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This thesis investigates the computational complexity of algorithmic problems
defined on graphs. At the abstract level of the complexity spectrum we discriminate
polynomial-time solvable problems from A/P-complete problems, while at the con-
crete level we improve on polynomial-time algorithms for generally hard problems
restricted to tree-decomposable graphs.

One contribution of this thesis is a precise characterization of vertex partitioning
problems which include variants of domination, coloring and packing. An elaboration
of this characterization is given for problems defined over vertex subsets and over max-
imal/minimal vertex subsets. We introduce several new graph parameters as vertex
partition generalizations of classical parameters. The given characterizations provide
a basis for a taxonomy of vertex partitioning problems, facilitating their common
algorithmic treatment and allowing for their uniform complexity classification.

We explore the computational complexity of two important types of problems
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within this taxonomy: vertex subset optimization problems and H-covering problems.
The taxonomy is particularly useful in categorizing and analyzing the complexity of
vertex subset problems, of which there are a great variety. Qur investigation of the
complexity of vertex subset problems uncovers several infinite classes of AP-complete
and of polynomial-time solvable problems. These results are contrasted and compared
with the complexity of classical vertex subset problems. We also develop a method-
ology useful in analyzing the complexity of H-covering, a problem parameterized by
a fixed graph H. As an illustration, we settle the complexity of the H-covering prob-
lem for any simple graph H on at most 6 vertices. We design efficient algorithms
for H-covering problems by reduction to the 2-SAT problem and by reduction to
factorization problems in regular graphs.

Another contribution of this thesis is a methodology for the design of practical
algorithms for generally A"P-hard problems restricted to partial k-trees. Based on
very simple graph operations, we define a binary parse tree of partial k-trees that
facilitates algorithm derivation. We account for dependency on the treewidth % in
analysis of the computational complexity of the resulting algorithms.

These contributions culminate in applying the partial k-tree algorithm method-
ology to the general class of vertex partitioning problems. The input graph in the
resulting algorithms is assumed to be given with a width k tree-decomposition, and
the answer is computed by a dynamic programming bottom-up traversal of its bi-
nary parse tree. We give the first algorithms for these problems with reasonable time
complexity as a function of treewidth. For certain problems, mainly Graph Grundy

Number, we give the first polynomial-time algorithms on partial k-trees.
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CHAPTER I

INTRODUCTION

Many areas of computer science and many Eomputer applications deal with
systems best modeled as graphs, with vertices denoting entities and edges denoting
relations between entities. The study of algorithmic solutions to graph problems is
therefore of practical importance. While designing an algorithm for the maximum
matching problem in 1965, Edmonds [29] defined the widely accepted notion of a
good algorithm as one whose running time on any input is bounded by a polynomial
function of the input size. A problem phrased as a yes/no question belongs to the
class P if there is a good algorithm for solving it. A problem belongs to the class NP
if any “yes” answer has a short proof that can be verified by a good algorithm. The
NP-complete problems are the hardest problems in AP, as formulated by Cook in
1971 {24]. Perhaps the foremost open gquestion in the theory of algorithms is whether
P = N'P; equivalently, whether all or none of the A"P-complete problems have good
algorithms. The current belief is that P # AP. Unfortunately, many useful problems
defined on graphs are A'P-complete. The results in this thesis can be viewed as ad-
dressing this situation in two ways: by discriminating graph problems with provably
good algorithms from AP-complete problems, and by designing good algorithms on
restricted classes of graphs for problems which are generally A'P-complete. One of
our contributions is a characterization of vertex partitioning problems which include,

e.g., coloring and domination problems. This characterization provides a basis for a
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taxonomy of vertex partitioning problems which we employ for, among other things,
the study of their computational complexity in a unified framework. A second contri-
bution is a template for the design of good algorithms on partial k-trees, equivalently
graphs of bounded treewidth, which accounts for dependency on the treewidth k in
both design and time complexity. These results are linked by partial k-tree algo-
rithms for solving vertex partitioning problems, providing the first polynomial-time
algorithms on partial k-trees for certain problems and the first careful investigation
of time complexity as a function of the treewidth.

First, an overview of the presentation. The remainder of this introduction
gives, after some basic definitions, the background for vertex partitioning problems
and partial k-tree algorithms. Chapter II contains a general characterization of vertex
partitioning problems. and also refined characterizations for vertex subset problems.
These characterizations set the stage for results of subsequent chapters. We introduce
several new classes of graph problems as generalizations of some classical problems
admitting the characterization. In Chapter IIl, we concentrate on the complexity
of vertex subset optimization problems, giving both efficient algorithms and N7P-
completeness results for several infinite classes of problems. Chapter IV studies the
complexity of the H-cover problem, which has a natural definition using our char-
acterization. We develop a methodology that is useful in analyzing the complexity
of H-covering problems, for any fixed graph H, and settle their complexity for any
simple graph H on at most six vertices. Chapter V gives a methodology for the design
of practical algorithms on partial k-trees based on a binary parse tree of the input
graph. In Chapter VI we use this methodology to give partial k-tree algorithms first

for vertex subset problems and then for the more general case of vertex partitioning



problems.
1.1 Definitions

We give some basic definitions relating to graphs and algorithms that we will use
throughout the thesis. Notions exclusive to a particular chapter may not be defined
here, e.g., partial k-tree definitions can be found in the opening of Chapter V.

Let N be the non-negative integers, and let P be the positive integers. For sets
X and Y, let |X| be the cardinality of X, let X \Y = {¢ € X : z ¢ Y} and
let (‘,‘:) = {W: W C X A|W| = £k} be the set of all k-element subsets of X. A
¢-partition X1, Xa,..., X, of the set X into g classes satisfies X = U,gq1,...q} Xi and
b=XinX;1<i#j<q.

A graph G = (V(G), E(G)) is the pair of sets of vertices V(G) and of edges
E(G), where E(G) C (V‘f‘). Most of our results can be easily extended to directed
graphs and to graphs containing loops and multiple edges, but they will not be con-
sidered here.

Two vertices u,v € V(G) are adjacent or neighbors if uv € E(G). For a
vertex v € V{(G), let Ng(v) = {u : uv € E(G)} be the set of neighbors of v and
degg(v) = |Ng(v)| its degree. We call Ng(v) U v the closed neighborhood of the
vertex v. A path of length k between vertices u and v is a sequence of distinct
vertices u = ug, ty, ..., ux = v such that w;_u, € E(G) for 1 <1 < k. The sequence
of vertices forms a cycle of length & + 1 il also usug € E(G).

In a connected graph there is a path between any two vertices. A graph H is a
subgraph of a graph G if V(H) € V(G) and E(H) C E(G), it is a spanning subgraph
if, in addition, V(H) = V(G). A component in a graph is a maximal connected

subgraph. The distance(u,v) between vertices 1 and v in the same component is the



length of a shortest path between them.

A tree T is a connected graph without any cycles, we call its vertices nodes.
Its root r € V(T) is a distinguished node by which for any v € V(T') we define
children(v) = {u : wv € E(T) A distance(u,r) = distance(v,r) + 1}. The comple-
mentary notion parent(u) for u # r is defined to be the unique node v for which
u € children(v).

For S € V(G) let G[S] = (S, {uv : u,v € SAuv € E(G)}) denote the subgraph
induced in G by S. For S C V(G) let G\ S = G[V(G)\ 5], and for F C E(G) let
G\ F = (V(G),{uv € E(G) : uv € F}). A separator of a graph (7 is a subset of
vertices S C V(G) such that G\ § has more components than G.

Two graphs G and H are isomorphic if there is a bijection f : V(G) — V(H)
such that uv € E(G) & f(u)f(v) € E(H). The automorphism group of a graph G is
the group Aut(G) of permutations of V(G) preserving adjacencies.

If Vv € V(G) : degg(v) = k then G is k-regular. A (|JV(G)|—1)-regular graph G
is 2 complete graph Ky (g, also called a |V(G)|-clique. The 0-regular graph is called
a discrete graph. A l-regular graph is called a perfect matching and a 2-regular
connected graph G a |V(G)|-cycle Cv(c). A graph G is bipartite if V(G) has a 2-
partition V4, V, with E(G) = {uv € E(G) : v € )y Av € V,}. The complement graph
of Gis G = (V(G), {uv : uv € E(G)}.

We give some definitions related to time complexity of algorithms. A polytime
algorithm is one for which the number of steps executed on any input is bounded by
a polynomial function of the input size. A decision problem is phrased as a yes/no
question. Any optimization problem discussed in this thesis has a decision version,

e.g., for the optimization problem “given a graph G as input find the maximum
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length of any cycle in G, we have the decision version “given G and an integer
k decide if G has a cycle of length at least £". It is not hard to show that these
problems are polylime equivalent, in the sense that the optimization version has a
polytime algorithm if and only if the decision version has one. For thisl reason, we
may be imprecise and not distinguish carefully between an optimization problem and
its decision version.

A decision problem belongs to the class P if it has a polytime algorithm and it
belongs to the class NP if any “yes” answer has a short proof that can be verified by
a polytime algorithm. The decision version of any problem addressed in this thesis
belongs to AP, e.g., a short proof for the above example would be a sequence of
vertices forming a cycle of length at least k. A polytime reduction from a problem A
to a problem B is a polytime algorithm which takes an instance of A and outputs an
instance of B such that their yes/no questions have identical answers. A problem B in
NP is N'P-complete if for all problems A in AP there is a polytime reduction from
A to B. Several N'P-complete problems are known. The AP-completeness of a new
NP problem C is demonstrated by a polytime reduction from a known AP-complete
problem B. The optimization version of an A/P-complete problem is in the class of

N'P-hard problems.

1.2 Backeround on Vertex Partitioning Problems

A g-coloring of a graph is an assignment of one of ¢ colors to each vertex of
a graph so that no two adjacent vertices receive the same color. Coloring problems
on graphs have been studied since the mid-1800s, starting with the famous Four-
Color Conjecture that any planar graph could be 4-colored, resolved with the aid of

a computer in 1976 [5]. The g-coloring problem asks whether an input graph has a
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g-coloring and is A“P-complete for any q greater than two. An important application
is the compiler optimization problem of register allocation, modeled by representing
variables as vertices and connecting vertices by an edge if the live program ranges of
the corresponding variables overlap. A g-coloring of the resulting graph corresponds
to an allocation of variables to ¢ registers with no usage conflict. We will view
a g-coloring as a partition ¥}, Va,...,V, of the vertex set with the constraint that
any vertex in V; have no neighbors in V;, for 1 € i € ¢. Our characterization of
vertex partitioning problems in Chapter II generalizes this constraint to allow for any
specified number of neighbors the vertices in 1, can have in V;, for 1 < 4,7 < q. We
show that many well-known problems admit such a characterization, and that we can
define several new interesting graph parameters within this framework.

If we restrict attention to 2-partitions (5, V(G)\ S) of vertices of a graph G and
constrain only the number of neighbors in S we get a class of vertex subset problems
which includes variants of domination and independence. Covering a chessboard by
various pieces constitutes a precursor to the general theory of domination in graphs,
with our compatriot @Qystein Ore [55] being one of the pioneers in the field. A vari-
ety of special types of domination have been considered since, with applications to
facility location and communication network problems. The current bibliography of
papers related to the general topic of domination in graphs, by Hedetniemi and Laskar
[39], has about 750 entries. A paper in the field of algorithmic theory of domination
in graphs typically introduces a new domination-type parameter, contrasts it with
related domination parameters and gives computational complexity results; all in a
fairly ad-hoc manner. Upon the introduction of a slight variation of the parameter this

work would then usually be repeated. In contrast, the characterization we propose
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in Chapter II facilitates the common algorithmic treatment of all these parameters
and allows for their uniform complexity classification, the subject of Chapters III
and VI. These parameters oftentimes arise from various fields, traditionally seen as
separate, with the confusing effect that naming conventions and definitions are not
standardized. The characterization suggested in Chapter Il remedies this by explic-
itly focusing attention on the definitional properties of the parameters and on their
relationships.

The vertex partitioning view can also be taken of covering problems on graphs.
Let H be a graph with vertices {vy,vs,...,v,}. The H-cover problem takes a graph G
as input and asks for a partition of the vertices of G into classes V4, ..., ¥} such that if
v; is adjacent to v, in H then any vertex in V; has exactly one neighbor in V,; otherwise
there are no adjacencies between verticesin V; and V. We trace H-coverings to Biggs’
construction of highly symmetric graphs in {15], and to Angluin’s discussion of “local
knowledge” in distributed computing environment in [3]. More recently, Abello et al.
[1] raised the question of computational complexity of H-cover problems, noting that
there are both polynomial-time solvable and A'P-complete versions of this problem for
different graphs H. A related question of complexity of H-coloring (also parametrized
by a fixed graph H and definable in our characterization) has been resolved by Hell
and Nesettil [41] who completely classified graphs for which a polytime algorithm
is known and those for which it is A/P-complete. In Chapter IV, we develop a
methodology that is useful in analyzing the complexity of H-covering problems, and

settle their complexity for any simple graph H on at most six vertices.



1.3 Backeround on Partial &-Tree Algorithms

Since the early days of graph algorithms it has been well known that most
parameters are easily computed on trees. A combination of divide-and-conquer and
dynamic programming techniques can contribute to finding an overall solution by
recursively combining solutions to subproblems on subtrees. In 1982, Takamizawa,
Nishizeki and Saito [61] extended these techniques to deal with many problems on the
class of series-parallel graphs. The quest was on for the most general class of graphs
sharing these algorithmic properties (see [57] for an overview.) Two independent
lines of research led to the exact same answer, the partial k-trees (Arnborg and
Proskurowski [9]) or equivalently graphs of treewidth bounded by % (Robertson and
Seymour [58].) This class is a very promising generalization of trees and encompasses
mosl other suggested classes.

A graph G is a k-tree if it is a complete graph on k vertices or if it has a
vertex v € V(G) whose neighbors induce a clique of size £ and G \ {v} is again a
k-tree. Partial k-trees are subgraphs of k-trees, and we note that any graph on n
vertices is a partial k-tree for some value of k (the maximum value ¥ = n— 1 achieved
by complete graphs.) Many natural classes of graphs have bounded treewidth [52],
e.g., trees are exactly the 1-trees and series-parallel graphs are partial 2-trees. Many
optimization problems, while inherently difficult (A"P-complete) for general graphs
are solvable in linear time on partial k-trees, for fixed values of k [11]. These solution
algorithms have two main steps, first finding a parse tree (an embedding in a k-tree
or a tree-decomposition of width & [58]) of the inpul graph, and then computing the
solution by a bottom-up traversal of the parse tree. For the first step, Bodlaender [17]

has given a linear algorithm deciding if a graph is a partial k-tree and if so finding
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a tree-decomposition of width k&, for fixed k. Unfortunately, the complexity of this
algorithm as a function of the treewidth does not make it practical for larger values
of k. For k < 4, however, practical algorithms based on graph rewriting do exist for
the first step [10, 53, 59].

There are many approaches for the design of the second step of partial k-tree
algorithms with time complexity polynomial, or even linear, in the number of vertices
[57, 7). The strongest result in this direction by Courcelle and Mosbah [27] and
Arnborg, Lagergren and Seese [8] states that any graph problem describable in a
certain logic language, mainly EMSOL, has a polynomial-time algorithm on partial
k-trees. As a rule, proponents of these approaches have tried to encompass as wide a
class of problems as possible, often at the expense of increased complexity in k and
also at the expense of simplicity of the resulting algorithms. Results giving explicit
practical algorithms in this setting are usually confined to a few selected problems
on either partial 1-trees or partial 2-trees [61, 35, 65]. In Chapter V, we try to
cover the middle ground between these extremes and investigate both the practical
design of algorithms for the second step and also their complexity, for varying k.
The treewidth k is fixed for a given algorithm, but we analyze the complexity for
growing values of this parameter. In the paradigm we suggest, the algorithm follows
a binary parse tree of the input graph. This parse tree is based on very simple
graph operations, facilitating the derivation of practical algorithms. We conciude
our presentation in Chapter VI by applying this paradigm to vertex partitioning
problems. These algorithms accept as input a graph G on n vertices and a width &
tree-decomposition of G. We perform the first careful investigation of time complexity

as a function of the treewidth for a general class of problems. For instance, the vertex
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subset optimization problems are solved in T'(n, k) = O(n2°) time for small constants
c. Since these problems are A'P-complete in general and a tree-decomposition of
width n — 1 is trivial for any graph, we cannot get polynomial dependence on both n
and k, unless P = AP. Our results also include the first polynomial-time algorithms
on partial k-trees for some problems that have not been found to be expressible in
EMSOL [49], mainly the Graph Grundy Number problem. This follows from (i) the
description of the Graph Grundy Number problem as a vertex partitioning problem,
(i1) a new logarithmic bound on the Graph Grundy Number of a partial k-tree, and
(iii) our investigation of time complexity of vertex partitioning problems on partial

k-trees.
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CHAPTER 11

CHARACTERIZATION OF VERTEX PARTITIONING PROBLEMS

We define vertex partitioning problems and show that many well-known prob-
lems, such as coloring and covering, admit a characterization as such problems. Many
of these problems, including variations of domination, independence and packing, are
defined over 2-partitions of vertices. For these vertex subset optimization problems
we give a separate characterization, mainly for notational purposes. We then ex-
tend this vertex subset characterization to encompass irredundance-type problems,
defined over maximal and minimal vertex subsets. These characterizations provide
a basis for a taxonomy of vertex partitioning problems, facilitating their common
algorithmic treatment and allowing for their uniform complexity classification, the
subject of subsequent chapters. In this chapter we show applicability of the charac-
terization by introducing some non-trivial new graph problems as variations of classic
problems. We conclude the chapter with an application of the characterization to a

graph-theoretic question.

2.1 General Vertex Partitioning Problems

A g-coloring of a graph is a partition Vi, Va,...,V; of its vertices where any
vertex in V; has no neighbors in ¥;, for 1 <7 < ¢. In the following we generalize this
constraint to allow for any specified number of neighbors the vertices in V; can have

inV,forl £4,3<q.
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Definition 2.1 A degree constraint matrix D, is a ¢ by ¢ matrix with
entries being subsets of M = {0,1,2,...}. A Dg-partition in a graph G
is a g-partition V},V4,...,V, of V(G) such that for 1 <12,5 £ q we have

Yv € Vi : [Ng(v) N V;| € Dgli, ]

For technical reasons, we will allow the possibility of some Vi = @ in a D,-
partition W,...,¥,. We limit attention to non-empty graphs, |V(G)| = 1. For a
simple example, using a degree matrix D; with entry {k},k € N, a graph G will have

a D -partition iff it is k-regular. We define problems over D,-partitions as follows:
Definition 2.2 For fixed degree constraint matrices Dy, Dy, ... and a given
graph G:

For fixed ¢, the 3D,-problem decides if G has a D-partition.

The minD,-problem asks for the minimum ¢ such that G has a D,-

partition.
The maz D -problem asks for the maximum ¢ such that G has a Dg-
partition.

We next show several well-known graph problems defined in this framework. *

e The ¢-COLORING problem [GT4] is the 3D,-problem over the degree con-
straint matrix with diagonal entries {0} and off-diagonal entries N. See Figure 1

for an example.

¢ The CHROMATIC NUMBER problem {GT4] is the minD,-problem over ma-

trices with diagonal entries {0} and off-diagonal entries N.

]‘[GT){] as a citation refers to the Graph Theory problem number x in Garey and Johnson
(33
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V1 ={a.d} V2 ={b} V3= {c}

Viv2Va
v
SR ! (V1)(0 11) V2)(20 1)
D3= IN{O)N | V2
NN{o | vs

(V3}210) (V1)(0 1 1)

Figure 1: The degree constraint matrix Dj for deciding il there exists a 3-coloring
(N={0,1,2,...}). Also, a given partition on a graph, with vertices of the graph labeled
by the class they belong to (Vi) and a 3-vector (a b c) giving the number of neighbors
it has in classes V1, V2 and V3, respectively. Note that each vertex satisfies the
constraint imposed by Ds, so this partition is a 3-coloring of the graph.

¢ The DOMATIC NUMBER problem [GT3] is the max D,-problem over matrices
with diagonal entries N and off-diagonal entries P. Note that the constraints

imposed by D, in this case will enforce all partition classes to be non-empty.

o The PARTITION INTO PERFECT MATCHINGS problem [GT16] is the min Dy-

problem over matrices with diagonal entries {1} and off-diagonal entries N.

¢ The GRAPH GRUNDY NUMBER problem [GT56, undirected version] is the
maz D,-problem over matrices with diagonal entries {0}, above-diagonal entries
M and below-diagonal entries F. For this definition we must explicitly add the

requirement that a D,-partition V;, ..., }} have only non-empty partition classes.

o The H-COVER problem [3] is the 3Dy (x)]-problem with Dy (#) the adjacency

matrix of H (with singleton entries {0} and {1}).

¢ The H-COLOR problem [41] is the 3Dy g)-problem with Djv(xy the matrix

obtained from the adjacency matrix of H by replacing l-entries with N and
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0-entries with {0}.

o The VERTEX SUBSET problems defined in the next section, see Table 2, have

degree constraint matrices D, of the form

o N

p N

Most of these definitions follow immediately from the standard definitions of
the problems. The GRAPH GRUNDY NUMBER problem is traditionally defined as
a coloring problem where vertices are colored using non-negative integers, in such a
way that a vertex with color 7 is forced to have neighbors with colors 1 through z — 1.
The problem asks for the highest color we can use while observing this constraint.
In our characterization, the partition class V¥, is the set of vertices with color z, with
the constraint that a vertex in V; have no neighbors in V; and at least one neighbor
in each of the sets Vi_;, Vi_2....,¥|. Since we are looking for the highest number of
partition classes possible, we require that all classes be non-empty. This constraint is
not enforced by the degree constraint matrix itself, as it is in the case of DOMATIC
NUMBER, thus it must be added explicitly to the definition of the problem. We
return to this definition of GRAPH GRUNDY NUMBER in section 4 of this chapter.

The H-COLOR problem asks for the existence of a labeling f : V(G) — V(H)
such that uv € E(G) = f(u)f(v) € E(H). In our characterization, we fix an
ordering V(H) = {vi,va,.... 0wy} with the partition class 1| the set of vertices
labeled v;. Thus the constraint of the partition is that for all pairs (z,7) with z # j
and v; &€ Ng(v;), no vertex in V; is adjacent to a vertex in V;. To frame this as an

3D, problem, like we did above. requires that we do allow a partition ,...,V; to
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have some empty partition classes. The H-COVER problem is examined in detail in
chapter 4.

