AUTOMATED SUPPORT FOR REQUIREMENTS TRANSFORMATION
IN SOFTWARE ENGINEERING

by
BRIAN LEE DURNEY

A DISSERTATION

Presented to the Department of Computer
and Information Science
and the Graduate School of the University of Oregon
in partial fulfillment of the requirements
for the degree of
Doctor of Philosophy

June 1994

"Automated Support for Requirements Transformation in Software Engineering,” a
dissertation prepared by Brian L. Durney in partial fulfillment of the requirements for the
Doctor of Philosophy degree in the Department of Computer and Information Science.

This dissertation has been approved and accepted by:

*‘ % I:f} LA AL

Dr. Stephen Fickas, Chair of the Examining Committee

s/e/ 74

Date / /

Commiittee in charge: Dr. Stephen Fickas, Chair
Dr. Arthur Farley
Dr. Virginia Lo
Dr. Edward Weeks

Vice Provog and Dean of the Graduate School

An Abstract of the Dissertation of
Brian Lee Durney for the degree of Doctor of Philosophy

in the Department of Computer and Information Science

to be taken June 1994
Title: AUTOMATED SUPPORT FOR REQUIREMENTS TRANSFORMATION
IN SOFTWARE ENGINEERING

!
Approved: W(q’ C T L~

[U= ﬁr.%te'phen F. Fickas

A requirement that is difficult or impossible to satisfy can lead to one of two
extremes: (1) an unsatisfied, impractical requirement that is too strong, or (2) a requirement
that has been unnecessarily weakened or abandoned. Traditional software engineering
methods are not well suited to addressing problems caused by requirements that are too
weak or too strong because such methods focus on changing specifications, not
requirements.

The premise of this work is that changing requirements is an important alternative to
changing specifications. My thesis is that knowledge-based analysis of requirements and
environmental constraints supports requirements change by allowing a program to find the
strongest requirement satisfied by a specification.

This dissertation makes two contributions. First, it defines a relation called IS-
STRONGER-THAN that allows a program to compare the strength of alternative
requirements. A program called GIRAFFE uses a set of transformations based on the IS-
STRONGER-THAN relation to incrementally strengthen and weaken requirements.

Second, the dissertation describes a method for finding general scenarios. GIRAFFE uses

v

general scenarios to determine when requirements changes are appropriate. GIRAFFE's
method for finding scenarios allows it to use partially-specified initial states and find
scenarios that include multiple paths and more general object types.

GIRAFFE uses the IS-STRONGER-THAN relatior and general scenarios to find
the strongest requirement satisfied by a specification. The program thus helps an analyst
change requirements and so avoid the problems of unsatisfied, impractical requirements

and unnecessarily weak requirements.

CURRICULUM VITA

NAME OF AUTHOR: Brian Lee Durney
PLACE OF BIRTH: Seattle, Washington
DATE OF BIRTH: August 21, 1959

GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED:
University of Oregon
Stanford University
University of Utah
DEGREES AWARDED:
Doctor of Philosophy in Computer Science, 1994, University of Oregon
Master of Science in Computer Science, 1985, Stanford University
Bachelor of Science in Computer Science, 1984, University of Utah
AREAS OF SPECIAL INTEREST:
Artificial Intelligence
Software Engineering
PROFESSIONAL EXPERIENCE:

Teaching and Research Assistant, Department of Computer and Information
Science, University of Oregon, Eugene, 1987-93.

Member of Technical Staff, AT&T Bell Laboratories, Naperville, Illinois, 1984-87.

AWARDS AND HONORS:
National Merit Scholarship, 1977

Magna cum laud, 1984

vi

PUBLICATIONS:

Anderson, J. S., & Durney, B. (1993). Using scenarios in deficiency-driven
requirements engineering. In Proceedings of the IEEE International Symposium
On Requirements Engineering (pp. 134-141). Los Alamitos, CA: IEEE
Computer Saciety.

vii

ACKNOWLEDGEMENTS

I thank Steve Fickas, my advisor, for his heip. I thank John Anderson, Anne
Dardenne, Rob Helm and Bill Robinson for their comments, discussion, suggestions, and
other help. I also thank Art Farley, Ginnie Lo, and Ed Weeks for their comments.

The research presented in this dissertation was supported in part by a grant from the
National Science Foundation to Dr. Stephen Fickas at the University of Oregon.

1 thank Kristy, Jessica and Alexander for their patience and help, and for a lot of

fun over the past seven years.

Chapter
1.

II.

IIIL.

viii

TABLE OF CONTENTS

Page

INTRODUCTION ...0euinieimcneiet ittt eteae e et et e re e e teainanan 1
Requirements Transformation..........cooviviiiiiiiniiiii e 4
Why Transform Requirements?..........cccoeiviiiiiiniiniiiiiiiiiiinieae 12
Thesis StAteMENtvnee et 14
ASSUMPLIONS...uviiiiiitiniiitiiiiiieiiiiris it raerissarasaenrssasaaannns 14
CONEIDULIONS .. .0 vvvvee e e a e e 15
OV TV B W st riietiiieeeteeteeeeteteeneaerneen s rasannaratmnenreastutasarassnsnenennans 16
GIRAFFE'S MODEL AND PROCESS.ccvvviiiiiiiiiiiiiiiiiicieivenicanenes 18
ItrOAUCHION . . ceit it et e e e et e s e s e ea s s ra e ans 18
Representation........ccoiiviiviieeiiniiasinisiisiernerovaerne e resarceaeeencaens 18
THE PrOCESS...ccvieirierinierrrererenioriirertieiisstrareietrssesereaesisrasmrsesannses 32
Related WOrK. ..o vv i e 34
11011331F: 1 o 2O P PSP 49
REQUIREMENTS RELATIONS..... oottt e enesnaeneens 50
| 1118 (o T Ei ol Lo H PP PO 50
Definition of a Requirements Relation.........cuiiniinniiinicnnnnn.. 50
Other Requirements Relations...........coeeiniiiiiiiiiii s 67
Related WOrk.......oveiiniiiiiiiiiiiiiiiiiii e 74

S UITUITIAL Y 1 trr et e ee ittt e et e b ras s eustaassasarenssssrssnsnsasrrenrnrs 85
GIRAFFE'S KNOWLEDGE BASE.....ccccoiiiiiiiiiiiiii v 87
INtrodUCHioN..cveei i e e 87
Applicability of Transformations..........ccoooviiimiiiiniiiiininiiieenininenn, 88
Effects of Transformationso.vivurieiiiiciamiiiiiiiiii i nenes 93
Rating FUnctions.........cccovviiiiiiiiiiiierirr e 100
SUMMATY .. enieiiiiiniiiiiiiir ettt ta et ienrre e sasaereuanas 107
FINDING SCENARIOS ...ttt e e e 108
ENErOdUCTION. e s 108
General SCeNATIOS.......civiiiiiiiiiuirineinriiiessireiiraneairieiaaaens 108
Using Planning Methods to Find Scenarios...............coooiiiiniinns 109
Other Methods for Finding Scenarios..........cccvcvnviviiiiiiiiiiiiiiinenienss, 120

Y1111 515F: 1 o 2 PO OO PPN 131

Chapter Page

VI, BV ALUATTION ...ttt tittttirtreeeeriittanreesastensressatessesosasesssissseemsseessnneens 133

| BTY 8 m 0 R0 o] S0) U 133

Evaluation of the Implementationc.cooviiiiiiiiiiiiiiiine e 133

Generality of the Implementationcccocveviviiiiiiiiinniiinien, 151

Evaluation of the Methodovoviiiiiiiiiriiiiiiiiiete e ievrarnrnensrnnrreees 157

Y18 14811 T o S 159

AY2 1 R 000, () A1 (6], [161

TS neTs LN Teha Le) 1 161

O DU OIS . . vt vvsarreerensnareeeseeeanssnesetesennnasresessssennannsessssssensssns 161

Limitations and FUture WorK.cc..viiviiiiiiiiiiiiiieeseiersrreissnerserennnns 162

0] 1 103 11 1300) s D 165
APPENDIX

A, GLOSSARY ..ottt iiiiiiiitsteietsnssstsnneiaaestsossssssotassesennnnsesmnnnneeeenonss 167

B. DOMAINMODEL......cooiiitiiiiiiiiiirieretsserecresnrsarassssesnssesassannseessnns 171

£, EX AMPLES ..o iiitttittttttetseetarseeetassseetssesesssseiesensssssrnsneesssssseserens 190

Figure

N

10.
11.
12.
13.
14.

15.

16.

17.

18.

LIST OF FIGURES
Page

A Hypothetical Conversation Between an Analyst and a Client 6
Informal Statements of Two Requirements

for an On-Line Registration System............ocoiiiiiiiiiiiiniiiieninnieneenenn. 7
Transformation of Satisfied and Target Requirements...........cocovviniinianninnne. 8
Parts of a Requirements Lattice........covvivirimimniieiii 10
A Transition that Represents an Achievement Requirement...................co.eeee 19
Summary of GIRAFFE's Representation of Requirements...............cccovvueees 21
A Transition that Represents a Safety Requirement....................ccocal, 22
Two Qualifications for a Requirementcooovviiiiiiriiiiiiiiieiienienrennnn. 24
An Operator that Represents a Capability of an Artifactc..co.o. 28
Examples of the Three Capability Sets Used by GIRAFFE............cocvevrunnne. 29
PN ToT1 (T o (o SO SO P PR PPPPON 31
The Process that GIRAFFE Uses to Transform Requirements...................... 32
Two Requirements Stated as Prohibited or Desired Transitions..................... 37
Comparison of the Representations that OPIE, GIRAFFE

and ISAT Use for Requirements........ccccccoeiriiieiiininiemuiiiiennennnniiene, 44
Definition of SET-STRONGER-THAN Relation Between

Sets of ReqUIrements........covivviiririiiirnrrnremririiie e 51
Definition of IS-STRONGER-THAN for

Achievement Requirements..........ooveiieiniianiiiiiiiniirirrereniieeiiennns 51
Definition of IS-STRONGER-THAN for

Safety REQUITEMENLSceiuiiiiiiiiiiiniiiiririereieiir e aaans 52

Definition of H-IS-STRONGER-THAN.ooveiiiiiiiiiiiiiiiiirerniierrannenenes 53

Figure
19.
20.

21.

22.
23.
24,

25.

26.

27.

28.

29.
30.

31.

32.
33.
34,
35.
36.

Page

Sets Of SCENAMIOS .. uvvviviiiiiiiiiiiiiiiiii i s ara e 58
Comparison of Two Transitions Based on

Generality of Object TYPES ...ovvvviiiiiiiiiiiiiiiii i 60
Comparison of Two Transitions Based on

AND/OR EXPIESSIONSvuvneteininriteeitieieineeiiiaeinensirisrsnsaiesinssias 63
Some Classes of Conditions.........cociiiiiiiiiiiiiiiiiiiiiiiiie s 63
A Case where the Heuristic Rule H1 Is Misleading.........cccooovviiiiiiiiinnninn, 65
A Support Requirement Derived from

an Achievement Requirementc.c.ciiiiiiiiiiiiniiini e 68
An Obstruction Requirement Derived from

a Safety Requirement.........ccoooovveeiiieeiiiiiniiineniiencre i 69
A Repair Requirement Derived from

a Safety Requirement...........ccccvuiiiiiiiiniiiirinincre e 70
A Privacy Requirement Derived from

an Achievement Requirementocovviiiiiiiniiiiiiiiiieiiiiie e, 71
A Failure Requirement Derived from

an Achievement ReqUirementcocvviviiniiiiniiiiniiiniiii, 72
A Relaxation LattiCe.....vvveerniuerniniiiiciiiiii et 76
Description of a Requirements Transformation

asan IF-THEN RuUle......ocovvvininiiiiiiiiccc e 87
Examples of Transformations that are Applicable

and Not Applicablecooviiviniiiiiiii e 89
A Requirements Transformation and a Sample Application...............oceeeeii. 91
Types of Scenario Applicability Conditions..........ccecceeiiieiniiinnineiinnenin 92
Examples of Changing the Initial Stateco 94
Examples of Changing Path Constraintscoevviiererininecrvivnenieeeiannn.. 96

An Example of Changing the Final State...................... 98

Figure
37.
38.
39.
40.
41.
42,
43.
44.
45.

Page
An Example of the Display Produced by Rating Functions........................ 101
A General ScCenario.......c.ccooiviiiiniiiimiiiiiniiii e 110
A Planning Problem.........ccooiiiiiiiiiiii e 111
A Describe Operator....ccocevivvivniineuiinniriisiniiiiiersssssssisreiieie 116
Generalization of Object Types in GIRAFFE..........c.cccooeiiiiiiiiiiineeninnnn.. 119
A Plan Fragment Showing Possible OQutcomes of Actions............cccovvevnenn. 123
Merging Scenarios in TAMS.......iiiiii e, 125
Indices to Plans, a 1a CHEF ...t eeieeeevrenaeeevesnavnsns 128

A Summary of Some Specification Changes
and Requirements Transformationsc.ccveviviiiiniiniiiiiniinnniae 191

Table

W

S

Xiii

LIST OF TABLES

Page
Systems that Support Requirernents Engineeringcccoooeiiininn, 36
Summary of the Systems Described in Chapter IL.......cccccovveerevcinricrannenn. 49

Summary of Methods for Weakening and
Strengthening ReqUIrEMENtSvcvvvviriniiiereniiiiieneiiiienierrernenenennns. 81
Transformation Rules in GIRAFFE's Knowledge Baseccoevvininen. 99
Rating Functions in GIRAFFE's Knowledge Base.........ccccvvviievniiiininnnan. 106
Requirements Transformations and Their Domain-Dependence................... 152

Rating Functions and Their Domain-Dependence...............ccoevveviiiinennnn. 154

CHAPTER I

INTRODUCTION

"Would you believe...?"

When faced with a difficult situation, Maxwell Smart (also known as Agent 86)
often stretched the truth in hopes of convincing an adversary to set him free, or not destroy
the world, or otherwise cooperate (McCrohan, 1988). Although amusing, Agent 86's
fabrications were not as interesting as his subsequent unstretching of the truth—
progressively weakening his story in hopes of finding something more convincing but still
effective.

In a more serious (but still fictional) work (Peters, 1984), a Welsh monk describes
the philosophy of the medieval Welsh legal system regarding theft. The penalty for theft
was execution, which could cause a dilemma if someone were convicted of a trivial theft.
The judge would have to let the offender go, and ignore the law, or carry out the sentence
and thus perpetrate an offense perhaps worse than the original deed. To avoid such a
dilemma, the law defined many degrees of theft, each with a correspondingly lesser
penalty. If the thief stole food to stay alive, for instance, the penalty was less than it would
be otherwise. By qualifying the definition of theft in this way, the law avoided the
dilemma caused by extremes.

A similar problem of extremes arises in software engineering. When a statement of
requirements and a specification do not agree, one has two basic choices for reconciling the
two: change the specification or change the requirements.

In traditional sofiware engineering methodologies, requirements are not changed.

That approach leads to problems if a client states a requirement that is impossible to satisfy

or is unreasonably expensive. For example, a client might state that "all student schedules
must be kept private.” Many measures taken to ensure privacy could cause problems, such
as limiting legitimate access to information, being too expensive, or being otherwise
unworkable. As with the Welsh law described earlier, enforcement might be worse than
violation.

Rather than changing the specification in such a case, one can change the
requirements. The simplest change would be to completely discard it, but that choice still
leads to problems of extremes. Instead, like Maxwell Smart and his fabrications, one can
gradually weaken the requirement. One can qualify the requirement, much as the Welsh
qualified their law, until it reaches a point where it avoids the problem of extremes—weak
enough to be practical but not so weak that it's meaningless.

The premise of the work described in this dissertation is that changing requirements
is an important aiternative to changing the specification when the two conflict. In this
dissertation, I describe a method of requirements transformation that supports the kind of
incremental weakening necessary to solve the problems of extremes described above. The
method of requirements is embodied in a program called GIRAFFE.

GIRAFFE is a program that reconciles a statement of requirements and a
specification by changing the requirements. When the person using the program changes
the specification, GIRAFFE responds by showing the user the strongest requirements
satisfied by the altered specification. The user then has the choice of reconciling the
specification either by changing the requirements, using GIRAFFE's suggestion if desired,
or by further changing the specification.

By stating the strongest requirement satisfied by a specification, GIRAFFE allows
its user to avoid weakening a requirement more than necessary. GIRAFFE has a set of
requirements transformations which allow it to stretch— incrementally strengthen or

weaken— requirements and thereby find the strongest satisfied requirement. Although the

program necessarily lacks the imagination and improvisational abilities of Agent 86, it does
have the ability to find a wide range of requirements.

In order to describe GIRAFFE's techniques for requirements transformation I need
to define some terms. In the remainder of this section I give informal definitions for some
terms, and then in Chapter I I give more detailed definitions. Since some of these terms
are used in many different ways by different writers, the definitions I give here are not
necessarily standard ones.

I use the term functional specification to refer to the capabilities that an artifact
provides. Capabilities of the artifact allow agents to perform various actions. For
example, an on-line registration system might provide the capability for a student to hear
her schedule over the phone. Names of capabilities are enclosed in curly braces, such as
{phone list schedule}.

The term requirements in this dissertation refers to a high-level description of an
artifact that, unlike the functional specification, is not stated in terms of capabilities and
actions. Requirements are stated as state transitions that should or should not occur in a
given artifact or in the environment of the artifact. For instance, a requirement might say
that there should be a transition to go from a state where a student does not know her
schedule to a state where she does know her schedule. Requirements can require (describe
as desirable) or prohibit a transition, and they can describe the way the transition should
occur {e.g., within two seconds). Names of requirements are enclosed in angle brackets,
such as <find out schedule>.

T use the term analyst as a generic term that can refer either to a human analyst or to
a program like GIRAFFE that assists with requirements engineering but has no authority to
change requirements. I use the term client to refer to the person who can authoritatively
state and change requirements for the artifact. I also refer to GIRAFFE's user as a client,

to avoid confusion with users of the artifact.

In the next section of this chapter I give an example of requirements transformation
and a short description of the GIRAFFE program. In the third section I give three reasons
why requirements transformation is important. Then I state the thesis, assumptions, and
contributions of this work. I conclude the chapter by outlining the remaining chapters of

the dissertation.

Requirements Transformation

In this section I describe a model of requirements engineering in terms of
requirements transformations. In this model, the client begins by describing the
functionality of a proposed artifact. The analyst responds by indicating how well the
artifact satisfies the requirements. The client then suggests additional functional changes or
accepts transformed requirements.

Requirements transformations play two roles in this process. Changes in
requirement satisfaction can be expressed as requirements transformations because the
analyst describes satisfaction by stating the strongest requirement satisfied by the changed
functional specification. The difference between this new strongest satisfied requirement
(or just "satisfied requirement") and the previous satisfied requirement can be expressed as
a requirements transformation. Likewise, the difference between a satisfied requirement
and the original requirement (or "target requirement”) can also be stated as a requirements
transformation.

First I give an informal example of requirements transformation. Then I describe

GIRAFFE's role in requirements engineering.
An Example

Figure 1 shows a hypothetical conversation from the domain of on-line registration

at a university. At the start of the session shown in Figure 1, the analyst has in mind a set

of requirements for an on-line registration system. The requirements that are relevant for
this example are "a student should be able to find out her own schedule" and "no one else
should be able to find out a student's schedule” (see Figure 2). Those requirements could
have been stated earlier by the client, or they could be from a standard set which the analyst
knows from past experience.

The client begins by describing a change to the functional specification: adding a
{list schedule} capability. The analyst responds by indicating how well the changed
specification satisfies the requirements. The specification provides a way for students to
find out their schedule but only on the condition that they have access to the system (i.e.,
they have phone access and know the registration system's phone number). The analyst
also points out that <schedule privacy> will be affected because intruders that have access
to the system will be able to find out a student's schedule. Satisfaction of <schedule
privacy> after the change will be weaker, or, put another way, the satisfied requirement
will be weaker,

The conversation continues, with the client suggesting other functional changes,
such as requiring a password to list a schedule, and adding a capability for assigning and
distributing passwords. After each change, the analyst describes changes in satisfaction
due to the change. The client responds by changing the specification, as with the addition
of a password to {list schedule}, or by changing the requirements.

Changes in the requirements are indicated in Figure 1 by the client acknowledging
that a requirement will not be fully satisfied. For instance, when informed that adding a
password will weaken satisfaction of <find out schedule>, the client acknowledges the
weakening, thus effectively changing the requirements. Such a change is referred to in this
section as "transforming the target requirements” but is referred to in later sections simply

as "transforming the requirements."

CLIENT: Students should be able to list the classes they're
registered for.

ANALYST: We'll add functionality to the system for students to list
their classes by phone. With that change, students will be able to find out
their schedules as long as they have access to the system. A student can
find out another student's schedule, though.

CLIENT: Have the system ask for a password before listing the
schedule.

ANALYST: That will eliminate some ways of finding out another
student's schedule. However, because of the password check, listing
schedules will require one more action and will take longer.

CLIENT: That's OK.

ANALYST: Students have to know their own passwords to find out
their own information. There has to be a way to assign passwords and a
way for students to find out their passwords.

CLIENT: Students will be assigned random passwords that are
given to them when they show ID.

ANALYST: Random passwords are more difficult to guess but are
also more difficult to remember. If a student forgets her password she
won't be able to find out her schedule information, and students will have
to go to the registrar's office to get their passwords. Even with random
passwords, an intruder can find out someone else's schedule if a student
student tells her password.

CLIENT: Students are responsible for not telling their passwords.

ANALYST: OK. Although it is more difficult, an intruder can still
find out a random password.

CLIENT: Students can change their passwords if someone finds
out.

FIGURE 1. A hypothetical conversation between an analyst and a client.

To see the role of requirements transformations in this conversation, consider the
first change made by the client in Figure 1: adding {list schedule}. The change in

satisfaction of <find out schedule> after that change is illustrated in the left half of Figure 3.

The analyst compares the version of <find out schedule> satisfied before the change to the
version satisfied after the change. In this case, the requirement before the change is the
weakest form of <find out schedule> because the specification doesn't include any

capability that students can use to find out schedules.

Requirements

<find out schedule 1> A student should be able {o use the on-line
registration system to find out what classes she is registered for.

<schedule privacy 1> No one else should be able use the on-jine
registration system to find out a student's schedule.

FIGURE 2. Informal statements of two requirements for an on-line registration system.

The requirement satisfied after the change is a stronger requirement because the
change makes it possible for a student to find out her schedule where it wasn't possible
before. T1 in Figure 3 is a requirements transformation that describes the difference in
satisfied requirements before and after the functional change.

The analyst also describes how the requirement satisfied by the new specification
falls short of the original, or "target” requirement. In this case, a student can find out her
schedule only if she has access to the registration system, so the difference is the new
condition that the student must have access to the system.

To reconcile the difference between the satisfied requirement and the target
requirement, the client can explicitly weaken the target requirement as shown in the right
half of Figure 3. T2 is a requirements transformation that makes <find out schedule>
weaker and in this case makes the target requirement the same as the satisfied requirement.

The process continues, with the analyst using transformations to describe changes

in satisfaction and to suggest changes to the target requirements. When the satisfied

requirements and the target requirements agree, the requirements engineering process is

finished.
Satisfied Target
<find out schedule 1>
strongest
A student can find out her
schedule.
T2 . weaker
<find out schedule 3> <find out schedule 3>
A student can find out her A student can find out her
schedule if she has access to schedule if she has access to
the system. the system.
T1‘stronger
<find out schedule 2> weakest
A student has no way to find out
her schedule.

FIGURE 3. Transformation of satisfied and target requirements. T1 represents a
transformation of the requirement satisfied by the specification. T2 represents a
transformation of the target requirement.

GIRAFFE

I'have created a program, called GIRAFFE, that automates parts of this process of
requirements engineering. GIRAFFE takes the role of the analyst in Figure 1. The
program allows the client to describe functional changes to the artifact's specification and
then describes to the client changes in the satisfied requirements. In describing changed

requirements to the client, GIRAFFE states the strongest requirements satisfied by the

current specification. The client can then indicate whether the satisfied requirements are
acceptable or not. If they are acceptable, GIRAFFE changes the target requirements; if not,
the client can further modify the functional specification.

At the beginning of a requirements engineering session, GIRAFFE might start out
with an ideal version of the <find out schedule> requirement (like <find out schedule 1> in
Figures 2 and 3) as a target requirement. In <find out schedule 1> a student can find out
her schedule without qualification. GIRAFFE's domain model includes a standard set of
requirements, like <find out schedule 1>, which the program can transform in response to
the client's input.

Figure 4 shows various requirements that GIRAFFE could produce as a result of
requirement transformations. Requirements toward the top of the figure are stronger than
those toward the bottom of the figure. The ideal version of <find out schedule> is shown
at the top of Figure 4.

The client can begin with a null specification or can begin with a specification
produced by some other process. If the initial specification has no capability for a student
to find out her schedule, the requirement initially satisfied by the specification is the
weakest version of <find out schedule>, shown at the bottom of Figure 4 and labeled "no
way to find out schedule."

The client's first action is to change the specification. If the client adds a capability
for finding out schedules by phone to the specification, as in Figure 1., then GIRAFFE
weakens the initial, unrealistic requirement to the "phone" requirement shown on the left
side of Figure 4. Unlike the ideal requirement, the "phone" requirement has a qualification:
a student must have access to the system (know the phone number and have phone access)
to find out her schedule. Adding qualifications such as this one to a requirement make it

weaker.

A student can find out her
schedule by phone if she knows
the phone number and has
phone access. The student has
to request a schedule listing.

ideal
phone, terminal,
mail, ...

o

L Ind

phone or mail

/.

o=0 =0

phone

oO=0

phone with easy
password

o=@

phone with
difficult password

mtoBig?
Brruigr

A student can find out her schadule
by phone if she knows the phone
number and has phone access. The
student has to request a schedule
listing and give an eight-digit string
@f random characters., y

N\

S

r Would you believe ...7

=
/A

A student can find
out her schedule
any time she wants
to, wharaver she
is, without doing a
single thing.

10

77N

o=0 00

network terminal
or dial-up access

email

i)

mail
~ o=@
network terminal
Udl Somewhare -
Abiged
ey
A student can find out her
scheduls by mall, . - .
dedicated
terminal
\Ji'\ S
{ ™\

o=@

virtually impossible

|
o=0

A student must travel half-way around the
world by camel and steamship, have a retina
scan, pass a three-day test on invertebrates
of the sea floor, and pay $750,000 to find

out her schedule.
. Y,

FIGURE 4. Parts of a requirements lattice. Two circles with an arrow between represent

different versions of the <find out schedule> requirement. Squiggles represent elision of

parts of the lattice.

11

The "phone” requirements in Figure 4 differ from the "mail" requirement (shown in
the center of the figure) because when finding out her schedule by phone a student must
explicitly request a schedule listing. When a student is required to do an action, a
requirement is weaker than it would otherwise be because there is a qualification: the
requirement is only satisfied under certain conditions, in this case when the student
performs a certain action.

Another example of a change in requirements occurs in Figure 1 when the client
specifies that students must give a password to get a schedule listing. When the client
makes that specification change, GIRAFFE responds by transforming the requirement from
the phone requirement in Figure 4 to "phone with difficult password". This change
corresponds to the analyst telling the client that a student must know her password and that
it will take students longer to find out their schedules because of the check. The change in
time required is an example of a change in an attribute of a requirement, where the attribute
concemned is duration.

GIRAFFE does not construct an explicit lattice of requirements as shown in Figure
4. Instead it uses transformations to make changes that correspond to moving from one
point in the lattice to another. In Chapter IV I describe GIRAFFE's knowledge base of
transformations. GIRAFFE's transformations describe changes in requirements in terms
of attributes (like duration), generality of objects, and qualifications (like a student needing
access to the system). The transformations are based on a relation between requirements
called IS-STRONGER-THAN that is defined in Chapter ITI.

In this section I have described a model of requirements engineering and have
discussed a program’s role in that process. I began with a hypothetical, informal
description of one example (Figure 1) and then showed the role that requirements
transformations play in that example (Figure 3). The requirements in Figure 2 are informal

and the transformations in Figure 3 are shown only as the difference between two informal

12

requirements. For GIRAFFE to act as the analyst it needs a formal representation of
requirements and needs to formally represent and reason about transformations like the
ones in Figure 3. In later chapters of this dissertation I examine a formal representation for
requirements and requirements transformations. Next I look at the motivation for creating

the GIRAFFE program.

Why Transform Requirements?

In this section I give several reasons for creating a system like GIRAFFE. 1
describe how GIRAFFE will support intertwining in the requirements engineering process,

provide useful evaluation information, and support reuse of requirements and components.
Intertwining

Swartout and Balzer (1982) use the term intertwining to describe a relationship
between specification and implementation. They argue that it is impossible to completely
separate specification and implementation in software development because physical
limitations and lack of foresight (i.e., an insufficient model of the artifact in its
environment) will cause specification modifications. They conclude that software
development tools should address the interleaving between specification and
implementation rather than keeping specification and implementation completely separate.

GIRAFFE addresses intertwining between requirements and specifications.
Swartout and Balzer indirectly describe this kind of intertwining when they argue that
"every specification is an implementation of some other higher level specification”
(Swartout & Balzer, 1982, p. 438). The same factors that make modifications to the
specification necessary make modifications to the requirements, a "higher-level
specification,” necessary. GIRAFFE helps clients transform requirements when limitations

or lack of foresight make those transformations necessary.

13

Evaluation

GIRAFFE supports intertwining and helps the client state requirements that reflect
the limitations of an artifact's specification. When the client states requirements that cannot
be satisfied, GIRAFFE describes a weaker requirement that can be satisfied, rather than
simply saying that the requirement is not satisfied. Similarly, if a specification satisfies a
stronger requirement, GIRAFFE tells the client so that the requirement can be transformed.
By giving this type of evaluation, GIRAFFE helps the client state requirements and

specifications that recognize limitations and describe more robust artifacts where possible.
Reuse

Since GIRAFFE helps the client transform requirements, it allows requirements to
be stated generally and then adapted to a particular situation. Thus it promotes reuse of
requirements.

GIRAFFE also promotes reuse of components by transforming requirements to
include characteristics of available components. While it is possible to begin with
requirements and then find components that satisfy those requirements, Lubars, Potts, and
Richter (1993) describe in a survey of requirements engineering practice a situation where
the order was changed: "The customer wanted to see a requirements model] that includes
properties and behavior of the off-the-shelf components, because integrating the
components was the riskiest aspect of the project” (Lubars et al., 1993, p. 10).

If components exist to satisfy a set of requirements, then the traditional process of
requirements engineering can lead to reuse of components. However, if no components
satisfy the requirements than the traditional process will not support reuse since it doesn't

allow specification to influence requirements. By helping the client to weaken requirements

14

acceptably, GIRAFFE promotes reuse of components by allowing specification to

influence requirements.
Thesis Statement

My thesis is that knowledge-based analysis of environmental constraints and
requirements relations supports requirements transformation in software engineering by
allowing a program to find the strongest requirement satisfied by a specification. Finding
the strongest satisfied requirement avoids unnecessary weakening and supports
intertwining, evaluation and reuse in requirements engineering.

"Environmental constraints" refers to actions provided by the environment,
conditions that might arise in the environment—initial conditions—and the kinds of actions
that agents in the environment might or might not perform—path constraints.

"Requirements relations” refers to comparing requirements in terms of strength and
weakness, and to other relations between requirements such as plan support/obstruction

and decomposition.

Assumptions

My work rests on two basic assumptions. One assumption addresses the nature
and extent of intertwining and the other addresses the representation for requirements and
functional specifications used by GIRAFFE.

In my research I will not study in detail the current practice of requirements
engineering. Other researchers have discussed intertwining and related issues
(Reubenstein, 1990; Swartout & Balzer, 1982; Lubars et al., 1993) but the evidence is
basically anecdotal. I am assuming that the problem exists to a degree that makes this work

significant. 1 also assume that the client, in a significant number of instances, is familiar

I5

with the options for the functional specification so that requirements transformation is a
useful approach.

In defining GIRAFFE's transformations I have assumed that the client wants
achievement requirements to occur in as many situations as possible and safety violations to
occur in as few situations as possible. Other constraints are possible. For instance, a client
might not care how many violations of some safety requirement occur after the first. The
IS-STRONGER-THAN relation does not apply to constraints for which this assumption
does not hold.

This work relies on representation of requirements as transitions from an initial state
to a final state with various path constraints added to describe additional functional
requirements and non-functional requirements. There is some indication (Anderson &
Durney, 1993) that this is a useful representation for requirements but my work does not

directly address this issue.

Contributions

In this dissertation, I define a method of requirements transformation that addresses
intertwining, provides effective evaluation and supports reuse of requirements and
components. In defining and evaluating that method I make two contributions. First, I
define a set of requirements relations, including one called IS-STRONGER-THAN that
allows a program to compare the strength of alternative requirements. Second, I describe a
method for finding general scenarios.

In defining the requirements relations described in this dissertation, I have applied
work in dimensions to requirements engineering and extended it by defining a stronger-
than relation for requirements. The requirements transformation method supports analysis

in terms of requirement subsets, attributes, object type generality, and qualifications, and

16

so provides a finer granularity than is possible using only scalar dimensions (Rissland,
1986) or subsets of requirements (Herlihy & Wing, 1991).

The requirements transformation method also includes relations used to derive
related requirements, which is a contribution to requirements acquisition and definition
because the relations allow a program to suggest new requirements. These relations are an
adaptation of work in goal relations in planning (Carbonell, 1981; Wilensky, 1983) to
requirements engineering.

In defining the method for finding general scenarios described in this dissertation, I
have extended Anderson's work on OPIE (Anderson & Farley, 1988, 1990). The method I
define uses a kind of general plan that allows a program to describe partial satisfaction of
requirements and satisfaction of stronger requirements. GIRAFFE's planner (a modified
version of OPIE) can find more general plans and more specific plans that relate to a given
planning problem. The planner can work with partially specified initial states and a domain
model to find plans when no plan is possible for the original initial state. The planner also

finds muitiple paths.
verview

In the next chapter I describe GIRAFFE's representation for requirements,
specifications and scenarios and give an overview of the process by which GIRAFFE
transforms requirements. I compare GIRAFFE to other requirements engineering
systems.

In Chapter ITI I define the IS-STRONGER-THAN relation which GIRAFFE uses
to compare requirements. I also describe relations that GIRAFFE uses to derive new
requirements. I compare GIRAFFE's analysis of requirements to other work that deals
with stronger and weaker goals and with other other work that deals with deriving new

requirements.

17

1 describe the transformations and rating functions that make up GIRAFFE's
knowledge base in Chapter IV. I show how the knowledge base incorporates the IS-
STRONGER-THAN relation defined in Chapter III and how it is used in the process
described in Chapter II.

In Chapter V I describe GIRAFFE's method for finding scenarios. GIRAFFE uses
a modified form of OPIE (Anderson, 1993) that can find general scenarios. I describe the
general scenarios and why they are important for requirements generation. I compare
GIRAFFE's method of finding scenarios to the methods used by other programs.

In Chapter V1 I evaluate GIRAFFE's performance in the domain of on-line
registration. I summarize GIRAFFE's derivation of requirements for three different
artifacts and summarize comments on GIRAFFE given by an analyst and a client. I also
discuss GIRAFFE's ability to analyze requirements in other domains. I indicate which
transformations and rating functions in GIRAFFE's knowledge base are domain-dependent
and the degree to which they are domain-dependent.

In the concluding chapter I summarize GIRAFFE's contributions and discuss future
work. Future work includes additional methods of finding scenarios, automated support

for building the domain model, and textual descriptions of scenarios.

18

CHAPTER I

GIRAFFE'S MODEL AND PROCESS

Introduction

GIRAFFE improves requirements engineering by supporting intertwining and reuse
and by evaluating specifications in terms of partial satisfaction of requirements. In this
chapter I give an overview of how GIRAFFE provides these improvements. First I
describe the representation that GIRAFFE uses, and then the process by which it
transforms requirements. Finally I compare GIRAFFE to other requirements engineering

systems to show how it realizes advantages that other systems do not.

Representation

GIRAFFE's representations of requirements and specifications are important
because the program's output is stated as changes in requirements and its input is stated as
changes in the specification. GIRAFFE's representation of scenarios is important because
scenarios are the element of GIRAFFE's model that allows it to relate specifications to
requirements.

Actions and conditions are common elements of GIRAFFE's representation of
requirements, specifications, and scenarios. Specifications are composed of action types
called capabilities, and scenarios are sequences of action instances. Conditions are used in
defining requirements and scenarios.

In this section I define the elements of GIRAFFE's model: requirements,

specifications, scenarios, capabilities and actions, and conditions. For each element of

19

GIRAFFE's model I give an informal and formal definition. The definitions in this section
are also in the glossary in Appendix A.

