MAPPING PARALLEL ALGORITHMS TO MESSAGE PASSING MACHINES

by

XIAOXIONG ZHONG

A DISSERTATION

Presented to the Department of Computer
and Information Science
and the Graduate School of the University of Oregon
in partial fulfillment of the requirements
for the degree of
Doctor of Philosophy

June 1994

1l

“Mapping Parallel Algorithms to Message Passing Machines,” a dissertation pre-
pared by Xiaoxiong Zhong in partial fulfillment of the requirements for the Doctor
of Philosophy degree in the Department of Computer and Information Science. This

dissertation has been approved and accepted by:

R A

Chair of the Examining Committee

5/28 (94

Date

Commitee in charge: Dr. Virginia Lo, Chair
Dr. Sanjay Rajopadhye
Dr. Andrzej Proskurowski
Dr. Evan Tick
Dr. Brad Shelton

Vice Bfovost and Dean of the Graduate School

i

An Abstract of the Dissertation of
Xiaoxiong Zhong for the degree of Doctor of Philosophy

in the Department of Computer and Information Science

to be taken June 1994
Title: MAPPING PARALLEL ALGORITHMS TO MESSAGE PASSING
MACHINES
Approved: VYarnprnior I . 7

Dr. Virginia Lo

Message passing machines provide an opportunity to achieve high performance
for applications such as those in scientific computing, in digital signal processing,
in simulation and in electronic design automation. Programming such architectures
to achieve high performance, however, poses a challenging task to users. One of the
major problems is to design a mapping (assignment) scheme for processes to deal with
the mismatch between the ideal communication structure for the parallel algorithm
and the target architecture. The research in this thesis aims at this problem. In the
thesis, two kinds of architectures, multicomputers and systolic arrays, are considered.

In the first part, we concentrate on communication issues in the design of map-
ping algorithms for a multicomputer. As communication switching technologies ad-
vance, major factors which incur communication overhead have changed and should
be studied. We empirically study the effect of communication overhead caused by
the topological mismatch in a multicomputer Empirical case studies are carried out

to qualitatively characterize the impact of several important mapping metrics and

iv
architectural factors on the performance of benchmarks. To quantify communication
overhead, we study and validate analytical estimation formulae for message latency.
The applications of the message latency formulae to a general purpose multicom-
puter simulator are discussed and a new parallel program performance evaluation
framework is proposed.

We then study the problem of reducing communication overhead by utilizing
knowledge of the message passing requirement in an application. We propose efficient
application-specific routing algorithms to reduce communication overhead. The pro-
posed techniques can be applied to parallel programs with intensive communication
on a multicomputer with user-controlled routing capability.

In the second part, we study the problem of mapping a class of algorithms
called regular iterative algorithms to systolic arrays. First, the problem of finding an
optimal time schedule for regular iterative algorithms is studied. Second, we propose
a systematic method to enumerate linear allocation functions to yield spatially regular
systolic arrays with some permissible connection constraints. Such a method can be
used to design systolic arrays based on various optimization criteria. Finally, we show
how to improve efficiency of a systolic array to an almost 100% efficient array by using
a quasi-linear transformation function. The results have potential applications in a

high level synthesis system or in a silicon compiler.

CURRICULUM VITA

NAME OF THE AUTHOR: Xiaoxiong Zhong
PLACE OF BIRTH: Guangdong, China

DATE OF BIRTH: November 27, 1963

GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED:

University of Oregon
Fudan University, China

DEGREES AWARDED:

Doctor of Philosophy in Computer and Information Science, 1994,
University of Oregon

Master of Science in Computer Science, 1986, Fudan University,
China

Bachelor of Science in Computer Science, 1983, Fudan University,
China

PROFESSIONAL EXPERIENCE:

Lecturer, Department of Computer Science, Zhongshan University,
Guangdong, China, 1986-1989

Graduate Teaching and Research Fellow, Department of Computer and
Information Science, University of Oregon, Eugene, 1989-1993

Senior Software Engineer, Zycad Corporation,
Fremont, California, 1993-1994

vi

ACKNOWLEDGEMENTS

I wish to express my deep appreciation and thanks to my advisors Dr. Ginnie
Lo and Dr. Sanjay Rajopadhye for their continuous support and encouragement. The
guidance, care and understanding from Ginnie have always been a major source of
strength for me. Working with Sanjay has been stimulating. I am grateful to Dr.
Evan Tick for his help, motivation, and advice. His detailed corrections and comments
greatly enhanced the quality of this thesis. Dr. Andrzej Proskurowski has been very
supportive during my stay at the University of Oregon and I am very thankful for all
his help. I thank Dr. Brad Shelton for taking time to be on my committee.

I am also grateful for the support from Zycad Corporation. The encouragement
my manager Ramesh provided me in the last few months has been very helpful in
finishing my dissertation.

I thank my graduate fellows A.V.S.Sastry, Jan Telle, and many others for their
help. I thank our graduate secretary Betty Lockwood.

My firiend Norman Lumian has made my stay in Eugene enjoyable and inter-
esting.

The care and understanding from my parents and sisters in China have been
important to me. My wife Wensheng has always been behind me during this long
and sometimes difficult journey. This would not have been possible without her

understanding and support.

vii

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION . . . ittt e e e e e e e e e e e i 1
The Mapping Problem 2

Problems Addressed in the Dissertation. 5

Overview of the Dissertation 8

PART I. COMMUNICATION ISSUES IN MAPPING TO MULTICOMPUTERS

IL.

I1I.

MAPPING TO MULTICOMPUTERS 11
Introduction, 12
A General Framework for Mapping to Multicomputers 13
Communication Switching Techniques. 19
Routings e 24
Deadlock Avoidance 26
Fundamental Issues in Communication Overhead 35
Communication Overhead Metrics 36
Overviewof Part I 39

COMMUNICATION OVERHEAD ON A MULTICOMPUTER 41

Related Work 41
Multicomputer Network Simulation 44
The Mapping Effect 49
Message Latency Estimation 69
Justifying the Formulae 72
Incorporating the Message Latency Formulae into A Simulator . . . 74
Applications of the Message Latency Formulae 76
Conclusions 77

IV. APPLICATION-SPECIFIC WORMHOLE ROUTINGS ON A

MULTICOMPUTER NETWORK 80

VIL

VIIIL

Deadlock-Free Low-Maximum Contention Routing
Performance,
Conclusions

AN EFFICIENT HEURISTIC FOR APPLICATION-SPECIFIC
ROUTINGS ON A MESH CONNECTED MULTICOMPUTER . . .

Related Work
Application-Specific Routing on a Partitioned Mesh
A Heuristic Algorithm,
Performance 0 i e e e
Conclusions o i i i i e e e e

PART II. MAPPING TO SYSTOLIC ARRAYS
SYSTOLICARRAYDESIGN

Systolic Arrays e e e e e .
Regular Iterative Algorithms
Mapping to Systolic Array Processors
Overviewof Part II,

OPTIMAL SCHEDULES FOR REGULAR ITERATIVE
ALGORITHMS e e

Introduction i e e e e e
Notation and Problem Definition
ComputabilityofaURE
The Free Schedule
The Optimal Schedule for The Last Computation
Conclusions i it i it e e e e

LINEAR ALLOCATION FUNCTIONS FOR SYSTOLIC ARRAY
DESIGN o e e e

Introduction e
Notations and Problem Definition
Bounds on the Number of Allocation Functions
Interconnection Matrices for the Common Cases

viii
Page

88
97
104

Page
The Design of Optimal Systolic Arrays 187
Conclusions i i i i i i e e e e e e 190

IX. QUASI-LINEAR ALLOCATION FUNCTIONS FOR EFFICIENT
ARRAY DESIGN ittt e i e e e e e e e e e 192
Introduction L e e e e 192
Notations and Problem Definition 193
Activation Patterns and Efficiency 195
Quasi-Linear Allocation Functions 199
Synthesizing Fully Efficient Systolic Arrays 204
Optimal Clustering of Arbitrary Systolic Arrays 215
Conclusions i v i i i i i it it e e e e 222
X. CONCLUSIONS i e ettt e e e e 227
Fature Work e 229

APPENDIX

A. BENCHMARK PROGRAMS AND SIMULATION RESULTS 233
Benchmark Programs i, 233
SimulationResults 245

BIBLIOGRAPHY i i e 250

Table

N i

10.

11.
12.
13.
14.
15.
16.
17.
18.

LIST OF TABLES

Contention Metrics for the Reflecting and Growing Mappings of DAQ . 60

Dilation Metrics the Reflecting and Growing Mappings of DAQ 60
Contention Metrics for the Gray Code and Identical Mappings of FFT 61
Dilation Metrics for the Gray code and Identical Mappings of FFT .. 61

Performance Comparison Between the Reflecting Mapping and the Grow-
ing Mapping of DAQ of Message Size Equal to 8192 Bytes on a Wormhole-
Routed System. Column 4 Shows the Ratio of stime of the Growing
Mapping over stime of the Reflecting Mapping 66

Performance Comparison Between the Gray Code Mapping and the
Identical Mapping of FFT of Message Size Equal to 512 Bytes on a
Wormbhole-Routed System. Column 4 Shows the Ratio of the stime of
the Identical Mapping over the stime of the Gray Code Mapping 66

Performance Comparison Between the Refiecting Mapping and the Grow-
ing Mapping of DAQ of Message Size Equal to 128 Bytes on a Store-

Forward Routed System 67
Prediction vs. Simulation Error for the Wormhole Routing 73
Prediction vs. Simulation Error for Store-Forward Routing 73
Prediction vs. Simulation Error for a 2-D FFT on a 64 Node Wormhole

Routed System 76
Performance of DF H for the Applications 103
Performance of BLOCK for the Applications 121
DAQ Performance on a 1024-Node Wormhole-Routed System 245
DAQ Performance on a 256-Node Wormhole-Routed System 246
DAQ Performance on a 64-Node Wormhole-Routed System 246
DAQ Performance on a 1024-Node Store-Forward Routed System . . . 247
DAQ Performance on a 256-Node Store-Forward Routed System 247

DAQ Performance on a 64-Node Store-Forward Routed System 248

19.
20.
21.

FFT Performance on a 1024-Node Wormhole-Routed System

FFT Performance on a 256-Node Wormhole-Routed System
FFT Performance on a 64-Node Wormhole-Routed System

Figure

© ®© N o W

- et
[l =]

[a—
e

13.
14.
15.
16.
17.

18.

19.

LIST OF FIGURES

Page

An Example of Mismatch Between an Application and a Target Archi-

tecture. e e e e e e e e, 4
INustration of a Mapping Procedure. 17
Hlustration of Flow Control Schemes in a Contention-Free Situation. . 23
Deadlock in a Store-Forward Routing. 27
Deadlock in a Wormhole Routing. 28
Deadlock Avoidance in a Store-Forward Routing. 31
Deadlock Avoidance in a8 Wormhole Routing. 33
Partitioning of a 2-D Mesh into Four Virtual Networks. 34
SEND_PACKET Event Handler. 47
ROUTE_PACKET Event Handler. 47
Simulation Steps to Pass a Message from Node 1 to Node 3 and to Pass

Another Message from Node 2toNode 3. 49

The State of Each Channel and Physical Time of Each Step to Pass a
Message from Node 1 to Node 3 and to Pass Another Message from Node

2toNode 3. e e 50
An 8-Node Binomial Tree and Its Three Phases. 53
An 8-Node FFT Topology and Its Three Phases.. 54
The Refiecting Mapping to Meshes with Size from1to64. 57
The Growing Mapping to Meshes with Size from 1to64. 59
The Gray Code Mapping (Shown by Phase by Phase Communication)

toMeshofSize 16. e 62
The Identical Mapping (Shown by Phase by Phase Communication) to

MeshofSize 16. e 63

XY-Routing for 3 x 3 Matrix Transpose. 81

20.

21.
22.
23.
24.
25.
26.

27.

28.

29.

30.
31.
32.
33.
34.
35.
36.
37.

38.

39.

40,
41.

xiii

Page
An Example Where Kandlur and Shin’s Algorithm Generates a Dead-
locked Wormhole Routing. 83
The GPCDGofa2x2Mesh. 88
Outline of the Deadlock-Free Heuristic DFH. 89
reroute Function. o e . 92
Updating Functions for a Transitive Closure and deadlock-free-test. .. 94
Iustration of the Cycle C for the Deadlock-Free Testing. 95
Average Maximum Contention for a 5-Dimensional Cube for Both Uni-
form and Nonuniform Message Distribution. 99
Percentage Improvement of Maximum Contention and T-Cost for a 5-
Dimensional Cube for Both Uniform and Nonuniform Message Distribu-
tlom. . .. e e e e e e e 99
Average Maximum Contention for a 6 x 6 Torus for Both Uniform and
Nonuniform Message Distribution.. 100
Percentage Improvement of Maximum Contention and T-Cost for a 6 x 6
Torus for Both Uniform and Nonuniform Message Distribution. 100
The Description of n-Body Problem and Its Task Graph. 101
The Description of AVHTST Benchmark and Its Task Graph. 102
Illustration of the Proof of Theorem 1. 113
Illustration of the Labeling Scheme in BLOCK. 115
Calculating Freedom Function. 115
QOutline of Heuristic BLOCK. 117
A Simple Example for the BLOCK Algorithm. 118
Average Maximum Contention for 2-D 15 x 15 and 20 x 20 Meshes under
Uniform Message Distribution.. 120
Percentage Improvement of Maximum Contention for 2-D 15 x 15 and
20 x 20 Meshes under Uniform Message Distribution. 120
Percentage Improvement of Maximum Contention for the Matrix Trans-
D 122
Dllustration of Systolic Array Design Process. 131

The Design of a Systolic Array for Convolution Product. 135

42.

43.
44.

45.
46.
47.

xiv
Page

The Only Four Linear Arrays That Can Be Derived from a Two-Dimensional

Recurrence. e e e 174
All Distinct Two-Dimensional Arrays with Pure Mesh Connections. . . 175
Additional Two-Dimensional Arrays If One Set of Diagonals Are Per-

mitted (P3). . .« . o e 175
Additional Two-Dimensional Arrays for Eight Nearest Neighbors, (Py). 176
Rote’s Hexagonal Array for 10 x 10 Algebraic Path Problem. 220

The Final Array for 10 x 10 APP Obtained by Merging Horizontally.
Al, C1 and E1 Represent the Processors Merged from Type A, C and
E Processors Respectively. 221

CHAPTER 1

INTRODUCTION

Message passing machines are designed for scalable high performance comput-
ing. Recent developments in computer architecture as well as communication tech-
nology have shown that such machines are highly promising for a broad range of
application areas. A message passing machine differs from other parallel architec-
tures in that processes in different processors communicate with each other solely via

message passing. The key features of a message passing machine are:

1. Processors are physically connected by a point to point network (i.e., direct

network). Example networks are hypercubes, meshes and fat-trees.
2. Each processor element has its own local memory. No shared memory exists.

3. A message passing machine usually has a large number of processors. It can be

scaled up to hundreds or thousands of processors.

In this thesis, we concentrate on two kinds of architectures: multicomputers and
systolic arrays. Multicomputers are general purpose machines which are best for
medium and coarse grain computations, while systolic arrays are application-specific
machines which are well suited to fine-grain applications exhibiting massive paral-
lelism. Although the two architectures are different, recent developments have led to
the evolution of several machines which represent a hjbrid between a multicomputer

and a systolic array, as evidenced by the Intel iWarp system [14, 49].

2

Although the development in hardware of such machines has advanced dra-
matically in the last few years, software support for these machines has lagged far
behind, which is the biggest hindrance to the widespread use of such machines. One
of the major difficulties in programming such machines is the mepping problem. The
mapping problem involves the mismatch that usually exists between the underlying
ideal computation and communication structures of an application and the resources
in a target architecture. This is a very important, challenging, cumbersome and
error-prone process. It is important because it is vital to performance: a careless
mapping may result in poor load balancing and large communication overhead. It is
challenging because designing a good mapping may require detailed understanding of
scheduling, graph theory, combinatorics and the properties of target architectures. It
is also cumbersome since the mapping problem is an extra burden for the programmer
in addition to the programming task. Finally, the task of developing a mapping is

error-prone due to its complicated nature.

The Mapping Problem

The performance of a program on a message passing machine is determined by
two factors: the inherent parallelism in the program and the overhead incurred by
the target architecture to achieve the inherent parallelism. The first factor is deter-
mined by the algorithm used in the program. For example, the maximum number of
processes which can be executed at the same time may be limited. The second factor
is determined by the degree of conflict between the demand for resources required
from the program and the available resources of the target machine. In this thesis,
we concentrate on the second problem.

The mapping problem [8, 80] can be described as the problem of assigning tasks

3

to processors and and assigning messages to paths in the target architecture. The
programming paradigm used in this research belongs to the communicating sequential
process paradigm [52]. More precisely, in this model, a parallel application consists
of a set of sequential processes. Processes commmunicate with each other with explicit
message passing. Many programming languages for message passing machines fall into
this class [108, 82]. For example, the C programming language supported for the Intel
Paragon is a standard C language with extensions for explicit message passing. Other
languages or language interfaces which belong to this model include DINO [101] and
PICL [42]. Recently, some specialized languages have been designed for the purpose
of mapping [9, 81, 7, 8]. Such languages allow a mapping tool to effectively extract
useful information needed in a mapping algorithm.

In general, two types of mismatch exist between a parallel application and a
target message passing machine [8]. The first is due to the mismatch between the
number of processors available in the target architecture and the number of processes
in the application. Figure I shows an example of an application which is modeled as
a complete binary tree and a mesh-connected target architecture. In this example,
the number of processes is 16 but there are only 6 processors. To deal with this
mismatch, one should be aware of the following factors. First, it is not always true
that using the same number of processors as that of processes renders the maximum
speedup. This is because communication overhead may seriously degrade the whole
computation if the computation grain is too small. Second, if the number of available
processors of the target machine is less than that of processes, several processes are
forced to be clustered onto one physical processor. How to achieve load balancing and

minimize communication overhead in order to maximize performance (or minimize

4

total completion time) is a difficult problem. Third, even though one is given a
sufficient number of processors, some of them may be wasted due to the effect of
synchronization. For example, a processor may be idle waiting for messages to arrive.
This introduces the concept of efficiency (processor utilization) and a good mapping

should try to maximize processor utilization. This problem is related to process

scheduling.
Mapping
A Complete Binary Tree as a Task Graph Mesh-Connected Multicomputer
Nodes Represent Tasks and Edges Represent Communication Nodes Represent Processors and
Edges Represent Channels

Figure 1: An Example of Mismatch Between an Application and a Target Architec-
ture.

The second type of mismatch is due to the difference between the ideal intercon-
nection topology used in the application and the communication network topology of
the target architecture. Such a mismatch causes communication overhead since mes-
sages are delayed due to long message paths and traffic congestion in the network. To
cope with this type of mismatch, one should carefully assign processes to processors
so that the topological mismatch is minimized based on various criteria. This step is
called process placement. Different communication technologies may cause different

communication overhead for the same placement strategy. Thus, the metrics used in

5

this step should be sensitive to the communication technology used. Furthermore, if
the target architecture allows the user to control routing, one can further design an
efficient routing for the specific application to reduce traffic congestion after processes
have been assigned to processors.

To summarize, a message passing machine can be viewed as a system consisting
of two types of resources: processors and communication channels. The mapping
problem arises from the conflicting demands for these resources. The first mismatch
is due to the conflicting demand for processors and the second mismatch is due to

the conflicting demand for communication channels.
Problems Addressed in the Dissertation

In this dissertation, we study the problem of mapping parallel algorithms to
two kinds of architectures, namely, multicomputers and systolic arrays. The thesis

correspondingly consists of two parts.
Part I: Communication Issues in Mapping to Multicomputers

Reducing the topological mismatch in mapping parallel algorithms to a mul-
ticomputer has been one of the most important problems for the performance of
an application in old generation multicomputers such as Intel’s iPSC/1 and Caltech
Cosmic Cube [40, 5, 8]. As the communication technologies used in a multicom-
puter advance, the communication overhead caused by the topological mismatch has
been reduced dramatically. Such a change calls for a re-examination of the perfor-
mance effect of the communication overhead for the new communication technologies.
Specifically, we address three fundamental questions to better understand the nature

of the communication overhead caused by the topological mismatch.

6

o Is the commaunication overhead caused by the topological mismatch stiill critical
to performance under the new communication technologies? For old generation
multicomputers which use the store-forward routing scheme, the communication
overhead due to the topological mismatch was vital to mapping performance.
For new generation multicomputers which use the wormhole routing scheme,
however, there has been a claim that the communication overhead may no longer
seriously affect performance. Other evidence indicates that the communication
overhead continues to be important. A more careful investigation is necessary

to resolve this issue.

o What contributes to the communication overhead? In the old generation mul-
ticomputers with store-forward routing, key factors such as dilation have been
used in the development of mapping algorithms. For the new wormhole routing
scheme, we need to develop new metrics to better characterize the communica-

tion overhead of a mapping,.

o How to reduce communication overhead when designing a mapping algorithm?
We need to develop new mapping algorithms to reduce communication overhead

based on the new metrics.
Part I of the thesis focuses on the above issues.
Part II: Mapping to Systolic Arrays

In Part II, we consider the problem of designing systolic arrays starting from
a high-level algorithm expressed as a class of programs called Regular Iterative Algo-
rithms (RIAs). Based on well known techniques, the first step in designing a systolic

array for RIAs is to schedule computations based on the dependencies in the RIAs,

7

and the second step is to assign computations of the RIA to physical processors, the
so called processor allocation (assignment) problem.

In practice, a systolic array is designed based on various optimization criteria.
Among many design criteria [68], the important ones include total completion time,
number of processors, and processor utilization. Correspondingly, we address the

following three problems.

o Optimal timing schedule to minimize ezecution time: To minimize execution
time for each computation, one would desire to schedule the computation as
early as possible with the constraint that the dependencies are not violated. To
achieve this, we should investigate the nature of the optimal schedule and how

to derive such a schedule.

o Processor allocation based on various design criteria: Many design criteria such
as the minimal number of processors are based on the way that processors are
allocated for computations. It is thus important to study methods to derive

processor allocation schemes.

o Processor efficiency: In the execution of the application, processors in the de-
rived array may be only actively doing useful work at some time and are idle
for the rest of time. It is thus very important to derive an array with maximum
processor utilization during the execution of the application without sacrificing
other optimization design criteria such as total completion time and processor

complexity.

QOverview of the Dissertation

In the first part, we concentrate on communication issues in the mapping prob-
lem. We empirically study the effect of communication overhead caused by the topo-
logical mismatch in a multicomputer under two kinds of communication technology,
namely, the store-forward and the wormhole routing schemes. Empirical case studies
are carried out to qualitatively characterize the impact of several important mapping
metrics and architectural factors on the performance of benchmarks. We show that
the communication overhead caused by the topological mismatch can still signifi-
cantly affect the performance of a benchmark. To quantify communication overhead,
we propose and validate analytical estimation formulae for message latency. The
formulae take runtime contention information into account and are directly sensitive
to an application. We discuss incorporation of the message latency formulae in a
general purpose multicomputer simulator, and a new parallel program performance
evaluation framework that uses the formulae is proposed.

We then study the problem of reducing communication overhead by utilizing
knowledge of the message passing requirements in an application. We propose effi-
cient application-specific routing algorithms to reduce communication overhead based
on the newly developed metrics. The proposed techniques can be applied to paral-
lel programs with intensive communication in a multicomputer with user-controlled
routing capability such as Intel’s iWarp systems or Meiko’s transputer systems.

In the second part, the problem of mapping a class of algorithms called Regular
Iterative Algorithms (RIAs) to a systolic array is studied. To achieve the inherent
parallelism exhibited in a RIA, the problem of finding the optimal timing schedule is

studied. To map such an algorithm to a systolic array which has constraints on its

9

physical connections, a systematic method to enumerate linear allocation functions is
developed. Such a method can be used to design systolic arrays based on various
optimization criteria. To fully utilize processor resources, we study the problem
of deriving a fully efficient systolic array with respect to processor utilization. A
systematic method is proposed to generate a 100% efficient array without slowing
down the array and without adding extra functional units. Our work solves the
problem of mapping RIAs to systolic arrays in three important aspects, namely, timing

schedule, processor allocation, and processor utilization.

Part I

COMMUNICATION ISSUES IN MAPPING TO
MULTICOMPUTERS

10

11

CHAPTER II

MAPPING TO MULTICOMPUTERS

From the store-forward flow control scheme in old generation multicomputers to
the wormhole and circuit-switching schemes used in current advanced multicomput-
ers, the transition of communication switching technologies has made communication
orders of magnitude faster. These changes entail a careful re-examination of classic
methods and metrics which have been used in designing a mapping tailored to an
old generation multicomputer. Empirical studies should be conducted to reveal the
nature of the communication overhead incurred by these new technologies and their
effects on the performance of an application should be characterized. New mapping
algorithms and metrics to reduce communication overhead in a mapping should be
developed. This part of the thesis focuses on the above problems.

In.this chapter, we describe the background knowledge needed to understand the
communication issues related to the mapping problem. A general framework for map-
ping to a multicomputer is described. Several communication switching techniques
used in multicomputers are introduced and different routing schemes are described.
The deadlock problem, which is more critical in a wormhole routing scheme, is also
introduced. We then identify three fundamental problems of communication over-
head related to mapping and introduce communication overhead metrics which will

be used throughout this part. Finally, we overview the work in Part I.

12

Introduction

As the technology of multicomputer architecture advances, major factors which
affect the performance of a parallel program on a multicomputer have changed. In
particular, new switching technologies used on a multicomputer have reduced com-
munication overhead dramatically. This change introduces a new research area to
address performance issues related to communication overhead and how to reduce
this overhead in a mapping.

Specifically, to achieve good performance for a mapping, one has to understand
how the performance of a parallel program is related to communication overhead
incurred by specific communication technologies, what are the major factors which
affect the communication overhead in terms of a mapping, how to measure these
effects for the purpose of mapping, and what kinds of new techniques can be used to
reduce communication overhead.

Early work on mapping did not take the network communication technology
into account or only used a very simple model of the multicomputer network. For
example, in the pioneering work on mapping, Stone {112], Bokhari [11], Lo [77] and
other researchers [105] proposed load balancing schemes based on simple static ap-
proximations of communication overhead. In such a model, little information about
the dynamic runtime behavior of the application is assumed. In the task scheduling
area, a traditional directed acyclic graph based model [106, 91] also assumes stat-
ically determined communication costs among tasks, represented as the weights of
edges. These models assume an all or nothing character to communication overhead
based on whether a pair of communicating tasks were assigned to the same proces-

sor (zero overhead) or different processors (fixed overhead). Lewis and Rewini {36]

13

used a limited model of a store-forward multicomputer network to reflect the pos-
sible communication overhead for a schedule. In their model, the communication
overhead between two tasks is not only determined by the message size but also is
determined by the number of hops and the approximate network traffic congestion
for this message.

We believe that it is important to develop new approaches to understanding
the communication overhead of multicomputers and their relation to mapping. Our
study must be sensitive to new communication technologies, specifically the wormhole
routing scheme. We must develop a framework and new metrics for communication
overhead. Furthermore, mapping techniques to reduce the overhead need to be care-

fully designed and evaluated.

A General Framework for Mapping to Multicomputers

This section describes a general framework for mapping to multicomputers. We
describe characteristics of a multicomputer, the computation model used in mapping

and general mapping approaches.
Multicomputers

A multicomputer is a general purpose message passing machine. Below, we

discuss the characteristics of a multicomputer.

1. A multicomputer is an MIMD (multiple instruction, multiple data stream).

Each processor has its own control unit and executes its own instruction stream.

2. A multicomputer usually consists of powerful computing engines (ranging from

several to hundreds of MFLOPS) in each processor element.

14

3. Processors in a multicomputer are interconnected by a direct network. Exam-
ples of well-known multicomputer networks include a mesh, a tree, a hypercube

and a torus.

4. A multicomputer has communication hardware responsible for message routing
in each processor. Second generation multicomputers have dedicated commu-
nication modules separate from computation engines. Transmitting a message
through an intermediate node does not need to interrupt the computation car-

ried out by the local processor.

5. A multicomputer has moderate communication overhead. Second generation
multicomputers support fast communication. For example, in an IPSC/2-SX
system, sending a double-precision number to its neighboring processor only

takes 3.0us, less than that of performing a floating point operation (3.6¢s) [4].

6. Processors in a multicomputer execute asynchronously. No global clock is avail-

able.

Typical commercial multicomputers include Thinking Machine’s CM-5, Intel’s
Paragon, iPSC/860, iPSC/2, iWarp and Ncube’s Ncube/3200 and Ncube/2.

Computation Models

Several graph theoretic models of parallel computations have been designed and
used in the mapping community. The static task graph [112, 11, 77, 105] statically
represents a parallel application as an undirected weighted graph with nodes repre-
senting processes and edges representing communication between processes. Node

weights are used to represent execution costs associated with the processes, and edge

15

weights are used to indicate the degree of communication between two processes. This
has been one of the dominant models used in the parallel and distributed computing
community for mapping. The model is simple and relatively easy to construct from
the original program. One of the drawbacks of the model is that it does not capture
the temporal behavior of the program, which may be vital to mapping.

The second predominant model is the Directed Acyclic Graph (DAG) {106, 91,
25, 3] model. In the DAG model, nodes represent tasks and directed edges represent
a dependency relation (such as a message send/receive relation) between two tasks.
Furthermore, a DAG can be weighted such that node weights represent the execution
cost of tasks and edge weights represent size of messages between two tasks. The
DAG model was originally developed for research in scheduling and has been used in
parallelizing compilers that parallelize sequential code whose data and control graphs
can be represented as DAGs. While the DAG model has been utilized in the mapping
community, in a communicating sequential program, it fails to capture the identities
of processes which persist over the lifetime of the computation.

Recently, a model called the Temporal Communication Graph (TCG) was pro-
posed [78] to unify the two earlier models. In practice, many parallel applications
proceed through computation and communication in a phase-by-phase fashion. Pro-
cesses, however, in such a phase-by-phase execution, retain their identities during
the lifetime of the program execution. The TCG model captures the process iden-
tity concept and also represents computation and communication phases explicitly.
Compared with the static task graph model and the DAG model, 2 TCG represents
both the topological and the temporal precedence information and is thus more gen-

eral. A language called LaRCS has been designed specifically to describe the TCG

16

model [81]. In this thesis, we will use static task graphs as well as TCGs as our model

of computation.
Overview of Mapping Techniques

The problem of optimally mapping a general static task graph, a DAG, or a
TCG to target architectures with respect to many well-known metrics is difficult.
Such optimization problems are usually NP-hard [41, 25]. To simplify the compli-
cated process, researchers have tried to decompose the mapping problem into several
steps. First, information useful to the mapping is extracted from the initial descrip-
tion of the application, based on the computation model chosen. Several languages
have been designed to represent computation models. Such languages can be a pro-
gramming language such as the one used in Prep-P [9] or a special language such as
LaRCS used in Oregami [81, 9). Second, contraction is performed to minimize the
mismatch between the number of available processors and the number of processes.
Third, clustered processes are assigned (placed) to processors and fourth, if the target
architecture allows the user to control routing or switching setting, application-specific
routing can be performed to reduce traffic congestion. In addition to the above steps,
if temporal information is considered, as in the DAG or the TCG model, scheduling
can be performed to further specify the execution order of the processes to enhance
the processor utilization. Figure 2 illustrates the first four steps of a mapping.

Notice, however, that several steps may be combined into a single step and
some steps may not be necessary. For example, to take advantage of the difference
in computing power of nodes in a heterogeneous environment so that processes with
heavy execution cost can be assigned to faster nodes, the contraction and placement

steps may need to be combined into a single step so that processes contracted are

17

Extract

Computation | Contraction —| Placement *1 Routing

Stucture

Figure 2: Illustration of a Mapping Procedure.
assigned (placed) to specific nodes.

The contraction step in the mapping problem is usually performed to minimize
process-processor mismatch, to balance processor workload, and to minimize inter-
processor communication. A careful tradeoff is necessary since these these goals may
conflict with each other. For the static task graph model, graph-theoretic methods
have been proposed. These include Stone’s classic minimal-cut network flow ap-
proach [112], which later was extended by Lo, Bokhari and others [77, 11]. Some
other heuristics such as nearest neighboring clustering method have also been devel-
oped [105, 70].

For the DAG model, Sarkar [106], Kim and Brown [60], Papadimitrious [89]
and recently Yang and Gerasoulis [44, 45] have studied the problem of clustering
processes in a DAG to minimize the total completion time under the assumption that
the number of processors is infinite. The clustered graph (which may no longer be a
DAG) may be further clustered by heuristics used in the static task model.

For the TCG model, information on the temporal behavior of the computation
can be used to improve processor utilization by clustering several processes which do
not have conflicting computation phases. For example, for divide and conquer algo-

rithms, the original complete binary tree computation structure can be contracted,

18

resulting in a binomial tree, to improve efficiency [79, 127], or a specific clustering
can be tailored to the target architecture [123]. For a general TCG, no systematic
work has been done.

The placement step is performed to minimize the topological mismatch by plac-
ing processes in order to minimize various metrics including maximum dilation, which
is defined as the maximum distance messages have to travel in the target architecture.
A large body of work has been carried out to develop embeddings from a task graph
to the target interconnection network [100, 56, 71). Quadratic assignment and other
heuristics {50, 70] have also been studied for this purpose.

The routing step involves routing messages through a path in the network once
processes have been assigned to processors. While many machines provide fixed rout-
ing schemes that are controlled by the hardware, several advanced multicomputers
such as the Intel iWarp machines and MasPar machines allow the user to control
routing. This provides an opportunity for the mapping software to design routings
tailored for specific applications to minimize communication overhead.

The placement and the routing steps described above aim at minimization of
communication overhead incurred by the topological mismatch. Different communi-
cation technologies of a multicomputer require use of different metrics for these steps.
For a multicomputer, many switching techniques have been used and communication
overhead varies from one scheme to the other. To achieve good performance, one
needs to understand these techniques well. In the following, the communication tech-
niques of store-forward, wormhole and other schemes such as circuit switching and

virtual cut-through routing schemes are described.

19

Communication Switching Techniques

The last few years have witnessed rapid development in communication switch-
ing technologies of a multicomputer network. As opposed to the old store-forward
scheme, new flow control schemes have been used and these schemes have reduced
communication overhead significantly. Among them, the wormhole routing and its
variation, the circuit switching scheme, are the most popular ones. For example, In-
tel’s iPSC/2 and iPSC/860 adopt the circuit switching technique, and Intel’s iWarp,
Intel’s Paragon, NCUBE’s NCUBE/2 and Ametek’s Symult 2010 use the wormhole
routing scheme. In the following, we review store-forward and these three newer
techniques.

In an old generation multicomputer, communication through an intermedi-
ate processor may interrupt local computation on that node (an example is Intel’s
iPSC/1). In a new generation multicomputer, a node usually consists of three compo-
nents: a compute engine, a local memory module and a communication module (also
called a router). The compute engine, coupled with the local memory, is responsible
for local computation. The communication module, along with communication chan-
nels, is responsible for message passing with other nodes in the network. Intermediate
message passing does not interrupt local computation.

Communication in a multicomputer network is determined by two methods:
flow control and routing. Flow control is the method used to regulate traffic in a
network. It determines when a message or part of a message can advance and what
communication resources can be allocated to a message. Routing is a method to
choose a path for a message over a network. Most commercial machines use a fixed

routing scheme which always routes messages through fixed routes. In the following,

20

we will describe different flow control schemes and in the next section, we will describe
routing schemes.

Three concepts are important to understand a flow control scheme.

o Message: The logical unit of communication between processes.

o Packet: The smallest unit which contains routing information. A message is

divided into one or more packets.

o Flit: The smallest unit which is transmitted as a unit. A packet is further

divided into one or more flits. Only the first flit contains the routing information.

We call the time to transmit a message from its source node to its destination
node message latency.

In the following, we discuss message latency under an assumption that messages
are never blocked during their entire transmission (the contention-free assumption).
In the store-forward flow control scheme, a packet is treated as a single flit. In an
intermediate node, a packet is received and buffered completely before it is forwarded
to its next node. Let D be the number of hops a packet has to travel, and let L be
the packet length. The message latency T; for a packet to reach its destination, under

the contention-free assumption is

Ty = D(w + L/b)

where w is a system dependent constant representing overhead for packet enqueuing
and other bookkeeping, and b is the the bandwidth of a communication channel.
In the virtual cut-through or wormhole flow control scheme, a packet is divided

into small flits. The first flit, also called the header, contains the routing information.

21

Communication channels are allocated flit by flit. The header reserves the communi-
cation channels it has traversed, which are allocated to its following flits. The last flit
(also called the tail) releases a channel once it has passed across the channel. Since
flits pass through channels in a pipelined fashion, the time for an entire packet to

reach its destination, under the contention-free assumption is

To=s+h*xD+Lfb

where h is the time to transmit the header across one channel and s is the startup time,
i.e. the overhead for message injection into the network. In the current generation of
multicomputers which utilize wormhole routing, & is small. For example, in iWarp, A
is less than 20ns per byte [14].

Virtual cut-through and wormhole flow control schemes differ from each other
when message contention is present. When the next channel for the header is un-
available, virtual cut-through buffers all the rest of the flits in the node where the
header is. On the other hand, the wormhole flow control scheme is a blocking version
of virtual cut-through in that all flits stay in the buffers where they are when the next
channel for the header is unavailable. It can be seen that the wormhole flow control
scheme requires substantially smaller buffer space. On the other hand, since flits stay
in the network when a message is blocked in the wormhole flow control scheme, they
may block other messages.

Another flow control scheme which has been used in commercial machines is
called circuit-switching which is similar to the one used in a telephone network. In
the circuit-switching scheme, when a packet is to be sent to its destination, its header,

which contains routing information, is first transmitted along its intended path and

22

reserves the channels if it is possible. After the path is established, the whole packet
is sent out. Message latency under the contention-free assumption is similar to that
of wormhole routing,.

Figure 3 illustrates the store-forward, wormhole and circuit-switching schemes.

It can be seen that when there is no contention, the wormhole scheme and the
virtual cut-through scheme have considerably less overhead than the store-forward
scheme. Furthermore, when L >> D, the distance (number of hops traveled) has
negligible effect on the transmission time for the wormhole, virtual cut-through and
circuit-switching schemes.

Because of such a dramatic message latency improvement from the store-forward
to the wormhole routing, some industry vendors [26] claim that task placement is
no longer an important issue. For example, in Intel’s iPSC/2 user guide [26], it is
claimed that ”Direct-Connect routing imposes virtually no added penalty on multiple
node communication. Consequently, you can view the machine as an ensemble of fully
interconnected processors”.

The above formulae, however, are based on the contention-free assumption.
When messages are congested due to communication resource (channel or buffer)
contention, the extra time caused by the contention may vary dramatically for dif-
ferent flow control schemes. To be more precise, the latency (T') of a message is the
summation of the message latency () under the contention-free assumption and the
time (C;) spent due to communication resource contention. From the above descrip-
tion of the flow control schemes, many factors may affect T'. In the store-forward flow
control scheme, t is sufficiently large and therefore minimizing the message distance,

which is the dominant factor for , can be chosen as the major criterion. In a virtual

23

s | EHIIII]
c B
o | BEEI] -

T1
Store and Forward

c2
a | EEII1T]
—
T2
Wormbhole
T BB [III1]

C3

-] B [
A o [B M

Circuit Switching

Channels

=

Time

EH Head Flit. Cl1.C2 and C3 are three consecutive channels

Figure 3: Illustration of Flow Control Schemes in a Contention-Free Situation.

24

cut-through, wormhole or circuit-switching scheme, however, ¢ has dropped signifi-
cantly and Cy’s role in T has increased. We therefore need to re-examine metrics

related to the mapping and routings.