We discuss some problems definable by extensions of the given vertex partition
characterization. The first extension involves optimizations over the cardinality of
certain partition classes, the main optimization concern of the vertex subset prob-
lems dealt with in the next section. The DISTANCE < ¢ DOMINATION problem
[50] asks for the smallest vertex subset S with the property that any vertex z € S
have a neighbor in S at distance < ¢q. This can be defined as an 3D,y problem
over the degree constraint matrix Dgq, with diagonal and above-diagonal entries N,
entries directly below the diagonal P and remaining entries {0}. For a Dy, partition
Vi, ooy Vag1, the vertex subset Vi will have the required domination property, with
vertices in class V; at distance j — 1 {from some vertex in V;. The problem is thus
defined by minimizing |Vy| over all D,y,-partitions ¥}, V2, ..., Vg41. Note that this
definition allows for classes Vi, Vij1..... Voq1.7 2 2 to all be empty.

For the second exLension, we allow entries of the matrix to be simple arithmetic
expressions involving the cardinality of a partition class. This allows the definition
of eg. PARTITION INTO CLIQUES [GT15]. For example, a graph is a SPLIT
graph [34] if its vertices can be partitioned into a clique and an independent set or
equivalently if it has a Dp-partition with Dy[1,1] = |Wi| =1, D2[2,2] = {0}, D:[1,2] =
D,[2,1) = N.

The problems BALANCED COMPLETE BIPARTITE SUBGRAPH [GT24)
and MAXIMUM CLIQUE [GT19] can be defined if we allow both extensions discussed

above.
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To express the PARTITION INTO TRIANGLES problem [GT1l], we must
enforce non-empty partition classes, and allow the size ¢ of the matrix D, to be a
function of the size of the input graph, in this case ¢ = |V(G)|/3, with the matrix
containing {2} on the diagonal and N off the diagonal.

In the next section, we consider problems defined over D,-partitions with con-

straints only on the number of neighbors in V), i.e., D;[1,2] = D,[2,2] = N.

2.2 Vertex Subset Problems

If every vertex in a selected subset S of vertices of a graph has zero selected
neighbors then S is an independent set, and similarly if every vertex not in § has
at least one selected neighbor then S is a dominating set. This suggests a common
characterization of independent sets and dominating sets based on the constraints
imposed on the number of selected neighbors the vertices in S, and vertices not in S,
can have.

Let the symbols ¢ and p indicate membership in S and membership in V(G) \
S={veV(G):v ¢S5}, respectively.

Definition 2.3 Given a graph G and a set S C V(G) of selected vertices

o The state of a vertex v € V(G) is

pi fvg S and [Ne(v)NS|=1

df
states(v) =
g, ifvreSand |Ng(v)N8| =1
¢ Define syntactic abbreviations

Pi = PorPrrs Pt O = 00,0100 P20 = PiyPitlyers T2 =

Tis Titly oo
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Each of the latter two abbreviations represents an infinite set of states. Mnemon-
ically, o represents a vertex selected for S and p a vertex rejected from S, with the
subscript indicating the number of neighbors the vertex has in §. A variety of vertex
subset properties can be defined by allowing only a specific set L as legal states of

vertices. For instance, S is a dominating set if state py is not allowed for any vertex,

Table 1: The established terminology and our formalism

Term Expressed in our formalism

Dominating po not a legal state

Independent oo the only legal o-state

Perfect Dominating | p; the only legal p-state

Nearly Perfect po and p; the only legal p-states

Total P effect of property P on p-states is extended to o-states
Induced p 20 legal state (no non-legal p-states)

giving the legal states L = {p31,020}. Table 1 relates some of the established ter-
minology to our formalism. Optimization problems over these sets often maximize or
minimize the size of the set of vertices with states in a given M C L. For instance,

in the minimum dominating set problem, M = {0 20}.
Definition 2.4 Given sets M and L of vertex states and a graph G:

e 5 C V(G)is an [L]-set if Vv € V(G) : states(v) € L;
e 3[L) is the problem asking whether there exists any [L]-set S C V(G);
o minM[L] (or mazM[L)}) is the problem of minimizing (or maximiz-
ing)
[{v : states(v) € M}] over all [L]-sets S C V(G);
e min[L] (or maz[L]) is shorthand for minM[L] (or mazM[L]) when

M consists of all o-states in L, in effect optimizing the size of the

selected set of vertices.
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Thus, a dominating set is a [p 21,0 »g]-set, with the square brackets implying
the set notation. Table 2 shows some of the classical vertex subset properties [33, 22,

31, 12, 23, 32, 21, 43].

Table 2: Some vertex subset properties.
Our notation | Standard terminology
[2 20,00)-set | Independent set
[0 21,7 20]-set | Dominating set
[p <1,00]-set | Strong Stable set or 2-Packing
(o1, 7o]-set Efficient Dominating set or Perfect Code
[221,00)-set | Independent Dominating set
[p1,0 20]-set | Perfect Dominating set
[ 21,0 21]-set | Total Dominating set
(o1, 1])-set Total Perfect Dominating set
[ <1, 0 20]-set | Nearly Perfect set
[ <1, 0 <1]-set | Total Nearly Perfect set
[p1,0 <1]-set | Weakly Perfect Dominating set
[¢ 20,7 <p]-set | Induced Bounded-Degree subgraph
[0 2p, & 20]-set | p-Dominating set
[p 20,0,)-set | Induced p-Regular subgraph

Table 2 can be used as a quick reference guide to the exact definitions of the
various properties represented and their derived problems. Naming conventions are
not standardized. As an example, Biggs [15] and later Kratochvil [45] consider Perfect
Codes in graphs (as a generalization of error-correcting codes), Bange et al. [12] study
Efficient Dominating Sets in graphs (a variant of domination), and Fellows et al. {31]
investigate what they call Perfect Dominating Sets. In fact, they are all studying the
exact same property, namely [p;, go]-sets.

In the next chapter we study the computational complexity of the problems
defined over these and other vertex subset properties, see Table 5. Properties tra-
ditionally defined using closed neighborhoods are easily captured by the characteri-

zation. The vertex weighted versions of these parameters will optimize the sum of
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the weights of vertices with state in M, with the cardinality version corresponding
to unit weights. For directed graphs we consider Ng(v) as {u : {u,v) € Arcs(G)} to
obtain directed versions of these domination-like properties and parameters. Table 3
shows examples of graph problems [13, 65] expressed using our characterization. Note
that complementary problems, e.g. Maximum Independent Set and Minimum Vertex

Cover, are both expressible.

Table 3: Examples of graph problems.

QOur notation Standard terminology

3[p1, o0 Perfect Code Problem

minfp 21,0 2g) Minimum Dominating Set Problem
maz{p »o, 7o) Maximum Independent Set Problem
min{p z0}|p »0,00] | Minimum Vertex Cover Problem
maz{p:}[p 20,0 o] | Efficiency Problem

2.3 Maximal and Minimal Vertex Subset Problems

We give a refinement of the vertex subset characterization of the last section,

useful for describing maximal and minimal vertex subsets with a given property.

Definition 2.5 Given a set L of vertex states and a graph G

¢ 5 C V(G) is a maximal (minimal) [L}-set if there is no vertex v ¢ §

(v € S) such that SU {v} (§\ {v}) is an [L]-set.

Parameters related to irredundant sets in graphs are also expressible using the
refinement. Irredundant sets require some vertices to have at least one neighbor
with a given state. This motivates the definition of a refined vertex state as the
juxtaposition, denoted by -, of the state of the vertex with the state of one of its

neighbors.
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Definition 2.6 Given a graph G and a selected set of vertices S C V(G):

o The set of refined vertex states of v € V(G) is
rstates(v) = {states(v)} U {stales(v)-states(w) : w € N(v)};

¢ For aset R of refined states, S is an {R]-set if Vv € V(G) : rstates(v)N
R#0;
e For sets R and M of vertex states minA[R] (maxM|R]) is the pa-

rameter minimizing (maximizing) [{v : rstates(v)N M # 0}] over all

[R)-sets S.

Abbreviations like ¢ 3, - p; denote ;- py,07- py,... , in analogy with earlier
definitions. For example, irredundant sets have legal refined states R = {p 20,00, 21°
p1}, meaning that for an R-set § € V(G) we have states(v) € {1,02,...} = 3w €
Ng(v) : states(w) = p; (a selected vertex having at least one selected neighbor must
also have a private non-selected neighbor.)

Table 4 gives examples of vertex subset properties and graph parameters [23,
30, 32, 43] admitting a characterization using refined states. The discriminating term
“closed-closed” for irredundant sets arises from the definition of an irredundant set S
as one for which Vv € S the union of the closed neighborhoods of vertices in S\ {v}

is strictly smaller than the union of the closed neighborhoods of vertices in 5.

For a given set of (non-refined) vertex states L we now give a general procedure
constructing sets of refined vertex states Lmaz and Lmin such that the [Lmaz]-sets
are exactly the maximal [L]-sets and the [Lmin]-sets are exactly the minimal [L]-sets.

Given L, we define the following vertex states:

Amaz={pi:p€ LAo, ¢ L}
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Table 4: Some vertex subset properties and graph parameters defined using refined
states

Our notation Standard terminology

[0 20, 00,7 21 - p1]-s€t Irredundant set (closed-closed)
(¢ 20,00,0 21 p1,0 21-01]-set | closed-open Irredundant set

[P 20,0 20°P1,0 20- 01 ]-set open-open Irredundant set

[P 20,0 20° p1]-set open-closed Irredundant set

[p 20,0 gk—1,0 2% pi)-set k-Irredundant set

[p 21,00,0 21 p1]-set Minimal Dominating set

[ <1+ p1,0 20]-set Maximal Nearly Perfect set
maz{c 20}[p 20,90,021-;) | Upper Irredundance parameter
maz{o 20}[p21,00,0 21-p1] | Upper Dominating parameter

Amin={ci:c; € LAp; ¢ L}
Bmax={pi:pi € LApin € LYU{0;:0: € LAaiy, & L}
Bmin={p;:pi€ LApi_1 € L}U{0;:0;,€ LAgi, € L}

Let Lp and Lo be the sets of p-states and o-states in L, respectively, so that

L = LpU Lo. We define states for maximal and minimal [L]-sets as follows:

Lmaz ¥ AmazULoU{a-b:a € Lp\ Amaz A b € Bmaz}

Lmin & AminU LpU {a-b:a € Lo \ Amin A b € Bmin)

Theorem 2.1 A vertex subset S is a maximal (respectively, minimal)
[L]-set in G if and only if S is a [Lmazx]-set (respectively, [Lmin]-set) in
G.

Proof. We argue only for maximal sets as the proof for minimal sets is very similar.
. Let S be a maximal {L]-set in G. We show that rstates(v) N Lmaz is non-empty for
any v € V(G). Since states(v) € rstates(v) it suffices to show states(v) € Lmaz.
If v € S then the above clearly holds since states(v) € Lo € Lmaz. If v € S then

5" = 5U{v} is not an [L]-set so there exists at least one vertex u with states(u) ¢ L.
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Since stateg(w) = states{w) for any w & Ng(v) U {v] we consider two cases. case
(i) states(v) € L. Let stales(v) = p, so that states(v) = o; € L. But then
states(v) € Amaz € Lmax. case (ii) stales(v) € L. We have statesi(u) € L for
some u € Ng(v) and either u € S or u € §. We argue only for u € § as the reasoning
for u € S is very similar. Let states(u) = o; so that stafes/(u) = 041 & L. Note
that states(u) € Bmaz and states(v) € Lp\ Amaxz so that among the refined states
rstates(v) of vertex v we have states(v)-states(u) € Lmaz. We leave out the other

direction of the proof as it is basically a reversal of the above arguments. 0

As an example, Table 4 shows the resulting characterizations for minimal dom-
inating sets and maximal nearly perfect sets. Note that maximal {L]-sets (similarly,
minimal [L]-sets) are exactly the [L}-sets themselves if Amaz (Amin) contains every
p-state (every o-state) in L or if Bmaz = L (Bmin = L) and the graph G has no

isolated vertices.

2.4 Some New Vertex Partitioning Problems

We define some new vertex partitioning problems as generalizations of the
old problems encountered in earlier sections. Several new vertex subset problems
are introduced in the next chapter. For instance, the new vertex subset problem
maz{p1,1}]p 20, @ 20), which we call TOTAL EFFICIENCY is derived from the old
EFFICIENCY [13] problem max{pi}{p 20.0 20]. This problem arises in communica-
tion networks, if we assume that a communication round has two time-disjoint phases,
send and receive, and that a processor receives a message whenever it has a single
sending neighbor. The maximum number of processing elements that can receive a

message in one communication round is the Total Efficiency of the graph underlying
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the network topology.

The CHROMATIC number problem is the problem of minimizing the num-
ber of independent sets the vertices of a graph can be partitioned into. Similarly,
DOMATIC number maximizes the number of dominating sets, PARTITION INTO
PERFECT MATCHING minimizes the number of induced 1-regular subgraphs and
g-COLORING asks about the existence of a partition into ¢ independent sets. For
each vertex subset property in Table 2 and also Table 4 we can similarly define a
partition maximization, a partition minimization and ¢-partition existence problems.
We call the resulting problems [p, }-PARTITION problems. By a [p, o]-property we

will mean the property enforced by the degree constraint matrix

g M

For a [p, o]-property we definc these partition problems simply by taking the degree
constraint matrix D, with diagonal entries o and off-diagonal entries p.

For example, the [p,, ag]-PARTITION problem asking for the existence of a g-
partition turns out to be exactly the K,-COVER problem, solvable in polynomial
time for ¢ < 3, but AP-complete otherwise. It may be interesting to investigate the
cutoff points at which the g-partition exisience problems for various vertex subset

properties become intractable.

Let us consider a [p;.o 30|-PARTITION problem. We define the PERFECT
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MATCHING CUT problem as the 3D, problem with D, the degree constraint matrix

In other words, does the graph have a subset of vertices $ € V(G) such that the
spanning subgraph on edges crossing the cut (S, V(G)\S) is l-regular? Asan example,
the binomial trees and also the hypercube graphs have a perfect matching cut, which
follows immediately from their iterative definition. We have not found any earlier

references to this problem.

A more general class of problems arises if we consider partitions into differ-
ent vertex subset properties, c.g. a SPLIT graph is one which has a partition
into an independent set and a clique. In general, take vertex subset properties
(1p, 10}, (28, 20], .., [gp, qo], and construct a degree constraint matrix D, with col-
umn 7 having entry io on the diagonal (position i) and ip off the diagonal. The
3D,-problem asks if a graph G has a partition ¥}, V2, ..., V; of V(G) where V; is an
[ip,ic]-set in G. We call these NON-UNIFORM PARTITION problems.

A variation of these problems arises by asking if a graph G has a partition
Vi, Va,.... V, where V; is a [p,o]-set in G\ (UV,,j < i). To define this we use the
degree constraint matrix D, with diagonal entries o, above-diagonal entries N and
below-diagonal entries p. We call the resulting problems [p, o]-REMOVAL problems,
since V; is a [p, o-set in Gy = G, while V; is a [p,o]-set in G2 = G\ V1, and in general
V, is a [p, o]-set in G; = Gi_; \ Vioy. Here we may have to add the requirement that
all partition classes be non-empty. For example, the [p >1,00-REMOVAL problem

([p 21, o0)-sets are Independent Dominating sets) asking for the maximum ¢ such that
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a graph has the appropriate D,-partition, with non-empty classes, is exactly the
GRAPH GRUNDY NUMBER problem.

For another example, we consider a [p 21,0 29]-REMOVAL problem. Define ma-
trices Dy, Dg, ... with below-diagonal entries P and with diagonal and above-diagonal
entries N. We call the maz D,-problem over these matrices the UPPER-DOMINATING-
REMOVAL problem. This parameter is the maximum number of times we can re-

peatedly remove dominating sets from a graph, belore the graph becomes empty.

2.5 A Non-Algorithmic Application

As an example of a non-algorithmic application of our characterization, we con-
sider a generalization of perfect codes ([p1, 00)-sets) and extend to this generalization

a result that holds for perfect codes.

Lemma 2.1 For p € P.q € M il hoth A and B are [p,, 0,]-sets of a graph
G then |A| = {B|.

Proof: Let X; = ANB, X, = A\ Band Xg = B\ A, so that X4,X;,Xp is a
partition of AUB. By a counting argument, we will show that [ X4| = [Xp|. Consider
the edge-disjoint subgraphs F = (X4 U Xp, {uv € E(G): v € X4 Av € Xp}) and
H=(AUB{uv € E(G) : (u€ X1Av e Xg)V(e € X;Av e Xy)}) Note
F contains the edges beiween X, and Xg while H contains the edges with one
endpoint in X; and the other endpoint in X4 or X5. Since A, B are [p,, 0,]-sets,
we have Yv € X4 U Xz : degr(v) + degy(v) = p. Since F is a bipartite graph we
have Y,ex, degr(v) = L.ex, degr(v). Since A, B are [py, og]-sets, both G[A] and
G|B] are g-regular, so we have Yo € X; : {N{v) N X,| = |N(v) N Xpg|, which gives
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Tex, degu(v) = Loexp degy(v). But then

plXal= 3 degr(v)+ 3 degu(v) = 3 degr(v)+ 3 degu(v) = p|Xs|

vEX 4 vEN 4 vENg vEXp
and since p > 0 we have |X 4| = |X| which implies |A] = |Bf. D

Theorem 2.2 For a set of vertex states L, the statement “For any graph

G, all [L]-sets have the same size” is true if and only if (i) or (ii) holds
(i) L = {p;,0,) for some p € F,g € 1!

(ii) L has either no p-states or no o-states

Proof: If L has no p-states then the only possible [L]-set is S = V(G) and if
L has no o-states then the only possible [L]-set is S = 0. The sufficiency of (i} and
(ii) then follows from Lemma 2.1. For necessity we will consider sets L not of type
(i) or (ii), and construct graphs with two [L]-sets of different sizes. First note that
if po € L then § = @ is an [L]-set and it is easy to construct a graph with some
larger [L]-set. The remaining cases (when po € L) are covered by two arguments,
depending on whether there is more than one legal state for selected vertices, or more
than one legal state for non-selected vertices. In both cases, we construct a graph G
with appropriate subsets A and B (each set inducing a collection of complete graphs)
of different sizes.

Case 1: Suppose {pa,pp, 0.} C L where @ < b. For A and B disjoint, let
G = (AU B, E) where A induces a copies of N4y and B induces b copies of K41,
clearly both c-regular. The remaining edges form a perfect matching between each
pair of K.41’s, one from each of A and B. See Figure 2-1. Thus a vertex in A has &

neighbors in B and a vertex in B has a neighbors in 4. |A| = a(c+1) < b(c+1) = |B]|
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Figure 2: 1) A graph having [pa,ps,0c)-sets A and B. [I) A graph having two
{pa,ob, 0c]-sets of sizeb+ 1 and ¢+ 1 (a S b+ 1)
since a < b.

Case 2: Suppose {pq,05,0.} C L whereb<c. Ha<b+1llet G=(AUB,E)
such that A and B induce Kp4 and R4, respectively, and AN B induces K,, these
adjacencies accounting for all the edges. See Figure 2-11. If a > b4 1 we use the graph
depicted in Figure 3. As before. A induces the R.4’s and B induces the Rpyy's
(shaded in the figure). The remaining edges are between A\ B and B\ A and can be
added in any way such that each vertex of A\ B gets a — b— 1 additional edges and
each vertex of B\ A gets a additional edges. Thus, the bipartite graph between A\ B
and B\ A must have (c4+1—(b+1))(a—b—1)a(b+1) = (b+1)a(a—b—1){c—1b)
edges, counting from A\ B or B\ A respectively, and since a —b -1 < a we have

|4] > |B|. O
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Figure 3: A graph having [ps, 04, 0.]-sets A and B (a > b+ 1)



CHAPTER Il

COMPLEXITY OF VERTEX SUBSET OPTIMIZATION PROBLEMS

We study the computational complexity of vertex subset optimization problems
in a unified framework. using the characterization given in Chapter 2.2. In recent
years, a variety of domination-type parameters in graphs have been introduced, and
the number of papers devoled to this topic is steadily increasing [38, 39]. We give a
table cataloging the computational complexity of computing some of these, and other,
parameters. We also investigate the computational complexity of the general class
of all problems admitting our characterization. For a given vertex subset property,
we concentrate on the existence. maximization and minimization problems. The
existence problem merely decides if a graph has any vertex subset with the property,
while the maximum and minimum problems can be used to find the largest and
smallest such vertex subset. Several infinite classes of A/P-complete and of polynomial
time solvable problems are shown. We completely resolve the complexity of the
existence version for those problems having a finite number of legal states, up to P
vs. A'P. We also give N"P-compleieness results for the existence version of problems
with an infinite number of legal states, e.g., deciding if a graph has a [p 1, 01]-set,
which we call a Dominating Induced Matching. For some problems we show N P-
completeness even when the input graph is restricted to be a planar, bipartite graph
of maximum degree three. The vertex subsel property {p3;,0 <] is shown to share

complexity status with [p 31, go|. Independent Dominating sets, in that both minimum
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and maximum problems are hard while the existence problem is easy. Finally, we give

greedy polynomial-time algorithms for solving a class of maximization problems. A

natural by-product is the introduction of several new domination-type parameters in

graphs. The results given here are a step towards our goal of a complete complexity

classification of the problems admitting the characterization.

3.1 Complexity of Old Problems

We use the characterization given in Chapter 2.2. Table 5 shows some of the

Table 5: Some vertex subset properties and the complexity of derived problems.

L]-set Standard terminology 3[L] | maz|L] | min{L]
p 20,00)-set | Independent set P NPC P

[ 21,0 20]-set | Dominating set P P NPC
[p <1,00)-set | Strong Stable set or 2-Packing P NPC P
[p1, 7o)-set Efficient Dominating set or Perfect Code NPC | NPC NPC
[¢21,00)-set | Independent Dominating set P NPC NPC
[p1,0 20]-set | Perfect Dominating set P P NPC
[ 21,0 21]-set | Total Dominating set P P NPC
[p1, 01]-set Total Perfect Dominating set NPC | NPC NPC
[p <1,0 20)-set | Nearly Perfect set P P P

[p <1,0 <1}-set | Total Nearly Perfect set P NPC P
[p1,0 <1]-set | Weakly Perfect Dominating set NPC | NPC NPC
[P 20,0 <n]-set | Induced Bounded-Degree subgraph (n > 0) | P NPC P

[# 2,0 20)-set | n-Dominating set (n21) P P NPC
[# 20, 0n]-set | Induced n-Regular subgraph (n > 0) P NPC P

classical vertex subset properties and also the complexity of derived problems, with

P denoting Polytime and NPC denoting A"P-Complete. Most of these complexity

results are old [33, 22, 31, 12, 23, 32, 21, 43], and others are among the results given

in the next section. Table 5 can be used as a quick reference guide to the exact

definitions of the various properties represented and the complexity of the associated

problems.
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We are mainly inlerested in classifying problems admitting the given character-
ization as A'P-complete or as solvable in polynomial time. The objective functions
most studied in the past involve minimizing or maximizing the cardinality of the set
of selected vertices, and for each entry in Table 5, except Nearly Perfect Sets, there
is at least one A'P-complete problem related to such a parameter. We continue this
trend, and the optimization problems we concentrate on are of the form min[L] and
maz[L]. For certain subset properties. such as Perfect Code, it is well known that
even deciding if a graph has any such set is an A”P-complete problem. In the following

Lemma we observe several consequences of A’P-completeness of an 3[L] problem.