I begin by defining requirements. As part of the definition of requirements, I define
transitions and qualifications, two important components of requirements. Next I define

specifications in terms of capabilities and capability sets, and finally I define scenarios.
Representation of Requirements

GIRAFFE represents requirements as transitions from an initial state to a final state
with qualifications. GIRAFFE's representation for requirements is similar to the one used
by OPIE (Anderson & Durney, 1993) except that GIRAFFE's representation also includes
qualifications such as path constraints. A path is a sequence of actions and intermediate
states that show how a transition can occur, and path constraints state what actions and
intermediate conditions can occur in that sequence. Figure 5 shows the initial state, final
state and path constraint for a requirement that a student should be able to find out her class

schedule without going to the registrar's office.

Initial State Path Constraints Final State

-

There is no condition:
‘Abigail is in the
registrar's office.’

f' Abigail doesn't know her i
.,j schedule.

LS

FIGURE 5. A transition that represents an achievement requirement called <find out
schedule>.

20

Formally, a requirement is a tuple <name, type, O, trans, Q, A, Related>, where
name and type are symbols and O is a set of object definitions. An object definition is a
pair <obj_type, obj_name>, where obj_type and obj_name are symbols. Obj_type is a
symbol representing a type defined in an object-type hierarchy.

In the requirement tuple, trans is a state transition, Q is a set of qualifications, and A
is a set of attributes. Related is a set of symbols, each representing the name of a related
requirement. When GIRAFFE derives new requirements it keeps track of the relations
between a parent requirement and the children requirements derived from it. In Chapters
I and IV I describe GIRAFFE's methods for deriving requirements and how relations
between derived requirements affect other requirement relations.

A transition is a tuple<IC, PC, FC, Scenarios>, where IC and FC are sets of
conditions, PC is a set of path constraints, and Scenarios is a set of scenarios. Transitions
are a useful representation for requirements because GIRAFFE can use them to determine
requirement satisfaction. If there is a scenario, or sequence of actions, showing how the
transition can occur, then an achievement requirement is satisfied. If there is no scenario
showing how a final state can occur, given the initial state, then a safety requirernent is
satisfied.

The initial state and final state list the conditions that define a given transition. A
condition is a pair <relation, objects> where relation is a symbol and objects is a list of
symbols representing the objects that play roles in the relationship. Conditions are
relations that hold between objects at a certain time. For example, the initial condition in
Figure 5 represents a relation between a student, Abigail, and some information. State
descriptions list only the relevant conditions. Other conditions will also be true but they are
not relevant for determining whether or not the transition has occurred.

Path constraints are statements about the actions and intermediate conditions that

occur during execution of the transition. For example, the transition in Figure 5 has a path

21

constraint that Abigail is not at the registrar's office. Path constraints can also refer to the
number of paths from the initial state to the final state, and they can refer to the duration of

one or more paths.

Transition
Initial State Path Constraints Final State

O - O

Conditions Constraints on Conditions Conditions
Constraints on Actions

Qualifications

initial conditions | constraints on actions | complex
Type

Achievement | Safety | Repair | Support | Obstruction
Attributes

Importance

Duration

Likelihood

Effectiveness
Related Requirements

pointers to parent or pointers to children

FIGURE 6. Summary of GIRAFFE's representation of requirements.

Requirements can have attributes including importance, duration, likelihood, and
effectiveness. An attribute is a pair <attr-name, attr-value>, where attr-name is a symbol,
and artr-value is a number or a symbol. GIRAFFE uses relative or qualitative values for
attribute values rather than absolute numerical values. All of the attributes except
importance are derived from corresponding attributes of scenarios associated with the
requirement. Such attributes can be broken down into minimurn, average and maximum

vajues. Some attributes for scenarios are derived from attributes of the actions in the

22

scenario. For example, the duration of a scenario is the sum of the duration attributes of
actions.

Figure 6 summarizes GIRAFFE's representation of requirements. In the next
section I explain the types of requirements shown in Figure 6. Then I define qualifications
and describe how the conditions and constraints in Figure 6 can be considered definitions

or qualifications.

Types of Requirements

There are two general types of requirements in GIRAFFE: achievement
requirements and safety requirements. Achievement requirements are transitions that the
client wants the artifact to support or allow, and safety requirements are transitions that the
client wants the artifact to disable or discourage. The transition in Figure 5 represents an
achievement requirement while the transition in Figure 7 represents a safety requirement.
Other types of requirements are repair requirements, support requirements and obstruction

requirements.

Initial State Path Constraints Final State

FIGURE 7. A transition that represents a safety requirement called <schedule privacy>.

23

Repair requirements are similar to achievement requirements in that they show
achievement of a desired state. They differ in that their initial conditions are not desirable,
whereas the initial conditions of achievement requirements can themselves represent a
desired state. An example of a repair requirement is that if an intruder knows a student's
password there is a way to reach a state where the intruder doesn't know the student's
password. The initial state includes an undesired condition, namely that a password is not
secure.

A support requirement is a type of achievement requirement that derives its value
from the value of some other achievement requirement. For example, if it is only possible
for a student to find out her schedule if she knows her password then a support
requirement could be that it is possible for a student to find out her password. If <find out
schedule> had no value then the support requirement <find out password> would also have
no value,

Obstruction requirements also derive their value from another requirement, but from
safety requirements rather than achievement requirements. For instance, suppose that
<schedule privacy> can be violated in a certain situation if an intruder knows a student's
schedule. Then <password privacy> is an cbstruction requirement because it shows a way
of preventing a safety violation. Just as support requirements are a subset of achievement
requirements, obstruction requirements are a subset of safety requirements.

The type of a requirement is important in determining satisfaction of the
requirement. An achievement requirement is satisfied if there is at least one scenario
showing a transition from the initial state to the final state. A safety requirement is satisfied
if there are no scenarios from the initial state to the final state.

The type of requirement is also important in deriving new requirements. A support

requirement can be derived from an achievement requirement but not from a repair

24

requirement. Likewise, repair requirements are derived from safety requirements and not

achievement requirements. Chapters IIT and IV discuss derivation of related requirements.

Qualifications

Qualifications represent assumptions that must hold for a requirement to be
satisfied. For achievermnent requirements, qualifications can be assumptions that some
conditions must be true in the initial state or that some action must or must not occur in
order for a transition to occur. For safety requirements, qualifications can be assumptions
that some initial conditions must not be true, or that some action must or must not occur in
order to prevent a violation from occurring.

Figure 8 shows a requirement for an artifact that includes an on-line advisor. The
basic requirement is that students can get advice from the artifact, and the figure shows
examples of how the initial state and the path can be qualified. Line 1 is a qualification of
the initial state; it describes a condition that must hold for the transition to execute. Line 2
is a path constraint; if a specified action occurs (the student forgets her password) then the
transition cannot execute. While it is possible to qualify the final state of a transition in
addition to the initial state and the path, GIRAFFE does not use qualifications on the final

state.

A student can get advice from the artifact
1 if the network is up

[has_init (has_access_to (online_reg reg_db)]

2 unless she forgets her password
[does_not_have_action forget_password]

FIGURE 8. Two qualifications for a requirement. A formal statement of each
qualification, in brackets, follows each informal statement.

25

Some qualifications can be stated in terms of responsibilities (Feather 1987; Fickas
and Helm 1991): "no student can find out another student's password unless a student
doesn't fulfill her responsibility and tells her password."

The formal definition of qualifications in GIRAFFE is as follows:

Definition 1

A gqualification, g, is defined as follows:

q = Gprim | Gcomplex

Gprim = qinit | Qaction

Ginit 2= <q_type, condition>, where q_type is the symbol has_init.

Gaction = <q_type, action_type_name, agent_type_name>> |

<q_type, action_type_name> where q_type is one of the symbols
has_action, does_not_have_action, or env_action.

Gcomplex '= Geomplex V qterm | Grerm

Gterm = Gterm » Gprim | Gprim

Action_type_name, and agent_type_name are symbols. Q

Qualifications of the form ggcrion represent path constraints added to weaken a
requirement. Qualifications of the form g;p;, represent assumptions about the initial state of
the transition. Logical expressions made up of path constraints and initial conditions make
up qualifications of the form gcomptex.

A condition in the initial state of a transition can be part of the definition or it can be
a qualification. Definitions describe an interesting transition and qualifications describe the
situations in which a transition can occur. For example, if a requirement is that a student
should be able to drop a class, one condition in the initial state is that the student has a class
in her schedule. If that condition is removed from the initial state the transition changes and

is no longer of interest.

26

Conditions that define a transition instead of qualifying it are especially important
for repair requirements. For example, a repair requirement might state that if a student's
address is incorrect in the database there must be a way to correct it. An initial condition in
that requirement is that the student's information is incorrect. This condition defines the
transition rather than making it weaker as a qualification would.

Another condition that might be in the initial state of the <drop class> requirement is
that the student has phone access. Whereas it makes no sense to drop a class if the student
doesn't have it in her schedule, it does make sense to drop a class without having phone
access.

The distinction between definitions and qualifications is important because
GIRAFFE will transform qualifications but not definitions. A condition or constraint that
is a definition might be a qualification in another requirement. The client can state that
conditions or constraints are definitional. In some cases GIRAFFE infers that a condition

is definitional, such as in a repair requirement.

Representation of a Specification

GIRAFFE represents a specification as sets of capabilities. Each capability
represents an action that some agent can perform. In this section I describe capabilities and

the various capability sets that GIRAFFE uses.

Capabilities

GIRAFFE represents a capability as a means of changing the conditions that hold in
a situation. Figure 9 shows an example of a capability called {phone drop class}. If that
capability is part of an artifact, and an agent uses the capability to perform an action, then

the changes in conditions listed in the figure will occur.

27

Definition 2
A capability is a taple <name, agent, otyps,consumed, used, produced, Super,
Sub> where name is a symbol, agent is a symbol representing an object type,
otyps is a list of symbols representing object types, and consumed, used, and
produced are sets of conditions. Super and Subs are sets of symbols, where
each symbol represents an action type, and are part of a hierarchy of action

types. 0

Some conditions, such as the condition that a certain class is in a certain schedule,
will be consumed when an agent uses a capability to perform an action. Consumed
conditions are required to hold before the action occurs and do not hold after the action
occurs. Used conditions are required to hold before the action occurs. They still hold after
the action occurs. The condition that a certain program can do phone I/O is used during
execution of {phone drop class}. Produced conditions hold after the action occurs. The
condition that a seat is available for a certain class holds after { phone drop class} occurs.

Each condition is a relationship among objects. The objects in Figure 9 are
represented as instances of object types. For instance, personl is a certain instance of
object type person. Object types are important for GIRAFFE because it uses a type
hierarchy to reason about changes in generality of requirements.

Each capability represents an action that a particular kind of agent can perform. For
the capability in Figure 9, the agent is programl. The type of agent is important because
some capabilities represent actions that are controlled by an agent that is part of the artifact,
and some capabilities represent actions that are controlled by an agent in the environment.
The art_agent attribute in Figure 9 indicates that this capability represents actions that

are controlled by the artifact.

28

name: phone drop class

description: program drops class for a student

objects: programl personl person2 terml classl seatl
sched_infol databasel

consumed conditions:
person? requested a drop for classl in terml
classl is in sched_infol

used conditions:

programl can do phone I/O

personZ has a phone connection to programl

sched_infol is in databasel

sched_infol is the schedule information for person2
for terml

programl has access to databasel

produced conditions:
seatl is available for classl for terml
classl is not in sched_infol

attributes: art_agent

(def_etyp "phone drop class"

:d "program drops class for a student®

:0 '{programl personl personz terml classl
seatl sched_infol databasel)

'{ {(ph_requested_drop {(person2 classl terml)})
{class_in_sched (classl sched_infol)))

'{ (can_do_phone_IO (programl}))
{has_phone_connection (personl person2 programl})
{(has_schedule_info (person2 terml sched_infol))
{db_has_s_in (databasel sched_infol})
(has_access_to {programl databasel)} }

:+ '{(seat_available (seatl classl terml)})
{not_class_in_sched (classl sched_infol)))
:at ' ((category :val art_agent})

)

FIGURE 9. An operator that represents a capability of an artifact. An informal description

is above the line, and the formal definition used by GIRAFFE is below the line.

29

The formal representation of capabilities, exemplified in the bottom part of Figure
9, enables a program such as a planner to reason about what scenarios can occur if a

particular artifact is in a particular environment.
Capability Sets

GIRAFFE uses three kinds of capability sets: one representing the environment of
the artifact, another representing the current functionality of the artifact, and a third
representing potential functionality of the artifact. When GIRAFFE calls the planner to find
scenarios, it gives the environment capability set and the artifact capability set to the planner

as the planner's operator set (Anderson & Fickas, 1989).

ARTIFACT ENVIRONMENT POTENTIAL
get phone connection get phone access get terminal connection
phone request schedule go to registrar's office terminal req. schedule
phone give schedule terminal give schedule
phone drop class terminal drop class

FIGURE 10. Examples of the three capability sets used by GIRAFFE.

Figure 10 shows the three kinds of capability sets with examples of capabilities. In
the figure, the artifact has the capability to allow people to get phone connections and
request schedule listings. The artifact also has the capability to give schedules over the
phone and to drop classes when requested by phone. Note that some capabilities in the
artifact set represent actions performed by agents in the environment (e.g., students) if
those actions would not be possible without the artifact. Actions that are performed by

agents in the environment and that would be possible without the artifact are represented by

30

capabilities in the environment capability set. Appendix B gives an example of an
environment capability set.

Actions that could be made possible by the artifact, but aren't in the current
specification, are represented by capabilities in the potential capability set. For example, in
Figure 10 the program could process requests to drop classes entered at a terminal, but that
capability is not part of the currently specified artifact. Appendix C gives examples of
capabilities that appear in the artifact capability set and the potential capability set.

During requirements analysis, the client moves capabilities from the potential
capability set to the artifact capability set, or vice versa, and GIRAFFE analyzes the change
in requirement satisfaction caused by the change. A later section of this chapter describes

GIRAFFE's process for analyzing such changes.
Representation of Scenarios

Scenarios are important because they allow GIRAFFE to relate specifications to
requirements. They describe how transitions can occur given the specification of an artifact
and a description of its environment.

A scenario is a partially-ordered set of actions. An action is a tuple <capability,
agent, objects,consumed, used, produced> where capability is a symbol representing the
capability required for the action, agent is an object definition, objects is a list of object
definitions, and consumed, used, and produced are sets of conditions.

A scenario shows how a given final state can be achieved from a given initial state.
Scenarios include causal links that show which conditions are required by an action
instance and which conditions an action instance produces. Each action includes references
to objects that affect or are affected by the action, including the agent of the action.

Figure 11 shows an example of a scenario. The scenario has three actions, each of

which requires conditions and produces conditions, although not all of the conditions are

transition shown in Figure 5 could occur.

INITIAL STATE
P iin

Abigail has phone access.

Abigail's schedule is in the reqgistration
program's database.

-

Abigail gets a phone
connection.

Ab

shown in the figure. The actions in the scenario are instances of capabilities from the

artifact capability set or the environment capability set. This scenario shows how the

Abigall has a phone connection to the

registration program.

2

Abigail requests a
schedule listing by
phone.

The registration
program gives Abigall's
schedule by phone.

.

Abigail knows her schedule.

KEY

D = action

1 = condition

. = state

points from condition
to action that requires
that condition

...D points from action to

condition produced
by that action

e

FINAL STATE

In Chapter V I describe the representation of scenarios in more detail and explain

FIGURE 11. A scenario. Not all conditions are shown, and one intermediate state is not
shown. The actions and conditions are described with informal text rather than the formal
descriptions that GIRAFFE uses.

GIRAFFE's method for finding scenarios. In the next section I give an overview of the

31

32

process that GIRAFFE uses to transform requirements and describe the role that scenarios

play in that process.

specification
change

31 GATHER SCENAHIOS 4= | FUNCTIONAL
r-'.%———-ﬂ——---—--;-_ ————————%7 | | SPECIFICATION

MODEL OF
ARTIFACT'S
ENVIRONMENT
FIND

;1 FIEQUIREMENTS
| 2 TRANSFORMATIONS |

| _f—_‘ ~ ||| REQUIREMENTS ||

appllcable L%Tgsgﬂ-
transformatlons -

EQIHMENTS
| RELATIONS |

SELECT A

TRANSFORMATION

requirements
change

FIGURE 12. The process that GIRAFFE uses to transform requirements.

The Process

Figure 12 shows GIRAFFE's process for changing requirements. GIRAFFE takes
a specification change as input. In the first step of the process, GIRAFFE uses the

specification change, along with the rest of the specification, the model of the artifact's

33

environment and the requirements, to find relevant scenarios showing how agents in the
environment interact with the artifact. GIRAFFE uses the requirements to specify initial
and final states for the planner, OPIE, to use in finding scenarios. GIRAFFE uses the
specification and the model of the environment to define the capabilities or actions that can
be used in the scenarios.

Suppose that a specification change is to add an action {phone list schedule}. In
other words, students can now call the on-line registration system to find out their
schedule. GIRAFFE finds various scenarios where students find out their schedules using
the new action. Those scenarios are relevant for the requirement <find out schedule>. It
also finds scenarios that are relevant to other requirements, such as scenarios where
intruders find out students' schedules using the new capability.

In the second step of the process, GIRAFFE uses the scenarios found in Step 1 to
find relevant transformations. It uses applicability conditions of the transformations to
perform this step. An example of an applicability condition is new scenarios. Chapter IV
discusses applicability conditions of transformations.

In the <find out schedule> example, GIRAFFE finds a transformation that changes
a path constraint from one where a student must go to the registrar's office to one where the
student can go to the registrar's office or get a phone connection. It also finds a
transformation for the initial state. In the same step, GIRAFFE finds transformations to
other requirements, such as the safety requirement, <schedule privacy>.

In Step 3, GIRAFEFE lists all of the transformations found with their ratings and lets
the client select the transformations to apply. The ratings are based on GIRAFFE's
knowledge of requirements relations. They indicate the program's conclusions about the
strongest requirements satisfied by the current specification (after the change). In the <find

out schedule> example, GIRAFFE's rating functions tell it that a requirement where there

34

is more than one way for a student to find out her schedule is preferable to a requirement
where there is only one way, all else being equal.

The two main knowledge components of this process are the requirements
transformation library and the rating functions. The transformation library describes the
types of changes that are possible by stating the effects of the transformations. It also
specifies applicability conditions for each transformation. In Chapter IV I describe in more
detail the transformation library and the rating functions. Appendix C gives examples from
GIRAFFE's output which show application of the transformation rules and rating functions

in GIRAFFE's knowledge base.

Related Work

In this section I describe work in requirements engineering that relates to the
GIRAFFE system. The basic problem of requirements engineering is to create a
specification that satisfies the client's requirements. The usual approach is to use the
requirements to specify the artifact and then reconcile the specification to the requirements
by changing the specification as necessary. In this section I discuss several programs that
support this approach, by finding differences between the specification and the
requirements, changing the specification, or both.

Table 1 shows the systems that I discuss in this section. As I describe each system,
I discuss the system's role in the requirements engineering process and its limitations in
addressing intertwining. To facilitate comparison with GIRAFFE, I give examples from
the domain of on-line registration for each system. The on-line registration examples are
based on examples given by other authors but are my interpretation and are not

authoritative.

35

Skate

Skate (Fickas & Nagarajan, 1988) is a program that criticizes specifications. Skate
takes as input a set of policies and a specification. The policies are determined by the user
marking each policy in Skate's model as important, unimportant or unknown. The
specification is an extended form of petri net. Skate's critique of the specification has two
parts: for each policy it tells whether the policy is supported or obstructed by specification
components, and it shows a scenario that illustrates to the user how the support or
obstruction takes place.

In the domain of on-line registration, Skate might have the following policies:

. Students know what classes they are registered for.

. Maintain the privacy of students’ schedules.

Given a specification that includes an action for students to list classes (without
giving a password) Skate indicates that the specification supports the first policy but not the
second. It shows a simulation scenario where one student finds out another student's
schedule. Skate also shows a list of components that support the policy. For example, it
might list an action where a student gives a password to list her schedule.

Suppose the person using Skate replaces the list class action with the version that
requires a password. Whether or not the new specification supports or obstructs the
policies is less clear now. A student can find out her schedule but not as easily as she
could in the old specification because she must take the time to enter the password and she
might forget it. A student's schedule is more difficult to access but if a student tells her
password or forgets to log out from a terminal someone else can still find out her schedule.
In Skate's model, a component cannot both obstruct and support a single policy, so Skate

cannot include this kind of information in its critiques.

TABLE 1. Systems that support requirements engineering

36

statement of requirements

Name Input Qutput
GIRAFFE Specification = operator set | Requirements = transitions
Specification change = (including environmental
operator added or deleted | constraints)
Skate Requirements = Critique =
! nonoperational policies supported/obstructed
| Specification = extended | policies, simutation
petri net scenarios
OPIE Requirements = transitions | Critique,
Specification = operator set
ISAT Requirements = formal, Critique,

concrete scenarios Specification = rule-based
model created by ISAT's
user

SBRE Issues Critique,

Simulation control Specification = rule-based
model created by SBRE's
user

. ARIES Specification changes= Specification = formal
, application of evolution model of artifact
g transformations
Requirements = validation
questions
RA Requirements = informal Requirements = formal

statement of policies,

Specification = "functional
requirements”

Skate finds differences between a specification and policies (requirements) so the

client could use Skate's critiques to change policies. For instance, the client could change

the schedule privacy policy to be unimportant. However, such a change is more drastic

than necessary and Skate does not provide the information for less drastic changes to the

requirements. For example, it does not point out a weaker requirement where no one finds

out a student's schedule unless the student tells her password. Since Skate gives all-or-

37

nothing critiques instead of stating stronger or weaker requirements, it does not provide the

information necessary to support intertwining in requirements engineering.

A desired transition:

Initial State Final State

Abigail doesn't know her |
| schedules.

4
=1

——

i Abigail knows her :
{ schedule. 1)

A prohibited transition:

Initial State Final State

i

| Basil doesn't know '
| | Abigail's schedule, i

L

‘ Basil knows Abigall's
1 schedule.

¥

FIGURE 13. Two requirements stated as prohibited or desired transitions.

OPIE

OPIE (Anderson, 1993) constructs specifications using a process called deficiency-

driven specification engineering. In this process, OPIE first acts as a critic to find

problems or deficiencies in a specification. Then OPIE proposes changes that address the

deficiencies that it has found.

38

OPIE is given requirements in the form of transitions that should or should not
occur in the artifact and its environment. A transition is defined by describing its initial and
final states. Figure 13 shows two transitions that might be stated as requirements in the on-
line registration domain. OPIE uses Al planning techniques to determine whether or not
those transitions can occur.

If a desired transition cannot occur there is an achievement deficiency which OPIE
repairs by adding capabilities (planning operators) to the specification. If the desired
transition in Figure 13 could not occur then OPIE would add the capability for listing
schedules to the functional specification. If a prohibited transition can occur there is a
deficiency called a safety violation. Currently repairs of safety violations are not automated
in OPIE.

OPIE does not rely on predefined cases as Skate does, and it can automatically find
repairs for achievement deficiencies. However, like Skate, OPIE's critiques are all-or-
nothing. OPIE has no way of representing partial satisfaction of a requirement.

Suppose that there are two ways for Basil to find out Abigail's schedule: Basil logs
in as Abigail (no password required) or Abigail forgets to log out. If OPIE changes the
specification so that passwords are required, one scenario is disabled (where Basil logs in
as Abigail) but the other remains (where Abigail forgets to log out) so there is still a
deficiency. A critiqgue more complete than OPIE's would report an improvement even

though one problem still remains.

SBRE

Scenario-Based Requirements Engineering (SBRE) (Kaufman, Thebaut, &
Interrante, 1989) produces a rule-based system that models the proposed artifact. An
analyst uses SBRE to find and resolve issues in stating requirements for the artifact. Since

the requirements are represented by a rule-based model, they correspond more to the

39

specifications used by GIRAFFE, Skate and OPIE than they do to the requirements used
by those systems and I will refer to the rule-based model as a specification.

SBRE provides automated support for requirements engineering with tools that help
the analyst track issues and find scenarios. The process is as follows: The analyst acquires
“provisional requirements" during an initial analysis and uses them to create the rule-based
model. Next the analyst, with the help of a program called Marcel, finds scenarios which
the analyst presents to the client as a means of validating the requirements. The analyst can
use Marcel to record issues and positions that arise during validation. In addition, she can
link scenarios to positions as a way of representing the justification for a position.

The SBRE process iterates between specification definition to resolve issues and
exploration of scenarios to raise new issues. The program does not support intertwining
by automatically raising issues when the user changes the rule-based model, nor does the
program transform issues in the way that GIRAFFE weakens and strengthens
requirements. Furthermore, issues are informally represented and are not a systematic

statement of requirements.
ISAT

Hall (1992) proposed a project called ISAT (Interactive Specification Acquisition
Tools) and later (Hall, 1993) describes implementation of one part of the system. In
addition to supporting acquisition and validation of a specification, the full ISAT system
will also support implementation of a specification and testing of the artifact. Since the
validation support feature of ISAT relates most directly to other work described in this
section, and since it is more fully described in (Hail, 1993), I will discuss only that part of
ISAT here.

40

ISAT is intended for use with reactive systems. According to Hall, a reactive
system is one that responds to external stimuli with relatively few internal state changes
between a stimulus and an observable change.

In ISAT, requirements are formal, concrete scenarios created by the client. A
specification is a rule-based model of the artifact created by the analyst (software
developer). To validate requirements, ISAT simulates the scenario (which is a
requirement) with its rule-based model of the artifact and compares the result of the
simulation to the observable result stated in the requirement. ISAT also checks for scenario
redundancy, describes coverage gaps, and suggests gap-filling scenarios.

ISAT's approach to representing requirements differs from GIRAFFE's in that an
ISAT user states requirements as scenarios rather than transitions. In validation, ISAT
determines whether the stated actions lead to a desired result (observable condition). In
contrast, GIRAFFE determines whether any sequence of actions leads to a desired result.
Thus in ISAT there is an assumption that the client already knows what actions are relevant
to achieve a certain result. For example, a client can state that if a student calls in and
requests a schedule listing that she will hear a schedule listing. However, there is no way
to state that there has to be some way for a student to find out her schedule.

For the same reason, safety requirements are difficuit to state in ISAT's requirement
language. The client can only specify that a certain state should not occur at a certain point
in a scenario. There is no mechanism for requiring a condition to not occur at all. Thus the
<schedule privacy> requirement cannot be stated in ISAT's requirement language.

Although ISAT can suggest changes to initial states of requirements based on
coverage analysis, the changes still assume the same sequence of actions. Thus there is
only a limited opportunity to change requirements, and the changes are not based on

alternative paths. There is no way to transform a requirement when a specification change

41

makes a new path for a transition possible, since requirements are based on a given

sequence of actions.
ARIES

ARIES (Johnson & Feather, 1991; Harris, Johnson, Benner, & Feather, 1992) is a
system that supports requirement analysis and specification development. One of the main
features of ARIES is its library of evolution transformations. The transformations allow
the analyst to explore the possible space because transformations can be undone and
replayed. Furthermore, the transformations automate many low-level editing tasks and
thus reduce the chance of low-level errors.

Another important feature of ARIES is its ability to represent requirements along
several semantic dimensions. The dimensions are modular organization, entity-relationship
model, information flow, control flow and state transition descriptions. The dimensions
are useful for characterizing the effects of the transformations in the system's library and
for allowing the system to describe requirements to the user in various notations.

ARIES criticizes specifications using constraint propagation mechanisms and
preconditions of transformations. The preconditions of transformations help prevent the
analyst from applying transformations when they are not appropriate, and constraint
propagation mechanisms allow more thorough consistency checks.

The ARIES Simulation Component {ASC) helps the analyst find problems in the
specification by simulating execution of the artifact. ASC uses simulation to answer
validation questions. ASC has the capability of finding the relevant parts of a specification
and so can simulate the artifact's behavior with respect to the validation question when
other parts of the specification are incomplete. ASC also uses approximations given by the

analyst to make simuiation possible when the specification is incomplete.

42

In the domain of on-line registration, a validation question might be "Can a student
find out her schedule?" In other words, is <find out schedule>> satisfied? ASC uses
simulation to find traces of the system to answer the question. It responds "always", "at
least once" or "never" depending on how many traces there are. Unlike OPIE, ASC bases
its answer on more than one trace (or more than one plan, in OPIE's terminology).

ASC does not address the same problem that GIRAFFE does because it does not
suggest changes to requirements. The purpose of ASC is to answer validation questions in
the face of an incomplete or inconsistent specification, whereas the purpose of GIRAFFE is
to find the strongest requirement satisfied by the specification. ASC takes a requirement
(validation question) and a set of assumptions as given and reformulates the specification to
find the answer, whereas GIRAFFE takes the specification as given and makes changes to
the requirement. Instead of using a given set of assumptions to see whether a requirement
is satisfied, as ASC does, GIRAFFE finds the weakest set of assumptions that allow the

requirement to be satisfied.

The Requirements Apprentice

The Requirements Apprentice (RA) is an instantiation of an acquisition program
called the Listener developed by Reubenstein (1990). The purpose of the Listener in
general and the RA in particular is to use domain knowledge and inference to construct a
formal statement from an informal one. The domain knowledge is represented as a cliche
library, which the Listener uses to disambiguate, make consistent, and complete a given
statement (when possible).

The RA accepts an informal description of a software system and produces a formal
description. The formal description includes three parts: needs, the environment and the
system. The "needs" section of the RA's output most closely corresponds to the notion of

requirements vsed in this paper.

43

The schedule privacy requirement discussed in previous examples would be
represented as a privacy policy in the needs section. The RA uses cliches to build
representations of privacy policies but its ability to reason about them is limited to acquiring
information to fill three roles: a restricted action (list schedule), a restricted group (students})
and an authorized group (staff of registrar's office).

Cliches in the RA's library can describe needs; in that sense the RA is capable of
suggesting policies. However, the emphasis is on formalizing needs stated by the RA's
user rather than on deriving requirements. It has no way of analyzing the degree to which a
functional specification satisfies a policy, and no way to transform a policy to make it
weaker or stronger. Since it cannot evaluate requirement satisfaction it has no way to

suggest requirements changes and support intertwining.
Discussion

In this section I discuss the differences between GIRAFFE and other systems in
representations, use of scenarios, ability to evaluate specification changes and ability to
support intertwining and reuse. The systems described in this chapter differ in the
representations they use for requirements and specifications. They especially differ in
representation of requirements. First I compare the systems' representation for
requirements and then their representation of specifications.

Because of the lack of standard terminology I sometimes use a different term for the
input or output of a system than the one used in papers describing that system. In
particular, papers on SBRE do not refer to its output as a specification, but since the system
model it produces is similar in many ways to the specifications produced by the other

systems I refer to it as a specification.

OPIE

Initial State Final State

GIRAFFE

Initial State

D = speacific action x = prohibited action or intermediate condition
D = abstract action o = intermediate condition

ISAT

Initial State (produced Actions and Observations
by Initialization Observations

Sequence)

O

D = gpacific action O = intarmediate condition

FIGURE 14. Comparison of the representations that OPIE, GIRAFFE and ISAT use for
requirements. All three use initial and final states. OPIE has no way of constraining
intermediate actions and conditions, and ISAT requires specification of all actions.
GIRAFFE represents and suggests constraints on actions and conditions but they are not
required. GIRAFFE can also represent constraints on abstract actions which ISAT cannot.

Representation of Requirements

OPLE, ISAT and GIRAFFE have formal representations for requirements (see
Figure 14). OPIE uses transitions with specified initial and final states. ISAT uses
scenarios that specify initial and final states but also specify actions and intermediate states.

GIRAFEFE falls in between. Like OPIE, GIRAFFE uses transitions from initial state to

45

final state as the basic form of requirements. However, it also includes information about
intermediate actions and states, represented as path constraints.

Whereas ISAT uses complete scenarios, including descriptions of actions,
GIRAFFE uses transitions that sometimes include descriptions of actions and intermediate
states as path constraints but also allows descriptions of abstract actions. GIRAFFE does
not use only complete scenarios as ISAT does. Also, ISAT has no notion that corresponds
to safety requirements in OPIE and GIRAFFE. Because GIRAFFE's representation can
include descriptions of intermediate actions but does not require them, and because it
represents safety requirements, GIRAFFE's representation is less restrictive than ISAT's.

Skate uses policies which are uninterpreted text but have links to various
specification components. It is difficult to compare representations of requirements for the
RA, SBRE and ARIES because they have no formal requirements. ARIES uses text and
informal diagram for requirerments, although one component of ARIES, ASC, uses a

formal representation for requirements that are stated as validation questions.

Representation of Specifications

The RA is the only system discussed in this chapter that does not produce (or use)
an executable model. OPIE and GIRAFFE use the same representation for functional
specifications but use them in different ways. OPIE produces a specification whereas
GIRAFFE takes a specification (or a specification change) as input. Skate analyzes
specifications that are represented as extended petri nets, which is similar to OPIE and
GIRAFFE's representation. SBRE and ISAT produce rule-based systems that model the
artifact. ARIES produces a model in a representation that subsumes rule-based systems
because it can include preconditions and postconditions but can also include additional

information such as invariants.

46

The representations for specifications are similar in many respects, but the
representations for requirements are quite different. The similarity in specifications is
reflected in the fact that almost all of the systems use scenarios to analyze requirements and
specifications. I discuss this use of scenarios in the next section. The difference in
requirements is reflected in the fact that the systems' abilities to evaluate specifications and
change requirements varies and their ability to change requirements is very limited in most

cases.

Role of Scenarios

The role of scenarios in the different systems varies widely. In Skate, scenarios are
used to describe situations to the client and justify Skate's evaluation of whether or not a
specification supports or obstructs a policy. OPIE uses scenarios in a similar way but it
also uses scenarios to determine what is and isn't possible, and SBRE's use of scenarios is
much like OPIE's. ISAT uses scenarios as requirements. ASC uses driving scenarios to
model] the environment and parts of the artifact that have not yet been specified.

Just as the different systems use scenarios in different ways, they also obtain them
from different sources. Some acquire them from a user; others use simulation and planning
techniques to find scenarios. In Chapter V I discuss GIRAFFE's method of finding

scenarios in detail and compare its method to methods used by other programs.
Evaluation

I categorize the analysis of specifications performed by the systems as consistency
checking, validation and evaluation. Consistency checking looks for inconsistencies within
a specification. Validation essentially asks the client "Is this what you meant?". Evaluation
tells how well a specification satisfies a requirement or says "This specification satisfies a

requirement better than that one."”

47

To evaluate specifications in terms of how well they satisfy requirements,
GIRAFEFE uses its ability to strengthen and weaken requirements. Skate and OPIE, not
having that capability, instead state whether or not a requirement is satisfied (or whether or
not a policy is supported, in Skate's case). ISAT can determine how many predicted
conditions are actually observed, but its requirement language is more restricted than
GIRAFFE's and consequently its ability to find the strongest satisfied requirement is not as
great.

The RA and ARIES check specifications for consistency, which is a different issue
than evaluating the degree to which a specification satisfies a particular requirement since it
is possible for a consistent specification to still not satisfy its requirements. ASC, which is
part of ARIES, helps with validation but does not have the notion of stronger or weaker
satisfaction of requirements. SBRE, like ASC, primarily analyzes the specification in

terms of validation.

Support for Intertwining and Reuse

For a system to support intertwining in requirements engineering it must be able to
change the requirements of the artifact. Similarly, a system that can change requirements is
better able to support reuse of specification components. Rather than requiring that
specification components exist for any set of requirements, a system can find components
for the specification and then see how much the requirements would have to change to
reuse the component.

When a component is added to a specification, GIRAFFE determines how much the
requirements must change. Thus it uses a knowledge base of specification components
which can be reused for any artifact in the same domain or in a domain that shares

specification components. There is no similar facility in SBRE. The user must determine

48

the consequences of each change, whether it is addition of a new rule or reuse of a rule
from a previous system.

Skate and OPIE both use component libraries that support reuse in specification.
The validation performed by Skate and OPIE can tell the client whether reusing a
specification component will satisfy requirements as they are stated. However, it does not
tell the client how well a requirement is satisfied or if it is partially satisfied. The client has
no way to choose among components that all satisfy a requirement, or to choose if there is
no component that satisfies a requirement.

Hall (1992} proposes capabilities for ISAT to determine the effects of model
changes on satisfaction of requirements (successful execution of scenarios), but since the
actions in ISAT’s requirements are given, this capability supports development of the
model (the specification) rather than changes to the requirements. In other words, ISAT's
requirements implicitly define a fixed set of actions which includes each action mentioned
in a scenario. That set of actions does not change as the specification develops, only the
description of the actions in the rule-based model of the system.

ARIES' transformations provide a way to explore the space of specifications
because they can be undone and reapplied. However, since requirements are stated
informally (text and diagrams) there is no way to transform the requirements. ARIES is
able to produce text that describes the artifact but not the requirements that the artifact
satisfies.

The RA is capable of changing requirements, but such changes are limited to filling
slots in cliches. It has no way of suggesting transformations that strengthen or weaken
requirements as GIRAFFE does. Likewise, ISAT can suggest “gap-filling" scenarios to
augment the scenarios entered by its client but cannot otherwise strengthen or weaken

requirements.

