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The usefulness of functional programming languages for large scale software
development has been limited by the array update problem: Since there is no notion
of state in these languages, modifying an array at a single index requires creating a
new copy of the entire array, which leads to unacceptable performance degradation.

An array update can, however, be implemented in constant time without copy-
ing if there are no future uses of the old array.

This thesis presents the first practical interprocedural update analysis algorithm
for strict first-order functional languages with arrays of scalars. The analysis runs in
polynomial time, and in linear time for typical programs. All previous algorithms of
this kind require exponential time in the worst case. The algorithm does not assume
any fixed evaluation order but derives a good order that maximizes opportunities for
destructive (non-copying) updating. The simplicity of the algorithm also makes it

adaptable to separate compilation.
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This thesis also describes a parallel functional language with new operations on
arrays for expressing divide and conquer algorithms, and presents an extension of the
basic algorithm for that language. The analysis has polynomial time complexity even
for parallel evaluation, and is the first practical algorithm for interprocedural update
analysis of parallel functional programs. The analysis is so effective that it removes
all copying in parallel functional programs for many scientific applications including
gaussian elimination with and without partial pivoting, LU, Cholesky and QR fac-
torizations, and multigrid and relaxation algorithms for solving partial differential
equations numerically. In cases where a copy cannot be eliminated, the compiler can
advise the user about the source of the problem.

The thesis describes a new update operation for specifying a collection of up-
dates on an array, which subsumes monolithic arrays as provided by most functional
languages. It also considers the problem of non-flat or nested but non-recursive arrays
and some of the difficulties introduced by non-flatness, and presents an extension of
the algorithm for non-flat arrays.

Another contribution of the thesis is the implementation of a compiler for the
proposed parallel functional language, and a runtime system for a shared memory
multiprocessor. It describes the compiler and the runtime system and presents some
preliminary performance results of the implementation on a Sequent Symmetry, a
bus-based shared memory multiprocessor.

The thesis considers the implications of these algorithms for language design,
and argues that programmers will be able to write efficient programs by relying on

update optimization.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Today’s programming languages, for instance Fortran, were designed for sequen-
tial machines. In these languages a program is basically a sequence of instructions
that read or modify the contents of computer memory. These languages are called
imperative languages because the programmer specifies how the computation is to
be carried out as opposed to what is to be computed. Imperative programming is
based on side-effects, i.e. an expression not only returns a value but may also change
the contents of a memory location.

Programming multiprocessors with imperative languages is hard. Concurrent
reads and writes to memory make these languages non-deterministic. The program-
mer has to worry about the details of resource management such as dividing the work
among multiple processors, process synchronization, and avoidance of data races be-
cause of concurrent reads and writes. Debugging a parallel imperative program is a
herculean task.

Functional languages, on the other hand, allow the programmer to specify what
is to be computed instead of how it is to be computed. Functional languages forbid
side-effects: there is no notion of memory or assignment. A variable in a functional
language is a name for a value just as in mathematics. A functional program itself is no

more than a mathematical definition of a partial function. The details of computation
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that are not essential to the description of the algorithm, such as the use of memory
and processors and the exact sequence of execution, are relegated to the compiler and
the runtime system.

Functional languages offer several advantages over imperative languages. Side-
effect-freeness and declarative semantics make functional programs easier to read,
reason about, and maintain. These languages are also ideal for writing parallel pro-
grams because data dependencies are the only constraints on program execution. Two
subcomputations that do not depend on one another can be computed in any order,
even in parallel, without affecting the result [9, 49]. This Implicit parallelism makes
parallel programming a much easier task. The problem of parallel debugging, a night-
mare for the programmer, does not exist with functional languages. Because of the
deterministic semantics, a functional program can be debugged on a single processor
and run on multiple processors.

In spite of all these advantages, functional languages have not been accepted for
mainstream programming because of inefficiency caused by excessive copying of data.
One of the most serious problems in these languages is the aggregate update problem.
Computation that involves an incremental change to a large data structure such an
array requires copying the entire structure, causing severe performance degradation.
Therefore, to make functional languages practical we need an efficient solution to the
update problem.

This thesis provides the first practical solution to the array update problem for
a class of functional languages known as first-order strict functional languages with
arrays of scalars (i.e. flat arrays). These languages, though restrictive without recur-

sive types and higher-order functions, are as powerful as Fortran — the programming
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language that is most widely used in the scientific community. We believe that the
results of this thesis should encourage users of Fortran not to dismiss pure functional
languages on the basis of the common belief that these languages are inherently inef-
ficient because of the copying problem. This thesis provides an effective solution to
this problem.

The solution presented is based on a compile-time analysis of the source pro-
gram. We demonstrate that the analysis eliminates all unnecessary copying in several
common scientific programs such as matrix factorizations, direct and iterative equa-

tion solvers, and multigrid methods for solving partial differential equations.
1.2 The Appregate Update Problem

Consider multiplying a row of an n x n array by a constant k. The row can be
scaled by performing n updates of the array. In Fortran or C, these updates can be
performed by assignment to the array. The original array is destroyed in the process.
The programmer treats the array as storage for the resulting array and has to be
aware that the original array is not needed anywhere else. We call such updates
destructive. The complexity of the algorithm is O(n).

Because functional languages forbid side-effects, each update requires creation
of a new copy of the original array. The row scaling operation creates n n x n arrays,
with the last one being the result. The complexity of the algorithm is O(n?), two
orders of magnitude slower than the imperative version. The problem is how to avoid
this copying.

An update of an array can be done in-place if there are no future uses of the
original array. In the case of imperative languages like Fortran or C, it is the re-

sponsibility of the programmer to know that the original array is not used anywhere
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else. In functional languages, this burden is shifted to the compiler or the runtime
system. We would like for the compiler to analyze the program and to convert every
non-destructive or copying update into a destructive update, if possible. If such a
compiler can be written, then we can extract Fortran-like efficiency from functional
programs without sacrificing the ease of programming. This thesis describes such a
compiler.

Next we discuss various aspects of functional languages and their implications

for this problem.
1.2.1 Strictness vs Non-strictness

Functional languages can be classified as strict or non-strict. A function f is
strict if f(L) = L, where L represents the undefined value of a non-terminating
computation. In other words, non-termination of an argument to a strict function
implies non-termination of the call. Strict functions can be implemented efficiently
by evaluating the arguments before calling the function.

A function is non-strict if the non-termination of an argument to the function
does not imply the non-termination of the function call. Therefore an argument to
a function has to be passed unevaluated. It is evaluated subsequently only if it is
needed to compute the result of the call. Non-strict languages are more expressive
than strict languages in their ability to represent infinite data structures. However,
non-strict languages are harder to implement [58, 74]). For a survey of functional
languages see [10, 26).

One of the difficulties with update analysis of non-strict languages is that the
relative order of evaluation of expressions in a non-strict language cannot be deter-

mined precisely at compile-time. Computing the liveness of an aggregate is harder
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because it requires the order of evaluation information which is not known at compile
time [14, 12]. In the rest of this thesis we work with strict languages. We believe
our analysis is applicable to non-strict programs where the strictness information is

available.
1.2.2 Order of Evaluation

In a strict language we know that the arguments of a function are evaluated
before the call. But the arguments themselves can be evaluated in any order. The
current solutions to the array update problem, however, rely on a fixed evaluation
order [12, 45]. Fixing an order of evaluation for the arguments to a function a priori
reduces the opportunity for destructive updating. A compiler should instead derive
a good order of evaluation that increases the opportunities for destructive updating.

In Chapter II we show how our compiler derives a good evaluation order.
1.2.3 Parallelism

Parallelism and destructive updating seem to be in conflict with each other.
If two expressions are evaluated in parallel, the variables in one are necessarily live
while the other expression is being evaluated. Thus updates to arrays referred by
expressions cannot be performed destructively whereas, in a sequential evaluation it
might be possible to find an ordering that makes an update in one of the expressions
destructive. In Chapter III we show how we reconcile parallelism with destructive

updating.



1.2.4 Non-flat or Nested Aggregates

With nested aggregates, one can store one aggregate inside another aggregate.
Allowing nested aggregates makes the detection of liveness more difficult. Computing
the liveness of an aggregate requires computing the liveness of all those aggregates
that have references to it. Therefore we have to compute aggregates potentially stored

inside another aggregate during program execution, as described in Chapter V.
1.2.5 Higher-Order Functions

In higher-order languages, functions can be passed as arguments to functions
and returned as results of functions. Static analysis of languages with higher-order
functions is generally more difficult than that of first-order languages because the
call graph of a program is not known in the case of higher-order languages. The
flow analysis required to determine the liveness of an aggregate becomes difficult
because aggregates can be captured by function closures. In this thesis we work with

first-order languages.

1.3 Importance of Update Optimization

Update optimization is a very significant optimization because conversion of a
non-destructive update to a destructive update can improve the performance of a
program by orders of magnitude as discussed earlier.

The drastic improvement in execution time of the matrix row scaling program,
written in scheme, with update optimization over the unoptimized version is shown
in Table 1. These speedups are not surprising, but the real question is whether a

compiler can detect destructive updates. In this thesis we describe an effective and



Table 1: Effectiveness of the Update Optimization

Matriz Size Time(millisecs.)
destr upd | copying upd
10x10 1.3 10
20x20 2.48 40
30x30 3.72 100
40x40 4.90 220
50x50 6.21 400

computationally practical compile-time update analysis algorithm.
1.4 Related Work

The aggregate update problem is a very important problem and is being ad-
dressed by three avenues of research. One approach requires the functional program-
mer to assert that it is safe to update an array by side effect (because the array is
dead), leaving it to the compiler to verify that assertion and to report a static error if
the assertion cannot be verified [40, 77]. We call this verification. The other approach
is to leave it to the compiler to detect updates that can be implemented by side effect
(12, 13, 16, 27, 29, 31, 36, 37, 41, 45, 63, 64, 66, 67). We call this optimization. Ver-
ification is potentially easier, but optimization is more flexible. Since an optimizing
compiler can warn of cases in which it is unable to implement an update by side effect,
and the programmer can be given control over those warnings, including the ability
to specify whether such warnings should be treated as fatal errors, optimization spans
a range of compile-time behaviors up to and including verification.

The third approach is based on program structuring using monads 76, 78],
mutable abstract datatypes [46], and continuations. The use of monads or the abstract

datatype operations guarantees that the aggregate can be implemented efficiently. We



discuss the related work in detail in Chapter VI.
1.5 Contributions of the Thesis

This thesis describes the first practical interprocedural update analysis algo-
rithm for strict first-order functional languages with arrays of scalars. Unlike previ-
ous methods, the algorithm does not assume any order of evaluation, but derives a
good order that increases the opportunity for destructive updating. The algorithm is
efficient and runs in polynomial time - in linear time for typical cases. All previous
algorithms of this nature have required exponential time in the worst case. We ex-
tend the algorithm to parallel functional languages by introducing new primitives on
arrays and show that the complexity of the analysis is polynomial even with parallel
execution. The analysis has been implemented in a compiler and tested on several
numerical algorithms using arrays. In each algorithm all updates have been made

destructive by the compiler, thus achieving the efficiency of imperative languages.
1.6 Qverview

Chapter II describes our source and intermediate languages, the flow analy-
sis algorithm, its complexity, and implementation results. An earlier version of this
chapter appears in [63]. Like all global analyses we assume that the complete source
program is available for analysis. This obviously is a problem with separate compila-
tion. One simple solution is always to copy arguments that cross module boundaries.
We describe more effective scenarios for separate compilation in Chapter IV.

Chapter 1II describes a parallel functional language and an extension of the
algorithm for parallel destructive updating. An earlier version of this chapter appears

in [62].
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Chapter IV describes our compiler, runtime system and preliminary perfor-
mance results.

Chapter V discusses some problems with non-flat arrays and an extension of
the analysis for non-flat but non-recursive arrays. It is a modified version of [61].

Chapter VI discusses related research.

Chapter VII concludes the thesis by describing problems for further research.
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CHAPTER 1I

AN EFFICIENT UPDATE ANALYSIS ALGORITHM

2.1 Introduction

In this chapter we present an update analysis algorithm for first-order strict
functional languages with flat aggregates (or arrays of scalars). In contrast to previous
work, our analysis does not assume any fixed order of evaluation. The problem with
fixing an order @ prioriis that opportunities for destructive updating may be lost.
Furthermore we show that the time complexity of our algorithm is polynomial in the
worst case, and close to linear in the typical case. No previous work on interprocedural
update analysis [12, 27, 29, 37, 42, 45, 66] reports a polynomial time complexity for
either case, so we believe ours is the first practical algorithm for this problem.

For cases where the analysis determines that an update cannot be made de-
structive, we present a simple heuristic to reduce copying.

We have implemented our update analysis algorithm and have run it on several
examples. Our results show that for most examples, a good order of evaluation makes
all the updates destructive, whereas an analysis that assumes a fixed order detects
only the updates that can be optimized with that order.

The rest of the chapter is organized as follows. Section 2.2 describes the source
and intermediate languages. Section 2.3 presents an overview of the solution with
some notation used in later sections. Section 2.4 describes the abstract domains and

the functions used in the analysis. Section 2.5 shows how to derive a good evaluation
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order using the information obtained from these abstract functions. The abstract
reference count analysis, which uses the order of evaluation derived previously, is
described in Section 2.6. In Section 2.7 we show that our analysis algorithm runs
in polynomial time. Section 2.8 presents our experimental results. In Section 2.9
we compare our work with Hudak’s abstract reference counting. The last section

describes a simple heuristic for copy reduction by judicious copy introduction.

2.2 The Source and Intermediate Languages

We consider a first-order, strict functional language (Figure 1) with flat aggre-
gates (i.e. an aggregate can only contain non-aggregate values). Our language does
not permit local definitions of variables or functions. This is not a serious restriction
because it is always possible to eliminate all local definitions by “lambda lifting” [48].
To simplify the analysis we will work with an intermediate language, where each non-
trivial subexpression is given a unique name which can be thought of as a compiler-
generated temporary variable [3]. As we will see shortly, the analysis will distinguish
these temporary variables from other identifiers. The syntax of the intermediate lan-
guage is given in Figure 2. Notice that the only way a non-trivial expression can
appear inside another expression is through a conditional or a let-expression. The
scope of a let-binding #; = e; in a let-expression let [...,¢; =e€;,...,tn = €,] int end
consists of all the occurrences of t; in expressions e;4, to e, and ¢,

The selection operator sel takes an aggregate and an index and returns the
value stored at that index in the aggregate. The update operator upd takes an
aggregate a, an index i, and a value v and returns a new aggregate which contains v
at the index i but is otherwise like a. We assume that for an aggregate of size n the

indices range from @ to n-1.



A program is a set of mutually recursive function definitions.

L

pr

s€

pr

€ Cons Constants
e V Variables
€ Prims Primitive functions (i.e. +, -, ...)
€ F Defined functions
€ Ezp 2= c¢|x|op(er, - -,en)
| sel(es,ez)
| upd(e, ez, €3)
l f(elv'“:en)
| if eo then e; else e,
€ Program u= {fi(z1,, ' %k ) =€

fﬂ (:Cln,°",.'rk“) = eﬂ}

Figure 1: The Syntax of the Source Language

€ TV Temporary variables

€ SE = c|z|

€ IEzp == se|op(ser,...,sen)
| sel(seq, sez)

| upd(se,, sez, se3)

| f(se,-..,s€n)
| if se then e, else e

| let {ty =e1,...,8n =€a] in t; end

€ IProg u= {fi (z1,," - zx) =€y
fﬂ (mln?-'.’mkn) = eﬂ}

Figure 2: The Syntax of the Intermediate Language

12
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Consider the problem of adding two vectors a and b of size n. The function
vector_add takes two arrays a and b and their size n and returns a new array con-
taining the vector sum. It uses a help function vadd that adds two vectors from index
ito j-1.

vactor_add (a,b,n) = vadd(a,b,0,n);
vadd(a,b,i,j) = if (i = j) then a

alse
vadd(upd(a,i,sel(a,i)+sel(b,i)),b,(i+1),n);

In the above program, the update operation is a non-destructive update. The
aim of our analysis is to determine if such an update can be replaced by a destructive

update.

2.3 Overview

The key insight that led to our algorithm is that, in a first-order language with
flat aggregates, there is no need to track anonymous values because their “reference
count” can never exceed 1. Any aggregate for which there are multiple references
must be the value of some variable. Hence update analysis reduces to live variable
analysis. Our contribution has been (1) to notice this and (2) to find an efficient way
to combine liveness analysis with an algorithm for choosing a good order of evaluation.

Assuming a fixed order of evaluation limits the effectiveness of update analysis,
as shown by the following example:

f (x,i)
g (x,i,j)

if i=0 then x else upd(x,i,i);
sel(x,i) - sel(f{x,i),i*j)) - sel(x,2i);

No fixed order of evaluation of the operands to the - operator can make the

update in £ destructive. Consider left to right evaluation of the operands. Destructive
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updating in £ would interfere with the evaluation of sel(x,2i). For a right to left
evaluation order, destructive updating would interfere with sel(x,i). In general, for
a given evaluation order, one can construct examples where destructive updating is
not possible. However, in the above example the update can be done destructively
by choosing first to evaluate the first term in the body of g, then the third term, and
finally the middle term.

The first aim of our analysis is to find an order in which the selection operations
on an aggregate precede the updates for that aggregate. As the example above
suggests, this requires an interprocedural analysis. An update can then be converted
into a destructive update if it updates an aggregate that is no longer live, that is, an
aggregate for which there are no further references.

To find a good ordering, we associate with each expression the aggregates that
are selected and updated (selects-and-updates analysis). To the expression sel(x,1),
for example, we will associate the information that the aggregate x is selected by
that expression. For sel(t.1,i), where t_1=f(x,y), this information depends on
which aggregates are returned by the function f. In particular we need to know
whether £ returns any of its arguments. The propagation analysis therefore collects
information regarding which variables are returned or propagated by the evaluation
of an expression. For example, the variables propagated by the expression g(x,y),
where g simply returns x, consist of x, provided x and y are not aliased. Hence
aliasing information must be computed. To devise a good order of evaluation we
need therefore to collect the following information: propagation of variables, aliasing,
and variables selected and updated.

We use flow analysis to collect the above information. We can then create a
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data dependency graph for each expression and augment it with additional edges,
which we call interference edges. An expression e; is said to interfere with another
expression e, if e; updates an aggregate that is selected or updated by e;. If ez is
evaluated before ey, then the interfering updates in e; cannot be made destructive,
so we would like to evaluate e, before e;. The augmented data dependency graph is
used to derive an order of evaluation for the expressions.

In the following we assume that all variables in a program are distinct. More-
over, given a binding ¢; = e;, we assume the existence of a function expr-of which,
given the temporary variable ¢;, returns the corresponding expression, i.e. e;. We
assume that the reader is familiar with partial orders, the least upper bound (lub)
operation denoted by |J, and fixpoints. We avoid subscripts for least upper bound
operators when they are clear from the context. We use fiz as the least fixpoint
operator. All the abstract domains are finite and the functions are monotonie, so
least fixpoints exist and are computable. For a good introduction to these concepts,
the reader may refer to [65, 71].

Environments are finite maps from the syntactic domain of identifiers to some
other domain of interest. The empty environment, which is the least element in
the domain of environments, is denoted by L. The value of an identifier z in an
environment ¢ is written as of[z]. The environment obtained by extending another
environment ¢ with a binding z — v is written as o[z — v]. An environment mapping
the variables z; to vy, ..., Tn to v, is written as [z, — v1,..., 24 — v,). The notation
[f: — e;) stands for [fy — e1,..., fu — €n]. The least upper bound operation on the
domain of environments can be defined in terms of the least upper bound operation on

the range of the environments. If Env = Ide — D, then the lub of two environments
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env, and env, is defined as

envy Ugn, envy = Az € Ide. enviz] Up envfz]

2.4 Flow Analysis

We define three detailed functions for flow analysis. Each flow function com-
putes one particular kind of flow information. H computes the variables propagated
by an expression, A computes the aliasing of formal parameters in a program, and
S computes the sets of aggregates selected and updated by an expression. These
three functions are used to define three summarizing functions H,, A,, and S, on

programs.
2.4.1 Propagation Analysis

The abstract domains needed for propagation analysis are shown in Figure 3,
where V represents the set of all distinct variables in a program (not including the
temporary variables) and D is ordered by the subset relation. The function H (see
Figure 4) takes an expression, a variable and a function environment and returns the
set of variables propagated by that expression.