Lemma 3.1 If 3[L] is A'P-complete on a class of graphs C then any
decision problems of the form maz|L], min[L], mazM|[L}, minM|[L] or
mazL[P], L C P are A"P-complete on C. Conversely, if any of the latter

problems have a polynomial time algorithm, then so does 3[L].

Proof. The decision version of maz M[L] takes a graph G and an integer k as input,
and asks if G has an [L]-set § with |[{v : states(v) € M}| = k. Thus, with an
algorithm for the decision version of maxA{[L]. we can decide 3[L] by a single call
of that algorithm providing the integer & = 0 as the second part of the input. For
minM|[L] and mez L[P] problems we would use the integer & = |V(G)| for the input

graph G as the second part of the input. 0

In particular, Theorems 3.1,3.2,3.3,3.4 and 3.7 can each be combined with
Lemma 3.1 to yield corollaries of this kind. We will not state these corollaries ex-
plicitly. We observe from Table 5 that the vertex subset properties attracting most
interest in the past are characterizable by two syntactic states (using the abbrevia-

tions) with vertices having zero, one, al least zero, or al least one selected neighbors.
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3.2 ANP-Completeness Results

We show A ‘P-completeness of several infinite classes of vertex subset problems

by reducing from the A”P-complete problem Exact 3-Cover (problem [SP2] in [33].)

Definition 3.1Exact 3-Cover (X3C)
Instance: Set I/ and T Q(g)

Question: 37’ C T, where 7" a partition of U7

We introduce each N P-completeness result by way of a short comparison with
the complexity of some related problem from Table 5. In contrast to the A"P-complete
problem of deciding existence of [p),og)-sets (Perfect Codes), our first result shows
the A/P-completeness of certain 3[L] problems with L containing an infinite number

of states.

Theorem 3.1 The decision problems 3[p »,, 0] are NP-complete for all

q€{2,3,...}.

Proof. We give a reduction from X3C to 3[p>,.00] for any ¢ € {2,3,...}. Given an
instance (U, T) of X3C we construct a graph G such that 37" € T with 7" a partition
of U if and only if G has a [p3,,00]-set S. Let T = {t,...,{|ry}. For each u € U, let
T.={teT:uet}= {lu,lu,....tu} be the triples containing u. For each u € U
the graph G will contain a subgraph G, consisting of a complete graph on vertices
{Tu, Uu1y Uu2y ooy tyi} and g — | leaves L,, cach adjacent only to z,. Foreach t, € T
with t; = {u,v,w} we construct a subgraph G, sharing the vertices u;,v;,w; with

Gu, Gy, Gy, respectively, as follows: (case ¢ = 2) G, is a 6-cycle on vertices A; U B;
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.g-1 1.0-1 > 6/

Figure 4: Gadgets G;, Gy, G, Gy, for the triple t; = {u,v,w} with ¢ 2 3.

such that A; = {u;, v, w;} are mutually non-adjacent; (case ¢ > 3) G is a complete
bipartite graph K, , with partition (A;, B;) and with {u,;.v;,w;} € A,. This completes
the description of G, see Figure 1.

Let S be a [p2,,00)-set of (. Note that every leaf in L, must be in §, since
po and py are not legal vertex states. In turn, their common neighbor z, cannot be
in § since oy is not legal. Since |L,| = ¢ — 1 and p,_, is not legal at least one other
neighbor of z,, besides its L,-neighbors, must be in S, i.e. [{tu1, 2y, uuk}NS| 2 1.
But {uy1, U2, ..., Uuk} induce a complete graph in G, and oy is the only legal o-state,
so exactly one of these vertices must be in S. Let u;, € § with t; = {u,v,w}. We
would want #; to cover u,v,w and show that indeed we must have {u,,v;,w;} € S.
Note that these three vertices are all in the same partition A, of the bipartite graph
G;. We argue first the case ¢ > 3. No vertex in partition B; can be in § since already

u; € S and oy is the only legal o-state. Moreover, since the neighborhood of any
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vertex in B; is exactly A; and |A;| = ¢ we must have A; C § since py is not legal for
any k < g. If ¢ = 2 we have G; a cycle and u; € S again forces 4; C 5. With this in
mind, we have that 7" = {t, : A, C §} must be an exact 3-cover of U.

For the other direction. if 7" € T is an exact 3-cover of U, it is easy to check
that S={v:vel,AuelUlU{vive AALeT}U{v:veE B AL ET)
is a [p2q,00]-set of G. NP-completeness of the J[p 24, 00] problem follows, since in
polynomial time it is easy to verify a [p 2,,00]-set and compute the transformation.

D

In contrast to [p3>;.0¢]-sets (Independent Dominating sets) which are easily
found using a greedy algorithm, our next resull shows that [p 21, 1)-sets, which we

call Dominating Induced Matchings, are difficult to find.

Theorem 3.2 The decision problem 3[p 31, o;] (Dominating Induced Match-

ing) is NP-complete.

Proof. We again reduce from X3C and adopt all the notation from the proof of
Theorem 3.1, constructing gadgets (7, and (i, sharing a vertex v, ifu € {, € T. G,
will consist of a complete graph on the vertices {4, %u1,1y2, .., tur} and for each pair
u;,u;,1 # j we add three new vertices and edges forming a 5-path from u; through
the new vertices to u;. See Figure 5 which also shows the gadget G; for t; = {u,v, w}.
Let S be a [p>1,01]-set in the graph G thus constructed from an instance of X3C. We
note right away that for any any vertex v € V(G) we have N(v)NS # 0 since neither
po nor og are legal states. Employing this argument 1o z, of the gadget G, shows
that |{tuy1,tuz, .., tur} N S} = 1. Moreover, we cannot have u;,u; € S for ¢ # j since
the middle vertex on the 5-path from u; to u; would have no S-neighbors. Hence,

| {141, tuzy s tuk} N S| = 1. The gadget G for a triple t; = {u,v,w} forces either
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Figure 5: NP-completeness of Dominating Induced Matchings. Left: Gadget G, with
uk = 3 and uy; € S. Middle: Gadget G, for triple t; = {u,v,w} and u;,v;,w; € S.
Right: The only other possibility for G, is u, v w; € S.

u;, v, w; € S or u;, v, w; € S, see Figure 5. Thus, if we let 7' be the triples {; which
have the shared vertices of G; selected then T’ must be an Exact 3-Cover of U. For
the other direction of the proof, it is not hard to see from Figure 5 that an Exact

3-Cover of the instance ({/,T) likewise gives rise to a [p3,,01]-set in G. O

The 3[L} problem has trivially the affirmative answer if pp € L. If L contains
no p-states the I[L}-problem on G is solved by checking whether for each vertex v
we have 04egqv) € L. I{ L contains no o-states the 3[L]-problem on G is solved
by checking whether po € L. In light of this, our next theorem gives a complete
characterization, up to P vs. AP, of the complexity of 3[L] problems when L has a
finite number of states. The reduction given is a generalization of a reduction used

in [45].

Theorem 3.3 The 3[L] problem is A"P-completeif py € L and L contains

a finite positive number of both p-states and o-states.
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Proof. Let L = {p,,,Ppss-es Porns Tars Oazs s Tqn ), Where n,m > 1 and p;, ¢ non-
negative integers satisfying 0 < p; < p2 < ... < pm and 1 < g2 < ... < gn. We
reduce from X3C. Given an instance (U, T) of X3C we want a graph G such that G
has an [L]-set § C V(G) if and only if 37" C T, a partition of U. The gadget for
u; € U is simply the vertex wu;, which will be shared by gadgets G, for all triples ¢ with
u; € t € T'. The graph G will be defined by describing the gadgets G, one for each
t € T. For all t = {uy, 2, um} € T we construct a graph G, with private vertices P
and shared vertices u, usp, uga, i.e. V(Gy) = P, U {un,un, s}, having the property:

In the graph G|, all § C V(G,) that assign Vv € P, a state states(v) € L assigns
to uy, Ug2, U3 either

(1) states(uy ) = states(upn) = stales(ugy) = po or

(1) states(uy) = states(up) = statcs(ugy) = py,,-

Moreover, sets of type (i) and sets of type (ii) should exist for G;.

Assuming we can construct such G, the theorem will follow:

Claiml: G = UierG, has [L}-set S C V(G) & 37" C T, a partition of U.

(«<:) Note the parts G, of the graph G share only the vertices representing U.
For each t € T’ choose a set. S; € V(G) of type (ii) for G,. For each t § T' choose a
set Sy C V(Gy) of type (i) for G. Let S = Uier St

(=>:) For any [L}-set S of G we must have SNV/(G)) be either a set of type (i) or
a set of type (ii) for G;. This since only G, contains the vertices P, and also {w: w €
N(v)Av € P} C V(G,). Since pp € L. and since a vertex u ¢ S can have at most
pm neighbors in §, we must have that 7' = {1 : V'((;;}N S is a set of type (ii} for G}

is a partition of U/.
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Figure 6: A rough sketch of the components of i, where the absence of a line between
two components reflects the absence of an edge in G connecting any two vertices from
those two components.

Construction of G: Let V(G,) = AUBUXUY UZ U {c} U {uun, ttz, ua}.
See Figure 6 for a rough sketch of how these components are connected together. As
a preview, we mention that {4 U Y} will be a selected set of type (ii) and {BUY'}
a selected set of type (i) for ;. X and Y will be such that a selected set must
contain all vertices from Y bul cannot contain any vertex from X. The vertex c,
which cannot be selected, will be connected to enough vertices of Y so that none of
its other neighbors, namely Z U {u, ts, 13}, can be selected. The vertices Z will
ensure that either all or none of the neighbors of uy; are selected.

Let A= A'U ..U AP and B = B'U...U BP with A* = {a},...,a} ,,} and
B = {b{,...,bflﬁ,}, and let G[A'], G{B'],Vi be complete graphs on ¢, + 1 vertices,
with no other edges between As or between Bs. Edges connecting vertices of A with
vertices of B are restricted to (a};,b{.),Vi,j, k. Edges incident with {uy, ue, e} in
G, are restricted to (¢, uu) and (a},uw), Vi, k.

Let 8 = max{pm,q.} >0 and a = [TFT(::TH] > 0.

Let Y = Y'U ..U Y™ and G[}"],Vi, a complete graph on ¢, + 1 vertices.

Let X = {z,22.....(qu41)(8+1}e} With G[X] containing no edges.
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We add edges connecting X-vertices with ¥-vertices such that each vertex of X
gets p; neighbors in Y and each vertex of 1" gets § + 1 neighbors in X. This can be
done since | X| = a(g. + 1)(B+ 1) and [Y| = a{g. + )p1.

The vertex c is connected to p,, vertices of ¥, note |Y'| > pm, > 0, and c is also
connected to every vertex of Z U {un, s, ua}.

It remains to describe the vertices and edges contributed by Z. Let Z = Z'U
Z?U 23U {z'} with Z¥ = {zf,...,z5 } for k€ {1,2.3}.

The vertex z!,Vi, is connected to a} and to b} and has p; — 1 neighbors in Y.

The vertex z?,Vi, is connected to a} and to b} and has p,, — 1 neighbors in Y.

The vertex z3,Vi, is connected to a} and to b} and has p; — 1 neighbors in Y.

The vertex =’ is connected to {a}.....ai™. b, ... B{"}.

This completes the description of G..

Claim2;: AUY is a set of type (ii) and BUY is a set of type (i) for G..

Proof of claim: We consider AUY first. G[AUY] is a collection of p,, copies of
Ky, 41 for the As and pya copies of Ky, for the }'s, so stateqyy(a) = o4,,Ve € A and
state vy (y) = 0,,..¥y € Y. Moreover, Vr € X we have N(z) C Y and IN(z)] = p
so stateauy(z) = pp,. For the vertex ¢ we have N{¢) C YU Z U {w1, w2, ura} and
IN(c) N Y| = pm, 50 statesuy(c) = pp,,. The vertices = € Z' U Z° have |NV(z) N {AuU
Y} = p1, so stateauy(z) = pp,- Similarly, V= € Z2 we have [N(z) N {AUY}| = pn,
so stateavy(z) = pp... The vertex =’ has N(z') € AU B and [N(z) N A| = pm, so
state oy (2") = pp,- So far, the argument for B U Y being a set of type (i) can be
obtained from the above by replacing B for 4 and vice-versa.

Since Vb€ B, N(b) € AU Z and |N(b) N A] = pm, we have stateuy(b) = pp,.-

Similarly, Va € A we have N{a) C BU Z U {w, up, un} and |N(a) N B| = pm, so
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stateguy(a) = ppn-

What remains is the argument for the vertices {1, up, uz}. We have for k €
{1:273}1 N('U-gk) = {ﬂ},._,,a’l’m}, 50 St“tefld)’(u!k) = Pom and StﬂteBUY(utk) = Po 50
that AUY is a set of type (ii) and BUY is a set of type (i), completing the proof of

the claim.

Claim3: For any S, C V(G,) which assigns Vi € V(G ) \ {un, e, up} a state
states,(w) € L, we have Y € S, and also (Z U {uy,up.up}) NS, = 0.

Proof of claim: Vy € Y we have [N(y) N X| = g+ 1 > max{pm,¢.}, so
J: € N(y) : = € S,. But |N(z)NY| = p, so states,(z) = pp, and y € S,. Since
IN(y)NY| = g, we must have staies,(y) = o,,. Since |[N(c)NY| = p,, we must have
staleg,(c) = ppn, and (Z U {ug. w2, ua}) NS = (N(e)\ V)N 5, = B, completing the

proof of the claim.

Claim4: For any S, C V(G,) which assigns Vw € V(G{) \ {ue), te2, 3} a state
states,(w) € L, we have either ai € 5,1 <i < pmoral € 5,1 <i < pm.

Proof of claim: From Claim3 we have Z2NS; = 0 and ¥ C 5,. In particu-
lar, states,(z}) € {Pp,»Pps+1}, similarly states,(z2) € {ppn—1,Ppnm} and stales,(z7) €
{Ppys Ppy+1}- In turn, we consider the two cases aj € S; and a] € Si. a} € 5, gives
states,(2?) = pp, Vi, s0 by & S, Vi. This in turn gives stateg,(z3) = pp, s0 aj € 5, Vi,
completing the first case. a! ¢ S, implies & € S,,Vi so that states(z!) = py,,Vi.

This in turn gives states,(z') = pp., so a} € Si, Vi, completing the proof of the claim.

Each of {us,up,u3) is adjacent to exactly {ai,...,al™} and by Claim3 cannot
be in S,. Hence, Claimd actually shows that any S; € V(G,) which assigns Yw €

V(G \ {un,uz, ua) a state sfateg,(w) € L has either
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(i) states,(un) = stales,(up) = states,(un} = po. or
(i1) states,(un) = slates, (1) = stales, (i) = pp,, .

Thus G, has the claimed properties and the theorem follows. O

As our next theorem shows, some of these decision problems are N'P-complete
even for very restricted classes of graphs. The reduction we use is a simple special
case of the one just given, and uses the A"P-complete problem Planar 3-Dimensicnal

Matching (P3DM). A similar reduction is used in [31].

Definition 3.2 3-Dimensional Matching (3DM) [SP1]

Instance: Disjoint sets Uy, Uy, Us with U = U, UU; U Uy and T C Uy x

Ug xX U3.

Question: 37" C T, where T’ a partition of {/?

With an instance / of 3DM, we associate the bipartite graph G where V(G}) =
UUT and E(Gy) = {(u,t) :u € UAu €t €T} In|[28] it is shown that Planar
3-Dimensional Matching, 3DM restricted to instances where G; is planar, is still

NP-complete.

Theorem 3.4 The problem of deciding whether a planar bipartite graph
of maximum degree three has any [p1, 01]-set (Total Perfect Dominating

Set) is N'P-complete.

Proof. Given an instance J of P3DM, we construct a graph G having a [p, a1]-set if
and only if 3T C T, a partition of U. Let G be the graph G; augmented by adding,
for each t € T, the vertices a, and b,. and edges connecting a; to both ¢ and b;. Since

this reduction does not distinguish between the sets Uy, /2, Us, the instance [ can be
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viewed as an instance of X3C, and the argument that G has a [p1, 01)-set if and only
if 37" C T, a partition of I/, is lefi out since it is in easy analogy with the argument
used for the previous theorem.

Note that G; and G are both planar bipartite graphs. We next show an easy
transformation of a graph G having a vertex of degree larger than three to a graph
G’ with the following properties:

(i) if G planar and bipartite then ¢ planar and bipartite,

(i1) E{udeg(v)z4186(0) > S(vudeggiinzaydega ()

(iii) G has a [py,0y)-set if and only if G’ has a [py, 01]-set.

Hence, applying such a polytime transformation repeatedly, starting with G,
until the resulting graph has no vertices of degree larger than three, yields a graph
proving the theorem.

We define the transformation by describing the resulting graph G'. Let v be
a distinguished vertex of G with Ng(v) = {vi,va,...,vx} and k > 4. Let G' have

vertices V(@) = V(G) U {w,z,y, z} and edges

E(G’) = E(G) \ {(vl’v)s (U-z,v)} U {(vliu-’)’ (‘Ug,w), (IU,J:),(.T, y)i (y1 2)1 (Z,U)}

See Figure 7. Note the transformation is local. with changes only to the neighborhoods
of v;,v9 and v.

We prove the stated properties of the transformation:

(i) Planarity is obviously preserved. If A,B is an appropriate bipartition of
V(G) then w.l.o.g. we must have v € A, N(v)} C B so that AU {w,y} and BU {z, z}
forms an appropriate bipartition of V(G'). (ii) The new vertices all have degree less

than 4, whereas the degree of » decreases to & — 1. (iii) Let S and S’ be [py, oy]-sets
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Figure 7: Transformation of G to G

in G and G, respectively. Note that {w,x.y. 2. v} induces a 5-path in G’ so there are
4 possibilities for {w,z,y, =, v} NS, namely {y.z}, {w.z.v}. {w,7,v} and {z,y}. We
similarly split the possibilities for choice of S into 4 classes, namely

Hvi, 22} NS|=1Av & SAH{vs,....,un} NS5[ =0,

{vi,v2}NSf=1Av € SA[{vs,.... 0} N S| =0,

Ho,vJNSf=0Av e SA[{va,...,m} NSl =1,

v, v} NS =0Av &S A {va,...,i} NS =L

It is easy to check that the 4 possibilities for choice of S’ have, in the order
given, characterizations in terms of effect on v and N(v) which are identical to those

just given for S, and indeed property (iii) holds. a

To our knowledge, the complexity of problems defined over Total Perfect Dom-
inating Sets in graphs. had not been studied previously [22].

Combining Lemma 3.1 with Theorem 3.4 gives the A'P-completeness on planar
bipartite graphs of maximum degree three of the problem maz{p;,o1}|p 20, 20|,
which we call Total Efficiency. This problem arises in communication networks, if we
assume that a communication round has two time-disjoint phases, send and receive,

and that a processor receives a message whenever it has a single sending neighbor.
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The maximum number of processing elements that can receive a message in one
communication round is the Total Efficiency of the graph underlying the network
topology.

The following strong result is due to Kratochvil.

Theorem 3.5[45] The problem of deciding whether a planar 3-regular

graph has a [p;, go]-set (perfect code) is A"P-complete.

We state the implications of this result for some other problems admitting our

characterization.

Corollary 3.1 Any decision problem of the form min[L] with po € L and

{p1,00} C L is A P-complete on planar 3-regular graphs.

Proof. Let G be a planar 3-regular graph. We show that G has a perfect code if and
only if the value of min[L] on G is |V(G)|/4. Since every vertex of G has degree 3,
a perfect code of G has size |V(G)[/4 and is clearly a dominating set. Moreover, a
dominating set of (¢ which is not a perfect code will have more than {V(G)}/4 vertices.
An [L])-set in G is a dominating set since pg is not legal and it could be a perfect code

since p; and oy are legal. The corollary foliows. O

While every graph has an Independent Dominating Set ([p 21, 00]-set), that can
be easily found by a greedy algorithm, it is well-known that both minimizing and
maximizing the size of such a set is AP-hard. Our next result shows another vertex

subset property with this complexity classification.

Theorem 3.6 The decision problems min(ps;,0 1] and maz(p 21,0 <]

are both A’P-complete, while 3[p 3, <1} can be solved in linear time.
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Figure 8: Given G on the left, the reduction constructs the graph G’ on the right

Proof. Any graph has a [p 3.0 <1]-set. take for example a [p 1. 00]-set. easily found
in O(|E(G)] + [V(G)|) by a greedy algorithm. NP-completeness of min|p 1,0 <)
follows from Corollary 1. We show A'P-completeness of maz{p 21,0 <] by reduction
from maz[p s, d0). Given a graph G, construct the graph G’ with V(G') = {u1, uz:
u € V(G)} and E(G') = {(u1,u2) s u € V(G U {1, m1), (uz, v2),

(u1,v2), (u2, 1) : (u,v) € .E(G‘)}, see Figure 8. Let S be a maximum-size {p >, go}-set
in G and let &’ be a maximum-size [p 3,0 <1]-set in G'. We show that 2|S| = |5’).
Let A be [p»1,00] in G. Then A" = {wy,uz : v € S} is [p21,0a] in G We
have 2|A| = |4’|, so this shows that 2|S| < |5'|. Let B’ be [p 21,0 1] in G', with
C = {(ui,v;) € E(G') : {ui,v;) C B'}, the edges of G'[B']. Choose one endpoint
of each edge from (' and call this set of vertices D. Define B = {v € V(G) :
stateg(v) = oo V stateg(v2) = ag V vy € DV vy € D}. Since we have removed one
endpoint from each edge of G'[B’] it is clear that B is an independent set in G and
2|B| > |B'|. In our notation, B is [p2q,00] in G, and can be greedily augmented to
a [p »1,00}-set, which shows that 2|S} > |5’|. The transformation is easily computed

in polynomial time, and the theorem follows. 0o

Minimization problems of the form min[L] have the empty vertex subset as
solution if po € L. Similarly, if L has no o-states then the empty vertex subset is the
only possible solution. If L has no p-states then the only possible [L]-set in a graph

G is V(G) which is checked by degree computation as described earlier. A min[L]
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problem where L does not satisfy any of the above is asking for a minimum-size
dominating set S of a certain kind. We have reason to believe that finding such a set

is, in general, A'P-hard.