49

Summary

Because of intertwining and reuse, there are times when the requirements, and not
the specification, should be changed when the two do not agree. As summarized in Table
2, the other requirements engineering systems I have discussed do not provide the
information necessary to make those kinds of changes. Therefore, I have created the

GIRAFFE system to support intertwining in requirements engineering.

TABLE 2. Summary of the systems described in Chapter II

Name Analysis of Suggests Supports Intertwining
Specifications Requirements
Changes
Skate validation — —
OPIE validation — —
ISAT validation for completeness —
RA consistency for completeness —
SBRE validation — —
ARIES validation, to resolve —
consistency inconsistencies
GIRAFFE | evaluation in terms of | when specification yes
stronger or weaker satisfies stronger or
requirements weaker requirements

GIRAFFE addresses intertwining by suggesting requirements changes. In the next
three chapters I describe the requirements relations it uses, its knowledge base of

transformations and rating functions, and its method of finding scenarios.

50

CHAPTER III
REQUIREMENTS RELATIONS
Introduction

GIRAFFE's purpose is to support intertwining by finding the strongest set of
requirements that is satisfied by a specification. Having defined "requirements” and
“specification” in the previous chapter, I now define an "is-stronger-than" relation for
requirements that can be used to decide which is the "strongest” set of requirements. I also
define other relations between requirements that can be used to derive new requirements.
In the last section I compare the relations used in GIRAFFE to those used in other

software-engineering and Al research.

Definition of a Requirements Relation

In this section I define the IS-STRONGER-THAN relation between requirements.
GIRAFFE uses this relation to find the strongest set of requirements satisfied by a
specification change. I first define a relation between sets of requirements, called SET-
STRONGER-THAN.

Figure 15 defines the SET-STRONGER-THAN relation between sets of
requirements. If neither set is stronger than the other then the two sets are incomparable.
Two sets of requirements can be incomparable if neither is a subset of the other. They can
also be incomparable if S1 has a requirement that is stronger than the corresponding
requirement in S2 but has another requirement that is weaker than the corresponding

requirement in S2.

51

If S1 and S2 are sets of requirements then:
at. if 32 is a subset of S1 then S1 SET-STRONGER-THAN S2 .

a2. if every member of S1 I[IS-STRONGER-THAN or equivalent to a
corresponding member of S2 then S1 SET-STRONGER-THAN S2 .

FIGURE 15. Definition of SET-STRONGER-THAN relation between sets of
requirements.

The definition of IS-STRONGER-THAN for sets of requirements depends on a
definition of IS-STRONGER-THAN for individual requirements, which is given in
Figures 16 and 17. The definition for safety requirements is the same as the one for

achievement requirements except that R1 and R2 are reversed. Since the definitions are

similar, future references will be to a single figure, Figure 16, instead of to both figures.

For achievement requirements R1 and R2:

b1. R1 IS-STRONGER-THAN R2 if R1 has a higher (better) value
for at least one attribute and is stronger than or equivalent to R2 in other
respects.

b2. R1 IS-STRONGER-THAN R2 if the scenarios allowed by R2
are a subset of the scenarios allowed by R1 and is stronger than or
equivalent to R2 in other respects.

From the scenario-subset rule, derive:

b3. R1 IS-STRONGER-THAN R2 if R1 is equivalent to (or stronger
than) R2-in every respect except that R1 includes more general objects
than R2.

b4. R1 1IS-STRONGER-THAN R2 if R1 is equivalent to (or stronger
than) R2 in every respect except that the qualifications on R1 are a
subset of the qualifications on R2.

b5. R1 IS-STRONGER-THAN R2 if R1 is equivalent to (or stronger
than) R2 in every respect except that every qualification on R1 is weaker
than, or equivalent to, the corresponding qualification on R2.

FIGURE 16. Definition of IS-STRONGER-THAN for achievement requirements.

52

The basic assumption for the IS-STRONGER-THAN relationship between
requirements is that the client wants transitions described in achievement requirements to be
able to occur in as many situations as possible, and transitions described in safety

requirements to occur in as few situations as possible.

For safety requirements R1 and R2:

b1. R1 IS-STRONGER-THAN R2 if R2 has a higher value for at
least one attribute and R1 is stronger than or equivalent to R2 in other
respects.

b2. R1 IS-STRONGER-THAN R2 if the scenarios allowed by R1
are a subset of the scenarios allowed by R2, and R1 is stronger than or
equivalent to R2 in other respects.

From the scenario-subset rule, derive:

b3. R1 IS-STRONGER-THAN R2 if R1 is equivalent to (or stronger
than) R2 in every respect except that R2 includes more general objects
than R1.

b4. R1 IS-STRONGER-THAN R2 if R1 is equivalent to (or stronger
than) R2 in every respect except that the qualifications on R2 are a
subset of the qualifications on R1.

b5. R1 IS-STRONGER-THAN R2 if R1 is equivalent to (or stronger
than) R2 in every respect except that every qualification on R2 is weaker
than, or equivalent to, the corresponding qualification on R1.

FIGURE 17. Definition of IS-STRONGER-THAN for safety requirements.

Figure 18 shows a relation whose rules are not based on that assumption. This
relation can be used when requirements are incomparable with respect to IS-STRONGER-
THAN. However, it can also be misleading. Because these rules can be misleading, rather

than being inconclusive, I refer to them as heuristics.

33

R1 IS-H-STRONGER-THAN R2 if:

h1. There are more scenarios for R1 than for R2 (heuristic version
of scenario-subset rule).

h2. More actions are performed by motivated agents; artifact
agents are assumed to be motivated.

h3. Fewer agents are required for scenarios in R1 than in R2.

FIGURE 18. Definition of IS-H-STRONGER-THAN (is-heuristically-stronger-than) for
requirements.

In the remainder of this section I formally define the rules given in Figures 15-17.
First I define and discuss the rules for sets of requirements which are shown in Figure 15.
Next I examine the attribute value and scenario-subset rules, which are the basis for the IS-
STRONGER-THAN relation shown in Figure 16. Then I show how the object generality
(b3) and generality of qualifications (b4 and b5) rules can be derived from the scenario-
subset rule and state the reason why they are more useful than the general scenario-subset
rule. Finally I discuss some heuristics for deciding if one requirement is stronger than

another.

Requirement Sets

In this section I discuss how requirement sets might be weakened by removing
requirements and in later sections of this chapter I discuss situations where a client might
strengthen a set of requirements by adding new requirements which have been derived
from other requirements.

From Rule al one can conclude that removing a requirement weakens the set. The

formal definition of Rules al and a2 is:

54

Definition 3
Let SI and S2 be sets of requirements. There are two rules for concluding that
one set of requirements is stronger than another:
(al) If SI o §2 then SET-STRONGER-THAN(S1, 52).
(a2) If 3rl e S1,3r2 € §2, CORR(rl,r2) » IS-STRONGER-THAN(7!, r2)
A —(3r3 e S1,3r4 € S2, CORR(r3,r4)
A (IS-STRONGER-THAN(r3, r4) v INCOMPARABLE-REQS(r3, r4)))
then SET-STRONGER-THAN(SI, 52). Q

Two requirements, r/ and r2, correspond if they have the same name: If ri.name =
r2.name then CORR(r!, r2). Two requirements are incomparable if neither is conclusively
stronger than the other:

Definition 4

Let r and 2 be requirements.

If (MORE-SCENARIOS(r!,r2) A BETTER-ATTRIBUTE(r2, rl))

v (BETTER-ATTRIBUTE(r!, r2) A BETTER-ATTRIBUTE(r2, 1))

then INCOMPARABLE-REQS(r1, r2). Q

If a requirement cannot be satisfied, the client might simply abandon it, causing the
new requirements set to be a subset of the old one, and thus weaker by Rule al of
Definition 3. Abandoning a requirement is an all-or-nothing approach to transforming
requirements: for example, the client decides that it's impossible to keep schedules private
and drops <schedule privacy> completely. A tenet of GIRAFFE research is that
abandonment is the last resort (unless a requirement becomes inappropriate, as opposed to
infeasible).

A less extreme way to transform a requirement is to discount, or make less

important, the requirement. If importance is interpreted as development priority then in

55

effect the client says, "Do something about privacy if you have time" or "If you can, make
a way for students to find out their grades without getting a transcript”. This type of
transformation still weakens the set of requirements (by Rule a2 of Definition 3) because
importance is one attribute of requirements which affects the relationship between two
requirements. In the next section I discuss the role of attributes in the IS-STRONGER-
THAN relation between requirements.

Rule a2 (of Definition 3) relates the IS-STRONGER-THAN relation for sets of
requirements to the IS-STRONGER-THAN reiation for individual requirements. The
following sections describe the rules that define IS-STRONGER-THAN for individual

requirements.

The Attribute Rule

A requirement with a lesser (or less preferred) attribute value than another is
diminished with respect to that attribute and therefore weaker, as stated in the following
formal definition of the attribute rule (Rule b1):

Definition 5

Let 1 and r2 be achievement requirements.

If BETTER-ATTRIBUTE(r!, r2) A -BETTER-ATTRIBUTE(r2, rl) A

—MORE-SCENARIOS(r2, r1) A - INCOMPARABLE-SCENARIOS(rl, r2)

then IS-STRONGER-THAN(r !, r2). Q

Definition 6
Let r! and r2 be requirements.
Ifdal € rl.A,3a2 € r2.A, al.attr_name = a2.attr_name
A RATING(al.attr_value) > RATING(a2.attr_value))
then BETTER-ATTRIBUTE(r/, r2). Q

56

Suppose that there are two versions of <add class> where one version, <add class
1>, requires the student to go to the registrar's office and <add class 2> does not. <add
class 1> is diminished with respect to duration because it has a less preferred value for that
attribute.

Attributes that can determine the strength of a requirement relative to another
version of the same requirement are importance, duration, likelihood and effectiveness. In
GIRAFFE's representation of requirements these attributes do not have precise values; they
allow the program to distinguish between requirements with significant differences but do
not support making fine distinctions.

Because the attributes do not have precise values, GIRAFFE does not try to resolve
conflicts when one requirement has a higher value of one attribute and a lower value of
another. For instance, if R1 has a higher likelihood of satisfaction but a lower
effectiveness than R2, GIRAFFE considers the two requirements incomparable rather than
trying to decide if R1's higher likelihood justifies its lower effectiveness value.

A requirement can have other, problem-specific attributes based on attributes of
scenarios or conditions that are associated with the requirement. A client might be
interested in the number of students who can get access to the system at one time, for
instance. If problem-specific attributes are used, GIRAFFE must have rating functions to
tell it which values are preferable. GIRAFFE's rating functions are described in the next
chapter.

In the next section I discuss the scenario rule which is another way of determining

whether one requirement is stronger than another.

The Scenario Rule

The scenario rule is based on the assumption that a client wants the transition for an

achievement requirement to occur in as many situations as possible, subject to the definition

57

constraints given for the requirement. Each scenario for the requirement represents an
occurrence of the transition in a unique sitvation, so more scenarios mean that the transition
can occur in more situations.
Definition 7
Let r1 and r2 be achievement requirements. The scenario rule (Rule b2) for
determining whether one requirement IS-SSTRONGER-THAN another is as
follows:

If MORE-SCENARIOS(r!, r2) A —-BETTER-ATTRIBUTE(s2, ri)

then IS-STRONGER-THAN(r!, r2). Q

Definition 8
Let rI and r2 be requirements. If (ri.Scenarios > r2.Scenarios
v WEAKER-QUALS(r1, r2) v MORE-GENERAL-OTYPS(rl, r2))
A mINCOMPARABLE-SCENARIOS then MORE-SCENARIOS(r/, r2), O

Two scenarios have incomparable scenarios if neither has conclusively more
scenarios than the other:
Definition 9
Let r1 and r2 be requirements. If WEAKER-QUALS(rl, r2) A MORE-
GENERAL-OTYPS(r2, r1) then INCOMPARABLE-SCENARIOS(r/, r2). O

The left side of Figure 19 shows an example where one version of the <find out
schedule> requirement (R1) allows three scenarios and another version (R2) allows only
two scenarios. Since R2's scenarios are a subset of R1's, GIRAFFE can conclude that R1

allows the transition to occur in more situations than R2.

58

— —

R1 A B C|l R2 R1 %A B C DiR2

R1 and R2 are two different versions of the <find out schedule>
requirement.

A = a scenario where a student finds out her schedule by phone.

B = a scenario where a student finds out her schedule by mail.

C = a scenario where a student finds out her schedule by going to the
registrar's office.

D = a scenario where a student finds out her schedule by using a
terminal.

FIGURE 19. Sets of scenarios. The diagram on the left shows a case where R1 IS-
STRONGER-THAN R2 by the scenario-subset rule. The scenarios associated with R2 are
a subset of the scenarios associated with R1. The diagram on the right shows a case where
R1 and R2 are incomparable by the scenario-subset rule because neither requirement's
scenarios is a subset of the other's.

The right side of Figure 19 shows an example of incomparable requirements. R1
allows scenarios A, B and C, and R2 allows B, C and D. Neither set of scenarios is a
subset of the other and Rule b2 in the IS-STRONGER-THAN definition does not apply.

Rule b2 refers to subsets because otherwise GIRAFFE would have to decide
whether two dissimilar scenarios are equally relevant. In the example shown in the left side
of Figure 19, GIRAFFE would have to decide between scenarios A and D, which might
not be possible given the information available to the program.

If an analyst knows all scenarios possible for the transition of a given requirement,
and can easily compare scenarios, then Rule b2 is sufficient. In practice, one cannot expect

that kind of omniscience from either a human or a program, so other rules are useful in

comparing requirements. The next two sections discuss Rules b3, b4 and b5 which are

59

consequences of Rule b2 but are easier to apply because they do not require explicit

representation of all scenarios.
Generality of Object Types

Changing the types of objects referred to in a requirement can make the requirement
stronger or weaker. The following rules define comparisons between object types:
Definition_10

(Rule b3) Let r/ and r2 be requirements.

If HAS-MORE-GENERAL-OTYP(r1, r2)

A —HAS-MORE-GENERAL-THAN(r2, rI)

then MORE-GENERAL-OTYPS(r/, r2). Q

Definition 11
Let rl and r2 be requirements.
If dobji € rl.0,30bj2 € r2.0, objl.obj_name = obj2.0bj_name
A MORE-GENERAL-THAN(objl.obj_type, obj2.0bj_type)
then HAS-MORE-GENERAL-OTYP(r1, r2). Q

MORE-GENERAL-THAN is defined in terms of an object hierarchy that is part of
the model for a particular domain.

The example in Figure 20 shows two versions of <find out schedule> that are
compared based on generality of object types. GIRAFFE compares object types in any part
of the transition: initial state, path constraints or final state. To decide that one requirement
is stronger than another based on object types, one requirement must be either more general
or the same as the other requirement in every respect. GIRAFFE cannot select between
two requirements where one is more general in one respect but more specific in another

respect than the other.

An under- A student can
raduate can find out her
ind out her schedule
_ schedule. '

more specific more general

FIGURE 20. Comparison of two transitions based on generality of object types.

The object-generality rule can be derived from the scenario-subset rule if a scenario
with a more general object type is considered an abstract representation of all scenarios with
that object type's subtypes. For instance, a scenario where a student finds out her schedule
represents other scenarios where an undergraduate finds out her schedule and a graduate
finds out her schedule. The situation in Figure 20 then becomes an instance of the
scenario-subset rule because the scenario for the transition on the left is a subset of the two
(or more, depending on how many subtypes of student there are) implicit scenarios for the
transition on the right.

An important characteristic of the object-generality rule is that unlike the scenario-
subset rule, it does not require an explicit representation of all possible scenarios. Instead it
uses a representation of the object generality hierarchy. The object-generality rule is a way
of representing and reasoning about classes of scenarios instead of individual scenarios
which might be difficult to enumerate.

Two other rules that allow GIRAFFE to reason about classes of scenarios are the
gualification rules stated in b4 and b5 of Figure 16. In the next section I discuss those two

rules.

61

Strength of Qualifications

Rule b4 implies that qualifying a requirement is a way of weakening it, and
removing qualifications strengthens requirements. Suppose a requirement says "no student
can find out another student's schedule”. That requirement can be weakened by qualifying
it : "no student can find out another student's schedule unless the student tells her
password." If the qualifications from one requirement are a subset of the qualifications for
another requirement, then the first has weaker qualifications and is therefore stronger,
according to the scenario rule. Comparison of qualifications is formally defined below:
Definition 12

Let r/ and r2 be requirements. RI has weaker qualifications than r2 as defined

by the rules:

(b4) If r2.0 o rl1.Q then WEAKER-QUALS(r/, r2).

(b5) If HAS-STRONGER-QUAL(r2,r1) A

—HAS-STRONGER-QUAL(rl, r2) then WEAKER-QUALS(r1, r2) Q

In addition to considering subsets of qualifications, one can also reason about the
relative generality of individual qualifications. Stronger qualifications restrict the scenarios
possible for a requirement more than weaker qualifications. Two aspects of qualifications
are important for comparing qualifications: logical implication and the generality of the
objects in the qualifications and. Rule 1 in Definition 13 addresses logical implication and

Rules 2 and 3 address the generality of object types.

62

Definition 13
Let ri1 and r2 be requirements.
(1) If3qle ri.Q,3q2¢€ r2.Q,ql = q2 then HAS-STRONGER-
QUAL(rl, r2).
2y H3dgle rl.Q,3q2 € r2.0, ql.q_type = q2.q_type =has_action A
gl.action_type_name = g2.action_type_name
A MORE-GENERAL-OTYP(ql.agent_type_name, q2.agent_type_name) then
HAS-STRONGER-QUAL(r1, r2).
(3) If3qle rl.Q,3q2€ r2.0,9l.q type=q2.q_type =has_init
A gl.condition.relation = g2.condition.relation
a (objl € ql.condition.objects, Jobj2 € ql.condition.objects,
MORE-GENERAL-OTYP(OTYP(obj!), OTYP(0bj2)))
then HAS-STRONGER-QUAL(r1, r2). Q

As an example of Rule 3 in Definition 13, consider a qualification for <find out
schedule> that states "a student must have access to a terminal.”" Changing "a terminal" to
"an X terminal” weakens the requirement because scenarios where students use other types
of terminals are no longer possible. A stronger qualification leads to a weaker requirement.

Rule 1 of Definition 13 compares complex qualifications (composed of AND and
OR expressions) in terms of logical implication. Figure 21 shows an example. The
transition on the left has a simple qualification in the initial state: the student must know her
password. The transition on the right it contains a disjunction: the student must know her
password OR she must know her transcript.

The qualification on the right is weaker because it is a logical implication of the one
on the left. The weaker qualification restricts the scenarios less than the one on the left—

every scenario possible on the left is possible on the right. By comparing the strengths of

63

qualifications it is possible to reason about the strength of requirements without an explicit

representation of all the scenarios possible for the requirement.

A student can get
advice if she knows her
password OR if she

knows her transcript.

AL
HL SRR T e A T

A

s g 5]

A student can get
advice if she
knows her
password.
T ';.-'r_".t._;"r‘ﬁ TR O 5
more specific /

more general

FIGURE 21. Comparison of two transitions based on AND/OR expressions.

GIRAFFE can compare qualifications based on the kinds of conditions used in the

qualifications. As an example, consider a requirement that states that a student can register

for classes. Suppose that GIRAFFE finds two ways of qualifying this requirement by

adding conditions to the initial state. One condition is "the student is in the registrar's

office” and the other condition is "phone registration is available." GIRAFFE determines

that the artifact has little control over the student's location by analyzing the actions

available for the artifact. However, availability of phone registration can be changed by the

artifact, and in that sense is a weaker constraint on the initial condition.

static

changed by actions that could be provided by the artifact

|
| changed by actions provided by the environment
[
H

changed by actions that are provided by the antifact

FIGURE 22. Some classes of conditions.

Figure 22 shows several classes of conditions that GIRAFFE considers in

analyzing qualifications. In this type of analysis, GIRAFFE might find that a condition is

static with respect to the artifact and the part of its environment modeled by GIRAFFE.
Another condition might be produced only by actions provided by the environment.
Another possibility is that the condition is produced by an action that the artifact could
provide, but doesn’t. The condition could also be one that can be produced by the artifact.
Depending on the type of the condition, GIRAFFE considers the qualification
stronger or weaker. Conditions that are beyond the control of the artifact are considered

stronger qualifications and those that are controlled by the artifact are considered weaker.
Heuristics

The definition of IS-STRONGER-THAN given earlier provides a way to compare
requirements based on attribute values and a single assumption. In this section I discuss
some rules that I refer to as heuristic rules because unlike the object-generality rule and the
qualification strength rule, they cannot be shown to be correct given the initial assumption
that achievement transitions should occur in as many situations as possible. In fact, in

some cases they can be misleading rather than being inconclusive.

Number of Scenarigs

Rule h1 of Figure 18 is useful in cases where the scenario-subset rule does not
apply. However, it can be misleading as illustrated by the example in Figure 23. R1
allows two scenarios, A and B which are significantly different. R2 allows three scenarios
and so, according to Rule h1, can be considered stronger than R1. However, D and E are
very similar to each other, and both are quite similar to C. Even though R2 allows more
scenarios than R1, the similarity of the scenarios does not allow the analyst to conclude that

R2 is stronger than R1.

65

R1 R2

A =B C @D ©E

R1 and R2 are two different versions of the <find out transcript info>
requirement.

A = a scenario where a student finds out her transcript information by
going to the registrar's office and paying for an official transcript.

B = a scenario where a student finds out her transcript information by
using a terminal.

C = a scenario where a student finds out her transcript information by
going to the registrar's office and paying for an official transcript.

D = a scenario where a student finds out her transcript information by
requesting an official transcript by phone and picking it up at the registrar's
office the next day.

D = a scenario where a student finds out her transcript information by
requesting an official transcript by using a terminal and picking the transcript up
at the registrar's office the next day.

FIGURE 23. A case where the heuristic rule hl is misleading.

Types of Agents

GIRAFFE can use knowledge about agent types to compare requirements, as stated
in Rules h2 and h3 of Figure 18. Agent types are particularly relevant in analyzing path
constraints. Suppose that one version of <schedule privacy> has the path constraint: "no
one but the student reads the screen when a student's schedule is displayed." The other
version has the constraint: "a student doesn't tell her password to anyone."

In each case, satisfaction of the constraint depends on the actions of an agent that is
not part of the artifact. However, in the second case, responsibility rests on an agent who

has an interest in satisfaction of the requirement. In the first case, responsibility rests on an

66

agent with arbitrary motivation. GIRAFFE argues that the second case is preferable
because violation of the constraint is less likely. This example is an instance of a heuristic
that Dardenne, Fickas, and van Lamsweerde (1991) state in their goal-oriented requirement
acquisition method.

To compare requirements based on agent types, GIRAFFE needs domain-
dependent relations between types of agents and types of requirements. Note that in the
case of <schedule privacy> the relation is part of the domain of privacy rather than being
limited to the domain of academic registration.

Rather than comparing requirements based on condition types or agent types,
GIRAFFE can base comparisons on domain-specific or problem-specific knowledge about
instances of agents and conditions. An example of domain-specific knowledge is
comparison of the condition "a student has phone access" to the condition "a student has
access to a terminal." The first is more likely to hold than the second. Problem-specific
knowledge can be stated by the client. An example of a relation stated by a client (for a
particular artifact) is "a student is registered for a class” is a more important final-state
condition than "a student knows her grades."

The heuristics discussed in this section are one way of comparing requirements that
are incomparable with respect to the scenario-subset and attribute rules. Another approach
to dealing with incomparable requirements is to constrain the requirements that are
analyzed. Rather than comparing two arbitrary requirements, GIRAFFE compares
requirements that are incrementally different and so are less likely to be incomparable. In
the next chapter, GIRAFFE's Knowledge Base, I show how GIRAFFE uses specification

changes to analyze requirements that incrementally change.

67

Summary

In this section I defined the IS-STRONGER-THAN relation between sets of
requirements, The definition of that relation refers to the IS-SSTRONGER-THAN relation
between individual requirements, which I also defined.

In defining the IS-STRONGER-THAN relation for individual requirements, I
stated a basic assumption on which it is based: a client wants transitions for achievement
requirements to hold in as many situations as possible. In other words, there should be as
many scenarios as possible for those transitions. Likewise, there should be as few
scenarios as possible for transitions of safety requirements. The scenario-subset rule is
based directly on that assumption, and the rules for object generality and qualification
strength are in turn based on the scenario-subset rule.

When the scenario-subset rules and the attribute rule don't apply other heuristic
rules can be used instead. The heuristic rules are related to the number of scenarios
possible for a given transition, the number of agents required for a transition, and the types
of agents.

In the next section I discuss relations that can hold between a new requirement and

the requirement from which it was derived.

Other Reguirements Relations

In addition to helping a client weaken or strengthen requirements, an analyst can
suggest new requirements to the client. The analyst can use her domain knowledge and
acquired knowledge of the artifact's environment to suggest new requirements. Since the
analyst has no authority to change requirements, she can only suggest them and the client
must approve them. In this section I describe the relationship those new requirements have

to the requirements from which they were derived.

Plan Support/Obstruction

One type of requirement that can be derived from another requirement is a support
requirement. A support requirement establishes initial conditions for the transition of an
achievement requirement and thus makes that transition more likely to occur. Figure 24
shows a support requirement and the achievement requirement from which it was derived.
The initial condition, "Abigail knows her password," is required for the transition for <find
out schedule> to occur. That condition becomes the final condition in the new support

requirement.

Abigail knows her password

an achievement o
requirement LT
G
initial state final state
initial state final state
T — a new support requirement
i SisIge derived from the

achievement requirement

Abigail knows her password

FIGURE 24. A support requirement derived from an achievement requirement.

Just as support requirements make transitions of achievement requirements more
likely to occur, obstruction requirements make transitions of safety requirements less likely
to occur. In other words, obstruction requirements are intended to reduce the number of
safety violations that occur. Figure 25 shows an obstruction requirement and the safety

requirement from which it was derived. The safety requirement is <schedule privacy>. An

69

initial condition in the transition for <schedule privacy> becomes a final condition of the
new obstruction requirement.

If an intruder is attempting to find out a student's schedule, one plan the intruder
can use is to log in as the student and display the schedule. This plan requires the intruder
to know the student's password. By deriving this precondition, the analyst can derive the
obstruction requirement that no one else should be able to find out a student's password.
The analyst must also consider, however, the possibility that the condition is necessary for

the transition of an achievement requirement.

an intruder knows Abigail's password

.g:r.

a safety requirement i N
— e
vl
initial state final state
initial state final state

. T - ' a new obstruction

i 4 h .

: S requirement derived from

e the safety requirement

an intruder knows Abigail's password

FIGURE 25. An obstruction requirement derived from a safety requirement.

Adding support and obstruction requirements makes a requirement set stronger as
defined by the IS-STRONGER-THAN relation for requirement sets defined in the previous

section.

70

Repair

A client can require an artifact to repair safety violations when it is not feasible to
entirely prevent them. For example, <unwanted class> is a safety requirement that says
that a student shouid not have classes that she doesn't want in her schedule. Since it is
impossible to prevent a student from adding the wrong class, a client can require the artifact
to give a means for undoing an unwanted add.

A requirement to repair a safety violation has a condition from the final state of the
safety requirement in its initial state, as shown in Figure 26. The condition "Abigail has
CIS121 in her schedule” appears in the final state of <unwanted class> and also appears in
the initial state of the new <repair unwanted class> requirement. The final state of the
repair requirement includes the negated condition, such as "Abigail doesn't have CIS121 in

her schedule”.

Abigail has an unwanted class

a safety requirement

initial state

.) final state
a new repair requirement TR
derived from the safety B
requirement Ty TS
»,5»195.-.»\;; :
Lt
Abigail has an unwanted class Abigail doesn't have an

unwanted class

FIGURE 26. A repair requirement derived from a safety requirement.

71

A repair requirement can replace or augment the safety requirement from which it
was derived. If the repair requirement replaces the safety requirement then the requirement
is weaker because the repair requirement allows some scenarios prohibited by the safety
requirement. A repair requirement that augments a safety requirement makes the

requirement stronger if the safety requirement is only partially satisfied.
Privacy

Several requirements in the on-line registration domain are requirements to give
students access to their personal academic information. Examples are <find out schedule>
and <find out transcript info>. Privacy requirements are related to that type of personal
information requirement. A privacy requirement says that information about a person can

only be accessed by that person.

Abigail knows her schedule

P e an achievement
requirement to find out
personal information

initial state final state

initial state final state
] i a new privacy requirement
i W £ " derived from the
. ¢ oy achievement requirement
‘1-!-"!’.{;%t rip

an intruder knows Abigail's schedule

FIGURE 27. A privacy requirement derived from an achievement requirement.

72

Figure 27 shows how <schedule privacy> can be derived from <find out
schedule>. The new privacy requirement in the figure is a safety requirement that says that
a student's schedule can only be accessed by that student.

Adding a derived privacy requirement to a requirement set makes the set stronger

because the new requirement prohibits some scenarios that were previously allowed.
Failure

Achievement requirements show how a transition can occur but not how they can
go wrong. Failure requirements are safety requirements derived from achievement
requirements that show how robust the client expects the artifact to be. For instance, <add
class> is an achievement reguirement that says the artifact should provide a way for a class
to be in a student’s schedule. <add class failure> is a safety requirement that says that the

add will not fail. The derivation of <add class failure> is illustrated in Figure 28.

Abigail has CIS121 in her scheduie.

o an achievement
requirement to find out
personal information

initial state final state

initial state final state
a new failure requirement

RV 4 e derived from the
N . ¢ T) achievement requirement

Fu
cat L

Abigail does pot have CIS121 in
her schedule.

FIGURE 28. A failure requirement derived from an achievement requirement.

73

Failure requirements in GIRAFFE are not intended to show that the artifact is fail-
safe for two reasons. One reason is the inherent limitations of models. Like any model,
GIRAFFE's domain model is incomplete and therefore does not allow GIRAFFE to
recognize all possible failures. In addition, failure requirements can be qualified or
otherwise transformed. Rather than saying that the <add class failure> transition will never
occur, a weaker form of the requirement shows what conditions and actions will cause
failure. One qualification might be that the student must perform certain actions, like {get
phone connection} and {phone request add). Another qualification might restrict the ways
that other agents can act. If another student takes the last available seat while one student is
still getting a phone connection then the transition will fail.

Because each failure requirements is closely related to the achievement requirement
from which it was derived, satisfaction of the failure requirement affects satisfaction of the
achievement requirement. Satisfaction of a stronger <add class failure> requirement means
stronger satisfaction of <add class> because there are fewer ways for the transition to fail.

Although GIRAFFE can represent and suggest failure requirements, it doesn't
currently have the ability to analyze satisfaction of these types of requirements because its
means of finding scenarios is not well-suited for that type of analysis. In Chapter V1

discuss GIRAFFE's method of finding scenarios and its strengths and limitations.

Summary

Relations between requirements are important for deriving new requirements.
Derived requirements can support or obstruction plans (scenarios) for other requirements,
repair safety violations, prohibit privacy violations and prohibit plan failure. Deriving these

new requirements strengthens the requirement set.

74

Related Work

In this section I discuss other research work that relates to the requirements
relations used by GIRAFFE. First I look at work that is relevant to the IS-STRONGER-

THAN relation, and then I look at work that relates to the derived-requirement relations.

Weakening/Strengthening Requirements

Some concepts that are relevant to the IS-SSTRONGER-THAN relation are fauit

tolerance, graceful degradation, dimension-based analysis and compromise.
Fault Tolerance

Weber (1988, 1989) formally defines fault tolerance in terms of fault scenarios.
Stated informally, a fault-tolerant artifact's visible behavior in the presence of faults is
equivalent to its visible behavior in ideal conditions. An alternative definition to Weber's is
that a fault-tolerant artifact's behavior implements its specification even in the presence of
faults. The advantage of using Weber's definition is that it allows one to analyze the fault
tolerance of an artifact independently of other correctness constraints.

In the on-line registration example, a fault might be the failure of a network
connection. If a student can list her schedule even when a network connection fails, then
the artifact is tolerant of that fault. Note that the behavior will not remain the same at all
levels of detail. For instance, if a computer uses an alternate connection to get the required
information its behavior is not the same as if it uses its primary connection. Thus in order
to use this concept of fauit tolerance one must define what is considered "visible" behavior.

Saying that an artifact should be fault tolerant is one way of saying that it should
satisfy a stronger requirement than a similar artifact that is not fault tolerant. Weber's

concept of fault tolerance is useful in requirements transformation because it relates

75

stronger requirements (fault tolerance) to events that can occur in the environment. In
terms of the IS-STRONGER-THAN relation, artifacts that are fault tolerant have fewer
qualifications and therefore satisfy stronger requirements than artifacts that are less fault
tolerant.

Although Weber's research addresses the question of how to specify fault
tolerance, it does not address the question of how to change requirements given a
specification change that makes an artifact more fault tolerant. For example, if the <find
out schedule> requirement doesn't include any notion of fault tolerance, and the client adds
a secondary connection for a computer in the artifact, Weber's method provides a way to
represent changes in fault tolerance in terms of the network crashing and other events but
does not provide a way to detect or verify changes in fault tolerance. A method that
supports intertwining would relate changes in the specification to changes in the

requirements, which Weber's method does not do.

Graceful Degradation

Weber (1988, 1989) defines graceful degradation in terms of a tolerance relation,
which is an equivalence refation on behaviors. Whereas a fault-tolerant artifact's behavior
is the same whether or not faults occur, graceful degradation occurs if its behavior is
equivalent with respect to the tolerance relation. Weber gives an example of a tolerance
relation where all behaviors with the same sequence of events are equivalent, regardless of
the timing of the events.

In the on-line registration example, if a student can find out her schedule, even if it
takes longer, the behavior gracefully degrades in the presence of faults. (Rather than
completely disregarding time of completion, as the tolerance relation in Weber's example

does, the tolerance relation should probably allow more time but not arbitrary amounts.)

76

Herlihy and Wing (1991) describe another approach to specifying graceful
degradation. They define a relaxation lattice that relates sets of constraints to behavior.
Figure 29 shows an example of a relaxation lattice that maps satisfaction of constraints on
the environment to different behaviors of the artifact. R1 and R2 are descriptions of the
behavior of the artifact and C1 and C2 are constraints on the environment. In the on-line
registration example, the behavior and environmental constraints might be stated as
follows:

R1 = A student can find out her own schedule.
R2 = No student can find out another student's schedule.
C1 = Each student knows her own password.

C2 = No student knows another student's password.

Constraint Lattice Automaton Lattice

{C, C2} {R}, R2}

{C} 1G} {Ri} {Rz}

FIGURE 29. A relaxation lattice. Nodes of the Constraint Lattice represents different
constraints on the environment, while nodes of the Automaton Lattice represent different
behaviors of the artifact. Arcs relate each set of constraints to the behavior specified for
that set.

The preferred behavior is {R1,R2} where each student can get her own information
but no other student's. As conditions in the environment change, the constraints on the

environment will be violated and the artifact will not exhibit the preferred behavior. The

relaxation lattice is a way to specify what behaviors are acceptable as conditions deteriorate.

77

For example, the analyst might specify that if C2 is violated then R2 must stiil hold
although R1 might not. Such a specification might lead to a mechanism where an account
is locked when an intruder is suspected; the intruder can't get information but neither can
the legitimate user.

Herlihy and Wing's work demonstrates the need for weakening requirements and
provides a formalism for representing degradation. However, their only method for
weakening requirements is to take subsets of requirements. They provide no way for finer-
grain transformation by making individual requirements stronger or weaker. In terms of
the requirements relations defined earlier, the automaton lattice represents the requirements
subset rule (al) but not the nles for comparing individual requirements (a2, etc.). In the
previous example, the client's only choices are to require R1 (a student can find out her
own schedule) or not to require it; there is no way to introduce a weaker version of R1.

Herlihy and Wing's use of a relaxation lattice to specify graceful degradation is
similar in some respects to Weber's. In each case, the basic idea is to specify which events
will or will not affect the behavior of the artifact. With Weber's tolerance relations,
degradation is defined in terms of some formal function, but in the relaxation lattice
degraded behavior could be related to behavior that is an arbitrary subset (in terms of
constraints satisfied) of the preferred behavior because the client can map each node of the
constraint lattice to the automaton lattice independently. One could combine the two
methods by defining a tolerance relation for each node of the automaton lattice. If a
behavior at a given node was equivalent to the preferred behavior, as specified by the

tolerance relation for that node, then the behavior is satisfactory.
Dimensions

Rissland and Ashley used the concept of dimensions to create a program called

HYPO (Rissland & Ashley, 1986) which creates interesting hypothetical cases and argues

78

about legal cases. In HYPO's domain of common law arguments, the resolution of a case
will be the same as the resolution of the previous case that is most similar. HYPO uses
dimensions to reason about what "most similar" means.

As an example, Rissland (1986) discusses the use of dimensions in a case
involving the warrantless search of a motor home. She shows how the case is strong in
two different dimensions which are expectation-of-privacy and inherent-mobility. These
dimensions conflict because the laws for searching homes and vehicles are different. Since
cases that are strong in two conflicting dimensions, like Rissland's motor home example,
are the most interesting hypothetical cases, HYPO has the ability to strengthen and weaken
cases along various dimensions to make interesting conflicts.