Notice that while the set of variables propagated by an identifier is obtained
by looking it up in the variable environment, the set of variables propagated by
a temporary variable is obtained by computing the set of variables propagated by
its associated expression. To simplify the presentation, we assume the primitive
operators of our language do not propagate any of their arguments; this assumption
is not needed by the algorithm. As our language does not permit non-flat aggregates,

a selection does not propagate any variable. The set of variables propagated by



1’4 Program Variables

F Defined Functions

D = P(V) Powerset Domain over V
c€ VEanv = VoD Variable Environments
p€ FEnv = F — D" — D Function Environments

Figure 3: Domains for Propagation Analysis

‘H : IEzp— VEnv— FEnv— D

Hlc]e p =0

Hfzlo p = ofz]

Hit:Jo p = Hlexpr-of(t;)]o p
Hlop(ser, - .,sen)lo p =@
H[sel(sei,se2)]o p = 0

Hlupd(se;,sez, ses)lo p = 0

H[fr(ses, - .-, sea)lop = plfl(Hlse]op, . .., H]sen]o p)
H[if seo thene, elseez Jop = HeaJop U Hle]op
H[let [ty = e1,...,tn = €n) in t; end]o p = H[t;Jo p

Figure 4: The Function H
H,: IProg — FEnv

lelpf‘]] = fim()\p. p[fg =+ /\yl, eny yk.HIIe,‘]][:Bli = Y1y, Tg yk] p])

Figure 5: The Function H,
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an update is also empty because semantically the update operation returns a new
aggregate which is different from any of the aggregates passed to it as arguments. For
a function call, the set of variables propagated by each actual parameter is computed
recursively. The abstraction of the function, looked up in the function environment,
is applied to the abstract values of the actual parameters.

The function H is used to define H, (Figure 5), which takes a program pr and
returns an environment in which each user defined function is mapped to an abstract
function that gives information about the variables propagated by the body of the
function. Notice that we do not build a table to represent the input-output behavior

of a function, as shown by the following example:

f (x,y,z) = if g(x) then x else f(y,z,x)
Its H-meaning is

fzyz=zUf(y, 2 2)

The least fixpoint of the functional associated with the above equation is computed

by successive approximations [65]. The sequence of these successive approximations

will be:
fo=Azyz.D
fi=Azyz.zUD
fo=Azyzz Uy

fzs=Azyz.zUyUz

where fs, the fixpoint, conveys the information that all the parameters of f can be

propagated.
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2.4.2 Aliasing Analysis

We represent the aliasing information as an environment in which each variable
is bound to the set of variables, including itself, that it may alias. The domains
necessary to compute aliasing information are given in Figure 6. The function A (see
Figure 7) takes an expression, an aliasing environment, and a function environment,
and returns a new aliasing environment.

The only kind of expression that can give rise to aliasing is the function call.
For a function call, we determine the variables propagated by its actual parameters
using the aliasing environment as the variable environment, and the propagation
environment as the function environment. For each pair of formal parameters of the
function, we determine whether the sets of variables propagated by the corresponding
actual parameters are disjoint. If the two sets are disjoint, then no aliasing between
those two formal parameters is caused by the particular function call. If the sets
are not disjoint, then the two formal parameters of the function can potentially be
aliased. Computationally, if the formal parameters z;, and z;, could be aliased, then
their alias sets must be merged, and not only z;, and z;, but all their aliases must
be updated with the new set of aliases.

Notice that we treat aliasing as a transitive relation. If one call to a function
aliases the first and second arguments, and a different call aliases the first and third
arguments, then we assume that all three formal parameters of that function are
aliased to one another. This is the main source of imprecision in our analysis. More
precise aliasing information can be obtained from a more expensive analysis.

The function A, is defined in Figure 8. In this definition, o;4 is the identity

environment in which every variable is bound to a singleton set containing itself. It
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Figure 6: Domains for Aliasing Analysis
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Figure 7: The Function A
Ay : IProg — AEnv

Alpr] =
{Ct p = Hylpr]

n

fiz(do. (|:|A|[e.-]]ap U o))

=1

end

Figure 8: The Function A,

20



21

represents the initial program aliasing where every variable is aliased to itself. For a

program pr and a variable z, Ay[pr] z is the set of all variables z may alias.
2.4.3 Selects-and-Updates Analysis

The domains needed for selects-and-updates analysis are given in Figure 9. The
first component of the abstract domain D,, represents the set of variables that are
possibly selected in the evaluation of the expression. The second component gives the
set of variables possibly updated by the expression evaluation. The domain §Env
represents the abstraction of each user defined function to a function that returns
the set of variables selected and updated by the function, given the set of aggregates
bound to each of its arguments. The functions § and S, are defined in Figure 10 and

Figure 11, respectively.

2.5 Deriving an Order of Evaluation

Our objective is to choose an order of evaluation for the bindings of a let-
expression in which the selection operations on each aggregate precede update oper-
ations on that aggregate. Given a let expression let [t; = ey,...,In = ;] in ; end,
we first construct a data dependency graph whose nodes are the expressions #y,...,1,.
We say an expression t; depends on i;, if t; appears in the free variables of ;. In the
dependency graph, this dependence is represented as a directed edge (%, j), indicating
that the node ¢ must be evaluated before the node j. The dependency graph will
necessarily represent a partial order (i.e. a directed acyclic graph, or dag) because we
are assuming strict semantics and our language doesn’t allow cyclic data structures.

We then augment the dependency graph with additional edges which we call

interference edges. An interference edge (1, 7) conveys the information that e; possibly
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D.n. = P(V)xP(V) Selected and Updated Variables

VEnw = V = P(V) Variable Enviroments

FEnv = F — P(V)* = P(V) Propagation Enviroments

SEnv = F —P(V)*—= D,, Selects-and-Updates Function Environments

Figure 9: Domains for Selects-and-Updates Analysis
S : IEzp— SEnv— FEnv— VEnv — D,

Sllspo = {0,0)
Sl=16po = (0,0)
Slop(se1,...,s€.)]6 po = (0,0)
S[sel{se;,sez)]é po = (H[sei]o p,8)
S[upd(ser,sez, sea)]é po = (B, H[ser]o p)

S[if sep then e; elsee; |6 po Slealdpo U Sez]épo
Slfe(ser,y--.,sea)lbpo S[fl(Hseilo p, ..., H[ses]o p)

Sliet [ti = €1,..-stn = e4] int; end]ép o = | |S[eilb oo

=1

Figure 10: The Function S
S, : IProg — SEnv

Splprl = fiz(X8. 8(f: = My, .., ve-Slei] 8 (Hylpr)

[:Uli Yy Tk yk]])

Figure 11: The Function &,
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updates an aggregate needed by e;. (The predicate Interferes is defined formally in

Figure 12.) We call the graph so obtained a precedence graph.

interferes e; ¢; =

let
fenv = Hy[pr]
aenv = Ay[pr]

suenv = S,[pr]
< 8;,u; >= Sfei]suenv fenv aenv
< sj,uj >= Sfe;]suenv fenv aenv
n
u,-n(s,-Uu.-) -75@
end

Figure 12: The Predicate Interferes

The precedence graph represents a preorder but not necessarily a partial order
(dag), so we take its quotient under the induced equivalence relation. That is, we
find the strongly connected components of the precedence graph using the algorithm
given in [2]. We construct a new graph whose nodes are the strongly connected
components of the precedence graph. There is an edge E;; between the nodes V;
and V; if Jv; € V; and v; € V; such that (7,5) is an edge of the precedence graph.
The new graph is necessarily a partial order. A topological sort of the partial order
gives a total order for the evaluation of the strongly connected components of the
precedence graph. A total ordering of all the expressions is then obtained by replacing
each component by any ordering of its elements that is consistent with the data
dependencies.

The complexity of choosing an order for a let-expression containing n bindings

is O(n?). Every topological sort of the dependency graph is safe, so a faster algorithm



24

could be obtained at the risk of choosing a less desirable ordering.

In the final ordered let-expression, let [t; = ei,...,tx = ex] in { end, the
expression t; is evaluated before #;. Given the order of expression evaluation, we
can then determine the set of live variables at each binding as explained in the next

section.

2.6 Abstract Reference Count Analysis

Qur abstraction of reference counts is a 2-point domain R whose least element
1 represents the existence of exactly one reference to an aggregate, and whose top
element T represents multiple references. Intuitively, a variable is live at a program
point if there are any future references to it. Depending on where the reference occurs

we will distinguish between local and global liveness. Consider the following example:

f (x,i) = 1let t_1 = g(x,i);
t_2 = sel(t_1,i);
t_3 = gel(x,i);
t 4 =t_2+ t_3;
in
t_4
ond;
g (y,j) = 1let t = upd(y,i,i)
in
t
end;

In the body of £, we will say that x is locally live at point t_1 because there exists
another reference to x, namely at point t.3. In the body of g, y is not locally live
because there are no further references to y in g after t. However, y is globally live
because there exists a call to g (i.e. g(x,1)) with a live actual parameter. The global
liveness is computed by R, which returns the abstract reference counts of objects

bound to the formal parameters of a function in all possible calls that could arise in
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any program execution.

The abstract domains and the function R used to compute the abstract reference
environment are shown in Figures 13 and 14, respectively.

In the definition of R we make use of the functions F'V(e;) and Vars(e;). The
function FV(e;) returns the set of free variables in the expression e;, and Vars(e;) is
FV(e;) \ {t1,.-.,tn}-

The definition of R needs explanation only for the function call and the let-
expression. Given a function call, we determine the set of variables propagated by
each actual parameter of the function using . The liveness of each parameter is
tested by checking whether it is globally or locally live. An actual parameter is
globally live if at least one of the variables (or its aliases) propagated by the actual
parameter has the value T in the reference environment renv. An actual parameter
is locally live if at least one of the variables (or its aliases) propagated by the actual
parameter is in the live variable set Iset, which is given as an argument to R.

In the case of a let-expression, the set of live variables at each binding is com-
puted and the bindings are analyzed recursively. The live variables at a binding are
the variables, and their aliases, that appear in the expressions yet to be evaluated;
the variables propagated by already evaluated expressions that are used in some ex-
pression that has yet to be evaluated; and the set of variables live (Iset) after the
evaluation of the whole let-expression.

The abstract reference environment for an entire program pr is computed by
the function R,, which is defined in Figure 15.

Given R,[pr], it is easy to decide whether an update can be performed destruc-

tively. Consider an update expression {; = upd(z,y,z). Suppose Iset; is the set of



FEnv = F—oP(V)" = P(V)

AEnv = V — P(V)

R = {1,T} Reference Counts

REnv = V- R Reference Count Environments
LSet = P(V) Live Variables

Figure 13: Domains for Reference Count Analysis

R : IEzp — REnv — FEnv — AEnv — LSet - REnv

R[c] renv fenv aenv lset = renv
R[z] renv fenv aenv Iset = renv
Rt:] renv fenv aenv Iset = renv
R[op(sey,...,se,)] renv fenv aenv lset = renv
R[sel(se1,seq)] renv fenv aenv lset = renv
R[upd(se;,seq,5€a)] renv fenv aenv Ilset = renv

R[if seo then e; else e; | renv fenv aenv lsei =

Rles] renv fenv aenv lset U Rfeq] renv fenv aenv Iset
R[fc(ser,. .. ,5€q)] renv fenv aenv lsel =

let vy = H[se;]aenv fenv

v, = H[sen]aenv fenv
in
renv U[z;, — T |3z € vj,renviz] =T Vz € lset]
end
R[let [t; = e1,-.-,tn =€) int; end] renv fenv aenv Iset =
let
Iset; = (U{aenv(z] | = € Uliyy Vars(e;)}) U
(U{H[ts] aenv fenv | k<i,3ji<j<n,tx € FV(t;)})
U Ilset
n
?=1
end

R[e;] renv fenv aenv Iset;

Figure 14: The Function R
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R, : IProg — REnv
Rplpr] =
let fenv = H,iprl
aenv = A,[pr]
in
fiz(Mo. | |R[el ¢ fenv aenv 0)
end =

Figure 15: The Function R,

variables that are live at point ¢;. This update cannot be made destructive if there
is at least one variable propagated by z which is either globally or locally live. This

condition can be expressed formally as follows:

Jy € (H[z] Aylpr] Hplpr]) such that Ryfpr]ly] =T or y € lset;

If this condition does not hold, then it is safe to perform the update destructively.
Notice that we can use the same analysis to introduce explicit deallocation

instructions. That is, we can safely deallocate an array if it is no longer live.

2.7 Complexity of the Analysis

In this section we bound the cost of computing the functions H,, A,, S; and R,.
Each of these functions involves a fixpoint calculation. The complexity is estimated
by bounding both the number of iterations needed for the fixpoint computation and
the complexity of each iteration. The program size is represented in terms of three
parameters: n, the number of functions in the program; k, the maximum number of

arguments of aggregate type to any one function, which is bounded by the maximum
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function arity; and m, the number of non-let-expressions in the intermediate program
(i.e. the size of the original program), where m 2> n. The number of functions and
the maximum function arity are used to bound the number of iterations needed in
a fixpoint computation. The number of non-let-expressions in the program, together
with the function arity, is used to estimate the complexity of each iteration. The basic
unit of analysis is a non-let-expression. The complexity of an iteration is determined
by multiplying the complexity of analyzing a non-let-expression by the number of
non-let-expressions in the program.

H, computes an element of F'Env in which each function symbol is mapped to
an abstract propagation function, which can only be a union of some of its formal
parameters. The maximum number of iterations needed to compute the fixpoint is
proportional to the height of the domain of F Env which is kn. Analyzing a function
call is the most expensive operation, involving union of at most k sets of at most size
k. The complexity of the set union is O(k?). The complexity of a single iteration is
O(mk?), so the complexity of H, is O(mnk®).

Each variable can be aliased to at most k variables as we only consider alias-
ing among the formal parameters of a function. Therefore the number of iterations
needed to compute the aliasing environment is the height of the domain of aliasing
environments which is O(nk?). Analyzing a function call, the most expensive opera-
tion, requires O(k?) set intersections of at most size k. Updating an aliasing environ-
ment also takes O(k?) time. Each set intersection has a complexity O(k). Therefore
the complexity of a single iteration is O(mk®), which gives an overall complexity of

O(mnk?®) for the function A,.

S, computes an element of SEnv where each function symbol is mapped to
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an abstract selects-and-updates function. Any selects-and-updates function is a pair
whose components are unions of some arguments to the functions. If the maximum
arity of a function is k, then the height of this domain is 2k. Thus the number of
iterations needed for the fixpoint computation is O(nk). Analyzing a call requires
computing a pair of k unions of sets of size k. Complexity of a single iteration is
O(mk?), so the complexity of S, is O(mnk®).

The number of variables in the reference environment is bounded by nk. Each
variable takes values from the 2-point domain R. The number of iterations in the
fixpoint computation is O(nk) because each variable starts with a value 1 and at
least one variable becomes T in each iteration. Complexity of computing liveness
of an actual parameter is O(k); this gives a bound of O(mk?) on the time for each
iteration. The complexity of R, is O(mnk?).

The cost of choosing orders of evaluation is O(m?). If the source code for all
functions were of a fixed constant size c, independent of program size, then ¢ = m/n
and the complexity would be O(nc?) = O(m?/n) = O(m). Since larger programs can
have larger functions, the typical cost is slightly worse than linear in m.

The entire algorithm therefore has a worst-case complexity of O(max(m?, mnk®)).
The worst case for the mnk® term can be achieved only when the call graph is strongly
connected and all variables are aliased to all variables. The high degree of k does not
seem to matter in practice because aliasing is not the usual case, and most functions
take only a few aggregates as arguments so the “effective value” of k is quite small.
Two iterations ordinarily suffice for each fixpoint, instead of the worst case’s nk or
nk?. Another factor of k ordinarily disappears because k is less than the number of

bits in a machine word, allowing most set unions and intersections to be computed in
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constant time. The typical cost of the flow analysis is therefore less than proportional
to mk?, which is to say it is practically linear in the size of the program.

In our experience the dominant cost has been that of choosing orders of evalua-
tion, so the algorithm’s typical cost appears to be a little worse than linear but much

better than quadratic in the size of the program.
2.8 Results

We have implemented the above algorithm in Standard ML and tested it on
several programs, representing two-dimensional arrays as one-dimensional arrays. The
programs include gaussian elimination, matrix transpose, matrix multiplication, LU-
decomposition, quicksort, bubble sort, counting sort (where the range of numbers
is known), array initialization, and three artificial programs ¢, ¢;, and a 1025-line
program derived from gaussian elimination much as Takr was derived from Tak in
the Gabriel benchmark suite for Common Lisp [32].

Our implementation analyzed the 1025-line program in 6.5 seconds on 2 SPARC-
station IPC, finding that all updates could be done destructively. Each program
listed in Table 2 was analyzed in less than half a second; the largest of these, gaus-
sian elimination, is 67 lines. QOur implementation took 0.16 seconds to analyze a
38-line LU-decomposition program, in contrast to Bloss’s report that a 40-line LU-
decomposition brought the algorithm of [12] “to a near halt” on a Macintosh II. We
could easily increase the speed of our implementation if there were reason to do so.

Table 2 shows the number of updates that are converted into destructive updates
under various ordering strategies. The first column of the table shows the total
number of update operators in the program. Our results are shown in the column

headed “no ordering”. The next two columns show the results of the analysis with a
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Table 2: Effectiveness of the Update Analysis Algorithm

Program updates | destructive updates

no ordering | Itr | rtl
gauss-elm-1 5 5 4 | 5
gauss-elm-2 5 3 5| 4
transpose 2 2 1|2
matmul 3 3 213
LU-decomp 2 2 2|2
recursive-fft 4 4 414
gsort 4 4 4 1 4
bubblesort 2 2 12
count-sort 4 4 314
init 1 1 111
c 2 2 0|1
C2 1 0 0 0

fixed left-to-right or right-to-left ordering, respectively.
The three programs matmul, transpose and bubblesort use the function swap

which is defined as follows:

swap (a,i,j) = upd(upd(a,i, sel(a,j)),j,sel(a,i))

To make these updates destructive, the operands of the update operator have
to be evaluated from right to left. Our analysis derives this order whereas Bloss
[12] simply assumes it. The order of evaluation is similarly important for destructive
updating in the gaussian elimination program. We wrote the same function with
different orderings of the formal parameters and the analyzer finds an appropriate
ordering in each case. These two different versions correspond to the two entries
gauss-elm-1 and gauss-elm-2 in the table. For the programs quicksort, init, and
recursive-fit, any evaluation order is good for destructive updating. Our analysis

is also able to find an ordering that interleaves the evaluation of arguments of two
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different function calls, as shown in the following program c;:

f (a,j,k)
g (I.Y.i)

sel{a,j+k);
f(upd(y,i,i),sel(x,i),sel(y,2*i)} +
f(upd(x,i,i),sel(y,i),sel(x,2*i))

In this example, both updates can be performed destructively only if all the
selections are evaluated before the updates. For the following program c,:
f (x,i) = if i = 0 then x

else upd(x,i,2i);
h (y,i,j) = sel(f(y,i),j) + sel(£f(y,j),i);

there is no ordering that makes the update destructive. Our analysis safely concludes
that the update cannot be made destructive.