Routings

Routing is the method used to choose a path for a message through the network.
More precisely, a routing can be described as a permissible function P and a selection

function §.
P:CxNwr— 2

S:P(C)xBmC

where C is the set of channels, 2° is a power set of C, N is the set of addresses
of nodes and S is a set of network states which may include current traffic state, past
history of the routing or even random information (generated by a random generator).
Function P identifies a set of permissible output channels in 2€, given the current
input channel ¢ € C and the destination address n € N. The selection function &
chooses the output channel from the permissible channels P(C), based on the current
network state g.

Depending on P and S, we can classify routings into fixed (deterministic),
oblivious and adaptive categories. A deterministic routing chooses a path based only
on the source and destination addresses of a message (i.e., P returns a single-element
set for the output channel and £ is an empty set). In an oblivious routing, # does not
contain any information on the current traffic state of the network but may contain
some other information such as time, randomness or the contents of messages. Finally,
an adaptive routing is the most general and it may make a routing decision based on

the current traffic state.

25

Deterministic routing has been widely used in multicomputers because of its
simplicity and good performance when the network traffic is light. For example, many
hypercube multicomputers (iPSC/2, Ncube) use E-cube routing, which chooses the
outgoing channel for a message as the first most significant bit where the destination
address and the current node address differs. In the standard hypercube binary code
labeling scheme, it can be seen that E-cube routing routes a message from higher
dimension (more significant bit) to lower dimension. For example, if a message is
to be sent from 0010 to 1001 in a four dimensional binary cube, the path chosen by
the E-cube routing is 0010,1010,1000,1001. A similar routing scheme, called XY-
routing, is used in a two dimensional mesh. The XY-routing always routes a message
first along the X-direction (horizontal) and then along the Y-direction. The Intel
Paragon and iWarp machines adopt this routing scheme as their default routing.

A classic oblivious routing scheme was proposed by Valiant and Brebner [116].
It first routes a message from its source to a randomly selected intermediate node and
from there to its destination. In this routing, § contains some contents of the message
(whether the message has reached its random intermediate node) and randomness
information. It has been shown that for a permutation routing (i.e., a node sends
only one message and receives only one message), this routing has O(log N) time on
an N node cube. Another oblivious routing scheme allows the router to choose the
outgoing channel based on the instruction given in the message header. In such a
routing scheme, the user can control the routing by appropriately setting the routing
information in the message header. This has been adopted in the iWarp system [49].

Recently, several adaptive routing strategies have been proposed and studied.

In these adaptive routing schemes, randomization is used to diffuse traffic. Two

26

problems should be considered in designing an adaptive routing, namely, deadlock
and livelock. Deadlock may occur because of circular waiting for channels (or buffers)
(see, Section on page 26 for more detail). Livelock is a situation where a message
moves indefinitely through the network and is never delivered to its destination. Ngai
and Seitz [88] proposed an adaptive routing scheme for a virtual cut-through network.
The routing uses randomness to misroute messages (i.e., send the message to a random
output channel) once they are blocked and uses multiple buffers to solve the livelock
problem. Another adaptive routing technique which uses randomness to solve the
livelock problem has been proposed by Konstantinidou and Snyder [63]. The routing
scheme is called the Chaos router because it uses random information to avoid the
livelock problem with a high probability. Other adaptive routings for wormhole routed
networks have been also proposed and studied [47, 46].

A restricted routing called permutation routing has been extensively studied
in theory. Most work along this direction is based on the store-forward model. In
a store-forward model, a permutation routing is closely related to the problem of
sorting N elements on an N node network where initially, each node has one element.
Many results, along with sorting results, are proposed for various topologies such as
cubes, meshes and shuffle exchange networks [71]. Recently, there have been some
interests in developing permutation routing on a wormhole or virtual cut-through

routed network [83, 95).

Deadlock Avoidance

- A routing may result in deadlock due to circular waiting for communication
resources (buffers or channels). Deadlock can be avoided by either a careful routing

or through additional hardware support.

27

Store-forward, virtual cut-through and wormbhole routing schemes all can result
in deadlock if messages are waiting for communication resources in a circular fashion.
In store-forward and virtual cut-through, the communication resources are the buffers
for messages to be relayed in a node. Figure 4 shows a possible situation if the buffer

space in a node can only hold one packet.

No N1
@ - @
(=] [+1]
N3 N2

Message Mi's Destination: N(i+1)mod 4

Figure 4: Deadlock in a Store-Forward Routing,.

In wormbhole routing, since the buffer space in a node for a relayed message can
only hold one or two flits for each communication channel, it is more likely to result
in a deadlock due to the occupancy of communication channels. Figure 5 shows such
a possible situation.

More precisely, if there is a possibility for a routing to relay a packet or part
of a packet from resource A to resource B, we say that resource A depends on B.
This defines a binary relation D over all resources. If D is not partially ordered,

then there is a possible circular dependency among resources, which corresponds to

SN e

> |1 | L2 |

.

Blocked header flit
0,1,2 are messages. C0, Cl1, C2, C3 are channels
Each channel has one buffer at each end.

Figure 5: Deadlock in a Wormhole Routing.

29

a potential deadlock situation. In a wormhole routing, the resources are the channels
and it has been shown that there exits no deadlock iff the channel dependency graph
for a routing is acyclic [30].

Thus, to test whether a wormhole routing creates a potential deadlock situation,
we can construct the channel dependency graph (CDG) based on the routing and then
test whether the CDG has a cycle or not. In Chapter IV, we propose another graph
called the Generic Physical Channel Dependency Graph (GPCDG) to capture all
the possible channel dependencies as well as their physical connections in a single
structure. Such a structure facilitates the development of low-contention deadlock-
free wormhole routing.

Two approaches have been adopted to avoid a deadlock. The first is to carefully
design a routing strategy such that the channel dependency graph is guaranteed to
be acyclic. This approach minimizes the hardware support but may eliminate some
possible paths, hence reducing the connectivity of the network. The other approach
is to design flow control to avoid deadlock with appropriate hardware support. Extra
buffers are introduced. We discuss these two approaches in the following.

A way to avoid deadlock is to simply adopt a deterministic (fixed) routing which
can be proved to be deadlock free. For example, both E-cube routing for a hypercube
system and XY-routing for a two-dimensional mesh have been proved to be deadlock
free with respect to store-forward and wormbhole routing schemes [30], respectively.
This is because the channel dependency graph for these two routings are acyclic.

A fixed routing scheme, however, eliminates too many potential paths. This
may result in poor utilization of channel resources. Although some schemes have

been proposed [22, 46, 73] to allow finding more paths which are deadlock free, many

30

paths provided by the network with rich connectivity such as a hypercube are still
not usable.

A general scheme to provide more connectivity while avoiding deadlock is to
create virtual resources which share the same physical resource. The flow control is
modified to guarantee freedom from deadlock. Analogous to methods used to avoid
deadlock in an operating system [90], a partial order on such resources is introduced
to ensure that a routing is designed so that the partial order is satisfied and no circular
waiting state is reached.

In a store-forward routing, a method called the structured duffer [43] is used
to label buffers in ascending order. Packets, once buffered, can only be sent to a
restricted set of buffers on the next node. A buffer dependency graph is created
so that if there is a packet which can be routed from buffer A to buffer B, then
A depends on B. Again, the graph should be acyclic to ensure deadlock freedom.
A simple implementation of the structured buffer scheme creates D + 1 buffers in
every node where D is the network diameter. A packet can only be sent from a buffer
labeled as n to another buffer whose label is larger than n. For example, the deadlock
in Figure 4 can be avoided by introducing two more buffers for all nodes and the three
buffers are labeled as 0,1,2. When the packet is injected into the network, it is first
buffered in buffer 0 and then it can be only sent to buffers which have larger labels.
Figure 6 illustrates this idea. It can be seen that this scheme requires a considerable
amount of storage space for a large network.

A similar technique called the virtual channel technique is used in wormhole
routing to break any cyclic dependencies [30, 29]. The idea is to view communication

channels as the resources for which different packet routes are competing. Multiple

Buffers used for a message M sent from node NO to N2.

A node has three buffers which are labeled as 0, 1,2

Figure 6: Deadlock Avoidance in a Store-Forward Routing.

31

32

flit buffers are introduced for a channel. These multiple flit buffers are called vir-
tual channels since they are essentially responsible for communication over the same
physical channels. Again, a labeling scheme is introduced to ensure the resource
dependency to be acyclic. The deadlock in Figure 5 is avoided by introducing one
more logical flit buffer ¢ and ¢} for each channel ¢; and ¢, respectively, as shown
in Figure 7(a). The channel dependency graph is shown in Figure 7(b). In addition
to its use for deadlock avoidance, the virtual channel technique can also be used to
increase network connectivity and support adaptive routing.

With virtual channels, a physical network can be also partitioned into several
virtual networks. A virtual network consists of a subset of virtual channels. Virtual
networks make it possible to support multiple topologies on a single multicomputer.
The concept has been used in some advanced computers such as Intel’s iWarp system.

In [55], a simple way is proposed to partition an n-dimensional mesh into 2"
virtual networks such that all Manhattan shortest paths are represented. A Man-
hattan shortest path has a shortest rectilinear distance between the source and the
destination. More precisely, suppose that G is a n dimensional mesh with nodes la-
beled with standard Cartesian coordinates. Clearly, a given channel lies in a single
dimension. The direction of each channel in G has two possibilities, specified as 1
or -1. G is partitioned into 2" virtual networks where each virtual network N is
specified uniquely by a vector (dy,...,d,) where d; € {1,-1}. N(dy,...,d,) consists
of all channels whose orientation is d; in dimension i for each ¢ = 1,...,n. Figure 8
shows the partitioning on a 2-D mesh.

Remarks:

1. It is easy to show that the above partition covers all possible Manhattan shortest

m

[R .
-

C1 cr c3
0
c2
Lz —Ls >

(a) Dashed lines represent logical channels

} Oém\o

C3

Q

(b}, Channel dependency graph for (a).

33

Figure 7: Deadlock Avoidance in a Wormhole Routing.

34

N(1,-1) N(-1,1)

\]

L

A

N(1,1) N(-1,-1)

A

Figure 8: Partitioning of a 2-D Mesh into Four Virtual Networks.

35

paths in an n dimensional mesh.

2. If a routing routes message through a Manhattan shortest path in one of the
virtual networks, then it is deadlock-free. This is because the virtual networks
themselves are acyclic and hence their corresponding channel dependency graphs

must also be acyclic.

The mesh which has such a virtual network support is called a partitioned
mesh. The above scheme is best for a low dimensional mesh. For example, for a
two dimensional mesh, the number of virtual networks is only two, which can be
implemented practically. In fact, in the Intel iWarp system, two virtual networks
are supported for a two dimensional torus, which is the physical configuration of the
system [14, 49]. A similar virtual network partitioning scheme for k-ary n-cube has

been proposed by Linder and Harden [74].
Fundamental Issues in Communication Overhead

In this section, we identify fundamental issues in developing mapping algorithms
to reduce communication overhead on a multicomputer.

The store-forward routing scheme was used in old generation multicomputers
such as Intel iPSC/1 and Caltech Cosmic Cube machines. This has been replaced with
advanced communication technologies such as the wormhole and the circuit switching
routing schemes in the current advanced multicomputers such as Intel Paragon, iWarp
and Ncube Ncube-2 machines. As we can see from the previous section, message
latency under the contention-free assumption has been reduced dramatically from
the store-forward routing to the wormhole routing. This change has a great impact

on the mapping problem. In the following, we identify three fundamental issues.

36

The first question is: does task placement still malter for the performance of
an application in an advanced multicomputer with the wormhole routing? 1t is very
natural to raise this question since the communication overhead has been reduced
dramatically in the wormhole routing scheme. However, when the channel contention
factor is taken into account, intuitively, message latency will be affected by traffic
congestion. It is thus important to understand how much a task placement scheme
can do to reduce message latency. Several researchers [13, 23] have studied this
problem based on various limited assumptions. However, the total completion time
of actual benchmarks which are mapped with several mapping schemes has not been
directly measured and studied.

The second question is: what factors contribute to the communication overhead?
For the store-forward routing, maximum dilation is one of the major metrics used to
develop a mapping. This has been changed for the wormhole routing. It is therefore
necessary to develop and study new metrics to better characterize the communication
overhead.

The third question is: how to reduce communication overhead when designing a
mapping algorithm? How do we design good placement algorithms and good routing
algorithms to optimize the new metrics identified? New methods should be studied
to incorporate these new metrics into the design of mapping algorithms.

In this thesis, we focus on these problems in Part I.
Communication Overhead Metrics

In this section, several mapping metrics related to communication overhead are
described. For the purpose of this thesis, we ignore other mapping metrics which are

not related to the communication overhead caused by the topological mismatch (such

37

as processor load balancing).

Since we do not consider processor resource mismatch in this thesis, we simplify
the mapping and assume that contraction has been done and thus, only a one-to-one
placement in the mapping is considered.

We first define the metrics based on the static task graph model. A static task
graph is a weighted graph C = (V, E, W,, W,) where the nodes V represent processes
and edge ¢ = (a,b) € E between node a and b represents a communication (possibly
bi-directional) between task a and task b with weight W, (e). This weight represents
an estimation of the communication volume between a and b. Each process a is
further associated with a weight W, (a) which represents an estimation of the amount
of computation performed by a. The topology of a multicomputer is modeled as
a graph A = (V(A), E(A)), where V(A) represent processors and E(A) correspond
to the processor-to-processor physical connections of the underlying interconnection
network.

A mapping M can be specified by two functions: M, and M, where M, is
a function which maps nodes in V' to nodes in V(A). M, is called a placement
function. M, is a function which maps an edge (a,b) in E to a path py,p1,...,9m in
E(A) such that po = My(a), pm = Mp(b). M, is called the routing function. When
the architecture only provides a fixed routing, M, is completely determined by the
fixed routing function.

The most widely used metrics for inter-processor communication overhead in-
clude dilation, channel contention and path level contention. Based on the static task

graph model, we have the following definitions:

Definition 2.1

The dilation of an edge m € E is |[M,(m)| (denoted as Dila(m)). The
weighted dilation of m is W.(m) x |M,(m)| (denoted as W Dila(m)). O

The dilation represents the the number of hops a message has to traverse.

Definition 2.2
The channel contention of a channel ¢ in E(A) is defined as
{e € E | ¢ € M.(e)}| (denoted as Cont(c)). The weighted channel

contention of c is defined as

We(m)
{meEjceMy(m)}

(denoted as WCont(c)). O

38

The channel contention measures how many messages conflict on a single channel. Re-

cently, a new metric called path level contention which is more useful for the wormhole

or the circuit-switching flow control schemes, is proposed by Chittor [23]. Intuitively,

path level contention is defined as, for each communication edge e € E, the number

of other messages whose paths intersect with the path for e.

Definition 2.3
The path level contention of a communication edge m € E is defined as
{m' € E | M.(m') N M.(m) # 0}| (denoted as PLC(m)). The weighted

path level contention of a communication edge m € E is defined as

W.(m')
m'eE|Mr(m!)NMy(m)£0

(denoted as W PLC(m)). m

39

The above definitions can be generalized to the TCG model. Intuitively,a TCG
can be viewed as a sequence of communication phases which are represented as a static
task graph. Thus, we can use the metrics defined above for each phase. Furthermore,
we can define metrics for the overall TCG based on the metrics for each phase.

Traditionally, maximum dilation has been the major metric used to evaluate
a placement scheme. However, as we can see from the previous sections, this is no
longer correct for advanced multicomputers. Maximum channel contention and path
level contention have become more important [23].

The above metrics are important since they give us an easy way to measure a
mapping with respect to communication overhead. We will show how these communi-
cation overhead metrics affect the ultimate metric, which is the total completion time
of 2 mapped program. In the next chapter, we will empirically study these metrics

based on simulation.
Overview of Part 1

The studies in Part I concentrate on the fundamental issues proposed on page 35.
The contributions of Part I are summarized as follows.

In Chapter III, we carry out empirical studies for two typical benchmarks
through simulation. The simulation results of these two benchmarks indicate that
task placement may still significantly affect the performance of a mapping. These
results also indicate that the performance of a mapping can be affected by many
factors including traffic congestion, message size, message startup cost and machine
size. One can not simply rely on a single factor to characterize the mapping perfor-
mance. To better quantitatively characterize and evaluate communication overhead,

we validate message latency formulae proposed in [76] through simulation. Fur-

40

thermore, a method is proposed to incorporate these formulae into an event-driven
multicomputer simulator, which leads to a useful performance evaluation framework
for parallel programs.

Chapter IV and Chapter V develop application-specific routings to reduce com-
munication overhead. We show that carefully designed routing algorithms that are
sensitive to the communication structure in an application are effective as a key step
in mapping for high performance. In Chapter IV, a general framework for application-
specific routing is proposed. An efficient heuristic is developed to generate low com-
munication overhead deadlock-free routing for a general multicomputer network. In
Chapter V, we propose an efficient heuristic to generate application-specific routing

on a mesh-connected multicomputer with virtual channel support.

41

CHAPTER III

COMMUNICATION OVERHEAD ON A MULTICOMPUTER

The purpose of this chapter is to better understand the nature of communication
overhead and how it affects the mapping problem for the wormhole routing, one of
the new communication technologies First, we carry out empirical case studies for two
well known benchmarks which are mapped with several mapping schemes. The map-
ping schemes are carefully chosen to clearly distinguish the contribution of individual
mapping metrics to the total completion time of the benchmarks. By directly mea-
suring the total completion time of a benchmark through simulation, we show that
the extra communication overhead incurred by the topological mismatch can signif-
icantly affect program performance. Based on our simulation results, the impact on
the performance of the benchmarks of several factors including path-level contention,
dilation, message startup cost, and system size is also characterized. Furthermore, we
develop analytical message latency formulae and show that they accurately predict
the actual latency. We then propose a method to incorporate the formulae into a
general-purpose multicomputer simulator, which leads to an important parallel pro-

gram performance evaluation framework.
Related Work

In the past, there have been several studies on communication overhead in a

multicomputer network. We summarize these studies in the following,.

42

In [28], Dally proposed an analytical model for the performance of a k-ary n-
cube and showed that, as long as the message injection rate is constant, the network
traffic contention will increase as the average message path length increases. Since the
larger the number of nodes in a system, the longer the average message path length
will be, this result justifies the fact that communication contention will have more
serious effects when the system size is large. This study was directed to the network
performance of wormhole routing. The method used in this study is probabilistic. No
specific benchmarks were studied.

Agarwal [1] proposed a contention model for a buffered direct network. Based
on the assumption that the probability of a network request (i.e. a message sending
request) on any given cycle from a node processor is constant, a message latency

formula was derived:

B(1 + np)

where T is the average message latency for a message sent from one node fo another
node h hops away, B is the number of flits for a message, n is the dimension of the
mesh, and p is the probability that a given channel is occupied.

The formula is more applicable to statistical performance studies, since the
probability of the message sending request for all processor nodes is assumed to be
a constant. In an application, the message request rate may vary dramatically from
process to process and thus from processor to processor too. Thus, it is unclear how
accurate the formula will be if one approximates the message sending request rate as

a constant.

43

Chittor’s work [23] directly addressed the effects of communication contention
related to the mapping problem. In his study, he assumed that a task injects (sends
out) messages uniformly to its neighbors at a constant rate (the message injection
rate). He studied the effects of a random mapping of a task graph on a mesh-connected
multicomputer. He showed that the message saturation injection rate is inversely
proportional to the maximum path-level contention, which is the maximum number of
messages whose paths intersect with the path of a given message. This result implies
that the more contention a mapping yields, the lower the peak message injection
rate for a task can be, which in turn, limits the attainable speedup. Furthermore, an
artificial application whose task graph is the same as matrix transpose was performed
on the Symulit 2010 and the results conform with the above analytical results. As
in Agarwal’s work, no message latency formulae directly related to an application
were developed. Since the message saturation injection rate was used as the main
performance criterion, the total completion time of an application was not directly
studied. The other limitation of Chittor’s work is that only random mapping was
compared with a specific mapping. Since a random mapping may have several bad
factors such as path-level contention and dilation, it is hard to distinguish among the
contribution of individual metrics to the mapping effect.

Bokhari [12) performed several simple experiments on Intel’s iPSC/860 which
uses the circuit-switching flow control scheme. He studied the effects of message
size, distance, communication channel contention, and nodal contention on message
latency. Using simple artificial communication structures, he concluded that edge
contention leads to severe overhead for all message sizes. A similar approach was

adopted by Dunigan [34] to study the performance of Intel’s iPSC and NUBE ma-

44

chines.

The major drawbacks in the above approaches are:

o the effect of different mappings on the total completion time of real parallel

applications was not studied;

e the factors which may affect the mapping performance were not clearly distin-

guished;

o the message latency formulae developed are not sensitive to an application and

are not directly applicable to performance prediction for an application.

In this chapter, we carry out empirical case studies on two well-known benchmarks
to directly measure the mapping effect on the total completion time. The results
offer a qualitative explanation for the mapping effect. We then proceed to study the
problem of quantitatively predicting message latency. The message latency formulae

are further validated through simulation.

Multicomputer Network Simulation

QOur empirical study is based on a multicomputer network simulator, Pro-
teus [16]. The Proteus simulator was originally developed at MIT. The simulator
is a direct-execution, event-driven simulator. It supports the concurrent C language
with extensions for interrupted-based message passing and shared memory support
such as semaphores. The simulator was implemented on the Pmax, a DEC Station.
Processes are modeled as user-level threads, which reduces context switching over-
head dramatically. A library of non-local computations such as process-spawning and

interrupt-based message passing primitives are provided. A program is first compiled

45

into MIPS machine code and then its basic blocks are identified and augmented with
cycle-counting operations (for simulation time advance). Cycles spent in the basic
block are estimated based on a table which maps a MIPS instruction to the number
of cycles needed for the instruction execution. The augmented program is directly
executed. The simulator is event-driven with all the events being put into a cen-
tral event queue. Proteus provides an accurate simulation for both processors and
networks [17].

We customized the network simulation modules of the Proteus simulator. A
PICL-like (Portable Instrumented Communication Library [42]) library was imple-
mented on Proteus so that the customized simulator is capable of supporting a
general concurrent C programming language with standard message passing mech-
anisms. Furthermore, both wormhole and store-forward flow control schemes were
implemented. Appendix A shows a program for 2-d FFT using PICL-like communi-
cation primitives.

In the following, we first describe the network simulation modules that we de-
veloped for the wormhole control flow scheme. We then describe how to modify the
simulation modules to model the store-forward flow control scheme. In the simulator,
a message is always assumed to be a single packet, that is, we do not distinguish a
message from a packet.

There are two types of network events: SEND_PACKET and ROUTE_PACKET.
SEND_PACKET is the initial network event generated when a message send opera-
tion is invoked. A ROUTE_PACKET event is generated for intermediate hop rout-
ing. In general, to route a message n hops away, if the message is not blocked,

one SEND_PACKET and n — 1 ROUTE_PACKET events are generated. The last

46

ROUTE_PACKET event delivers the message to the destination node processor.
In the blocking case, the blocked event is enqueued into a waiting FIFO queue
associated with the busy channel. When the channel is released by the current mes-

sage, the first blocked event is put back into the central event queue.
The Simulation Algorithm

The algorithms to handle the two events are described as follows. The central
event queue is denoted as CEQ. The time for passing a single flit through a channel

is modeled with a constant Flit_Time.

o SEND_PACKET event handler: A SEND_PACKET event is generated when
a message send function in the program is called. The SEND_PACKET event
handler mainly does two things: 1) get the route for the message; 2) try to inject
the message into the network (if it is successful, a ROUTE_PACKET event is
generated). The message startup cost is modeled with a variable Startup_Cost.

Figure 9 describes the handler in more detail.

o ROUTE_PACKET event handler: A ROUTE_PACKET event is generated to
model the event of passing the message header across an intermediate channel.
The ROUTE_PACKET event handler first checks whether or not the event is
resumed from the suspended queue. If it is, the handler can not simply advance
its tail right away since there might be several events which are demanding
the same channel for the header. If such a race condition occurs, the event
which is processed first wins and will occupy the channel for its header. Other
events which demands the same channel will be suspended again. Such a policy

corresponds to a FIFQ. Figure 10 describes the handler in pseudo code.

47

1. if (Source == Destination})
dispatch the message to Destination processor;
else call ROUTER to obtain channel C and next node N;
endif,
2. if {(Cis free)
mark the channe]l BUSY;
Timestamp = current Timestamp + Startup_Cost +
Flit_Time;
ADVANCE_TAIL of the message;
enqueue a ROUTE_PACKET event for N into CEQ, FINISHED;
else enqueue a SEND_PACKET event
into the associated suspend queue of C, FINISHED;
endif,

Figure 9: SEND_PACKET Event Handler.

1. if (the event is not resumed from the suspended queue)
ADVANCE_TAIL of the message;
endif;
2. if (Current == Destination)
if (Tail == Destination)
dispatch the message to Destination processor;
else enqueue a ROUTE_PACKET to CEQ, FINISHED;
endif;
else call ROUTER to obtain channel C and next node Nj
endif;
3. if (Cis free)
mark the channel BUSY;
Timestamp = current Timestamp + Flit_Time;
enqueue a ROUTE_PACKET event for N to CEQ, FINISHED;
else enqueue a ROUTE_PACKET event
into the associated suspend queue of C, FINISHED;
endif;

Figure 10: ROUTE_PACKET Event Handler.

48

o ADVANCE_TAIL: The routine advances the flits in the tail position and if
there are no flits left for the tail processor, the channel from the tail to the next
processor is released. Notice only for the source processor, it is possible that
it has more than one flit. Once the tail flit leaves the source processor, a tail
processor will have only one flit (i.e., the tail flit). A ROUTE_PACKET event
in the waiting FIFO queue associated with the released channel is put back into
the central event queve CEQ with the Timesta.mp updated to the current time.
Notice also since the intermediate channels which are occupied by flits other
than the tail and the header do not change their state for such a movement, it

is sufficient to only handle the tail and the header.

e ROUTER: The network topology and the routing decision are simulated in this

routine. It is straightforward to implement the E-cube and XY routing routines.
A Simple Example

In the following, we describe a simple example for the wormhole flow control
scheme. Suppose that simultaneously, node 1 sends a message with 3 flits to node 3
and node 2 sends a message with 2 flits to node 3. The router chooses 1-2-3 as the
route for the first message and chooses 2-3 as the route for the second message. The

central event queue is denoted as CEQ. An event is represented as a triple

(type (Source-Destination), timestamp, curreni-node)

where type is either SEND_PACKET or ROUTE_PACKET, (Source-Destination) is
used to denote 2 message whose source and destination nodes are Source and Destina-
tion respectively, timestamp is the timestamp for the event, and current-node denotes

the current node where the message header of the event is.

49

In this example, we assume Startup_Cost to be zero cycles and the cost to pass
a flit across a channel to be one cycle. Figure 11 shows every state when an event in
the central event queue (CEQ) is removed and handled, and Figure 12 illustrates the

states pictorially.

1. CEQ: {(SEND_PACKET (1-3), 1, 1), (SEND_PACKET (2-3), 1, 2)}
state: all channels are free
2. CEQ: {(SEND_PACKET(2-3), 1, 2), (ROUTE_PACKET (1-3), 2, 2)}
state: 1-2 busy
3. CEQ: {(ROUTE_PACKET (1-3), 2, 2), (ROUTE_PACKET (2-3), 2, 2)}
state: 1-2 busy, 2-3 busy
4. CEQ: {(ROUTE_PACKET (2-3), 2, 3)}
state: 1-2 busy, 2-3 busy with (ROUTE_PACKET (1-3), 2, 2) suspended
5. CEQ: {(ROUTE_PACKET (2-3), 3, 3)}
state: 1-2 busy, 2-3 busy with (ROUTE_PACKET (1-3), 2, 2) suspended
6. CER: {(ROUTE_PACKET (1-3), 3, 2)}
state: 1-2 busy, 2-3 free
7. CEQ: {(ROUTE_PACKET (1-3), 4, 3)}
state: 1-2 busy, 2-3 busy
8. CEQ: {(ROUTE_PACKET (1-3), 5, 3)}
state: 1-2 free, 2-3 busy
9. CEQ: {} time: 6
state: 1-2 free, 2-3 free.

Figure 11: Simulation Steps to Pass a Méssage from Node 1 to Node 3 and to Pass
Another Message from Node 2 to Node 3.

The simulation of store-forward flow control can be easily achieved by modifying
the above modules. In fact, if the flit size is treated as the whole message size instead

of a fixed small number of bytes, the flow control becomes store-forward.

The Mapping Effect

As we point out on page 41, past studies in characterizing communication over-

head have a major drawback, namely, the total completion time of an actual parallel

O Q @ @
3 ¢ 88
* 00 @09 OO —8
& @ @ & O O @
8 % o & O o
&0 0—0 ----- o O0—0
@ @ © 8

7. Time 4 8. Time 5 9, Time 6

Channel isfree ------ Channel is busy @ A flit @ Blocked header

Figure 12: The State of Each Channel and Physical Time of Each Step to Pass a
Message from Node 1 to Node 3 and to Pass Another Message from Node 2 to Node
3.

51

program is not measured. Furthermore, individual metrics’ contribution to the map-
ping effect is not clearly identified. To understand the relationship between an actual
program and its performance regarding communication overhead, we adopt a different
approach which uses two well-known benchmarks. Distinct mapping schemes clearly

demonstrate individual metrics’ contribution to the mapping effect.
The Benchmarks

Two benchmarks are carefully chosen for the study. The first one is a divide and
conquer algorithm (called DAQ) which is modeled as a binomial tree [76]. The second
one is a 2-D FFT which is modeled as a butterfly structure [40]. The criteria we used
to choose the benchmarks are: 1) Benchmarks should have wide applications. Our
first benchmark represents an important paradigm in parallel programming, divide
and conquer, which applies to applications ranging from sorting to multiplication of
a series of matrices. The second benchmark FFT has wide applications in numer-
ical analysis and digital signal processing. 2) Benchmarks should have interesting
communication structures for which various mapping schemes will have clearly dif-
fering performance impacts. For a binomial tree structure, several mapping schemes
have been developed for both store-forward and wormhole routed systems [76]. The
relatively rich interconnection structure of the butterfly used in 2-D FFT causes dif-
ferent mappings to have distinct communication overheads due to contention as well
as dilation. 3) Benchmarks should have regular temporal behavior so that we can
analyze their behavior more precisely. Many parallel applications exhibit a logical
synchronous phase-by-phase temporal structure. For example, for a typical divide
and conquer algorithm which is modeled as a complete binary tree, the computation

proceeds in a phase-by-phase fashion, that is, at every phase, all nodes except for the

52

leaf nodes at the same level of the tree do local computation (i.e. dividing) and then
send messages to their two children. In this case, we can view that a phase consists of
the local computation, the computation phase, and the message sending carried out
at a level of the tree, the communication phase. The phase-by-phase model has been
elaborated and studied in the TCG model [78]. Both DAQ and FFT have phase-by-
phase communication structures and the communication intensity varies from phase
to phase.

A DAQ is modeled as an N-node binomial tree. A typical divide and con-
quer algorithm consists of log(/V) dividing phases where a node repeatedly receives
message from its parent node, does computation, and then passes messages down to
its children; and log(/N) combining phases where a node receives messages from 1its
children, does computation, and then passes the results up to its parent node. Since
the dividing stage is similar to the combining stage, in our actual benchmark run, we
only model the dividing stage. Figure 13 shows an 8-node binomial tree and the three
dividing phases. Message sizes in our DAQ benchmark are assumed to be uniform in
the whole computation. Uniform message sizes for the DAQ occurs in applications
such as the multiplication of a series of matrices where the resultant matrix is passed
up to parent nodes from children nodes. The local computation of the DAQ appli-
cation is modeled as a loop of dummy integer additions. The number of iterations
of the loop is equal to the size of the message. Appendix A shows a sample of the
program.

For a 2-D FFT, we use a butterfly model. The algorithm is first described in
[40). In such an algorithm, the first log(P) phases (P is the number of processors)

are the communication and then combination phases, while the last phase involves

53

a sequential FFT on each node. Figure 14 shows the static topology (which is a

hypercube) for a 3-phase FFT and its phases.

8 node Binomial Tree

Phase 2 Phase 3

-------- Dashed line means no message passing in the phase

Solid line means message passing in the phase

Figure 13: An 8-Node Binomial Tree and Its Three Phases.

Based on the metrics defined on page 36 in Chapter II, in the following, we
generalize the metrics with respect to a TCG model which is used here to describe the

two phase-by-phase benchmarks. Formally, a TCG for a phase-by-phase benchmark

o4

8 node FFT Phase 1
Phase 2 Phase 3

Dashed line means no message passing in the phase

e Solid line means message passing in the phase

Figure 14: An 8-Node FFT Topology and Its Three Phases.

59

consists of K phases: each phase i is denoted as a static graph P; (as we can see from

the examples in Figures 13 and 14).

Definition 3.1

Path-level contention:

e For each phase ¢, mplc(z) is the maximum path-level contention for

graph P; (see the definition on page 36).

e The Maximum phase Path Level Contention (denoted as MaxPLC)
is defined as the maxi<, (mplc(3)).

o The Total Maximum phase Path Level Contention (denoted as Tot-
MaxPLC) is defined as T, mple(4).

Definition 3.2

Dilation:

e For each phase i, mdila(i) is the maximum dilation for graph P;.
Furthermore, totdila(i) is the total dilation for graph P; (see the

definition on page 36).

e The Maximum phase Dilation (denoted as MaxDila) is defined as
maxje, (mdila(?)).

e The Total Maximum phase dilation (denoted as TotMaxDila) is de-
fined as max’, mdila(s).

o The total phase dilation (denoted as TotDila) is defined as
v K | totdila(i).

56

Definition 3.3

Contention:

o For each phase ¢, meont(?) is the maximum contention for graph F;.

» The Maximum phase Contention (denoted as MaxCont) is defined

as the max¥®

=1

(mcont(z)).

The above metrics can be used to predict the total completion time for a phase-
by-phase application. Intuitively, if the path level contention is the dominant fac-
tor for mapping performance, TotMaxPLC serves as an approximation to the total
completion time. The same is true for TotMaxDila if dilation is considered as the
dominant factor for mapping performance.

For a DAQ, we consider three different mappings: reflecting, growing and ran-
dom. The first were are developed and formally defined in [76). Figure 15 shows an
example of the reflecting mapping. Intuitively, the reflecting mapping is constructed
recursively as follows: for the base case, we construct the mapping to map a one-node
binomial tree to a one-node mesh. To map a DAQ to a mesh of size 2™ x 2(m+1}
we divide the mesh consists of two submeshes of size 2™ x 2™ and use the mappings
constructed for mapping two DAQ subtrees of size 2™ x 2™ to the two submeshes.
We then reflect one submesh horizontally. Finally, we place the two submeshes hot-
izontally and designate one of the roots of the submeshes as the root of the original
DAQ. In the case where a mesh is of size 2™ x 2™, we can construct the mapping

similarly from the mapping to a mesh of size 2(m~1) x 2™,

)| [
[¢] [¢]

I

o] [o—re| [&7®| [erte
&8 —19—Te| [1&—(81®
(o ——¥—8| (TR —1®—®
o1—®]| [¢1—Te| [0 \ (&0
oo [or—te] [o—i®]| /[T
oo —(ar—0]| [188
oo —@—Te| [—Ter 19
Caatl e [of 19|

Dots represent nodes and edges represent those in a binotnial tree

Figure 15: The Reflecting Mapping to Meshes with Size from 1 to 64.

97

58

The second mapping called the growing mapping is also constructed recursively.
Figure 16 shows an example of the growing mapping. Again, we start from the trivial
mapping for a one-node binomial tree. To construct the growing mapping to a mesh
of size 2™ x 2(m+1} we consider the case where the mesh consists of a center submesh

(m=1) placed on the left side and

of size 2™ x 2™ and two other submeshes of size 2™ x 2
right side of the center submesh respectively. Since a binomial tree of size 2™ x 2(m+1)
can be considered as "growing” an additional node from each node of a binomial tree
of size 2™ x 2™, we can place those "grown” nodes on the two side submeshes so that
they are in the same row as their parents and they are of the distance from their
parents for all the "grown” nodes.

The random mapping is constructed by using a uniform random generator to
assign a process to a randomly generated processor.

Table 1 shows MaxPLC, MaxCont and TotMaxPLC for the two mappings.
Table 2 shows the TotDila, MaxDila and TotMaxDila for the two mappings. From
the tables, we observe that for the contention metrics, the reflecting mapping has
no path-level contention at all (i.e. equal to one, the minimum value), and the
growing mapping has path-level contention that increases logarithmically with mesh
size. For. the dilation metrics, the reflecting mapping always has larger TotMaxDila
than the growing mapping (see Table 2). Such a distinction between the two mappings
allows us to differentiate the effects of contention and dilation on the performance.
Analytical results from [76] for these two mappings state that the reflecting mapping
is good for a wormhole-routed network while the growing mapping is good for a
store-forward network. Our work here also provides an empirical verification for

these claims.

o] (o] [@]f [&f (& @ [&f |®

DUC.DDDC;

& ﬂ‘[l‘LJ r" ¢ ll‘ulu
iy

‘c.r -1 ..‘u D
mdaﬁqm\n
ciiciicio/cicelcie
CACRCAURCAC@CAC

Dots represent nodes and edges represent those in a binomial tree

99

Figure 16: The Growing Mapping to Meshes with Size from 1 to 64.

60

Table 1: Contention Metrics for the Reflecting and Growing Mappings of DAQ

Mesh Reflecting Growing

Size | MaxPLC | TotMaxPLC | MaxCont | MaxPLC | TotMaxPLC | MaxCont
64 1 6 1 2 8 2

256 |1 8 1 4 18 4

1024 |1 10 1 8 34 8

Table 2: Dilation Metrics the Reflecting and Growing Mappings of DAQ

Mesh Reflecting Growing
Size [TotDila | MaxDila | TotMaxDila | TotDila | MaxDila | TotMaxDila
64 69 3 10 111 2 8
256 | 291 5 20 879 4 16
[| 1024 | 1197 11 42 7023 8 32 I

61

For the FFT benchmark, three different mappings are considered: gray-code,
identical and random. The gray code mapping scheme is first introduced in [40].
It can be described as follows: first, all nodes in an FFT are labeled with the gray
code scheme so that a node only communicates with others whose node labels differ
in one row-bit. This results in a hypercube structure for the static task graph of
the FFT. We then map the hypercube to the mesh with a row-column gray code
mapping scheme. Figure 17 and Figure 18 show the example mappings for gray-code
and identical mappings. Table 3 and Table 4 show the contention and dilation metrics
of the gray code and identical mappings. From the tables, we can see that while the
gray code mapping has smaller TotMaxPLC on all the meshes, the identical mapping
has smaller TotMaxDila.

Table 3: Contention Metrics for the Gray Code and Identical Mappings of FFT

Mesh Gray code Identical f
l Size | MaxPLC | TotMaxPLC | MaxCont | MaxPLC | TotMaxPLC | MaxCont
[| 64 4 14 4 6 18 4
[256 |18 50 8 20 58 8 |
| 1024 | 73 196 16 72 201 16 |

Table 4: Dilation Metrics for the Gray code and Identical Mappings of FFT

Mesh Gray code Identical |
Size | TotDila | MaxDila | TotMaxDila | TotDila | MaxDila | TotMaxDila ||
64 896 T 22 896 4 14 |
256 | 7680 15 52 7680 8 30

|| 1024 63488 31 115 63488 16 60

62

(0,0) 0.3)
® O o (@
® % o |@ % ®/ e
% ? O @ o\ |®
i e (0 © 9 9
(3.0) G3)
Phase () Phase 1
TN
o—@ @ o—® @
TN
o {o] (el {0 o7 [®®
TN
ol {0 el o oo
TN
e o—0 o—9® O
Phase 2 Phase 3
Dots represent processes and edges represent communication

Figure 17: The Gray Code Mapping (Shown by Phase by Phase Communication) to
Mesh of Size 16.

©0) 03)
o o |® | f
o] (6] [@
LECEONC
® |o o (@

3.0) 3.3)

Phase 0
ol—leo| (oo
oo [elT®
ol lo| [l '@
oo (oo

Phase 2

e o el |e

o] To| (@ To

Phase 3

Dots represent processes and edges represent communication

63

Figure 18: The Identical Mapping (Shown by Phase by Phase Communication) to

Mesh of Size 16.