HYPO strengthens or weakens a case along a dimension by changing values of
focal slots. Focal slots can contain numeric, symbolic or boolean values, and HYPO
knows how to change those values to make a case stronger along the given dimension. In
the motor home case, focal slots might include whether or not the vehicle/home is self-
propelled (boolean), how long it has been in the same place (numeric) or the type of setting
{symbolic—mobile-home-park versus parking-lot). In HYPO's domain of trade secrets
law, focal slots include the number of disclosees (numeric) and the type of information
involved (symbolic—technical or vertical). HYPO uses a partial ordering on symbolic
values to determine how to strengthen a case.

Fickas and Nagarajan (1988) discuss the use of HYPO-style techniques in
generating ranges of examples to criticize specifications. Such examples can be used to
motivate either changes to the specification or to the requirements. By making a
requirement explicitly address more and more extreme examples, the client is making the
requirement stronger (if the artifact is required to address the example) or weaker (if the

client specifically states that the artifact does not have to address the example).

79

One dimension in the on-line registration example might be access to information.
A focal slot might be the number of people wanting access at one time, or the amount of
time a student has to wait. Focal slots for another dimension, privacy, might include the
type of people who find out the information (university employees versus other students)
and the type of information disclosed (grades, schedule, major). Although such focal slots
represent some aspects of privacy requirements, they do not represent the difficulty or ease
that an intruder will encounter.

Wilensky (1983) uses a notion of dimensions to describe partial goal fulfiliment in
planning. His system represents partial goal fulfiliment in terms of scalar values. For
instance, if a student wants to find out her grades for the past three quarters, finding out her
grades for one quarter constitutes partial fulfiliment of her goal. To represent partial
fulfillment of privacy requirements in terms of Wilensky's partial goal fulfillment, one
would have to identify degrees of privacy which could be represented numerically.

The techniques used by these programs to weaken or strengthen goals along
dimensions are useful but they all rely on predefined dimensions, which do not exist for
every problem. Furthermore, some requirements, such as schedule privacy, are difficult to
state solely in terms of the kinds of dimensions used by these programs.

GIRAFFE uses attributes of requirements to represent numerical and partially-
ordered symbolic scales. In addition, it reasons about the relative strengths of requirements
in other ways that are not readily represented as predefined dimensions. Its ability to
compare qualifications and object generality allow it to determine requirements relations

when predetermined dimensions are not available or are not conclusive.

Compromise

When two parties compromise to resolve a conflict, in effect they each weaken their

demands. Robinson (1993) describes ways of detecting and resolving conflicts in a

80

specification. Robinson's system, Oz, allows development of multiple specifications, each
from a different perspective, and uses dimensions and generalization/specialization to find
comprornises and other conflict resolutions.

As an example of specialization, if one specification allowed students to find out
their grades, and another specification did not, Oz might suggest specializing the
requirement so that only undergraduates can find out their grades. For a similar
requirement with two specifications that conflicted over the number of quarters for which a
student could find out grades, Oz could use utility theory to suggest a compromise using
the number of quarters as a dimension.

Weakening requirements for compromise and weakening them to support
intertwining are related but not identical problems. Compromise uses preferences to select
from a set of alternatives which are known to be feasible. Preferences are not an issue in
intertwining; instead the issue is what is feasible and how it is stated. The problem in
weakening goals to support intertwining is to define the space of feasible solutions at a

sufficiently fine level of granularity to state the minimum amount of weakening necessary.

Summg Y

Table 3 sumnmarizes the various methods of changing requirements and goals
discussed in this section. Weber analyzes fault tolerance in terms of fault events that can
occur. Herlihy and Wing relate conditions to subsets of requirements. Each subset of
requirements effectively says that requirements not included in the subset are less
important. HYPO and Wilensky's program use dimensions and scalar values to analyze
similarity and partial goal fulfillment. Robinson's program, Oz, uses dimensions and
specialization to find compromises and uses preference relations to choose among various

compromises.

81

In my work on GIRAFFE, I have incorporated these various techniques into a set
of requirements relations that allows GIRAFFE to transform requirements and thereby find
the strongest requirements satisfied by a specification. Thus GIRAFFE differs from these
systems in that it uses all of these types of relations, and it differs in the application of the

relations: to transform requirements and support intertwining in requirements engineering.

TABLE 3. Summary of methods for weakening and strengthening requirements

Name Dimensions Importance/ Specialize/ Conditions/
Preference Generalize Events

Weber— equivalent

fault behavior with

tolerance fault events

Herlihy & subsets constraints on

Wing— environment

relaxation conditions

lattice

Rissland— | numeric or

dimension- | partial

based ordering on

argument [symbolic

Wilensky— | scalar values

partial goal

fulfillment

in_planning

Robinson—| used to used to select { used to

conflict suggest compromise | suggest

resolution | compromises compromises

GIRAFFE | attributes importance object strength of
attribute generality qualifications

The work described in this section relates to GIRAFFE's IS-STRONGER-THAN

relation. In the next section I describe work that relates to relations between derived

requirements.

82

Other Requirements Relations

In this section I discuss other work on deriving related requirements and goals.
Some concepts relevant to this topic are reuse, decomposition, goal relations and

counterplanning.

Reuse

Reusing requirements is one way to derive requirements for an artifact. The general
notion is to draw on experience from other artifacts to state requirements for the current
one. The problem is determining which requirements are relevant and how they must be
changed to fit the current situation.

The Requirements Apprentice (RA) (Reubenstein} has a set of requirements and
specification elements that it reuses. Those elements are called cliches. The RA's approach
to reuse is to list for each cliche a set of preconditions that must be satisfied for the cliche to
be relevant. By reusing the information in the cliches, the RA acquires a more formal and
complete description than its user explicitly stated. The RA's cliches provide more support
for choosing a relevant meaning for a policy than for choosing a relevant policy. In other
words, the user states a policy and the RA uses its cliches to state the same policy in a more
formal way.

As an example, consider <schedule privacy>. By stating that the policy is a privacy
policy, the user does not have to explicitly state that the policy involves restricting the
agents that can perform a certain action; the cliche gives that information to the RA so that it
can choose the relevant meaning. The user can fill roles in the privacy cliche by saying that
the action to restrict is {list schedule} and the group that can perform it is a student for

herself.

83

The RA's goal is to decide what the meaning of a stated policy is, rather than to
decide when to suggest policies. GIRAFFE suggests changes in policies and thus uses a
different approach than the RA. Instead of interpreting a privacy policy stated by the client,
GIRAFFE suggests one when appropriate. I describe GIRAFFE's transformations for
suggesting requirements changes in Chapter IV, GIRAFFE's Knowledge Base.

The RA uses preconditions to decide which cliches are relevant. Instead of having
a program decide what elements are relevant, a requirements reuse system can let the user
decide what is relevant. Skate (Fickas & Nagarajan, 1988) takes this approach. It
supports reuse by defining a standard set of policies which its user can mark as important,
unimportant or unknown. In other words, it helps the user by providing a set of common
policies for a domain, but requires the user to explicitly indicate which ones are relevant.

Skate could use information about specification changes to suggest policy changes
to the user. For instance, if the user makes a change that introduces a new token type, such
as academic scheduling advice, Skate could ask the user whether a new policy, such as
<advice privacy>, should be considered important. This kind of analysis would be
important for very large domains where the user has many policies and subpolicies to
consider, but Skate has no access to the specification editor and so cannot analyze changes

in this way.

Decomposition

The general purpose of decomposition in requirements engineering is "divide and
conquer,” but there are various interpretations for "divide” (methods of decomposing) and
"conquer” (achieving the purpose of decomposition). Depending on the method of division
and the purpose of the division, decomposition can be relatively simple or more difficult to

automate.

84

Mylopolous, Chung, and Nixon (1992) and Nixon (1993) use goal decompasition
in dealing with non-functional requirements. Their basic method is to decompose on goal
parameters. In other words, the decomposed goals are of the same type (e.g.,
performance) but have a different parameter. For instance, a performance goal for a system
might be split up into performance goals for each structural component of the system. Or,
it could be split up for each specialization of a class, such as for each subclass of agent in
the system.

Feather (1987) uses decomposition to achieve a design state where each constraint
is assigned to individual agents. By decomposing the constraints in this way, the designer
can determine what interfaces between agents are necessary. Dardenne et al. (1991)
advocate a similar decomposition style as a way of operationalizing constraints.

Whereas the decomposition method described by Mylopolous et al. is automated,
Feather's method is done by hand and Dardenne et al. state that the identification of
subgoals is a non-trivial task. One reason for the difference in difficulty of automation is
that the method described by Mylopolous et al. decomposes goals along predefined lines
(e.g. a class hierarchy) whereas Feather's method considers a wider range of divisions
(e.g. replacing one relation with two others that are not sub-types).

One reason for using decomposition is to factor out similar problems. For instance,
if several requirements have scenarios where students begin by getting phone access, the
analyst could decompose the scenarios and analyze phone access as a separate problem.
GIRAFFE's use of support and obstruction relations serve the same purpose as this kind of
serial decomposition. It allows identification and analysis of common problems such as

phone access.

85

Goal Relations

GIRAFFE's analysis of support and obstruction relations requires the ability to
reason about goal relations. Wilensky's research (1983) on metaplanning analyzes goal
relations. He discusses various negative and positive goal relations. The negative relations
are resource limitations, mutually exclusive states, and conflict with preservation goals.
Positive goal relations are goal overlap and goal concord.

Carbonell (1981) uses the term counterplanning to refer to the process of disabling
an adversary's plans and overcoming an adversary's obstructions. The basic idea of
counterplanning is to find out the adversary's plans and then disable the preconditions of
the plan. For instance, by analyzing an intruder’s plans for discovering private
information, the systems administrator and users can form plans to obstruct the intruder's
plans. Disabling preconditions requires a knowledge of goal relations, in particular, mutual

exclusion,

Summary

GIRAFFE uses requirements relations to derive new requirements and to find
stronger and weaker versions of requirements. New requirements can support achievement
requirements, obstruct safety violations, repair violations of safety requirements, or require
privacy of information. Deriving new requirements strengthens the requirement set.

The IS-STRONGER-THAN relation applies to sets of requirements and to
individual requirements. The assumption underlying this relation is that the client wants the
transition of an achievement requirement to occur in as many situations as possible and the
transition of safety requirements to occur in as few situations as possible. The scenario-
subset rule, attribute rule, object-generality rules and strength of qualification rules are

based on that assumption and define IS-STRONGER-THAN.

86

Requirements and requirement sets can be incomparable with respect to IS-
STRONGER-THAN. One approach to analyzing incomparable requirements is to use
heuristic relations. Another approach is to analyze requirements that are similar and thus
less likely to be incomparable. GIRAFFE compares requirements after incremental
changes to minimize the chances of being unable to compare requirements.

In the next chapter I describe GIRAFFE's knowledge base, which incorporates the

requirements relations defined in this chapter.

87

CHAPTER IV

GIRAFFE'S KNOWLEDGE BASE

Introduction

Without the requirements relations defined in the previous chapter, GIRAFFE
would have no way to know how to change requirements. Using those relations,
GIRAFFE can change requirements to find the strongest requirements satisfied by the
specification. GIRAFFE's knowledge base incorporates requirements relations into
transformation rules and rating functions which allow it to transform requirements and

achieve its purpose. In this chapter I describe GIRAFFE's knowledge base.

applicability conditions stated in
terms of scenarios that make a
transition

effects stated in terms of changes
to the transition

g Ty o o T e PP, Y

FIGURE 30. Description of a requirements transformation as an IF-THEN rule.

GIRAFFE represents each transformation rule as a set of applicability conditions
(or an IF part) and a set of effects (a THEN part) as illustrated in Figure 30. In the next
section of this chapter I discuss applicability conditions and how GIRAFFE can tell which

transformation rules are relevant. In the third section I describe the various effects that

88

transformations can have on requirements and in the fourth section I describe the rating

functions that GIRAFFE uses to compare transformations.

Applicability of Transformations

The applicability conditions of a transformation rule are stated primarily in terms of
scenarios that exist for a transition and satisfaction of the requirement before the
transformation is applied. Some transformations use other information in their applicability
conditions such as the kind of specification change being analyzed or the current form of a
requirement. A few of GIRAFFE's transformations are meaningless unless the
requirement has a disjunction in the initial state, so applicability conditions check for a
disjunction to see if the transformation applies to that requirement.

Some of GIRAFFE's transformations use the specification change in their
applicability conditions. GIRAFFE can either analyze a complete specification or analyze
the changes caused by an incremental specification change. Incremental changes are easier
to analyze in some respects because they help GIRAFFE and the client to attribute changes
in requirement satisfaction to a change in a specification and they make it easier for
GIRAFFE to characterize the change as making the requirement stronger or weaker.
Incremental changes also allow some transformations to execute more efficiently because
the transformations can use the type of specification change to rule out some requirements
changes.

Complex changes are more likely to lead to incomparable requirements than simple
ones. Although GIRAFFE can still apply its transformations after such complex changes,
it can't characterize the overall change in requirement satisfaction as well as it can for a

simple change.

89

The remainder of this section focuses on the two primary types of applicability
conditions: the scenarios that exist for a requirement'’s transition and whether or not the

requirement is satisfied.

Satisfaction of the Requirement

Since the purpose of GIRAFFE is to find the strongest requirement satisfied by the
specification, it will never weaken a requirement that is already satisfied. Therefore a
transformation that weakens a requirement that is already satisfied is not relevant. Likewise
a transformation that strengthens a requirement that is not satisfied is also not relevant.

For example, one transformation qualifies a requirement by adding conditions to the
list of initial conditions required for the transition to occur, thus weakening the
requirement. For the <find out schedule> requirement, it might add a condition that the
student is at the registrar's office. If the requirement is already satisfied, because there is a
way for a student to find out her schedule without being at the registrar’s office, then
adding the condition is pointless. A transformation that weakens a satisfied requirement is

not applicable, as illustrated in Figure 31.

satisfied not satisfied

a transformation that an applicable
is not applicable transformation

add an initial <find out adda

condition schedule> disjunction

[
E e A L R e
weaker

FIGURE 31. Examples of transformations that are applicable and not applicable because of
the requirement being already satisfied.

90

On the other hand, a transformation that strengthens a satisfied requirement is
applicable if it yields a stronger requirement that is still satisfied. In the <find out
schedule> example, another transformation makes a disjunction in the initial state, making a
stronger requirement. That transformation is applicable for requirements that are satisfied
and is applicable when the transformation that adds initial conditions is not.

Satisfaction of a requirement, for purposes of applicability, is a function of the type
of requirement and the number of scenarios that make the requirement's transition occur.
Achievement requirements and repair requirements are satisfied when there is at least one
scenario. Safety requirements are satisfied when there are no scenarios possible.

In addition to the number of scenarios possible for a requirement, characteristics of
the scenarios are part of applicability conditions. The next section describes how scenarios

are used in applicability conditions of transformations.
Scenarios

Some applicability conditions of a transformation are stated in terms of the
scenarios that exist for a transition. Thus, GIRAFFE must know what scenarios are
possible for a transition in order to determine whether a transformation is relevant. Figure
32 shows an example of how GIRAFFE uses scenarios in applicability conditions.

The rule on the left side of Figure 32 states that if no scenarios exist for a desired
transition {a transition representing an achievement requirement) and scenarios do exist for
a similar transition with an additional initial condition, then the initial condition should be
added to the transition. The right side of Figure 32 shows the transition before and after
application of the rule. The desired transition mentioned in the rule is the transition for the
<find out schedule> requirement and the initial condition is "Abigail knows her password.”

The application of the transformation shown in Figure 32 is dependent on the

functional specification at the time of GIRAFFE's analysis. The same application would

91

not be relevant for an artifact that did not require passwords for a student to find out her

schedule.

BEFORE:

Ablgall doesn't
| know her
s sched *

IF

no scenarios exist for a desired
transition

AND

scenarios exist for a transition with
an additional initial condition

% [:]
L r u ?

T T

FRET T T DT =
TS ol N BT L P Yy

THEN

add the initial condition to the
transition

|

s

Ay P

FIGURE 32. A requirements transformation and a sample application.

Figure 33 lists some applicability conditions that can appear in the IF part of a
requirements transformation. To evaluate applicability conditions, GIRAFFE uses the
functional specification and determines what scenarios are possible for a given transition
and for similar transitions.

Similar transitions are transitions for weaker or stronger requirements that might
have more or fewer initial conditions, different path constraints, or a different final state.
Since there are many such transitions, GIRAFFE uses heuristics to confine the analysis to a
tractable problem. It uses domain-dependent heuristics to limit the initial states it considers
and domain-independent heuristics to limit the length and number of scenarios that it

considers. These heuristics are described in the next chapter, Finding Scenarios.

92

W whether or not scenarios exist for a given transition

M whether or not scenarios exist for similar transitions with fewer
or more initial conditions

B which actions are common to all scenarios for a transition

B which class of agent performs the actions in a scenario

FIGURE 33. Types of scenario applicability conditions that appear in GIRAFFE
requirements transformations.

GIRAFFE uses the actions in a scenario to determine when transformations that
change path constraints on actions are applicable. In some cases it uses abstract types of
actions in scenarios as well. GIRAFFE also uses the class of agent for path constraints
since the program only suggests constraints on actions controlled by agents that are not part
of the artifact.

The applicability conditions for deriving related requirements differ from those for
other transformations. Before deriving a new related requirement, GIRAFFE determines
whether there are any actions in the specification, or in the set of all possible actions, that
produce the conditions that will be in the final state of the new requirement's transition. As
an example, before deriving <repair password privacy>, GIRAFFE determines whether
any known actions produce a condition where someone does not know a password. This
type of applicability condition is the reason that GIRAFFE derives <repair password
privacy> and not a <repair schedule privacy> requirement.

Another kind of applicability condition GIRAFFE uses for deriving related
requirements is whether the conditions in the requirement are subtypes of a certain
condition type. The derive_privacy transformation only derives requirements for
achievement requirements that have knows_in£o subtypes in their final conditions and

has_info subtypes for the same objects in their initial or final conditions.

93

Effects of Transformations

There are three basic effects of transformations in GIRAFFE's knowledge base:

1) It can qualify a requirement or remove a qualification.
2) It can specialize or generalize objects or actions in the requirement.
3) It can change the attributes of a requirement to diminish or increase them.

Qualifying the requirement affects the initial state and path constrains of a
qualification. Specializing and generalizing objects affects an object wherever it occurs in
the requirement so that kind of change can affect the initial state, the final state, the path
constraints, or any combination of the three. Diminishing or increasing attributes could
affect any part of the requirement as well, but GIRAFFE primarily reasons about path
attributes such as duration. Although transformations often cause changes of attributes,
GIRAFFE uses rating functions to analyze such changes rather than using transformations
to directly change attributes.

GIRAFFE's transformations are designed to produce changes that can be
characterized as making a requirement stronger or weaker. Thus the effects of each
transformation make changes that correspond to the requirements relations in the previous
chapter, rather than making complex changes that are difficult to characterize. Even though
each transformation’s effects are simple, some changes lead to requirements that are
stronger in some ways and weaker in others. Often a transformation will qualify a
requirement, making it weaker, but change the duration or some other attribute, making it
stronger.

Table 4 (at the end of this section) lists the name and a short description of each
transformation in GIRAFFE's knowledge base. The table also relates the transformations

to the requirements relations defined in Chapter IIL

94

In this section I first discuss effects on the initial state, then on the path constraints
and then on the final state. Finally I discuss deriving new requirements, where all three

parts of the transition are affected but the final state is especially important.
Changing the Initial State

GIRAFFE can change the initial state of a transition by adding or deleting a
condition (qualify) or changing the object types of a condition (generalize/specialize).
Three examples of these changes appear in Figure 34.

Type of Change Before Change After Change
qualify (add a condition) | (no conditions) Student's history is in
database.
qualify (make a condition | Student's history is in Student's history is in
more complex) database. database OR Student
knows history.
specialize Student has access to a | Student has access to
terminal. an X terminal.

FIGURE 34. Examples of changing the initial state.

The transformation X_add_inits qualifies a requirement by adding conditions to
the initial state of the requirement's transition. The transformation's applicability
conditions determine when the additional conditions are necessary. For an example of the
application of X_add_inits, see Appendix C. Another transformation,
X_remove_inits, removes conditions from the initial state and thus strengthens the
requirement by removing a qualification.

In addition to simply adding or deleting conditions, GIRAFFE can form more
complex conditions using disjunctions. The transformation X_add_disj adds a

disjunction to initial conditions and X_remove_disj removes one.

95

As an example, consider a simple version of <find out advised schedule>: "A
student should know her advised schedule.” This requirement could be represented as a
transition with a null initial state and one condition in the final state. GIRAFFE could then
qualify the requirement by adding the initial condition: "The student's academic history is in
the registration program's database." A more complex, and weaker, version of the
qualification is "The student's academic history is in the registration program's database
OR The student knows her academic history." (The more complex version might be
appropriate when the student can type in the history information necessary for advising.)
Appendix C includes a trace where GIRAFFE uses X_add_disj to add a disjunction to
an initial state.

GIRAFFE distinguishes between initial conditions required for some of the
scenarios for a transition and conditions that are required for all scenarios for the transition.
Common initial conditions {called CIRPs for Common Initial Required Persistences) do not
appear in disjunctions because they are required for all scenarios. When a condition in a
disjunction is required by all scenarios, the transformation X_add_cirp adds the
condition to the list of CIRPs and removes it from the disjunction. The transformation
X_remove_disj removes the disjunction entirely if all the conditions are required for all

scenarios.

Changing Path Constraints

GIRAFFE can change the path constraints of a transition by adding or deleting a
constraint (qualify) or changing the object types of a constraint (generalize/specialize).
Transformations indirectly change the value of scalar attributes (diminish). Figure 35

shows examples of these types of changes.

96

Type of Change Before Change After Change
qualify (add a constraint) | (no constraints) Student enters history
accurately.
qualify (make a Student enters history Student enters history
constraint more accurately. accurately OR Student
complex) responds to confirmation
correctly.
generalize A student doesn't read | A person doesn't read
user's password on user's password on
screen. screen.
diminish Adding a class requires | Adding a class requires
5 time units. 3 time units.

FIGURE 35. Examples of changing path constraints.

GIRAFFE treats path constraints for achievement and safety violation scenarios
somewhat differently. In both cases GIRAFFE minimizes the number of path constraints.
In the case of achievement scenarios GIRAFFE looks for constraints that will assure
successful execution of the scenario, while in the case of safety violation scenarios it looks
for constraints that will prevent execution of the scenario and thus increase satisfaction of
the safety requirement.

Path constraints for achievement scenarios represent assumptions about what
actions an agent in the environment will execute. GIRAFFE ignores all scenarios which
include actions performed by agents in the environment unless there is an explicit
assumption that an agent will perform the action.

For example, for the requirement <add class>, GIRAFFE ignores scenarios with
the action {request add} unless there is a path constraint that assumes an agent will perform
the action. On the other hand, GIRAFFE does not require explicit assumptions about
actions performed by agents controlled by the artifact. GIRAFFE does not require a path
constraint for the action {add class} which is performed by an agent controlled by the

artifact. The transformations X_strengthen_ea_pc and X_add_etyp_to_ea add

97

constraints on actions to achievement requirements. For an example of the application of
X_strengthen_ea_pc, see Appendix C.

In some cases an agent is not required to execute one particular action for a
transition to occur but must execute one of a class of actions. For instance, a student might
be required to request an add either by phone or in person. GIRAFFE characterizes these
requirements by using abstract actions that are more general than the actions used in
scenarios. In this way it can indicate that an agent must execute one of a set of related
actions for the transition to occur.

Path constraints for safety violation scenarios represent assumptions about what
actions an agent will not execute. For example, for the requirement <schedule privacy=,
GIRAFFE derives a path constraint that a student must not tell her password. If GIRAFFE
finds more than one action that must execute for a violation to occur, it creates an AND path
constraint. For the safety requirement <unwanted class> to be violated when there is a
required confirmation, both {requests wrong class} and {confirm wrong class} must
occur. The transformations X_add_pc and X_add_and_pc add constraints on actions
to safety requirements.

GIRAFFE also recognizes constraints on abstract actions for safety requirements.
The transformation X_add_abs_pc might add a constraint to <password privacy>, for
example, that no violation will occur as long as an intruder does not guess a password.
Since GIRAFFE's domain model includes more than one action for guessing passwords,
constraints on abstract actions allow the constraint to be more general.

Fault tolerance (Weber, 1988, 1989) can be analyzed in terms of path constraints.
For example, a requirement can state that students should be able to get advice even ifa
network connection goes down. A transition with a path constraint "Advice system loses
network connection" defines the fault scenario. The constraint is not expected to be true,

and GIRAFFE ignores (for purposes of that requirement) scenarios where it is not true.

98

Changing the Final State

Although there are various possible ways to transform final states of requirements,
GIRAFFE has only one transformation that changes the final state. That transformation
changes the generality of an object type in a requirement. For instance, it could be that a
system originally designed for undergraduates can also be used by graduate students. Then
GIRAFFE would suggest changing the object type from undergraduate to student,

as shown in Figure 36. The transformation X_obj_gen changes object types in

requirements.
Type of Change Before Change After Change
generalize undergraduate knows student knows schedule
schedule

FIGURE 36. An example of changing the final state.

Deriving Related Requirements

GIRAFFE has transformations to derive five kinds of requirements: privacy
requirements, plan support and obstruction requirements, failure requirements, and repair
requirements. When deriving a new requirement, GIRAFFE creates a new initial state,
final state and path constraints.

To derive a privacy requirement, GIRAFFE copies a requirement that contains a
knows condition in its final state. GIRAFFE does not create privacy requirements for
every achievement requirement that has a knows condition it is final state, however. It only
creates privacy requirements when the known information is part of a has_info relation
for a person. Forexample, it will create a privacy requirement for a person’s schedule

but not for information about a course.

99

GIRAFFE changes the type of the new requirement from achievement to safety and

changes the object from the student who has the information to some other person. For

example, <knows schedule> has a condition that a student knows her schedule and is an

achievement requirement. <schedule privacy>, derived from <knows schedule>, has a

condition that an intruder {an arbitrary person) knows a student’s scheduie.

TABLE 4. Transformation rules in GIRAFFE's knowledge base

Name Based on Reaq. Description
Relation
X_add_inits b4 gualification subset | add conditions to the initial state

X _remove_inits

b4 qualification subset

remove conditions from the initial state

X_add_disj b5 qualification make a disjunction in the initial state
strength

X_remove_disj b5 qualification remove a disjunction from the initial state
strength

X_add_cirp b5 qualification adds conditions to the common list and removes
strength them from a disjunction

X_strengthen_ea_ | b4 qualification weaken the constraints on environmental agents

pc subset, bS

qualification strength

X_add_etyp to_ea

b4 qualification
subset, b5
qualification strength

add an action to an environmental agent constraint

X _add _pc

b4 qualification subset

add a constraint on an action

¥X_add_and_pc

b4 qualification
subset, b5
qualification strength

add a constraint on a set of actions

¥X_add_abs_pc

b4 qualification
subset, b5
qualification strength

add a constraint on an abstract (more general)
action

X_obj_gen b3 object generality | change the generality of an object type

derive_privacy privacy derive new privacy requirements

derive_plan_ plan support derive requirements to achieve initial conditions

support

derive_plan_ plan obstruction derive requirements to prevent initial conditions of

obstruct safety violations

derive_failure plan failure derive requirements to prevent failure of
achievement requirements

derive_repair repair derive repair requirements for safety violations

100

To derive a repair requirement, GIRAFFE makes a new requirement with a final
state that is the negation of the final state of a safety requirement. For instance, the final
state of <password privacy> has a condition where an intruder knows a student's
password. <change password> has a negated form of that condition where the intruder
doesn't know the password. The initial state of the repair requirement is basically the final
state of the requirement from which the repair requirement was derived.

To derive a plan-support requirement, GIRAFFE makes an initial condition of an
achievement requirement the final condition of a new achievement requirement. Plan
obstruction requirements are derived in a similar way by making an initial condition of a
safety condition the final condition of a new safety requirement.

GIRAFFE derives failure requirements by negating a condition in the final state of

an achievement requirement and making it the final state of a new safety requirement.

Summary

Table 4 lists the transformation rules in GIRAFFE's knowledge base and briefly
describes each one. Each transformation qualifies a requirement (or removes a
qualification), specializes or generalizes object types in the requirement, or derives a new
requirement. Changes in attributes of requirements are not explicitly made by
transformations. Instead they are recognized when GIRAFFE uses the rating functions in
its knowledge base to analyze transformations. The next section describes GIRAFFE's

rating functions and how it uses them.

Rating Functions

GIRAFFE's purpose is to find the strongest set of requirements satisfied by a given

specification. It uses rating functions to compare requirements according to their strength

101

and their satisfaction. In this section I describe the rating functions implemented as part of

GIRAFFE's knowledge base.
How GIRAFFE Uses Rating Functions

Some of the requirements relations defined in Chapter Il are represented as rating
functions in GIRAFFE rather than transformations. Unlike transformations, rating
functions do not change requirements. Instead they evaluate changes made by
transformations as a way of helping the client choose the transformations to apply.

Because some requirements relations are represented as rating functions instead of
transformations, the transformations are more simple. If there were no rating functions
each transformation would have to include applicability conditions that reasoned about

other transformations, other requirement relations, and other requirements.

«xf397> add a constraint on {give an id} to <transcript_privacy> R#2
Add a path constraint:
+ ACTION {give an id} does not occur.

Rating Summary (Ri#): 2

constrained in other req xis 1 1 | motivated agent t 2
maximum agents 3 0 | minimum agents 1 0
number of scenarios 9 -1 | maximum duration 5 0
minimum duration 1 0 |

FIGURE 37. An example of the display produced by rating functions. The functions have
been applied to a transformation that adds a constraint on the action {give an id} to the
requirement <transcript privacy:.

For instance, suppose that GIRAFFE finds a transformation that adds a constraint
on {tell password} to <schedule privacy>. GIRAFFE uses the applicability conditions to

decide whether the change makes sense or not, but it uses the rating functions to give the

client information about what the best change is. If another transformation leads to a

102

stronger, satisfied requirement, then the change is not the best one. Likewise, if the action
is necessary for other requirements or leads to violation of other requirements, as {tell
password} does, the change might not be the best one. To include all that information in
the applicability conditions would make them interdependent and unnecessarily
complicated. Instead GIRAFFE uses rating functions as a modular way of analyzing and
comparing different transformations.

GIRAFFE's rating functions analyze the requirements produced by transformations
according to various requirements relations and display a summary of the ratings where
each type of rating is given a description and a numeric rating. The total of the numbers is
displayed but the individual ratings are also displayed so that the client can weight them
according to her own judgment and can combine themn with her own domain knowledge.
Figure 37 shows an example of some ratings given by GIRAFFE to a transformation
instance (referred to as x£397) that adds a constraint on the {give an ID} action to the
<transcript privacy> requirement. For additional examples of the ratings that GIRAFFE
gives to transformations, see the trace examples in Appendix C.

The requirements relations described in Chapter ITI that deal with attributes are used
as preferences rather than constraints and so are represented as rating functions. GIRAFFE
does not change attribute values directly but uses attribute values to help decide among
transformations. The reasons for taking this approach are that GIRAFFE's attribute values
are not precise and so are given less weight than more exact values would receive, and that
GIRAFFE's method of finding scenarios has limited abilities of finding scenarios with

attributes that have a certain value.

Description of GIRAFFE's Rating Functions

GIRAFFE has requirements that evaluate the requirements produced by

transformations according to their satisfaction and their strength. To evaluate the strength

103

of requirements, GIRAFFE uses global and local rating functions, which I define in this
section. Table 5 summarizes GIRAFFE's rating functions.

To compare transformations according to satisfaction of requirements, GIRAFFE
looks at the number of scenarios that are possible for a requirement. If there is one
scenario for an achievement requirement then GIRAFFE considers the requirement
satisfied, and if there are no scenarios for a safety requirement then GIRAFFE considers
the requirement satisfied. All else being equal, GIRAFFE rates transformations that satisfy
a requirement higher than a transformation that does not satisfy the requirement. The rating
function based on requirement satisfaction is called R_satisfaction.

To compare requirements according to strength, GIRAFFE's rating functions use
the requirements relations discussed in the preceding chapter. The following paragraphs
describe how those relations are implemented in the rating functions.

GIRAFFE has two types of rating functions: global and local. Local rating
functions evaluate a transformation only in terms of the requirement that it affects. Global
rating functions look at all the requirements in a set to evaluate the transformations for each
requirement. The distinction between global and local rating functions is important because
global rating functions are affected by the order of requirements transformation. When
GIRAFFE derives new requirements, such as privacy requirements, it indirectly affects the
rating of transformations. For instance, a transformation to put a constraint on the action
{tell password} gets a lower rating when there are fewer privacy requirements than it does
when there are more privacy requirements. Therefore giobal rating functions might appear
inconsistent and so are distinguished from local rating functions.

GIRAFFE's global rating functions look for common path constraints and for
inconsistencies between path constrains of safety requirements and achievement

requirements. Common path constraints are rated higher because they are weaker

104

constraints and therefore give stronger requirements. Common path constraints also lead to
simpler requirements.

GIRAFFE considers path constraints inconsistent when a path constraint for an
achievement requirement conflicts with a path constraint for a safety requirement. For
instance, one way for a student to register for a class would be to tell another student her
password and then have that student register for her. To consider that a relevant scenario
GIRAFFE would have to add {tell password} to the list of actions performed by agents in
the environment. On the other hand, the safety requirement <transcript privacy> can be
violated by scenarios that include {tell password} so GIRAFFE would suggest a path
constraint that {tell password} should not occur. <add class> requires {tell password} for
a certain scenario and <transcript privacy> prohibits it, so the two requirements conflict.
GIRAFFE allows the client to leave the conflict unresolved. It points out the conflict and
gives lower ratings to the transformations as a way of helping the client to state more
consistent requirements. For an example of how the G_not_etyp_xfs rating function
shows inconsistencies, see Appendix C.

The rating function R_scenarios rates transformations on the number of
scenarios that are possible after the transformation is applied. Achievement requirements
with more scenarios are given higher ratings than those with fewer scenarios. This rating
function is based on rule hl for the IS-H-STRONGER-THAN relation described in the
previous chapter.

The rating function R_number_of_agents rates transformations based on the
number of agents required to achieve a desired state. Achievement requirements with fewer
agents are given higher ratings than those with more agents. This rating function is based
on rule h3 for the IS-H-STRONGER-THAN relation described in the previous chapter.

Since the number of agents required varies from one scenario to another, and since

there is often more than one scenario for a requirement's state transition,

105

R_number_of_agents bases its rating on the minimum number of agents and the
maximum number. For example, in <get school info> it is possible for a student to buy a
catalog and read the information or to have someone tell her the information. If both
scenarios are possible (and they are the only scenarios) then the minimum number of agents
is 1 and the maximum number is 2. R_number_of_agents deducts from the ratings of
transformations with the highest maximum number of agents and adds to the ratings of the
transformations with the minimum number of agents.

Other rating functions that are based on scenario attributes also vse minimum and
maximum values. R_duration adds to transformations with the lowest minimum
duration and deducts from ratings of transformations that have the highest maximum
duration.

Some rating functions are based on attribute values assigned to actions in the
domain model. R_effectiveness and R_likelihood are based on effectiveness
and likelihood attributes. The likelihood attribute is a heuristic value that describes how
likely an action is to succeed. For instance, {guess easy password} has a higher likelihood
value than {guess hard password), where the first action represents guessing a password
that is a dictionary word or based on a student's name and where the second action
represents guessing a random password. Most actions have the default likelihood attribute
but where a general qualitative statement can be made the action attributes provide a way to
represent it. Similarly, most actions have default effectiveness attributes but a few have

better or worse values.

106

TABLE 5. Rating functions in GIRAFFE's knowledge base. Functions whose name
begins with 'G' are global rating functions; the others are local rating functions

Name Based on Reaq. Description
Relation
G_etyp_xfs b5 qualification increase rating for common constraints
strength, simplicity
G_new_ea_ b5 qualification decrease rating for action constraints in
conflicts strength achievement requirements that are inconsistent

with constraints in safety requirements

G_not_etyp_reqgs

b5 qualification
strength

decrease rating for action constraints in safety
requirements that are inconsistent with existing
constraints in achievement requirements

G_not_etyp_xfs

b5 qualification
strength

decrease rating for action constraints in safety
requirements that are inconsistent with proposed
constraints in achievement requirements

R duration

b1 attribute rule

award or penalize based on duration of scenarios

R_disj_dur

b5 qualification

award or penalize based on duration of new

strength scenarios

R_triv_disj b5 qualification penalize trivial disjunctions
strength

R_satisfaction a1l requirement increase ratings of transformations that produce a
subset satisfied requirement.

