

“Data Flow and Control Flow Analysis of Logic Programs,” a dissertation prepared by
Renganathan Sundararajan in partial fulfillment of the requirements for the Doctor of
Philosophy degree in the Department of Computer and Information Science. This

dissertation has been approved and accepted by:

Chair o@xamini(gjammittee

ML(‘LL\ 1 , !c)-ﬁ'f

Date

Commitee in charge: Dr. John Conery, Chair
Dr. Evan Tick
Dr. William Clinger
Dr. Richard Koch

Accepted by'yn

Vice Provost(fﬁd DeanJof the G_ra.duate School

© 1994 Renganathan Sundararajan

iii

iv

An Abstract of the Dissertation of
Renganathan Sundararajan for the degree of Doctor of Philosophy
in the Department of Computer and Information Science
to be taken March 1994
Title: DATA FLOW AND CONTROL FLOW ANALYSIS OF LOGIC
PROGRAMS

Approved: % ;Q

U‘]’)r.@n Conery

This dissertation studies two related problems in data flow and control flow analysis

of logic programs and provides efficient solutions.

The first part of the dissertation proposes a static analysis based on abstract interpre-
tation to compute the data dependencies in a logic program; specifically, it derives precise
information about sharing, freeness, and groundness of variables. This information is used
in parallel execution and optimization of logic programs. The analysis has polynomial time
complexity in the number of clauses and clause literals, and exponential worst-case com-
plexity in the number of clause variables. In practice, the number of iterations required for
computing the fixed-point appears to be independent of the height of the abstract domain
and is usually less than five. A widening-like operation is proposed to accelerate convergence
when computing the minimal function graph semantics of programs.

The second part of the dissertation provides a practical solution to the problem of
simultaneous data flow and control flow analysis of logic programs. All analyses of logic
programs to date have assumed that either control flow or data flow is known. We develop

a framework for simultaneous data flow and control flow analysis. It is shown that a sub-

v

problem in deriving control flow, namely, finding the set of all minimal permissible modes,
is computationally intractable. We define a practical approximation algorithm and study
its usefulness and complexity. The approximation algorithm derives minimal permissible
modes for many non-trivial programs in polynomial time. A control fiow for each clause and
each entry substitution is then derived using the proposed framework and the approximation
algorithm.

The simultaneous derivation of data flow and control flow in logic programs has many
advantages. It results in a flexible control flow, uncovers more parallelism at compile-time
than previous proposals, and enables other program analysis such as compile-time memory
reuse strategies. Above all, it moves logic programming a step closer towards the ideal of

separating the logic and control aspects of a program.

vi

CURRICULUM VITA

NAME OF THE AUTHOR: Renganathan Sundararajan
PLACE OF BIRTH: Budalur, India

DATE OF BIRTH: August 27, 1957

GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED:

University of Oregon

Virginia Polytechnic Institute and State University

National Center for Software Technology, Tata Institute of Fundamental
Research

Indian Institute of Bankers

University of Madras

DEGREES AWARDED:

Doctor of Philosophy in Computer and Information Science, 1994,
University of Oregon

Master of Science in Computer Science, 1987, Virginia Polytechnic and State
University

Certificate in Software Development, 1984, National Center for Software
Technology, Tata Institute of Fundamental Research

Certified Associate in Banking and Finance, 1981, Indian Institute of
Bankers

Bachelor of Commerce in Commerce, 1978, University of Madras

PROFESSIONAL EXPERIENCE:

Graduate Teaching Fellow and Instructor, Department of Computer
and Information Science, University of Oregon, Eugene, 1988-93

Research and Teaching Assistant, Department of Computer and
Information Science, Virginia Polytechnic Institute and State
University, Blacksburg, 1985-87

Middle Management Positions, EXIM Bank of India, Bombay, 1983-85

Junior Management Positions, State Bank of India, Bombay, 1978-82

vii

ACKNOWLEDGEMENTS

I wish to thank my advisor John Conery for his support throughout this research.
He encouraged my interest in abstract interpretation and data flow analysis. I am thankful
to Evan Tick for many hours of discussion, and for suggesting improvements to the thesis.
Will Clinger helped me learn denotational semantics and corrected many of my misunder-
standings and I am thankful to him. I thank Professor Richard Koch for serving on my
committee and for showing interest in my work.

I am grateful for the financial support from Hewlett-Packard, Motorola, Tektronix,
OACIS, and the National Science Foundation during various stages of my research.

Michael Codish, Saumya Debray, Manuel Hermenegildo, Harald Se¢ndergaard, and
Will Winsborough answered many of my questions and I thank them for their help.

Apple Oxman and family provided a home away from home and made my stay in
Eugene enjoyable.

My wife Renuka has been a constant source of strength.

viii

TABLE OF CONTENTS

Chapter Page
L INTRODUCTION i it e e e e e e e e e it e 1
Contributions L, 3
Thesis Organization, 11
Mathematical Preliminaries 13
Denotational Semantics 20
SumMmaATY . . e e e e e e e e e e e e 22
II. SYNTAX AND SEMANTICS OF LOGIC PROGRAMS 23
Logic Programming 23
Syntax and Semantics L L. . 24
Operational Semantics of Logic Programs 27
Parallel Composition 30
Denotational Semantics of Logic Programs 43
Abstract Interpretation L. 49
Abstract Interpretation of Logic Programs 55
Summary e e a9

III. AN ABSTRACT INTERPRETATION SCHEME FOR ANALYZING GROUND-

1v.

NESS, FREENESS, AND SHARINGu... 60
Interpretation: Sharing, Freeness and Linearity 61
Abstract Domain Asub e e 65
Operations on the Abstract Domain 72
Precision of the Analysis 93
Related Work 95
Summary e e e e e e e e e e 101

EFFICIENCY OF THE ABSTRACT INTERPRETATION SCHEME 103

Introduction e 103
Time Complexity Analysisv... 105
Minimal Function Graph Semantics 110
Summary e e e e 122

SIMULTANEOUS DATA FLOW AND CONTROL FLOW ANALYSIS ... 123

Introduction e 123
Definitions 133
Intractability of Deriving Minimal Permissible Modes 150

An Algorithm for Deriving Permissible Modes 152

Page

Examples e e e 171
Proofof Correctness uee.. 179
Complexity Analysis ittt it it e 188
Empirical Measurementsttt 195
Parameters of the Permissible Mode Analysis 198
Derivation of Control Flow using Permissible Modes 200
Related Research 203
Summary e e e e e 213
VI. SUMMARY, EVALUATIONS, AND FUTUREWORK 215
Summary and Evaluations 215
Future Work 218

BIBLIOGRAPHY it e e i e e e e 220

Table

3.

LIST OF TABLES

Comparison of Asub and Sharing Abstract Domains

Program Statistics and Analysis Times

Minimal Modes Derivation

Figure

© P NS ;oW

[S
v o= S

LIST OF FIGURES

Data Flow Graph for Perm Induced by Left-to-Right Control Flow
Data Flow Graph for Perm Induced by Right-to-Left Control Flow
BEquivalence Preserving Transformation Rules
SLD-Tree with Leftmost Literal Selection
SLD-Tree with Rightmost Literal Selection
Computation of Entry, Exit, and Success Substitutions
Sharing, Freeness and Repeatedness Propagation
Data Flow Graph for Perm Induced by Left-to-Right Control Flow
Data Flow Graph for Perm Induced by Right-to-Left Control Flow
Functions extend_partial. modeandepm
Function epm_iter e

Functions epm_mr and epm_mrdter

xi

Page

CHAPTER 1

INTRODUCTION

Decades of research in automatic theorem proving and the desire to use logic in
natural language processing led to the development of the symbolic computer programming
language Prolog, originally meant to be an acronym for Programming in Logic. Prolog is
based on a subset of first order predicate calculus, known as Horn Clause Logic. Horn clauses
may be thought of as implications with 0 or 1 consequent. (Exact definitions will be given
in Chapter 2.) Prolog has been found to be suitable for a wide spectrum of applications
including hardware verification systems, automated theorem provers for various logics, VLSI
chip design and layout tools, and expert systems for polymer design, among others [60].

An important advantage of declarative computer programming languages such as
those based on Horn Clause Logic is that the mathematical semantics of declarative lan-
guages imposes 1o a priori ordering on or sequencing of the evaluation of the sub-expressions
of a program. This allows us to execute in parallel the sub-computations in a logic program
subject to the constraint of maintaining a consistent value for a variable within the same
scope. Many models of computation have beer proposed for exploiting the inherent par-
allelism in logic programs. These generally fall under the categories of Or parallel models
and And parallel models or a combination of them [20). Roughly speaking, in Or parallel
models, multiple solutions to a query are searched in parallel. In And parallel models, the
computation of a single solution to a query is performed in parallel.

In the Independent-And models, two body goals may be solved in parallel if they do
not bind variables in arguments to conflicting terms. This requires an analysis of the data

dependencies which can be done either at run-time or statically at compile-time.

2

The following is a fragment of the well-known quicksort algorithm. Given a list of
numbers as the first argument, the program quicksort splits the list into two sub-lists Small
and Large about a pivot element Pivot, recursively sorts the two sub-lists and uses append
to concatenate the sorted sub-lists. The two recursive goals in the body of quicksort may
be solved in parallel without interfering with each other, if we know that the arguments
Small, Large, SS, and LS do not share non-ground terms i.e., terms that have variables.

quicksort([1,).
quicksort([Pivot|Unsorted], Sorted) :-
split(Unsorted, Pivot, Small, Large),
quicksort(Small, SS),
quicksort(Large, LS),
append(SS, [PivotILS], Sorted).

The simplest way to verify that the two recursive calls to quicksort are independent
is to test at runtime whether the two goals have unbound variables in common. However,
run-time tests for independence of terms can be costly: @(m+n) where m and n correspond
to the size of terms. Run-time analyses of programs, in general, can have significant space
and time overheads every time the program is executed. Compile-time or static analyses,
on the other hand, incur the space time overheads just once during the compilation process.
If programs are compiled only a few times but executed many times, static analyses are
preferable to run-time analyses.

Three types of static analysis may help us determine at compile time that two goals

will be independent:

groundness A ground term does not contain any variables and hence it is independent of

any other term.

sharing Two nonground terms are independent if they have no variables in common, i.e.,

the same variable does not occur in both terms.

freeness Two goals that share a variable may be solved in parallel if one goal does not bind

the variable to a nonvariable term.

Static analysis for groundness, sharing, and freeness can be performed using an ab-
stract interpretation framework based on an operational or a denotational semantics of
programs. Abstract interpretation provides a new, more abstract semantics for the lan-
guage under consideration and shows how the meaning of a program in the new semantics
is an abstraction of the meaning of the program in standard semantics, This is usually
done by providing an abstract domain of computation which captures the properties of
interest. Operations over the abstract domain are analogs of the standard operations over

the standard domain.
Contributions

This dissertation provides solutions to two problems related to the parallel execution
of logic programs.

The first issue deals with deriving data dependencies in logic programs. We define
an abstract domain to express sharing, freeness, and groundness of variables and use this
domain within an abstract interpretation framework to derive these properties for a given
program. The second issue is the simultaneous derivation of data flow and control flow
analysis. All flow analyses of logic programs to date assumed that either control flow
or data flow information is available. We propose a framework for combined derivation of
control flow and data flow information. The framework is instantiated with a simple domain
of input output modes and experimentally evaluated. Note that although the definition of
input output modes used for experimentation is restrictive, it is not a limitation of the
framework jtself. More expressive mode systems can be coupled to the framework easily.
We now discuss the two issues of precise sharing analysis and simultaneous data flow and
control flow analysis in more detail.

Many researchers have proposed sharing analyses that treat sharing as a transitive

- 4
relation mainly to realize worst-case polynomial time complexity. In sharing analysis of
logic programs, one approach to a tractable analysis is to treat sharing as transitive. This
loses precision considerably. Qur approach starts with a domain proposed by Jacobs and
Langen [44] where sharing is treated as transitive, We then add information about linearity
and freeness of terms. A term is considered linear if it does not contain multiple occurrences
of the same variable. This enables s.ha.ring to be treated as a non-transitive relation, thus
leading to a more precise abstract unification algorithm. Our analysis has polynomial time
complexity for a class of programs that induce what we call “stable call substitutions.”
We point out the sources of combinatorial explosion in the case of programs with unstable
substitutions, and specify a widening operation and a compact representation. The result
is graceful degradation, automatic and selective loss of precision only where needed, and
reasonable running times.

The increased precision of our data dependency analysis has a beneficial consequence.
It actually results in faster convergence of fixed-point computations, contrary to the usual
expectation that increased precision can only be obtained from more expensive analyses.
The number of fixed-point iterations, in general, is proportional to the height of the abstract
domain. For our doma:in, it is exponential in the number of variables in a clause. In practice,
however, the number of iterations is observed to be independent of the number of variables
and bounded by five. This is reinforced by the experimental results of other researchers such
as Van Hentenryck [39], and Hermenegildo, Warren and Debray [88]. Ullman (2} reports
similar results for intra-procedural analysis of imperative programs.

Since there are programs which cause the analyzer to converge slowly, we use a
widening operation proposed by Cousot and Cousot [21] that accelerates convergence when
computing that part of the fixed-point which is reachable in top-down computations. Its
usefulness is illustrated in the case of programs whose analyses tend to wander around

the abstract space. The proposed widening operation to accelerate the convergence of

]

fixed-point computations is very general and independent of the language and the abstract
domain. Qur domain-independent, optimized abstract interpreter and the proposed shar-
ing, freeness, and groundness analysis together with the widening operation perform as well
as and in many cases better than other sharing, groundness and freeness analyses that have
been proposed, both in terms of the precision of the analysis and the time taken for analysis.

All data flow analyses to date assume a fixed control flow, i.e., they assume that
the sub-computations will be performed in a certain sequence and accordingly derive the
data dependencies among the sub-computations. These dependencies are in turn used to
relax the total ordering among the sub-computations. However, assuming an a priori fixed
control flow is too strong a restriction. It precludes many possible computation orderings
and leads to ill-moded programs. Informally, an ill-moded program is one where the control
flow induces a data flow that does not satisfy input-output restrictions. Reordering ensures
the well-modedness of programs. Until now, there has been no framework for deriving data
flow and control flow at the same time. We define a novel framework for simultaneous
derivation of data flow and control flow in logic programs. The cyclic dependency between
data flow and control flow is broken by first defining the notion of permissible mades in a
way that does not depend on a fixed control flow and then deriving control flow based on
permissible modes.

Our research on a combined data and control flow analysis is motivated by an apparent
circular dependency between these two analyses. Consider the quicksort example again and
assume that the control flow is known; for example, body goals are solved left-to-right. If
quicksort is always called from other parts of a program with the first argument bound to
a ground term, data flow analysis will show that when the subgoal split is solved, the two
sub-lists Small and Large will be bound to ground terms, and that the variables SS and
LS will remain unbound and independent of each other. It is easy to see that the second

and third subgoals (recursive calls to quicksort) depend on the first goal split. Likewise, the

fourth goal (append) depends on the second and third subgoals.

This information is derived assuming left-to-right execution. The control flow can now
be redefined and so the two recursive calls may be solved in parallel. Given the control flow,
one can perform a forward analysis of the data flow through the program, i.e., propagate
any information about the entry point to other points in the program.

Likewise, if data flow information is known, the derivation of control flow is not
difficult. In the quicksort example, assume that quicksort is to be called always with the
first argument ground, split with the first and second arguments ground and finally append
is to be called with the first and second argument ground. Given this information, one
can derive the same control flow for quicksort even if the body goals are permuted. In the
general case, however, a given data flow may be realized by more than one control flow.

An execution of a logic program may bind variables in a goal to values or terms con-
structed from varjables, constant symbols, and function symbols. An association between a
variable and its value is known as a binding. An environment binds variables to values. The
environment in which a goal or a procedure call is executed is known as the call substitution
or environment. The following example illustrates the need for different orderings of body
goals of a clause depending on the environment of the call.

Consider the permutation relation between two lists. An empty list [] is a permuta-
tion of itself. The list [Y|Ys] is a permutation of a list [X|Xs], if there exists a list Zs and
an element Y of [XIXs] such that Zs has the same elements as [X|Xs] but without Y and
the list Ys is a permutation of Zs. This is a declarative reading of the relation perm.

i. perm{(O, [I)}.

2. perm([XIXsl, [¥|Ys]) :-
delete([X|Xs), ¥, Zs),
perm(Zs, Ys).

3. delete{[AlRest], A, Rest).

delate([A,BIBs], X, [AlRest]) :-
delete([B|Bs], X, Rest).

— perm([a,b,c,d], A).

[X]Xs] v [Y]Ys)

delete([X|Xs], Y,Zs)

Figure 1: Data Flow Graph for Perm Induced by Left-to-Right Control Flow

Assume that body goals are executed left-to-right. If perm is called with the first
argument bound to a list of terms, it will succeed and unify the second argument to a
permutation of the first. For example, the goal perm([a,b,¢,d],A) will succeed and bind
A to [a,c,d,b] as o:ie of many answer substitutions.

Unifying the goal perm([a,b,c,d],A) with the head of the second clause of perm
binds the head variables X and Xs to the terms a and [b,c,d] respectively, f.e., the head
literal generates or produces X and Xs. After head unification, solving the first body goal
delete([a,b,c,d],Y,Zs) binds Y to a and Zs to [b,c,d]). Delete generates Y and Zs,
where Y is consumed by the head literal and Zs by the second body goal perm. Finally, the
second body goal perm([b,c,d],Ys) binds Ys which is consumed by the head literal.

The data flow induced by the the left-to-right control flow and the initial goal
perm([a,b,c,d],A) is shown in Figure 1. In a data flow graph, each node is a literal and

there is directed edge from a node i to another node j labeled with variable X iff literal

8

i produces a binding for the variable X which is consumed by j. We have two types of
edges in Figure 1, solid and dashed. They both denote the producer-consumer relationship.
Dashed edges signify that the variable is produced by a body goal and consumed by the head
or passed by the head literal to the caller’s environment. Analogously, a solid edge signifies
the data flow into and within a clause. They provide a visual clue about the directionality
of data flow into and out of a clause.

Although no input-output directionality is implied by the declarative reading, from
an oper;a.tional viewpoint we say that the first argument of perm has input mode, i.e., the
first argument of perm will be bound to a ground term at call time. Similarly, the second
argument of perm has output mode, i.e., the second argument will be bound to a ground
term if and when perm succeeds. We use perm(+,~) to indicate that the first argument of
perm is input to the procedure and the second argument is output. Notice that, with the
left-to-right control flow, the mode perm(+,—) induces the mode delete(+,—,—) for delete
and perm(+,-) for the recursive call in the body of perm which is consistent with the mode
for the initial call to perm.

In Chapter 2, we will define SLD-trees which show all computations of a program
and a goal given a control flow. With a left-to-right strategy for solving body goals, the
SLD-tree for the above program and the goal perm([a,b,c,d],A) does not have any infinite
branches. The order in which the clauses of delete are used does not affect the number
or set of solutions, declaratively speaking. In terms of SLD-trees, the number of successful
paths or derivations remain the same. Operationally, a strategy for constructing or exploring
an SLD-tree may miss some solutions, i.e., the strategy may be incomplete.

Since permutation is a symmetric relation, one may be tempted to call perm with the
second argument bound to a list of terms and leave the first one free and expect perm to
bind the first argument to a permutation of its second argument. Unfortunately, there is

a problem. Assume the same control flow as in the first case. If the clauses of delete are

pesn st (D'@‘y)eieTep ‘juswmsre jsIy ayy Iof anfea e sadnpold pue soyRUIWLIAY 1 ‘SULIa)
puncid o3 punoq syuswnire pir) pue pu0ILs AY} YIIm Pa[ed ST 838TEp U AL ‘818TSD o]
(+'+‘—)e1813p apour ayy pue mred 0 [e2 AAISINIDI 31} JO] SPOUI SUIES a1 seonput (+* - Juzed
opow 3y} Y3im wred 09 [fe2 [RIITU[UR ‘MO}f [OI)UOD 1J3[-03-}SII © asn am J1 ‘I9ASMOJ]
suorpdurnsse
Y3 waA1d ‘Apytuyapur doof 03 31 sasned punoqun as1yy pue suo sjuswnIre aY) YIM pue mof
[o130D 3JMI-03-953] Yum e3eTep Juajos !ssjqeirea punoqun Suaq sywewnSre pim pue
151y 3¢ q3im Pa[TeD 2q O3 81BTEP SIsNeD IPIO | Si1-03-358] uf mrad jo sfeod Apoq ayy Suiajoes
asnedaq si sty J, “uresdord ay3 ug readde 4ay) se potry are ayearpaid ® Jo S2SAE[) 2AljeUla)[e
23} J1 ‘doo[ajuyul ue ojul 0F [Im e3eTep ‘uopnjos 1sIy ayy seonpoid wred Iy
"SUOINJOS IWOS SSIUI [[im (I3PIO paxy auros Uf e3eTep Jo
sasne]d 21} Ui} Aq paonpul auo ay) se Yons) yareas JsIy-y3dep Aue pue syred uoneinduron

)Yl oIe 2I3Y} BSNLIAQ SI SIYJ, "PAsSIUI 3 [|Im SUOIIN[OS AUIOS ‘1apIo paXy JWOS Ul pasn

M0[] [oXjuoy) 1J27-03-13ry Aq padnpuy mxed lof ydels) mopq eye(:g 2ndig

([sA'sz])2ursad sz'X ‘[sxXIx])es013p

‘fp'2'q'e] ‘v)wed —

10

to insert B somewhere in the list C producing A in the mode delete(~,+,+). The data flow
for the second clause of perm induced by the right-to-left control flow is shown in Figure 2.

Note that delete(A,B,C) was used to delete some element B from A producing € in
the mode delete(+,—,-). Thus, delete may be used with the first argument in input mode
and the other two in output mode, or the other two in input mode and the first in output
mode. These two modes of delete were induced by the two modes of perm, each of which
needed a different control strategy. Thus, it is clear that control flow depends on data flow.

The unsolvability of the halting problem implies that in general there is no algorithm
for choosing statically the right order to ensure the termination of a logic program. Hence,
we will not make termination of programs an objective of our control flow analysis. Instead,
the objective is to derive a conirol flow that induces well-modedness for a clause. A clause
is well-moded iff there is a partial ordering of the body goals that satisfies the input output
restrictions of the body goals. How do we know what the input and output positions of
a body goal should be? We introduce the notion of permissible modes, based on some
restrictions on the arguments of procedures. The permissible modes do not define what
input output modes are; the definition of modes is one of the parameters of the framework
discussed below.

In the second part of this dissertation, we propose a framework for deriving data
flow and control flow simultaneously. The framework first derives permissible modes using
properties not dependent on execution order. The permissible modes may then be used
to derive control flow. We define a sound approximation algorithm for computing a set
of permissible input output modes which induce well-moded clauses. The worst-case time
complexity of the algorithm is bounded by a polynomial in the number of literals in a clause
and the arity of the head predicate.

The space of permissible modes of a procedure may be partially ordered consistent

with the constraints imposed by the modes. Some permissible modes are less restrictive

11

than others, i.e.,.impose fewer constraints. Minimal permissible modes are those that do
not impose more constraints than any other permissible modes. We show that deriving the
set of minimal permissible modes of a clause is NP-hard. Our permissible mode derivation
algorithm is an approximation algorithm in the sense that it tries to derive minimal per-
missible modes but some times it may derive permissible modes that are not minimal and
may not derive all the permissible modes.

We suggest an approach similar in spirit to polymorphic type inferencing and re-
construction used in languages such as Standard ML [59]. The programmer may omit
permissible mode declarations most of the time and let the compiler derive them automat-
ically. When the compiler fails to derive a desired permissible mode for a procedure, the
programmer must add the missing ones. Empirical results and analysis of the time com-
plexity of the permissible mode derivation algorithm show this approach to be tractable and
useful. Furthermore, the analysis of a number of programs shows that our method derives
all minimal permissible modes of most procedures. For example, our algorithm finds the
two minimal permissible modes for the perm program and the right order of body goals
associated with those permissible modes.

The definition of permissible modes and the framework for control and data flow
analysis do not depend on the particular definition of modes we use. Equating input output

modes with ground terms is done solely for experimentation.

Thesis Organization

In the rest of this chapter, we cover mathematical preliminaries, and discuss the
denotational approach to defining semantics of programming languages.

In chapter two, we start with a discussion of the syntax and semantics of Horn Clause
Logic Programming. We then discuss an operational semantics (based on SLD-resolution)

and a denotational semantics for logic programs. The denotational semantics will be used

12

as the basis for deriving an abstract interpretation framework in chapter three. Finally, we
present abstract interpretation as a semantics-based framework for data flow analysis.

In chapter three, we discuss the issues involved in deriving sharing, groundness, and
freeness information, propose an abstract domain and operations for that purpose and prove
soundness.

In chapter four, we study the efficiency of the proposed data flow analysis. We derive
the worst-case time complexity of our analysis, and compare it with the theoretical bounds.
A standard algorithm to compute the meaning of semantic functions would wastefully com-
pute the value of the function at all points. We study Minimal Function Graph (MFG)
semantics wherein the values of the semantic fuﬁctions are computed only at the needed
points, which constitute a tiny fraction of the total number of points.

Cousot and Cousot [21] proposed a widening operation that accelerates the conver-
gence by comparing (and widening, if needed) successive iterates of fixed-point computa-
tions. As mentioned before, the number of fixed-point iterations is usually very small (less
than five) and hence the time complexity of our analysis is not dominated by the number
of iterations in practice. It is dominated by the analysis time for one iteration, which in
our case can be exponential in the size of a clause. We define a widening operation to be
used when computing the MFG semantics. For a large number of programs, our analysis
reaches convergence with a small number of fixed-point iterations. These programs are well-
behaved with respect to our abstract domain in the sense that an abstract substitution (or
environment) for an initial call to a recursively defined predicate and the abstract substi-
tutions for the recursive calls derived from it are the same when restricted to the variables
in the goal. This means that the fixed-point computations can be shared. Referring to the
quicksort example, a call to quicksort together with an abstract substitution in which the
first argument is ground, induces recursive calls with the same property.

Qur proposed widening operation achieves convergence much faster in the case of not

13

so well-behaved programs. Indeed, without the widening operation the analysis of such
programs tends to wander around the abstract space, i.e., an initial call to a recursive
predicate together with its abstract environment induce calls to the same predicate with
incomparable abstract environments. Analyses of programs such as self-adjusting binary
search trees exhibit this behavior and hence benefit from the widening operation.

In chapter five, we discuss the problems in deriving control flow and illustrate the
inter-dependency of control flow and data flow analyses. After defining the notion of well-
modedness and permissible modes, we show that the problem of deriving minimal permis-
sible modes is NP-hard. We propose a framework and algorithm for deriving permissible
modes, and prove its soundness. Qur algorithm may derive non-minimal permissible modes
but has polynomial time worst-case complexity. Thus, we trade off minimality for tractabil-
ity. To the best of our knowledge, ours is the first formal framework which defines and
derives permissible modes without assuming that either data flow or control flow is known.

We then discuss the derivation of control flow given the permissible modes for all
procedures and suggest heuristics for those cases where the permissible modes induce more
than one ordering of body goals.

The last chapter summarizes the contributions, discusses the limitations of our ap-

proach and suggests directions for further research.
Mathematical Preliminaries

In this section, we provide a brief introduction to domain theory and define some of

the terms used in later sections.

Definition 1.1
A function f : A — Bis injective (one-to-one)iff Vz,y € A. f(z) = f(y) = z = v.
Function f : A — B is surjective (onto) iff Yy € B. 3z € A. f(z) = y. fis

bijective if it is both injective and surjective. (m}

14
Definition 1.2
A relation C is a partial ordering on a set D iff C is:
o reflexive: Yz € D. z C 2.
e antisymmetric: Vz,y€ D. zCyandyCrc =z =y.
¢ transitive: Vz,y,z2€ D. zCyand yCz=> 2z C z.

]

For z,y € D, we read z C y as saying “x approximates y.” A set equipped with a
partial ordering is usually referred to as a poset or partially ordered set. The notation Cp
indicates that we are talking about the partial ordering defined on D, but when there is no

room for confusion, the subscript D will be omitted.

Definition 1.3

Let (D, C) be a poset, X C D and u,!{ € D. Then,

e XCu, ifVTe X. zC u.

e ICX,ifVzEX. IC 2.

The element u (1) is said to be the upper bound (lower bound) of the set X.

Definition 1.4

Let (D, C) be a poset. An element z € D is the least upper bound (lub) of a
subset X of D iff:

e XCzx and

eVyeD. XCy=zCy.

15

The least upper bound of X is denoted as UX. The greatest lower bound (glb) is
denoted as M X and may be defined analogously to the least upper bound. A lub (glb) is
unique if it exists. When we take the lub of a set containing two elements, we write z U y

(read as z join y) instead of U{z,y}. Likewise, we write =z Ny (read z meet y) instead of

n{z,y}.

Definition 1.5
Let (D, C) be a poset. A subset X of D is a chain iff X is non-empty and

Vz,y€ X. zCyor yC z. (]
All elements of a chain are related to each other, i.e., a chain is totally ordered.

Definition 1.6
A poset (D, C) is a complete partial order, cpo, iff ¥ chain X C D. U X exists

in D. (|

Definition 1.7

A poset D is a pointed cpoiff D is acpoand 31 € D. L C D, a

Definition 1.8
A poset (D,C) is a join semi-lattice iff for all subsets X of D, the lub of X exists
in D. D is a meet semi-lattice iff for all subsets X of D, the glb of X exists in D.

D is a complete lattice iff D is both a join semi-lattice and a meet semi-lattice.

(]

Definition 1.9
For cpos A and B, a function f: A — B is continuous iff for any chain X C A4,

FIUX) = u{f(=)|z € X}. O

In other words, the image (under f) of the least upper bound of a chain X contains the

same information as the least upper bound of the images (under f) of the elements of X.

16

Continuous functions preserve the limits of chains.

Definition 1.10

A function f: A — B where A and B are posets is monotonic iff

Vz,y€ A. z C4 y = f(z) Cs f()- o

Continuity implies monotonicity. When the underlying set is finite, monotonicity and
continuity are equivalent. Continuity allows us to work with infinite objects in terms of

their finite approximations. We will say more about continuity shortly.

Definition 1.11

A domain is a pointed cpo over which computable functions are continuous. O

One can construct complex domains out of simpler ones. We now define a few domain
constructions that will be needed later.

Any set D can be equipped with a discrete partial ordering C defined as: Vz,y €
D. zC yiff z = y. Such a set is a cpo and is known as a flat cpo. For a poset (A4, C4), its
lifting A, is the set AU{L}, partially ordered by the relation C such that Vz,y€ A,. zC y
iff either z = 1 or z ©4 y. The newly added element L is known as the improper element
and all other elements are proper.

For posets (A, C4) and (B, Cg), their product A X B is the set {(a,b)|a € A and :
b € B} partially ordered by the relation C such that (a,b) C (a’,b') if a C4 a' and b Cp b'.
Domain construction by products can be generalized to products of n domains, where n > 2.
We write (21, 22,...,Zy,) to denote an element of A; X A2 X ... % A,. In the special case of
Ay = Ay = ... = A,, we write the domain as A™. For a product of n domains, we use | i
as the projection operation: (z,,z2,...,2,) | i = z,.

For posets (A, C4) and (B, Cp), define a function space A — B (read “A to B”) to

be the set of all continuous functions with domain A and co-domain B. If A and B are cpos,

17

then A — B is a cpo. These functions are partially ordered by the relation C such that for
f,9:A— B,

fCg iff Ya€e A f(a)Cpg g(a).

We always use the pointwise ordering on function space, i.e., for functions f,g: X = Y, fug
is afunction h : X — Y such that Yz € X.h(z) = f(2)Ug(z). This follows from the definition
of C above.

If D is a domain, D* denotes the domain of finite sequences of d € D. If D is a set,
then its power set P(D) is a domain with subset relation as the partial ordering, unless

noted otherwise.
Least Fixed-Points

In the previous section, we defined domains and some domain constructors and the
continuity of functions. Continuity is useful when computing with infinite objects and neces-
sary from the point of view of computability. In the denotational definition of the semantics
of a programming language, the concepts of continuity and fixed-points of functions play
an important role. The meanings of recursively specified functions (and domains) will be
defined in terms of least fixed-points.

For a function f: D — D, an element d € D is a fixed-point of f if d = f(d). If Dis
a domain and f : D — D is a continuous function, then there always exists a d € D such
that d is the least fixed-point of f, i.e., f(d) =d A Ve € D. e = f(e) implies d C e. Let f'
denote f composed with itself i times, i.e., fi(z) = f{f(f.. .(f(z))...)) and L denote the

least element of the domain D. Then the least fixed-point of f, fix f, is defined as
fix f = u{f'(L)|i 2 0}

The existence of the least fixed-points is known as Kleene's fixed-point theorem [76].

The construction of least fixed-points is illustrated now. Consider a recursive speci-

fication of the factorial function.

fac:N = N,
fac=An.n=0—=1|n>0-— n*fac(n—1)

In this definition, the occurrence of fac on the right hand side of the equation is free, i.e.,
neither a parameter of the function-, nor a local variable, in programming language terms.
In all recursive function definitions which associate a name with a function and use that
name in the definition of the function (such as the above), the name of the function will be
free in the definition.

The meaning of a function f is given as the least fixed-point of an associated functional
F. We derive a functional F from the recursive definition of f by abstracting out f, i.e.,
by converting f into a parameter. For example, the meaning of fac is defined to be the
least fixed-point of the following functional F, obtained by abstracting out fac from the

specification.
F:(N>N.)—=(N-=Np)
F=Afdnn=0-1|n>0-n«f(n-1).
What is F(fac)? Applying F to fac, we get
Ann=0—1|n>0- nsfac(n-1).

We see that F(fac) = fac and we have recovered the original definition of factorial as
a fixed-point of F,

Continuity is useful in computing with infinite objects. The meaning of a recursive
function, an infinite object, is solely determined by the meanings of its finite pproximations,
i.e., as the lub of successive, finite approximations. We can compute the finite approxima-
tions as much as needed. The following example shows, in part, how continuity is useful in

computing with infinite objects.