Conjecture 3.1 Assuming P # AP the decision problem min[L) is N'P-
complete if and only if pg ¢ L and L contains both some p-state and some

o-state.

3.3 Efficient Algorithms

We now turn to vertex subset problems with an easy solution algorithm, and
focus our attention on optimization problems. Based on Lemima 3.1 such results have

as corollaries the polynomial-time solvability ol the associated existence problems.

Theorem 3.7 The problem max[L] is solvable in polynomial time by a
greedy algorithm if & 3, is the only o-state in L and either (i), (ii), (iii)
or (iv) holds

(i) prrp2cs pr-1 € L

(i) po, p1y ooy pr-1 € L

(iii) p 24 is the only p-state in L, for some h

(iv) po and p 3, are the only p-states in L. for some h
Proof. We give two greedy algorithms, named ALG1 and ALG2, with input a graph
G and output a set achieving max[L] for &, il any [L]-set exists. ALG2 is used in
case (iv) when h > 2 in which case there is a crucial gap in the legal p-states while

ALG] is used in the remaining cases. The algorithms use data structures Be,Bp of

type sel.
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ALG1(G)
Ba, Bp:=V(G), b;
while (I: 3v € Bo : [N(v) N Beo| < k) do Bo, Bp:= Bo \ {v}, BpU {v};

if (3v € Bp : stateg,(v) € L) then output( A[L]-set) else output(Ba);

ALG2(G)

Bo, Bp := V(G), I

while (I: v € Bo : [N(v)N Ba| < k) or (1l: 3w € Bp: [IN(w)N Bo| < h) do
Case | : Bo, Bp:= Bo \ {v}, BpU {v};
Case lI: Ba, Bp:= Bo \ {N(w) N Be}, Bpu {N(w)n Bo}\ {w};

output(Bo);

We first prove correctness, {or both algorithms, of the loop invariant: “A vertex
v € Bo cannot be a member of any [L}-set S of G." The loop invariant is true initially
since Bo = V(G). Let Ba and Bo' be the values before and after an iteration of the
loop. From the loop invariant we have § C Beo and show that 5 C Bo'.

Case I (both algorithms): Bo\ Bo' = {v} and v € Bo : [N(v)N Bo| < k. Since
o >; is the only o-state in L, S C Beo cannot contain v.

Case I (ALG2 only. i.e. py and p2, the only legal p-states): v € Ba \ Be' and
Zw : v € N(w) where w € Bp and |N{(w)N Ba| < h. When a vertex is added to Bp it
is also removed from the non-growing set Bo so that BpN Be = () and in particular
w & S. Since p1, pas ... pao1 & L we must have states(w) = pg so that N(w)}n S = 0.
Since v € N(w) this completes the proof of the loop invariant.

At termination of both algorithms all vertices in Be = S have at least k neigh-

bors in §. We first argue correctness of ALG1. At termination of ALGI all vertices
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not in S (in Bp) have less than & neighbors in S, so if for some v € Bp we have
states(v) = p; € L there cannol be any [L]-set in (i since for no j < ¢ is p; € L. How-
ever, if such a vertex does not exist S is a maximum-size [L]-set, proving correctness
of ALG1. At termination of ALG2 all vertices not in Be = S have either at least h
neighbors in S (these vertices are in Bp) or no neighbors in S. Since po and p >4 are

both legal p-states we have S a maximum [L]-set, and ALG2 is correct. o
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CHAPTER IV

COMPLEXITY OF H-COVERING PROBLEMS

Efficient algorithms for certain graph covering problems are designed according
to two basic techniques. The first one is a reduction to the 2-5AT problem. The second
technique exploits necessary and suflicient conditions for the existence of regular
factors in graphs. For other infinite classes of graph covering problems we derive
NP-completeness results by reductions from graph coloring problems. We illustrate
this methodology by classifying all graph covering problems defined by simple graphs

with at most 6 vertices.

4.1 Motivation and Qverview

For a fixed graph H, the H-cover problem admits a graph G as input and asks
about the existence of a “local isomorphism™: a labeling of vertices of G by vertices
of H so that the label set of the neighborhood of every v € V(G) is equal to the
neighborhood (in H) of the label of v. We trace this concept to Biggs’ construction
of highly symmetric graphs in [15]. and to Angluin’s discussion of “local knowledge”
in distributed computing environments in [3]. More recently, Abello et al. [1] raised
the question of computational complexity of H-cover problems, noting that there are
both polynomial-time solvable (easy) and A'P-complete (difficult) versions of this
problem for different graphs H. Our own interest in the subject comes from viewing

H-covering as a vertex partitioning problem. Using the adjacency matrix Dyy(x) of H
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as a degree constraint matrix (with singleton entries), the H-cover problem is simply
the IDv(s) problem. A related question of complexity of H-coloring, where the
degree constraint matrix is obtained from the above matrix by replacing {1}-entries
with N, has been resolved by Hell and Neset#il [41] who completely classified graphs
for which the problem is easy and those for which it is difficult. Our goal is to extend
our current findings to achieve a complete classification also for the complexity of the
H-cover problem.

We develop a methodology that is useful in analyzing the complexity of graph
covering problems. In designing efficient algorithms that solve easy graph covering
problems, we reduce those problems to regular factorization problems and/or to the
2-SAT problem. We introduce these tools and present the corresponding results. To
prove N'P-completeness of the difficult graph covering problems, we use polynomial
time reductions from known A P-complete restrictions of vertex, edge and H-coloring
problems and also reductions between covering problems. These last reductions are
based on properties of the automorphism groups of the relevant graphs. We set up a
paradigm to construct such reductions and then present our findings. At the end of
this chapter, in Figures numbered 16 up to 21 we give a catalogue of the complexity
of the covering problem for all simple graphs with at most 6 vertices. There are 208
such graphs, with about 100 having non-trivial polytime solution algorithms and 36
being NP-complete {the remaining graphs defining trivial covering problems).

We give some useflul definitions. The H-cover (decision) problem on an input
graph G has the affirmative answer iff there is a function (called covering projection)
f: V(G) — V(H) which preserves the identity of the neighborhood of any vertex v
of G, {f(u)ju € Ng(v)} = Nu(f(v)) with degg(v) = degu(f(v)). Fixing the graph
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Figure 9: G labeled by a covering projection of H, their common degree refinement
R and the degree partition of H.

H, and allowing any graph G as the input, one can pose the question: “Does G cover
H? The computational complexity of this problem, called the H-cover problem for
the particular graph H, is the subject of this chapter.

The degree partition of a graph is the partition of its vertices into the mini-
mum number of blocks B,,..., B, for which there are constants r,; such that for each
i,7 (1 €1,7 < 1) each vertex in B, is adjacent to exactly r;; vertices in B;. The ¢ x 1
matrix R (R[i, j] = ri;) is called the degree refinement.

The degree partition and degree refinement of a graph are easily computed by
a stepwise refinement procedure, Start with vertices partitioned according to degree
and keep refining the partition until any two nodes in the same block have the same
number of neighbors in any other given block. See Figure 9 for an example. Graph
coverings are related to degree partitions and degree refinements (see, for instance,

Leighton [51]):

Fact 4.1 If f is a covering projection of H by G then H and G have
the same degree refinement and have degree partitions By, Ba, ..., By and

1, By, .., B} so that for every v € B we have f(v) € B;, i =1,2,...,1.

Without loss of generality. we will consider only connected graphs, because of
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the following observations (whose proofs are left to the reader.)

Fact 4.2 Given a connected graph H. a graph G covers H if and only if

every connected component of G covers .

Fact 4.3 For a disconnected graph /., the H-cover problem is polynomi-
ally solvable if and only if the H,-cover problem is polynomially solvable

for every connected component £, of /1.

Fact 4.4 For a disconnected graph /. the H-cover problem is NP-
complete if for some connected component H, of A the H;-cover problem

is A"P-complete.

In Figures numbered 16 up to 21 we give a listing of 6-vertex graphs taken
from Harary [36]. By applying Facts 4.3 and 4.4 on complexity of disconnected graph
covering, the listing given encompasses the complexity of the H-covering problem for
all simple graphs H on at most six vertices and at least two cycles. Covering of simple

graphs with at most one cycle is easy by Fact 4.7, stated below.

4.2 Efficient Algorithms

For a given graph G and a fixed graph 1. it is casy to compare degree partitions
and degree refinements in polynomial time. Surprisingly. for many graphs H, the
necessary condition for the existence of a covering given by Fact 4.1 is also sufficient.
For many other graphs A (including some infinite classes of graphs}, for which those
conditions are not sufficient, we are able to design an efficient solution algorithm
paradigm by constructing an equivalent instance of the 2-SAT problem, and/or by
reducing to a factorization problem in a regular graph. Before we present these results,

we observe some fairly obvious facts about irees and unicyclic graphs.



52

Fact 4.5 A graph G covers a given tree H il and only G is isomorphic
to H.

Fact 4.6 A graph G covers a cycle H if and only if G is a cycle with the

length that is a multiple of the length of H.
The two preceding [acts imply indirectly the following observation.

Fact 4.7 For a graph / with at most one cycle. the H-cover problem is

solvable in polynomial time.

4.2,1 Reductions to 2-Satisfiability

The 2-SAT problem where clauses have at most two variables is solvable in
polynomial time. We reduce a class of H-covering problems to an instance of the

2-SAT problem.

Theorem 4.1 The H-COVER problem is solvable in polynomial time if

every block of the degree partition of H contains at most two vertices.

Proof. Denote the vertices of the i-th block B; of H by L;, R; (or L; only, if B; is
a singleton). Suppose that G has the same degree refinement as H and its degree
partition is By, B),..., Bf, where the blocks are numbered so that every covering
projection sends B! onto B,. | < ¢ < {. This structure of ¢ can be checked in
polynomial time, and &' does not cover H unless it satisfies these assumptions.

The crucial part of the algorithm is to decide which vertices of B! should map
onto L; and which onto R;. This can be dane via 2-SAT. For every vertex u of G,

introduce a variable r,. In a truth assignment ¢, these variables would encode
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if = L;
o(r) = true il f{u) (4.1)
false if flu)=R,

for a corresponding covering projection f {(lere ¢ is such that © € B]). We construct

a formula @ as a conjuntion of the following subformulas:

o

- (z4) for every u € B! such that B, is a singleton;

(zg VI A (7, Vo) for any pair of adjacent vertices 1, v which belong

to the same block B! (i.e., L;R; € E(H));

(zuV oz ) A (Pzy VT,) il u and v belong to distinct blocks (say u € B} and
v € B}) and there are exactly the two edges L;L;, R;R; between B; and Bj in
H;

(z,VTy)A (T, VT,) if u and v belong 1o distinct blocks (say u € B] and
v € B}} and there are exactly the two edges L, R;, R;L; between B; and B; in

H,;

(Tw V ) A (2T V mzy, if v and w belong to the same block (say B) and
are both adjacent to u which belongs to a block (say B!) such that L,L;, L;R; €
E(H).

Note that in case 2, every u € B! has exactly one neighbor v in the same block, in

cases 3 and 4, every u € Bj has exactly one neighbor v € B}, and in case 5, every

u € B has exactly two neighbors v,w € B’.

It is clear that & is satisfiable if and only if f defined by (4.1) is a covering

projection from G onto /. The clauses derived from 2 guarantee, if LR, € E(H),
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that every vertex mapped on L; has a neighbor which maps onto E; and vice versa,
the clauses from 3-5 control adjacencies to vertices from different blocks, and the

technical clauses from 1 control the singletons. O

4,22 Reduclions to {actorization

A spanning subgraph H of a graph G is a h-factor if all vertices of H have degree
k. When k = I, the 1-factor is often referred to as perfect matching. The existence
of perfect matchings in hipartite graphs is a subject of the celebrated Kdnig-Hall
theorem. A graph G is k-factorable il its cdges can be partitioned into k-factors. An
application of the Hall-Kénig marriage theorem states that a regular bipartite graph
is 1-factorable ([36],[48]). We will use this fact to show that the obvious necessary

conditions are also sufficient for a class of graph covering problems.

Theorem 4.2 Let H be a graph with all but two vertices of degree 2,
all of them lying on paths connecting the two vertices of degree k& > 2.
Then a graph G covers H il and only il # and G have the same degree
refinement and the multigraph obtained from G by replacing the paths
between vertices of degree k by edges is bipartite. It follows that the

H-cover problem is solvable in polynoimal time.

Proof. The ‘only if’ part of the statement is obvious. For the ‘if’ part, note first
that since G is connected, the bipartition of its degree k vertices into V1, V3 is unique.
Denote the vertices of degree k in H by ., va, and let the paths between them have
lengths ny < nz <... < njy, with exactly &; paths of length n;. Number the paths of
length n; from 1 to k;. For every i, consider an auxiliary multigraph G, with vertex

set V) U V4 and edges being in one-to-one correspondence with the paths of length
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n; between the vertices of ¥ UV, in G. Since degree refinements of G and H are
identical, G; is k;-regular bipartite. It is therefore 1-factorable, which means that its
edges can be colored by k; colors, say 1,2,....k;, so that every vertex is incident to
exactly one edge of each color. We then define the covering projection by

f(z)=v;ifx € V,7 = 1,2, and otherwise

f(z) = u where u is a vertex of degree 2 on the j** path of length n; which leads
from v, to v, and z is the corresponding vertex on the path in G (from a vertex in ¥}
to a vertex in V3) that is represented by an edge colored by color j in the auxiliary

multigraph G;. O

If the H-covering problem is easy one may ask for what supergraphs of H the
covering problem remains easy. In a forthcoming paper we will treat this question in
detail. Presently, to encompass all 6-vertex graphs, we mention that we can safely
add a degree 1 vertex to a graph falling under Theorem 4.2.

A classical result of Petersen [56] states thal any 2k-regular graph is 2-factorable.
We will use this fact to show that the obvious necessary conditions are also sufficient

for a class of graph covering problems.

Theorem 4.3 Let H be a graph with all but one vertex of degree 2. Then
the H-cover problem is solvable in polynomial time, and a graph G covers

H if and only if its degree refinement is the same as the degree refinement

of H.

Proof. The structure of H is such that it contains one vertex, say A, of degree 2k
and all other vertices lie on cycles which pass through A. Let the lengths of the cycles

be n; < ny <...n, and let there be %, cycles of length n;, 7 =1,2,...,m.
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The obvious necessary condition for a graph G to cover H is for G to contain
only vertices of degree 2 and 2k, and for every 7 = 1,2,...,m, every vertex of degree
2k is an endpoint of exactly 2k, paths of length n, which contain only vertices of degree
2 and every such path is between degree 2k vertices (possibly the same vertex). This
is just an explicit reformulation of the fact that (i has the same degree refinement as
H. We will show that this obvious necessary condition is also sufficient.

It suffices to consider only paths of the same length, say n;. Consider a multi-
graph G’ whose vertex set are the vertices of degree 2k in G, and edges correspond
to paths of length n,. This graph is 2k;-regular, and hence 2-factorable [56]. Let Ej,
i =1,2,...,k, be the edge sets of k; disjoint 2-factors. Each such E is a disjoint
union of cycles, which in the original graph G correspond to cycles formed by paths

of length n;, These paths of G must map to paths P, P,,..., P, of A, with P; hav-

ing vertices Aj1, Aj2,...,Ajn,. In fact, the paths in G represented by a 2-factor Ej
can all be mapped onto the same path P; in H. Il zy,zy,...,T1n;y T2, %2140 -+ s T2y

v ZyyTrlye -+, Tpn, 15 such a cycle (with 2y, x2...., 2, being its vertices of degree 2k),

then the vertices zqp will maponto Ay, [ La <1 <b<n,. ]

Theorems 4.2 and 4.3 can be unified in the lollowing general statement, which
is again an example of the ‘obvious necessary conditions are also sufficient’ scheme.
The proof, which we omit, is more or less a confluence of the proofs of Theo-

rerns 4.2 and 4.3.

Theorem 4.4 Let H be a graph with all but two vertices of degree 2 and
let these two vertices of higher degree be L and R. Further suppose that
for every i > 1, L belongs to /; cycles of length 7, R belongs to r; cycles

of length i and there are m; paths of length ¢ joining L and R. If
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a) there is an 7 such that {; ¢ r;, or

b) ;m; = 0 for every 1,

then H-COVER is solvabie in polynomial time, and a graph G covers H
if and only if it has the same degree refinement as H and, in case b), if
the vertices of degree > 2 in (i can be partitioned into classes U/ and V'
so that every path of length 7 such that m; # 0 connects a vertex from
U to a vertex from V, and every path of length z such that I; # 0 either

connects vertices from [/ or vertices from 1",

Let us state withoul proof that in all remaining cases, i.e., when §; = r; for
all 7 and there is an 7y such that Iy # 0 and my # 0, the H-COVER problem is
NP-complete.

Fact 4.7, Theorems 4.1, 4.2 and Theorem 4.3 encompass all but three graphs
of at most 6 vertices for which the covering problem is easy. One of these graphs is
a particularly easy case of Theorem 4.4. The covering problems for the two remain-
ing graphs, which will he treated in detail in a lorthcoming paper, are solved by a

modification of the 2-SAT meihod.

4.3 ANP-Completeness

For any graph H the H-cover problem is in AP, We will show A'P-completeness
of H-cover problems for several infinite classes of graphs. We first mention an earlier

result.

Theorem 4.5 [43] For every & 2 4, the Iy-cover problem is N'P-complete.
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4.3.1 Reductions from Coloring Problems

In this section we reduce from A 'P-complete problems: edge coloring, vertex
coloring and H-coloring. The H-coloring problem asks for the existence of a labeling
of vertices of G by vertices of H, h : V(G) — V(H), which preserves adjacencies,
wv € E(G) = h(u)h(v) € E(H). This problem is easy if H is bipartite but NP-
complete otherwise [41]. The vertex k-coloring problem is equivalent to the K-
coloring problem. The edge k-coloring problem asks if each edge of a graph can
be assigned one of k colors so that no two edges incident with the same vertex are
assigned the same color. Edge 3-coloring of cubic graphs is A"P-complete [42]. The

following observation is used in our reductions.

Fact 4.8 If G covers H by [: V(G) — V(H) and = € Aut(H) then 7o f

(the composition of f and =) is also a covering projection of H by G.

The reductions are by vertex and edge gadget construction, providing a graph
G' which covers H if and only if a given graph G can be colored appropriately. The

general outline of the reductions is as follows:

1. Define vertex gadgel for a vertex v € V(G) by a subgraph of a cover of H, with
dege(v) 'port’s Lo be used for edge gadgets (edge-coloring requires covers of H
with distinct projections for each port and automorphisms of H that allow any
permutation of the ports as distinct covers by Fact 4.8, whereas for k-vertex

coloring we need equivalent projections for each port and k distinct covers)

!\D

Define edge gadget connecting two ports by a subgraph of a cover of H, so

that the ’only if’ direction of the reduction is met (for edge-coloring (vertex
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coloring) this amounts to ensuring that the two ports must cover H equivalently

(distinctly)).

3. Neighborhoods left unspecified are completed, possibly with added vertices, so
that the "if’ direction of the reduction is met (this amounts to extending any

partial covering projection defined in step 2 to a cover of H).

Theorem 4.8 The Nj4-cover problem and the Cg-cover problem are

both A"P-complete.

Proof. Let H = K,,,. For a given cubic graph GG we construct a graph G’ such that
G is edge 3-colorable if and only il G covers /{. The gadgel for a vertex v € V(G)
is a 3-cycle, with one vertex for each port. The association of V(H), as labels of the
vertex gadget ports, with the 3 edge colors is that each pair of non-adjacent vertices
of H corresponds to a unique color.

For the next step of this reduction, we define the edge gadget for uv € E(H) asa
subgraph of a cover of H, see Figure 10. We show that if the graph we are constructing
covers H by a projection f then the two ports connecied to this edge gadget, called
3 and 16 in the figure, must be labelled by the .sa.me color. The vertex gadget cannot
have two vertices labelled by two non-adjacent vertices of H. Assume wlog that
f(1) = b, f(2) = ¢, f(3) = a, see Figure 10. We show that f(16) = f(3) = a. We have
Ny(a) = {a,c,B,C} so wlog let f(4) = B, f(5) = C. Since Ny(C) = {a,b, A, B}
we have f(7) equal to A or b, and similarly f(6) equal to A or c. But if f(7) = A
then f(10) = 6 so f{6) = c and f(9) = A which cannot be since vertices 7 and 9 are
adjacent. We conclude f(7)} = b, f(10) = A and similarly f(6) = ¢, f(9) = A. This
forces f(8) = a. Now, f(11) is b or B and similarly f(12) is c or C. Any of the 4
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Figure 10: K, upper left. Vertex gadgets Gu and Gv connected by an edge gadget
at bottom. Lacking neighbors [or a.b. ¢ provided by the 3-cycle A, B.(" at top left.

possible pairs for f(11), f(12) have as common neighbors only a and A, but 11 and
12 already have a neighbor labelled A, so f(13) = a. It is not hard to check that
for all 4 cases we have f(3) = f(16) = a so that G is edge 3-colorable whenever the
constructed graph covers f.

Case 1: f(11), f(12) = b,c = f(14), f(15) = C, B = f(16) = a.

Case 2: f(11), f(12) = B,c = f(14), f(15) = C,b= f(16) = a.

Case 3: f(11), f(12) = b,C = f(14), f(15) = ¢, B = f(16) = a.

Case 4: f(11), f(12) = B,C = f(14), f(15) = ¢,b = f(16) = a.

For the other direction of the proof, we complete the neighborhoods left un-
specified. Note that we can now assume that (7 is 3-edge colorable and freely specify
the covering projection. For each 1 € V/((7}. we have three vertices, e.g. vertex 8 for
u in Figure 10, each lacking two neighbors. Following the projection given above, let

these three vertices be labelled a, b, ¢, lacking neighbors {B,C}, {A,C} and {4, B},
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Vv Evu Euv Vu

Figure 11: Gadgets for proofl of case H[Q] discrete, with vertices of ¢} marked ¢

respectively. We add a 3-cycle for each v € V(G), label its vertices A, B,C and use
them as the lacking neighbors, see Figure 10. The constructed graph G’ thus covers
H whenever G is edge 3-colorable.