R_pc_generality | b5 qualification give AND path constraints higher ratings
strength

R_ea_etyps

heuristic version of b4
gualification subset

decrease ratings of transformations that require
more actions

R_scenarios

h1 scenario count

award or penalize based on number of scenarios

R_number_of_
agents

h3 fewer agents

award or penalize based on number of agents

R_pc_motivated_
agent

h2 motivated agents

increase ratings if agent is motivated

R_effectiveness | b1 attribute award or penalize based on effectiveness of
actions in scenarios
R_likelihood b1 attribute award or penalize based on likelihood of scenarios

R_obj_generality

b3 object generality

award or penalize based on generality of object
types

R_init_pers

b5 qualification
strength, heuristic
version of b4
qualification subset

award or penalize based on number of initial
conditions

Rating functions can incorporate domain-specific information, The

R_init_pers function rates transformations according to the number and kind of

conditions they require in the initial state. It gives higher ratings to transformations where

107

required conditions can be produced by actions in the artifact’s specification or in the set of
possible actions for the domain. It also uses domain-specific information about the
likelihood of conditions occurring. For instance, in the academic registration domain,
students are more likely to have phone access than terminal access. R_init_pers uses

that domain-specific information to rate transformations.

Summg Y

GIRAFFE uses applicability conditions to decide which transformations are
possible. In evaluating applicability conditions, the program considers what scenarios are
possible for a requirement's transition and for similar transitions. It also considers whether
or not the requirement is satisfied so that it can avoid weakening a requirement that is
already satisfied or strengthening a requirement that is not satisfied.

The effects of GIRAFFE's transformations include adding and deleting conditions
in the initial state of a transition, adding and deleting path constraints on actions, and
generalizing or specializing object types in the transition. In addition to transforming
individual requirements, GIRAFFE sometimes derives new requirements based on privacy,
plan support and obstruction, failure and repair relations.

GIRAFFE's rating functions incorporate domain-independent requirements
relations and domain-specific information. Some rating functions are global in that they
look at transformations on other requirements, and some are local because they only
compare transformations for one requirement.

GIRAFFE's knowledge base of transformations and rating functions allows it to
determine what changes in requirements are possible and evaluate those changes with

respect to strength and satisfaction of the resulting requirements.

108

CHAPTER V
FINDING SCENARIOS
Introduction

GIRAFFE depends on scenarios to perform its analysis of requirements
transformations. In this chapter I describe GIRAFFE's representation of general scenarios
and its method for finding them.

GIRAFFE uses MOPIE, a modified version of a planner called OPIE, to find
scenarios using Al planning techniques. I show how MOPIE differs from OPIE and other
planning programs in the kinds of operators that it uses and the plans it produces.

In the last section I look at other methods for finding scenarios that future versions
of GIRAFFE could use to find scenarios that are difficult for it to find using its current

method. These methods are forward chaining, acquisition and case-based planning.

General Scenarios

GIRAFFE uses scenarios that are a sequence of actions that show how a given final
state can be achieved from a given initial state. GIRAFFE uses scenarios that are
generalized in several respects: they might include more than one path, and the objects are
the most general objects possible.

The general scenario encompasses all known sequences of actions that achieve the
desired state transition. Each sequence of actions is referred to as a path, so general
scenarios in GIRAFFE have more than one path, as shown in Figure 38. Different paths
can include the same actions in a different order or different actions. For example, two

paths in a general scenario for <find out schedule> might differ because in one path the

109

student gets a schedule confirmation in the mail and in the other path (shown in Figure 38)
the student uses a phone to hear the schedule information.

The general scenario is described in terms of the most general object types possible.
So, for instance, if it is possible for any person to find out a student's address, then a
general scenario will be stated in terms of a person finding out, not a student. Since
students are a subset of people the general scenario still shows that it is possible for one
student to find out another's address but also gives additional information about non-
students.

In the next section I describe the planning techniques that GIRAFFE uses to find

general scenarios.

Using Planning Methods to Find Scenarios

GIRAFFE finds scenarios by describing a requirement as a planning problem and
then calling a planner to find plans for that problem. Thus, the issues discussed in this
section are how to describe requirements as planning problems, and what planning
techniques to use.

The planning program, OPIE (Anderson & Farley, 1988, 1990; Anderson, 1993),
uses means-ends analysis to find a partially-ordered set of actions that can achieve the final
state of the planning problem from the initial state. GIRAFFE uses a slightly modified
version of OPIE to find plans. 1 will refer to the modified version of OPIE as MOPIE.

110

initial state of a requirement's transition

a condition produced by describe operators

Abigail's schedule is in the registration
program's database.

one path in the general scenario
- R

Abigail gets a phone
connection.

Abigail requests a
schedule listing by
phone.

The registration
program gives Abigail's
schedule by phone,

\ Y,

Abigail knows her schedule.

final state of a requirement's transition

KEY
= describe operator o = state

= action [1 = condition
points from state to points from actions to state
actions that requires containing conditions .
conditions in that state produced by those actions

FIGURE 38. A general scenario. The actions in one path of the scenario are shown
enlarged. The describe operators produce some conditions used by actions in the path.
The state produced by describe operators is considered the initial state of the path and is
used to find transformations for the initial state of the requirement.

111

A planning problem consists of a goal (or final) state and an initial state. A solution
to the problem is a plan, or sequence of actions, that produces every condition in the goal
state, where every condition required by an action is in the initial state or is produced by an

earlier action in the plan.

INITIAL STATE
Abigail has phonccss.

Abigail's schedule is in the registration |
program's database. |

KEY
1 =condition

0 = state

FINAL STATE

FIGURE 39. A planning problem.

To solve a planning program, OPIE chooses a condition in the final state and
checks to see if it is produced by some action. If so, OPIE continues to the next condition
in the final state, repeating the process until each condition is produced by some action.

When OPIE finds a condition that is not produced by any action in the plan, it adds
a new action to the plan that produces that condition. To choose which action to add, OPIE
uses the condition as an index into its hierarchy of actions. It adds the most general action
possible to the plan and then specializes the action later as necessary.

For each action added to a plan, OPIE must ensure that the action's preconditions

are satisfied. Thus, the preconditions of each action become subproblems that OPIE also

112

must solve. OPIE solves these subproblems in the same manner as it solves the original
problem: by adding actions to the plan that produce necessary conditions.

OPIE treats the initial state as an initial producer, a special kind of action that has no
preconditions. Without the initial producer, OPIE would usually have an infinite number
of subproblems tc solve, since most actions have preconditions and thus would lead to
further subproblems that could not be solved without adding additional actions. Thus it is

important for OPIE to have the initial state specified in the planning problem.

Describing Planning Problems

As input, OPIE is given a planning problem consisting of a goal state, an initial
state, and a set of operators. The operator set specifies the actions that the planner can
include in the plan. The operator set that GIRAFFE gives to OPIE comprises the capability
set of the specification plus the capabilities of the artifact's environment. The operator set
also includes a set of describe operators used to define initial states.

In the next two sections I describe how GIRAFFE uses a requirement definition
and domain knowledge to define the initial state and final state of a planning program.
Although GIRAFFE represents requirements in a form that is basically a planning problem,
GIRAFFE must transform the representation in some ways before giving a requirement to
the planner as a problem to be solved. Some of the changes are changes to the
representation are changes in the problem itself and some are changes that affect the

operators used by the planner.

Final States

GIRAFFE uses three methods to create final states of plans. It retrieves final states

as part of the standard initial requirernents stored in the domain model, it derives final states

113

when deriving new requirements using its related requirements transformations, and it
accepts final state descriptions from the analyst.

GIRAFFE's knowledge base of initial requirements provides it with many final
states for planning problems. Since GIRAFFE can refine requirements during the course
of requirements engineering, requirements can be stored in a very general form and then
adapted, with the help of the analyst, to a specific problem. For final states, the adaptation
takes the form of modifying object types to make the final state more or less general. For
instance, what begins as a requirement for undergraduates to find out their schedules might
end up as a requirement for students to find out their schedules.

When GIRAFFE derives related requirements such as privacy, plan-support and
repair requirements, it creates new final states. For instance, GIRAFFE might derive a
final state of a safety requirement where an intruder knows a student's schedule. The
transformations described in Chapter IV provide the information that GIRAFFE needs to
derive that kind of final state.

GIRAFFE can accept requirements that describe final states from the analyst, but
such requirements must be stated in GIRAFFE's formal requirement representation

language.
Initial States

Conventional Al planning programs use a fully-specified initial state. All relevant
initial conditions are listed in the representation of the initial state. Rather than listing all
initial conditions in the initial state of the planning problem, GIRAFFE uses a special kind
of operator called describe operators to help it find plausible initial states.

Unlike other operators in MOPIE's operator sets, describe operators do not
represent actions. Instead they describe a set of conditions that commonly occur in a

domain. They are called "describe” operators because the conditions they produce have a

114

common object. For instance, describe system produces conditions that represent a
certain type of system (see Figure 40). The conditions might be that the system can do I/O
at certain terminals, that the system has access to the registrar's database, and so on.

To MOPIE, describe operators are no different than other operators used in
planning. When MOPIE is looking for an operator to produce a particular condition, it
considers the describe operators in its operator set in the same way that it considers
other operators that represent capabilities of the artifact or its environment.

For example, suppose MOPIE has a problem where a goal or subgoal is a condition
"Abigail's schedule is in the registration program's database.” Such a subgoal might arise
if MOPIE were solving a planning program like the one shown in Figure 39. The
condition could be in the initial state, or produced by an earlier action in the plan. If not,
then MOPIE adds an operator to the plan that establishes the condition. The operator could
be {enter student's schedule} or it could be a describe operator that describes students and
produces conditions such as "The student's schedule is in the registration program's
database."

Since many scenarios include actions where a student's schedule is in the database,
it is not worthwhile for the planner to find plans that establish that condition every time it is
required for a plan. Each time the planner found such a plan it would be spending
resources on a problem that had been solved before, instead of solving more relevant
problems.

One way to avoid having the planner repetitively solve the same problem is to
include those conditions in the initial state of the problem. This is the method that
traditional Al planners use to focus planning efforts on the real problem: if the plan for
establishing that condition is not interesting, the condition is included in the initial state.
Then the planner does not have to add more actions to the plan to make the condition true,

and the planner does not do repetitive or irrelevant work to establish the condition.

115

However, there are several problems with that approach. First, it relies on the
client to completely specify the initial state. If the client forgets to include the condition
"Abigail's schedule is in the registration program's database" in the requirement, even if it
is usually true, then the planner will not find many relevant plans that are made possible
when that condition is in the initial state.

A second problem with adding conditions to initial states is that the conditions that
are true of some types of objects are not true of others. Students are likely to have
schedules in the registration program's database; staff and faculty are not. This kind of
distinction 1s important to GIRAFFE because it considers various object types for objects in
requirements and the initial state must reflect the type of an object. The fully-specified
initial states used by tradition planning programs do not have the ability to vary initial states
in this manner.

One purpose of describe operators is to distinguish between objects in a
domain. An operator describing a student represents the fact that the student wants to take
classes, has transcript information in the registrar's database, and so on, whereas faculty,
staff and other subtypes of person do not. Because describe operators represent this
kind of information, they are a good application for knowledge acquisition techniques that
acquire classification information. In particular, repertory grids (Boose, 1986) would be a
good way to provide automated support for creating the describe operators in a domain
model and for creating problem-specific describe operators. The current version of
GIRAFEFE uses describe operators in its domain model but provides no automated
support for creating domain models or for using problem-specific describe operators.

Another problem with adding initial conditions is that some conditions might be
related. A student might have terminal access, but only if she is at school. Likewise, she

might not have phone access at school the way she does at home. GIRAFFE's describe

116

operators provide a way to group related initial conditions together, so that a single
condition will not be inappropriately added to an initial state,

A fourth problem with adding conditions to the initial states of requirements is that
in some cases they might not be true. Adding a condition to an initial state is a way of
making an assumption. In cases where the assumption is not valid, the planner's results
will be misleading.

Describe operators produce conditions that are assumptions about an initial state:
that the system will have a connection available, for instance. These assumptions are very
useful because they let GIRAFFE find interesting scenarios without making. it repeatedly
find the plans that set up the conditions produced by a describe operator. On the other

hand, these assumptions can be dangerous because they will not always be true.

name: describe system
description: describe a program
objects: programl databasel terminall locl

consumed conditions:
programl is a program (system} that has not been
described

used conditions:
terminall is a terminal

produced conditions:

programl has access to databasel
programl has a connection available
programl can do 1/0 at terminall
terminall is not in use

terminall is at location locl

attributes: describe

FIGURE 40. A describe operator.

GIRAFFE addresses the dangers of assumptions in two ways. First, it explicitly

states them as assumptions when necessary. It does this by adding the conditions to the

117

initial state of the relevant requirement. Thus the assumptions are brought to the attention
of the analyst, who must approve whatever transformations GIRAFFE makes, and thus
they are recorded explicitly so that they can be evaluated when the environment of the
artifact changes.

The second way that GIRAFFE addresses dangers of assumptions is by deriving
plan support and plan obstruction requirements. In analyzing a plan support requirement,
GIRAFFE looks at plans that will make a condition hold and can analyze specification
changes in terms of that. Similarly, in analyzing plan obstruction requirements, GIRAFFE
looks at scenarios that can make assumptions not true. For instance, a network failure
scenario might cause programl to not have access to databasel. By deriving and analyzing
a plan obstruction requirement for that condition, GIRAFFE can help the analyst determine

the usefulness of a given assumption.

The Planner and Its Results

The plans returned by MOPIE differ from those produced by OPIE in two respects.
They include multiple paths, and object types might be more general or more specific than

those in the original planning problem.

Paths

Unlike OPIE, MOPIE does not stop looking for plans once it has found a plan that
achieves the specified final state. Instead it keeps looking as long as it still has viable
options for plans. This modification causes two problems because there are an infinite
number of plans and it is possible to find duplicate plans.

The problem of infinite numbers of plans is addressed by setting time limits for the
planner. Setting the right limits is important because GIRAFFE calls on OPIE to find a

large number of plans so the effects of mistakes are multiplied. If the limit is too high then

118

OPIE might waste time considering useless possibilities. If the limit is too low then OPIE
might not find interesting scenarios.

Two heuristics that address the question of limits are:

L 4 Give more time to finding scenarios for safety requirements. This heuristic
is based on observation of MOPIE's performance in GIRAFFE's domain of on-line
registration. The heuristic is implemented by assigning & higher default value to time limits
of safety requirements than to other kinds of requirements.

¢ Give more time to finding scenarios for more important requirements. This
heuristic is not automated. The analyst (GIRAFFE's human user) must allocate time
according to his or her estimation of the importance of requirements. GIRAFFE provides a
means to record the time limit as an attribute of a requirement.

Another mechanism that addresses the problem of infinite plans in MOPIE is
pushing constraints into the planner. GIRAFFE uses various constraints to filter out plans
that are not interesting for a particular requirement. Constraints that are applicable for all
requirements are pushed into the planner so that OPIE will not consider plans that violate
those constraints.

The problem of duplicate plans is a difficult one. MOPIE rejects duplicate plans
when it discovers them. However, many plans differ only in trivial details but are not
detectable as duplicates by MOPIE. For instance, if the order of two actions is reversed in
two different plans, MOPIE still considers them to be distinct plans. Considering all
possible orders of operators makes the duplicate-checking process more expensive and

could also make MOPIE discard plans where the difference in order is significant.

119

Object Types

GIRAFFE generalizes object types when converting a requirement to a problem
statement. Rather than using the object types specified in the requirement, GIRAFFE
replaces each type with the most general type, called thing. This allows OPIE to find
plans that are more general than it would otherwise find.

For instance, suppose that <transcript privacy> is originally defined as "a student
should not be able to find out another student's schedule." GIRAFFE replaces the object
type student with thing, as shown in the left side of Figure 41. During the course of
planning, the planner propagates constraints and thereby specializes the object type from
thing to the most general type possible for a given plan. Some plans for <transcript
privacy> might be executable by any person, a more general class, and some might be
executable by undergrad, a more specific class. The right side of Figure 41 shows a

case where there is a net generalization.

thing thing
7/ '\ f / N\
person course .. / person course
VAN VAN
student staff .. student staff
Vd N\ 7/ N\
undergrad grad undergrad grad

The arc shows the initial generalization where The dark arc shows a specialization due to

all object types are changed to the most constraints found during planning. The gray
general object type. arc shows the net generalization of the object
type.

FIGURE 41. Generalization of object types in GIRAFFE.

If the object type in a violation scenario found by the planner is person then
satisfaction of the requirement is weaker because violations can occur in more situations. If
GIRAFFE did not generalize object types before giving the problem to the planner then it
would not be able to find the more general violation. If the object type in a violation
scenario is undergrad then the violation is weaker. MOPIE (and OPIE) would find this

plan even if GIRAFFE did not generalize all objects.

Other Methods for Finding Scenarios

GIRAFFE currently uses planning methods to find scenarios. In this section I
discuss other approaches to finding scenarios, including forward chaining methods,
acquisition methods and case-based methods. These methods complement planning
methods and are more useful than planning for finding certain kinds of scenarios such as
failure scenarios and some complex scenarios given by domain experts. Therefore, future
versions of GIRAFFE might incorporate techniques similar to the ones discussed here.

Previous sections of this chapter describe GIRAFFE's mechanisms for finding
general scenarios. In this section I describe alternative methods. As I discuss each

method, I compare it with MOPIE's planning methods.
Forward Chaining

In this section I discuss methods that use forward-chaining and projection to find
scenarios. Rather than considering what actions are necessary to achieve a final state,
programs that use forward chaining consider what actions are possible given an initial or
intermediary state. Projection is similar to forward chaining in that it considers what
conditions hold after execution of an action.

I describe two programs in this section. The first, called SBRE, uses forward-

chaining to find scenarios that can occur from a given initial state. The second program

121

uses projection to determine the possible scenarios that can occur from execution of a given

plan.

Kaufman et al.

Kaufman et al describe Scenario-Based Requirements Engineering (SBRE) which
uses a forward-chaining approach to finding scenarios. Since SBRE has an initial state
given, it has a final-state problem analogous to GIRAFFE's initial-state problem. SBRE
must determine what final states are interesting. It does this by giving control to the analyst
(the program's user)—when there is more than one rule that can fire, the analyst chooses
one. The analyst thus develops one scenario at a time. In contrast to the single-path
process used in SBRE, GIRAFFE considers multiple paths.

In addition to choosing between several rules that can fire, the analyst can enter
values for variables. Entering values in that way allows the analyst to investigate "what-if"
cases. For example, in the on-line registration dornain, the analyst might consider the case
where a network link is down. She would enter the appropriate value for a variable and
then see what actions occurred. Instead of having an analyst enter values, GIRAFFE finds
such scenarios by using environmental actions to produce conditions such as network
down.

Although the SBRE approach does not include generalization mechanisms,
Kaufman (1988) discusses the use of scenario coverage techniques which play a similar
role in some respects. GIRAFFE attempts to find scenarios that cover the most general
objects possible, while SBRE attempts to show that all relevant object types (for example)
are covered by scenarios. SBRE increases the number of scenarios where GIRAFFE tries
to increase the scope of a general scenario.

SBRE's scenario-generation program is useful for analyzing "what-if" cases but is

less effective for analyzing "how-could" cases. If the analyst wants to see whether a

122

certain state can occur, she must enter values and select rules that she thinks will lead to that
state. GIRAFFE can use the planner to find many "how-could" cases, but others are more
difficult. For example, if a client wants to know whether it is possible for a student to
correctly execute a series of actions and still not be registered for a class, then neither
GIRAFFE's planning methods nor SBRE's forward-chaining are suitable. One way to

find such scenarios is projection.

Hanks

Hanks (1990) describes a program that projects plans with actions that have
probabilistic outcomes. Each action's effects are described in terms of one or more
outcomes with a probability assigned to each outcome. The projector produces scenario
trees with branches to represent undetermined outcomes. Figure 42 shows a simple
example of a scenario tree. There are two branches, where the results of the action are
undetermined. When the student calls the registration system, she might get a busy signal
and might get a phone connection. Since it is not possible at planning time to determine
which condition will occur, there is a branch in the tree.

Each path through the scenario tree is called a chronicle. Since each action can have
several outcomes, producing a full scenario tree is impractical. Instead, the program
bundles chronicles together so that all chronicles within a single bundle have no important
distinctions.

Projection is useful for analyzing problems where the client would like to know
how a plan can fail. The plan failure problem is a difficult one to analyze with a planner
alone because there are an infinite number of ways to not achieve a desired state. Of that
infinite number, only a few plans will be interesting. By using a projector in addition to a

planner, a program can find plans that are "close" to a successful plan but still fail. Close

123

can be defined in terms of how many actions are common to the successful plan and the
failed plan.

Instead of using a projector that analyzes actions with more than one possible
outcome, GIRAFFE could use a projector that analyzes whether or not a particular action
occurs. Such a projector would actually be more like a plan breaker because it would try to
add or delete actions that cause the plan to fail without taking the plan outside given
bounds. For instance, a client might ask if there's any way that adding a class could fail if
a student follows the correct procedure: calling the registration program, logging in, and

entering the class information.

call registration

program
AA—‘_ request add by
has phong connection phone
has class in schedule

FIGURE 42. A plan fragment showing possible outcomes of actions.

add failed

The plan breaker would not remove any of the actions given in the plan. Instead it
would add actions or change conditions to try to make the plan fail. For instance, it might
add an action where another student takes the last seat in the class, thus causing the plan to
fail. Or, it might add an action where the system fails. Thus it would create a new failure
scenario from an existing scenario. This type of plan breaker is not part of GIRAFFE but

could later augment its scenario-finding capability.

124

Acquisition

An alternative to using planning methods or forward-chaining techniques, is for a
program to acquire scenarios from a human. In this section I describe two projects that use
acquisition techniques in requirements engineering. The first program I describe is called
TAMS. It addresses problems in merging scenarios. The second program, called ISAT,

uses a form of explanation-based generalization to generalize acquired scenarios.
Dardenne

Dardenne (1993) proposes a system called TAMS (Tool for Acquiring and Merging
Scenarios) for acquiring scenarios. TAMS is a domain-specific tool used by an analyst to
record and analyze scenarios described by a client. TAMS is based on the idea that people
naturally use scenarios to state requirements and the idea that those scenarios must be
merged or made consistent.

TAMS' representation for scenarios includes actions in the scenario with
combination modes (sequential, parallel, alternative, repetitive and undefined). In addition
to actions, scenarios in TAMS also have an initial state made up of predicates that must be
true for the scenario to execute. Scenario elements, such as actions and predicates, and
scenarios themselves are represented in the meta-model of KAOS (Dardenne, van

Lamsweerde, & Fickas, 1993).

125

A look up course info; call registration program; request add by phone

look up course
number

call registration

program

| _| request add by

phone

B look up course info; go to registrar's office; request add

look up course go to the

request add
number | registrar's office ||

C look up course info; (call registration program; request add by phone) | (go to
registrar's office; request add)

call registration | } request add by
program phone

ook up course

number
go to the request add
registrar's office

FIGURE 43. Merging scenarios in TAMS. Scenarios A and B are merged to produce C.

In merging scenarios, TAMS resolves conflicts between actions and combination
modes. So, for instance, if one scenario described a student registering a class using
phone registration and another scenario described a student registering in person, TAMS
could merge the two scenarios by combining the phone request add and request
add actions (or a longer sequence of actions) with the alternative combination mode, as
shown in Figure 43. GIRAFFE would handle a similar situation by using an abstract
action to represent the choice of actions.

TAMS will also address issues in merging positive and negative scenarios (or

achievement and safety transitions, in GIRAFFE's terminology). GIRAFFE uses global

rating functions to find inconsistencies between the two Kinds of scenarios but does not
create a single scenario that merges the two.

No facility specifically for generalizing scenarios is described for TAMS, although
in some cases a merged scenario can be considered more general than the scenarios from

which it was created.

Hall

Hall's ISAT system (Hall, 1993) acquires scenarios from its user and generalizes
them. ISAT represents scenarios as a sequence of events and observations. It uses
simulation to determine satisfaction of requirements (whether scenarios successfully
execute or not) and so is well-suited for analyzing failure requirements, whereas GIRAFFE
is limited in that respect. For example, if ISAT worked in GIRAFFE's domain, a user
might enter a scenario where a student calls the registration program, logs in and requests
an add. An observation at the end of the scenario would check to see if the class is actually
in the student's schedule.

ISAT uses a form of explanation-based generalization to generalize the scenario. It
does not use hierarchies of objects and actions as GIRAFFE and MOPIE do, so it cannot
generalize object types as GIRAFFE does. Instead it replaces objects with variables in a
way that is guaranteed to be sound. In this context, soundness means that the generalized
scenario will succeed (i.e., the expected observations will occur) in the same situations that
the concrete one will.

ISAT has no abstract action types and so cannot describe scenarios in terms of more
general action types as GIRAFFE can. Furthermore, since the only constraints on
scenarios are observations of state, there is no way to state any path constraints on actions.

ISAT can suggest additional "gap-filling" scenarios and so in some sense reasons

about multiple paths as GIRAFFE does. However, gap-filling scenarios are derived from a

127

scenario's initial state and will not be arbitrarily different from the original scenario. By
contrast, MOPIE can find multiple paths with initial states and actions that are completely

different.

Case-Based Planning

Another approach to finding scenarios is to use case-based planning. This
approach combines acquisition (or some other means of obtaining an initial set of plans)
with retrieval and adaptation mechanisms.

Adaptation techniques include refinement and repair. MOLGEN () was an early
case-based planning program that refined skeletal plans to find executable concrete plans.
Another technique is to adapt concrete plans to a new situation. In this section I describe

CHEF, which uses repair techniques, and SCARE, which uses refinement techniques.

Hammond

Hammond (1989) describes a program called CHEF that uses case-based planning.
CHEEF has a set of concrete plans with general indices. CHEF uses its indices to retrieve
the plan that it considers most relevant and then adapts the plan using its object critics and
repair strategies.

Suppose that CHEF worked in GIRAFFE's domain of on-line registration. In its
initial set of plans it might have a plan called UG-ADD for an undergraduate to add a class
to her schedule. Then suppose that CHEF is asked to find a plan for an undergraduate to
register for a class that requires the instructor's consent. Using its indices, CHEF retrieves
a plan from its case base, such as UG-ADD. Since UG-ADD has no step for the student to
get the instructor's consent, UG-ADD will fail. CHEF's object critics catch this kind of

problem and suggest modifications.

has class in schedule

/ avoids out of \

undergrad town, instr. grad
consent problem
UG- IC VAC G-RESEARCH

UG-ADD

call registration
program

request add by
phone

has class in schedule

get appt. with get routine
instructor instr. consent
meet with call registration
instructor program

turn in consent
form

request add by
phone

go on vacation

call registration
program

request add by
phone

has class in schedule

FIGURE 44, Indices to plans, a la CHEF.

Object critics find problems due to changes in objects in the plan, such as the
change in course types in the example. They do not address problems with goal
interaction, which is the purpose of CHEF's TOPs. For instance, if a student has plans to
travel in Europe and also to register for a class she could use phone registration with
relatively little goal interaction (unless a goal is a low phone bill) but if the class requires
instructor consent the plan requires additional modification and the student might need to
make special arrangements with the instructor before leaving on her trip.

Once CHEF has solved a problem using its repair strategies, it keeps a record of the
problem and solution as a way of anticipating and avoiding future problems of the same
nature. The revised UG-ADD plan, which I'll call UG-IC-ADD, is added to CHEF's
knowledge base of plans.

Because of its bias toward anticipating problems, CHEF sometimes passes up plans
that seem more relevant for plans that are less similar in some respects but have the same
interaction problem. Suppose CHEF had a plan for a graduate to add a research course,
which requires the instructor's consent, called G-RESEARCH in its case base, as shown in
Figure 44. If asked to find a plan, called G-VAC, for a graduate to go on vacation and add
a course, CHEF might pass up G-RESEARCH in favor of UG-IC-ADD because the latter
has the same goal interaction of going on vacation and registering for an instructor's-
consent class.

In some cases the method of retrieving plans because of similar failure indications
seems to lead CHEF to unsuitable choices. In the G-VAC plan, the student might routinely
get permission for a class whereas in the UC-IC-ADD plan the student might have to get an
appointment with the instructor and make other arrangements that aren't necessary in G-
VAC.

Although some of CHEF's capabilities would be useful for finding scenarios for

GIRAFFE, its general approach of storing concrete plans and using general indices would

130

not be appropriate because of GIRAFFE's use of general scenarios. An approach that
stores and retrieves general plans is more suited to GIRAFFE because of GIRAFFE's use
of general scenarios. CHEF requires concrete plans as solutions to problems, so it would
have to specialize in every case if it stored general plans. GIRAFFE, however, uses
general plans and so would have to generalize in every case if it stored specific plans.

A further limitation of CHEF's techniques is that they were developed for single-
agent domains such as CHEF's cooking domain. CHEF's problem classifications and
repair strategies don't account for the interactions between agents that are important in other

domains. Two systems that address such issues are described in the next section.

Fickas et al.

Skate (Fickas & Nagarajan, 1988) is another program that uses a case base to find
scenarios. Skate's scenarios include interactions between agents, such as when one person
intimidates or otherwise influences another, Skate's case base in the library domain
includes a scenario where one library patron intimidates another in order to get access to a
book that's checked out. An example in the registration domain could be called "priority
swapping".

In a priority-swapping scenario, a student, Abigail registers for a class that another
student, Basil, wants to take. Abigail has higher registration priority and is thus more
likely to get the class. She arranges with Basil to drop the class just before Basil adds it,
leaving a seat available so that Basil's add is successful. In effect, Abigail gives Basil the
benefit of her higher priority.

Skate has some ability to adapt scenarios but has no way to store new scenarios as
CHEF does. Furthermore, it faces a difficult problem in matching scenarios with
specifications. Helm and Fickas (1992) propose a system call SCARE that uses failure

scenarios to analyze and critique specifications. It overcomes Skate's matching problem by

131

associating abstract failure scenarios with transformations that are used to derive
specifications. When a transformation is applied to the specification, SCARE adds the
abstract scenario associated with the transformation to the relevant scenarios for the
specification. Then it refines the abstract scenario to a scenario that fits the specification
using plan refinement techniques such as those used by MOLGEN and OPIE.

Some scenarios that are difficult for MOPIE to find because of their length or
complexity could be attached to actions in the domain model. For instance, some
registration systems include a department enrollment override that allows a particular
student to enroll even though a class already has a maximum number of students enrolled.
Suppose that Abigail and Basil agree to exchange sections of a class in a scenario that is
similar to the priority-swapping scenario except that both students begin with the same
class in their schedule. If an enrollment override is in effect then when Abigail drops the
class there are no seats available and Basil's add will fail.

Using SCARE's technique of associating failure scenarios with specification
elements, GIRAFFE could associate a general failed-exchange scenario with the enrollment
override action. When the enrollment override action is added to the specification is added
to the specification, GIRAFFE's planner would attempt to refine the general plan and if
successful would find a relevant scenario that would be difficult to find with GIRAFFE's

current methods.

Summary

GIRAFFE uses planning techniques to find the scenarios it uses to transform
requirements. The planner that finds scenarios is MOPIE, a modified version of the OPIE
planner. MOPIE finds plans that are more general than those found by OPIE in that they

include multiple paths and more general (or more specific) object types than those in the

original planning problem. MOPIE also uses describe operators to find relevant
conditions for the initial states of requirements.

Although GIRAFFE currently uses only planning techniques, future versions could
use other methods of finding scenarios. In this chapter I discussed several methods that

other programs use, including forward chaining, acquisition and case-based planning.

133

CHAPTER VI
EVALUATION
Introduction

In this chapter I evaluate the method of requirements transformation defined earlier
in this dissertation. In the first part of the chapter I evaluate the implementation of the
method by showing its ability to rationalize requirements of three existing artifacts. I
describe the three artifacts and GIRAFFE's analysis of them and give two experts'
comments on GIRAFFE's analysis.

In the second part of the chapter I evalvate the generality of the implementation. I
discuss the domain-dependence of GIRAFFE's knowledge base and describe the
characteristics of domains where GIRAFFE can effectively transform requirements.

Evaluation of the implementation provides some evaluation of the method as a set of
general principles and heuristics. In the third part of this chapter I discuss the degree to

which the program's strengths and weaknesses reflect on the general method.

Evaluation of the Implementation

In this section I evaluate the implementation of my requirements transformation
method in the GIRAFFE program. I begin by stating the criteria used to evaluate
GIRAFFE. Then I describe how I consulted two experts to help evaluate the program.

After describing the evaluation criteria and the domain experts, I give the initial
requirements used by GIRAFFE in analyzing three artifacts, referred to here as Artifacts A-

C. Artifact A is a system with no support for phone or terminal registration, Artifact B

134

includes phone registration only and Artifact C includes terminal registration only. 1
evaluate GIRAFFE's transformation of the initial requirements for each artifact.

All three artifacts are {(or were) implemented artifacts. However, GIRAFFE's
analysis of them is based on my interpretation of the systems' documentation and does not
necessarily apply to the actual system. For each artifact I summarize GIRAFFE's analysis
and the transformations that it suggests. Then I discuss the strengths and weaknesses of

the program's analysis.
Evaluation Criteria

The purpose of the GIRAFFE program is to support intertwining by finding the
strongest requirements satisfied by a specification. Ievaluate GIRAFFE according to how
well it accomplishes that purpose. GIRAFFE succeeds in cases where it weakens a
requirement because the requirement was not satisfied by the specification and in cases
where it strengthens a requirement that is still satisfied after the transformation.

GIRAFFE does not succeed in the following cases:

L 2 no representation

When GIRAFFE has no adequate representation for a requirement it cannot analyze
it and therefore fails to achieve its purpose. To analyze GIRAFFE in this respect I discuss

its coverage of requirements issues and asked the domain experts to do the same.
* too weak

If there is a stronger requirement than the one GIRAFFE finds then GIRAFFE has

not found the strongest satisfied requirement.
L tco strong

If the requirement that GIRAFFE finds is not satisfied by the specification then
GIRAFEFE has failed with respect to that requirement.

135

L 2 inconclusive or misleading ratings

In some cases GIRAFFE must rely on human judgment or preference to select
transformations since its abilities to rating requirement strength are limited. In such cases
GIRAFFE fails to fully accomplish its purpose but it succeeds to the extent that it can
separate viable alternatives from superfluous ones.

Next I describe the domain experts and then [evaluate GIRAFFE's capabilities in

terms of the criteria stated in this section.
The Experts

To help in the evaluation of GIRAFFE, I interviewed two people with experience
with on-line registration systems. I will refer to one of the two people as the domain expert
and to the other person as the analyst. The domain expert gave comments from the point of
view of a client. She has participated in defining requirements for on-line registration
systems and general experience in a registrar's office. The other expert gave comments
from the point of view of an analyst and software developer. Most of the analyst's
experience was in other domains but he has spent a year working in the domain of on-line
registration .

I gave each expert a set of transformations from GIRAFFE's analysis, along with a
description of the terminology and notation used in the examples. I also gave them
descriptions of the specifications for each artifact (A-C) and statements of the complete
requirements set before and after GIRAFFE's transformations. The notation for the
examples and requirements sets was a text version of GIRAFFE's formal representation.
Although informal, the notation referred to the types of objects used in GIRAFFE's formal

representation: initial conditions, final conditions, actions, and so on.

136

I asked the experts general questions about their work in requirements engineering
and asked them to answer the following questions as they looked at each example:

1) Is there a requirement, in an example or in a requirements set, that is not satisfied
by the corresponding specification? In other words, is there a requirement that is too
strong?

2) Is there a requirement, in an example or in a requirements set, that is not the
strongest requirement satisfied by the corresponding specification? In other words, is there
a requirement that is too weak?

I also asked the experts to give other comments, including comments regarding:

@ the format of the requirements or the specification summaries
@ issues that should have been addressed but were not
@ issues that are superfluous or given more importance than they deserve

I discuss specific responses by the experts in later sections that describe each
artifact. The expert's general comments were as follows:

- When asked whether requirements change during the course of software
development, both experts described situations where requirements change. The domain
expert told about stages of development where an initial system was enhanced and
requirements changed for each new stage. She described the requirements engineering
process as one of constant change and refinement.

The analyst said that requirements become weaker when a developer discovers that
something is too costly or otherwise impractical to implement. On the other hand, he noted
that they become stronger when the client realizes that additional features are possible.

Both the domain expert and the analyst expressed uncertainty over the concept of
stronger and weaker requirements as used in the descriptions of GIRAFFE's example
transformations. Although they later understood how those terms are used, it was easier

for them to give comments on the changes in requirements in general terms. Therefore in

137

the following sections I give their remarks on various requirements and changes in general
terms rather than in terms of stronger and weaker requirements.

In the next section I describe the initial requirements that GIRAFFE used in its
analysis of all three artifacts, and give comments by the experts on the initial requirements
and missing requirements. Then I describe GIRAFFE's transformation of those initial

requirements for each of the three artifacts.

Initial Requirements

GIRAFFE uses a standard set of requirements to begin its analysis. The initial
requirements are part of the domain-dependent information that GIRAFFE requires. For
each of the three artifacts discussed in this chapter GIRAFFE used the following initial

requirements:

] <add class> achievement

A student should be able to add a class to her schedule for a term.