19

Consider the functional F associated with the factorial function. We list below the

successive approximations F%, F1, F2 _ of the factorial function.

o= by definition of F°
F' = F(F°) =F(L)=An.n=0—1|n>0— 1
F? = F(F') =FAn.n=0—=1|n>0— 1)

=dmn=0-1|n>0—-n+{(An.n=0—1]|n>0— L)(n-1))

The F°, F1, F?,... are finite mappings from N to N, and correspond to unfolding
the recursive definition of fac 0, 1, 2, ... times respectively. F° maps all natural numbers
to L. F! maps 0 to 1 and all other natural numbers to L. Likewise, 2 is defined for 0
and 1 and undefined for all other numbers. We can represent these finite functions by their
graphs i.e., sets of pairs of arguments and results. The graphs of these approximations are

as follows. We do not show the pairs of the form (n, L).
FO = J—vFI = {(Os 1)}, Fl= {(0, 1)3(1! 1)}: F = {(Oa 1)!(11 1)?(2’2)}1 v

Given the partial ordering on function space, it is easy to see that F°C F1 C F2...
forms an infinite chain. The meaning of factorial is the lub of this chain. The application
of the factorial function to some n € N involves computing the finite approximation F"t1
and applying F**! to n. Operationally, it amounts to = + 1 unfoldings of fac.

The need for cpos arises from the fact that the successive approximations of a recur-
sively defined function form an infinite chain and the meaning of such a function is the least
upper bound of the chain. We want the lubs of chains to exist and hence domains must be
complete partial orders. We also want the least element to exist so that successive approx-
imations can be computed starting with the least element. Hence, domains are defined to
be pointed cpos.

We will not go into the details of computability of continuous functions but refer

20

the reader to an excellent introductory book by Manna [53]). Qur review of domain theory
is necessarily incomplete. Domain theory, developed by Dana Scott, is general enough to
model computation, including recursion and self-application. For a detailed discussion of
domain theory, please see [76, 72, 80]. With this brief review of domain theory, we are ready

to discuss a small example of denotational definition.
Denotational Semantics

The semantics of a programming language may be defined using operational, ax-
iomatic or denotational approaches. In all approaches, the meaning of a program in a given
language is defined in terms of the meanings of the language constructs.

In the denotational approach to semantics, the meanings of language constructs are
defined by valuation or semantic functions. Valuation functions map syntactic constructs
to semantic domains. The meaning of a construct is defined in terms of the meanings of
its proper sub-parts. We need a notation to define the valuation functions and semantic
domains. Lambda calculus is the language most often used for this purpose.

A denotational definition of a language consists of three parts: abstract syntax, se-
mantic domains, and valuation functions that map syntactic elements to their meanings in
the semantic domain.

Abstract syntax defines the structure of the sentences of a language in terms of its
components which may be other syntactic categories or tokens. The rules for grouping indi-
vidual alphabet symbols or terminals into words and the terminals themselves are omitted,
since these details are irrelevant when defining the semantics. For example, the structure
of an arithmetic expression may be defined by rules {aexp) ::= (aexp) plus (aexp) and
(aexp) ::= (numeral). The structure of the tokens numeral and plus is unimportant.

Examples of semantic domains include integers, truth values, ordered pairs, and con-

tinuous functions over these spaces.

- 21

As an example, we define the denctational semantics of binary numerals. We have to
specify three things, namely, the abstract syntax, the semantic domains and the valuation
functions. The abstract syntax of binary numerals is given by the following BNF grammar,
where 0 and I are the numerals, B stands for the syntactic category Binary Numeral and
D for Binary Digit. Since a binary digit does not have any structure, there is no difference

between the abstract syntax and the concrete syntax.

Binary Numeral == BD
Binary Numeral == D

Binary Digit n=

O 9w w

Binary Digit u= 1

For the semantic domain, we use the natural numbers N together with the opera-
tions times and plus. We now have to show the correspondence between syntactic objects
and semantic domain elements and use semantic functions for this purpose. The semantic
functions are given by a set of equations, one for each production defining the syntactic
category such as B or-D. The semantic function corresponding to a syntactic category B is

denoted by boldface B. The semantic functions have the following types:

B: Binary Numeral — N
D: Binary Digit — N

Before specifying the semantic functions, we describe a few conventions about their
form. Let f be a function of two arguments. Then its curried version is a function f’ such
that (f'(z))(y) = f(z,y), i.e., f', a function of one argument, when applied to z returns
an unnamed function, which when applied to y yields a result that is equivalent to f(z, y).

We use functions in their curried form, i.e., the application of f to z and y will written

22

as fzy instead of f(z,y) and the type of a function f: X x Y — Z will be written as
f: X =Y — Z. A semantic function may have parameters from syntactic and semantic
domains. It is customary to enclose the syntactic parameters of a semantic function in

brackets []. We now define the semantic functions B and D:

B[BD] = (B[B] x 2) + D[D]
B[D] = D[D]

Do} = o

D[] = 1

Note that the meaning of a syntactic object is defined either directly (i.e., mapped to
an object in the semantic domain, as in the case of D) or as the result of some function(s)

applied to the meanings of its sub-parts (as in the case of B).

Summary

This chapter discussed our contributions, provided an outline of the dissertation,
and recalled some mathematical definitions. The next chapter presents the syntax and
semantics of Horn Clause Logic Programming, and introduces abstract interpretation of

logic programs.

23

CHAPTER II

SYNTAX AND SEMANTICS OF LOGIC PROGRAMS

This chapter provides an introduction to the syntax and semantics of logic programs.
We discuss an operational semantics for logic programs based on SLD-resolution and illus-
trate some potential problems with the selection of a control strategy. Since the operational
semantics is not convenient for the types of analyses we are interested in, we define a de-
notational sema,ntics.for logic programs. The denotational semantics is used as the basis
for an abstract interpretation framework. We use a parallel composition operator in both
the operational and denotational semantics. The parallel composition operator replaces the

standard notion of composition and is convenient to use for a variety of reasons.

Logic Programming

The model of computation represented by logic programming is radically different
from procedural programming based on the von Neumann model. A logic program is a set
of axioms of a first order theory and computation may be viewed as an attempt to prove
that a given formula logically follows from the given set of axioms.

Logic Programming owes its development to Kowalski and Colmerauer [48). Kowalski
showed that a formula of the form p ~ q,..., g, has a procedural interpretation. The set of
clauses defining p is seen as defining the procedure p and the goals gqy,..., ¢, are viewed as
procedure calls. Parameter passing, data structure construction and selection and returning
results are all achieved using one mechanism, namely, unification. Colmerauer developed
the logic programming language Prolog and an interpreter for it as part of a research effort

in natural language processing.

24

A computational model of a logic programming system may be split into twao parts:
a declarative part which represents the constraints of the system being modeled and a
procedural part which manipulates these constraints. Such a separation of declarative
knowledge and procedural knowledge occurs naturally in many domains and Prolog makes
it easier to represent and reason about such knowledge. Prolog has been used successfully
in both academia and industry for a variety of purposes.

The field of logic programming reaches far beyond the language Prolog. To men-
tion a few, the fields of deductive data bases [40], non-monotonic reasoning [65], con-
straint logic programming [19, 35], committed-choice logic languages [73], and higher-order
logic programming [43, 63, 58, 15], owe their development to research in logic program-
ming and shortcomings in Prolog. The convenience and expressive power of unification
has led researchers to explore various combinations of functional and logic programming

paradigms [7, 24, 37].

Syntax and Semantics

Logic programming languages use a subset of the sentences of First Order Predicate
Calculus together with one or more inference rules to derive logical consequences.

In predicate calculus, a literal is an atomic formula (2tom) or the negation of an
atomic formula. For example, p(ty,...,1,;) is an atomic formula, and =p(?;,...,1,) is a
negated atom. In an atom p(ty,...,1,), p is the predicate symbo! and t;,...,t, are its
arguments, which are terms. A term is either a variable or of the form f(1;,...,1) where
f is a function symbol of arity k and t,,...,1; are all terms. When k is zero, we omit the
parentheses, and f is called a constant.

A term (atom) is a ground term (atom) if and only if no variable occurs in it. Con-
stants, function and predicate symbols are denoted by identifiers starting with lower case

letters, and a variable by an identifier starting with an upper case letter. We use a ranked,

25

countably infinite and mutually disjoint alphabet of predicate symbols and function sym-
bols. The rank of a predicate is its arity. Note that a predicate symbol such as p may
have only one arity. This is not a restriction because a consistent renaming of the predicate
symbols in a program will ensure that a predicate symbol has associated with it only one
arity.

A clause is a disjunction of literals, where all the variables are universally quantified in
prenex form. For example, V.X.~g; (X)V-g2(X)Vp(X)Vr(X)and VX.~p(X) are clauses. A
clause with at most one positive literal is 2 Horn Clause. The clause YX. g (X)V —g(X)V
P(X)Vr(X)is not a Horn clause since it has two positive literals. A clause with exactly one
positive literal is also known as a definite clause or program clause and a clause with zero
positive literals is a goal clause. For example, YX. g1 (X)V =g2(X) V p(X) is a program
clause and VX, -p(X) is a goal clause.

Hereafter, we use the term clause to mean a Horn clause. Since all variables in a clause
are universally quantified, we omit the quantifiers. Furthermore, since a — b = —a v b, the
clause pV ~q; Vg2 V...V =g, will be written as p ~ q;,q2,...,qn, where — is read as “if”
and comma stands for conjunction. The positive literal of a clause is known as its head,
and the negative literals are collectively known as the body.

When the body of a clause is empty, the clause is known as a unit clause. A goal
clause will be written as « b;,...,b, and a unit clause as p «—. A procedure p is a set
of n-ary clauses whose heads have the same n-ary predicate symbol p. The literals in the

body of a clause are often referred to as goals or subgoals.

26

Example 2.1

Consider the following program which defines natural numbers.

1. nat(0) —
2. nat(succ(X)) ~
nat(X).
3. +« nat(succ(succ{succ{0))}).

a

In the above example, nat(0) is an atom where nat is a predicate symbol of arity one
and O is a constant term. The atom nat (0) is a ground atom since no variables occur in it.
The atom nat (X) is not ground since it contains a variable term X. The atom nat (succ(0))
is also ground. Its argument is a term whose function symbol is succ of arity one. We may
some times refer to terms such as succ(0) as a compound term.

The clause nat(succ(X)) «~ nat(X) is a Horn clause. The clauses nat(0) and
nat{succ(X)) « nat(X) together form a procedure nat which defines the notion of a
natural number. The clause nat(0) «~ is a unit clause, since its body is empty. The
positive literal nat (succ(X)) of the clause nat(succ(X)) + nat{(X) is known as its head,
and the negative literal nat(X) as its body; nat(X) is also the only subgoal of the second
clause. The clause « nat(succ(succ(succ(0)))) is a goal clause.

A logic program is a finite set of Horn clauses. It can be given meaning in three
different ways. The clause p «— g¢1,...,gn can be read procedurally as follows. “To prove
P, prove g1,qz, ..., and g,.” This proof process is a constructive one, i.e., when it succeeds
it produces values for the variables of the clause. In the procedural reading, the meaning
of an n-ary procedure p in a program is defined to be a relation: a set of n-tuples of terms
such that the relation is provable, given the clauses of the program as axioms.

From a model-theoretic point of view, the clause can be read as: “p is true if g, ...,
and g, are.” In this view, the meaning of a procedure p in a program is a set of of n-tuples

such that any model of the program is also a model of the relation denoted by p.

27

Yet another view is possible with the use of least fixed-point semantics. In this view,
one associates a transformation Tpr with a program P. This transformation maps a set of
ground atoms to a set of ground atoms. The meaning of a program is then defined to be
the least fixed-point of this transformation.

Van Emden, Kowalski, and Apt [38, 5] show that these three notions of semantics
coincide for Horn clause logic programs (when the inference rule associated with operational

semantics is complete). A more detailed account can be found in Lloyd’s book [52].

Operational Semantics of Logic Programs

Operational semantics specifies, in an implementation independent way, not only
what the results of a computation should be but also how the results of a computation
are obtained. The operational semantics of a language is usually given in terms of a
transition system which consists of configurations (or states) and transitions between con-
figurations. Natural semantics focuses on how the overall results of a computation are
obtained whereas structured operational semantics (SOS) specifies the meaning in terms of
individual execution steps.

For Horn clause logic programming, a proof procedure known as SLD-resolution pro-
vides an operational semantics [52). SLD-resolution may be seen as an SOS-style seman-
tics [69] in that it relates a configuration consisting of a goal and a substitution to the next

configuration via resolution.
Substitutions

The notion of binding a variable is captured by a mapping from variables to terms. A
substitution is an infinite mapping (from the set of variables to the set of terms) which is the
identity everywhere except at a finite number of points. For example, {X = f(a),Y — Z}

is the non-trivial portion of a substitution which maps variable X to f(a) and variable

28

Y to Z. It maps all other variables to themselves. We can therefore represent the non-
trivial portion of a substitution @ : Subst = Var — Term by a finite set of bindings
{v1 = 1),...,0, ¥ t,} where the v; are distinct variables, the t; are terms, the v; do not
occur in any of the ;.

A renaming substitution is a bijective substitution from variables to variables and
which, by definition, has an inverse.

An element v; — ¢; of a substitution is called a binding. The definition of substitution
can be extended naturally from Var— Term to other objects such as terms and literals.
Hereafter, substitutions mean either the original definition or its extension to terms, atoms,
etc.

The term 14 is obtained by applying substitution @ to a term ¢, i.e., replacing every
variable v; of ¢ with the corresponding ¢; for which there is a binding v; ~ t; € 6.

We use Vars(T') to mean the set of variables in T, where T is a syntactic object. The
domain of a substitution dom(®) denotes the finite set of variables v; such that v;8 # v;.
The range of a substitution range(#) is the set of variables X such that there is a variable
v; € dom(f), v;# =t and X € Vars(t). Note that the dom and range are defined so that

they refer only to the non-trivial portion of a substitution, and Vars(#) = dom(6)Urange(8).

Example 2.2
f0={Xwr f(2,21),Y —» Z,}, then dom(6) = {X,Y}, range(9) = {Z,, 2Z,},
and Vars(0) = {X,Y, Z,, Z;}. The restriction of the domain of a substitution #

to a set of variables V will be denoted as &|y. o

Sequential Composition

The composition of substitutions §; and 8;, i.e., 8; 0 8;, is defined as Az.(z#6;)8;. In
other words, for all terms ¢, 1(8; o 8;) = (t6;)6;. Substitutions, as we have defined them, are

idempotent, i.e., #o 8 = 8, since dom(f) and range(f) are disjoint. Applying an idempotent

29

substitution one or more times to a term produces the same result.

~ Composition of idempotent substitutions does not necessarily yield an idempotent
substitution. For example, consider #; 0 8; where 6; = {X — f(Y)} and 6; = {Y ~ f(X)}.
However, whenever we compaose two idempotent substitutions 8; 04;, it will be the case that
dom(8;) C range(6;) and range(#;) N dom(#;) = 0. In the above example, this condition is
not satisfied by #; and ;. The composition of substitutions satisfying the above condition
yields an idempotent substitution. In this dissertation, we consider idempotent substitutions

only.

Equivalence Classes of Substitutions

Composition allows us to define a natural pre-ordering of substitutions: 8, < 8, iff

363 € Subst such that #; = 8, o 3. Intuitively speaking, #; is less specific than 6;.

Example 2.3
Let 8; = {Xz — g(Z)} and 8; = {X; — g(R)}. Then, 6; < 8, since ; can be
obtained from 6, by composing 6; with 83 = {R — Z}. Likewise, #; < 85 since

@2 can be obtained from #; by composing 8, with 8; = {Z — R}. o

This notion allows us to define equivalence classes of substitutions. We say that
two substitutions are equivalent if they can be obtained from each other through renaming
substitutions. Define an equivalence relation ~ on substitutions, induced by < as: ¢ ~
iff§ < oAo < 8. For example, the substitutions 8, = {X2 — ¢(2)} and 8; = {X; = g(R)}
form an equivalence class {6,,0;,...,} and the substitutions 83 = {X; — g(f(Z))} and
04 = {X2 — g(f(5))} also form an equivalence class {63,8;,...,}. The equivalence class of
a substitution 8 is denoted by [f]. The set of equivalence classes of substitutions is denoted
as Subst.,. The relation < induces a partial order on Subst.., and the partial order is also

denoted by <. In the above example, [6;] < [65)].

30

Paralle]l Composition

Composition is asymmetric in its two arguments. When two substitutions are com-
posed, the bindings in the two substitutions should represent equality constraints on vari-
ables, and these constraints should hold simultaneously. This idea of reconciling the in-
formation in two substitutions is inherently symmetric. However, composition as we have
defined it is not symmetric, since # o ¢ # ¢ 0@ in general. To emphasize this fact, this form
of composition is known as sequential composition.

Consider the parallel execution of two body gaals a; and a; given current substitution
6. In general, they may produce different bindings for the variable terms that may occur in
both. The notion of ensuring compatible bindings is absent in sequential composition. Since
unification of terms may be viewed as solving equations, a parallel composition operator
that has many nice algebraic properties [68] may be defined as solving the simultaneous
equations implied by the two substitutions. We now discuss this viewpoint, along with a
parallel composition operator.

A set of equations {X; = ¢;,...,X, = t,} is in solved form iff the X; are distinct
variables and they do not occur in the right-hand side of any equation. It is clear from the
definition that an idempotent substitution {X; — #;,...,X, — 1,} may be viewed as a
set of equations in solved form and vice versa. The equation set of a substitution # will be
denoted Eqn(@). The equivalence class of equations corresponding to the equivalence class
of idempotent substitutions [#] will be denoted by [Eqn(8)).

A substitution @ is a unifier of terms t; and t, if {8 = 1,6, where = is syntactic identity.
The set of most general unifiers (mgu) of two terms form an equivalence class under the
relation ~. For this reason, it is often referred to as the most general unifier. A substitution
unifies a set of term equations {s; = t1,...,55 = t,} iff {810 = 1,8,...,5,0 = 1,6}.
The equivalence class of most general unifiers of an equation set E is denoted by unif(E).

An equation set E is unifiable iff there exists a substitution # that unifies E. Two sets of

31

e f(t1,...,1a) = f(s1,...,5n). Replace the equation with the equations
5 = 81,...,tﬂ = Sp.

ft, .y tn) =9(51,. .-y 8m). H f # g or m # n, halt with failure.
¢ z = z. Delete the equation.

¢ i = x where ¢ is not a variable. Replace it with z = 1.

z =t where z is variable, z # ¢ and z has another occurrence in other
equations. If z occurs in ¢, halt with failure. If not, replace z by ¢ in all
other equations.

Figure 3: Equivalence Preserving Transformation Rules

equations Fy, E; are equivalent iff unif(£y) = unif{ E2). The unification algorithm is defined
next, followed by the parallel composition operation.

Unification of a set of equations is the process of continually rewriting the equations
until they are in solved form [50]. Figure 3 shows a set of equivalence preserving rewrite
rules that are used to perform the transformation.

To find the mgu of two terms (atoms) ¢; and t;, we begin by forming the singleton set
of equations {t; = t3}. The unification algorithm transforms a set of equations into solved
form if the set is solvable or halts with failure. Each step of the algorithm involves choosing
an equation to which one of the rules of Figure 3 apply and applying the rule. Each rule
transforms a set of equations into an equivalent one. The algorithm is deterministic in the
sense that for each equation, only one (or none) of the rules in Figure 3 is applicable. It
is non-deterministic in the sense that the rules may be applied in any order. However,
the most general unifiers of a set of equations form an equivalence class and hence the
unification algorithm is confluent, i.e., it produces the most general unifier which is unique
modulo variable renaming.

Parallel composition may be defined in terms of solving the union of two sets of

simultaneous equations, thus capturing the symmetric nature of reconciliation.

Recall that the set of equivalence classes of idempotent substitutions Subst., is a
partially ordered set, with the partial order being < and the equivalence class of a substitu-
tion 8 is denoted by [6]. In the discussion following the definition, we will not differentiate
between an idempotent substitution and its equivalence class.

The result of reconciling two-idempotent substitutions & and o is defined to be the

most general unifier of the union of & and 6 considered as sets of equations.

Definition 2.1 [Parallel Composition)
T: Subst.. x Subst. — Subst. U {fail}

(6] T [6] = mgu(Eqn(8) U Egn(c)) if it exists, fail otherwise m]

Notice that the definition is symmetric with respect to the substitutions being recon-

ciled.

Example 2.4
Let 6 = {X = g(Y,),Z — g(b,Y)} and o = {X ~ 9(a,Q),Z — g(P,Y)}.

Then
01 = mgu({X =g(Y,a),Z=g(b,Y),X =9g(a,Q),Z = g(P,Y)})

= {X ~g(a,a),Z g(b,0),Y = ¢, P — b,Q - a}

On the other hand, the sequential composition foc is equal to {X — g(Y,a), Z
9(b,Y)} where the effect of the substitution o is lost. This is because applying
@ to a term ¢ will replace all occurrences of X in ¢ by g(Y,a) and all occurrences
of Z in t by g(b,Y). Hence applying ¢ to t6 will have no effect. In other words,

domo N Var(t#) = 0. A similar problem occurs if o is applied first. o

We will not go into the details, but the poset (Subst.., <) of equivalence classes of

idempotent substitutions is a complete lattice (with a new top element fail added to it) and

33

T is the lub operation. { is commutative, associative and idempotent. Hereafter, we use

“substitution” to mean the set of equivalence classes of idempotent substitutions Subst...
SLD-Resolution

SLD-resolution stands for Linear resolution with a Selection function for Definite
clauses, SLD-resolution solves a goal G, consisting of a sequence of atomic formulas
@1,...,Gn, in the context of a program P and a current substitution @ (initially empty).
An atom a,, is selected using a computation rule; then a search rule is used to find a
clause b « by,...,bx in P such that b unifies with a,,8 using substitution 8; (after re-
naming the variables of the clause). The body literals replace a,, in the goal and the
process continues after composing the current substitution with 6;, i.e., the new goal is
G15.0038m=1,b1,. .., 0k, @41, ..., 2, and the new current substitution is # o ;. This pro-
cess repeats until the goal is empty, in which case the initial goal has been successfully
solved, or there is an atom in the goal that does not unify with the head of any of the
clauses. When the goal is empty, the current substitution (restricted to the variables in the
initial goal) is known as an answer substitution.

Consider the following program P and the initial goal G.

1. p(x,2) — q(x,Y), x(v,2).

2. r(X,X).
3. q(e,b).
— p(4,b).

Suppose that the computation rule always selects the leftmost atomic formula in
a goal and the search rule selects clauses in order from 1 to 3. The goal clause defines
an initial goal sequence p(4,b). To solve p(A,b), we unify it with the head of clause
1, using the substitution {A — X,Z — b}. The new goal is q(X,Y), r(Y,Z) and the
current substitution 6y is {4 — X,Z — b}. From the new goal, the computation rule

selects the atom q(X,Y) and then the selection rule selects the only clause for q. The

34

unifying substitution ¢’ is {X ~— @,Y — b}. The new current substitution 8; = 6 o &
is {A — a,X — a,Y — b,Z — b}. Since the body of clause three is empty, the new
goal is r(Y,2). The computation rule selects the only atom in the new goal; the selection
rule selects the only clause r(X,X) which is renamed to r(X’,X’) and then unified with
617(Y, Z). The unification succeeds with 6” = {X' ~ b} as the unifier. The new current

substitution 82 =8, 08" = {A— a,X — a,Y = b,Z — b, X' — b}.

Definition 2.2
Let {G,8) be a state where G is a goal clause « ay,...,a,, and # is the current
substitution. Let C be a program clause @ « by,...,b;. The state (G",#') is

derived from the state (G, 8) and C using mgu o if the following conditions hold:

* ap is an atom, called the selected atom, in G. (1 £ m < n)
e o is an mgu of a,f and a.

» G'is the goal — a3,...,am-1,b1,...,b%, Gma1,...,8, and & = f o 0.
G'# is called the resolvent of G# and C. D

Definition 2.3
Let P be a program and G be a goal and ¢ be the identity substitution. An
SLD-derivation of PUG consists of a finite or infinite sequence § = (G, ¢), 51, .. .,
of states, a sequence C1,C?.. ., of renamed versions of program clauses of P and
a sequence 03,0y, ..., of mgu's such that each Sjy, is derived from §; and C;,,

using Tig1- O

Note that since state Siyy = (Git1,0i41) is derived from state §; = (Gi,8;) using a
substitution 041, 6;41 = 6; 0 0;41. The clause C; used in step ¢ is a renamed version of
the corresponding program clause that does not have any variables in common with the

derivation so far. SLD-derivations may be finite or infinite. A finite derivation is successful

S 35

if it ends in a state (O, §), where O denotes the empty goal. A successful derivation is known

as a refutation.

Definition 2.4
An SLD-refutation of PU G is a finite SLD-derivation of P U G which has the
empty clause O as the goal in-the last state of the derivation. If G, is O, then

the refutation has length n. m]

A derivation has finitely failed if it ends in a state with a non-empty goal clause whose

selected atom does not unify with the head of any program clause.

Definition 2.5
A computation rule is a function that maps a goal clause to an atom in that

goal, called the selected atom. (]

A search rule selects a clause that will unify with the selected atom. A search rule is
defined with reference to an SLD-tree shortly.

For example, a computation rule may always select the leftmost atom in a goal clause.
Likewise, a search rule; may select clauses in the order in which they appear in a program.

It is important to note that the choice of a computation rule does not affect the results.
If PUG is unsatisfiable, then for any computation rule R, there exists an SLD-refutation
of P UG via R. This is known as the independence of the computation rule and is due to
Apt and Van Emden [5].

An SLD-tree is a graphical representation of all SLD-derivations of a program and
goal via a given computation rule R. The computation rule determines the shape and size
of the SLD-tree. A search rules merely explores the SLD-tree in 2 certain order. Since
a computation rule determines the search space of a program (via the construction of an

SLD-tree), it is more important than a search rule. However, in the presence of infinite

36

branches, the search rule also becomes important. An unfair search rule such as a depth-
first search rule (e.g. searching clauses in the order they appear in the program) makes the
search incomplete, i.e., does not always find all the solutions.

The construction of an SLD-tree starts with the initial state (G,) at the root. Given
a node with state § suppose some atom a,, is the selected atom. Then each derived state
S’ of state S and clause C; (1 < i < n) will be a child node of the given node. Each path

in the SLD-tree is an SLD-derivation.

Definition 2.6
Let P be a program and G a goal. An SLD-tree for P U G is a tree satisfying

the following conditions.

¢ The root node is the state (G,).

¢ Each node of the tree is a state with a possibly empty goal.

o Let (~ a3,...,at,8) be a node and ap, (1 € m < k) be the selected atom.
Then for each input clause a « ¥,...,b, in the program such that a and
am# are unifiable with an mgu o, the node has a child

(—a1,. . 8mo1, by, . bny @y -2y, B0)

Nodes with an empty goal in their states have no children.

Definition 2.7
A search rule is a strategy for searching SLD-trees to find success branches. An
SLD-refutation procedure is specified by a computation rule together with a

search rule. . |

A program and a goal may have widely differing SLD-trees depending on the compu-
tation rule. Figures 4 and 5 show SLD-trees for the same program but using two different

computation rules that select the leftmost and rightmost atoms respectively.

37

= p(A. D)
L. p(X,Z) — q(X,Y),p(Y, Z). : 0
2. p(X,X).
3. q(a,b).
Ea P(A, b)
o
'_Q(xry)- P(Ylb) {A —_ b]
succeas
3
- p(b, 8)
1 2
e Mip(ul b) (=]
failure {A — a}

succeas

Figure 4: SLD-Tree with Leftmost Literal Selection

The SLD-tree in Figure 4 is built using a computation rule that selects the leftmost
literal in a goal. The atom chosen by the computation rule in each goal node is underlined.
The labels on the edges denote the number of the clause used in resolving the selected atom
of the parent node. This tree shows three SLD-derivations, corresponding to the three paths
from the root to the leaves. Two of them are successful and one is a failure derivation. The
leaves of the successful derivations are labeled with the answer substitution restricted to
the variables of the initial goal.

The same program and goal have a very different SLD-tree when the rightmost literal
selection rule is used, as shown in Figure 5. For the same program, the computation rule
that selects the rightmost literal in a goal creates an SLD-tree that has infinite branches. A

depth-first search will enter into an infinite loop and miss the solutions to the right of the

38

— p(A, b}
L p(X,Z) — q(X,Y),p(Y, Z).
2. p(X, X).
3. ¢(a,d).
< p(4,5). — g(X,¥),p(¥,b)
{A — b}
success
1 2
—a(X.Y),q(Y, U).p(v b) — (X, ¥),g(3,b)
1 N {A Lo a}
l/ \\ success
S ‘\\ 3
Il \\
/’ \\
infinite — g(4,a)
failure

Figure 5: SLD-Tree with Rightmost Literal Selection

infinite path.

The number of success branches is the same for all SLD-trees of a goal and a program.
A fair search rule will be able to find all the successful derivations even in the presence of
infinite paths, whereas an unfair rule such as depth-first search will miss solutions to the
right of an infinite path. A parallel search rule, likewise, will be able to find all successful

derivations.
Use of Parallel Compaosition

In the operational semantics presented above, in a single step of resolution the current

substitution & is applied to the selected atom a before unifying the atom with the head of

39

a clause. If unification succeeds, the substitution 6 is composed with the unifier to give the
new current substitution.

This step is reformulated using parallel composition. This simplifies the presentation
and proof of correctness of our abstract interpretation. Instead of unifying the head h; with
the goal a,,#, we unify the head h; with the goal a., (i.e., ignoring the current substitution
8) giving a substitution ¢. We then obtain the new current substitution ¢ as the parallel
composition o T 4.

’l:o prove that our reformulation is correct, we use the following proposition due to

Palamidessi [68]. This proposition relates the parallel composition operation to sequential

composition.

Proposition 2.1

For all idempotent substitutions o; and a5,
o1 1 02 = 01 0 mgu(Eqn(oz)o1)
where Eqn(oz)oy = {zgy =10y | z =t € Egn(o2)}]

The proposition says that parallel composition ; T o, may be derived in terms
of sequential composition as follows. The substitutions oy and oy are sets of equality
constraints in solved form. Apply the substitution o, to the equations of 0. The resulting
set of equations Eqn(o,)o; may no longer be in solved form, so solve them, i.e., find the mgu
of the new set of equations. The sequential composition of oy with the mgu of Eqn(c;)oy

is equivalent to the parallel composition of &, and o,.

Example 2.5
In Example 2.4 we had 8 = {X ~ g(Y,a),Z — g(b,Y)} and 0 = {X —
9(a,Q), Z — g(P,Y)}. The parallel composition of § and ¢ as per the original

definition 2.1 is

. 87¢e

1o

mgu(Bqn(6) U Eqa(o))
mgu({x = g(Yv a):z = g(b: Y)a-X = g(aﬁ Q)! Z= g(P?Y)})
{{X — g(e,a),Z+ g(b,a),Y = a,P — b,Q a}}

Using Proposition 2.1, let us re-derive the parallel composition of ¢ and #.
81oc = 8omgu(Eqn(c)d)

= Gomgu({X =g(e,Q),Z2=9g(P,Y)}9)

= Oomgu({X0=g(s,Q)8,20 = g(P,Y)6})

= @omgu({g(Y,a)=g(a,Q),9(b,Y) = g(P,Y)})

= 6o{Y ~a,Q—a,Pw—b}

= {X — g(a,a),Z — g(b,a),Y — a, P~ b,Q > a}

We now prove that our reformulation is correct.

Propaosition 2.2

Proof

Let o be the current substitution, H be the head of a renamed clause being
unified with the goal G and Eqn(6) be the solved form of {H = G}. Then,
ogomgu(H,Ge)=0cT8. o

comgu(H,Go) = ocomgu(Ho Go) due to renaming, Ho = H
= comgu({Heo = Go})
= ocomgu({H = G}a) by def. {H = G}o = {Ho = Ga}
= o omgu{Eqn(f)o) Eqn(8) is the solved formof H = G

= o18 by proposition 1
a

40

41

The Need for Denotational Semantics

The operational semantics relates a goal state to another goal state derived using a
single step of execution, namely SLD-resolution. This is similar to structured operational
semantics (SOS) [66] in that the emphasis is on individual steps of execution. For the
analysis we are interested in, we would like to focus on what is being computed, i.e., given
an initial goal and a substjtution, what are the answer substitutions of the program? We
can ask a similar question at the level of a clause.

A denotational semantics helps in defining the meaning of a program (a clause) as an
input-output relationship, i.e., as a function from substitutions to substitutions. The main
advantage of a denotational definition is its compositionality. The meaning of a program
will be defined in terms of the meanings of its clauses, and the meaning of a clause will be
defined in terms of the meanings of its body goals.

In the rest of this chapter, we assume that the body goals are solved in left-to-right
order and all the clauses with heads that match the current goal are tried in parallel. The
parallel search rule, which corresponds to Or-parallelism, means that we are interested not
in the sequence of solutions but in the set of solutions. Our eventual goal is to execute
programs using independent AND-parallelism as well, in which goals are not necessarily

executed from left to right.

Call, Success. Entry, Exit Substitutions

The current substitution @ is given different names depending on the state of compu-
tation. The names are: call, entry, exit and success substitutions. If a goal is about to be
unified with the head of a clause, the current substitution 8 is known as the call substitution
of the goal, since a body goal is interpreted operationally as a procedure call. If a goal has
just been successfully unified with the head of a clause, the parallel composition of the call

substitution & and the unifier o, i.e., # | ¢ with its domain restricted to the clause variables

42

is the entry substitution for the clause. This corresponds to parameter passing and estab-
lishing an environment (activation frame) for the body goals. Since the first goal of a clause
is executed in this environment, an entry substitution is also the call substitution for the
first literal in the body of the clause. If the last literal in the body has just been solved, the
current substitution is known as the exit substitution, corresponding to procedure exit. The
reconciliation of the exit substitution, the call substitution, and the head-goal unifier when
restricted to the variables of the environment of the goal a gives us a success substitution
of goal a with respect to clause i. The initial substitution for the variables in the goal is

denoted as ¢.