The reduciion for Ty, which we leave oul. is again from edge 3-coloring of cubic

graphs. O

We next give a series of A"P-completeness results for graphs whose vertices have
a partition @, R, S, with Q a hlock in the degree-partition whose vertices share all

their neighbors S and induce a certain subgraph.

Theorem 4.7 The fl-cover problem is A"P-complete if for some block
@ in the degree-partition of /, H[(Q] is a discrete graph, |@| = 3 and
38 C V(H),|S| > 3 such that Vv e Q, N(2)\ Q = 5.

Proof. We have H{Q] a discrete graph on 3 vertices and {S} > 3. For a given
cubic graph G, we construct a graph G’ such that G’ covers H if and only if G is
3-edge colorable. Let {zr,y,z} € & and ) = {q1.q2,93}. The vertex gadget V, for
a vertex v € V(G) will consist of an almost complete copy of H but lacking the

edges connecting = and @, 7q1,7qz,2qs. The edge gadget for an edge uv € E(G)
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will consist of two almost complete copies of H, call them E.,, Ey., each lacking the
edges Tq1,¥q2,2q3. The edges yg,, zgs will instead connect together E,, and E,, by
a total of four edges, ensuring that in a successfull cover of H we have both copies
of g (similarly both copies of g3) in E,, and E,, labeled by the same vertex, which
in turn will imply that both copies of g, have the same label. The edge gadget is
connected to the vertex gadgets by an edge from x of V} to ¢ of E,, and an edge
from z of E,, to one of the (Q-vertices of V. say qq, (the other Q-vertices of V, are
connected to the remaining two edge gadgels adjacent to V},). Similar edges zq; and
zq,, are added for E,,, V., completing the construction of G'. See Figure 11. Note
that. in a cover of H by G' the two copies of g, in the gadget of edge uv and g,,, s,
in vertex gadgets of v and u, respectively. all receive the same label, corresponding
to the unique color of edge {u, v).

Assuming G is 3-edge colorable with the edge uv being assigned the color ¢ €
{1,2,3} we label both copies of ¢ of the edge gadget of (u,v) by g.. Since any
permutation of V(H) which moves only @ is an automorphism of H, this labeling is
easily extended to make a cover of H by G'.

In the other direction, if (' covers H then since @ is a block in the degree
partition of H, if we color edge wr of (7 by the label of both copies of ¢; in edge
gadget of uv the result will be a 3-coloring of £((7} such that edges incident with the

same vertex receive distinct colors. )

Theorem 4.8 The H-cover problem is A"P-complete if for some block
Q in the degree-partition of H. H[Q| is a k-cycle (k > 3) and 35 C
V(H),|5] 2 1 such that Yo € Q. N(v)\ @ = §.
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vi v2
vé v3
The graph H

v4

Figure 12: Case H[Q] a 4-cycle. Vertex gadgets Cv and Cu and an edge gadget
consisting of Ry, Ry, Ra, 4, C'1.C2. labeled so that vertices v and u are colored vl
and v3, respectively.

Proof. For a given graph G, we construct a graph G’ such that G can be k-colored if
and only if G' covers H. The gadget for a vertex v is a cycle Cv of length degg(v) x k.
In the case of a positive answer Cv will cover H{@]. Cv is broken naturally into
dega(v) consecutive paths of length k, one for each edge incident with v, so that the
first endpoint of each path receives the same label in any cover of H[@] by Cv. We call
these endpoints the designated vertices ol the gadget, with their label providing the
corresponding color of vertex v. The gadget for an edge uv hooks up with one of these
paths, say ¢¥,...,cl from Cv and also with ¢}, ..., ¢} from Cu. The edge gadget itself
consists of the k-cycles C1,....,Ck — 2, cycle C7 having consecutive vertices ¢}, ..., ¢},
together with the (H \ Q)-copies Ry, ..., Ry Vertices ¢}, ¢}, ¢}, c}, ..., k=2 are given all
their remaining adjacencies (S-neighbors) from R, for i = 1, ..., k. This also satisfies
R: locally and completes the description ol (i’. see Figure 12 for an example.
Assume f : V(G) — V(H) is a covering projection and let uv € V(G) as above.
Since Q is a block in the degree partition of f, the vertices of vertex gadgets must

be sent to Q. The designated vertices ¢ and ¢} share a neighbor in R; (|S] > 1)

and hence f(c¥) # f(c?). Hence we use the labels of the designated vertices of vertex
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gadgets as a k-coloring of the graph G.

Assume G can be colored with colors 1.2..... &k, with @ = {v,...,vx}. A vertex v
colored ¢ has its designated vertices labeled v. in a cover of H{Q)] by its vertex gadget.
In the gadget for an edge uv the (H \ Q)-copies naturally cover H\ Q. The k-cyclesin
the edge gadget are labeled uniquely to cover H[@] while satisflying neighborhoods of

(H \ @)-copies. This will result in a labeling where e et el e, ot

, with naming
conventions as above, are given k distinct labels from @, with G’ covering H, see

Figure 12 for an example. )

Theorem 4.9 The H-cover problen is .\ P-complete if for some block
Q in the degree-partition of H, H[Q] is a k-cycle (k > 5) and 3§ C
V(H),|S| = 1 such that Yv € Q. N(v)Nn @ = S.

Proof. For the case H[Q] a 5-cycle we have H[Q) also a 5-cycle and use Theorem 4.8.
For k > 6 and H[Q] a k-cycle we have fI{Q] connccted and follow a proof very similar
to that of the proof just given. The unique ordering when given a starting point (up
to reflection) of adjacent vertices around the k-cycle used in the proof of Theorem 4.8
is replaced by the identical unique ordering of non-adjacent vertices around H[Q],
and an analogous reduction is used. For edge gadgets replace the k — 2 k-cycles in
the earlier proof by k — 2 complements of k-cycles, Cy. For vertex gadgets use the
same number of vertices. visualized in a circle. No vertex will be adjacent to its Ist
successor or st predecessor in the circle, but will be adjacent to its ith successor and
ith predecessor in the circle, for 2 <7 < [(k = 1)/2].

We consider two cases. & odd or k even, and argue that in a covering projection
f of Tk by this vertex gadget, every kth vertex around the circle has the same label.

For k odd, consider a vertex x and assume (wlog) f(z) = v;. We show that the
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successor and predecessor of x are labeled by the two unique vertices of Cr which
are not adjacent to vy, namely vy, v, Let the 7th successor and predecessor of z be
s'(z) and p'(z), respectively. We have N{s(z)) — N(x) = {p(z),s*+"/%(z)} hence
z and s(z) share k — 5 neighbors and f(s(x)) must be one of {vy,vz,vs, vk-1,vx}.
But f(s(z)) = v; means that s3(z) gets two v neighbors. If f(s(z)) = va, since
v, € N(v3) — N{v;) we must have either f(p(r)) = v or F(s+2(2)) = vy, but
both possibilities mean that f(s?(r)) gets two v, neighbors. Similarly, we cannot
have f(s(z)) = ve_y and conclude that f(s(x)) is either v or vo. The argument for
f(p(z)) is analogous and since p(x}, s(z) are adjacent we conclude that the covering
projection f enforces the same label for every kth vertex around the circle, as desired.

If k even, in addition to these connections, alternating sequences of k£/2 vertices
around the circle will be adjacent to their k/2th successors or k/2th predecessors,
respectively. These sequences are thus naturally paired up in blocks of k vertices. In
a covering projection f of Cy by this vertex gadget let 2 be the k/2th vertex of a given
block B of & vertices and assume (wlog) f(x) = . Since |N(s(z))N N(z)| =k —4
(they share every vertex in B but {p(x),x, s(2), s*(z)}), we must have f(s(z)) be v,
or vx and assume (wlog) that f(s(z)) = ve. Since B = N{z) U N(s(z)) we must
have f(B) = {v1,vs,...,vr}. The only vertex in B — N(x) which has not yet been
assigned a label is p(r) and the only vertex in {vy.va. ... ve} — N(f(z)}) which is not
already covered by a vertex of B is v so f(p(r)) = vy Similarly, the only vertex
in B — N(s(x)) which has not yet been assigned a label is s?(z) and the only vertex
in {v1,v2,..., 0} — N(f(s(x))) which is not already covered by a vertex of B is vs,
so f(s?(z)) = va. Since f(s(z)) = vz and f(s*(x)) = v3 have already been assigned,

if f(s3(z)) # v4 then f(s3(z)) € N(vs). But s(z) is not adjacent to s3(z) and
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N(s¥(z)) = {BU N(s%(z))} = 0, so s*(x) could not get its f(s*(z)) neighbor. We
conclude that f(s*(z)) = vs. The above argument showing that f(s%(z)) = vy so that
the successor and predecessor of s?(x) are labeled by the two unique vertices of Cr to
which f(s%(z)) is not adjacent can be generalized to all but two of the remaining ver-
tices of B if applied in the order s*(). 5" (). S22y (), pi(a), ., PR (2).
For the remaining two vertices s*/2(r) and pt*=212(2) we thus have two choices, but
the wrong choice for s*/#(x) entails that s*(z) would get two neighbors with the same
label. In addition, if the vertex of G represented by this vertex gadget has degree
larger than one, the vertex s?(x) has a single neighbor s*+2}/2(z) in a neighboring
block to B so that f(s**2/2(z)) is fixed to be [(p"*=3/%(x)) which in turn fixes all
labels for that neighboring block. This suffices to enforce the same label for every kth
vertex around the circle. With this observation in mind, the remainder of the proof

follows the same logic as the case H[Q] a k-cycle. 0

Theorem 4.10 The H-cover problem is .\'P-complete if for some block
Q (1Q] = 2k > 4) in the degrec-partition of H/, H{Q] is a perfect matching
and 35 C V(H),|5} > 2 such that Yr e Q. N()\ @ = S.

Proof. We first consider the case H[Q] a perlect matching on two edges. Let @ =
{a1, b1, a2, b2} with (g") N E(G) = {a1by,azb;}. For a given graph G, we construct a
graph G’ such that G can be 4-colored if and only if G’ covers H. Let A € §. Let
v € V(G) with degg(v) = d. The gadget v will consist of 2(d + 1) copies of both
H[Q) and A, call these My, .... Magyy and Ao, Ay Aoggns respectively. Let the four
vertices of M; be NW,, NE;, SW,, SE;. with edges NW;NE, and SW;SE,. The copies
of H[Q] and A will form a cycle of G-cycles by having the vertex A; Vi connected to

NE;, SE;, NWi;1,SWiy, (addition meduto 2d + 2). The vertex gadget contains also
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d+2 copies of H\ Q, Lo, Ly, Ly, Ls. ..., Lag41. where L;, for these subscripts, contains
the previously described vertex A,. Let S; be the copy of § = N(Q)\ Q in L;. Lo
and L, play distinct roles and we describe their remaining connections first. Vertices
z € Sp\ Ao are connected to NIy, STo, N1, Sy, while vertices z € S\ A
are connected to NEy. SEy, NE,.SE,. Since @ is a block in the vertex partition
of H, in a cover of H the edges of M, Vi are sent to edges of H[Q]. Moreover,
Lo and L, enforce that to satisly neighborhoods of Ag and any z € Sp \ Ag # 0
all edges in Ma; Vi must be sent to a single edge of H[Q], while edges of My, V2
are sent to the other edge of H[(Q]. Vertices 2 € S;\ A, for i = 3,5,...,2d — 1 are
connected to SE;_;, SW;, SE,.SWi,,. while any » € Saupq \ Aagsr is connected to
SEad4, SWayst, SEagq1, SW,. This completes the description of the vertex gadget.
Figure 13 gives the construction for a special case of H a G-vertex graph, where L; is
the graph induced by B; and A,. In a cover of H, NW5; and NWy;» must cover the
same vertex, since otherwise a vertex ¥ € 541 \ Azi41 # 0 will have two neighbors
with the same label. Thus we have a unique label for NWy; Vi, which will correspond
to the color of v € V(G) for the instance (& of the 4-coloring problem. Note however,
that the label of a NW5,,, vertex is nol fixed.

In this vertex gadget the only verlices lacking connections are A, N Wy, N Ey;,
NWyip1,NEg4q for i = 1,2,...,d. The edge gadget for an edge uv consists of two
copies of H\ @, Lw and Lg, and will provide the remaining connections for some
Moy, , Moy, 41 from u's gadget and Aly,, . Aly, 41 [rom v's gadget. Ag,, from u’s gadget
and A, from v’s gadget are already contained in Ly and Lg, one in each. Addi-
tionaly, any £ € Sw \ A is connected to the four NW vertices of these four copies

of H[Q] and any z € Sg \ Ag is connected to the four NE vertices. This ensures that
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Figure 13: Case H[Q] a matching. Vertex gadget lor a vertex v of degree k and color
a; at bottom, edge gadgel vertices BV, BE. connected to a vertex colored a; at top.
Expanding copies of Bx will give the general case H[Q)] a matching on 2 edges.
labels of the NW vertex of Ma,, and Ma,, will differ while still allowing for any other
combination from {a, by, az, b2}.

The construction of G’ is completed. see Figure 13. If G’ covers H then we
color G using the four colors {a;.b;.az,b;}, with vertex v receiving the same color
as the label of the NW,, vertices in its gadget. By the observations made above,
this constitutes a 4-coloring of G. Conversely, if G is vertex colorable by colors
{ay, b1,a2, b2}, we label the N1V, verlices of vertex gadgets accordingly. This labeling
can be extended to a covering projection of H by G', see Figure 13 for an example

where the adjacent vertices have colors a, and a,.

We next consider the case when [H]Q] is a perfect matching of 2k edges, where
k > 3. For a given graph G, we construct a graph G’ such that G can be k-colored if

and only if G’ covers H. Let A € S, and let Q = {ay, by, ..., ax, bi.} with a;, b; adjacent
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in H[Q). The gadget for a vertex v of (i. will consist of deg, + ! copies of H[Q)],
Mo, My, ..., My, and deg, + | copies of H[V(H) = Q], Lo, ..., Laeg,- In V(Li), let A;
be the copy of vertex A and S; be the copies of S. Let A; be adjacent to the copies
of a;,Vj in M; and also to b,,Vj in M, 1n16d geq,» thus forming a deg, + 1 'cycle’
of copies of H[Q]. Mo will ensure that every copy of H{Q} indeed maps to H[Q]
in a successfull cover, by having every vertex of Sp — Ay (not empty since |S| > 2)
connected to every vertex of M. For 1 <i < deg, connect every vertex of 5; — A; to
every vertex of V(M) except the copies of {a;, b }. For i > 1 connect every vertex of
S; — A; to the copy of by in V(Af,_,) and connect every vertex of 5; — A, to the copy
of by in V(Mg ). This will enforce that in a covering projection of H, the copy of
vertex e, in each of M. .... My, get the same Jabel, determining the color of vertex
v € V(G). The only vertices of a vertex gadget that have not yet been assigned all
its neighbors are the copies of a; and §; = A, in Ay, ... My,,.

The gadget for an edge (u,v) consists of an almost complete copy of H but
leaving out the edges a;,z and ap,r for all # € {S — A}. These remaining edges
will be matched up with the missing edges [or some A, of u's gadget and M,, of v’s
gadget. Thus, a; (respectively az) of (w.v)’s gadget is made adjacent to every vertex
in S,, — Au; of u’s gadget (respectively S, — Av; of v's gadget), and the copies of a;
in both M, of u's gadget and Af,; of v’s gadget are made adjacent to the copies of
all z € {S— A} of (u,v)'s gadgel. Thus, in a cover of H, assuming the copies of a; in
u's gadget are labeled by a vertex a; or b, of (. then in either case the copies of a; in
v’s gadget cannot be labeled «; nor b, since the copy of H[@] in (u,v)’s gadget must
cover H[Q], so that a vertex o € {& = 1} would get too many a; (or b) neighbors.

This completes the description of (',
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For sufficiency, suppose [ is a covering projection of H by G'. Since @ is a
block in the degree partition of H, copies of H{@] in G’ must map to H[Q]. As we
argued above, if a vertex v € V(G) is given the color 7 where in the vertex gadget of
v the copies of a; map to a; or b;, then no two adjacent vertices in G receive the same
color, and G is k-colorable. For the other direction, if vertex v of G receives color 1
in a k-coloring of that graph. we easily construct a covering projection of H by G’ by

labeling the copies of a; in v's gadget hy a,. 0

Theorem 4.11 The H-cover problem is A'P-complete if for some block
Q (|Q| = 2k > 4) in the degree-partition of H, H[Q] is a perfect matching
and 35 C V(H),|S] = 2 such that Vo € Q. N(v)\ @ = 5.

Proof. The case H[Q] a perfect matching of 2 edges implies H[@Q)] a 4-cycle which is
NP-complete by Theorem 4.8. For the case that H[Q) is a perfect matching of & > 3
edges, we merely replace every copy of a maltching of k edges in the construction
given in the last proof by a copy of the complement of a matching of k edges. Since
the only use we made of these copies was to pair up vertices by adjacencies, a pairing
which can equally well be done by non-adjacencies, the exact same logic as given

above shows that this latter case is also A"P-complete. 0

The k-starfish graph has k vertices of degree two and & vertices of degree four
with the vertices of degree four inducing a cycle and any two consecutive vertices of

this cycle sharing a neighbor of degree two, see Figure 14.

Theorem 4.12 For every 7 > | the (2 + 1)-starfish-cover problem is

NP-complete.
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S-starlish

Figure 14: Case 5-starfish, with vertex gadgets C'u and Cv connected by an edge
gadget.

Proof. Let & = 2/ + 1. Given a graph (i, we construct a graph G’ such that G
is Ck-colorable if and only il G’ covers the k-starfish. The vertex gadget Cv for
v € V(G) consists of a cycle of length & x degg(r). broken naturally into degg(v)
consecutive paths of length k. The first endpoint of each path, the designated vertices
of this gadget, receive the same label in any cover of a Ci-cycle. The edge gadget
for uv € E(G) hooks up with Lwo such paths, say Fo = 3,3, ...,c} from Cu and

P = cl,el,...,cl from Co. The edge gadget contains the degree-2 vertices v} for

i = 0,2,...,k=1and j = 1.2.....k and also contains & — 2 k-cycles, call them
P, Fa, ..., Feey, with F} having consecutive vertices ¢). ¢ ....ck. Fo, Fi,..., Fieoy are

hooked up by the degree-2 vertices to forin a cycle, with ¢ adjacent to v; and to
vitmo% This completes the description of G'. sec Figure 14.

Let f be a cover of k-starfish by G, and let uv € E(G'), with naming conventions
as above. Since the designated vertices ¢ from C'v and ¢} from Cv have a common
degree-2 neighbor, we must have f(c9)f(¢]) an cdge in the k-starfish. Thus, we
construct a Ci-coloring of G by focusing on the h-cycle induced by degree-4 vertices

in the k-starfish, and sending « € V() to the [-label of the designated vertex in its
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vertex gadget.
For the other direction of the prool we reverse this process, labeling designated
vertices by the Ci-coloring induced on the degree-4 vertices of the k-starfish, see

Figure 14 for an example. 0

4.3.2 Reductions from Covering Problems

A graph H may have an induced subgraph H’ for which the H'-cover problem is
NP-complete. In general, the H-cover problem could itselfl be easy. Our next theorem
shows A P-completeness in a restricted case by reducing the H-cover problem to the

H'-cover problem.

Theorem 4.13 The H-cover problem is A"P-complete if for some block
Q = {v1,v2,...,0x} in the degree partition of H the H[Q]-cover prob-
lem is N'P-complele and there exists an order & latin square L over Q
whose columns are elements of Aut(H[Q)]), and whose rows are elements
of Aut(H \ E(H[Q]))lo (projections onto @ of automorphisms fixing Q

setwise)

Proof. We reduce from the H[Q]-cover problem. Given a graph G, we construct a
graph G’ such that G covers H[Q] if and only if 7/ covers H. Let V(G) = {z,, ..., za}
and V(H) = QU R. G will contain & copies of G (G, ..., Gx) and n copies of H[R]

(R, ..., Ra). A vertex z; € V(G) thus has k copies z},z?,...,zf in G (z} € V(G;)),

which will be used as the remaining neighbors for vertices of R;. We let the vertex z]

play the role of vertex v; € @ and connect vertices of R, to its remaining neighbors,
as specified by H, thereby completing the construction of the graph G, see Figure 15

for an example.
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The graph H

Figure 15: Case H[Q] = K, and the graph (' constructed by the reduction based
on automorphism properties

Suppose G’ covers H. Since @ is a block in the degree-partition of H the
vertices of the n copies of H[R] in (' cannot map to Q, so we have an n-fold cover.
The vertices of each of the k& copies of (7 must then map Lo @ and thus G covers
H(Q).

For the other direction, suppose [ : V' (G) — @ is a covering projection of H{Q}
by G. Let Ay, Ag, ..., Ai be the columns of the latin square L and let =y, 7, ..., 74 be
its rows. Since Vi: A; € Aut(H[Q]). we have by Fact 1.8 that Ajof, ..., Ao f are also
cover projections of H[Q] by G and we label the vertices of the copy G; of G by Ajo f.
By construction we have that f; is connectled to vertices 2!, z?, ..., z¥. Assuming that
f(z:) = v; we label these vertices by the respective labels A, (v;), Aa(v;), ..., Ax(v;),
corresponding to a row m, of L. when taken in this order. Since =, € Aut(H\
E(H[QD)|q, we can send V(R;) to R by an element of Aut(H \ E(H[Q])) which has
projection 7, on @, locally getting a covering projection from R; to H[R] by Fact 4.8,

and with correct labels for remaining neighbors ol R, as well. The same is done for
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all n copies of H[R] resulting in a mapping of V(G') to V(H) where each copy of
G covers H[Q] and each copy of H[R] covers H{R] and the remaining neighbors of
copies of both G and H[R] have correct labels, hence we have a covering projection

of H by G'. o

As an example of application of this result, consider the graph H depicted in
Figure 15. @ = {v1,v2,v3,v4} is a block in the degree partition of H inducing a com-
plete graph and the Ky-cover problem is A"P-complete by Theorem 4.5. Moreover,

for the following 4 by - matrix

ty Mg im 1‘1\
a1 Uy Uy

ty g4 Uy I

th My Uy f‘l)

both its rows and columns are in Aut(H)|g. so by Theorem 4.13 the H-cover problem

is N'P-complete (note Aut(H)|g C (Aut(ll\ E(H{Q]))|q N Aut(H[Q])).