[| <find out schedule> achievement
A student should be able to find out what classes are in her schedule for a given

term,

[| <unwanted class> safety

A student should not have an unwanted class in her schedule,

[| <get advice> achievement

A student should be able to get advice on what classes to take in a given term for a

given degree.

| <get transcript> achievement

138
A student should be able to get an official copy of her transcript.

[<get transcript info> achievement

A student should be able to find out her academic history.

| <get school info> achievement

A student should be able to get information typically found in the school bulletin
and class schedule, such as registration dates and places, class times and places, degree
requirements, and so on. This requirement represents all such information as a single
abstract information item because distinguishing the various types would add complexity to

the model without demonstrating significant strengths or limitations of GIRAFFE.

[<get help info> achievement

A student should be able to get help with the registration process.

| <inaccurate student info> safety

A student should not have inaccurate information in the school's database, such as
name, phone number, address or other information.

These requirements, as well as GIRAFFE's rules for deriving and transforming
requirements, are based on consultation with domain experts and papers in the proceedings
of a series of conferences on enhancing academic support services (Kramer & Petersen,
1991). GIRAFFE can analyze other requirements that are part of the domain provided that
they are stated in its representation language.

The requirements in the initial set are simple in that their transitions have no
qualifications. There are few initial conditions or path constraints, and those that are

present are necessary to define the transition.

139

In discussing GIRAFFE's requirements and transformations, the domain expert

stated three safety requirements that were missing from GIRAFFE's initial set. Those are:

[] <maximum enrollment> safety

No student can be registered for two sections of the same course.

n <no over-enrollment> safety

No course should exceed its enrollment limit. In Artifact B this requirement is
weakened so that some kinds of classes can be over-enrolled if a department overrides the

limit.

[] <last course> safety

A student cannot drop her last class without going to the registrar's office. Note
that this requirement requires a path constraint: "without going to the registrar's office".
The path constraint is not a qualification that can be removed to make the requirement
stronger. Instead, the path constraint defines a transition of interest and so is a definitive
path constraint.

Although the three additional safety requirements listed above were not in
GIRAFFE's original set of requirements, they can be represented and analyzed using
GIRAFFE's knowledge base. A type of requirement that does not fit well into the
representation is a requirement for Artifact B that a response should be given within two
seconds after a student enters a transaction code over the phone. GIRAFFE can compare
approximate durations but its representation is not well-suited to the kinds of calculations
required to analyze the two second requirement. Its domain model does not have values
sufficiently accurate to determine whether or not such a performance requirement would be

satisfied.

140

Artifact A—No Telephone or Terminal Registration

In this section I summarize GIRAFFE's analysis of the requirements for Artifact A
and discuss the strengths and limitations of that analysis. The specification for Artifact A
does not include capabilities for touch-tone telephone or terminat registration. Students

must be at a specific place to register for classes and make other transactions.

Summary of GIRAFFE's Transformations

In this section I list each of the new requirements that GIRAFFE derived for
Artifact A, except for the failure requirements. Transformations that derive failure
requirements and transformations that weaken or strengthen requirements are too numerous
to list individually so I summarize them after the list of derived requirements.

GIRAFFE derives the following requirements for Artifact A that were not part of
the initial requirements:

PRIVACY

| <transcript privacy>

No one else should find out the information in a student's transcript. This

requirement was derived from <get transcript info>.

[<advice privacy>

No one else should find out advice given to a student. This requirement was

derived from <get advice>.

n <schedule privacy>

No one else should find out a student's schedule. This requirement was derived

from <find out schedule>.

141

PLAN SUPPORT

| <get id>

A student should be able to get an ID card. This requirement was derived from
<get schedule info>,

| <seat available in class>

Classes should have space available in them. This requirement was derived from

<add class>.
REPAIR
| <drop class>

A student should be able to remove a class from her schedule if she doesn't want it.

This requirement was derived from <unwanted class>.

| <change student info>

Someone should be able to update a student's information in the database. This
requirement was derived from <inaccurate student info>.

GIRAFFE weakens the achievement requirements to show that students must go to
a certain place to use most of the functionality of the artifact. For registration transactions
they must be at the registrar's office and to get advice they must be at an advisor's office.

GIRAFFE also weakens the achievement requirements to show that there must be
someone working at the registrar's office (i.e., the office must be open) and the proper
information must be in the registrar's database.

GIRAFFE weakens the privacy requirements by stating that information will not be
private if students tell the information or give documents with the information to another
person. GIRAFFE also indicates that information will not be private if students give their

ID to someone else, lose their ID, or if someone steals their ID.

142

Strengths and Weaknesses of GIRAFFE's Analysis

Although the initial versions of the achievement requirements are similar,
GIRAFFE uses the specification to transform each requirement in different ways. For
example, GIRAFEFE states a stronger requirement for <get schedule> than it does for <get
transcript info> since the specification indicates that students don't have to request a copy
of their schedule but they do have to request a transcript.

In analyzing privacy requirements, GIRAFFE states what constraints must be true
of the environment to prevent violations. It prefers more specific constraints, such as "a
student doesn't tell her transcript information” to "a person doesn't tell someone's
transcript information.” It also prefers constraints on people whose information would be
disclosed over constraints on arbitrary agents in the environment.

An example that shows both the strength and weakness of GIRAFFE's rating
functions is its analysis of path constraints on the <transcript privacy> requirement.
Scenarios that show violations of this requirement include various actions by agents in the
environment and GIRAFFE considers constraints on each of them.

The strength of GIRAFFE's rating functions show in the rating they assign to a
constraint on the {give an id} action, which receives the highest rating of the candidate
transformations. The high rating is due to the fact that in the violation scenarios {give an
id} is performed by the student whose information should be kept private. GIRAFFE
considers such an agent to be motivated to keep information private and therefore gives that
constraint a higher rating than the constraint on {steal an id}, an action performed by an
arbitrary agent with no motivation for preserving the privacy of the information.

GIRAFFE distinguishes between {give an id} and {give a transcript}. The former

is more important because giving an ID can lead to violations of other privacy requirements

143

so GIRAFFE rates the constraint on {give an id} higher than the constraint on {give
transcript}, which is important only for <transcript privacy>.

The limitation of GIRAFFE's rating functions show in the <transcript privacy>
example because GIRAFFE assigns the same rating value to {go to the registrar's office}
that it does to {give an id}. The constraint on {go to the registrar's office} is not justified
by comparison with implemented artifacts because few of them contain restrictions on who
goes to the registrar's office. GIRAFFE decreases the rating on {go to the registrar's
office} because it appears in achievement requirement constraints but increases it because it
appears in violation scenarios of other safety requirements, such as <schedule privacy>.

GIRAFFE is able to rule out some related requirements that are unlikely to be of
interest. For instance, it doesn't suggest privacy requirements for every achievement
requirement because it only looks for those where someone knows information in the final
state. It distinguishes between someone finding out public information, such as school
information, and personal information, such as transcript information. Its ability to rule out
spurious privacy requirements is one of its strengths.

GIRAFFE's ability to derive repair requirements is somewhat more limited. For
instance, in the case of <inaccurate student info> there is no way of satisfying the
requirement short of putting unreasonable constraints on the environment. Because the
requirement is not satisfied, GIRAFFE derives a repair requirement, which is an
appropriate action. However, GIRAFFE suggests two requirements: one where the
information is updated in the school database and one where the student's information
changes. The second is a spurious requirement because it amounts to asking a student to
move back to her old address (for example) and is not reasonable. Currently GIRAFFE
suggests both requirements and relies on human judgment to distinguish between them.

The usefulness of some requirements derived by GIRAFFE is difficult to

determine. One such case is when GIRAFFE suggests a plan-support requirement to

144

achieve the condition seat_available. At first such a requirement might seem
unreasonable since the most obvious way to achieve it is for another student to drop a class
which would help one student at the expense of hurting another.,

One way to partially satisfy the seat-available requirement is the "administrative
drop," where students who don't attend a course that is in high demand are automaticaily
dropped. Another alternative is to derive the related requirement but then weaken it so
that instead of achieving a condition where a student is available it achieves a condition
where students know when a seat becomes available. Such a weakening rationalizes
capabilities which help students find open sections of a class. That transformation would
also rationalize an artifact that notified students when a course was available. Although
Artifact A does not have this capability, a notification capability would be feasible in an
environment where electronic mail is accessible to all students.

The second alternative for satisfying the seat-available requirement is beyond the
scope of GIRAFFE's current domain model and requirements transformations. GIRAFFE
suggests the requirement but in this case relies on human judgment to determine whether it
is relevant. Thus GIRAFFE's ability to assess the usefulness of related requirements
varies from privacy requirements where it is unlikely to suggest superfiuous requirements
to suggesting repair requirements where it does suggest superfluous requirements in at least
one instance.

In discussing transformations that strengthen and weaken requirements, both
experts suggested additional qualifications for <add class>. The domain expert suggested
eligibility to register, registration priority, and several more obscure qualifications. The
analyst mentioned courses that require instructor's consent and fees. The problem of
determining which conditions should be represented as qualifications to the requirements is

an instance of the general qualification problem (Ginsberg & Smith, 1988) in AI. Although

145

it is always possible to state additional conditions, there is a useful set that can be
represented in GIRAFFE's domain model.

The domain expert noted the importance of <schedule privacy> and the other
privacy requirements. Those requirements become even more important when telephone
registration is available. In the next section I look at transformations of requirements for an

artifact that includes telephone registration.

Artifact B—Touch-tone Telephone Registration

In this section I discuss GIRAFFE's analysis of the requirements for Artifact B.
The specification for Artifact B includes capabilities for touch-tone telephone registration.
The specification also includes many of the capabilities of Artifact A, so that students have

the choice of registering by phone or in person.

Summary of GIRAFFE's Transformations

GIRAFFE derives the same types of requirements for Artifact B that it does for
Artifact A. With the inclusion of telephone registration capabilities in the artifact
specification GIRAFFE also derives the following requirements:

PRIVACY

| <password privacy>

No one else finds out a student's password. GIRAFFE derives this as a privacy
requirement but it can also be considered a plan-obstruction requirement because disables a
precondition for plans that violate safety requirements.

PLAN SUPPORT

[<knows password>

A student can find out her password.

146

[<has phone access>

A student can get phone access.

REPAIR

[<repair password privacy>

If someone finds out someone else's password then there should be a way to make
a password private again (by assigning a new one).

In addition to deriving new requirements, GIRAFFE transforms them. In
transforming <password privacy> it suggests constraints on actions where office personnel

tell passwords without checking ID.

Strengths and Weaknesses of GIRAFFE's Analysis

The requirements that GIRAFFE derives are reflected in the implementation of
Artifact B. The importance of the <has phone access> requirement is shown in Artifact B
by the fact that phones for accessing the registration system were placed by the registrar's
office.

GIRAFFE bases derivation of repair requirements on whether or not there is an
action that produces the repair condition. It suggests <repair password privacy> but does
not suggest a "repair transcript privacy” requirement. In the case of passwords there is
such an action, namely {change password} and in the case of transcripts there is no such
action. Thus GIRAFFE makes the right decision in deriving the password privacy repair
requirement and not deriving the transcript privacy repair requirement.

The domain expert noted that password privacy becomes even more important
when additional information is available by phone. She told how one artifact was
developed in stages where transcript information was not initiaily available, When the new

capability for giving grades by phone was added, password privacy became even more

147

important. GIRAFFE's rating functions represent this kind of information by looking at
the number of safety violations caused by a particular action, such as {tell password}. The
program rates constraints on actions that cause violation of more safety requirements higher
than it rates constraints that cause fewer violations.

The domain expert also noted the importance of the plan-support requirement
<knows password>. She gave an example where a student left for Europe and called on
the way but had forgotten his password and so could not register. The registration system
that the domain expert works with, which is similar to Artifact B, allows students to change
their password to something that is easy to remember as a way of preventing that kind of
problem.

The same registration system assigns passwords that are difficult for intruders to
guess, as a means of promoting password privacy. However, the domain expert said that
unauthorized access is uncommon. What is more common is for students to deliberately
give their password to someone else. Violations of password privacy that occur when a
student tells her password to someocne else are preventable by the student, which
GIRAFFE recognizes in its analysis of the requirement.

The domain expert said that phone registration has limitations, such as not having
the capability for students to enter an address or read information, but is still preferable to
terminal-based registration because it allows near-universal access. GIRAFFE shows the
limitations of phone registration in its analysis because it is unable to derive stronger
requirements for <inaccurate student info> (i.e. changing addresses). It shows the strength
of phone registration by deriving stronger requirements for <add class>, etc. In the next
section I discuss how the requirements that GIRAFFE derives for terminal-based

registration differ from those derived for phone-based registration.

148

Artifact C—Terminal Registration

Artifact C is derived from Artifact A by adding capabilities to the specification for
students to register and get information by computer terminal. The specification for Artifact

C does not include phone-registration capabilities.

Summary of GIRAFFE's Transformations

GIRAFEFE derived the same password-related requirements for Artifact C that it did
for Artifact B. It also derives the following requirement that is similar to Artifact B's <has
phone access> requirement:

PLAN SUPPORT

| <has terminal access>

GIRAFFE strengthens the <change student info> requirement because addresses,
phone numbers, and so on can be entered at a terminal whereas it is virtually impossible to
enter such information using touch-tone telephone.

For the <get advice> requirement, GIRAFFE introduces a disjunction in the initial
state when the client adds an action that allows students to enter their transcripts to the
advice program. A student can type in the necessary transcript information if she knows it
or the program can get the information from the database if it has access to the database and

the information is there.

Strengths and Weaknesses of GIRAFFE's Analysis

GIRAFFE's ability to introduce disjunctions in the initial state let it state stronger

requirements than it would otherwise be able to do. Since Artifact C has both terminal-

149

based and non-terminal-based capabilities, many of its requirements have disjunctions in
the initial state that represent the choice of using or not using a terminal to register.

GIRAFFE is able to analyze the implications of object generality. In the
implementation of Artifact C, the registration system supported any terminal supported by
the campus network. The actions in Artifact C's specification accordingly work for any
terminal type. However, GIRAFFE weakened other requirements because of this
characteristic of the specification.

In discussing Artifact C, the analyst noted that <get school info> is stronger for
terminals. The domain expert gave an example of a system that gives schedule and bulletin
information (called "school information" in GIRAFFE's representation) by terminal but not
personal information such as schedules or grades. Both the analyst and the domain expert
noted the importance of maintaining the information.

GIRAFFE's current domain model allows it to strengthen <get school info> more
for a terminal system than for a phone system, but does not represent the maintenance
requirement. However, that requirement would be similar to the <inaccurate student info>

and <change student info> requirements that GIRAFFE's mode! does currently include.

Summary

According to the evaluation criteria stated at the beginning of this section,
GIRAFFE does not succeed when it cannot represent a requirement, when it transforms a
requirement so that it is too weak or too strong, or when its rating functions give
misleading or inconclusive results. In this section I showed how GIRAFFE transformed
requiremnents for three specifications and evaluated GIRAFFE's analysis of the
requirements.

GIRAFFE can represent and analyze many kinds of requirements. However, it is

not well-suited for analyzing performance requirements, other than in qualitative or

150

approximate terms. In particular, the two-second response requirement of Artifact Bis a
difficult one for it to analyze. GIRAFFE's ability to analyze satisfaction of failure
requirements is limited, although it can suggest and represent them.

GIRAFFE's domain model is incomplete. Although any model is an abstraction
and thus not entirely complete, GIRAFFE's model lacks some elements that are within the
scope of its representation. Thus its analysis of requirements for the on-line registration is
somewhat simpler than it should be. GIRAFFE's model does allow it to represent and
reason about a significant number of important issues in on-line registration.

In some cases GIRAFFE derived requirements that were too strong. An example
of that is where GIRAFFE suggested constraints on the action {go to registrar's office}
which was not in fact constrained in the artifacts. In general, when GIRAFFE failed, it did
so by too heavily constraining actions for safety requirements or by missing qualifications
for achievement requirements. The latter is an issue primarily for representation of the
domain model.

GIRAFFE derived privacy requirements, support/obstruction requirements, repair
requirements and failure requirements. In a few cases GIRAFFE derived spurious
requirements, such as the repair requirement that required students to undo their address
changes rather than updating the database, but most of its derived requirements were
useful.

GIRAFFE succeeded by weakening the initial requirements to produce
requirements that more accurately reflect the specifications. It thus shows its ability to
refine general requirements to make them usable in a given situation. It also showed its
ability to support intertwining and specification reuse by showing how requirement
satisfaction changes as a specification changes.

When asked whether requirements change, both experts responded that changes

occur. GIRAFFE provides support for those changes by analyzing requirements

151

transformation. The domain expert also noted the difficulty of anticipating and analyzing
interactions between specification components. GIRAFFE helps analyze interactions
between specification components by stating the effects of specification changes on the

requirements.

Generality of the Implementation

GIRAFEE relies on a domain model to transform requirements. In the preceding
section I discussed GIRAFFE's analysis in the domain of on-line registration. In this
section I discuss its ability to analyze and transform requirements in other domains. First I
describe the kind of domain model that GIRAFFE requires by stating constraints on the
model. Then I consider the domain-dependence of elements in GIRAFFE's knowledge
base. Finally I discuss the characteristics of domains where GIRAFFE is most effective

and characteristics of domains where it is less effective.

Constraints on the Domain Model

GIRAFFE requires a domain model that uses OPIE's (Anderson, 1993) event
representation with several kinds of additional information. One additional kind of
information that GIRAFFE uses is a categorization of actions by agent type. Each event
must be categorized as being an action provided and controlled by the environment (env),
an action provided by the artifact but controlled by the environment (env_agent) or an
action provided and controlled by the artifact (art_agent). GIRAFFE uses this

categorization to decide which actions must be constrained in the requirements.

152

TABLE 6. Requirements transformations and their domain-dependence

Name Type Description Domain Dependence

X_add_inits transformation | add conditions to the | None.
initial state

X_add_disj transformation | make a disjunction in | None.
the initial state

X_remove_disj | transformation| remove a disjunction | None.
from the initial state

X_add_cirp transformation | adds conditions to the | None.
common list and
removes them from a
disjunction

X_remove_ transformation | remove conditions None.

inits from the initial state

X_add_pc transformation | add a constraint on an | GIRAFFE must be able to
action recognize actions that are under

the control of agents in the
environment.

X_add_abs_pc | transformation | add a constraint on an | GIRAFFE requires an abstraction
abstract (more hierarchy showing the generality
general) action of action types in the domain, plus

the same information used for
X _add_pc.

X_add_and_pc | transformation| add a constraintona | GIRAFFE must be able to

set of actions recognize actions that are under
the control of agents in the
environment,

X_weaken_ea_ | transformation | weaken the GIRAFFE must be able to

pc constraints on recognize actions that are under
environmental agents | the control of agents in the

environment.

X_add_etyp_to | transformation | add an action to an GIRAFFE must be able to

_ea environmental agent | recognize actions that are under
constraint the control of agents in the

environment.

X_obij_gen transtormation | change the generality | GIRAFFE requires an abstraction
of an object type hierarchy showing the generality

of object types in the domain.
derive_priv- | transformation| derive new privacy GIRAFFE must be able to

acy to derive requirements recognize subtypes of the knows

related relation, the has_info relation and

requirement

the info object type.

153

Table 6 (Continued)
Name Type Description Domain Dependence
derive_plan_ | transformation | derive requirements | None.
support to derive to achieve initial
related conditions
requirement
derive_plan_ | transformation| derive requirements | Relations must be named in such a
obstruction to derive to prevent initial way that GIRAFFE can recognize
related conditions of safety negated conditions.
requirement | violations
derive_fail- | transformation| derive requirements | Relations must be named in such a
ure to derive to prevent failure of way that GIRAFFE can recognize
related achievement negated conditions.
requirement __| requirements
derive_repair | transformation| derive repair Relations must be named in such a
to derive requirements for way that GIRAFFE c¢an recognize
related safety violations negated conditions.

requirement

For example, the action of a person walking to the registrar’s office is provided by

and controlled by the environment and so belongs to the env category. The action of a

person requesting a transcript display is in the env_agent category because it is provided

by the artifact but controlled by the environment. In other words, without the artifact there

would be no way for a student to request a display, but the student decides when and if she

will execute the action. Displaying the transcript is an art_agent category because a

computer program that is part of the artifact controls the action.In addition to the

categorization of actions by agent, GIRAFFE requires some kinds of objects and

conditions to be represented in a standard way. GIRAFFE can only derive privacy

requirements when it finds conditions of a certain form. The form is that the condition

must be a subtype of a general has_info relation, the agent must be a subtype of the

person object type, and one other object in the condition must be a subtype of the info

object type.

154

TABLE 7. Rating functions and their domain-dependence

Name Type Description Domain Dependence
G_etyp_xfs global rating | increase rating for None.
function common constraints
G_new_ea_con- | global rating | decrease rating for None.
flicts function actions constrained in
other requirements
G_not_etyp_ global rating | decrease rating of None.
reqs function constraints on
required actions
G_not_etyp_ global rating | decrease rating of None,
xfs function constraints on
suggested actions
R_duration local rating award or penalize None.
function based on duration of
scenarios
R_disj_dur local rating award or penalize None.
function based on duration of
new scenarios
R_triv_disj local rating penalize trivial None.
function disjunctions
R_satisfac- local rating increase ratings of None.
tion function xforms that produce a
satisfied requirement.
R_pc_gener- local rating give AND path None.
ality function constraints higher
ratings
R_ea_etyps local rating decrease ratings of None.
function xforms that require
more actions
R_scenarios local rating award or penalize None,
function based on number of
scenarios
R_number_of_ | local rating award or penalize None.
agents function based on number of
scenarios
R_pc_motivat- | local rating increase ratings if GIRAFFE must be able to
ed_ agent function agent is motivated recognize subtypes of the knows
relation, the has_info relation and
the info object type.

155

Table 7 (Continued)

Name Type Description Domain Dependence
R_effective- | local rating award or penalize GIRAFFE requires actions in the
ness function based on domain model to have

effectiveness of effectiveness attributes where
actions in scenarios relevant.
R_likelihood | local rating award or penalize GIRAFFE requires actions in the
function based on likelihcod of | domain model to have likelihood
scenarios attributes where relevant.
R_obj_gener- | local rating award or penalize GIRAFFE requires an abstraction
ality function based on generality of | hierarchy showing the generality
object types of object types in the domain.
R_init_pers local rating award or penalize Uses domain-specific and domain-
function based on number of | independent information.
initial conditions

OPIE, as currently implemented, does not support negated conditions. GIRAFFE
uses a convention of appending not_ to the condition name to represent its negation. Its
notion of negation is simplistic but useful for analyzing several kinds of requirements such
as repair and plan-obstruction requirements.

GIRAFFE uses domain-dependent attributes of actions and conditions in
transformations and rating functions. For example, it uses a likelihood attribute for
qualitative comparisons of different actions where one person guesses another's password.
Attributes of actions and conditions are reflected in scenario and requirement attributes, so
without a representation of those attributes GIRAFFE would not be able to reason about
transformations that affect the attributes of requirements.

Because of the constraints on the kind of domain model can use, creating a new
domain model! is a large investment. However, a domain model can be used for more than
one problem in the same domain, thus amortizing the cost of creating the domain model.
Furthermore, the model can be used for other kinds of analysis, such as those that

Anderson (1993) describes, where OPIE uses such a model to suggest specification

156

changes. Although GIRAFFE's domain model is slightly different than OPIE's, as

discussed in the preceding paragraphs, the differences are relatively minor.
Domain-Independent Transformations and Rating Functions

As stated in a previous section, some of GIRAFFE's transformations and rating
functions rely on information specific to a certain domain, However, many of them are
domain-independent or require information that is relevant in many domains. Table 6 lists
GIRAFFE's transformations and their domain dependence, if any, and Table 7 lists the

same kind of information for GIRAFFE's rating functions.
Other Dornains

Although the application discussed in this chapter is from a single domain, on-line
registration, GIRAFFE can use the same transformations and rating functions in other
domains. GIRAFFE's domain-independent transformations apply to any domain, and
many of its other transformations will apply to related domains.

For example, GIRAFFE's derivation of privacy requirements depends on a
standard representation of some objects and conditions, but that representation is
sufficiently general to be useful in other domains. As one related domain, consider the
domain of a travel reservation system. If there is a requirement for customers to be able to
find out itinerary information, GIRAFFE can derive a privacy requirement from that
requirement. It can also derive and analyze requirements for changes in itineraries or
advice on itineraries in the same way that it analyzes changes and advice on academic
schedules.

GIRAFFE is most effective in domains where an artifact interacts with agents in its

environment. For instance, compilers or numerical analysis programs that are

157

computationally intensive are artifacts with relatively little interaction and GIRAFFE would

thus be less effective for domains with that type of artifact.
Summary

GIRAFFE's knowledge base is mostly domain-independent. However, GIRAFFE
places several constraints on the type of domain model it must have to analyze requirements
in a given domain. GIRAFFE is most effective in domains characterized by interaction
rather than domains where a single agent does its work with little interaction with its

environment.

Evaluation of the Method

The method embodied in the GIRAFFE program is based on the requirements
relations defined in Chapter III. In many cases two requirements (or requirement sets) can
be incomparable with respect to those requirements relations. However, the
implementation and evaluation of the program show that incomparable requirements do not
prevent GIRAFFE from fulfilling its purpose.

GIRAFFE can strengthen and weaken requirements to show how reuse of
specification elements changes satisfaction of requirements. It can also address
intertwining by directly showing how specification changes affect requirements.
GIRAFFE transformed an initial set of general requirements to fit three different
specifications, showing its ability to refine requirements. Thus the abilities of the
implementation show the value of the method.

Although GIRAFFE achieves its purpose in many ways, it is also limited. Some
limitations of the program are inherent to the implementation rather than the general
method. In this section I discuss some of the program's limitations and the degree to

which they are limitations of the implementation or the general method.

158

Limitations in Representation of the Domain

Some limitations in representing a domain are due to a lack of expressiveness in
GIRAFFE's current implementation. Two cases of this are negated conditions and
distinguishing objects, as described in the following paragraphs:

GIRAFFE and OPIE's representation provides little support for prohibited
conditions, or conditions that prevent execution of an action. For example, it would be
useful to describe a te11 action which only occurs if the receiver doesn't already know the
information being told. Representing the action in this way prevents the planner from
finding plans with innumerable sequences of tell actions, all but one of which are
superfluous.

Another way of preventing the problem with tell described in the previous
paragraph would be to provide better ways to distinguish objects in actions, but
unfortunately GIRAFFE and OPIE's representation doesn't currently address this problem.
For instance, OPIE finds plans with nonsensical actions such as when a student tells
something to herself or goes from one place to the same place. (Such actions are
nonsensical not because they could not occur, but because they don't represent interesting
changes of state at the level of the model used by GIRAFFE.)

Other limitations in representing a domain are due to the inherent difficulty of
formally representing an informal system and are not particular to a certain implementation
of GIRAFFE. The general problems of knowledge representation and domain analysis are
apparent in the difficulty of creating GIRAFFE's domain models.

Limitations in Finding Scenarios

Some complex scenarios are important but difficult for OPIE to find using planning

methods because of the worst-case exponential nature of planning. For example, in the

159

computer-security domain, one trojan-horse scenario required over a thousand of OPIE's
planning cycles to discover, whereas GIRAFFE normally allows two or three hundred
cycles. The current implementation of GIRAFFE has no way of discovering such
scenarios since it relies on OPIE to find scenarios. However, the same transformations and
rating functions that apply to the plans OPIE finds can also apply to more complex
scenarios obtained from other sources, so this is a limitation of the implementation rather

than the method.

Compound Specification Changes

GIRAFFE can analyze a specification without taking a specification change into
account, and it can analyze addition or removal of an action from the specification.
However, the current version is not able to use information from complex specification
changes to analyze requirements transformations. For instance, GIRAFFE can analyze
Artifact A and Artifact B and it can analyze changes to either specification but it cannot
analyze a complex change that adds and deletes operators to change Artifact A to Artifact B

in a single change.

Summary

GIRAFFE achieves its purpose when it finds the strongest requirement satisfied by
a specification. In this chapter I evaluated GIRAFFE by showing when it achieved that
purpose and when it did not. I summarized its analysis of three specifications and
compared GIRAFFE's analysis to that of an analyst and a domain expert.

I also evaluated GIRAFFE as a general method by considering its applicability to
other domains. GIRAFFE's knowledge base of transformations and rating functions is
largely domain-independent, allowing it to analyze specifications and requirements in other

domains, provided that it has a domain model.

160

The method is limited by availability of a model for the given domain. Some
limitations of expressiveness are due to the particular implementation and others are due to
the general difficulty of domain analysis and knowledge representation. Despite these
limitations, GIRAFFE achieves its purpose. In the next chapter I summarize GIRAFFE's
abilities and the contributions of this research. I also describe future work which addresses
some of the limitations discussed in this chapter and considers further research in

requirements transformation.

161

CHAPTER VI

CONCLUSION

Introduction

In the final chapter of this dissertation I summarize GIRAFFE's contributions and
limitations. In describing GIRAFFE's limitations I suggest ways of extending GIRAFFE

to address some of those limitations as possible future work.
Contributions

The main contribution of this work is the definition of the IS-STRONGER-THAN
relation and its incorporation into GIRAFFE's knowledge base as a set of transformations
and rating functions. GIRAFFE's knowledge base includes transformations that
strengthen and weaken requirements by adding and removing qualifications and by
generalizing or specializing object types. GIRAFFE can also change reguirements by
modifying values of attributes, although it does not use exact values for most attributes.

GIRAFFE can use its knowledge base to incrementally strengthen or weaken
requirements and state the strongest requirement satisfied by a specification. GIRAFFE's
ability to stretch requirements in this way helps the client avoid the problems of unsatisfied,
impractical requirements and unnecessary weakening. In this research, I have applied
work in dimensions to the problem of requirements engineering and extended it to include
qualifications stated in terms of actions and conditions in addition to sets of attributes and
values used in other work. GIRAFFE also use object type generality in comparing and

transforming requirements.

162

GIRAFFE's transformations allow it to suggest new requirements derived from
previously stated requirements. By applying planning research in goal relations to
requirements engineering, I have developed a set of transformations to derive plan-support
and plan-obstruction requirements, repair requirements, failure requirements and privacy
requirements.

In addition to GIRAFFE's knowledge base, another contribution of this work is
GIRAFFE's use of general scenarios and its method of finding them. Rather than finding a
single plan that achieves a stated goal from a completely specified initial state, GIRAFFE's
planner (a modified version of the OPIE planner called MOPIE) can find multiple plans
from a partially specified initial state. Using OPIE's constraint propagation features,
MOPIE can find plans with more specific object types, and by generalizing object types
before planning begins it can find plans with more general object types. Thus MOPIE can
find plans that are generalized in three respects: object types, multiple paths and initial state.

These contributions provide the means for improving the requirements engineering
process by using requirements transformation to address intertwining, improve evaluation,
facilitate reuse of specification components, and refine general requirements to make them

applicable for a given situation.

Limitations and Future Work

In this section I summarize some limitations of GIRAFFE and suggest ways of
addressing those limitations in future work. I discuss the difficuity of constructing domain
models, output formats, and problems in finding scenarios, along with future work that

relates to each issue.

163

Constructing Domain Models

One limitation of GIRAFFE is the difficulty of constructing domain models. The
two factors that cause the most difficulty are the formal representation and the size.
Because of the inherent difficulty of formally modelling a system, GIRAFFE (and every
similar program) will always be somewhat limited but there are ways of addressing this
problem to some degree. Two ways to address this problem are creating a more expressive
language for the model and providing automated support for its development.

One possibility for supporting construction of domain models is to help at a
syntactic level. Automation could help with bookkeeping by checking syntax,
summarizing various attributes of the model, and so on.

A more sophisticated tool could use knowledge acquisition techniques to help build
the model. Using repertory grids (Boose, 1986) is one common technique that is well-
suited to defining GIRAFFE's describe operators. An easy-to-use, automated tool
would allow the describe operators to be changed to fit each problem situation more
closely.

Knowledge acquisition techniques that use repertory grids produce rules that can be
used to classify instances. So, for instance, the set of rules might classify (within some
uncertainty parameter) a student who is taking lower division courses, not working on a
thesis, and living on campus as an undergraduate. The attributes and classes are defined
during the acquisition process and then rules are generated from the acquired grid of
values.

GIRAFFE would use grids to produce operators that describe instances. Given an
undergraduate, it could describe the student as taking lower division courses, etc. It would
define subclasses as necessary to account for attributes that do not apply to an entire group,

such as living on campus. Since there would be many subclasses, GIRAFFE's abilities to

164

generalize and specialize scenarios would be important. Some scenarios might be possible
only for students living on campus (perhaps if they have easy access to university terminals
and computers), and some possible for any undergraduate.

A more expressive representation language would also alleviate some of the
difficulty of constructing GIRAFFE's domain models. Rather than stating all actions in
MOPIE's STRIPS-like language, one could use more general descriptions of actions than

listing preconditions and effects.
QOutput Format

GIRAFFE is further limited in that its ability to describe requirements and scenarios
is limited to its own formal representation. The difficulty of reading output from
GIRAFFE makes it unsuitable for use by a client or even a typical analyst. Qutput in other
forms, such as text and diagrams, would allow more people to use it with less training.
Because of the large volume of many software engineering documents, a database form that
could be summarized and queried, or a hypertext format, could provide useful alternatives

to flat text.
Finding Scenarios

GIRAFFE is also limited in that it finds too many and too few scenarios. As
discussed in Chapter V, MOPIE can't find some scenarios because they are too complex.
Other scenarios require actions that are difficult to describe in terms of simple preconditions
and effects. In Chapter V I looked at three possible methods for extending GIRAFFE's
scenario-finding abilities, including forward chaining, acquisition, and case-based
planning.

GIRAFFE finds too many scenarios when MOPIE spends its time finding trivial

variations of scenarios. Since there can be infinitely many plans for some problems, and

165

since GIRAFFE's plan generalization methods lead to even more plans, MOPIE must
constrain the time that it spends looking for scenarios. If MOPIE could more effectively
recognize which differences in plans are trivial it could spend more time on plans that are
more important for GIRAFFE's purposes.

The current version of GIRAFFE has some ways to push constraints into the
planner, but a better facility for doing so would improve MOPIE's abilities in
discriminating between significant and insignificant differences in plans. GIRAFFE can
state path constraints in terms of abstract action types, but those constraints are applied as
filters and MOPIE ignores them when looking for scenarios. If MOPIE had the ability to
use constraints on abstract actions and other constraints during planning, it would find

fewer irrelevant scenarios.

Conclusion

In this dissertation I have presented a method of requirements transformation that is
implemented in the GIRAFFE program. GIRAFFE supports intertwining in requirements
engineering, helps evaluates specifications, promotes reuse of specification components
and allows refinement of general requirements.

GIRAFFE's knowledge base comprises transformations and rating functions that
provide a way to incrementally weaken or strengthen requirements, thus allowing it to find
the strongest requirement satisfied by a specification. GIRAFFE's knowledge base also
allows it to derive new requirements from existing ones using transformations based on
goal relations.

GIRAFFE's limitations include its inability to find some kinds of scenarios, the
difficulty of constructing domain models, and the lack of an easy-to-understand output

format. Future work to address those limitations includes additional methods of finding

166

scenarios, automated support for construction of domain models along with a more

expressive representation language, and output in text, diagrams or hypertext.

167

APPENDIX A
GLOSSARY

action—An action is an event caused by an agent that changes conditions, for example, a
student adding a class to her schedule. Formally, an action is a tuple <capability,
agent, objects,consumed, used, produced> where capability is a symbol
representing the capability required for the action, agent is an object definition,
objects is a list of object definitions, and consumed, used, and produced are sets of
conditions.

agent—a person or program capable of executing actions that change the state of the artifact
or its environment. Examples are a student or a registration program.

analyst—a person or program that assists with requirements engineering but has no
authority to change requirements.

artifact-—a system including software and hardware components. An artifact also includes
roles filled by people.

attribute—An attribute is a pair <attr-name, attr-value>, where attr-name is a symbol, and
attr-value is a number or a symbol. Attributes that GIRAFFE uses include
importance, likelihood, duration and effectiveness.

capability—a specification element representing the means for an agent to change the
conditions that hold in a sitvation. An example is {phone request schedule}. The
formal definition of a capability is:

Definition 2

A capability is a tuple <name, agent, otyps,consumed, used, produced, Super,
Sub> where name is a symbol, agent is a symbol representing an object type,
otyps is a list of symbols representing object types, and consumed, used, and
produced are sets of conditions. Super and Subs are sets of symbols, where
each symbol represents an action type, and are part of a hierarchy of action

types. Q

client—a person who can authoritatively state and change requirements for an artifact,

condition—a relation that holds between zero or more objects at a time specified relative to
a transition or execution of actions in a plan. Formally, a condition is a pair
<relation, objects> where relation is a symbol and objects is a list of symbols
representing the objects that play roles in the relationship.

168

describe operator—an operator used by GIRAFFE to determine what conditions might
plausibly be true in a domain.

final state—the state that holds after a transition occurs.