64

Simulation Setup

The architecture topology we study is a 2-D mesh. This is because the mesh
topology is becoming more dominant in the latest commercial machines due to its
good performance [28]. A simple XY-routing is used for the mesh architecture.

The empirical studies are organized to study the performance of different map-
ping schemes with various problem sizes, namely, in DAQ, the message size parameter
(8, 128, and 8192 bytes) and in FFT, the size of the subarrays processed in the first
phase (8, 64, 512 and 4096 bytes). Furthermore, we consider the performance impact
by the following architectural parameters, namely, flow control schemes (wormhole
and store-forward), system size (i.e. the number of processors in a mesh, 64, 256 and
1024 nodes are considered) and the startup cost. The message startup cost is chosen
to be a fixed number of cycles, 100 simulation cycles. The message size parameter is
varied relative to the fixed startup cost. In this way, the effect of the startup cost can
be characterized based on its relation to message size. For example, for a message
with only 8 bytes, the startup cost with 100 cycles will play a more significant role
with respect to the message latency than for a message with 4k bytes.

The simulator is configured so that passing one byte across a channel takes one
simulation cycle. In the wormhole control flow scheme, the flit length is assumed to
be one byte. Thus, passing a flit across a channel under wormhole routing takes one
simulation cycle while passing a message of L bytes across a channel under store-
forward takes L simulation cycles.

In all the simulation runs, the completion time of the benchmark run (i.e. the
number of simulation cycles produced at the end of the simulation run, called sim-

ulated time stime) is observed and recorded. By comparing the completion time of

65

benchmarks of the same problem size mapped with different schemes, we are able to

observe the performance differences between two different mappings.
Simulation Results

The complete simulation results are listed in Appendix A. Based on the simu-

lation data, we make the following observations.

o Message traffic congestion: Message traffic collisions can significantly affect the
performance of a mapping for large message size on a wormhole-routed system.
For example, for the DAQ benchmark, the reflecting mapping has no traffic
collisions and the growing mapping has some traffic collisions. The performance
difference between these two mappings is clearly demonstrated in Table 5. In
Table 5, for a mesh of 1024 nodes, the total completion time of the growing

mapping is two times larger than that of the reflecting mapping.

The message traffic congestion also affects mapping performance for the FFT
benchmark. The performance difference between the gray code and identical
mappings is shown in Table 6. It is intereéting to note that in the FFT case, the
performance difference between the gray code mapping and the identical map-
ping is not as large as in the DAQ case. Furthermore, the simulated completion
time (stime) of the gray code mapping is slightly worse than that of identical
mapping on a 64 node system. The reason for this is that since the gray code
mapping has worse TotMaxDila (see Table 4), performance is also affected by

this factor.

When message size is small, path-level contention is no longer a dominant factor.

For example, for the cases where message size is 2 bytes or 128 bytes, the growing

66

mapping performs slightly better than the reflecting mapping on all the mesh
sizes (refer to Tables 13 to 15 in Appendix A). This result implies that one
can not simply single out one factor to characterize the mapping effect.
Table 5: Performance Comparison Between the Reflecting Mapping and the Growing
Mapping of DAQ of Message Size Equal to 8192 Bytes on a Wormhole-Routed Sys-

tem. Column 4 Shows the Ratio of stime of the Growing Mapping over stime of the
Reflecting Mapping

Mesh Size | stime(Reflecting) [stime(Growing) | Ratio
1024 99017 206402 2.08
256 72810 119397 1.64
64 53119 68282 1.29

Table 6: Performance Comparison Between the Gray Code Mapping and the Identical
Mapping of FFT of Message Size Equal to 512 Bytes on a Wormhole-Routed System.
Column 4 Shows the Ratio of the stime of the Identical Mapping over the stime of
the Gray Code Mapping

Mesh Size | stime(Gray) | stime(Identical) | Ratio
1024 998167 1282705 1.28
256 876964 942890 1.07
64 814084 813135 1.0

e Message dilation: Message dilation is a more important factor for a store-
forward routed network. For example, in DAQ, the total maximum phase dila-
tion of the reflecting mapping is larger than that of the growing mapping. For
message size equal to 128 bytes, Table 7 shows that the growing mapping con-
sistently performs better than the reflecting mapping in a store-forward routed
systemn. Message dilation can also affect performance for small message sizes on

a wormhole routed system. For example, in the DAQ benchmark, the growing

67

mapping consisiently performs slightly better than the reflecting mapping on
all the mesh sizes (refer to Tables 13 to 15 in Appendix A).
Table 7: Performance Comparison Between the Reflecting Mapping and the Growing

Mapping of DAQ of Message Size Equal to 128 Bytes on a Store-Forward Routed
System

Mesh Size | STime(Growing) | STime(Reflecting) | Ratio
1024 19676 22935 1.17
256 8650 9734 1.13
64 4574 5030 1.10

e Sysiem size: The simulation results confirm the conclusion drawn in [1, 23]
that the bigger the system size is, the more important a mapping is. This can

be seen from Tables 5,6, and 7.

e Message startup cost vs. message size: The relationship between message
startup cost and message size plays an important role for performance. In
our simulation, the mapping effect is more visible when message size well ex-
ceeds the startup cost. In Table 13, for example, the performance difference
between the reflecting mapping and the growing mapping is too small to be
noticed when message size is only 2 or 128 bytes, but the difference becomes
obvious when message size becomes larger, 8192 bytes. The reason here is that
since the startup cost is modeled as 100 cycles, for size equal to 2 or 128 bytes,
the startup cost offsets the message latency and thus different mappings do not

make much difference.

e Raendom mepping: Since no knowledge about the computation structure is taken

into account, a random mapping should have worse contention as well as dila-

68

tion. In all of our cases, random mapping consistently performs worse than a

carefully designed mapping (refer to Tables 13 to 21 in Appendix A).

From the simulation results, we can see that TotMaxPLC and TotMaxDila
better predict the total completion time difference than other metrics such as TotDila
and MaxCont. This is because TotMaxPLC and TotMaxDila better capture the
temporal behavior.

To summarize, in this section, we have shown, from empirical case studies, that a
mapping which is designed carefully to minimize message traffic collision and dilation
can significantly outperform other mappings for both wormhole and store-forward
flow control schemes. Our studies also show that the performance of 2 mapping can
not be simply characterized by a single factor. In a wormhole-routed machine, for
applications with large message size, path-level contention can be used as the main
optimization criterion. For applications with small message size, however, both path-
level contention and dilation should be taken into consideration to design a good
mapping. Furthermore, our results strongly suggest that certain kinds of temporal
information should be incorporated into mapping metrics. For example, in the FFT
benchmark, the gray code mapping has a better (smaller}) MaxPLC on 64-node and
256-node systems but has a larger MaxPLC on a 1024-node system than the identical
mapping. However, the gray code mapping always outperforms the identical map-
ping in the large message size case. This is because MaxPLC ignores the accumulated
path-level contention among all the phases in the FFT. On the other hand, TotMax-
PLC takes the accumulated contention effect among all the phases into account and
thus predicts the performance of a mapping more accurately (in the FFT case, the

TotMaxPLC of the gray code mapping is always smaller than that of the identical

69

mapping).
In the next section, we will discuss how to model runtime information more

accurately to better predict message latency and hence communication overhead.

Message Latency Estimation

From the above empirical results, we can see that different placements still have
a great impact on the performance of a program. However, those results only qual-
itatively identify the possible factors which may affect performance. Furthermore,
several factors such as message size and message startup cost can interact with each
other to produce different performance results. Thus, to accurately predict the perfor-
mance of a mapping, it is not sufficient to use simple static factors such as path-level
contention or dilation from a static task graph, which do not take the runtime be-
havior (such as phase-by-phase information) into account. To better evaluate and
characterize the performance of a mapping, we should develop a more accurate model
for the runtime behavior of the mapped program. One approach to accomplish this
is to develop a sufficiently accurate analytical formula to predict message latency.
Based on the message latency formula, we can further develop analytical models to
predict the total completion time of a mapped program. In this section, we study
message latency prediction based on program, mapping and architectural parameters.

In [76}, a message latency estimation formula was proposed to analyze mapping
performance. The message latency formula assumes that we are given a communica-
tion structure where all messages are sent out simultaneously. For a message m, in a

wormhole-routed machine, we will use the following formula, which is a variation of

70

the one in [76].

plc(m)
FLIT LENGTH

T(m) = startup+ §+*(+ dilation(m))

where, startup is the number of cycles for a message passing startup cost, 8 is the
number of cycles needed to send a flit across a communication channel, dilation is
the number of hops the message has to travel (in XY-routing scheme), and ple(m)
is the path-level contention of message m when m is sent. In order to estimate the
total communication time, we assume that the message m will meet and be delayed
by every message m;, whose route is overlapped with m’s. We further assume that
the delay induced by each m, is equal to the time that m; needs to occupy a single
link.

The first assumption is pessimistic, since there may not necessarily be a conflict
merely because two messages happen to use the same link (the first message may
arrive early enough that by the time the second message arrives, the link may be
free). To understand the justification for the second assumption, it is obviously true
if the messages contend exactly once for a single link. One of them is then delayed
by precisely the time that the other one occupies the link. If two messages contend
for a contiguous sequence of links, then they are sent in a pipelined fashion, one after
the other. In this case, the delay for the first link is just what we have assumed
above, For each successive link, the delay depends on the difference between the
message volumes (if the message that is sent first is no larger than the later one,
then there is no further slowdown). Finally, if two messages contend multiple times

in disjoint sections of their paths our assumption is not valid, although it is often the

71

case that the first conflict will separate the messages enough that later contention
is unlikely in any but the most pathological cases. In fact, for many fixed routing
schemes such as the XY-routing on a mesh and the E-cube routing on a hypercube,
it is guaranteed that the routes of two messages only intersect with each other on at
most one continuous section.

For the store-forward flow control, the above formula can be easily modified as
follows. The FLIT_LENGTH is equal to the message length length(m), however,
B is changed to FLIT_.LENGTH * v where 7 is the number of cycles needed to
pass a flit across a communication channel. The following is the formula for the

store-forward scheme:

T(m) = startup+ FLIT_.LENGTH *~vx* (% + dilation(m))

An impediment to the above two formulae is that they require knowledge of path
level contention plc(m), i.e., runtime information about how many messages have
path level contention with m at the time m is sent. This limitation can be overcome
in three ways. 1) When we are doing analytical studies of a known program which
has regular temporal communication structures, the path-level contention of each
message can be approximated. For example, in the DAQ benchmark, at each phase,
we know what messages are sent and also, based on the mapping, we can calculate
path-level contention of each message at each phase. In fact, the formulae were
origir;ally developed for this purpose. 2) In a simulator, we can calculate the path-
level contention on the fly based on the network state when the message is sent. We

will detail this scheme on page 73. 3) We can make a gross approximation based on

72

the static task graph if it is known. This approximation could potentially introduce

a large error into the formulae.

Justifying the Formulae

In this section, we validate the proposed formulae with randomly generated
communication structures, where each node can have at most one message sender
and one message receiver. Three independent random generators are used, the first
is for the message sender, the second for the message receiver, and the third for the
message volume, which is bound to a given size.

The simulator is configured such that the startup cost is 100 cycles. The topol-
ogy of the simulator is a 2-D mesh with 64 to 1024 nodes. The routing scheme used in
the simulator is XY-routing. Three different message sizes are used, 8 bytes, 4k bytes
and 8k bytes. Two flow control schemes are used: wormhole and store-forward. Each
run is repeated 100 times to achieve a low standard deviation for the error measured.

Tables 8 and 9 list the simulation results. In the tables, we validate the proposed
formulae by comparing the predicted simulated completion time (pstime) when the
formulae are used in the simulator, with the simulated completion time (stime) when
a detailed (hop-by-hop) simulation in the simulator is used. In the tables, the Avg.
Error Ratio stands for the average of (pstime — stime)/stime over 100 runs.

From the simulation results, we can see that predicted simulation time (pstime)
matches that of the accurate simulation (stime) fairly well for both wormhole and
store-forward routing. For the wormhole flow control scheme, about 14% average
error ratio is achieved. The worst 28% average error ratio happens for small messages
(8 bytes) on a large system (1024 nodes). The reason is that for small messages, the

plc(m) factor in the formula may be too conservative since when message size is small,

Table 8: Prediction vs. Simulation Error for the Wormhole Routing

Machine size | Msg Size (<= bytes) | Avg. Error Ratio | std_deviation
64 8 0.08 0.03

64 4096 0.15 0.14

64 8192 0.14 0.13

256 8 0.17 0.05

256 4096 0.13 0.12

256 8192 0.12 0.08

1024 8 0.28 0.06

1024 4096 0.08 0.07

1024 8192 0.10 0.07 |

Table 9: Prediction vs. Simulation Error for Store-Forward Routing

Machine Size | Msg Size (<= bytes) | Avg. Error Ratio | std_deviation ||
il 64 8 0.08 0.04
64 4096 0.26 0.11
64 8192 0.25 0.12
256 8 0.11 0.04
256 4096 0.21 0.09 I
256 8192 0.21 0.09 i
1024 8 0.16 0.06
| 1024 4096 0.20 0.07
{| 1024 8192 0.20 0.06

73

74

messages whose path intersects with message m’s may have quickly passed through
some of the channels (or even their whole path) so that these messages may not have
a conflicting demand for the same channel anymore.

For the store-forward flow control scheme, the average error ratio is increased to
about 19%. This is again introduced by the ple(m) factor which is more conservative
in predicting the delay for a message due to the contention than in the wormhole
scheme. The reason here is that, in the wormhole scheme, since a message can occupy
multiple channels at the same time, it is more likely for two messages to compete for
the same channel than in the store-forward case, where a message can only occupy a
single channel at any time.

In the following section, we show how to incorporate the formulae into a per-

formance evaluation framework using a simulator.

Incorporating the Message Latency Formulae into A Simulator

There are many applications of the message latency formulae. In this section,
we show how to use the formulae for performance evaluation of a parallel program by
incorporating the formulae into a simulator.

To use the formulae, we need to know the communication structure to calculate
the path-level contention of a message. To be more accurate, we use the runtime
communication structure constructed dynamically by the simulator when message
sending primitives are executed. More precisely, when a message is sent, the commu-
nication structure is formed based on the current pending messages (called pending
message graph) in the simulator. A message is called pending if the message is already
injected to the network (i.e. its SEND_PACKET event has been processed) but is

still not delivered to its final destination. These pending messages are recorded in

75

the simulator dynamically and when a message finishes its transmission, it is deleted
from the pending message set. Based on the pending message graph, path-level con-
tention can be calculated and the message formulae are used to calculate the message
arrival time. A new ROUTE_PACKET event is generated with the calculated mes-
sage arrival time as its timestamp. Notice we can use more flexible formulae here to
predict the message latency. For example, for a message whose path is long, we can
estimate the message latency from the source to the middle node (a middle node is
the node where the path length from source to itself is approximately equal to the
path length from itself to the destination) and the message latency from the middle
node to the destination. This will generate two ROUTE_PACKET events instead of
one and will give us a more accurate estimation if this is necessary. The extreme case
here is that we will estimate the message latency hop by hop, which will result in the
most accurate simulation but longer simulation time.

We show the use of the formula by running 2-D FFT on both simulators for
the wormhole control flow scheme, one of which is based on the detailed, hop-by-hop
network simulation and the other is based on the estimation formula for the network
simulation. Table 10 shows the simulation results.

Compared with the error ratio introduced for a random communication struc-
ture on page 71, much smaller error ratios are achieved here. The reason for this is as
follows. Since there is local computation performed in the FFT, the total completion
time consists of two parts, namely, the time spent on the local computation and the
time spent on message passing. Since the message passing time is only a certain

percentage of the total completion time, the error ratio is reduced.

76

Table 10: Prediction vs. Simulation Error for a 2-D FFT on a 64 Node Wormhole
Routed System

Subarray size | Mappings | Detailed Time | Prediction Time | Error Ratio
8 Identical | 24315 23389 0.038
8 Gray 24012 23454 0.023
8 Random | 23766 23276 0.021
M 64 Identical | 180846 176078 0.027
[| 64 Gray 181512 176241 0.029
64 Random | 182913 176682 0.034
512 Identical | 1815960 1792797 0.013 I
512 Gray 1821085 1793155 0.015 |
512 Random { 1857309 1793378 0.034 |
I

Applications of the Message Latency Formulae

The message latency formulae proposed above has many interesting applica-

tions.

1. From the formulae, we can clearly state that path-level contention, dilation, as
well as the startup cost, may all contribute to communication overhead intro-
duced by a placement scheme in a wormhole routed system. Development of a

good task mapping scheme should be tailored by these factors.

2. We can use the formulae to do analytical studies of the performance of a mapped
program. This is demonstrated in the paper by Lo et al. which analyzes the
performance of the reflecting mapping and the growing mapping for a binomial

tree divide and conquer algorithm [76].

In the following, we detail the third application. We propose a practical scheme
to integrate the techniques proposed above with the synthetic benchmark framework

proposed by Poplawski [92] for parallel program performance prediction.

77

A synthetic benchmark for an application program is constructed as follows: in-
tensive local computation is replaced by a generic COMPUTE routine (simple generic
looping with the time estimated based on the original program}. The input and out-
put of data are eliminated (or modeled with some generic routines). The advantage
of using the synthetic benchmark instead of the original benchmark is that it sim-
plifies the evaluation process. In fact, in the process of designing and evaluating the
algorithm for an application, the user can first construct the synthetic benchmark
without actually specifying the details of the program, and the synthetic benchmark
can be run on the machine to predict the performance of the algorithm. Poplawski
further pointed out that this scheme can be used in an event-driven simulator where,
executing the generic COMPUTE routine corresponds to advancing the clock based
on the time COMPUTE spends. This speeds up the simulation considerably since the
simulation of intensive computation is achieved by advancing the simulation clock,
which is independent of the actual computation time.

The communication overhead, however, is not handled in Poplawski’s frame-
work. The message latency formula for the store-forward scheme under the contention-
free assumption (refer to page 19) is used in [92]. One can not afford to do hop by
hop detailed simulation for a large computation because of the long simulation time
which depends on the message size. Using our formulae eliminates hop-by-hop simu-
lation. This technique, combined with the generic COMPUTE, results in a scalable,

efficient performance prediction scheme.

onclusions

The contributions of this chapter are summarized as follows.

78

1. We study communication overhead issues related to the mapping problem. We
directly measure the total completion time of two well-known benchmarks which
are mapped with several mapping schemes with various interesting character-
istics. Compared with previous work [23, 12, 1] which only measured network
traffic performance, our results here offer direct insight into the impact of com-
munication overhead, incurred by the topological mismatch, on actual perfor-

mance.

2. To distinguish the effect of contention from that of the dilation, for each bench-
mark considered, we carefully choose two mappings so that the effects of these
two factors can be clearly distinguished. Based on the simulation results, we
are able to qualitatively characterize the effects on mapping performance. This

extends Chittor’s work [23] which did not clearly differentiate these two factors.

3. To better evaluate and characterize the performance of a mapping, we study
message latency estimation using the message formulae developed in [76]. In
this chapter, the message formulae are validated through simulation. Com-
pared with message latency formulae developed in [28, 1], our formulae are
sensitive to an application and are not based on statistical parameters for the
network. The formulae have many applications which include analytical per-
formance evaluation of a specific application, further analytical studies of com-
munication overhead and mapping metrics, and simulation-based performance
evaluation. In this chapter, we further develop a method to incorporate them

into an event-driven multicomputer simulator.

79

4. We propose a general performance evaluation framework which integrates the
techniques for message latency estimation in a simulator with the synthetic
benchmark framework proposed by Poplawski [92]. The framework is scalable

and practical.

We discuss future work in the following. For empirical studies of the mapping
effect on actual benchmarks, more benchmarks are needed to better characterize
a wide range of applications. For example, non-uniform message size distributions
should be studied. Communication intensive and less intensive applications should
be chosen for benchmarking.

Furthermore, other architectural models such as circuit-switching flow control
schemes and virtual channel support should be developed. Important factors for appli-
cation versus. architecture aspects such as communication/computation ratio should
be also investigated. For communication overhead prediction, more benchmarking is
needed to validate the message latency formulae. Further tradeoffs between accuracy
and performance of a simulator should be studied.

The performance evaluation framework proposed offers a promising practical
way for parallel program evaluation, which is much needed in the parallel comput-
ing community. Future work in this area involves the use of compile time data flow
analysis to (semi)automatically generate the synthetic benchmark for a given pro-
gram. Furthermore, we need to develop a comprehensive performance evaluation
environment which can perform several levels of approximation based on compile
time information as well as the user input. We believe such an environment will have

important practical applications in parallel program performance evaluation.

CHAPTER IV

APPLICATION-SPECIFIC WORMHOLE ROUTINGS ON A
MULTICOMPUTER NETWORK

Some multicomputers such as Meiko's transputers or Intel’s iWarp machines
allow the user to control the routing, in addition to the system supported default
routing. Moreover, in many practical applications such as those in digital signal
processing or in real-time environments, message passing structures can be known a
priori. This provides an opportunity to optimize performance based on the knowledge
of the applications. For message routing, instead of using a system-supported default
routing scheme such as XY-routing on a mesh-connected multicomputer, we can de-
sign routing based on knowledge of the message passing requirements at compile time
to reduce message traffic congestion. For example, consider a matrix transpose ap-
plication where processor (i,j) needs to exchange data with processor (j,1). If we
use XY-routing, it will cause unnecessary contention for some of the communication
channels. On the other hand, a routing designed specifically for the messages can re-
duce the contention dramatically. Figure 19 shows the XY-routing of a 3 x 3 matrix
transpose which has contention 2 on several channels. In contrast, we can route the
message from (1,3) to (3,1) through (1,3),(1,2),(2,2),(2,1),(3,1) and the message
from (3,1) to (1,3) through (3,1),(3,2),(2,2),(1,2),(1,3). This gives a contention-
free routing.

As we pointed out in Chapter III, in 2 wormhole-routed multicomputer, mes-

81

(L) (1.2) 1.3

—I 2.2

(1) 3)

=

EAY (3.2) 33

Figure 19: XY-Routing for 3 x 3 Matrix Transpose.
sage traffic congestion plays an important role in the performance of an application.
Wormbhole routing also introduces a new problem: deadlock can occur because blocked
messages remain in the communication channels [30]. In this chapter, we develop a
general framework to develop application-specific wormhole routings. Furthermore,
based on the framework, we develop a method to generate message routes which have

low message traffic congestion and are deadlock free.
Related Work

The problem of choosing paths for a given set of messages has been studied for
various routing schemes. In {10], Bianchini and Shen propose a scheduling algorithm
for message traffic in a multiprocessor network. The problem is formulated as a
network flow problem based on the assumption that a message can be split into
several small flows at a node. This assumption is not applicable to current tightly

coupled, high-speed multicomputer networks since the overhead to manage message

82

splitting and combining may well exceed that of the whole message transmission
through the network.

A scheduled routing framework is proposed by Shukla and Agrawal [111}, for
real-time periodical pipelining applications. In their scheme, the router of a processor
sets up channel connections based on switch setting commands received from the
application running in that processor. The switch setting commands are generated
statically at compile time based on a priori knowledge of the task structure in a way
that guarantees there will be an unobstructed path for each message during the whole
message transmission period. Since messages are routed through the network without
collision, the generated routing is always deadlock free. The scheme can only be used
for an architecture which has specialized communication modules. Furthermore, it is
not always possible to find paths such that messages do not collide. In this case, it is
not clear how the deadlock is avoided.

The previous work which is most closely related to ours is the traffic routing
scheme proposed by Kandlur and Shin [58]. They study the problem of choosing paths
for an arbitrary set of messages to be routed in a network with virtual a cut-through
routing capability. They show that the problem of choosing pairwise edge-disjoint
paths for a given set of messages is NP-complete and an efficient heuristic algorithm
is presented. The heuristic first randomly chooses a path for every message and then,
tries to reroute one message at a time to decrease the total cost, which is defined as the
summation (over all links) of the squares of the total message volume passing through
each link. If the total cost can not be improved for all messages, the algorithm stops.
It has been shown by simulation that the algorithm performs very well.

For a wormhole routed-network, however, Kandlur and Shin’s algorithm may

83

generate a deadlocked routing. In Figure 20, the final routing of Kandlur and Shin’s
algorithm is optimal with respect to the cost function they define. However, the
routing is deadlocked since in the example, the set of paths for my, ma2, ma, m4 create
a channel dependency cycle C; — C, — C3 — C4 — Ci. This is also true for

Ml) M21 M3a M4~

M1

P -
P

M4

Figure 20: An Example Where Kandlur and Shin’s Algorithm Generates a Deadlocked
Wormbhole Routing.

Problem Definition

By application-specific routing, we mean a routing designed specifically for the
messages used in an application. This contrasts with the fixed schemes such as E-cube
and XY routings which are independent of the messages to be routed. More precisely,

we assume that processes of an application have been assigned to processors and we

84

also assume that message weights are known. Such weights can be the total volume of
the messages sent between processors or the frequencies of message passing between
two processors obtained by methods such as program profiling. In graph-theoretic

terms, we formally define the problem as follows.

Definition 4.1
Let A = (P, E) be a directed graph where nodes correspond to processors
and edges to communication channels in the physical network. Let a set
of messages be represented as S = (M, W). M is a set of pairs of nodes in
P where (s,d) € M represents the source processor and the destination
processor for a single message, respectively; and W is the weight func-
tion which maps pairs in M to nonnegative integers representing message

volume.

A routing is a function R which maps every pair (s,d) € M to a simple

path (pﬁvpl)) (plaPZ)a rey (pk-hpk) in A such that Po=3S,pr = d. =

As we point out in Chapter III, in wormhole routing, message traffic congestion
is the predominant factor for performance. For the purpose of this chapter, we define

contention metrics with respect to a specific routing.

Definition 4.2
For routing R, the contention of a channel is defined as the number of
the messages passing through it. The maximum contention of R, C(R),
is the maximum contention over all channels. In particular, if the number
of messages passing through a link h is C(R), we call & a hot spot. If

C(R) =1, we say R is contention-free. 0

85

Intuitively, each channel whose contention equals C(R) is one of the hottest traffic
spots in the network. Hot spots are especially undesirable in a real-time application
since the delay of messages may slow down the whole application and the deadlines
may not be met. Qur objective, in this chapter, is to find a routing which has minirnal

maximum contention.

Definition 4.3
The T-Cost of R, TC(R), is defined as

TCR)=3(2 Wm)

eEE meM,ee€R(m)

TC is the summation of the square of the weighted channel contention over all
the channels. It reflects both the contention and dilation of the routing. The dilation
effect is reflected since the longer the dilation of a message is, the more often its
message size will appear in the summation. The contention effect is reflected by the
square of the weighted channel contention. For example, suppose that there are only
two messages m; and m, and W(m;) = W(mp) = K where K is a constant. If
the two messages do not have any overlapped path under routing R, then TC(R) =
K? x (Dila(m,)? + Dila(m;)?) where Dila(m,) and Dila(m,) are the dilation of m,
and m; respectively (refer to Definition 2.1 on page 38). But if m; and mj have one
overlapped channel in their routes, TC(R) = K? x (Dila(m,) + Dila(m;)) + 2K2.
Thus the contention effect is also taken into account.

TC was first defined and used as a cost metric in [58]. In the heuristic we

propose here, we use this cost function as a secondary metric to control the algorithm

86

so that it does not detour messages too far to reduce the maximum contention.

In addition to the minimal maximum contention objective, the routing gener-
ated must be deadlock free in a wormhole routing. As we point out on page 26,
deadlock can occur in a wormhole routing scheme when a circular channel waiting
state is reached. A well-known condition for a deadlock-free wormhole routing is given
by Dally [30] based on the concept of the channel dependency graph. The channel
dependency graph CDGr, for a routing R is a directed graph whose nodes are chan-
nels used in the routing. If there is a path in R such that ¢, c; are two successive
channels in this path, then there is an edge in C DGz from node ¢ to ¢; (also called
¢; depends on ¢;). It is clear that a channel dependency graph depends on a specific

routing.

Property 1 [30] Routing R is deadlock free for wormhole routing mechanism iff the

channel dependency graph C DG is acyclic.

Our optimization problem is to find a deadlock free routing which has the min-
imal maximum contention. Based on a result given in [58], which states that the
decision problem of whether there exists a contention-free routing for an arbitrary set
of messages in an arbitrary network is NP-complete and a contention-free routing is

also deadlock free, we have

Theorem 4.1
The problem of deciding whether there exists a deadlock free contention-
free routing for an arbitrary set of messages and an arbitrary network is

NP-complete.]

Since the deadlock-free condition requires checking links in the original network

A, it is useful to have a structure to represent link relationships explicitly. We define

87

a graph called the Generic Physical Channel Dependency Graph (GPCDG) for this

purpose.

Definition 4.4
For a given network (directed graph) A = (P, E), its GPCDG is a directed
graph D4 = (V, D) where its node set V is EU P and its edge set D is
defined as follows: for all e; = (a,b),e2 = (b,c) € E, we have an edge
(e1,e2) € D. Furthermore, for every edge e = (p1,p2) € E, we also have
an edge (p1,), (e,p2) € D also. We call a node ! € E a link node and a

node p € P a processor node. !

Intuitively,a GPCDG D, captures all possible dependencies among the physical
channels of A and also retains the original network topology. A key difference between
a channel dependency graph and a GPCDG is that the former corresponds to a specific
routing and the latter is independent of any routing. Note the GPCDG is analogous
to the total graph in graph theory [51] which is defined for an undirected graph.
Figure 21 shows an example of GPCDG.

We now reformulate the optimization problem for a deadlock-free routing based
on the GPCDG.

Problem Definition: Given a GPCDG D, for a network A = (P, E) and a set
of messages S = (M, W), a routing R is a function which maps each pair (s,d) € M
to a simple path in D4 whose endpoints are s and d and whose interior points are
link nodes in D 4. Furthermore, a routing R is deadlock-free iff the subgraph formed
by message paths in GPCDG D, is acyclic. The maximum contention becomes the
maximum number of messages passing through a link node of the GPCDG. The ob-

jective of our optimization problem is to find a deadlock-free routing which minimizes

88

processor node |

link node ®

edge between link nodes —_—
edge between a link node and ——— e
a processor node

Figure 21: The GPCDG of a 2 x 2 Mesh.

the maximum contention over all link nodes in Dj4.
Deadlock-Free Low-Maximum Contention Routin

Our deadlock-free heuristic (D F H) for the wormhole routing scheme is straight-
forward. It starts from an initially preselected deadlock free routing, iteratively tries
to reduce the contention of hot spots (there might be several such spots) by rerouting
messages through other channels with less contention such that the new routing is
also deadlock-free and its T-Cost TC(R) decreases. The algorithm stops if no fur-
ther improvement can be achieved. Figure 22 shows the outline of DFH. DF H has
two major procedures, initialize and reroute. Procedure initialize selects an initial
deadlock-free routing. Procedure reroute tries to reroute a message through other
channels other than the hot spot so that the T-Cost is decreased and no other hot

spots through the rerouting are created. To efficiently find the hottest spots, a prior-

89

[¥DFH */
R = initialize(D,);
repeat {
TCous = TC(R);
for (every hottest spot k in R){
if (there exists a message m passing through A which
can be rerouted through channels other than & and
the T-Cost decreases) {
R=reroute(m); }}}
until {TCoa == TC(R)};
Figure 22: Outline of the Deadlock-Free Heuristic DF H.

a priority queue is used to manage link nodes with priorities being their contentions.

The following two subsections describe the two routines in more detail.
Initialization

Finding a deadlock-free routing as the initial routing for DF'H is straightforward
for many regular networks such as hypercubes, meshes and tori. For a hypercube, we
can use E-cube routing which always routes a message in the order of decreasing di-
mensions. This routing has been proved to be deadlock-free for wormhole routing [30).
For a 2D mesh or torus, we can use XY routing which always routes a message first
along the X-direction and then along the Y-direction. This is also known to be
deadlock-free. Some applications, however, may use irregular interconnections and
there may be no known deadlock-free fixed routing for such networks. For example,
the iWarp system allows the user to configure an irregular network by setting up
so-called pathways [14]. We propose a simple method to find an initial deadlock-free
routing for an irregular network topology. The method uses a spanning tree of the

network to find such a routing.

90

Property 2 Let A = (P,E) be a bidirectional network, which is represenied as an
undirected connected graph and S = (M, W) be a set of messages to be routed, it is

always possible to find a deadlock-free wormhole routing R for 5 in A.

Proof
Let ST be a spanning tree of A. ST can be found efficiently (for example,
with using a depth-first search). Let DST be the directed graph generated
from ST by replacing a single undirected edge (p;,p2) in ST with two
directed edges (pi,p2) and (pz,p1). We define a routing R as follows.
Since for any two nodes (s,d) € M, there exists a unique simple path
P = (p1,p2,-+-,Ps) from s to d (s = p1,d = p,) in DST, we designate
the directed path of P (which exists in A since A is bidirectional) as the

routing path for (s,d).

To prove R is deadlock-free, assume the opposite. Then by Property 1, the
channel dependency graph CDGz has a simple cycle ¢, ¢z, ..., ¢, Where
c; corresponds to edge (si,d;) in DST for i = 1,...,n. Thus d; = si1
fori=1,...,n—1and d, = s, and s1,...,5, form a cycle C in DST.
But the only cycles in ST are those which are formed by cycles (p, p2)
and (pz,p1). Therefore, there exists an 1 <7 < n such that e = (Siy8i41)
and €' = (8;41,5;) are two successive edges in C. But this implies that e
depends on e’ and e’ depends on e, which is not correct since R always

routes messages through a simple path in ST. m]

The importance of the above property is that it indicates there is always a deadlock-
free routing for any bidirectional network. Furthermore, the spanning tree approach

efficiently finds an initial deadlock-free routing (with linear time complexity in the

91

number of edges of A). The drawback of the algorithm is that the message traffic
contention of the resultant routing is high because of the tree structure. Thus, when

a network is regular, we use the fixed routing as its initial routing.
Reroute a Message away from a Hot Spot

Procedure reroute takes a routing R, a hot spot hin GPCDG Dy, and a message
m passing through link A as its inputs and returns a new routing. Assume the nodes
immediately before & and immediately after % in the path for message m are a and
b respectively (note: a,b may be processor nodes). reroute tries to reroute m from a
to b by trying to avoid passing through k. It should be noted that we can not simply
reroute m through any path from a to b even though such rerouting can decrease
maximum contention and the T-Cost. This is because such a path may create a

deadlock. To simplify the discussion, we need the following definitions.

Definition 4.5
For a routing R, R is also used to denote the channel dependency relation
induced by R on link nodes in D4. A path is said to be deadlock-free with
respect to a routing R if adding the dependencies in the path to R still

preserves the acyclic condition in Dy. Q

Let R, correspond to the channel dependency relation after the removal of
message m from path a,h,b. Note that R; may still retain dependency a — ‘h or
h — b since there might be other messages routed through these links. Also note if
R is deadlock-free, R, is deadlock-free too, since removal of dependencies can not
introduce deadlock. The goal of reroute is to find a deadlock-free path from a to b to

replace a, h, b such that the T-Cost is decreased.

92

The algorithm uses depth-first search to find such a path. It starts with an initial
partial path containing only a and examines the unsearched link nodes adjacent to
the most recently added node of P. If adding an unsearched node does not cause
deadlock and the new partial T-Cost does not exceed the old T-Cost, then the node
is marked as searched and is added to P. The procedure continues until it either
reaches b or no new node can be found which satisfies the deadlock-free condition and
decreases T-Cost. In the former case, a new route from a to b has been found. In the
latter case, the algorithm backtracks to the previous node in P. If no new deadlock
free path is found (i.e., if @ is examined again), then m is still routed through a, k, b.

Figure 23 shows the algorithm. Ocost is the T-Cost of the initial routing R and

Pcost is the T-Cost of the current partial routing,.

[* reroute m from h. */
/* Assume m passes link a, h, b successively.*/
P = {a}; mark(a);
Ocost =cost(R);
Pcost=cost(remove-m-from-h(R,m, h));
while (P not empty and lasi(P) # b) {
if (there is a deadlock-free unmarked node u adjacent to last(P)
and update(Pcost,u) < Ocost){
P = PU{u};
mark(u);
Pcost=update(Pcost, u) }
else
{P = P—{lasi(P)};
recover{ Pcost);} }

Figure 23: reroute Function.

Procedure reroute requires testing whether adding a node causes deadlock in

PUR. To efficiently accomplish this, we maintain the transitive closure of the chan-

93

nel dependency relation induced by R. This is because to test whether there is a
dependency from node n; to node n;, one would have to test whether there is a path
from n, to n, in the graph induced by R. The transitive closure of R reduces the
complexity of this testing to be a constant.

Let R* be the transitive closure of R and R] be the corresponding transitive
closure of R;. Since computing the transitive closure [2] is relatively expensive (O{ N3)
where N is the number of link nodes), we want to avoid recomputing the entire new
transitive closure every time we find a new path to replace path a,k,b. This can be
achieved by maintaining the transitive closure as a matrix whose ij entry represents
the number of directed paths from a link node i to another link node j instead of
simply a binary entry to indicate whether there is a path from ¢ to j. Each time a new
path is found to replace a, k, b, only some entries of the transitive closure are changed.
The time it takes to compute the number of paths for all pairs of link nodes after
the initial routing has been chosen is the same as to compute the standard binary
transitive closure. Figure 24 shows the algorithm to update the transitive closure once
a new path has been found. The time complexity to update the transitive closure is
reduced to N?|P|, where |P| is the length of P.

The algorithm to test whether a node is deadlock-free or not when P is added
to R, is shown in Figure 24. Since it is possible that no new path other than a, k,b
can be found, we would like to retain R and not update it until a new path is found.
The algorithm in Figure 24 uses R instead of R, to accomplish the deadlock testing.

This is justified in Property 3.

Property 3 Path P, as chosen by algorithm reroute, is deadlock-free with respect to
R;:.

/* update-transitive-closure(R", P,a, h,b)
returns an update R} by replacing a, k, b with P in R* */
R =R
/* removal of 2 — k (if any) */
if {removing m from path a, h, b causes ¢ / h}
for {all I such that { 2 aorl=uga}
for {all k such that k waork="h}
Ry(1, k) = Ry(l, &) — 1;

/* similar code for the removal of & — b and adding P, omitted*/

%deadlock-free-test(u, P,R*,b)

if {there is no p € P such that uR"p and not(bR*u) }
return irue;
else return false

Figure 24: Updating Functions for a Transitive Closure and deadlock-free-test.
Proof
We first prove that P is deadlock-free with respect to R. Notice P defines
a total order < (i.e., the successive order of edges in P). If adding P to R
causes a simple cycle C, C' must contain some subpaths in P. Figure 25
shows the structure of C where P; (i = 1,...,m) are subpaths of P in C.
Otherwise, C is a cycle in R, which is a contradiction. Let k; and ¢; be

head and tail of P; respectively.

If there exists an ¢ such that {; < ko, 22 < ha,..., %1 < h; and t; £ hiyq,
we have h;y; < t;. From the structure of C, we notice that there exists a
path L in R (refer to Figure 25) from ¢; to h;4y. But this is a contradiction
since the algorithm deadlock-free-test guarantees that there is no such a

path in R.

94

95

If there is no such 7, then k; < t; < t,, and there exists a path in R from

i, to hy. Based on the similar argument, this is impossible.

Since R, is contained in R. P must be deadlock free with respect to

Ri. O
h, Pl t
Path segment of P —
tm h, .
PathinR]
. Y
By L
tu-l m{ ﬂ" h1
P 1 t

Figure 25: Illustration of the Cycle C for the Deadlock-Free Testing.

Since deadlock-free-test is based on R rather than R, a natural question is whether
it eliminates some paths which are deadiock-free with respect to R; but not with
respect to R (it is possible since R contains R;). The following property answers

this question.

Property 4 A deadlock-free path P = ay,...,a; where a = ag with respect to R, is

also deadlock-free with respect to R.