Having the compiler derive a good order of evaluation relieves the programmer of
trying to come up with the most efficient ord;sring for the arguments to each function.
The effectiveness of the update analysis makes it practical for the compiler to issue a

warning whenever it cannot make an update destructive.

2.9 Comparison with Hudak’s Work

Hudak described an abstraction of reference counting for update analysis in {45].
In this section we show that, in the absence of aliasing, our analysis is more precise.
We first summarize Hudak’s approach and its sources of imprecision and discuss how
we avoid these imprecisions.

Hudak defines an abstract store semantics of a first-order strict language in
which the reference count operation is modeled as a side-effect. This is the reason he
fixes an order of evaluation a priori, which is one source of imprecision. The abstract
store represents the abstract reference counts of each object. When a function is

called, the reference count of its actual parameter is incremented by the total number
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of occurrences of the corresponding formal parameter in the body of the function.
The reference count is decremented when the variable is encountered in the body
of the function, mimicking the actual execution. With a finite domain of sticky
reference counts with a maximum reference count ry,z, the increment and decrement
operations become imprecise when the reference count exceeds rmqg.

We show that our analysis is more precise by considering a program with an
update that is converted into a destructive update by our analysis but not by Hudak’s.
Consider the following program

f (x,i,j) = g(x) + sel(upd(x,i,i),j);

EY =8
Suppose the body of g has rymg; occurrences of y with no updates of y. When g(x) is
called from £, x has a reference count of 2. By the initialization of Hudak’s approach,
the reference count of x becomes (2 - 1 4 rmsz) = 00 just before the execution of
the body of g. If a variable gets a reference count of oo it stays there. Therefore,
the reference count at the update is co indicating that the update cannot be made
destructive.

Qur analysis would correctly determine that the update can be made destructive
because by our abstraction, g(x) does not propagate x. This means that all references
to x created by the call will have been consumed by the time g returns. The update
has the last reference to x, so it can be made destructive.

Now we show that for programs with no aliasing, our approach is as precise as
Hudak’s in the event that the order of evaluation chosen by our algorithm coincides
with Hudak’s. Suppose our approach marks an update as non-destructive. There

are two possibilities. The first is that one of the variables propagated by the first
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argument of the update operator is locally live. Then there is at least one occurrence
of that variable (or an alias) in the rest of the body of the function. It follows that
the reference count of the object denoted by that variable must be at least 2 just
before the update, so Hudak’s method would conclude that the update cannot be
made destructive.

The second possibility is that one of the variables propagated by the first argu-
ment of the update operator is globally live. Then there is a function call in which
the object denoted by the variable is locally live in some function f which eventually
calls the function performing the update. This implies that the object denoted by
the variable has a reference count of at least 2 (one for the occurrence of the variable
in the body of f that caused it to be locally live and the other for the reference held
by the update operator). In this case also, Hudak’s analysis would conclude that the
update cannot be made destructive.

Another source of imprecision in Hudak’s approach results from the associa-
tion of objects to expressions generating them. Two different objects generated by
different dynamic instances of a single static update are assumed to be the same.
This imprecision can be reduced by a better approximation of the domain of abstract
locations. But the better approximations would increase the height of the domain of
abstract locations. In our approach we represent the objects by program variables
thus avoiding the problem.

As noted in Section 4.2, our aliasing analysis may be imprecise, so Hudak’s
analysis may do better than ours in the presence of aliasing. It is also possible that,
in cases where there is no order of evaluation that avoids copying altogether, our

algorithm may choose an ordering that happens to involve copying a larger aggregate,
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or more frequent copying of a smaller aggregate. We believe our analysis would
dominate Hudak’s if we used a more expensive, but still polynomial-time, aliasing
analysis, and if we replaced our algorithm for choosing a good evaluation order by
Hudak’s fixed ordering.

No complexity results are cited in [45], but the complexity of Hudak’s abstract

reference counting appears to be

Q(zmzk)

where m is the number of static occurrences of an update operation and k is the

number of bound variables in the program under analysis.

2.10 Copy Reduction by Judicious Copying

Can we reduce copying in those cases where the analysis determines that an
update cannot be performed destructively? We use the simple heuristic that if pos-
sible, an update appearing in the body of a recursively defined function should be
made destructive by explicitly copying arguments that are passed from some other

function. Consider the following example:

rev (a,n) = revi(a,a,0,n);
revl (a,b,i,n) = if i = n then a
olse

revi(upd(a,i,sel(b,n-1-i)),b,i+1, n);

In this example, any update analysis algorithm has to conclude that the update
must be non-destructive because of the aliasing of a and b. This algorithm therefore
has a cost of O(n?) in both time and space.

We know, however, that the update could have been made destructive had a

not been aliased to b by the call from rev. We would like to determine whether the
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update in revi could be made destructive if revi were called appropriately (i.e. with
no aliasing and no live actual parameters). This can be done by analyzing revi with
a reference environment that maps every variable to 1 and by ignoring any aliasing
caused by calls to revl that do not arise from the body of revi. In terms of the
call graph of the program, we reanalyze rev1 ignoring the effects of those functions
that do not belong to the strongly connected component of revi. We then introduce
explicit copying for those arguments of a call to rev1 that are live or can cause aliasing

and can potentially be updated in revi. The transformed program is:

rav (a,n) = revi(copy(a),a,0,n);
revl (a,b,i,n) = if i = n then a
else

revi(upd(a,i,sel(b,n-1-i})),b,i+1, n);

By introducing the copy operation, our heuristic has reduced the time and space
complexity of this program to O(n). On the other hand, our heuristic may sometimes
introduce copying in order to make a seldom-executed update destructive, as would
happen if the second argument to rev were normally zero.

This heuristic is also relevant to separate compilation, where aggregates that
cross the boundary of a compilation unit would otherwise have to be excluded from

update analysis. Update analysis with separation compilation is further discussed in

Chapter IV.



CHAPTER IIl

PARALLEL DESTRUCTIVE UPDATING

3.1 Introduction

Although pure functional programming languages show great promise for par-
allel programming, their success is limited by two problems. One is the array update
problem: modification of an array at an index, also called incremental update {44],
in general requires a new copy of the entire array. The second problem is: how to
express parallel updates on an array? Can parallel updates on distinct indices be
performed destructively? Can parallel updates on non-distinct indices be performed
destructively?

Specifying a collection of updates using the incremental update operator results
in a sequential solution. Monolithic arrays [6, 44] were devised to express parallelism
at the expense of creation of a new array. Consider the operation of multiplying a
row of a matrix by a scalar. With monolithic arrays, a new copy of the entire matrix
is required. With our update analysis, the incremental updates yield a sequential
solution with no space overhead. Ideally, we would like to update the matrix in
parallel without copying the matrix.

In this chapter we show that incremental updates can be used to specify parallel
updates. We also present an extension of the algorithm of Chapter II, which we
believe to be the first practical algorithm for interprocedural update analysis in first-

order functional languages with flat arrays and parallel evaluation.
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To handle parallel updates on indices that are not known to be distinct, we
devise a new incremental update operator called an accumulating update and show
that problems like histogram, polynomial multiplication and inverse permutation {6,
44, T5] can be expressed naturally and implemented efficiently using update analysis.

In Section 3.2 we describe a parallel functional language with new operations on
arrays. In Section 3.3 we present an extension of the algorithm described in Chapter
IT and discuss the complexity of our analysis. In Section 3.4 we present the results of
the analysis on several programs written in our language. In Section 3.5 we discuss
the issue of predictability of the analysis and advocate a programming style for which
the analysis would be very effective. In Section 3.6 we describe a new operation to

express a collection of updates on an array.

3.2 A Parallel Functional Language

The incremental update operator does not lend itself well for expressing parallel
updates on a single array. Consider updating an array a at indices i and j with values
3 and 4. If these two updates are performed in parallel, we get two new arrays each
containing only one update. These updates must be non-destructive because the first
argument of each update operator is live when the update is performed. Moreover,
it is not clear how to incorporate both updates in a single array subsequently. The
only way to express these two updates is to choose a sequential order of updates, for
example upd(upd(a,i,3),j,4). This criticism of incremental update operator has
already been made in [6]. In this chapter we show that by defining new operations on
arrays, one can express parallel updates using the incremental update operator and
update analysis can determine whether these updates can be made destructively.

QOur language is a first-order functional language with flat multi-dimensional
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arrays. We introduce an implicitly parallel let expression let [t; = e;,...,1 = e;]
in e end. The scope of a let binding #; = ¢; is the entire let expression except itself
or any region shadowed by a nested let binding. We also assume that all ;s are
distinct. Bindings with cyclic dependencies are not permitted. The let bindings and
the body of the let expression can be evaluated in parallel subject to dependency
constraints. The source language is described in Figure 16. We introduce a new
operation called partition which returns multiple values. This construct can only
appear on the right hand side of a let binding. In the intermediate language (see
Figure 17), a partition operator is split into two operators left_part and right_part.
The intermediate language does not have multiple values. There are no nested let

expressions in the intermediate language.
3.2.1 Partition and Combine operations

A multi-dimensional array e : [l; : bi,...,ls : b4] has dimension d and for an
index [iy,...,%4) to be valid, it must be the case that §} <4, < b;,...,la L < by.

Intuitively, partitioning an array means dividing an array into two subarrays
with disjoint index spaces whose union is the index space of the original array. Com-
bining, the inverse operation, is the concatenation of two arrays. A more precise

description follows.
Semantics

The operator partition takes an array @ : [l; : by,...,1s : by], a dimension &k
such that 1 < k < d, and a partitioning index i such that Iy < ¢ < by, and returns
two new arrays a; : [l : byy. .oy dk 2 4,.. ., la s bg) and @ [l by, .oy 8 0 by, .nn la s byl

The value of a; or a; at index [iy,...,%4] is the corresponding value of the array a.
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By this definition, indices of a; and a; are disjoint.
The combine operator is the inverse of partition. It takes two arrays a; : {l :
bi,... Akt bgy.. . lg s bg) and ag : {hy s uy, ... Bt Uk, ..., gt ug] that are compatible

for combining, and a dimension & such that 1 < k < d, and returns a new array

a:[liby, .o s (b4 ug — he),... 1oz by).

Two arrays are compatible for combination if their corresponding sizes in all
the dimensions except the one along which they are being combined, are equal. a;

and a, are compatible for combining along dimension k if

b,-—l,-=u.-—h.-,l$i$d,i:,£k

The value of a at index [i1,...,%4) is ai[i1, ..., i4] if [#1,...,%4) lies in the index

range of a;. Otherwise, it is an element of a; given by

aslhy + (G — b))y ooy b+ (Bk = bk, - - -y ha + (32 — 1))

3.2.2 An Example

Consider the problem of adding two vectors. In an imperative language, vector
addition can be performed by a simple do or for loop in O(n) time. In a functional
language without update analysis, the corresponding loop takes O(n?) time.

The partition and combine operators can be used to write more efficient
functional programs. The following program runs in O(n log n) time without update

analysis, in O(n) time with update analysis, and in O(log n) time with update analysis
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and parallel execution.

\* // is integer division. *\

\* dim(a,i) = no. of elements in dimension i. #*\
\* help_vector_add(a,b,i) adds vectors *\

\* a and b from index i onwards. *\

vector_add (a,b) = help_vector_add(a,b,0);

help_vector_add (a,b,i} =
if dim(a,1) = 1
then upd{a,i,a[il+b[il)
else let midpoint = i + dim(a,1)//2;
a_l, a_2 = partition (a, midpoint, 1);

rv_1i = help_vector_add(a_1,b,i);
rv_2 = help_vector_add(a_2,b,midpoint)
in
combine(rv_1,rv_2,1)
end
endif;

If the size of a is larger than 1, then a is partitioned into two vectors a_1 and
a_2. The problem is solved recursively on each vector and the solutions are combined

using the combine operator.
3.2.3 Implementation Choices

There are two choices of implementation for the partition and combine oper-
ators. In a copying implementation, the two partitions are created by copying data
from the original array. In a sharing implementation, the new arrays share data with
the original array. This can be achieved by creating new array headers with the new
ranges for the two partitions while sharing the data with the original array. The
overhead of creating a header is O(d), proportional to the dimension of the array
which is usually a small number.

The combine operator can also be implemented by copying. However, if arrays

that are combined are adjacent partitions implemented by sharing, then combine
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can also be implemented by sharing. In such a case, it is required to create a new
header for the resulting array. The combine operator cannot always be implemented
by sharing even if partition is implemented by sharing. The reason is that one may
be combining arrays that are not physically adjacent to one another.

Suppose we have established that all partition and combine operators in a
program can be implemented by sharing. Can we also avoid creation of array headers
thus making partition an identity operator and combine a synchronizing operator?
The array headers are used for bounds checking and operations like determining the
size of the array. If bounds checking is not performed and the programmer does not
use any operation that needs the array header, a situation similar to programming in
a language like C, then partition and combine become operators that return their

first argument. The partition operation can even be performed at compile time.

3.3 Update Analysis

One of the key insights that led to our simple algorithm was that anonymous
aggregates (new aggregates) need not be tracked. We defined four analyses called
propagation analysis, aliasing analysis, selects-updates analysis, and reference count
analysis. We have to define the flow equations for partition and combine operators
for these analyses. We assume copying semantics for these operators. Since we have
extended the source language with let expressions, we have to extend the analysis
for them.

Since partition and combine create new aggregates, they do not propagate
any of their arguments. Including the let expression in the source language allows
the user to name an expression and use the name elsewhere one or more times, causing

sharing. Consider a let binding t; = e;. If e; returns an anonymous aggregate, it
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can be shared in the rest of the let expression through the name ¢;. Therefore,
an anonymous aggregate can always be identified with the name of the let variable
to which it is bound. When an anonymous aggregate is returned as a result of the
function, any local name that was associated with the result can be discarded because
the scope of the local name is limited to the 1et expression in which it is introduced.

In our previous analysis we used the emptyset to denote an anonymous aggregate
as well as a non-aggregate value. In this chapter we introduce a new value &4 to
represent a non-aggregate value. The emptyset denotes an anonymous aggregate.
The reason for this change is that it reduces the complexity of the algorithm.

The domains and functions for propagation analysis are given in Figures 18, 19,
20, and 21. Details of the rest of the analyses are very similar to the ones in Chapter
II and have been omitted.

Aliasing analysis is exactly the same as described in Chapter II. The selects-
updates analysis is also the same except that partition and combine neither select
nor update any of their arguments.

The dependence graph of a 1et expression is updated by adding an edge between
node t; and £; if t; is not a predecessor of ¢; and ¢; updates any array that is selected
by t;. After adding these edges, the dependence graph remains a direcied acyclic
graph. In Chapter II, we added edges without checking for the existence of a path
between the two nodes, which could result in a graph with cycles. The dependence
graph is used to compute the set of syntactically live variables at any binding. Our
current decision is to sacrifice parallelism in favor of destructive updating, whenever

there is a conflict between the two.
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3.3.1 Computing Live Variables

Given a dependence graph where each node represents an expression (and the
corresponding temporary variable), we have to determine the variables that are live
at each node. A variable z is live at ¢; if z is neither ¢; nor its successor and there
exists another node t; # t; that is not yet evaluated and uses z. The reason we don’t
need to consider {; or its successors is that these variables are not defined before
the evaluation of ¢;. Since we are considering parallel evaluation, we conservatively
assume that all the nodes that are not predecessors of ¢; are yet to be evaluated.

Recall that in the intermediate language (see Figure 17), we split a partition
operator into two left_part and right_part operators which inherit the label of the
partition operator. Since partition is a single operator at the source level, the
variables used in a left_part operator with label 1 need not be considered as live
at the node right.part with the same label. In general, variables in nodes with the
same label as that of ¢; need not be considered in determining the live variables at ;.

Therefore the set of live variables at #; is given as

Live(t;) = U{z | 37z € Vars(t;),t; € preds(t;), = ¢ (suces(t:) U {t:}),

label(t;) # label(t;)}

Consider the intermediate form for the helper function in vector addition ex-

ample.
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let t_1 = dim(a,1);
t_.2 = (t.1=1);
t_3 = if t_.1 then
let t_4 = a[i];
t_5 = b[i];
t_6 = t_ 4+ t_5;
t_7 = upd(a,i,t_6)
in
t_7
end
else
let t_8 = t_1//2;
mid =i + t_8;
a_1 = left_part (a,mid,1);
a_2 = right_part(a,mid,1);
rv_1 = help_vector_add(a_1,b,i);
rv_2 = halp_vector_add{a_2,b,mid);
t_10 = combine(zrv_1,rv_2,1)
in
t_10
end
in
t.3
end

The live variables at a_1 and a_2 are {b,i,a 2} and {b,i,a-1} respectively.
3.3.2 Complexity

We show that the complexity of the analysis remains polynomial as in our earlier
algorithm. The parameters are m (the number of internal nodes in the parse tree of
a program, k (the maximum function arity), n (the number of functions), and p (the
maximum number of operators that return anonymous aggregates). The parameter
p includes the partition, combine, and upd operators and all the function calls that
return new aggregates.

Since temporary variables are discarded when considering the value propagated
by any function, the number of fixpoint iterations needed for all the analyses is the

same as in Chapter II Recall that propagation analysis requires O(nk) iterations.
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The maximum number of values that can be propagated by an expression is k + p +
1; 1 represents the non-aggregate value, although it will be a type-error to return
an aggregate as well as non-aggregate value. Analyzing a function call, the most
expensive operation, requires at most k unions of sets of size at most ¥ + p + 1.
The overall complexity of propagation analysis becomes O(mnk?(k+p)). Recall from
previous chapter that the worst case complexity of propagation analysis was O(mnk?).
If we had not distinguished between non-aggregate values and anonymous aggregates,
then the maximum size of a set would have been O(m) instead of O(k + p).

Similarly it can be shown that the worst case complexity of aliasing analysis is
O(mnk*(k + p)), although in practice it takes only a few iterations. selects-updates
analysis and reference count analysis take O(mnk?(k + p)) time. For reference count
analysis, we assume that the live variables are already computed as discussed in
previous subsection. In the above estimates, we haven’t included the complexity of
adding edges to the dependence graph and computing the live variables, both of which
can be shown to be of polynomial complexity.

The main intent of the complexity estimate is to show that the analysis runs
in polynomial time, even with parallel evaluation. For typical cases, these worst case
estimates do not reflect the actual running times. Our previous analysis, for example,

runs in near linear time on typical programs.
3.3.3 Optimizing Combines

Suppose after the update analysis we discover that a partition operator can
be converted into a non-copying partition!, as is the case if its first argument is not
live. The question is: can we always convert a combine to a non-copying combine?

The answer is no. Consider the function f (x,y) = combine(x,y,1). Since we don’t
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know anything about the storage layout of x and y, combine cannot be known to be

non-copying at compile time.

Part = {Occurrences of Partition Operators}
P = Part x {l,7}
Add (V+{T}H x P)]

Figure 22: Domain of Array Addresses

Klupd!] = = z
K{upd] = = T
K[%eftpartjz = T
K[orightpartjz = T
K[%leftpart!]lz = if (z=T)

then (T,a.l}
else (fst(z), resi(z).a.l)

K[oright part!]lz = if (z=T)
then (T, a.r)
else (fst(z), rest(z).a.r)
K[combine] z y = if (z=Tory=T)
then T

else if (fst(z) = fst(y) and
(rest(z) = s.b.l) and
(rest(y) = s.b.r)

then (fst(z), s)

else T

Figure 23: The Function X

We can perform a simple analysis to detect if combine can be non-copying. We
use an analysis similar to propagation analysis that determines addresses propagated
by an expression. The flat domain of addresses is given in Figure 22. T represents an
unknown address. An address (v, s) is the address of an array obtained by applying
a sequence of s left_part or right_part operators on the array with address v. The

function X which defines the address propagation behavior of primitive operators is
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given in Figure 23.
All operators are bottom strict. The function fst returns the first element of
a sequence; the function rest returns the tail of a sequence; the function . returns
a new sequence by concatenating an element to a sequence. All operators except
combine that return new aggregates return T as the address. We also assume that
arithmetic operators return T. The operators with a ! are non-copying. If the two
arguments to combine are addresses of the left and right partitions created by a single
partition operator whose label is b then the result is obtained by removing the last
two elements in the sequence of the first argument to combine. In all other cases,
the result is T. The interprocedural analysis for address propagation can be defined
using the function K. If a function returns an address (v, s) where s is non-empty, it
is replaced by T. In other words, information about the partition of an array created
inside a function and returned as its result is forgotten outside the function as shown
by the example below.
fx=
let t1,t2 = partitien(x,1,1)
in

t1
end

Variable t1 gets the value {z,1.l} where 1 is the label of partition). Since
the result is of the form (z,s) where s is not the empty sequence, it is immediately
changed to T. The address propagation function for £is f z = T.