GIRAFFE—a program that supports requirements transformation. GIRAFFE's
knowledge base is derived from the IS-SSTRONGER-THAN relation and other
relations between requirements.

initial state—a state that holds before a transition oceurs.

object-—an entity in a domain. GIRAFFE uses a symbol, called an object name or
obj_name, to represent an object.

object definition—An object definition is a pair <obj_type, obj_name>, where obj_type and
obj_name are symbols. Obj_type is a symbol representing a type defined in an
object-type hierarchy.

operator—the formalism that a planner uses to represent events that cause a change in
conditions. GIRAFFE defines operator sets for OPIE (a planning program) using
capabilities and describe operators.

path constraint—a statement that a particular action or intermediate condition will not occur
in a transition.

gualification—an assumption required to allow an achievement transition to occur or
prevent a safety transition from occurring. Qualifications can be stated in terms of
initial conditions or in terms of actions that occur in a path. The formal definition of
a qualification is:

169

Definition |
A qualification, g, is defined as follows:
q = qprim | Geomplex
Gprim = Ginit | Gaction
Ginit 2= <q_type, condition>, where q_type is the symbol has_init.
Qaction = <q_type, action_type_name, agent_type_name> |
<q_lype, action_type_name>

where q_type is one of the symbols has_action,
does_not_have_action, or env_action.

Gcomplex *= Gcomplex V Gterm | Grerm
Grerm = Gterm ® Qprim | Qprim
Action_type_name, and agent_type_name are symbols. a

requirements—a high-level description of an artifact. Unlike the functional specification,
requirements are not stated in terms of capabilities and actions. In the method of
requirements transformation described in this dissertation, requirements are state
transitions that the artifact should facilitate or prevent. Names of requirements are
enclosed in angle brackets, such as <find out schedule>.

A requirement is formally defined as a tuple <name, type, O, trans, Q, A, Related>,
where name and type are symbols, O is a set of object definitions, trans is a state
transition, Q is a set of qualifications, and A is a set of attributes. Related is a set of
symbols representing links to related requirements.

requirements engineering—the process of stating requirements for an artifact.

requirements transformation—a method of requirements engineering defined in this
dissertation. In this method, the client states a specification change (or change in
functionality) to an analyst, who responds by telling the client the strongest
requirement satisfied by the specification after the change in functionality.

scenario—a sequence of actions showing how a transition from an initial state to a final
state can occur.

specification-—A description of an artifact in terms of the capabilities it provides.

state—a set of conditions that hold at a certain time relative to a transition or to a sequence
of actions.

170

transition—a change from one state of an artifact and its environment to another. Formally,
a transition is a tuple</C, PC, FC, Scenarios>, where IC and FC are sets of
conditions, PC is a set of path constraints, and Scenarios is a set of scenarios.

171

APPENDIX B
DOMAIN MODEL

This appendix gives GIRAFFE's model for the domain of on-line registration. The
components of the model are the definition of capabilities in the environment, the set of
initial requirements used by GIRAFFE for this domain, and some object definitions.

Definition of Capabilities in the Environment

The first line of each definition is the word def_etyp, followed by the name of
the capability in quotes. The second line is a description of the capability. The third line,
beginning with : o, lists the objects referred to in the capability. Objects in capabilities are
defined by appending a number to the name of an object type, so personl refers to an
object of type person. The first object in the list is the agent.

The list following the keyword : - lists the conditions consumed when an agent
uses the capability to execute an action. Consumed conditions are required to hold before
an action executes and do not hold after the action has executed. Conditions are a list
where the first element is a relation name and the second is a list of the objects for that
condition.

The list following the keyword : = lists the conditions used when an agent uses the
capability to execute an action. Conditions that are used are required for an action to
execute but are still true after the action occurs.

The list following the keyword : + lists the conditions produced when an agent uses
the capability to execute an action. Conditions that are produced are true after the execution
of the action.

In the first capability listed, there is one consumed condition and one produced
condition. In the consumed condition, the agent is in an arbitrary location, and in the
produced condition the agent is at the registrar's office.

The format of describe operators is similar to the format of capabilities that
represent actions, except that they have no agent.

e e e GO SOMEPLACE -===--=—mmmmmm———
{def_etyp "go to registrars office"

:d "a person goes to the registrar's office"

:0 ' (personl locl)

:- '(lat {personl locl)))

:+ '{{at_registrars_office (perscnl)})

:at ' ({duration :val 1) (category :val env))

}

(def_etyp "go to advisors office"
:d "a person goes to an advisor's office*
0 '(personl locl)
- '{{at (personl locl))
{has_appointment (personl)))
:+ '((at_advisors_office (personl)))
tat '({duration :val 1) (category :val env)}
)

(def_etyp "go to terminal room"

:d "a person goes to a place with a terminal®

:0 '{personl locl loc2 terminall)

'{{at (personl locl)))

'{(at_terminal_room (personl))
{has_term_access {(personl terminall}}
(can_see_screen {(personl terminall)})

:at ' {{duration :val 1) {category :val env))

+ 0

F SIS READ SOMETHING FROM PAPER --~=====«-——-

{def_etyp "read transcript doc"

:d "a perscn reads transcript info from a transcript”

:0 '(personl transcript_infol transcriptl)

'({has_transcript (personl transcriptl))
(doc_has_t_info (transcriptl transcript_infel)))

:+ '(({knows_t (personl transcript_infol)})

:at ' ((category :val env})

}

{def_etyp "read schedule doc"

:d “*a person reads schedule info from a schedule listing"

:0 ‘(personl sched_infol schedule_listingl)

'({{has_schedule_listing (personl schedule_listingl)}
(doc_has_s_info (schedule_listingl sched_infol)) }

:+ '{({knows_s (personl sched_infol}))

:at ' ((category :val env})

)]

{def_etyp "read catalog doc"
:d "a person reads school and help info from a catalog”
:0 '(personl school_infol help_infol catalogl}
:= '({has_catalog {(personl catalogl})
{doc_has_c_info {(catalegl school_infol))
{doc_has_h_info (catalogl help_infol)))
:+ ' {(knows_c {personl school_infol))
{knows_h (personl help_infol}})}
tat ' ({category :val env))
)

{def_etyp "info changes"

:d "a person moves, changes name, etc."

:0 '(personl student_infol student_info2)

:- '{{has_student_info (personl student_infol}}}

*((diff_info (student_infol student_info2)}})

'{ (has_student_info (personl student_infe2))
(not_has_student_info (personl student_infol)))

:at ' ({category :val env) (restrict :val 1))}

+

{def_etyp "lose a schedule listing"

:d "a person loses a schedule listing"

:0 '{personl schedule_listingl)

:~ '{{has_schedule_listing (personl schedule_listingl}))

:+ '{{not_has_schedule_listing (personl schedule_listingl})
{lost {personl schedule_listingl)))

:at '{{category :val env) (restrict :val 1))

)

{(def_etyp “"steal a schedule listing”

:d "one person steals a schedule listing from another®
:0 '(personl person2 schedule_listingl)

:— '"{(has_schedule_listing (person2 schedule_listingl)))
'{{diff (personl person2})}

:+ '({not_has_schedule_listing (person2 schedule_listingl})
{has_schedule_listing {personl schedule_listingl))
{stolen (personl schedule_listingl person2)))

:at ' ({category :val env) (restrict :val 1)}

)

(def_etyp "give a schedule listing"

:d "one person gives a schedule listing to another"

:0 '{personl person2 schedule_listingl)}

:- '{{has_schedule_listing (personl schedule_listingl))}
'{{diff (personl person2)})

:+ '{{not_has_schedule_listing {(personl schedule_listingl))
{has_schedule_listing (personZ schedule_listingl})
{given (personl schedule_listingl person2}))

:at ' ({category :val env) (restrict :val 1)}

(def_etyvp “"lose a schedule listing®

:d "a person loses a schedule listing"

:0 '{personl schedule_listingl)

;- '{{has_schedule_listing (personl schedule_listingl)))

:+ '{{not_has_schedule_listing (personl schedule_listingl))}
{lost (personl schedule_listingl)))

tat '{(category :val env) (restrict :val 1)}

)

173

{(def_etyp "steal a schedule listing”

:d "one perscon steals a schedule listing from another"”
;0 ' {personl person2 schedule_listingl)

:- '{{has_schedule_listing {person2 schedule_listingl}))
"{{diff (personl person2)))

:+ '{({not_has_schedule_listing (person2 schedule_listingl})
{(has_schedule_listing {(personl schedule_listingl})
{stolen (personl schedule_listingl person2}})

rat '({category :val env) (restrict :val 1)}

)

(def_etyp "give a catalog"

:d "one person gives a catalog to another”

:0 '(personl person2 catalogl}

:~ '{(has_catalog (personl catalogl)})

'"{(diff (personl person2)])}

'((not_has_catalog (personl catalogl})
(has_catalog (person2 catalogl)}
(given (personl catalogl person2)))

:at ' ({category :val env) {restrict :val 1})

+

(def_etyp "lose an id"
:d "a person loses an id”

:0 ' {personl idl)
:= *(({has_id {personl idl)))
:+ '{({not_has_id (personl idil))
{lost (personl idl)))
:at ' ((category :val env) {restrict :val 1))

}

{def_etyp "steal an ig*

:d "one person steals an id from another"
:0 '(personl person2 idl)

*{(has_id {person2 idl}))

*((Aiff (personl person2))}

:+ '{{not_has_id (person2 idl})
{has_id (personl idl}}
(stolen (personl idl person2)})
:at '{{category :val env) (restrict :val 1))

)

(def_etyp "give an id*
:d "one person gives an id to another"
:0 ' (personl person2 idl)
:- '{(has_id (personl idl))}))
'{(diff (personl person2)})
*{{not_has_id (personl idl})
{has_id (person2 idl}}
(given (personl idl person2)) }
:at '{{category :val env) (restrict :val 1))
)

+

174

175

{def_etyp "lose a transcript"

:d "a person loses a transcript"

:0 '(personl transcriptl}

:- '{({has_transcript (persconl transcriptl}))

:+ '{{not_has_transcript (personl transcriptl})
{lost (personl transcriptl)))

:at ' ({category :val env) (restrict :val 1))

}

{def_etyp "steal a transcript"

:d “one person steals a transcript from ancther"

;0 ' (personl person2 transcriptl)

'{{has_transcript (person2 transcriptl)})

*{{diff (personl person2}))

‘{{not_has_transcript (person2 transcriptl})
{has_transcript (personl transcriptl)}
{stolen (personl transcriptl person2)})

rat ' {{category :val env}(restrict :val 1)}

)

+

{(def_etyp "give a transcript"

:d "one person gives a transcript to another"

:0 '{personl person? transcriptl)

:- '{{has_transcript (personl transcriptl))})

'{{diff (personl personZ}))

'{{not_has_transcript {(personl transcriptl)}
{has_transcript (person2 transcriptl))
{given {(personl transcriptl person2}))

:at ' {{category :val env) {restrict :val 1))

+

{def_etyp "lose a catalog”

:d "a person loses a catalog"

:0 ' (personl catalogl)

:- '(lhas_catalog (personl catalogl)})

:+ '(({not_has_catalog (personl catalogl})

{lost (personl catalogl}) }
:at '{{category :val env) (restrict :val 1))

)

{def_etyp "steal a cataloeg”
:d "one person steals a catalog from another”
:o ' (personl person2 catalogl)
'{{has_catalog (person2 catalogl)})
'{({diff (personl person2})))
'{{not_has_catalog (person2 catalogl))
{has_catalog (personl catalogl})
{stolen {(personl catalogl person2)) }
rat ' {{category :val env) (restrict :val 1)}
}

+

(def_etyp "give a catalog"

:d
:0

+

at

"one person gives a catalog to another"
'{personl person catalogl)
'{{has_catalog (personl catalogl)))
'*{{diff (personl perscn2)})

' {{not_has_catalog (personl catalogl))
(has_catalog {person2 catalogl))
(given {personl catalogl person2)})

'({{category :val env) (restrict :val 1})

----- READ SOMETHING FROM A SCREEN --------

(def_etyp "read transcript info"

:d
10

T+

rat

!

"read a person's transcript info from screen'

' (personl transcript_infol terminall)

'"{{t_on_screen (transcript_infol terminall)}
{can_see_screen (personl terminall)))

'{{knows_t (personl transcript_infel))}
'{{category :val env))

{def_etyp "read schedule info"

:d
Hi o]

T+

sat

)

‘read a person's schedule info from screen”

' (personl sched_infol terminall}

'*{(s_on_screen (sched_infol terminall})
(can_see_screen (personl terminall)))

‘(({knows_s (personl sched_infol}))
'({category :val env))

(def_etyp "read rec sched"

:d
H o]

i+

rat

)

"see a student's recommended schedule for a term"
' {personl rec_schedl terminall)
'"{{r_on_screen (rec_schedl terminall)}
{can_see_screen (personl terminall)))
'{ {knows_r (personl rec_schedl)}}
' {{category :val env))

{(def_etyp "read school info"

:d
Hi]

T4

:at

“read school information from a terminal screen”
' ({personl school_infol terminall)
'*{{c_on_screen (school_infol terminall))
{can_see_screen {(personl terminall)})
' {{knows_c ({(personl school_infol)}))
'((category :val env))

176

177

(def_etyp "read interrupt help info"

:d "read help information from a terminal screen”

:0 ' (personl help_infol line_terminall)

:= '{{h_on_screen {help_infol line_terminall)}
{can_see_screen {personl line_terminall})})

:+ '{{knows_h (personl help_infol})
(_is_+read_line_help))}
:at ' ({category :val env})

)

(def_etyp "read concurrent help info"

:d "read help information from a screen of a window terminal®

:0 '(personl help_infol window_terminall)

:= '({(h_on_screen (help_infol window_terminall))
{can_see_screen (personl window_terminall})})

:+ '{{knows_h (personl help_infol)}
{_is_+read_window_help))

:at '{{category :val env) (effectiveness :val 1))

------------------ TELL SOMEONE --------emmmmmmmme
(def etyp “"tell transcript info"
:d "tell someone else information®
:0 '{personl person2 transcript_infol)
:= '{{knows_t {personl transcript_infol))}
(diff (personl person2)))
:+ '({knows_t {person2 transcript_infol)})
:at ' {(category :val env)}
)

(def_etyp "tell pac"

:d "tell someone else information"

:0 ' {personl personZ pacl)

:= '(({knows_p {(personl pacl))
(diff (personl person2}) }

:+ ' {{knows_p (person2 pacl)))

:at ' {(category :val env))

({def_etyp "guess easy PAC"

:d "person guesses an easy-to-guess PAC"

0 ' (person2 personl pacl)

:= '{(has_pac (personl pacl)}
{is_easy_pac (pacl)))

:+ '{{knows_p (personZ2 pacl))
(_is_+guess_easy_pac))

:at '((likelihoecd :val 1) (category :val env)}

]

{def_etyp "guess hard PAC*

:d "person guesses a hard-to-guess PAC"

:0 '(person2 personl pacl)

:= '{{has_pac {(personl pacl})
{is_hard_pac (pacl)))

:+ ' {(knows_p (personZ2 pacl})
{_is_+guess_hard_pac))
:at '({likelihood :val -1){category :val env))

(def_etyp "forget easy PAC"

:d "person forgets an easy-to-guess PAC"

:0 '(personl pacl)

:= '((has_pac (personl pacl))
{is_easy_pac (pacl))
{knows_p {(personl pacl}))

:+ ' {{not_knows_p (personl pacl))
{_is_+forget_easy_pac))

;at ' {({likelihood :val -1) (category :val env) (restrict :val 1))
}
(def_etyp "forget hard PAC"
:d "person forgets a hard-to-guess PAC"
:0 '(personl pacl}
:= '((has_pac (personl pacl})
(is_hard_pac (pacl))
{knows_p (personl pacl)))
:+ ' ((not_knows_p (personl pacl))
(_is_+forget_hard_pac))
:at '((likelihood :val 1) (category :val env) (restrict :val 1))

jmmmmmm—————————— DESCRIBE THINGS ----=====-———oau-

(def_etyp "describe person”

:d "describe a person®

:0 '[(personl terminall locl)

:- '((_ls_person {(personl)))

‘((_is_anyplace (locl)))

‘((_is_+person (personl))
{at (personl locl})
{has_money {personl))
{(has_phone_access (personl))
(has_term_access (persocnl terminall})
(can_see_screen (personl terminall))} }

:at ' ((category :val describe))

)

+

178

179

(def_etyp "describe student w/ schedule”
:d *describe a student (has transcript, schedule, etc.}"
:0 '(personl transcript_infol pacl degreel termi rec_schedl terminall
sched_infol locl
idl student_infol)
'*{{_is_person {personl})
(_is_transcript_info (transcript_infol))
(_is_id {idl})
(_is_student_info {student_infol))
{_is_sched_info (sched_infol)})
'‘{{_is_terminal (terminall))
(_is_degree (degreel})
(_is_term {terml}}
(_is_pac (pacl})
(_is_anyplace {locl}}
(_is_rec_sched (rec_schedl}) }
'‘{{_is_+student {personl)}
{has_transcript_info (personl transcript_infol))
(has_schedule_info {personl terml sched_infol})
(not_sent_schedule (personl))
(has_rec_sched (personl degreel terml rec_schedl})
(has_student_info {personl student_infol}}
{(is_ID_for (idl personl))
{has_id (personl idl})
{has_pac (personl pacl)}
{_is_uknwn_diff {pacl))
{knows_p (personl pacl)}
{knows_t (personl transcript_infol))
{needs_advisor (personl})
{has_money (personl)}
{at (personl locl})
{has_phone_access {(personl))
{has_term_access {(personl terminall))
{can_see_screen (personl terminall)))
:at '{(category :val describe))
)

+

{def_etyp "describe advisor"

:d "describe an advisor"

:0 ' (personl databasel)

:- '{({_is_advisor (personl)})

'"{(_is_database (databasel)))

*{{_is_+advisor (personl}))
(can_advise (personl))
{has_time_available {personl))
{person_has_access_to (personl databasel)))

:at '{({category :val describe))

)

+

180

(def_etyp "describe registrar worker"

:d "describe an advisor”

o0 '(personl databasel}

- '({_is_registrar (personl)))

'{{_is_database {databasel}))

'{(_is_+registrar (personl))
(works_at_registrars (personl))
(person_has_access_to (personl databasel)))

:at ' ((category :val describe))

)

o+

{def_etyp “describe phone prog"

:d "describe a phone access program"

:0 '(programl databasel)

:= '(({_is_program (programl)})

:+ '{(has_access_to (programl databasel))}
(connection_available {programl})
(can_do_phone_IO {programl)})

:at ' ({category :val describe))

)

(def_etyp "describe database"

:d "describe a database"

:0 '{databasel transcript_infol sched_infol student_infol)

t- '{(_is_database {(databasel)))}

;7 = '((_is_transcript_info (transcript_infol))

; (_is_sched_info (sched_infol})

: (_is_student_info (student_infol)))

:+ '{({db_has_t_in (databasel transcript_infol})
(db_has_s_in (databasel sched_infol)}
{(db_has_si_in (databasel student_infol)})

:at '(({category :val describe))

)

(def_etyp "describe class"
:d "describe a class”
:0 '{classl seatl terml)
- '{({_is_class (classl))
(_is_seat (seatl}))
:+ '(({seat_available (seatl classl terml}})
:at ' {{category :val describe))
}

(def_etyp "describe system”

:d "describe a program"

:0 '{programl databasel terminall locl)

:=- '"{{_is_program {(programl)})

'({_is_terminal (terminall)})

‘{{has_access_to (programl databasel})
{connection_available (programl))
(can_do_terminal_ IO (programl terminall))
(not_in_use (tcerminall})
(terminal_at {(terminall locl)})

:at ' (({category :val describe)}

)

+

i (def_etyp "describe line-terminal system"

;:d "describe a program”

;:0 '(programl databasel line_terminall locl)

;:= '{({_is_program (programl}))

: '{({_is_terminal (line_terminall)))

: '{(has_access_to (programl databasel})

: {connection_available {(programl})

; {can_do_terminal_I0 (programl! line_terminall))
H {not_in_use {line_terminall)}

+

(terminal_at (line_terminall locl)))
i rat ' {{category :val describe)}
D

(def_etyp "describe help info"

:d "describe help info of a program"

:0 '(programl help_infol}

*{{_is_help_info (help_infol)})
‘({_is_program (programl)))

' {{has_help_info (programl help_infol)))
:at ' ({category :val describe))}

+ 0

181

182

Initial Requirement Set

The initial requirements are listed here in the format that GIRAFFE uses to read
requirements from a file. The first line of the requirement definition is the word def_req
followed by the name of the requirement. The second line is a description of the
requirement, which GIRAFFE uses when describing transformed requirements.

The third line is the type of the requirement, where ' good is used to represent
achievement requirements-—desired transitions, and ' bad is used to represent safety
requirement—prohibited transitions.

A list of object definitions follows the keyword : o, where each object definition is
the name of an object followed by the name of an object type. Objects in the requirements
represent arbitrary members of a class. All of the definitions listed here use a similar object
list, although not every definition uses every object in the list.

The lists following the keywords : i and : g (for "goal") define the initial and final
states, respectively, of the requirement's transition. In many cases the initial state is empty;
in those cases, all of the initial conditions used in a scenario are produced by describe
operators.

Some requirements have a keyword : cycles, which is an indication of how
much time the planner should spend looking for scenarios for the requirement.

The first requirement is an achievement requirement with one condition, that Basil
wants to take the class CIS121 in the Winter 93 term, in the initial state. There are two
conditions in the final state, which represent a state where Basil has the class in his
schedule.

jmmmmmmmmm oo REQUIREMENTS -=========mmmmmmmm

{(def_req "add_class"*
:d "A student should be able to add a class."
:r 'good
o '
{abigail person) (basil person)
(registrar_a registrar) (advisor_a advisor)
(cisl2l class) {l2lseat seat)
(basils_trans_info transcript_info)
(basils_sched_info sched_info)
(basils_id id) (basils_transcript transcript)
{basils_st_infe student_info)
{basils_pac pac)
{win93 term) (CIS_BS degree)
{basils_rs rec_sched)
{online_reg program) (reg_db database)
{terminal_a terminal)
{registrars_office loc) (anyplace loc)
)
|
(wants (basil cisl2l1l win%3})
)
g |
(has_schedule_info (basil win93 basils_sched_infao))
(class_in_sched {(cisl21 basils_sched_info))
)]

183

(def_req "find_out_schedule"
:d "A student should be able to find out his/her schedule information."
:r 'good
to '
{abigail person) (basil person)
(registrar_a registrar) (advisor_a advisor}
(basils_trans_info transcript_info)
{(basils_sched_info sched_info)
(basils_id id) (basils_transcript transcript)
(basils_schedule_listing schedule_listing)
(basils_st_info student_info)
(basils_pac pac)
{win93 term) (CIS_BS degree)
{the_school_info school_info) (reg_help_info help_info)
(basils_rs rec_sched)
(online_reg program) (reg_db database)
(terminal_a terminal)
(registrars_office loc) (anyplace loc)
}
5 L
}
:g '{
{has_schedule_info (basil win93 basils_sched_info)}
{knows_s {basil basils_sched_info)})

184

{def_req "unwanted_class”
:d "A student should not have an unwanted class."
:r 'bad
H- TN
{(abigail person) (basil person)
{registrar_a registrar) (advisor_a advisor)
{cisl2l class} (l2lseat seat)
{basils_trans_info transcript_info)
{basils_sched_infoc sched_info)
{(basils_id id) {basils_transcript transcript)
{basils_st_info student_info}
{basils_pac pac)
{win93 term) (CIS_BS degree)
{basils_rs rec_sched)
(online_reg program) {reg_db database)
{terminal_a terminal}
(registrars_office loc) {(anyplace loc)
)
i
(not_wants (basil c¢isl2l win93))
)
g '
{has_schedule_info {(basil win93 basils_sched_info))
(class_in_sched (cisl2l basils_sched_info)}
1)

{def_reg "get_advice"
:d "A student should be able to find out his/her recommended schedule.*
:r 'good
0
{abigail person) (basil person)
{registrar_a registrar) {advisor_a advisor)
{basils_trans_info transcript_info)
{basils_sched_info sched_info)
{basils_id id) (basils_transcript transcript}
{basils_st_info student_info}
{basils_pac pac)
{win93 term) (CIS_BS degree)
{basils_rs rec_sched)
(online_reg program) (reg_db database)
(terminal_a terminal)
(registrars_office loc) (anyplace loc)
)
i
)
:g |
(has_rec_sched (basil CIS_BS win%3 basils_rs))
{knows_r (basil basils_rs}))
i

185

(def_req "get_transcript”
:d "A student should be able to get a copy of his/her transcript®
:r 'good
0 |
(abigail person) (basil person)
(registrar_a registrar) (advisor_a advisor)
{basils_trans_info transcript_info)
(basils_sched_info sched_info)
(basils_id id)(basils_transcript transcript)
{basils_st_info student_info)
(basils_pac pac)
(win93 term) (CIS_BS degree)
{basils_rs rec_sched)
{online_reg program) {reg_db database)
(terminal_a terminal)
(registrars_office loc) (anyplace loc)
}
1 '
}
g '
{has_transcript (basil basils_transcript})
{doc_has_t_info {(basils_transcript basils_trans_info))
3]

{def_req "get_transcript_info"
:d *A student should be able to find out his/her transcript
information."
:r ‘good
=T |
(abigail person) (basil person)
(registrar_a registrar) {advisor_a advisor)
(basils_trans_info transcript_info)
(basils_sched_info sched_info)
(basils_id id) (basils_transcript transcript)
(basils_st_info student_info)
{basils_pac pac)
{win%3 term) (CIS_BS degree)
({basils_rs rec_sched)
(online_reg program) (reg_db database)
(terminal_a terminal)
(registrars_office loc) (anyplace loc)
)
i ' 0)
g '
(has_transcript_info (basil basils_trans_info))
(knows_t (basil basils_trans_info))
)
iipe |
; (not_per (at (basil registrars_office)})

(def_reqg "get_schoocl_info"
:d "A student should be able to find out information about his/her
school®”
:r ‘'‘good
;0 '
(abigail person) (basil person)
(registrar_a registrar) {adviscr_a advisor)
(basils_trans_info transcript_info)
{basils_sched_info sched_info)
{basils_id id) (basils_transcript transcript}
{basils_st_info student_info)}
{catalog_a catalog)
{basils_pac pac)
{win93 term) (CIS_BS degree)
{the_school_info school_infe) (reg_help_info help_info)
{basils_rs rec_sched)
{online_reg program) {reg_db database)
{terminal_a terminal}
{registrars_office loc) (anyplace loc)
)
17 ()
g '
{knows_c (basil the_school_info))
})

{def_req "get_help_info*
:d "A student should be able to find out help information®
:r 'good
0 '
{abigail person) (basil person)
{registrar_a registrar) {(advisor_a advisor)
(basils_trans_info transcript_info)
{(basils_sched_info sched_info)
(basils_id id) (basils_transcript transcript)
{(basils_st_info student_info)
{catalog_a catalog)
(basils_pac pac)
{win93 term) (CIS_BS degree)
{the_school_info school_info) (reg_help_info help_ info)
{basils_rs rec_sched)
{online_reg program) {reg_db database)
(terminal_a terminal)}
(registrars_office loc) {anyplace loc)

i '

)

g '

{knows_h (basil reg_help_info)}
)

}

186

(def_req "inaccurate_student_info"
:d "A student's information should be accurate"
:r 'bad
o ' |
{abigail person) {basil person)
{registrar_a registrar) (advisor_a advisor)
(basils_trans_info transcript_info)
(basils_sched_info sched_info)
(basils_id id) (basils_transcript transcript)
(basils_pac pac}
{win93 term) (CIS_BS degree)
{the_school_info school_info) {reg_help_info help_info)
{basils_st_info_1 student_info)
{basils_st_info_2 student_info)
(basils_rs rec_sched)
{online_reg program) (reg_db database)
{terminal_a terminal)
{(registrars_office loc) (anyplace loc)
}
S |
{diff_info (basils_st_info_1 basils_st_info_2))
{(diff_info (basils_st_info_2 basils_st_info_1))
{has_student_info (basil basils_st_info_1))
{db_has_si_in (reg_db basils_st_info_1}}
{not_db_has_si_in (reg_db basils_st_info_2))
}
g '|
(has_student_info (basil basils_st_info_2})
(not_db_has_si_in (reg_db basils_st_info_2})
)
)

187

188

Object Definitions

{def_otyp "faculty"
:sb ' ({advisor))

(def_otyp “student”
:8b ' (undergrad grad))

(def_otyp "person"
:sb ' (student faculty registrar))

; {def_otyp "person"
; :8b ' (student faculty)}

{def_otyp "document"
:sb '{id transcript schedule_listing catalog))}

(def_otyp "terminal”
:sb ' (window_terminal line_terminal})

(setf *info_otyp*
{def_otyp "info"
:sb '(transcript_info sched_info pac rec_sched
school_info help_info student_info))

)

{def_otyp "thing"
:3b ' (person info program database terminal term degree
database terminal class seat loc document) }

185

The definitions on this page are domain information used to derive privacy
requirements and used with the motivated agent heuristic.

{setf *has_info_objs* '(person transcript_info degree term rec_sched
sched_info pac student_info)}

(setf *has_ptyp*
{def_ptyp "has_info" :o0 *has_info_objs*

:sb ' (("has_transcript_info" (person transcript_info))
("has_rec_sched" (person degree term rec_sched))
{("has_schedule_info" (person term sched_info)}
("has_student_info" (person student_info})
{(*has_pac” (person pac)))}

)

(setf *knows_ocbhis* ' (person transcript_info rec_sched sched_info pac
student_info school_info help_info}}

{setf *knows_ptyp*
(def_ptyp "knows_info" :o *knows_objs*
:sb '({"knows_t" {person transcript_info))}
{"knows_r" (person rec_sched})
{("knows_s" (person sched_info})
{"knows_p" (person pac)}
{("knows_c" (person school_info))
{"knows_h" (person help_info))
¥)

190

APPENDIX C

EXAMPLES

The first section of this appendix gives examples from transcripts of GIRAFFE
sessions. The second section gives examples of capabilities that can be added to a
specification. The third section shows examples of requirements as they are output by
GIRAFFE.

Examples from Traces

These examples from traces of GIRAFFE's execution show three kinds of
transformations: adding constraints to an achievement requirement, adding constraints to a
safety requirement, and making a disjunction in the initial state gualifications.

Detailed Example of Transformations

In this example I show how the <find out schedule> requirement is transformed as
the client changes the specification of the artifact. Figure 45 gives an overview of the steps
described in this example.

(1S) The specification of the artifact is empty, and the only capabilities available
are those present in the artifact of the environment. Some examples of capabilities present
in the environment are the capabilities for people to go from place to place, read documents,
tell information, and so on.

(1R) The initial version of <find out schedule> is the impractical, ideal version
with no qualifications on the initial state or the path:

REQUIREMENT <find_out_schedule> achievement NOT Satisfied
A student should be able to find out his/her schedule information.

Achieve a state where:
{has_schedule_info (basil win93 basils_sched_info})
{knows_s (basil basils_sched_info)}

From a state where:

Constraints on actions:

191

Specification Requirements

(1S) Start with an empty (1R) Start with initial, ideal
specification plus the requirement.

capabilities present in the

environment of the artifact.

1
(2S) Add capabilities for
Artifact A, including the (2R) Weaken by adding
capability {request qualifications about actions by
schedule listing} A agents in the environment and
conditions in the initial state.
(3S) Add capabitities for
Artifact B, including the
capabilities {phone request
schedule listing) and
{get a phone connection}

(3R) Strengthen by making
qualifications on the initial state
a disjunction.

A+B

FIGURE 45. A summary of some specification changes and requirements transformations.

(2S) The client adds the capabilities for Artifact A (the in-person registration
system) to the specification.

(2ZR) When the client adds the capabilities for Artifact A, GIRAFFE transforms
the requirements in two ways: first by adding constraints on actions performed by agents in
the environment, and second by qualifying the initial state.

The constraints on environmental agent actions described in this example are similar
to the first example in Figure 35, where the qualification is an assumption that some agent
in the environment will perform some action. The constraints are suggested by the
X_strengthen_ea_pc transformation rule. (See Chapter I'V for a description of the
transformation rules.) The applicability conditions of the rule are stated in terms of
scenarios, 50 in order for GIRAFFE to decide whether the rule applies it must find out
what scenarios are possible for the requirement’s transition. In this case, no scenarios are
possible without changing the constraint and GIRAFFE applies the rule.

The rule finds two transformations (mstannanons of the rule) that represent
different ways of changing the constraints on agents in the environment. In the first
transformation, an environmental agent (presumnably the student) is responsible for going to
the registrar’s office, requesting a schedule listing and reading the information. In the
second transformation, the student is only responsible for reading the schedule
information. The following output shows how GIRAFFE describes the two
transformations:

192

TRANSFORMATIONS FOR <find_out_schedule>

<xfl8> state assumptions for 3 env. agent actions in <get_schedule_i..
R# -1

Weaken the regquirement by assuming that an agent in the environment will
perform the following actions:

{go to registrars cffice} [request schedule listing])

{read schedule doc)}

Rating Summary (R#): -1
worst_max_agents t | best_min_agents t
max_agents 2 | min_agents 2
number_of_etyps 3 -3 | number of scenarios 2
satisfied by spec? t 1 | worst maximum duration t
best minimum duration t | maximum duration 4
minimum duration 4 |

<xfl7> state assumptions for 1 env. agent action in <get_schedule_in..
R# 0

Weaken the requirement by assuming that an agent in the environment will
perform the following actions:

{read schedule doc}

Rating Summary (R#): 0
worst_max_agents
max_agents

£ best_min_agents

2
number_of_etyps 1 -

t

t

4

|
| min_agents

| number of scenarios

| worst maximum duration
| maximum duration

|

satisfied by spec?
best minimum duration
minimum duration

[~ o O S e

In its descriptions of transformations, GIRAFFE lists the rating functions that are
applicable. For each rating function, the program lists the value for the rating function and
the numeric rating assigned to that value. For example, for the transformation <xf£18>
described above, the "number of scenarios” rating functions has a value 9, meaning there
are nine scenarios possible, and the numeric rating 1, meaning 1 is added to the total rating
of that transformation. The numeric rating is positive because the requirement is an
achievement rule, and the more scenarios that are possible, the better. (See Chapter IV for a
description rating functions in general and the "number of scenarios” rating function in
particular.) Some rating functions, such as "worst maximum agents" (abbreviated as
worst_max_agents) do not produce numeric values. For those functions, other kinds
of values are listed, usvally a LISP boolean (t for true and nil for false).

The total rating for each transformation is listed as the "Rating Summary",
sometimes abbreviated as "R#". GIRAFFE gives the second transformation a higher rating
summary, due to the fact that it subtracts one point from the rating for each action (etyp)
required by the environmental agent, but the client gives more weight to the number of
scenarios and chooses the first transformation as shown below. Listing each rating
function with its value and numeric rating gives the client more information in making a
choice, while the rating summary gives GIRAFFE a means of making a choice in the
absence of input from the client.

193

SELECT THE TRANSFORMATION(S) YOU WANT TO APPLY TO THIS REQUIREMENT:
1 <xfl8> state assumptions for 3 env. agent actions in

<get_schedule_i.. R# -1

2 <xfl7> state assumptions for 1 env. agent action in
<get_schedule_in.. R# 0

Enter a list of numbers (or c to cancel): (1)

Do you want to weaken the requirement <find_out_schedule> by assuming
that agents in the environment of the artifact will carry out the
following actions:

{go to registrars office) {request schedule listing}

{read schedule doc}

Do you want to change the regquirement? (y/n} y

Changing the path constraint.

All of the scenarios showing how the transition for <find out schedule> can occur
require additional conditions in the initial state. GIRAFFE therefore suggests qualifying the
initial state by adding five conditions. This transformation is similar to the first example
shown in Figure 34. The transformation is suggested by the X_add_inits
transformation rule:

<x£38> add 5 conditions to the initial state of <find_out_schedule>
R# 1

Add initial conditions:

+ {has_schedule_info (basil win93 basils_sched_info))

{db_has_s_in (oa_db basils_sched_info))

(person_has_access_to (registrar_a oa_db))

(works_at_registrars (registrar_a))

{not_sent_schedule (basil)}

+ + + +

Rating Summary (R#): 1
worst_max_agents
max_agents

t best_min_agents
2
number of scenarios 1
t
4

1 | t 1
0 | min_agents 2 0
0 | satisfied. by spec? t 1
worst max duration 1 | best min duration t 1
maximum duration 0 | minimum duration 4 0

SELECT THE TRANSFORMATION(S) YOU WANT TO APPLY TO THIS REQUIREMENT:

1 <xf38> add 5 conditions to the initial state of <find_out_schedule>
R# 1

Enter a list of numbers (or ¢ to cancel): (1)

Adding the following conditions enables a scenario for requirement
<find_out_schedule>:

{has_schedule_info) (basil win9%3 basils_sched_info)

{db_has_s_in} (oa_db basils_sched_info)}

{person_has_access_to} (registrar_a oa_db)

{works_at_registrars) (registrar_a)

{not_sent_schedule) (basil)

These conditions are not part of the current version of the requirement
<find_out_schedule>.
Do you want to add these initial conditions to the regquirement? y/n y

194

Adding the following initial conditions to reguirement
<find_out_schedule>:

{has_schedule_info (basil win93 basils_sched_info))
{db_has_s_in (oa_db basils_sched_info)}
(person_has_access_to (registrar_a oa_db))
(works_at_registrars {(registrar_a))

{(not_sent_schedule (basil))

et i e et o st g g e S e S Py B P e Pk e e S e i i s i) P e Pk i ek i s s i s e e s e g g g B g S o o st ot St o ot ot et ot . ottt

The client accepts the transformation, and GIRAFFE applies it to give the following
version of <find out schedule> for Artifact A:

REQUIREMENT <find_out_schedule> achievement SATISFIED
A student should be able to find out his/her schedule information.