Variable Renaming

During resolution, the variables of a clause must be renamed apart from the variables
used so far. In the denotational semantics about to be given, the renaming of variables
is handled by providing an extra argument, called a renaming index, to all the semantic
functions. We assume that the variables in a program and the initial goal have been renamed
so that a variable does not occur in more than one clause and refer to the set of program
variables as PVar. We also assume that the set of variables Var is partitioned into countably
infinite number of subsets Var,, one corresponding to each renaming index s. Since each
clause has only a finite number of variables, it is enough if the size of each partition is
greater than or equal to the maximum number of variables in any clause. The index s is
used to obtain fresh variables from partition Var,. One must ensure that each time a clause
is used in unification, a different renaming index is used.

The following example illustrates the use of renaming index. The term “reconcilia-

tion” is used to denote parallel composition.
1. comncat{0d, L, L).

2. concat([X]|Xs), ¥, [XI|2s]) :-
concat(Xs, Y, Zs).

43

3. concat([a,b,], [c,d], T).

| Note that no variable occurs in more than one clause. The initial renaming index is 1.
When concat([a,b], [c,d],T) is unified with clause 2, variables of clause 2 are renamed
by variables from the partition Var, i.e., clause 2 variables are subscripted by 1. When
solving the first subgoal of clause 2, the renaming index is extended by 1 (the literal number
of the first subgoal), and hence the current renaming index will be 1.1. The first subgoal
concat([b], [c,d],Zs;) will unify with the second clause, and the variables of clause two
will be renamed by variables from partition Var, i, i.e., subscripted by 1.1.

‘We use Varg, to mean the set of variables from all partitions r such that r is lex-
icographically less than a given s. In the concat example, Varg;. includes all variables
subscripted by 1 and 1.1.

All semantic functions use a renaming index s € N*, a sequence of natural numbers.
The initial sequence is denoted by 1 and s.i extends the sequence s by i. The function
rename (not formally defined) will take a syntactic object such as a clause, and a renaming
index, and rename the variables. As mentioned before, renaming can be thought of as

simply subscripting the variables with the renaming index.

Denotational Semantics of Logic Programs

The denotational semantics presented in this section is a variation of Jones and Son-
dergaard’s exposition [47]. The semantic functions are slightly different and we use parallel
composition instead of sequential composition. The conditions on domains are simpler.

Recall that a denotational definition of a programming language consists of three
parts: the abstract syntax, semantic domains and valuation functions. We first summarize
the abstract syntax of a Horn clause program, and then define the semantic domains and
valuation functions.

The language has the following abstract syntax. The syntactic categories not defined

44

below are Pred, Func, and Var symbols whose members are p, f, and v respectively. Pred
is the set of predicates, func is the set of function symbols, and Var is the set of variables.
These are assumed to be countably infinite and mutually disjoint.

A program P is a set of one or more clauses. A clause ¢; has a head h; and a body
b; which may be empty. An empty body is denoted by nil. A non-empty body b; is a
conjunction of one or more atoms. If p is a k-ary predicate and ¢,...,# are terms, then
p(11,...,1) is an atom. The arity of a predicate may be zero. A term ¢ is either a variable v

or of the form f(2,,...,1,) where f is a function symbol of arity ¢, and t,,.. ., 1 are terms.

P: Prog 1= {ca1,...,¢n} (n21)
c: Clause := h;:~b;. {(:>0)
b: Body = ay,...,q, (p>0)
a,h: Atom :u= p(t;,...,1,) (e>0)

i: Term == v]f(t1,...,1) (g=0)

The meaning of a logic program is taken to be the input-output relation computed by
the program. We are interested in the substitutions computed by a program for the variables
in the goal ap and the substitutions that prevailed at various points in the program during
an SLD refutation of the goal. For simplicity, we assume that the initial goal consists of
a single literal ap. For a goal b with more than one literal in it, we may introduce a new
clause whose body is & and whose head has a new predicate not appearing any where in the
program. If b has n distinct variables, the new predicate will be n-ary and its arguments
are these n variables. The new goal will be a literal that has the same n-ary predicate as
the new clause head.

In the following discussion, references to renaming indices s or their type N~ will be

omitted, although the semantic functions will continue use them.

45

Semantic Domains

The meaning of a program, clause, body, and an atom will be functions, denoted by
dp,d.,dy, and d, respectively. Their corresponding types are D,,D;, Dy, and D,.

Since we are interested in the input-output relationship, it is appropriate to define the
denotation d. of a clause as a function which maps a literal and a set of (call) substitutions
to a set of (success) substitutions. Thus, the type of d. is D. = N* — Atom — P(Subst) —
P(Subst). Note that — associates to the right.

The first argument to the denotation of a clause is the renaming index whose type
is V*, a finite sequence of natural numbers. The second argument is the goal that is to
be unified with the head of the clause. The third argument is the set of call substitutions
for the goal. The denotation of a clause ¢ maps these three arguments to the set of answer
substitutions for the goal arising from clause c.

The denotation of an atom is similar to that of a clause except that we define it to be
a mapping from a single (call) substitution to a set of (success) substitutions. Hence, the
type of d, is D, = N* — Atom — Subst — P(Subst). The denotation dy of a body will
be a function that maps a set of (entry) substitutions to a set of (exit) substitutions and
hence has type Dy = N* — P(Subst) — P(Subst).

The denotation dp of a program is an n-tuple of functions such that the i** component
(written d, | i) is the denotation of the i** clause. Since the meaning function for a
clause has type D., and since there are n clauses, the denotation d, of a program has type
Dy=D.x...x D, = D%

We know the types of the meaning of an atom, a clause, a body and a program. Now
we define the types of the semantic functions P,C, B, and A, corresponding to the syntactic
categories program, clause, body, and atom. A semantic function P maps a program to its
denotation d, of type D,. Likewise, the semantic function C maps a clause to its denotation

d.. The semantic functions for a body and an atom are similar.

Types of Semantic Functions

Since the denotation of a program has type D,, the semantic function P which maps
a program to its denotation has the type Prog — D,.

The meaning of a clause is d; and its type is D.. The semantic function C takes the
denotation d, of the program P and.a clause ¢, and maps them to the clause ¢’s denotation
d.; hence the type of C is Clause — D, — D,. Likewise, the type of A the semantic function
for an atom is Clause — D, — D,, and the type of B the semantic function for a body is

Body — D, — D;. To summarize, the standard semantics has the following domains and

6: Subst Substitutions

$.: P(Subst) Sets of substitutions
s: N~ Renaming Indices
d.: D.,=N- .—> Atom ~— P(Subst) — P(Subst) Clause Denotations
dy: Do =N*— Atom — Subst — P(Subst) Atom Denotations
d,: D,=D? Program Denotations
dy: Dy= N"— P(Subst) — P(Subst) - Body denotations

the semantic functions have the following functionality.

Prog — D,
Clause — D, — D,

> 0O 9

Clause = D, — D,
B: Body — D, — Dy
Let us now consider the definitions of the semantic functions.

Meaning of an Atom: Function A defines the meaning of an atom a with respect to

a clause c and a call substitution 8. If goal a does not unify with head h of clause c, then
the clause does not contribute to the meaning of the atom a. If @ unifies with the head

of ¢, then the meaning is simply the set of substitutions obtained by reconciling the call

47

substitution with the unifier of the head and the goal and each of the exit substitutions of
the clause corresponding to the entry substitution induced by the call substitution. This
may be explained as follows.

The call substitution expresses some equality constraints among the variables of the
goal. The unification of the head and the goal introduces additional constraints. Solving
all the body goals introduces even more constraints in the form of an exit substitution. All
these must hold simultaneously and hence the need for reconciliation.

The entry substitution induced by the call substitution has bindings for both the
clause variables and the goal variables. The latter are irrelevant for finding the exit substi-
tutions of a clause (corresponding to its entry substitution). Hence, we restrict the domain
of the entry substitution to the clause variables; these are indexed by s. Function restrict,

used for this purpose, is defined below.

restrict : Subst — P(Var) — Subst

restrict(f,A) = {v—t|v—t €8 and v € A}

The exit substitutions of a body b corresponding to an entry substitution are given by
the denotation of b (to be discussed). After reconciling the call substitution, the unifying
substitution, and the exit substitution, we restrict the domain of the reconciled substitution
to the variables Vare, at the current renaming level s and below (i.e., variables indexed
by some r such that r is lexicographically less than or equal to s). This is because other
variables are not observable and are irrelevant.

Meaning of a Clause: Now consider the semantic function C. As mentioned earlier,

the denotation of a clause is a function that maps an atom and a set of (call) substitutions
® to a set of (success) substitutions. This is simply the lub of sets of success substitutions
corresponding to each call substitution 8 € &.

Meaning of a Body: Function B defines the denotation of the body of a clause. Given

48

the denotation d, of the program, B maps a set of (entry) substitutions to a set of (exit)
substitutions. In the base case the body is empty, and hence the entry and exit substitutions
are the same. In the inductive case, when the body has 7 literals, let the denotation dy, of
the program map the first goal and the call substitutions to a set of success substitutions.
Then, using the success substitutions of subgoal ax as the call substitutions of subgoal aj4;
for k ranging from 1 to j — 1, we find the success substitutions of the last body goal, which
are the exit substitutions of the body corresponding to the entry substitutions.

Meaning of a Goal: The answer substitutions of a goal ag is just the lub of the sets

of answer substitutions of o from each clause in the program. Recall that the mean-
ing of i** clause of a- program is given by (P[P] | i) where | i denotes the i** compo-
nent. Thus, the result of the program when run on a goal ap is given by P[P]1ag{e} =

L%, {(PLP} | §)1fac] {c}}, where 1 is the initial renaming index.

Example 2.6

Consider the following program along with a goal.

1. p(X,2) «~ q(x,Y), p(Y,2).
2. p(x,Xx).

3. qf(a,b).

— pl4,b).

The meaning of clause one maps the goal p(A,b) and the initial substitution
(which is a singleton set of empty substitution) to a set of substitutions {{4 —
a}}, and the meaning of clause two maps the same goal and initial substitution
to {{4 — b}}. Therefore, the meaning of the program when applied to the
goal p(4,b) and the initial substitution returns the union of {{A — a}} and
{{A — b}} which is {{A — a}{A ~ b}}. ' 0

The following definitions formalize our discussion so far.

PIIC],. . .,Cn]
C[C,‘]dp

fix Adp. (Cle1)d,, - . ., Clcaldy)

As.Ala]. A2. | |Alcild, s[a) 6
fed

Afh;:— bj}d,sa)d =
let (h,b) = rename(h;,b;, s)

Bentry = restrict(mgu(e,h) 1 8, Var,)

in
if fontry = fail then @
;alse {restrict(8 T mgu(a,h) T Oezit, Varg,) |
Oezit € B[b}dp s {Oentry }}
_ end
Blnil}d, s ® = &
Blai,...,a;]d,5® = Blaisr,...,a;]d,s® where &' = dp 5.i [a;]®

Abstract Interpretation

Abstract interpretation is a semantics-based method for deriving properties of pro-
grams. Abstract int;arpretation can be thought of as performing computations in “non-
standard” domains. The domains and the corresponding computations are not arbitrary
but bear some relationship to the domains and computations we are interested in. Typically,
the non-standard domain is a simplification, or abstraction, of a standard domain.

As a simple example, suppose we want to know the sign of the result of simplifying
the expression 984 x —32. We could find the answer by computing in the standard domains:
multiply 984 by —32 to get —31488 and notice that the sign is negative. An easier method
is to compute the sign of the product in the non-standard domain of signs. The rule of signs
tells us that the product of a positive number and a negative number will be negative. We

can map the standard domain of computation, integers, onto the set D = {zero, pos, neg}

50

and replace the multiplication operation on the integers with another operation (the rule
of signs) f: D x D — D. The computation corresponding to 984 x —=32 is + x —, and it is
apparent that the result will be negative.

It would be nice if an abstract interpreter could be designed that would take as
input a program P and decide if P has a certain property or not. Unfortunately, Rice’s
theorem [25] implies that most of the interesting properties of programs of Turing-equivalent
programming languages are undecidable. Rice’s theorem says that if f and g are two
partial-recursive functions in a collection F' such that f has property p and g does not,
then membership in F is not decidable. Examples of these properties include equivalence
of programs, the property of being a recursive function, a primitive recursive function, or
a partial recursive function. In the context of logic programs, the undecidable properties
include groundness and sharing of variables, determinacy, and others.

We must ensure that all terminating analyses of programs safely approximate the
derivation of properties.

Most data flow analyses derive properties that hold in all possible executions of pro-
grams. Since we cannot know exactly all executions, the analyses must reason about the set
of executions which covers all possible executions. This will include some executions that
are not possible. In terms of logic programs, the analysis may derive a superset of correct
answer substitutions for a given goal and a program. Thus, a larger set of substitutions A
approximates a smaller set B which is a subset of A. If a property holds definitely for A, it
holds definitely for B as well.

Suppose we are interested in finding the variables of a goal/clause that will be bound
to ground terms during all possible executions starting in an initial goal. Call a variable a
V “ground variable” in a substitution 8, if the variable V is bound to a ground term in 6.
If a goal variable is ground in all the substitutions in A, it is ground in any subset B of A

as well.

51

The undecidability of groundness causes imprecision in the following manner. A vari-
able may be ground in all the substitutions in B but not in A. Thus a groundness analyzer
has to conclude a smaller set of variables will be ground during all possible executions
starting with some goal.

The semantics-based approach to program analysis is to define a core semantics for a
language that leaves some domains and semantic functions unspecified. An interpretation
I of the core semantics supplies the missing domains and semantic functions. The word
interpretation is used to emphasize that the undefined functior symbols and domains are
interpreted to suit our purpose (subject to some conditions). A collecting semantics is then
defined to associate with a program point the set of states or environments that may prevail
at that point during all executions starting at an initial state. The collecting semantics is
thus used as a device to record information at interior points in a program, instead of
concentrating only at the input-output behavior.

An interpretation [of the core semantics is an abstract interpretation if the domains
and semantic functions of I are abstractions of their counterparts in the collecting seman-
tics and if I safely models the collecting semantics. We now discuss the Galois insertion
approach to modeling a standard semantics by an abstract semantics. The discussion in

the following section is based on work by Cousot and Cousot [22] and Debray [30].
The Galois Insertion Approach

In the Galois insertion approach to abstract interpretation, the domain of standard se-
mantics is replaced by a domain of descriptions or properties. Computations are performed
symbalically over the description domain. The description domain is generally known as the
abstract domain. Naturally, the standard domain operations must have their abstract coun-
terparts. We denote the abstract domain by Abs and the standard domain of computation

as Conc.

Properties of Abstract Domains

In the case of standard semantics, the domains are defined to be pointed cpos, and
functions over these domains must be continuous in order to be computable. Although do-
main theory was originally developed with complete lattices as domains, later developments
showed that pointed cpos are sufficient. This is because the successive approximations of
a recursively defined function form a chain (an w-chain, in fact) and the meaning of such
a function can be shown to be the lub of the chain. Moreover, cpos can be embedded in
complete lattices. However, when computing with “descriptions,” we sometimes need to
take the lub of arbitrary subsets of the abstract domain and not just chains.

For example, when we define a core semantics later in this chapter, we take the
lub of a.-rbitrary subsets of the domain Asub. In the case of standard semantics, the lub
operation turns out to be set union and hence well-defined. But in the case of an abstract
interpretation, for the expression to be well-defined, lub of arbitrary subsets must exist.
Hence, the abstract domain must at least be a join semi-lattice, i.e., lubs of arbitrary
subsets of Abs exist in Abs. An abstract domain usually has a least element. A join semi-
lattice together with a least element is a complete lattice, i.e., glbs of arbitrary subsets
exist. Thus, an abstract domain must be a complete lattice.

Since an abstract domain is a domain of descriptions, we expect each abstract domain
element to be well-defined, i.e., it must describe some set of concrete domain elements. Thus
there should be a function, known as the concretization function 4 : Abs — Conc. Since it is
redundant to have two abstract domain elements describing the same set of Conc elements,
7 must be one-to-one.

We would expect the abstract and concrete domains to be structurally similar, i.e., if
@ Ceonc b implies that b has more information than a, then the ordering on Abs should also
have the same meaning. Further, the concretization function must preserve the ordering,

i.e., must be monotone.

53

It is useful (but not essential) if each concrete domain element has a unique and
most-precise description in the abstract domain. If each concrete domain element has a
unique best description in the abstract domain, one can define an abstraction function
o : Conc — Abs. Like the concretization function, the abstraction function is also required
to be monotone. Elements of the abstract domain which do not correspond to any concrete
domain element may be deleted safely. Hence a must be an onto function.

Ogre usually loses some information abstracting an element x of the concrete domain.
However, concretizing it back should safely approximate x from above. If an element z
is above another element y in a concrete domain, then z approximates y in the context of

abstract interpretation. Hence, the following condition should be met.
Va € Conc. z Ceone 7(0(2)) (1)

Abstracting a concrete domain element entails loss of information. Ideally, the concretiza-

tion of an abstract element must not lose any information, i.e.,
Vz € Abs. z = e(y(z)) (2)

If the abstraction and concretization functions satisfy these conditions, they are said
to be adjoint.
For each concrete operation f : Conc — Conc, there should be a corresponding

abstract operation f : Abs — Abs that simulates the effect of f. More formally,
f(=) € ¥(f(e(2))) Va € Conc

In other words, the concretization of the result of a simulated operation over an
abstract object must safely approximate the result of the corresponding concrete operation
over the corresponding concrete object. This condition is known as the local correctness
condition. If all concrete operations are simulated locally correctly by the corresponding

abstract operators, then we can show by induction that correctness is maintained for a

54

finite number of steps. However, the meanings of non-trivial programs are given by least
fixed-points which are reachable in countably infinite number of steps. In such cases, a local
correctness condition cannot be extrapolated to global correctness by finite induction. One
must resort to transfinite induction or fixed-point induction [72], which implies one must
find inclusive or admissible predicates to be used in induction. Cousot and Cousot’s [21]
well-known theorem established that in the Galois insertion approach, local correctness
guarantees global correctness.

The following is a restatement (due to Debray {30]) of Cousots’s theorem where lfp(f)

and gfp(f) denote the least fixed-point and the greatest fixed-points of f.

Theorem 2.1
[Cousot and Cousot 1977] Consider an abstract interpretation with concrete
domain {Conc,C) and abstract domain (Abs, <) that are complete lattices, with
a : Conc — Abs and v : Abs — Conc monotone and adjoint. Then, if the
abstract operator f : Abs — Abs is locally consistent with the concrete operator
f i+ Conc — Conc, i.e., f(z) C 7(f(a(z))) for all z € Conc, then Ifp(f) C
7(lfp(f)} and gfp(f) C v(gfp(T)). G

Termination of the least fixed-point computation in an abstract interpretation can
be ensured by having monotone abstract domain operations and abstract domains with no
infinite ascending chains.

In the following sections, we develop an abstract interpretation framework for logic
programs based on the Galois insertion approach. We develop a core semantics for the
language defined in the previous section, show that the standard semantics of Section II may
be seen as an interpretation of the core semantics, and establish correctness conditions. The
abstract interpretation framework to be presented is derived from Jones and Sondergaard’s

abstract interpretation framework [47).

Abstract Interpretation of Logic Programs

Core Semantics

We refer to the semantics of Section II as the standard semantics. We generalize the
standard semantics and derive a core semantics. Core semantics has domains and semantic
functions that are common to all interpretations. Hence some domains and functions are not
defined in core semantics. We will show that by defining the missing domains and semantic
functions in a certain way, we get an interpretation identical to the standard semantics. We
call this interpretation the standard interpretation. Furthermore, by defining the missing
domains and semantic functions in a way that abstracts some property of the standard
domains and semantic functions, we get an abstraction of the standard interpretation. In
short, core semantics + standard interpretation = standard semantics, and core semantics
+ abstract interpretation = abstract semantics. The correctness of the interpretations is
ensured by using a Galois insertion and by establishing local correctness conditions.

In core semantics, we replace the domain Subst of standard semantics with Subst’
to model substitutions. The domain Subst’ is left unspecified in core semantics and must
be supplied by an interpretation. The domain Asub in core semantics performs the role of
the domain P(Subst) in standard semantics. We leave Asub unspecified in core semantics
and expect an interpretation to supply it. The domains of atom, body, clause and program
denotations are changed accordingly.

To summarize, the domains and the types of semantics functions in core semantics

are as follows.

56

Domains
6: Subst a concrete or an abstract substitution
®: Asub set of substitutions or its abstraction
s: N* Renaming Indices
d.: D.= N*"— Atom — Asub — Asub Clause Denotations
dy: Dy=N"— Atom — Subst’ — Asub Atom Denotations
d,: Dp,= D" Program Denotations

dy: Dy=N"— Asub — P(Subst)
Valuation Functions

P: Prog— D,

C: Clause - D, — D,

A: Clause - Dy, — D,

B: Body— D,— D,

The valuation function for a body is the same as defined in standard semantics and is given

below for the sake of completeness.

Blnil}d, s & o

Bla;,...,a;]d, 5@ = Blait1,...,8;]dps® where & = d,s[a;]}®

The semantic function C changes slightly in core semantics. We replaced P(Subst) with
Asub in core semantics. The structure of Asub is left unspecified, to be filled in by an
interpretation. Hence, instead of using set membership as in standard semantics, we use
C Asub in the definition of C.
Cledd, = As.Ma].23. | | Afcildps[a]8
écd
A set of substitutions is usually abstracted by a single abstract substitution and hence

Asub and Subst’ may be defined to be the same in an interpretation. The above definition

97

may then be simplified to the following.
Cle:jd, = As.A[a]. A3, Afc;ld,s[a] @

The valuation function A, which defines the meaning of an atom with respect to a
particular clause in the program, does change in core semantics. We abstract away (i) head-
goal unification and (ii) the parallel composition of the call substitution with the head—goal
unifier and an exit substitution of the clause.

The definition of A in standard semantics is reproduced below, followed by the cor-
responding definition in core semantics to show the differences. In the standard semantics,
the clause was renamed and the entry substitution is computed as the parallel composi-
tion of the head-goal unifier and the call substitution. In core semantics, we delegate the
computation of entry substitution to a function entry_sub, to be supplied by an interpreta-
tion. Likewise, in standard semantics the exit substitution of clause was reconciled with the
head-goal unifier and the call substitution using parallel composition. In core semantics,

we abstract this to a function success_sub, to be provided by an interpretation.

(standard semantics)
Afh; — b;ld,s[a}d =
let (h,b) = rename(h;,b;,s)
Bentry = restrict(mgu(a, h) 1 8, Var,)
in
if fentry = fail then @
else {restrict(f T mgu(a, h) T Oezit, Varg,) |
Oezit € B[b] dp 5 {entry }}

end

58

(core semantics)
Afh; — bjldysfa]d =

let bensry = restrict(entry_sub(a, h; — b;,8,s), Var,)

in
if @nery = fail then Asub)
else {restrict(success_sub(f, 6.z, e, h), Varg,)|
Oezit € Bb]dp 5 {eniry}}
end

Interpretations

An interpretation supplies the domains Subst’ and Asub and the semantic functions
entry_sub and success_sub which are required to be continuous in their arguments from the
domain Subst’. It is not a coincidence that the valuation functions of core semantics are
almost the same as those of the standard semantics. We define a standard interpretation

as Tollows:

Subst’ = Subst
Asub = P(Subst)
entry_sub(a,h — b,6,s) = let (h',b') = rename(h,b, s)
in mgu(a,h’) 18
end

success_sub(0,8.zi,a,h) = 81 mgu(e,h) T Ouzy

Note that the standard interpretation coupled with the core semantics is identical to
the standard semantics.
The core semantics given above may be enhanced to preserve the association between

program points and sets of substitutions that may prevail at those points during execution.

59

This can be achieved by changing the result types of P, C, B, and A from Asub to Asub X
Info and making other necessary modifications. Alternatively, the type of Asub may be
modified to include information at all program points. Info will be an n x k array where n
is the number of clauses and & is the maximum number of literals in any clause plus one.
Info stores information about the abstract substitutions encountered at program point i, 7,
where i is the clause number and j is the literal number in the it* clause. When Jj =0, Info; ;
stores all entry substitutions of clause i and for i > 0, Info; i has the success substitutions

of literal j of clause 1.

Summary

This chapter introduced Horn clause logic programming and described an operational
semantics based on SLD-resolution. The effect of choosing a different computation rule de-
termines the size and shape of the SLD-tree and hence selection of a good computation rule
is important. Next, a denotational semantics of logic programs was given. The denotational
definition serves two purposes. One is to focus on what is computed and on the properties
of computations. The second is to have a compositional definition, so that static analyses
can also be defined compositionally.

We then presented an abstract interpretation framework and discussed some of its
properties. The denotational semantics of logic programs is generalized to a core semantics
which leaves some domains and functions unspecified. When coupled with interpretations
that specify the missing domains and functions, one obtains standard or abstract interpre-

tations.

[eqo[3 Y3 ‘sisA[eue Ino jo AIus)sisuod [esof ay} jo Jooid e Yjm 1ajdeyd oY) pus ap
*1ajdeyd Jxau a1y ur passnastp st siyy, ‘Ayradord suorinjiysqns qres a[qess,,
asey ey swesdold jo ssep e 10f Ayxajdurod awny ferwouk[od ases-jsiom sey lazAeue ino
I0j aWIl} UOIINIIXD JY) ‘BIOUIIDYINJ "dAl}sURI) se Supleys 3uijeal) oy juateamba st poylew
o ‘is1om sy e snyJ -ureidord ayj Jo ajoym ayj o0} perededoid 8309j2 S)I @aey Aew Io

ampalord e 03 pauyuod pue [edo] aq Aewr Suruapim 03 onp uoisaId Jo ssOf Y],
“Torded Jxau oYy ut
pauyop st uorjeredo Suruapiam ayJ, ‘sisAfeue Suunp papasdxa Jo jaw are siejeurered urejlad
uaym A[uo uolsmoaid saso[A[aal3oe[es pue A[edstrewojne resodord mo seatoym ‘surerfoid e
ut samnpadold [fe toj uoispaid dn saald rowd p aanisuer) se Suireys Suipear] -suorydurns
-se ased-jslom Sunfew Aq suonersyr juiod-paxy Surddrys se jo jySnoyy aq Lewr Furuepip
‘A[restiewrojne pue £[241329[9s awy) Iof uoispazd saper) suolyelado urewrop joerisqe ay) Yiim
uonjoun(uwod ui pasn uolyesado Fujuapia aandepe uy -ewmy lerwoudjod ur sylom Jazi[eue
2y} ‘sureidord resfjoeld 10U JOJ ‘JoASMOY] "(2SNe[d B UI Sa[qRlIeA JO JOQUWINU aY] UI [RIJUU

-odxa) fyxedwod auiy ases-jsiom fenuauodxe ue sey sisA[euve Suureys pasodoid Ing
“1a1em ieq ayy [Im Aqeq ayy jno Surmoryy ayr st Ayxajdurod
aull} ased-)SIom JO mala UT psotsd o uolspaid dn Fuiald yeyy wnepp apy Ayxe|dwod awyy
rermousjod 3ased-1s1om azI[eal 0} A[urew Uolje[aI aAlsuel] ® se Juireys jeal) yely sas{[eue
Suireys pasodoid aaey s1ayoresser Auey -suresford sifo ut sajqerrea jo Surreys pue ‘ssausaly

‘ssoupunoid SulAlep Jo} swaYds uoijejardiajul joeIpsqe Imo sjuesard raydetp siqy

ONIYVHS ANV ‘SSINITII
‘SSINANNOUD DNIZATYNY 04 AWAHOS NOILVIIUJYAINI LOVELSEY NV

I Y4LdVHD

09

61

consistency follows from the Galois insertion approach.

Interpretation: Sharing, Freeness and Linearity

A set of goals in the body of a clause may be executed in parallel without interfering
with each other’s computations, if these goals do not share variables. The groundness and
sharing properties of terms help us determine when two goals may share and when they do
not. Even when two goals share a common variable, it may be possible to execute them
in parallel if we know that one of the goals will never bind that variable to a non-variable

term, i.e., it will leave the variable free.

Non-transitivity of Sharing

Analysis of sharing of variables is complicated by the fact that the sharing relation is
not transitive. Consider the unification goal X = £(Y, Z) and assume that X, Y, and Z
are unbound before the unification. After the unification, X and Y share and so do X and Z.
However, this unification does not cause Y and 2 to share and thus sharing is not transitive.
On the other hand, if this unification takes place in an environment in which X is bound to,
say, £(Q, Q), then the variables Y and Z will also share after the unification.

Groundness analysis depends on the precision of the sharing analysis. Consider the
conjunction X = Y, p(Y).If solving the goal p(Y) leads to binding Y to a ground term, then
X also becomes ground. Most of the earlier work [44, 88, 29, 57] on abstract interpretation
of logic programs either ignored sharing or considered sharing to be transitive. Both these
treatments of sharing lead to imprecise (pessimistic) analyses.

Ore of the reasons advocated for treating sharing as transitive is to realize computa-
tionally efficient analyses. Debray shows that sharing analyses with worst-case polynomial
time complexity can be derived only when sharing is treated as transitive [26] and some

other conditions are satisfied. Treating sharing as transitive gives up precision apparently

62

for efficiency. That is, the loss of precision is immediate but the computational advantage
appears to be realizable only in the worst-case. We elaborate on this point in the next
chapter when we discuss the time complexity of our analysis.

In the next section, we start with a sharing domain proposed by Jacobs and Lan-
gen [44]. This domain, although good at expressing variable sharing precisely, does not
have enough information about sharing subterms. This results in treating sharing as tran-
sitive. Although sharing is treated as transitive, resulting in conservative sharing analysis,
the efficiency usually claimed for transitive sharing analyses is absent. That is, abstract
unification is still exponential in the number of clause variables and the time complexity
of sharing analysis is still exponential in the size of the program. A claimed advantage of
this domain is that the abstract meaning of a program can be computed bottom-up as the
limit of Kleene's iteration sequence, independent of the entry point information. Once this
information is computed, the abstract meaning of any goal or entry-point can be computed
without further fixed-point computations. To our knowledge, this domain has not been
implemented as proposed. Another extension of this domain proposed by Muthukumar and
Hermenegildo [61] partly addresses the precision issue. We discuss and compare their work
to ours at the end of this chapter.

Our proposed abstract domain is a cartesian product of three domains that express
information about sharing, freeness and linearity of terms. Before defining the abstract do-
mains and the new abstract domain operations, we discuss briefly termination and variable

renaming in the abstract interpretation.

Termination in the Abstract Interpretation

In an abstract interpretation, we are interested in terminating analyses, i.e., there
should be no infinite ascending chains in the abstract domain. For example, a flat, infinite

domain such as N has no infinite ascending chains. However, this does not mean that an

63

abstract interpretation will always terminate. One must ensure that the abstract interpreter
doe§ not explore the whole space; if it did, the analysis will not terminate.

In our case, we merge information about all renamed versions of a clause and all
information is expressed in terms of the program variables, i.e., those that textually appear
in the program. Recall that recursive clauses and renaming of variables together introduce
infinite number of variables and thus the domain of substitutions will be infinite. In program
analyses, we are interested in statements such as “any time a goal unifies with the head of
clause i, the clause variables will have this property.” This is mainly because procedures are
usually compiled into re-entrant code which operates uniformly in all invocations. This claim
holds good even when slightly different, specialized versions of a procedure are compiled
because there are only finitely many such versions and each version must handle potentially
an infinite number of invocations. Thus we must merge information about all renamed
versions of a clause. Since we assume that all clause variables have been renamed so that a
variable does not occur in more than one clause, expressing properties in terms of program

variables accounts for merging of renamed versions of a variable.

Renaming and Overview of Clause Fntry and Exit

Since we merge information about renamed versions anyway, it is better not to create
renamed versions in the first place. Therefore, an abstract substitution will always be in
terms of the variables of one clause, except during clause entry and exit. During clause
entry and exit, information propagates from the goal (calling) environment to the clause
(callee) environment and back. Thus, name clashes must be avoided at clause entry and
exit. This is accomplished as follows.

During clause entry, the clause variables are consistently renamed away from the goal
and the abstract call substitution. After head-goal unification, the abstract entry substitu-

tion is restricted to the renamed clause variables first and then an inverse of the renaming

Goal Renamed Head
Asubcaﬂ Asubjnjt

abs unify

As”bentry'

restrict to
clause vars

ASUbentry"

rename”

ASUbentry

Asubsycc

restrict to

prog vars
Asubgycer
abs unify
Renamed Head
Asubexjt GO al
Asubcaﬂ
rename
Asub exit Head

Body ———

Denotation of
Body

Figure 6: Computation of Entry, Exit, and Success Substitutions

64

substitution is applied to the entry substitution. This recovers the entry substitution in

terms of the clause variables which is then used to find the exit substitutions. At clause

exit time, we need to pass information from the clause environment back to the goal envi-

ronment. Once again, we rename the clause variables and the exit substitution consistently

away from the goal and its call substitution, compute the success substitution and restrict

the result to the variables in the goal environment. Because of this simple renaming scheme,

the renaming index is ignored in our abstract interpretation. Instead, we simply subscript

clause variables by, say 0, during clause entry and exit to make them different from goal

variables.

65

We do not differentiate among different renamed versions of program variables. Thus
the sharing, groundness, and linearity information is maintained only for those variables
which appear in a program. The number of program variables is finite, and hence our
abstract domain will be finite. Since there are no infinite ascending chains in the domain,
fixed-point computations will terminate.

The computation of an entry, exit and a success substitution corresponding to a call

substitution of a goal is summarized in Figure 6.
Abstract Domain Asub

Our abstract domain Asub is a triple (Free, Repeat, Sharing). Each component of

Asub represents a particular property of a set of concrete substitutions ©:

o Freeis a set of variables that are definitely free (not bound to non-variable terms) in

ali 8 € ©.

¢ Repeat identifies the set of variables that may be bound to non-linear terms, i.e.,

terms that may have the same variable subterm occurring more than once.

e Sharing is the same as Jacobs and Langen’s domain of the same name. It is a set
{50,--., 55} where each §; is a set of variables which may be unified to terms that

have variables in common by some substitution 8 € 0.

Information about which variables may be bound to terms with repeated variable subterms
allows us to derive a precise abstract unification algorithm which does not treat sharing as
a transitive relation.

We now define the components of the abstract domain Asub. Definitions 3.1 and 3.2
are due to Jacobs and Langen {44].