Now consider the helper function for vector addition described in Section 3.2.

After update analysis, the function is
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help_vector_add (A4,b,i) =
if dim(A,1) = i then upd!(A,i,A[i]1+B[i])
else
let midpoint = i + dim(a.1)//2;
a_l = left-part!{a,midpoint,1);
a_2 = right-part!(a,midpoint,1);
rv_1 = help_vector_add a_1 b i;
rv_2 = help_vector_add a_2 b midpoint
in
combine(rv_1, rv_2,1)
end
endif;

For the purposes of address propagation, the flow equation is

vadd(e,B,i) = a U
K[combine] vadd({fst(a), rest(a).1.l), B,?)

vadd({fst(a), rest(a).l.r),B,T)
The equation can be solved by fixpoint computation as

vadd®(a,B,i) = L1
vadd'(a,B,i) = a
vadd*(a,B,i) = a U
K[combine] {fst(a), rest(a).1.])

(fst(a), rest(a).l.r)

If any of the arguments to a combine operator is T or of the form (z,s;) and

(y,$2) and either  # y or s; and s, are not of the form s.b./ and s.b.r respectively
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then we cannot make that combine non-copying. The fixpoint can be computed in

linear time {at most 2n iterations where n is the number of functions).
Interaction with update analysis

Given that a combine operator could be made non-copying, we can make it
actually non-copying, provided the two arguments to combine are not live. We need
this condition because our update analysis assumes that combine always returns a
new array that is not live elsewhere.

Even if a combine is not known to be non-copying at compile time, it is not
always the case that it requires copying. A simple test at run-time can check if the
two arguments are actually contiguous and then avoid copying if the arguments to
combine are not live. The liveness information is available from update analysis.
The real advantage of a statically non-copying combine operation is that in the ab-
sence of bounds checking and operators that access the array header, both partition
and combine operations can be converted into identity operations, thus avoiding the

overheads of header creation.

3.4 Experimental Results

We have designed and implemented a compiler that takes a source program of
our language and generates a Scheme or C program. The main phases of the compiler
are alpha renaming, cycle detection among let bindings, flattening of 1et expressions
and conversion to the intermediate form, common subexpression elimination, and
update analysis. The compiler is implemented in Standard ML.

Our example programs are mostly taken from numerical computations [35, 34].

These examples can be classified as direct methods for solving linear equations, iter-
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ative methods, and miscellaneous. Direct methods include gaussian elimination with
and without partial pivoting, and various matrix factorizations such as LU, QR, and
Cholesky. Examples of iterative methods are point jacobi, red-black method, succes-
sive over-relaxation, conjugate gradient method and the multigrid method for solving
partial differential equations numerically. All these examples are written in a recursive

style using partition, combine, and upd operations with implicit parallelism.

Table 3: Results of Update Analysis of Parallel Functional Programs

Program Size No. of upds | Destructive | Analysis time
(m,n,k) upds (in secs)
LU (78.3,7) D) 7 0.50
cholesky (86,3,7) 4 4 0.71
QR (181,13,7) 6 6 1.49
gauss (126,6,7) 8 8 1.24
gauss (with pivoting) | (154,10,7) 12 12 1.91
jacobi (32,3,7) 1 1 0.29
red-black (68,6,8) 4 4 0.56
conjugate gradient (84,9,6) 2 2 0.61
SOR (78,6,9) 4 4 0.74
multigrid (163,9,6) 4 4 0.86
matmul (54,2,7) 1 1 0.41
prefix sum (26,2,3) 1 1 0.12
quicksort (42,5,4) 4 4 0.21
vadd (14,1,3) 1 1 0.05
ram simulator (59,1,6) 7 7 0.33

The miscellaneous examples include basic operations such as vector addition,
matrix multiplication, prefix computation, and quicksort.

Table 3 shows the effectiveness of our algorithm. In these examples, all up-
dates are made destructive. The program size is characterized by m: the number
of nodes in the parse tree, n: the number of functions in the program, and k: the

maximum function arity. The last column of the table shows the analysis time on a
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3.5 On Programming Style and Predictability

We have demonstrated that our update analysis algorithm is effective and effi-
cient. We now address the question of whether programmers will be able to under-
stand the update optimization well enough to write efficient code.

This is an important question because update analysis is a powerful optimiza-
tion that can easily change the complexity of an algorithm by orders of magnitude.
Programmers need to know whether the code they write is efficient. It would be dis-
astrous for programmers to write functional programs that they mistakenly believe
will be made efficient by update analysis.

For this reason we believe that functional languages should be equipped with
two kinds of update operator: a copying update and a destructive update. These
operators would both have the purely functional semantics of the copying update
operator, but their pragmatics would differ: The compiler would refuse to accept any
program that contains a destructive update that our update analysis algorithm cannot
prove to be equivalent to a copying update. The efficiency of an update operation
would then be clear to programmers: A destructive update executes in constant time,
but a copying update must be assumed to be inefficient until proved otherwise (by
changing it to a destructive update and passing it through the compiler).

Programmers would find this very frustrating if the compiler were unable to
accept destructive updates that the programmer knows are safe, but our update
analysis is so effective that this would hardly ever happen.

Programmers would also be frustrated if they were unable to understand why
the compiler rejects a destructive update. We know, however, that programmers will

be able to understand the outcome of update optimization because they are able
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to understand a similar but more difficult issue—not perfectly, but well enough: the
problem of dropping all pointers to a data structure so it can be garbage collected. The
garbage collection problem is dynamic, and it involves dropping all pointers, whereas
the update problem is static and involves dropping all but one pointer; otherwise
these two problems are the same.

Programmers do struggle with the garbage collection problem, and not always
successfully, but they do well enough. The penalty for failing to drop all pointers to a
structure is that the program is less efficient than it should be, and may catastroph-
ically run out of space when it shouldn’t. The penalty for failing to drop all but one
pointer to an update structure is that the update operator will have to be changed
to a copying update operator, and the program will be less efficient than it should
be. At least the programmer will know the program is inefficient, which is not always
true with the garbage collection problem.

Furthermore the compiler can ezplein why it thinks a destructive update is
unsafe. If aliasing is the problem, then the compiler can report the variables that
it fears may be aliased. If two expressions update the same array, the compiler will
detect the problem while adding precedence edges to the dependence graph. Again,
the compiler can indicate the expressions that interfere.

Our analysis is independent of the choice of order of evaluation, so long as there
exists any order of evaluation for which the compiler can prove that all destructive
updates are safe. Therefore the compiler would not be sensitive to the order in
which formal parameters are declared. (This is a distinct improvement over previous
algorithms {13, 45].)

The partition and combine operators can be used efficiently by following a
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few simple rules. When an array is partitioned, for example, it should not be live
elsewhere. Neither partition of an array should be returned as a result of a function.
Every function should have a matching number of partition and combine operators.
The left and right arrays that result from a partition operation should be the left
and right arguments to a subsequent combine operator within the same function
body, and the proof of this should be obvious to the programmer (so it will also be
obvious to the compiler). If these simple rules are followed, then most unnecessary
copying can be avoided.

Sometimes it is possible to reduce copying in one part of a program by introduc-
ing copying in another part. This is very hard for the compiler to notice, but easy for
the compiler to confirm once it is pointed out. We are led therefore to propose an ex-
plicit copy operation that has the semantics of the identity function but serves also as
a declaration. Explicit copy operations declare not only the programmer’s awareness
that copying will be required, but they also declare the places in the program where
the programmer believes copying should occur in order to obtain the most efficient
results.

Since the copying update operation that we took as the starting point for our
research is equivalent to a composition of the destructive update and copy operators,
and the copy operator is more versatile than the copying update operator, we re-
fine our proposal by suggesting that functional languages should replace the copying
incremental update operator by the combination of an explicit copy operator and
an explicitly destructive update operator—both of which, we hasten to add, have a
purely functional semantics provided the compiler refuses to accept any destructive

updates that cannot be proved to be equivalent to the traditional copying update.
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It may fairly be said that we are advocating a more imperative approach to
functional programming. We believe this is consistent with other recent research
into the problem of state in functional languages. We suggest that recent research
may even be leading toward a rejuvenating redesign of imperative languages from a
functional perspective, which would not be a bad thing at all.

For predictability and portability, compilers should behave uniformly. Update
optimization could be implemented just as uniformly across compilers as tail-recursion
optimization and type-checking. Our update analysis is no more complicated than
type-checking in ML, and we believe programmers will find update analysis at least

as easy to understand as ML-style type-checking.

3.6 Expressing Collection of Updates

In this section, we define a new operation on arrays to express a collection of
updates. This operation has not yet been incorporated in our language. The parti-
tion operation is useful for expressing parallel updates when it is known at compile
time that the updates are on distinct indices of the array. Our experience has been
that for several numerical algorithms, the partition operator suffices for expressing
parallelism. However, there are cases when either the updates are not known to be
distinct at compile time or there are multiple updates at the same index. The his-
togram and polynomial multiplication problems require updating at the same index.
For the inverse permutation problem, the updates are performed on distinct indices
but this is not known at compile time. How does one express such multiple updates
without losing deterministic behavior?

We define a new update operator called an accumulating update. Given a suit-
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able operator @, the corresponding accumulating update is written as

A{i &= v}

It returns a new array like A except that at index i its value is A[z] @ v. Analogously,

one can also define another operator

A{i = v}

for which the new array has a value v @ A[i] at index i. Using the accumulating

update operator, we can now specify a collection of updates on an array as

A{(eindez) @: € | €1 S 1 S 62}

The index expression e;u4.- and € can have i as a free variable. This expression
describes a set of updates one for each value of i from e; to e,. There can be more
than one generator. We need to require a certain property of the update operator to
ensure a deterministic result. Consider two updates v; and v, at index . In order for

the result to be the same at the end of the updates, we require that

Ali @= 0 }{i &= v} =A{i &= v }Hi 6= v}

In other words, (A[i] ® v)) ® v2 = (Af] & v2) @ v1. Thus we require that @ obey

the following identity.
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(adb)@c=(a®c)Db

Any operator that is associative and commutative has this property.

Since the order in which the updates are performed does not matter as long
as they are serialized, multiple updates can be implemented on a shared memory
multiprocessor using an extra array of locks. The overall space complexity is O(n)
where n is the size of the array.

An optimization useful for implementing a collection of updates is to avoid locks
whenever it can be determined that the updates are all disjoint. One simple case that

occurs very commonly is with updates of the form

A{()) &= e|l1<i<h}

We know by the nature of the generator that all values of i are distinct. There-
fore all updates are on disjoint indices and no synchronization is required. In such
a case we can even replace @= by = if we know that the initial array contains the

identity element of the operator. For example, vector addition can be written as
vadd(A,B) = A{<i> +=B[i]l | 0 <= i < dim(A,1)}

If A is not known to be live elsewhere, then it can be updated destructively in
parallel. Compare this program with the program using partition and combine.
Currently we are investigating the issues involved in the compilation of the collection

of updates operator.
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3.6.1 Examples

Given an array of n numbers ranging from 0 to m — 1, the histogram problem
is to compute the number of occurrences of each element in the array. A one line

solution using a collection of updates is
hist(A,n,m) = array(m,0){<A[i]l> +=1 ]| 0 <=i <1}

Polynomial multiplication can be expressed naturally by a collection of updates

with + as the accumulating operator.

pmult(A,B,m,n) =
let a = array(m+n,0);
in
a{<i+j> += A[il*B[j] | 0 <= i < m, 0 <= j < n}

end

The inverse permutation problem takes an array I that holds a permutation of
0 to n-1 and returns an array A such that A[I[i]] = i. The difficulty is that it is not
known at compile time if I is a permutation. We define an operator * and an identity
element e such that zxe = exz = r and z*y = n otherwise. The inverse permutation

problem can then be written as
inv_perm(I,n) = array(n,e){<I[i]l> *=i | 0 <= i < n}

A monolithic array is a array all of whose elements are defined once [55]. A
monolithic array construct takes f and n as arguments and returns a new array

whose value at ¢ is f(z). It can be described by using the collection of updates as
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marray(f,n) = array(n,0){<i>=f i | 0 <=i<n}

We do not need any accumulating operator, because from the syntax we know
that all the updates are on disjoint indices. One can also write functions to com-
pute scan primitives such as prefix sum, array compaction, copying, enumerate, and

distribute-sums used in data-parallel computing[11].

3.7 Summary

In this chapter we have presented a strict functional language with incremental
updates, partitioning and combining operations, and a collection of updates for ex-
pressing parallelism. We have described an efficient update analysis algorithm and its
performance on typical numerical algorithms. We have considered the implications of
our algorithm for language design, and have explained why we believe programmers
will be able to write efficient programs that rely on update optimization. In the next
chapter, we describe the compiler and the runtime system for our parallel functional

language on a shared memory multiprocessor system.
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CHAPTER IV

A COMPILER AND A RUNTIME SYSTEM

4.1 Introduction

In this chapter we describe a compiler and a runtime system for the parallel
functional language described in Chapter III. The target machine is a shared memory
multiprocessor. In the next section we describe the important phases of the compiler.
In Section 4.3, we illustrate the code generation phase with a few examples followed
by a detailed description of the algorithm. In Section 4.4 we describe the scenarios
for supporting update analysis with separate compilation. In Section 4.5 we describe

our runtime system. We conclude the chapter with preliminary performance results.

4.2 Compiler Phases

The important phases of the compiler are preprocessing, update analysis, ad-
dress propagation, and code generation. For portability, we have chosen C as the
target language. The compiler is written in Standard ML of New Jersey, with each

of these phases implemented as an ML module.
4.2.1 Preprocessing

During preprocessing, a source program is converted into the intermediate lan-
guage suitable for update analysis. Certain auxiliary functions useful in the later

phases are also defined.
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After parsing the source program, the first step is cycle detection among parallel
let bindings. Recall that the let expression of the source language does not specify
any ordering among let bindings. Cycles are detected by constructing a dependence
graph of the let bindings. Compilation is aborted if a cycle is detected.

Cycle detection is followed by conversion of the source program to the interme-
diate language given in Chapter III. Every subexpression that is not a constant or
a variable is given a unique variable name. Nested let bindings are flatiened. For

examples, the body of the function

f x = let a = let y = 3I*z;
Zz = 2%x
in
y+z
end
in
a + x%3
end
is converted to
f x=1let t_1 = 2*x;
t_2 = 3*%t_1;
t.3 = t.1 + t_2;
t_4 = 3%x;
t . 5=t4+ t_3
in
t_5
end

The ordering among the let-bindings is the data dependency ordering. Common
subexpression elimination and type-checking are performed on the representation of
the program in the intermediate language.

The last phase of preprocessing is alpha conversion where every variable and
function symbol is given a unique name. After this conversion, each program variable

is of the form ¢;; meaning that it is the jtk variable of the function i. The advantage
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of this representation is that information about program variables is represented by

a two dimensional array, providing easy access and update.

Auxiliary Functions

The preprocessing phase also defines the following functions used in later phases.
expr.of : takes a program variable and returns the corresponding expression. For
instance, expr.of(t.3) in the previous example is t_1+t_2. If the variable is a formal
parameter, expr_of returns the variable itself. This function is used in the computation
of H defined in previous chapters.
free_vars : takes a variable ¢; and returns the free variables of expr_of(t;). The free

variables of an expression are given by the function FV defined below.

FV(c) = @
FV(z) = {2}
FV(op(sei,...,s€,)) = L_Jl FV(se;)
FV(f(se;,...,se,)) = jUIFV(Sei)

2
FV(if ey then e else e3) = U FV(e)

i=0
n
FV(let [ty =ej,...,tn=¢q] int;end) = |JFV(e;)\{t1,..-,tn}
i=1
We construct the dependence graph of every let expression of the intermediate
Program.

dep_graph_of : takes a program variable representing the result of a let expression

and returns the dependence graph of the let expression. For all other variables, it
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returns the empty graph.
4.2.2 Update Analysis

Update Analysis consists of five phases. These five phases are propagation analysis,
aliasing analysis, selects-updates analysis, mark dependencies phase, and
reference count analysis. The dependencies among these phases are shown in Figure

24.

Propagation Analysis

This phase implements the functions H and H, of a program. It takes a pro-
gram p and returns the propagation environment #,[p]. It also provides a function
prop.info that returns the variables propagated by a temporary variable in the pro-

gram.

Aliasing Analysis

This phase implements the functions A and A, of a program. Aliasing infor-
mation of a program p is Ap[p]. It uses the propagation information computed by

propagation analysis.

Selects-Updates Analysis

This phase implements the functions S and S, of a program. It uses the prop-
agation information computed earlier. In addition it also provides a function su.info
that returns the variables selected and updated by the expressions corresponding to

every temporary variable in the program.
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Figure 24: The Structure of the Compiler
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Dependency Marking

In this phase new precedences are added to the dependence graph of every let
expression. Given a let expression, the corresponding dependence graph is obtained
using the function dep_graph-of. A directed edge (i;,1;) is added if neither ¢; nor ; is a
predecessor of the other and the variables (and their aliases) updated by ¢; are selected
or updated by ;. This phase uses the information provided by aliasing analysis and

selects-updates analysis.

Reference Count, Analysis

This phase implements the functions R and R,,. Live variables at each program
point are computed as described in the previous chapter. At the end of this phase,
every update that can be done destructively is converted to upd!. Using the same
criterion as that of destructive updating, we convert left_part, right_part, and

combine operators to left.part!, right part!, and combine! respectively.
4.2.3 Optimizing Partitions/Combines

In this phase, we perform the address propagation analysis described in Chapter
111 to determine if a combine! can be implemented by sharing as described in the

previous chapter. This phase is not yet implemented.
4.3 Code Generation

We have chosen C as a target language of the code generator, a decision taken by
several researchers compiling high-level functional languages [73, 25, 18, 59} and logic

languages [39]. One advantage of compiling to C is portability because C compilers are
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expected to be available on most machines. Another advantage is ease of debugging,
since C is a high-level language. Moreover, C optimizers can be used to improve the
performance of the resulting program.

However, there are two problems with C as the target language. First is im-
plementing proper tail-recursion. Most C compilers do not perform a fully general
tail-recursion optimization, so a straightforward translation of a function in the source
language to the corresponding C function is not desirable. We have to abandon the
C stack and the C function calling convention and maintain the stack ourselves. This
immediately raises another issue: how to represent return addresses or continuations?
In C, statement labels are not storable values, therefore one cannot use C labels as
return addresses, a flexibility one enjoys using in assembly language. We have to
encode return addresses somehow. This causes extra overhead for encoding and de-
coding return addresses.

The second problem is the use of machine registers. The C programmer does
not have control over allocation of machine registers to program variables. When we
do not use the function calling mechanism of C, we also lose the advantage of passing
function arguments in the machine registers on some architectures, and of having
the stack pointer as one of the machine registers. Register declarations available in
C are ignored by most C compilers and are in any case useless for interprocedural
register allocation. The GNU C compiler allows targetting variables to registers by
using assembly language statements, which obviously would limit portability. For
these reasons, which have to do with the inefliciency of C rather than any inefficiency
of our functional language, the performance of our compiled code should be expected

to be worse than the performance of a comparable program written directly in C.