Proof

If adding P to R causes a simple cycle C, then R must have more de-

pendencies than R,. It is safe to assume that R has both @ — h,h — b.

96

Based on the similar argument in the proof of Property 3, there exists a
situation where there are a;,a; € P such that a; <p a; and there is a

path L in R from a; to a;.

If there is no a — A and h — b in L, then, C is a cycle in the channel

dependency graph R, lJ P, which is a contradiction.

Therefore, there exists @ — h or h — b in L. If there exists a — k, then
the path segment from a; to ¢ does not have any a — h and h — b since

C is simple. Based on the previous argument, we know this is impossible.

The only remaining case is when there is only an & — b in L, in addition
to other dependencies in R,. But since for a, to be in P, deadlock-free-
test must have guaranteed that there is no path from b to ¢, in R, which
includes A — b. This is clearly a contradiction. Hence, we prove the

property.]

An upper bound of the time complexity of DF H can be estimated as follows.
Procedure initialize takes time O(|E|) if the spanning tree approach is adopted and
takes O(1) if a default routing is used. Calculating the initial transitive closure takes
O(|EP?). Since there are at most |M| number of messages, there are at most |M| dif-
ferent maximum contention. Also, there are at most [E| link nodes whose contention
is the same. Hence, the total time is at most O(|E| + |E]® + |M||E|(T (reroute))),
where T(reroute) is the time complexity for reroute. Since at most |E| edges are ex-
amined in reroute and deadlock-free-test takes at most |P| (P is the path considered)
steps, we have T(reroute) = O(|E||P| + | E|*| P]). Since we use T-Cost to control the
path length, we can easily derive that |P| = O(|M|W) where W is the maximum
weight of messages in M. Thus, the total complexity of DF H is O(|M*|E*W).

97

Performance

Two test suites are used to evaluate DF H. Each is evaluated on the torus and
hypercube topologies. In both tests, performance is evaluated using both maximum
contention and T-Cost. The performance of DFH is compared with those of the
E-cube and XY fixed-routing schemes respectively. These fixed-routing schemes are
also used as the initial deadlock-free routings.

The first test suite includes two types of randomly generated message distri-
butions. In the first case, messages are uniformly distributed. Three independent
uniform random number generators are used to generate source nodes, destination
nodes and message weights respectively. Message weights range from 1 to 50. The
number of messages ranges from 10 to 200.

In the second case, messages are nonuniformly distributed on the network in a
way to capture communication locality which is usually exhibited after the assignment
of processes to processors for an application. This is modeled by dividing the network
into four equal parts and messages are distributed uniformly in two quadrants and
no messages exist in the other two quadrants. The topologies are a 6 x 6 torus and a
5-dimensional hypercube. A 5-dimensional cube is divided into four subcubes labeled
as 00zzz,01zzz, 10zzT, 11722 Where z represents a don’t care bit and zxz represents
a subcube of dimension 3. Messages are uniformly distributed in subcubes 00zzz and
11zzz. No messages exist in subcubes 0lzzz and 10zzz. A 6 x 6 torus is divided
into four 3 x 3 meshes with additional wrap around links. In the upper left and the
lower right quadrants, messages are uniformly distributed and no messages exist in
the upper right and lower left quadrants. The same message weight ranges and the

number of messages, as in the first case, are used.

98

For both cases, performance metrics are averaged over 25 runs of DFH for a
given number of messages. It is observed that the standard deviation of the mean
maximum contention for all data is less than 6%.

Figure 26 compares the maximum contention of the routing generated by DF H
with that of E-cube routing. Figure 27 shows the percentage improvement of DFH
over E-cube for both maximum contention and the T-Cost. For nonuniform case,
DFH consistently reduces maximum contention by 30% to 40% and for the uniform
case, by 15% to 25% compared with E-cube routing. The T-Cost has much less
percentage improvement than maximum contention. This is because DFH takes the

maximum contention as its primary optimization goal.

18 1 1 L} I 1 1] 4 i

E-cube routing (uniform) —
16 - DFH routing (uniform) —
E-cube routing (nonuniform) e

DFH routing (nonuniform) - - - -

4
12
avg 10

max
contentiong

20 40 60 80 100 120 140 160 180 200
numbers of messages

Figure 26: Average Maximum Contention for a 5-Dimensional Cube for Both Uniform

and Nonuniform Message Distribution.

Figure 28 and Figure 29 show the maximum contentions for DF H routing and

XY routing and the percentage improvement for both maximum contention and T-

99

I 1 I I I I 1 I I
50 |- Maximum contention (uniform) —
T-Cost (uniform) —
Maximum contention (nonuniform) e
a0 b T-Cost (nonuniform} -
percent(%)30
improvement
20
10 |,
0

20 40 60 80 100 120 140 160 180 200
number of messages

Figure 27: Percentage Improvement of Maximum Contention and T-Cost for a 5-
Dimensional Cube for Both Uniform and Nonuniform Message Distribution.

Cost on a 6 x 6 torus. Again, for the percentage improvement, we see a fairly good
gain for maximum contention and a moderate gain for T-cost. It can be seen also
that the improvement is less than that in the binary cube case for the same number
of messages. This is because the binary cube has more connectivity than the torus.

The second test suite includes two specific applications. For both applications,
a simple greedy embedding algorithm is used to assign processes to target topologies.
The first application is the n-body algorithm which is designed for the Caltech Cosmic
Cube [5]. Figure 30 gives a description of the problem. In the simulation for the 15-
body problem both 5 x 3 torus and 4-dimensional cube topologies are used.

The second application is a program called AVHTST which is used to determine
cloud properties from satellite imagery data [104, 57]. Figure 31 gives a description of
the problem and its task structure. In the simulation, an 18 nodes AVHTST program

is routed on a 4 x 4 torus and a 4-dimensional cube respectively.

100

20 I | 1] i I I]
XY routing (uniform) —
DFH routing (uniform) —
XY routing (nonuniform) e
15 DFH routing (nonuniform) -- - - S

avg
max 10
contention

0 L] 1 L1 | | 1 1 | I

20 40 60 80 100 120 140 160 180 200
numbers of messages

Figure 28: Average Maximum Contention for a 6 x 6 Torus for Both Uniform and
Nonuniform Message Distribution.

40 I] L} I I I 1 I [}
Maximum contention (uniform) —
35 I T-Cost (uniform) —— -
Maximum contention (nonuniform) e
30 | T-Cost (nonuniform) -- - - -
4
25
percent(%) 9
improvement
15
0 L~ 1 ! 1 1 I I ! !

20 40 60 80 100 150 140 160 180 200
number of messages

Figure 29: Percentage Improvement of Maximum Contention and T-Cost for a 6 x 6
Torus for Both Uniform and Nonuniform Message Distribution.

The n-body problem requires determining the equilibrium of n bodies in space
(where n is odd) under the action of a (gravitational, electrostatic, etc.)
field. This is done iteratively by computing the net force exerted on each
body by the others (given their “current” position), updating its location
based on this force, and repeating this until the forces are as close to zero as
desired. The parallel algorithm presented by Seitz [5] uses Newton's third law
of motion to avoid duplication of effort in the force computation. It consists
of n identical processes, each one responsible for one body. The processes
are arranged in a ring and pass information about their accumulated forces
to its neighbor around the ring. After (n — 1)/2 steps, each task will have
received information from half of its predecessors around the ring. Each task
then acquires information about the remaining bodies by receiving a message
from its chordal neighbor halfway around the ring. This is repeated to the
desired degree of accuracy. In the above is the task graph of 7-body problem.

Figure 30: The Description of n-Body Problem and Its Task Graph.

101

AVHTST is part of a program for the study of cloud properties based on
satellite imagery data. It is responsible for data analysis and reduction. Input
to AVHTST consists of ¢ channels of data, where each channel is represented
by a pixel array corresponding to a scene of data at a distinct wavelength.
Furthermore, each array is divided into f x f frames. Each frame is first
processed independently and then the results for the corresponding frames in
all ¢ channels are combined. Finally, the combined results for f x f physical
frames are broadcast to all other frames for an adjustment of local results.
In the last step, the results are aggregated. Above is the task graph for
AVHTST with 2 channels of data each with 2 by 2 frames per scene. Nodes
are labeled with a triple where the first component represents the channel
number and the remaining components are the frame coordinates. All edges
have unit weight.

Figure 31: The Description of AVHTST Benchmark and Iis Task Graph.

102

103

Table 11 shows the simulation data for the two applications. In all cases, there
is significant improvement with respect to maximum contention. In addition, all

percentage improvements for T-Cost are above 10%.

Table 11: Performance of DF H for the Applications

Applications Max. Contention T-Cost |
Fixed | DFH | Percentage | Fixed | DFH | Percentage |
15-body on b X 3 torus 5[3 20.0% | 27800 | 20800 25.2% |
15-body on &-dim cube 3 2 33.3% | 23400 | 19000 18.8% ||
AVHTST on 4 x 4 torus 7 5 28.6% | 410] 367 10.5%
AVHTST on 4-dim cube 5 3 40.0% 198 | 166 16.2%

We observe that in the simulation, the number of hot spots is usually much
greater than one and as the number of contending messages decreases, the number
of links which have that number of contending messages increases. This explains
the fact that when the maximum contention is small, it is extremely hard to further
reduce it.

The performance results conform with our intuition. When messages are uni-
formly distributed on the network, commonly-used fixed-routings may evenly load
network channels. As a result, it is difficult for DFH to improve the T-Cost. For
the cases where messages are nonuniform distributed or for specific applications, since
message distribution often exhibits spatial locality, the fixed-routing schemes are more
likely to yield higher contention. Thus, DF H can have more improvement for both

maximum contention and T-Cost.

104

Conclusions

The deadlock avoidance problem, which arises from wormhole routing, poses
some challenging problems in the design of application specific routings. More so-
phisticated techniques need to be developed. Since channel dependencies cause dead-
lock, we formulate the problem of finding a low maximum contention deadlock-free
routing as a graph theoretic problem on the Generic Physical Channel Dependency
Graph of the original network. A simple heuristic is proposed. To avoid expensive
updating of the channel dependencies, a modified transitive closure algorithm is used.
The performance of the heuristic is studied. The algorithm converges very fast in all
the testing sets. The heuristic has significant improvement for nonuniform message
distribution as well as for two specific applications and has moderate improvement
for uniformly distributed messages over well known fixed routing schemes.

The application-specific wormhole routing generated by our heuristic can be
used in advanced multicomputers. An example is Intel’s iWarp multiprocessor system
[14]. In an iWarp system, the physical interconnection network is a torus. However,
the interconnection can be logically reconfigured by setting up pathways. A defauit
routing called street sign routing, which is essentially the XY routing scheme, is
supported by the system. However, applications can change routes by generating
necessary routing information in the header of a message.

- Future work includes developing more efficient heuristics for application-specific
deadlock-free routing. We should further study how to fully utilize the regularity of
the GPCDG for a regular network such as a mesh or a hypercube to develop more
efficient heuristics. Furthermore, as is pointed out in Chapter I1I, we should study the

problem of how to reduce message traffic by reducing path level contention instead of

105

maximum traffic contention. We should also study how to take into account temporal
information in an application when developing a routing algorithm. For the TCG
model, one simple way to extend the work in this chapter is to apply the application-
specific routing phase by phase, i.e., we can generate routings for each phase instead

of for the whole static task graph.

106

CHAPTER V

AN EFFICIENT HEURISTIC FOR APPLICATION-SPECIFIC ROUTINGS ON
A MESH CONNECTED MULTICOMPUTER

In Chapter IV, a method is proposed to generate deadlock free low traffic con-
tention routings for applications. The method does not assume that there is virtual
channel support in the router. In this section, we study the problem of generating an
application-specific routing for a mesh connected multicomputer with virtual channel
capability.

Given a mesh with virtual network support, we study the problem of finding a
minimum maximum contention routing for a given application whose message passing
structure is known a priori. The routing on the virtual networks is called minimal

routing since all feasible paths are of shortest Mahattan distance.
Related Work

Besides the work mentioned on page 80, there has been extensive study on
off-line permutation routing algorithms (refer to page 24) on mesh-connected mul-
ticomputers. The pioneer sorting algorithm on mesh was proposed by Thompson
and H. T. Kung [114] and an optimal routing algorithm was proposed by Nassimi
and Sahni {86]. Recently, permutation routing algorithms with constant queue size
on a mesh have also been proposed by Leighton et. al. [72], Krizanc et. al. [65],

and Rajasekaran et al. [94]. All of these work, however, assume that a routing is a

107

permutation.
Minimal adaptive routers have been also proposed by Konstantinidou [62] and
Gravano et al. [47). The algorithms, however, are designed specifically for a dis-

tributed, on-line router.

Application-Specific Routing on a Partitioned Mesh

For the purpose of this chapter, we consider our target architecture to be an
n dimensional mesh which is partitioned into virtual networks as described in Chap-

ter I1. Formally, we define a routing on a partitioned mesh as follows.

Definition 5.1
Let A = (P, E) be a directed graph representing an n dimensional mesh
where nodes correspond to processors and edges to communication chan-
nels in the physical network. Let A be partitioned into 2"~! virtual net-
works as discussed on page 26 . Let a set of messages be represented
as M which is a multiset of pairs of nodes in P, where (s,d) € M rep-
resents the source processor and the destination processor, respectively,
for a single message . A routing on A is a function R which maps every
pair (s,d) € M (s = (81,...,5.) and d = (dy,...,dy)) to a simple path
P = (po,p1, P2, --,Pk) in A such that po = s,px = d and the length of P
is k = T ,(|s; — di|). Such a routing is called a minimal routing in [15]

and is abbreviated as m-routing. (]

It is possible that M is not a permutation. Furthermore, two messages with
the same source and same destination addresses may be present in M (i.e., M is a

multiset).

108

For a minimal routing, message collision is the predominant factor for perfor-
mance. This is because all messages are routed through some shortest path and the
effect of distance for the routing performance is minimized.

As in Chapter IV, our objective, in this chapter, is to find a routing which has

minimal maximum contention which is defined in Definition 4.2 in Chapter IV.

Definition 5.2
Optimization Problem: Given an n-dimensional mesh A, of size m; X m3 x

... X m,, and a set of messages M to be routed, find a m-routing R such

that C(R) is minimal.

The Contention-Free Decision Problem (CFD): Is there an m-routing R

such that C(R) = 1 for a given set of messages M. O

We show, in the following, that the optimization problem is NP-hard for an n-
dimensional mesh when n > 2. In particular, we show that the decision problem can
be polynomially reduced to the 3-Sat problem [41]. The proof is based on the method
used in [58] where the problem of finding a contention-free routing (not necessarily

minimal) on an arbitrary network {graph) is proved to be NP-complete.

Theorem 5.1
The contention-free decision (CFD) problem is NP-complete for n > 2.

0

Proof
We show that the problem is NP-complete for three-dimensional meshes.

The conclusion for higher dimension can be deduced easily.

The problem is clearly in NP since given a guess of a possible routing, we
can easily verify whether the routing is contention-free or not in polyno-
mial time. We show that 3-Sat(isfiability) problem [41] is polynomially
reducible to CFD.

Let © be a proposition which is a conjunction of k disjunctive clauses
with a total of m variables z;,...,z» in a 3-Sat problem. We construct
a routing problem instance Rp on a three dimensional mesh A such that

Rp has a contention-free m-routing iff © is satisfiable.

We construct, in A, a subgraph A; which is crucial for the construction

of Rp.

Figure 32 shows the construction of A4;. We denote a node in A by its
coordinate (z,y, z) where the first node is (1,1,1). Corresponding to the
m variables, we construct m rectangles in plane z = k+ 1. Each rectangle
represents the occurrences of one variable in ©. The size of the :-th rectan-
gles is 2L; x 2 where L; is the number of occurrences of both literal z; and
#;. Two corner nodes in the i-th rectangle are denoted as Cji, Cj respec-
tively where, in the rectangle, C},C} are the closest and farthest points
to origin (1,1,1) respectively. We call nodes with smaller y coordinates
lower trail nodes and nodes with larger y coordinate upper trail nodes in
a rectangle. We further use U} to denote the node whose z-coordinate is
the j-th smallest among all possible z coordinates in the upper trail of
the i-th rectangle. In the same way, we label the j-th lower node as V.

Notice that Ci = V{, Ci = U2, We intend to relate the jth-occurrence

of z; in © to edge (U':;-(j-l)-{-l’U;-(j—le) or edge ("’2‘.(5-1)“, V‘j-(j-l)+2);

109

depending on whether z; or &; occurs. These rectangles are connected by
a horizontal edge which connects Cj and Ci*'. Furthermore, we desig-
nate two special nodes Sr and Dp which will be used as the source and
destination nodes for a message. We connect Sr to C} and, CJ* to node
Dr horizontally. Figure 32 shows the coordinates of all of nodes we have

defined in A;.

For the i-th clause (i = 1,..., k), we designate two nodes 5;, D; which are
intended to be source and destination nodes for a message. S; is placed
in plane z = i which is under plane z = k 4 1. D; is placed in plane
z = k+1+ 1, which is over plane z = k + 1. Their coordinates are shown
in Figure 32. Furthermore, we connect 5; and D; by paths which pass
through rectangles as follows. H the j-th occurrence of literal z, or £, is
in the i-th clause C, then we construct a path from §; to D; by joining the
follow path segments: S; to I, = (2+ X024 L, + 2+ (§ — 1),1,1) in plane
y = 1, notice that the z-coordinate of I, is the same as the z-coordinate
of U.(j—1)41 OF Vasi—yas Ip to Jp = I, + (0,6 + p,0) where § = 1 if
this occurrence is z, otherwise § = 2; J, to K, = J, + (0,0,k — i + 1);
K, to K, = K, +(1,0,0); Here, K, and K are Us,;; 1)1, Usu(io1)42
or VZi-(j-l)+1’ 1/2‘_(3-_1)+2, depending on §. K to @, = K, +(0,0,1); @, to
R, = Q,+(0,m+3-6-p,0); R, to D;. Here, é is chosen such that, when
the occurrence is z,, the path passes through an edge in the lower trail of
the rectangle and when the occurrence is £, the path passes through an

edge in the upper trail.

110

It can be verified that paths from S; to D; are disjoint from paths from
S; to D; in A, for any ¢ # j.

The largest coordinates in A, are from Dy = (2+ X%, Li,m + 3,2k +1).
We choose the size of A as (2 + 272, Li) x (m +3) x (2k + 1).

The routing problem Rp is constructed as follows: the message set M
consists of a message from Sr to D, a message from S; to D; for : =
1,...,% and messages from a to b for any edge (a,b) in A but notin A, (we
consider A to be a directed graph and every edge in a mesh corresponds

to two directed edges in A).

We claim that the 3-Sat problem has a true assignment iff Rp has a

contention-free m-routing in A.

(=) If the 3-Sat problem has a true assignment, the i-th clause (for any
i = 1,...,k) has at least one literal, say, z, or &, for the smallest index
p which is true under the assignment. By the construction of A;, there is
a path in A; from S; to D; which passes a path segment from K, to K;
in rectangle p. We choose this path as the route for the message from S;
to D;. Since we choose K, and K, consistently: if z, occurs, we choose
lower nodes; if #,, we choose upper nodes, either upper or lower nodes in
a rectangle are chosen, but not both. Therefore, we can choose the spare
upper trail or lower trail as one of path segments for message from Sr to
Dr. For other messages whose source and destination nodes form an edge
not in A;, we simply choose this edge as the route for the message. This

routing is a contention-free m-routing.

111

112

(<) Supposed that Rp has a contention-free m-routing. First of all, notice
that messages from S; to D; and message from S¢ to Dr must be routed
through edges in A, since for every edge (a, b) not in A,, there is a message
to be routed from a to b, which makes (a,b) the only possible route for
a m-routing. This constrains the routes for the remaining messages to
edges in A;. For message from Sr to Dr to be unobstructed, only one
trail (either lower part or upper part but not both) in any rectangle in
plane z = k + 1 can be routed for messages from S; to D;. We construct
a truth assignment as follows: for any p = 1,...,m, if message from Sr
to Dp is routed through upper trail in rectangle p, z, is assigned True,
otherwise, z, is assigned False. Since there exists at least one unobstructed
path P; for message from S; to D; and P; contains at least one edge in a
rectangle, say, p, this means that clause ¢ has an occurrence of literal z, or
Zp. Furthermore, if P; contains a lower edge in rectangle p, we know clause
i has an occurrence of z,, which has been assigned True. If P; contains
an upper edge in the rectangle, we know clause ¢ has an occurrence of Z,,.
However, in this case, z, is assigned Felse. In both cases, the truth value

of clause ¢ is True. This concludes that the 3-Sat problem is satisfiable.

Since the above construction can be finished in polynomial time, we prove

the theorem. D

The case for a two dimensional mesh is unknown. We conjecture that it is still
NP-complete for the contention-free decision problem. Therefore, the Optimization

Problem is NP-hard. .

s
P

Si
51

113

Rp, .
fQP
/ '
3
c,
Pom =g F
1 p GG/ __;
c, € > .
Y S .1
c,
/ £
/ Ip
LetW=2E?;,L.-
Cl =(2,2,k+1) S5i=(,4L,1) Dy=(2+W,m+3,k+2)
Ci=(1+2L1,3,k+1) $=(1,1,2) D;=(2+W,m+3,k+3)

Cr=(1+Wm+2,k+1)
Sp = (1,2,]5:-{-1)
Dr=024+Wm+2,k+1)

Si=(1,1,k) Dy=(2+W,m+3,2k+1)

Figure 32: Illustration of the Proof of Theorem 1.

114

A Heuristic Algorithm

Based on the NP-completeness result in the previous section, it is therefore
justified to design an efficient heuristic algorithm for the optimization problem. In
this section, we present a simple and efficient heuristic algorithm BLOCK.

The idea behind heuristic BLOCK is that, in an n dimensional mesh, given
a message to be routed from source node s = (s1,...,55) to destination node d =
(dy,...,dy), we know that it is going to be routed in a shortest Manhattan path from
s to d. This means that it can only pass through the directed edges in the rectangle
{(Z1,-..,%a)|si € 7 < d;}. We call the rectangle an "affected rectangle”. Here,
the direction of an edge in the rectangle is determined by the direction from s to d
as follows: if s; < d;, then for any edge {(z1,...,Zn),(¥1,.--,¥n)} in the "affected
rectangle”, y; — z; € {0,1}.

We further associate a weight label for a directed edge in the mesh. The labeling
scheme initially labels all edges as zero and then examines messages one by one.
When a directed edge is in the affected rectangle of the message considered, its label
is increased by one. These labels represent the potential contention resulting from
routing of the messages. Figure 33 shows the labeling of a 6 x 5 mesh. We also
observe that, for a message to be routed from s to d, the number of all shortest
Manhattan paths can be calculated easily. This number is called Freedom for the
message and is determined by the absolute differences of all components of s,d. Let
z; = |si = di|,i = 1,...,n, we denote the freedom function as F(z,,...,z,). F can

be calculated recursively as shown in Figure 34.

; Ty + T2
In particular, when n = 2, F(z;,z2) =

I

115

0 1 0 0 0
Sender Receiver Affected Area /
0 1] 0 ol o 0
message 1: (=3 - . \ 1 0 \- 0
0 2 11 ol ©
0 0 0
0 1 1 N 0 0
/ 0 .-N 0 0
message2: K1 —>= @M / ==
0 0
) 0% 0% 0% 0% o

Figure 33: Illustration of the Labeling Scheme in BLOCK.

F(zy,...,2q) = F(z1—1,...,2z.)+...+ F(z1,...,2p — 1)
F(0,z2,...,2,) = F(0,z2—1,...,2:)+ ...+ F(0,z3,...,2, ~ 1)

F(z1,0,...,0) = 1

F(0,0,...,0,z,) = 1

Figure 34: Calculating Freedom Function.

116

For a message, the smaller its Freedom value, the fewer paths are eligible for its
routing. To route messages on a labeled mesh, BLOCK first sorts messages based
on their Freedom values in an increasing order and then routes messages with lowest
Freedom first. Routing an individual message is done by seeking a shortest Manhattan
path such that maximum weight among all edges in the path is minimized. Such a
path is called a shortest minimum path. We can use standard techniques for shortest
paths such as Dijkstra’s algorithm [2] to find such a path. Here, the distance of a path
is defined as the maximum weight (label) of edges in the path. In fact, a more careful
examination reveals that the subgraph formed by all shortest Manhattan paths for a
message is an acyclic graph and hence, a more efficient shortest-path algorithm for
acyclic graphs can be used to find such a minimum path.

After finding such a path P for a message m, labels of edges which are in the
affected rectangle of message m but not in P are decreased by one. This is because
after m is routed through P, m will not have any potential contention effect on other
edges not in P. The new labels serve for finding shortest minimum paths for the next
message.

The outline of the algorithm BLOCK is shown in Figure 35. Figure 36 illus-
trates how BLOC K works for a simple example.

The time complexity of BLOCK can be analyzed as follows. Let A be an
n dimensional mesh with N nodes. The number of edges it has is denoted as K.
The number of messages is |M|. Step I takes K time. The worst time for Step 2
is O(|M|K). The time to calculate freedom for each message is also no more than
O(|M])N since we can compute F(zy,...,,) in 2;2Z;...2, time steps based on the

recursive relation in Figure 34. For a fixed-size N; x ... x N, mesh, we can even

117

/* Input: Set of Messages M, n dimensional mesh A */
/* Output: A m-routing */

/* initialization */
1: for edge e € A {label(e)=0;}
/* labeling */
2: for messagem € M {
for edge e in the affected rectangle of m {label(e}+-+;} }
/* Freedom calculation */
3: for message m € M { F(m)=calculate-freedom(m);}
/* sorting based on freedom F */
4: M=sort(M);
/* routing a message */
5: for messagem € M {
find a shortest minimum path P for m in A;
for edge e in the affected rectangle of m but not in P {label(e) — —;} }

Figure 35: Outline of Heuristic BLOCK.
calculate the freedom function off-line for all values F(zq,...,z.),2; < N; by the
recursive relation in Figure 34. The sorting step takes |[M|log(|M|) steps. Finally,
Step 5 takes at most |M|K time to complete since we can use the shortest path
algorithm for acyclic graphs (see, page 203 in [84]) whose complexity is only |E|
where |E| is the number of edges of the graph. This gives us the total complexity
O(|M|(K + log(|M]))). But since K < nN, the time complexity is Q(|M|(nN +

log(|M])))-

Performance

Two test suites are used to evaluate BLOCK. In both tests, performance is
evaluated with respect to maximum contention. The performance of BLOCK is

compared with that of the XY fixed-routing scheme.

118

0 1 0 0 0
Sender Receiver Affected Area //

0 0

Messsgml 3 —= Bl \\ 0 0 ! 2/ 1 - 00 0
= 0 0

Fml)=6 02 \\1\1 00l o
o 1 1 0 o

Messagem2 KOO —= Wl // 0 :3\L A1 0 :
Fm2)=3 of 99 59 40| g0 °

0 1
02\1\]\[\1 00 00 OT
0 . Nl\{ 0 00 0 0:::00 00 0 00
V]

0

Step 1: Choose m2 1o roule

Step 2: Choose m1 to route
Since F(m2) < F(m1)

Figure 36: A Simple Example for the BLOCK Algorithm.

119

In the first test suite, messages are randomly distributed with a uniform distri-
bution. Two independent uniform random number generators are used to generate
source nodes and destination nodes respectively. The number of messages ranges from
10 to 500. The topologies used are 2-D 15 x 15 and 2-D 20 x 20 meshes. For a given
number of messages, maximum contention is averaged over 100 runs of BLOCK. It
is observed that the standard deviation of the mean maximum contention for all data
point is less than 3%.

Figure 37 shows the maximum contentions of the XY-routing and the routing
generated by BLOC K. Figure 38 shows the percentage improvement over XY-routing
for maximum contention in the two meshes. It can be seen that as the number of
messages grows, the percentage improvement drops. This is because when more and
more messages are injected to the network, the network is more and more saturated,
and it is harder for BLOCK to reduce the contention.

The second test suite includes five benchmark applications representing a variety
of task structures. The first is 16 node perfect broadcasting on a 2-D 4 x 4 mesh where
processes exchange information to achieve a consensus [37]. The second is Gaussian
elimination of a 32 x 32 matrix on a 2-D 8 x 4 mesh where each process is responsible
for an entry of the matrix . The third one is the 15-body problem on a 2-D 5 x 3
mesh which was designed for the computation of planetary gravitational forces for
the Caltech Cosmic Cube [5]. The fourth is an 18 node program called AVHTST on
a 2-D 4 x 4 mesh which is used to determine cloud properties from satellite imagery
data [104, 57] and finally, matrix transpose for various sizes. The task structures of
all the above problems but the last are first assigned to the processors by a simple,

greedy heuristic. For the matrix transpose problem, a 2-D mesh which has the same

120

18 | | | 1 I 1 I] |
XY-routing for 15 X 15 mesh —

16 - BLOCK routing for 15 X 15 mesh
XY-routing for 20 x 20

14 BLOCK routing for 20 _»¢2(}.mesh

0] 1 1 ! 1] J 1 1

50 100 150 200 250 300 350 400 450 500
numbers of messages

Figure 37: Average Maximum Contention for 2-D 15 x 15 and 20 x 20 Meshes under
Uniform Message Distribution.

50 Maximum contention for 15 X 15 mesh —
Maximum contention for 20 X 20 mesh —
40
percent 30
(%)

20

10

0 1 1 1 1] [| I 1

50 100 150 200 250 300 350 400 450 500
number of messages

Figure 38: Percentage Improvement of Maximum Contention for 2-D 15 x 15 and
20 x 20 Meshes under Uniform Message Distribution.

121

size as the matrix is used, and a natural one-to-one processor assignment is used (i.e.,
the (i, 7)-entry of the matrix is assigned to processor (3, 7))

Table 12 shows simulation data for the first four applications. In all cases, there
is significant improvement with respect to maximum contention. Figure 39 shows the
percentage improvement of maximum contention of the routing produced by BLOCK
over that of XY-routing for matrix transpose. The sizes of matrices range from 10x 10
to 19 x 19. It can be seen that an improvement of approximately 40% is achieved
in all experiments. It is also interesting to note that, in applications like Gaussian
elimination and matrix transpose, message contention is very heavy. In fact, in the
32 Gaussian elimination benchmark, the maximum contention of XY-routing is 60
and, in 19 x 19 matrix transpose, the maximum contention of XY-routing is 29.
However, BLOCK is still able to reduce the maximum contention considerably (40%
for Gaussian elimination and 20% for the matrix transpose). This is because in such
applications, unlike in the case where messages are distributed uniformly, there exists

communication locality for further improvement.

Table 12: Performance of BLOC K for the Applications

" Applications Maximum Contention |

XY-routing | BLOCK | Percentage ||

16 Perfect Broadcasting on 4 x 4 mesh 8 7 12.5% ||
32 Gaussian Elimination on 8 x 4 mesh 60 40 33.3%
15-body on 5 x 3 mesh 5 3 40.0%

| 18 node AVHTST on 4 x 4 mesh 7 6 14.3% ||

The performance of BLOCK has been further studied by Duncan [33] where
BLOCK was compared with XY-routing and an adaptive routing scheme. Simulation

was carried out to model runtime overhead to support the virtual channel capability.

122

I I | |]] | 1
50 Maximum contention matrix transpose —

40 - =
percent 30
(%)

20 .

10

T

0 1 ! | | 1 1 | [}

10 11 12 13 14 15 16 17 18 19
number of rows (columns) of a matrix

Figure 39: Percentage Improvement of Maximum Contention for the Matrix Trans-
pose.

Based on the detailed simulation results for several benchmarks such as FFT, matrix
multiplication and matrix transpose, Duncan concluded that for benchmarks which
have intensive communication, BLOCK performs much better than the fixed XY
routing and better than the adaptive scheme. For benchmarks which do not have
intensive communication, however, BLOCK does not give performance advantage

for the fixed-routing, which has very little runtime overhead.
Conclusions

We have presented an efficient heuristic for application-specific wormhole rout-
ing in a partitioned mesh-connected multiprocessor system. Such a heuristic can also
be used for other routing schemes such as virtual cut-through and store-forward, and
for the hypercube and other well-known topologies. The performance of the heuristic

is studied for various benchmarks and uniformly distributed messages on the net-

123

work. For all performance suites, the heuristic achieves very good performance. Such
an application-specific routing technique can be used in many architectures and is
especially useful for real-time applications which require high performance.

The results presented here have several potential applications. First of all, the
heuristic can be applied to the hypercube, torus and other interconnection struc-
tures. For example, it has also been pointed out in [74] that, to avoid deadlock,
an n-dimensional binary cube can be partitioned into 2" virtual networks (using the
similar technique presented on page 26). All possible shortest paths are captured in
these virtual networks. A similar “affected area” concept can be used to label com-
munication channels in the cube. Furthermore, although our original motivation is
for a partitioned mesh with wormhole routing, the heuristic can be applied to other
routing schemes such as virtual cut-through or store-forward, provided that we are
seeking a minimal routing.

The idea of generating application-specific routings can be potentially used in
a parallelizing compiler. To use the heuristics, however, the message passing re-
quirements must be known at compile time. We discuss this problem for different
programming languages.

In a language where the communication structure can be explicitly declared
by the programmer and a mapping is known at compile time, the message passing
requirement can be extracted from the mapped communication structure directly.
Languages with explicit communication structure declaration include Paragraph [27],
Port Emsembles [48], and LaRCS [81] *.

The other languages whose program’s communication structure can be known

*Strictly speaking, LaRCS is not a complete programming language, but it can be ex-
tended to be a programming language.

124

at compile time include VHDL [75] and ADA. In VHDL, for example, processes
communicate with each other through signals. If a static mapping is ﬁerformed,
the communication structure can be deduced from the signals which are used as the
communication channels for two processes. Furthermore, since the type of a signal has
to be known after elaboration (which is part of the compiling process), the volume
of the messages can be also known at compile time. Thus, for a parallel VHDL
simulation, the application-specific routing techniques can be applied.

The second type of languages are those which support a shared data structure
view. These include Kali [61] and Fortran90D [39]. Parallelism can be expressed in a
shared-memory-like style and the programmer does not need to explicitly take care of
the underlying communication. The compiler is responsible for the extraction of the
communication structure, either at compile-time or at runtime. If the communication
structure can be extracted at compile-time, the application-specific routing can be
also generated at compile time and the routing information can be added to message
passing commands.

Another interesting approach to extract the communication structure is by pro-
filing. This approach has not drawn much attention.

Future research includes applying the technique to practical applications in
practical machines, improving the heuristic and analyzing its theoretical behavior.
Finally, we conjecture that even for 2-D meshes, the contention-free decision problem
is still NP-complete. This seems to require a different approach than the one we

presented for n-dimensional meshes for n > 2.

125

Part II

MAPPING TO SYSTOLIC ARRAYS

126

CHAPTER VI

SYSTOLIC ARRAY DESIGN

Many applications demand high performance. For such applications, hardware
tailored to the application is designed to achieve the best performance. In electronic
design, ASICs (Application Specific Integrated Circuits) have been widely used. As in
mapping a parallel program onto a general purpose multicomputer, one of the major
challenges in designing an application specific architecture is how to automate the
design process and achieve high performance.

The problem of synthesizing a high performance application specific architec-
ture from a high-level description of an application has long been studied. Recent
successful commercial synthesis systems such as the Synopsys Design Compiler [53]
indicate that synthesis techniques from RTL (Register Transfer Level) have become
practical.

Synthesizing from high-level algorithmic description (behavioral level) of an
application, however, is much more complicated. The complexity arises from both
the high-level description (which can be as general as an arbitrary program) and
the large design space of architectural choices. Many applications, however, have
regular computation structures, which can often be exploited by designing regular
architectures such as systolic arrays.

The second part of this dissertation is devoted to the problem of synthesizing

systolic arrays from a special class of algorithms called regular iterative algorithms.

127

In this chapter, we first introduce the background on systolic array architectures,
regular iterative algorithms and the classic techniques used in synthesizing systolic

arrays from such algorithms. We then give an overview of Part IL

Systolic Arrays

Systolic arrays are special-purpose, massively parallel architectures designed for
a single family of algorithms such as Matrix multiplication, LU decompositions [66].
The most important features in a systolic array are its space and time regularity.
Such regularity makes systolic array processors amenable to VLSI implementation.

Intuitively, a pure systolic array has the following features {67, 98].

1. Consists of identical simple processors;
2. Processors are connected in a topologically uniform way;

3. All processors are governed by a global clock (i.e. a synchronous circuit). Data

are rhythmically computed and passed;

4. Processors have simple functional units (such as a multiplier or an adder) which

finish a computation in a fixed time period (for example, one clock cycle).

Systolic arrays are usually designed for a family of problems. For example, a
family of arrays are designed for N x N matrix multiplication. The problem size
here is the matrix order N. Such a family is said to be parametrized. Systolic
arrays are scalable in the sense that larger problems can be solved simply by adding
more processors. To ensure regularity and scalability, the interconnections and the

processor structure of systolic arrays should be independent of the problem size.

128

The formal definition of a pure systolic array has been given by Rao and
Kailath [98, 99]. We will use this definition throughout the thesis. Formally, a systolic
array consists of a network of processors which are placed in 2 domain D € Z" (Z is

the set of all integers) of integer points. It has the following properties.

1. If there is a communication channel from (to) the processor at location I to

(from) the processor at location (I + d), then

(a) d is independent of the size of the problem,

(b) for any I € D, there is such a connection. If (/+d) is outside of the domain,
then this is an output (input) channel. Notice that this connection also

uniquely identifies the output (input) ports for a processor.

2. All processors repeatedly execute the same program (called iteration-unit) syn-

chronously. The iteration-unit is independent of the size of the problem.

The first property ensures the spatial regularity and the second one ensures

temporal regularity, and scalability.

Regular Iterative Algorithms

Designing a systolic array manually for a given problem is a difficult task. It
is also hard to verify the correctness of the algorithm designed manually due to
complicated data flow structures and timing relationships. Thus, it is important to
automate this design process.

Early work on systolic arrays was based on researchers’ ingenious design for
specific systolic arrays such as Kung-Leiserson’s arrays for matrix multiplication [67],

Rote’s arrays for the algebraic path problem, and Kung-Lo-Lewis’ arrays for transitive

129

closure [69]. Moldovan [85], Quinton [93], Rao [98] and other researchers pioneered in
automatic systolic array design, where the high-level description language is restricted
to RIAs. Recently, there have been tremendous research efforts in synthesis of systolic
arrays from a higher-level language called Affine Recurrence Egquation [97, 96, 103,
119].

To be more precise, we are concerned with computations defined over an integral
index domain, i.e. a subset of Z™. A commonly used high-level specification language
can be described as a system of Recurrence Equations. A recurrence equation is

defined as follows.

-t -

C(I)=g(-..C(f(I))..))

where C(f) represents a computation at index point I for a certain computation
domain D which is a subset of Z7, f(f) : Z" — Z™ is a dependency function,
... indicates other such possible arguments and g represents an atomic computation
which can be executed within a clock cycle. A system of recurrence equations consists
of finitely many (mutually recursive) such equations.

The computation domain P is usually a convex polyhedra represented as D =
{I|AT > 51 € Z"}. Furthermore, since systolic arrays are usually designed for
a family of algorithms, we assume that the computations domains are a family of
convex polyhedra.

By restricting the dependency function f (f) in a recurrence equation, we can

have:

o Affine Recurrence Equation (ARE):if f(I) = BI—d where B and d are constant

matrix and vector respectively.

130

e Uniform Recurrence Equation (URE):if f (N = I'— d for some constant vector

d. In this case, d is called dependency vector.

The concept of URE was first introduced by Karp, Miller and Winograd [59] to
study the combinatorial processes in solving differential equations by finite difference
equations. Rao and Kailath [98, 99) used Regular Iterative Algorithms (RIAs) to
describe the initial algorithms they used for the design of a systolic array. In fact, an
RIA can be succinctly represented as a system of UREs. The concept of ARE was
first introduced by Rajopadhye [97].