Theorem 4.14 The H-cover problem is A"P-complete if for some block
@ (@] = 4) in the degree-partition of H, H{Q] is a complete graph and
35 C V(H), such that Ve € Q. N(v)\ Q = S.

Proof. By Theorem 4.5 the H[Q]-cover problem is A"P-complete and Aut{H)|g is
the symmetric group on |Q| points, so the conditions in Theorem 4.13 are easily

satisfied. O
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Legend
NP-Complete Polytime
D : Discrete Thm. 4.7 UC: Unicyclic Fact 4.7
C : Cycle Thm. 4.8 25 : 2-SAT Thm. 4.1
M : Matching Thm. 4.10 1F : 1-Factorization Thm. 4.2
K : Complete Thm. 4.14 2F : 2-Factorization Thm. 4.3
A : Automorphism Thm. 4.13 1F2F: 1&2-Factor Thm. 4.4

3-stf : Odd starfish Thm. 4.12 M2S : Modified 2-SAT
K322&Cs : Thm. 4.6

g=6
28 vc a

: 5 . ® 8 <§/ "
25 15 Ve vc
iF /F Ve v

Figure 16: Complexity of H-COVER for 6-vertex graphs. Part 1. This a.n.d the next
five pages are taken from [Harary|, and components of the listed graphs include all
connected simple graphs on at most 6 vertices and 2 cycles.
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Figure 17: Complexity of H-COVER for 6-vertex graphs. Part 2.
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Figure 20: Complexity of H-COVER for 6-vertex graphs. Part 5.
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CHAPTER V

PRACTICAL PARTIAL A-TREE ALGORITHMS

Many A/P-hard problems on graphs have polynomial, in fact usually linear as
a function of input graph size, dynamic programming algorithms when restricted to
partial k-trees (graphs of treewidih hounded by k), for fixed values of k. We improve
on the practicality of such algorithms, both in terms of their complexity and their
derivation, by accounting for dependency on the treewidth k. The algorithms are for
fixed k; we consider a class of algorithms parameterized by k. We define a binary
parse tree of partial k-irees which is based on (wo very simiple graph operations. Then
we discuss the derivation of dynamic programming solution algorithms, with a focus
on the concepts of vertex states, separator states, table indices and equivalence classes

of solutions. We also contrast our approach with related previous work.
5.1 Introduction

A graph G is a k-tree il il is a complete graph on k vertices or if it has a vertex
v € V(G) whose neighbors induce a clique of size k and G'\ {v} is again a k-tree. The
class of partial k-trees (the subgraphs of k-trees) is identical with the class of graphs
of treewidth bounded by k. Many natural classes of graphs have bounded treewidth
[52]. These classes are of algorithmic interest hecause many optimization problems,
while inherently difficult (NP-hard) lor general graphs are solvable in linear time

on partial k-trees, for fixed &. These solution algorithms have two main steps, first
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finding a parse tree (tree-decomposition of width k [58]) of the input graph, and then
computing the solution by a bottom-up traversal of the parse tree. For the first step,
Bodlaender [17] gives a linear algorithm deciding il a graph is a partial k-tree and if
so finding a tree-decomposition of width k. for fixed k. Unfortunately, the complexity
of this algorithm as a function of the treewidth does not make it practical for larger
values of k. For k < 4, however, practical algorithms based on graph rewriting do
exist for the first step [10, 53, 59]. In this chapter we investigate the complexity of the
second step as a function of . There are mauy approaches to finding a template for
the design of algorithms on partial #-trees with time complexity polynomial, or even
linear, in the number of vertices [57, 7. As a rule, proponents of these approaches
have tried to encompass as wide a class of problems as possible, often at the expense
of increased complexity as a function of & and also al the expense of simplicity of
the resulting algorithms. Results giving explicit practical algorithms in this setting
are usually confined to a few selected problems on either (full} k-trees [25], partial
l-trees or partial 2-trees [61. 35, 65]. We try to cover the middle ground between
these two extremes, by investigating the tinme complexity as a function of both input
size and the treewidth k. We define a binary parse tree of a partial k-tree which is
easily derived from a tree-decomposition of the input graph. This parse tree is based
on very simple graph operations. and we next show how this simplifies the design
of dynamic programming algorithms on partial k-trees. We compare this approach
to other strategies giving polytime algorithms on partial k-trees. Finally, we discuss
a class of problems where a vertex state can be defined that will further ease the

development and analysis of partial k-Lree algorithms.
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5.2 Binary Parse Tree

We give some standard definitions relating to partial k-trees before describing
its binary parse tree. A partial k-tree G has at least k vertices and is a subgraph of
a k-tree H, meaning E(G) € E(H). The fact that we can assume V(H) = V(G)

follows from a simple technical lemma [G].

A k-tree H has a perflect ¢limination ordering of its n vertices, peo = v,...,Vn
such that Vi: 1 <i < n —k the set of k + 1 vertices B, = {vi} UNg(v:) N {vi, ..., vn}
induces a (k + 1)-clique in H. The vertex v, is simplicial in H[{vi,vi41,..., va}],
meaning that its closed neighborhood. B;, induces a clique. It is not hard to show
that B; \ {v},i € {1,....,n — k — 1} is a (minimal) separator of the graph H. See

Figure 22 for an example of a partial 3-tree embedded in a 3-tree.

We call B;,1 < i <n—kthe (k+ I)-bag of v; in G under peo and each of its
k-subsets is similarly called a k-bag of G under peo. The remaining definitions in this
section are all for given G, H, peo = vy, .... v, and bags B; as above. We first define a

peo-iree P of G:

Definition 5.1 The pco-tree 17 of ¢ hased on peo has nodes V(P) =
{B1, .., Baz}. The node B, has as its parent in P the node B, such that
§ > i is the minimum bag index with |B; N B;| = k, except for the root

B,_i of P which has no parent.
The (k + 1)-ary peo-trec P is a clique tree of H and also a width k tree-
decomposition of both (i and //. See Figure 23 for an example of a peo-tree.

We sketch an algebra on graphs with operations Primitive, Reduce and Join,

needed to define a binary parse tree T of G based on the peo-tree P.
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Definition 5.2 A hinary parse tree of a graph (i is the expression tree of
an algebraic expression over the graph operations Primitive, Reduce and

Join, evaluating to the graph G.

Let a graph with & distinguished vertices {also called sources, terminals, bound-
aries) have type (sort) Gy. For our purposes. sets of sources will always be (k+1)-bags

and k-bags of G. We define the graph operations:

o Primitive: — Gj4,. This 0-ary operation is used to introduce the graphs G[B],

for some (k 4+ 1)-bag B, as leaves of the parse tree.

o Reduce: Giryy — G The unary operation Reduce takes the source vertex to be
eliminated, which will be clear from context. and discards it as a source, leaving

the graph itsell unchanged.

o Join: Gryy X Gr — Gry1. The binary operation Join takes the union of its two
argument graphs (A and B), where the sources of the second graph (a k-bag
Sp) are a subset of the sources of the first graph (a (k+1)-bag 5,); these are the
only shared vertices, and adjacencies for shared vertices are the same in both
graphs. In other words. V(A)NV'(f3) = Sg C S, and E(A[Sg]) = E(B{Ssl),
giving the resulting graph Join(A, B) = (V(A) U V(B), E(A) U E(B)) with

sources Sg4.

We employ these graph operations to describe the binary parse tree T of G

based on the peo-tree P:

Definition 5.3 The binary parse tree T of (¢ can be decomposed into

|V (P)] disjoint leal-towards-root paths. Each of these paths is associated



85

with a distinct node B; of the peo-tree 2. Let B, have c children and
parent p{B;). The path assaciated with f3, starts with the Primitive graph
G[Bi] as the leaf endpoint, has ¢ .Join operalions as interior nodes and
terminates with a node of a Reduce operation. The Reduce operation
discards the vertex v, as a source. and ils node is the second child of the
node of a Join operation associated with p(B;) (except for the root of T,

which is the Reduce node in the path associated with the root node of P.)

Note the degree of freedoni in the above dcfinition in choosing parents for Reduce
nodes. The parent of a Reduce node associated with B; could be any one of the Join
nodes associated with its parent p(B;). This degree of freedom, and also a possible
choice of peo, can be exploited Lo keep the resulting parse tree shallow. We intend to
investigate this possibility in Tuture work on parallell partial k-tree algorithms. See
Figure 24 for an example of a hinary parse tree (note the leal-lowards-root paths are
identified by starting at a Primitive node and moving towards the root until the first

Reduce node is encountered, which forms the end of the path.)

Note that the underlying algebraic cxpression for the binary parse tree T does
indeed evaluate to G since the primitive graphs in T contain all vertices and edges of
G, while Join and Reduce merely identify vertices of the primitive graphs, in the order
given by P, to form G. We say that T represents (G with sources {vn_k41,..-1Un}-

Since P is a tree with n — k nodes, the Binary Parse Tree T of G has
¢ n — k Primitive leaves, one for each node of P
» n — k Reduce operations. one for cach node of P

e n — k —1 Join operations. one for cach edge of P



Figure 22: A partial 3-tree G, embedded in & 3-tree H, dashed edges in E(H)— E(G),
with peo=1,2,3.4,5,6,7.8,9,10

5.3 Dvnamic Progsramming Algorithms

A dynamic programming solution algorithm for a problem R on G will follow a
bottom-up traversal of the hinary parse tree 7. As usual. at each node u of T a data
structure table is kept that contains optimal solutions to the problem R restricted to
G.., the subgraph of G represented by the subtree of T' rooted at u. The table of a
leaf is initialized according to the base case, the table of an interior node is filled in
a bottom-up traversal of T based on tables of its children and the overall solution
is obtained from the table at the root. The following information will complete the

algorithm description for a given problem
o Description of Tables
s Operation Initialize-Primitive-Table
o Operation Join-Tables

» Operation Reduce-Table
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G @O
Figure 23: The peo-tree P ol the partial 3-tree G.

e Operation Root-Optimization

An algorithm for a given problem must describe the tables involved and also
describe how tables are updated. Derivation ol algorithms starts with the definition
of table indices. Each table index represents an equivalence class of solutions to
subproblems, equivalent in terms of forming parts of larger solutions. A subproblem
at a node u of the parse tree T is the problem R restricted to G, and constrained
on its sources. This subproblem solution interacts with the solutions to R on G only
through the sources of G, which are a separator of GG. Equivalent solutions affect
the separator in the same manner. and heuce we can define a separator state for each
equivalence class (each table index). A candidale sel of separator states is verified
by the correctness proof of table update procedures for all operations involved. The
introduction of the operations Reduce and Join greatly simplifies this verification
process. In general, the algorithm computing a parameter P(G) for a partial k-tree

G given with a tree-decomposition follows the binary parse tree T of G. as follows:
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Algorithm-R, where R is a graph parameter
Input: G, k tree-decomposition ol (v of width &
Qutput: R(G)
(1) Find a binary parse tree T of i with Primitive, Reduce and Join nodes.
(2) Initialize Primitive Tables at leaves of T'.
(3) Bottom-up traversal of T using Join-Tables and Reduce-Table.

(4) Table-Optimization at root of 7' gives R(G).

For a given graph G on n vertices and any fixed &, Bodlaender [17] gives an O(n)
algorithm (with a coefficient that is exponential in a polynomial in k) for deciding if
the treewidth of G is at most k& and in the allirmative case finding a tree-decomposition
of G of width k. From this tree-decomposition it is straightforward to find a binary
parse tree of G in time O(nk?), sce c.g. [32] for how to find an embedding in a k-tree,
then find a peo and finally follow the description given in section 2 of this chapter for

constructing the binary parse tree.

5.4 Comparisons with Related Work

Many strategies have been proposed for solving problems on graphs of bounded
treewidth using a variant of the dynamic programming described above. We can
classify these strategies by whether there is a procedure for automatic {mechanical)
construction of a solution algorithm from a lormal description of the problem, or such

an algorithm has to be constructed “by hand”.

One of the many automalic techniques. see e.g. [16, 27, 19], is the EMSOL

approach of Arnborg, Lagergren and Seese [8]. influenced by work of Courcelle [26].
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A linear time algorithm solving a given problem can he constructed automatically
from the problem description in the logic formalism extended monadic second-order
logic (EMSOL). Although very powerful for showing assymptotic complexity results,
this technique, and others like it. are unsatisfactory for practical algorithm design
since the resulting complexity in & involves towers ol powers of k. Currently, there
is no automatic algorithm design strategy giving algorithms which are practical for

increasing values of & without hand derivation of a large part of the algorithm.

The dynamic programming strategy on partial k-trees of Arnborg and Proskurowski
[11], differs from our approach primarily in that a vertex v, in a (k + 1)-bag B was
eliminated by combining tables of all £+ | A-bags in B in a single (k 4+ 1)-ary opera-
tion. Assuming the table for a k-bag has index set i, this operation has complexity
Q(|1x|**+") when all combinations of entries from each table are considered. Intuitively,
the binary parse tree approach described above replaces a single such (k4 1)-ary op-
eration by at most £ pairs of binary Join and Reduce operations, for complexity
O(k{Ii|Hk+1]). Moreover. the single {k + 1)-ary operation used in the strategy of [11]
is more complicated than the Join and Reduce operations employed here. Naturally,

this plays an important role in the practical development of the algorithms.

We contrast our approach with dynamic programming algorithms that directly
follow a tree-decomposition. as defined by Robertson and Seymour [58). A tree-
decomposition of width & of a graph (i is a tree 1) where each node w of D is assigned
a set X, C V(G) such that (i) |X.| € &+ 1, (ii) il vv € E(G) then Jw € V(D)
with {u,v} € X, and (iii) for any v € V/(G) the subgraph induced in D by the
nodes {w : v € X, } is connected. We have mentioned before that a graph is a

partial k-tree iff it has a tree-decomposition of width k. Such a tree-decomposition
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is often used as the basis for a dynamic programming algorithm. Filling in the
details of table updates in such algorithms is complicated by the generality of the
tree-decomposition definition, which leads to a multitude of different cases of table
operations. Although many algorithmic results follow a “nice” tree-decomposition,
usually with the underlying tree being binary, we have not seen any previous approach
which drastically lowers the number of different graph operations involved. The binary
parse tree we defined above can itsell be viewed as a nice tree-decomposition with
particularly strong restrictions on the sets of vertices identified with each node in the
binary tree. However, we believe it is most naturally described and understood in

terms of the partial k-tree terminology.

There are several previous approaches to good algorithms on tree-like graphs
that do employ a few simple graph operations [66, 14]. In particular, these strategies
have been restricted to classes of graphs originally defined by an algebra on a few
graph operations. A parse trec must be found in terms of these graph operations,
and a dynamic programming strategy must be devised where table operations are
designed according to the graph operations. Qur approach can be viewed as providing
a very simple algebra for constructing partial k-lrees together with an algorithm for
finding a parse tree founded on these operations from an arbitrary tree-decomposition.
Certain approaches, e.g. Bern. Lawler and Wong [14], take an algebraic view of the
resulting algorithms. For a class of graphs I" given by an algebra over certain graph
operations and primitive graphs. a subgraph property P is said to be regular if there
is a homomorphism from I's = {((;,5) : (¢ € LS C V({)} to a finite set Cp with
its own operations, which respects both the graph operations on I' and the property

P. In our case Cp corresponds to the set of equivalence classes of solutions making
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up the table index set for a particular problem, and the operations on Cp are the
table update procedures given for each graph operation. A further comparison with
this approach is given in Chapter 6.1.4 when we discuss algorithmic extensions to

compute parameters defined over maximal and minimal vertex subsets.

3.5 Vertex State Problems

In section 3 we outlined the derivation of dynamic programming algorithms on
partial k-trees using the method of bottom-up table updates along a parse tree of
the input graph. Our approach to design such algorithms starts by defining the table
indices involved. We look at a class of vertex state problems for which this process
is particularly uniform. Each table index represents an equivalence class of solutions
to subproblems, equivalent in terms ol forming parts of larger solutions. A solution
to a subproblem at a node u of the parse tree T is restricted to Gy. This subproblem
solution interacts with the solutions Lo larger problems only through the sources of
G, which constitute a separator of (7. Equivalent solutions affect the separator in
the same manner, and hence we can deline a separalor staie for each equivalence class
(table index).

For any vertex state problem, we can define a set L of verter states, that rep-
resent the different ways that a solution 1o a subproblem can affect a single (source)
vertex, such that |L| is independent of n, and preferably also independent of k. The
Cartesian product of vertex states of separator vertices defines the state of the separa-
tor. A separator with k vertices has then a distinct separator state for each different
E-vector of vertex states so its table index set has size |} = |L|*. For a vertex state
problem R having a dynamic programming algorithm on partial k-trees as outlined

in section 6.3, consider a node u, with sources B,, of the binary parse tree T of an



input graph G. The following sets are all in a natural one-to-one correspondence:

=

. The equivalence classes of solutions to subproblems on G,

(S

. The table index set for ihe node v of T°

3. The set of separator states for the sonvces 13, of node uof T

18

. The set of |B,|-vectors of vertex stales

We will not define vertex state problems explicilly, except to note that a decision
problem asking for a partition ol vertices for which a purported solution S can be
verified by a simple local check of how the neighbors of each vertex intersects with S
will be a vertex state problem. For instance, any of the vertex partitioning problems
defined in Chapter 2.1 is a vertex state problem. On the other hand, the Hamilton
cycle problem does not satisfy these criteria. One of the goals of our future research
is to explore vertex state problems in a wider class than vertex partitioning problems.

To design algorithms for vertex state problems on partial k-trees we focus on the
solution verification method through a local check of vertex neighborhoods. We first
define a set of final vertex slates that will provide the information necessary to infer
a solution to the original problem. In the casc of vertex partitioning problems, a row
of the degree constraint matrix is the starting-point for defining a set of final vertex
states. Note that for a subgraph G, the vertex state information will be maintained
only for the source vertices B,. The subgraph (7, interacts with the remainder of
the input graph G only through these sources. Vertex states must carry information
telling us whether a suggested solution not satisfying the problem constraints on G,
can be augmented to good solutions on a supergraph of G, by adding neighbors to

its sources B,. Such a suggested solution carries the need for additional information
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beyond that captured by the final states. With this in mind, we define an equivalence

relation on solutions to subproblems:

Definition 5.4 Two potential solutions S; and S; to a subproblem on G,
are equivalent if for every extension o Sy and 83 to 57 and 57, respectively,
such that the new vertices are added as neighbors ol B,-vertices, with the
new vertices playing the same role in 5] and 5%, has the effect that either

both 57 and S; are solutions or none of them are.

This equivalence relation is a refinement of the original classification of solutions
into simple yes/no classes. The set of vertex states needed to capture this refinement
constitute the legal verlex states. a supersel of the final vertex states. The set of
vertex states L for a specific problem as mentioned earlier refers to the set of legal
vertex states as described here. A candidate sel of legal vertex states gives rise to
a set of separator states. Finally, a candidatle set of separator states is verified by
the correctness proof of table update procedures for all operations involved. The
introduction of the operations Reduce and Join greatly simplifies this verification

process. See the next chapter for an example.

Let R be a vertex state problem with vertex state set L. In the next chapter, we
will see that in our algorithm for solving 2 on a partial k-tree of n vertices, the most
expensive operation is computation of the binary Join operation. The complexity of
the Join operation at a node of the parse tree is proportional to the number of pairs
of indices, one index from the table of cach of its two children. The table index set
for the problem R at a node with k sources has size |L]¥, and there are less than n
Join nodes in the parse tree. The overall complexity of the algorithm, given a tree-

decomposition, is then T'(n,k, L) = O(n|L|***!) since the children of a Join node
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have k and k + 1 sources, respectively. In the next chapter we show an application of

these ideas.
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Figure 24: The binary parse tree T of the partial 3-tree G based on the peo-tree P.
Nodes u € V(T) labeled by V(G,) with non-sources in parenthesis.
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CHAPTER VI

ALGORITHMS FOR VERTEX PARTITIONING PROBLEMS ON PARTIAL
K-TRELES

In this chapter we first give algorithms for solving vertex subset optimization
problems on partial k-trees. based on the algorithm design template given Chapter
5 and the characterization of problems given in Chapter 2. We then extend these
algorithms to the more general case of vertex partitioning problems. These algorithms
take a graph G and a width k tree-decomposition of G as input. Earlier work by
Arnborg et al. [8] establishes the existence of pseudo-efficient algorithms for most,
but not all, of these problems. They are psendo-efflicient in the sense that their time
complexity is polynomial in the size of the input for fixed k, but with horrendous
multiplicative constants (“towers”™ of powers of k). In contrast to this behavior,
the algorithms presented here have running times with more reasonable bounds as
a function of both input size and treewidth, e.g. O(n2%) for well-known vertex
subset optimization problems. Since these problems are AP-hard in general and a
tree-decomposition of width n — | is easily found for any graph on n vertices, we
should not expect polynomial dependence on k. As an extension of our methodology
we provide the first polynomial-time algorithms on partial k-trees for the Grundy
Number, a problem not known to be expressible in EMSOL [49]. This follows from
(i) the description of the Grundy Number problem as a vertex partitioning problem,

(i) 2 new logarithmic bound on the Grundy Number of a partial k-tree, and (iii) the



97

careful investigation of time complexity of vertex partitioning problems on partial

k-trees.

6.1  Vertex Subset Algorithms

In general, the algorithm computing the vertex subset optimization problem
opt M[L)(G) for a partial k-tree i follows the binary parse tree T of G as outlined in
the previous chapter. Recall that opt can be either max or min, with the mazM([L]
problem maximizing over all [L]-sets S in G the value of {{v : states(v) € M}, see
Chapter 2.2. The somewhat. casier algorithms for 3[L] problems can be seen as a

special case of an optimization problem wherve M = {.

Algorithm-optM[L], where opt is either maer or min.

Input: G, k,tree-decomposition of G of width &

Output: opt M[L|(()

(1) Find a binary parse tree T of (i with Primitive, Reduce and Join nodes.

(2) Initialize Primitive Tables at leaves of 7',

(3) Traverse T in the bottom-up manner using Join-Tables and Reduce-Table.

(4) Table-Optimization at. root of T' gives opt A{[L|{G).

