can automatically generate resolutions.

85

CHAPTER 1V

AUTOMATED DESIGN

The purpose of design is to show that, given the operator set, it is possible to derive a design
which achieves a goal. For us, design is a sufficiency consideration. Is the current domain model
sufficient to satisfy the goals of each stakeholder's perspectives? If the answer is yes, then is the
current domain model sufficient to satisfy the goals of all stakeholder’s perspectives simultanc-
ously? The integration process determines this by checking for design interference. If there is
interference, Oz first seeks altemative (sub)designs via replanning. If the perspectives inherently

lead 1o conflicting designs, Oz aids the negotiation of a group perspective frce of conflict.

This chapter presents Anderson and Farley's automated planner. Since the design process
itself is not the main focus, this presentation is brief. First, the design process is presented by
way of an illustrative example. Next, incorporation links are described. This part of this design

record is required by the automated conflict detection method (described in chapter V).

1. A Perspective

Below is a simple perspective of a library patron.

{in-perspective 'Patron)

(def_establish
* (renewed (agentl rescurcel loan_periodl})}

The patron has the goal of renewing a resource. To make the example slightly more interesting,

assume that the patron has not yet borrowed any resources. (Perhaps, an analyst wants to test the

86

results of a pathological case.)

2. Initial State Description

Below is the initial state given to the planner.

{in-perspective ’'Library-Model)

{def_initial_state
' {(possess (libraryl resourcel loan_periodl})
{own (libraryl rescurcel))
(loan_period (patronl resourcel loan_periodl})))

It describes the initial state of the library system as having: (1) one resource which is possessed
and owned by the library, and (2) one patron loan period. The number appended to the object cal-

egories simply indicate that these are specific instances of those objects.

This initial state is represented in the OPIE planning system as being added by an initial
operator, called the INITIAL PRODUCER. The goal from the patron’s perspective will be repre-
sented similarly. A operator, called the FINAL CONSUMER i§ plaéed in the system; it will delele the
goal RENEWED (AGENT1 RESOURCE1 LOAN_PERIOD1}. The task of planncr is to insert and connect
operators between the initial producer and the final consumer. Such operators constitute a plan to

achieve the goal given the current state of the library.

Figure 25 illustrates the initial and final goal states. On the lefi, the INITIAL PRODUCER
operator produces the three initial relation instances. On the right is the single goal state desired
by the patron. Anderson and Farley describe how their abstract partial commitment planner,
OPIE, can efficiently produce plans from such input[2]. Their algorithm, slighily modificd, is
reproduced in figure 26. The first modification is to change the success criteria (2b). OPIE must

produce a plan containing only concrete (leaf) operators. I have modified OPIE to allow the use

87

[possssslbrry! mecwvet koen_periadl) >
!'!“m [loan_period{peiron1 reecurce! loan_period) > S renewe(agent1 rescurcet
[own{ibrary? rescurcet) >

Figure 25. The Library Design Initial Plan State.

of abstract operators, If an abstract operator achieves the required relations within a plan, it will
not be refined. This reduces conflicts over objects which stakeholders have no preference; that is,
what they consider implementation details. Additionally, I have modificd the OPIE algorithm to
take advantage of preferences when there is a choice among component specializations (2¢).
Rather than arbitrarily work on altemative subplans, the modified OPIE (will) work on the most
preferred plans first. I say will, because only modification 2b is currently implementcd. Modifica-
tion 2b was chosen because it is critical to the resolution process, while 2¢ is more of a design

concern (albeit possibility effecting resolution).

3. Partial Commitment Pianning

{1} Create a node containing the initial producer and final consumer and place it in the search queue.

(2) Select a node from the queue:
{a) il the search queue is empty, fail;
(b) if the node satisfies the success criteria, report success and return the node;
(c} choosa the node based on the preferences.

{3) Refine the node:
(a) generate a child node for each possibia refinement;
(b} complete each new node by propagating constraints.

(4) Evaluate each new node:
(a) it any constraint is violated, reject the nods;
{b) else, add the node to the search queue.

(5) Gotostep2.

Figure 26. Parial Commitment Planning in Oz’s OPIE.

B8

Anderson and Farley's abstract planner, called OPIE, searches plan states. Operators are
inserted into the plan based on the relations they add and delete. For example, figure 27 illustrates
how RENEW RESOURCE can be inserted to add the final goal instantiation. RENEW RESOURCE'S
added relations are depicted to the right; they will be deleted by the final operator
(FINAL_CONSUMER). RENEW RESOURCE’S required relations are depicted to the left; they must be
added earlier in the plan. Finally, as stated in chapter I (§3.3.2), there may be persistent relations
which must be true before, during, and after the execution of an operator. (RENEW has no persistent

relations.)

OPIE uses a simple best first search strategy augmented with heuristics to guide search. In
addition, OPIE's operator abstract hierarchy is used to reduce search complexity(2]. Abstract
operators are inserted into plans where two (or more} operators may apply; hence, a commitment
is made to a subset of operators. As planning continues, constraints may naturally climinate some
operators. Unification of an operator’s add list against delete lists determines if an operator is

applicable.

Figure 28 illustrates the hierarchy from which the RENEW and BoRROW opcrators were drawn,

OPIE automates design in the following way:

[pu-(llwl resouce! banperbdl) > ‘
mulﬁm1 Toecuros! oan_perog] > Zrowdieget reeous! M“E
[y) |

[renewed{agert! mecurce’ ioen_pedod1) >
é — % Renew I on josagent! rescurce! loan_perodi) >
possess{agenit! rescurpsi loan_perodt)

Figure 27. Insertion of the First Operator.

89

(1) The most abstract operator (RENEW) for achieving a goal (RENEWED (AGENT1 RESOURCE1

LOAN_PERIOD1)) is found.

(2) If there is a preference among the children of O, the most preferred child is chosen next,
and step 2 is repeated with the child becoming O. In this example, there are no operator

preferences.

(3) If no preference is given among the children of an operator, or if an operator has no chil-
dren, then it is selected. Hence, OPIE only specializes when necessary, otherwise leaving

designs in their abstract state.

In this same manner, the rest of the design is completed. Next, the delete (goal) relations of RENEW
become the focus of OPIE’s atiention. An operator is found (Borrow) and inserted into the plan.

When finally there are no ununified relation instances, the planner is successful.

S—)

on_joan{agent! resource! loan_periqd]}
POSSGSB(agert] eeourost) >

Get
C:Loan

YonJoan{agerti resourcei loan_perod}) 2 | [own{agent! rescurcet)
:] { possses(agent’ TesourceT) > LBUY [possess{agent] resourcet)

2 |

[onJoan{agent! Tesource? loan_periodt)
[possees{agent resourcel)>

Figure 28. Some Library Operators.

Recall

90

Design is completed when all goals are established. Figure 29 illustrates the completed
renewal plan. The two operators, BORROW and RENEW, are illustrated with their relation unifications
(depicted as shaded links). In this particutar case, the patron’s goal created a plan with only con-
crete operators. However, as shown in chapter I (§3.3.3) plans can be created which contain

abstract operators,

4. Incorporation Links

After a design is completed, it will be necessary to understand its derivation. To aid this, Oz

keep incorporation links during plan refinement. An incorporation link (—) is placed in the
design record when a goal, G, requires the establishment of an abstract component, C?, which is

then refined through a series of components (c!, c2, ... ¢ to the plan component, ¢,

Figure 29. The Completed Plan.

91

Incorporation Link (initial)

GCoCloscdos. .
FUNCTIONAL_GOAL(G) & ESTABLISHED(C®) A
ESTABLISHED(C®) w ESTABUSHED(C})/ cj PRY 0N

ESTABLISHED(c}) & ESTABLISHED(c]*') | ¢} > &*!

where 6, = 9, means that given 8. the system inferred and produced Bj .

Incorporation links allow one to trace from a plan component, c, to the functional goal, G, from
which it was derived. Without such links, the multiple inheritance of the hierarchy would make

tracing more difficult.

The above description of incorporation links allows the trace from a goal, G, through
abstract operator refinement, to a primitive operator, c. However, typically the establishment of a
goal requires multiple operators at each level of abstraction. So, goals are linked to scts of opera-

tors rather than a single operator.

Incorporation Link (final)

G-{C.})-(d.). (.}

FUNCTIONAL_GOAL(G) wr ESTABLISHED({C®...}) A
ESTABLISHED({C®...}) =& ESTABLISHED({C}) {c} e (€A

ESTABLISHED({c"...}) & ESTABLISHED({c[*!..}) | {c}..} &> {c*) ..}

where 6, 9, means that given 6, the system inferred and produced 65

At the most abstract level, a component C? is linked to a goal G if:
. Cf’ produces a relation which unifies with G, or

» €Y produces a relation which is deleted (consumed) by Cf , where C7 is linked to goal G.

92

All components at abstraction level i linked to goal G form an incorporation link set.

Incorporation links can represent function sharing. In planning for goal G, goal G, may be
opportunistically established. Even when operators C;eeCy incorporated 10 establish G, coinciden-

tally establish G,, incorporation links are formed linking the componenits to both goals.

5. A Notational Aside

This section introduces a compact notation for describing the preference hierarchics
described in the previous chapter. Combined with the notion of incorporation links, this notation

is used to expand on the relationship between the hierarchies and the automated planner.
5.1, Component Set Notation

Let C be a set of components (operators, objects, or relations) at abstraction level i, C'= (e

c;, cf}. (C’s will be issues; they will define a domains of conflict.) I'l, the hierarchies, is the set

of all C's; it defines how components may be related to each other via abstraction. Members of
C, ¢, are linked 10 their pareni(s) (c;.&c"). A parent, in turn, may be part of a another component

set, O = (C',}. Hence, one can follow links from the root to the leaves of the hicrarchies.
5.2. Basic Constraints
Component sets can be constrained. Given a component set C, let ¢, € C, then
Elimination C - {c,, c,, ..., ¢}

constrains the set by eliminating ¢, ... ¢ from C. Since the hierarchy itself remains unchanged, it

has the effect of dividing a set into a partial order: C - {c,, ¢,, ..., €} is preferred over {c,, ¢,, ...

93
¢,}. 1f members of C are numerical (ce C/c R), C may be numerically constrained:
Numeric Elimination C - {c: k<c <)
The application of a set constraints is writien:

ANy, .)
where ‘\” means ¢ - '._J_'i‘=l ¢j; ¢*J € O, the universe of sets.

Finally, component sets can be ordered arbitrarily.
Arbitrary Order C = (c,. c,, .. ¢)/ V ¢; c; € C, plc,c), where p is a lisp predicate.

In fact, Oz relies on the notations of the previous chapter to derive all orders and eliminations.

Again, this set notation is simply a means of conceptualizing preference descriptions.

Applying constraints to the component sets annotates the hierarchy I If ¢ is the set of all
constraints then, IT\¢ denotes the remainder of I1 after constraint application. Also, as an abbrevi-

ation, C\ refers the component set, C, after all constraints have been applied.

5.3. Ordering

One can use the set notation to describe orders. Let f be a function which orders the mem-

bers of a set and c, € C then:
Ordering f(S) = (Cp €t e €,)

Sets can also be pantially ordered. Let f be a function which partially orders the members of a sct

and y; € C,or ¥ =[c;, Cy ... cj] where CyG; € C, (The brackets ([]) denote an equivalence class

in a partial order.) then:

94

Partial Ordering f(S) = (y,, ¥. ... ¥,)

All orderings will be considered preference orderings. Define P as a preference function; it

derives a partial order:
P(C)=(y, <y, <. <y}
where a < b, means b is preferred or indifferent to a.

5.4. Scaling

Component sets can be mapped onto a range. Let m be an onto mapping function m(g) =

{(g,,)).
Mapping m(C) = {(¢,r,)}, wherer, e R
Define S as a scaling function which maps issues onto the range [s,ow..smgh]. c.g.

S(CP = {(c;5), (€355)s o (c,s,J} where s, € [s,ow..sm.gkl
S(CJ'.) = {(c,.0), (€.5). s (c100)} wheres; € [0..100]

For example, let C) define relations, where C9 = {owN, ON_LOAN}.

S(C%) = $%° = {(,0), ({own} 40), (foN_LoAN].60)}

05
5.5. Relation Constraints

Relation constraints are arbitrary mappings used to constrain relationships, R(g, ,.¢,,, ...,

8= (g}_' 1920 o o)ﬂ) Relations constraints are defined in the following form:

NAME(Q.J, ¢‘k) = M‘}.r ey ¢;L) where 8

where ¢'s are sets and 8is a logical formula when applied 10 ¢, results in the sets ¢ Vk ¢, 2 ?

Hence, any relation constraint can be reduced to constraint form:

NAME(9, 1, ... §,) = (ﬂ‘.l' Q,k) where 8
= (¢£,1\¢l.l"" ¢i.k\¢t,k) = wj,l' . quk)

The second set of arguments can be left off if they are the same as the first, c.g.:

NAME(Q.J, ¢£.A) = (o)u, s B where 8
= NAME(®, ;. ..., "i.k) where @
In this case, NAME expresses the constraining of ¢, rather than the relation between two sets; such

relations constrain the hierarchy IT.

5.6. Component Goals

Let’s consider the establishment of a component. A component is a operator, objcct, or rela-
tion. (Currently, Oz only allows the description of relations as goals; however, the following
holds even when objects and operators can be directly specified for achicvement.) A component

goal, cp is simply a member of a set, c; € C. There are two types of component goals, establish

and avoid:

96

Establish Component Goal

ESI‘ABUSH(CJ.) = {c,. [¢} =(ley, .. c,], cj)
Avoid Component Goal

AVOID(L‘J.) = {cl,Ej. € = {cl,'Ej, c"}\{cj}

Goal establishment is annotated (e.g., ESTABLISH(c)), as ¢, and goal avoidance (e.g.,
AVOID(c)) as C.

The intent to establish only a specific goal means that all related goal formulations are lesser
preferred: (fc,, ..., ¢], cj). In this formulation, lesser goals may still be obtained. (Replanning

after goal achievement failure is controlied by the resolution algorithms; hence, goal achievement

is never all or nothing.) AVOID relations can be represented as constrainis: C\{c !}; hence, the goal

seeking of C = {c ,} can be rewritten as avoiding of the complement: C\(C - ¢ !}

Goals are established if they are represented in the plan, i.e., IN_PLAN(c). Goals are avoided
if they are not present in the plan, i.e., = IN_PLAN(c). The following ESTABLISH and AVOID map-
pings map goals onto {D, ¢}, where & indicates the falschood of the mapping name and ¢ indi-

cates the set of components which fulfill the mapping name. IN_PLAN(¢) retums ¢, il g is

achieved in the plan using the more specific components 8

Established Goal
ESTABLISHED(CJ'.) = .
IN_PLAN(C;) v
EPAh cj‘l et Al ESTABLISHED(c}*!)
Avoided Goal '
AVOIDED(L‘;.) => ~ESTABLISHED(c))

The link between levels of abstraction (c;: © ci”) indicates the abstraction of components, (¢.g.,

cj: is specialized into ci*/). One can modify the above relations 1o requirc all establishments

97
(plans) to be at the lowest level:

Established Lowest anl
ES’I‘ABLISHED_LDWES‘T{C}) =

(WPLAN(EY ~ ~3 62 63)
3cit: ¢l o M AT ESTABLISHED_LOWEST(c} ')

k
Avoided Lowest Goal _
AVOIDED_LOWEST(C}'.) = —-mwusnso_wwm(c})

Similarly, one can require that all establishments be to some level, [:

Established Level Goal
1 ESTABLISHED(c) = .
(INPLAN(C) A i = D) v
M cj. © ci*! A 3 L ESTABLISHED(c}}!)
1_Avoided Goal _
I_AVOIDED(C;.) = -*l_ESTABLlSHED(c})

Such propositions are part of the design process and not normally associated with the domain

model.
5.7. Policies and Objectives

A preference simply indicates that desire to establish components according 10 an order; it
specifies how a goal may be partially satisfied. Let ¢' denote a goal at abstraction level i. ¢’ will be

i+l ¢ <cC,.

fully satisfied if c}” is established, where ~3 ¢! A c; <,

]

Max Established Goal
MAX_ES‘TABLISHED(C}) =

(IN_._PLAA.'(CI':) A -3 ¢ €<V |

A e A a-3 M et <ot A3 MAX_ESTABLISHED(c}"!)
Min Established Goal

MIN_ESTABLISHED(C}) =
i i+l .
(JN_PLAN(cj) A3 Cp i CFCV

3t ches ot A -3) ot <t A3 MIN_ESTABLISHED(c,)

Policies are global preferences. They describe the desired 1o maximize or minimize compo-

nents according to orders. For example, let members of P(C), v, represent costs; y; € C, or

classes of equivalent costs, ¥, = [C; s €51 - Ci.n]' The policy of minimizing costs can be

described as:

min(cosT) = (¥}, Y - ¥). where y.2 ¥, ,
fy= [cc.'l...cl.'n] thenZ y. =Xc,,

That is, smaller costs are preferred. Such policies can be specified in Oz. The above cost prefer-

ence is:

(def_mod_pperator_all "ALL_ROOTS"
:attributes ‘ ((cost :objective min}})

(def_mod_cbject_all "ALL_ROOTS"
sattributes * ({cost :objective min)})

{def_mod_relation_all "ALL_ROOTS"
rattributes ' ((cost :objective min}})

ALL_ROOTS is a reserved component name 10 indicate that the function should be applied 10 all

roots. The cost minimization object will be attached to all system components. Aficr these func-

tions are applied, one can override this global policy with invocations of def_mod_XX for spe-

cific abstractions.

99

6. Summary

In sum, the design process consists of:
= hierarchical search for operators producing required predicates
« selection of operators
« refinement of operators

Such partial commitment planning relies on the relations and constraints contained in the operator
descriptions to guide search; preferences are only applied when multiple aliematives are applica-

ble.

1(H)

CHAPTER V

INTEGRATING DESIGNS

This chapter presents the integration algorithms. First, goal conflicts are detected. Next,
their design level interference is determined. All goals with interference must be resolved before
an integrated design can be derived. To do so, the negotiation algorithms generate possible resolu-
tions from which an user interactively chooses for inclusion in the final design. Afier the user
determines the resolutions, the original goals must be transformed beforc being passed onto the

automated planner. Finally, the planner derives a design.

In this chapter the algorithms are applied to two perspectives; however, the algorithms arc
easily scaled to n perspectives. Unfortunately, Oz does not do n-way integrations. As an alterna-

tive, one can applied cascaded integration to integrate more than two perspeclives.

1. Conflict Detection

Conflict detection attempts to identify like concepts occurring in muitiple designs. Concepts
which differ will be considered conflicts. Generally, this is an instantiation of the concept recogni-
tion problem: minor variations in instantiations must be recognized as being the same concept.
Rather than tackle this problem, assumptions have been applied to narrow the problem. One can
rely on a human to derive correspondences. (Even in this case some automated support has been
supplied.) However, since human correspondence detection is error prone, Oz uses an automaled

approach. Derivation records are used to identify functionally corresponding components.

101

This section introduces the problem with the interactive detection method. Next, an auto-
mated conflict detection is presented. Finally, the more limited algorithm, actually used in Oz, is

presented.

1.1. Interactive Correspondence Identification

Previously, Oz automatically generated an initial correspondence structure and then allowed
a user to edit it. Using the assumptions that correspondences can be crcated based on identical
names and types, correspondences were crealed. Any perceived errors in this structure could then
be edited. The two assumptions were:

Names Identical Assumption
Components ¢, and ¢, will be considered for correspondence if c,.NAME

c..NAME, where ¢.NAME is a string and “=" is a string comparator.

2

Types Identical Assumption
Components ¢, and c, will be considered for correspondence il ¢,.TYPE =

C,.TYPE, where C.TYPE € (OBJECT OPERATOR RELATION].

Also, Oz allowed the user to define equivalence functions based on component attributes.

User Tags Identical Assumption
Components ¢, and ¢, will be considered for correspondence if ¢|.USER_TAG =

€,.USER_TAG, Where C.USER_TAG is a lisp value and “=" is the lisp equal func-
tion.
These three assumptions were included in the correspondence identification algorithm. (A uscr

checked the desired assumptions in a dialogue box before integration.)

Below is a description of the interactive correspondence algorithm. Notice that components

in design one will be linked 1o the first like component in design two. This is an inicnded side-

102

effect of looping. This First Component Match heuristic was a simple consideration of the overall

structure of the design.

create_eq_structure({dasign1,design2, &optional (name t) (type 1) (u_tagt}}
let components_1 = dasigni.components
let components_2 « design2.components
for componenti in components_1
for component2 in components_2

if and((if name {= componenti.name component2.name) t}, :Names are squivalent.
(i type (= componant1.type component2.type) t), ;Types are equivalent.
(if u_tag (= componenti.u_tag component2.u_tag) 1)} ;User tags are equivalent.
then add_to{component! = compenent2), eq_structure)
remove_from{componanti2,components_2) :Don't link twice.

else add_io{singles,componenti,component2)
return (eq_structure,singles)

Of course, such a simple algorithm wilt create erroneous correspondences. The algorithm below

allowed the user to edit the correspondence structure.

user_edit(eq_structure) ::
loop for mouse_click = get_mousa(}
case: mouse_click = daelste_correspondence
remave(correspondence, eq_structure)
add{correspondence.compenentl, singles)
add{correspondence.component2, singles)
case: mouse_click = add_correspondance
add(correspondence, eq_structura)
remove{component1, singles}
remove{componant2, singles)
until mousa_click = exit
return eq_structure

The use of the automated planner has reduced the effectiveness of this interactive approach.
On the other hand, it has simplified the automatic detection of confiicts. Because the planner auto-
matically derives a set of components from a goal, its record of derivation can be used 1o deter-
mine correspondence. Once goals can be found to correspondence, it can be inferred that the
derived components correspondence. Since Oz uses an automated planner, it can simply deter-

mine if two goals correspond based on their place in the relation hierarchy. However, since many

relations look quite similar, this has been an error prone for humans. So, Oz no uses a simpler, yet

103

fully automated, detection method.
1.2. Automatic Correspondence Identification (Compleie)

Rather than rely on the intuition of a user, Oz can apply an automatic correspondence algo-

rithm. It is based on a simple assumption:

Derived Components Correspond Assumption
Components ¢, and ¢, will be considered corresponding if they were derived

from a common functional goal, G.

A correspondence structure will be built if: (1) two goals, G, and G,, are held by two differcnt

agents and (2) the goals are of the same type, and (3) the goal are the best match compared to the
other goals in the designs. The closeness of match is determined by the attributes associated with

goals. If goals G, and G, are of the same type, but have different attributes, and a third goal, G is

of the same type and has the same attributes as G, then G, and G, will be paired.