A classic method to synthesize systolic arrays from AREs is to first transform the
AREs to UREs by so-called Uniformization technique which tries to transform linear
dependencies to constant dependencies [97, 96, 20]. The techniques to synthesize
systolic arrays from UREs are then used [98, 93]. Figure 40 illustrates systolic array
design processe.

In this thesis, we are only concerned with synthesis from a single URE.

We say that I € D depends directly on J=1I-deDand denote it as I — J.

Intuitively, I — J means that (1) needs c(f) as one of its arguments.

The following is the matrix multiplication example.

Example 6.1
N x N Matrix multiplication Z = X X Y can be described by a URE
over a domain D = {(i,7,k)1 <i < N,1 <7 < N,1 <k<N}. The
class of matrix multiplications is represented as a family of domains D for

parameter N. The URE can be described as follows.

131

High-level Description Affine Recurrence Eqns.
Analysis Uniformization
+

Transformation

Uniform Recurrence Eqns

Transformation=
Schedule + Allocation
Systolic Arrays

Figure 40: Illustration of Systolic Array Design Process.

132

for all (i,7,k) €D

(i g k) = =(i,j—1,k)
Z(i$jrk) = Z(i,j,k—1)+:l:(i,j—1,k) Xy(i—l,j,k)

and the boundary conditions are

[2G,0,k) = X;
y(0,5,k) = Yy
=(i,,0) = 0

| Zij = z(4,5,N)

Mapping to Systolic Array Processors

A standard way to map an RIA to a systolic array is to use so called space-time
transformations. A schedule (also called the timing function) is used to assign time
steps to computations, based on the dependency constraints of the algorithm. An
allocation function is used to allocate computations to physical processors.

A schedule S is a function over Z" which maps a point / € D to a nonnegative
number S(f) with the condition that it obeys the dependencies in ¥/, i.e., if I'-
J, then S(I) > S(J). Intuitively, S schedules computation c(f) at piont I to be
executed at time S (f). The URE is called computable if there exists a schedule for
it. A commonly used class of schedules is integer linear functions which are of form
S (f)= Xt T+ where A is an integer column vector and « is an integer. Such a schedule

is called linear schedule. If a schedule § is of form S(J) = |51 + @, it is called a

133

gquasi-linear schedule. Linear and quasi-linear schedules are important because of
their simplicity and the existence of linear programming methods to determine them
optimally [59, 110].

The fastest execution for computation at each point in the domain is achieved
when the free schedule [59] is used to schedule the computations. The free schedule,
f, is a schedule defined as

~ 0 fnoJeD: IoJ
iy = -
max{m|l = J,J € D} +1 otherwise

Once a schedule is chosen, the next step is to allocate processes to processors.
Such a step is usually realized by a function called an allocation function. A naive
method to do that is to allocate a processor for a single computation point. This
is, however, too wasteful of processor resources. In fact, the pipelining effect can be
used such that computations which are scheduled to be processed at one processor
are pipelined. A simple way to achieve this is to use a projection function to allocate
computations. A commonly used allocation function is a single directional projection
which can be represented either by an (n — 1) x n integral matrix, A, or the pro-
jection vector 4. A linear schedule and a linear allocation function is called a linear

transformation. They must satisfy the following two constraints.

e Causality of the schedule S: If, evaluating c(]) needs value ¢(I—d), then S(I) >
S - d).

o Non-conflict: No two points are mapped to the same processor at the same

time.

134

¢ Dense array The derived array must be dense i.e., every integral point in the
processor space must be the image of an integral point in the index space of the

problem.
Example 6.2
The following is an example for convolution product.

N

y(i)) = Y w(k)z(i—k)

k=0

It can be described as the following URE. fori >0,for0 <k < N

Y(i,k) = YGE,k-1)+Y(i-1,k)X(GE-1,k-1)
Wi k) = W(i-1,k)

X(G,k) = X(i-1,k—1)

Figure 41 shows a linear schedule, an allocation projection vector and the

derived array. o

Overview of Part Il

Although tremendous work has been done in designing optimal systolic arrays
with respect to several criteria, several important problems remain open. Specifically,

in this part of research, we solve the following problems.

o Optimal linear schedule: the open problem whether the optimal schedule of a

URE can be obtained through a linear or quasi-linear function is answered. The

135

44444

:
-
] m

X

PKIXIXX
PKIXIXX
XXX
XXX
XXX
XXX
XXX
XXX
S

ANANNNZN

Projection Vecior

Systolic Armay

Figure 41: The Design of a Systolic Array for Convolution Product.

136

result justifies the use of linear schedules as the timing function in mapping a

URE to a systolic array.

Linear allocation functions for systolic arrays with limited permissible intercon-
nection: the number of valid linear allocation functions which result in distin-
guished arrays is studied and it is found that this number is typically very small.

A framework to design optimal systolic arrays based on this result is described.

Efficiency of a systolic array: we propose a method to find quasi-linear alloca-
tion functions to derive systolic arrays which are almost 100% efficient. This

result is further extended to any pure systolic array.

137

CHAPTER VII

OPTIMAL SCHEDULES FOR REGULAR ITERATIVE ALGORITHMS

Introduction

The problem of finding the optimal schedule (free schedule) for a URE was first
attacked in a classic paper by Karp, Miller and Winograd [59]. They proved that the
free schedule of an arbitrary URE over a specific index domain (the first orthant of
the infinite multi-dimensional grid region, {I|T > 0}) is bounded within a constant
to a rational linear function for computations not too “close” to the boundary. The
problem of finding the optimal schedule for a URE over an arbitrary integral convex
polyhedron and families of polyhedral domains, however, is still open. |

Fortes and Parisi-Presicce studied linear schedules for 25 common algorithms of
nested loops with constant dependence vectors [38]. They found that the difference
between the optimal linear schedules and the optimal schedules is equal to one or
zero for those nested loops. Extensive work on optimal linear schedules for UREs
has been done by Shang and Fortes [110]. Efficient algorithms are designed to find
optimal linear schedules for both the total completion time and the completion time
of a specific computation. Recently, Darte, Khachiyan and Robert [32] proved the
existence of a bound on the difference between the total computation time given by
the optimal linear schedule and that given by the free schedule for sufficiently “fat”
domains. Their result, however, does not reveal the exact nature of the free schedule

for every computation point. Furthermore, they only considered a special class of

138

domains (namely, {T |AT < NB} where N is an integer as the domain parameter). In
this chapter, we study the free schedule with respect to every computation point as

well as the total computation time over a family of arbitrary integral polyhedra.

Notation and Problem Definition

Throughout this chapter, Z denotes the set of integers and @), the set of rational
numbers. The integral grid is Z*. Vectors are column vectors and are denoted as I
For a vector I = (i1, .. -, in)t,] = (Jia]s-- -, ial)t and |[T]lee = max{|ial,-. ., lial}. En
is an n x n identity matrix. I = (1,...,1)!. A sequence of integers ay, ..., a; is called
semipositive if they are nonnegative but not all of them are zeros. For a rational
polyhedron P, its integer hull Py is defined as the convex hull of the integral vectors
in P. P is called an integral polyhedron (1P, see [107]), if P; = P). Throughout this

chapter, we assume that P is an IP.

Definition 7.1
Let A be an m x n integral matrix, an integral polyhedron IP is defined
as P = {I]AT > B}j. Let S, be a subset of Z™, a family of IPs F(A, 5)
is {'P|P={f|Af25} for any & € S, and P is an IP} . a

Intuitively, the “shape” of an IP is determined by its coefficient matrix A and F(A, Sy)
is a collection of IPs which are of the same “shape”. S is the range of the parameters.
P = {]] |Af > b} can be decomposed as P = V + C where V is a polytope and C =

{#|A7 > 0} is the characteristic cone of P (cf. [107]). Notice that C is independent

From properties of an integral polyhedron, any integral point in an IP can be

expressed as the sum of a positive combination of its rays and a convex combination

139

of its vertices. This corresponds to the following property.

Property 5 {I € P,I is integral} = {e1th + ... + €Ty + fitr + ... + fofpl €, f;

-

nonnegative and €, + ...+ e, = 1} for some integral vectors ¥y,...,0; end 71,...,7p

where 7;s are independent of b. (See [107], page 234, formula (19)).

Since P is an IP, it is easy to see that P = {e101 +...+eg¥y+ fif1 +...+ fpfplei, fi 2
0 ande; + ... + e, = 1}. Thus, any two P, P, € F(A,S;) have the same 7is.
Throughout this chapter, we assume P has such a representation P = {Vé+R 5] €, f>
08 e +...+e, =1} where V =(8y...7,),R = (F1...7).

Let us recall the definition of a URE.

Definition 7.2
Let ¢ be a function (computation) on Z*, A be a m X n integral matrix, a
Uniform Recurrence Equation (URE) U over a domain P in a family of

F(A,S) is
o) = f(e(T—d),...,e(T = d))

where I € P, tfl,.. . ,J;: are n-dimensional iniegral vectors and f is an
arbitrary function. d:s are called dependency vectors and D = (Jl, ceny Jk)

is called dependency matriz. a

We say that I € P depends directly on J=I—-4d; € P and denote it as [— J.
Intuitively, I — J means that c(f) needs c(f) as one of its arguments. Furthermore,
il = B,..., Dy = Iy and Ly,...,I,41 € P, we denote I, 3p Inpa. A schedule S

is a function which maps an integral vector I € P to a positive integer such that if

140

I = Jfor any J € P, then S(I) > S(J). Intuitively, a schedule is a function over P
which schedules computation ¢(J) at time S (I) and obeys the dependencies. A URE
is said to be computable in F(A,S;) if there exists a schedule for any P € F(A, S).
The shortest completion time for a computation is achieved when the free schedule f
is used to schedule the computation.

If a schedule S is of form S(J) = X+ & where X is a column integer vector, it
is called a linear schedule. If a schedule § is of form S(I) = |5'] + a| where §is a
column rational vector, it is called a quasi-linear schedule. Linear schedule is simple
but sometimes a quasi-linear schedule is needed to schedule computation points at

the earliest possible time.

Example 7.1
Consider the following URE where the computation domain P = {(i,)]0 <
t < 2N,0 € j < 2N} where N is a natural number representing the prob-

lem size parameter. The dependency matrix is as follows:

2 2

Each point (2%, j) can be scheduled at time k and each point (2k + 1,)
can be scheduled at time k too. In fact, the free schedule is f(i,7) = [gj

This is a quasi-linear schedule. O

Computability of a URE

Definition 7.3

A family of IPs is said to be eztensible with respect to the dependency

141

vectors Jl,...,d-; of URE,, iff for any semipositive integers Iy,..., I,
there exists an IP P of the family such that it L% I - pn lid; for

some integral point [; € P and some N > 0 (Note, N is not necessarily

Z:—l) o

Intuitively, for a family of IPs which is extensible with respect to dependency
vectors, for an arbitrarily long dependency chain, we can always find an IP P in this
family P contains two points one of which can be reached from the other through the
dependency chain (not necessarily to be in P).

For example, the family of IPs for matrix multiplication in Example 1 Chap-
ter VI is extensible with respect to the dependencies. In the sequel, we assume that
our family of domains are extensible with respect to all the dependency vectors of
URE U.

Intuitively, 2 URE is computable iff there is no infinite dependency chain.

Lemma 7.1

URE U is computable for a family F iff there is no semipositive integer

sequence a},...,a} such that Y%, a!d; = — %, fI7; for some nonnega-
tive integer f]s. O
Proof

Suppose U is not computable over P, then, there exists an infinite se-

- e -

quence of integral vector Io(= 1), i, ..., ,,... in P such that Ii=p I
(hence, for m < n, In—1I, = DB a;d; for some semipositive integers
a;’s). Based on the representation of P, In=%%, erv; + T8, f77; for

some nonnegative integers e™’s and f™’s and = YTl ,e™ = 1. Since

142

there are only finitely many (q) different values of e[*’s (when one e is
one, all of the rest must be zero), there exists an infinite subsequence of
f;, ceey I-:,, ...such that their e]*’s are repetitive. Among this subsequence,
It is always possible to further choose an infinite subsequence whose f
are nondecreasing for each i = 1,...,p. Let fm and f,, be two points in
such a subsequence (m < n), we have I, — I,=%% aid;= -3, f for

some semipositive integers a} and nonnegative integers f].

Conversely, if there is a semipositive integer sequence ay, ..., a; such that
YD a;d; = — Y%, fi¥: for some nonnegative integer fi’s. Since F is
extensible with respect to d;’s, there exists a P € F and an integral
I € P such that f;,(: f)—)pﬁ—’p...,f}v(= [— PN a,-cf:-). But f: +
b, fifi € P (since I; € P and recall P’s representation), we have an
infinite dependency chain ﬂ;—rpf_;—»p Iy —wpf; + ¥F, fiti.... Thus,

U is not computable over P. O

The above result is a generalization of a classic result obtained by Karp et. al. [59]

where a similar condition is given for a URE over a specific domain (the first orthant

of the gird).

Theorem 7.1

U is computable iff there exists an n-dimensional vector s such that

143

Proof
From Lemma 7.1, U/ is computable iff the linear programming problem
(LP) max{3"f; Ph aid; + Yr, fiti = 0,a;, f; 2 0} has a finite opti-
mal value 0, iff its dual problem min{0|.§"cz- > 1,5'7; 2 0} has a feasible

solution. o
Corollary 1 U is computable iff there ezists a quasi-linear schedule for each P.

Proof
Because there are only finitely many #; in an IP P (i =1,...,¢), for any
3, we can always find a constant a such that 5*%; + @ > 0 for all &; in
an IP P. In particular, let § satisfy condition (1),It is easy to prove that
L(I) = |8T + e is a valid schedule for I/ on P (simply check L) =0
and L(L) > L(B) if I, = B). o

Condition (1) is similar to a result given by Quinton [93]. When the family con-
sists of only bounded (finite) IPs (i.e., p = 0), this is called “separating hyperplane”
([59, 93]): & can be thought of as the norm of a hyperplane which separates depen-
dency vectors from the first orthant. In the bounded convex polyhedron case, Con-
dition (1) has been used as part of the definition for a quasi-linear schedule [32, 110].
Furthermore, Darte et al. [32] assumes that the URE admits a quasi-linear schedule
as their premise in their paper on the optimality of linear schedule.

All the subsequent results in this Chapter are equally valid even if the family of
domains is not extensible but if all domains admit a quasi-linear schedule or satisfies

Condition (1).

144
The Free Schedule

We first consider the following two dual rational linear programming problems

for an integral vector Te?P.

'3 r

my(D) = maxTE, w; ma(I) = min Xt(AT —)
subject to subject to
3 (I (1II)
1)u;20,i=1,...,k DXx=20:i=1,...,k
N -k wdieP |2 MAd 2 1,i=1,...,k
Lemma 7.2

If URE U satisfies Condition (1), then both (I) and (II) have a common,

finite optimal value m(I) for an integral vector fewr. 0

Proof
Based on the representation of P, the feasible region of (I) can be rewritten
as follows.

ml(f) = max)::,'::1 U

subject to

- -

S 1 g,&f>0

145

Its dual problem is

=~y

min{(5* a)

subject to
3 . (111)
1) 3D > 1;

2) 3R > 0}

)V +a >0

where a is a scalar variable, &, represents a g-dimensional row vector
whose components are a, and 1% (6; +q) is a k-dimensional ((p + ¢)-
dimensional) vector with all 1 (0) components. Since Condition (1) holds,
the feasible region of (III) is nonempty (we can always choose a to satisfy
S';+a>0foralli=1...,q). Hence (III) has a feasible solution. But
the feasible region of (I) is not empty since # = 0 is a feasible solution.
Hence, by duality theorem, (I) has a finite maximum. Therefore, its dual

— —

problem (II) must have a finite minimum too. Thus, m,(I) = mz(I) and

-

they are denoted as m(]). 0

Notice that the feasible region of (II) is independent of b. The objective function
of (II) is a linear function of I and 5. Based on a property in parametric linear
programming (see, for example, [87] pp. 15), we can show that m(]) is a piece-wise
linear function of I and b. Furthermore, for a fixed P (i.e., b is fixed), we know
that m(J) is also a piece-wise linear function of I (a projection of a piecewise linear

function is still a piecewise linear function).

Lemma 7.3

146

The integer function m'(I) = |m(]})] is a valid schedule for URE ¥ in
P. o

Proof
Let f;,fz € P and fl -}!}‘p fg for some N =):5::1 u; > 0 where u;'s are
nonnegative integers for 1 = 1,...,k L=1h- YBris uid;. Let Dy =
(@ = (..., u})llz — T5, u'/d; € P}. For any @' € Dy, we have
I - Tha(w + u)d: € P. Thus, m(h) 2 maxgeny, T (u + i) =
maxgeDy, 5 (u))+ N. But m(l,) = maXueD, Y5, u! and since N > 0,

we conclude |m(f})] > |m(B) + N) > |m(B)]. m]

We call m/(]) a piecewise quasi-linear schedule. One may conjecture that m’(f) is
the free schedule for the URE. However, this is not correct. The main reason is that
for fl,fg € D such that fm = I—l —)::;1 u,-J:-, it is not necessarily true that fl —}!'vp fg
for N = ¥°% u;. This is because the dependencies from I, to I, may first go out of
P and then go back into P.

However, we are able to prove that for computations which are not too “close” to
the boundary, the difference between m(J) and f(I) (f, the free schedule) is bounded
within a constant which is independent of b. The method used is similar to that in
[59). We first define another polyhedron P, for computation points which are not too

“close” to the boundary of P as P, = {I|A] > b+ #} where
k -
7 =3 |Ad).
i=1

Since # > 0, P, C P. We assume that P, is not empty. We first prove the following

147
Lemma 7.4
If fl,fz =1I- vk u;d; € P, for some semipositive integers uy,. .., ux,

then [p I where N = T, u.. o

Proof
We prove the following claims successively.
Claim 1: 1§ € Py and 6; € [0,1),i = 1,...,k, then =&+ ¥T%, 8:d; € P.
Proof of Claim 1: Simply check

k k
Ab+ ZG,’Ad" =Af-7T+ (E 0;Ad; + ir')

=1 i=1

k . k - - k - -
= AS—7+ (0 0:Ad+ 3 |Adi|) = AS — T +) (0:Ad; + |Adi])

i=1 =1 i=1

AF

> A6—7F>0

Al
v

Claim 2: Let 7 = 5 + ELI 6; be an integral vector for some § € P, for
some 8; € [0,1],7 =1,...,k and let 7 — 1%, a;d; = # where o; € {0,1},

- M
then # S 7 where M = T, ;.

Proof of Claim 2: Without loss of generality, we assume that a; = 1,1 =
l,...,L and o; = 0,4 = L +1,...,k for some L < k. Let 7; = 7 —

v, J,-,j =0,1,...,L (hence, 7 =7, and ¥ =), we have

i I i
AT, = AF—ZAJ;:A(&-{-EB;d;)—ZAd;

i=1 i=1 i=1

Lk D I . - k -
= AF+ Y 0AL -3 Adi= AF+ 3 (6 -)AG+ Y 6:Ad;
i=1 i=1 i=1 =541

— AF R (AT - AD) + 3 (1A)+BAd)

=1 =341

148

> Ab—-7>%

Hence, 7; € P. Therefore, 7 = Ty —+p T, —+p Ty... —+p Ty = T, We prove

the claim.

Proof of Lemma 7.4: Let, forc=0,1,..., N,

Since P, is a convex polyhedron,
i -C-Zk: di=(1-2h+=heP
1 N o uidi = N 1 N 2 8.

Based on Claim I, 7. € P,c=0,1,...,N. Furthermore, notice that

= [Us Cu; d
o =7~ DD - 12,

i=1

and

et Dy %) ¢ 0,13,

. - L —
Based on Claim 2, 7. =% T.41 Where

ko (e u; cu;
L= (A 2,

=1

But ¥3! L. = N, hence we prove the lemma. 0O

Theorem 7.2
For a family of IPs F(A, S,), there exists a constant C such that for every

—

P e F(A,Ss), m'(I) — f(I) < C for any integer vector I € P,. O

Proof
Consider the two (dual) rational linear programming problems (I) and
(II), but now restricted to P, rather than P. These are formulated as

follows. For any integral vector I € P,.

Ml(f) = mafo;l ug
subject to
$ (M
Du,€Qanduy; 20,i=1,...,k

\ 2) I _2:’;1 Us“i‘ € Ps

(My(F) = min (AT = (B + 7))

subject to
1 (I1)
DXx20:=1,...,k

2) MAd; > 1,i=1,...,k

.

=

My(I) is finite since u; = 0 is a feasible solution and MDY < m()
(since P, C P). Thus, both (I') and (II') have a commeon optimal value
M(I) = My(I) = My(]). Let the optimal solution of the integer linear
programming by restricting u;s to be integers in (I') be M’ (f), based on
a result in integer linear programming(see, page 239-240, theorem 17.2,

in [107]), there exists a constant C; which is independent of b such that

149

150

0 < M(I) = M'(I) < C:. Now, consider the difference between the free
schedule f(I) of T in P, and M'(I). Since M'(I) = =Fu; (say = N) for
some integer u; > 0 such that f=7-):f u,-a—’:- € P,, from Lemma 7.4, we

have T p I'. Thus, f(J) > N(= M'(])). Hence,

-

m!(F) — $(I) < m'(F) — M(D) < m(T) - M'(T) < m(T) - M(D) + Cy

Notice that (II) and (II') have optimal solutions and both of their feasible
regions are the same (denoted as A = {X|:\"A&: >1,1=1,...,k, 3> 0}).
Let Ea be the (finite) set of extreme points of the convex polyhedra A.

There exists X' € A such that

But
m(I) < X(AT - b),
we have
m(l) — M(J) < M7 < max X7
A€E,
Hence, letting C = C; + max;z g M7, we prove the theorem. D

Karp et al. [59] show an example where for some points “close” to the boundary, the
difference between m(J) and f (1) are not bounded to a constant for the first orthant
of n-dimensional grid. By slightly modifying their example, we can also show that
even for a family of bounded IPs, difference between m(I) and f(I) may still be

unbounded. This is given in the following example.

151

Example 7.2
Consider a URE with three dependency vectors dy = (-1,1,1), dy =
(1,—1,1)* and ds = (0,0,2) over a family F(A, Sy) of 2N x 2N x2N cubes
(for N >1). For [= (1,1,2N)}, I — (N = 1)d, — (N = 1)d; = (1,1,2)".

m(I) = 2N —2. But f(J) = N -1. Thus m(I) — f(I) = N — 1 which can

not be bounded to a constant independent of the size of the cube.]
The Optimal Schedule for The Last Computation

In many applications, one often desires a schedule that minimizes the completion
time of the whole computation. This problem is meaningful only if the domain P is
bounded (i.e., a polytope). Thus, in this section, P is assumed to be an integral
polytope. A computation c(I) is called a last computation in domain P if there is
no other point J’ € P such that 7" &5 T for some N > 0. It is possible that there
are more than one last computations. A schedule which minimizes the completion
time of the whole computation is one which schedules all the last computations at
the time given by the free schedule. In this section, we show that if URE I has only
a single last computation c(I}), then there exists a single quasi-linear schedule which
minimizes the completion time of the whole computation (i.e., the time for f;)

Since the last computation point I usually lies close to the boundary (or even
on the boundary), Theorem 7.2 is not directly applicable for computation at I;. In
the following, however, we prove that m’ (I) is still bounded to f(J;) within a constant

independent of b.

Lemma 7.5

- -

For any I € P,, f(I}) > M'(I) where M'(I) is defined in the proof of
Thm. 7.2, a

152

Proof
Since I; is the only last computation point in P and P is a finite polytope,
for any I e, I -—Ll"‘p I for some integer L > 0. This implies f(f;) >

- -

f()+L. Let uy,...,u > 0 be the optimum solution for M'(/). Based on

Lemma 7.4, I L - PN u;d; where N = M'(I) = ©5, u;. It follows
that f(I) > M'(I). Hence, f(I}) > M'(]). o

Lemma 7.6

For any I € P,, there exists a constant K such that m(D) - M"(I) < K.

(W]
Proof
We prove that m(J) — M(J) < K’ for some constant K first.
, . { ap) AT-F)
Since m(I) = max { 14} i< and
Y, 0)
. . [AD |} ._ (AT-F-7
M(I) = max { luj < , based on a well known
5)\ o]

result on the sensitivity analysis in linear programming (see, Theorem

10.5, page 126 in [107]), for the optimum solution %' of m(I) and the opti-
mum solution @” of M(I), ||&'-#"|| < nB|| = lloo
0 0

where f is the upper bound of all the entries in B~? for each nonsingular

submatrix B of . Hence, there exists a constant K’ which is
— Ek

independent of b such that m(J) — M(I) = (& — @") < K"

Since M(I) = M'(I) < Gy, m(D) = M (D) < m(D) - M(D)+C, < K'+C,.
Let K, = K' + C,. We prove the lemma. m]

Lemma 7.7
There exists an Ip € P, such that m(f;) - m(f;) < K, for some constant

K3 which is independent of b. 0

Proof
Consider two linear programming problems, max{0I|(—=A)] < —b} and
max{0tT|(~A)] < —(B+ #)}. I is a feasible and optimum solution to
the first problem. Based on similar argument in the proof of Lemma 7.6,
there exists an optimum (feasible) solution Iy to the second problem such
that || — Iolle € K' = np||]lcc where B is a constant independent of
b. For f;), there exists a X' € A where A is the feasible region of (II')
such that m(Jp) = A(Alp — & — #). But m(f;) < A*(AL — 5), we have
m(l}) — m(Ip) < M(A(l; — Ip) + 7). But ||]; - Iolleo < K', and so there is

a constant K5 such that m(f;) - m(f;)) < K. =]

Theorem 7.3
If I; is the only last computation point in P for URE U, then there exists

a constant K independent of & such that m'(l}) — f(Ii) < K. m]

Proof

From Lemma 7.5 and Lemma 7.6, we have

m'(B) = f(B) < m(l) - max{M(D)} = min{m(]) ~ M'(])}
€P, fep,

= min{m(%) — m(D) + m(D) — M'(D)}
IeP

IA

min{m(l) — m(I)} + K

Based on Lemma 7.7, there exists an Jp € P, such that ming.p, {m' () -

153

154

-

m(l)} < m(f;) —m(f;)) < Ky, letting K = K, + K3, we prove the theorem.

O

Therefore, we can first find an optimum solution X and a for I; in the linear program-
ming problem (III) which minimizes m(];). Based on Corollary 1, the quasi-linear
function L(I) = [X‘I + a] is also a schedule. Since L(I)) = m'(I}), L(I) minimizes
the execution time of computation at I; and thus minimizes the completion time of

the whole computation.
Conclusions

In this chapter, we established results for scheduling a URE over a family of
eztendible integral polyhedra. We first showed that the relationship between the
computability and the existence of a quasi-linear schedule. We then derived constant
bounds based on the condition that the URE admits a quasi-linear schedule for any
domain considered. The results on the constant bounds can be also derived based on
the condition of computability.

The constants we derived to bound the schedule m'(]) are in fact exponential
in the dimension of the domain (i.e., n), although in practice this should not be a
problem (n is usually rather small such as 3,4 or 5).

An important open problem is to extend our results for finding a single schedule
which minimizes the whole computation for the case where there are more than one
last computation points.

Compared with the result given by Darte, Khachiyan and Robert [32], our
results characterize the nature of the free schedule function, while the result in [32]

is only about the optimality of the total completion time. Furthermore, since only a

155

very limited domain, {ﬂAf < Nb} where N is an integer as the domain parameter,
was considered in [32], our results are applicable to a wider range of domains (in
fact, any family of convex domains). For example, the following domain {(,7)|0 <
i < N1,0 € j < 2N — 1} can not be represented as the domain considered in [32].
It should be noted that, however, the result presented in [32] characterizes the total
completion time for domains {JIAT< N 5} while our result on the total completion

time is only applicable to a single last computation point.

156

CHAPTER VIII

LINEAR ALLOCATION FUNCTIONS FOR SYSTOLIC ARRAY DESIGN

Introduction

In practice, in the design of a systolic array, the user is often interested in arrays
which are optimal with respect to a number of criteria such as the total computation
time, the number of processors and the block pipeline rate [68], or even the amount of
interstage data movement in a multistage systolic array. Some of these criteria, such
as the total computation time, depend exclusively on the timing function. Some,
such as the processor count, depend on the allocation function alone, while most
others depend on a combination of the timing and allocation functions. The problem
of finding an optimal (with respect to the computation time) timing function has
been studied extensively [98] [109] and under some standard assumptions, can be
formulated as a linear programming problem (or a sequence of linear programming
problems).

For an n-dimensional recurrence, the number of valid linear allocation functions
is infinite, even for a finite problem domain. This implies that it is impossible to enu-
merate all possible allocation functions. Hence, for optimizing performance criteria
that depend on the allocation function, researches have been forced to develop strate-
gies for pruning the search space of allocation functions. These strategies have been
specific to the particular criterion. For example, in designing arrays with a minimal

processor count, Wong and Delosme [118] develop and utilize an upper bound of the

157

length of the optimal projection vector (a linear allocation function can be uniquely
represented by a projection vector). Thus the projection vectors can be generated
in a sequence of nondecreasing length, and when the length exceeds the bound, the
procedure can stop and claim that the best solution produced so far is the optimal
one. In general, to develop such a strategy for a particular performance criterion, one
must be able to systematically generate the allocation functions in an order by which
one can guarantee that the optimal solution will be found. It is not always clear how
to find such a strategy for any given performance criterion, nor is it usually easy to
combine the strategies, if multiple criteria are being considered.

It is therefore very important to clearly understand the nature of the space of
linear allocation functions, and to first prune it as much as possible independently of
the performance criterion. In this chapter, we obtain upper bounds on the number of
possible allocation functions, based on the following constraint: the interconnection
links of the derived arrays must belong to a (usually small, and always finite) set of
permissible interconnections. The bounds that we obtain are surprisingly low: there
can be no more than 4 linear systolic implementations of 2-dimensional recurrences,
and no more than 13 planar (purely systolic) arrays for a 3-dimensional system of
recurrences. If diagonal connections are not permitted the number is 9, and if eight
nearest neighbors are allowed, it is 25. For an arbitrary set of permissible interconnec-
tion vectors, we also develop an algorithm to determine the set of distinct “topologies”
that can be constructed from these interconnections. We then show how these bounds
can be used to systematically generate all allocation functions for a given system of
UREs. This is achieved by introducing a normal form for these topologies. The aver-

age time complexity of the procedure is of the same order as the bound, which is the

158

best that we can expect to do. We conclude this introduction by formally describing
the problem and then giving an outline of the chapter.

Moldovan, [85] used the permissible interconnection matrizin a very early paper,
and a number of authors have proposed similar methods. Recently, Kothari et al. have
also viewed the choice of allocation function as the solution of systems of diophantine
equations [64]. Both these methods require manual inspection of the derived arrays
to remove duplicates. We will see that these correspond to precisely the unimodular

affine transformations of their allocation functions.
Notations and Problem Definition

For the purposes of this chapter, a system of UREs is completely described
by a set of constant dependency vectors, {dy,dy,...,dx} (di € Z"), and a convex
polyhedral domain, D. We denote by A = [d) | d2 | ... | di] the n x k matrix formed
from all the dependency vectors. The timing function is determined by an integral
n-vector, A, and the allocation function is an (n — 1) x n integral matrix, A. There
are two constraints that A must satisfy as stated in Chapter VI, namely, Non-conflict
and Dense array.

Each dependency d; of the URE is mapped to an interconnection link, ; = Ad;

in the target array, and we define the interconnection matriz, as follows.

'=AA= ['Tl | Y2 | ‘e I ’}(};] (VIII].)

Although there are apparently n? — n degrees of freedom in choosing A (the number
of elements in the matrix A), this is not really true. Many different matrices yield

arrays that are equivalent in that they are just a relabeling of the processors. It is well

159

known [99] that A is fully determined by a projection vector, u. Any two matrices,
A and A’ which satisfy Au = Ay = 0, yield arrays that are equivalent. Moreover,
the non-conflict constraint can be satisfied simply by ensuring that Nu # 0. Other
than this, any choice of u yields exactly one distinct array (some care must be taken
to ensure that u is reduced (the gcd of all its elements is 1), and has a positive
leading element). There are thus infinitely many valid allocation functions for a
given system of UREs.

This approach for choosing the allocation functions does not take into account
a very common, important constraint. The interconnections in the derived arrays are
often required to belong to a set P, of permissible interconnections. The following are
four commonly used candidates for P, representing respectively, the linear array, the
two-dimensional mesh (four neighbors), the mesh with two diagonals (i.e., hexagonal

arrays), and the mesh with eight neighbors.

P, = {0,%1} (VIIL2)
0 0 1]
P, = { % ik (VIIL3)
10 1 0
0 0] 1 1
Py = ¢ , e = (VIIL4)
0] 0 1 1 1
P = + ,+ s ,+ (VIIL5)
|0 1 L 1 -1

If we impose an additional constraint that for each dependency, d;, Ad; = %

must belong to P , we no longer have the freedom to choose any matrix that satisfies

160

Au = 0 as our allocation function. Indeed, for many values of u, there may be no
A for which v; = Ad; € P for i = 1...k. For others, only some of the matrices
satisfying Az = 0 may yield an array with permissible interconnections. We may
now state our problem as follows. Given a set P of permissible interconnections,
develop a systematic procedure to choose valid allocation functions (i.e., satisfying
the non-conflict and dense array constraints) for a URE that will yield arrays whose
interconnections belong to P.

Our approach to tackle this problem, and the organization of the chapter, is
as follows. First, in Sec VIII we investigate the properties of valid interconnections
for a systolic array by using integral matrix theory. We also introduce the notion
of congruence and similarity relations. In Sec VIII, we give a procedure to enu-
merate all possible “topologies” for a given permissible interconnection set, and in
Sec VIII we show that the bounds for the above four common interconnection sets
(i.e., P\, Py, Pa, Py) are fairly small. Then, in Sec VIII we develop procedures to utilize
these bounds to systematically generate all allocation functions for a given system
of UREs. We show how we can use “normal forms” to reduce the time complexity
of the procedure to the same order as the number of bounds we derive. Finally we
discuss the implications of these results on the development of practical CAD tools

for optimal systolic arrays.
Notation

We shall now introduce some formal notation which will be used throughout
this chapter. Many of the ideas are fairly well known, but it is essential to treat them

rigorously in order to explain the later development. First, we extend the standard

161

definition of unimodularity” to non-square matrices.

Definition 8.1
A m x n matrix U (m < n) is said to be e-unimodular (for extended
unimodular) if the ged of the determinants of all its m x m submatrices

is 1. U

It is well known [107] (pp. 47, Cor 4.1c), that a system of diophantine equations
Uz = I has an integral solution for any integral vector 7, iff U is e-unimodular. Hence,

the dense array constraint is satisfied iff the allocation function A is e-unimodular.

Lemma 8.1
The column Hermite form of an e-unimodular mxn matrix, A, is* [Ex, 0]

(]

Proof
By definition of column Hermite form there exists some integral unimod-
ular C such that AC = [L 0], where L is a non-negative lower triangular
matrix whose diagonal entries are the unique maximal entries of the corre-
sponding columns. Since column operations preserve the gcd of all order
¢ subdeterminants, and A is e-unimodular, L must be unimodular. Hence
all its diagonal entries are 1. Moreover, all other entries in any column

are strictly less than this, i.e., 0. Hence, L = E,,. m}

"A square matrix is unimodular if its determinant is 1.

*E; denotes the i X i identity matrix.

162

Lemma 8.2
If A and B are two e-unimodular matrices, their product, AB is also e-

unimodular. O

Proof
From Lemma 8.1 B = [E,, 0]C™! for some integral unimodular C. We
have AB = A[E, 0]C™' = [A 0]C~!. Hence, we need to show that
[A 0] is e-unimodular. This is obviously true, since adding any number of
additional columns to an e-unimodular matrix still yields an e-unimodular

matrix. O

Lemma 8.3
For two e-unimodular m x n matrices, A and B, if there exists a m x m
rational matrix, U such that A = UB, then U must be integral and

unimodular. m]

Proof
From Lemma 8.1, BC = [E, 0] for some integral unimodular matrix.
Hence, AC = UBC = U[E,, 0] = [U 0]. Since AC is integral, U must be
integral. Furthermore, AC is e-unimodular, but the only m x m submatrix
of [U 0] whose determinant is not zero is /. Hence U must be unimodular.

0

We are interested in UREs whose computation graph (for a given parameter
instance) is fully connected. If this were not so, the URE would describe a number
of independent computations. Such a URE can always be rewritten as an equivalent
one which has a connected computation graph. The following lemma gives necessary

and sufficient conditions for this.

163

Lemma 8.4
The computation graph of a URE is connected iff the dependency matrix

A is e-unimodular. D

Proof
The dag of the computation is connected if and only if that any index
point I of the computation space Z" can be represented by an integral
linear combination of the dependency vectors dy,ds,...,dx (i.e., every
point is connected to the origin), i.e., the following equation has an integral

solution L for any p € Z™.

[didy...de]L=p

This is true iff A = [d; d; ... di] is e-unimodular [107] (p.47, Corol-

lary 4.1c). u|

Analogously, if the set of permissible interconnections is not rich enough that
we can express any integral point as a linear combination of the vectors in P, then
it is impossible to construct a dense array. Thus, we will henceforth assume that
the matrix, P, whose columns are the elements of P is e-unimodular. The following
relationships will be used to partition the interconnection matrices into classes which

are essential to eliminate redundant candidates.

Definition 8.2
Two full row rank integral matrices, M, and M; are said to be congruent

(denoted by M, = M,) if UM, = M, for some unimodular integral matrix,
U. o

164

Definition 8.3
Two full row rank integral matrices, M; and M, are said to be similar
(denoted by M; ~ M,) if QM, = M; for some non-singular rational

matrix, Q.]

Note that both similarity and congruence are equivalence relations, and that

congruence is a refinement of similarity.
Topological Equivalence

In the following, we give a mathematical property for two processor arrays to
be topological equivalent. The property is fundamental for the derivation of bounds
later on. First, let us recall the standard definitions of equivalence of processor arrays.
A parallel architecture is described by a graph, the nodes denoting processor labels
and edges denoting interconnections. Each processor has a finite number of typed
I/O ports. All edges in the graph are also typed, so any interconnection in the array
is between similarly typed ports on two processors. Two parallel architectures are
defined to be topologically equivalent if their graphs are isomorphic to each other.

Regular processor arrays are parallel architectures that satisfy certain constraints.
The processor labels are m-dimensional index vectors (moreover, every coordinate is
a valid processor label), and the edges are of the form p « (p+ p;) for all processors,
p, where the p;’s are constant, m-dimensional vectors. We assume (for the present)
that the space of the processors labels is infinite (there are no boundary processors),
and all processors have the same number (say r) of I/O ports. Since all processors
have identical interconnection links, associating a type to each edge of the graph is the

same as typing the p;’s. Hence the topology of the array is defined by an ordered set

165

of such constant vectors, or equivalently, an m x r integral matrix, M = [u; | ... | g)-
We are interested in arrays that are connected, and so M must e-unimodular (using

an argument similar to Lemma 8.4).

Theorem 8.1
Two regular processor arrays, A; and A, with topologies M; and M;
respectively, are topologically equivalent (denoted by A; = A), iff M,

and M, are congruent to each other.]

Proof

Let M, = [pla 0ocK #T]: and M; = [Ju;a o) "":']

If Part: Consider the linear transformation that maps any processor, p in
A, to p’ = Up. Since every edge is of the form p « (p+ y), it is mapped
toUp +— U(p+p;) ie., Up & Up+Up;. The range of this transformation
is the entire index space (since I/ is unimodular), and so this represents a
regular processor array with the i-th ports of any processor, p, connected

to p+ Up;. Since Uy, is precisely the i-th column of M,, this array is A,.