Elements of the abstract domain Sharing will contain sets of variables that may have

shared subterms in the concrete interpretation:

Definition 3.1 [Abstract Domain Sharing]

Sharing: P(P(Var))

ESharing = <

X1UX; = XjUX,, for Xy,X; € Sharing a
The partial ordering reflects the fact that Sharing is intended to express possible, as opposed
to definite, sharing among the variables in any execution.

A substitution 6 may have a binding v — t where ¢ contains a variable u. In this case
we say u occurs through v. The function’occ(f, 1) is the set of all variables through which

u can occur given substitution @:

Definjtion 3.2
occ : Subst x Var — P(Var)
oce(f,u) = {v € dom(f) | u € Vars(v8)} D
Note that occ(f,u) is a set of variables that have a common variable subterm, namely z.
We can use occ to define a function shared(#) that gives us all possible sets of variables
that may have shared subterms in substitution-§. A set of variables {z1,.--,2,} is in
shared(#) when z;,...,z, are bound respectively to terms t,,...,t, in @ and there is at

least one common variable that occurs in the terms t;,...,1,:

Definition 3.3

shared : Subst — Sharing

shared(8) = {oce(#,¢) | u € Var} o
Example 3.1

Let 8 = {W = f(A,C,A),X ~ ¢(A,C),Y = B,Z = h(A, B,C, D)}. Then,

shared(8) = {0,{W, X, Z},{Y, Z},{Z}}. m]

Variables A and C occur through the bindings of W, X, and Z since W8 = f(A,C, A),
X0 = g(A,C), and Z8 = h(A,B,C,D); so, occ(#,A) = {W,X,Z}, and oce(d,C) =

67

{W, X, Z} as expected. Similarly, B occurs in Y8 and Z¢ and occ(8, B) = {Y, Z}. Hence,
{Y,Z} is one of the components of shared(d). The variable D in the range of # occurs
through only one variable Z and hence occ(6, D) = {Z}. All other variables in Var occur
through no variable in 8, i.e., they occur through the empty set of variables and hence 9 is
also in shared(#).

All variables in the range of an idempotent substitution # are free in §. They are
placeholders and serve the purpose of signifying sharing, if any, among the variables of the
domain of §. Therefore, we are not interested in the range variables themselves and they
do not appear in shared(#).

An idempotent substitution may cause sharing only among the variables in its domain.
In the above example, # does not affect the variables A, B,C, and D in its range. The
variables W, X,Y, and Z in the domain of # are made to share by the substitution 8. Thus,
the definition of occ(f, D), for example, simply says which variables share D. Likewise,
occ(f, A) says which variables share 4 and occ(8,C) denotes the variables that share C.
Note that occ(f, A) = occ(#,C) = {W, X, Z} and since shared(f) is a set, {W, X, Z} occurs
only once in shared(8).

If Z becomes ground, all other variables in the domain of 8 in this example will become
ground. This is represented by the fact that Z occurs in all sharing sets of 8. If we remove
all sets in which Z occur when Z gets bound to a ground term, then other variables W, X
and Y will also become ground (since they will no longer appear in a sharing set). Likewise,
if W, X and Y all become ground, Z may still not become ground. This is because variable
D occurs through only Z. Therefore, the groundness of Z depends not only on W, X and ¥
but also on Z itself. This is represented by the singleton set {Z} in the shared(6). In other
words, a part of the value of Z is dependent on the values of W, X and Y and another part
of Z is independent of the values of W, X and Y. The function shared(#) not only captures

possible sharing but also possible independence of the domain variables of 4.

68

The abstract domain Free is used to derive a set of variables that will definitely be
free at a given program point in all possible executions. In the Sharing domain we were
satisfied to know if variables could possibly have shared subterms, so set union was used to

define the lub operation in that domain. Here, set intersection is the lub operation.

Definition 3.4 [Abstract domain Free]
Free: P(Var)
Vz,y € Free, z Cppoe v iffz Dy

Vz,y € Free, zUy=zNy o

A variable in the domain of a substitution is free if it is bound to another variable

term. The following function Free(f) defines the set of variables that are free in 6

Definition 3.5
free : Subst — Free

free(8) = {z; | z; € dom(6) A z;— z; €8 A z; € Var} a

Note the fact that substitutions are idempotent guarantees that no variables on the right

hand sides of bindings z; — z; can also be on the left hand side of some other binding.

Example 3.2
Let 8 = {W — f(A,C,A),X — g(A,C),Y — B,Z — h(A,B,C,D)}. Then,
free(f) = {Y'}. O

The domain Repeat represents those variables that are bound to terms which may
have repeated variable subterms. A larger set of substitutions may induce a larger set of
variables which have repeated variable subterms. Hence, set union is the lub operation on

Repeat.

Definition 3.6 [Abstract domain Repeat]
Repeat: P(Var)
ERf;‘].weat: =C

X1U Xy = XqyUX,, for X1, X € Repeat a

Function Repeat(f) returns a set of variables that are bound to terms containing

multiple occurrences of at least one variable:

Definition 3.7
repeat : Subst — Repeat

repeat(f) = {z;|z; — t; € § A Jzy € Var|z, occurs more than once in t;} O

Example 3.3
Let 8 = (W~ f(A,C,A),X — g(A,C),Y » B,Z — h(A, B,C,D)}. Then
repeat(f) = {(W). o

Note that we lose information about the number of occurrences of repeated variables
and the positions in which they occur. This may cause some loss of precision in sharing
analysis but is not expected to cause any significant loss in most cases. Keeping this infor-
mation, on the other hand, would make the domains too concrete, the abstract unification
more complicated, and the analyses too costly.

The following are the invariant properties of our abstract substitution which will be

used in abstract unification.

Proposition 3.1
If z € dom(f) A =z ¢ Vars(shared(d)), then Vars(z6) = 0.
By extension, if shared(d) = {0}, then Vz € dom(8). Vars(z8) = 0. m]

Proof

If a variable z in the domain of 2 substitution does not appear in Vars(shared(#)),

then no variable u occurs through z and hence z is bound to a ground term in
8, i.e., Vars(zf) = (. By extension, if @ is the only element of shared(#), then
no variable occurs through any of the variables in dom(8) and hence variables

in dom(@) are bound to ground terms in 4.)

Example 3.4
Consider a substitution § = {X — f(A,B),Y — g(2,A),Z — a}. Notice that
the set of sharing sets shared(f) = {{X,Y},{X}) signify that X and Y share
and X is also independent of Y. Since no variable occurs through Z (in other
words, Z is bound to a ground term), Z does not occur in any sharing set in
shared(6). If a variable Z in the domain of 8 does not occur in a sharing set of
8, it implies that no variable occurs through Z and hence Z must be ground. If

Z is not in the domain of #, nothing can be said about Z. a

Proposition 3.2
V8 € Subst. free(6) C Vars(shared(#)).
V8 € Subst. repeat(8) C Vars(shared(8)).
V& € Subst. free(8) N repeat(8) = 0. o

Proof
This follows from the fact that z is free in @ implies that z is bound to some
variable u in the range of # and hence z is in some set in shared(f). Likewise,
z has a repeating variable subterm u means that u occurs through z and hence
z is in some set in shared(#). Furthermore, z is free in means that z does not
have a repeating variable subterm and hence z is not in repeat(f). Likewise, z
is non-linear in @ implies z is bound to a non-variable term and hence z is not

free in 6. m|

71

Having introduced the domains Free, Repeat and Sharing, we now define Asub as the
product of these three domains. The partial ordering on and lub of Asub are derived from

the component domains. Domain subscripts are omitted when there can be no confusion.

Definition 3.8
Abstract Domain Asub = Free x Repeat x Sharing
Asubg C 4¢,p Asuby iff
Asubg | Free C pyoo Asuby | Free and
Asuby | Repeat ERepeat Asub; | Repeat and
Asubg | Sharing ;Sharing Asub; | Sharing. Q

Finally, we define the abstraction and concretization functions that are mappings
between the concrete and abstract domains. The abstraction function « maps a set of
substitutions to an element of Asub. We define a in terms of the abstraction functions free,

repeat and shared.

Definition 3.9 [Abstraction Function)

o : P(Subst) — Asub

a(®) = (| | Free(6), |_| Repeat(8), | | shared(6)) o
fco 8co (1<)

The abstraction of a set of substitutions © includes all possible sharing of variables
induced by each substitution # € ©, since set union is the lub operation for Sharing. Like-
wise, a variable is ground in the abstraction of © only if it is ground in all the substitutions
6 € ©. The Repeat component of the abstraction of © includes a variable z if z is bound
to a term with a repeated variable occurrence in at least one 8 € ©. Finally, a variable is
free in an abstract substitution O only if it is free in all # € ©.

The concretization function v is uniquely determined by our abstraction function and

thus our definitions of a and v define a Galois insertion between Asub and P(S ub).

72

Definition 3.10 [Concretization function]
v : Asub — P(Subst)
¥(A) = | J{O € P(Subst) | a(©) C A}]

Operations on the Abstract Domain

In this section, we define the abstract domain operations entry_sub and success_sub.
In abstract interpretation, as in concrete interpretation, the central operation is unification.
We will discuss how information in the heads of a called procedure is composed (reconciled)
with the current abstract substitution to form the abstract substitution used in the next
step. We start with definitions of functions relevant, closure under union (due to Jacobs
and Langen [44]), restrict, and non_linear that are needed to define abstract unification.

In our abstract domain Asub, the position and structure of subterms is not known,
i.e., the precise structure of terms is abstracted away. This makes the abstract unification
more difficult than its concrete counterpart. We introduce some terminology to refer to
the subterms of a term in a position- and structure-independent way, given an abstract

substitution. Consider the following concrete substitution and its abstraction:

o

{W o f(g(A,C),g(A,C)),X o g(AsC)1Y — B, Z = h(A,B,C,D)}
o({e}) = ({Y}L{W},{0,{W,X,2},{Y,2},{Z}})

The set of {ree variables F is {Y'}, the set of non-linear variables R is {W} and the set of
sets of sharing variables S5 is {0, {W, X, Z},{Y, Z},{Z}}. We lose information about the
position and structure of subterms when we abstract a substitution. However, we can refer
to subterms indirectly as follows.

Let a component of a variable X be a non-empty subset of the set of variables in a
term ¢ that X is bound to in a substitution o. The domain Sharing represents a variable

by its components and collects together in a set all the variables that share the same

73

component(s). In the above example, variable Z has the components {4,C}, {B} and {D}
represented by the sets {W, X, Z}, {Y, Z}, {Z} in shared(c). Variable Z shares {4, C} with
W and X, {B} with Y, and {D} with none.

Each set in a Sharing may be viewed in two ways. First, it is a set of variables
that share the same component(s). For example, the variables in the set {W, X, Z} share
the component {4,C}. The emphasis here is on sharing. Second, each set in a Sharing
represents a particular component of each of the variables in the set. For example, the set
{W, X ,.Z} represents some particular component of W, X and Z. We do not know what
that component is or where it occurs or how many times it occurs (given that we only have
an abstract substitution and not its concretization). We call each set I (in a Sharing) a
component of each of the variables that occurs in L

We now define a function relevant used for identifying the components of a term or
other syntactic objects. Suppose a term ¢ is unified with another term in the environment
described by the above abstract substitution. We can abstract the effect of this unification
on ¢ by considering its effect on 's sharing, freeness and linearity. Since t’s sharing is
completely described by t’s components in the current abstract substitution, the effect on
t’s sharing can be abstracted by considering the effect on t’s components. Given a syntactic
object ¢ and an abstract substitution, the components of ¢ are given by the function relevant

defined below.

Definition 3.11

relevant : A X Sharing — Sharing

relevant(t,5) = {X € §| Vars(t) N X # 0} 0
Example 3.5

Let o = {W — f(g(A,E)),Y — B,Z — h(A,B,C)}.

Then the sharing component of the abstraction of ¢ is §§ = shared(c) =

{6,{w},{W, 2},{Y,2},{Z}}. The sharing set {W} denotes the occurrence

74

of E only through W, the set {W, Z} denotes the occurrence of A through both
W and Z, {Y, Z} denotes B occurring through both Y and Z, and {Z} denotes

the occurrence of C only through Z. Z has as its components relevant(Z,5S) =

{{W:Z}! {Y,Z}, {Z}]' a

Suppose Z in the above example now becomes further instantiated as the result of
another unification. Such further instantiations may cause some distinct subterms of Z to
share; for example, A and B will share if Z gets unified with a term ¢t = h(Q,Q,R). This
will cause W and Y to share the variable A with Z. Note that W and Y did not share
previously. This can be handled by replacing the sharing sets {W, Z} and {¥, Z} with their
union. On the other hand, Z may be unified with a term ¢ = A(R, S, T) which does not
affect the sharing among W,Y and Z and hence the sharing sets {W, Z} and {Y, Z} remain.

If we do not know anything about #, then we have to account for both the above possi-
bilities and this is accomplished by taking the closure under union of the relevant sets of Z.
The closure under union of the relevant sets {{W, 2}, {Y, Z}}is {{W, Z},{Y, 2}, {W,Y, Z}}
which represents the possibility that W, Y, and Z may share and also the possibility that W
and Y may be independent. Thus, the closure under union of Sharing § € 5 approximates

further sharing among the variables of S that may be caused.

Definition 3.12 [Closure under union]
The closure under union of a Sharing S, denoted §*, is the smallest superset of

Ssuchthat X € 5*AY €S =2 XUY € §-. O

Function restrict is the analog of the concrete function with the same name, used to
restrict a given abstract substitution to the variables of a clause or to the variables in the

goal’s environment.

75

Definition 3.13
restrict : Asub x P(Var) — Asub
restrict((F, R, 5}, V) =(FNV,RNV,{X'| X €5 A X'=XnV}) m]

As mentioned before, we use the linearity of terms to derive a more precise abstract
unification algorithm. The following definition of non_linear determines if a term is non-
linear with respect to an abstract substitution. A term t may have repeating variable

subterms only if one of the following conditions hold:

o A variable subterm of T occurs in the Repeat component of the abstract substitution.

¢ The same variable occurs in T more than once and the variable is not known to be

definitely ground with respect to the given abstract substitution.

¢ Two distinct variable subterms of T may share in the given abstraction.

These are the only possibilities. This definition safely over-estimates the set of non-
linear variables with respect to an abstract substitution. This is because the sharing and
repeat components of an abstract substitution represent possible sharing and non-linearity
and not definite sharing and non-linearity.

Recall that in an abstract substitution (F, R,S), F is the set of Free variables, R is
the set of non linear variables and 5 is the set of sharing sets. We cannot define non-linearity
without referring to an abstract substitution. This is because a term such as g(X, X) may
be linear with respect to an abstract substitution Asubs which maps X to a ground term,

in which case there are no variables at all in g(X, X).

Example 3.6
A term g{X)is non-linear with respect to the set of substitutions whose abstrac-

tion is ({}, {X}, {{X}}). This is because X occurs in the Repeat component.

76

A term g(X,Y, X) is non-linear with respect to the abstract substitution
{{}, {}, {{X}})- This is because X occurs more than once in that term and
X is not known to be ground. Recall that if a variable occurs in a sharing set,

then it is rot known to be definitely ground.

The term g(X,Y, X) is linear with respect to the abstract substitution
{{}, {}, {{3}) because the variables X and ¥ do not occur in the sharing com-

ponent of the abstract substitution and hence must be bound to ground terms.

Finally, the term g(X,Y) may be non-linear given the abstract substitution
{{},{}, {{X,Y}}). This is because the sharing set {X,Y} in the abstract sub-
stitution implies that X and ¥ may share a common variable. Hence the term
g(X,Y) may have a repeating variable subterm with respect to the given ab-

stract substitution. a

Definition 3.14
non_linear : Term x Asub — Bool
non_linear(t, Asuby) iff
(3X € Vars(t) s.t. X € Asubg | Repeat) V
(3X € Vars(t) s.t. X occurs more than once in t AX € Vars(Asubg | Sharing))v
(3X,Y € Vars(t), X £Y, 35 € Asubg | Sharing st. {X,Y}C 5) (]

We now discuss the main abstract domain operations abstract.unify, entry_sub, and
success_sub. Function entry_sub abstracts the effect of head unification and is used to
propagate information from the abstract environment of a goal to the abstract environment
of the clause whose head matched the goal. The abstract operation success_sub is used for
propagating information in the other direction, i.e., it abstracts the effect of composing the
exit substitution of a clause with the call substitution of a goal and restricting the result to

the variables of the goal environment.

77

Function entry-sub is an abstraction of the standard domain operation mgu(a,h) 1 6
wherfa @ is the call substitution of goal a and & is the head of a renamed clause. Before we
reconcile the constraints mgu(a, h) with abstract call substitution Asub_,p, the abstract
call substitution is augmented with information about clause variables. Just before head—
goal unification, there are no constraints on the variables of the renamed clause. This means
that the clause variables are free, pairwise independent, and linear. Note that extending the
abstract environment of the goal with the clause variables does not cause problems precisely
because of variable renaming. The effect of mgu(a,h) 1 8 is abstracted by the function
abstract.unify, given the mgu of a and 4 and the extended abstract call substitution. As
mentioned before, restricting the result of abstract_unify to the renamed clause variables
and applying the inverse of the renaming function gives us an entry substitution in terms
of the original clause variables. As mentioned before, the renaming index is unused in our

interpretation.

Definition 3.15
entry_sub : Atom x Clause x Asub x N — Asub

entry_sub(a,h’ « ', Asub_ ;i) =

let heb = rename(h' — V)
F = Asub ;| Free U Vars(h « b)
R = Asub,)l Repeat
S = Asub ylSharingU {{X}| X € Vars(h — b)}

Asubenyry = abstract_unify(mgu(e, h),{F,R,§))
in
rename™" (restrict{ Asubepsy,, Vars(h — b)))

end
)

In the following example, we use the renamed version of a clause and omit the re-

78

naming and inverse renaming steps for simplicity.

Example 3.7
Let ¢ = h — b be a clause, e a goal, and Asub_.j; be a's call substitution as

defined below.
atoma = p(X,f(X,X),Y,2)

clause head h = p(f(P,Q), f(R,S5),9(a,b),g(R,T))
clause body b = ¢(§,T,U)
AScha_” - ({Xg Z}:{Y}!{{Y}a{X!Y}v{ZvZ]-}})

The entry substitution for clause ¢ is computed as follows:

F = {X,Z}U{P,Q,R,S,T,U}
R = {¥}
5 = {¥L{X,Y},{Z,21},{P}.{Q}, {R}, {S}.{T}, {U}}
mgu(a,h) = {X e~ f(P,Q),R~ f(P,Q),5— f(P,Q),Y ~ g(a,b),
2= g(f(P,Q),T)}
Asubgpyyy = abstract_unify(mgu(a, h), (F, R, §))
= ({T,U}9,{{Z,21,T},{U}})

For now, take abstract_unify(mgu(a, h), (F, R, 5)) to be
({T,U},0,{{Z,21,T},{U}}). (Function abstract_unify will be defined shortly.)

Restricting As“bentry’ to the clause variables yields the entry substitution

({T,U},0,{{TH{U1}. =

Function success_sub is similar to entry_sub. It uses abstract_unify to abstract the
standard domain operation 8 T mgu(a,h) 1 8,z;; where 8 is the call substitution of the
goal a. Since T is associative and commutative, the above expression is equivalent to

mgu(a,h) T 8 T Beziy which, using the definition of T (see Chapter II), is simplified to

79

mgu(a,h) T (Eqn(f) U Eqn(fczit)). The unifier mgu(a,h) can be computed exactly and
(Eqn(8) U Eqn(f,.;i)) is obtained as the component-wise union of the corresponding ab-
stract call and exit substitutions. Note that taking component-wise union does not violate
the properties of an abstract substitution (Propositions 3.1 and 3.2) because of renaming
of the variables of the clause and the exit substitution consistently. Note also that we use
rename’ in success_sub instead of rename used in entry_sub solely because the types are
different. Since success substitution is meant to pass information to the goal environment,

the result of abstract_unify is restricted to program variables.

Definition 3.16
sucecess_sub : Atom x Clause x Asub x Asub — Asub
success_sub(a, h — b, Asub .y, Asubgyis) =

let (A" — V', Asubgy;y) = rename’(h — b, Asubgy;,)

Asubsyce = abstract_unify (mgu(a, h'), Asub ;v U Asub_,p)

exit
in
restrict (Asubgycc, PVar)

end
a

In the following example, the clause ¢, the goal a, and the call substitution for the

goal a are the same as in Example 3.7.

Example 3.8
atoma = p(X,f(X,X),Y,Z)

clause head b = p(f(P,Q), f(R,S),9(a,b),g(R,T))
clause body b = ¢(S,T,U)

ASchaﬂ = ({X,Z},{Y},{{Y},{X,Y},{Z,Zl}}) -

Assume that solving the only body goal (S, T, U) results in the exit substitution

- 80

Asubgyi; = (0,{T},{{T,U},{U}}). When computing the entry substitution for clause c,
we used the call environment for the goal a augmented with the initial environment for the
clause as the environment for solving the equation ¢ = h. When computing the success
substitution, the exit substitution of the clause is used instead of the initial substitution.
The success substitution of goal a with respect to clause ¢ and corresponding to the call
substitution Asub.,p is computed as follows. As in the previous example, we omit the

renaming step for simplicity.
F = {X,Z}uD

R = {V}u{T)
§ = {Y}{X,Y},{2,21},{T)},{T,U},{U}}
mgu(a,h) = {X f(P,Q), R f(P,Q),5 f(P,Q),Y — g(a,b),
Z ~ 9(f(P,Q),T)}
Asubsycc = abstract_unify(mgu(a, h), (F, R, S))
= (9,{2,Zl,T},{{Z,Zl,T},{Z,Zl,T,U}})

For now, assume abstract_unify(mgu(a, h), (F, R, §)) to be
(0,{Z,ZI,T},{{Z,ZI.,T},{U},{Z,ZI,T, Uh. .(Function abstract_unify will be defined
shortly.) Restricting Asubsycc to the program variables PVar yields the success substitution
(0,{2,21},{{Z, Z1}}) for the goal a corresponding to the call substitution
(X, 2} {¥}, {{Y},{X,Y}, {2, 21}}).

We now discuss abstract unification.
Abstract_Unify

Function abstract_unify updates an abstract substitution Asubj, to reflect the effects
of a set of equations in solved form (i.e., the mgu of a head and a goal). These equations
represent the equality constraints to be reconciled with the current environment whose

abstraction is Asub;,. All we have to do is to safely abstract the effect of each of these

81

equations on the abstract substitution. These equations have the form X = T where X is
a variable and T is a term (possibly a variable term). Function abstract_unify mimics the

effects of each of these equations using function refine.

Definition 3.17
abstract_unify : P(Eqns) x Asub -+ Asub

abstract_unify(Eqns, Asubg) =
if Eqns = ® then Asubg

else let FE be an equation in Eqns
Eqns' = Eqns\ {E}
Asub) = refine(Asubg, E)

in
abstract_unify(Eqns, Asub,)

end
a

Since abstract.unify simply calls refine to approximate the effect of solving an equation
E in the set of equations of Eqns, we will discuss a complete example after defining refine.

The main component of abstract unify is refine. It takes an equation v; = ¢; in solved
form (i.e., v; is a variables and v; € Vars(t;)) and an abstract substitution Asubeyr and
refines the abstract substitution by safely approximating the effects of the equation on the
abstract substitution.

In the rest of the section, # is some substitution in the concretization of the current
abstract substitution Asubcyr. In other words, 8 is some substitution safely approximated
by Asubcyr. Note that there will be infinite rumber of substitutions in the concretization
of Asubcyr. We will not assume anything about § except what is implied by the current
abstract substitution Asubcyr. We will use the properties of an element of the abstract

domain, established in propositions 3.1 and 3.2. The effects of solving the equation v;8 = ;8

82

on the abstract substitution Asubcyr is given by the function refine in Definition 3.18. An
overview of the the function refine follows.

Outline of refine: The effect of v;# = t;# on Asubcyr is derived by case analysis. We
first consider the case when there is no solution to the equation v;8 = ;6. Next, we consider
when v;¢ = ;0 succeeds. In this case, there are two sub-cases to consider. The first and
easy case is when at least one of v;8 or ;8 is a ground term. In the second sub-case when
neither v; nor ¢; is a ground term, we consider the effects of the equation v;6 = t;0 on the
sharing, non-linearity, and freeness components of Asubcyr in that order. Each of these
sub-cases will have sub-cases depending on the structure of the terms v; and ¢; and their
properties implied by -Asubeyr. We use examples in each of these cases.

The equation v;# = t;# may or may not have a solution, (i.e., the reconciliation
({#i = %} 1 6) may succeed or fail). Failure is represented by the empty set of substitutions
in the standard domain of computation P(Subst). Note that refine (Definition 3.18) never
fails since we do not have enough information in the abstract substitution to capture failure.
Thus, the concretization of the abstract substitution returned by refine is a non-empty set
of substitutions, which is a safe approximation of the empty set of substitutions.

Consider the case where the equation v;6# = t;8 has a solution ¢. Given that a solution
o exists, (v;0)0 = (1;6)0, where = is syntactic identity on terms, atoms, equations and other
syntactic objects. In the following, we will see how to approximate v;8 = 1,8 safely, using
invariant properties of the current abstract substitution Asubcyr.

There are two cases to consider when a solution o exists for the equation v;0 = ;8.
In the first case, either ;6 or t;0 is a ground term. In the second case, neither is a ground
term.

If v;8 is a ground term i.e., Vars(v;#) = 0, then »fc is also ground. i.e., a ground
term cannot be further instantiated. Hence, ;o is also ground term. A variable bound

to a ground term is not free, does not share with other variables, and has no repeating

S 83

variable subterms. Hence, we remove the variables that are relevant to v; and ¢; from the
Free and Repeat components of the abstract substitution Asubcyr and remove the relevant
sharing sets of v; and ¢; from the Sharing component of Asubcyr. Notice that this maintains
the invariance properties 3.1 and 3.2. The case where t;6 is a ground term is analogously

defined,

Example 3.9
Let Asubcyr = {({X,Y},{P,Q},{0,{4,B,C},{P},{4,X},{B,Y},{4,Q}}).
Consider the equation D = f(X, P, A). Since D does not appear in any of the
sharing sets in the current abstract substitution, it is definitely ground. Since the
term f(X, P, A) is unified with D, the variables X, P and A also become ground
terms. Hence, the new abstract substitution Asubpew is {{Y'}, {},{0,{B,Y}}).
Note that in the abstract substitution Asubcyr, the groundness of A implies the
groundness of B,C,X and @Q, since A occurs in all the sharing sets in which

B,C, X and @ occur. |

Now consider the case where neither »;6 nor ¢;0 is a ground term. This impacts
the sharing, linearity; and freeness components of Asubcyr. We begin with the Sharing
component.

Sharing Propagation The equation v;f = t;# may cause three types of sharing: some

subterm of v;# may share with some subterm of ¢;8; some subterm of v;# may share with
some other subterm of v;8; likewise, a subterm of ¢;§ may share with another subterm of ;8.
We need to safely approximate this sharing. We derive safe approximations of the sharing
as follows.

The effect of an equation v;# = ¢;6 depends on whether or not v;8 (or t;6) may be a
non-linear term, i.e., may have one or more repeated variable occurrences. This leads to
four possibilities, depicted in Figure 7. A broken edge from v; to t; represents unification

of the two terms. A solid edge from v; to itself indicates that v; may be non-linear in

84

the current substitution #; similarly a solid edge from a node {; to itself means the term
t; may be non-linear. For both nodes v; and ¢;, the variables we are concerned with are
those that occur in the term ;6 and ;6 respectively. In the figure, X;,..., X, are all the
variables in v;6, and Yj,...,Y} are the variables in #;0 where 6, as mentioned before, is in
the concretization of the current abstract substitution.

In case (a), both v;6 and 1;8 are linear, i.e., v; € Asub | Repeat and Vars(t;) N Asub |
Repeat = (. The only type of sharing that is possible is that between a subterm of v; and
a subte.rm of t;. This is because neither v;# nor ¢;0 have a repeating variable subterm.

The syntactic identity v;fo = t;#0 implies that Vars(v;fo) = Vars(t;#c). This means
for each subterm v;fc, there is a corresponding subterm of t;8o such that these two sub-
terms are syntactically identical and the set of variables in these two subterms is the same.
In an abstract interpretation, we do not have information about pesitions of subterms.
Therefore, we have to conclude that each variable subterm of v;# may be forced by the
unifier to share with some variable subterm(s) of ;8. This over-estimates the sharing, i.e.,
it is a conservative and safe approximation but it is the best we can do in the absence of
information about the structure of terms.

We compute the pairwise union of each possible pair of sets of variables from
relevant(v;, Asub | Sharing) and relevant(t;, Asub | Sharing) and add these to
Asub | Sharing (since this information supersedes the old relevant sets, they are removed).
Note that relevant(v;, Asub | Sharing) represents variable subterm(s) of »;6 by the set of

variables in the domain of # with which it shares those variable subterms.

Example 3.10
Let the Sharing component of the abstract substitution Asubcyr be Sharing,y, =
{0,{X, Z},{Y, 2},{Z2},{P}} and the Repeat component be {X}. Consider the
equation P = Z. The set of sharing sets relevant to Z is {{X, Z}, {Y, Z},{Z}}.

Likewise, the set of sharing sets relevant to P is {{P}}. The pairwise union

85

of {{X,Z2},{Y,2},{Z)}} and {{P}}is {{P,X,2},{P,Y,Z},{P, Z}}. The new
Sharing is ({0, {X, 2}, {Y, 2},{2}, {P}} \ {{X,Z},{¥,Z},{Z},{P}}) v

{{P, X,2},{P,Y,2},{P, Z}} i.e., {0,{P,X,Z},{P,Y,Z},{P, Z}}. Note that
the equation P = Z implies that the groundness of P depends on that of Z
and vice versa. This is captured by the fact that P and Z occur together in
all sharing sets in the new Sharing. Furthermore, since P is linear, the distinct
companents of Z, namely {X, Z}, {¥, Z}, remain distinct after the unification

of P and Z. 0

Consider case (b) in Figure 7. Some Y; has a repeated subterm, as indicated by the
solid arc. The equation v; = t; implies that some of the variables X;,..., X, may now
depend on each other as the result of the repeated variable somewhere in #;. To handle
this case, we compute the closure under union of relevant(v;, Sharing) and add the pairwise
union of this set and relevant(t;, Sharing) to Sharing.

Case (c) is symmetric to case (b), the only difference being that the repeated variable
is one of the X; and the set to close under union and add to Sharing is relevant(t;, Sharing).

Finally, in case (d) in Figure 7, since there may be repeated variable subterms in v,
and 2;, both the sets relevant(v;, Sharing) and relevant(t;, Sharing) are closed under union

and their pairwise union is added to Sharing.

Example 3.11
Let Asubcur = ({X, Y}, {P,Q},{0,{4,B},{P},{4,X},{B,Y},{B,Q}}). Con-
sider the equation @ = f(X, A). Note that Q may be non-linear because it ap-
pears in the Repeat component of Asubcyr. Although X and A are linear, the
term f(X, A) may be non-linear. This is because X and A appear in a sharing
set together and hence they may share a variable, which may oocur more than
once in the term f(X, A). The definition of non-linearity captures this possibil-

ity. The sharing set relevant to Q is: {B,Q}. Likewise, the sharing sets relevant

86

to f(X,A) are: {A, B}, {4, X}. The closure under union of {{B,Q}} is itself.
The closure under union of {{4,B},{4,X}} is {{4,B},{4,X},{4,B,X}}.
Their pairwise union yields {{A,B,Q},{4,B,Q,X}}. The sharing compo-
nent of the abstract substitution after solving the equation @ = f(X,A) is
{0,{P},{B,Y},{A4,B,Q},{4,B,Q, X}}. Note that if becomes ground later
on due to another equation, 4 and X will also become ground. Likewise, if A

and B become ground, Q will alsoc become ground. (m]

O

(oo X) - (B Xo) - (K Xa) - (e X

v
| l
I |
| |
| |
| |
| |

t

[

“-—————
.

i t;
(}ﬁ,...,Yk) (Yl,...,Yk) (Yl,...,Yk) (Yq,...,Y%)

(a) (b) () @)

Figure 7: Sharing, Freeness and Repeatedness Propagation

Linearity Propagation When updating Repeat for an equation v; = ¢;, we note that

if v; may be bound to a term which has repeated variable subterms, then #; now also has
repeated variable subterms. Since we do not know which of the variables of v; repeat, and
since we are deriving potential non-linearity information, we have to conclude that any
subterm of ¢; may also have repeated variable subterms. Returning again to the equation
Z = f(T,S) and the case where we know Z has repeated variable subterms, we conserva-
tively conclude that T and § may also be bound to terms with repeated variable subterms
and add them to Repeat.

Even when neither v; nor #; has a repeated variable subterm, the equation v; =

87

t; may cause two previously distinct variable subterms to become aliased. Consider the
equation P = R, given substitution {P ~ (T, U),Q — (T,U), R~ (U, N)} and the sharing
component of its abstraction {{P,Q},{P, R}, {R}}. Two previously distinct components T
and U in the value of P are now aliased to each other and P, @, and R will now have a
repeated variable occurrence. Such cases can arise only when there is at least one variable
(U in this situation) that occurs through both v; and ¢;. We must conclude that v;, all the
variables in #;, and variables that share with them may be bound to a term with repeated
varia.bl(; subterms.

Freeness Propagation We now consider how freeness of variables is affected due to the

equation v;# = t;8. If v; is not free in #, we have to conclude conservatively that none of
the variables in 2;# may be free. This is because we are deriving definite freeness.

Consider the equation X = f(Y,Z) and an abstract substitution in which X is not
free. For example, # could be {X ~ f(2,3),Y — A,Z = A" ,P — A,Q — A’}. The
variables A, A"Y,Z,P and @ are no longer free. Thus if v; is not free in the current
abstract substitution Asubecyr, then we have to assume that all the variables that share
with the term t; may not be free any more.

On the other hand, if v; is definitely free in the current substitution 8, then ;6 is some
unbound variable X and the equation v;# = ¢;# may at the most create the binding X — t;,
and this does not affect the freeness of variables that occur in t;. We used the phrase “may
at the most create the binding” because ¢; may also turn out to be a free variable ¥ and
the binding created may be ¥ — X instead of X — Y. The above reasoning holds in either
case.