We first discuss the pertinent vertex and separator states and give a description
of the tables involved in the algorithm. We then fill in details of table operations,

prove their correctness and give their time complexities. Finally, we look at some

extensions of this approach.
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G6.1.1 Vertex States

Before giving an algorithm to compute a parameter opt M[L], we discuss some
issues related to the concep! of vertex states in the algorithmic context. In Chapter
2. the notation ¢ »o was used merely as an abbreviation {or the infinite set of vertex
states gg, 01, .... The tables involved in the algorithms of this chapter will be indexed
by all possible states that vertices can have, so for complexity reasons we want as
few distinct vertex states as possible, and for certain problems, we will view, e.g.,
o »0 as a single augmented vertex state. For an optM[L] problem, as defined in
Chapter 2, we now define the set of augmented vertex stales A and define Astates(v)
for v € V(G) and § € V(G). For instance, consider dominating sets where L =
{p1,p2,..} U {00,09,...} = {p21,020}. In our algorithms, a vertex may start out in
the non-legal state py and acquire o-neighbors as the algorithm progresses, so we must
allow vertices to have state pg at some point. during the algorithm. On the other hand,
for the minimum dominating sel problem the algorithm need not discriminate p; from
p2 since vertices will not lose (o-) neighbors in the course of the algorithm. For the
same reason, an algorithm to find maximum independent sets, maz[p 20,20 would
not keep track of any o-stale other than gs. We must also ensure that we can optimize
correctly, so for the problem min{o}}[p 21, ¢ 20]. we will need to discriminate between
o1 and o 33, getting the augmented vertex state set A = {pg, p21,00,01,0 22}. We

next define this formally:

Definition 6.1
For a problem optA{L], define

M,={ieN:p € M} D,={ieM:p, €L}
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M,={i€N:g; € M} D,={ieM:o, €L}

For the above example, we would get M, = {1} and D, = {1,2,3,..}. To

formally define the range of subscripts for the augmented p-states, we need

Definition 6.2

Y, 4 {0,1,2,....t}

W LY, u{z1)

RL{Y, - ten}u{W, ten}u{n

Note that |Y;| = |I,] = /. i.e.. 2 1 is a single element of W,. We now define
a function a : 2% x 2% — [ such that a(M,.D,) and a(M,, D,) gives the set of
subscripts used in the algorithm for the augmented p-states and o-states, respectively.

We assume that M, C D, and A, C D, since optimizing over vertices with non-legal

states is not interesting.

Definition 6.3

Yo i3t e D, st 1 =max{D,}

-

W, if3t e D, with t minimums.t. £ > max{M,} and {t,1+1,..} C D,
a(M,,D,) = ;
W, if 3t € D, with { minimums.t. {{,t+1,..} C D,, M,

N oLherwise

The definition for a(M,, D.) is analogous. We assume 0 > max{0}, and note
that our algorithmic template will not capture the last case above when o returns

N, as this would imply an infinite augmented vertex state set. For our example we
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get a(M,,D,) = «(0,{1,2.3,...}) = W, = {0,> 1}. We define formally the set of

augmented states.

Definition 6.4 A problem opiAf[L] has the augmented vertex state set

A={pr:z€ (M, D) U{e, 2 €a(M. D)}

For instance, the angmented vertex state sel for min{e}[p 21,7 20] is A = {pz :
z€al0{1,2,3. . NIU{o.:reaf{1}{0.L.. DN} ={p:x€{0,21}}U{o::T €
{0,1,=2}} = {Po,Pzr,O’o,Ul,O'n}-

A central operation in our algorithms is @ & b & ¢ which adds the subscripts
of either two augmented p-states a.b or two auginented o-states a,b and subtracts
¢ € N. This operation returns the subscript of an augmented p-state or o-state, re-
spectively, unless undefined. The dcfinition of « +6 c depends on whether subscripts

ol augmented states a, b are over Y; or 1.

Definition 6.5 For a,b€ Y, and c€ !

a+b—c¢ ffla+b=—cel;

aFhee=
T olherwise
Fora,be Wyand ce
> il cither a or bis > ¢
> 1 ila+b—ce{t,t+1,..}

a+b—c ifa+b=-ce€{0,1,...,1—1}

1 olherwise
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The notions defined above will also he used for solving vertex partitioning prob-

lems.
6.1.2 Table Description

We next describe the tables involved in an algorithm for a vertex subset op-
timization problem optAf[L] given by the legal states L, augmented states A and
optimizing (min or max) the set of vertices with state in M. When using the nota-
tion Astates(v) in the following, we follow the definition of augmented states. For
instance, the algorithm for min{o 20}[p 21, & 20}, the Minimum Dominating Set prob-

lem, which has A = {pg, # 21,7 20} uscs the lollowing natural interpretation of Astates

(for § C V(G))

Po il o g S oand |.,\"(;(‘U) M q'i =0
Astates(v) = p3y ile g S and [Neg(v)n S22 1

gy HvES

In this algorithmic context, we naturally view the legal states L and optimized vertex
states M as a subset of the augmented states A. For instance, in the min{a,}[p 21, ¢ 20]
problem we have L = {py,p2,...} U {oo.a1....}. A = {po,p21,00,01,0 22}, and in-
terpret the legal vertex stale set L as {p»),m0.01,022} € A. Let a node u of
the parse tree T represent the subgraph G, of G with sources B, = {wy,...,wi}.
The table at node u, Table,. has index set Iy = {s = s;,..sx : s; € A}, so
that |I] = JA|*. We define ¥, with respect 1o (7, and s, to be the family of sets
S C V(G,) such that in the graph (. for w, € B,. Astates(w;) = s;,1 <i < kand

for v € V(Gy) \ By, Astates(v) € L.
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Definition 6.6 For problem opi M/[L] with augmented states A, graph G,
with sources B, = {w,irp, ...y} and k-veclor s = 8.8, 1 5, € A we

define

¥4 {5 C V(G : Ve V(G)\ B, Y, € B, Astates(v) € L and

Astates(w;) = s;}

¥ forms an equivalence class ol solutions to the subproblem on G., and its
elements are called U-sets respecting (¢, and s. Note that in a W-set vertices of B,
are allowed to have any state from the augmented set A, whereas vertices already
“eliminated” must have a legal state in L. The value of Table,[s] is the optimum
(max or min) number of vertices in V{G,)\ B, that have state in M over all U-sets

respecting G, and s, and L if no such W-set exists.

Definition 6.7

0 =0
Table,fs] £ '

optimumsey {|{v € V{G,) \ By : Astates(v) € M}|} otherwise

The result of an addition when one or more of the operands have the value L
is again L, and this valuc is considered (o be smaller. respectively larger, than any

integer under maximization, respectively minimization.
6.1.3 Table Operations

We now elaborate on the operations ol Table-1nitialization, Table-Reduce, Join-
Tables and Table-Root-Optimization. Lach ol the following subsections defines the

appropriate procedure, gives the proof of its correctness and analyzes its complexity.
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Table Initialization. A leal u of T is a Primitive node and G, is the graph G[B,],
where B, = {w,...,wry1}. Following the above definition we initialize Table, in two

steps,

(1) Vs € Iyyy : Table,[s] = L
0 ils=s.....5041 and Aslaleg(w;) =s, € A
(2) VS C By: Table,[s] := in the graph G[B,]

1 otherwise

The complexity of this initialization for cach leaf of T is O(|A|F+! 4 2k+2loek),

Reduce Table, A Reduce node v of 7' has a single child a such that B, =
{w1,...,wr} and B, = {wy,.... w41 }. We compute Table, based on correct Table, as

follows

Vs € I : Table,[s] := optimum{Table,[p](+1 il pqy € M)}

where the optimum (min or max) is taken over all p € x4y such that pryy € L
and 1 €i < k,p; = 5;. Correctness of the operation [ollows by noting that G, and G,
designate the same subgraph ol (i. and diller only by w4; not being a source in G,.
By definition, an entry of Table, optimizes over solutions where the state of wyy, is
one of the legal states L and wy4; contributes to the entry value if it has state in M.

The complexity of this operation for each Reduce node of T is O(]A{F+).

Join Tables. A Join node u of T has children @ and & such that B, = B, =
{w1, ooy wrs1} and By = {wy, ...,y } is a k-subset of B,. Moreover, G, and G, share
exactly the subgraph induced by By, G[B:]. We compute Table, by considering all
pairs of table entries of the form T'ablc,[p]. Tablcy[r]. Recall that the separator state

p consists of k 4 1 vertex states py,pa,.... pr4r Where the state p; € A is associated
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with vertex w;. In the procedure for the Join operation. we first check that p,ris a
compatible separator state pair, meaning that for each w;,i € {1,...,k} both p and
r agree on whether w; € S. To define this operation, let selected(state) for a vertex

state be o if state is a o-state and p otherwise.

. | il selected(p,) = selected(r;) ¥i € {1,....k}
compatible(p,r) :=
0 otherwise

We then combine, for each w;,7 € {l.....k -+ 1} the contributions from p and r
to give the resulting separator state combine(p.r) = s, and update T'able,[s] based
on Table,[p] and Table,[r]. The resulting state for a vertex w; under s is computed
by addition, using &, of subscripts of states under p and r. Let size(s) denote the
subscript of a vertex state s. Moreover, since the neighbors w; has among B, =
{wy,...,wi} are the same in both (¢, and (v we must subtract, using ©, the shared
S-neighbors w; has in By under p and r. We use the operation size(p;) @ size(r;) OS¢

defined earlier.

combine(p,r) :=s where V7 € {l.....k} sclecled(s,) = selected(p;) and
size(s;) = size(p;) @ sizc(r) & i, € By s wae, € E(G) A selected(p,) = o}
and Sp41 = Pi+1
We can now give the two-step procedure for the Join operation:
(1) Vs € Ijyy : Table,[s] := L:
(2) V(p € fe4r,r € 1)1 il compatible(p.r) then s ;= combine(p,r) and
Table,[s] := optimum {(Tablc,[p] + Tabley[r]), Table,[s}}

where optimum is replaced by maximum for a maz M|[L]-problem and by min-

imum for a minM[L]-problem.
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Theorem 6.1 The procedure given for the Join Operation at a node u

with children a, b updates Table,, correctly based on correct Table,, T'able,.

Proof. Let u have sources B, = {w..... w4}, with notation as before. Consider
any s = §y,...,Sg41 such that there exists a selected subset of vertices § € V(G,)
respecting G, and s, e.g., for w, € B,. Astales(w,) = 5,1 €1 £ k41, with
value = |{v € V(G.) \ B. : Astales(v) € M}|. We will show that after executing
the Join Table procedure at node u we have T'able,[s] > value for a maximization
problem, or Table,[s] < valuc for a minimization problem. Let SN V(G,) = 54 and
SNV(Gy) = Sg. Let p = pyv oo gy and r = 1 ...orp be defined by p; = Astates,(w;)
in G, and r; = Astates,(w;) in (4. vespectively. By the assumption that Table, and
Table; are correct we must have Tablc,[p] + T'ableyfr] = value. This since any vertex
in V{G,.) \ B, has the exact same state in G, under S, as it has in G, under S, by
the fact that there are no adjacencics hefween a vertex in V(G,) \ B, and a vertex
in V(Gs) \ B,. Similarly for Gs. We can check that from the definitions we have
compatible(p,r) = | and combine(p.r) = s. so indeed Table,fs] is updated correctly
when the pair p,r is considered by the Join procedure.

Now consider an s such that there docs not exist any § C V(G,) respecting
G, and s. We will show, by contradiction, that in this case Table,[s] is set to L
initially and then never altered. I Tablc,[s] # L there must be a compatible pair
p, T such that combine(p,r) = s and Table,[p] # L and Tabley[r] # L. Let 5S4 and
Sp be partitions of V((,) and V{(G,). respectively, that give these table entries non- L
values. But then S = 54U Sg would be a snbset of V{(7,) respecting G, such that
the resulting state for the scparator is s, a contradiction. Again, the reason is that

B. = {w,...,wg4,} separates G, into G, \ B, and G; \ B,. The above arguments
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apply to any pair p,r considered in the Join operation. and since each such pair
updates at most one entry of Tablc,. we conclude that the Join-Tables operation is

correct. o

For each Join node of T the complexity of Join-Tables is O(|A[?**+1) since any
pair of entries from tables of children is considered at most once. The procedure
for the Join Operation presented in [61] was slightly more complicated in order to
avoid consideration of non-compatible pairs. This results in a somewhat better time

complexity, but of course, still exponential in k.

Optimize Root Table. Let » be the root of T with B, = {wy, ..., wi}. We com-

pute opt M[L)(G) based on correct T'able, as lollows

opt M[L)(G) := optimum{T'ablc {s] + [{w, € B, : 5, € M}|}
where the optimum (min or max) is taken over s € [ such that s; € L,1 < <
k. Correctness of this optimization follows {rom the definition of table entries and the

fact that G, is the graph (v with sources .. The complexity of Table-Optimization

at the root of T is O(|A[F+").

G.1.4  Complexity

Correctness of an algorithm bascd on the template given follows from a simple
induction on the parse tree T'. As noted in Chapter 5.2, T has n — k Primitive nodes,
n — k Reduce nodes and n — & — | Join nodes. Civen a tree-decomposition, the algo-
rithm finds the binary parse tree T. executes a single operation at each of its nodes,
and performs Table Optimization at the root. The total time complexity becomes

T(n, k, A) = O(n|AJ***1), with Join Tables heing the most expensive operation.
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Theorem 6.2 Algorithm-optM[L], with A the set of augmented states
with respect to L, computes opt A/ [L](G) and has time complexity T'(n, k, A) =
O(n|A|2k+l)_

Corollary 6.1 For any prohlem opf[L] derived from Table 2 (p < 2)

Algorithm-opt[L] has time complexity T'(n. k) = O(n2'%).

The corollary follows since any mar|{L] or min[L] problem over vertex subset
properties [L] defined in Table 2, with p < 2. has [4| < 4. Using the refined procedure
for Join-Tables [64] we can get improvements on the overall complexity, the problem

Maximum Independent Set achieving complesity OQ(n2k+2logk),
G.1.5 FExtensions

Our technique applies to a number of more general problems, as follows.

Search Problems. To construct an [L]-set of G optimizing the problem parameter
we add pointers from each table entry to the table entries of children achieving the

optimal value.

Weighted Problems. For weighted versions of the above problems, table entries

reflect optimization over the sums ol weights of vertices and we need only modify
the operations Table Reduce and Table Optimization. The Reduce operation adds
the weight of the reduced vertex. when its stale is in Af. rather than incrementing
the optimum sum by one. The Rool operation, with the domain of optimization

unchanged, becomes

opt M[L)(G) = optimum{Table.[s] + Sweight(w;) : w; € B, As; € M}
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Digraph Problems. For the directed graph versions of these problems we define

INg(v) = {u: (u,v) €Arcs(G)} and use /Ng(v), as opposed to Ng(v), in the defi-
nition of Astates(v), the state of vertex v with respect Lo a selected set § C V(G).
The only change in the algorithm is for the definition of combine in Join-Tables that

should use Arcs(G) instead of I((7).

Maximal and Minimal Sets, S is a marimal (minimal) [L]-set if no vertex can
be added to (removed from) S such that the resulting set is still an [L}-set. Based on
a hand-derived algorithm optimizing over all vertex subsels satislying some property,
Bern et al [14] give an automatic procedure constructing an algorithm optimizing
over maximal (or minimal) vertex subsets satisflying the same property. This includes
an application of Myhill-Nerode finite state antomata minimization techniques to
minimize the resulting number of separator states. For more on the connection with
finite state automata, see also [2]. Unfortunately. when the original algorithm contains
| A}* separator states, their automatic technique involves simplification of a table with

: k . N . . .
|A|*2141"* separator states, and quickly becomes infeasible for increasing values of k.

In Chapter 2.3 we give a refined characterization of maximal and minimal vertex
subset properties, together with a simple procedure to derive a set of legal vertex
states Lmin and Lmar to identily minimal and maximal [£]-sets. As an example, 5
is 2 minimal dominating set i il is a [ 31.00. 7 21-p] -set. This extension can be used
to design algorithms on partial k-trees [or probiems which optimize over maximal (or
minimal) [L]-sets.

We focus on algorithms for minimal vertex subsets. (maximal algorithms defined
in an analogous way) and first recall some definitions from Chapter 2.3. Let state

sets Ap and Br be defined:
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Ap={oi:o.e Lap & L} and

Br={pi:pi€LAp1€LIU{m :0,€Lha, &L}

It should be clear that S is a minimal [L}-set if and only if § is an [L]-set
and Vv € § either stateg(v) € AL or Ju € Ng(v) : states(u) € By, To account
for the latter possibility, we refine the state of vertex v to carry this information
about the state of its neighbors. In particular. a vertex with state in By is eligible to
become a mate of neighboring vertices in S. "l'o design an algorithm solving a problem
optimizing over minimal {L]-sets we use L as a starting point, find a corresponding
set of augmented vertex states and fill in details of Table Initialization, Reduce Table,
Join Tables and Root Optimization. For minimal dominating sets, the augmented
states are A = {pg, p1,p 22.00.0 2.7 20-m }. We call states using the concatenation
operator - a state with a has-label. since a vertex with this state is forced to have a
neighbor of a certain state. A table index containing some state with the has-label
is initialized to L. The Table Reduce operation for an index containing states with
the has-label, is taken as the optimum over table entries of the child whose indices
exactly share the has-labels, with the added possibility of the reduced vertex having
state in the above-defined sel By, and any neighbor of the reduced vertex having state
without the has-label. In this latier case. the reduced vertex then becomes the mate
of these neighbors. Moreover, the reduced vertex is not allowed to have a o-state in
L\ AL without the has-label, as this is not a legal state. The Join Tables operation
has the compatibility function altered so that a resuliing vertex state with a has-
label requires the presence of a has-label on the corresponding vertex of at least one
of the children. The Root Optimization aperation considers indices having o-states

in L\ A without has-labels if and only if these are accompanied by a root neighbor
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with vertex state in Bp.

Irredundant sets. The extensions to our notation outlined above can also be used
to design algorithms for many parameters related Lo irredundant sets, see Chapter 2.3.
In this notation, an irredundant set is a [p 20. 7y. 7 »;-p1]-set, and the close connection
with minimal dominating sets is obvious.

The Irredundance of a graph is the minimum size of a maximal (o 20, 00,0 21°P1}
set. Note that a second level of reflinement of our characterization is needed to define
a set of “doubly” refined vertex states fmax such that the [Imaxz}-sets are exactly
the maximal [p 30, 00, @ 21 - p1]-sets. Consequently, Lhe state of a vertex will depend
on states of non-neighboring vertices. This has the cffect of greatly complicating the
design of an algorithm to compute the irredundance number of a partial k-tree, and
we do not know any algorithm derived “by hand” for this problem (Bern et al [14]

solve the problem for trees.)

6.2  Vertex Partitioning Alrorithms

In this section we describe algorithms to solve 3D -problems, for any degree
constraint matrix Dy, see Chapter 2.1. Given an upper bound f for partial k-trees on
the parameter in question, a min ), or mar 1), problem is solved by at most f calls to
the 3D, algorithm, for different values of ¢. We call a max D, parameter (respectively,
a minD, parameter) monotone il existence of a Dy-partition implies the existence of
a D,_;-partition (respectively, a Dg4-partition.) For monotone properties we can

apply binary search so that log f calls to the 3D, algorithm will suffice.

Algorithm-3D,

Input: G, k,tree-decomposition of (v of width &
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Qutput: YES if there exists a £, -partition of V((7), NO o.w.
(1) Find a binary parse tree T of (7 with Primitive. Reduce and Join nodes.
(2) Initialize Primitive Tables at leaves of T
(3) Traverse T in the bottom-up manner using Join-Tables and Reduce-Table.

(4) Table-Optimization at root of T gives YES if G has a Dg-partition, NO o.w.

We first discuss the perfinent vertex and separator states and give a description
of the tables involved in the algorithm. We then fill in details of table operations,
prove their correctness and give their time complexities. Finally, we prove a bound
on the Grundy Number of a partial k-tree and adjust the general algorithm template

to give us a polynomial-time algorithm for computing that parameter.
6.2.1  Table Descriplion

Our algorithms will follow a binary parse tree of the input graph G. With each
node u of T we associate a data structure fablc that stores optimal solutions restricted
to G, the subgraph of GG represented by the subtree of T rooted at u. Each table index
at node u represents an equivalence class ol solutions to subproblems on G, equivalent
in terms of being able to form parts of solntions on larger subgraphs. Interaction with
larger subgraphs is only through £3,. the sources at v. Each B, € V(G,) is a separator
of the given graph G and |B,| € {k.k+ 1}. For an 3D, problem, a solution on G, is

a g-partition of V(G,). The equivalence relation on solutions is defined as follows:

Definition 6.8 Two partitions /% and P of V() are equivalent if aug-

menting G, to G, with the new vertices classified as belonging to some
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of the partition classes has the cffect that cither both or none of the thus

augmented P and P are [-partitions of the new graph.

Based on the above definition. we can define equivalence classes of solutions by
identifying a separator state with each equivalence class. States for a separator B, are
in turn defined as |B,|-vectors of vertex states. The state of vertex v under partition
W, ..., V; encodes the effect the partition has on v. To capture the equivalence relation
in Definition 6.8, our algoritlins will need an augrented degree matrix A, from which
we derive the augmented vertex states A. Comparing with vertex subset problems,
the degree constraint matrix D, replaces 1), ), from Definition 6.1 and Aq replaces
a(M,, D,),a(M,, D,) from Definition 6.3. We first cefine a function g:2 - R

(recall Definition 6.2) such that A.[7, 7] = 3(D,l7. j]).

Definition 6.9 A7, j] = 3(D,[i. j]) where

Y, i3t € Dy, 4] s.t. t = max{D,[7,j]}
B(D,li, 7)) = § W, if 3t € D,fi, ;] with t minimums.t. {t,¢+1,...} € D[z, 5]

M otherwise

The augmented veriex states A are defined by focusing on rows of A;. An
augmented vertex statc will consist of a pair (i/)(A!) where | <7 < ¢ indexes a row

of A, and M is an element of the Cartesian product Agl7, 1] x Agli,2} x ... x Ag[t, q]

Definition 6.10 For an 3D, problem we define the augmented vertex

state set:
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vivava Vi={a} , V2={b,c}, V3={d}
V1
N PP {(1}>0 >1 0) (2)(>1 20 >1)
D3 = PNP A . =
PPN V3 a f"/b
/// |
Aqlil={ >0} F,
o
i,.-"/ d
Aq[ij}={ 0.>1} < 4
{2}(=1 20 >1) (3021 »0)

Figure 25: The matrix Dy for deciding whether thiere exists a partition into 3 domi-
nating sets (N={0,1,...} and P={1.2....}). Also. resulting states for a given partition
on a graph. Note that vertices b and ¢ salisly the constraints given by Da, as can be
seen from comparing their states wilh row 2 of Dy. Vertices a and d need additional
neighbors if this partition is to be augmented to a Dj-partition of some supergraph.