Only If Part: The two arrays are topologically equivalent, and hence there
exists an isomorphism, say f between them. We first show that f must be
linear. Any edge, p « (p+ ;) in A; is mapped to f(p) «— flp+4) in Ay,
and since f is an isomorphism, this must be the edge f(p) « f(p) + p!.
Hence f(p + ;) = f(p) + pi-

Similarly, f(p + ku:) = f(p) + kg for any integer, k. Because M is e-

unimodular, any point p can be expressed as 37, k;u;, an integral linear

166

combination of its columns. Hence,

1) = £ ki) = 1O+ X kisg) = £(0) + 3 kst

J=1 7=1 =1

Hence, f must be linear and rational, and must be described by a rational
m X m matrix. By Lemma 8.3, it must be integral and unimodular, i.e.,

UM, = M, for some integral unimodular m x m matrix U. 0

Theorm 8.1 implies that any sequence of elementary row operations do not affect
the topology of a regular processor array. However, elementary column operations
are not permitted. Intuitively, this is so because the topology is defined as an ordered
set of interconnections, and the order is crucial. For example, the two linear arrays
[1,0] and [0,1] do not represent the same topology: a convolution array where the
weights stay in the processors and the input values move is not the topologically the

same as one where the weights move and the inputs stay.

Procedure 8.1

Given: Two n x k matrices, M; and M.
QOutput: trueif My = M,.
1. Determine an n x n non-singular submatrix, I'y of M;. If such a
matrix does not exist, return false.

2. Check that the corresponding submatrix, I'; of M; is also non-singular.

If not, return false.

3. Determine Q = ;7). If Q is not integral unimodular, return false.

167
4. If QM, = M, return true, else return false.

O

Procedure 1 above, is used to compare if two matrices are congruent. Note
that similarity can be tested either by modifying the procedure (removing the test
in step 3 above), or as follows. Compute the right null vector v for the matrix,
making sure that v is chosen so that it is reduced and has a positive leading element.
Then, similarity can be determined simply by comparing the respective v’s. Another
method is to use a canonical form, and compare these for syntactic equality. This
option will be discussed later. Note that if a regular processor array is derived from
a URE {A, D}, by an allocation function A, its topology is I' = AA. Moreover, we

have the following.

Remark 8.1
Two allocation functions A; and A; generate identical arrays iff the cor-
responding I} and T'; are topologically equivalent. Indeed, I'y = UT, iff
A =UA,. O

Bounds on the Number of Allocation Functions

Our approach is based on the following simple observation. Instead of first
choosing A and deriving ' from it, if ' is given, we can view Eqn (VIIL1) as a system
of diophantine equations, and solve for A. This system has (n —1) x k equations (one
for each element of '), and n? —n unknowns in A (in fact, there are n — 1 independent
systems of equations, one for each row of A). Since n must be no greater than k for
A to be e-unimodular, the system is fully (or over) determined, and yields a unique

solution (if any) for A. Therefore, if we can enumerate the set of all such systems

168

of equations that can possibly occur this will constitute an bound on the number of
allocation functions for the problem. Moreover, if this set is reasonably small, we
will also have an effective synthesis procedure: each such system is solved to yield an
array (if the system has no integral solution, we simply move on to the next one).
As a very crude approximation, we see that for a given problem, the set of
all systems of equations of the form AA = I' is precisely the set of all (n —1) x k
matrices [that can be formed from the elements of P. Hence, it is easy to see that
the number of possible linear allocation functions is no more than the number of the
system of equations. However, this is fairly large (|P}¥), and we should use additional
constraints that can reduce the size of this set. In particular, we know that these
[’s must represent valid interconnection matrices, and hence must be e-unimodular.
Moreover, many such matrices represent topologically equivalent arrays. This yields

the following procedure to determine the set of candidate equations of the form of

(VIIL1).

Procedure 8.2

Given: A set P of permissible interconnections.
Output: A set S¢ of all interconnection matrices that represent distinct
arrays.
1. Construct the set, S of all e-unimodular (n — 1) x k matrices whose
columns belong to P.

2. Partition S; into equivalence classes under =, and let §§ = {I}

where ['; is a representative of each class. Sf is constructed incre-

169

mentally by comparing each candidate from S, with the elements of
(the partially constructed) Sf, and adding it if it is distinct from the

ones so far (as in the sieve of Eratosthenes).

0

Proc 2 runs in O(|P|?|S¢|). For arbitrary P this is as bad as O(JP[**) (we can
construct pathological cases where |S¢| = |S]). However, most commonly occurring
sets of permissible interconnections have much more regularity. Thus the set of can-
didate interconnection matrices is the set of e-unimodular (n — 1) X k matrices whose
columns are in P, under the equivalence partition induced by congruence. Hence an
upper bound on the number of possible allocation functions is simply |S§|. This bound
depends on k, the number of dependency vectors in the URE. In addition, when &
grows, it can grow very fast. For example, when the permissible interconnection set
is P, defined in Section 158, |S5] is 25 but |S§| is 349! Therefore, if we intend to use
these bounds to systematically generate all the arrays, we need to further reduce the
bounds.

By observing that Eqn VIII.1 depends on A, the dependency matrix, we can
further tighten this bound as follows. First, we notice that the dependency matrix A
must be e-unimodular. Since e-unimodularity implies full row rank, A must contain
an n X n non-singular submatrix, say A;, (without loss of generality, we assume that
A, consists of the first n columns of A). Let A = [A; | Ay}, and correspondingly,
I' = [['; | T;]. Equation (VIIL.1) may therefore be writien as:

[= AA (VIIL.6)

170

T, = AA, (VIIL7)

Since A is required to be e-unimodular, I'y must also be of full rank. Note that
Iy and T, are not necessarily e-unimodular themselves (similarly for A; and A,).
But (VIILS) is fully determined, and can yield a solution for A by itself. We can now

tighten our bound as follows.

Theorem 8.2
Let T and I be two candidate interconnection matrices in S i.e., ' =
[[y | Tg) and I¥ = [T | T3] where 'y and Ty are of full row rank. If

I’y ~ T% then T and I' cannot yield distinct allocation functions. 0o

Proof
Since I'; ~ I}, 'y = QI'; for some non-singular rational matrix, Q. Let,
if possible there be two allocation functions, A and A’, induced by T and

I, respectively. Then, since Eqn VIIL6 is fully determined,

A LA

At

[AT = QIUAT = QA
1=1

and A and A’ must be e-unimodular (even though A7' may not be inte-
gral). Hence, by Lemma 8.3,) must be integral unimodular, i.e., the two

allocation funciions are not distinct. 0

Hence, the number of distinct allocation functions is no more than the number
of equivalence partitions of the set of all full row rank (n — 1) x n matrices whose

columns are in P, under the similarity relation. This is denoted by §*. Two points

171

should be mentioned regarding this bound. First, for an arbitrary (finite) P, it is not
always possible that, given an (n —1) x n full row rank matrix whose columns belong
to P, we can always find k¥ — n additional column vectors belonging to P such that
they form an e-unimodular (n—1) x k matrix. This implies that the bound may not be
tight, i.e., for every element in S°, there may not be a candidate solution I'. However,
for many commeon cases such as Py,. .., P, this is always possible. Second, since the
bound is independent of the actual dependency matrix, it is also possible that for an
(n — 1) x n full row rank matrix I'; (partition), there is no valid allocation functions
for all e-unimodular (n — 1) x k matrices whose submatrix of the first n columns
is similar to I';. In the following, however, we will show that for the degenerate
case where P is Z*! (i.e., any integral n — 1 dimensional vector is a permissible
interconnection), one can always find an e-unimodular solution to Eqn VIII.1 for any
T, € §*. This indicates that our bound is tight for arbitrary P. The following lemma
first shows that any integral matrix is similar to some e-unimodular matrix (and that

the similarity transformation involved is integral).

Lemma 8.5
Any (n — 1) x n integral matrix I' with full row rank is similar to some
unimodular matrix Y. Moreover the matrix, T such that I' = TT", is

integral.]

Proof
Any integral matrix " with full row rank can be transformed into its Smith
Form by elementary row and column operations [107}, i.e., RI'C = § =
[D0) = D[I,-10], where R and C represent elementary row and column

operations, and D = diag(é,, 62, . ..,6én-1) is a diagonal matrix. Therefore,

172
T = RD[I,_,0]C~. Take, T = R7'D, and I = [I,.,0}C~'. Since
elementary column operations do not change the gcd of the determinants

of the submatrices and because [I,_;0] is unimodular, I' is unimodular

too. O

As an aside, the above Lemma indicates that if we restrict our similarity relation
to only integral transformations, then, this relation is a strict partial order. Any set
of (full row rank) matrices that are congruent to each other has a subset which are
minimal under this partial order. Moreover, if the set is closed under congruence, the
minimal subset is a singleton. The following theorem gives us a method to determine

an e-unimodular solution to AA; = I}, for some I} similar to any candidate TI';.

Theorem 8.3
For any candidate interconnection matrix I'y € §*, there exists '} = T,

such that AA; = T’} has an e-unimodular solution. D

Proof

The following procedure yields the desired solution.
e Solve VIIL6 as a system of linear (rather than diophantine) equa-
tions. So, A = I';A7! which is, in general, rational.

o Let A’ be the integral matrix obtained by multiplying A by d, the

least common multiple of the denominators of all the entries of A

e By Lemma 8.5 there exists e-unimodular A” such that A’ = T A",

and T is a non-singular integral matrix.

Hence I = dT~'T; is similar to I'; and A” is the desired e-unimodular

173

solution (we say V = dT~'). Moreover, since our proof is constructive,

we can determine T and A", (m]

So far, all we have are the upper bounds for the number of allocation functions.
The problem of effectively utilizing these bounds to systematically generate all the
valid allocation functions still remains to be solved. This is not at all obvious, and
in Sec VIII, we will develop a procedure to generate all the valid allocation functions
which has space and time complexity of O(|S§|). This can be improved by using
various indexing schemes, and standard data structures for searching. Before we
discuss this, we first show that for the common cases defined in Sec VIII, the bounds

are surprisingly small.

Interconnection Matrices for the Common Cases

Applying the above procedure to the standard sets of permissible interconnec-
tions (Equations VIII.2-VIIL.4) we obtain the following results. There can be no
more than 4 linear systolic arrays with nearest neighbor interconnections for any two-

dimensional URE. These correspond to the topologies given as follows (see Figure 42).

87 = {[01], [10], [11], 1 - 1]}

For P,, we have the following nine possible topologies (see Figure 43).

010 1 00 1060 1 0 -1
0 01 0 01 010 01 0

10 O 1 -1 0 100 101 110
01 -1 0 01 011 010 0 01

174

- g P —
—_— —_— - e
-———— t---> <z --- <z - - -

One data value (solid) stays in the processor while the other one (gray)
moves, the gray one stays while the solid one moves, both of them move
in the same direction, or they both move in opposite directions.

Figure 42: The Only Four Linear Arrays That Can Be Derived from a Two-
Dimensional Recurrence.

175

A A i
-2 5, = o P o I
A i A
b Ay N A __;_
= = S N N =] |e-
A M i
pA A i
= = v i e
A A i

SRS T :

Figure 44: Additional Two-Dimensional Arrays If One Set of Diagonals Are Permitted
(Pa).

176

% o %, o A . |
— — — s
4 7 A oA g
P Y -
- T -2 «£ = =] g - =
A)
:]
% %, %, A %,
~ N .~ Y v
veer TP . wiene e
‘\ \\ & \\ ‘s ‘\
‘\ S E ‘\ V \\

Figure 45: Additional Two-Dimensional Arrays for Eight Nearest Neighbors, (P,).

177

If hexagonal connections are permitted (i.e., for P3) the following 4 topologies

are possible in addition to &3, as shown in Figure 44.

1 01 110 11 0 1 0 -1
011 101 10 -1 01 -1

For eight nearest neighbors, i.e. P4 there are twelve additional interconnections

as shown in Figure 45.

1 -1 1|[1 -1 =11 -10]]1 -1 0
S:=85U

1 10jf[1 1 o]t 11]]1 1 -1

11 < |{=11 a]fo1 =] 01 4

01 -1 01 -1f]11-=1}|f[-1121

-111||l-1 -t1f[-101]]-1 01

101 1 01 111 1 -1 1

Note that while $*(P4) has only 25 elements as shown above, §5(P;) has 349
as can be verified by running Proc 2. This grows very large as k increases and so it

is very desirable to obtain a procedure that fully utilizes the tighter bounds.

Systematic Derivation of Valid Allocation Functions

In this section, we describe systematic procedures to utilize the bounds obtained
in Sec VIII to generate all the valid allocation functions for a problem. First of all,
there is a naive procedure to utilize the bounds given by the congruence relation (i.e.,
Sf). The procedure simply tries to solve Eqn VIIL1 for each I' € §;. Whenever

an e-unimodular solution A is found, it represents a valid allocation function. This

178

procedure runs in time proportional to |Si|, and has space complexity of the same
order of magnitude. Also note that since we have assumed that the A, is of full row
rank (which is always possible since we can rearrange the dependency vectors), I'y
must be of full row rank. Hence, we can immediately discard those elements of 5§,
whose first n columns are not of full row rank. We call this set the reduced Sf.
Improving this procedure to utilize our tighter bound is not as straightforward
as it may seem. As we saw on page 167, we can first partition the reduced set S§ by
the similarity relation according to the submatrices formed by the first n columns.

Formally, we define the partition™ as follows.

Definition 8.4
For any two elements I" and I" in the reduced set Sf, they are in the same
partition class iff I’y ~ I'| where I and I'] are the submatrices of the first

n columns of ' and " respectively. We call this partition C. 0

Clearly, |C] < |8°|- Also note that two matrices I' and I being in the same
partition class of C does not not necessarily imply that they are similar to each other,
let alone congruent (only their first n columns are similar). This raises a problem
when we try to improve the above procedure. Suppose that I' = [[, I';] is the
representative of a class R of C, and there is no integral e-unimodular solution A for
T, = AA; (however, because T is full row rank, there will always exist a rational
solution). We cannot simply discard I' as a candidate that can generate a valid
allocation function. It is possible, that a rational transformation of A may yield a

valid allocation function for some other member I of R.

A partition of a given set, 5, denotes a set of disjoint subsets of 5 whose union is equal
to 5.

179

Example 8.1
Consider the two candidate interconnection matrices (whose columns are

in Pq)

110 0 1160 0
Ih = T = and I} = I =
=110 1 010 1

and T = [, Ty], IV = [[} T%). It is easy to see that I, ~ I'7, since
Pl = TF;

where

10
T =

-1 2

Hence, only one of them, say I will be picked as the representative of the
class which contains both T' and IY. Now, consider a problem instance

given by))
110 0

A, 02 0|andA;=|1

001 0
L | d

and A = AjA,. It is easy to verify that A is e-unimodular. Solving
Equation AA; = A] for A yields

Lo e
[S1E] o
(] o

which is not even integral, let alone e-unimodular. But if we use I as the

180

representative of this equivalence class, the solution is

100
-110

It is easy to verify that A is indeed a valid allocation function for . O

It is easy to see that, if two (n — 1) X n matrices I'y ~ T, the correspond-
ing rational allocation matrices A and A’ derived by solving Eqn VIII.6 are similar.
Lemma 8.6 shows that we do not need to solve Eqn VIIL.6 for A for each ' € R.

Let R be an arbitrary partition class of C, I' be the representative of R and
I'; be the first n columns of I'. Furthermore, we know by Theorem 8.3 there exists
I, ~ T for which AA; = I'{ has an e-unimodular solution. Let Ag = VI1A7! be

this solution (see the proof of the theorem for details). We have the following lemma.

Lemma 8.6
There is a valid allocation function for class R iff AgA is congruent to

some element in R. D

Proof
First of all, based on the proof of Theorem 8.3, Aq is e-unimodular re-
gardless of what I' is. To prove the if part, suppose ApA is similar to
some element IV in R, i.e., UApA = I for some unimodular matrix U. It
is easy to see that U A is a valid allocation function for I since U Ay is

unimodular.

Conversely, suppose that there exists a I = [['},] in R such that there

exists a valid allocation function A’ (e-unimodular) for it. We prove that

181

AoA is congruent to I'. Since I'y o I'}, there exists a non-singular rational
matrix T such that Ag = TA’. But since A and A’ are e-unimodular,
based on Lemma 8.3, T must be integral and unimodular. Thus, we know

that AgA is congruent to A'A =T", o

The above discussion implies that, in systematically generating allocation func-
tions, we can not simply discard the elements in a partition class R represented by
a single element. Therefore, it is difficult (if not impossible) to reduce the space
complexity (remember that as the number of dependencies increases, |S§| grows very
fast). This difficulty rises from the fact that for any finite permissible interconnection
set P is not closed under unimodular transformation. There is much room, however,
to improve the time complexity of the procedure. The following is the general skeleton

of the procedure to generate all valid allocation functions.

Procedure 8.3

Given: A set P of permissible interconnections, a dependency matrix A

and a partition C.
Output: All the valid allocation functions.

For each class R € C,

1. Let T be the representative of R.
2. Solve for Ag as in Lemma 8.6.

3. f U := Test(Ao,R) is not false, then UAp is the valid allocation

function for R, otherwise R does not yield a valid allocation function.

182

a

Here, Test checks whether AgA is congruent to some elements in class R and returns
false if it fails; otherwise, i.e., if it finds an element I' such that UAA =T for some
unimodular matrix U, it returns U.

There are two places to in Procedure 3 which need to be refined: one is how
to choose a representative of the R’s, and the other is how to implement function
Test, which will dominate the time complexity of the algorithm (recall that {for many
common cases, [C|, the number of the iterations in Procedure 3, is much smaller than
than |S§]). In the following, we give several approaches.

The simplest approach is to randomly pick an element from R as the represen-
tative and implement function Test as follows: sequentially compare all the elements
of R with ApA = VI'1[l.-1, AT'A;] using Proc 1. As soon as we find one successful
match, we can skip the remaining elements of R and Test returns the corresponding
element. This is safe, since in any partition class R, at most one element can yield a
valid allocation function. The worst case running time of Test is proportional to |R|,
and the average time is half of this.

The implementation of Test in the first approach can be further improved as
follows. Note that any element in R can be written as [QI',I';], for some non-
singular rational matrix @, which can be precomputed (as can @~'). To test whether
[@T1,T2] € R is congruent to AgA, we have to see whether there is a unimodular
transformation U such that AgA = U[QT,T'3]. It is easy to show that U = VQ~!,
and so all we have to do is to test whether VQ~! is unimodular, and whether AgA, =
V@™ 'T';. A necessary condition for U to be unimodular is that det(V) = Zdet(Q).

Hence we need not compare ApA with all the elements of R, only with those whose @

183

component has the same (absolute) determinant as V. Thus, if we further partition R
into blocks with det(Q) as a key, we can reduce the time complexity of Test. However,
a linear search is still required within each block.

It is possible to improve this to logarithmic (or constant) time, based on the
following observations. For each element of R, our procedure Test performs an oper-
ation which tests for congruence. This is a binary comparison which simply returns
true or false. If we were able to refine this to an order relation—if while determin-
ing whether two matrices were congruent, we were also able to determine which one
was “greater”—we could then sort our candidates according to this order and use a
binary search {or some hashing technique) to test for a match. We now introduce
the concept of normal forms of interconnection matrices which enables us to devise
such an order, and to dramatically reduce the average time complexity of the search

procedure.
Normal Forms for Topologies

As described earlier, the particular candidate we use as our representative of
each equivalence class under = is not unique, and may depend on the way our algo-
rithm was implemented. It is useful to have a standard form which is a unique repre-
sentative of each partition. Furthermore, since the sets of candidate interconnections
R are precomputed, we can reduce the test for congruence to a simple syntactic test
for equality if they are stored in such a form. We now derive such a canonical normal
form, and show that it is unique. Since I' = I" iff one of them can be reduced to
the other using only elementary row operations, we shall obtain a normal form that
is similar to Hermite normal form [107] except that rather than column operations,

only row operations are permitted. We call this the row-Hermite normal form.

184

Theorem 8.4

Every (n—1) xn (m < k) integral full row rank matrix I', is topologically

) : . i A; ayn B
equivalent to its row-Hermite normal form, I'™" = , Where

0 0 C
A; B
0o C

whose diagonal elements are the maximal entries in the corresponding

= S is a non-singular, non-negative upper-triangular matrix

a;
column, and 1 s the (z + 1)-th column of T (for some 1) o

Proof

Qur proof is based on the following induction. Suppose we have trans-

Ay

formed I into the form * | where A, is upper triangular and with
0 B

positive diagonal. We perform the following elementary row operations to
B,. Make the first column of B, non-negative (if the whole column is zero,
proceed to the second column). This can always be done because we can
change the signs of a row by multiplying by -1. Pick the smallest positive
element s on this column (say it is in row /) and repeatedly subtract row
! from the other rows until all their entries in this column are less than
s. Repeat this, until all except one element in this column are zeroed out
(this is similar to BEuclid's algorithm). Exchange this row with the first

TOW.

Since I is of full row rank, the case when all the entries in the first col-

umn of B, are zero will occur at most once. Hence, there are at most

185

two columns with the same “height” of nonzero elements, and all those
elements on the diagonal are positive. The final matrix will have the
“shape” that we desire, but its off-diagonal elements are not necessarily
positive. This too can be easily accomplished by appropriate elementary

row operations. The final form is I'.. a

Theorem 8.5
For any two full row rank (n — 1) x n matrices Iy and T3, I'; = I iff
r; =T3. D
Proof
If Part: Ty = T3 =T3 =T, = I =T, (by transitivity).
Only If Part: Let Ty = Iy, so 'y = UT; for some unimodular U,
Moreover, by definition of row-Hermite normal form, I'y = I} (so I =
UiT3) and Ty = T3 (so Iy = Uel'3), for some U; and Uz;. Hence I'f =
UDU'U,T; = UT; for U = UT'U'U;. We now show that this implies the

U is the identity matrix, i.e., I'] = T';. Let

A,' a; B A d. B’ A.' B
] = “ Iy = | 7 S = and
0 0 C ¢ 0 C! 0 C
- A, B
0 C

Without loss of generality, let 7 < i. We first prove that i = j. If it were

not so, US is nonsingular, but the corresponding submatrix in I'; includes

AL d.y,
777 which makes S singular. Therefore, i = j. Now, consider

0 0
5" = US. First of all, it is easy to see that U/ should be also upper triangu-

lar. Notice #1123 ...Unm1n-1 = 1 (because U is unimodular), uysy = sj

186

(for 1 <1< n—1)and sy,s; > 0, we have uy = 1. Further, consider
Sj_yt = St—u+ur—uSy. From sj_y;+ui—ysy > 0, we have u;_y; > 0 (because
sy is larger than s;-y1) and from s;_y; < sj; = su, we have u;_y; = 0. Now,
consider sj_y;,; = Si-1i41 + Ui—il415141141, using the same argument, we
have u;_1;41 = 0. Inductively, for 1 < k < [, uj_x; = 0. Therefore, U is

the identity matrix. D

The definition of normal forms can be trivially extended to m x k integral
matrices where m < k, and the submatrix formed by the first m + 1 columns is full
row rank (all our candidate interconnection matrices in the reduced S are of this
form). We simply convert the first m + 1 columns to row-Hermite normal form, and
apply the same transformations to the remaining columns. It is also easy to show
that these normal forms are unique, and Theorem 8.5 can also be trivially extended.

We now improve the testing function Test in Proc. 3 as follows. We index
elements in a partition class R of C by their row-Hermite normal form. To test
whether AgA is congruent to an element I' in R, we first convert ApA into its normal
form N and based on Theorem 8.5, the testing of whether ApA congruent to I is
equivalent to testing whether NV is syntactically equal to the normal form of I' (which
is the key of I'). Thus, the testing problem reduces to a conventional search of
an ordered list, and Test can be implemented using standard techniques. A binary
search tree improves the time to logarithmic, and hashing may also be used to obtain
a constant time algorithm for Test. Proc. 3 for determining all the valid allocation
functions will now run in O(]S?|), which is a good as we can expect to do. Note that
since the reduced S§ is not closed under congruence, the normal form may not itself be

a permissible interconnection. In this case we also have to explicitly store the original

187

interconnection matrix in reduced S¢ to return a correct unimodular transformation

matrix U.

The Design of Optimal Systolic Arrays

The results presented in this chapter have direct applications in the design of
optimal systolic arrays. We illustrate two such examples.

One of the most important criteria in systolic array design is the number of
processors of the array. In practice, we intend to minimize the processor count because
processors occupy precious resources such as silicon area on chip for the array. Under
the conventional framework for systolic array synthesis, choosing different projection
vectors (hence different linear allocation functions) yields different processor counts.
In general, the processor count of the resultant array is the number of integral points of
the image of the computation domain under the projection. It depends exclusively on
the projection vector (linear allocation function) chosen for a given problem. Thus, to
minimize the processor count, it is desirable to search for the linear allocation function
which yields the minimal processor count. The number of valid linear allocation
function for a given problem, however, is infinite even for a finite computation domain.
Furthermore, since the processor count cannot be formulated as a linear function
(except for two dimensional recurrences), linear programming techniques cannot be
directly used as in the minimization of the total computation time (i.e. choosing the
optimal timing function} [109].

Wong and Delosme [118] considered this problem and proposed a method to
prune the search space of projection vectors. They proved that there exists an upper
bound for the length of the projection vector, u (recall that u is the basis for the

right-null space of the allocation matrix, A, i.e., a vector, such that Au = 0) which

188

yields the minimal processor count. This bound depends on the “shape” of the
domain of computation, and Wong and Delosme give a constructive method to find
the bound. Using this, one obtains a processor-minimal systolic array by enumerating
all candidate projection vectors u that are smaller than (or equal to) this upper bound,
and picking the one that yields the best array among only these. Note that since the
bound depends on the shape of the computation domain, it may be different for
different parameter sizes of the same problem.

In contrast with this, using our approach, one would construct all the arrays
that can be derived for the given problem and using a given set of permissible in-
terconnections (such as “pure systolic”) using (Proc. 3). Then one would choose the
optimal one by comparing the processor counts of each of the arrays. Because of the
small bounds for the number of these valid allocation functions, we expect that such
a procedure would be more efficient. Furthermore, the search space of valid linear
allocation functions is independent of the problem size. One drawback of the method
is that it is dependent on the particular choice of permissible interconnections (this
is our premise). If a user is interested in the processor-minimal systolic array for a
given problem, regardless of what the interconnections are (i.e., if P = Z*1) our
procedure would be inapplicable.

In practice however, the absolute processor count may not be important. There
are many different performance criteria that may be used in systolic design, including
throughput, processor utilization, block pipelining rate, etc. [68], and many of these
are closely related. One such measure is the processor pipelining rate o (if every
processor is active in one out of every a clock cycles, the processor pipelining rate is

a). Tt is well known that = A™u (recall that A" is the schedule vector). Ideally, one

189

would like an array where o = 1, it is also well known that by clustering adjacent pro-
cessors together, one can often achieve this. This problem is addressed in Chapter IX
where it is shown that such clustering can be deduced automatically. Clustering has
the added advantage that the processor count is also reduced by a factor of a. Thus
it would seem that the real cost measure that one should minimize while designing
systolic arrays is not just V, the volume of the projection of the domain of compu-
tation, but V/a. It is not obvious how the method proposed by Wong and Delosme
can be adapted to this new definition of processor count. Since our results enable the
designer to systematically enumerate the (finite) space of all possible arrays that can
be derived, it can be easily adapted to the new definition, and to any cost criterion
(or indeed any combination of criteria) that the designer chooses.

Another application of the results in this chapter is in the design of optimal mul-
tistage systolic arrays. Many practical algorithms in signal processing and numerical
analysis naturally have several different phases (i.e., there are several different nested
loops in the algorithm). For example, a multiplication of three matrices can be de-
composed into two multiplications of two matrices. There are two approaches to the
array implementation of such algorithms. The first is to design different arrays for
different stages and the other is to design a single systolic array for all the different
stages. In the first approach, it is desirable to minimize the interstage data movement
which are caused because of the mismatch of the input and output boundaries of the
arrays for different stages. In the second approach, besides the minimization of the
interstage data movement, it is also desirable to minimize the difference of intercon-
nection structures caused by the difference of the computation domains for different

stages. Such minimization problems require an exhaustive search in the spaces of

190

linear allocation functions for different stages. By using our results, an efficient pro-
cedure can be designed since the search space for each stage is quite small.

To summarize, the results in this chapter can be used to design optimal systolic
arrays for various criteria even for some fairly complicated design problem. This
is because our work shows that there exists an efficient procedure to systematically
generate all possible linear allocation functions, which are essential to optimize many
design criteria. Since the procedure is independent of different optimization criteria,

such a method can be widely used.
Conclusions

We have shown that the problem of determining valid linear allocation functions
for a system of UREs has only finitely many solutions, if one considers the fact
that the desired arrays must have interconnections that belong to a (finite) set of
permissible interconnection vectors (which is a very realistic assumption). Moreover,
we have given an effective method for constructing a sufficiently tight upper bound
on the number of distinct valid solutions that can ever be found. These bounds, for
the common cases, are surprisingly small. By using the idea of normal forms, we
also give a systematic procedure to enumerate all possible distinct valid allocation
functions in a time complexity which is clearly the best we can do.

It should be noted that, although we have reduced the time complexity of the
procedure to enumerate all distinct allocation functions to the utmost, based on the
tight bound, §°, we have to store S instead of 5* number of interconnection matrices. |
Therefore, our precomputed interconnection matrices are related to the number of
dependencies k£ of the problem specification. One way to tackle this problem is to

precompute S¢ which depends only on n, the dimension of the problem domain and

191

then generate Sf on the fly. This will dramatically reduce the space required and
make our procedure problem independent, at the price of additional time costs. Note
that the determination of Sf is a one-time computation, so it may be done off line
for the common cases and the on-the-fly approach can be used only when the system
does not have this information (and this can be stored for later use).

Notice that in the process of enumerating all the allocation functions, the equa-
tions to be solved (i.e. the instances of Eqn VIIL1) all involve only A, the first n
columns of the dependency matrix, A. We expect that some properties of A (for
example, the determinant of A;) could impose additional constraints on the space of
candidate I"s. By investigating these constraints, we may be able to further reduce
time and space complexities of the enumerating procedure. This is currently under
investigation.

Our results also raise another question in systolic array research, namely what
are permissible interconnection structures for systolic arrays? One of the possible
criteria is distance. However, even for this simple criterion, it is still worthwhile to
investigate different notions of the distance (say, physical distance or the minimum
number of integral points). We expect that under different criteria, there will be
different upper bounds on the number of distinct valid allocation functions (and of

course, different enumerating procedures).

192

CHAPTER IX

QUASI-LINEAR ALLOCATION FUNCTIONS FOR EFFICIENT ARRAY
DESIGN

Introduction

In general, processors in a systolic array may not be active all the time during
the lifetime of computation. In particular, a processor exhibits a periodical behavior:
active at one out of every & clock cycles. This introduces the concept of processor
utilization or processor efficiency. In this chapter, we study the problem of deriving
systolic arrays whose processors are always active, i.e. § = 1.

Traditionally, allocation functions have been restricted to integral linear pro-
jections (i.e., the allocation function was given by an integral (n — 1) X n matrix).
In this chapter, we study a class of functions called quasi-linear allocation functions.
We describe the special properties of such functions and give conditions for them to
be valid allocation functions. We also show how they can be used to derive arrays
that have 100% efficiency. -

It has been observed that by merging every é neighboring processors which
are active at different times, one can improve the efficiency of the array to 100%
without slowing down the array and increasing the cost (each PE may have a few
additional registers and some extra control, but no additional functional units are
required). However, this technique is not systematic and it can be only used case

by case. In this chapter, we prove that it is always possible to perform clustering in

193

such a manner that the efficiency can be improved to 100%. Furthermore, we also
provide a constructive way to enumerate such fully efficient arrays. This implies that
our method can be used in a practical synthesis system and can allow the user to
derive the best fully efficient array. The clustering corresponds to the application of a
quasi-linear allocation function. Indeed, the main advantage of quasi-linear allocation
functions is that they provide a method for unifying clustering within the synthesis
framework.

In addition, we show how the mathematical theory of clustering that we develop
can be applied to any systolic array to derive a fully efficient systolic array. This is
based on a standard view of the systolic arrays as UREs with a strongly separating hy-
perplane. Our methods can also be easily generalized to transform piece-wise systolic

arrays [113] to fully efficient ones, by applying a piece-wise quasi-affine function.
Notations and Problem Definition

A systolic array consists of identical processors which are connected locally.
Processors process data from input channels and send out the output through output
channels to other processors at every clock cycle. To synchronize the data flow, it is
possible that a processor has to be idle during some clock cycles. This leads to the

concept of extrinsic iteration interval [98] which is defined as follows:

Definition 9.1
The extrinsic iteration interval of a systolic array is defined to be & if every
processor is active at exactly one out of every § consecutive clock cycles.

The efficiency n of the array defined as 5 = 1/6. m

194

For example, in the Kung-Leiserson systolic array for banded matrix multipli-
cation [67), the processors are active once every 3 clock cycles. Therefore, 6 = 3 and
n=1/3.

We will also use the concept of e-unimodular for a matrix, which is defined in
Definition 8.1 in Chapter VIII. Furthermore, we say that a vector is a normalized
vector if it is e-unimodular (i.e. the ged of all its components is 1).

Throughout this chapter, we will assume that the UREs are defined on an
n-dimension integral domain D. The standard linear transformation technique to
synthesize systolic arrays from UREs can be viewed as a space-time transformation,
which involves two linear transformations, namely, the timing function (represented
by its norm A) and the allocation function (represented by a normalized projection
vector u or an integral (n — 1) x n matrix A satisfying Au = 0, and u is the basis
of the right null space of A). Besides the constraints stated in Chapter VI on valid
timing and allocation functions, we can make the following assumptions without any

loss of generality.

e) is a normalized vector. This is because if A is not a normalized vector, it can
be written as s)’ for some positive integer, s and normalized vector, A’. It is
easy to verify that A’ still represents a valid timing function (see [97]) and it

yields a faster schedule than A.

¢ The dependency graph of the computation is connected. (Otherwise, the com-
putation consists of more than one totally independent computation, and we
can rewrite them as separate UREs). This constraint is satisfied iff the de-
pendency matrix (Dy ... Di) where Dy,..., Dy are all dependency vectors is

e-unimodular.

195

Geometrically, the timing and allocation functions can be unified as a single

transformation from the computation domain D to the processor-time domain 7.

This can be described by an n x n matrix T' = . We denote the processor
A!
space (i.e. the first n—1 dimensions of T) as P. Furthermore, we say a processor-time

point (P t)' € T is active if it is the image of a computation point, i.e. there exists
an I € D such that 71 = (P t)'. Otherwise, (P t)! is said to be inactive (or “hole”).
Intuitively, a processor-time point (P t)! is active iff the processor in the location P

is active at time i.

Activation Patterns and Efficiency

We now establish a lemma that provides a fundamental characterization of the
activation patterns of processors in arrays derived by integral linear transformations.
We will also use this to show a well known “folk-theorem” regarding the efficiency of
Processor arrays.

The active points in a derived array can be characterized by certain properties
of T. Let C = (C,1C;...C;) be an n X n unimodular matrix such that AC =
(En-10) (since A is e-unimodular, its column hermite form is (E,—; 0)). Let v* =
M(Cy...Cno1) and k = AX'C, (thus, M'C = (v' k)). Note that since AC = (En—1 0),
we have AC,, = 0, i.e. C, is a right null vector of A. Moreover, since C is unimodular,
C, must be normalized. Therefore, C, = u and k = A'C,, = +£A*u. The following

lemma gives an important characterization of active points.

Lemma 9.1

A processor-time point (P t)* € T is active iff the following equation has

196

an integral solution j.

o'P + jk =1 (IX.8)

Proof
Consider transformation matrix T'. We have
T A _ (E,,_10)C“ _ E,10 1= E.y 0O o1
At At MC vtk
(IX.9)

Now, a processor-time point (P t)! € T is active iff there exists] € Z"

such that
P E., 0
=TI= cI
) vtk
Let J = C~'I. This defines a bijection Z* — Z™ because C (and hence,

C~1) is unimodular. Hence the above system of equations has an integral

solution 7 iff the following system has an integral solution J.

Letting J = (j1 ... jn—17), We see that the solution for (j; ... jn—1)" is
simply P. Substituting this into the last equation and simplifying, yields
Eqn. IX.8.]

The following result is well known and has been reported by many researchers.

197

It is proved here for the sake of completeness. The details of the proof are also used

later.

Remark 9.1

The extrinsic iteration interval §, of the systolic array derived from a

URE is |Aul.]

Proof
We first prove that if an processor-time point Py, = (P to)" is active, then
for any scalar integer a, the processor-time point (Pto+ak)! is also active.

Since (P tp)! is active, there exists an integer jo such that

v'P + jok = to

Adding ak to both sides,

v'P+ (jo + @)k =t + ak

Hence, processor P is active at to+ ak, and the extrinsic iteration interval,
&, must be a factor of k, i.e. §k. To show that |k| is exactly §, we now
prove that if processor P is active at t; and i, then (¢; — t2) must be a
multiple of k. Indeed, based on Lemma 9.1, there exist integers j; and j;
such that

‘UtP +]1k = tl

and

v'P 4ok =t

198

Hence,

(i =Je)k=ti— 1
and therefore, the extrinsic iteration interval, 8, is |k| = |A*u]. o

Corollary 9.1
From Eqn 1X.9, we further have det T' = =+4.]

The “holes” in the processor-time space occur when T is not bijective. This is
true only when T is not a unimodular matrix. The above corollary conforms to this.
Theoretically, it is always possible to select an integral vector u such that Ay = £1.

This is due to the following lemma.

Lemma 9.2
For any normalized n-dimensional vector w', it is always possible to

choose an (n — 1) x n integral matrix M such that the matrix (w M*)" is

unimodular. m]
Proof
Since w' = (w; ... w,) is a normalized vector, there always exists an

integral vector u such that w'v = ged(w; ... wy,) = 1 and correspondingly
we can choose an e-unimodular matrix M such that Mu = 0. It is easy
to see that Eqn. IX.9 holds for M too. Therefore, |M| = +w'u = %, and

hence M is unimodular.]

In practice, however, there may be other factors which prohibit the choice of
such allocation functions. The first factor is when the computation domain D is

infinite (in this case, calD has only one extremal ray). In this situation, there is only

199

one projection vector (the ray of D) which yields a finite array, as shown by Quinton
[93] and this projection vector may not yield fully efficient array (i.e. § = 1). Consider
banded matrix multiplication {for possibly infinitely large matrices), the computation
domain is infinite and the only valid array derived by the above transformation is
Kung-Leiserson array whose efficiency is only 1/3.

The second factor is due to the fact that projection vectors which yield efficient
arrays do not necessarily use the least number of processors. As an example, for
banded (but bounded) matrix multiplication, one projection vector yields a fully
efficient array with n? processors while the Kung-Leiserson array uses only w,w.
(w1, we are the bandwidths of the matrices) processors. Even though this array is
not fully efficient, it may still be preferable to the other array. As a result we must

investigate methods for improving the efficiency of arrays.
i-Linear All ion Function

Based on the above discussion, we see that it is inherently restrictive to try to
derive efficient arrays with only integral linear transformations. In this section we will
therefore propose a new class of allocation functions and investigate its properties.
This class is a strict superset of the usual integral linear allocation functions, and
consists of rational linear functions. But to guarantee that the transformation yields
a processor array, we have to change the locations (labels) of the processors denoted

by rationals to integers. One of the possibilities is to use the fioor function.

Definition 9.2

A quasi-linear allocation function, specified by an (n—1) x n full row rank

rational matrix ¢) maps the computation at index point I to a processor

200

labeled® Q1] 0

Quasi-linear functions were proposed by Quintion [93] as a class of timing func-
tions in systolic array design, and Van Dongen has also studied the derivation of
quasi regular arrays (an extension of systolic arrays) using what he calls quasi-affine
mappings”.