If ¢; is not a variable or it is a variable but not free in the current abstract substitution,
then v; and other variables it shares with may no longer be free. These are also removed from
the set of variables. On the other hand if ¢; is a free variable ¥ in the current substitution

f, once again the equation v;# = 1;# may at the most create the binding Y mapstov; which

does not affect the freeness of v;.

~ The following definition of refine captures the above case analysis.

Definition 3.18
refine : Asub x Eqn — Asub
refine({F, R, 58),v; = §;) =
if ground(v;, §)V ground(t;,S) then
let A= relevant(v;, §), B = relevant(t;, S)
5'=8\(AU B)
R' = RN Vars(5")

F' = F\ Vars{(A U B)
in (F,R,S5")

end

else
let A = relevant(v;,S), B = relevant(t;, 5)

B’ =if non.linear(v;,(F,R,S))then B" else B fi

A’ = if nonlinear(t;,(F,R,S))then A" else A fi
§'=(S\ (AU B)) U pairwise union of A’ and B’

R' = RV (if non_linear(v;,(F,R,S))then |JB else 0 fi)
R" = R'U (if noninear(t;,(F, R, §'))then |JA else 0 fi)
R"=R'U(U{XNY|X €A, YeBY})

F' = Free\ (if v; ¢ F then {Jrelevant(t;, 5') else § fi)

F'"=F'\(if (t; ¢ Var vV 1; ¢ F') then [JA else § fi)
in (F”,R”f’ Sl)

end

fi

88

89

Proposition 3.3
Let # be any substitution in the concretization of the current abstract substi-
tution, Asubcyr and v; = ¢; be an equation in solved form (i.e., v; € Vars(;)).

Then ({vi — t;} 1 8) C y(refine(Asubcyr, vi = ;). (m|

We do not give a rigorous proof of the above proposition but point out that the func-
tion refine was derived by exhaustive case analysis of the groundness, linearity, and freeness
properties of the terms v; and i; using the invariant properties of abstract substitutions
(Propositions 3.1 and 3.2).

Recall that Examples 3.7 and 3.8 assumed the result of function abstract_unify applied
to some arguments. We now derive the result of the function call abstract_unify in Exam-
ple 3.7. The result of the call to abstract_unify in Example 3.8 may be derived analogously.

The relevant details from Example 3.7 are shown below.

Example 3.12
F = {X,Z,P,Q,R,S,T,U}

kR = {Y}
S = {YL{X,Y},{2,21},{P},{Q}.{R},{S},{T}, {U}}
mgu(a,k) = {X~ f(P,Q),R~ f(P,Q),5+~ f(P,Q),Y ~ g(a,b),
Z—g(f(P,Q),T)}

Astbgpyy = abstract_unify(mgu(a, h), (F, R, §)) -

There are 5 bindings in the unifier of @ and h. We use refine to approximate the
effects of these bindings, one by one, on the abstract substitution (F,R, S).

Consider the binding X — f(P,Q). Neither X nor f(P,Q) is a ground term in the
abstract environment (F, R, 5). The relevant sharing sets A and B of X and f(P,Q) are
computed as follows. A = relevant(X,§) = {{X,Y}} and B = relevant(f(P,Q),5) =
{{P},{Q}}. Since both X and f(P,Q) are linear, there is no need to take the closure

90

under union of A and B, Hence, A' = A and B’ = B.

Si = S\ (AU B)U pairwise_union(A, B)

= {{¥},{2,21},{R}, {5}, {T},{U},{X,Y, P}, {X,Y,Q}}
R, = R={Y)}
F, = F\(UA)={2,P,Q,R,5T,U}

Next consider the binding R — f(P,Q) in the abstract environment {F}, Ry, 5;). The
set A of relevant sharing sets of R is relevant(R, $1) = {{R}} and B of f(P,Q) is
relevant(f(P,Q), 51) = {{X,Y, P},{X,Y,Q}}. Both R and f(P,Q) are linear in the ab-
stract environment (Fy, R1, S1). There is no need to compute closure under union of A and

B, and A'= A and B’ = B.

S2 51\ (AU B) U pairwise_union(A, B)
¥} {2, 21}, {S}{THL{U},{X,Y, P, R}, {X,Y,Q, R}}
R2 = Rl = {Y}

F, = R\(UA={ZPQ,S5TU}

The effect of the third binding § — f(P,Q) on (Fs, Ry, S;) is derived as follows. The
set A of relevant sharing sets of S is relevant(5, 52) = {{5}}, 2nd the set B relevant sharing
sets of f(P,Q) is relevant(f(P,Q), S2) = {{X,Y, P,R},{X,Y,Q,R}}. Both § and f(P,Q)

are linear, and hence A’ = 4 and B’ = B.

Ss = 83\ (AU B)U pairwise_union(A, B)

= {¥}{2,21},{T},{U},{X,Y,P,R,5}.{X,Y,Q, R, S}}
Ry = Ry={Y}
Fs = FR\(UA)={2,PQ,T,U}

The fourth binding ¥ — g(a, b) modifies {F3, R3, S3) as follows. The set A of relevant

91
sharing sets of Y is relevant(Y, 53) = {{¥},{X,Y, P,R,5},{X,Y,Q, R, 51}, and the set B
of relevant sharing sets of g(a,b) is §. Since Y is bound to a ground term, the abstract

substitution (F3, R3, S3) is refined as follows.

54 33\A b {{ZrZI}s{T}i{U}}
Ry = Ra\{Y}=0
F4 = F3\(UA)={ZaT!U}

The final binding Z — g(f(P,Q),T) affects (Fy, R4, S4) as follows. The set A of
relevant sharing sets of Z is relevant(Z, S4) = {{Z, Z1}} and the set B of relevant sharing
sets of g(f(P,Q),T) is relevant(g(f(P,Q),T),Ss) = {{T}}. Once again, neither Z nor

g9(f(P,Q),T) is non-linear, and the abstract substitution is refined as follows.
S5 = S4\(AUB)U pairwise_union(A, B)

= {{2,21,T},{U}}
Ry = Rsy=0
F = F\(UA)=A{T,UV}

The substitution (Fj, Rs, Ss) is the result of abstract.unify(mgu(a, h), (F, R, §))-

In this section, we defined an abstract domain for expressing freeness, sharing, and
groundness properties of substitutions. We stated and proved the invariant properties of
the abstract domain elements. A safe abstract unification algorithm was derived using these
invariant properties. We showed that the linearity of terms is useful in treating sharing as
2 non-transitive relation where it was safe to do so. In the following section, we prove the

safety of the abstract unification algorithm.
Correctness

Recall from Chapter 2 that the functions entry_sub and success.sub are required to be

continuous in the arguments from the domain Asub. The following propositions establish

their continuity.

Proposition 3.4

Function refine is continuous in its argument from the domain Asub. (m]

Proof
The functions used in the definition of refine, such as set union, set subtraction,
set intersection are continuous. Function composition and application preserve

continuity. Hence, refine is continuous. m]

Proposition 3.5
Functions abstract.unify, entry_sub, and success_sub are continuous in their

arguments from the domain Asub. m]

Proof
Functions abstract_unify, entry_sub, and success_sub are continuous because
they are defined in terms of refine and other continuous functions such as set
union, and other operations such as product formation, function application,

and function composition preserve continuity. (m]

Simply stated, the functions refine, abstract.unify, entry_sub, and success_sub are

computable and all computable functions are continuous.

Recall that in the Galois insertion approach (Chapter 2), local correctness guarantees

global correctness. Proposition 3.3 states the local correctness of the function refine. The

correctness of refine implies the correctness of abstract.unify. Since there are only finite

number of equations »; = ¢; in the unifier of a goal and a head, a simple induction on the

number of equations will prove the correctness abstract_unify.

03
Precision of the Analysis

Our abstract domain Asub has Jacobs and Langen’s Sharing domain [44] as a compo-
nent. In addition, our domain expresses the freeness and linearity of variables. This enables
us to treat sharing as non-transitive at the cost of increased worst-case time complexity.
However, the performance of our analysis is much better both in terms of precision and

time taken for the analysis for a number of programs tested, as shown in Table 1.

No of Pairs of
Shared Variables Time in Secs
Program Size || Asub | Sharing || Asub | Sharing
— S —
Ackermann 4 ¢ 0 0.005 0.004
Iso 6 0 3 0.140 0.140
Serialize 12l 42 362 | 0.689| 3.200
Grammar 15 11 11 0.080 0.080
Browse 32 131 218 0.919 1.460
Bid 51 0 11 0.460 0.440
Deriv 61 0 0 1.950 1.849
Read 87 11 26 2.640 2.500
Peephole 134 374 534 || 4.400 5.609
Boyer 139 1 22 1.219 1.210
Ann 178 || 2655 2999 9.380 8.900
Semi20 46 || 1110 1354 6.160 | 19.369
RdTok 54 54 244 || 21.140 | 22.530
Splay 22) 1173 1189 || 20.720 | T71.500

Table 1: Comparison of Asub and Sharing Abstract Domains

We implemented a domain-independent abstract interpreter and instantiated it with
our Asub domain and Jacobs and Langen’s Sharing domain [44] in order to compare their
precision and efficiency. The results of the analyses are listed in Table 1. The first column
names the programs tested, and the second column lists the size of the program in number

of clauses. The third and fourth list the total number of pairs of shared variables at all

- 94

program points, using Asub and Sharing respectively. Note that since we derive potential
sharing information, the less the number of sharing pairs, the more precise the analysis.
The last two columns list the times (in seconds) for the analyses on a HP 735 machine
running Sicstus Prolog 2.1.8 in byte code emulation mode.

Several programs were used to test the precision and efficiency of the two analyses.
Programs ranged in size from 4 clauses to 178 clauses. Programs such as splay (a self-
adjusting binary search tree program), bid (a program that computes points in a Bridge
hand), deriv (symbolic derivation program), read (a Prolog parser), rdtok (A Prolog
tokenizer), peephole (Stonybrook Prolog peephole optimizer), and ann (&-Prolog Clause
annotator) are non-trivial.

Since the analyses are aimed at deriving potentially sharing variables, an analysis is
more precise when it derives a smaller set of such variables. By this metric, our abstract
domains and operations are more precise than Jacobs and Langen’s. In a few programs,
where there is hardly any sharing, both analyses performed equally well. As programs got
larger or more complicated (as in the case of a small but complex program splay), our
analysis consistently derived fewer sharing pairs of variables.

Contrary to the l;opular belief that more precise analyses are necessarily less practical
or more time consuming, the improved precision of our analysis actually contributes to faster
execution. In the best case, our analysis is faster by three and a half times. This is mainly
due to the computation of closure under union during abstract unification. Closure under
union of a set of elements may take time exponential in the size of the set in the worst-
case. Jacobs and Langen’s abstract unification algorithm performs closure under union for
all unifications. By maintaining and propagating linearity information, our analysis avoids
closure under union most of the time. If we do not perform closure under union, our abstract
unification has polynomial time complexity. Furthermore, avoiding closure under union

has the added benefit of keeping the abstract substitutions small. The abstract domain

95

and unification algorithm of Jacobs and Langen lose precision in sharing propagation and
contribute to slow analysis at the same time. The analysis times for our domain and Jacobs
and Langen’s show some non-polynomial growth in the case of programs splay, semi20,

and rdtok. These anomalous cases are discussed in the next chapter.
Related Work

There has been considerable amount of work in the field of abstract interpretation of
logic programs in the last six or seven years. In this section, we discuss research related
to the derivation of sharing, groundness and freeness of variables in a Horn clause logic

program.

Jacobs and Langen; Muthukumar and Hermenegildo

Jacobs and Langen [44] proposed an abstract domain called Sharing to express the
sharing among and independence of variables. As mentioned in the previous chapter, our
work starts with their domain Sharing. This domain captures variable sharing precisely and
thus is good at expressing groundness dependencies among variables. However, it causes the
non-transitive sharing relation to be treated as transitive and hence is not good at sharing
propagation.

For example, assume that in the concrete substitution at some program point, variable
X is bound to f(A,B), Y to g(A,C) and at a subsequent point Z is bound to h(C,D). It is
clear that variables X and Y share the subterm A and Y and Z share the subterm C. But
there is no sharing between X and Z. The abstract domain Sharing and the corresponding
abstract unify operation proposed by Jacobs and Langen will have to treat the non-transitive
relation Sharing as transitive and thus conclude that variables X and Z may also share.
Information about linearity of variables allows us to treat sharing as non-transitive and

hence our abstract unification is more precise and more complicated, as shown by the

96

examples in the previous section.

Muthukumar and Hermenegildo [61, 62] extended the abstract domains of Jacobs and
Langen to account for freeness of variables but suggested different abstract domain opera-
tions. Their abstract domain operations are more precise than Jacobs and Langen’s because
freeness of variables allows one to treat sharing more precisely in some cases. However, the
lack of information about the linearity of terms implies that they too have to treat sharing
as transitive more often than we do. Specifically, when approximating a unification #; = t,,
if t; is known to be free, then subterms of ¢; will not be brought to share with each other
because of this unification. If ¢; is not known to be free, they have to assume that subterms

of t2 may share.
Jones and Sondergaard; Codish, Dams, and Yardeni

Jones and Sondergaard [47] proposed the abstract domain As“bground to derive
groundness of variables and another abstract domain Asubgp . . to express potential shar-
ing among variables. Codish, Dams and Yardeni [17] used the domains of Jones and Son-
dergaard to formally rederive the abstract domain operations. An element of the abstract
domain Asubgp, . is a pair of variables which signifies possible sharing between those two
variables. We compare the sharing domain of Jones and Sondergaard with the Sharing
domain of Jacobs and Langen [44] using the following example:

0={Ww f(C,A),X — g(A,C),Y = B,Z — h(A, B,C)}.

In Jones and Sondergaard’s approach, the above substitution is approximated as
{(W,X),(W, Z),(X, Z),(B, Z)} which says that W shares with X and Z, X shares with
Z, and B shares with Z. The symmetric elements of the abstract substitution, namely
(X,W),(2,W),(Z,X),(Z, B) are not shown. Notice that the substitution & = {W
f(A,F),X — g(A,E),Y —» f(B,G),Z — h(A,B,D)} has the same abstraction. The

variables W, X, and Z all share with each other and also have independent subterms in &',

. 97

but in &, W, X, and Z share the same set of variables. This information is lost in the abstract
substitution and hence we cannot conclude that binding Z to a ground term will ground
W, and X too. Thus, Asubgy, .. does not express the definite sharing among variables due
to unification.

The sharing domain of Jacobs and Langen [44] represents the above substitution as
{0,{W, X, 2},{Y, Z}}, where {W, j{, Z} represents the variables A, C shared by W, X, and
Z, and {Y, Z} represents the variable B shared by Y and Z. This not only represents
sharing but also independence of terms as discussed in the previous sections. In particular,
grounding of Z grounds W, X, and Y in the concrete domain. This is accurately captured
by the abstract unification that removes the sets {W, X, Z}, and {Y, Z} from the abstract
substitution.

Jones and Sondergaard treat sharing as non-transitive, whereas Jacobs and Langen
treat sharing as transitive. Hence, in some cases Jones and Sondergaard’s unification is
more precise than Jacobs and Langen’s and less precise in others.

Our abstract domain is a product of three domains. The sharing component is the
same as Jacobs and Langen’s but the freeness and linearity components are additions.
Since our domain ha.s linearity information, our abstract unification is more complicated
than Jacobs and Langen’s but also more precise. We do not treat sharing as transitive. In
particular, when a X is unified with f(Y, Z), our abstract unification does not treat Y and
Z as possibly sharing, unless X is potentially non-linear, i.e., may have a repeating variable

sub-term.

Codish, Mulkers, Bruynooghe, de la Banda, and Hermenegildo

In a recent work, Codish et al [18] suggest combining the domains of Jones and Son-
dergaard and of Jacobs and Langen. They use information from one to improve the precision

and efficiency of the other. The final outcome of their analysis is comparable to ours in

98

terms of precision and speed. The results of their analysis and our own empirical studies
confirm that an increase in the expressiveness of the domains due to combining domains
leads to faster analyses and more precise results. But the worst-case time complexity of
abstract operations over combined domains is worse than those over their component do-
mains. This apparent paradox is explained by the fact that worst-case scenarios seem to
be contrived and are not encountered in practice. The increased precision of the analysis

helps to avoid costlier portions of the abstract unification algorithm.

Debra

Predicates in a Horn clause logic program are adirectional, i.e., there is no distinction
between “input” and “output” arguments, since they define relations and not functions.
However, researchers observed that most of the time procedures are used with a clear
direction: some arguments were considered by the programmer to be input (i.e., will be
ground terms at the time of procedure call) and others as output (will be variables at call
time and bound to ground terms on procedure exit). A compiler can generate more specific
unification instructions and perform other optimizations if the input-output modality of
predicates are known. This led to the provision of “directives” called mode declarations
to the compiler, so that better code can be generated. Debray’s proposal [29] for static
derivation of modes is one of the earliest in the field, although presented in the traditional
data flow analysis framework and not as an abstract interpretation scheme.

The abstract complete lattice of descriptions proposed by Debray [29] consists of five
elements: the empty set of terms, set of ground terms, set of free (uninstantiated) variables,
set of non-variable terms and the set of all terms. Since the domain cannot express the
sharing of variables, groundness and freeness derivation is imprecise (See example 6 in [29]).

However, it was not intended for deriving sharing information.

99
Winsborough

Winsborough [89] sketched a domain for sharing and freeness analysis. His do-
main keeps track of the structure of terms. A set of substitutions is represented by
generalized term graphs (GTGs), a form of directed acyclic graphs. A node in the graph
can be a program variable, constant, function symbol, predicate symbol, or the ciescriptions
unknown, exact, and ground. Each node may have one or more incoming arcs and one or
more outgoing arcs. The arcs signify variable binding, definite sharing and possible sharing,
and groundness. The abstract domain operations have not been fully specified. No com-
plexity analysis of the operations is provided. To the best of our knowledge, the domain
and the operations have not been implemented. Thus, the feasibility of the proposal has

not been established either analytically or empirically.
Chang: Citrin: Xia and Giloi

Chang [14] models a substitution as a function from variables to descriptions of terms.
The abstract domain proposed by Chang consists of three descriptions: G for ground terms,
C; for the i** equivalence class of variables that may share a subterm with one another and
I for a variable that is not ground and is in singleton equivalence class, i.e., independent.
For example, the substitution {P — f(a,b),Q — g(X), R h(X,Y),S — f(Z)} would be
abstracted to {P — G,Q — C1,R— C1,5 — I}. It is clear that this abstract domain does
not capture variable sharing information precisely. The variables in an equivalence class are
equivalent with respect to possible sharing and not equivalent with respect to groundness
propagation. Hence, they cannot conclude that unifying some member of an ith equivalence
class with a ground term makes other members of the same class ground. In the absence of
precise sharing information, groundness propagation suffers.

Extensions to Chang’s abstract domain by Citrin [16] and Xia and Giloi [92] alleviate

the problem to some extent by maintaining information about strongly coupled sub-classes

100

of the equivalence classes C;. A strongly coupled sub-class of C, is a set of variables such
that grounding one variable in that sub-class grounds all others in the same sub-class. This
approach still does not allow us to conclude, for example, grounding R grounds Q but not
vice-versa. Qur abstract domain keeps track of groundness dependencies precisely and will

be able to derive that groundness of R implies groundness of Q but not vice-versa.

Marriott and Sonderpgaard

Marriott and Sondergaard [54] proposed a novel domain Pos based on positive Boolean
Tunctions to represent groundness dependencies precisely and efficiently in practice. This
domain is not intended for sharing analysis.

The domain Pos consists of positive Boolean functions of propositional variables i.e.,
those functions which evaluate to true iff all the variables in the function are assigned true.

The groundness property of a substitution # = {X — f(a),Y — Z} may be repre-
sented using boolean functions as follows. Since variable X is ground in #, the propasition
z can represent the groundness of X. Likewise, since any further instantiation of ¥ which
grounds Y will also ground Z and vice versa, proposition y < z can represent this ground-
ness dependency. Thus, the formula z A (y — z) abstracts the groundness information in
8. It is obvious that whenever two terms ¢, and t; are unified, the groundness dependency
of the two terms can be abstracted by the formula AVars(t)) — AVars(t;).

Each binding X; = T} in a substitution can be abstracted by an equivalence function
X1 < AVars(Th) and a set of bindings in a substitution is abstracted by the conjunction
of the equivalences corresponding to bindings. A set of substitutions is represented by the
disjunction of the abstraction of each of the substitutions.

A property of Pos that is most appealing is known as condensation. The term was
introduced by Jacobs and Langen [44]. Marriott and Sondergaard [56] show that Pos also

has this property. Condensation enables us to represent the abstract meaning of a procedure

= 101

(a fixed-point of the associated functional) in a closed form. This implies that instead of
computing the fixed-point of a procedure for each of possibly many call substitutions, we
have to compute the meaning only once in a goal-independent way and specialize it for
each call pattern. This meaning can be computed in the usual bottom-up manner. What
is not usual is that we do not have to compute the abstract meaning of a clause for all
possible entry substitutions. We need to do it only for one entry substitution induced by
the call substitution true which says nothing is known about the groundness dependencies
of the caller’s arguments. The specialization of the abstract meaning of a procedure for
each call to that procedure is usually very simple and much less expensive than computing
fixed-points.

Suppose we want to analyze concat for its groundness properties. Assuming nothing
about the groundness of the arguments of a call
concat(X,Y, Z), we can derive the formula (zAy) « z which is a closed form for the abstract
meaning of concat where z,y, z represent the three arguments of concat respectively. It
says that X and Y are ground (or will become ground) implies Z is ground (or will become
ground). Suppose that in a call concat(X,,Y,Z;), the third argument is ground and
nothing is known abcn:lt the other two. This is abstracted by the proposition z; which says
that z is ground. The conjunction of the formula z and the formula (z A ¥) < z which
represents the meaning of concat and the formula (z — ;) A (y =) A (z & 2) which
represents unification of concat(X,Y, Z) and concat(X1, Y1, Z,), yields after simplification
the formula Ay Az Ay Ay; Az, When restricted to goal variables, we have that the first

two arguments Xy and ¥ will also be ground after solving the given goal.

Summary

We discussed the problems of deriving precise sharing, groundness and freeness infor-

mation and then defined an abstract domain Asub that has three components; the sharing

102

component is the same as Jacobs and Langen’s; it is augmented with two more compo-
nents, one for deriving freeness of variables and another for keeping track of the linearity
of variables. The linearity information helps to improve the precision and efficiency of our
analysis since it allows the relation sharing to be treated as non-transitive.

The freeness component does not add to the precision or efficiency; it is another
property we needed to derive. Finally, we presented related research and compared it to
our work.

In the next chapter, we discuss the time complexity of our analysis, consider ways to
accelerate convergence using widening operation, and present empirical evidence by analyz-

ing a number of programs.

103

CHAPTER 1V

EFFICIENCY OF THE ABSTRACT INTERPRETATION SCHEME

Introduction

In this chapter, we analyze the worst-case time complexity of our scheme for deriving
groundness, freeness, and sharing of variables. Average case analysis is difficult mainly
because characterization of “average programs” is both difficult and open to debate. We
review some worst-case time complexity results for data flow analyses of logic programs.
These results show that it is highly unlikely that any analysis that treats sharing as non-
transitive can have worst-case polynominal time complexity.

An algorithm can have worst-case exponential time complexity in a number of ways.
Some of them are preferable to others. One way to identify such preferences is to derive
the time complexity in terms of natural parameters of the problem, The time complexity
analysis is therefore based on the the number of clauses m in the program, maximum number
of literals [in a clause, maximum arity a of a predicate, and maximum number of variables
n in a clause.

We show that a naive bottom-up computation of the fixed-point of our analysis has
time complexity O(m>/a2?"). In general, we need to compute only a small portion of the
fixed-point. In an approach called Minimal Function Graph (MFG) Semantics to compute
the fixed-points of semantic functions [46], only a subset of the fixed-point of a function
is computed. Informally, the subset that is computed is the reflexive, transitive closure of
the set of activations (environments or abstract call substitutions) reachable from a given

usually top-level) activation and their corresponding success substitutions. This approach
g PP

- 104

leads to considerable savings in the computation of fixed-points. We show that computing
the MFG semantics of our analysis has time complexity O(m32"T) where T stands for the
cardinality of the set of reachable activations from the top-level goal. Empirical evidence
suggests that T is indeed bounded by a polynomial in the number of clauses for most
programs, i.e., the number of entry substitutions per clause induced by a top-level goal
is bounded. Thus if we assume a b-ound on the number of clause variables, then we have
a pseudo-polynomial time algorithm (for each fixed value of n) for sharing, freeness, and
groundness analysis of logic programs. Another encouraging evidence of the feasibility of
our analysis is that in general the number of fixed-point iterations is bounded by a small
constant for all the programs tested.

We mentioned that the size T of the set of activations reachable from a top-level
goal is bounded by a polynomial in the number of clauses for most programs. This claim is
made more precise now. We classify programs into two categories, those that induce “stable
substitutions” (see Page 116) with respect to an abstract domain and those that do not.
For the former class, the number of distinct entry substitutions per clause is bounded by
a constant. Hence, the size T" of the set of activations reachable from a top-level goal is
linear in the number ;)f clauses. If we make an additional assumption that the number of
variables in a clause is bounded, then our analysis has pseudo-polynomial worst-case time
complexity for the former class. For programs that induce “unstable call substitutions” (see
Page 116), our analysis takes time bounded by a polynomial in the number of clauses and
an exponential in the number of clause variables. For this class, we propose a widening
operation that sacrifices precision for speed. This is done selectively and automatically on
a procedure-by-procedure basis.

Cousot and Cousot proposed a widening operation [21] for accelerating the conver-
gence of fixed-point computations. Widening is applied to the successive iterates of the

fixed-point computation and it sacrifices precision for faster convergence. This is very use-

105

ful in those cases where the abstract domain has infinite ascending chains or when the
height of the abstract domain is finite but very large and the fixed-point computation takes
too many iterations to converge. Since the number of fixed-point iterations needed in our
analysis is fairly small, Cousot’s widening operation applied to fixed-point iterates does not
accelerate convergence. We propose a similar operation with nearly identical properties in
the spirit of Cousot’s original proposal.

To verify the performance of our proposed analysis and the widening operation, we
implem.ented a domain independent analyzer for Horn clause logic programs and instan-
tiated the analyzer with our domains and operations. Analysis of a number of programs
show that the number of fixed-point iterations appears to be independent of the height of
the abstract domain and is bounded by three in most cases, compared to the worst-case
bound which is exponential in the number of clause variables. Our results are supported
by similar results for analyses which use different and more or less complex domains and
different fixed-point computation algorithms [51, 88).

With this brief outline, we now proceed to an analysis of the time complexity of our

abstract interpretation.

Time Complexity Analysis

Before analyzing the time complexity of our abstract interpretation, we mention some
results about the complexity of data flow analysis of logic programs, due to Debray [26].
The following is an informal summary of terms and results from complexity theory [41).

A decision problem (whose solution consists of either yes or no) is in NP iff it can
be solved in time bounded by a polynomial in the input size by a non-deterministic Turing
machine (NDTM). Likewise, a decision problem is in P iff it can be solved by a deterministic
Turing machine (DTM) in polynomial time. A decision problem II is NP-complete iff II

is in NP and all other decision problems in NP can be transformed to II by a DTM in

106

polynomial time. Intuitively, NP-complete problems are the the hardest problems in NP,
since a deterministic polynomial time solution to any of these can be used to solve all other
problems in NP in deterministic polynomial time. Hereafter, we use polynomial time to
mean deterministic polynomial time. The class EXPTIME consists of the decision problems
that can be solved by 2 DTM in time bounded by 27(*) when p is a polynomial in the input
size n. A decision problem is EXPTIME-complete if it is in EXPTIME and all problems in
EXPTIME can be transformed to this problem in polynomial time by a DTM.

The results related to sharing, groundness, and freeness analysis are as follows. Precise
groundness and sharing analysis of programs free of function symbols and failure branches
is EXPTIME-complete [26]. Debray {26] shows that one may obtain worst-case polynomial
time algorithms by sacrificing precision. Specifically, if sharing is treated as transitive
(thus introducing spurious sharing during abstract unification), or if dependencies between
variables can be safely ignored (once again losing precision), then subject to some additional
constraints such as each predicate having at most one abstract call and success substitutions,
one can derive a data flow analysis whose worst-case time complexity is bounded by a
polynomial in the size of the program. In fact, Debray gives an input-output mode analysis
algorithm with these properties [29].

We improve the precision of sharing analysis (proposed by Jacobs and Langen [44]) by
treating sharing as non-transitive and by maintaining additional information about linearity
and freeness. Hence, the worst-case time complexity of our analysis is unlikely to be better
than exponential in the input size. Keeping these results in mind, we now derive the time
complexity of our analysis. Our aim is to identify the parts of our analysis which contribute
to the exponential complexity. Recognition of the exponential components allows us to
perform widening in such a way as to allow graceful degradation in performance. Although
the number of fixed-point iterations has an exponential bound, in practice the number of

iterations required is always less than a small constant (at least for the programs tested

107

and as reported by other researchers for other complex domains [51]). In practice, the
exponentiality arises from the number and size of abstract entry substitutions for programs
that do not have the stable call substitutions property. We suggest methods for handling

this source of inefficiency.
Outline of Complexity Analysis

Recall that the fixed-point of a function can be computed by computing the successive
approximations of the Kleene sequence {76] and stopping as soon as two successive approx-
imations are the same. The time complexity of a fixed-point computation is determined by
the number of iterations needed to compute the fixed-point multiplied by the time spent
in each iteration and the time for comparing two successive approximations. The number
of iterations is bounded by the height of the abstract domain. This is because we start
with the least element as the first approximation and in each iteration the approximation
moves towards the fixed-point or stays the same when it reaches the fixed-point. In the
worst-case, the top element may be the fixed-point. After deriving the worst-case upper
bound, we will point out some obvious inefficiencies in the fixed-point computation process
and present an approach based on the minimal function graph semantics and discuss some
empirical results.

Let the number of clauses in a program be m and the maximum over all clauses of the
number of variables in a clause be n. Let [be the maximum number of literals in the body
of a clause and a be the maximum arity of a predicate in the program. We first estimate the
upper bound on the number of iterations, followed by an analysis of the time complexity

for an iteration.

108

Number of Fixed-Point Iterations

Recall that our abstract domain has three components, Sharing, Repeat and Free.
The Sharing component for each clause is the powerset of the powerset of variables in that
clause. The size of this component domain is 2" and the height is 2". This is because the
set of all sets of variables in a clause is the top element (represents the worst-possible sharing
and independence of clause variables) and the set of singleton sets of variables represents
the initial abstract sharing among clause variables. The components Repeat and Free are
both powersets of clause variables and hence the height of these domains is n. Thus, the
size of the abstract domain for a clause is 2"2"2%" and the height of our abstract domain
for a clause is bounded by n22", since the size (height) of a product domain is given by
the product of the sizes (heights) of the component domains., Thus the fixed-point for each
clause is reachable in at most n?2" steps. Since the number of clauses is m, the fixed-point

for the whole program can be computed in at most mn?2" = O(m2") iterations.
Time Complexity of an Iteration

We now derive an upper bound for the time complexity of computing each approxima-
tion. Each step in the fixed-point computation involves computing a better approximation
of the abstract exit substitution corresponding to each entry substitution for each clause.
The maximum number of possible entry substitutions for a clause is bounded by the number
of elements in the abstract domain for a clause, which is 272722",

The time for computing the success substitution of a body literal, given its call sub-
stitution, is the number of clauses that unify with the goal times the sum of the time for
computing entry and success substitutions for the matching clauses. The time for comput-
ing entry and success substitutions is given by the arity of the goal times the time taken for
abstract unify. The costliest operation in abstract unify is closure under union, which in

the worst-case may take 2* steps where k is the number of variables in the sets being closed

109

under union. Note that k can be equal to the number of variables in a clause and thus we
take k to be n. Since a goal may potentially unify with all the clauses in the program, the
time taken for finding the success substitution for one body goal is ma2". Since there may
be [body goals, the time taken for updating one clause’s exit substitution is Ima2®. There
can be 2#2"22" different entry substitutions and hence the time for computing one clause’s
approximation is Ima2"2722"*" which is O(Ima22").

Since there are m clauses in the program, computing an approximation for all the
clauses has time complexity @(Im2?a2?"). I we implement the Sharing, Repeat, and Free
components as ordered lists, comparing two elements will take time linear in the size of the
elements. The size of an abstract domain element for a clause is at most n22" (number of
non-linear variables times the number of free variables times the number of sharing sets in
an abstract substitution). Thus, comparing two successive approximations for all clauses
may take n?2™ number of steps which is (¥(2"). Therefore, the time taken for one iteration of

the fixed-point computation in the worst-case is O(2") + O(Im?a2%") which is O(Im2a2?").
Time Complexity of the Whole Analysis

Since the number of fixed-point iterations is bounded by O(m2"), and each iteration
can take O(Im2a2?"), the time taken for the whole computation is O(m3/a22"). If we assume
that the number of literals { in a clause is smaller than the number of clauses in a program,
and the maximum arity a of all predicates does not vary with program size, the above
expression simplifies to O(m322"), where m is the number of clauses and n is the maximum
number of variables in a clause. Note that these two assumptions are reasonable ones.
In practice, as the number of procedures increases, the number of procedure calls in each
procedure stays relatively constant. Likewise, as the number of procedures increases, the
number of arguments per procedure remains constant. Empirical study of Prolog programs

by Touati [33] shows that the average arity of a predicate is less than five.

110

Discussion

From the worst-case complexity analysis, it appears at first glance that the proposed
analysis is feasible only for very small programs. Worst-case time complexity analysis which
considers computing the abstract meaning of a function at all the points in its domain is
misleading. We explain this claim now. The meaning of a recursive function is given as the
least fixed-point of its associated functional. But it is not necessary to compute the entire
fixed-point.