The actual conflict detection atgorithm simply marks goals and their derived components as
corresponding. A more robust algorithm would derive a hierarchicai correspondence structure.
The structure would consists of the goals, a common abstract operator, possibly shared derivation,

and possibly a derivation divergence.

To create a hierarchical correspondence structure, first the common root is identified. Next,
operator refinements (i.e., incorporation links) are traced down the hicrarchy. Where the deriva-
tion is identical, no correspondence structure is needed. Where the derivation diverges, the struc-
ture notes correspondence between operators at each abstract level, i. Eventually, different sets of

primitive operators are said to correspond.

104

Figure 30 presents a hierarchical correspondence algorithm. First, deriva-
tion difference determines where the two derivalions diverge. Next,

derived correspondences construcis a hierarchical correspondence list.

1.3. Automatic Correspondence Detection {Actual)

To date, I have not found the hierarchical correspondence algorithm necessary. Instead, Oz
uses a simpler method. First, goals are matched by their most specific confiict type. This deter-
mines goal correspondence. Next, their derived components are found. This determines design
level correspondence. Finally, these correspondences are passed onto the interference algotithm

described in the next section.

Figure 31 shows the goal conflict detection algorithm. Find-conflicts first gathers all

darivation_difterance{goall,goal2)
it =(derived_op(goal1),derived_op(goal2)) then
return derivation_diti{derived_op(goal1),derived_op{goal2),goali)
else ratum t ;No common darivation.
(defun derivation_diff (opl,op2,parent_op}
(cond {(and {eq opl op2) (null opl))
null) ;No difference.
{{eq opl op2)
{derivation_diff (derived op opl)} {derived_op op2} opl))
(t {list parent_op opl op2)}))
derived_correspondences(difi_ap_op,goall,goal2) ::
return cofrespondences((darived_op op1) (derived_op op2)
; Returns a list of correspondences: ((oplz . op2z) (oply . op2y}
; {opla . op2a) {opl . op2)}) such that opl correspondences to opZ, opla is

;;: derived from opl and correspondences to op2a which was derived from op2 ...
{(defun correspondences {opl,cop2)
(L1f (or (type opl ’‘primitive} (type opl ‘primitive))
{cons opl op2)
{(cons (coens opl op2)
{correspondences (derived op opl) (derived op op2)})i})

Figure 30. Hierarchical Correspondence Algorithm.

105

(defun find-conflicts (goalsl goals2)
(loop with other-goals = {loop for g in goals2
when (established-goal-p g)
collect g}
for goall in goalsl
when (established-goal-p goall)
for ctype = {find-most-specific-conflict-type goall other-goals)
collect {make-conflict-record goall ctype)))

{defun find-most-specific-conflict-type (goal other-goals)

{let ({ctypes (find-conflict-types goal other-goals)))
(or (assoc :POSSIBLE-MEANS ctypes)

(assoc :OBJECT-ATTS ctypes)

(assoc :GOAL-ATTS ctypes)

(assoc :0BJECTS ctypes)

(assoc :RBSTRACTIONS ctypes)

{assoc :GOALS ctypes))))

Figure 31. Goal Conflict Detection Aigorithm.

goals in the second design which have been established.! Next, find-most-specific-
conflict—-type compares each goal in the first design against all the goals in the second. It
returns a goal and conflict type. The confiict type retumed is the most specific way the goals con-

flict as defined by six conflict types. Figure 32 summarizes these types.

The six conflict types range from no (apparent) conflict to compictely dissimilar goals. A
possibie means conflict denotes that two goals are identical. An object autribute conflict denotes
that two goals are identical, except that at least one object varies in its auribute value. A goal
attribute conflict denotes that two goals are identical, except that at least onc relation attribule
varies in value. A goal attribute conflict may also have object attribute conflicts. (The conflict
types are subsuming.) An object conflict denotes that two goals have at lcast one relation object
that is different. (In OPIE, these are actually different relations, but with the same names.) An
abstraction conflict denotes that two goals have different name, but share a common ancestor in

the relation hierarchy. Finally, a goal confiict denotes that two goals have nothing in common.

1Goals which have not been established in a design cannot create design conflicts.

106

Type Description
— =
Goal No similarity.
Abstraction Only similarity is a common ancestor in the relation hierarchy.
Object Same goal name, but different objects.
Goal Atts. Differences in the attribute(s) of the goals.
Object Atts. Differences in object(s) attributes of the goals.
Means No goal differences, but interfering plans.
Possible Means | No goal differences. Still check for interference.

Figure 32. Table of Goal Conflict Types.

At this point, it may be useful to introduce the specific components that are negotiated. Fig-
ure 33 presents a table of components and the ability of the implementation to negotiate with
them. For example, Oz detects object attribute conflicts, displays their prefercnces, and gencrates

their resolutions.

Relations attribute conflicts are detected and displayed, but Oz docs not generate resolutions

for them. This is simply because they have not been needed for design construction.

Relation conflicts are detected and displayed, but only object conflicts are ncgotiated. This
corresponds to the object conflict type of figure 32. In contrast, one could use the link distance
between goals in the relation hierarchy to negotiate about a range of rclated goals. (In fact, the
specialization and generalization methods of section 3.4 do use this lechnique.) However, there is
no means to specify preferences between relations at varied abstraction levels. Instead, only
ordering of sibling relations can be used 1o define relation preferences. Hence, relation negotia-

tions concemn only the objects within the relation.

As indicated in figure 33, not all the negotiations available in the representations arc imple-
mented in the algorithms. However, this is due to the limitations the project and not of the algo-

rithms. For example, operator conflicts are detccied only through their interference. If two goals

107

Component Detected | Displayed | Negotiated
operators some no no
operator attributes no no no
relations yes yes objects
relation attributes yes yes no
objects yes yes yes
object attributes yes yes yes

Figure 33. Table Negotiated Components.

are established using different operators, and those operators interfere, then the operator differ-
ences will be detected. However, if there is no interference then the operator conflict will not be

detected. Operator preferences as a whole have not been implemented in Oz.

2. Interference Determination

After the goal level conflicts have been detected, design level interference is determined.
Interference analysis enables one to determine: (1) design level differences from identical goals,
and (2) non-interference from “conflicting”™ goals. It allows the algorithms opportunity 10 negoti-
ate over the derivation of identical goals and to inform the user that “conflicling” goals can be

established in an integrated design without further processing.

Figure 34 presents the interference determination algorithm. It is applied to cach goal con-
flict pair. The function goal-interference back propagates each of the conflicting goals
through the design level operators which achieve them. An interference structure is created when
the design components of the two goals have consuming interference. That is, when at least one

scarce relation instance is consumed by each plan.

Interference depends on the state of scarce relation instances. Since it is assumed that both

designs have identical initial states, the integrated initial state is identical to either of the given

104

{defun goal-interference(initial-state,goall,primitivesl,goal2, primitivesZ)
{loop with preconditionsl = (back-propagate-preconditions geoall,primitivesl)
with preconditions2 = {back-propagate-preconditions goal2,primitives2)
for relationl in preconditiensl
when (loop for relation2 in preconditions2
thereis (and (unify relationl relation2} ;Using the same relation.
(consumed-relation? relationl) ;Consume as opposed to
{consumed-relation? relation2) ;just using.
{consume—-conflict? relationl relation2 initial-state))
collect (make-interference-record relationl relation2))))

Figure 34. Interference Delermination Algorithm.

de:sig,ns.2 Hence, a simple copy operation is used to derive the inilial integrated design state. All
interference tests are conducted in this initial integrated state. This allows the interference of two
goal implementations 1o be considered in isolation; however, it will not reveal other interference
that may occur in the complete design (e.g., other goals may also consumc scarce relation

instances).

The interference algorithm only considers two-way interference based on the detect direct

interference assumption.

Detect Direct Interference Assumption

Direct interference between pairs of goals is: (1) easier 10 detect, (2) often casi-
er to resolve, and (3) may resolve more dependent exogenous interference than
interference between n goals, for a given n. (If n = number of goals, all inter-
ference may be resolved, but no exogenous interference will be resolved; that
is, no interference is opportunistically removed.)

Two-way interference is easier to detect, because only pairs rather than » goais need be applied to
the goal interference function. Two-way interference is ofien easier Lo resolve, because only the

interference of the pair need be considered. Finally, resolving onc lwo-way interference can

21f the states were not identical, the initial state would have to be negotialed just as the goals
are negotiated. In fact, Oz does apply the goal conflict detection algorithm to the initial design
states to check if they are indeed the same.

109

resolve the of other (exogenous) interference. For example, eliminating one goal which “hogs” n

items a resource can remove n other interferences which simply use one itcm.

While interference determination only considers two-way interference, a resolution process
can also consider n-way interference; hence, the direct interference assumption is applied to
reduce effort during conflict detection. Conflict resolution may opportunistically resolve conflicts
(due to conflict dependencies) as well as further analyze given conflicts, so the interference detec-
tion effort should be minimal. I believe two-way interference is an appropriate balance between

an “eager” n-way and “lazy" 0-way detection methods.

While the Oz interference algorithm only reveals all two-way interferences, it can casily be
modified to consider n-way interference. When n equals the number of goals, complete interfer-
ence is considered. In fact, such n-way interference is determined when the design process is

applied to the integrated perspective.

Figure 35 illustrates the type of records produced by Oz’s conflict and interference algo-
rithms. It simply records the goals in conflict, the type of conflict, their derived operators, and any
resulting interference. These records are also used by the resolution algorithms; hence, they con-
tain a few more slots. In addition to the original conflicting goals, the current allemative is
recorded. Initially, it is set to one of the goals in conflict. Afier resolution generation, it can be
any relation in the relation hierarchy. Finally, the record may also have a plan. This records the a

plan that can be used to achieve both goals, if there exists such a plan.

110

TYPE: MEANS | OBJECT-ATTS | GOAL-ATTS | OBJECTS | ABSTRACTIONS | GOALS
GOALS: (Gl'Gz)

DESIGN-OPERATORS: (Opsl, Op52)

INTERFERENCE: {Relations , Relations,)

ALTERNATIVE: G1

PLAN: E’.l.an1

Figure 35. An Illustrate of a Conflict/Alternative Record.

3. Resolution Generation

Conflict resolution atiempts to find acceptable altematives, given some initial conflicts and
perspectives. The Oz resolution approach consists of three major gencration mcthods: compro-
mise, specialization and generation. Additionally, Oz applys replanning to determinc if a two-

way conflict can be resolved by simply choosing altemative operators.

The replanning method is present next. Then, the interactive framework in which the other

three methods are applied, is presented. The actual resolution methods follow.
3.1. Replanning

Before the conflicts are presented to the user, one final analysis of goal conllict is applicd.
Given two goals with interference, it may be possible to derive a plan which achieves both goals.
To check this, each interfering goal pair is passed to the planner. Given two goals and the initial
integrated state, the planner attemplts to achieve the conjoined goal statc. If it can, the goals need
not be negotiated. Instead, they can simply be included in the integrated perspective. When the

integrated design is derived, both goals may be achieved.

Like interference determination, replanning only considers two-way interaction. This sim-
plification allows the user to quickly determine if is at all possible for the conflicting goals 10 be

simultaneously achieved. If is not, they are deemed inherently conflicting goals (relative to the

111

initial state). On the other hand, if their pair-wise conflict can be resolved through replanning,
then the final derivation of a design from the integrated perspective will determine if, in fact, the
replanned goals can be achieved in the greater context of all design goals. If not, the goals can be
negotiated, a new integrated perspective can be generated, and new inicgrated design can be

derived.

3.2. Interactive Resolution

The interactive resolution framework allows the user to determine which conflict to work
on, which resolution method to apply and in which order, and which rcsolutions are 10 be
accepied. Initially, the user is displayed icons depicting the conflicts. The goal relations are dis-
played along with any conflicting components. Additionally, all relevant preferences and dis-
played. The user then applies resolution methods to any of the conflicts to generale alternatives.
Those alternatives can, in turn, give rise to still other alternatives via the application of other reso-
lutions methods. Hence, the resolution methods can be interleaved both between different con-

flicts and within the derivation of a single conflict resolution.

Figure 36 shows an Oz depiction of the initial issues from a conflict in chapter VL. The rela-
tions oN_LOAN and GIVE_NOTICE are shown with special attention to the conflicting objects. For

example, the on_LoaN conflict is displayed as:
on_loan(libraryl studentl rescurcel placel timel loan_periodl#loan_periodl)

This indicates that the corresponding objects LoaN_PERIOD1 from the two perspectives are in con-

flict. (In this case, the two perspectives use the same name; however, it is possible [or goals to

dian

1asay

43
pecy
aneg

wa}49ea83u]

[RUREL LI T
ANDARY UBIIIG

w M.W“Mwm _)

SHIH tiidly
RERREERHY telleqyd
i NI

(12917007 INPIIACKE [23110UTINPUING 1I2IN0SII [IUIPMS _=F__

Figure 36. Oz Initial Screen Depiction the Goal Conflicts.

113

maich even though they use different object names.)

Preference satisfaction is displayed below the relations. In each case, preferences are dis-
piayed in the following left to right order: relation preferences, relation attribute preferences, and
object attribute preferences (if they exist). For each of these preference types, first the average of
the perspectives is displayed, and then preferences from each perspective is displayed (if they

exist).

Reading from right to left, consider the preferences associated with on_roan. The three
rightmost are the librarian’s object attribute preferences for Loan_perion:i. The loan period
attribute preferences are: resource cost, usage, and duration. The next three preferences toward
the left are the patron’s object attribute preferences for LoaN_PERIODI. Again, the loan period
attribute preferences are: resource cost, usage, and duration. The next preference indicates the
average satisfaction of all the LoaN_PERTOD attribute preferences, i.c., resource cost, usage, and
duration from both perspectives. This averaged preference is named sLOAN_PERIOD DURATION.
Loan period is the object and duration is the attribute whose value differed in the two designs.
The next preference to the left is the averaged oN_LoaN attribute preference. Since there are no
antribute preferences associated with the oN_Loan relation, no individual preferences are dis-
played. However, notice that its satisfaction is at 100 percent. Whenever there is no preferred
ordering associated with a range, its satisfaction is displayed at 100 percent, thereby allowing the
arbitrator to effectively ignore its contribution to an altemative's overall achievement. Finally,
the last preference to the left is the averaged on_voaw relation preference. Since there arc no rela-

tion preferences associated with oN_roaN, no individual preferences are displayed. The

3In the case of conflicting relations or selation attributes, the relations would be displayed as
conflicting. For example, GIVE_ROTICE#GIVE_NOTICE. (Refer to section 1.3.)

114

GIVE_NOTICE preferences are displayed in similar fashion.

Each displayed relation represents an alternative. Hence, an initial relation represents two
concepts. It represents the initial conflict, where the display notes the confiicting components with
the » symbol. And, it represents an altenative where the conflict is resolved. In the case of the
initial relation, this conflict is resolved by choosing the values from the first perspective given Lo
the integration; the value from the patron’s perspective. Hence, the first relations displays the con-
flicts and the altematives where the first perspective's values are chosen. Subsequent aliematives
will be generated and displayed using the same format. However, they will only represent resolu-

tions; hence, no conflict will be displayed.

For each relation (altemnative) displayed, preference satisfaction is displayed in the form of a
bar graph. The more satisfied a preference, the higher the bar graph. Hence, one can sce from the
initial relations displayed the preferences from the two perspectives on the proposed resolution of
simply one of the conflicting values. Thus, one set of preferences are higher than the other for

each relation.

3.2.1. Resolution Display

The resolution display may be simple enough that observation may be sufficient {0 under-
stand it. However, it may help to expand on the interaction of preferences during search. Here, is

a simple example.

Below are two preferences from two perspectives (per-1 and per-2).

{ln-perspective ‘per-1)
(def_mod relation I.1
:order-by-value * ({A 20) (B 30) (C 100)})

115

{in-perspective 'per-2)
(def_mod_relation I.2
:order-by-value " {{A 50) (B 5) (C 100}}}

Alternative a' = (A)
Alternative a? = (B)
Alternative a’ = (C)

Also, the initial altemative, a' is A. Each alternative is evaluated by the preferences from each
perspective: (1.1aHh,1.2(a')) = (20,50). Figure 37 illustrates these preferences. All altematives arc
shown in both parts, with the alternative being considered in the foreground. Pan (a) of figure 37
displays a' = (A). Part (b) displays a* = (B).

Parts (a) and (b) of figure 37 are snapshots of an interactive scarch. Initially, aliemative a’

and its preferences are displayed. Next, the user attempts to increase the satisfaction of preference

1.2 from 5% to 50% by moving it to the foreground. Unfortunately, that altemative decreases the

satisfaction of L.1. If the user continues on to a* = (C), the ideal is reached; i.c., the best valuc

from each perspective.

g0 et =Tap =238n0-91
TIRNEIRIL

Lt 12 Lt
Issues Issuas

Figure 37. Interactive Resolution Display [llustration.

116

This search for the ideal was introduced in Chapter I, section 1.7. Unlike Zeleny's ideal, or
the above example, Oz resolution search does not have a mechanism to track the user’s focus on
aliernatives. Instead, all alternatives for a given resolution method are displayed at once. User’s
can then continue search by choosing an altemative 10 be further negotiated, or end search by

choosing the final alternative.
3.2.2. Preference Modification

Preferences can be modified during the resolution search process. To do so, the user selects

an alternative, modifies the preferences, and the display of that altemnative is redrawn bascd on the

new preferences.‘ However, preferences are global. Hence, changing preferences during resolu-
tion may result in inconsistent decisions: the initial design process imposing one set of prefer-
ences while resolution process derives another. Such inconsistency will be overcome during the
resolution implementation process. During that process, all the current preferences, as deter-

mined during the negotiations, will be used to derive an integrated design.
3.3. Resolutions Search

After an initial nondominated space is created, the user participales in resolution scarch.
Figure 38 presents interactive_search; it's simply a loop enabling five mousable com-
mands. The user is assisted in search via graphic depiction of the search space and the current
alternative. This guides the user’s choice of accepting the current altemative, allering prefer-

ences, or generating resolutions. After any modification, a new display is rendered.

“This modification method is very primitive.

1z

interactive_search()
loop
for mouse_click = get_mouse()
case: mouse_click = compromise
compromise{current_alternative)
case: mouse_click = spacialize
level = gei_lavel()
specialize{currant_alternative,leval)
case: mouse_click = generalize
lavel = gat_leval()
generaliza{currant_alternative,lavel)
case: mouse_click = select_alternative
current_alternative = select_alternative
case; mouse_click = preference_edit
preference_edit{currant_alternative)
case: mouse_click = choose_alternative
mark_resolved(currant_alternative)
until mouse_click = accept
return marked_alternatives()

Figure 38. Interactive Resolution Search Algorithm.

3.3.1. Choosing a Resolution

While Oz does provide a interactive search framework, it does not provide a strategy.
Zeleny'’s displaced ideal does suggest one strategy. It uses the current allemative to define a
search space and a goal to obtain. The goal is the (infeasible) composite of cach preference’s
maximum achievable value within the feasible alternatives, i.e., the best known value for every

preference without any of the negative interactions.

As all alternatives are compared with the ideal, those farthest away are removed
from further consideration. There are many important consequences of such partial
decisions. First, whenever an altemative is removed from consideration there could
be a shift in a maximum attainable score to the next lower feasible level. Thus, the
ideal alternative can be displaced closer to the feasible set. Similarly, addition of a
new allemative could displace the ideal farther away by raising the attainablc levels
of attributes. Such displacements induce changes in evaluations, attribute impor-
tance, and ultimately in the preference ordering of the remaining alicrnatives. — p.
143[92].

118

Figure 39 illustrates the disptaced ideal model. Altemnatives x”, x™", and x™"" arc consecutive
instances of the ideal aliernative. Initially, x" is the ideal defined from the exireme positions along
each preference. However, as x! and x? are removed from consideration, the ideal changes to be
< and x"*".

Zeleny's interactive search procedure is comprised of three basic tasks (cf[92).). Based on

the displaced ideal theory, it makes use of an interactive display to guide scarch.

(1) Seek Ideal
Initially, the worst alternative is displayed—the anti-ideal. Next, the user secks the ideal by
considering increased satisfaction of important preferences. As the ideal is sought, depen-
dencies between preferences can be observed. Eventuatly preferred alternatives will become
familiar.

(2) Identify Cycle
The user considers various alternatives, several will reoccur; a cycle is observed. Members

of this cycle depict a narrow set of aliematives, one of which may be chosen.

**
.xz .t“'
. ftﬁﬁ
-
L]
- ®
[2 ¢ - ;1

Figure 39. Dynamics of the Displace Idcal.

SDerived from figure 3-1 in[92].

119

(3) Apply Tests
Test conducted exterior to the search procedure can be used to aid choice. Additionally,

preferences can be modified.

(4) Apply Heuristics
If the current alternatives reveal no acceptable aliemnative, new altermatives must be sought.
The generalization and specialization methods assist this process. Next, the user begins

again at step one, until a satisfactory resolution is obtained.

While these four steps form the basis of displaced ideal strategy, one can use several varialions;
however, any strategy may be applied—strategies are not enforced during imeractive search. A
variation of step 3 allows users to skip tests and immediately apply hcurislics (stcp 4). Another
variation allows users to starnt at the closest alternative to the one displayed when moving from

steps 3 to 4, rather than starting at the anti-ideal again.

3.4. Generation Methods

Given a conflict, alternative generation finds possible resolutions. Using preferences and
goal hierarchy to characterize conflicts, Oz is able 10 use three methods of conlflict generation.
Compromise generation maximizes multiple criteria given linear constraints. Specialization gen-
eration presents more specialized resolutions from the relation over which the conflicting values
can be distributed; thereby, removing the conflict. Finally, Generalization generation presents
more abstract relations from the relation hierarchy to: (1) remove the conflict through abstraction,
or (2) provide alternative compensation for the “loser” of a negotiation. Next, the three genera-

tion algorithms are presented.

3.4.1. Compromise Algorithm

The compromise algorithm is a linear multi-function maximization solver. One can definc {

linear functions or criteria to be maximized as fl(x) = Z}‘ﬂ Cyks:

f](x) =C % FCppXy t kO X

X
n

f}(x) =C X, +CpXy+ o G

The linear criteria can be subjected to m linear constrainis gr(x) = EJ'.‘=] ax=b,r=1.mxz20:

gx)=a; x, +a X, +...+a X = b,
g ()=a X, +apX, +.. +3 X = b,

Constrained objectives defined in this way are amenable to linear programming methods. Specifi-
cally, the linear simplex method can expanded to account for multiple objectives. It will terminate
after finding all nondominated extreme point solutions, i.c., after maximizing (or minimizing)

each function, fi.