We know that Q can be decomposed as @ = 3T where d is the least commeon
multiple of denominators of all the entries of @ and T is an (n—1) X n integral matrix.
Moreover, T' can be decomposed into form T = MA, for some (n — 1) x (n — 1)
nonsingular integral matrix M and (n — 1) X n e-unimodular integral matrix A, (see
Lemma 5 in Chapter VIII). We can decompose M into its Smith normal form §
(i.e., M = USR for some unimodular U and R). Therefore, @ = JUSRA,. Taking
A = RA, and noting that A is also e-unimodular, we can assume without loss of
generality that Q@ = JUSA for some integer d, a unimodular matrix U, a diagonal D
and an e-unimodular A.

Thus, any quasi-linear allocation function can be interpreted as follows. We first
apply an integral projection that maps the n-dimensional index space to an (n — 1)-
dimensional integer processor space. Then we “scale” the coordinates of the processor
space (multiplication by diagenal matrix §). Next we perform a basis transformation
(unimodular matrix U), and then cluster all the processors within all cubes of size dr-?
(division by d and taking the floor). We denote by C{P), the transformation [JUSP].

Thus the quasi-linear allocation function is the composition of the projection A and

*The floor, | X | of a rational vector X = [21...24] is [[21] ... [2n]]-

*The term quasi-affine has been used somewhat differently in the literature. Quinton
¥93] defines quasi-affine functions as the floor of rational affine functions, and semi-linear
unctions as linear functions modulo a constant. Van Dongen’s quasi-affine mappings involve
both the floor and modulo operations.

201

Lemma 9.3

If @ is timing conflict-free, then A should be also timing conflict-free. O

Proof
Let Q be conflict-free while A is not timing conflict-free. Then there are
at least two points I, Iz such that A'l; = A'I; and Al; = Al,. Therefore,
[LUSAL) = |3USAIL), which means Q is not timing conflict-free too.

This is a contradiction. (]

Hence in our geometrical interpretation, A represents a valid conventional linear
integer allocation function. Note that the above Lemma only gives us a necessary
condition. In addition to being free from timing conflicts, any valid allocation function
should also satisfy the dense-array constraint. Moreover, we want to ensure that the
the resultant arrray is spatially fully regular (i.e., all the processors are identical
and have identical connections). We shall see that, unlike in the case of integer
allocation functions, any candidate function that satisfies the other constraints may
not necessarily guarantee spatial regularity.

In the following, we will show that if there is no basis transformation (U is
E,_,), then any valid quasi-linear allocation function that yields a fully regular dense
array must be a “clustering” of an array derived by A. We will henceforth assume
that Q = 1SA = DA, where D = dz'ag(ﬂ-,.. Be=L) where p;, ¢; are all integers and

" gn-1

for each 7, p; and ¢; are relatively prime. First, we prove a technical lemma.

Lemma 9.4

Let ¢, p, and ¢ be integers, ¢,p # 0. The number of distinct j’s that

202

satisfy the equation

= (2
z“LqJ (IX.10)

is [9-('—:21] - |'9;'-'|. Moreover, Eqn. IX.10 has at least one integral solution

jforanyiiff p<q. a

Proof

j is a valid solution to Eqn. IX.10iff i S 2 <i+1,ie, & < j < L1,

Suppose j, is the smallest solution and j; is the biggest solution, we know
the number of distinct integral solutions should be j; — j, + 1. But it is
obvious that j, = [9;'.] and j1 +1 = [ﬂ%ll] Therefore, there are exactly

l-g(l':-lrl - [9;‘] integral solution j’s.

If p>gq fori=0, [1(%'11] s |'9p-"'| = 0. Therefore, Eqn. IX.10 does
not have an integral solution. Conversely, if p < ¢, we have g > 1 and
50 |'9-('—pﬂl'| > [95] + 1. Therefore, Eqn. IX.10 has at least one integral

solution. o

Lemma 9.5
The quasi-linear allocation function specified by @ yields a dense array iff

Pm Sguforalm=1,...,n-1. O

Proof
The array derived by Q is dense iff for any J = (j1...Jn1)* € 27,
there always exists J € Z" such that J = |QJ] = [DAI|. Since A is
e-unimodular, there always exists an integral solution I to J' = Al for
any integral vector J’. Therefore, we need to find the conditions under

which the equation J = |DI| has integral solution I € Z™! for any

203

integral J € Z"'. Since D is diagonal J = |DI] is equivalent to n — 1
independent equations of the form

Pmilm

9m

jm = | (IX.11)
for m = 1,...,n — 1. By Lemma 9.4, each one of them has an integral

solution j.,, for any integral i, iff pm < gm. _ O

We thus see that C is a “clustering” of processors, i.e., a surjective map on
Zn-1, Furthermore we desire that the clustered final array consists of identical pro-
cessors, which implies that an equal number of processors are mapped to each cluster
(otherwise some clusters will be different from others). The following considerations
enable us to impose additional constraints on D. € maps J = (j;... j,l_l)'r to I =
(i1 ... i,,_l)T iff Eqn. IX.11 holds for m = 1,...,n—1. From Lemma 9.4 we know that
for each m, the number of distinct solutions to Eqn. IX.11is Ny, = [ﬂ(;;%ﬂl] - 9';%] .
We desire that this must be constant, independent of i,,. Now let ¢ = kpm + r such
that 0 € r < pp, and iy = Ipy, + 1o where 0 < iy < p,,. By simple arithmetic manip-
ulation we can show that N, =k + [ﬂ‘pi:—ll] - [-;'-;‘j] It is easy to see that, if r > 0,
N,, is not a constant because N, = k + 1 for i = 0 and N, = k for ip = pm — 1.
For example, let ¢, = 11,p, = 8, we have k=1 and r=3. N,, =2,1,2,1,1,2,1,1,
for i, =0,1,...,7 and it repeats the pattern again for other i,,. Hence, if we are to
derive fully regular arrays with our quasi-linear allocation functions, r must be zero,

i.e., gm must be divisible by p,,. Thus. we have the following

Lemma 9.6

@ results in a fully regular array iff forallm=1,...n =1, pn =1, i.e,,

204

TSRS § 1
D—dtag(ql,...,q"__l). O
Proof
Obvious from the above discussion. a

We are thus able to characterize quasi-linear functions when they are to be
used as allocation functions in systolic array design. They must be the composition

of some integral linear allocation function, A, and a clustering operation C = | D],

1
dn—:l

where D = diag(;}T e). C thus merges all processors whose labels in the m-
th coordinate range from kd, to (k¥ + 1)dn — 1. Thus all the processors within
a rectangular parallelepiped are clustered together into a single processor (called
rectangular clustering). Note that Lemma 9.3 gives us necessary, but not sufficient
conditions for a quasi-linear allocation function to be timing conflict-free. To obtain
a better characterization, one must show that in the array derived by A, among all
the processors within a rectangular parallelepiped, there is never a time instant when
more than one processors are active simultaneously. In this paper, we are concerned
with a specific motivation, namely the derivation of efficient arrays. For this, we are

interested in a “maximal” clustering (one where we cluster as many processors as

possible}.

Synthesizing Fully Efficient Systolic Arrays

From the previous section, we see that any quasi-linear allocation function is
a rectangular clustering of the processors derived by some integral linear allocation
function. It is natural to ask the question whether such allocation functions are
general enough, i.e., can they describe all possible clusterings of arrays derived by

any linear allocation function. To answer this, we need to return to the motivation

205

for clustering, namely to improve the efficiency of the derived arrays. We will show
that there always exist quasi-linear allocation functions which yield arrays with 100%
efficiency (i.e., there are § processors in each cluster).

A standard method of clustering is to merge all the processors within a (not
necessarily rectangular) parallelepiped . This corresponds to a basis transformation
followed by rectangular clustering. We shall describe how to perform this basis trans-
formation. Since such a basis transformation merely renames the processor labels,
the composition of this and the original linear allocation function is a valid allocation
function that yields the same array. Thus, quasi-linear allocation functions can de-
scribe arbitrary parallelepiped clusterings of any array derived by a linear allocation
function.

Thus, given an array derived by a linear allocation function, we are interested
in determining parallelepiped regions containing exactly § processors that satisfy the
following property: at any time instant, exactly one of the processors is active (i.e.,
the image of a point in the original computation domain). We shall first study the
activation patterns along parallel lines in the processor space, and then generalize

these results to parallelepipeds.
Activation Patterns of Processors along Parallel Lines

For a given t, the space {(Pt)! | P € P} is called a snapshot at time ¢. Given
an (n — 1)-dimensional normalized vector g, a processor point P and a time instant
t, L(p, P, t) denotes a line, {(P+ ap t)' | a € Z} in the snapshot at time t. The set,
{L(p, P,t) | P € P,t > 0} of all parallel lines in all snapshots is denoted by F(p).

206

Lemma 9.7
For any line L{g, P,t), if there is an active point in it, then there are

infinitely many active points in it. Such a line is called an active line. O

Proof
Suppose that (P + cop t) is an active point in line L(g, P,t), based on

Lemma 9.1, there exists an integer jo such that

v (P + aop) + kjo = t. (IX.12)

It is easy to see that @ = (P + (ao + ak) t) (« is an arbitrary integer) in
line L(y, P, t) is active too. This is because we can let j = jo—ov'y, j and
Q satisfy Eqn. IX.8. Therefore, there are infinitely many active points in

line L(g, P,t). =

Lemma 9.8
Active points in any active line occur periodically and periods of all active

lines in any family F(u) are the same. g

Proof
We know that line L(y,0,0) is active because { is an active point at time
0. Let Qo = (ap 0) (@ # 0) be the closest active point to 0 in line
L{#,0,0) (based on Lemma 9.7, we know Qo always exists). The number
of holes between 0 and Qg is (|| — 1). Further, let @, = (P + ey t)*
and Q2 = (P + azp t)! be two consecutive active points in line L{y, P,t);
the number of holes between them is (ja; — 2| — 1). We prove that this

is also equal to (|a| — 1), which will prove the lemma.

207

Since Qo, @1 and @, are active, there exist integral points Ip, I; and
I, such that TIy = Qo, TIy = @y and TI;, = @2. Now, T(I; — I;) =
Q: — Q2 = ((en — a2)u 0)*, which is an active point in line L(g,0,0).
The number of integral points between it and 0, which is (jay — az| — 1),

should be at least (|a| — 1) (since Qy is closest). Thus |a| < |a; — 2.

Conversely, T(Io+ 1) = Qo £ Q1 = (P + (@ % ag)p t)* is also an active
point in line L(g, P,t). The number of integral points between ¢1 and
Qo+ @1 is |(a1 £ @) —a;] = |a| which can be no less than (|ay — ay| — 1),

the number of holes between @ and @,. Therefore, |a; — az| < |a|. O

We call a the period of the active line. The following theorem further clarifies

the above results.

Theorem 9.1

The period of any active line L(g, P,t) is a factor of 4. m

Proof
As in Lemma 9.8, let Q¢ be the closest active point to 0 in line L{g, 0,0).
The period of the line is the smallest (non-zero, positive) value of a such
that (ap 0)' is an active point. From Lemma 9.1, this is given by the

smallest value of o for which Eqn IX.13 below has an integral solution j.
avip+ kj=0 (IX.13)

By elementary number theory, sc—d(]kﬂ'v—.”—) is the smallest positive a which

satisfies Eqn. IX.13, and hence a | k, i.e., a | 6. m}

208

Example 9.1
Suppose vt = (1 3),k = 6. First consider y = (3,—1), we have v’y = 0.
Hence, in family F(u), every point in line L(y,0,0) is active. But in line
L(y,0,1), every point is inactive. On the other hand, if we let u = (5 —1),
then v*y = 2. The periods of any active line in family F(u) are 6/2 = 3.
Notice even in this family, there are still some inactive lines. For example,

L(p,0,1) is inactive. O
Clustering of processors in a Parallelepiped

In order to cluster the processors in a parallelepiped, we first need (n — 1) di-
rections uy, ..., vn—1 along which the parallelepiped is formed. We are only interested
in parallelepipeds of volume &, so we factorize § into § = §,...6,_,, and these factors

together with the basis vectors define our family of parallelepipeds.

Definition 9.3
A factorization & = §;6,...6,-1 of §, a matrix N of (n — 1) basis vectors
(N = (+1,-..,¥a1), for the processor space P, and a processor-time point

(Pt)* define a parallelepiped, denoted by Pr(N, P,1) of volume 6 as follows.

Pr(N,P,t) = {(P+ N(l...lno))]0< li< bi=1,.,n—1}

o

It should be noted that the requirement that v, vs,...,v,-1 is a basis for the
processor space P is necessary. Otherwise, there may be some integral points in the

parallelepiped which cannot be written as a linear combination of the v;’s, and the

209

number of integral points in the parallelepiped may be greater than 6. Our main
result is that such clustering into parallelepipeds is always possible, provided that the
factors of 6 are mutually co-prime.

Recall that MC = (v' k). Since v' is not necessarily normalized, let g be the
ged of all components of vf, so v' = gw' for some normalized w'. Now, MC =
(vt k). Since A' is normalized and C is unimodular, (v* k) is also normalized, i.e.,
ged(vy, .. vaoy, k) = ged(g, k) = 1.

Our intuition in choosing the parallelepipeds is to choose the n—1 basis vectors,
v;'s such that the periods of the active lines in the families F'(v;) are é; respectively.
From Theorem 9.1, each »; must satisfy § = 6; gcd(8, v'y;). So & = 6; ged(d, gw'v;) =
8; ged(8, w'y;) (since 6 and g are coprime as shown above). Denoting ‘-f; by k;, we have,
wty; = ¢;k; for some ¢; where ged(§, ¢;) = 1. Thus v'y; = geiki, and each v; must be

a solution of the i-th equation in the following system of diophantine equations.

g ky

I

v

viEy gezk;

V'Eny = gen-1kn-1
As shown by Banerjee ([6], Th. 5.4.2, p.81), the general solution to the i-th

(Ciki\

4

equation is given by

J:,'=Ut

\ tn-2

210

where tj- for j = 1,...,n — 2 are arbitrary integers and U is any unimodular matrix
that satisfies Uv = (g,0,...,0). Such a U can always be found, and thus, our v’s

satisfy the desired constraint iff the matrix

(ckr coky ... cp—1knor \
o 1IN B o
\ th2 t:{.—‘z o ::é /
is unimodular because N = (¥ ... vno1) = UV. The following lemma gives us

necessary and sufficient conditions for this.

Lemma 9.9
V is unimodular iff ged($;,6;) = 1 for all ¢ # j and ged(cy,...,Cn1) = 1.

O

Proof

If part. Let, ged(6;,6;) = 1, for all ¢ # j and ged(ey,. .., cn-1) = 1. First,
we prove that (k; ... k,—1) is a normalized vector. Suppose p is a common
prime divisor for k; ... k,—;. Obviously, p|k,. There exists ¢ # 1 such that
pl6;, since k; = &;...8i_18i41...8a-1. Similarly, since p|k;, there exists
j # i such that p|§;. Because gcd(6;,6;) = 1, p must be 1. Therefore,
(K1, ..., kn-1) is normalized. We now prove that (cik; ... ¢n_ikx-1) is also
normalized. Again, suppose p is a common prime divisor for all ¢;k;, then p
either divides ¢; or k;. Since ged(cy,...,cn1) = 1 and ged(ky,. .., kno1) =

1, there exist 7,j (i # j) such that plc;, p|k;. But from ged(c;, 8) = 1, we

211

know ged(c;, k;) = 1. Hence, p = 1. By Lemma 9.2, we know it is always

possible to choose t!’s such that V is unimodular.

Only If Part. Clearly, ged(cy, ... 6n-1) = 1 (otherwise the first row of
V is not normalized, and hence V cannot be unimodular). Without loss
of generality, suppose ged(81,6,) = d # 1. d|k; because &;|k;. Also, d|k;
for i # 1 because 6,]k; for all i # 1. Therefore, we know d|c;k; for all

i=1,...,n—1. Hence, V is not unimodular. m

To recap the discussion so far, we have the following constraints in picking the

basis vectors for our parallelepipeds:

1. Factorize § into § = &;...6,—; such that the factors are pairwise mutually

coprime.
2. Choose ¢ ...cn—1 which satisfy ged(c;, 8) = ged(er,y ... yena1) = 1.

These can always be satisfied. In particular, we can let §; = 6,and é, = ... =
$oo1 = 1,and ¢ = ... = ¢y = 1. In this case the parallelepiped degenerates
into a line. In practice, we can use the prime factorization of é to systematically
enumerate all possible choices of the §;’s. Similarly, there are many additional choices
for ¢;'s. Practical considerations can also be used to guide the selection. We now
prove that any parallelepiped of any snapshot formed by the basis vectors as chosen

above contains exactly one active point.

Lemma 9.10
For any time instant ¢, there is exactly one active point in any paral-

lelepiped Pr(N, P,t). O

Proof

First, we prove that there is at most one active point in Pr(¥, P, t). Sup-
pose there are two active points, say, (P, t)* and (P t)* in this paral-
lelepiped. It is easy to see that the point (P t)* — (P2 t)" is also active.

This means that there are integers l,{2,...,ln-1 where 0 < I; < §; for

i+ ...+ Licavey) .
1,...,n — 1 such that is active. From

0
Lemma 9.1, we know that there is an integral solution to the Eqn. IX.8,

il

i.e. there is an integer J,, such that

Ilvtyl + “se + ln_]vtl’n—] + Jnk - 0

This can be further simplified to

glhaki+ ...+ lacicaorbnar) + Jnk =0

Notice that for any ¢ # j, &|k;. Therefore, dividing both sides of the
above equation by §&;, we have §glic;k;. Because ged(g,6) = 1, hence
ged(g,6;) = 1. Also, ged(ci,6) = 1, and hence ged(c;, ;) = 1. Further-
more, gcd(8;,6;) = 1 (for i # j), and hence ged(§;, ki) = 1. So &l

Because 0 < I; < &;, I; must be 0, i.e. P} is the same as PZ.

To prove that there is at least one active point in the parallelepiped, again,

consider Eqn. IX.8 which can be simplified to

g(Ilclkl +...+ l,,_lc,._lk,,_l) + Jnk =1 'UtP (IX14)

o
3]

213

We thus want to prove that there are integers Iy,..., 0y for 0 < L < &
and some integer J, as the solution to the above equation. To prove
this, we will first prove gcd(geiky,...,g¢n—1kn-1,k) = 1. Consider any
prime common divisor p of these integers, we prove p = 1. Because
ged(g, k) = 1, if p|g, then we already prove that p =1 (because p|k too).
If p is not a factor of g, we have p|c;k; for every ¢ = 1,...,n — 1. Because

ged(erky, - - -, Cam1kn—1) = 1, p must be 1.

Therefore, there exist integers 1},...,1,_;,J;, such that
Lgaky + ...+ U _1genorknr + Jok =1

Denoting t — v*P as ¢ and multiplying both sides of the equation by #',
we have

tlgeiky + ...+t _ genrbny + itk =1

For t'l!, we can always find two integers ¢; and I; where 0 < [;, §; such that
' = ¢;6; + I; (i.e. I; is the remainder of dividing t'l; by §;). Notice that

6;k; = 6 = £k. The left hand side of the above equation becomes

n-1

(O ligeiki) + Jot'k + qgerbikr + - . . + guo1gCac1bnmrbny

=1

n-—1
= (D Lgeiks) + (o' £ (quger + - - - + gn-196n-1))k

i=1
Let J, = (Jit' & (qiger + .- + gn-19¢n-1)), I; and J,, together satisfy
Eqn. IX.14. 0

214

Therefore, We can merge all the & processors in such parallelepipeds into one
processor. The new processor does not need to have extra processing function units
(but may need some additional links and registers) and it will be active in the whole

computation. This leads to the following theorem.

Theorem 9.2
It is always possible to merge é neighboring processors which form a
parallelepiped in the processor space to derive a fully efficient array. The
new array has the same computation time as the original one and has the

same cost except for some additional links and registers. O

The quasi-linear allocation function that corresponds to the above clustering scheme
is given by P = |DNAI|, where D is an (n — 1} x (n — 1) diagonal matrix, D =
diag(1/6;,...,1/6.-1). Such a clustering will save on the number of functional units
in the final array by a factor of 4, at the expense of some complexity in the number
of registers, the interconnections between the processors, and the control structure of
the processor. There are many factors that will determine the final processor cost, as
discussed below.

In our analysis so far, we have not considered the actual domain of computation.
Because the domain may be an arbitrary convex polyhedron, the parallelepipeds
chosen may not completely tile the whole processor domain. In this case, some of the
boundary processors of the final array may not operate at 100% efficiency. However,
the number of such processors is at least an order of magnitude smaller than the total
number of processors in the array. The effect of this can be further mitigated by
appropriately choosing the shape and size of the parallelepiped, i.e., the factorization

of § and the matrix V of Lemma 9.9.

215

As mentioned above, the clustering approach will introduce additional registers
and links. The problem of reducing the additional cost imposed by a clustering has
been addressed by Van Dongen [117], Bu and Deprettere [18], and other researchers.
The degree of freedom that we have can be exploited to systematically investigate the
design choices in these methods. In particular we make the following observations.
Additional registers may be necessary if certain communications are “internalized”.
Also, the total amount of communication is fixed, so these registers are “compensated”
by reduced inter-processor communication. If we want to minimize the inter-processor
communication (i.e., maximize the number of dependencies that are internalized),
note that processor | DNA(J +d)| = | DNAI + DN Ad) needs a data from processor
|DNAI]. It is easy to see that this can be achieved if we minimize the absolute
value of each entry in vector DN Ad. This implies that, for each dependency vector
d, we should minimize the absolute value of components of vector NAd, which is
determined by the base transformation matrix N.

Another factor that must be considered is that, depending on the “shape” of the
parallelepipeds, the same data dependency in the original problem domain may be
mapped to two or more different links, which are active at different time instants. This
results in reduced hardware utilization. A simple heuristic that can often alleviate
this problem is to choose as many of the data dependency vectors as possible to serve

as the bases of the parallelepiped.

Optimal Clustering of Arbitrary Systolic Arrays

So far, we have addressed the problem of deriving efficient systolic arrays in the
context of synthesis. There are, however, many systolic arrays which are not derived

from UREs by the conventional linear transformation. To transform such arrays into

216

efficient ones, we study how to apply our theory to an arbitrary systolic array. First,
let us recall the standard points of view of a systolic array.

By Rao and Kailath [99], a systolic array implements an RIA . This RIA is
defined in a processor-time space. More precisely, suppose the processor space is
defined in P C Z™~1, then the RIA is defined in Z" as follows:

If there is a link with a delay D, (D, > 1) from processor p, to processor p; + D

in the processor space, then for any time ¢, processor-time point (py + Dt + Dty

D
depends on (p; t)!. Hence, there is a uniform dependency

D,

Generally, if Dy,..., Dy (we assume k > n, otherwise, the RIA can be trans-
formed into a lower dimension space) are all the link vectors in the processor space
and Di,..., D} are the time delays along the i-th link respectively, then the RIA im-

plemented by the array is defined by the matrix D formed by the dependency vectors

D, ... Dg
as

D! ... D
It might seem straightforward to use the above technique because the array is

derived by a projection of the RIA along the time axis. But if the array is not 100%
efficient, then the computation dag of this RIA consists of k disconnected components
in Z" which violates the assumption we made on page 193. Hence our previous results
cannot be applied directly.

Let us examine processor-time points in 2. Some of these points correspond
to useful computations (i.e. the processors are active) and others do not. Moreover,
if the extrinsic iteration interval is §, then along the time axis, there is an active
processor-time point every é points.

Basically, if we assume that the origin (i.e. 0 € Z") is active, then any active

217

point will connected to the origin in the dag of the RIA. Thus, a processor-time point
(P 1)t is active iff it can be represented by a linear combination of the dependency

vectors of the dag. This leads to the following proposition.

Remark 9.2
A processor-time point (P t)* is active iff there exists a k-dimensional
integral vector J such that DJ = (P t)*. a
Let D = Pr | where D, =(D; ... D) and D, = (D! ... Di). D, is the

D,
n — 1 x k connection matrix for the processor space. To guarantee that the array is

dense (i.e. every integral point in P is a valid processor), D, must be e-unimodular
(Lemma 4, in [128]). Moreover, it is reasonable to assume that D, is a normalized
vector because, otherwise, we can get a faster array by just simply replacing D; with
D! where D; = cDj and Dj is normalized. The matrix D is thus analogous to the
transformation matrix T that we have studied so far, except that it is not square.
Because D, is e-unimodular, there exists a k¥ x k unimodular matrix U =
(Uy ... Ug) such that DyU = (En-, 0). Define w' = Dy(U; ... Upy) and I; = DiU;
fori=n,..., k, thus D,U = (w' [, ...l). We therefore have the following analogue

of Lemma 9.1 (the proof is also analogous, and omited for brevity).

Lemma 9.11
A processor-time point (P ¢)' € T is an active point iff the following

equation has an integral solution Jy,...,Ji.

WP+ Jpln ...+ Dl =t (IX.15)

218

The key difference between Eqn. IX.8 and Eqn. IX.15 is that in Eqn. IX.15,
there are I,,...,I; instead of & in Eqn. IX.8. The following Lemma enables us to

eliminate this difference too.

Lemma 9.12
Eqn. IX.15 has integral solution J,,...,Ji iff the following equation has

an integral solution J

w'P+Jl=1 (IX.16)

where ! = ged(l,,,. .., k) O

Proof
Let (In,...,) =U,..., i) and ged(l},,...,1;) = 1. It is easy to see that
if Eqn. IX.15 has integral solution Jp,...,Jk, then J = U J + ... + IL.Ji
is an integral solution to Eqn. IX.16.
Conversely, suppose Eqn. IX.16 has an integral solution J. Because
ged(ll, ..., l}) = 1, there are integers my,...,my such that m,l}, + ...+

myl,, = 1. Therefore, Jm,l, + ...+ Jmil;, = J and Eqn. IX.16 becomes

WP+ 1(Jmal, 4.+ Jmll) =t (IX.17)

Therefore, J,, = Jmy,...,Jir = Jm; is an integral solution to Eqn. IX.15.

O

We then have the following analogue (proof omited) of Remark. 1

Theorem 9.3

The extrinsic iteration interval é of any systolic array is [. O

219

Since a processor-time point in the array is completely characterized by Eqn. IX.16,
which is exactly the same as Eqn. IX.8, we can use the technique of Th. 9.2 to merge
6 (i.e., 1) neighboring processors within a parallelepiped and derive for any systolic

array a 100% efficient array.

The Array for Algebraic Path Problem

A hexagonal array for algebraic path problem(APP) was proposed by Rote [102].
The extrinsic iteration interval § of the array is 3. For an n x n matrix, the number
of processors is (n+1) x (n+1) — 1. There are seven types of processors in the array.
Most of them ((n — 1) x (n — 1)) are of the same type (type A). Fig. 46 shows an
11 x 11 array for a 10 x 10 matrix. A conventional basis is also shown in the figure.
To derive a fully efficient array, we first try to merge the subarray which consists

of all type A processors. We have the following interconnection matrix:

01 —1 100 01 —1
DP
D= =10 -1f|=|010 10 -1 (IX.18)
D,
11 1 113 00 1

Hence, we can conclude that the extrinsic iteration interval é for this subarray
is 3, which is a prime number. All possible parallelepipeds which we can merge have
a 3 x 1 aspect ratio (i.e., §; and 6, are fixed at 3 and 1 respectively). Furthermore,
we have w' = (1 1), g = 1. The basis transformation matrix is determined by the

following two equations (each equation independently determines one basis vector).

Tty = g

220

Figure 46: Rote’s Hexagonal Array for 10 x 10 Algebraic Path Problem.

cs51® @ @

® @ C4]e®

al—[0]—

221

Figure 47: The Final Array for 10 x 10 APP Obtained by Merging Horizontally.
Al, C1 and E1 Represent the Processors Merged from Type A, C and E Processors

Respectively.

222

z+y = 3c

where ged(cy, ¢2) = 1 and ged(ci,3) = ged(ez,3) = 1.

There are many ways to pick the basis vectors. For example, if we choose
¢, = ¢; = 1, one possible set of solutions is #, = (10)* and »; = (4 — 1)". Another
oneis vy = (01)* and v, = (—14)*. Thus, we can cluster three neighboring processors
vertically or horizontally. Further, if we choose ¢; = 2 and ¢; = 1, we can get
» = (11)! and v, = (12)* as yet another solution which represents clustering along
the diagonal. It should be noted that (1 —1)* is never a solution to the first equation,
because if it were, ¢; must be 0, hence ged(c;,3) = 3 which does not satisfy the
condition as stated above. Similarly, it can never be a solution to the second equation.
In fact, in the array, all processors along the direction (1 — 1)* are active or inactive
at the same time.

It can be easily seen that along z-axis (or y-axis), only one out of 3 consecutive
type C (or type B) processors is active at the same time unit. This is also true for
type E (or type D) processors. Therefore, the best way to cluster the whole array is
to cluster 3 consecutive processors along either z-axis or y-axis. Fig. 47 shows the
final array derived by clustering 3 consecutive processors along z-axis. In general, the

final array has ({25%] + 2} x (n + 1) — 1 number of processors.
Conclusions

In this chapter, we have studied the problem of extending the conventional
techniques for systolic array design so that the derived arrays can be guaranteed to
have 100% efficiency. We first investigated conditions for a quasi-linear function to be

a valid allocation function for systolic array design. We have shown that a quasi-linear

223

function can be decomposed into Q(I) = |JUSA(I)] and proved that if U is identity,
such a function is no more than a parallelepiped clustering. We then proceeded to
prove that by clustering, it is always possible to improve a systolic array into a fully
efficient one. This is achieved without affecting any of the other properties such as
throughput, computation time, I/O latency, etc., except for a few additional wires
and registers in each processor. Our method is applicable to both, arrays derived
using the standard linear transformation technique and also to those designed in an
ad hoc way. Furthermore, since our method is applicable to any systolic array, it is
always possible to post-process the derived array based on other design options to
derive a fully efficient array without sacrificing the design options used.

Van Dongen [117] is interested in using a class of functions which he also called
quasi-linear functions to derive quasi-regular arrays. The class of functions is actu-
ally a superset of the class of quasi-linear functions we define. However, his target
architectures can be piecewise regular, which is a superset of systolic arrays too. Con-
sequently, his design freedom is much greater than what we have here. It would be
interesting to study how to extend our results to quasi-regular arrays.

Recently, there has been some work in the context of merging processors of
systolic arrays derived by conventional linear transformation to yield a fully efficient
systolic array as reported by Bu and Deprettere [19], and also by Clauss et al. [24].
Both of them adopt the same approach, namely, selecting § — 1 vectors Ay, ..., As—1
in the problem domain and merging processors po, po+ Ay, ..., po+ AXs—y (where A
is the allocation matrix). We call these kinds of approaches “enumeration approach”.
Our work differs from these approaches in two aspects.

First, due to the selection of vectors Ay, ..., As—1, it is very possible that po, po+

224

AM, ..., P04+ Ads_y don’t form a parallelepiped and may form a cluster of arbitrary
shape. Although the resultant array is still regular (because the original array is reg-
ular), it is difficult (if not impossible) to come up with an ezplicit allocation function
for the final array. Moreover it is not clear how the dense array constraint can be
satisfied. In contrast, our approach is constructive and guarantees that an explicit
allocation function satisfying the dense array constraint can be found. On the other
hand, this method permits the “shape” of the clusters to be arbitrary, and this may
allow the user to explore additional clusterings.

Second, the enumeration approaches can only be applied to systolic arrays de-
rived by the conventional linear transformation. In contrast, by studying the acti-
vation patterns of the RIA that is implemented by an arbitrary systolic array, our
approach can be applied to any (pure) systolic array. Furthermore, the method can
be extended to piece-wise systolic arrays as follows. A piece-wise array consists of
a constant number of pure systolic subarrays. We can thus apply our technique to
each subarray and adjust the connections between boundary processors accordingly.
This corresponds to using piece-wise quasi-linear functions, and is especially useful
when dealing with ingenuous arrays designed by ad-hoc manner, outside a standard
synthesis methodology. Such arrays are most likely to be piece-wise systolic, and our
approach can be used to improve the efficiency of such arrays.

Jainundunsing [54], has independently developed a clustering method for two-
dimensional arrays (3-d UREs), where he gave a characterization of the periodicity of
the behavior of processors within a parallelepiped which is similar to our Lemma 9.10.
He thus showed that if appropriate basis vectors are chosen, and if the activation

period along them formed a pairwise coprime factorization of é, there is at most

225

one active processor within the parallelepiped at any time instant (i.e., there are no
timing conflicts). He does not show that there is at least one, and also does not
give a method to choose the factorization and the basis. Furthermore, he imposes
an additional unnecessary constraint on the timing function. As with the above two
approaches, the method is applicable only in the context of synthesis.

Recently, Darte and Delosme have independently reported results similar to
ours [31]. They show that it is always possible to cluster a parallelepiped for any
factorization of 6. This result is an improvement over Theorem 9.2. However, because
our approach is based on the characterization of activation processor-time points, we
are able to generalize our result to an arbitrary systolic array. Furthermore, since
our approach allows to systematically enumerate all the candidate basis vectors by
enumerating all the solutions to a system of diophantine equations, design options
can be chosen systematically. It is unclear how to generate all candidate basis vectors
in the approach of Darte and Delosme, where the vectors depend on the selection of
a unimodular matrix. It would be interesting to see how to combine our approach
with theirs.

Our work reported here raises an interesting question regarding the cost (and
hence optimality) of systolic arrays derived by linear transformations. Traditionally,
the two cost measures that have been used are the computation time and the number
of processors. However, by using the results in this chapter, one can always reduce
the processor count by a factor of §. Thus, the “raw” processor count by itself is
not an accurate measure. This corresponds to the volume v of a convex polyhedron
(the domain of computation, D), under the transformation to space-time, T. Except

for two-dimensional recurrences, this is not a linear function and hence the optimal

226

solution can be obtained only by enumeration. It would be interesting to investigate
how such methods [118] can be adapted to use the new cost function which is »/|T.

Besides the possible extensions of our results mentioned above, other open prob-
lems related to this study include the sufficient and necessary condition for a quasi-
linear function to be timing conflict free and the generalization of the our result on
the condition for a quasi-linear function to result in a dense and regular array. Solving
these problems gives a complete characterization of quasi-linear allocation functions

for systolic design.

227

CHAPTER X

CONCLUSIONS

In this thesis, we study important issues in mapping a parallel computation to
two types of message passing machines, namely, multicomputers and systolic arrays.
In the first part, communication overhead issues related to mapping to multicomput-
ers with advanced communication technologies are studied. Empirical studies on the
communication overhead related to a mapping are carried out. Message latency pre-
diction formulae are proposed and are validated. A framework for parallel program
performance evaluation based on an event-driven simulator is proposed. To reduce
communication overhead, we further propose methods to generate routings from the
application-specific communication structure for multicomputers with the wormhole

routing scheme. The following summarizes the contributions in Part 1.

o The importance of mapping: we justify that the communication overhead caused
due to the topological mismatch between the ideal computation structure for
an application and the target architecture can still significantly affect the total

completion time of an application for the wormhole routing.

o Metrics for mapping under wormhole routing: we empirically characterize effects
on the application completion time of path-level contention and dilation, based
on simulation results on two widely used benchmarks. Based on our results,
we conclude that for wormhole routing, path-level contention is the dominant

factor for performance while dilation can not be simply discarded in some cases.

228

o Message latency formulee: we propose and validate message latency formulae
which better capture the runtime contention factor as well as dilation. The
formulae can be used for simulation overhead reduction as well as for analytical

performance studies.

o Application specific routing algorithms: we develop application-specific routing
algorithms for deadlock-free, low-contention routing. For a general network,
we propose a new data structure called GPCDG that captures both channel
dependency and channel connection. Two algorithms DFH and BLOCK are
developed. For a range of applications and random message distributions, the

two algorithms decrease maximum contention by up to 40%.

In the second part, we study three important problems in mapping a class
of high-level description algorithms, namely, regular iterative algorithms (RIAs) to
systolic arrays. We study issues in schedule (timing) generation, spatial allocation
function generation, and the design of efficient systolic arrays. The studies show that
a nearly optimal systolic array in all of the above three aspects can be designed for a

given RIA. The following summarizes the contributions in Part II.

e Optimal linear schedule: the open problem of whether the optimal schedule of
a URE can be obtained through a linear or quasi-linear function is answered.
The result justifies the use of linear schedules as the timing function in mapping

a URE to a systolic array.

o Linear allocation functions for systolic arrays with limited permissible intercon-
nection: the number of valid linear allocation functions which result in distin-

guished arrays is studied and it is found that this number is typically very small.

229

A framework to design optimal systolic arrays is described based on this result.

o Efficiency of a systolic array: we propose a method to find quasi-linear alloca-
tion functions to derive systolic arrays which are almost 100% efficient. This

result is further extended to any pure systolic array.

While a multicomputer is best for applications with coarse grain parallelism,
a systolic array is best for fine grain parallelism. The key difference between these
machines lies in their communication methods (the other difference, namely, a sys-
tolic array is a synchronous system, is not so fundamental since a wavefront method
can be used to achieve systolic computation in an asynchronous system [68]). In a
multicomputer, the communication unit for an application is a message with routing
information (such as header) while in a systolic array, a stream of data, where each
datum is not encapsulated with routing information, can be directly read one by one
by the application. Although these two types of machines seem to be disparate, re-
cent development in multicomputer architecture has shown it is possible to support
both communication features in a multicomputer [14]. The study of mapping parallel
computations onto the two types of architectures helps us to understand the nature
of these two types of computations and the techniques proposed above have potential

applications in many areas.
Future Work

The work in this thesis opens several interesting new research directions.

e Simulation-based parallel program performance evaluation: In Chapter III, we
present a scalable and efficient simulation-based evaluation scheme for com-

munication overhead on a multicomputer. By combining our scheme with

230

Poplawski’s synthetic benchmark approach {92], we believe that it is possible to
develop a scalable and efficient event driven simulation based parallel program
performance evaluation framework. The open problem here is how to estimate
the computation cost and incorporate it into an event-driven simulator. Here,
we propose an approach which utilizes compile-time data flow analysis infor-
mation as much as possible and incorporates statistical data on the program
runtime behavior either from profiling information or from user input to the

simulator.

The first step is to use compile-time data flow analysis to extract information
about the computation. For example, we can analyze basic block structures
of a program and estimate the computation cost of the basic blocks. This can
be accomplished with an instruction-cycle map table to estimate the total cost
of a basic block. In practice, the control flow of some dominant computation
is only determined by one or two parameters which are the input to the pro-
gram. For example, in a matrix multiplication, the number of loop iterations
in the block submatrix multiplication for each node process is determined by
the matrix size and the number of processors used. These two parameters are
the input to the whole program. In this case, the whole computation cost can
be estimated by the basic block cost (the loop body cost) times the number of
loop iterations. Many other benchmarks including FFT, Gaussian elimination,

divide and conquer algorithms have such a property.

In the case where the control flow depends on dynamic data in a program, we can
use profiling information on the branches (conditions) and replace the conditions

on the branches with random variables which reflect statistical information on

231

the branching conditions. Basically, branch prediction techniques can be used
here. Furthermore, user input to these conditions can be used to help determine

the branching conditions.

Efficient application specific routing and its applications: In Chapter IV, we
present a general framework called the GPCDG to model a multicomputer
network with the wormhole routing scheme. More efficient algorithms should
be developed to fully explore the properties of a GPCDG and to utilize the
properties in developing a good routing. Furthermore, since there are only a
handful of regular interconnection networks used in multicomputers (such as
meshes, hypercubes and trees), we can explore the regularity of a GPCDG for

these specific networks to develop application specific routings.

Whether one is able to incorporate the application specific routing into a com-
piler for a parallel program depends on the program language used. For a gen-
eral C language with message passing capability extension, in many cases, the
communication structure for a parallel program can be extracted statically. For
some languages, static extraction of the communication structure can be accom-
plished completely at compile time. These languages include Ada, VHDL and
some other data flow languages in digital signal processing. We should study

how to apply the application-specific routing technique to these languages.

High-level synthesis: The work presented in the systolic array part can be ex-
tended in several directions. First, more general classes of algorithms other than
RIA should be studied. For example, one way to extend RIA is to study the
problem of synthesizing systolic arrays from structures such as Affine Recur-

rence Equations where dependency vectors are linear instead of being constant.