69

4.3.1 Representing Continuations

A continuation is a pair consisting of some encoding of the function representing
the rest of the program and its live variables. In an assembly language one can use
instruction labels to represent the rest of the program. Creating a continuation before
a function call means saving the return address and the live variables on the stack.
Depending on the convention, live variables of the continuation are saved and restored
either by the caller or the callee. The problem is how to represent continuations in C
since we cannot use C statement labels.

One way is to encode statement labels by storable values. For instance, we could
encode labels by integers and use a switch statement for decoding labels. Suppose

that an integer variable label holds a label. The switch statement would be

switch (label) {
case 0 : goto 1_0;
case 1 : goto 1_%;

case n : goto 1l_n;

}

The labels 1.0,..., 1n are C labels. The entire source program would be
compiled into one giant C switch statement. Each basic block of a source function
would be compiled as a block of statements of a case label of the switch statement.
A function call would be implemented by assigning the appropriate value to label
and reexecuting the switch statement. A return address represented as an integer
would be a storable value. Jumping to the return address would be achieved by
assigning the corresponding integer to label and executing the switch statement.

There are a couple of problems with this approach. One is the overhead of the
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switch statement. The second and more serious problem is that the entire program
would have to be compiled as one single switch statement. Existing C compilers
have problems compiling large functions. Therefore compiling large programs would
be problematic. Separate compilation would also pose a problem. In view of these
reasons we chose another approach.

In the second approach, a function in the source language is compiled into a
set of parameterless C functions — each one representing a basic block of the source
function. Transfer of control from one basic block to another is via a C function call.
A return address is a C function pointer, which is a storable value. Continuation is a
pair: a C function pointer and a set of variables.

The disadvantage of this method is that every basic block entry and exit is
implemented as a function call which is typically an expensive operation in C. But
a post-pass of the assembly code can convert calls to known functions into jumps,
thus avoiding the overhead of a function call as well as the interpretive loop, thereby
improving efficiency. Such a technique has been adopted in The Glasgow Haskell im-

plementation [59]. In our current compiler, the post-pass has not been implemented.
4.3.2 The Abstract Machine

The abstract machine consists of several processors accessing a global shared
memory through some interconnection network, as shown in Figure 25. Each pro-
cessor has some private memory which is exclusive to the processor. We call the
local memory the Processor Stack. Global memory is used for allocating global data
structures such as arrays, and for sharing information among processors.

Each processor has a set of argument registers, a stack pointer pointing to its

stack, a heap pointer pointing to the global shared memory, and a register called code
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Figure 25: The Abstract Multiprocessor Machine

which is equivalent to the program counter. Each processor executes the following
interpretive loop:,
while (1) (*code)(};

The important abstract instructions of the machine are control instructions such
as call and return; the instructions fork, spawn, and synchronize for forking and
synchronizing parallel processes; the memory instructions such as push, pop, move,
allocate, and deallocate; and the primitive operations such as +, -, if ...that are
available in most languages.

Sychronization of processes is implemented on the processor stack. Before
spawning processes, the fork allocates a synchronization counter on the stack which
is initialized to the number of parallel processes. A process for a function call

£(t.1,...,t.n) is created by the spawn instruction, which moves the data for ex-
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ecuting the function to the global shared memory. Subsequently, synchronization of
processes is achieved by decrementing the synchronization counter by executing the
jein instruction.

Parameters to a function call are passed in the argument registers. The result of
a function is returned in register 0. Before a call to a function £, the caller moves the
actual parameters to the argument registers using move and for a non-tail-recursive

call, creates the continuation; the function is invoked by the call instruction.

Implementing the Abstract Instructions

Each instruction is implemented as a C macro. Instructions such as push,
pop, move, allocate, deallocate, the primitive operations, and the instructions for
spawning processes have a straightforward translation as C macros. A function call to
£ is implemented by assigning f to code and transferring control to the interpretive
loop. The C macro for call is defined below.

#define call(f) code = f;return;

The return instruction is implemented as call(execreturn). The function
exec_return pops the current stack top which points to a parameterless C function,
the return address, and executes it.

This idea has been used in the Glasgow Haskell compiler [59], and seems to have

originated as the “UUOQ handler” in Guy Steele’s Rabbit compiler [69] for Scheme.
4.3.3 Examples

Now we consider a few example programs to illustrate the code generated by
the compiler, deferring the details of code generation to a later section. Consider the

source program for the non-tail recursive factorial function and its intermediate form
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in Figure 26.

/* source program */

fact n = if {n = 0) then 1
elge
n*fact{n-1)
endif;

/* the intermediate form */

fact0 n = let t0O
t1

{(n =0);
if t0 then
let
in
1
end
else lat t2
t3
t4
in
t4
end

n-1;
fact(t2);
n¥t3;

in
t1
end

Figure 26: Factorial Function and its Intermediate Form.

The intermediate representation of the factorial function can be thought of as
a macro data flow graph as shown in Figure 27. Each node of the graph is a set
of variable definitions, and an edge represents the flow of values from one node to
another. FEach node itself is a basic block which is a directed acylic graph with
variables defined in the basic block as the vertices and their dependencies as the
edges.

The code generation algorithm compiles each block into a C function, coalescing
blocks if possible. Live variables are saved on the stack at each block exit. A function

call or an if expression always terminates a block. The expressions fact(t2) and
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1
0 = (n=0)
tru false
2 3 pen-1;
retum 1 call (fact0 2);
3
4 W=naxd;

return t4;

Figure 27: The Flow Graph of Factorial Function

n*t3 cannot be compiled in the same C function because the control returns to the
interpretive loop when a call is encountered. Before a function call its continuation
is pushed onto the stack. Values passed from one block to another can be passed
through registers or on the stack. A single value is always passed in argument register
0. Multiple values across blocks are passed on the stack.

Compiling a basic block as a C function involves three steps. We declare C
variables for the live variables at the entry of the block, for the values passed from
a previous block, and for the variables defined in the block. The values passed to a
block are restored either from register 0 or from the stack, and the live variables are
popped off the stack. The appropriate C code is generated for each variable definition
in the block.

The C code generated by the compiler for the function fact is given in Figure
28.

In the factorial example, blocks 1, 2, and 3 of Figure 27 are compiled in the

function fact0. Block 4 is compiled as the function cont_1. Recall that returning



void fact0()
{
int t0;
t0 = (r[0] == 0); /* [0] holds n */
if (t0)
{
move(1l,r{0]}; /* raesult returned in r[0] */
call(exec_return);
}
else
{
int t2;
t2 = r[0] - 1;
push(r[0]); /x save the live variable n */
push(cont_1); /* save the continuation */
move(t2,r[0]);
call(fact0);
}

void cont_1()

{

int t3,t4;

t3 = r[0]; /* value passed to cont_1 moved to t3/
pop(r[0]); /* rTestore live variable from the stack */
t4 = t3+r[0];

move(t4,r[0]);

call(exec_return);
}

Figure 28: Compiled C Code for Factorial Function.

75
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from a function is compiled as a function call to exec_return. By convention, the
result is always moved to the argument register r[0]. In the else part of fact0
which corresponds to block 3, the register r[0], i.e. n, and the function pointer
cont_1 which is the return address, are saved on the stack by push macros. The
recursive call is executed by moving t2 into r[0] and the macro call.

Block 4 is the function cont_1. The value t3 passed to the block in r[0] is
moved into the local C variable t3. The live variable n is popped off the stack into
the register r[0]. The multiplication is perfomed and the result is moved to r[0]
before executing exec_return.

Now we illustrate how we compile parallel function calls. Consider the fibonacci
function and its intermediate form shown in Figure 29.

The data flow graph of the fibonacci function is shown in Figure 30. Notice that
both the recursive calls can be executed in parallel. Parallel execution is achieved
by spawning a process for one call and continuing the execution of the second call.
The continuation of each call is a block which synchronizes the calls. After join
synchronization, the values t6 and t7 are assumed to be available on the stack at a
known offset. Blocks 1, 2, and 3 (see Figure 30) comprise the C function £ib0. Block
4 and 5 are compiled as two separate C functions join and cont_1 respectively.
The C code for fibonacci is shown in Figure 31. The C macro fork initializes a
counter on the stack. Processes synchronize by decrementing the counter. After join
synchronization, one of the processes executes cont_1.

In the above code we assume that calls that can be executed in parallel are al-
ways executed in parallel. Sometimes it is worthwhile to execute two parallel function

calls sequentially. The data flow graph in Figure 32 achieves the sequentialization of



fib n = if (n=0) or (n = 1) then 1
else fib(n-1) + fib(n-2)
endif;

/* the intermediate form */

£ib0 n = let t0 = (n=0);
tl = (pn=1);
t2 = 10 or ti;
t3 = if t2 then
let
in
i
end
alse
let t4 = n-1;
t5 = n-2;
t6 = fib t4;
t7 = fib t5;
t8 = t6 + t7;
in
t8
end
in
t3
end

Figure 29: Fibonacci Function and its Intermediate Form
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Figure 30: The Flow Graph of Fibonacci Function

4=n-1;
th=n-2
spawn(fib (14));
call fib(t5);

joinQ

16, t7

5

1B=16+17;
return t8;
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void £ibo()

{

int t0,t1,t2;

t0 = (z[0] = 0);

t1 = (r[0] = 1);

t2 = t0 || t2;

if (t2)
{

rl[0] = 1;
call(exec_return);

else
{
int t4,t5;
t4 = r[0] - 1;
t5 = r{0] - 2;
fork(2); /* initialize a synch counter on the stack */
push(join); /* push the join continuation on the stack */
spawn(fib0,t4);
move(t5,r[0]);
call(£ib0); /* execute the second call on the same processocr */
}
}

void join(}

{
save_result(); /* save the result on the stack */
synchronize() ; /* parallel calls synchronize */
call(cont_1);

}

void cont_1()

{

int t6,t7,t8;
pop(t6);

pop(t7);

tB = t6 + t7;
move(t8,r[0]);
call(exec_return);

}

Figure 31: Compiled C Code for Fibonacci Function
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1 0=@=0y
tl={n=1)
2= ortl;

a=u,u:/ N=fllsc

b 3 @=n-1
retumn 1 B=n-2

m = mode();

14, -
m =564 15 par

call fib(14) ! spawn(fib (14));
call fib(L5);
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parallel calls based on the value of a flag m. This flag can be monitored by the runtime

system.
4.3.4 The Code Generation Algorithm

The input to the code generator is the intermediate form of the source program
with the dependence graph for each let expression. The output is a C program where
every source function is compiled into a set of parameterless C functions.

The dependence graph of a let expression is converted into an ordered list of
blocks by a function make_let_blocks. A block is a set of variable bindings of the form
#; = e; where the entry to a block implies execution of every variable binding in the
block. It does not imply that every subexpression of e; is executed because e; could be
a conditional expression. In this sense, our basic block is different from the definition
of [3]. A let expression is converted to a let_block ({bi,...,bs},v) where b; is a basic
block and  is the result of the let expression. Two adjacent blocks b; and bi4; can
belong to the C function if 5; does not contain any function calls or if expressions.
The function make_let_blocks ensures that a binding consisting of a function call or
a conditional and its successors do not occur in the same block.

We attempt to compile a let_block into one C function. A let_block, which is a
unit of compilation is a tuple

{name,(blocks,r),lives,vars,cont)
The corresponding C function is named by name; vars are the names of values passed
to the let block; r is the result of the let expression; lives is the set of live variables
of the block excluding vars; and cont comprising a name and a set of live variables
represents a successor block to which control is transferred after the execution of the

let_block.
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Another unit of compilation is a join continuation, which is of the form
(name, i, cont)

A join continuation is executed by the processes that are spawned as siblings. Each
sibling synchronizes by executing the join continuation. After synchronization, one
of the siblings continues to execute cont. The integer : represents the space used to
pass arguments to the processes. This space is deallocated after join synchronization.

We use a datatype called FunQ that is a queue of units which are either let_blocks
or join_continuations. The basic code generation algorithm for compiling a source
function is

compile_function(f,e) =
enqueue(Funq,(f,make_basic_blocks(e), 0, 0, (#,exec_return)rangle);

while FunQ not empty

¢ = dequeue(FunQ);
compile_unit(c);

The function compilefunction converts the body of a source function into a list of
blocks and adds it to FunQ, which is a queue of units to be compiled. A unit of
compilation is removed from FunQ and is compiled using the function compile_unit
whose definition is given below.
compile_unit(c) =
if isjoin(c) then
compile_join(c)

else
compile_let(c)

In all the functions that follow we assume we have a function emit_code that
emits the C code. The emitted C code is shown in typewriter font. The function
compile_join is

The function compile_join which compilation a join continuation is described

below.
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compile.join{{name,i, {-,rest) }} =
emit_code(void name (){);
emit_code(save_result(););
emit_code(join(););
emit_code(dealloc heap(););
emit_code{call(rest);})

The function compile_let compiles a let_block as defined below.

compile_let({name,lb,lives,vars, cont)) =
emit_code(void name(){);
declare(lives);
declare(vars);
restore_vars( vars);
restore_lives(lives);
compile_blocks(1b,cont);
emit_code(};);

The function declare declares a list of variables as C variables. The function
restore_vars restores the values passed to the let block into appropriate C variables.
The function restore_lives restores the live variables from the stack into appropriate
C variables. The body of the let_block is compiled by the function compile_blocks

whose definition is
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compile_blocks({[by,. . . ,b,],r},cont) =
ifn =0 then
emit_code(move(r,r[0]);)
elseif n = 1 then

compile_block(b, );
if isprimop(last(b,)) then emit_code(move(r,r[0]););

else if isprimop(last(b,)) then

compile_block(b, ,cont);
compile_blocks({[ba,. . . ;bn],r),cont)
else
let new_fun = gen_name();
v = var(last(b1));
new_lives = fv_blocks([bz,. . . ,bs),{v});
new.cont =(new_lives,new_fun };
in
enqueue(FunQ, (new_name,([b,. . .,bn),r), new_lives,v,cont));
compile_block(b,,new_cont)
end

The function compile_blocks compiles the body ([b,...,b:},r) of a let_block
whose continuation is cont. It checks if two blocks can be compiled in the same
C function. The function Iast gives the last binding in a block. If the last binding of
b, is a primitive operation, then the block is compiled using compile.block and the
remaining blocks are compiled in the same function recursively. If the last operation
of by is a function call or a conditional, then the rest of the blocks has to be compiled
as a separate function. This is done by generating a new name for the remaining
blocks, and enquequing it for compilation as a new let_block. Its continuation is cont.
The name of the temporary variable in the last binding (obtained by the function var)
is the name of the value that will be passed to the new let_block. Its live variables
are computed by the function fv_block.

The function compile_block compiles a basic block and is defined below.
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compile_block(b,cont) =
if calls(b) then
compile_calls(b,cont)
else compile_noncalls(b,cont)

There are two types of basic blocks, one consisting of only function calls and the
one consisting of primitive operations or a conditional. The function make_let_blocks
ensures that a conditional can only occur as the last binding in a basic block. Parallel
function calls can be compiled as one basic block because all but the last call only
involve creation of processes. The last call is implemented as a function call. However,
in a sequential execution, each function call has to be compiled as a separate block.
The definition of compile_calls is

compile_calls([t1=ey,. . . ,tn=6y),cont) =
ifn = 1 then compile_call(t,,e;,cont)

else

enqueue(FunQ,{new_name,heap_size([t;=ei,. . .,tn=€y]),cont));
compile_spawn_calls(b,(},new_name));

In the case of parallel function calls, a join continuation is enqueued in FunQ, and
the calls are spawned using compilespawn_calls. The definition of compile_spawn_calls
is

compile_spawn_calls([ty=¢),. . .,In=eg],cont) =
ifn =1 then
compile_call(t ,e; ,cont)
else {

compile_spawn(ty ,e1,cont);
compile_spawn_calls([ta=€z,. . . ,in=04],cont);

The function compile_spawn generates the C code to spawn a process. Spawning a
process involves allocating space on the argument heap which is another stack used
for passing arguments to the newly created process, moving the parameters of the
call to the heap, creating a process and making it available for scheduling. The

function compile_call generates code to move the actual parameters of the call into
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the argument registers; and the macro call to call the function. Before calling the
function, the continuation, if it is not exec_return (which indicates a tail-recursive
call), and its live variables are saved on the stack.
The function to compile_noncalls is defined below.

compile_non-calls([t1=ey,. . . ,tn=¢y],cont) =
let helper({t1=¢1,...,lx=¢s]) =
ifn=1 then
if isif{ey) then compile_if{1,,e;,cont)
else
compile_primop(1,e1)
else {
compile_prim(t;,e; );
helper([tz=ea,. . . ,tn=¢€n);

in
declare(ft1,. . . 4ta));
helper([t1=e4,.. . ,tn=¢y]);
end

A block of non-calls is compiled using compile_primop and compile_if. The C variables
corresponding to the let variables of the block are declared by the function declare.
For a binding t;=¢; where e; is use of a primitive operator, compile_primop generates
the C assignment statement ¢; = e;. A conditional expression is compiled by compile_if
which compiles the branches of the conditional, which are let expressions, using
compile_blocks as defined below.

compile_if(if ey then €, else e;,cont) =

emit_code(if (eg));

emit_code({);

emit_code( compile_blocks( make_let_blocks(e, },cont));
emit.code(});

emit_code({);

emit.code( compile_blocks(make_let_blocks (e3),cont));
emit_code(})
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4.4 Update Analysis with Separate Compilation

Most modern programming languages provide module systems [52, 53, 81]. The
programmer can decompose a program into several separate programs called mod-
ules: these modules usually correspond to the logical decomposition of the problem.
Each module can be compiled separately without having any knowledge of the imple-
mentation of the other modules. A module can call functions defined in some other
module. Such a communication among modules is facilitated by type signatures {52]
or import and export declarations [81]. During the linking phase external references
are resolved.

Our update analysis algorithm, a global dataflow algorithm, requires the entire
source program for analysis. In this section we show how one can support update
analysis with separate compilation. We do not know of any global dataflow analyses
other than register allocation [79] that work with separate compilation.

For the discussion we assume that imported and exported functions of a module
are declared by import and export declarations. While analyzing a module, we do
not have any information about the imported functions. Depending on how we handle

these functions, we get different scenarios for separate compilation.
4.4.1 Simple Separate Compilation

For update analysis, we can treat imported functions as opaque functions that do
not propagate, select or update any argument. This implies that an explicit copying
of the arguments to external functions is necessary. But copying is needed only across
module boundaries. Such copying can further be minimized by explicit runtime tests,

an approach currently taken by SISAL for arrays crossing function boundaries. This
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method would work with existing linkers.
4.4.2 Separate Compilation with Smart Linking

We can avoid copying accross module boundaries at the expense of extra work
at link time. Since the types of the imported functions are known to the module,
we can make a conservative estimate of their propagation behavior. An imported
function can propagate only those arguments whose types are the same as that of the
result of the function. We also assume that an unknown function selects all its array
arguments.

With this conservative estimate, we perform update analysis of each module.
The object code of a module includes the information about propagation, aliasing,
select-updates, and reference count analyses of each function defined in the module.
It also includes aliasing of an external function caused by each external call site, and
the reference count of the actual parameter of each external call site.