The term 22" in the time complexity refers to the number of elements in the domain
of the abstract meaning of a clause, i.e., the number of possible entry substitutions for a
clause. In a standard semantics, it is obvious that a procedure is always used in a small
number of ways (say, with some arguments as input and some output). In fact, one of the
reasons for data flow analysis is to detect such regular usage and optimize code generation
for such cases. If we know the possible ways in which procedure may be called (i.e., if we
are given the abstract descriptions corresponding to these entry points), we can compute
the value of the abstract function only at these points instead of computing its value for
all points in its domain. This naturally leads to the notion of Minimal Function Graph

semantics.

Minimal Function Graph Semantics

We do not compute the meaning of a recursive function such as factorial in its entirety.
Just as the meaning of factorial is computed at the desired points on an as-needed basis,
the abstract meanings of clauses can be computed as and when needed. This idea was
present in Cousot and Cousot’s original paper [21]) and was later popularized by Mycroft

and Jones [46] under the name of Minimal Function Graph semantics.

111

Example 4.1

Consider the familiar concat program which concatenates two lists.

1. concat([], R, R).
2, concat([XIY], Z, [XI¥W]) :-
concat(Y, Z, W).

:= concat([al, [b,c,d], A). -

The meaning of clause 2 of concat, according our abstract interpretation of Chapter
3, is a function which maps entry substitutions to exit substitutions. There are 4 variables
in the clause and hence the size of our abstract domain for the clause has 42 x 24 = 256
elements. In the worst-case, the number of distinct entry substitutions for the clause is also
256. A naive bottom-up computation of fixed-points would compute the exit substitution
corresponding to each of these entry substitutions. Clearly, this is wasteful. Suppose we
know that concat is called from other parts of the program or from the top-level with
a call substitution Asub.gy in which the first two arguments are always ground and the
third argument is an unbound variable. Then, we need to know the exit substitution
corresponding to the entry substitution Asubentry in which X, Y, and 7 are ground, and
W is free. Trying to compute the corresponding exit substitution leads to a recursive call
to concat in which, not surprisingly, the first two arguments are ground and the third
argument is free. We say that the set of entry substitutions (for clause 2) that are reachable
from Asubc,p contains only one abstract substitution, which is Asubgpyry. We say that
Asubeptry is an activation for concat reachable from Asubgqy.

In other words a call to concat, with the first two arguments ground and the third
argument free, gives rise to a bounded number (1) of distinct calis to concat.

This can be generalized and one can talk about the set of distinct call substitutions
for each predicate in a program or module arising from a set of entry points and their
call substitutions. In essence, one has to consider the reflexive, transitive closure of the

activations reachable from top-level activations.

112

We can do a complexity analysis of an abstract interpretation scheme assuming dif-
ferent cardinalities for the sets of reachable activations. Most programs we tested have the
bounded or stable call substitutions property. We will show that it is exactly the class of
programs with stable call substitutions that have the polynomial time complexity.

Minimal Function Graph Semantics provides a formal definition of the above descrip-
tion of reachable sets of calls, and their results. This is in contrast to the usual denotational
definition which is given independent of the entry points or top-level goal and thus describe
the “whole” function. Such a semantics is sometimes referred to as the Total Function
Graph (TFG) semantics in the literature although it does not signify a connection to total
or partial functions. Given a TFG semantics and entry point information, it is possible to
talk about the induced MFG semantics with respect to the entry points.

In logic programming and related areas, a number of algorithms have been proposed
for computing the MFG semantics or something very similar conceptually. Most of these
arose out of independent work in areas unrelated to data flow analysis or abstract interpre-
tation and hence are known by different names. Notable ones are OLDT-resolution [79],
extension tables and memo relations in logic programming [34], abstract AND-OR trees [11],
and the magic sets based approach to query answering in deductive databases (6, 67). My-
croft and Jones [46] developed the MFG semantics based approach to analysis of functional

programs and Winsborough [90] provided the first formalization for logic programs.
Modified Complexity Analysis

The set of abstract call descriptions reachable from a top-level abstract description
of an entry point is usually very small and its cardinality is usually independent of the size
of the abstract domain. In light of the above discussion, assuming the computation of the
minimal function graph semantics instead of the total function graph semantics, the worst-

case time complexity will change from O(m?22") to O(m32"T). The term 22" disappears

113

because we no longer compute the exit substitutions corresponding to all entry substitutions.
The term 2" (which was previously subsumed by the larger term 22") reappears signifying
the complexity of abstract unification and the number of fixed-point iterations needed in
the worst-case, The new term T stands for the cardinality of the set of entry substitutions
of all clauses that are reachable from the call substitution for the top-level goal. In the
worst-case, it could be the entire domain and we are back to where we started. However,
the rationale for introducing MFG semantics is supported by empirical evidence of our own
and those reported for other large domains by various researchers [88, 77, 51, 18].

We now discuss two issues related to the expected-case performance of our analysis.
Consider the worst-case complexity @(m32"T) again. In order to guarantee a polynomial

time algorithm, we have to ensure that

o the number T of abstract entry substitutions reachable from a top-level goal and its
abstract call substitution are independent of the size of the program, in particular

independent of the maximum number of variables n of a clause.

¢ the number of fixed-point iterations and the complexity of the abstract unification

algorithm are both independent of the number of variables in a clanse.

These two conditions are stronger than necessary. A weaker requirement is to ensure
that the number of fixed-point iterations and the complexity of abstract unification both
are bounded by a polynomial in the number of variables in a clause.

Meeting these two requirements leads to the notion of widening, discussed next.
Widening

Cousot and Cousot proposed a widening operation to accelerate the convergence of an
analysis [21]. Widening is used to obtain a sound but probably very imprecise approximation
of the program. Informally, a widening operator skips intermediate computations to a point

above the least fixed-point of the function of interest.

114

Suppose that a predicate p is recursively defired and we need to find the success sub-
stitution corresponding to the call substitution Asuben = {{X},{Y}, {2}, {P}{Q}.{R}},
where P,Q,R,X,Y and Z are the variables that occur in the call to p. We consider only
the sharing component of our abstract domain for this example. Suppose the first approxi-
mation of the success substitution Asub,,.. for this call adds the sharing set {X,Y} to the
set {{X},{Y},{Z2},{PHQ},{R}}, i.e., the first approximation is
{X 1 {¥}{X,Y},{Z}, {P}{Q},{R)}}. We have added one set to the shating sets in one
iteration. In the worst-case, the success substitution will have 26 = 64 sharing sets (the
powerset of {X,Y,Z,P,Q,R}). It may take that many fixed-point iterations to find the
success substitution for one call substitution. If we notice the “trend,” for a few iterations,
we may safely assume all possible sharing. Clearly, this sacrifices precision because we do
not know that it will take too many iterations or that the final result will be as bad as we
assume.

Assuming the worst possible sharing is a widening operation. Instead of assuming
all possible sharing, we may want to use some other widening operation. In order for the
assumption to be sound, the widening operation must satisfy some conditions.

Recall from Chapter I that the least fixed-point of a continuous function F: L — L
on a cpo (L, C) is the lub of the Kleene sequence of approximations or iterates Fi(1),0< 4,
where FO(z) = L and Fi*!(z) = F(Fi(z)) for all z € L. Note also that Fi(z) C Fi+l(z)
for all ¢ because of the monotonicity of F and the Kleene sequence is an increasing sequence
which ultimately stabilizes. Although the Kleene sequence converges, it may take an infinite
number of iterations to do so. A widening operation “skips” some or all the intermediate
iterates and reaches a point in the abstract domain which is above the desired Ifp. In doing
80, it generally causes imprecision.

A widening operation applied to two successive iterates F* and F*™+! must satisfy

some conditions. We now state these conditions due to Cousot and Cousot [21], define a

= 115

widening operator that satisfies these conditions, and discuss the operator’s usefulness.

Definition 4.1
Let L be a cpo (L,C). A widening operator 7 : L x L — L must satisfy the

following conditions.

e Vz,ye L. zCz vy

e Vz,ye L. yCzyy

such that for all increasing chains 2 C 1! C ..., the increasing chain defined

by ¥° = 29,..., " = ¢ 21, .. is finite. a

Let X be the chain 29 C z;... and Y be the chain y, C ¥1,...such that y3 = z¢
and yiy1 = y; ¥ Zis for all . The first condition implies that z; C y; for all i and hence
UX £ UY. This in turn jmplies that if X is the chain of Kleene iterates of a function F,
then IfpF = UX C UY. Thus the lub of the chain Y obtained by widening the chain X
safely approximates the least fixed-point of F. The condition that ¥ must be finite ensures
that Y is finitely computable. Thus a widening operator can be used to ensure termination
in domains with strictfy increasing infinite chains.

Proposed Widening operation: We propose to use the lub operation on the abstract
domain as a widening operator. In our abstract interpretation, the abstract domain Asub
is a complete lattice and when restricted to program variables, it is finite. This means all
chains in our abstract domain (restricted to program variables) are finite and this trivially
satisfies the finite chain condition of a widening operation. The other two conditions,
namely Vz,y € L. zC 2 Y yand Vz,y € L. y C T 7 y are also satisfied by the lub operation
because Vx,y € L. z CzUy and Y¥z,y € L. y C = U y by definition of lub. Therefore, the
lub operation on Asub qualifies as a widening operator. We now discuss where we need to

use the widening operator.

116

Stable versus Unstable Call Substitutions

As mentioned before, in order to realize a polynomial-time analysis, we must ensure
that the number of fixed-point iterations and the complexity of abstract unification are
independent of the number of variables n in a clause or at least bounded by a polynomial
in n. The same condition must hold for the number of entry substitutions of a clause.

In theory, the number of fixed-point iterations for our analysis may be as large as
22" where n is the maximum number of clause variables. The maximum number of clause
variables in the programs tested ranges from five to nineteen and 22° and 22° are very large
numbers. Cousots’ widening operation appears to be useful in our analysis, at least in theory.
However, in practice, the number of fixed-point iterations turns out to be independent of
the maximum number of clause variables and is bounded by four. Hence, the application
of widening as proposed by the Cousots is not useful for our analysis.

In order to realize a polynomial-time analysis, we must meet the other two conditions,
i.e., establish constant or polynomial bounds on the number of entry substitutions and the
complexity of abstract unification. We discuss two classes of programs, one in which these
bounds are naturally met by our analysis, and another in which the bounds are not met.
We specify a widening operation for the latter class. Note that the proposed widening is
not applied to the successive fixed-point iterations. This the novelty of our approach.

Procedures can be classified into two categories. In one category, called “stable call
substitutions,” the number of calls to a recursive predicate with distinct abstract call sub-
stitutions reachable from an initial top-level goal and its call substitution is bounded by a
constant. This allows us to amortize/share the cost of fixed-point computations among sev-
eral calls. Most of the programs that we analyzed exhibit this behavior, which is expected
to some extent,

Whether “stable call substitutions” are induced or not depends on the program being

analyzed and the granularity of the abstract domain. The finer the abstract domain, the

117

fewer procedures will have the stable call substitutions property. This is because, as abstract
domains become more and more fine-grained, each abstract domain element abstracts more
and more sets of properties, and the set of substitutions that have these properties becomes
smaller and smaller. In the limit, an abstract domain may be as fine-grained and therefore
as precise as the concrete domain, and the number of call substitutions for a predicate P
induced by an initial call to p may be infinite.

The second category of programs have the “unstable call substitutions” property with
respect to a given abstract domain. In these programs, the initial call to a recursive predicate
and its call substitution induce two types of inefficient behavior. The first is that the number
of reachable calls to the same predicate (with distinct call substitutions) induced by the
initjal call substitution is not bounded by a constant as in the first category. We call this
“exploring the abstract space” because an initial call to a recursive predicate leads to a call to
the same predicate with a slightly different call substitution, which in turn induces another
slightly different call substitution and so on. Sometimes the induced call substitutions are
related by the abstract domain ordering and at other times they are not comparable. The
number of iterations to reach a fixed-point is still a small number for each of these call
substitutions. It is just that we have to compute the success substitutions corresponding
to too many call substitutions for a goal, i.e., the minimal function graph is not small.
Since each fixed-point computation takes only a few (less than four) iterations, we cannot
expect the widening operation as applied to the successive iterations of a single fixed-point
computation to reduce the large number of independent fixed-point computations; indeed
it does not. We must find a way to reduce the number of independent fixed-point iterations
caused by the large number of call substitutions for a goal.

The second inefficiency is the time taken for abstract unification. The number of
sharing sets of variables during abstract unification reaches close to 2" where = is the number

of variables in the head and the call. This is again related to exploring the abstract space.

= 118

An initial call substitution of a goal g has a few sharing séts and non-linear variables. But
recursive calls gradually increase the number of sharing sets and the non-linear variables.
For the second category of programs, i.e., those with the unstable call substitutions property,
the time complexity of our analysis will not be a polynomial in both the number of clauses
and the number of clause variables. We would like to improve the complexity in this case

too and so we turn to a novel application of widening.
Proposed Widening Operation

The number of fixed-point iterations needed, to compute the success substitution of
a goal corresponding to a call substitution, remains small for both categories of programs.
Thus we cannot use widening of the iterates to speed up convergence. But we can reduce
the size of reachable sets of call substitutions by widening. This is the approach we take.

Let k be a bound on the number of distinct entry substitutions for a clause. Recall
that the abstract domain operations are required to be monotonic in their argument from
the domain Asub. We can use this property to define a safe widening operation. Let E be
the set of entry substitutions that we have seen so far for a clause and let € be a new entry
substitution whose exit substitution we need to compute. This may lead to yet another
entry substitution which is different from all others in E. If the size of E exceeds the pre-
determined bound k, take the lub of all the entry substitutions E U {e} and use it instead
of e.

We may even use soft and hard bounds on the number of entry substitutions for a
clause and once the hard bound is reached, we can widen all the new entry substitutions e
to the top element of the abstract domain and return it as the exit substitution. We may
need to use it since the height of the abstract domain 2" is still too big. This is tantamount
to treating sharing as transitive.

This approach has many advantages as compared to treating sharing as transitive

119

a priori. OQur approach has the graceful degradation property in that the only procedures
that lose precision are those that have the unstable substitutions property and those that call
them either directly or indirectly. In terms of the call graph for a program, the procedures
on the path from root to the unstable procedures will lose precision. Thus the use of
widening when the analysis becomes expensive adapts the analyzer automatically to the
program without penalizing programs with the stable substitutions property. Even then,
not all the procedures in a program are affected by widening as mentioned before. Since the
widem'n.g operation is similar to treating sharing as transitive, we are not losing precision
any more than other approaches that treat sharing as transitive from the outset and lose
precision for all programs in the name of efficiency.

The second efficiency measure is equally important. Here we use a compact repre-
sentation to avoid exponential computations, Let z,,...,z, be the set of variables in a
clause and let the sharing component of an entry substitution be the set of some subsets
of {z1,...,2,}. Notice that when we widen an abstract substitution to the top element,
the sharing component represents all possible sharing and independence of the variables
Z1y...,Tp. This is realized by taking the closure under union of the set of singleton sets
{{z1},-..,{zn}}. The closure under union causes the exponential complexity of the ab-
stract unification algorithm. So, we cannot naively perform this operation. Instead we
resort to a compact representation. We simply use the set {z,,...,z,} together with a tag
“maximal” to represent the power set. Any sharing set which is unioned with a subset of a
maximal set (which represents the powerset) becomes maximal, and subsets of a maximal

set are not retained.
Empirical Measurements and Analysis

In this section, we discuss the results on an empirical study of about thirty programs.

Table 2 summarizes the number of entry substitutions per clause (# ESPC), the maximum

Program # ESPC | Max ESPC | # Clauses | Max CV | Time (sec)
ackermann 1 1 4 7 0.005
perm 1 1 4 6 0.005
perml 1 2 4 7 0.005
naiv-rev 1 1 4 5 0.003
ndmerge 1 1 4 6 0.006
quicksort-d] 1.7 4 6 8 0.190
quicksort 1 1 7 8 0.100
mergesort 1 1 9 9 0.110
n-queens 1 1 9 6 0.080
iso 1 1 11 6 0.140
isol 1 1 11 10 0.390
serialize 1.1 2 12 8 0.680
color 1 1 13 6 0.189
grammar 1 1 15 7 0.090
path 1.1 2 18 5 0.200
1174 1 1 18 12 0.210
plan 1.1 2 29 7 0.330
degl 1.2 2 31 8 0.370
browse 1 1 32 13 0.600
bestpath 1.2 2 33 19 1.000
gabriel 1.6 7 45 13 2.040
semigroup 2.3 4 46 12 6.210
bid 1 2 52 8 0.469
deriv 1 1 61 7 1.969
disj 1 1 63 13 0.680
cs 1 3 64 19 0.880
read 1 1 87 14 2.640
kalah 2.6 7 88 13 5.200
peephole 1.1 4 134 9 5.430
ann 1.5 4 178 17 9.420
bayer 1 1 139 9 1.250
pressl 3.2 10 158 10 18.920
splay 6 12 22 13 20.600
rdtok 1.6 2 54 8 21.090

Table 2: Program Statistics and Analysis Times

120

121

number of entry substitutions (Max ESPC), the number of clauses (# Clauses), and the
maximum number of variables in a clause (Max CV). The last column is the time taken for
analysis on an HP 9000/735 workstation under Sicstus Prolog 2.1.8 in bytecode emulation
mode.

The tested programs include small programs like ackermann’s function, two versions
of permutation, naive reverse, non-deterministic merge, quicksort (with and without the use
of difference lists), mergesort, map coloring, n-queens ete. Other programs like beatpath
(finds best paths from a single node to all other nodes in a graph, by E. Tick) peephole
(a peephole optimizer for Stonybrook Prolog), ann (a clause annotator for &-Prolog by
Hermenegildo, Warren and Muthukumar), read (public domain parser for Prolog by D. H.
D Warren and R. A. O'Keefe), rdtok (tokenizer for Prolog by D. H. D Warren and R. A.
O’Keefe), pressi (part of a symbolic algebra package), cs (a cutting stock program by
Dincbas and others [36]), boyer (a small theorem prover by E. Tick), semigroup (computes
the elements in a semigroup, by R. Overbeek), kalah (a game playing program from (75)),
and splay (a self-adjusting binary search tree by V. Saraswat) are non-trivial. These
program are written by different people and represent different coding styles, and they all
perform symbolic computations.

The maximum number of distinct entry substitutions per clause (reachable from the
top-level goal and its call substitution) ranges from one to four in many cases. Notice that
the number of all possible entry substitutions is 2" where n is the maximum number of
head variables. In these cases where the number of entry substitutions for all clauses is
bound by a constant, there is no need for a widening operation. This is reflected by the fact
that the times for analysis shows a polynomial growth in the size of the programs, except
for rdtok, splay, kalah, and pressi. The analyzer currently does not process mutually
recursive procedures in an efficient way (these form a strongly connected component in

the call graph of the program). This affects the analysis times to some extent for splay,

122

rdtok, and pressi which have mutually recursive procedures. In addition, the number of
entry substitutions per clause is not bounded by a constant for splay, kalah and pressi.
For these programs, the table shows the number of entry substitutions per clause after the
widening operation has been used. Without the widening operation, the analysis of these
programs takes an inordinate amount of time. The widening operation does introduce some
spurious sharing (since in effect it treats sharing as transitive) with the benefit of faster

convergence.

Summary

Discovering that some problem is computationally intractable is only the beginning
of trying to find an efficient solution. One must still devise ways to solve the problem as
efficiently as possible. A combination of complexity analysis and empirical study is used
to identify precisely the sources of inefficiency. Once these are identified, a novel use of
widening provides a solution that adapts automatically to the type of programs analyzed.

In the case of sharing analysis of logic programs, one approach to a tractable analysis is
to treat sharing as transitive. This loses precision considerably. Qur approach starts with a
domain where sharing is treated as transitive. We then add information about linearity and
freeness of terms, and derive a non-transitive sharing and freeness propagation algorithm
that has polynomial time complexity for a class of programs that induce what we call
“stable call substitutions.” We point out the sources of combinatorial explosion in the case
of programs with unstable substitutions, and specify a widening operation and a compact
representation. The result is graceful degradation, automatic and selective loss of precision
only where needed, and reasonable running times.

A combination of widening, and a precise domain and operations is a better alternative
to choosing coarser domains and imprecise operations. The aim is to balance the concern

for worst-case time complexity, and the need for improved precision in the expected case.

123

CHAPTER V

SIMULTANEOUS DATA FLOW AND CONTROL FLOW ANALYSIS

Introduction

In this chapter, we discuss the problem of deriving control flow and data flow simul-
taneously. The derivation of data flow assuming a given control flow can be done using
well-known frameworks. Until now, data flow analyses worked under the assumption that
control flow, i.e., the partial order in which body goals are solved, is known. Such an
analysis works well with any given control flow. Analogously, control flow analysis can be
performed if we know the data flow. The essential idea in performing control flow analysis
assuming data flow information is to start with an empty partial order of the subgoals of a
clause, and add the goals to the partial order as and when the goals satisfy the given data
flow constraints. This is illustrated in detail in the section following the introduction. The
data flow information may be given to the control flow analyzer in the form of permissible
or prohibited modes for procedures.

A permissible mode for a procedure p places some restrictions on the instantiation
state of the arguments of a call to p. Informally, a permissible mode for a procedure requires
one or more arguments to be input and zero or more arguments to be output such that
it induces a partial ordering of body goals which satisfies the input/output constraints of
body goals.

Input and output modes may be defined in a number of ways. We assume the following
simple definition of modes for exemplifying our framework for combined data flow and

control flow analysis. If an argument i of a procedure p is input in a permissible mode

124

modep, any call to p which satisfies that mode must have its i** argument bound to a ground
term. Likewise, if an argument 7 of a procedure p is output according to a permissible mode
mode;, then the j** argument must be bound to a ground term when a call to P (which
satisfies mode mode,) succeeds. In short, input annotation denotes “ground on call” and
output annotation denotes “ground on success.”

The above definition of input/output modes limit their usefulness. However, one may
use a more refined definition of modes and types, such as those suggested by Bruynooghe
and Janssens [12], Bronsard, Lakshman, and Reddy [10], and Somogyi [74]. The proposed
framework is parameterizable in many ways and these are discussed later. The goal of
this chapter is to define a framework for combined data flow and control flow analysis
and not to define yet another precise mode analysis assuming control flow. Hence, we
choose a simple definition of input/output modes to instantiate the combined data flow and
control flow analysis framework. The implementation also uses the same definition of modes,
which is again a limitation of the implementation and not of the framework. Relaxing the
interpretation of input and output is possible and discussed later in this chapter.

Most of the research in data flow analysis of logic programs has concentrated on
relaxing a pre-determined total ordering, such as left-to-right, based on information from
a data flow analysis which assumes control flow. Likewise, research on deriving control
flow [27] assumed that permissible modes of predicates are known. We propose a framework
for deriving data flow and control flow simultaneously. The cyclic dependency between data
flow and control flow is broken by first defining the notion of permissible modes in a way that
does not depend on a fixed control flow and then deriving control flow based on permissible
modes.

The simultaneous derivation of data flow and control flow is accomplished in two
stages. The first stage derives permissible modes for all procedures. A permissible mode

may induce more than one partial ordering of body goals. The second stage, then, finds a

125

partial ordering of body goals, given the permissible modes of all predicates.

The derivation of permissible modes may be summarized as follows. The permissi-
bility of a mode will be defined recursively. Some initial constraints on permissible modes
are defined non-recursively and lead to the notion of partial permissible modes. A partial
permissible mode is refined successively until it becomes a permissible mode. The refine-
ment of a partial permissible mode involves incrementally constructing a partial ordering of
body goals which respects the body goals’s permissible mode constraints. Permissible mode
derivation, in the case of mutually recursive procedures, involves fixed-point computations.

The partial ordering of the body goals derived during the first stage may be thought
of as a constructive proof of well-modedness of a clause. A clause is well-moded iff there is
partial ordering of the body goals which satisfies their input output constraints.

It may seem that the derivation of permissible modes, a form of data flow analysis,
precedes control flow, and hence depends on control flow. A closer look will reveal that
it is not so. The definition of a permissible mode (given later) posits the existence of a
partial ordering, but does not depend on a fixed control flow. Furthermore, during the
derivation of permissible modes the only information we need from data flow analysis is of
the following form: “If goal g with the call substitution 8 succeeds, what will be the success
substitution?” It does not matter how the goal g is solved; in particular, if g# unifies with
the head of a clause c, the order in which the body goals of ¢ are solved does not affect the
success substitution of g. This property is known as the independence of the computation
rule (Chapter 2).

We now address the question of the number of permissible modes derived for a proce-
dure and their completeness. An ideal algorithm would derive a complete set of permissible
modes for a procedure in polynomial time. However, there can be exponential number of
permissible modes for a procedure. It is inefficient to compute all of them when at most a

few may suffice. One way to reduce the set of permissible modes is to reduce the redun-

126

dancy; the permissibility of some modes will be implied by the permissibility of some other
modg. Then it is sufficient to compute the least restrictive or minimal modes. The notion of
least restrictiveness or minimality is defined using a partial ordering on the space of modes.
Unfortunately, deriving the set of minimal permissible modes is NP-Hard.

Our result on the complexity of the derivation of minimal permissible modes is the
first formal result on the tractability of deriving minimal permissible modes. Note that this
result holds even though we use a simple definition of modes; more refined definitions based
on a system of types will not make the time complexity of permissible mode derivation
algorithms any better.

We suggest the following approach to the uge of permissible modes in a compiler for
a logic programming language. The programmer may omit permissible mode declarations
most of the time and let the compiler derive them automatically. If the compiler fails to
derive a permissible mode for a procedure or fails to derive the desired permissible mode,
then the programmer can add the missing ones.

The empirical results and an analysis of the time complexity of the permissible mode
derivation algorithm show this approach to be tractable and useful. Furthermore, the anal-
ysis of a number of programs show that the algorithm does derive all minimal permissible
modes for many procedures. It fails to derive even one permissible mode for 3 procedures
out of a total of about 270 procedures, and these are due to the simple definition of modes
we use for experimentation.

We give an approximation algorithm for deriving permissible modes for a clause and
an algorithm for combining the permissible modes of clauses into permissible modes for a
procedure. The algorithm for deriving permissible modes of a clause has polynomial time
complexity. The algorithm for deriving permissible modes for a procedure by combining
the modes of clauses has worst-case exponential time complexity, if the number of per-

missible modes of procedures is unbounded. Since the permissible modes of a clause is

127

not independent of those of other clauses, in practice there is no combinatorial explosion
when combining the modes of different clauses. If we assume a bound on the number of
permissible modes of a procedure, then our mode intersection algorithm has polynomial
time complexity. Analysis of a number of programs support the assumption of bounded

permissible modes.
Inter-dependence of Data Flow and Control Flow

Data flow and control flow analyses are mutually dependent. We assumed so far that
body goals are to be executed in some fixed order and then analyzed the data flow induced
by the given control flow. Whenever two body goals i, i + 1 are not data dependent on each
other, i.e., do not share unbound variables, their executions do not aflect each other. Thus
we may even execute them in parallel. The idea is the same as in parallelizing sequential
Fortran programs [91]. Hermenegildo and Rossi [42] establish correctness of independent-
and parallel execution with respect to standard and-sequential execution.

Assuming a fixed control flow for each clause is too rigid. One may want to solve the
body goals in different order depending on the bindings for the variables in the head of a

clause. We revisit the perm example from Chapter 1.

Example 5.1
Consider the following program perm which defines the relation permutation
between two lists. An empty list [] is a permutation of itself. Given a list
[X1Xs] of terms, its permutation is the list [Y|Ys] if there exists a list Zs and
an element Y of [X|Xs] such that Zs has the same elements as [X}Xs] but
without Y and the list Ys is a permutation of Zs. This a declarative reading of

the relation defined by the predicate perm. (m|

1. perm(0d, 0O).
2. perm([XIXs], [YIYs]) :-
delete{[XIXs], Y, Zs),

128

— perm({a,b,c,d], A).

[X[Xs] [Y]Ys]

permo{[X|Xs], [Y|Ys])

delete([X]Xs], Y,Zs)

perma([Zs,Ys])

Figure 8: Data Flow Graph for Perm Induced by Left-to-Right Control Flow

perm(Zs, Ys).

3. delete([A[Rest], A, Rest).

4, delete([A,BIBs], X, [AlRest]) :-
delete([BIBs]}, X, Rest).

Assume that body goals are executed left-to-right (i.e., in the textual order). If
perm is called with the first argument bound to a list of terms and the second argument
a free variable, it will succeed and bind the second argument to a permutation of the
first. For example, the goal perm([a,b,c,d],A) will succeed and bind A to [a,c,d,b] as
one possible answer substitution. Although perm defines a relation, we consider the term
[a,b,c,d] as input to the procedure and 4 as the output.

The data flow induced by the the left-to-right control flow and the initial goal
perm({a,b,c,d],A) is shown in Figure 8. We need to define some terminology to explain
the data flow graph. Unifying the goal perm([a,b,c,d],A) with the head of the second

clause of perm binds the head variables X and Xs to the terms a and [b,c,d] respectively.

- 129

We say the the head literal generates or produces X and Xs. After head unification, solving
the first body goal delete({a,b,c,d],Y,Zs) binds Y to a and Zs to [b,c,d]. We say that
delete generates Y and 2s; Y is consumed by the head literal and Zs by the second body
goal perm. Finally, solving the second body goal perm([b,c,d],Ys) generates Ys which is
consumed by the head literal.

In a data flow graph, each node is a literal and there is directed edge from a node ¢
to another node j labeled with X iff literal i produces a binding for the variable X which
is consumed by j. We have two types of edges, solid and dashed, in Figure 8. They both
denote the producer-consumer relationship mentioned above. Dashed edges signify that the
variable is produced by a body goal and consumed by the head or passed by the head literal
to the caller’s environment. They provide a visual clue about the directionality of data flow
into and out of a clause.

Although no input-output directionality is implied by the declarative reading, from
an operational viewpoint we say that the first argument of perm has input mode and the
second argument has output mode. Thus the declarative reading is adirectional but the
operational reading is directional. The mode perm(+,-) indicates that the first argument
of perm is input to the.procedure and the second argument is output. Notice that, with the
left-to-right control flow, the mode perm(+,-) induces the mode delete(+,~,—) for delete
and perm(+,-) for the recursive call in the body of perm which is consistent with the mode
for the initial call to perm.

Since permutation is a symmetric relation, one may be tempted to call perm with the
second argument bound to a list of terms and leave the first one free. The expectation is that
perm will bind the first argument to a permutation of its second argument. Unfortunately,
if we assume the same control flow as in the first case, after perm produces the first solution,
delete will go into an infinite loop. This is because solving the body goals of perm in left-

to-right order causes delete to be called with its first and third arguments being unbound

130

G
permo([X|[Xs], [Y[Ys])

delete([X|Xs], Y,Zs

permz([Zs,Ys])

Figure 9: Data Flow Graph for Perm Induced by Right-to-Left Control Flow

(free} variables. Arguments one and three of the recursive call in the body of delete are
more general! than the corresponding head arguments; in fact, they are subterms of the
head arguments. Therefore, for delete to terminate, either the first or the third argument
must be bound to a complete list, i.e., a list whose tail is not a variable.? In this case, the
desired order for solving the body goals of perm is the right-to-left order.

Using the right-to-left control fiow, an initial call to perm with the mode perm(—,+)
induces the same mode for the recursive call to perm and the mode delete(—,+,+) for

delete. The data flow for the second clause of perm induced by the right-to-left control flow

1A term t, is more general then another term 1, if there exists a substitution @ such that
o = t10.

2The length of a complete list remains fixed regardless of further instantiations of it. For
example, [X,Y,Z] is a complete list whose length is three and any further instantiations of
X, Y, and Z do not change the length of the list. On the other hand, a list such as [X,Y|Z]
is incomplete. Further instantiations may bind Z to any term, including lists of different
lengths.

131

is shown in Figure 9,

The unsolvability of the halting problem implies that in general there is no algorithm
for choosing the right order to guarantee that (logic) programs terminate. Hence, we will
not make termination of programs an objective of our control flow analysis. Instead, the
objective is to derive a control flow that induces well-modedness for a clause. Recall that
a clause is well-moded iff there is partial ordering of the body goals such that for every
body goal i, each variable in its input position either occurs in an input position of the head
literal or in the output position of one of its predecessors in the partial ordering. How do we
know what the input and output positions of a body goal are or should be? We introduce
the notion of permissible modes which places some reasonable restrictions on the modality
of the arguments of predicates.

Termination proofs of logic programs use the directionality of programs in an essential
way [70] and assume that clauses are well-moded with respect to the given partial ordering.
Termination proofs show that a well-founded ordering exists on the set of recursive calls to
a procedure.3

In order to show the existence of a well-founded ordering on the set of recursive calls
to a predicate arising from an initial call, one may derive a norm for the literals such that
the norm of the head is greater than the norms of the body literals for all clauses in a
procedure. A norm, for example, may be the “size” of a term or the sum of the sizes of
two or more terms. The idea is to show termination based on the decrease in the norms
of recursive calls. It is well known [70] that only a subset of the argument positions, the
input positions, is useful for deriving norms. If one considers all argument positions, i.e.,
including the output positions for a norm, then the norm of recursive calls do not decrease

in general.

3A well-founded ordering on a set S is an irreflexive and transitive relation such as the
< relation on natural numbers, which implies that there are no infinite descending chains
in §.

- 132

The above discussion of termination proofs relying on the directionality of predicates
is informal. The main point of the discussion is that the well-modedness of clauses is
a pre-requisite for termination proofs. Our objective is to derive permissible modes which
induce well-modedness. In many cases, the partial ordering used in showing well-modedness,
together with the permissible modes used in deriving the partial ordering induce well-
foundedness as well and therefore éuara.ntee termination. However, we cannot establish

this in the general case.
Outline of Simultaneous Data Flow and Control Flow Analysis Framework

We provide a brief outline the proposed framework for combined data flow and control
flow analysis. The framework has the following parameters and an instance of the framework

must define these parameters. These are:

Input, Output Modes The input output modes of a procedure must be a complete lattice.
The complete lattice requirement enables us to combine modes of different clauses of

a procedure,

Permissible Modes The set of permissible modes for a procedure is a subset of the set of
modes for that procedure. The definition of permissible modes may be recursive, but
some non-recursive initial constraints on the modes must also be specified. These
initial constraints are used to define partial permissible modes and as a starting point

for permissible mode derivation.

Given the permissible modes for the clauses of a procedure p, one must be able to
derive the permissible modes for p itsell. The mode intersection operation which
combines the modes of different clauses is implicitly specified by the partial ordering

on the space of modes.