Converting the represented preferences to the simplex notation is simple. The preference

objectives become the functions to be maximized or minimized.® Prefcrence orders becomes the
ranges over which the functions are to maximized. If each component is not given a specific valuc
(using :order-value), then values are assigned in even increments between (0 and 100. For any

preference, all perspectives must use the same range of values. For cxample, if onc perspective

5Goal secking is also implemented. Then, the objective is 10 minimizc the distance from a
specific value.

121

represents loan period duration from O to 365, all perspective must use the same range.’ Hence,
ranges, and constraints in general, are not subject to negotiation. This limitation is due to the use
of the simplex method. Discrete values is another shortcoming of the method. The simplex
method only searches on continuous ranges. Given a discrete alternative, one must truncate it Lo

the nearest discrete value.

Next, the compromise algorithm is illustrated with a simple library cxample. A more com-

plete example is available in appendix B.

The object Loan_pERIOD has three attributes: duration, cost, and risk. Both cost and risk
each rise linearly with duration. Also, the combined value of cost and risk must not be above 100;
however, their they are combined according to the constraint: 0.5 * cost + 0.8 * r1sK < 100.
Given these constraints, the librarian wants 1o maximize duration, while minimizing cost and risk.
In contrast, the patron simply wants to maximize duration. The following two perspective repre-

sent this problem.

(in-perspective ’'Librarian)

{def_mod_object "loan_periecd"
rattributes * ({("Duration” :min 0 :max 365 :obj max)
("Coat” min 0 :max 100 :o0bj min)
{"Risk" :min 0 :max 100 :obj min})
:att_ceonstraints *
(0 0.5 0.8 <= 100} ; Limit risk & cost
(1 -1 0=0) ; Cost = Duratien
(L 0-1=20))) : Risk = Duration

Tvaried ranges would not cause an error for the system. However, il would usc the smallest
range to define the search space.

122

{in-perspective ‘Patron)

(def_mod_object "loan_period"
sattributes ’ (("Duratien” :min O :max 365 :obj max)
("Cost” min 0 :max 100 :obj nil)
("Risk" :min O :max 100 :obj nil))
tatt_constraints ‘(
(0 0.5 0.8 <= 100) ; Limit risk & cost
(1 -1 0 =20) ; Cost = Duration
{1 0-1=20)}) ; Risk = Duration

This problem can be represented in simplex notation as:

Max DURATION,,
Max DURATIONLIBRAR:AH
Min COSTLIFMHAH
Min RISKLIBRAR!AN

+ 0.5 COST + 0.8 RISK < 100

DURATION + + < 100

+ cosT + < 100

+ + RISK s 100

DURATION 2 0

cosT 2 0

RISK 2 0

Figure 40 illustrates the search space for loan period durations. Cost and risk depend linearly on
duration. This results in the line described by x = y = z; however, it is constrained 10 a height of
76.92%. Compromise resolutions are real values triples running from 0 o 76.92: (0,0,0), (1.1.1).
... (76.92,76.92,76.92); the arbitrator must balance the conflicting objeclives to determine which
resolution will be chosen. The multiple criteria simplex method (MCSM) only gencrates the
extreme points of search spaces (e.g., (0,0,0) and (76.92,76.92,76.92); however, all compromisc

points can be obtained from the extreme points[92].

OF Cost + 08 Misk <= 100

n-—-leu

Figure 40. The Nondominated Search Space of Loan_per:on with Risk and Cost.

3.4.2. Specialization and Generalization Algorithms

The specialization and generalization algorithms find similar relations to one under consid-
eration. They are complimentary algorithms which search down and up both the relation and
operators hierarchies. New specialized relations can used to create a dissolution of a conflict: each
conflicting value can be distributed over some specializations. New generalized relations can be
used to create a dissolution of a conflict, or creale a compensation for poorly satisfied preferences.
A dissolution is created by replacing the conflict over values with a single abstraction. A compen-
sation is created by adding a new goal to the integrated design which achieves some satisfaction

for preferences which loose out in the original conflict negotiation.

The specialization and generalization algorithms are directly complimentary. Their major
difference is the direction of their search. Specialization search down the hierarchies, while gener-

alization searches up.

The relation and operator hierarchies serve as the basis for determining similar relations.

Both hierarchies are based on the abstractions of components. Components higher in the

124

hierarchies are more abstract than those below. For the relations hierarchy, abstraction is based on
object. For the operator hierarchy, abstraction is based on operator add and delete lists, i.e., func-

tionality.

Given a relation which is the focus of resolution, one can find closely relatcd relations by
moving a few links up and down the relation hierarchy. Similarly, one can find opcrators which
produce a given relation and then move up and down the operator hicrarchy and find similar rela-
tions on the add lists of the operators. These operator relations are not so directly related to the
given relation as those found in the relation hierarchy. That is, they may not be directly related
through obiject abstraction. Instead, they are related through functionality. Opcrators which pro-
duce similar relations are near each other in the hierarchy. Hence, relations found by scarching
indirectly through the operator hierarchy may be related functionaily, but not through object

abstraction.

The algorithms use these two hierarchies as the basis for generating resolutions. The given
relation is the entry into the relation hierarchy. The operators which produce the given relation arc
the entry points into the operator hierarchy. (For specialization, the root of this tree is the entry
point; for generalization, the leaves of the tree are the entry points.) Once, these entry points are
established, the two methods diverge. Specialization moves down the hicrarchies, while gencral-

ization moves up. Both algorithms are parameterized by the number of links they traverse.

Figure 41 presents both algorithms as one where the direction of movement is also taken as
an parameter. The function sg-resolutions applies the two functions relation-
hierarchy-relations and operator—hierarchy-relations and then packages
those relations into altemative resolutions. The function relation-hierarchy-

relations simply returns related relations. However, the function operator-

(defun sg-resoluticns (relationl n direction)
{resolution—-groups relationl n direction
4’ relation-hierarchy-relations
#' operator—-hierarchy-relations))

(defun relation-hierarchy-relations (relationl n direction)
(nth—ancestor relationl n direction)}

(defun operator-hierarchy-relatiens (relationl n direction}
(mapcan #‘ (lambda (operator) (nth—ancestor operator n directicn))
{all-added-by-ops relationl direction})}

Figure 41. The Specialization/Generalization Algorithm.

hierarchy-relations retumn sets of refations. These relation sets are all thosc relations on
the a related operator’s add list minus all those relations added by the operator which added the
given relation. Hence, each set indicates the new relations which will be produced if the given
resolution is accepted. That is, if the new relations are accepted, then the ncw operator will asser
new relations listed. For example, given the oN_LoaN relation, the OWN (AGENT1 RESOURCEL) rela-
tion is suggested through the BuY_RESOURCE operator. However, OWN (AGENT1 MONEY1) is also
part of that relation set, since oWN (AGENT1 MONEY1) is not a member ol BORROW_RESOURCE'S add
list (the operator which asserted the given on_roan relation). Figure 42 shows an Oz depiction of

this generalization.

4. Resolution Implementation

Resolution implementation derives an integrated perspective and design from given per-
spectives and resolutions. The basic approach is to copy one of the perspeclives and transform it
using the resolved goals. The resulting perspective is then given to the planncr, which then

derives the integrated design.

In the simplest case, the original goals from one perspective can bc simply transformed (o

produce the integrated goals. The simple formula for this is:

Operaters
Gereen Layout
Unhighlight AVl
Interaction
Save

on,GoalConfHcts

NL &

PAL

]
c
1]
=
=
»
2
o T -
= 2~
2 ' ¥
- s
§ 5
[
a =2
i i
-y v ¥ =
2 EL 3
s 2 2
- - 4
P g u Y e gatuans el sneaE
- £ B (SRS S
avmsn - 6 g orammse ceaformen
b - 1%
—am u = casmusnn aiea
= £ (Y-
- o 6 3, pes—ags amees
= o=
3 £ g Lt
s - Renecs il
= — ki U Pr]
L S RS e ruens o a3 sasunese g
B ﬁ) " anarr marenray nO] B
e e e BT TS B——d-seesuens TGauaioac
.‘J_,_,.-r"!g.; o I oa e 3vens & swn & fm——lrasse J-a--gﬂ-qa:
el B DB —ganere smnee § e oL LI LR
£ 5 ! i rEeiveny AW
I I e .0 it nauesl ! In— 2" -
.] —ES& e § —Mseens coves -
B af [-] - YT PO N Y
o= - omb) - | i —
o g w2 & = ‘S‘ — et []
ESE . B o= i)
‘S w g E g 2 T e 2 acwduene amae
-t 1’. 5 3 R wees o anry smnatiea
=83 i I J— S g
- 3k ., g% 33 peianla
oS 0K 2 L we—esp 8 — [,
=t ol 22 e 2 L
. -
B iy - Gl L=t L
w § ST : gl
b N wMERED
. L saravem. J—l.‘-hd‘E s -
- el - sranesse H seEETulum SmOume
9 /*- o ittt B el iy - YN EEL T QY- P e
i i T - TS
| E—t - T
v S rnre &ormen 3 b [P ENTTPPe s SIS hBenDZ
R i A — PRSP
a Y i e g 3 :n--u-:: asvear
- o asnnsan e it
o, S A
o o
= — PRI
P et savsie smpen—es
--'c Fners Lmpnde—2 §i

_ s au=ar o=duteesl

— -
Ll " - el AW wBE
T =gl & 2 /3 -veeave
= s ~darmbE WY dsnsee utenst
E (] — :....—..n iy
R s
-
P

|

Figure 42. Oz Screen Depiction the of Generalizations (2).

Load

Enic

Reset

Help

126

127

initial goals - conflicting goals + resolved goals

This transformation replaces the conflicting goals with the resolved goals. All nonconflicting

goals are also carried into the integrated perspective.

To make matter more difficult, each goal contains specific referents. For example, the fol-

lowing goal refers to specific objects.
on_loan (libraryl studentl resourcel placel timel loan_pericdl)

Hence, when new relations are introduced during resolution, they must use the proper referents.
For compromise and relation specialization, referents can easily be obtained from the given rela-

tion. For example, if the above relation is specialized to:
on_loan{libraryl graduatel resourcel placel timel loan_periodl)

the student] referent can be replaced with the graduatel referent. However, any other relation
instances which refers to this referent must also transformed. This means that the initial state

must have its referents updated. For example, the following transformation must take place:

loan_period(studentl rescurcel placel timel loan_periodl)

loan_period{graduatel resourcel placel timel loan_periodl})

When generalized relations are introduced during resolution gencration, the transformation
process must use heuristics to determine the proper referent. Hence, sometimes the transformed
perspective must be manually modified before being passed 1o the planncr. For example, il two
own relations are introduced as a generalization of oN_LoaN to indicate resource selling (i.c., own-
ership of the buyer’s money and ownership of the seller’s resource), then the transformation pro-
cess must guess to determine which referent will provide the money (student1) and which referent

will provide the resource (library1). However, if the relation instances malching the preconditions

128

of the given relation’s operator are unified with the preconditions of the suggested relation’s oper-
ator, one may obtain a good substitution of referents. Oz does not use this method. Instead, it

uses simpler heuristics and the aid of a human,

Once the referent substitution are propagated through the copied perspective, it can be given
to the planner. The planner then attempts to achieve the integrated gbals. When each goal interfer-
ence is confined to corresponding goal conflicts (e.g., two-way interference) and the integrated
goals are specializations of the original goals, the planner is guaranteed to derived an integrated
design. However, if two corresponding goals not only interfere with cach other, but with other
conflicting goals (e.g., they all consume a single relation instance), then the planner may not be
able to achieve an integrated design. Additionally, if the goals werc transformed through general-
ization, then the planner may not be able to achieve an integrated design. (Therc may be no avail-

able operator, or the goal may interfere with other goals.)
5. Evaluation

This section evaluates the integration methods. Evaluations consists of (1) assumptions, (2)
computational analysis, (3) and related research. First, conflict detection is cvaluated. The thrce

resolution generation methods follow.
5.1. Conflict Detection

Recall conflict detection characterizes design differences. The following evaluation consid-
ers the complexity of the method. Comparison to others research illustrates the lack of rescarch in

this area.

129

5.1.1. Analysis

Any variation in goals or their derivation is a goal conflict. Goal conflicts are characterized
by correspondences, component conflicts, and interference; only two-way inter-design goal inter-

ference is considered.

The issue formation algorithm relies on two key assumptions: (1) derived components cor-
respond and (2) only detect direct (two-way) interference. Within the confines of Oz, assumption
1 cannot be incorrect. (If it is, it implies that the planner is malfunctioning.) When assumption 2
is invalid, aggregated multi-goal interference goes undetected; however, its conflict is known. The
resolution process is given goals as conflicting, but has knowledge only of two-way interference.

n-way interference detection is deferred until integration time.

In some cases, deferring n-way interference detection will be more cfficient. However, if
every goal interferes with every other goal, it will be more efficient 10 aggregate all goals before
designing. If every goal is independent (planning’s linearity assumption), then it is more efficient
to construct independent designs and combine them. No doubt, many problems are somewhere
between. Multiple Perspective Design (MPD) methodology calls for independent designs, mainly
on grounds of individval preferences accuracy and parallel efficiency. however, if every goal

interferes with every other, it will be less efficient.

Given the assumptions, conflict detection turns on the number of conflicts. Figure 30 pre-
sented the issue formation algorithm. Its main routine consists to two loops which compare the
goals of two perspectives. This results in an overall complexity of O(m*n), where m and » are the
number of goals in the two perspectives. After the goals group into conflict pairs, the goal-

interference function is applied. It must back propagate preconditions of the goals in

130

conflict. One can assume this is some constant p linearly associated with the maximum subplan
length. However, each interfering pair is also given as input to the planner to deiermine if the
conflict can be solved by replanning. Hence, this exponential process adds considerable complex-
ity to the interference determination process. Since Oz does not have control over the number of

conflicts, it can best reduce computation through by using an efficient replanning method.
5.1.2. Related Research

This section presents software engineering and artificial intelligence methods for issue for-
mation. In both case, but especially SE, conflict detection and resolution and hardly separablc.
These approaches do not have conceptual distance between interference and its characterization;

hence, they only implicitly address issue formation.
5.1.2.1. Software Engineering

The simplest way to conduct interaction analysis is t0 make it unnccessary; this is common
in programming methodology. Prior to building a large program, interfaces between components
are specified. After the components are designed, they can be “merged” without ill affects[19].
Unfortunately, such a method does not address how the initial interface specifications are derived;

presumably, it entails trial and error involving conflict resolution.

Other methods are based syntactic differences and their implied behaviors. The simplest

method is the Unix diff program;8 it outputs differences based on string comparisons. This

method can be improved by a semantic program model or knowledge of difference relationships.

8Unix is a Trademark of Bell Laboratories.

131

Such knowledge is beyond typical language-oriented module combining techniques which pre-
vent conflict or specify resolution using syntax-based rules[11, 33, 34,43,75). For example, Hor-
witz et. al. use data and control relations to guide their merging of modifications of a simple base
program(38)]. Similarly, Berzins uses a general model of program semantics 1o merge applicative
programs(7]. However, both methods assume behavior aggregation (i.c., the merge must include
all behaviors specified) and neither address conflicts once found. These methods are not able to
resolve conflicts because the intentions of the designers are not available. For cxample, consider
the merge of program A with behaviors a; and a, and program B with behavior &; the designer
may wish to merge the programs while excluding a,. Both methods could handlc this merge if
such merge relations could be expressed. However, more explicit conflicts such as Merge(b,—b)
require an understanding of the goals from which the behaviors werc derived and understanding

of the intent of the merge.

The above sofiware methods do not address issue formation because (at most) they only
consider the program semantics; these do not consider programmer intent (i.c., the program speci-
fication). Issues formation requires conceptual distance between conflicts and issucs. Al planning

is a computational paradigm which does allow some separation between issues (goals) and pro-

grams (plans).
5.1.2.2. Planning

Al planners link behaviors 10 goals, if only implicitly. Most planners do so through simple
goal/operator representations; however, other Al systems represent goal interactions as explicit

knowledge.

132

For Al planning systems, interaction analysis is simplified through representational assump-
tions. Goals are simple state descriptions. Operators can modify states when their preconditions
(state descriptions) are met; when applied, predicates are added and deleted to/from a stale
description. Goal interactions are completely described by the available operators. The closed
world assumption makes this possible: all effects of an operator application arc described in the
effects list of an operator{64]. Hence, goal interactions are implicitly specified in the effects of
operator combinations that can achieve them. If all possible operators (and their effects) could be
completely specified such that their combined effects could be predicted, then onc wouild have a
complete model of goal interactions. Instead, planners rely on approximations and prepare for
exceptional executions[1,60). In most cases, they resolve interference between operators during

plan formation[14).

Some planners use relationships between operators 10 aid modeling. Alierman uses catc-
gory, pariomic, causal, and role knowledge to describe plans[1]. Anderson’s OPIE derives such
hierarchies from operator descriptions[2]. Given a plan, operators and objects arc abstracted and
added to operator and object hierarchies, respectively. Again, goals are identified with precondi-
tions on operators. However, abstract goals can match with abstract operators; moreover, the
operator hierarchy implicitly represents the interactions between abstract goals in the abstracted
effects of operators, Such abstract goal interactions can be made cxplicit[37]. Hammond's
CHEF infers and generalizes negative interactions which lead to plan failure; they form demons

which anticipate plan failures{36].
Despite such planning successes, Wilensky's criticism still holds.

...most Al planning systems do little reasoning about goals and emphasize instead
the production of plans.— p. 13[87].

133

Negative Goal Relationships

Causing Preservation Goal

Munully Exclusive Smtes
Time

Undesinbie Preconditon l‘ur
State (".mﬂi:t a:ludcd a phn for a
/ \ for other g excludes other goal

AR

Capacity Ownctahlp
Figure 43. PANDORA's Intra-Agent Conflicts

To see this, simply compare the languages of Wilensky's PANDORA (figures 43 and 44) and

Hammond's CHEF (figures 45 and 46). CHEF's understanding of conflict, like most planners, is

Positive Goal Relationships

Goal om/ \Goal Concord
- nnl/ \Gd AN

Social Plan
Enowledge Relationship Dv/erhp
e
/
Partial
Plan
Merging
Figure 44, PANDORA's Intra-Agent Resolutions

pd,.:r'"/ msiﬂﬁ_
I N I BN
Gnndillm Pmcmditim/&nd\llinn Precondition Vichton

Disabled Blocked
V’lnhtinu Bu!

Pmmndmon Con,dilion Precnndmm\l"mlznor
Conayrrent Serial Balance

Concurrent Serial Balance

Figure 45. CHEF's Conflicts

134

based on plan modification operators: (1) alternative operators, (2) reordering, (3) reestablish-
ment, and (4) separation (i.e., alternative unification)[14]. Issue formation is tied directly to the
current plan; plan interference is the issue. Hence, conflicts and resolutions are described in terms
of enablement of operators. The larger context of goal importance, goal relaxation, and the intent
of the planner is lost. In contrast, PANDORA's conflict descriptions contain causes behind opera-
tor enablement, e.g., resources, goal entailment; PANDORA's resolution descriptions not only
consider plan alteration, but environment and goal alteration. Hence, conflicts and resolutions
consider more than just the plan, but the attributes of the environment and the overall attitude of

the planner.

Most planning systems are concerned with efficiently constructing a plan lo achieve a goal;
search combined with delayed commitment 10 operator sequence, object selection, and operator
selection is the basic method[2]. Unfortunately, most real world planning calls for the achieve-
ment of multiple goals; moreover, such goals fulfil higher goals. Wilensky’s theory of meta-
planning attempted 10 address such common-sense planning(87]. However, while PANDORA
does have notions of goal importance, partial fulfillment, and abandonment, its rcasoning about
goal trade-offs is unspecified. In fact, only recently have its basic ideas been brought to fruition

(e.g., reasoning about conflict between episodic goals and long term goals)[59].

Reorder Splitk Removy
e e \..1... e
/N m7m\ /)h\

Preconditlon Before Afier Up Down hmdiﬂnn Upo

Side
Fffact

Figure 46. Cl-[EF s Resoluuons

135

Others are linking agent intent to planning and plan modification. In her modeling of a labor
mediator, Sycara combines models of goal interaction and agent belief{83). Figurc 47 illustrates
PURSUADER s model of a company’s goals and their relationships. Goals lower in the hierarchy
are supporting or detracting factors to goals higher up. For example, prorITs are affected by
prRoDUCTION cosTs and saLes. The company wishes to increase profits (indicated with a “'+");
the company believes profits can be increased by decreasing PrRoDUCTION cosTs and increasing
saLes. The graph models agent goals and how the agent believes the goals support or detract

from each other,

Graphs like that of figure 47 have been used by organizational[76], decision[90], and nego-
tiation researchers{20]. They typically contain causal relations, markings of importance, and
sometimes probabilities. The graphs are drawn from an agent's beliefs, hence the causality may
be faulty. Such goal knowledge can be used 1o prevent the pursuit of incompatible goals, explain

why multiple goals cannot be met, or persuade an agent to accept relaxed goals.

rofits (+)

production " cosat(-) sales(+)

plant materials(-) bor(-) quality (+) prices(-)
73’1@ +) / \
1

emp

oyee employment(-} economic{-)
aati don (+)

economic(+) non-economic(+) automation{+) subcontract(+) wages(-) fringes(-)

wages(+)

Figure 47. PURSUADER's Company Goal Beliefs

136

Analogy researchers also consider goal level knowledge. In particular, they are concemed
with linking lower level language interactions to higher level goal relationships; this facilitates
the determination of a good analogy{12, 31, 35,44]. Analogical reasoners must resolve conflicts
between domains. They decide which structures should be transferred beiween domains. Unlike
planners, most analogical reasoners have some measure of fit; analogies can be made despite con-
straint violations. Better analogies are achieved by reducing constraint violations. Similar to plan-
ning, operators pick alternative structures, altemative unifications, and reorder structurcs. Analog-
ical reasoners do not use goal interaction knowledge, such as in figurc 47, 10 guide their analo-
gies. Typically, syntactic fit guides this process[31]; however, functional knowledge is also
used[44].

In sum, research has focused on plan formation while neglecting issuc formation. This focus
stems from a single agent view with few fixed (presumably achievable) goals. Such myopia natu-
rally focuses on plan patching. When one’s planning view is expanded, low level interference
must characterized and associated with a subset of the many goals. Similarly, plan patch failurc
leads to expanded consideration of resolution. Resolution must include goal relaxation and drop-

ping; moreover, preferences must be available to make such decisions.