At link time, we can identify if each external call site introduces any additional
aliasing of arguments of the function. If no aliasing is introduced, we know that the
arguments need not be copied. For each call site, we can avoid copying an actual
parameter if its reference count is 1 or if it is T but the function only reads that
argument (note that this information is available at link time for each module). This
scheme is likely to work well if mutually recursive functions do not live in multiple
modules. We believe that mutually recursive functions are typically defined entirely
within one module. Again, the modules can be compiled in any order but we need
a sophisticated linker. For a more accurate update analysis, one can extend the
module interface by allowing the user to specify the propagation behavior and selects-

updates behavior of imported functions. Similar to signature matching, at link time
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the propagation and selects-updates information specified by the user can be matched
against the information computed by the analyzer and reported to the user in case of

differences.
4.4.3 Dependency Based Separate Compilation

In the previous case we had conservatively assumed that an imported function
propagates or reads all possible arguments. Can we do better? Consider determining
the order of evaluation of two expressions £(x) and g(x). Suppose £ is an imported
function that updates x and g is a function defined in the module that reads x. Since
we assume that f reads x, our ordering algorithm chooses an arbitrary ordering for
these two expressions. In the case of £(x) evaluated before g(x), copying of x before
the call to £ cannot be avoided by the linker described previously. We could modify
our ordering algorithm to evaluate calls to known functions first when the known
function has no updates. But if both £ and g are imported functions, the ordering
algorithm has no way of fixing an evaluation order between £ and g.

One might argue that if we had conservatively assumed that external functions
update all their possible array arguments, then the ordering algorithm would have
found the right order that enables the linker to avoid copying x. But the problem
is that with this conservative estimate an update in the module may become non-
destructive. This can easily be seen by considering f as the reader of x and g(x)
the scle modifier of x. Again the ordering among these two expressions has to be
arbitrary and in one case the update in the module becomes non-destructive. We
chose a conservative estimate that does not interfere with the destructive updating
of a known update.

If we compile the modules respecting dependencies, then the flow information
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computed in one module can be used in compiling the subsequent modules that de-
pend on it. Of course this assumes that there are no cyclic dependencies among
modules. We still need the smart linking technique described in the previous section.
Compiling modules in a dependency based order is similar to compiling several C files
using the make facility. The benefits of each of these approaches need to be investi-
gated by designing and implementing a complete functional language with modules,

an important area for further research.

4.5 The Runtime System

Functional programming languages are implicitly parallel. The user is relieved
of details such as creation of parallel processes, resource allocation such as process
scheduling and storage management, and process synchronization. These tasks are
handled by the runtime system. We have designed and implemented a runtime system
for our language on a Sequent Symmetry 581, a bus-based shared memory multipro-

Cessor.
4.5.1 Model of the Runtime System

The runtime system is based on the worker crew model [24]. A process is
a schedulable unit of work. The granularity of a process is a function call. Each
process has its own stack and argument heap. The stack is for sequential execution.
The argument heap is used to store arguments to a new process. The argument heap
of a process is used in a stack-like fashion. A worker allocates a stack and a heap for
a process. In addition, there is a global data heap for allocating data objects such
as arrays. A process can be classified as new or continuing. A continuing process

already has a stack allocated on some processor. In our model, all processes that
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have stacks allocated on some processor must be executed on that processor. Each
worker has a pool of continuing processes that are waiting for operands.

Each worker in our model has two queues, a local queue for continuing processes
ready for scheduling, and a process queue for new processes. Each worker looks for a
continuing process in its continuation queue and executes it. If this queue is empty,
it finds a new process and executes it. The scheduling policy of the runtime system
determines how a worker acquires a new process. Our current sceduling policy is
described in a later section. Each worker executes the following algorithm.

find_work() =
if local_q not empty
{ ¢ = get_cont();
execute.cont(c);
else {et p = get_newprocess();
in

execute_process(p)
end

The function execute_cont extracts the continuation of the process from the
pool of continuations and invokes it. The function execute_process allocates a new
stack and heap for the new process and executes it. A new process is described by a

C structure

struct Process {

void (*code)();

int arity;

stackelement *frameptr;
struct cont_descriptor c;

}

Function pointer code holds a pointer to the called function; arity is its arity;
frameptr is a pointer to the argument heap where the arguments of the process
are stored; and c is a descriptor of the continuation of the process. A continuation

descriptor is another C structure
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struct cont_descriptor {
int offset;

int c_index;

int pe_no;

}

It has a field pe.no that describes the worker to which the continuation belongs.
c_index is the index for accessing the continuation from the pool of waiting continu-
ations. The field offset is the offset from the stack at which the result of the process
is stored.

The result of a computation is passed to its continuation by the C structure

struct Result {
stackelement value;
int offset;
int c_index;

}

The variable value holds the value computed by a process; offset is the stack
offset where the value is stored; and c_index is the index of the continuation in the
pool of waiting continuations.

To execute a new process, a worker allocates a new stack and an argument
heap on its physical stack and heap. The stack of a process is local to the worker
whereas the argument heap is shared. The continuation descriptor of the process
is pushed onto the stack. A pointer to the function exec_last_cont is also pushed
onto the stack. Now the worker executes the function pointed to by the code field
of the process. After its execution, the result of the process has to be passed to its
continuation. This is accomplished by exec_last_cont. It pops the continuation
descriptor off the stack and puts the result in the local continuation queue of the

appropriate worker. It then deallocates the stack and heap of the current process.
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452 Storage Management

When a worker gets a new process, it has to allocate a new stack and heap.
In sequential execution, heap and stack management is much simpler. Typically,
the stack grows downward and the heap grows upward thus utilizing the available
space effectively. When multiple threads of execution exist concurrently, this simple
memory model does not work.

In languages like Scheme and Standard ML of New Jersey, which have operations
such as call/cc, stack based execution mandates that the captured stack be copied
to the heap when call/cc instruction is executed [23]. Similarly, the stack has to
be restored when a captured continuation is invoked. Moreover, in the presence of
higher-order functions, variables have indefinite life times and a stack-like allocation
of variable is not possible. Some implementations [4, 5] abandon the stack completely
and represent continuations as a linked list of activation records on the heap, relying
on the garbage collector for the reclamation of unused frames. Mixed strategies of
representing continuations have been suggested in the literature [22].

Each worker has a single physical stack and argument heap. The stack is local
to the worker whereas argument heap is shared and accessible to the other workers.
One simple way to manage multiple stacks for concurrent execution is to divide the
physical stack space into a fixed number of smaller stacks, each stack allocated to
a new process. The entire stack of a processor is not available for a process that is
executing sequentially. Our design goal was to retain the stack based execution (as
we don’t allow higher-order functions) but to have a flexible mechanism where each
process potentially gets the entire available processor stack for execution. We achieve

this by implementing the process stack as a doubly linked list of stack records, the
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strategy proposed by [43]. Each stack record points to an ordinary stack. Execution
within a stack is the usual stack execution. When a stack overflow occurs, the overflow
handler moves to the stack of the next stack record. Stack underflow is handled
similarly. One gets the advantage of stack based execution but some price is paid in
moving along the linked list. The argument heap of a process is also implemented as

a linked list of heap records. The stack record is described by the C structure

struct StackRecord {
stackelement *stackpointer;
stackelement *stacklimit;
stackelement *stackbase;

struct StackRecord *next, *prev;

¥

The stack of a process is shown in Figure 33.

When an executing process cannot be run any further because its operands are
not yet computed, the worker process chooses another ready process by executing
the basic algorithm find_work. If the entire available physical stack of the worker
was allocated to the previous process, then we need to seal its stack in order to
allocate a stack for a new process. Sealing a stack involves checking if stack 1imit
of the current stack record is the physical stack limit of the worker. If that is so,
then stack_limit is changed to a new value, appropriately modifying the available
physical stack of the worker for subsequent allocation. The argument heap is also
sealed in the same fashion. In order to avoid frequent stack overflows it is desirable
that each stack of a stack record have at least certain minimum size. The appropriate

size has to be chosen experimentally.
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4.5.3 Join Synchronization

Consider the parallel evaluation of function calls ¢; =e,, ..., t, = e,. Space is
allocated on the stack of the current process for the results of ey,...,en. The fork
instruction initialises a counter to n on the stack. The join continuation of these
expressions is pushed on the stack. The continuation of the parallel processes which
is the current stack,heap pointers, and a pointer to the stack and heap record is
saved in the pool of waiting continuations. The calls e;, ..., e,—; are spawned as
new processes. Each process gets a unique offset (from 1 to n) in its continuation
descriptor. The expression e, is implemented as a function call on the same processor.

When an expression e; is evaluated completely, the result is returned to the
Worker which had spawned e;. The stack and the heap of the process are extracted
from the pool using the c_index of the process. Recall that the first instruction
in a join continuation is save_result(). The result of e; is saved at offset; from
the current stack pointer. The synchronization counter is decremented by 1. If the
counter becomes 0, it means that the current process is the last process to synchronize.
This process frees the slot used in the pool of waiting continuations and continues
executing the rest of the code. If the counter is greater than 0, it implies that the
current process cannot be executed any further. The worker relinquishes the current
process by sealing its stack and heap if necessary and looks for new work by executing

find_work. This mechanism is the same as described for multithreaded architectures

[56).
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4.5.4 Controlling Parallelism

One of the serious problems with implicitly parallel languages is that they tend
to express too much parallelism. If the grain of parallelism is too fine then the
overheads of spawning several fine processes, each one doing very little work, outweigh
the gains of parallel execution. Moreover, too many parallel processes would also
swamp the machine resources thereby precluding the execution of programs on larger
data sizes. Our runtime system supports automatic constraining of parallelism with

the following features.

1. A worker executes a process sequentially if its process queue is full.

2. A process executing sequentially can change to parallel execution upon request

from starving workers.

3. An inherently sequential process does not pay too much overhead for execution

on a parallel machine.

To constrain parallelism, each processor is equipped with a flag mode which de-
termines whether the process should execute sequentially, or spawn more subprocesses
for parallel execution. This flag can be set under various conditions.

A process does not spawn more processes if the process queue of the worker is
full. Suppose that the maximum size of the process queue is ¢; then the maximum
number of processes that exist simultaneously in the system is at most pg where p is
the number of workers. When a process spawns parallel processes, it sets the flag to

sequential mode if its process queue is full or its pool of waiting continuations is full.
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In our current implementation we have chosen the size of the process queue and the
pool of continuations as 2p.

It is desirable that a sequentially executing process change to parallel execution
upon demand for work from other starving workers. This is achieved by allowing a
worker to set the mode flag of other workers. Function calls that can be executed in
parallel are actually compiled for both sequential and parallel execution as discussed
previously. The actual code executed at runtime is based on the mode flag of the
worker. Thus spawning parallel calls incurs an overhead of checking a flag. Since the
mode flags are checked only in the case of parallel function calls, inherently sequential
code does not incur this overhead. There is some overhead for sequential execution,

however, because a stack is now a list of stack records.
4.5.5 Process Scheduling

Our current scheduling policy is based on a virtual ring structure of the worker
processes. Each worker has a left and right neighbor. Typically, a worker acquires
work from its own process queue or from its left or right neighbour. This strategy
is scalable but only achieves local load balancing. For global load balancing we use
randomization. When a worker does not find work in either of its neighbors, it tries
to pick work from the process queue of a random worker. If a worker does not find
any work, then it sets the mode flag of its left neighbour to par asking its neighbour
to spawn more work if possible and executes find.work again. Initially every worker

starts with the mode flag set for parallel execution.
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4.5.6 Implementation on Sequent Symmetry

Sequent Symmetry is a bus based shared memory multiprocessor. The 581
configuration has 20 processors that access global memory via shared bus. Each
processor has a 128K instruction and data cache. Sequent Symmetry runs the Dynix
3.1 operating system, which is derived from the Berkeley 4.2 version of Unix. The
Sequent Symmetry supports high level programming languages such as C, Fortran,
and Pascal.

Parallel programming on Sequent is supported by a parallel programming library
that provides calls for process creation, synchronization, declaring shared variables,
and locking shared memory.

The runtime system is written in C using the parallel programming library. Each
worker of the runtime system is implemented as a Dynix process. The continuation
and process queues are implemented as shared circular queues. The stack space,
argument heap space, and the global data heap are allocated as shared data.

No locking is required by a worker when acquiring a process from its local
continuation queue or putting work in its process queue. The reason is that only
one worker, the owner of these queues, ever acquires work from a local queue or
puts work in its process queue. However, locking is required when putting work in a
local continuation queue of another worker or getting work from a process queue. We
expect the locking overhead to be negligible because each worker has only 2 neighbors,
and a few more workers may be accessing the process queue of that worker because
of randomization in our scheduling policy. No locking is required in any other part

of the runtime system.
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4.6 Preliminary Performance Results

We present the performance of the system on two benchmarks, the recursive
fibonacci function and parallel vector addition. Table 4 presents the execution time
of these two programs as a function of input arguments and the number of processors.
The argument to the vector adddition function is the size of the vector. In Table 5, we
compare the performance of the compiled program on one processor to the execution
of a sequential C program. In all these examples, peak performance is achieved with 8
processors. For the vector addition example, the implicitly parallel vector addition is
approximately 10 times slower than the corresponding C program. The tail recursive
vector addition is approximately three times slower than the C program. We also
studied the performance of vector addition with explicit sequentialization where the
tail-recursive sequential vector addition is called when the vector size is below a
particular threshold. In Table 4 the last row is the performance of vector addition
when the threshold is 256. The threshold has to be determined by trial. This example
shows that explicit sequentialization may be essential for achieving good performance.
We are currently working on performing a post-pass of the assembly code to eliminate
the overheads of C function calls.

If C compilers could be relied upon to handle tail-recursion properly, then the
code generated by the functional language compiler would be just as fast as C in
the sequential case, and would have the advantage of automatic parallelization on

multiprocessors.



Table 4: Execution Time of Two Programs (in secs)

Programs Processors

1 2 4 8 16
fib(25) 6.96 |4.3 1.89 | 1.2 2.7
fib(30) 77.16 | 40.17 | 22.96 | 10.75 | 13.18
vadd(10000) 084 |045 | 029 |0.54 |25
vadd(100000) 8.42 1458 |3.20 | 1.87 | 279
vadd(500000) 41.9 | 227 (119 |6.37 | 10.9
seqvec(500000,256) | 6.32 | 3.19 | 1.67 [1.13 | 7.5

Table 5: A Comparison with Sequential C Execution(in secs)

Programs unoptimized C | optimized C'| ours
fib(25) 1.76 1.32 6.96
fib(30) 19.56 14.68 77.16

vadd(500000) 2.76 2.68 41.9
seqvadd(500000,256) 2.76 2.68 6.32
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CHAPTER V

THE NON-FLAT ARRAY UPDATE PROBLEM

5.1 Introduction

In Chapter II, we presented an efficient update analysis algorithm for flat arrays
and sequential evaluation. We generalized our algorithm for parallel evaluation in
Chapter III. In this chapter we consider another generalization : generalization to
non-flat arrays. We discuss some of the problems while considering non-flat or nested
arrays and present an extension of our algorithm described in Chapier II. Although
our discussion in this chapter assumes sequential evaluation, one can consider parallel

evaluation by using partition and combining operations on non-flat arrays analogously.
5.1.1 Non-flat Aggregates

No previous work on the aggregate update problem has considered non-flat ag-
gregates, in which an aggregate = has an aggregate y as a proper subcomponent that
can be extracted from z while continuing to share structure with z. Flat aggregates
are general enough to include all Pascal-like types except pointers, references, and pro-
cedures. In this chapter we consider non-flat homogeneous arrays, but the algorithm
we present here applies to all non-recursive Pascal-like types except procedures.

The restriction to non-recursive types is needed to ensure finiteness of our ab-
stract domain of aggregates.

The selection and update operations on arrays are defined as follows: sel(x,i)
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returns element i of the array x. upd(x,i,y) returns an array that is like x except that
it has y at index i. The goal of update analysis is to implement updates destructively
(by side-effect) instead of by creating a new array. As an illustration of update
analysis, and to show how it is made more difficult by non-flat aggregates, consider
the following program fragment:

if i < 0 then x else upd (x,i,y);
sel (upd (sel (f (x,y,i), i), i, i), 2#i) + sel (y,1)

f (x,y,1)
g (x,y.i})

Suppose f is called only from g, and for all calls to g the arguments to g are thor-
oughly dead when g returns. Then the update in the body of £ can be performed
destructively, because £ has the only reference to x. The update in the body of g
is harder to analyze. Its first argument, the value of sel(f(x,y,1},1), may be the
value of y, which is needed to compute sel(y,i). Our update analysis algorithm
will therefore arrange to compute sel(y,i) before the update and will perform the
update destructively. To deduce that y is a possible result of sel(£f(x,y,1),1), how-
ever, the update analysis must keep track of which aggregates may share structure
with other aggregates. This is more complex than the simple aliasing analysis that

suffices for flat aggregates [63].
5.1.2 Copying To Avoid Copying

In the following example, neither update can be performed destructively:

fzwj h (upd (sel (z, j), 0, 1), w)

gxyi f (upd (x, i, y), x, i+1)
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The update in g cannot be destructive because x is live. The update in £ cannot be
destructive because its first argument shares structure with w, which is live. Note
that z and w are not aliases, and neither is a component of the other, but the fact
that they share common subcomponents is enough to prevent the update in £ from
being performed by side effect.

But sharing is not semantically relevant in a functional language, so the argu-
ment in the preceding paragraph is based on an assumption about the implementation
of the selection operation. If the selection operation were to return a copy of the se-
lected element, then the update in £ could be done destructively after all. A copying
selection operation would never be slower than using flat arrays, and it would at times
be faster because it would enable some updates to be performed in constant time.

We thus have an interesting tradeoff: The goal of update analysis is to avoid
copying the first argument to the update operation. This goal can often be achieved
at the expense of extra copying elsewhere, as in the selection operation. This tradeoff
arises in connection with flat aggregates as well [41, 63], but non-flat arrays provide a
broader range of options. To evaluate these options we must consider the motivations
for non-flat aggregates and their typical patterns of use.

One motivation for non-flat aggregates is their potential for representing sparse
matrices. Consider allocating storage for a triangular matrix. The most natural rep-
resentation is an array of arrays, although one could embed a triangular matrix in
a linear array. However the embedding becomes more complicated when one consid-
ers block diagonal matrices and other sparse matrices whose entries are themselves
matrices. Such matrices arise in finite element methods. Sparse vectors can be repre-

sented as a non-flat array. A sparse matrix can then be represented as a sparse vector



105

of vectors. In Fortran a sparse vector is represented by two arrays: one for storing
indices which have non-zero values, and the other for the corresponding values of the
vector.

One of the problems with Fortran-77 like languages for sparse matrix computa-
tions is that space for fill-ins has to be preallocated by the programmer. Thus for each
sparse matrix algorithm, the burden of preallocating additional storage, its initializa-
tion, and garbage collection is thrust upon the programmer [30, 83]. We believe that
a functional language with dynamic storage allocation and efficient implementation
of non-flat arrays would be a good choice for expressing sparse matrix algorithms.

Another motivation for non-flat aggregates is convenience. For example, it is
easy to select a row from a two-dimensional non-flat array in order to compute its
norm. Since syntactic sugar can be used to provide the same convenience for flat
arrays, however, it seems that the real motivation for non-flat aggregates is efficiency.
The programmer knows, or at least thinks, that it is faster to select a row from a
two-dimensional non-flat array than to construct the corresponding row from a two-
dimensional flat array. The compiler should trust the programmer’s judgment in
this. Nonetheless there are occasions when extra copying is justified to improve the
effectiveness of update analysis. For example, suppose A is a two-dimensional non-flat

array, and suppose B is the result of replacing row i by row j via the expression

upd (A, i, sel (A, j))

in a context where A is dead. This update can be performed destructively. Unfortu-
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nately, it then becomes unlikely that updates such as

upd (sel (B, m), n, 0)

can be done destructively, because two rows of B share structure. It is easy for the
compiler to warn that copying is required when rows of B are updated, but it would
be more useful if the compiler were to advise that this copying could be avoided by

changing the expression that yields B to

upd (A, i, dcopy (sel (A, j)))

where dcopy performs a deep copy of its argument.

The compiler is unlikely to have enough information to decide whether it is
cheaper to perform a shallow copy of a row of B upon each update to a row, or to
perform a deep copy of the third argument to the update operation that creates B.
Only the programmer can decide this. We are led therefore to introduce both shallow
and deep copy operations, scopy and dcopy, which have the semantics of identity
functions but serve also as declarations. These explicit copy operations declare not
only the programmer’s awareness that copying will be required, but they also declare
the places in the program where the programmer believes copying should occur in
order to obtain the most efficient results. The compiler can of course omit any
unnecessary copying that the programmer has declared, but this is not trivial as is
shown by the above examples.