A= {()MaMo..My) i € {..q) AYi(j € {L,...q) = (M;; €

Note that our algorithmic temiplate will not work il A,[7, j] = M for any entry of
Ag, as this would imply an infinite vertex state set. We consider an example. Figure 25
shows the matrix D5 such that the 304 problem decides whether vertices of a graph
can be partitioned into 3 dominating sets. Diagonal entries of D3 are N and off-
diagonal entries are P. Applying Definition 6.9 above we get 8(Dq[¢,1}) = Wo = {= 0}
and B(D,[i,7]) = Yi = {0,> 1} for ¢ # j. Yor Lhis problem we then get the 12 vertex
states:
{(1)(=0 0 0), (1)(=0 0 =), (1)(=0 210}, (1)(=0 21 21),
(2)(0 20 0), (2)(0 20 21}, (2)(=1 200), {2)(=1 20 21),
(3)(0 0 20), (3)(0 =1 20). (3210 =20), (3)(=1 21 20)}
The three states at the rightmost column above are the legal states, correspond-

ing to the three rows of the degree constraint matrix 1., For a partition Vi, V4,..., V,
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of V(@) and a vertex v € V() we use the natural definition of A,state(v) arising

from the augmented degree constraint matrix A, :

'3

(I{=>0 0 0) ifeel]and|Ng(v)n Vi =0A
ANg(v) N Vo = 0A{Ng(v)N V3| =0

Agstatey,,... v, (v) = ¢

(3)(=>1 21 20) il re Vyand |Ng(v)N V| 2 1A

A Na(v) NV =1 A |Ng(v) N Val > 0

This extends to 12¥ separator states. of a separator of size k, in the partial k-tree

algorithm deciding whether there exists a partition into 3 dominating sets.

We return to discussing the general 3D,-algorithm and examine the size of the
augmented vertex state set A and the index set of the table I at a node u of the
parse tree with k sources. Assume for simplicity that the matrix Dy has diagonal
entries L, € N and ofl-diagonal entvies £, C 11 Let A, = Ayl i) = B(D,[d,4]) and
A, = Ali, j] = B(Dyli, 7)) Tor i # j. Note that Agstate(v) = (D) My Mia...M;;) with
i€ {1,2,...,q}, M € A, and M,;; € A, for 7 # j. With A the set of augmented
vertex states for the 3D,-problem. we thus have |A| = ql44|}4,]°"". Consider a
node u of the parse tree. Let B, = {uw.w,. ....wq} with Table, having index set

I = {s = s1,..., 8¢} for any s, € 1. Thus the size of the table is |I| = |Al*.

We now turn to the values of table entries. Deline ¥ with respect to G, and
S = $1,...,8k}, 8i € A, to be the family of partitions V. V5, ..., V5 of V(G,), such that
in Gy, for w; € B,, Agstatey, 1y, v (w;) = s, and for v € V(G,)\ By if v € V] then

IN(v) A Vil € Dlisjld = 1,



115

Definition 6.11 For problem 3D, with augmented vertex states A, graph
G, with sources B, = {w;,wa,...,w} and k-veclor s = 5y,..5.:8; € A

we define

¥ £ (W, ..., V, a g-partition of V((i,) : Ve € V(Gy)\ By Yw, € B,

Agstatey,. v (v) € Dgli, 7] and Agstatey, v (wi) = s}

¥ forms an equivalence class ol solutions to the subproblem on (G., and its
elements are called U-partitions respecting (7, and s. Note that states of sources are
allowed to be any augmented vertex state. whereas an “eliminated” vertex must have
state as constrained by D,. The binary contents of Table,[s] records whether any

solution respecting G, and s exisis:

Definition 6.12
1 v #£0

0 if¥=9

Table,[s] =

6.2.2  Table Operations

We now elaborate on the operations of Table-Initialization, Table-Reduce, Join-
Tables and Table-Root-Optimization. Each of the following subsections defines the

appropriate procedure, gives the proof of its correctness and analyzes its complexity.

Table-Initialization

A leaf u of T is a Primitive node and €7, is the graph G[B,]. where B, =
{wy, oy wpga }- Let Partition(B,) be all partitions of 3, into distinguished partition
classes VA, ..., V. Following the given definition of tables we initialize Table, in two

steps
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(1) Vs € g4y : Tableyls]:=0
(2) VW, Vo, .., Vg € Partilion(B3,): il Vi. ...V, is a Dy-partition of G[B.] with

Agstatey, v (un) = si.i = Lo b+l thenfors = s, Sk41 Table,[s] := 1

The complexity of this initialization for cach leaf of T is O({ 41| + kg*+').

Reduce Table
A Reduce node u of T has a single child a such that B, = {w,...,w} and

B, = {wy, ..., wi1}. We compute Table, based on correct Table, as follows

Vs € I : Table,[s] := Ot {Tablc,[p]}

where the OR is over all p € Iy with ¥Vl : | < I < k,pr = s and prgs =
(2)(Miy, ..., Mig) such that for j = |.....q we have My; € D[, j] or My; = Dgl[i, j].
Correctness of the operation lollows by noting that (i, and G, designate the same
subgraph of G, and differ only by wiy; not being a source in G,. By definition,
Table,[s] should store a 1 ifl there is some W-set respecting G, and s where the state

of non-sources, e.g. Wiy, is constrained by £,. The complexity of this operation for

each Reduce node of T" is O(|/141])-

Join Tables

A Join node u of T has children « and b such that B, = B, = {w1, ..., Wk+1}
and By = {wy,...,w} is a k-subset of £3,. Mareover, (7, and G, share exactly the
subgraph induced by By, G{B:}. We compute Table, by considering all pairs of table
entries of the form Table,[p|, Tablcyfr]. Recall that the separator state p consists of
k + 1 vertex states py,pa,.... pr+1 where the state p; is associated with vertex w;. A

vertex state consists of the partition class index class(p;) of 1wy, l.e. w; € Viygae(p,)- and
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a g-vector denoting the cardinality, expressed as an element of the Cartesian product
Agli,1] x Ag[i, 2] x ... x Agli, q]. of wy’s neighborhood in each partition class W3,..., V.
We use the notation size(p;, ) to denote the jth component of this ¢-vector, i.e. the
size of w;’s neighborhood in 1}, as specificd by p.. In the algorithm for the Join
operation, we first check thal p.r is a compatibic separator state pair, meaning the

partition class assigned to vertex w;,7 € {1.....4} is identical in both p and r.

1 il class )‘) = rlass Ti Y1 € 1,.”,k
compatible(p,r) := (1 (ri) { }

0 otherwise

We then combine, for cach wi.i € {1.....k + !} the contributions from p and r
to give the resulting separator state combine(p.r) = s. and update Table,[s] based
on Table,[p] and Table[r]. The resulting ¢-vector of neighborhood sizes for a vertex
w; under s is computed by (componentwise) addition of its g-vectors under p and
r. This addition at the jth component is performed using @ from Definition 6.5.
Moreover, since the neighbors w; has in B = {t¢y,....wy} are the same in both G,
and Gy we must subtract the shared V) neighbors w, has in B, under p and r. We

thus use

combine(p,r) := s where Vi € {1,....k} ¥j € {l,...,q}

class(s;) = class(r;) = class(p;) and
size(si,j) = size(pi, j)®size(r. j)={w € By : waw € E(G)Aclass(pi) = 7}

and Sk41 = Pi+

We can now state the two step procedure for the Join operation:

(1) Vs € Iy : Table,[s] := 0;
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(2) Y(p € Is1,r € ) : il compatiblc(p.r) and Tablcy[p] = Tabley[r] =1

then Table,[combine(p.r)] :=1

We argue the correctness of the Join operation at a node u with sources B, =
{w1, ..., we41}, based on correct Lable entries at its children a and b, with notation
as before. Consider any 5 = sy...., 541 such that there exists a partition Vy, ..., V;
of V(G,) respecting D, with Agstaley, v, (w;) = s;for i =1to k+1 in the graph
G,.. We will show that then T'able,s] is correctly set to the value 1. Let Ay, ..., Aq
and B, ..., B, be the induced partitions on V((7,) and V/(Gy), respectively, i.e., v.n
V(G,) = A;and V,NV(Gw) = B, Let p=proooigy and £ =7y, 7 be defined by
assumption that Table, and Table, are correct we must have Tabley[p) = Tabley(r] =
1. This since any vertex in V' (G, )\ B, has the exact same state in G, under Ay,..., A,
as it has in G, under Vi,...,V,, by the fact that there are no adjacencies between a
vertex in V(G,)\ B, and a vertex in V/(G})\ B.. Similarly for G,. We can check that
from the definitions we have compatible(p.r) = | and combine(p,r) = s, so indeed
Table,[s] is set to 1 when the pair p.r is considered by the algorithm.

Now consider an s such that there does nol exist any g-partition of V(G.)
respecting D, such that the resulting state for the separator is 5. We will show, by
contradiction, that in this case T'ablc,[s] is set 1o 0 initially and then never altered.
If Table,]s] = 1 there must be a compatible pair p,r such that combine(p,r) = s
and Table,[p) = Tableyr] = 1. Let Ap.....l, and By..... B, be partitions of V(G,)
and V(Gh), respectively, that sel these table entries to 1. Then W,....V, defined by
V; = A; U B; is a g-partition of V(G ) respecling D, such that the resulting state for

the separator is s, because B, = {1, .... w141} separates G, into G\ By, and Gy \ B,.
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This contradicts our assumption that such a g-partition does not exist. We conclude
that the Join-Tables operation is correct.
For each Join node of 7' the complexity of Join-Tables is O(}/||{x+1]) since any

pair of entries from tables of children is considered at most once.

Optimize Root Table

Let r be the root of T with B, = {w,.....un}. We decide whether G has a

D,-partition based on correct Table, as lollows

YES if 3s = sy, ..., sx € Ir such that Tablc[s]=1andfor1 £i<k1<5j<gq

we have s; = (2)(My...., M.,) with Ay, € Dz, 5}
NO otherwise
Correctness of this optimization follows from the definition of table entries and

the fact that G, is the graph G with sources B3,. The complexity of Table optimization

at the root of T is O(|1¢41})-
6.2.3 Ovecrall Correctness and Complexity

Correctness of an algorithm based on this algoritmic template follows by induc-
tion on the binary parse tree T. As noted in Chapter 5.2, T has n — k Primitive
nodes, n — k Reduce nodes and n — & ~ 1 Join nodes. The algorithm finds the binary
parse tree T, executes a single respective operation at each of its nodes, and performs

Table Optimization at the root.

Theorem 6.3 The time complexity for solving an 3/, problem with
augmented vertex state set A, table index set . for b sources, on a partial

k-tree with n vertices, given a tree-decomposition of width & is



o T(n, k) = O(n|Ii||[Ix41])

o T(n,k,q) = O(n]A[*+).

o T(n, k,q, A,, A,) = O(ng+1| 4,|2+1| 4, |@++1)e-1))
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Proof. The first bound follows since Join Tables is the most expensive operation.

The next two bounds come from |Ix| = |A|* and |A| = q]A,||4,}*". a

Note that the Iast bound is stated for problems where D, has all diagonal entries

equal to A, and all off-diagonal entries equal to A,. For more general vertex partition-

ing problems, we simply take |4,| = max;{#(D,[t,i])} and |A,| = max;»; {#(D,[t, 7])}

to be the largest augmentations resulting from D, anywhere on and off the diagonal,

respectively. For maz D, and minD, problems we get algorithms linear in n if the

optimized parameter is bounded from above on partial k-trees by a function of k

only. This is the case for both chromatic number and domatic number which have

the bound & +1 on partial k-trees. Since these properties are also monotonic, as dis-

cussed earlier, we can do a binary search for the correct value with logk + 1 calls to

an 3D, problem. Resulting time bounds for specific problems are shown in Table 6,

as discussed also in the following sections.

Table 6: Time complexity for specific problems on partial k-trees of n vertices

Problem q |A] [ [A,] | Time Complexity
CHROMATIC NUMBER |1<gq<k+1 1 |1 TOomEED
¢-COLORING q 1 |1 [ O(ngs+)y
H-COVER g=|V(H)| 1 |2 | O@n2HVER
H-COLOR q=|V(H)| 1 |1 | omV(HE)RkD)
DOMATIC NUMBER. 1<g<k+1 1 |2 | OnB)
DISTANCE < ¢ DOM. g+1 1 2 O(n23(9e+1))
GRUNDY NUMBER 1<g<l4klogn|1 |2 [0

UPPER DOM. REMOVAL | 1<¢<1+4klogn|1 2 | oW
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6.2.4  Grundy Number Algorithm

Computing the Grundy number of an undirected graph is N P-complete even
for bipartite graphs and for chordal graphs [31]. A binomial tree on 277! vertices
has Grundy number ¢ [40] and in general the non-existence of an f(k) upper bound
on the Grundy number of a partial A-tree explains the lack of a description of this
problem in EMSOL [49]. For trees there exists a linear time algorithm [40] but until
now it was an open question whether polynomial time algorithms existed even for 2-
trees [37). Recall from Chapter 2.1 that the definition of Grundy number as a vertex
partitioning problem required all partition classes to be non-empty. In this section
we first show how the algorithm template ol section (.2.2 can be easily adjusted to
enforce this requirement. We also prove a logarithmic, in [V(G')|, upper bound on
the Grundy Number, GN(G), of a partial A-tree ;. These results suffice to show the
polynomial time complexity of computing the Grundy number of any partial k-tree,
for fixed k.

To facilitate the presentation ol these results. we reverse the ordering of the
partition classes in the definition of (7N {from Chapter 2.1: this is expressed by the
degree constraint matrix D, with diagonal entries {0}, above-diagonal entries F, and
below-diagonal entries M. Thus, for a graph G. GN(G) is the largest value of g such
that its vertices V(G) can be partitioned into non-empty classes V1, V3, ..., V, with the
constraint that for i = 1.....q. }} is an independent set and every vertex in V; has at
least one neighbor in each of the sets ViV 4. ... 1} (sce Figure 26.) Note that if we
have at least one vertex » € V) then this guarantees that cevery pactition class is non-
empty, since D, requires v to have at least one neighbor in each of V4, V4, ..., V. In the

algorithm for deciding whetlier a partial k-trce has a D,-partition with non-empty



V5={ad] V4={bc}

vi={e) V2={f) Vi=ig

Figure 26: A 2-tree on 7 vertices with Grundy number 5 and an appropriate partition

V1,V2,..,V35

classes, with D, as described above, we augment the value of a table entry Table,[s)
by a single extra bit called nonempty. This bit will record whether there exists any

partition Wi, ..., V; respecting (7, and the separator state s such that Vi # 0. In the

(0.0) ifv=40
Tabley[s]={ (1,0) il #0but AV, Voo, ¥, € ¥ with V; #0
(1,1) if W # @ and 3V, V5, ..., V, € U with V; # 8

The two-step Table-Initialization procedure becomes:

(1) Vs € Iy, : Table,[s] := (0.0)
(2) YW, Wa, ..., V, € Partition(B,): il V1. ...,V, is a Dg-partition of G[B,] with
S = 81,..., Sk41 Such that Agstatey v (w,) =s.i=1,...,k+1 then
0 1) = 0 sel Table,s] := (1.0)
else il V] # § set Table,[s] := (1. 1)

Note that for a leaf « of the binary parse tree of G, all vertices of Gy are sources

so the separator state s, in step (2) above, contains the information determining if
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V; is empty. The Reduce-Table procedure remains as given in section 6.2.2 except
that the OR is taken over both bits in the values of table entries. i.e., (a,b) V {c,d} =
{(a Ve),{bVd). For the Join-Table procedure. the concepts of compatibility and

combining of pairs are unchanged. whereas the two-step update procedure becomes:

(1) Vs € iy : Table,[s) := (0.0):
(2) V(p € Irqa,r € Ii) : il compatible(p,r) and
Table,[p] = (1,z) and Tabley[r] = (1.y) and T'able,Jcombine(p,r)] = (z,w)

then Table Jeombine(p.r)] := (1,2 Vy Vw).

Root optimization becomes:

YES if 3s = sy, ...,55 € I such that Tablc,[s] = (1.1) and for 1 < i < k,1 <
i<q

we have s; = (z}( Mz, ..., My,) with M, € Dylz, j)
NO otherwise

It is easy to see that the time complexity of the resulting algorithm remains as

described by Theorem 6.3.

We now turn to the bound on the Grundy number GN(G) of a partial k-tree
G. Since the Grundy number of a graph may increase by removing edges we cannot
restrict attention to k-trees. hut must consider partial h-trees. A tree (i.e. a 1-tree)
with Grundy number ¢, witnessed by a (Grundy) partition 4,..., V¥, must have at
least 2971 vertices since cach vertex ol the set Uyc,o, Vi has a unique neighbor in V|
thus doubling the size of U,¢,c, Vi for cach conscentive | < j < q. This argument

relies on the fact that 1-trees do not have cycles. For a partial k-tree G with & > 2 and
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Grundy number g we cannot guarantee the existence of a perfect elimination ordering
(peo = Vn, U1, .-, 1) of vertices which respects a 15, ... V1 Grundy partition of V((@),
as in the 1-tree example above. See Figure 26 for an example of a 2-tree on 7 vertices
which does not have a perfect climination ordering respecting the partial order given
by any Grundy partition V5. Vi..... V1. llence. the general hound given below has a

somewhat less trivial prool than the [-1ree case.
Theorem 6.4

For G a partial k-tree on n > k 2 | verlices. we have

GN(G) <1+ loganw )

Proof. Let GN(G) = ¢ with ¥, 15, ..., 1, an appropriale partition of V(G) as de-
scribed above. For 1 < i < g, define G; to be the graph G\ (UV},5 > 7). Thus
G, = G and in general G; is the graph induced by vertices Vj U Vo...U V; with V; a
dominating set of G;. Let n; = [V(G)| and m, = 1A(G,)]. By induction on  from k
to ¢ we show that in this range

b+

te=1
t

m 2

For the base case i = k we have (2/1)° <1 < ny and (3/2)! <2< n; and for k > 3
(14 1/k)1 < (1 + 1/k)* € e <3 < ny. Note that the inequality is strict for & 2 2.
We continue with the inductive step of the proof. with the inductive assumption that
the inequality holds for j in the range & to 1 — | and establish the inequality for j = 1.

Note that m; — m;_, counts the number of edges in G, with at least one endpoint in
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Vi. Since every vertex in V(Gioy) = Vi UV, U ..U Vi_; has at least one G;-neighbor

in V; we get a lower bound on m,
m, =20t + 10—

G, is a subgraph of a k-trce, and il 7 > & then it is a partial k-trec on n; > k vertices.

It is well-known that G; is then a subgraph of a k-tree on n, vertices [6], and from
the iterative construction of k-trees it is easy to show that we have
k-1
m, < (f) + (n, = k)k

Rearranging terms we get the following hound on n; for £ <7< ¢

. A+
"122'1' t

k 2

Repeatedly substituting the m, bound in the above, we get

- mi_) + 1 N k41 S s M+ gy + oo F 1020 + 040y N my k+1

-k 2 - - k k2

In the right-hand side we substitute for all n, (he inductive bound n; > (52)7! to

get

1 =2 k41 T JOEA| E4+1, me k+1
- 2 o — r—l_____k—l Jiid
m2p 2 (Ve = ) ) tE

Since V; is a dominating set in (v, {for | < j < & we must have my 2 (k—=1)k/2 which
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we substitute in the above to get the desired bound

k41, k+1, k+1;
. > -1 _ k=1 . =1

Note that the last bound is strict for & > 2(*). For 7 = q we thus get ¢ < 1 +

log(41)/k 2 (note that ¢ = GN(G) and ny = n) which is a tight bound for k = 1.

For k > 2, the base is not an integer and. becanse of the strict inequality (*) we can

apply the floor function to the log. o

For fixed k we thus have a logarithimic hound on GN for partial k-trees. Since we
want to express time complexity as a function of k. we convert bases of the logarithm

to get GN(G) < 1+ (log, 1)~ log, n < | + klog, n.

Theorem 6.5 Given a partial k-tree (¢ on n vertices its Grundy number

can be found in @(n*’) time.

Proof. First note that a tree-decomposition can be found in time linear in n [17].
Define the Grundy number problem using the degree constraint matrix Dy with diag-
onal entries {0}, above-diagonal entries I, and helow-diagonal entries N. We then use
the algorithm from section 6.2.2 augmented with the nonempty information as de-
scribed above. The correctness ol cach table operation procedure is easily established,
so that by induction over the parse tree we can conclude that the root-optimization
procedure will correctly give the answer YIS if and only if the input graph has an
appropriate partition V], .... ¥, with non-empty classes. An affirmative answer implies
that GN(G) > gq. Using the bound GN(G) €1 + klog,n we run the 3D, algorithm
for descending values of ¢ starting with ¢ = ! + klog,n and halting as soon as an

affirmative answer is given. The complexity of this algorithm is then given by appro-



priately applying Theorem G.3. with [/} = | and [A,| =2 O

6.2.5 Lxtensions

Algorithms for search versions, weighted versions and directed graph versions
of vertex partitioning problems are constructed by the same general method as the

extensions given for vertex subset optimization problems in section 6.1.5.

In chapter 2.1 we discussed several problems which could be defined by al-
lowing optimization over the cardinality of certain partition classes. For example,
the DISTANCE < ¢ DOMINATION problem optlimizes |V;| over all Dg,,-partitions
Vi, Vay oy Vo for the appropriate degree constraint matrix Dyyy. To compute this
parameter, the values of table entries are defined (o be

iy =0
Table,s) g l

optimumy, v, evi|11l} otherwise

and the table operations arc altercd similarly, in the style of table operations
for vertex subset optimization problems. Any vertex partitioning problem optimizing
over the cardinality of a partition class can he solved in a similar manner. The time
complexity of the resulting algorithims lor a probiem given by the degree constraint
matrix Dy remains as given in Theorem 6.3. Tor example, the DISTANCE < ¢
DOMINATION problem is solved on partial k-trees, when given a tree-decomposition,

in time O(n23kat1)),

In Chapter 2.4 we discussed several new problems. including the general classes
of [p, o]-PARTITION problenmis. NON-UNITFORM PARTITION problems and [p, o]-
REMOVAL problems. Any ol ihese problems are encompassed by Theorem 6.3.

Polynomial-time algorithms [or mar D, and min D, problems will of course only follow
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if an appropriate bound holds on the parameter in question. In particular, note that
the proof of the logarithmic bound on the Grundy Number in Theorem 6.4 does
not utilize the fact that the 1 are independent sets, only the fact that they are
dominating sets in the remaining graph. This means we get a logarithmic bound
also on the UPPER-DOMINATING-REMOVAL paramecter on partial k-trees (see
Chapter 2.4 for a definition) and a polvnomial time algorithm for computing this

parameter, for fixed k.
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