133

Data Flow Analysis A data flow analysis which is invariant under different control flows
must also be given. The permissible mode derivation algorithm currently uses the
sharing and groundness analysis of Chapter 3. One may also a groundness analysis

based on the domain Pos proposed by Marriott and Sondergaard [54).

The rest of this chapter is organized as follows. First we define modes, partial permis-
sible modes, permissible modes, mode intersection, and minimal modes. Next we prove that
the problem of deriving all minimal permissible modes is NP-hard. It is followed by an ap-
proximation algorithm for deriving permissible modes. The next section derives permissible
modes of some example programs and is followed by proofs of correctness and termination
of our algorithm. A time complexity analysis of our algorithm, and an empirical study
establish the practicality of the proposal. We then discuss relaxing some parameters of
the framework, especially the definition of input, output modes. The second stage of the
framework, namely, deriving control flow based on permissible modes is examined. This

chapter concludes with a discussion of related research and a summary.
Definitions

The definitions of modes and well-modedness are non-standard mainly for the follow-
ing reason. In data flow analyses which assume a fixed control flow, a partial ordering of
body goals is constrained to be consistent with the given control flow. For example, when
left-to-right execution of body goals is assumed, the partial ordering is constrained to be
consistent with the textual ordering. We are deriving control flow and hence do not have

such restrictions.

134

Modes and Well-modedness

Definition 5.1
Let p be an n-ary predicate. A mode, for p is a function from {1,...,n} to the
set {+,—, L, T}. Forany i,1 < i< n,if mode,(i) = +, we say that the i*4
argument of p is in input mode. Likewise, if mode,() = —, we say tha.f the
i*h argument of p is in output mode. L (sometimes denoted ?) stands for an
unknown mode and T denotes conflicting mode requirements. A mode mode,
for a pis a consistent mode iff Vi, 1 < i < n, mode,(i) # T. A mode mode, for

a p is inconsistent otherwise. (m|

The need for top element T will become clear shortly. We will write 2 mode mode,
for an n-ary predicate p explicitly as p(my,...,m,) where each m; is 4+, —, or L if modep(%)
= +, — or 1 respectively. For example, a mode {1 — +,2 — —} for perm will be written
as perm(+, —). A predicate may have more than one mode. The mode of an argument
position of a predicate is referred to as a mode annotation.

It is useful to order the space of modes for a predicate. Mode annotations of argument
positions impose some conditions on the call substitutions for a goal. Intuitively, a 1 mode
requirement for an argument position is the weakest, since it imposes no condition at all. An
input mode annotation for an argument position is stronger than L for that position, since
the corresponding goal argument is expected to be a ground term. Likewise, an output mode
annotation is a stronger than L because the argument is expected to be bound to a ground
term on success. The input and output mode annotations for an argument position are
neither stronger nor weaker than each other and hence they are not comparable. Finally,
we need a top element T which signifies conflicting mode annotation for an argument
position i.e., an argument position is required to be both input and output. Its sole use

is to have a well-defined lub operation on the set of all modes for a clause (procedure). In

135

the following sections, we will derive permissible modes for a clause and then “combine”
the clause modes to yield permissible modes for a procedure. If a particular combination
of permissible modes for clauses yields a mode that maps any of the argument positions to
T, that combination will be discarded. For example, if p(+, —, 4) is a permissible mode for
a clause ¢ of a procedure p and p(+,+, —) is a permissible mode for another clause ¢’ of p,
then the combination of these modes (called mode intersection, to be defined shortly), is
p(+,T,T). The mode p(+,—,+) of clause ¢ requires argument two to be output whereas
the mode p(+,+, —) requires the same argument to be input. The conflicting requirements
are denoted by T.

By a slight abuse of notation, we use T to denote both an inconsistent modality for
an argument of a predicate, and an inconsistent mode (which maps one or more of the
arguments of a predicate to T). Thus the set of all inconsistent modes of a predicate will
be denoted by {T}.

Since a mode for an n-ary predicate p is a function defired on 1,...,n, we use the

usual ordering on functions.

Definition 5.2
The mode annotations +,—, 1, T are partially ordered as follows: Vz,y €
{+,-,L,T}.zCy ifz=1 Vv y=T.
Since modes are functions, the partial ordering on the set M of modes of an
n-ary predicate p is given by the usual pointwise ordering and the iub operation

by the pointwise lub.
Let M be the set of modes of an n-ary predicate p. Then, Vmode,, mode, €

M. mode; C mode, iff for 1 < i < n, mode(i) C modey(i). m)

Example 5.2

Let p(+,+,-), p(L,+,1) be two modes of a clause ¢. Then p(Ll,+,L) C

p(+,+,=) and p(L,+, 1) N p(+,+,-) = p(+,+,—). On the other hand, the
modes p(+,+,~) and p(—, L, —) are not comparable and the lub is the incon-

sistent mode p(T,+, -). m}

Definiticn 5.3
For a mode mode;, the set of its input positions input_pos(mode,) is defined as
{i | mode,(i) = +}. The set of output positions output_pos{mode,) is defined

analogously. o

Example 5.3
Let delete(+,—,—) be a mode of procedure delete of example 5.1. Then the
set of input positions of delete(-4, —, —) is {1} and its set of output positions is

{2,3}. o

Definition 5.4
A call {(or a goal) p(ty,...,1,) is compatible with or satisfies a mode mode, iff
the set of argument positions of p(t;,...,t,) that are ground terms is a superset

of the input positions of mode mode,. 0o

Example 5.4
The goal delete([a,b,c,d],Y,Zs) is compatible with the mode delete(+, —, —)
which requires that the first argument of the call to delete be bound to a ground

term. o

136

Given a mode for a predicate p and a call to p, one can identify the variables that

occur in the input (output) positions of the call.

Definition 5.5
Let I be a literal and mode; be a mode of I. We define invars(l, mode;) to be the

set of variables of / that occur in the input positions input_pos(mode;). The set

137

of variables appearing in the output positions of I, outvars(l, mode) is defined

analogously. o

Example 5.5
Let delete(fa,b,c], Y, Z) be a literal and modey,) = delete(+, —,—) be a mode
of delete. Then outvars(delete, modey,)) = {Y, Z}. o

We can talk about the producer or generator of a variable and its consumer. Whether
a literal produces a variable or consumes it depends on whether the variable occurs in an
input position or output position and whether the literal is the head literal or a body literal.
A variable that occurs in an input position of the head of a clause is produced by the head.
If it occurs in the output position of the head, it is consumed by the head. In the case of
body literals, the situation is reversed. The reason is as follows. The input arguments of
the head literal produce values for the body literals by inheriting them from the caller’s
environment and the output arguments consume values by passing them back to the caller’s
environment. For a body literal, its input arguments signify terms that are needed before
its execution can start. Therefore, a body literal consumes variables in its input positions.
Analogously, a body literal produces values for variables in its output positions.

Modes will be associated with the literals of a clause. Since a predicate p may appear
more than once in a clause, different occurrences of p are distinguished by a subscript,
usually the literal number in textual order. The head literal will be subscripted with 0.

We now define a well-moded clause. Assume that modes for the head and body literals
of a clause are given. One can identify the input positions of the head and the body goals
with respect to the given modes. A clause is well-moded iff there is partial ordering of the
body goals such that for every body goal 7, each variable in its input position either occurs
in an input position of the head literal or in the output position of one of its predecessors
in the partial ordering. Thus, in a well-moded clause, when all the predecessors of body

goal 7 have been solved, the variables in the input positions of the goal i will be bound

138

to ground terms and goal 7 is ready for execution. The following definition formalizes the

above discussion.

Definition 5.6
Let ¢ = h + by,...,bt be a clause and modey,, modey,,...,mode,, be the
modes of the head and the body predicates of ¢ respectively. Let < be a partial
ordering of the body goals by,...,bs and let pred((i) = {j | j < i} denote the

set of predecessors of literal 1 in the partial order <.

Clause ¢ is well-moded with respect to modes mode; and mode,, ..., modes,
(or mode, and modey,, ..., mode, is a well-moding for clause ¢) iff there exists

a partial ordering < on the literals b;,...,b; such that for 1 <i <k,

invars(b;, modey,) \ invars(h, mode;) C U {outvars(j, mode;) | j € pred(4)}.

a

There may be more than one partial ordering of the literals of a clause that induces
well-modedness. That is why the predecessor relation pred is subscripted with < to indicate
the partial ordering used in defining predecessors. However, wherever pred is used, there
will be an implied partial ordering and hence we will omit the subscript on pred.

Consider the permutation example again. Given the modes permg(—,+),
delete(—,+,+), and perm,(—,+) for the head and body literals of clause 2, the partial
ordering 2 < 1 satisfies our requirements, since the input variable Ys of literal 2 is covered
(generated) by the head literal and the input variables {Y, Zs} of literal 1 are covered by
the input variables of the head and the output variable Zs of literal 2. Note that the partial
ordering 2 < 1 is not consistent with the textual ordering 1, 2. In our definitions, we do
not assume that a partial ordering of body goals is consistent with their textual order as

is usually the case [32, 70]. This is because we are interested in re-ordering body goals to

139

ensure well-modedness. We also do not require that all variables of a clause have a producer
and a consumer.

Before defining permissible modes, we recall some concepts about types of procedures.
A call graph of a program P is a directed graph {V, E) such that the set V of vertices consists
of predicates of P, and E is the set of directed edges. There is an edge from p, to p2 if there
is a call to p; in the body of one of the clauses defining p;. In other words, p; calls p,. A
procedure p is recursive iff there is a cycle involving p in the call graph of program P. Two
procedures are mutually recursive iff they are in the same strongly connected component
of the call graph of a program. A unit procedure is one that is defined solely by unit
clauses. A non-unit procedure p is simply recursive iff it is recursive and none of its clauses
contain calls to other procedures. For example, delete is simply recursive. A recursive
procedure p is directly recursive iff it is neither simply recursive nor mutually recursive
with another predicate. For example, quicksort is directly recursive, since it is recursive
but neither simply recursive nor mutually recursive with another procedure., A mutually
recursive procedure may also be denoted as indirectly recursive.

The framework for simultaneous data flow and control flow analysis must define the
notion of permissible modes, and some initial, non-recursive constraints on the modes of

procedures. This is accomplished in the following section.
Permissible Modes and Partial Permissible Modes

Permissible modes are used in deriving control flow. A permissible mode for a clause
is 2 mode that satisfies some constraints. The constraints must be reasonable and intuitive
so that the programmer will be able to follow them. We now present some criteria which
we believe to be reasonable and some that are not. The unreasonable ones indicate the lim-
itations of our current notion of permissible modes, and are the subject of further research.

These do not limit the framework for combined data flow and control flow analysis.

140

We start with permissible mode constraints. These constraints depend on the type
of the recursive procedure.

In the perm example, although permg, perm, and delete have two permissible modes
each, not all of the eight combinations were used in clause 2 of perm when we derived
control flow. This is because the choice of a mode for perm,, perm, or delete constrained
the others. In particular, the head and body literals perm, and perm, have the same mode.
This is a mostly reasonable constraint since recursive calls in general solve a similar but
smaller problem as the original one. It is not always reasonable to expect recursive calls
to have the same mode as the head literal, especially when difference lists are used. The
tail of a difference list may have mode ? in one fecursive call (essentially a free variable
in that call), but may have output mode in another recursive call. This is related to the
assumption that input and output modes denote terms ground at call time and at success
time respectively.

This constraint in effect collapses = literals of a clause having the same predicate sym-
bol as the head literal into one equivalence class. Thus, instead of considering k permissible
modes for each of n literals (leading to ™ choices), we have to consider only ¥ modes when

deriving permissible modes for the n literals in an equivalence class.

Permissible Mode Constraint 1
Body literals (if any) that have the same predicate symbol as the head must

have the same modes as the head. 0

Note that the above requirement does not mean that all body goals with the same
predicate symbol must have the same mode. They must have the same mode only if their
predicate symbol is the same as the head literal’s predicate symbol. Recall that we use a
ranked alphabet of predicate symbols, where the rank of a predicate is its arity, and hence
each predicate symbol has associated with it only one arity.

Referring to the perm example, delete caused an infinite loop when called with variable

141

terms for the argument positions 1 and 3. These are the positions at which the recursive
call’s arguments are more general® than the corresponding head arguments. In such cases, if
at least one of these arguments is not sufficiently instantiated (in this case, if not a complete

list), infinite derivations will result. Consider a simpler example concat.

Example 5.6
The result of concatenating an empty list with L is L itself. Concatenating the
list [X1Xs] with Y is equal to the list [X|2s] if concatenating Xs with Y is equal
to Zs.
1. concat([J, L, L).

2. concat([X|Xs}, Y, [XiZs]) :-
concat(Xs, Y, Zs).

a

Note that the first and third arguments Xs and Zs of the recursive call are subterms
of the corresponding arguments of the head. It is well-known that concat can be used to
catenate its first two arguments or to split the third argument into two lists. If the recursive
call is indeed intended to solve a smaller problem, then either the first or the third argument
must become smaller with each recursive call. This can happen only when either the first or
the third is a complete list when concat is called. This idea of comparing pairs of arguments

to detect structural induction was first suggested by Naish in his dissertation [64].

Permissible Mode Constraint 2
Let {i1,...,1,} be the set of arguments of the head of a clause in simply recur-
sive procedure p with arity k where n < k and the arguments {i,...,i,} of a
recursive body goal for p are more general than the corresponding head argu-

ments. Then, in a permissible mode at least one of the arguments {i,..., in}

1Recall that a term ?, is more general then another term ¢, if there exists a substitution
f# such that t, = ;4.

142

must be input. If the set of such arguments is empty, then at least one of the

arguments 1,..., %k must be input in a permissible mode.

For a clause of a recursive but not simply recursive procedure p, at least one of

the arguments must be input. a

Example 5.7
It is possible that none of the head arguments of a clause of a simply recursive
procedure is less general than the corresponding arguments of a recursive body
goal. This may be due to syntactic variations, as illustrated in the following
program.

i. concat{([d, L, L).

2. concat(A, Y, B) :-
A [IIXSJ-
B = [Xl2Zs],
concat(Xs, Y, Zs).

0

The first and third head arguments of the second clause of the usual concat procedure are
replaced by new variables, and the unifications represented by these arguments appear as
two explicit unification goals in the body of the clause. In another variation, one may replace
the goal A = [X|Xs] with the goal head_tail(A, X, Xs) and introduce the following unit

clause defining head_tail:

3. head_tail{[XIXs], X, Xs).

Simple source-to-source transformations can remove these unifications at compile-time. The
body goals A = [XIXs], and B = [X|Zs] can be removed and the unifications moved to
the head. Likewise, any unit procedure clause can be folded in to the calling clauses. We
assume that such simple transformations have been done. In the absence of side-effects,

such transformations can always be done. The presence of cuts and other impure features

= 143

may disallow such transformations. However, such transformations may be made only to
determine which arguments need to be constrained to be input. Issues such as separate
compilation, and information hiding may preclude such transformations and introduce in-

completeness.

Permissible Mode Constraint 3

A permissible mode must be consistent. c

Recall that a mode for a procedure p is consistent if and only if it maps no argument
of p to T, i.e., a permissible mode must not require some argument of a procedure to be
input and output at the same time. This represents an over-constrained argument whereas
the L represents an under-constrained argument.

There are no a priori constraints on the permissible modes of a unit procedure. The
permissible modes of & non-unit, non-recursive procedure are determined by the permissible
modes of its body goals and hence, there are no a priori constraints on the permissible modes
of a non-unit, non-recursive procedures. If a non-unit, non-recursive procedure p calls other
recursive procedures, then the permissible modes of the called procedures will induce some
constraints on p.

In practice, for example in a data base context, the relati_ons defined by unit pro-
cedures (also known as extensional database relations as opposed to intensional database
relations defined by recursive predicates) may be very large. It may be reasonable to impose
some constraints on permissible modes for unit procedures. Suppose that some efficient ac-
cess methods or indices exist for some attributes of a large relation. We may want to allow
retrievals of the tuples of that relation only when values for one or more of the indexed
attributes are known. This avoids retrieving the whole relation and encourages the use of
indices to select (in the relational algebraic sense) a subset of the relation more efficiently.

Thus, there are three initial constraints to be satisfied by a permissible mode. We can

use a mode that satisfies constraint 2 and 3 as a starting point or an initial approximation for

144

a permissible mode and extend the initial approximation until it satisfies permissible mode
definition. The initial approximations of permissible modes are called partial permissible

modes.

Definition 5.7
A mode m for a clause c is a partial permissible mode, if it satisfies permissible

mode constraints 2 and 3.

A mode mg for a clause ¢ is an extension of a mode m; for ¢ iff m; C m, and

2 15 consistent. (]

In the case of clause 2 of concat procedure, the modes concat(+,?,?) and
concat(?,?,+) are partial permissible modes, since arguments one and three of the head
of the clause are less general than the corresponding goal arguments. Furthermore, these
arguments are consistent.

An extension or refinement of a mode for a clause ¢ is a refinement of the modality
for some argument from L (unknown) to + (input) or — (output). For example, the mode
concat(+, +,?) for clause 2 of concat is an extension of the mode concat(+,?,?).

A permissible mode is one that satisfies the initial constraints and, in addition, induces

well-modedness for a clause.

Definition 5.8
Let c be a clause b « by,...,b of procedure p. A mode m for clause ¢ is a
permissible mode if it satisfies permissible mode constraints 1, 2, and 3 and
there exist permissible modes PM = {mode;,,..., modes, } for the body goals

of ¢ such that the clause ¢ is well-moded with respect to mode m and PM. O

Notice that the above definition is recursive, in that the permissibility of a mode for a

clause ¢ of procedure p is defined in terms of the minimal constraints and the permissibility of

145

the modes for the body goals which may include calls to p itself, or calls to other procedures
which are mutually recursive with p. As is usual with the recursive definitions, we take the
definition to denote the least fixed-point of the associated functional. In other words, we
take a permissible mode to be the least mode that satisfies the above definition. One can
visualize a method which starts with partial permissible modes and progressively converts
the unknown modes L to + or — to satisfy input and output constraints of the body goals.

In fact, the algorithms given later in this chapter follow the above outline.

Example 5.8

Consider the delete procedure of the perm example again. The mode

delete(—, +,+) .is a permissible mode for the second clause of delete because of
the following reasons. It induces the mode delete,(—, +, +) for the first and only
body goal; the induced mode is the same as the mode for the clause and hence
satisfies constraint 1; at least one argument is input and hence constraint 2 is
satisfied; it is consistent and hence constraint 3 is satisfied; the input variables
of the only body goal are produced by the input positions in the head and hence

the clause is well-moded. m]

Having defined permissible modes for clauses, we require that all clauses of a procedure

have the same permissible mode(s).

Definition 5.9
A mode m is a permissible mode for a procedure p iff m is a permissible mode

for all clauses defining p. 0

We have not specified any additional constraints for mutually recursive procedures.
Constraint 2 says that clauses of directly recursive and mutually recursive procedures must

have at least one input argument. This, coupled with the definition of permissible modes,

- 146

is enough to decide whether a given mode for a mutually recursive or directly recursive

procedure is a permissible mode.
Mode Intersection

Given permissible modes for clauses of a procedure, we should be able to derive
permissible modes for a procedure.” Intuitively, a permissible mode for a procedure must
satisfy at least one permissible mode for each clause in that procedure. As mentioned
before, the mode intersection of the modes m; and m; of two clauses of a procedure can
be obtained simply as m; Umz. This is because each of the modes specify some constraint
on the arguments and we want to satisfy both specifications by taking the lub (join) of the
modes. -Since the set of modes for a procedure is a complete lattice, mode intersection is

well-defined.

Definition 5.10
Let M, and M, be sets of modes of clauses ¢; and ¢; of procedure p. Then the
intersection of modes M; and M>, denoted My ® My, is defined as {zUy |z €
My,y € Ma}\ {T}.

More generally, let M,,..., M) be sets of modes of clauses ¢y,...,c, respec-
tively of procedure p. Then, the mode intersection M ® ... ® M}, is defined as
{U{zi | z: e Mi,1 i<k} {T}). O

Example 5.9
Let {p(+, L, 1), p(—,+, 1)}, {p(+,—, L)} be sets of permissible modes for two
clauses of p. Their mode intersection consists of the singleton set {p(+,~, 1)}.
The join of p(—, 4+, 1) and p(+, —, L) results in an inconsistent mode p(T, T, 1)

which is discarded. |

147

Proposition 5.1
Let M, ,..., M, be sets of permissible modes of clauses c;, ..., c; of a procedure
p. Then, all the modes in the set M; ® ... ® M, are permissible modes of

procedure p.

Proof: Follows from the definitions of permissible modes for a procedure and

mode intersection ®. (]

Minimal Modes

We are interested in deriving minimal or least restrictive permissible modes for a
procedure. Intuitively, a mode ? is less restrictive than a mode + or — since ? imposes
no constraints. Likewise, a mode — is less restrictive than 4 because the output argument
is required to be ground only at the time of success, whereas an input argument must be
ground at the time of call.

For example, the mode delete(—, +,+) and the mode delete(+, +, +) are both permis-
sible modes for the delete procedure of permutation example 5.1. The mode delete(—, +,+)
is intuitively less restrictive than delete(+, +, +) because the first argument of a call to delete
is not required to be input. The notion of minimality can be formalized by considering an-
other partial ordering < on the space of permissible modes for a procedure derived from

the ordering L < - <+ < T.

Definition 5.11
Let M, be the set of permissible modes of an n-ary procedure p. Then for all

mp, my, € Mp, mp < my iff mp(i) < mi(i), 1< i < n, o

The ordering <,m on the set PM of permissible modes of p is a partial ordering since
the ordering < on {1i,+,~, T} is a partial ordering.

The above ordering is different from the one used to order the permissible modes of

148

different clauses (Definition 5.2). The need for two different orderings on permissible modes
can be explained as follows.

Suppose that p(+, -, =) is a permissible mode for a clause ¢ of p and p(—,+, -} is a
permissible mode for another clause ¢’ of p. The mode p(+, —, —) may be permissible for
¢ because there is a recursive call to p(X,Y, Z) in the body of ¢ and p(X,Y, Z) is the sole
producer for Y which is consumed by another body goal of ¢. When the permissible mode
p(+,—,—) for clause ¢ and the permissible mode p(—, +, —) for clause ¢’ are combined to
form a permissible mode for the procedure p, one cannot change p(+,—,-) to p(+,+,—)
because the mode p(+,+,—) is no longer a permissible mode for clause ¢. Thus, for the
purposes of mode intersection, the mode annotations + and — are not comparable. Once
we combine the clause modes and obtain the set S of permissible modes for a procedure, we
can use a different ordering which treats L as less restrictive than — which is less restrictive
than + and retains only the minimal permissible modes.

The mode intersection of sets of minimal permissible modes of clauses in p will be

permissible modes for p but not necessarily minimal as shown by the following example.

Example 5.10
Consider two sets of minimal permissible modes {p(+,?),p(?,+)},
{p(?, 1), p(+,7)} for two clauses of procedure p. The mode intersection of these
sets is the set {p(+,?),p(+,+),p(?,+)} which has three permissible modes for

the procedure. This set is not minimal since p(+,?) Cpm p(+, +)- m

To obtain the set of minimal permissible modes for a procedure p from the minimal
permissible modes of the clauses of p, we must throw away the non-minimal modes after
mode intersection. The next definition shows how minimal permissible modes of a procedure

p may be obtained from the minimal permissible modes of the clauses of p.

149

Definition 5.12
Let M be a set of modes for a procedure p. Then min(M) is defined to be the
set of minimal modes of M with respect to the ordering <, i.e.,

min(M)={z |zeM A Aye M. y<z}. o

Proposition 5.2
Let M,,,..., M, be the sets of minimal permissible modes of the clauses
€1,...,Ck of a procedure p. Then min(M,, ® ...® M,,) is the set of minimal

permissible modes of procedure p. a

Proof

Follows from the definitions of min, permissible modes for a procedure and mode

intersection ®. O

The mode intersection operator ® is defined in terms of the lub operation on the
complete lattice of modes. This means that mode intersection inherits some algebraic
properties from the lub operation on the complete lattice of modes. This will be useful in

reducing the search space when we derive minimal permissible modes for a procedure.

Proposition 5.3
The mode intersection operator ® is associative, commutative, and idempotent.

O

Proof

Follows from the definition of ®. (|

We defined modes, partial permissible modes and permissible modes. Partial per-
missible modes satisfy some initial constraints and are used as initial approximations for
deriving permissible modes. The type of a recursive procedure is used solely to determine

the input arguments.

150

Mode intersection was also defined for combining permissible modes of different
clauses to form permissible modes for a procedure. The notion of minimal permissible
modes was introduced to eliminate redundant and overly restrictive permissible modes.

In the next section we prove the intractability of deriving minimal permissible modes.

Intractability of Deriving Minimal Permissible Modes

Given a set of minimal permissible modes for the subgoals of a clause, is deriving
minimal permissible modes for the clause feasible? We show that this problem is computa-
tionally hard in general.

The problem of deciding whether a permissible mode is minimal is NP-complete and
hence the problem of deriving all minimal permissible modes of a clause is NP-hard. Recall
that a decision problem is NP-complete iff it is in NP and all problems in NP can be
transformed to it in polynomial time by a deterministic Turing machine [41). A decision
problem is NP-hard if an NP-complete problem can be reduced to it. We now define the set
covering problem which is NP-complete and then show that deriving minimal permissible

modes has the set covering problem as a sub-problem.

Theorem 5.1 [Minimum Cover]
Given: A collection C of subsets of a set S, a positive integer K.

Question: Does C contain a cover for § of size I{ or less, that is a subset C' C C

with |C’| < K and such that | ¢ = §?
ceC’

Minimum Cover is NP-complete. For proof, see Garey and Johnson [41]. i

Theorem 5.2 [Minimal Permissible Mode]
Given a clause ¢ = h « by,...,b; and sets of minimal permissible modes
M,,..., M, for the goals by,...,bx respectively, finding the set of all minimal

permissible modes for ¢ is NP-hard. o

151

Proof
We will restrict the problem and show that the restriction contains the minimum

cover problem as a special case. This proves the theorem.

Consider a clause p(t1,...,15) — ¢(s1,-..,5m). Suppose that ¢ has only one
minimal permissible mode mode,. Given the mode mode,, we have to de-
rive the minimal permissible modes of ¢. Suppose further that the set § =
invars(g, modey) of input variables of ¢ is the same as the set of all clause vari-
ables, i.e., all variables of g occur in the head. Let C be the collection of sets of

variables appearing in terms #;,...,%,.

It is obvious that with these restrictions, the minimal permissible modes problem

contains the minimum cover problem.

Question: Does C contain a cover for S of size K or less, that is a subset ' C C

with |C'| € K and such that U c= 57
ceC’
The answer to the above question is yes if there exists a minimal permissible

mode for the clause such that the number of input positions in the minimal
permissible mode is less than or equal to K and no otherwise. Therefore, the
minimal permissible modes problem is at least as hard as the minimum cover

problem.

O

Note that in most programs, the arity of predicates tends not to increase with the
size of the programs. Hence, if we assumed a bound on the arity of predicates, the above

NP-hardness result does not hold.

152

An Algorithm for Deriving Permissible Modes

- We start with a description of an approximation algorithm for deriving minimal per-
missible modes for all predicates in a program and use examples to illustrate the method
before formally defining the algorithm. The algorithm is approximate since it may find

non-minimal permissible modes.
Outline

First construct the call graph of a program, collapse the maximal strongly connected
components and derive a reduced graph.® Assign numbers to the predicates such that if P
calls q,. then ¢ has a lower number than p unless they are in the same strongly connected
component, in which case they both have the same number. This is known as the “dfs”
(depth-first search) number of a predicate [1]. Finally, find permissible modes for the
predicates in ascending order of the dfs numbers of procedures, i.e., derive permissible modes
for predicates with a smaller dfs number before deriving for those with larger numbers.

Permissible modes of a clause are found in two steps. The first step involves deriving
a set of partial permissible modes. The second step is an iterative step which refines the
given partial mode and extends a given partial ordering of body goals with one or more
body goals using a greedy approach. This step is repeated until all body goals are added
to the partial ordering or the mode cannot be extended.

Once permissible modes are found for all clauses in a procedure, the permissible
modes for a procedure can be found by mode intersection. We can use the idempotence,
associativity, and commutativity of mode intersection to optimize the derivation of permis-
sible modes of a clause. The idea is to maintain a set of “running” permissible modes for a

procedure. Initially, it is the singleton set containing the least element of the mode lattice

SThis can be done in time O(maz(|V}],|E])), i.e., linear in the size of the graph [1].

153

for the procedure, i.e., a mode that does not require an argument to be either input or
output. Suppose there are n > 1 clauses in a procedure. Order the clauses according to the
total number of modes for the body goals and derive the permissible modes for the clauses
in ascending order of the total number of permissible modes for body goals. After the first
step for each clause which derives the set of partial permissible modes, but before starting
the second iterative step, take the mode intersection of the set of running permissible modes
for the procedure and the set of partial permissible modes for the current clause and use it
as input to the second, iterative, mode-refining step. At the end of the iterative step, the
set of permissible modes for the current clause becomes the new set of running permissible
modes for the procedure and is used similarly in deriving the permissible modes for the next
clause in the procedure.

The steps in the derivation of permissible modes are listed below.

Partial Permissible Modes for a clause :

The set of partial permissible modes for a clause is simply a set of modes, each of
which constrains an argument to be input. The number of partial permissible for a

recursive procedure depends on whether it is simply recursive or not.

Extend Partial Permissible Modes :

Each partial permissible mode is extended such that the clause is well-moded.

Mode Intersection :
Once permissible modes for all clauses of a procedure are derived, combine them (using
mode intersection) into permissible modes for a procedure.

Mutually Recursive Procedures :

For mutually recursive procedures, iterate the previous two steps until permissible

modes of a set of mutually recursive procedures stabilize.

154

Derivation of Partial Permissible Modes

A partial permissible mode constrains a head argument to be input. The type of the
recursive procedure, namely simply recursive or otherwise, determines which arguments are

50 constrained.

Definition 5.13
Let § = {I,m,n,...} be the set of arguments of the head of a clause c of a
simply recursive procedure p with arity & such that the argument i € § of a
body goal with the same predicate symbol as the head is more general than the
corresponding head argument. If the set of such arguments is empty, then let §
be {1,...,k}.
If the procedure p is recursive but not simply recursive, then let § = {1,..., k}

be the set of arguments of the head of a clause ¢ of p.

Let input-mode;; be a mode of p such that

. + ifj=:
input.mode,(j) =
1 otherwise

input_mode:, constrains the argument i of p to be input and all others to be L.
Then the set of partial permissible modes PPM of p is {input_mode:; | 7 € S5}

m]

Proposition 5.4
For all recursive procedures p, the partial permissible modes of p derived ac-
cording to Definition 5.13 satisfy permissible mode constraint 2 and 3 (Pages

140-141). o

This is because the Definition 5.13 simply enforces the permissible mode constraints

2 and 3 on the partial modes of a simply recursive procedure. Set S in the above definition

135

is derived directly from the definition of permissible mode constraint 2. The set of partial
permissible modes PPM is only an initial approximation because we have to ensure the
well-modedness of the body of clause c. There may be more than one recursive call in the
body of a clause of a simply recursive procedure or there may be calls to built-ins such as
arithmetic (A is X + Y) or comparison predicates (X > Y) whose input requirements must
be satisfied. Even when there is only one recursive call and there are no calls to built-in
predicates, we have to check the well-modedness of the single literal body. Of the two
exa.mpies shown below, the first one does not need the well-modedness check. The second

one does.

Example 5.11

Consider the procedure concat.

i. concat([1, L, L).
2. concat([XIXs], Y, [XI1Zs]) :-
concat(Xs, Y, Zs).

The partial permissible modes for concat are concat(+,?,?), and concat(?,?,+).
Arguments 1 and 3 of the recursive call to concat in clause 2 are subterms of the
respective head arguments. This implies that if argument 1 or 3 is ground in the
initial call, all recursive calls will also have this property. Hence, the permissible
mode constraint 1 (which says that the head literal and body literals with the
same predicate symbol as the head literal must have the same mode) is satisfied.

Thus the initial approximation turns out to be final in this case.]

When an argument of a recursive call is not a subterm of the corresponding head
argument but is more general, then the initial approximation is not likely to be the final
one. The following example illustrates why partial modes need to be extended to permissible

modes,

156

Example 5.12
Informally, the procedure split may be used to split a list, (the first argument),
evenly among two lists, (the second and third arguments), preserving the order
of elements. Or, it can be used to merge the elements of the second and third
arguments into the first such that the alternate elements of the first are from

the second and third arguments.

1. split([AlB], [AlC], D) :-
split(B, D, C).
2. split(0d, 00, 00).

The first two arguments of split(B, D, C) are more general than the corre-
sponding head arguments. Therefore, the initial approximation to the set of

permissible modes for split is {split(+,?,?), split(?, +,7)}.

Consider the mode split(+,?,?) first. By permissible mode constraint 1, the
recursive call also must have the mode split(+,?,?). Since the first argument B
of the recursive call is a subterm of the first argument of the head, the mode
split(+,7,?) for the head induces the same mode for the recursive call and thus

split(+,7,7) is a permissible mode.

We do not need a complex data flow analysis to verify the permissibility of the
mode split(+,7?,?) for two reasons. One, there are no output constraints to be
verified and two, the subterm property is enough to verify that an initial call
with mode split(+,?,?) will induce a recursive call which satisfies the same input

constraint on argument one.

Now consider the second partial mode split(?, +, ?). Given the mode split(?, +,7)
for the head, all we know (after head-~goal unification) is that A and ¢ will be
ground. Since the recursive call is required to have the same mode, our algo-

rithm finds a producer for the second argument D of the recursive call split in

157

the body. The only way D can be input to the recursive call is if the third argu-
ment D of the head literal is input. Thus, another permissible mode for split is
split(?,+,+). This process may lead to a situation where some input constraint
of 2 body goal cannot be satisfied or we derive an inconsistent mode. In such

cases, we discard the initial approximation. o

A partial permissible mode usually has to be extended before it becomes permissible.
We will see how to extend a partial mode in the next section.