5.2. Resolution Evaluation

This section presents a broad view of the complexity of the three gencration methods. For
resolution, computation depends on the issues, perspectives, heuristics, and hierarchy depths.
However, the central most determiners are the number of conflicts and the size of the domain

hierarchies.

137
5.2.1. Compromise: Multi-Criteria Simplex

Unlike the other search methods, the compromise algorithm is simply the adaptation of
another's research. Hence, this section simply summarizes the analysis of thc mulli-criteria sim-

plex method. See the references for future details.

Consider a linear programming problem with 10 variables each with a range of 10 inlegers
{e.g., 0 .. 9); the solution space would be 10'°. A simplex tableau with n nonnegative unknowns
and m dependent variables (constraints) has n!/m!(n-m)! basic solutions; however, most of these

“solutions” do not exist[78].

While the simplex method is exponential, computation time is nearly proporional to the
number of iterations. The number of iterations depends on the topology of the extreme points. If
one only considers extreme points of the feasible set, then the maximum number of cxtreme point
solutions is X, = m(n - m -1) + 2[46]. Once an extreme point is identified, others can be casily
identified by transforming the tableau; this means m(n - m -1) + 1 is the worst case number of

simplex iterations.

The multi-criteria simpiex method has essentiaily the same cornplexity as the single criteria
simplex method. However, it limits itself to considering only nondominated cxtreme points; the

nondominated set of extreme points is usually less than the feasible extreme points, N < X_ . To

test for dominance, it must execute phase II of a two phase simplex method on the criteria row;
see Zeleny for the exceptions and a way around this[93]. Also, the MCSM has more overhead
associated with finding and executing pivoting procedures. Moreover, it must visit all nondomi-
nated extreme points, whereas the simplex attempts 10 maximize one objective by finding onc

optimal point. See Zeleny or Yu for proofs of completeness and termination[91, 93).

138

While the MCSM is exponential, Zeleny does point to a polynomial algorithm (Appendix
B[92],). In practice, the MCSM is adequate for most problems. The following table gives the
possible solution space, nondominated extreme point solutions, and CPU non-sysiem run times
for several problems appearing in[92]; and[93) the (nonoptimized) algorithm was on a Sun4 in

Allegro common lisp.

Year | Page | (n,m) | Space ; Nex | Time (sec)
1982 | 233 5.3) 10 2 0.034
1982 | 244 7,.4) 35 6 0.366
1974 | 116 | (16,8) | 1,2870 3 0.183
1974 | 117 | (16,8) | 1,2870 11.866

Despite the computation adequacy of the MCSM it lacks several important features. In gen-
eral, a good constraint system which has the following features:
Qualitative

In addition to discontinuous ranges, discrete ranges should be expressible(8].

Multiple (Alternative) Constraints
Alternative sets of constraints should be expressed and efficiently scarched. This means
expanding search to constraint spaces rather than a single constraint space. (Yu does extend

it to consider multiple constraint sets[91].)

Fuzzy Constraints and Objects
Constraints, like goals, should not be discrete; rather, they should describe a range of desir-

able restrictions. Fuzzy constraints should be expressible[39, 80}.

139

Conditional Constraints and Objectives
Constraints and objectives that depend on other conditions should be expressible. Con-
straints and objectives may depend on: (1) the design state, (2) agent state, (3) other agent

state, or (4) other agent behavior.

While such a complete system remains future research, these features have been demonstrated
individually. If available, such a constraint system would efficiently combine the three individual
search methods (i.e., compromise, specialization, and generalization). Intuitively, I believe that
numeric based methods, like MCSM, cannot effectively address such cxpressiveness. Future

research will attempt to exploit simplex search notions in a qualitative scarch framework.

5.2.2. Specialization and Generalization

Recall that specialization derives more specialized relations, whercas gencralization derived
more general relation. Both methods are applied within the interactive search procedure. Hence,
their depth and repetition of application are under user control. In the worsi case, the resolution
generation methods completely cover the representation space. However, its is more likely that

some subset of the relations will be considered.

5.2.2.1. Analysis

Assume interactive search contains m conflicts involving p perspectives. Typically, special-
ization replaces some subset of relations, n 1 n € m, with s new specialized relations, s > n; how-
ever, § is typically equal to p which is cften fewer than the possible s. The s new issues are found

through either the relation or operator hierarchies.

140

For each application of specialization, the search space is limited by the branching factors
of the operator and relation hierarchies. In the worst case where the root of the relation hierarchy

is in conflict, all relations will be considered.

The analysis of generalization parallels that of specialization. Again, assume interactive
search contains m conflicts involving p perspectives. Generalization adds some g relations. The

g new relations are found through either the relation or operator hierarchies.

For each application of specialization, the search space is limited by the the branching fac-
tors of the operator and relation hierarchies. In the worst case where a leaf of the relation hierar-
chy is in conflict, all relations will be between it and the root will be considered. However, the
relations suggested indirectly through the operator hierarchy must also be considered. In the worsl
case, one of them will add the root of the relation hierarchy, and again, all relations will be con-

sidered.

Finally, the interactive search method is not guaranteed to converge nor avoid local minima;
neither are under program control. Given conflicts, a user is presented with nondominated com-
promises. Most decision support systems end search here; however, Oz gives the user specializa-
tion and generalization. Both introduce new relations.Since they reformulate the conflict, they
may move out of local minima. Using the three methods, the user explores the search space and
the group’s contextual preferences. Convergence emerges as the user cycles through several aiter-

natives, and eventually narrows the choice 1o one.

141

5.2.2.2. Related Dissolution Research

Generating resolutions is a creative task. Oz advocates an issue expansion approach. It
attempts to generate alternatives which dissolve conflict. In contrast, planning systems typicaily

use plan modification.

Conflicts are dissolved through plan modification, resource expansion, and bridging. Plan
modification removes conflicts by considering different objects, operators, and their relationships.
Some planners consider the availability of resources, but they typically do not dissolve conflicts
by resource expansion[88). This is mainly because resource expansion is cxpensive. However, in
design, where resources are being defined, resource expansion is a good method of dissolution.

Bridging may also be expensive; moreover, it is difficult to derive.

Bridging is type of replanning in that agent goals are reconsidered. Bridging atiempts 10 dis-
solve conflict or reduce it by creating: (1) new relationships or (2) new technology. For example,
time conflicts can be resolved by alteration or contingent sequence; consumabie resource conflicts
can be resolved by inventing renewable resources. The key differcnce between bridging and
replanning is their focus: replanning resolves conflicts of an agent, while bridging resolves con-
flicts between agents. Using the planning paradigm, multi-agent conllict can be resolved by
aggregating agent goals and then creating a plan[32]; bridging takes existing plans and repairs
their negative interference. The Oz mechanism is a combination of the iwo. It aggregates goals 10
derive an integrated plan; however, it analyzes plans to derive new compatible goals. | speculate
that for combining large plans with relatively little interference, bridging may be more efficient.
Moreover, this is a common method of negotiators[66]. Also, typical planners are unable to
resolve goal conflicts (e.g., ACHIEVE(X) & ACHIEVE(-X)) which resull from goal aggregation.

There can also be methodological reasons for independent plan formation (chapter II1).

142

Bridging, like planning, uses interference analysis to guide dissolution. For example, time
multiplexing users of a resource falls naturally from the mutual consumption of relation
instances{3]; relation instances can be used to describe resource usage over multiple states.
Hence, planning methods can produce bridging relations. However, inventing ncw operators

(technology) is not a typical planning method.

Sometimes, when multiple agents describe behaviors, objects or processes interfere, One
method of resolving such conflicts is to substitute the incompatible entitics with a new subsuming
entity. For example consider two allernative proposals for library record keeping: (1) a manual
card file, and (2) a computer database; due to costs, both sysiems cannot be used. One dissolution
is to include both and expand the money supply (or aliernatively reduce the costs). A more
appealing solution is to create a new system satisfying the desired attributes of both systems. For
example, the computer systcm may be desired for speed, remote access, and archiving; the man-
ual system may be desired for familiarity, simplicity, and reduced eye sirain. A solution may be a
modified computer system: its operations use a manual system metaphor for familiarity and sim-

plicity; its monitor is high resolution with large fonts for reduced eye strain.

New technology dissolution is accomplished by decoupling and combining the desired
attributes. Zwicky has used this technique to predict new technologies(41]. Lenat combined this
technique with pruning heuristics to discover new game strategies and math concepts{51-53]. It
works best when: (1) the representational forms used are structurally similar to the abstract con-
cepts, (2) there is a small set of combining operators, and (3) humans aid the concept evaluation.
However, this method only finds concepts already defined implicitty in the representation lan-
guage[54]. Yet, the method is effective in that it efficiently produces interesting concepts for

human consideration. In the search for resolutions, this is a valuable technique.

143

When a conflict is similar to one previously considered, stored resolutions can help. Previ-
ous cases which have resulted in a satisfactory resolution, as well as thosc which resulted in an
impasse, are useful. Successful cases can be instantiated and modified for the current context.
Unsuccessful cases can prune resolutions from consideration. A case-base serves as a cache of
unenunciated negotiation knowledge. It can contain resolutions which combine or individually
embody dissolution, compensation, and compromise negotiation. However, casc-based resolution
can limit solution creativity. Reliance on cased-based resolution limits the crcation of new resolu-
tion prototypes; it is an example of the anchor and adjust judgmental bias[S]. To provide for cre-

ative resolutions, case-based resolution systems must include a synthesis component.

5.2.2.3. Reiated Compensation Research

Most planning systems do not consider compensation becausc either: (1) they do not con-
sider multiple agents, or (2) they do not consider a significant number of agent goals. Clearly, in
multiple agent negotiations, one agent can be compensated by anothcr. However, agents with
complex goal structures can also try to compensate for their own unsatisfied goals; for example, a

working agent unsatisfied with its salary can plan to gain other benefits.

Compensation depends on the goal structure of the “losing™ agents. To detcrmine how 10
compensale an agent, one can use a model of its goals. Previously, goal modeling has been used
to construct persuasive arguments. Such arguments use the same tradeoff analysis used to deter-

mine compensation.

Sycara used graphs like that in figure 48 to construct persuasive arguments(83]. For exam-
ple, if employees pushed for higher wages, PERSUADER would show that the company would

have to reduce employment to keep labor costs down. Figure 47 illustraics how labor expenses

144

are increased by both employment and economic increases. The company believes that to main-
tain market position, labor costs must be kept down; any increase in economic costs must be off-
set by a decrease in employment. PERSUADER uses a union belief model (figure 48) to under-
stand that the union wanis to increase employment; hence, the argument will influence the union

since it points out the loss of desired goals.

PERSUADER uses goal relationships to construct persuasive arguments; it shows how an
agent may respond 10 change based on its goal beliefs. An agent’s goal beliefs can also be used to
determine compensation. For example, the company may not agree to better union wages or bene-
fits, but it may agree to better seniority wage and promotion policies. Compensation can be found
by increasing satisfaction of sibling goals (NON-ECONOMIC of figure 48). When this fails, more
general compensation may be had by moving up the union hierarchy to consider higher goals
(e.g., UNION-SECURITY). By modeling agent beliefs of goals and their interactions, one can derive

compensation from specific to general,

Oz's operator, object, and relation hierarchies are analogous to Sycra's goal belief
tree. These hierarchies are searched for compensation like Sycra searches her goal tree for persua-

sive arguments. Sycara's trees are manually constructed; this allows them to accuralely reflect the

union (+)
/ \
management rights () employee stisfaction (+) union security (+)
m{ -m>qm-n 160 ecomomic (+)
semiority (+) Job security (+) subcontract () wages (+) fringes (+)

Figure 48. PURSUADER’s Union Goal Beliefs.

145

designer intent. Qz'’s hierarchies are automatically constructed; this allows them to accurately

reflect the functional relationships represented in the system.

Sycara’s trees can be viewed as an abstract summary of the operator hierarchies. Such sim-
plification focuses the generation of arguments (or compensations), but implicitly excludes inter-
mediate goals and more concrete goals. Autornated hierarchies support greater of depth and
breadth in abstractions. Large hierarchies may require us 1o skip some abstractions during com-
pensation to prevent thrashing in minute details. Such compensation scarch control is still future

research,

Oz, like Sycara's PERSUADER, has analytic and heuristic components(82]; however, the
analytic component is based on process-oriented decision theory rather than strictly muitiple
attribute utility theory[9). Oz's heuristic component is divided into dissolution and compensa-
tion, whereas these are implicitly combined in Sycara's case-base. Like Sycara, Klein uses a

cased-based approach{47].

The above view of negotiation contrasts with DAI's view. For the most pan, DAI views
negotiation as a coordination problem. Message contents are simple task requests and accepts; the
contract net illustrates this[18]. However, *multistage negotiation” illustrates how DAI negotia-
tion can make more of the decision process collaborative[16]. Similarly, Werkman emphasizcs

message passing 10 engage in collaborative group resolution search[86].

This dissertation contributes to Al by applying and automating process-oriented decision
theory for group design. The general search framework is not entirely novel; it is derived from
Zeleny's IDEA. However, the use of specialization and generation is novel. Moreover, the

domain model is a novel combination of decision theory and abstract planning[2].

146

6. Summa

Robust conflict analysis combines syntactic difference analysis with goal relationship
knowledge[21, 29, 30]. Design language level analysis serves as a general mechanism for conflict
detection, while goal knowledge serves 10 (re)characterize conflicts. Such characlerization can be
used to resolve conflicts and avoid conflicting behaviors. The two process are interdependent:
goal interaction knowledge must be applied to goal conflicts; conversely, design conflicts must be

detected to be resolved.

Determining the linkage between behaviors and goals is a problem. Resolving negative
interactions is another. Most systems rely on basic plan modifications: (1) altemative operators,
(2) reordering, (3) reestablishment, and (4) alternative unification. Few attempt to modify the
underlying causes of the conflict; for example, resource shortages, or unrealistic cxpectations.

When plan modifications fail, modification of environmental or agent constraints can be helpful.

The conflict detection method combines a top-down model of goal interactions with simple
language level analysis. Conflict resolution is achieved through plan and goal modification. My
research goal is not to introduce new plan modification operators, but to combine such operators

with design and goal modification in a negotiation framework.

147

CHAPTER VI

A DETAILED EXAMPLE

The representations and algorithms presented in this dissertation provide negotiation aid for
designers. Additionally, records of their use provide rationale for the design. This chapter demon-
strates the sufficiency of the methods to generate useful resolutions and aptly record negotiaicd
decisions. It is done so by rederiving a portion of a simple library system. In fact, the library sys-
tem is rederived twice. First, to demonstrate that Oz can derive a negotiaicd design described in a
case study. Second, to demonstrate that Oz can suggest still more resolutions. In the end, I con-
clude that the representations and algorithms do support negotiated design. Howevcr, before the

derivations, the library case study is presented.

1. The Library Problem

In 1968, Burkhalter and Race analyzed the charge-oui (loan) period for the University of

Michigan General Library{10]. Here is how they perceived their problem.

Library administration asked, *Should the length of the two-week charge-out period
for student book loans be changed?” Initially, the question arose in response to in-
creasing pressure on the circulation staff. Lengthening the charge-oul period might
reduce the time the staff must devote to activities such as processing overdues and
renewals. On the other hand, a shortening of the charge-out periocd might lead to
greater book availability for the patrons. The purpose of this study is to identily the
factors affected by a change in the charge-out period which lead 10 a change in cost
or patron service, and then to atiempt to assess the relative degrec of change so that
a decision can be made as to the optimal charge-out period.— p. 11[10]

To begin their analysis, they described a portion of the initial library state: (1) a loan period of

148

two weeks, (2) renewal at the desk, and (3) overdue notices every week for threec weeks. Nexi,
they analyzed the cost and effectiveness of this arrangement, with particular atiention to renewal

and overdue notice procedures. Finally, they redesigned the library to include: (1) a loan period of

three weeks, and (2) overdue notices every week for two weeks.!

This study appears as an example of the type of implicit negotiations that occur during
design. As is typical, a centrat designer (Buskhalter and Race) analyze group nceds, and then
implements a solution. However, the varied views of the group, and their ncgotiations, go unrep-
resented. In contrast, Oz explicitly represents and reasons about stakeholder perspectives and
their negotiations. To represent the library perspectives for this case study, I have had to infer the

original rationale.

I have rationalized the library design as a negotiation between the librarians’ group and the
patrons’ group. This is common in library design{55,57]. Decisions arc often described as trade-
offs between the goals of a representative librarian and a representativc patron. Additionally,
Burkhalter and Race explicitly referred to such trade-offs. When they did, 1 formally represented
them explicitly and accurately. Hence, I believe that if they had the samc rcpresentations Lo use,

they would have derived perspectives similar to those that follow.

Before presenting the two library perspectives, the resulis of the Burkhalter and Race’s anal-
ysis are described. From user surveys and analysis of circulation paticrns, they derived tables and

graphs describing the initial library conditions. These analyses are represented in Oz. They are

IBurkhaiter and Race did also consider some subprocesses of thesc operations. For example,
they analyzed the cost effectiveness of the notice copy mechanism. Their analysis revealed thal
Xerox copying of notices would be more efficient than their current ditto procedure. Hence, the
modified library implemented this change. However, I did not conduct the study at this level of
detail. Since, Burkhaiter and Race mainly focused on loan period and overdue, so did 1.

149

used to guide resolution search. Next, their analysis of the library’s loan period and overdue

notice procedures are summarized.

1.1. Loan Period

Burkhalter and Race divided loan period into two parts: useful time and idle time. During
use, patrons actually avail themselves of their resources. However, the time before resource
return and after resource use is idle time. Librarians explicitly have the goals of increasing
resource usage while reducing idle time. In an ideal world, upon completion of usage, cach patron
would immediately return their resources. Instead, resources arc ofien idle before their return.
Librarians can attempt to control this situation through loan period duration. By reducing loan
period duration, patrons are encouraged to at least renew resources, if not rctumn them, after a
period of time. Loan period determines the time frame, while late fees deiermine the amount of
encouragement. By analyzing renewal patterns and surveying patrons, Burkhalter and Racc

described how resource usage varied with loan duration.

Figurc 49 illustrates the representation of Burkhalter an Race’s usage graphs. 1 have com-
bined their graduate and undergraduate graphs into a single one since they did not consider dis-
tinct loan periods for graduates and undergraduates. Also, unlike the graph, theirs are smooth
non-linear curves. In contrast, Oz graphs are formally represented by a sct of lincar constraints.

Such linearity allows us to apply linear programming methods to analyze the graphs.

Figure 49 shows how student resource usage varies with time. In the first fcw days, stu-
dent’s only partially complete their use. However, after 20 days, students are nearly completely
finished using resources. According to the graph, loan periods longer than 20 days will encouragc

resource idle time. However, such graphs must be interpreted in proper context. The 14 day loan

150

Student Resource Usage

100% T

90°/o N E

80% T

70% T =01 x + y <= 96.29
60% T

50% T 230X +yY <=0

40% T

20% 1 571 x +y<=0

10%

0% +—tt

Days

Figure 49. Student Resource Usage Graph.

period coupled with the 7 day overdue notice may have caused students 10 return resources near
21 days. On the other hand, the user surveys indicate that students would retum resources after 21

days even with a longer loan period. That is, 21 days is often sufficient for student borrowing.

As Burkhalter and Race state, the circulation work load was one of the factors which initi-
ated their case study. Circulation staff were being overrun by patron renewal requests. Hence,
longer loan periods were posed as a means to reduce renewal requests. While Burkhalter and
Race did not explicitly represent reduced renewal cost as a function of loan period duration, !
have. Figure 50 shows how I interpret their perception of renewal cost. The main clement of the
figure is simply that cost decreases as loan period duration increases. Eventually, (around 45 day

by my estimate) renewal coslts are negligible.

151

Renewal Cost

100% 1
90% T
80% T
70% T
80% 1
50% +
40% T

259 x + 1 <= 100

g

30% T
20% T
10% T

142 x + y <= 50

/

. : . . ;) f : :
0% + t t + t t + et

Days

Figure 50. Resource Renewal Cost Graph.

1.2. Overdue Notice

Burkhatter and Race applied the same sont of analysis to overdue notices. Librarians desirc
to aid patrons in remembering to return their resources. However, three other issues mitigate this
goal: (1) costs, (2) responsibility, and (3) availability. Burkhalter and Race mcasured the effec-

tiveness and cost of the overdue notices. (Initially, three notices were sent: one every week after a

Notice 1 2 3

[Number sent 1600 | 750 | 530
Resulting retums 850 | 220 30
Percent effectiveness 53% | 29% 6%
Percent of total overdues retumed 54% | 14% 2%
Relative cost per book 100 181 940
Percent of total overdue noticecost | 56% | 26% | 18%

Figure 51. Table of Overdue Notice Evaluation.

152

resource was due.). Figure 51 shows a table of their results. They concluded that:

...the second notices entail one-fourth of the cost while producing less than one-
seventh of the returns; and the third notices entail one-sixth of the cost while pro-
ducing one fiftieth of the retumns. This low retum for the dollar, coupled with the
philosophy that it is the patron’s responsibility 10 return books, led to the recom-
mendation that the third notice should be considered for elimination.— p. 20[10].

Figures 52 and 53 show the graphs for overdue costs and effectiveness. The graphs illustraie the

reduction of costs and effectiveness associated with later notices.

Burkhalter and Race use their analysis to rationalize the reduction of overdue notices from
three to two. Similarly, Oz uses the analysis in its perspectives 10 model attribute relationships.
Such relations are useful in constraining the space of resolutions and depicting stakcholder prefer-

ences. Next, two perspectives based on the above analysis are presented.

Overdue Notice Cost

100% -
90% T
80% T
70% T
60% T
50% T
40% T
30% T
20% T
10% 1

0% + t

Number of Notices

Figure 52. Overdue Notice Cost Graph.

153

Overdus Notice Effectiveness

Number of Notices

Figure 53. Overdue Notices Effectiveness Graph.

1.3. Two Perspectives

The librarian and patron perspectives are quite simitar. They both modify the generic library
model by attaching preferences associated with loan period and overdue notices. The both use the
Burkhalter and Race's analysis of loan period usage and cost, and overduc nolice effectiveness
and cost. However, they differ in their preferences. The librarian is focused on reducing costs
while maintaining high resource usage. In contrast, the patron only cares about long loan periods
and multiple overdue notices. Figures 54 and 55 illustrate the librarian and patron perspeclives.
(Note, they only contain preference modifications to the library model. Sec Appendix A the com-

plete library model, inciuding the initial relation instances.)