Achieve a state where:
{has_schedule_info (basil win93 basils_sched_info})
(knows_s (basil basils_sched_info)}

From a state where:

(has_schedule_info (basil win93 basils_sched_info}}
(db_has_s_in (reg_db basils_sched_info))
(person_has_access_to {(registrar_a reg_db))
(works_at_registrars (registrar_a))
(not_sent_schedule {(basil))

Constraints on actions:

> All scenarios require basil to perform the action {read schedule doc).
> Ignore scenarios with any actions performed by agents in the
environment except for the following actions:

{go to registrars office} {request schedule listing)
{read schedule doc}
> Ignore scenarios with no actions.

(3S) The client adds capabilities for Artifact B (phone registration) to the
specification.

(3R) Now there is an additional way for a student to find out her schedule: she
can call the registration program. GIRAFFE therefore suggests changing the qualification
on the initial state to a disjunction. This change is a way of strengthening the requirement
by weakening the qualification. The transformation is suggested by the X_add_disj
transformation rule.

195

<xf37> add 4 conditions to a disjunction in the initial state of <ge..
R# 1

Add conditions to a new disjunction in the initial state:

+ {has_access_to (online_reg reg_db))

+ (has_phone_access (basil))

+ {can_do_phone_ic (online_reg})

+ {connection_available (online_reg))

Rating Summary (R#): 1
worst max agents
maximum agents

t best min agents
2
number of scenarios 2
t
2

1| t

0 | minimum agents 2

1 | worst maximum duration t -1
best minimum duration 1 | maximum duration 3

0 |

minimum duration

The ratings indicate whether this transformation leads to a stronger, satisfied
requirement. In this case, the most important rating is the number of scenarios, because it
indicates that the requirement will still be satisfied even though the qualification is weaker.
The following more detailed description of the transformation indicates to the client that the
requirement will be stronger after the transformation occurs:

Application of X_add_disj to find_out_schedule
Adding a disjunction makes the requirement <£find_out_schedule> stronger
but still satisfied:
[
{not_sent_schedule (basil})
(works_at_registrars (registrar_a))
{person_has_access_to {(registrar_a reg_db))
]
[
{has_access_to {(online_reg reg_db))
{(has_phone_access {basil))
{can_do_phone_io (online_reg})
{connection_available {(online_reg)}

]

{(has_schedule_info (basil win93 basils_sched_info))
(db_has_s_in (reg_db basils_sched_info})
Do you want to change the requirement <find_out_schedule> to include the

disjunction? vy

The two sets of conditions in brackets are two alternative sets of conditions. The
two conditions after the brackets are common conditions required for every known
scenario. The disjunction shown here is similar to the one shown in the second example in
Figure 34, except that in this case there are more conditions in each disjunct.

196

The final version of the requirement (for this example) shows the weakened
qualification that includes a disjunction:
REQUIREMENT <find_out_schedule> achievement SATISFIED
A student should be able to find out his/her schedule information.

Achieve a state where:
(has_schedule_info (basil win93 basils_sched_inio})
(knows_s (basil basils_sched_info))

From a state where:

[

{not_sent_schedule (basil))
{works_at_registrars (registrar_a))
{person_has_access_to (registrar_a reg_db))
1

[

{has_access_to {online_reg reg_db))
(has_phone_access (basil))

(can_do_phone_io (online_reg)}
(connection_available (online_reg})

}

{has_schedule_info (basil win93 basils_sched_info))
{db_has_s_in {reg_db basils_sched_info))

Constraints on actions:
> Ignore scenarios with any actions performed by agents in the
environment except for the following actions:
{go to registrars office) {request schedule listing)
{read schedule doc} {phone request schedule listing)
{get a phone connection}
> Ignore scenarios with no actions.

Constraining Actions for a Safety Requirement

These transformations suggest qualifying the <transcript privacy> requirement by
adding constraints on various actions. Constraints on actions performed by "motivated
agents” are given higher ratings than constraints on actions performed by arbitrary agents.
The heuristic of rating actions by motivated agents higher than those performed by other
agents is based on the assumption that students will be more likely to constrain their actions
1o protect their privacy than intruders will be to constrain their actions (see Chapter III).
Because of the motivated-agent heuristic, constraints on {steal an ID} are rated less than
constraints on {give an ID}.

Another factor in the ratings for these transformations is the number of other
requirements for which the constraint is suggested. The constraint on "give an ID" is
important for other privacy requirements as well, and so is given a higher rating. The
constraint on "go to the registrar's office" is also given a higher rating, though in fact this
constraint is not added to the artifacts I studied. A global rating function, G_etyp_xfs,
increases ratings for constraints on actions that are the same. The values for this function
are listed as "constrained in others'.

Note that it is possible to have an assumption in one requirement that an action will
not occur and an assumption in another requirement that the same action will occur.

197

GIRAFFE uses global rating functions to describe such conflicts, as discussed in Chapter
IV. Anexample of such a rating function is G_not_etyp_xfs, described in the listing
for <x£395> below as "conflicts w/ sugg evt'. This rating means that the
constraint on the action {go to registrars office}in this transformation, is the opposite of the
constraint on the same action in a transformation for a different requirement. Allowing
students access to the registrar's office lets them find out their transcript information, but
that access could also be used to violate a privacy requirement.

TRANSFORMATIONS FOR <transcript_privacy>

<«xf395> add a constraint on {go to registrars office) to <transcript_..
R# 2

Add a path constraint:

+ ACTION {go to registrars office} does not occur.

Rating Summary (R#): 2

conflicts w/ sugg evt t -1| constrained in others 3 3
maximum agents 1 0 | minimum agents 1 0
number of scenarios 1 0 | maximum duration 1 o
minimum duration 1 0 |

<xf396> add a constraint on {read transcript doc} to <transcript_priv..
R# -1

Add a path constraint:

+ ACTION (read transcript doc} does not occur.

Rating Summary (R#): -1

conflicts w/ sugg evt t -1 | maximum agents 1 0
minimum agents 1 0 | number of scenarios 1 0
maximum duration 1 0 | minimum duration 1 0

<x£397> add a constraint on {(give an id]} to <transcript_privacy>
R# 2

Add a path constraint:

+ ACTION {give an id)} does not occur.

Rating Summary (R#): 2

constrained in others 1 1 | motivated agent t 2
maximum agents 3 0 | minimum agents 1 0
number of scenarios 9 -1 | maximum duration 5 0
minimum duration 1 0 |

198

<x£398> add a constraint on {steal an id} to <transcript_privacy>
R# O

Add a path constraint:

+ ACTION {steal an id} does not occur.

Rating Summary (R#): O

constrained in others 1 1 | maximum agents 3 0
minimum agents 1 0 | number of scenarios 9 S
maximum duration 5 0 | minimum duration 1 0

<xf399> add a constraint on {tell transcript info} to <transcript_pri..
R# 1

Add a path constraint:

+ ACTION {tell transcript info} does not occur.

Rating Summary (R#): 1

motivated agent t 2 | maximum agents 3
minimum agents 2 0 | number of scenarios 9 -1
maximum duration 5 0 | minimum duration 5

<xf400> add a constraint on {give a transcript} to <transcript_privacy>
R# 1

Add a path constraint:

+ ACTION {give a transcript} does not occur.

Rating Summary (R#): 1

motivated agent t 2 | maximum agents 3 0
minimum agents 1 0 | number of scenarios 11 -1
maximum duration 5 ¢ | minimum duration 1 0

<xf401> add a constraint on (steal a transcript} to <transcript_priva..
R#t -1

Add a path constraint:

+ ACTION (steal a transcript} does not occur.

Rating Summary (R#): -1

maximum agents 3 0 | minimum agents 1 0
number of scenarios 11 -1 | maximum duration 5 0
minimum duration 1 0 |

<xf402> add a constraint on {request official transcript} to <transcr..
R# -1

Add a path constraint:

+ ACTION {request official transcript) does not occur.

Rating Summary (R#}: -1

conflicts w/ sugg evt t -1 | maximum agents 1
minimum agents 1 0 | number of scenarios 1 o
maximum duration 1 0 | minimum duration 1

199

SELECT THE TRANSFORMATION(S) YOU WANT TO APPLY TO THIS REQUIREMENT:
1 <xf395> add a constraint on {go to registrars office} to
<transcript_.. R# 2

2 <x£396> add a constraint on {read transcript doc)} to
<transcript_priv.. R# -1

3 <xf397> add a constraint on {give an id) to <transcript_privacy>
R# 2

4 <x£398> add a constraint on {steal an id} to <transcript_privacy>
R# O

5 <xf399> add a constraint on {tell transcript infol to
<transcript_pri.. R# 1

6 «<xf400> add a constraint on {give a transcript] to

<transcript_privacy> R# 1
7 <xfd401> add a constraint on {steal a transcript} to
<transcript_priva.. R# -1

B <xf402> add a constraint on [request official transcript} to
<transcr.. R#-1
Enter a list of numbers {(or ¢ to cancel):

e B S T PR B PR ot T Vi it Pt it it Pt o e . i e St St Tt .t S, o g s S s b S, s s S g g s s o S S . o s ot s g, - . ot e . et et ot . e S

Artifact Capability

This section lists examples of capabilities used in the specification of on-line
registration systems. Most of the capabilities listed here are used in Artifact B, which
provides phone registration. The first capability, {request schedule listing},is
used in Artifact A. These capabilities are in the form used by the GIRAFFE program. For
a description of the format of capabilities, see the description given for environmental
capabilities given in Appendix B.

jomemmm—————— STUDENT ACTIONS ========r===n=-
; User actions enabled by system capabilities.

{def_etyp "request schedule listing"

:d "a student requests a schedule of his/her schedule”

:0 '{personl person2 sched_infol terml)

= '{(at_registrars_office {(personl))
(has_schedule_info (person2 terml sched_infol}))

i+ ' ((requested_schedule_listing {personl sched_infol))
(~requested_schedule_listing (personl sched_infol))} }
rat '({(category :val env_agent)}

)

{def_etyp "get a phone connection"

:d "a person gets a phone connection to a program"

:0 ' (personl personZ programl}

:= '{{connection_available (programl})}

'{ {can_do_phone_I0 {(programl))
{has_phone_access (personl)) }

' { {has_phone_connection {(personl person2 programl})
{(_is_+phone_connect))

:at ' (lcategory :val env_agent))

+

(def _etyp "get a PAC phone connection®
:d "a person gets a PAC phone connection to a program"
:0 '{personl personZ programl personl person2 pacl)
:-~ '{({connection_available (programl})}
' { {can_do_phone_IC (programl))
(has_pac (person2 pacl))
(knows_p (person2 pacl))
{has_phone_access (personl)))
:+ '{{has_phone_connection (personl person2 programl))}
{_is_+pac_phone_connect))
:at ' {{category :val env_agent))
)

(def_etyp *"phone request add"®

:d "a student requests addition of a class to schedule™®

' {personl person2 programl classl terml)

' { (has_phone_connection (persenl person2 programl))
(wants (person2 classl terml)}) }

' ({ph_requested_add (person? classl terml))
{“requested_add (person2 classl terml)))

:at ' ({category :val env_agent})

)

no

+

{def_etyp "phone request wrong add"

:d "a student requests addition of the wrong class”

0 ' (personl person2 programl classl terml)

= '{(has_phone_connection {(personl person2 programl})
(not_wants (person2 classl terml}))

:+ '{(ph_requested_add {person2 classl terml)))

:at '({category :val env_agent))}

)

(def_etyp "phone request drop"

:d "a student requests drop for a class"

:0 ' {personl person2 programl classl terml)

= '{{has_phone_connection (personl person2 programl))
(not_wants (personZ classl terml)))

' {{ph_requested_drop (person2 classl terml))
{"requested_drop (perscon2 classl terml}))

:at ' {({category :val env_agent))

)

+

(def_etyp "phone request transcript info*
:d "a student requests an transcript information®

:0 '(personl person2 programl transcript_infol)

:= ' {{has_phone_connection (personl person2 programl))
{has_transcript_info (person2 transcript_infol)} }

:+ ' ({ph_requested_transcript_info (personZ transcript_infol))

{“requested_transcript (person2 transcript_infol)})
:at '{({category :val env_agent))
)

{def_etyp "phone reguest schedule listing"

:d "a student requests a schedule of his/her schedule"

' (personl personZ programl sched_infol terml)

' ((has_phone_connection {(personl personZ programl})}
(has_schedule_info (person2 terml sched_infeol)) }

:+ ' ((ph_requested_schedule_listing (person2 sched_infol})

{“requested_schedule_listing (person2 sched_infol)} }
rat ' ((category :val env_agent))

n o

e DEPT/REG ACTIONS ----------=====

{def_etyp "phone give transcript info"
:d "program tells transcript info to a student over the phone"
:0 '(programl personl person2 transcript_infol databasel transcriptl)
:- '{(ph_requested_transcript_info (person2 transcript_infol))}
' { {can_do_phone_IO0 (programl})

{has_phone_connection (personl person2 programl})

{has_access_to (programl databasel))

{db_has_t_in (databasel transcript_infol))})
:+ ' {{knows_t (person? transcript_infol))

(_is_+_ph_transcript (}))

:at ' [(category :val art_agent})
)

{def_etyp "phone give schedule info"
:d "program tells a schedule listing to a student over the phone*
:0 ‘(programl personl personZ sched_infol terml databasel
schedule_listingl)
:- *‘{({ph_requested_schedule_listing (person2 sched_infol}))
:= '{{can_do_vrhone_I0 (programl))
{(has_phone_connection {(personl person2 programl))
{has_access_to (programl databasel))
{db_has_s_in (databasel sched_infol}))
:+ '{{knows_s (person2 sched_infol})
{(_is_+_ph_schedule (}) }
:at ' ({category :val art_agent)}
)

(def_etyp "phone add class™

:d "program adds class for a student”

:0 '{programl personl person2 terml classl seatl sched_infol databasel)

:- '{(ph_requested_add (person2 classl terml))
(seat_available (seatl classl terml)))

‘{(can_do_phone_I0 (programl))
{has_phone_connection {personl person2 programl))
{has_access_to (programl databasel))
{db_has_s_in {(databasel sched_infol))
{has_schedule_info (person2 terml sched_infol)))

:+ ‘((class_in_sched (classl sched_infol))}

:at ' ((category :val art_agent})

}

202

{def_etyp "phone drop class"

:d “program drops class for a student"

:0 ' (programl personl person2 terml classl seatl sched_infol databasel)

:- '((ph_requested_drop (person2 classl terml})
{class_in_sched {classl sched_infol)) }

‘ {{can_do_phone_I0 (programl))
(has_phone_connection (personl person2 programl})
(has_schedule_info {(personZ terml sched_infol))
{db_has_s_in (databasel sched_infol)}
{has_access_to (programl databasel}))

:+ '{{seat_available {seatl classl terml)}

{not_class_in_sched (classl sched_infol)))

:at ' ({category :val art_agent))

)

{def_etyp "PAC phone give transcript info"
:d “program tells transcript info to a student over the phone"
:0 '{programl personl person2 transcript_infol databasel transcriptl)
:- '(({ph_requested_transcript_info {(person2 transcript_infol)))
' { {can_do_phone_I0 (programl))
{has_phone_connection (personl personZ programl))
(has_transcript_info {person2 transcript_infol))
{has_access_to (programl databasel))
{db_has_t_in (databasel transcript_infol}) }
:+ '{{knows_t (person2 transcript_infol})
{(_is_+_PAC_ph_transcript ()})
:at ' ((category :val art_agent))
)

{def_etyp "PAC phone add class"

:d "program adds class for a student”

:0 '{programl personl personZ terml classl seatl sched_infol databasel)

:= '{{ph_requested_add (person? classl terml})
(seat_available {(seatl classl terml)))

' ((can_do_phone_I0 {programl))
(has_phone_connection (perscnl perseonZ programl))
(has_schedule_info {person2 terml sched_infol))
{has_access_to (programl databasel))

(db_has_s_in (databasel sched_infol})
{has_schedule_info (person2 terml sched_infol}))
:+ ' ({class_in_sched (classl sched_infol))
{_is_+_PAC_ph_add_class ()})
tat ' {({category :val art_agent))

------------- CHANGE PACS =—===—===———mmm— o ——
(def _etyp "change own pac"
:d "a person changes his/her own PAC when somecone else knows it"
:0 ' (personl person2 pacl)
:= '{{knows_p (person2 pacl)}}
* {{knows_p (personl pacl})
{has_PAC {personl pacl})
(diff (personl personl)) }
:+ ' {(not_knows_p (person2 pacl}))
:at ' {{category :val env_agent))
}

203

(def_etyp "ID tell PAC"

:d "registrar tells PAC to a student®

:0 '({personl person2 idl pacl)

'((asked_PAC (person2))}

' { (works_at_registrars (personl)}
(has_pac {(person2 pacl)})
(has_id (person2 idil})
(is_ID_for (idl person2))
(at_registrars_office {person2)))

:+ '"{(knows_p (personZ pacl}))

:at '((category :val art_agent))

)

{def_etyp "assign hard PAC"
:d "registrar assigns a hard-to-guess PAC to a student”
:0 '{personl pacl}
1= '"({_is_uknwn_diff (pacl)))
' { (works_at_registrars (personl}))
'{({is_hard_pac (pacl})}
t '((category :val art_agent))

poE

)

{def_etyp "assign easy PAC"

:d "registrar assigns an easy-to-guess PAC to a student"
' {personl pacl)

‘{{_is_uknwn_diff (pacl})}

' {(works_at_registrars {personl)))

*{{is_easy_pac {(pacl)})

at '{(category :val art_agent})

o]

+ 0

Requirements for Artifact B

This section gives examples of requirements derived by GIRAFFE for Artifact B, a
registration system that allows registration transactions by phone. The requirements are in
one of two formats that GIRAFFE uses to print out requirernents. Each requirement listing
shows the final state, initial state, and path constraints.

Achievement requirements are listed as SATISFIED if there is at least one scenario
showing how the transition for the requirement can occur. Safety requirements are listed as
SATISFIED if there are no scenarios for the transition.

For purposes of determining satisfaction of requirements, GIRAFFE ignores
scenarios that don't satisfy path constraints, so path constraints describing scenarios that
GIRAFFE ignores are describing violations of path constraints. So for example, if
GIRAFFE ignores scenarios with the action {tell PAC}, there is a constraint of the form

[does_not_have_action tell_PAC].

Note that since these requirements are printed by GIRAFFE, they are not in the

same format as the initial requirements listed in Appendix B.

204

The format for the sample listing of requirements below does not include object
types. GIRAFFE's other option for listing requirements produces a listing like the
following for each requirement:

(abigail person) {basil person)

(registrar_a registrar) {advisor_a advisor)

{cisl2l class) {121seat seat)
{(basils_trans_info transcript_info)} (basils_sched_info sched_info)
(basils_id id) {(basils_transcript transcript)
(basils_st_info student_info) {basils_pac pac)

(win93 term) (cis_bs degree)

(basils_rs rec_sched) (online_reg program)

{reg_db database) (terminal_a terminal)
{registrars_office loc) (anyplace loc}

Most of the requirements in this section have a similar list of objects.
REQUIREMENT <add_class> achievement SATISFIED
A student should be able to add a class.

Achieve a state where:
{has_schedule_info (basil win93 basils_sched_info)) (class_in_sched
{cisl2l basils_sched_info)}

From a state where:

{(wants (basil cisl2l1 win93))

{has_schedule_info (basil win93 basils_sched_info)}
{db_has_s_in (reg_db basils_sched_info))
(person_has_access_to (registrar_a reg_db})
(works_at_registrars (registrar_a))

(at (basil anyplace})

(seat_available (12lseat cisl2l win93})}
(has_schedule_info (basil win93 basils_sched_info))
(db_has_s_in {(reg_db basils_sched_info}}
{has_access_to {online_reg reg_db))
(has_phone_access (basil})

{can_do_phone_io (online_reg))
{connection_available {online_reg))

{seat_available (l2lseat cisl2l win93))

Constraints on actions:
> Ignore scenarios with any actions performed by agents in the
environment except for the following actions:
{go to registrars office} {request add}
{get a phone connection} {phone request add}
> Ignore scenarios with no actions.

205

REQUIREMENT <find_out_schedule> achievement SATISFIED
A student should be able to find out his/her schedule information.

Achieve a state where:
{has_schedule_info {(basil win93 basils_sched_infeo)) {(knows_s (basil
basils_sched_info))

From a state where:

{has_schedule_info (basil win93 basils_sched_info})
{db_has_s_in (reg_db basils_sched_info))
(person_has_access_to (registrar_a reg_db))
{works_at_registrars (registrar_a))
{(not_sent_schedule (basil}}

{db_has_s_in {reg_db basils_sched_info)}
(has_access_to (online_reg reg_db))
(has_schedule_info (basil win93 basils_sched_info})
(has_phone_access {(basil})

{can_do_phone_io (online_regqg))
{connection_available (online_reg})

Constraints on actions:
> Ignore scenarios with any actions performed by agents in the
environment except for the following actions:
{read schedule doc} {get a phone connection}
{phone request schedule listing}
> Ignore scenarios with no actions.

REQUIREMENT <unwanted_class> safety SATISFIED
A student should not have an unwanted class.

Do NOT allow achievement of a state where:
(has_schedule_info (basil win93 basils_sched_info)) (class_in_sched
{cisl21 basils_sched_info))

From a state where:
{not_wants (basil cisl2l win93))

Constraints on actions:
> Ignore scenarios in which ALL of the following ACTIONS occur:
{get a phone connectiocn} {phone request wrong add}
> Ignore scenarios in which the ACTION (go to registrars office} occurs.

In the <unwanted class> requirement above, the path constraint is a complex
one (see Chapter II):

[does_not_have_action {get a phone connection}] -
[does_not_have_action {phone request wrong add}].

The path constraint is only violated when both of the actions occur.

206

REQUIREMENT <get_advice> achievement SATISFIED
A student should be able to find out his/her recommended schedule.

Achieve a state where:
{has_rec_sched (basil cis_bs win93 basils_rs)} (knows_r (basil
basils_rs)}

From a state where:

{person_has_access_to (advisor_a reg_db})
{db_has_t_in (reg_db basils_trans_info)}
(has_rec_sched (basil cis_bs win93 basils_rs))
(has_transcript_info (basil basils_trans_info))
(can_advise (advisor_a)}

(needs_advisor {basil))

(has_time_available (advisor_a))

(at (basil anyplace})

Constraints on actions:
> Ignore scenarios with any actions performed by agents in the
environment except for the following actions:

{get an appointment} {go to advisors office}
> Ignore scenarios with no actions.

REQUIREMENT <get_transcript> achievement SATISFIED
A student should be able to get a copy of his/her transcript

Achieve a state where:
{has_transcript (basil basils_transcript)) (doc_has_t_info
{(basils_transcript basils_trans_info))

From a state where:

{db_has_t_in {reg_db basils_trans_info))
{(person_has_access_to (registrar_a reg_db))
{(is_id_for (basils_id basil))

{has_id {basil basils_id))

(works_at_registrars {registrar_a))
(has_transcript_info {basil basils_trans_info))
{at (basil anyplace}])

Constraints on actions:
> Ignore scenarios with any actions performed by agents in the
environment except for the following actions:

{go to registrars office} {request official transcript}
> Ignore scenarios with no actions.

207

REQUIREMENT <get_transcript_info> achievement SATISFIED
A student should be able to find out his/her transcript information.

Achieve a state where:
{(has_transcript_info (basil basils_trans_infeo}) {(knows_t (basil
basils_trans_info))

From a state where:

(db_has_t_in (reg_db basils_trans_info))
(has_access_to (online_reg reg_db))
(has_transcript_info (basil basils_trans_info})
{has_phone_access (basil)}

(can_do_phone_io (online_reg})
{(connection_available (online_reg))

(diff (abigail basil}}

{db_has_t_in (reg_db basils_trans_info})
{(has_access_toc {online_reg reg_db))
(has_transcript_info (basil basils_trans_info)}
{has_phone_access (abigail)}

{can_do_phone_io (online_reg))
{connection_available (online_reqg))

Constraints on actions:
> Ignore scenarios with any actions performed by agents in the
environment except for the following actions:
{get a phone connection} {phone request transcript info}
{tell transcript info}
> Ignore scenarios with no actions.

REQUIREMENT <get_school_info> achievement SATISFIED
A student should be able to find cut information about his/her school

Achieve a state where:
{knows_c (basil the_school_info))

From a state where:
(at (basil anyplace))
{has_money (basil})

Constraints on actions:
> Ignore scenarios with any actions performed by agents in the
environment except for the following actiocons:
{go to registrars office} {buy a catalog}
{read catalog doc]}
> Ignore scenarios with no actions.

REQUIREMENT <get_help_info> achievement SATISFIED
A student should be able to find out help information

Achieve a state where:
{knows_h (basil reg_help_info))

From a state where:
(at {basil anyplace))
{(has_money (basil})

Constraints on actions:
» Ignore scenarios with any actions performed by agents in the
environment except for the following actiens:
{go to registrars office} {buy a catalog)
{read catalog doc}
> Ignore scenarios with no actions.

REQUIREMENT <inaccurate_student_info> safety NOT satisfied
A student's information should be accurate

Do NOT allow achievement of a state where:
(has_student_info (basil basils_st_info_2)) (not_db_has_si_in (reg_db
basils_st_info_2})

From a state where:

(diff_info (basils_st_info_1l basils_st_info_2)1}
(diff_info (basils_st_info_2 basils_st_info_1})
(has_student_info (basil basils_st_info_1)}
(db_has_si_in (reg_db basils_st_info_1))
(not_db_has_si_in (reg_db basils_st_info_2))

Constraints on actions:

The safety requirement <inaccurate_student_info> is not satisfied; there
are scenarios showing how safety violations can occur. However, there is a repair
requirement derived from this requirement, called <repair_not_db_has_si_in>,
that is satisfied.

209

The following requirements are derived requirements. The names and descriptions
of these requirements are generated by the program and some are therefore difficult to read
or less informative than the names and descriptions for requirements in the initial set.

REQUIREMENT <sched_info_privacy> safety SATISFIED
An intruder should not be abie to find out someone else's sched_info

Do NOT allow achievement of a state where:
(knows_s (intruder basils_sched_info}) (has_schedule_info {basil win93
basils_sched_info))

From a state where:
{diff {basil intruder))
(diff (intruder basil))

Constraints on actions:

REQUIREMENT <repair_class_in_sched> repair SATISFIED
Repair by achieving the condition: not_class_in_sched from:
class_in_sched

Achieve a state where:
{not_class_in_sched {(cisl2l basils_sched_info})

From a state where:

{has_schedule_info (basil win93 basils_sched_info)}
{class_in_sched (cisl2l basils_sched_info))
{not_wants (basil cisl2l win93})
{person_has_access_to (registrar_a reg_db)])
{db_has_s_in (reg_db basils_sched_info})
{works_at_registrars (registrar_a))

{at {(basil anyplace))

Constraints on actions:
> Ignore scenarios with any actions performed by agents in the
environment except for the following actions:
{go to registrars office} {request drop)}
> Ignore scenarios with no actions.

REQUIREMENT <rec_sched_privacy> safety SATISFIED
An intruder should not be abkle to find out someone else's rec_sched

Do NOT allow achievement of a state where:
(knows_r (intruder basils_rs)) {has_rec_sched (basil cis_bs win93
basils_rs))

From a state where:
{diff (basil intruder})
(diff {intruder basil))

Constraints on actions:

REQUIREMENT <transcript_info_privacy> safety SATISFIED
An intruder should not be able to find out someone else's
transcript_info

Do NOT allow achievement of a state where:
{knows_t (intruder basils_trans_info)} (has_transcript_info (basil
basils_trans_info))

From a state where:
{diff (basil intruder})
{diff (intruder basil})

Constraints on actions:

> Ignore scenarios in which the ACTION {give a transcript} occurs.

> Ignore scenarios in which the ACTION {tell transcript info} occurs.
> Ignore scenarios in which the ACTION {give an id} occurs.

> Ignore scenarios in which the ACTION {steal a transcript} occurs.

> Ignore scenarios in which the ACTION ({steal an id} occurs.

> Ignore scenarios in which the ACTICN ({guess pac)} occurs.

In the derived requirement <transcript_info_privacy>, some of the
constraints are performed by motivated agents (as indicated by rating functions) and so can
be considered assignment of responsibility. Those actions are {give a
transcript}, {tell transcript info} and {give an id}. The other
actions are performed by other agents (an intruder) and are not under the control of a
motivated agent. For descriptions of the transformations that produce these constraints, see
the second example ("Constraining Actions for a Safety Requirement") of the first section
of this appendix.

REQUIREMENT <repair_not_db_has_si_in> repair SATISFIED
Repair by achieving the condition: db_has_si_in from: not_db_has_si_in

Achieve a state where:
{db_has_si_in (reg_db basils_st_info_2})

From a state where:

(has_student_info {(basil basils_st_info_2))
(not_db_has_si_in {(reg_db basils_st_info_2))}
(person_has_access_to (registrar_a reg_db))
(works_at_registrars (registrar_a))
{has_student_info (registrar_a basils_st_info_2})
{at (registrar_a anyplace))

{db_has_si_in (reg_db o09))

Constraints on actions:
> Ignore scenarios with any actions performed by agents in the
environment except for the following actions:
{go to registrars office} {request DB update)
> Ignore scenarios with no actions.

211

REFERENCES

Anderson, J. S. (1993). Automating requirements engineering using artificial intelligence
planning techniques, (Tech. Rep. No. CIS-TR-93-28). Eugene: University of Oregon,
Computer and Information Science Dept.

Anderson, J. S., & Durney, B. (1993). Using scenarios in deficiency-driven requirements
engineering. In Proceedings of the IEEE International Symposium On Requirements
Engineering (pp. 134-141). Los Alamitos, CA: IEEE Computer Society.

Anderson, J. S., & Farley, A. M. (1988). Plan abstraction based on operator
generalization. In Proceedings of the Seventh National Conference on Artificial
Intelligence (pp. 100-104). San Mateo, CA: Morgan Kaufmann.

Anderson, 1. S., & Farley, A. M. (1990). Incremental selection in plan composition.
(Tech. Rep. No. CIS-TR-90-11). Eugene: University of Oregon, Computer and
Information Science Dept.

Anderson, J. S., & Fickas, S. (1989), A proposed perspective shift: Viewing specification
design as a planning problem. In Proceedings of the Fifth International Conference on
Software Specification and Design (pp. 177-184). Los Alamitos, CA: IEEE Computer
Society.

Boose, J. H. (1986). Expertise transfer for expert system design. Amsterdam: Elsevier.

Carbonell, J. G. (1981). Counterplanning: A strategy-based model of adversary planning
in real-world situations. Artificial Intelligence, 3, 295-329.

Dardenne, A. (1993). On the use of scenarios in requirements acquisition (Tech. Rep.
(Tech. Rep. No. CIS-TR-93-17). Eugene: University of Oregon, Computer and
Information Science Dept.

Dardenne, A., Fickas, S., & van Lamsweerde, A. (1991). Goal-directed concept
acquisition in requirements elicitation. In Proceedings of the 6th International
Workshop on Software Specification and Design {pp. 14-21). Los Alamitos, CA:
IEEE Computer Society.

Dardenne, A., Fickas, S., & van Lamsweerde, A. (1993). Goal-directed requirements
acquisition. Science of Computer Programming, 20, 3-50.

Feather, M. S. (1987). Language support for the specification and development of
composite systems. ACM Transactions on Programming Languages and Systems, 9(2)
198-234.

Fickas, S., & Helm, R. (1991). Acting responsibly: Reasoning about agents in a multi-
agent system (Tech. Rep. No. CIS-TR-91-02). Eugene: University of Oregon,
Computer and Information Science Dept.

212

Fickas, S., & Nagarajan, P. (1988, November). Critiquing software specifications: A
knowledge-based approach. IEEE Software, pp. 37-47.

Ginsberg, M., & Smith, D. (1988). Reasoning about action II: The qualification
promblem. Artificial Intelligence, 33(3), 311-342,

Hall, R. J. (1992). Interactive specification acquisition via scenarios: A proposal. Paper
presented at the Workshop on Automating Software Design, AAAI-92, San Jose, CA.

Hall, R. J. (1993). Validation of rule-based reactive systems by sound scenario
generalization. In Proceedings of the Eighth Knowledge-Based Software Engineering
Conference (pp. 30-39). Los Alamitos, CA: IEEE Computer Society.

Hammond, K. J. (1989). Case-based planning: Viewing planning as a memory task. San
Diego, CA: Academic Press.

Hanks, S. (1990). Practical temporal projection. In Proceedings of AAAI-90 (pp. 158-
163). San Mateo, CA: Morgan Kaufmann.

Harris, D. R., Benner, K. B., Johnson, W. L., & Feather, M. S. (1992). Final technical
report for the requirements/specification facet for KBSA. Marina Del Rey, CA: USC
Information Sciences Institute.

Helm, B. R., & Fickas, S (1992). Scare tactics: Evaluating problem decompositions using
failure scenarios, (Tech. Rep. No. CIS-TR-92-06). Eugene: University of Oregon,
Computer and Information Science Dept.

Herlihy, M. P., & Wing, J. M. (1991). Specifying graceful degradation. IEEE
Transactions on Parallel and Distributed Systems, 2(1), 93-104,

Johnson,W. L., & Feather, M. S. (1991). Using evolution transformations to construct
specifications. In Lowry & McCartney (Eds.), Automating software design (pp. 65-
92). Menlo Park, CA: AAAI Press.

Kaufman, L. D. (1988). Scenario selection and implementation techniques for scenario-
based rapid prototyping (Tech. Rep. No. SERC-TR-19-F). Gainesville: University of
Florida, Software Engineering Research Center.

Kaufman, L. D., Thebaut, S. M., & Interrante, M. F. (1989). System modeling for
scenario-based requirements engineering (Tech. Rep. No. SERC-TR-33-F)
Gainesville: University of Florida, Software Engineering Research Center.

Kramer, G. L., & Petersen, E. D. (Eds.) (1991). Proceedings of the Conference on The
Future of Touch-Tone Telephone Technology: Enhancing Academic Support Services.
Provo, UT: Brigham Young University.

Lubars, M., Potts, C., & Richter, C. (1993). A review of the state of the practice in
requirements modeling. In Proceedings of the IEEE International Symposium On
Requirements Engineering (pp. 2-14). Los Alamitos, CA: IEEE Computer Society.

213

McCrohan, D. (1988). The Life and Times of Maxwell Smart. New York: St. Martin's
Press.

Mylopolous, J., Chung, L., & Nixon, B. (1992). Representing and using non-functional
requirements: A process-oriented approach. IEEE Transactions on Software
Engineering, SE-18(6), 483-497.

Nixon, B. A. (1993). Dealing with performance requirements during the development of
information systems. In Proceedings of the IEEE International Symposium On
Requirements Engineering (pp. 42-49). Los Alamitos, CA: IEEE Computer Society.

Peters, E. (1984). Dead man's ransom. New York: William Morrow and Company.

Reubenstein, H. B. (1990). Automated acquisition of evolving informal descriptions
(Tech. Rep. No. 1205). Cambridge: Massachusetts Institute of Technology, Artificial
Intelligence Laboratory.

Rissland, E. L. (1986). Dimension-based analysis of hypotheticals from Supreme Court
oral argument (Tech. Rep.) Amherst: University of Massachusetts, COINS.

Rissland, E. L., & Ashley, K. D. (1986). Hypotheticals as heuristic device. In
Proceedings of AAAI-86 (pp. 289-297). San Mateo, CA: Morgan Kaufmann.

Robinson, W. N. (1993). Automated negotiated design integration: Formal representations
and algorithms for coliaborative design (Tech. Rep. No. CIS-TR-93-10). Eugene:
University of Oregon, Computer and Information Science Dept.

Swartout, W., & Balzer, R. (1982). On the inevitable intertwining of specification and
implementation. Communications of the ACM, 25(7) 433-440.

Weber, D. G. (1988). Specifications for fault-tolerance (Tech. Rep. No. 19-3). Ithaca,
NY: Odyssey Research Associates.

Weber, D. G. (1989). Formal specification of fault-tolerance and its relation to computer
security. In Proceedings of the Fifth International Conference on Software
Specification and Design (pp. 273-277). Los Alamitos, CA: IEEE Computer Society.

Wilensky, R. (1983). Planning and understanding. Reading, MA: Addison-Wesley.

	June 1994_1
	June 1994_2
	June 1994_3