A shallow copy is generally appropriate for the first argument to an update

operation, while deep copying is appropriate for the third argument to an update
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operation or to eliminate sharing between formal parameters.

With explicit copy declarations and an effective optimizer, it becomes reason-
able for the compiler to complain whenever copying is required that has not been
anticipated by the programmer. If these complaints are treated as fatal errors, then
the optimization we describe in this chapter becomes a limited kind of automatic

program verification.

5.1.3 Local Optimizations

To be effective on non-flat aggregates, update analysis must deal specially with

nested updates. Consider the Pascal assignment statement

Ali,j] := 0

for which our corresponding functional notation is

upd (A, i, uPd (591 (A: 1): j: 0))

in a context in which A is dead. Unfortunately, A is live in the context of the inner
update, which updates a component of A, so it is not obvious that the inner up-
date can be performed destructively. This idiom must be recognized as part of the
optimization.

Row interchange is another idiom that is worth recognizing specially, though it

is less important than nested updates.
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5.2 Overview

In this chapter we present a simplified algorithm that corresponds to an imple-
mentation of the update operation in which the third argument is implicitly deep-
copied unless the analysis determines that the copying is unnecessary. The general
algorithm has the same structure as the simplified algorithm, but the general algo-
rithm uses a more complicated abstract domain to express the potential sharing of
structure between aggregates. We did consider the details of a general algorithm that
does not assume deep copying the third argument to the update operator but could
not find interesting examples where the simpler algorithm fails to avoid copying but
the general algorithm suceeds. Therefore we present the simpler algorithm.

The simpler domain of sharing reflects the following invariant, which is made
possible by copying the third argument of each update: No proper subcomponents of
a single array share any structure with each other.

The algorithm consists of several phases, most of which correspond directly to
the phases of our algorithm for flat arrays as described in Chapter II. Propagation
analysis determines, for each expression, the arrays that may be the result of the
expression. Sharing analysis detects all possible sharing between arrays; this replaces
the aliasing analysis of Chapter II. The next phase, copy avoidance, is new: for
each update operation, it attempts to prove that the results of the sharing analysis
hold without copying the third argument to the update. Selects-and-updates analysis
determines, for each expression, the sets of arrays that are selected or updated during
evaluation of the expression.

The algorithm then constructs the data dependency graph and attempts to

choose an order of evaluation in which, for each array, all selection operations precede



109

all update operations. Abstract reference count analysis then determines, for each
update, whether the array being updated is live or dead. If the array is dead, then it
is safe to perform the update destructively. Otherwise the result of the update must
be a shallow copy of the array being updated, except for one change at the index of
the update.

As in Chapter II, we assume that the optimization operates on an intermediate
form in which all variables are distinct and a temporary name has been generated for
each non-trivial expression. The expression associated with a temporary variable is
given by the function expr_of. For simplicity we do not allow let-expressions in the
source language, even though the analysis can easily be extended to let expressions

as described in Chapter III

5.3 Propagation Analysis

Given an expression, propagation analysis determines the arrays returned by

the expression. Recall that our language has no recursive array types.

Definition: The dimension d of an array of type array of ... B,
where B is a scalar type (or at least a type that involves no array types),

is the number of array of constructors that occur in the type. O

5.3.1 Abstract Domain of Arrays

For an array variable x of dimension d, (x,0), (x,1),...,(x,d) represent the arrays
at levels 0, ..., d where (x,0} is the entire array and (x,d) is a non-array value. The

ordering between two elements (x,i} and (y,j) is defined as

(x,i) E (vj)iff (x =y)andj< i
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Intuitively the ordering among the abstract values means that if we have a pointer
to an array, then we also have pointers to all its sub arrays.

A named array is an array that is bound to a formal parameter of a function.
An anonymous array is an array created by an update operation. The domain D of
abstract arrays is the disjoint sum of the named arrays A and the anonymous arrays

U (Figure 34).
5.3.2 Abstraction of Array Operators

The function sel* defined on D maps an element (x,i) € A to (x,i+1) and an
element u((x,i)} € U to (x,i+1). The function upd® maps an element (x,i) € A to
u((x,i)) and an element of U to itself. These functions reflect our simplifying assump-
tion that the update operation always performs a deep copy of its third argument
and shallow copy of its first argument.

The functions Sel and Upd are extensions of se* and upd* to the Hoare power
domain of D [65]:

Sel : Pu(D)— Pu(D)
Sel § = {sel*(z)| z € S}

Upd . Pu(D) = Pu(D)
Upd X = |{upd*(z))|=z € X}
The propagation function M computes the set of abstract arrays returned by an

expression (Figure 35).



111

HleiJop U Hlez]op

plfdl(Hlselop, . .., Hsea]op)
Ht]e p

H[if seo then e, elsee; Jop

H[fr(ser,...,se.)lop
H[ let [t; = €1,---,tn = €] in t; end Jop

|4 = Program Variables

F = Sser Defined Function Names

N = {0,1,2,...,d} Domain of Levels (ordered by >)

A = VxN Named Aggregates

U = {u(z) |z € A} Anonymous Aggregates

D = A+U Domain of Aggregates

VEnv = V — Py(D) Variable Environments

FEnv = F — Pg(D)" — Py(D) Propagation Function Environments
Figure 34: Domains for Propagation Analysis

Hlclep =0

Hlz]op = ofz]

Hitde p = Hlexpr_of(i;)]o p

Hlop(seq,...,seq)]op =0

H[sel(ses,sez)]op = Sel(H[sei]op)

H[upd(sey,seq, ses3)]op = Upd(H[sei]op)

Figure 35: Propagation Function H : IEzp — VEnv — FEnv — Py(D)

Holpr]l = fiz(ro. o[fi = Ayry- .., vk Hled[zr, = 11y .., Tk — yk]0])

Figure 36: The Function M, : IProg — FEnv
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5.3.3 Symbolic Transformations

The abstraction defined for propagation analysis results in a set of recursively
defined abstract functions. Even though the array types are nonrecursive, a program
can update an array recursively which may result in the infinite application of Upd op-
erator. To ensure termination of our symbolic evaluation of these abstract functions,

we use a rewrite system to compute normal forms at each iteration:

Upd(Upd(A)) = Upd(A)

Upd(A U B) = Upd(A) U Upd(B)
Sel(Upd(4)) = Sel(A)

SefA U B) = Sel(A) U Sel(B)
(AUB)UC = AU(BUDQC)

5.3.4 Complexity of Symbolic Transformations

The first concern about the rewriting system is whether it is Church-Rosser,
i.e. the order of application of the rules is immaterial in computing normal forms.
The above rules can be shown to be Church-Rosser by the Knuth-Bendix completion
procedure [49].

To show that the rewriting process terminates, we divide the rules into three
groups, the Upd rules consisting of the first two rules, the Sel rules comprising the
next two rules, and the U rule. Notice that the application of Sel rules does not
create any redexes for the Upd rules. Similarly, the application of the LI rule does
not create any redexes for either the Sel or the Upd rules. This immediately gives us

an algorithm for computing normal forms. The simplification algorithm applies the
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Upd rules until they are not applicable any more, followed by repeated application
Sel rules. Lastly, the Ul rule is applied until it is not applicable any more.

Notice that the first Upd rule always decreases the size of the term, but the
second Upd rule increases the size of term. The second Upd rule can be thought of
as pushing an Upd symbol from the root of subtree toward its leaves. The size of
new term after the removal of all the redexes of the second Upd rule is bounded by
the number of leaves which is O(rn). Now by applying the first Upd rule all the Upd
redexes can be removed.

By the same argument, repeated application the second Sel rule, equivalent to
pushing a Sel symbol toward the leaves, also increases the size of a term by no more
than a factor of 2. All the remaining Sel redexes can be removed in linear time. The
U rule which only rearranges the terms in the tree can also be applied in linear time.

Thus normal forms for the above system can be computed in linear time.
5.3.5 An Example

Consider the matrix mulfiplication program,

{
matmul ABCin-=
if (i = n) then C
else
matmul(A, B, upd(C,i,compute_row(4, B, sel(C,i),i,0,n)), i+1, n);

compute_row ABX i jn=
if (j = n) then X
alse
compute_row(A,B, upd(X,i, dot_product(sel(a,i),B,i,j,0,n,0}),i,j+1,n);

dot_product A Bi j kn sum =

if k = n then sum

alse

dot_product(A, B, i,j,k+1,n,sum +g8el(A,k)*sel(sel(B,k),j));
}
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The abstract functions for these definitions are

matmulABCin = CUmatmulA, B,Upd(C),0,n)
computerow ABXijn = X U computerow(A, B,Upd(X),%,0,n)

dot_product ABijknsum = sumU dot.product(4,B,i,j,0,n,0)

The symbolic non-recursive solutions are

matmul ABCin = CUUpd(C)
computerow ABXin = X U Upd(X)
dot_product A Binsum = sum

We can conclude that matrix multiplication either returns its third argument or re-

turns a new array obtained by updating the third argument.

5.4 Sharing Analysis

To compute liveness of a variable, we must compute sharing among program
variables. Two formal parameters x and y of a function are shared if they can be
bound to arrays that have common components. Recall that in the case of flat arrays

the only form of sharing possible is aliasing.
5.4.1 The Sharing Domain

Sharing information between two arrays is specified by the array names and the
corresponding level of one of the arrays at which sharing occurs. The sharing domain
Sh is given in Figure 37.

The interpretation of the sharing information (z,i) € shly] is that (y,7) may

share structure with z.



115

5.4.2 Auxiliary Sharing Function

The sharing function tompute_sharing computes the level at which an aggregate
shares with another aggregate. Notice that the sharing function is not symmetric in
its arguments. For instance an array A could share with B at level 1, whereas B could

share with A at level 0. Sharing between two abstract arrays is defined below:

compute_sharing : DxDxSh—=N
compute_sharing a b sh =
cases
a=(z,i),b=(z,j) :
if i<jthen j—1else
a=(z,i), b=(y,5), {v,n) € sh[z] :
if i<nthen n—1else 0
a€ A, b=u(w) €U : computesharing(a,w)
a=u(w) € U, b=u(v) €U :1+ computesharing{w,v)

end

5.4.3 The Sharing Function SH

With our simplifying assumptions, the only expression that can cause sharing
among named arrays is the function call. We determine the values propagated by the
actual parameters using the information obtained from propagation analysis. For each
pair of formal parameters of the function, the maximum possible sharing is computed
using compute_sharing. The equations are given in Figures 38 and 39. The operator

* is the downward closure operator on the elements of the power domain.



Ds = VxN
Sh = V — Py(Ds) sharing domain

Figure 37: Domains for Sharing Analysis

SH[if seg then e, else e; Jo p sh
SH[ fr(se1,-..,3ex)]op sh

SH[c]o p sk = sh
SH[z]e p sh = sh
SH[t:]o p sh = sh
SH[op(ser,---,5€n)]o p sh = sh
SH[sel(se1,seq)]o p sk = sh
SH([upd(ser,sez, sea)lo p sh = sh

let v = H[seijop
ve = H[sex]op
v, = H[seJop
a;; = U{compute_sharing(z,y,sh)lr € vi,y €v;,1<i#j < n}

in

shU{zy, — {(zk;,2i5)}]
end
SH[let [ty = e1,...,tn=¢,]int;end]o p sh = | |{SH[e:Jo p sh}

i=1

Figure 38: Sharing function SH : IEzp — VEnv — FEnv — Sh — Sh

SHylpr] =
let p="Hypr]
| venwp= ..oy z ~ {(zk, 0)},. . ]
in

fiz(Ao. (|:|8’H[[e.-]]venvo po))

i=1

end

Figure 39: 8H, : IProg — Sh
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SH[ei)o p sh U SHlez]o p sh



117

5.5 Copy Avoidance

To avoid internal sharing, we assumed an implementation of the update operator
that always performs a deep copy of its third argument. We would like to eliminate
this copying where possible.

Consider an expression upd(a,i,x). Without any information, we have to deep
copy x. If x is a new array that doesn’t contain components of any other array, or x
is a possibly updated version of sel(a,i), then copying can be avoided. These cases
are common in typical programs.

For copy avoidance, we describe an address propagation analysis similar to the
one discussed in Chapter IIL For detecting cases such as a being updated at index
i with a value sel(a,i), we have to carry around the index information. We define

a sets of values Sp,...,Ss inductively as

N

{c¢| cis a constant} So
{z | dimension(z) =i} € S, Vi0<i<d

z€S;,yeES = zy€ Siu

The domain of abstract values for copy avoidance is a flat domain of UL, S; as
shown in Figure 40.

The abstraction of primitive operators is defined as
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D;, = Flat Domain of U:-Lo S;
IEnv = V — D,
IFnv = F—= D," = D

Figure 40: Domains for Copy Avoidance

2
z|op olz
I[tJop Ifexpr-of{i;)]op

I[op](Z[serlop, . - -, I[sea]op)
I[eilop U Tfee]op
plfi(Zleilop, ..., I[ealop)
Ift:lep

Tfop](sei,-..,9ea)0p
TI[if sey then e else e;lop

I[fi(e;- .- en)lop
T[1let [t; = e1y...,tn = €n] int; end]op

Figure 41: T : IEzp — I Env — IFnv — D;,

IP'IPr]I = fZ{E(AO‘ O’[f,' = AY1y. o2 Yke II[CIP"]][I:L- P Yy Ty yk]O']

Figure 42: I, : IProg — [Fnv
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T[arraylzy = L

TIisel]z y = if(z=1) then L
else if (t=T) then T
f(y=L)V(y=T) thenT

else z.y

Z[upd]z y = if(tx=1)then L elseT
I[upd!)zy2z = =

I[+z ¥ = T

An anonymous array returns a new array which is abstracted to 1. The sel
operator is abstracted as a concatenation operator. An upd operation returns L if its
first argument is L. It is based on the observation that a non-destructive update of
a named array always creates a shared array. A primitive operator such as + returns
T. Currently we do not keep track of values computed by the primitive operators.
These values can be recorded using the temporary variable names they are bound to
in the intermediate representation.

The criterion for copy avoidance can be formulated as follows. Given a program
pr and an expression upd(e_1,e.2,e_3) and an identity variable environment /4, let
v.l, v_2 and v_3 be Z[e_1] (Z,[pr]) I, Z[e-2] (Zolpr]) Ia, and I[e.3] (Zp[pr]) I
respectively. Deep copying of argument e_3 can be avoided if v.3is L or v.2is not
T and v_.I.v2 = v_3

Our algorithm determines that all copies can be avoided in the matrix multi-

plication example.
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5.6 Selects-and-Updates Analysis

This phase determines the set of arrays selected and updated by an expression.
Instead of the Hoare power domain, we use the power set of D to represent arrays
selected and updated because we must distinguish between an expression that only
updates (z,:) and one that updates both (z,i) and (z,i +1). We use a function

named defined as

named : Py(D) — P(D)

named X = {z]zeXNAVy€eX,zCy =z =y}

The domains and the flow functions needed are described in Figures 43, 44, and

45.
5.7 Order of Evaluation

The choice of an order of evaluation is very much as described in Chapter
I1. Given the arrays selected and updated by each expression, the data dependency
graph is augmented by interference edges that represent our hope to perform selections
before updates for each array. Interference is determined by the interference predicate
defined in Figure 46. A good (or at least reasonable) order of evaluation is obtained

by attempting a topological sort of the resulting preorder.
5.8 Abstract Reference Count Analysis
5.8.1 Reference Count Domain

For abstracting the number of references to an array, we use a domain R with

elements {00,0,1,2,3,...,k}. The ordering on these elements is Yz € R zCoo,Vz #
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S[if sep then e, elsee; [0 po
Sﬁfk(sela v ,Seﬂ)]l6 po
§[fx](H[serle p, . . ., H]sen]o p)

Sllet [t = e1,...,tn = €n] int; endfp o = I_ISl[e.-]!Spa

i=1

Slei)épo U Slez]épo

D,, = P(A)xP(A) Selected and Updated Named Arrays

VEnv = V — Py(D) Variable Environments

FEnv = F — Pg(D)" — Py(D) Propagation Function Environments

SEnv = F —Py(D)" = Dy Selects-Updates Function Environments
Figure 43: Domains for Selects-and-Updates Analysis

S : IEzp— SEnv — FEnv — VEnv — D,

Slclépo = (0,0)

S[zlépo = (0,0)

Sitlépo = (0,0)

S[op(ses,.-.,sea)l6 po = (0,9

S[sel(ser,se2)]bpo = (named(H[sei]o p},0)

S[upd(sey,sez, ses)lé po = (0, named(H[sei]o p))

Figure 44: Selects-and-Updates function &

SPI[F"]' = fzm(/\ﬁ 5[fl Loe Aylr eELD yk-S[[eiﬂ 6 (Hp[[PT]D
[331.- = Ylye ey Tk yk-]])

Figure 45: Sy, : IProg — SEnv
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oo z+ 1Cz.

The interpretation of each element of the domain is

1. oo represents an object with multiple references.

2. i represents an array that has but a single reference through level i. There may

be multiple references to the components at level i + 1 or lower levels.

3. k is the least element of R, and represents a scalar value. The value of &k can
be chosen as the maximum dimension of an array that appears in a particular

program.
5.8.2 Live Variable Occurrences

As noted in Section 5.1.3, an array may be dead even though an array of which
it is a proper component is live. Suppose A has dimension 3 or greater and consider
a function call

f(sel (sel (A, 1), j)
The array sel (sel (A, i), j) is dead after the call to £ if the only future uses of
A are updates of A at i, and of sel(4,i) at j. This information can often be obtained
by first considering all syntactic occurrences of A that are live, and discarding those
which satisfy the above criferion.

We define a variable occurrence as a pair, the variable and the program point
at which it occurs. We define a function called Live which takes a set Occ of variable
occurrences and a set of variables § and returns the set of live variables with respect

to S.
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Live Occ § =
{.‘BI(.’B,-) € (OCC\ {(0:12) I ty = upd(v, y,z),a € Sv

a is a proper component of sel(v,y) }

In the above example, sel (sel (A, i), j) is a proper component of A and

of sel(a,i).
5.8.3 Auxiliary Functions for Reference Count Analysis

We define three auxiliary functions incr_absrc ( Figure 48), ref_agg (Figure 49)
and Nemes (Figure 50) for computing the reference count of an array. The func-
tion ref.agg computes the reference count of an abstract array given the set of live
variables, the reference count environment, and the sharing information. Names de-
termines the set of named arrays in an abstract value. We define Ref by extending

ref_agg to a set of elements.
5.8.4 The function R

The definition of R (see Figure 52) needs explanation only for the function
call and the let-expression. For each argument se;, we first determine the set of
actually live variables live; with respect to the set FV(se;) using Live. If a variable
se; € live;, the abstract reference count of the se; is co. Otherwise we determine
abstract reference counts of the arrays propagated by each actual parameter of the
function using Ref. The reference environment is modified using the abstract reference
count so computed. For a let-expression, we first find the set of future references of

the variables using Vars_at, a variation of Vars of Chapter II which also records the
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temporary variable, and apply R to each ¢; recursively. The function R, (Figure
53) computes the abstract reference count of all variables (formal parameters). The
environment venuvy (see Figure nf-r-prog) maps every program variable = to the closure
of a singleton {(z,0)} (recall that (z,0) is the array referred to by z).