Figure 55 shows the librarian’s perspective. It represents the librarian’s desire to: (1) loan
student resources (ON_LOAN), (2) notify students of overdue resources (GIVE_NoTICE), and (3)

allows students to access their loan records (kwows_RECORDS). These are only a few of the many

154

{in-perspective 'Librarian)

{def_establish
(on_lcan(studentl,resourcel,loan_periodl)}
(knows_records (studentl, studentl, resourcel))
{give_notice (libraryl, studentl,overdue_noticel}))

{(def mod_object “loan_period”
tatts ' {
("Duration” :val 14 :min 0 :max 363 :obj min)
{"Usage" :val 100 :min O :max 100 :obj max)
{"RenewCost” :val 0 :min 0 :max 100 :obj min)
}
tatt_constraints * (
;2 Usage
(-5.71 1 0 <= Q)
(-2.36 1 0 <= 47)
{(-0.01 1 0 <= 96.29)
;¢ RenewCost
{(2.5882 0 1 >= 100)
(1.1429 0 1 >= 50)))

(def_mod _otyp "overdue_notice”
catts ' {
{("Number"” :val 3 :min 0 :max 5 :obj min)
{("Cost" :val 100 :min 0 :max 100 :o0bj min)
{"tWasted Effort" :val 100 :min 0 :max 100 :obj min}
)
:att_constraints ‘{
;; Cost
(44 1 >= 100)
(810 >= 42)
;; Wasted Effort
(=2 0 1 >= 0}
(=23 0 1 »>= -40)
(=47 0 1 >= -135)))

Figure 54, The Librarian's Perspective.
goals associated with a library system.

My focus on loaning and notifying reflects Burkhalter and Race’s casc study. The addition
of the access goal is to demonstrate that the following negotiation can be part of a larger design
effort. Since the access goal is shared (i.e., the same) for both the librarian and the patron, it will
be determined not to be in conflict, and hence, not part of the negotiations. This will demonstratc
how the integration methods only focus on the conflicting parts of the design, and allow the other

parts o be combined without negotiation.

155

In addition to goals, figure 54 also shows the preferences of the librarian. The librarian
desires to maximize resource usage, yet maintain resource availability. Decreases in loan period
duration increase resource availability. Hence, the librarian’s preferences are represented as maxi-
mizing usage, minimizing duration, and also minimizing renewal cosl. The rclationship betwecn
duration, usage, and cost as depicted in the previous section is represented by the attributc con-
straints. Additionally, the librarian’s overdue notices are representied. The librarian prefers to min-
imize costs associated with the notices, while maximizing their effectivencss. Rather than model
effectiveness, I choose to model wasted effort—the inverse of effectiveness. Hence, the librarian
prefers to minimize wasted effort. These preferences and the associated relationship between
them and overdue number (from the previous section) are represented as the modification of the

OVERDUE_NOTICE object.

Figure 54 also illustrates how Oz can derive a design using specific values for attribules,
while having seemingly conflicting preferences. In the figure, the librarian has the objectives of
minimizing loan period duration and overdue notice number, yet the values are sct at 14 and 3,
respectively. This mechanism is used to allow the derivation of a previously negotiated design.
For example, in the Burkhalter and Race case study, their librarian’s own availability preferences
would suggest minimal duration, while their librarian’s (and student’s) usage prefercnces suggest
longer duration. Apparently, previously they negotiated a 14 day duration and three overdue
notices. Rather than rederive that earlier negotiation, I set up the librarian’s perspeclive to derive
the initial library described in Burkhalter and Race’s case study, and then integratc that design

with a conflicting design derived from the patron’s perspective.

Figure 55 illustrates the patron perspective. It is nearly identical to that of the librarian. Like

the librarian, the patron desires that the library: (1) loan student resources (oN_LoAN), (2) notify

156

students of overdue resources (GIVE_NOTICE), and (3) allow students to access their loan records
(xNows_RECORDS). Additionally, the patron desires to maximize resource usage, and unlike the
library, maximize loan period duration. Moreover, the patron does not care aboul library rencwal
costs. Figure 55 also represents the patron’s overdue notice prefercnces. The patron prefers o
maximize the number of notices. Unlike the librarian, the patron does not care about notice costs.

Again, the associated relationship between attributes are represented as linear constraints.

(in-perspective ‘Patron)

(def_establish
{on_loan (studentl, resourcel, loan_ periodl})
{knows_records (studentl, studentl, resourcel)}
(give_notice(libraryl,studentl,overdue_poticel)))

{def_mod object "loan_period"
tatts ' ¢{
;;While patron’s only care about usage.
;:All preferences are included so constraints can reference them.
{("Usage" :val 100 :min O :max 100 :obj max)
("Duration® :val 365 :min 0 :max 365 :obj nil)
{("RenewCost" :val 0 :min 0 :max 100 :obj nil)
)
:att_constraints ' |
;: Usage
{(-5.71 1 0 <= 0}
{(-2.36 1 0 <= 47)
{(-0.01 1 0 <= 96.29)
;! RenewCost
{2.5882 0 1 >= 100}
{1.1429 0 1 >= 50})))

{def_mod object "overdue notice"
tatts ' (
("Number"” :val 5 :min 0 :max 5 :0bj max)
;; Patron's don’t care about effectiveness or cast

)

ratt_constraints ’ (

;+ Cost
(44 1 >= 100)
(81 0 >= 42)

;:; Wasted Effort
(=2 0 1 >= Q)
(=23 0 1 >= —-40)
(=47 0 1 >= ~-135}))
Figure 55. The Patron’s Perspective.

157

1.4. Two Designs

Given the two perspectives, the planner is able to automatically derive a design achieving
the goals. Figure 56 shows Oz’s depiction of the librarian’s goals and derived design. The design
in the figure illustrates how the initial library conditions enable students to access their loan
records afier they have borrowed a resource. It also illustrates the BorrRoW and GIVE_NOTICE Oper-
ators. The initial library conditions enable students to borrow resources and then receive overdue

notices.

Notice that the design does not use abstract operators. To most closcly simulate the casc
study, I have instructed the planner to use concrete operators. Hence, the operator GET_RESOURCE
was specialized t0 Borrow to reflect the previous design. To derive a design from scratch, one
would run the planner in abstract mode. Then, operators are specialized only if required by the

design or preferences.

The patron’s goals and design look identical to that depicted in figurc 56. What is not
shown are the differing preferences in the object hierarchies and the differing relalion instances
produced in the design. In each perspective, the objects do contain the preferences described
above. Those preferences cause the planner to create instances of relations which have the appro-
priate attributes. Hence, while not shown in figure 56, the design for the librarian has a loan
period duration of 14 days and an overdue notice number of 3. In contrast, the patron’s design has

a loan period duration of 365 days and an overdue notice number of 5.

158

LILT]

qas3y

%3
peoy
aneg

uojIeJI3U]

LLl 340y LB yun
IN0AR] UIIITG

PRITTE YR mw—l

FIanUSay - moucy 17

E— L

(1powsd ueo| [auny [a2e|0 [33unosad [IIPMSE uafa_::no—@

([?9170U73npaaac [23uncEds [IUIpME ﬁ.a..a..n..:ou_..ocl@

([2unasa. [IUapMs [Uapms -mvuaougué

|Hﬂﬁnnulﬂlﬂmmmuhwmﬂm“u

Figure 56. Oz Screen Depiction of the Librarian’s Goals and Design.

159

1.5. Original Perceived Conflict

Based on their understanding of patron goals in general and analysis of the initial library in

particular, Burkhalter and Race determined the following conflicts:

(1) Loan period duration. The initial loan period did not achieve the proper balance of avail-
ability, renewal cost, and usage. Specifically, the patron's desire for longer loan period
duration was in conflict with the library’s initial desire for a shorter loan period duration.
This conflict was first noted afier using the initial library system and observing the circu-

lation staff spending too much time handling renewal requests.

(2) Overdue notice number. The initial overdue notice number did not achicve the proper bal-
ance of cost and effectiveness. Specifically, the patron’s desire for more notices was in
conflict with the library’s initial desire for fewer notices. This conllict was first noted after
attending to the loan period duration conflict. During their loan period analysis, Burkhal-
ter and Race also considered overdue notices. From their analysis they uncovered that

overdue notices were not as cost effective as desired.

Given these conflicts, Burkhalter and Race derived a resolution.

1.6, Original Resolution

Using their analysis, Burkhalter and Race may well have considercd many alicrnative loan
period and overdue notice resolutions. However, they may have been directly drawn Lo the 21 day
alternative due to its prominence. It is: (1) near the top of the usage curve, and (2) has some
reduction in cost. Similarly, they state (see section 1.2) they were drawn 10 a two notice policy
given the extremely low effectiveness of the three notice policy. Hence, rather than consider all

available altematives, I speculate they were drawn to consider the status guo, or a 21 day loan

160

period with a two overdue notices. Afier weighing the alternatives, they choose the 21 day stu-

dent loan period and two overdue notices.

1.7. Original Rationale

Burkhalter and Race rationalized their resolution based on trade-offs between the pairon and
library goals. (See the quote in section 1.2.) First, they felt the increase in loan period duration
was justified by: (1) reduced renewal costs, (2) increased resource usage, (3) increased satisfac-
tion of patron preferences. They felt this despite the decrease in resource availability. Second,
they felt the decrease in overdue notices was justified by reduced notice costs. They felt this
despite the slight decrease in overall notice effectiveness and patron prefercnces to the contrary.
Hence, the net effect on the sratus quo was to increase the effect of patron loan period preferences
on the one had, while reducing the effect of patron overdue notice preferences on the other. Such

reciprocity is common in negotiations.,

2. The Derivations

The following two sections present derivations based on the Burkhalier and Race case
study. In both sections, the design derived from the librarian’s perspective is used 1o represent the
initial library analyzed by Burkhalter and Race. However, the librarian’s perspective represents
more idealized (extreme) goals than the librarian's design implements, i.c., the duration goal is o
be minimized while the design reflects the initial loan period duration of 14 days. On the other
hand, the patron perspective represents idealized patron goals and a design implementing thosc

goals, i.,e., the design has a 365 day loan period.

161

The following two derivations will detect the loan period and overdue notice conflicts, sug-
gest alternative resolutions, and derive a new perspective and design reflecting the resoived goals.
The first derivation will strictly follow the case study, while the second will present other resolu-
tions. In each section, only directly relevant aspects of the algorithms are presented. Refer 1o

chapter V for their complete description.

Figure 57 illustrates a trace of the library development. First, perspectives representing the
library and patron are created (called Library and Patron). Next, designs are automatically cre-
ated, thereby achieving the goals for each perspective. Next, the designs are integrated and their
conflicts are noted (and resolved) in the integration record named P&L. Next, a perspective is
automatically generated representing the resolved goals of the two perspectives. Finally, an inte-

grated design the automatically derived.

To begin integration, an Oz user selects the integrate operator from the development popup
menu, selects the designs, and then hits the go button. Each derivation description picks up the

moment after the two designs have been selected for integration.

2.1, Strict Rederivation

In this derivation, Oz integrates the perspectives and designs of the previous sections. First,
goal correspondences are identified and their surface conflicts are noted. Next, plan interference
between the goals is identified. Then, the conflicts are presented to the arbiter. Next, compro-
mises are generated and a resolution is selected. Finally, a new perspective and design arc derived

representing the negotiations.

162

a3

esay

443
pea
neg

uG 3303231
1y 6 1ubsyun

u:o;a— :uu.nun

n‘.ﬂglci_iu
+ | 0L 000 “we yeabeyar)

ipJ0oouy HCUE“&—GSM’HHMWM _-

Figure 57. Oz Screen Depiction the Library Development.

163

2.1.1. Correspondences and Conflicis

Conflict detection begins by finding the best correspondences betwecn the goals of the two
perspectives. Since the two perspectives have identical goals, comrespondence identification is
simple. In this case, goals with the same names, but in different perspectives are marked as corre-
sponding.

Any difference in the goals are noted as part of the matching process. In this case, differ-
ences are noted between the correspondences of the on_roan, and GIVE_NOTICE, and
KNow_RECORDS goals. In the first two cases, differences are classified as object attribute conflicts.
For the oN_LoaN goal, the value of the LoaN_PERIOD attribute DURATIOV is different. It is 365 in
the patron perspective while 14 in the library perspective. For the GIvE_NoTICE goal, the value of
the OVERDUE_NOTICE attribute NuMBER is different. It is 5 in the patron perspective while 3 in the
library perspective. In contrast, the kNow_RECORDS is identical; however, it is still marked as a
possible means conflict. The interference procedure will determine if the two KNOW_RECORDS have

interfering plans.

2.1.2. Interference

Interference detection begins by determining how a goal has been implemenied in a plan.
Next, it back propagates pre-conditions. Corresponding goals have their pre-conditions compared.
If they delete (consume) each other’s resources, then they are said 1o interfere. However, if they

simply use the same relation instances, then they do not interfere,

164

2.1.2.1. Loan Period

The on_LoaN goals of the two perspectives are implemented identically in their respective
plans. In each plan, the operator BORROW_RESOURCE is the single operator that implements the
goal. Figure 58 illustrates the borrow operator. Note that the only relation it deletes is the posses-
sion relation. However, back propagating the two oN_LoaN goals through their respective BOR-
ROW_RESOURCE operators leads to the same relation instance. Hence, thesc two goal implementa-

tions interfere,

When two goals are found to interfere, an attempt is made to replan 10 achicve them. Using
the initial conditions and the conjoined goals (i.e., not considering interactions with other goals),
the planner is applied to determine if the conflict can be resolved by replanning. If so, both goals
may be included in the final plan if the arbitrator agrees that both goals and their replanned imple-
mentation are acceptable. Given the on_roan conflict and the library operators, the planner cannot

resolve the conflict through replanning.

2.1.2.2. Late Notice

The cIvE_noTIcE goals of the two perspectives are implemented identically in their respec-

tive plans. In each plan, the operators BORROW_RESOURCE and GIVE_NOTICE are the operators that

{def_ operator "Borrow_Resource"
:dascription "A loanable RESOURCE is LOANED to an AGENT for LOAN_PERIOD."
:objects ’ (agentl agent2 resourcel timel time2 placel loan_periodl)
:preconditions
‘* {{loan_period (agentl resourcel placel timel loan_periedl)}
(time_is{time2}}}
:deletes ' ((possess(agent2 resourcel placel timel loan_periedl)))
:adds ’ ((possess(agentl resourcel placel time2 loan_periodl))
{on loan (agent? agentl resocurcel placel time2 loan periodl)}})

Figure 58. A Library sorrow Operator.

165

(def_ operator "Give_Notice"

:description "The LIBRARY gives PATRONs OVERDUE NOTICEs for RESQURCEs."
:objects

‘ (libraryl patronl resourcel placel timel loan_periodl overdue noticel)
:preconditions

' {{on_loan{libraryl patronl resourcel placel timel loan_periodl}))

:deletes ‘()
:adds ' {{give notice(libraryl patronl rescurcel overdue noticel)) |}

Figurc 59. A Library c1ve_noT1ce Operator.

implement the goal. Figure 59 illustrates the notice operator. Note that it does not delete any rela-
tion. Hence, these two goal implementations do not interfere through the GIVE_NOTICE operator;
however, they do interfere through the BORROW_RESOURCE Operator. Again, the goal is back propa-
gated through all operators implementing it, and then those consuming pre-condilions are com-
pared for conflict. Hence, the civeE_NnorIcE goals do interfesre. Given the cIve_noTIcE conflict

and the library operators, the planner cannot resolve the conflict through replanning.
2.1.2.3. Record Access

The know_RECORDS goals of the two perspectives are implemenicd identically in their

respective plans. In each plan, the operator AcCESS_RECORD is the single operator that implcments

the goal.2 Figure 60 illustrates the access operator. Note that it does not deletc any relation.

(def operator "Access_Record"
;description "An AGENT can read the library loan records.”
taobjects ' (agentl agent2 resocurcel)
inota ’ {{secure_records{agentl agent2 resourcel)))
:preconditions ' ((access_records(agentl agent2 rescurcel}})
tdeletes ' ()
radds ‘' {(know records(agentl agent2 resourcel))))

Figure 60. A Library access Operator.

20ne may notice the directed link between GIVE_NOTICE and ACCESS_RECORD in the plan of
figure 57. That link does not indicate a pre-condition dependency as can be seen il figure 60. In-
stead, it is simply OPIE’s way of indicating a possible ordering for unordercd operators.

166

Hence, these two goal implementations do not interfere.

Note there is a distinction between goal conflict and goal interference. Goals which conflict
achieve different states. Goals which interfere use each other’s resources. Goals which conflict
may or may not interfere. However, in either case, one must negotiate. If they interfere, one can
negotiate about which goal will be included into the design. If they do not interfere, one can

negotiate about whether one wants to include both achieved states in the design.

When two goals do not interfere, no replanning effort is made. Hence, the planner is not

invoked to attempt to resolve the access_REcCORD “conflict”.

2.1.3. Initial Issues

Figure 61 shows an Oz depiction of the initial issues. The relations oN_Loan and
GIVE NoTICE are shown with special attention to the conflicting objects. For cxample, the

on_Loan conflict is displayed as:
on_loan (libraryl studentl resourcel placel timel loan_periodl#loan_periodl)

This indicates that the corresponding objects Loan_PERIODI from the two perspectives are in con-

flict. (En this case, the two perspectives use the same name; however, it is possible for goals to
match even though they use different object names.)?
Preference satisfaction is displayed below the relations. In each case, preferences are dis-

played in the following left to right order: relation preferences, relation attribute preferences, and

object attribute preferences (if they exist). For each of these preference types, first the average of

3In the case of conflicting relations or relation atributes, the relations would be displayed as
conflicting. For example, GIVE_NOTICE#GIVE_NOTICE. Refer to Chapier V, section 1.3).

167

dy3p

Jacay

I1%3

Lol |
B3nRg

unj3aRII]
LIy U8 uBgun

ANOAR] UIPIDF

H m . H » i H
pliidisd R
il iy
1piigigil fledivdyd
NN felinihi

(F22190U " INPIIN0F T IINOU"INAIING [F2INDSRI [IUIPMIS —EP:E. 270U 3N

{1poya2d-ueo|x [poIJadTURD| (AW [20B(d [FIAN0SEL [apms |

B CEEIVIRTL L]

Figure 61. Oz Initial Screen Depiction of the Goal Conflicts.

168

the perspectives is displayed, and then preferences from each perspective is displayed (if they

exist).

Reading from right to left, consider the preferences associated with on_roan. The three
rightmost are the librarian’s object attribute preferences for Loan_pErIopl. The loan period
attribute preferences are: resource cost, usage, and duration. The nexi three preferences toward
the left are the patron’s object attribute preferences for LoaN_pERIOD1. Again, the loan period
attribute preferences are: resource cost, usage, and duration. The next preference indicates the
average satisfaction of all the LoaN_PERIOD altribute preferences, i.c., resource cost, usage, and
duration from both perspectives. This averaged preference is named sLOAN_PERIOD DURATION.
Loan period is the object and duration is the attribute whose value differed in the two designs.
The next preference to the left is the averaged oN_LoaN attribute preference. Since there are no
attribute preferences associated with the oN_Loan relation, no individual preferences are dis-
played. However, notice that its satisfaction is at 100 percent. Whenever there is no preferred
ordering associated with a range, its satisfaction is displayed at 100 percent, thereby allowing the
arbitrator to effectively ignore its contribution to an altemnative’s overall achievement. Finally,
the last preference to the left is the averaged on_vLoaN relation preference. Since there are no rela-
tion preferences associated with on_roan, no individual preferences are displayed. The

GIVE_NOTICE preferences are displayed in similar fashion.

Each displayed relation represents an altemmative. Hence, an initial relation rcpresents two
concepts. It represents the initial conflict, where the display notes the conflicting components with
the = symbol. And, it represents an altemative where the conflict is resolved. In the case of the
initial relation, this conflict is resolved by choosing the values from the first perspeclive given (o

the integration; the value from the patron’s perspective. Hence, the first relations displays the

169

conflicts and the altematives where the first perspective’s values are chosen. Subsequent alterna-
tives will be generated and displayed using the same format. However, they will only represent

resolutions; hence, no conflicts will be displayed.

For each relation (alternative) displayed, preference satisfaction is displayed in the form of a
bar graph. The more satisfied a preference, the higher the bar graph. Thesc first relations display
the alternative of a 365 day loan period duration and 5 overdue notices. Hence, onc can see from
the initial relations displayed, preferences from the two perspectives conceming the patron’s pro-
posed values. Thus, the patron’s preferences are higher (equal or} than the librarian’s for each

relation.

From these initial issues, the arbitrator considers the preferences of the two perspectives and
considers whether to: (1) accept the initial alternative, i.e., the values from the patron perspective,
or (2) apply a resolution method. For this case study, the arbitrator applies the compromise

method.

2.1.4. Generated Compromises

The arbitrator applies the compromise method to each of the conflicts in tum. First, loan
period duration compromises arc generated. Next, late notice number compromises arc generated.
Such compromises are generated by simply choosing the compromisc method from a popup
menu and then clicking on one of the relations. In this way, the three methods can be interleaved.
That is, first compromises can be generated. Then, those relations can be generalized or special-

ized. Such an approach is shown in the expanded example. However, here only compromise is

applied.

170

2.1.4.1. Loan Period

Figure 62 shows an Oz depiction of the loan period duration compromises. The compro-

mises are linked to the o initial relation via an icon depicting the compromise operation.

Figure 63 shows the table of compromise solutions depicted in figure 62. Each row indi-
cates a resolution. The first column lists the duration values for loan period. The next two indicate
the derived resource usage and cost associated with a particular duration. To determine the satis-
faction a perspective derives from such resolutions, one must consider the goals. For example, the
resolution of zero duration, zero usage, and 100 percent cost is an extremc resolution which only
satisfies the librarian’s goal to minimize loan period duration (to achieve resource availability). In
contrast, the resolution (20.9, 96.5, 45.7) appears to be a more balancc nondominated resolution.
It nearly achieves 100 percent satisfaction of resource usage and has lower rencwal costs, which
are both important to both perspectives. On the other hand, it achieves somc balance between a
short and long loan period duration. If this resolution were chosen (as it was), it would indicate
that the librarian’s duration preference is regarded more important than the patron’s opposing

preference. Yet, one preference was not simply chosen over the other. Insicad, their preferences
were combined.
The resolutions of figure 63 were generated by the multi-criteria simplex method. All solu-

tions are intended to be extreme nondominated points. However, due to rounding crrors inherent

is such methods, some dominated compromises may be generated. However, il always generates

4 Analytically, one can determine that the librarian’s duration received a weight of 94 percent,
while the patron received a weight of six percent. Hence, an analytical utility function would
choose the same resolution if these weights were associated with the librarian’s and patron’s dura-
tion preference.