232

In fact, there has been tremendous work done in this direction [97, 96, 21).
We can extend the techniques developed in Part II to solve the problems in

synthesis from an ARE.

The mathematical model for the systolic array structure (such as dense array
condition and connectivity condition) developed in Part II can be also used in
synthesis from a higher-level construct such as an ARE. For example, since a
unimodular matrix has many nice mathematical properties, one can expect to

utilize such properties to develop better synthesis methods.

Another challenging research area is to study how to apply the techniques de-
veloped for systolic array synthesis to a synthesis system for a general digital
system (architecture) [53). We believe that the properties explored on the reg-
ular computation structures such as RIAs and AREs can be effectively used in

developing synthesis techniques for a general digital system.

Parallel compiling techniques: The techniques developed for systolic array
synthesis can be also used in a parallelizing compiler. The result for the optimal
scheduling problem indicates that the approach to restructure a DO-loop with
constant dependence vectors into an outmost DO-Across loop and several inner
DO-All loops can actually capture the maximal parallelism. The quasi-linear
allocation functions we proposed for efficient array design can be used in an

automatic data decomposition tool for languages such the High Performance

Fortran (HPF).

233

APPENDIX A

BENCHMARK PROGRAMS AND SIMULATION RESULTS

Benchmark Programs

We list the programs of benchmark DAQ and FFT in this section.

Sample DAQ program using PICL-like communication primitives

#include "user.h"
#include "picl.h"
#include "daq.h"

#undef EXACT
/***% stereotyping of functions *¥**x/

void ParseArgs();

void node();

int FindSize(int Treelevel, int MyPhase);

void initialize(int *data, int size);

void divide(int *data, int size, int ith_child,int *childsize);
void compute(int *data, int size);

void combine(int *data, int *childsize);

extern void InitMapping();

/== Global Variables -----------—--—- */
int *mapping, *imapping,MappingType;

int maxdilation,maxcontention;

int Nx,Ny;

[Hm—mm——ome Parsing Variables and Flags ~---%/

234

void ParseArgs(argc, argv)

int argc;
char *argv[];
{
/*---- Parsing Flags ------ */
for (argc—-, argv++; *argv &% *¥argv == ’-’'; argv++, argc--)
{
switch (*(*argv+1))
{
case ’h’:
printf(" -m (reflect (mirror) mapping)\n");
printf (" -g (growing mapping)\n");
printf (" ~r {random mapping)>\n");
printf (" ~d (default mapping)\n");
exit(1);
break;
case ‘m’:

MappingType = ReflectMapping;

printf ("using reflect mapping\n");
break;
case 'g’:
MappingType = GrowingMapping;
printf ("using growing mapping\n");
break;
case ’'r’:
MappingType = RandomMapping;
printf (“using random mapping\n");
break;
case ’d’:
MappingType = DefaultMapping;
printf("using default (identical) mapping\n");
break;
default:
printf ("unknown flag\n");

}
}

printf ("Nx=");
scanf ("%d", &Nx);

235

printf("\nNy=");
scanf ("%d", &Ny);
printf ("\n");

/#*xx PUT INPUT ARGS HERE (E.X. sort data) IF INTENDED */

}

void node()
{
int TreeLevel,MyPhase,i;
int MyNode,Mask,MyPos;
int data[MaxSize], MySize, ChildSize;
int myport;
int MyChild,MyParent;
int €1,t2;

TreeLevel=log2(NO_OF_PROCESSORS) ;

MyNode=imapping [processor_];

for(MyPhase=0,Mask=1; MyPhase<=TreeLevel && (MyNode&Mask) !=0;
Mask *= 2,MyPhase++);

MySize=FindSize(TreeLevel,MyPhase);
+1=CURR_TIME;
open0 (&myport) ;

if (MyPhase==TreeLevel) {
/* Root */
initialize(data,MySize);

}

else {
#ifdef EXACT
recv0(data,MySize,DATA_TYPE,myport);
#else
qrecv0(data,MySize,DATA_TYPE,myport) ;
#endif

236

}

MyNode=imapping[processor_];
MyParent=MyNode+Mask;
MyPos=log2(Mask)+1;

for(i=1, Mask /= 2, MyChild=MyNode-Mask; Mask >= 1;
Mask /= 2,MyChild=MyNode-Mask) {
divide(data,MySize,i++,&ChildSize);

#ifdef EXACT
send0(data,ChildSize,DATA_TYPE,mapping[MyChild]);
#else
gsend0(data,ChildSize,DATA_TYPE,mapping [MyChild]) ;
#endif
¥

compute(data,ChildSize);
for(i=1; i <= MyPhase; i++) {
#tifdef EXACT
recvO(data,ChildSize,DATA_TYPE+i,myport);

#else
grecv0(data,ChildSize,DATA_TYPE+i,myport) ;
#tendif
combine(data,&ChildSize);
}

if (MyPhase != TreelLevel) {
#ifdef EXACT
send0(data,MySize ,DATA_TYPE+MyPos ,mapping[MyParent]);
#else
qsend0(data,MySize,DATA_TYPE+MyPos,mapping[MyParent]) ;
#endif

}
t2=CURR_TIME;

if (MyPhase==TreeLevel)
printf("Finishing time for the root=)id Cycles\n", t2-t1);

void usermain(int argc, char** argv)
{

int i;

int Treelevel;

mysystem_init();

ParseArgs(argc,argv);
TreeLevel=log2(Nx*Ny);
InitMapping(MappingType,Treelevel);
10ad0({FuncPtr)node,-1);

/** find data size for the node to process **/
int FindSize(int TreelLevel, int MyPhase)
{
return BASESIZE;
/* return BASESIZE*(1 << MyPhase); */

}
/** initialize the data for the root--- do nothing *%/
void initialize(int *data, int size)
{
3
}

void divide(int *data, int size, int ith_child,int *childsize)
{
*childsize=size;

¥

void compute(int *data, int size)
{

int i;

int dummy=1;

for (i=0;i< size; i++) {

dummy=dummy*dummy ;

}

238

void combine(int *data, int *childsize)

{
int i;
int dummy=1;
for (i=0; i<*childsize; i++) {
dummy=dummy*dummy ;
}
}

Sample 2-D FFT program using PICL-like communication primitives

#include <math.h>
#include "user.h"
#include "pfft.h"
#include "picl.h"

#undef EXACT

void fft_node();
void reord();

void ££t();

void bfly();

void combine();
void complex_sub();
void complex_mult();
int myexp();

int mylog2();

int find_size();
void ParseArgs();
void InitMapping();

/*%xx* yariables and types *¥kkk#/
long *mapping, *imapping,MappingType;

typedef struct {
long myt;

} Time_Record;

extern Time_Record mytime[NO_OF_PROCESSORS];

extern Time_Record *that;

/*%%%k%x program *¥**x/

void fft_node()

{

int 1i,j;

int dest;

complex A[1],B[1],Cl1];
int p,q,p2,p3;

int Iam;

int size;

int mask;

long StartTime,EndTime,ElapsedTime;
int myset,fac;

int dummy, myport;

/**% every node process has to do this *¥*/

open0 (&myport) ;

/*** To simplify, we use the global one for the problem size ***/

size=find_size();
/* calculate the cube dimension,size */

q=ND_OF_PROCESSORS ;
p=mylog2(q);

/* what is my node number */
Iam=imapping[processor_];

/* start the clock */
if (Iam == 0)
StartTime = CURR_TIME;

for (i=Iam,j=0; i<size; i+=q,j++) {
dummy = dummy+2;
dummy = dummy-2;

239

¥

p2 =

p3

/*

the first log2(p) phases involve inter PE communication */

P;
mylog2(size);

while (p>0) {

/* complement bits starting from rightmost */
mask = myexp(2,p2-p);
if ((Iam & mask) == 0)
dest = Iam | mask;
else
dest

Iam & "mask;

#ifdef EXACT

ftelse

#endif

}

¥

send0 (B, sizeof(complex)*size/q, DATA, mappingldest]};
recv0(C, sizeof(complex)*size/q, DATA, myport);

qsend0(B, sizeof (complex)#*size/q, DATA, mappingldest]);
qrecv0(C, sizeof(complex)*size/q, DATA, myport) ;

myset = Iam % myexp(2,p2-p+1i);

fac = myexp(2,p3-1) * myset;

if (dest > Iam)
combine(B,C,B,size/q,fac,size);

else
combine(C,B,B,size/q,fac,size);

p-=ip3--;

/* Now do a sequential fft */
ff+(B,size/q,size,p3);

ElapsedTime = CURR_TIME - StartTime;
that->myt=ElapsedTime;

int find_size()

240

{
return SIZE+NO_OF_PROCESSORS;

}

void complex_add(4,B,C)
complex *A,*B,*C;

{
int dummy;
dummy=dummy+2 ;
dummy=dummy-2;
}

void complex_sub(4,B,C)
complex *A,*B,*C;

{
int dummy;
dummy=dummy+2;
dummy=dummy-2;
}

void complex_mult(A,B,C)
complex *A,*B,*C;

{
complex Al, Bl, Ci;
Ci.rp = (Al.rp * Bi.rp) - (Al.ip * Bl.ip);
Ci.ip = (Al.rp * Bl.ip) + (Al.ip * Bl.rp);
}

/* Exponent that returns Integer */
int myexp(x,y)
int x,y;

{

/* raise x to the power y */

int res = 1;

while (y>0) {

res = X;

y==
}

return(res);

}

/* Log to the base 2. Works correctly for powers of 2 only */

int myleg2(x)
int x;

{
int y = 0;
int z = 1;
if (x € 0)

return(-1);
wvhile (z < x) {
y++;

z =2z << 1;

}

return{ (z > x) ? y-1 : y);

}

void combine(A,B,C,ct,fac,size)
complex *A,*B,*C;
int ct,fac,size;

{
complex expfac,temp;
int 1i;
for (i=0; i<(ct/COMM_COMP); i++) {
expfac.rp = cos((2*PI*fac)/size);
expfac.ip = sin((2%PIxfac)/size);
complex_mult (B,&expfac,&temp);
complex_add(A,%temp,C);
}
}

void fft(in,size,denom,start)
complex *in;
int size,denom,start;

int logsize,i,j,k,r;

242

243

int Iam,p,q,myset,fac;
q = start;
Iam = imapping[processor_];

p = mylog2(denom);
logsize = mylog2(size/COMM_COMP);

for (i=0; i<logsize; i++,start--) /% log2(N) stages *f/
myset = Iam % myexp(2,p-start+1);
fac = myexp(2,start-1) * myset;
/* span the array */
for (j=0; j<size; j+=myexp(2,i+1)) A
/* number of butterflies */
for (r=fac,k=0; k<myexp(2,i); k++) {
bfly(in,i,j,k,r,denom);
r += denom/myexp(2,i+q+1);
}

}

void bfly(4,i,j,k,r,denom)
complex *A;
int i,j,k,r,denom;

int p,q;
complex expfac,templ,temp2;
complex Fakel;

P = k+j;

q = p + myexp(2,i);

expfac.rp = cos(((2*PI*r)/denom));
expfac.ip = sin(((2*PI*r)/denom));

complex_mult (&expfac,&FakeA,&templ);
complex_add(&FakeA,&templ,&Faked);
complex_sub(&temp2,&templ,&Fakel);

[Hrdkikrrrrkkrkisikk® Parse ATg wreekkkekn/
void ParseArgs(argc, argv)

int argc;

char *argv([];

{
/*---- Parsing Flags ------ */
switch (*(argv[1]+1))
{
case ’'h’:
printf(" -g (gray code mapping) \n");
printf{" ~-r (random mapping) \n");
printf (" -d (default, identical mapping)\n");
exit (0);
break;
case 'g’:
MappingType = GrayCodeMapping;
printf("GRAY CODE: ");
break;
case 'r’:
MappingType = RandomMapping;
printf ("RANDOM: "),
break;
case ’'d’:
MappingType = DefaultMapping;
printf ("DEFAULT(IDENTICAL): ");
break;
default:
printf (*unknown flag\n");
}
SIZE=atoi(argv[2]);
COMM_COMP=atoi(argv[3]);
printf ("SIZE=}-5d COMM_COMP=Yd ", SIZE, COMM_COMP);
}

JREkkkkkkdkkkkkk USeTmain *kkkdkikkdkkkdkkkknk

244

245

void usermain(int argc, char** argv)

{

int cube_dim;

mysystem_init();
define_local(&that, mytime, sizeof(Time_Record));

ParseArgs(argc,argv);
cube_dim=mylog2(NO_OF_PROCESSORS) ;

InitMapping(MappingType, cube_dim);
load0 ((FuncPtr)fft_node,-1);

Simulation Results

DAQ Simulation Results

The tables in this section show the simulation results for DAQ benchmark. In
these tables, the kinds of mapping are represented as: 1. reflecting; 2. growing; 3.

random.

Table 13: DAQ Performance on a 1024-Node Wormbhole-Routed System

P Base size | Mapping | Completion time ||
D) 1 T7117 I
2 2 14381 I
2 3 22678
128 1 18354
158 5 16288 I
128 3 73864 I
R 99017 I
| 8192 2 206402 I
“ 8192 3 104452 "

246

Table 14: DAQ Performance on a 256-Node Wormhole-Routed System

Base size | Mapping | Completion time
2 1 7244

2 2 6731

2 3 8670

128 1 8318

128 2 7870

128 3 41294

8192 1 72810 I
8192 2 119397

8192 3 74213 H

Table 15: DAQ Performance on a 64-Node Wormhole-Routed System

Base size | Mapping | Completion time u
2 1 3956

2 2 3824

2 3 4252

128 1 4712

128 2 4580

128 3 5008 |
8192 1 53119

8192 2 68282 H
8192 3 53461 (

247

Table 16: DAQ Performance on a 1024-Node Store-Forward Routed System

Base size | Mapping | Completion time
2 1 20226

2 2 16887

2 3 27641 “
128 1 22935

128 2 19676

128 3 31633

8192 1 206027

8192 2 173669

8192 3 288723

Table 17: DAQ Performance on a 256-Node Store-Forward Routed System

Base size | Mapping | Completion time
2 1 8411
2 2 7580
2 3 162401

| 128 1 9734
128 2 8630 |
128 3 12806 |
8192 1 104657 I
8192 2 85159

| 8192 3 141154

248

Table 18: DAQ Performance on a 64-Node Store-Forward Routed System

Base size | Mapping | Completion time ||
3 1 1337 1
3 D) 2007 I
3 3 5052 I
198 T 5030 I
128 2 4574

128 3 17526

8192 1 59901

8192 2 50841

8192 3 69935

FFT Simulation Results

The tables in this section show the simulation results for 2-D FFT. In the tables,
the size represents the size of the subarray processed in the first phase of the FFT
algorithm. The kinds of mapping are represented as 1. gray-code; 2. identical;
3. random. Note, in Table 19, because of the overflow of the cycle counter in the
simulator, we are unable to obtain the performance number for the cases where the

subarray is of size 4096 bytes.

Table 19: FFT Performance on a 1024-Node Wormhole-Routed System

[Size | Mapping | Completion time |
l 8 1 9129
8 2 13527
8 3 35981
6 |1 82760 I
61 |2 115995 i
64 13 250335
512 11 998167
512 | 2 1282705
512 | 3 2626767

Table 20: FFT Performance on a 256-Node Wormhole-Routed System

Size | Mapping | Completion time
8 1 9265
8 2 10843
8 3 15485
64 1 70757
64 2 76576
64 |3 108162
512 (1 876964
512 |2 942890
" 512 |3 1148038
f| 4096 | 1 10472862 I
| 4096 | 2 11000172
| 4096 | 3 12599276

Table 21: FFT Performance on a 64-Node Wormhole-Routed System

Size | Mapping | Completion time
8 1 7098
8 2 7953
8 3 8324
64 1 63401
64 2 62452 H
64 3 67044
512 |1 814084
512 | 2 813135
512 {3 888236
| 4096 | 1 9951189 I
| 4096 | 2 9950240
| 4096 | 3 10436629 H

249

250

BIBLIOGRAPHY

[1] A. Agarwal. Limits on network performance. MIT VLSI Memo, 1992.

[2] A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The Design and Analysis of Computer
Algorithms. Addison-Wesley Publishing Company, Reading,MA, 1974.

[3] F.D. Anger, J. Hwang, and Y. Chow. Scheduling with Sufficient Loosely Coupled
Processors. Journal of Parallel and Distributed Computing, 9:87-92, 1990.

[4] M. Annaratone, C. Pommerell, and R. Ruhl. Interprocessor communication speed
and performance in distributed-memory parallel processors. In Proceedings of
the 16th Annual International Symposium on Computer Architecutre,, pages
315-324, May 1989.

[5] W.C. Athas and C.L. Seitz. Multicomputers: message-passing concurrent
computers. IEEE Compuler, pages 9-23, August 1988.

[6] Utpal Banerjee. Dependence Analysis for Supercomputing. Kluwer Academic
Publishers, 1988.

[7) F. Berman. Edge grammars and parallel computation. In Proceedings of the 1983
Allerton Conference, Urbana, IL, 1983.

[8] F. Berman and L. Snyder. On mapping parallel algorithms into parallel
architectures. Journal of Parallel and Distributed Computing, 4(5):439-458,
October 1987.

[9] F. Berman and B. Stramm. Prep-p: evolution and overview. Technical Report
(CS-89-158, Dept. of CS, University of California at San Diego,1989.

[10] B.P. Bianchini and J.P. Shen. Interprocessor traffic scheduling algorithm for
multiprocessor networks. IEEE Trans. Comput., C-36(4):396-409, Apr. 1987.

[11] S.H. Bokhari. Assignment problems in parallel and distributed computing.
Kluwer Academic Publishers, 1987.

[12) S.H. Bokhari. Communication overhead on the intel iPSC-860 hypercube.
Technical Report, ICASE, NASA Langley Research Center, May 1990.

[13] S.H. Bokhari. Complete exchange on the iPSC-860. Technical Report, ICASE
No. 91-4, NASA Langley Research Center, January 1991.

251

[14] S. Borkar, R. Cohn, G. Cox, T. Gross, H.T. Kung, M. Lam, M. Levine,
B. Moore, W. Moore, C. Peterson, J. Susman, J. Sutton, J. Urbanski, and
J. Webb. Supporting systolic and memory communication in iWarp. In
Proceedings of the 17th Annual International Symposium on Computer
Architecutre,, pages 70-81, May 1990.

[15] A. Borodin and J. Hoperoft. Routing, merging, and sorting on parallel models of
computation. Journal of Compuler and System Sciences, 30:130-145, 1985.

[16] E.A. Brewer and C.N. Dellarocas. Proteus User Documentation. Laboratory of
Computer Science, MIT, 1992.

[17] E.A. Brewer, C.N. Dellarocas, A. Colbrook, and W.E. Weihl. PROTEUS: A
High-Performance Parallel-Architecture Simulator. Technical Report
MIT/LCS/TR-516, Laboratory of Computer Science, MIT, 1991.

[18] J. Bu and E. Deprettere. Converting sequential iterative algorithms to recurrent
equations for automatic design of systolic arrays. In Proceedings of IEEE
International Conference on Accoustics, Speech and Signal Processing, pages
2025-2028, 1988.

[19] J. Bu, E. Deprettere, and P. Dewilde. A design methodology for fixed-size
systolic arrays. In S. Y. Kung and E. Swartzlander, editors, International
Conference on Application Specific Array Processing, pages 591-602,
Princeton, New Jersey, Sept 1990. IEEE Computer Society.

[20] P. Cappello and K. Steiglitz. Unifying VLSI designs with linear transformations
of space-time. Advances in Compuling Research, 2:23-65, 1984.

[21] M. Chen. A design methodology for synthesizing parallel algorithms and
architectures. Journal of Parallel and Distributed Computing, 3(6):461-491,
December 1986.

[22] A. Chien and J. Kim. Planar-adaptive routing: low-cost adaptive networks for
multiprocessors. In Proceedings of the 19th Annual International Symposium
on Computer Architecutre,, 1992.

[23] S. Chittor. Communication Performance of Multicomputers. PhD thesis, Dept.
of Computer Science, Michigan State University, 1991.

[24] P. Clauss, C. Mongenet, and G. R. Perrin. Calculus of space-optimal mappings
of systolic algorithms on processor arrays. In S. Y. Kung and E. Swartzlander,
editors, International Conference on Application Specific Array Processing,
pages 4-18, Princeton, New Jersey, Sept 1990. IEEE Computer Society.

252

[25] E.G.Jr. Coffman (Ed.). Computer and Job-Shop Scheduling Theory. John Wiley
and Son, New York, 1976.

[26] Intel Scientific Computing. iPSC2 User Guide. 1989.

[27] Bailey D.A. and Cuny J.E. Graph grammar based specification of
interconnection structures for massively parallel computation. In Proceedings
of the Third International Workshop on Graph Grammars, pages 73-85, 1987.

[28] W.J. Dally. Performance analysis of k-ary n-cube interconnection networks.
IEEE Trans. Comput., C-39(6):775-785, June 1990.

[29] W.J. Dally and C.L. Seitz. The torus routing chip. Disiributed Computing,
1(3):187-196, October 1986.

[30) W.J. Dally and C.L. Seitz. Deadlock-free message routing in multiprocessor
interconnection networks,. I[EEE Trans. Comput., C-36(5):547-553, May 1987.

[31] A. Darte and J. Delosme. Partitioning for array processors. Technical Report
Report 90-23, Laboratoire de I'Informatique du Parallelisme, Ecole Normale
Superieure De Lyon, France, October 1990.

[32] A. Darte, L. Khachiyan, and Y. Robert. Linear scheduling is nearly optimal.
Technical Report LIP Report 91-35, Laboratoire LIP, Ecole Normale
Superieure De Lyon, France, November 1991.

[33] G. Duncan. A Comparison of the Performace of Three Message-Routing
Strategies for Multicomputers. M.Sc Thesis, Department of Computer
Science, University of Edinburgh, 1992.

{34] T.H. Dunigan. Performance of the Intel iPSC/860 and Ncube 6400 hypercubes.
Parallel Computing, 17:1285-1302, 1991.

[35] S. Duvvuru, R Sundararajan, E. Tick, A.V.S. Sastry, L. Hanson, and X. Zhong.
A compile-time memory-reuse scheme for parallel logic programs, lecture notes
on computer sciece 637. In International Workshop on Memory Management.
Springer-Verlag, Sept. 1992.

[36] H. El-Rewini and T.G. Lewis. Scheduling parallel program tasks onto arbitrary
target machines. Journal of Parallel and Distributed Computing, 9:138-153,
1990.

[37] R.A. Finkel. Large-grain parallelism - Three case studies. In L. Jamieson, D. B.
Gannon, and R. J. Douglass, editors, The Characteristics of Parallel
Algorithms, pages 21-64, Cambridge, Massachusetts, 1987. The MIT Press.

253

[38] J.A.B. Fortes and F. Parisi-Presicce. Optimal linear schedule for the parallel
execution of algorithms. In Proc. of 1984 International Conference on Parallel
Processing, 1984.

[39] G. Fox, S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, C. Tseng, and
M. Wu. Fotran D Language Specification. Technical Report TR90-141, Dept.
of Computer Science, Rice University, December 1990.

[40] G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and D. Walker. Solving
Problems on Concurrent Processors. Prentice-Hall, 1988. Volume 1.

[41] M.R. Garey and D.S. Johnson. Computers and Intractability. W.H.Freeman and
Company, 1979.

[42] G.A. Geist, M.T. Heath, Peyton B.W., and P.H. Woeley. PICL: a portable
instrumented communication library, C reference manual. Tech. Report
ORL/TM-11130, Oak Ridge National Laboratory, Oak Ridge, TN., July 1990.

[43] D. Gelernter. A dag-based algorithm for prevention of store-and-forward
deadlock in packet networks. IEEE Trans. on Computers, C-30:709-715,
October 1981.

[44] A. Gerasoulis, S. Venugopal, and T. Yang. Clustering Task Graphs for Message
Passing Architectures. In 1990 Proceedings of ACM International Congerence
on Supercomputing, pages 447-456, 1990.

[45] A. Gerasoulis and T. Yang. On the granularity and clustering of directed acyclic
task graphs. Techincal Report, Dept. of Computer Science, LCSR-TR-153,
September 1990.

[46] C. J. Glass and L. M. Ni. The turn model for adaptive routing. In Proceedings
of the 19th Annual International Symposium on Computer Architecutre,, 1992.

[47]) L. Gravano, G.D. Pifarre, G. Denicolay, and J.L.C. Sanz. Adaptive deadlock-free
worm-hole routing in hypercubes. In Proc. of the Sizth International Parallel
Processing Symposium, pages 512-515, Beverly Hill, California, 1992.

[48] W. G. Griswold, G. A. Harrison, D. Notkin, and L. Snyder. Port ensembles: a
communication abstraction for nonshared memory parallel programming.
Technical report, University of Washington, 1989.

[49] T. Gross. Communication in iWarp systems. In Proceedings of
Supercomputing’89,, pages 436-445, November 1989.

[50] M. Hanan and J.M. Kurtzberg. A review of the placement and quadratic
assignment problems. SIAM Review, 14:324-342, April 1972.

254

[51] F. Harary. Graph Theory,. Addison-Wesley Publishing Company,, 1972.

[52] C.A.R. Hoare. Communicating Sequential Processes. Communication of ACM,
21:666-677, 1978.

[53] Synopsys Inc. Design Compiler Reference Manual. Synopsys, Inc., Mountain
View, California, 1992.

[54] K. Jainundunsing. Parallel Algorithms for Solving Systems of Linear Equations
and Their Mapping on Systolic Arrays. PhD thesis, Delft University of
Technology, Electrical Engineering Department, Delft, the Netherlands,
January 1989.

[55] C.R. Jesshope, P.R. Miller, and J.T. Yantchev. High performance
communications in processor networks,. In Proceedings of the 16th Annuel
International Symposium on Computer Architecutre,, pages 150-157, June
1989.

[56] L. S. Johnsson. Communication in Network Architectures. In VLSI and Parallel
Processing, pages 223-389, Chapter 4, 1990.

[57] D.V. Judge and W.G. Rudd. A test case for the parallel programming support
environment: parallelizing the analysis of satellite imagery data,. Technical
Report, Dept. of CS, Oregon State University,, 1990.

[68] D.D. Kandlur and K.G. Shin. Traflic routing for multi-computer networks with
virtual cut-through capability,. In Preceedings of the 10th International
Conference on Distributed Computer Systems,, pages 398-405, May 1990.

[59] R. M. Karp, R. E. Miller, and S. Winograd. The organization of computations
for uniform recurrence equations. JACM, 14(3):563-590, July 1967.

[60] S.J. Kim and J.C. Brown. A General approach to mapping of parallel
computation upon multiprocessor architectures. In International Conference
on Parallel Processing (ICPP), pages 1-8,vol 3, 1988.

[61) K. Koelbel, P. Mehrotra, and J. V. Rosendale. Supporting shared data
structures on distributed memory architectures. In Proceedings of Second
ACM SIGPLAN Symposium on Principles & Practice of Parallel
Programming, March 1990.

[62] S. Konstantinidou. Adaptive, Minimal Routing in Hypercubes. In 6th MIT
Conference on Advanced Research in VLSI, pages 139-153, 1990.

255

[63]) S. Konstantinidou and L. Snyder. The chaos router: A pratical application of
randomization in network routing. In Proc. of the 1990 ACM Symposium of
Parallel Algorithms and Architectures, pages 79-88, 1990.

[64] S. C. Kothari, H. Oh, and E. Gannett. Optimal designs of linear flow systolic
architectures. In International Conference on Parallel Processing, St. Charles,

11, 1989. IEEE.

[65] D. Krizanc, S. Rajasekaran, and T. Tsantilas. Optimal routing algorithms for
mesh-connected processor arrays. In VLSI Algorithms and Architectures, pages
411-422. Springer-Verlag, 1988. Lecture Notes in Computer Science #319.

[66) H. T. Kung. Let’s design algorithms for VLSI. In Proc. Caltech Conference on
VLSI, January 1979.

[67] H. T. Kung and C. E. Leiserson. Algorithms for VLSI Processor Arrays, chapter
8.3, pages 271-292. Addison-Wesley, Reading, Ma, 1980.

[68]) S. Y. Kung. VLSI Array Processors. Prentice Hall, 1988.

[69] S. Y. Kung, S. C. Lo, and P. S. Lewis. Optimal systolic design for the transitive
closure and the shortest path problems. IEEE, Trans. on Computers, 36(5),
May 1987.

[70] S.Y. Lee and J.K. Aggarwal. A mapping strategy for parallel processing. IEEE
Trans. on Computers, C-36(4):433-442, April 1987.

[71] F.T. Leighton. Introduction to Parallel Algorithms and Architectures: Arrays,
Trees, Hypercubes. Morgan Kaufman, 1992.

[72] T. Leighton, F. Makedon, and I. Tollis. A 2n-2 step algorithm for routing in an
n X n array with constant size queues. In Symposium on Parallel Algorithms
and Archilectures, pages 328-335, 1989.

[73] Q. Li. Minimum deadlock-free message routing restriction in binary hypercubes.
Journal of Parallel and Distributed Computing, 1992,

[74] D.H. Linder and J.C. Harden. An adaptive and fault tolerant wormhole routing
strategy for k-ary n-cubes. IEEE Trans. Comput., C-40(1):2-12, January
1991.

[75] L. Lipsett, C. Schaefer, and C. Ussey. VHDL: Hardware Description and Design.
Kluwer Academic Publishers, Boston, 1988.

256

[76] V. Lo, S. Rajopadhye, J. Telle, and X. Zhong. Mapping divide-and conquer
algorithms to parallel architectures. submitted to JEEE Transactions on
Parallel and Distributed Systems, October 1992.

[77] V. M. Lo. Heuristic algorithms for task assignment in distributed systems.
IEEE Trans. on Computers, 37(11):1384-1397, 1988.

[78] V.M. Lo. Temporal communication graphs: a new graph theoretic model for
mapping and scheduling in distributed memory systems. Sixth Distributed
Memory Computing Conference, Portland, Oregon, April 1991.

[79] V.M. Lo, S. Rajopadhye, S. Gupta, D. Kelsen, M.A. Mohamed, and J. Telle.
Mapping divide-and-conquer algorithms to parallel architectures. In
Proceedings of International Conference on Parallel Processing, pages
I111:128-135, 1990.

[80] V.M. Lo, S. Rajopadhye, S. Gupta, D. Kelsen, M.A. Mohamed, J. Telle, and
X. Zhong. OREGAMI: tools for mapping parallel computations to parallel
architectures. International Journal of Parallel Programming, 20(3), June
1991.

[81] V.M. Lo, S. Rajopadhye, M.A. Mohamed, S. Gupta, B. Nitzberg, J. Telle, and
X. Zhong. LaRCS: a Language for Regular Ccommunication Strucutres. IEEE
Trans. on Parallel and Distributed Systems. To appear.

[82) Inmos Ltd. occam™ Programming Mannual. Prentice-Hall, 1984.

[83] F. Makedon and A. Simvonis. On bit-serial packet routing for the mesh and the
torus. In The 8rd Symposium on the Frontier of Massively Parallel
Computation, pages 294-302. IEEE Press, 1990.

[84] U. Manber. Introduction to Algorithms, A Creative Approach. Addison-Wesley
Publishing Company, 1989.

[85] D. 1. Moldovan. On the design of algorithms for VLSI systolic arrays.
Proceedings of the IEEFE, 71(1):113-120, January 1983.

[86] D. Nassimi and S. Sahni. An optimal routing algorithm for mesh connected
parallel computers. Journal of the ACM, 27:6-29, January 1980.

[87) R.M. Nauss. Parametric Integer Programming. University of Missouri Press,
Columbia, Missouri, 1977.

[88] J.N. Ngai and C.L. Seitz. A Framework for Adaptive Routing in Multicomputer
Networks. In Proc. of the 1989 ACM Symposium of Parallel Algorithms and
Architectures, pages 1-9, 1989.

257

[89) C.H. Papadimitriou and M. Yannakakis. Towards an architecture-independent
analysis of parallel algorithms. SIAM J. Comput., 19(2):322-328, April 1990.

[90] J.L. Peterson and A. Silberschatz. Operating System Concept. Addison Wesley
Publishing Company, 1990.

[91] C.D. Polychronopoulos. Parallel Programming and Compilers. Kluwer Academic
Publishers, Boston, 1988.

[92] David A. Poplawski. Synthetic models of distributed memory parallel programs.
Journal of Parallel and Distributed Computing, 1991.

[93] Patrice Quinton. The systematic design of systolic arrays. In Automate
Networks in Computer Science: Theory and Applications, pages Chpater 9,
229-260. Edited by Soulie, M. and Robert, Y. and Tcheunte, Princeton
University Press, 1987. Preliminary versions appear as IRISA Tech Reports
193 and 216, 1983.

[94] S. Rajasekaran and R. Overholt. Constant Queue Routing on a Mesh. In Proc.
Symposium on Theoretical Aspects of Computer Science, pages 444-455.
Springer-Verlag, 1990. Lecture Notes in Computer Science #319.

[95} S. Rajasekaran and M. Raghavachari. Optimal randomized algorithms for
multipacket and wormhole routing on the mesh. MS-CIS-91-47, University of
Pennsylvania, 1991.

[96] S. V. Rajopadhye. Synthesizing systolic arrays with control signals from
recurrence equations. Distributed Computing, pages 88-105, May 1989.

[97] S. V. Rajopadhye and R. M. Fujimoto. Synthesizing systolic arrays from
recurrence equations. Parallel Computing, 14:163-189, June 1990.

[98] S. Rao. Regular Iterative Algorithms and their Implementations on Processor
Arrays. PhD thesis, Stanford University, Information Systems Lab., Stanford,
Ca, October 1985.

[99] S. Rao and T. Kailath. What is a systolic algorithm. In Proceedings, Highly
Parallel Signal Processing Architectures, pages 34-48, Los Angeles, Ca, Jan
1986. SPIE.

[100] A.L. Rosenberg. Graph embedding 1988: recent breakthroughs new directions.
Technical Report 88-28, University of Massachusetts at Amherst, March 1988.

[101] M. Rosing, R. B. Schnabel, and R.P. Weaver. The dino parallel programming
language. Technical Report CU-C5-457-90, Dept. of Computer Science,
University of Colorado at Boulder, April 1990.

258

[102) Gunter Rote. A systolic array algorithm for the algebraic path problem
(shortest paths; matrix inversion). Computing, 34(3):191-219, 1985.

[103] V. Roychowdhury, L. Thiele, S.K. Rao, and T. Kailath. On the localization of
algorithms for VLSI processor arrays. In Robert W. Brodersen and Howard S.
Moscovitz, editors, VLSI Signal Processing, III, pages 459-470, Monterey, Ca,
November 1988. IEEE Accoustics, Speech and Signal Processing Society, [IEEE
Press.

[104] W. Rudd and T.G. Lewis. Architecture of the parallel programming support
environment,. In Proceedings of CompCon’90,, pages 589-594, San
Francisco,CA,, Feb. 1990.

[105] P. Sadayappan, F. Ercal, and J. Ramanujam. Clustering partitioning
approaches to mapping parallel programs onto a hypercube. Parallel
Computing, 13:1-16, 1990.

[106] V. Sarkar. Partitioning and scheduling parallel programs for multiprocessors.
The MIT Press, 1989.

[107] A. Schrijver. Theory of Integer and Linear Programming. John Wiley and
Sons, 1988.

[108] C.L. Seitz. The Cosmic Cube. Communcation of ACM, 28(1):22-33, January
1985.

[109] W. Shang and J. A. B. Fortes. On the optimality of linear schedules. Journal
of VLSI Signal Processing, 1:209-220, 1989.

[110] W. Shang and J.A.B. Fortes. Time optimal linear schedules for algorithms with
uniform dependencies. IEEE Trans. on Computers, 40(6), June 1991.

[111] S.B. Shukla and D.P. Agrawal. Scheduling pipelined communication in
distributed memory multiprocessors for real-time applications,. In Proceedings
of the 18th Annual International Symposium on Computer Archilecutre,, pages
222-231, May 1991.

[112] H.S. Stone. Multiprocessor scheduling with the aid of network flow algorithms.
IEEE Transactions on Software Engineeing, 3(1):85-93, January 1977.

[113] L. Thiele. On the design of piecewise regular processor arrays. In International
Symposium on Circuilts and Systems, pages 2239-2542. IEEE CAS, IEEE
Press, 1989.

[114] C.D. Thompson and H. T. Kung. Sorting on a mesh-connected parallel
computer. Communication of the ACM, 20:263-271, April 1977.

259

[115] E. Tick and X. Zhong. A compile-time granularity analysis algorithm and its
performance evaluation. New Generation Computing, 1993.

[116] L.G. Valiant and G.J. Brebner. Universal schemes for parallel communication.
In Proceedings of 13th Symposium on Theory of Computing, pages 263-277.
ACM, 1971.

[117] V. Van Dongen. Quasi-regular arrays: definition and design methodology. In
J. McCanny, J. McWhirter, and E. Swartzlander, editors, Systolic arrays
processors, International Conference on Systolic Arrays, pages 126-135.
Prentice-Hall, 1989.

[118] J. Wong and J. Delosme. Optimization of the processor count for systolic
arrays. Technical Report YALEU-DCS-RR-697, Computer Science Dept. Yale

University, May 1989.

[119] Y. Yaacoby and P. R. Cappello. Scheduling a system of nonsingular affine
recurrence equations onto a processor array. Journal of VLSI Signal
Processing, 1(2):115-125, 1989.

[120] X. Zhong. Optimal parallel schedules for uniform recurrence equations.
Technical Report, CIS-92-12, Computer Science Dept., University of Oregon,
April 1992.

[121] X. Zhong and V. M. Lo. Application-specific deadlock free wormhole routing
on multicomputers. In Parallel Architectures and Languages, Europe
(PARLE’92), Lecture Notes in Computer Science, pages 264-277,
Paris,France, June 1992. Springer-Verlag.

[122] X. Zhong and V. M. Lo. An efficient heuristic for application-specific routing
on mesh connected multiprocessors. In International Conference on Parallel
Processing (ICPP), Chicago, IL, August 1992,

[123] X. Zhong, V. M. Lo, and S.V. Rajopadhye. Optimal implementation of
divide-and-conquer algorithms on binary de bruijn networks. 4th Symposium
on the Frontier of Massively Parallel Computations, March 1992.

[124] X. Zhong and S. V. Rajopadhye. Deriving fully efficient systolic arrays by
quasi-linear allocation functions. In Parallel Architectures and Languages,
Europe, 1991, Lecture Notes in Computer Science 505, Springer-Verlag, pages
219-235, June 1991.

[125] X. Zhong and S. V. Rajopadhye. Synthesizing efficient systolic arrays. In JEEE
International Conference on Acoustics, Speech and Signal Processing, Toronto,
Canada, May 1991. IEEE.

260

[126] X. Zhong and S.V. Rajopadhye. Quasi-linear allocation functions for efficient
array design. Journal of VLSI Signal Processing, 4:97-110, 1992.

[127) X. Zhong, S.V. Rajopadhye, and V.M. Lo. Parallel implementation of
divide-and-conquer algorithms on binary de bruijn networks. In Proc. of the
Sizth International Parallel Processing Symposium, pages 103-107, Beverly
Hill, California, 1992.

{128] X. Zhong, S.V. Rajopadhye, and 1. Wong. Systematic generation of linear
allocation functions in systolic array design. Journal of VLSI Signal
Processing, 4:279-293, 1992.

[129] X. Zhong, E. Tick, S. Duvvuru, A.V.S. Sastry, and R. Sundararajan. Towards
an efficient compile-time granularity analysis algorithm. In International
Conference on Fifth Generation Computer Systems, pages 809-816.
ICOT,Tokyo, June 1992.

[130] X. Zhong, 1. Wong, and S. V. Rajopadhye. Bounds on the number of linear
allocation functions. In VLSI Signal Processing IV, pages 85-94, San Diego,
CA, November 1990. IEEE ASSP Society.

	June 1994_1
	June 1994_2
	June 1994_3