Given R,[pr], it is easy to decide if an update can be performed destructively.
Consider an update expression, t; = upd(z,y,z). Suppose that lset; is the set of
variables that are live at point i. This update cannot be made destructively if the
abstract reference count of array propagated by z is equal to co. This condition is

formally expressed as:

Ref(H[z] venvy (Hppr]), Iset;, SHolpr], Rplpr]) = o0

We have not yet implemented the algorithm for non-flat arrays, and do not yet
have a precise analysis of its polynomial time complexity or a rough analysis of its
typical efficiency on programs with non-flat arrays. The algorithm is similar to our
previous algorithm, which leads us to believe it will straightforward to implement and
reasonably efficient. One of our future research goals is to implement the algorithm

and to study its effectiveness on sparse matrix algorithms.
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interferes e;ejpr = let
fenv = Hy[pr]
sh = SH,[pr]
venvg = [...,zx — {zK},. . ]
suenv = S,fpr]
< si,u; >= S[e;]suenv fenv venv,
< sj,u; >= Sfej]suenv fenv venv,
in
(43 U {(3,d = D@, m) € 3, (3, k) € shla], k < m})n
(uiUsi)) #0

end

Figure 46: The Interference Predicate : I Ezp — IEzp — IProg — Bool

incr_absre : R N-=R
tner_absreri =
if r=o00then oo
else if r—1>0thenr—1
else oo

Figure 48: The Function iner_absre: R—+ N - R

ref-agg : D — REnv — Py(A) — Sh— R
ref_agg z renv L sh =
case z of
isA(z)(x = (b,1)) : if z € L then oo
else Ll {compute_sharing(z,y,sh) | y € L} Uincr_absre(renv(d], )

isU(z)(z = u(y)) : if ref_agg(y) = oo then 0 else 1+ ref_agg(y)
end

Figure 49: The Function ref.agg: D — REnv — Py(A) - Sh— R
Names : D — Py(A)

Names ¢ =
cases
a€A: {a}*
a €U and e = u{(v,?)) : {(v,i+1)}"
end

Figure 50: The Function Nemes : D — Py(A)
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FEnv = F — Py(D)" — Py(D) Propagation Function Environments
Sh = V — Py(Ds) Sharing Domain

R = {00,0,1,2,...,k} Abstract Reference Counts

REnv = V= R Reference Count Environments
FOcc = P((VUT)xT) Variable Occurrences

Figure 51: Domains for Reference Count Analysis

R[c]renv venv fenv sh fset = renv
R[z]renv venv fenv sh fset = renv
R[t;]renv venv fenv sh fset = renv
Rlop(ses,- . ., sen)]renv venv fenv sh fset = renv
R[sel(se;, sez)]renv venv fenv sh fset = renv
R[upd(se, sez, sea)jrenv venv fenv sh fset = renv

R[if ep then e, else e; Jrenv venv fenv sh fset
Rfei]renv venv fenv sh fset L1 Rlezjrenv venv fenv sh fset
R[fe(ser,. .. se,)]renv venv fenv sh fset =
let 1 = if se; € Live(fset, FV(se;)) then oo
else Ref(H[se;]venv fenv,renv,

L{Names(z) | z € H[t]venvfenv,t € Live(fset, FV(se,)},sh))}

r. = if se, € Live(fset, FV(se,)) then co
else Ref(H[sen]venv fenv,renv,
LI{ Names(z) | = € H[tJvenvfenv,t € Live(fset, FV(sen)},sh))}

in

renv U [Ty = 7T1,..., Tk, T
end

R[1et[ty = e1,...,ta = 4] in t; end]renv venv fenv sh fset =
let fset;= fset U {Ui_iy Vars_at(tj,e;)}
U{(z,tx) | 1 1< i,i<k <n,z € FV(ezproof (tk))}

tn

n
=1

Rle;jrenv venv fenv sh fset;
end

Figure 52: R : IEzp — REnv — VEnv — FEnv — Sh — FQcc — REnv
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Relpr) =
let fenv = H,[pr]
sh = SH,y[pr]
. venyy = [,...z& — {(z4,0)}",]

fiz(Ao. | |R[ei] o venvo fenv sh )
i=1

end

Figure 53: R, : IProg — REnv
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CHAPTER Vi

RELATED WORK

6.1 An Overview

Copy avoidance is one of the most important problems to be solved for the effi-
cient implementation of functional languages. The side-effect-free semantics requires
that any operation that modifies a data structure be implemented by copying. For
aggregate structures such as arrays it is a serious problem because the complexity
of an algorithm can suffer by orders of magnitude. However, if an update opera-
tion occurs in a context in which it is guaranteed that there is no other use of the old
data structure, then the modification can be implemented in-place without sacrificing
functional semantics.

One approach to this problem is to detect cases where an update can be made
in-place. Another is to choose an implementation of the data structure in which it
is relatively easy to maintain multiple versions created by incremental modifications.
In the next two sections we discuss the runtime and compile time techniques for copy

avoidance.
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6.2 Runtime Techniques

6.2.1 Reference Counting

In this scheme, every object has an extra field indicating the number of refer-
ences to that object. When a new reference is to the object is created, the count is
incremented. When a reference is used the count is decremented. When the count
becomes 0, the storage for the object can be reclaimed. An update can be performed
destructively if the reference count of the object is 1.

There are some disadvantages with reference counting. Every object needs
an extra field for storing the reference count. The program incurs the overhead of
maintaining these reference counts. In the case of parallel execution these reference
counts have to be incremented and decremented atomically which incurs additional

overheads. Examples of reference counting technique are [19, 82].
6.2.2 Persistent Arrays

Non-destructive updates can be less expensive if multiple versions of the data
structure can be maintained without too much overhead. For instance, an array of
size n can be represented as a balanced binary search tree of n leaves, with array
indices as search keys. The cost of a functional update is O(logn) instead of O(n).
However, now reading an element of the array takes logarithmic time.

The tree based array representation assumes that all versions of the array are
equally likely to be accessed. For applications in which arrays are used in a single
threaded manner, only the most recently updated array is accessed or updated. An
array with trailers [12] provides constant time access and update to the most recent

version of the array and penalizes the access of an older version proportional to the
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number of updates.

Baker observes [8] that arrays with trailers are equivalent to the implementation
of functional arrays using the shallow binding technique [7]. The basic idea is to
represent updates on an array as a tree where each node represents one version of
the array obtained by an update operation to its parent. The implementation of the
array operations maintains the following invariant: the root of the tree is the version
of the array read or updated most recently. For single threaded access and updates,
O(1) complexity is achieved. Multithreaded access or an update requires rerooting
the tree if that version being operated upon is not the root. Rerooting can be done in
time proportional to the number of updates. If there are a sufficiently large number
of reads on the same version, all but the first read take O(1) time. In his PhD thesis,
Chuang [20] extends the shallow binding technique to fragmented shallow binding
where the cost of an update is O(1) and the amortized cost of a read operation, in a
sufficiently long sequence of reads on arrays where the arrays being read form a path
in the tree, is also O(1).

There is one problem with the runtime approach. Even if array accesses and
updates are made in a single threaded manner, there is an extra overhead involved in
maintaining these data structures. One can get the performance of imperative arrays

only if the updates are known to be destructive at compile time.

6.3 Compile Time Techniques

In this section we discuss the related work on storage optimization which sub-
sumes update analysis and other optimizations such as life time analysis and compile
time storage deallocation. In general there are three approaches to compile-time de-

tection of destructive updates. In the verification approach the programmer asserts
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that it is safe to destructively update certain data objects leaving it for the compiler
to verify the assertion by using an appropriate type system {40, 77]. Another closely
related approach requires the programmer to write programs in a restricted style that
guarantees that all updates can be performed be side-effect.

The optimization approach leaves it to the compiler to detect updates that can

be implemented by side effect. Optimization is more flexible than verification.
6.3.1 Optimization Techniques

The earliest work on storage optimization found a linear order of evaluation
for the nodes of a labeled dag where the labels represent identifiers, nodes represent
assignment statements, and the edges represent data dependencies; it was formalized
by Sethi as a pebble game on graphs with labels [68]. Sethi’s work applies to basic
blocks with only primitive operators. We assume arbitrary functions as operators,
which necessitates our interprocedural analysis. After deriving the interprocedural
information, we derive an order locally in essentially the same way as Sethi.

The other research work in the area of storage optimization is globalization of
formal parameters of a functions. Schmidt [64] gave syntactic criteria for converting
the store argument of the direct semantics of an imperative language into a global
variable. This work was generalized as the globalization of function parameters by
Sestoft [67, 36]. It also assumes a fixed order of evaluation of expressions. Fradet [31]
gave a simple syntactic criterion, based on the types of the variables, for detecting
single threadedness in programs written in continuation passing style.

The initial work on update analysis of a call-by-value functional languages was
Hudak’s abstract reference counting technique for a first-order language with flat

aggregates [45]. We compared this work to ours in Chapter IL. Qur analysis is more
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effective, a great deal more efficient, and derives a good order of evaluation instead
of assuming a fixed order as in [45).

Gopinath [37] considers copy elimination in the single assignment language SAL,
which has constructs for specifying for loops. His work involves computing the tar-
get address of an object returned by an expression using a syntactic index analysis
and assuming the liveness analysis of [45]. Again, this work also does not consider
reordering expressions.

Bloss [12, 13] extended the work on update analysis to first-order lazy functional
languages, which are more difficult to analyze because the order of evaluation of
expressions cannot be completely determined at compile-time. She defines a non-
standard semantics called path semantics [12, 14] which gives information about all
possible orders of evaluation. Path semantics is used to check whether an update can
be performed destructively. Computing the abstract path semantics is very expensive
because of the size of the abstract domain of paths [12]. This work also assumes a fixed
order of evaluation for strict operators. Draghicescu’s [29] work on update analysis
for lazy languages improves the abstract complexity but is still exponential.

Deutch [27] describes an analysis based on abstract interpretation for determin-
ing the lifetime and aliasing information for higher-order languages. This analysis
is based on abstracting the operational semantics of a very low level intermediate
language. Our work differs from Deutsch’s in three ways. Since we do not associate
objects with expression labels generating them, we do not introduce spurious aliasing.
Deutch does not address the complexity of his analysis so it is not clear whether it
would be efficient if restricted to the first-order case. Deutch also assumes a fixed

order of evaluation of expressions.
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Hicks [42} derives the lifetime information of objects in Id, a parallel single
assignment language developed at MIT [55]. Lifetime information is used for validat-
ing deallocation instructions in the program or automatically inserting deallocation
instructions for reclaiming the storage. This work does not address the aggregate
update problem directly because Id does not provide update as a language construct
(although update operations could be defined in Id). Furthermore the algorithm
appears to be exponential.

Cann [16] reports that, for a set of 8 benchmarks, a linear-time analysis in the
SISAL compiler is able to make 99-100% of the updates destructive. The SISAL
compiler in question performs no interprocedural update analysis, however, relying
on “run time reference counting to identify update-in-place opportunities” for arrays
that cross procedure boundaries [17]. We surmise that the effectiveness of the SISAL
compiler’s update analysis on these benchmarks is an artifact of their origin as For-
tran 77 programs, which contain no recursion and probably contain relatively few
procedure calls.

There has been no previous work on the specific problem of update analysis for
non-flat aggregates. The most closely related work is by Deutsch, who has consid-
ered aliasing and liveness in higher-order strict languages [27] and has more recently
developed a general model of aliasing for non-flat aggregates [28]. Also related is the
analysis of recursive types by Wang and Hilfinger, who have expressed hope that their
analysis can be extended to gather information for update analysis {80]. These papers
do not address the issues of copy introduction and avoidance, local optimization, and
choice of order of evaluation that we believe must be addressed as part of an effective

optimization-based approach to update analysis of non-flat aggregates. Our symbolic
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calculation of propagation information is an application of [21].
Deutsch’s model of aliasing for non-flat aggregates is suitable for separate com-

pilation [28], but the efficiency of these algorithms is otherwise unknown.
6.3.2 Verification Techniques

The verification approach to solving the update problem typically imposes a
type discipline that can express the intended use of a variable as well as the do-
main of its values. Update analysis then reduces to type checking. Examples of this
approach include Wadler's work on linear types [77] and Guzman’s single threaded
lambda-calculus [41, 40]. Other similar ideas include monads[76], mutable abstract
datatypes[46], syntactic criteria for single threading {64, 31], and the Imperative
Lambda Calculus, which introduces assignment in a functional language with a strat-
ified type system without sacrificing confluence [72]. These systems typically require
the programmer to impose a sequential order of evaluation that guarantees single
threading. None of this work has yet confronted the problems of non-flat arrays or
other aggregates or parallel evaluation. Guzman’s thesis recognized the importance

of copy introduction for flat arrays [41].
6.4 On Parallel Execution

There hasn’t been much work on update analysis in parallel functional lan-
guages. The only reported work is that of Gopinath [37, 38] and SISAL [16, 15].
SISAL does not handle recursion. Gopinath’s analysis has a worst case exponen-
tial complexity. Qur analysis is simplified by the partition and combine operations.
We believe that our algorithm is the first practical algorithm for update analysis of

parallel functional programs. P. Wadler has proposed monads as an approach to de-
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structive updating [76]. Monads sequentialize the execution to achieve destructive
updating and therefore are not suitable for parallel execution. We have taken an
orthogonal approach: instead of sequentializing all updates, we divide the array into
semantically different arrays by the partition operator allowing the updates to be
done in parallel. Guzman [41] and Swarup et al [72] also assume sequential evaluation.

Monolithic arrays were proposed because of the difficulty of expressing parallel
updates [6, 44]. In Chapter III, we gave a generalization of the incremental update
to express a collection of updates on an array. Monolithic arrays are a special case
of this operator. Wadler’s new monolithic array construct [75] needs additional data
structures for performing combining operations, whereas in our approach combining
is done at the array itself. Another relevant work in the context of specifying a
collection of operations is the xapping data structure of Connection Machine Lisp
[70], which is based on the SIMD meodel of computing. The programming language
Id [55], a non-strict language, provides accumulators as an extension of arrays. An
accumulator is allocated as a new array with initial values and all accumulations are
performed atomically by an accumulating operator. The accumulators of 1d appear
to have been derived from the monolithic array operator, whereas we have generalized
the incremental update operator.

The most related work in the area of runtime systems for mostly functional
languages is that of QLisp[l, 33] and the implementation of MulT, a parallel dialect
of Scheme with futures [51]. QLisp is a queue-based multiprocessing implementation
of a parallel dialect of Lisp with explicit coarse grain parallelism. When a program
executes a statement expressing parallelism, it adds new processes to the queue of

tasks to be processed. After finishing the current task the processor picks a new
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task for execution from the task queue. The decision to spawn a process is explicitly
specified by the programmer as a predicate. In the dynamic partitioning scheme [57],
spawning of parallel processes is also based on the state of the runtime system.

The implementation of Mul-T is based on the technique of lazy task creation
[54]. In this scheme each processor begins execution sequentially. A starving proces-
sor steals work from the stack of an executing process. Task stealing requires locking
the stack of another process that runs on a different processor. Therefore the runtime
system for lazy task creation is based on a shared memory model and is not clear how
one can extend it to distributed memory machines. In our model the stacks are local
to the processor, therefore the runtime system can be easily modified for a distributed
memory implementation. The data objects such as arrays are giobally shared, there-
fore we do need schemes for allocation of distributed arrays — an important area for
further research. We hope to borrow the techniues of data allocation used in high

performance Fortran [50].
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CHAPTER VII

CONCLUSIONS

In this chapter we summarize the contributions of this dissertation and outline

the directions for future research.
7.1 Contributions

This thesis presents the first practical interprocedural update analysis algorithm
for strict first order functional Janguages with arrays of scalars. The algorithm makes
all updates destructive in several common numerical algorithms written in a functional
style. The analysis runs in polynomial time in the worst case and in linear time for
typical programs. All previous algorithms of this kind require exponential time in
the worst case. The algorithm does not assume a fixed evaluation order and derives
a good order that maximizes opportunities for destructive updating. The simplicity
of the algorithm makes it adaptable to separate compilation.

We extended the algorithm to parallel functional languages by devising new
array operations for expressing divide and conquer algorithms on arrays. Qur analysis
is shown to have polynomial time complexity even for parallel evaluation. To the
best of our knowledge it is the first practical algorithm for update analysis of parallel
functional programs. Our analysis is so effective that it removes all copies in many
common numerical algorithms written as parallel functional programs. In cases where

a copy cannot be eliminated, the compiler can advise the user about the source of the
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problem. We also considered the implications of our algorithm for language design,
and explained why we believe programmers will be able to write efficient programs
that rely on update optimization. We described a new update operation for specifying
a collection of updates on an array which subsumes monolithic arrays available in most
functional langauges.

The update optimization has been implemented in a compiler for our parallel
functional language. We described the runtime system and its implementation on a
Sequent Symmetry, a bus based shared memory multiprocessor, with some prelimi-
nary performance results.

We also considered the problem of non-flat or nested but non-recursive arrays
and some of the difficulties introduced by non-flatness. We presented an extension of

our algorithm to handle non-flat arrays.
7.2 Future Directions

There are two possible directions for further research. One is the extension
of the analysis for more powerful functional languages. The other is an efficient

implementation of the runtime system on different kinds of multiprocessors.
7.2.1 Language Extensions

Update analysis of higher order functional languages is one of the most impor-
tant problems for future research. Our analysis can easily be adapted to languages
with a restricted kind of higher-order functions — those which do not capture any
array variables. Such an extension, though limited, is quite interesting because the
higher order functions of C belong to this class. For handling general higher-order

functions, the notion of propagation of a variable has to be generalized because a
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variable captured in a closure gets propagated. I would first like to study the use
of higher-order functions in typical programs using arrays and explore whether the
algorithm can be extended to handle these common cases. We know that in the worst
case, higher order functions can be handled by copying the arguments when a closure
is formed. An analysis to determine if a closure is singly referenced may be helpful
to minimize copying in the default case.

Another possible extension is to consider languages with multiple values. In our
language we have one operation, the partition operation that returns multiple values.
We would like to consider arbitrary multiple values. If we add a simple syntactic
restriction that a single variable is not returned as two values of an expression, then I
believe that the analysis can be extended to languages with multiple values without
any technical problems.

Another direction is the extension of the analysis for languages with recursive
types such as lists. An interesting question is whether type information can be utilized
to lower the complexity of the analysis.

I would like to investigate if our analysis is applicable to non-strict functional

programs or to strict portions of a non-strict program.
7.2.2 Parallel Implementation

There are several possibities for improving the performance of the runtime
sytem. One of the most important problems is increasing the granularity of par-
allelism in an implicitly parallel functional language. I would like to investigate the
efficacy of different techniques for constraining parallelism and enhancing the perfor-
mance of an implicitly parallel program. There are three approaches to this problem.

One is to develop runtime mechanisms to control parallelism based on resources such
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as the number of processors, average load of a processor etc. In the current imple-
mentation, parallelism is controlled by the queue sizes. Parallelism in a process can
further be constrained by choosing sequential execution beyond a particular depth of
the execution tree of that process.

Another approach would be to use static analysis to determine the arguments
whose “size” should have a dynamic influence on the decision to evaluate in paral-
lel. The information obtained from update analysis can be used as a heuristic for
identifying these arguments. The sizes of arrays that determine the complexity of a
function can also be estimated using the techniques of [60, 47].

I believe that it is necessary to introduce constructs for explicit sequentialization
to improve the efficiency of a parallel program, thus leaving the important decision
of sequentialization to the user. It is a viable alternative to explicit parallelism.
One problem with explicit sequentialization, as with explicit parallelism, is that the
performance of a program may suffer when ported to a different parallel machine. To
this end, one can design a language with annotations for identifying variables that
determine the complexity of a function. A predicate with a parameter which is a
threshold for parallelism, expressed in terms of the granularity variables, can be used
to specify explicit sequentialization. When a program is ported to a different machine,
the appropriate value of the parameter for each predicate can be determined through
a few trial runs on that machine.

I would also like to build a portable implementation of a parallel functional
language for distributed memory multiprocessors. The important problems to be
solved are distributed data allocation for arrays [50] and heuristics for process and

data migration. I believe that the data distribution declarations of High Performance
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Fortan can be used for allocation of distributed arrays in a functional language.
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