IConflicta}

t

L{Ints

H

Screen Layout
Interaction
Save
Load
Exit
Feset

Unhighlight A1

Operators
O (B bopment , Becord)

Help

L T R

lacel timel loan_per
1 student] resourcel

Buae srdsae-sg

PrommRE wms I E

resourcel p

timel loan_periodl)

LeaERvens =gt eLmTL
PuTEs Sranec=aa
Budw =88 desenn-ag

epdBsUSHe & SwnaX

student ! ~ezewncel placel twnmel loan periodIn

ot et
a8 ase=aw Py

wageduene maveac=nc ~ucw

LECEPUSRN grSnSn—IE
FRAPe Jmasdcedf
EIE et TRy T T T
s dgaRLS e BBw=sC

on_losn(libraryl studentl resourcel placel timel loan_periodl2loan_period]l)

Faee mirudE

Figure 62. Oz Screen Depiction of the Compromised Loan Duration.

171

72

feasible resolutions. Further, it would be a simple matter to prune such dominated solutions by

comparison with the goals.

After considering the various alternatives, the arbitrator can select a resolution. Instead, [
assume that Burkhalter and Race continued on, leaving resolution selection until after both con-

flicts had their compromises generated.

2.1.4.2. Late Notice

Figure 64 shows an Oz depiction of the overdue notice number compromiscs. Figure 65
shows the table of compromise resolutions depicted in figure 64. Again, these resolutions are gen-
erated by the multi-criteria simplex method. All solutions in the table arc extreme nondominated

points.

2.1.5. Resolution Choice

Afier considering the compromised resolutions for the two conflicts, Burkhaiter and Race
choose a resolution. They picked the 21 day loan period and the 2 overdue notices. The 21 day
loan period (rounded) also happens to be an extreme point, so it is casily accessible from the set

of displayed resolutions. In figure, 62 the arbitrator can simply choosc the 21 day resolutions.

| Duration | Usage | Renew Cost
1 365 100 0

2 43.75 96.73 0

3 34.60 96.64 10.46

4 20.97 96.50 45.71

5 14.03 80.11 63.69

6 0.0 0.0 100.0

Figure 63. Table of Loan Period Compromises.

onfllcts}

1 student! resourcel overdue

AL {[Ints

Oz
O { Bérwmt | eppnirnit . Record)

Screen Layout
Unhighlight RAYY
Interaction
Save
Load
Exit

Feset

Help

Shamrel s eSS

e Uegesu=al

lbn]l student] resourcel o

.
PR R T T

BAneEl Eeder SrA=Ye=EE
venr mgnaumvg

FPERen Imanacmac

IR D PeSee LIHSE

RGP BB FEBuSemAL
wany sededuesE
EICATE I BuSem L

noticeldoverdue_naticel)

RORL PR Puefus L SWEED

Uane Aeveel

jusny srduterag
crEave maewmmal
ELT e S L
PRI s T

Lot T T Tt

T T LT
DR TR Gt it BN ARSEL
o JmanqLeel

T s L]
EICAS. SmE-Se=SL
T e L e T

Wam e B

Figure 64. Oz Screen Depiction the Compromised Notice Number.

173

174

| Number Cost Wasted Effect
1 5.00 2.00 100.00
2 3.96 10.33 51.04
3 1.91 26.77 3.81
4 1.61 29.11 3.22
5 0.00 | 100.00 0.00

Figure 65. Table of Notice Number Compromises.
After doing, so it is highlighted (the image is inverse of the others).

Similarly, the overdue notice number of 1.91 is rounded to 2. Figurc 63 illustrates the over-
due resolution as highlighted. While the extremes 5 and 0 are shown, all infinite compromiscs
between are not. Instead the arbitrator must do the rounding to 2 overduc notices. The arbitrator
does so by selected the relation and setting its value. After doing so, the preference bars are

updated. In this way, non-extreme nondominated compromises can be chosen.

2.1.6. Resolution Implementation

Once, the resolutions are chosen, they can be implemented. To do so, the arbitrator selects
create integrated model from a menu, selects the the integration object in the development graph
of figure 57, and hits the go button. First, a new perspective containing the resolved goals is auto-

matically generated. Second, a design is automatically created satisfying those integrated goals.

The integrated model is a copy of one of the initial perspective’s hierarchies, a (possibly
transformed) initial state, and transformed goals. Since, it is assumed that all perspectives have
the same initial conditions and hierarchies, the integrated perspective is the same as the original
perspectives, but with the resolved goals. Only, hierarchy preferences go unnegotiated. However,
since operator preferences are not a working part of the implementation, they will not effect the

derived design. Hence, the integrated perspective represents the negotiated goals of the original

175

perspectives and the generic library model.

The integrated goals are created by transforming each resolved relation based on the con-
flicting relation from which it was derived. In this example, the transformations are simple substi-
tutions. This is because only the object attributes of the conflicting relations have changed.

Hence, the two conflicting goals:

on_loan (studentl, resourcel,loan_periodl.duration=14) #
on_loan(studentl,resourcel.loan_periodl.duration-365)

give_notice(libraryl,studentl,overdue_noticel.number=3) 2
give_potice(libraryl,studentl,overdue_noticel.number-S)

are transformed to the resolved goals of:

on_loan (studentl, resourcel, loan_periodl.duration=21)

give_potice(libraryl,atudentl,overdue_poticel.number-Z)

Once the integrated perspeciive is constructed, the planner can attempt to create a design
achieving the integrated goals. When each goal interference is confined 1o corresponding goal
conflicts (e.g., two-way interference) and the integrated goals are simple substitutions of the origi-
nal goals, the planner is guaranteed to derived an integrated design. However, if two correspond-
ing goals not only interference with each other, but with other conflicting goals (e.g., they all con-
sume a single relation instance), then the planner may not be able to achieve an integrated design.
Additionally, if the goals were transformed in ways other than simple substitution, as shown in
the expanded example, then the planner may not be able 10 achicve an integrated design. How-
ever, in this simple example, neither of these cases hold, so the planncr does derive a design. In

fact, the integrated perspective and design look identical to that of figurc 56.

176

2.1.7. Summary

In sum, in the strict rederivation:

(1) Oz detected two conflicts. Loan period duration and overduc notice number had different

values in the librarian’s and patron’s designs.

(2) The arbitrator choose the compromise method. For each conflict, the arbitrator chooses 10

apply the compromise generation method.

(3) Oz generated compromises. Several compromise resolutions were gencratcd for each

conflict.

(4) The arbitrator choose two resolutions. Considering the satisfaction cach perspective
derived from the alternative resolutions, the arbitrator chooses one resolution for each

conflict.

(5) Oz derived an integrated perspective and design. Given the choice of resolutions, Oz
transformed the conflicting perspectives to create an integrated perspective, and then used

the integrated perspective to derive an integrated design.

2.2. Expanded Derivation

In this expanded derivation, Oz again integrates the perspectives and designs of the librarian
and patron. The first few events are identical to the previous derivation. First, goal correspon-
dences are identified and their surface conflicts are noted. Next, plan interference between the
goals is identified. Then, the conflicts are presented to the arbitrator. Next, compromises are gen-

erated.

177

After compromises are generated, this expanded derivation diverges from the strict deriva-
tion. While this derivation still picks the two overdue notice resolution, it continues the resolution
process for loan period duration. Rather than simply choosing one of the compromises, the arbi-
trator applies the resolution specialization and generalization methods. While demonstrating
these method, this expanded derivation also corresponds to: (1) the analysis of Burkhalter and
Race, and (2) comments provided by an expert librarian. Specifically, the loan period for students
will be specialized into two classes: undergraduates and graduates. Then, two different loan
period durations will be given to each class. Finally, a new perspective and design are derived

representing these expanded negotiations.

Rather than repeat the first few steps, this derivation will begin aficr the compromises arc
generated in section 2.1.4, and after the arbitrator has already chosen the 2 overduc notice resolu-
tion. Hence, the foliowing derivation only considers the specialization and generalizations of the

loan period duration relation.

2.2.1. Generated Specializations

The specialization method is based on the premise that a conflict over values associated
with an abstraction can be resolved by assigning some of the confliciing valucs 10 some special-
izations of the abstraction. For the loan period conflict, specializations include subclasses of
resource and student objects. One resolution, then, is to assign differcnt loan period duration val-

ues to graduate and undergraduate students.

Figure 66 shows an Oz depiction of oN_roan specialized relations. These relations are based
on specializations of the objects within the oN_zoax relation, According to library model, the only

objects in the on_Loan relation with specializations are student and resource. Student has

0Oz

ave
Load
Enit

Reset

creen Lapauk

lUnhighlight A1V
Interaction

{Recorg, 0pe)
Intagration
O {3un 1 cpsnainit , Bovard}

Help

ntl speciall pla

PEPBUSET Jrpmdnrdd

Prare sescsumag

all placel timel loan_peric

atel booki placel timel loan_p

fSdecil).rel

ock! placel timel loan_periodl)

el timel loan_peijodl)

-
vl
-l
‘D
5 S E e peva
ry (] PoSel &S S
= 5
= g -
Q o
o
& - -
| BE -
- — L L L I 1Y
€ %
-y -
&3 388
~] Ve ©
4] o aransemad) &0
[.
-
H -
= N 8,
- s 5
E gg ey ien o tunsa
- 3
- b2 o Q
-)
)
g

e
P hdornBE

Imdby adundE

raryl undergraduate

1]

I aew el Ame

3o aw—ns
asees

odicall placel timelNpan_period!]

I

|

n, GoalConflicta}

pec(2).rel

O‘ i LI Ty
i pieet LIS T - s I] — YR
— - == R

)

tudentl resourcel placel timel loan_periodl#loan_periodl)

logn(y

rad

—— e s
_ - e eeCEIYTwE road
[—] T Jumpy Jrdsuedd
3 A
[—]
_ _ omane movesces ;::::u:::-::».
: --:--...—- - E_ U s . moredd
SRRt A — ""'ﬂ—.___a
o e —ee s 5
L PR 3
£
=

Figure 66. Oz Screen Depiction the of Specializations.

178

179

specializations undergraduate and graduate, while resource has specializations book, periodical,
and special, Figure 66 illustrates the specialization of the conflicting relation by each of these
objects along with the annotation spec (1). This indicates that these specialization are a distance
of one specialization link away from the conflicting relation. Combinations of the (wo objecis are
two links away. To apply the specialization method, the arbitrator must supply the depth of spe-

cializations requested; the default is all specializations.

For the most part, the specialized relations have the same preferences as the original rela-
tion. For example, the loan period duration preference for undergraduates is the same in both per-
spectives as that for students. However, to illustrate how specialized preferences can appear dur-
ing negotiations, we have attached opposing resource preferences 10 the oN_Loan relation. Onc
may notice from figure 66 that some oN_roan relation preferences have been specified. Those

preferences are:

{in-perspective ‘Librarian)

{(def _mod relation on_loan (library patron resource place time loan_period}
:order ’{on_loan(library patron special place time loan_period)
on_loan{library patron book place time loan_period)
on_loan(library patron periodical place time loan_period))
iobjective 'max)

{in-perspective ‘Patron)
{def_mod relatien on_loan(library patron resource place time loan_periocd)
:order ‘ {on_loan{library patron special place time loan_period)
on_loan(library patron book place time loan_period)

on_loan(library patron periodical place time loan_period})
tobjective ’'min)

They indicate that, given an exclusive choice of among the subclasses of resource, which resource
subclasses are most preferred. For example, the patron prefers special resources over the other

two, while the librarian prefers to loan periodicals over the other two. Given these preferences

180

and a resource subclass conflict, one could automatically generate the compromisc of books.
Additionally, these preferences could have been used in an even more specialized resolution con-
ceming trade-offs between librarian resource preferences and patron duration preferences. How-
ever, in this example, the arbitrator is not interested is such specialized resolutions. Instead, the

focus will be on resource preferences for undergraduates and graduates.

Figure 67 presents a table of all the specializations derived from the on_roan conflict. The
arbitrator is most interested in continuing the exploration of resclutions along the lines of parame-
terizing loan period duration based on student subclasses. Hence, resolutions numbered one and

two in figure 67 are the targets of the next resolution operator.

At this point, the arbitrator chooses to apply the compromise operator o both resolutions
one and two. This results in the same compromises as shown in figure 63, but for student sub-
classes undergraduate and graduate. Once these resolutions are generated, the arbitrator chooses
the 14 day duration for undergraduates and the 21 day duration for graduates. Figure 68 shows an

Oz depiction of these resolutions. (The chosen resolutions are highlighted by inverting their

3+

Level Relation

on_loan{library1,undergraduate 1 ,resourcel,loan_period1)
on_loan(library1,graduate1,resource 1 loan_period1)
on_loan(library1,student! book1,loan_period1)
on_loan(library1,student1,periodicall,loan_period1)
on_loan(library1,student1,speciall,loan_period1)
on_loan(library1,undergraduate 1,book1,loan_period1)
on_loan(library!,undergraduate 1,periodicall loan_period1)
on_loan(library],undergraduate 1,speciall loan_period1)
on_loan{library1,graduatel,book1,loan_period1)
on_loan(library1,graduatel,periodical 1,loan_period1)
on_loan(library1,graduatel,special1 loan_period1)

W bW =

— O \O 00~ O
B B B B b ek s e e

e

Figure 67. Table of On Loan Specializations.

181

images.)

2.2.2. Generated Generalizations

The generalization method is based on the premise that a conflict over values can be
resolved by either: (1) abstracting the conflicting object, or (2) choosing one of the conflicting
objects and giving something else to the “loser” of the negotiated conflict. For the loan period
conflict, generalizations include parent relations of oN_LoaN relation, and relations asserted by
operators similar (nearby) to the BORROW_RESOURCE operator. One resolution, then, is to suggest

that agents recall resources that have been granted to other agents.

Figure 69 shows Oz depictions of oN_Loan generalized relations. Thesc relations are based
on generalizing objects within the oN_LoaN relation. According to library model, the only objects
in the oN_roaw relation with generalizations are student and library. Swdent has generalizations
patron and agent, while library has the generalization agent. Figure 69 illusirate the generaliza-
tions of the conflicting relation by each of these objects along with the annotation Gen (1). This
indicates that these relations are a distance of one generalization from the conflicting relation.
Combinations of the two objects are two links away. To apply the generalization method, the arbi-

trator must supply the depth of generalizations requested; the default is all generalizations.

Figure 70 presents a table of all the generalizations derived from the oN_roan confiict. The
first two resolutions are derived from the generalizations of the student and library. The remaining
resolutions are derived through the operator hierarchy. In some cases, rclations besides the key
relation are shown. For example, the resolution suggesting that agents should renew their
resources, generalization 4, is shown with the other relations that the renew operator asserts. Such

resolutions are found by first finding similar operators to that which asseried the conflicting

182

L | TS| 907 "V § 34 1l

d134
3%y k i 1e
By
34n3 / dasu
peoq LY « s
2eez \ Pk
E B0 [BW1) Te7eld Tamunzssa [Fienpeds [m m w
uo}IITIII] / p, m E2
E e e (1powss™ueoy 2w Twsryg 224 u/_‘/
[1poLsad i
(rPos wo| Jauany [aom|d [aNnosIs [ME

(P46 "tk | Mg} D

[ECEL NS
[LEELY

z0

(Tponad-uea| 3wy \jaoe|d j3dunode. |
(1porad weo| jawn ioed
(Ipotsad”yuo| |

B tr=ag SmandesdE
e PERIVSRS AACLEC

Sedps rBeseeag

d §25.n0sa4 [#EnpesS | o.._n_‘ uwe| uo ﬁH
JTpoLIzaT ueD| 3y 208 1224N0324 1erpesbazpun |

~ T r_._. i UWG—
[

(1192
(§)29

—~awe

blys su o
tr T

I
I

o] [Py [99E|d [#O.M03D4

Figure 68. Oz Screen Depiction the Expanded Resolution Choice.

183

=

= -

H S c

i 2.0
225 -

=

: 353 [Myzs 3 o
sl scx I w
E~ L u &
5 wow M =

€

T -

i o

4 =

I

FUASE i—feSn-SE

ﬁtmnl speciall plac

1

[N - s azvene govies
(I s eore sovvar
f At BE MV BE

— o 3o merewtt
2L ew— W

s e oag

e =aac

o8& ~8vC aawebC

ﬁwed(agenl. rescurcel placel timel!

jcall placel timel loan

1od1)

.

J{_’mn.op

L —was

atronl peric
on_la

lacel timel loan_j

loan_pericdl)

ﬁnt maney timeld

resourcz] timel)

ﬁn i

el time

recEIIERe smasdumdd
 — e et L Lt L

> — SE Sr@maneag
m-mw amvawe
— ane e L LT
b — SBE & s

* ity

timel)

n(l) (2]

sourcel pla
-

onfllcte]}

o —

‘ Ay ooz amaconcaz

oa mong amu-zd

T
O, es —ene

ecourcel pla

!
i
AGént1) . rel

aryl student! resourcel placel time] loan_periodl zloan_periodl)
culiy

AP B e A s ST

-oarsveny asvran

[nees aee-ag
P
' -
..‘ ‘.-—.‘ - —

LR
BE = eac

b latiE e
lled{agent. r

] I‘I!I I'I'

n

fITH

re;

A
H
1
-
a
/Gant1) frel
on_loan

Figure 69. Oz Screen Depiction the of Generalizations (1).

relation (i.e., BORROW RESOURCE), and then presenting those asserted relations. In this way,

184

altemative functionality is suggested as compensation to the conflicting goal.

2.2.3. Resolution Choice

At this point, the arbitrator determines that the generalized resolutions are not satisfactory.
Instead, based on all the altemnatives considered thus far, the arbitrator stops the resolution pro-

cess by choosing the specializations of the previous section (figure 67).

2.2.4. Resolution Implementation

Like in the first derivation, once the resolutions are chosen, they can be implemented. The
integrated model is a copy of one of the initial perspective’s hierarchies, a transformed initial
state, and transformed goals. The integrated goals are created by transforming ecach resolved rela-
tion based on the conflicting relation from which it was derived. In this example, the transforma-
tions are object substitutions. This is because the initial conflicting goals have been specialized.

The two conflicting goals:

| Level Relation

1 1 | on_loan(libraryl,patronl,resourcel,loan_period1)
2 1 | on_loan(agentl,patronl,resourcel,loan_periodl)

3 1 | on_loan(libraryl,patronl,book1,loan_periodl)

4 1 | on_loan(libraryl,patronl,periodicall,loan_period1)
5 on_loan(libraryl,patron1,special1,loan_period1)

6 1 | on_loan(libraryl,facultyl,resourcel,loan_period1)
2 1 | own(agentl,resourcel)

3 1 | recalled(agentl, rescurcel)

4 1 | renewed(agentl,resourcel)

Figure 70. Table of On Loan Generalizations.

185

on_loan{studentl, resourcel, loan_periocdl.duration=14) =
on_loan (studentl, resourcel, loan_periodl.duration=365)

give_notice(libraryl, studentl, overdue noticel.number=3) #
give_notice(libraryl, studentl, overdue noticel.number=3)

are transformed to the resolved goals of:

on_loan (undergraduatel, resourcel, loan_periodl.duration=21)
on_loan(graduatel, resourcel, loan_periodl.duration=14)

give_notice(libraryl,undergraduatel, overdue_noticel.number=2)
give_potice(lib:aryl,graduatel,overdue_poticel.number-Z)

Additionally, the initial library state is transformed. For each reference 1o studentl, two new rela-
tion instances are created which refer to undergraduatel and graduatc1. When the transforming
relations to use undergraduate rather than student, any references to loan period duration will also

be set to 14. Similarly, graduate relations will have their duration’s set 10 21,

Once the integrated perspective is constructed, the planner can attempl o create a design
achieving the integrated goals. Figure 71 shows an Oz depiction of the integrated perspective
including the initial state. From this description the planner can derive the design also shown in
figure 71. Notice the use of a different BorRROW_RESOURCE operator for cach of the two student
types. This is because of the planner’s operator representation, For cach different relation, an sin-

gle operator is used; hence, the different student loan periods are asserted by different operators.

2.2.5. Summary

In sum, in the expanded derivation:

(1) Oz deiected two conflicts. Loan period duration and overdue notice number had different

values in the librarian’s and patron's designs.

186

131
4383y
X3

peo]
anug

UD§IIRJIIU]
LI 3403 iyByuun
N04AR] VaaI3g

$307

EETS EIN RT3

37IND5AY .305@.;_

T ey

(1pomad ueo) Tauny [75ejd 120M0624 |Henpaib ?.l.._n..:z-o@
(2?34n0s2.4 [PEnpELGLIpUn -Su:nu.._m._uvcau-ngnuu._lé

{122110U7INPIFAD 22IIN0§31 [FENPRIEIIPUN «?l..n_:uu_..o..ué

(Zpoasd™ueo| [wy [22e|d 223M053s |F1enpeabiapun |Alelq|)ueo
(1924n083. (aqenpess [2enprab)spiodaa”
(132110UTaNPA2A0 9340824 [MENPESS [Aaeaq)|)asiiou”

{1owy Zasdnosad _.a...w..n.__#@ (19w} [234nos3s TCP..#:@

(12w [220)d 2294n06a. [AJEIqY])6626,

{jporadTuso] [Ny 1208]d 19700634 —3::15..&%2...9%@
Su:_._ﬂo_au@

(22940083, [MENPEBIIPUN | MENPRIEIIPUN)EP40IDI" 8 @

{(2924n0s 324 [arenpesbiapun ;.l...a_:n?_ouuulumu@ (1224n052.4 [nenpeJt -Efn__vovunuuuluuu.@.

(Zpliazd ueo| [auny 1238]d Z3N0S3 ja1enpeJBIapun)polsad” @

{1224n053. [71eNpRIb —Bu:v-byo_u._ouu;-nnu@ ([2wn 1230|d 122400824 ﬂbfa_:-uu‘ﬁ

[TETITO TFomIfIvd)

Figure 71. Oz Screen Depiclion the Expanded Integrated Model.

()

3

@

€)

(6)

@

6]

®)

(10)

(1)

(12)

187

The arbitrator choose the compromise method. For each confiict, the arbitrator choice to

apply the compromise generation method.

Oz generated compromises. Several compromise resolutions were generaied for each

confiict.

The arbitrator choose the specialization method.
Oz generated specializations.

The arbitrator focused on two resolutions.

The arbitrator choose the compromise method. For each resolution, the arbitrator choice

to apply the compromise generation method.

Oz generated compromises. Several compromise resolutions werc generated for each res-

olution.
The arbitrator choose the generalization method.
Oz generated generalizations.

The arbitrator choose three resolutions. Considering the satisfaction ecach perspective
derived from the altemative resolutions, the arbitrator choose the two loan period resolu-

rions and the one overdue notice resolution.

Oz derived an integrated perspective and design. Given the chosen of resolutions, Oz
transformed the conflicting perspectives to create an integrated perspective, and then used

the integrated perspective to derive an integrated design.

188

2.3. Comparative Evaluation

In evaluating the above derivations, I consider four aspects:

(1) Conflict Perception Comparison
Conflict detection by Oz was identical to that of the actual Burkhalter and Race study. The
loan period and overdue notice convicts were detected while the rest of the library was
ignored. However, this assumes that the rest of the polices in the original case study were
non-conflicting. Not doubi, this is not true. It is more likely that some polices were conflict-
ing, but Burkhalter and Race simply ignored them and focused on what they fclt were rele-
vant issues. Moreover, it appears that Burkhalter and Race did not initially deiect the over-
due notice conflict. Instead, analysis of the relationship between renewal and loan period
duration Jed them to overdue notice number. From this I conclude that Oz is more likely to
detect all conflicts, but not be able to determine which can be ignored and which should be
resolved. Note that such detection does not require that Oz have the cost cffectiveness rela-
tionships of section one. Only the goal relationships, indirectly determined through the plan-
ner, are necessary for conflict detection. Hence, while Oz appears to be an cffective func-
tional conflict detector, it does not have knowledge to determined which are relevant. This
is typical of the philosophy of its decision support. Oz presents information, but does not
attempt to make decisions. However, Oz does allow the arbitrator to ignore conflicts. To do
so, an arbitrator can simply choose one perspective’s values without engaging the negotia-

tion methods.

(2) Resolution Generation Comparison
Compromise generation by Oz was identical to that of the actual Burkhalter and Race study.

This was mainly due to the encoding of the analysis made in the original study. (Oz has no

189

means to derive the various cost and effectiveness graphs from a initial designs.) However,
the expanded example suggested resolutions not found in the original study. While Burkhal-
ter and Race did conduct analysis of resource usage for undergraduate and graduate sub-
classes, they combined the analysis when they derived their resolution. No reason was given
for this; however, it is likely that the similarity of the specialized graphs led them to coa-
lesce there analysis. The additional resolutions suggested may also have becn consider by
Burkhalter and Race; however, it is likely that they recognized that most of the other resolu-
tions were currently in the library (e.g., recall, renewal) or should not be part ol an academic

library {e.g., selling resources).

(3) Resolution Choice Comparison
Resolution choice in the strict derivation was identical 10 that of the actual Burkhalter and
Race study. This was not a parameterized part of the automated study. The resolution was
chosen to simulate the original study. The expanded derivation included the parameterized
student loan periods. This choice was made to simulate the University of Oregon’s library
policy.

(4) Rationale Record Comparison
The rationale record of Oz is obviously much richer than that of Burkhaiter and Race.
While their study has provided an exception description of their redesign (onc of the reasons
for choosing it), they did leave much out. In contrast, Oz provides records of: (1) the initial
perspectives, designs, and conflicts, (2) the alternatives considered, (2) the order they were

considered, (3) the resolutions chosen, and (4) the new design.

Based on this comparative analysis, 1 conclude that the representations and algorithms do indeed

support both the negotiation design process, but also records of its occurrence.

190

2.4. A Librarian’s Observations

To confirm my intuition about the case study, I consulted a librarian. This consultation con-

sisted of: (1) presentation of the Burkhalter and Race case study, and (2) presentation of the red-

erivation. The librarian was not informed of the expanded derivation. For the librarian’s part, she

considered the original study and its rederivation, but did not directly analyze the rederivation

step by step. Generally, the librarian agreed with above conclusions. Additionally, she made the

foliowing observations:

(1

2

3

The quantitative analysis conducted by Burkhalter and Race is generally not done. It is
time consuming and error prone. However, when such studies arc available, librarians usc
them to: (1) make choices, and (2) rationalize their choice 10 others. Hence, if Oz could

generate some of the analysis, even qualitatively, it would be of greal assistance.

Conflict detection is of lesser concem. Librarian's believe they understand how policies

conflict through the feedback from their patrons.® However, the resolution procedure was
of greater interest. Specifically, the generation of analytic compromises seemed appeal-
ing. Not so much as a decision aid, but as a means of convincing others that their policies

were correct.

Qualitative conflict generation appeared more appealing. In considering the case study,
the librarian suggested that Burkhalter and Race should have considered dividing students

into to subclasses, particularly, graduates and undergraduatcs. She suggested this

5This may or may not be true. As noted previously, Burkhalter and Race did not initially re-

alize the ineffectiveness of the third overdue notice. Only after the loan period conflict was ana-
lyzed, did overdue notice number become an issue.

191

alternative without prompting, perhaps, partly because the University of Oregon'’s library
has such a policy. Additionally, she was slightly surprised that Burkhalicr and Race did
implement the three week loan period. (In fact, the University of Oregon'’s six month fac-
ulty and graduate student loan policy is currently under consideration for reduction.) One
reason she cited against longer loan periods was that patrons can simply renew their
resources (once) to obtain twice the duration. However, this was just the process that
Burkhalter and Race were trying to reduce. While it is truc that their study was some
years before library automation (1968), it is still the true today that the renewal process
uses circulation staff resources. Any reduction in renewals is bound to free up some circu-

lation resources.

In sum, the librarian found the (experimental) system appealing. She suggesied that such a system
might readily fit into current efforts aimed at automating a library, For example, she suggested
that some of the quantitative analysis conducted by Burkhalter and Race could be retrieved
directly using existing library software. In the original case study, the circulation records and sur-
veys were used to determine the relationships between loan period, renewal, and resource usagc.
Some of these relationships can be inferred from the recorded circulation data (e.g., reduced loan

periods increases renewals, and increased renewals increases reduces circulation staff resources.)

3. Summary

The evaluation of the two derivations suggest that the representations and algorithms pre-
sented in this dissertation can provide automated assistance for negotiated design, Specifically,

the algorithms automate:

¢))
(2)
(3

@

Conlflict detection.
Resolution generation.
Resolution implementation.

Negotiation rationale.

192

193

CHAPTER VII

CONCLUSIONS

This dissertation presented a methodology and automated algorithms for collaborative
design, The methodology called for individuals to independently create designs achieving their
own goals, and then collectively derive a single unified design using automated negotiation tech-
niques. From a software engineering perspective, the methodology provides paraliclism, simplic-
ity, rationale, and reuse. From a negotiation perspective, the methodology provides multiple agent
preference maximization and novel resolution synthesis. From an artificial intelligence perspec-
tive, the algorithms provide automation for the complex processes of conflict detection, resolution
synthesis, and resolution selection. This dissertation described how interests of individuals or
subgroups can productively aid the derivation of robust collaborative designs through the auto-

mated negotiation of their conflicts.

This dissertation described formal representations for modeling individual perspectives,
design confiicts, and subtasks involved in negotiation. Specifically described were representa-
tions for: (1) goals and preferences over domain operators, objects, and relations, (2) categories of
design and goal conflicts, and (3) categories of conflict resolutions. Automated processes can

manipulate these representations to aid group negotiation.
This dissertation described formal algorithms for detecting conflicts and synthesizing reso-
lutions. Specifically described were algorithms for: (1) distinguishing between simple design dif-

ferences and design interference, (2) mapping between goals and their supporting design

194

components, (3) detecting goal conflicts, (4) synthesizing analytic and heuristic resolutions, and
(5) reintegrating resolved goals into a design. Analytic resolution consists of compromise genera-
tion using a multiple criteria linear programming method. Heuristic resolution consists of search
through domain hierarchies to synthesize dissolutions and compensations. These methods have

been implemented and applied.

This disseriation describes the implementation of negotiation algorithms and their applica-
tion to library design problems. The design of library systems is a complex, multiple agent, nego-
tiation enterprise. I have represented portions of documented library designs in the collaborative
design tool, Oz. Oz has been used to detect conflicts and derive negotiated resolutions similar 1o
those published by expert librarians. The implementation and its application to the library domain
support the central tenet of this dissertation: processes of negotiated design can be automated

through the representation of a generic domain model and specific representations of individual

perspectives.

1. Contributions

Research presented in this dissertation has contributed necw idecas conceming design
methodology and automated negotiation. It argues for independent design followed by negotiated
integration. It describes how automated support can be provided for this methodology and pre-
sents a case-study as demonstration. Most importantly, this dissertation illustrates how, heretofore

implicit, negotiation processes can be made explicit and supported.

Oz is a product of this dissertation. It demonstrates how negotiated design can be supported
through computer automation. Oz has successfully combined the following subsysiems to form a

negotiation design tool.

195

(1) Perspective modeling.
(2) Automated design derivation.

(3) Design integration using conflict detection, resolution generation, and resolution imple-

mentation.
Oz has been successful because of the following:

« Hierarchical Generic Domain Model
The use of domain hierarchies has: (1) simplified preference description, and (2) provided a
basis for resolution search by interrelating domains so conflicts can be transformed mean-
ingfully. Most impontantly, the automatically construcied operator hicrarchy provides a way

to find functionally similar, yet symactically different, goals.

» Interactive Resolution Procedure
Allowing the user to control the search for resolutions has unburdencd the systiem from cod-
ifying, complex and abundant, domain and contextual dependent, knowledge concermning
individual and group preference trade-offs. Instead, Oz generates possible resolutions while
the user guides the search and chooses resolutions. This has proved to be a key decision,

both for tool acceptance, and making the problem tractable.

« Simplifying Assumptions
The simplifying assumptions conceming common representation languages, simplified
design language, and consistent terminology have eased the impicmentation task. However,
they have not crippled the basic ideas. The negotiated design algorithms will scale up even
where these assumptions do not hold as long as the input 1o the algorithms obey these

assumptions. Moreover, the algorithms can be extended to multiple, more expressive,

196

languages by describing how conflicts are defined in the languages and how goals are linked
to designs. The basic ideas of conflict detection, characterization, and resolution do not

depend on these assumptions.

2. Limitations

Some of the reasons that Oz has been successful are also limitations. This is mainly due to

the limited resources of a dissertation. However, others are more fundamental problems.

- Simplified Languages
Problems of expressibility can be overcome by using more expressive perspective and
design languages. For perspectives, non-linear and conditional constrainis will help. Also,
initial preference trade-offs should be recorded when they exist. For designs, incorporating
time and recursive processes will help. In any case, Oz must be updated to: (1) detect mean-
ingful goal differences, (2) understand the derivation of design components [rom goals, (3)
detect meaningful design language interference. Once these can be defined for perspective

modeling and design language, the Oz approach can be applied.

+ Knowledge Engineering Bottleneck
Oz relies on the domain model to generate heuristic resolutions. Only the resolutions that
can be synthesized by combining domain model components can be gencrated. Hence, the
system is limited by the knowledge initially placed into it. Unforiunately, constructing the
domain model can be a difficult and time consuming process. However, Oz may assist in
this process, as suggested in chapter I, by posing hypothelical components which, il

acquired, could resolve a conflict.

197

« Resolution Explosion
Oz has no way of controlling the resolution search process. While the user currently con-
trols this process by choosing conflicts 1o work on and seiting the resolution generation
level, the user can still be overcome by the number of resolutions generated. To control
heuristic search, Oz must use the individual preferences represented, infer or enquire about

group preferences, and incorporate domain control heuristics.

3. Future Research

Future research entails expanding rationale capture, expanding aulomation, applying the

methods to new domains.

» Expanding Rationale Capture
Since Oz is based on an interactive approach, some a prior knowledge is not captured. Cur-
rently, Oz only tracts initial goals and preferences through negotiations, but does not cap-
ture initial preference trade-offs. Individual's may wish to state their initial preference tradc-
offs, or even, define group trade-offs. Such a utility based approach is not supported, but
would be useful even with the interactive approach. One could state initial trade-offs and
tract them as they changed during design and group integration. In doing so, onc could
observe how the design and integration processes effected individual perspectives and how
group trade-offs were derived from them. Additionally, utility analysis could be used to
tesolve unimportant conflicts, while a human directed the resolution of more important con-

flicts.

» Expanding Automation: Resolution Search Control

Currently, Oz is weak in two areas of automation: controiling rcsolution search and

198

constructing domain models. During heuristic resolution generation, altemative relations are
sought in the domain hierarchies. Constraining the resolutions considered, especially with
an interactive approach, is essential. One approach is to use prefercnces atiached to the
relations 1o limit consideration: those relations which are dominated by more preferred rela-
tions can be thrown out. Domain dependent heuristics can also be used, ¢.g., resource scli-
ing should not be part of an academic library. Finally, distance measurcs and trade-off anal-
ysis can also be used: the user can specify that relations which reduce achievement of some
criteria not be presented, or relations greater than some distance from the current (or ideal)

alternative should not be presented.

« Expanding Automation: Domain Model Development
Domain model construction is also a problem. Currently, there is no aid to detect or resolve
inconsistent preferences among the operator, object, and relation hicrarchics. Auribute rela-
tionships must be manually defined (e.g., reduced loan period duration incrcases renewal
costs). However, some of these relationships may be determined through simulation of
plans involving such operators. Finally, the resolution process can require the description of
previously undefined preferences or suggest the inclusion of new operators, objects, and
relations. The role of the resolution process in modifying the domain model should be

explored.

« New Domains
While Oz has only been applied 10 the library domain, its underlying domain model has
been shown to capture knowledge from other domains[2]. However, it should be applied to
other contexts besides design. For example, decision support [or librarians or group

scheduling. Oz can be applied to any domain where: (1) a domain model can be

199

constructed, (2) goal conflict can be detected, (3) linkage between goals and dcsigns can be
established, and (4) design interference can be determined. Library decision support appears
promising on these grounds. Moreover, some relationships of the domain model may be
inferred from running library sofiware systems. Librarians appear receptive to a negotiation
aid, especially since their policies are continually be reconsidered and renegotiated. For
similar reasons, group meeting scheduling appears promising. Individuals can categorize
scheduled events into various operator types and describe criteria for good schedules (e.g.,
no time conflicts, no back-to-back meetings). However, in group scheduling, individual's
meeting goals must be negotiated. For simple conflicts, an expanded Oz could run automat-

ically, whereas, group resolution of more important conflicts could be interactively assisted.

4. Conclusion

This dissertation has presented a methodology for independent design and algorithms for its
automated support. It has demonstrated that an implemented system can indeed provide users
with support sufficient to generate previously negotiated designs. Its basic approach of knowl-
edge-based interactive resolution shows promise. Both in design support, but also in other

domains of group negotiation.

APPENDIX A

THE LIBRARY MODEL

{open_new kb "Library")

{def_otyp "resource"”
:sb * ("book" "periodical” "special})}

(def_otyp "thing”
:sb ' ("money" "resource"))

(def_otyp "time"
:d "Actual time, some day count from 0."

)
{def_otyp "place")

{def_mod otyp "overdue notice”
tat ' { ("Number" :val 3 :min O :max 5)
{"Cost” :val 0 :min 0 :max 100}
{"Wasted Effort"” :val 0 :min O :max 100)}
tatt_constraints ‘' (
;: Cost
{44 1 0 >= 100)
(81 0 >= 42)
;: Wasted Effort
(=2 01 >=0Q)
{(-23 0 1 >= —-40)
(=47 0 1 >= =135}}}

(def_mod otyp "loan_period"

:at ’ {;;Ranges should be same for all models!
{"Duration” :val 14 :min 0 :max 365)
("Usage” :val 100 :min 0 :max 100}
("RenewCost™ :val 0 :min 0 :max 100))

;; These columns must be in the order of the above variables.

ratt_constraints ' (

:: Usage

{(=5.71 1 0 <= 0}
(-2.36 1 0 <= 47)
(-0.01 1 0 <= 96.29)

200

;: RenewCost
(2.5882 0 1 »= 100}
{(1.1429 0 1 >= 50)}))

(def otyp "student”
:d "Student patron types."
:sb ' {("undergraduate" "“graduate"}))

{def_otyp "patron"
:d "Patron types."
:ab * ("student” "faculty"))

(def_otyp "“agent”
:d "Active system agents."”
:sb * {"patron" "library"))

{def_ptyp "time_is"
:d "The time is some_integer.”
to ' ("time"})

{def_ptyp_all "own"
to ' ("patron" "resource" "time"))

;2; Simplified own.
{def ptyp "own"
:o0 ’ {"agent" "thing" "time")
tsb ‘ {("own" (library resource time))
("own" {patron resource time)))}

(def_ptyp "renewed"
to ! ("agent" "resource" “place" "time"))

(def_ptyp "recalled”
o ' ("agent" "resource" “place" "time"})

{def_ptyp all "loan_period"”

:d "A patron can borrow resource for a lcan period DURATION"
to * ("patron" "resource" "place" "time" "loan_period"))

; (def_ptyp all "possess™
H :d "Agent physcially has resource."

5 :o * {"agent" "resource" "place” "time" "loan_period"]]

;;+ Simplify possess relation.
(def_ ptyp "possess"

20

:d "Agent physcially has resource."

to ' ("agent" "resource" "place" “"time")

:ab ' ({"possess” {library resocurce place time})
("possess" (patron resource place timej}}})

{def_ptyp all "on_loan”
:d "Resource on loan from TIME until TIME+ LOAN PERIOD."
to ' ("library" "patron" “"resource" "place” "time" "loan_period”})

;:: Simplify give notice relation.

; (def_ptyp_all "give notice”

:d "LIBRARIANs give PATRONs a NOTICE.™

0 * ("library" "patron" “resocurce" "overdue_notice"))

0

e

{(def_ptyp_all "give_notice"
:d "LIBRARIANs give PATRONs a NOTICE."
:0 ' ("library" "student" "resource" "overdue_notice™)}

(def_ptyp "give_notice"

:d "LIBRARIANs give PATRONs a NOTICE."

:0 ' {("library" "patron" "resource" "overdue_notice"}

:sb ’ {{"give_notice" (library student rescurce overdue_notice))
{"give_notice" {library faculty resource overdue_notice})))

{def_ptyp "read"
:d "n"
:0 ' ("agent™ "resource" "place" "time" “"loan_peziod"))}

(def_ptyp_all "access_records"
:d LA L
o0 ' {"agent" "patron" "resocurce"}}

{def_ptyp_all “know_records"”
:d "”
1o * ("agent"” "patron" "resource")}

(def_ptyp "secure_records"
:d "t
;0 ' {"agent" "agent™ "rasource"))

:7:; These operators describe simply how two agents can carry out transactions

::; for buying, berrowing, renewing, and recalling resources.

:;: Puture developments include: subtypes of these gperators, e.g. recall by

L}
::: phone or desk.

202

{def_etyp "Read_Resource”
:d "An AGENT can read a RESOURCE at PLACE from a PERIOD from TIME."
to ' {agentl resourcel timel placel lecan_periodl)
i= ' {(possess(agentl resourcel placel timel}))
=)
:+ ' {{read(agentl resourcel placel timel loan_periodl}}

1B

(def_etyp "Recall Resource"
:d "A loaned RESOURCE is given up by an AGENT."
:0 ’ (agentl agent2 agent3 resourcel timel time2 placel place2
leoan_periodl loan_period2)
t= ' ((time_is (time2})
(loan_period(agent3 resourcel placel timel loan_periodl)}}
:— ' {(possess({agentl resourcel placel timel)}
{on_loan (agent2 agentl resourcel placel time2 locan_period2})}
:4+ ' ({possess {(agent3 resocurcel placel time2})
(on_loan{agent2 agent3 rescurcel placel time2 loan_periodl))
(recalled{(agent3 resourcel placel time2)})

)

{def_etyp "Renew Resource"

:d "An AGENT is given a new due date for a loaned RESQURCE."

:0 ’ (agentl agent2 resourcel placel loan_periodl timel time2)

:= * ((loan_period{agentl resourcel placel timel loan periodl})
(time_is (time2})}

:= *{(on_loan{agent2 agentl resourcel placel timel lcan_periodl))
(possess {agentl resourcel placel timel)})

:+ ' {{on_loan{agent2 agentl resourcel placel time2 lean_periodl})
{possess (agentl resourcel placel time2})
(renewed {(agentl resourcel placel time2})

»)

{def_ etyp "Borow_Resource"
:d "A lonable RESOURCE is LOANED to an AGENT for LOAN_PERICD."
:o ' (agentl agent2 resourcel timel placel loan_periodl)
:= ' {{loan_period{agentl resourcel placel timel loan_periocdl})))
:— ' {({possess (agent2 resourcel placel timel}})
:+ ' {(possess{agentl resourcel placel timel})
{on_loan (agent2 agentl resourcel placel timel loan_periodl)}

1)

(def_etyp "Buy_ Resource”
:d “"Agents exchanges MONEY for RESOURCE."

203

o *({timel time2 time3d agentl agent2 resourcel moneyl
placel loan_periodl leoan_period2)
t= ‘({time_is(time3}))

:— ' {{own{agentl resourcel timel})
(possess{agentl resourcel placel timel})
{own {agent2 moneyl timel))

{possess (agent2 moneyl placel time2}})

t+ ' {(possess (agent?2 resourcel placel time3))

{own (agent2 resourcel time3l)}

{own (agentl moneyl timed))

{possess (agentl moneyl placel time3d))
)

(def_etyp "Access_Record"
:d "An AGENT can read the library lcan records.”
;0 ' (agentl agentZ2 resourcel)
:” ' ((=2ecure_records (agentl agent2 resourcel)))
:= ' {(access_records (agentl agent2 rescurcel)})
=0
¢+ ' ((know_records(agentl agent2 resourcel})

})

(def_etyp "Secure_Other_ Records”
:d "A PATRON can not read the library loan records.”
:o0 ' (patronl patronZ resourcel)
:~ ' ((know_records (patronl patron2 resourcel}))
i= ' ({access_records(patronl patron2 resourcel)})
=0
i+ ' ({secure_records{patronl patron2 resourcel}}

1)

{def_etyp "Secure_Self_ Records"
:d "A PATRON can not read their own library loan records.”
o ' (patronl resourcel)
:~ ' ((know_records(patronl patronl resourcel}))
HL ’((access_records(patronl patronl resourcel)})
= ()
:+ ' {(secure_records{patronl patronl rescurcel}))

)}

(def_etyp "Give Notice"
:d "The LIBRARY gives PATRONs OVERDUE NOTICEs for RESOURCEs."
so *{libraryl patronl resourcel placel timel loan_periodl overdue_noticel)
:= ‘ ({on_loan(libraryl patronl rescurcel placel timel loan_periodl)))

= 1)

205

:+ ' ((give_notice(libraryl patronl resourcel overdue_noticel})

1B

(def_oz_prob 'loan-and-records

to ' ({(libraryl library}
{studentl student}
(rescurcel resource)
{resourcel resource)
(timel time)
(placel place}
{overdue_noticel overdue_notice)
{loan_periodl loan_period})

:i ' ({possess(libraryl rescurcel placel timel})
{loan_period{studentl resourcel placel timel locan_ pericdl})
{own (libraryl resourcel timel))
{access_records (libraryl studentl resourcel))
{access_records (studentl studentl resocurcel))
(time_is(timel})}

1g* {
(give_notice(libraryl studentl resourcel overdue_noticel))
(know_records (studentl studentl rescurcel))
{on_loan(libraryl studentl resourcel placel timel leoan_periodl))

)

{set_default strategy)

206

APPENDIX B

A DETAILED MCSM EXAMPLE

While the loan period examples illustrates the interface between design space and compro-
mise space, the following example focuses on compromise search. Below, is a production mix
example; two widgets x, and x, are to be produced subject to three resouce constraints. Two

objectives o,, and o, are to be maximized, and one, 0,, is to be minimized.

Example:

(def_order x VALUES (0 ... 2500) #’identity order)
(def_scale x, VALUES (x, VALUES) #’identity scale)
{def_order x, VALUES (0 ... 2500) #'identity order)

(def_scale x, VALUES (x, VALUES) #’jdentity scale)

{def constraint ¢, (10 x, + € x, < 2500))
{def_constraint c, (5 x, + 10 X, < 2500})
(def_constraint c, (7 x, + T x, s 2050))

(def_establish o max (10 x + 20 x,))
(def_establish o, max (23 x, + 32 x)))
{def_establish o, min (x, + x,))

The example consists of scales x, and x,, constrainis ¢, ¢,, and ¢,, and objcctives o; and o,.

Even with our scale, constraint, and objective representation, some converion i$ required 10
begin the Multi-criteria Simplex Method (MSM). First, inequalities expressed in constraints must
be expressed as equalities by appending slack variables. For example, 10x, + 20x, < 30 would be
transformed to 10x, + 20x, +x, = 30, where x, is a slack variable. Slack variables are distinct
from decision variables which occur in the original problem description. A multi-criteria simplex
tableau is constructed using the coefficients and values found from the problem criteria and con-
straints. Variable coefficients are divided into basic and nonbasic groups. In an initial MSM
tableau, nonbasic variables will represent decision variables, basic variables will represent slack
variables. Basic variables form the current “basis” of a solution, their values will be represented
in the last column of the tableau. The last row represents the objectives: in the case of maximiza-
tion, their coeficents are negated.

Below, the general MSM tableau is illustrated. Basic variables arc named x, ... x_, nonba-
sic variables x__, ... X, cooefficients of the nonbasic constrainis Yip coefficients of the nonbasic

objectives z; Values are named xm" where m is the refers to the variables and & refers the the kth
tableau, or solution set.

Basic variables | Nonbasic variables | Values of basic
Basis L SIS) S xj . variables
X 1...0 Yi@ey Y45 Yin
Xm 0...1 Ym(me1) Ymj = Ymn i
Criteria 1..0 2y ey %5 Zin £,x%
Rows ;
0..0 Yiemety Vi Zin f(x%

207

Our problem can be formulated as the following multi-objective lincar programing problem:

Max 10 X, + 20 X,
Max 23 X, + 32 X,
10x, + 6x, < 2500
5%, + 10x, = 2500
7x, + 7x, < 2050
xX; 2 0
X, 2 0
It's MSM tableau is:
Nonbasic variables | Basic variables | Values of basic
X, Xy X, X, Xg variables
10 6 1 0 0 2500
5 10 0 1 0 2000
7 7 0 0 1 2050
10 20 0 0 0 0
23 -32 0 0 0 0

Once a probiem is represented in the MSM tableau, we apply a series of matrix transformations to
find objective maximizations. In the criteria row, z; <0 indicates that we can improve on the ith

objective if we introduce the X, into the basis; we improve Z; for each unil increasc in X. A basic
variable X; is introduced into the basis by pivoting about some Yii With such knowledge, we can
search through MSM tableaus to generaie all extreme points which maximize one or morc

208

criteria. Below is the MSM tableau afier two transformations. Both criteria are maximized, since
none of the z; are negative. Generally, some criteria are maximized while others arc at suboptimal
values. Thus, several (extreme point} solutions are typically required to represent all objective
maximizations.

Current | Nonbasic variables | Basic variables | Values of basic
Basis X, X, Xy X4 X, | variables
X, 1 0 0.143 -0.086 0O 185.714
X, 0 1 -0.071 0143 0 107.143
X, 0 0 05 04 1 0
Criteria 0 0 0 2 0 | 4000
Rows 0 0 1 2.6 0 7100

The basic algorithm is a depth first search of multi-criteria simplex matricies containing
unique bases. We attempt to derive a nondominate matrix by pivoting about all z columns = 0,
i.e., those which could lead 10 a nondominate matix. Once a unique nondominated matix is found,
we introduce all z, columns which are not dominated by another z, column. In the previous two
sentences “all” is computed depth first, i.e., we visit the first and storc the rest. As we visit each
matix (basis) we remove it from the list of bases to be visited. If several columns may serve as the
pivot, we prefer the one which has the Min Ezj; further, each new set of bases generated by the
“all” statements are first sorted by Min }:zj and then pushed onto the unexplored_bases list.
Zeleny proves that the set of nondominated extreme points is finite and shows the algorithm will
complete after a finite number iterations[93). Below, we sketch out the general algorithm as we
have implemented it.

209

(defun MCSM ()
(if (feasible_solution)
{loop do (create_new_tableau xi unexplore_bases)
{if (unique xi)
{progn
{save_solution xi)
{MCSM_search aux))

{if (less_than_0O 2z2js) ;xi is dominated!
(add_to zjs unexplore bases);Pivot may lead to new basis.
(progn

(if {(nondominated xi) (save_solution xi))
(MCSM_search_aux))})
until empty{unexplored bases))})

(defun MCSM_search_aux ()
{if (nondominated pivot 8zjs)

:;Exist pivots leading to a xi+l which dominate all other xi+l?

{add to 82js unexplore bases)

(if (and not_all 0s_zj (nondominated xi))
;i;Store those bases which might lead to nondominated xi.
;:zj columns which are not zero and lead to unexplored bases.
(add_to not_all 0s_zj unexplored bases)))}

Below, we also show the algorithms for determining dominance and uniqueness. The non-
dominance algorithm applys the simplex method to the Z; subtableau. It will acquaint the rcader

with the general simplex pivot method; a more complex form is used (o pivot the MCSM tableau
during create_new_tableau. The uniqueness algorithm is supplied for completencss. (See[92)
for further details.) To determine dominance, we apply the single ciriteria lincar simplex method
to the Z; subtableau. If the tableau can be maximized, then our x, is nondominated. Phase I of

two phase simplex method is unnecessary because the value column is all 0, i.c., there is no need
to check if there is a negative value.

(defun NonDominated (Z2_tableau)
{laop for pivot = (find pivot Z_tableau)
until (null pivot)
(if reached_max{pivot)
{return t)
{(pivot Z_tableau pivot}))}

To find a pivot, we search through the objective () row for negative elements (sincc we are maxi-
mizing). When one is found, search that column for the largest positive value in the nonbasic
variables. If one is found, we have our pivot; otherwise, we must continue searching the objective
row. If no pivot is found and there was a negative element in the objeclive row, then we have
reached a maximun.

{defun Find_Pivot (tableau)
(loop column = from 1 to nonbasics(tableau)
for negative = (or negative (< tableau[W_row,column] 0)}
for row = {and negative {row of_ max column_value column}}
do (if row (return (list row column)}) ;Early termination
finally (return negative}}}

210

To pivot, replace each element in the pivot row {except the pivot) by itself divided by the pivol..
Every other element ¢, where e = tableau[rc], is replaced by: -1 * (¢ - (pivoi_row[r] *
pivot_columnic]) / pivot).

{defun Pivot {tableau row coclumn}
{loop with pivot = tableau[row,column] ;compute key row
for cel from 1 to columns{tableau)
tableau[pivot_row,col] = {(/ tableaul[pivot_row,col] pivet))
{loop for r from 1 to rows(tableau) rsubtract & multiply rows
for key value = tableau{r, celumn]
unless r = row
{(loop for c in columns
(if (= ¢ column)}
tableau[r,c] = 0
tableau([r,c] = tableau(r,c] -
(* key_value tableau[row,clli}}))

A unigue tableau conatains a maximized objective and no other adjacent tableaus which also
maximize it. This is determined by verifying the objective row, say j, has all values 7.12 0 and any

values z,= 0 have columns z, 20,

{defun Unigque (tableau)
(loop for r in objective_rows
thereis (loop for c from 1 to columns{tableau)
always {and tableau[r,c] 2 0
(if tableau(r,c] = 0
{(loop for rr in objective_rows

for val = tableau(rr,c}
for minus = (or minus val < 0}
;;Early termination if positive wval.
do (if val 2 0) (return t)
finally ({(return minus)}

thi)))

10.

BIBLIOGRAPHY

R. Alterman, “Adaptive planning,” Cognitive Science 12 (1988) 393-421.

J.S. Anderson and A.M. Farley, “Plan abstraction based on operalor generaliza-
tion,” Proceedings of AAAL, (August 21-26 1988) 100-104.

1.S. Anderson and A.M. Farley, “Partial commitment in plan composition,” CIS-
TR-90-11, Univerisity of Oregon (1990).

American Library Association, Circulation policies of academic libraries in the
United States, 1968, American Library Association(1970).

M.H. Bazerman, Judgment in managerial decision making, John Wilcy &
Sons(1986).

L. Beck and T. Perkins, **A survey of software engineering practice: tools, meth-
ods, and results,” Transactions on Software Engineering SE-9 (Scpicmber
1983) 541-561.

V, Berzins, “On merging sofiware extensions,” Acta Information 23
(1986) 607-619.

D.G. Bobrow, Qualitative reasoning about physical systems, The MIT Press, Cam-
bridge, Massachusetts(1985).

T.X. Bui, Co-oP: A group decision support system for cooperative multiple criteria
group decision making, Springer-Verlag(1987).

B.R. Burkhalter and P.A. Race, “An analysis of renewals, overdues, and other fac-
tors influencing the optimal charge-out period,” in: Eds. B.R. Burkhalter, Case
studies in systems analysis in a university library, The Scarecrow Press, inc. ,
Metuchen, N.J. (1968) 11-33.

n

1.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

R.M. Burstall and J.A. Goguen, “Putting theories together to make specifications,”
Proceedings of the 5th IJCAI, (1977) 1045-1058.

M.H. Burstein, “Concept formation by incremental analogical reasoning and de-
bugging,” in: Eds. R.S. Michalski, J.G. Carbonell, T.M. Mitchell, Machine learn-
ing: an artificial intelligence approach, Tioga Publishing (1986) 351-369.

D.N. Card, FE. McGarry, and G.T. Page, “Evaluating software engineering tech-
nologies,” Transactions on software engineering SE-13 (July 1987) 845-851.

D. Chapman, “Planning for conjunctive goals,” Artificial Inelligence 32
(1987) 333-3717.

1. Conklin, “Interissue dependencies in gIBIS,” STP-091-89, MCC (February 10,
1989).

S.E. Conry, R.A. Meyer, and V.R. Lesser, “Multistage negotiation in distributed
planning,” in: Eds. A.H. Bond, L. Gasser, Readings in distributed artificial intelli-
gence, Morgan Kaufmann , San Meteo, California (1988) 367-384.

B. Curtis, H. Krasner, and N. Iscoe, “A field study of the softwarc design process
for large systems,” CACM 31 (November 1988) 1268-1287.

Randall Davis and Reid G. Smith, “Negotiation as a metaphor for distributed prob-
lem solving,” Artificial Intelligence 20 (1983) 63-109.

T, DeMarco, Structured analysis and system specification, Yourdon(1978).

M. Deutsch, The resolution of conflict: constructive and destructive processes,
Yale University, New Haven(1973).

K. Downing and S. Fickas, “Specification criticism via policy-dirccted envision-
ment,” CIS-TR-90-05, University of Oregon (February 27, 1990).

S. Easterbrook, Elicitation of requirements from multiple perspectives, Imperial
College of Science, Technology and Medicine, London(May 1991).

M.S. Feather, “Language support for the specification and development of com-
posite systems,” Transactions on Programming Languages and Systems 9 (April
1987) 198-234.

212

24,

25.

26.

27.

28.

29.

30.

3L

32.

33,

35.

36.

37.

M. S. Feather, “Constructing specifications by combining parallel elaborations,”
Transactions on Saftware Engineering 15 (February 1989) To appear (Also avail-
able as RS-88-216 from ISI).

L. Festinger, Conflict, Decision, and Dissonance, Tavistock Publications, Lid.,
London(1964).

S. Fickas, “Automating the transformational development of sofiware,” Transac-
tions on Software Engineering SE-11 (November 1985) 1268-1277.

S. Fickas, “A knowledge-based approach to specification acquisition and construc-
tion,” CIS-TR-85-13, University of Oregon (November 1985).

S. Fickas and John Anderson, “‘A proposed perspective shift: viewing specification
design as a planning problem,” Fifth international workshop on software specifica-
tion and design, (May 19-20, 1989) 177-184.

S. Fickas, J. Anderson, and W.N. Robinson, “Formalizing and automating require-
ments engineering,” CIS-TR-90-03, University of Oregon (April 6, 1990).

S. Fickas, J. Anderson, and W. Robinson, “The KATE project: supporting spccifi-
cation construction,” CIS-TR-90-24, University of Oregon (December, 1990).

D. Gentner, “The mechanisms of analogical learning,” in: {777}, (1987) 199-241.

Michael P. Georgeff, “Communication and interaction in multiagent planning,”
Proceedings of 1983 conference of the AAAI, (1983) 125-129.

J.A. Goguen, “Reusing and interconnecting software componenits,” Computer 19
(February 1986) 16-28.

R. Greiner and D.B. Lenai, “A representation language language,” Proceedings,
(1980) 165-169.

R.P. Hall, “Understanding analogical reasoning: computational approaches,”
86-11, University of California, Irvine (June 4, 1586).

K.J. Hammond, “Leaming to anticipate and avoid planning problems through the
explanation of failures,” AAA/, (1986) 556-560.

C. Hayes, “Using goal interactions to guide planning,” AAAI-87, (1987) 224-228.

213

38.

39,

41.

42,

43.

45.

46.

47.

48.

49,

S. Horwitz, J. Prins, and T. Reps, “Integrating non-interfering versions of pro-
grams,” #690, University of Wisconsin-Madison (March 1987).

M. Inuiguchi, H. Ichihashi, and H. Tanaka, “Fuzzy programming: a survey of re-
cent development,” in: Eds. R. Slowinski, J. Teghem, Stochastic versus fuzzy ap-
proaches to multiobjective mathematical programming under uncertainty, Kluwer
academic publishers (1991) 45-68.

I.L. Janis and L. Mann, Decision making : a psychological analysis of conflict,
choice, and commitment, The Free Press, New York(1979).

E. Jantsch, Technological Forecasting in Perspective, Organizalion for Economic
Co-operation and Development, Paris(1967).

W.L. Johnson, “Specification as formalization and transformating domain knowl-
edge,” in: Eds. M. Lowry, R. McCartney, D. Smith, Proceedings of the workshop
on automating software design, AAAI (August 25, 1988) 48-55.

G. Kaiser, “Composing software systems from reusable building blocks,” Twenti-
eth Hawaii International Conference on Systems Sciences, (January 1987)

S. Kedar-Cabelli, ‘Purpose-directed analogy,” in: Proceedings of the International
Conference of the Cognitive Society, (1985) 150-159.

R. Kemmerer, “Testing formal specifications to detect design crrors,” Transactions
on Software Engineering SE-11 (January 1985) 32-43.

Klee, “Unknown???,” in: Eds. G.B. Dantzig, A.F. Veinott, Jr., Mathematics of the
decision sciences: part I, American mathematical Soceity , Providence, RI (1968)

M. Klein and S. C-Y Lu, “Run-time conflict resolution in cooperative design,” Al
and Design Workshop, (1988) To appear.

R. Kling and W. Scacchi, “The web of computing: computer technology as social
organization,” in: Eds. M. Yovits, Advances in Computing, Academic Press, Inc.
(1982) 1-90.

D.F. Kohl, Circulation, interlibrary loan, patron use, and collection maintenance:
A handbook for library management, ABC-Clio Inc.(1986).

50.

5L

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

K.L. Kraemer and J.L. King, “Computer-based systems for cooperative work and
group decision making,” Computing Surveys 20 (June 1988) 115-146.

D.B. Lenat, “The nature of heuristics,” Artificial Intelligence 19 (1582) 189-249.

D.B. Lenat, “EURISKO: A program that leams new heuristics and domain con-
cepts: the nature of heuristics IIl,” Artificial Intelligence 21 (1983) 61-98,

D.B. Lenat, “Theory formation by heuristic search: the nature of heuristics 11,” Ar-
tificial Intelligence 21 (1983) 31-59.

D.B. Lenat and J.S. Brown, “Why AM and Eurisko appear to work,” Proceedings
of AAAI, (1985) 236-240.

Association of Research Libraries, “Collection development policies 1977, Sys-
tems and Procedures Exchange Center, (November 1977)

Association of Research Libraries, “Automated circulation,” Systems and Proce-
dures Exchange Center, (April 1978)

Association of Research Libraries, “SPEC kit on goals and objectives 1979,” Sys-
tems and Procedures Exchange Center, (October 1979)

B.P. Lientz, “Issues in sofiware maintenance,” Computing Surveys 15 (Sepicmber
1983) 271-278.

Marc Luria, “‘Goal conflict concerns,” JJCAI-87, (1987) 1025-1031.
D. McDermott, “Planning and acting,” Cognitive Science 2 (1978) 71-109.

E. Mumford and D. Henshall, Aparticipative approach to computer sysiems de-
sign, Halsted Press, New York(1979).

E. Mumford and M. Weir, Computer systems in work design—the ETHICS method,
Associated Business Press, London(1979).

J. M. Neighbors, “The Draco approach to constructing sofiware from reusable
components,” Transactions on Software Engineering SE-10 (September
1984) 564-574.

215

65.

66.

67.

68.

69.

70.

71.

72

73.

74.

75.

76.

N.I. Nilsson, Principles of artificial intelligence, Tioga, Palo Alto, CA(1980).

J.W. Perkins and P.N. Clingen, Inglewood public library circulation procedures,
Inglewood public library(1972).

D.G. Pnuitt, Negotiation Behavior, Academic Press Inc.(1981).

Howard Raiffa, The art and science of negotiation, Harvard University
Press(1982).

C. Rich, R.C. Waters, and H.B, Reubenstein, “Toward a requiremenis apprentice,”
4th International workshop on software specification and design, (April 3-4,
1987) 79-86.

C. Rich and R.C. Waters, “The programmer’s apprentice: a rescarch overview,”
Computer, (November 1988) 10-25.

C. Rich and R.C. Waters, The programmer's apprentice, ACM press, New
York(1990).

S.P. Robbins, Organizational behavior: concepts, controversies, and applications,
Prentice Hall, NJ(1983).

W.N. Robinson, Towards formalization of specification design, Masters thesis,
University of Oregon(June 1987).

W.N. Robinson, “Automating the parallel elaboration of specifications: preliminary
findings,” Technical Report CIS-TR-89-02, University of Oregon (February
1989).

W.N. Robinson, “Integrating multiple specifications using domain goals,” 5th /n-
ternational workshop on software specification and design, (1989) 219-226 {Also
available as CIS-TR-89-03 from the University of Oregon).

D.T. Ross and K.E. Schoman Jr., “Structured analysis for requirements definition,”
Transactions on Saoftware Engineering SE-3 (January 1977) 6-135.

G.R. Salanick and 1.F. Porac, “Distilled ideologies: values derived from causal rea-
soning in complex environments,” in: Eds. H.P. Sims, Jr., D.A. Gioia, and Associ-
ates, The thinking organization: dynamics of organizational social cognition,
Jossey-Bass Publishers (1986) 75-101.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

W. Scacchi, “Managing software engineering projects: a social analysis,” Transac-
tions on software engineering SE-10 (January 1984) 49-59.

H.R. Schwarz, Numberical analysis: a comprehensive introduction, John Wiley &
Sons(1989).

M.L.G. Shaw and B.R. Gaines, *A methdology for recognizing consensus, corre-
spondence, conflict and contrast in a knowledge acquisition system,” in: Workshop
on knowledge acquisition for knowledge-based systems, , BanfT (November 7-11,
1988)

R. Slowinski and J. Teghem, Stochastic versus fuzzy approaches to multiobjective
mathematical programming under uncertainty, Kluwer academic publishers(1 991).

W. Swartout and R. Balzer, “On the inevitable intertwining of specification and im-
plementation,” CACM 25 (1982) 438-440.

Katia Sycara, “Resolving goal confiicts via negotiation,” Proceedings of the
AAAI-88, (1988) 245-250.

K.P. Sycara, “Resolving adversarial conflicts: an approach integrating casc-based
and analytic methods,” GIT-ICS-87/26, Georgia Institute of Technology (1987).

L. Vessey and R. Weber, “Some factors affecting program repair maintenance: an
empirical study,” CACM 26 (February 1983) 128-134.

D.M. Weiss and V.R. Basili, “Evaluating sofiware developments by analysis of
changes: some data from the software engineering laboratory,” Transactions on
Software Engineering SE-11 (February 1985) 157-168.

K.J. Werkman, “Knowledge-based model of using shareable perspectives,” Pro-
ceedings tenth international conference on distributed artificial intelligence, (Oc-
tober 1990) 1-23.

R. Wilensky, Planning and understanding, Addison-Wesley(1983).

D.E. Wilkins, “Domain-independent planning: represcntation and plan gencra-
tion,” Artificial Intelligence 22 (1984) 269-301.

J.M. Wing, “A study of 12 specifications of the library problem,” Software, (July,
1988) 66-76.

217

91.

92.

93.

D. von Winterfeldt and W. Edwards, Decision analysis and behavioral research,
Cambridge Univerisity Press(1986).

PL. Yu, Multiple-criteria decision making, Plenum Press, New York(1985).
Milan Zeleny, Multiple criteria decision making, McGraw-Hill(1982).
M. Zeleny, Linear multiobjective programming, Springer-Verlag, New York(1974).

M. Zelkowitz, R. Yeh, R. Hamlet, J. Gannon, and V. Basili, “Software engincering
practices in the U.S. and Japan,” Computer 17 (June 1984) 57-66.

	March 1993_1
	March 1993_2
	March 1993_3