In the following, we assume that modes for built-ins are known. Likewise, when we
are processing the clauses of some procedure p with a depth-first search (dfs) number k, we
assume that permissible modes for all procedures with dfs number < k& have been derived.
As mentioned before, deriving the permissible modes of procedures in ascending order of

their dfs numbers will ensure this.
Extension of Partial Modes: Discussion

The strategy for converting partial permissible modes to permissible modes may be
summarized as foilows. Start with a set of partial modes and try to extend them such that
the extension induces well-modedness for the clause. A partial mode may be extended in
many ways and so extending a partial mode may result in a set of permissible modes. Or,
we may choose some deterministic extension method and return only one permissible mode
per partial mode. This choice bounds the number of permissible modes per clause. This is
because we start with at most n partial modes per clause, where n is the arity of the head
predicate and each partial mode is refined to at most one permissible mode. Thus there
can be at most n permissible modes per clause. If there are k clauses in a procedure, there
can be at most n* the permissible modes, due to mode intersection. However, in practice
the number of permissible modes per procedure appears to be bounded by the arity n of

the procedure.

158

We associate an empty partial ordering of body goals with each of the partial modes.
The set of goals in a partial ordering is referred to as the scheduled goals. We also associate
a set of variables called available variables with each partial mode. Available variables are
simply those that have been generated by the goals scheduled so far. Initially, this set
contains the input variables of the partial mode. For example, let p(+,7,7?) be partial mode
of a clause whose head is p(f(X,Y),g(Z)). Then, the set of available variables associated
with this mode is {X,Y}. The following is an informal summary of the extension which
either adds more goals to the partial ordering or refines one of the head arguments with
the modality ? to +. The attempt to extend a partial mode may fail when there is no way
to satisfy some input constraints of one or more goals. We apply the following extension
repeatedly to a partial mode and its associated partial order until all body goals have been
added to the partial order or it is impossible to do so. The extension of a partial mode is

sub-divided into two steps, of which the second is not always needed.

Step 1
We extend the partial ordering by adding goals whose input variables are a subset of
available variables. The case where no goals can be added is handled by step two.
A procedure may have more than one permissible mode and each permissible mode
may have a different set of variables in input argument positions. Since we use a
greedy approach, we add a goal to the partial ordering as soon one of its sets of input

variables is covered by (subset of) the available variables.

We are not committed to any ordering among the newly added goals. All we know is
that their input constraints are satisfied. The ordering among the newly added goals
is an issue that is orthogonal to deriving permissible modes for a clause. This will be
considered later. After adding the goals to the partial ordering, we add their output
variables to set of the available variables and repeat this step. The output variables

of the newly added goals may be found by using abstract interpretation.

159

Step 2
: Given a set of scheduled goals, none of the remaining goals of a clause may be schedu-
lable; for each remaining goal g, for each of its permissible modes modey, the input
variables of g with respect to mode mode, may not be a subset of available variables.
In this case, we have to refine the partial mode of the clause, i.e., convert the modality
of some head argument position from L to +. There are a number of options but they
lead to exploring too many combinations. We could, for example, find the smallest
set of variables that is needed to schedule at least one of the remaining goals and
then find the minimal set of head arguments needed to cover these variables. But this
again leads to the minimum cover problem. Alternatively, one could select a literal
from among those to be scheduled (using some policy) and try to satisfy its input

constraints by converting a head argument from 1 to +.

Once again, we use a greedy approach. We find a head argument whose modality is
L and check if it is useful to convert it to input mode. “Usefulness” will be defined
shortly. Informally, a head argument is not useful if all the variables in that argument
are already generated by some other literal. Likewise, it is not useful if none of the
variables in the head argument appear in the input argument positions of unscheduled
goals. If we do not find a useful head argument, the partial mode cannot be extended

any further and thus is discarded.

If we can extend the mode by converting the modality of some argument from unknown
to input, we do so and add the variables in that argument to the set of available

variables.

If the modality of some head argument is refined to input and there are recursive
calls in the body that have already been scheduled, there is a complication which is

discussed next.

160

Handling Recursive Goals

Recursive goals (those with the same predicate symbol as the head) of a clause pose
a special problem. We start with a partial permissible mode for the clause and expect to
realize a permissible mode by refining the partial mode as and when needed. This causes
two problems.

The first problem is simple to state and solve. When we derive the permissible modes
of a procedure p with a dfs number k, the permissible modes of all procedures with a dfs
number less than k are known. In particular, a permissible mode for a procedure says which
arguments are input and which are output. However, we do not know the permissible modes
of p itself. In particular, when we add a recursive call to p to the partial order, we have to
add the output variables of p to the set of available variables. But we do not yet know the
output variables of p. This is where we use properties of programs that are independent
of control flow. Recall that the meaning of a clause is a function from a goal and a call
substitution to a set of success substitutions. This meaning does not depend on the order in
which body goals are solved. Since we are interested only in the groundness of arguments,
we can use a precise groundness analysis based on Pos presented in Chapter 3.

Given the input arguments of p, i.e., those arguments that are bound to ground
terms on call, we can derive the (output) arguments that will be bound to ground terms
on success. We add these output variables to the set of available variables and refine the
corresponding head arguments to be output (since the head literal and recursive call must
have the same mode). The only concern is that since we are deriving permissible modes,
we would call the abstract interpreter more often than in a usual data flow analysis that
assumes left-to-right order of execution. This entails fixed-point computations each time the
abstract interpreter is called. The benefit of Pos domain is that it has the “condensation”
property, i.e., we can summarize the abstract meaning of a procedure in a closed form

using a fixed-point computation once and for all. This meaning can then be specialized to

161

each call in the time it takes to abstractly unify the head of a clause and a goal, avoiding
fixed-point computations.

The second problem caused by recursive calls is related to the non-permissibility of
partial modes and the need to revise previous decisions. When a partial mode for a clause
is refined successively, the intermediate partial modes may not be permissible. This is

illustrated by the following example.

Example 5.13

Let po(X,Y, Z,P) « b3(X,Y, X1,Y1),...,pi(X1,Y1, Z1, P1),...,b;(2, 21),

-+oybi(...). be a clause. Let the current partial mode for p be p(+,+, L,.L)
and let the current set of available variables be {X,Y,X1,Y1}. Assume that
by’s first two arguments must be input. Since the available set of variables
{X,Y,X1,Y1} covers the first two arguments {X,Y} of b;, b, is scheduled.
Suppose that b, does not produce any variables. Now, schedule p; since the first
two arguments p; are in the available variables set and p; appears to satisfy the

current approximate permissible mode for p.

Suppose that we try to extend the partial ordering further, by scheduling bj and
b; must have its first argument Z input. We need to refine the third argument
Z of the head predicate to be input. This invalidates the previous step when the
recursive call p; was scheduled with only the first two arguments being input.
The previous step may still be valid if, for example, the third argument of p; is

Z instead of Z1. (]

If the set of variables in the newly added input argument of the head literal is a
superset of the variables in the corresponding argument of the recursive call, refining the
partial mode does not cause a problem. Likewise, if the set of variables in the argument

of the recursive call corresponding to the newly added inpﬁt argument of the head literal

- 162

was already available when the recursive call was scheduled, the previous step is valid.
Otherwise, the previous step is invalidated by the refinement.

We have a combination of at least four choices in dealing with this situation.

1. Relax the requirement that recursive calls and the head must have the same mode.
This may not be a reasonable choice because we assumed that recursive calls solve

similar but smaller problems and hence must have the same mode as the original call.

2. Abortion; recognize the extensions which cause a previous step to be invalidated and
abort the attempt to extend the partial mode. This is too severe and appears to

compound mistakes.

3. Graceful recovery from mistakes; redo the scheduling from the previous step, but with

the new partial mode for the head predicate,

4. Avoid making guesses in the first place. Avoid a decision to schedule a recursive goal
and postpone it as much as possible, i.e., do not schedule a recursive goal unless it
is the only goal schedulable. We may still end up in a situation where a previous

scheduling of a recursive goal is invalidated.

5. A combination of the third and fourth options has the property of making fewer
guesses and thus less backtracking. On the other hand, using the fourth option means
postponing the scheduling of recursive goals as much as possible, which in turn implies
fewer incorrect assumptions about input constraints. Using both the fourth and third

options allows backtracking but reduces the frequency of such backtracking.

We adopt option 5, a combination of third and fourth strategies. One may even add
the second option with the proviso that it be used only when number of assumption

revisions exceed some limit. The issue of termination is discussed later.

Note that the partial ordering of body goals we choose when refining a partial mode

163

to a permissible mode is important but not crucial. Its main use is to show the existence
(in a constructive way) of a partial ordering that induces the well-modedness of the clause
with respect to the permissible mode we derived. A permissible mode for a clause may
allow more than one control flow, including the one we used to derive the permissible mode.
Thus, we are free to revise the control flow later as long as the permissible modé constraints
are satisfied.

The above procedure works well for non-mutually recursive procedures. When deriv-
ing the permissible modes of a procedure, we assume that the permissible modes its callees
are available. This, of course, is not true for a mutually recursive procedures. We now

discuss how to handle mutually recursive procedures.
Mutually Recursive Procedures

Consider two mutually recursive procedures p and g. The permissible mode of p
depends on the permissible mode of ¢ and vice-versa. The permissible modes of mutually
recursive procedures may be thought of as the least fixed-point of the permissible modes
definition. This naturally leads to their computation by a sequence of approximations. The
successive approximate permissible modes for p and ¢ will be computed using the partial
permissible modes of p and g as the initial approximation. The approximate permissible
modes derived at stage i are used in stage i + 1 to compute a better approximation. This
procedure will either converge or terminate with failure.® When the approximate permissible
modes of a set of mutually recursive procedures at stage i are the same as those in stage

t+ 1, the procedure terminates successfully.

An Algorithm for Extending Partial Modes

8Termination with failure may mean the non-existence of a fixed-point, or the failure to
find one by our algorithm. As discussed in the introduction, in such cases the programmer
must supply the permissible mode which will be verified by the system.

164

extend_partial_mode : Mode x Clause x PM — PM
extend_partial. mode(modey, ¢, PM) =

let

g=1

PM? = update PM such that all recursive body goals of ¢ have

the mode modey,.

sched, = 0

unsched, = all body goals of clause ¢

PO, =0

avail; = invars(h, modey,)

for all literals r of clause c, set when_sched,(r) to unbound
in |

epm(unsched,, sched,, PO,, PM?, avail,, when_sched,, q)
end
where
epm{unsched,, sched,, PO,, PM?, availy, when_sched,, q) =
let

result = epm_iter(unsched,, sched,, POg, PM, availy, when_sched,)

if result = T then T
else
let (unschedgyy,schedyiy, POgy1, PM*Y, availyyy, when.sched,,)
= result
in
if unschedgy; =@ then PMH!
else epm(unschedyy1, schedyyy, POgy1, PMTY), availyy,,
when_schedg41,q+ 1)
end

end

Figure 10: Functions extend_partial_mode and epm

epm_iter(unsched,, sched,, PO,, PM?, avail,, when_sched,) =
let ready = {PM], |b; € unsched; A 3k.invars(b;, PM{,) C avail,}
in if ready # 0 then
let ready.literals = {k | PM{, € ready},
sched’ = sched, U ready_literals
avail' = availy U output_vars(ready)
unsched’ = unsched, \ ready_literals
PO' = PO, U {(j,k)| j € schedy, k € ready.literals}
update when_sched, to reflect the scheduling of
ready_literals in iteration ¢, giving when_sched’
if 3 a rec. literal r € ready.literals s.t. solving r using the cur
mode PMJ as its abst. call subst. causes an ** arg to become
output, then change the i** arg of the head and all rec. lits
from L to —, giving PM'; otherwise, PM' is the same as PM?
in (unsched’,sched’, PO’, PM’, avail’, when_sched’) end
else let new.input_arg = useful(h, PM{§, P M9, unschedy, avail,)
in if new_input-arg-= none then T
else let update the mode of the head and rec. goals in PMY to
reflect the refining of head arg new_input_arg, giving PM'
need_revising = sched, N recursive Iiterals of ¢
- in if need_revising = @ then
(unsched,, schedq, PO,, PM’,
avail, U invars(h, PM}), when_sched,)
else let m be the least integer such that
dr € need_revising and when_sched,(r) = m
in
(unsched,,_y,schedp 1, PO, PM’,
availy, -1 U invars(h, PMg), when_sched,,_;)
end
end
end
end

Figure 11: Function epm_iter

165

166

epm._mr: SCC x CurApprox x PM — PM
epm_mr(Scc, Curapprox, PM) =
let

for all procedures p € Scc,

update PM, to Curapprox, giving PM’

epm_mr_iter(Scc, Curapprox, PM')

end
where

epm.mr.iter(Sce, Curapprox, PM) =
let
for all procedures p € Scc, Nextapprox, =

{mode.intersection({extend_partial_mode(Curapprox, ;,c, PM) | clause ¢ € p})
for each permissible mode Curapprox, ; of p}

in
if Nextapprox = Curapprox then PM
else
let for all procedures p € Scc, update PM, to
Nextapprox, giving PM'
in
epm.mr_iter(Scc, Nextapprox, PM')
end
end

Figure 12: Functions epm_mr and epm_mr_iter

167

The algorithm for extending partial permissible modes to permissible modes is now
formally defined. Figures 10 and 11 show the algorithm for extending one partial mode to
a permissible mode. If there are n partial permissible modes, we just need to apply the
algorithm to each.

The algorithm in Figures 10 and 11 is sufficient to extend a partial permissible mode
to a permissible mode in the case of non-mutually recursive procedures. For mutually
recursive procedures, say p and g, we need a wrapper procedure which starts with the
partial permissible modes of p and g as the first approximation for the permissible modes of
p and g and uses the algorithm in Figure 10 and 11 repeatedly until the permissible modes
stabilize (i.e.,reach a fixed-point) or the algorithm returns T. The algorithm in Figure 12
is a formalization of this approach.

Correctness and termination proofs are given later (Page 179). We now proceed to
a description of the variables, data structures, and the definitions of the auxiliary functions
used by the partial mode extension algorithm.

As mentioned earlier, the extension algorithm starts with a partial mode and refines
it at each iteration of the algorithm. The definitions are easier to understand and prove
correct when the iterations are numbered and the computation state is indexed by the
iteration number. Each iteration starts in state ¢ and returns an updated state. Since the
extension algorithm may backtrack, backtracking from an iteration j to a previous iteration
i is accomplished simply by using the state with index i (with a small change, which we will
discuss shortly) as the starting state of next iteration of the algorithm. We do not reuse
iteration numbers when backtracking, i.e., if an iteration j backtracks to some i < j, the
next iteration is numbered j + 1.

The iterations 0, 1,.. ., of the algorithm are denoted by the variable q. A state of the

computation of our greedy extension algorithm is a 7-tuple

(unsched,, sched,, PO,, PMY, avail, when_sched,, q).

168

A state is characterized by the permissible modes PM, the partial-order of body goals PO,
the set of goals sched in the partial order PO that have been scheduled, the yet to be
scheduled goals” Unsched, when goals were scheduled when_sched, the set of variables avail
that have been generated, and the iteration number g. The state variables are indexed by
¢ and describe the evolution of the computation in terms of the iterations q.

We use PO, to denote the partial ordering of body goals constructed during an
iteration g. Avail; denotes the set of variables generated by the head literal and the literals
scheduled in iteration g. The permissible modes of a clause ¢ in iteration g is denoted by
PM3. The i*h element of PM9 is an array of permissible modes for literal 7 in iteration g.
Therefore, PM], denotes the k** permissible mode of the i** literal in iteration g. We may
omit the superscript ¢ on PM when it is used in a context where the iteration g is known.
Furthermore, since the head literal (0) and any recursive goal j with the same predicate
symbol as the head literal will have only one mode (during the process of refining one partial
mode), we will denote their mode by PM{ and PM 7, i.e., omit the second subscript.

If the dfs number of the predicate of a body literal k is less than that of the head of a
clause, then the permissible modes of & have been derived prior to deriving the permissible
modes of the clause. Thus k’s permissible modes do not change. On the other hand, the
mode of the head literal and the recursive calls, if any, in the body is initially a partial mode
and may be refined in an iteration. Thus, we could have used different variables to denote
the array of permissible modes of body literals, but it would complicate the definition of
our algorithm.

As discussed earlier, refining the modality of a head argument from L to + in the i**
iteration may force backtracking if we had scheduled a recursive literal at an earlier iteration.

There may be more than one recursive literal scheduled earlier on different iterations. We

"The parameter Unsched is not really necessary since it is the same as the set of body
goals {1,...,n} minus the set of scheduled goals sched.

169

need to backtrack to the earliest iteration which scheduled a recursive literal and resume
from there and thus we need to know the iteration to which we must backtrack. The vector
when_sched maps literal { to the iteration in which it was scheduled. For all literals r of
clause ¢, when_sched(r) is unbound at the beginning. When a literal r is scheduled at step
g, when_sched(r) is bound to q.

When computation backtracks from iteration j to i, the state to be used for the next
iteration j + 1 is almost the same as in iteration i. (If we use the same state as i, we
would éet into an infinite loop.) The only difference is that the modes of the head literal
and recursive literals (if any) have been refined and thus the set of available variables in
iteration 7 + 1 is the set of available variables in iteration i, union the variables in the newly
refined argument of the head literal.

The algorithm extend_partial_mode takes as input a partial mode for the head of
clause c, clause ¢, an array PM of permissible modes, and returns either an updated PM or
T indicating failure to extend the partial mode. Function extend_partial_mode creates some
initial bindings for variables and calls epm which performs the iterative refinement. Function
epm calls epm_iter which takes sched,;, Unsched,, avail;, PM and PO, as parameters and
returns the updated versions for the next iteration ¢ + 1. The function epm simply tests
for termination conditions.

During the extension of a partial mode, there may not be any schedulable goals
because their input variables are not covered by the available variables. In such a case,
some head argument will be constrained to be input. The notion of usefulness was needed
to select a head argument. A head argument is j useful iff its modality is L (i.e., it is
unconstrained so far), the set of variables V that occur in it are not a subset of available
variables and V covers at least some set V' of input variables of one of the unscheduled
goals such that V' is not covered by the available variables. The reason for classifying a

head argument as useful is that refining its modality must eventually lead to scheduling

170

of some goal. If some head argument is already classified as input or output, it cannot be
constrained further. Likewise, if the set of variables V' that occur in it is a subset of available
variables, then these are already generated by some other scheduled literal or these already
occur in some input argument positions in the head.

The following definition of useful is a formalization of the above discussion. There
may be more than one such head argument. The function useful returns the least such
argument and if there is no such argument, it returns none which is defined to be the
bottom element of A, In the following, arg(j,k) denotes the jt* argument of &, and by

denotes the k*" body goal of the clause whose head is h.

Definition 5.14
useful : Atom x Mode x Permissible_Modes x P(Atom) x P(Var) — N,
useful(h, modey,, PM9, unsched, Avail) =
the least j s.t modey(j)= L A
Vars(arg(j, h)) € Avail A
(34, k. k € unsched A
Vars(arg(j, h)) 0 (invars(k, PM{\)\ Avail) # 0)
if such a j exists

otherwise none a

Note On Free Variables in Functions

The functions defined in Figures 10, 11, and 12 have the following free variable occur-
rences: h,c and output_vars. The variable A is the head literal of clause ¢ whose permissible
mode we are deriving. The variable output_vars stands for a function which maps a set
of modes such as {b;(+,7,7),b;(?,+)} to a set of variables of clause ¢ which would be
bound to ground terms on successful execution of b; and bj. Suppose that using our free-

ness, groundness, and sharing analysis of Chapter 3 or the groundness analysis based on

171

Pos, we conclude that the abstract success pattern corresponding to bi(ground_term,?,?) is
bi(ground_term, ground_term, ?). Then, the set of variables that occur in the second argu-
ment of literal b; of clause ¢ will be bound to ground terms on b;’s success. These are the
output variables of b;.

It is possible to remove these free occurrences by passing them as parameters to all
functions that need them but we will not do so. We assume that the program P and a sound
groundness analysis are given and remain fixed throughout the derivation of permissible

modes for all procedures.

Examples

In this section, we derive permissible modes for some small examples using the algo-
rithm described in the previous section. We start with two different versions of a permuta-

tion program.

Example 5.14

oy
.

permi(0], 0).

2. permi([x|xs], [Y|¥s]) :-
deletei([X|Xsl, Y, 2s),
permi{Zs, Ys).

3. deletal([A|Rest], A, Rest).

4. deletei([A,B|Bs], X, [AJRest]) :-

deletel([B|Bs], X, Rest).

o

Since deletel has a smaller dfs number than perml, we process deletel first. The
partial permissible modes of clause 2 of deletel are deletel(+, L, L) and deletel(L, 1,+),
since the first and third head arguments are less general than those of the recursive body
goal.

The partial mode deletel(+, L, L) implies the set {A,B,Bs} of variables are available

after head unification and these cover the variables {B,Bs} in the input position of the only

172

body goal. Hence deletel{+, L, L) is a permissible mode. Groundness analysis shows that
a ground first argument of deletel implies the second and third will alse be ground, and
thus the permissible mode is extended to deletel(+, —, =).

Likewise, the partial mode deletel(L, L, +) turns out to be a permissible mode. In this
case, however, groundness analysis does not refine the permissible mode deletel{.L, L,+).
This is because a ground third argument of deletel does not the imply the groundness of
any other argument.

Now consider perm1. Its partial permissible modes are perm1(+, L) and perml(L, +).
We extend permi(+, L) first. The mode perml(+, L) implies the variables {X,Xs} are
available after head unification. These cover the input variables {X,Xs} of one of the
permissible modes of deletel but not the input variables of the partial permissible mode of
deletel. Hence, deletel is the first literal to be scheduled. The output variables {Y,2Zs} are
added to the available variables. Now the recursive call perm1 becomes schedulable, since
the input variable Zs of one of its permissible modes is covered by the available set. Thus,
the partial permissible mode perm1(+,.) is also a final permissible mode. Groundness
analysis yields permissible mode permi(+, -).

Next, we extend the second permissible mode permI(L,+). The available variables
after head unification are {Y,Ys}. These do not cover the input variables of any of the
permissible modes of deletel but do cover the input variables of the partial permissible
mode of recursive call. Recall that our strategy is to reduce backtracking by postponing
the scheduling of a recursive goal unless no other goal can be scheduled. Hence, the goal
permi is scheduled. We need to find the output variables of the recursive call, given that
its second argument is ground on call. Using groundness analysis, a call to perml with
the mode permi{.L,+) grounds the first argument. The variable Zs is added to the set of
available variables {Y,Ys}. The new set of available variables {Y,Ys,Zs} covers the input

variable Zs of the permissible mode deletel(.L,L,+) of the unscheduled goal deletel; in

173

fact, it covers the second argument Y of deletel as well. The output variables {X,Xs} of
deletel are found, once again using abstract interpretation. The set of available variables
now is {Y,Y¥s,Zs,X,Xs}. The partial mode permi(L,+) is thus a permissible mode and
groundness analysis refines the mode to perm1(—,+). Notice that there were no wrong
“guesses” and hence no backtracking in the example.

Next, we consider another version of permutation.

Example 5.15

1. perm2(0, ().

2. perm2(L, [H|T]) :-
append(V, [H|U], L),
permz2(W, T),
append{(V, U, W).

3. append([],B,B).

4. append([X[al,B,[x|C]) :-
append(A,B,C).

]

The permissible modes of append are: append(+, L, L) and append(—,—,+). These
are similar to those of delete and derived similarly.

The partial permissible modes of perm2 are perm2(+, L) and perm2(1,+) as in the
case of perml1. Consider the extension of perm2(+, L). The set of available variables after
head unification is {L}. It covers the input variable L of a permissible mode append(—, —, +)
of the first body goal and hence append, is scheduled. The output variables of append,;,
given that its third argument L is ground, are {V,H,U}. Now the set of available variables is
{L,V.,H,U}. This covers the input variables {V,U} of the third body goal append; which is
scheduled next. The output variable W of append, is added to the set of available variables.
Next, we schedule the recursive goal perm2 since its input variable W is covered by the
available variables. There are no more unscheduled goals.

Similarly, extending the second partial mode perm2(L,+) results in a permissible

mode perm2(—, +).

174

Notice the asymmetry in the permissible mode for perm2 when the first or the second
argument is input. When the first argument is input, the permissible mode is found to
be perm2(+, 1), i.e., there is no constraint on the second argument of perm2. This is
understandable because the second argument T is used only to pass information to the
caller and is not used in other non-recursive goals of clause 2 of perm2. On the other hand,
when the partial mode perm2(1,+) is extended to the permissible mode perm2(—, +), the
first argument is required to be output. This can be explained as follows. The first argument
W of the recursive call in the body of clause 2 of perm2 also appears in the input position of
a permissible mode (call it modeappena) of the third goal and appears nowhere else. Thus,
in order for the clause to be well-moded, the first argument of perm2 must be output, if
modegppend is the permissible mode used to schedule the third goal.

The ordering of body goals induced by the permissible mode perm2(+, 1) is 1, 3, 2.
The ordering of body goals induced by the permissible mode perm2(—,+)is 2, 3, 1. Notice
that assuming a fixed control flow would miss at least one of the two orderings. As in the
previous example, the partial mode extension algorithm does not backtrack. Notice also
that there are six possible total orderings (three body goals give rise to 3! orderings) but
our algorithm is oblivious to them. It does not explore the space of all possible orderings.

The data flow constraints in the above examples forced the sequentialization of body
goals. Next, we consider quicksort, a typical divide-and-conquer algorithm which has scope
for parallelism. This example is a rich source of many points we want to illustrate. One is
that the ordering derived by the partial mode extension algorithm is only incidental to the
derivation of permissible modes. It is a constructive proof of well-modedness of a clause.
We may not want to use the same ordering for different reasons. This point is exemplified
by quicksort.

Another point is that the derivation of permissible modes for quicksort has room

for more optimizations of the partial mode extension algorithm. We will discuss two such

175

optimizations. First, a “running” permissible mode for a procedure can be used to reduce
the search for the head arguments that need to be refined from L to + or —. Second,
groundness dependency information from an analysis based on Pos can be used to limit the
search to a subset of head arguments.

A third optimization is applicable in the case of a non-simply recursive procedure p.
We now discuss this optimization although it is not useful for quicksort. For a non-simply
recursive procedure p, there will be n partial modes to start with, where n is the arity of p,
and where the i'" mode requires the i*® argument to be +, and leaves others unconstrained.
When extending a partial mode which requires the i* argument to be +, there is no need
to refine any argument position less than i. It is enough to consider the argument positions
from i+1 to n. The reason is that when extending any partial mode which maps some k < i
to +, we would have considered the k' argument if there was a need. This optimization
once again reduces the search for permissible modes, without missing any permissible modes.
Without this optimization, for each partial mode that requires one argument to be input, we
may have to consider all other arguments. Thus for n partial modes, we would potentially
consider #(n — 1) = n? — n possibilities. With this optimization, we would have to consider
at the most L' = (n2 — n)/2 possibilities. This does not affect the worst-case complexity

but helps in the average case.

Example 5.16

1. qsort(0, [1).
2. gqsort([X|xs], Ys) :-
partition(Xs, X, L, B),
gsort(L, L1},
qsort(B, Bt),
append(Li, [X|B1], Ya).
partition{0], K, [0, 0.
4. partition([X|Xal, ¥, [X|Ls], Bs) :-
X =<Y,
partition{(Xs, Y, Ls, Bs).
5. partition([X|Xs], Y, Ls, [X|Bs]) :-
X>r,

w

- 176

partition(Xs, ¥, Ls, Bs).
append([], X, X).
7. append([X|Xs], Y, [X|Ans]} :-
append(Xs, Y, Ans).

=]

]

The permissible modes of append (derived as before) are: append(+,.L, 1) and
append(—,—,+). The built-in predicates =< and > require both their arguments to be
ground.

Consider partition next. It has three clauses and hence, we initialize the set of permis-
sible modes for partition to a singleton set éonta.ining the mode {partition(L, L, L, L), which
does not constrain any argument of p, i.e., maps them to the modality L. Clause 3 is a unit
clause and hence imposes no constraints. Partition is simply recursive and arguments 1 and
3 of clause 4 are less general than the corresponding arguments of the recursive call. Hence,
the set of partial modes PM for clause 4 is {partition(+, L, L, 1), partition(L, 1,+, L)}.
Next, obtain the mode intersection of PAM and {mode,, } to be used as the partial modes
for clause 4. This turns out to be the same as PM. Now we extend each of these modes.

Consider the partial mode partition(+, L, L, 1) first. After head unification, the
available variables are {X,XS}. The first built-in goal X =< Y cannot be scheduled because
Y is not in the set of available variables. The recursive call is the only one schedulable
and so schedule it. Find the output variables of the recursive call. Since only the first
argument is ground, no other arguments of partition will become ground. Thus, the set of
available variables does not change after scheduling the recursive call. Hence, we need to
refine a useful head argument so that X =< Y can be scheduled. Only the second argument Y
qualifies and thus the partial mode partition(+, L, L, 1) is refined to partition{+, +, 1, L).
This does not invalidate the previous scheduling of the recursive call since the set of variables
{Y} in the newly refined head argument 2 covers the set of variables {Y} in the corresponding
argument of the recursive call. With this refinement, we can schedule the built-in goal X

=< Y. There are no more goals to be scheduled. Thus, partition(+,+, L, 1) is a permissible

177

mode for clause 4.

As mentioned before, the partial ordering derived for clause 2 is just a constructive
proof of the well-modedness of that clause. Notice that there is really no data-dependency
between the two goals of clause 2 of partition; the goals may be solved in parallel or in any
order. A moment’s reflection will show that the call to a built-in goal must be solved before
the recursive call because of control dependency. If the built-in predicate X =< Y fails, the
whole clause fails and there is no need to execute the recursive call. Even if the built-in is
not expected to fail, the granularity is too small to have two threads of execution, one for
the built-in and another for the recursive call. Executing built-ins before others and solving
deterministic goals before non-deterministic ones are some of the heuristics that may be
used in deriving control flow based on permissible maodes.

Consider the second partial mode partition(i, L,+,L). Once again, only the recur-
sive call is schedulable; scheduling it does not add more variables to the available set. Trying
to extend the partial mode succeeds; the second argument (Y) is refined to input. As in
the previous case, this causes no backtracking and another permissible mode for clause 4 is
partition(L, 4,4, 1)

The permissible modes of clause 4, {partition(+, +, L, L), partition(L,+,+, L)} are
also the “running” permissible modes of procedure partition. The partial permissible modes
of clause 5 are partition(+, L, L, 1) and partition(L, 1, L,+). We can use the running
modes of the procedure to constrain the partial permissible modes of clause 5. As mentioned
before, obtain the mode intersection of the set of running modes of the procedure and the
set of partial modes of clause 5.

The new partial modes of clause 5 are {partition(+,+, L, L), partition(+,+, L,+),
partition(+, +, +, L), partition(L,+,+,+)}. We now extend these partial modes, starting

with the minimal ones.

178

The extension of the partial mode partition(+,+, L, L) is itself and hence it is a
permissible mode. The partial modes partition(+,+,+, L), partition(+,+, L,+) need
not be extended nor retained, since these are more defined than the permissible mode
partition(+,+, L, L). This leaves the partial mode partition(L, +,+,+). The extension of
partition(L, +, +,+) is itself and there are no more partial modes left.

Thus the permissible modes of partition are: partition(+,+, L, L) and
partition(L,+,+,+). These are also minimal. This simply confirms the possible ways in
which partition can be used. The first argument can be partitioned about the second
argument (the pivot) into a list of numbers (the third argument) not greater than the pivot
and a list of numbers (the fourth argument) greater than the pivot. Alternatively, given
the pivot, and two lists of numbers greater than and not greater than the pivot, the two
lists can be non-deterministically merged and returned as the first argument. The relative
order of numbers from the third (fourth) argument will be preserved in the first argument.

Finally, the permissible modes of gsort are derived as follows. There are two partial
modes, namely, gsort(+, L) and gsort(L,+). We extend gsort{L, +) first.

The set of available variables after head unification is {Ys}. This covers the input
variables a permissible mode append(—,—,+) of the fourth goal. Scheduling it adds the
variables {L1,X,B1} to the available variables set. Both the second and third recursive calls
are the only ones schedulable and hence are scheduled. Using abstract interpretation, the
output variables of the second and third goals are found to be {L,B}. These are added to the
available variables set and the first goal partition can now be scheduled. Thus, gsort(L, +)
is extended to a permissible mode gsort(—,+) and the partial ordering or body goals used
in deriving this permissible mode is {4 < 3,4 < 2,4< 1,3< 1,2 < 1}.

Extending gsort(+, L) results in a permissible mode gsort(+,—) and the familiar
ordering of body goals. Note that our method would derive these permissible modes and

orderings even if the body goals of gsort, and partition are permuted and it will take exactly

- 179

the same time.

We now prove the correctness of our algorithm.
Proof of Correctness

The first step is to prove that the algorithm terminates. The next step shows that if
the algorithm terminates and the mode mode, derived by the algorithm for a procedure P

is not T, then mode, is a permissible mode.
Termination

The permissible modes algorithm derives partial permissible modes first and then
extends each partial permissible mode to a permissible mode. Proposition 5.4 proves the
correctness of the derivation of partial permissible modes. Definition 5.13 simply identifies
a subset S of the a,rgﬁment positions of the head literal of a clause and create a partial
permissible mode for each argument in §. Clearly, this procedure terminates and takes
time linear in the number of head arguments (or arity) of the clause.

We have to show that the algorithm for extending a partial mode to a permissible
mode for non-mutually recursive procedures, defined in Figures 10 and 11, terminates.
Likewise, the termination of the mutually-recursive procedures’s version of the algorithm
in Figure 12 must also be shown. We start with the termination proof for the algorithm in

Figures 10 and 11.

Theorem 5.3
Let p be procedure with dfs number k and ¢ be a clause in p. Let PM denote an
array that contains the permissible modes for all procedures with dfs numbers
less than & and also contains the partial permissible mode, of clause ¢. Then

the call extend.partial mode{mode., PM) terminates. m]

180

Proof
The function extend.partial_mode computes the set of input variables of the
mode mode, and binds it to availy. It creates some other trivial bindings and
calls another function epm just once. Hence, we have to show that the call to

epm terminates,

The function epm is recursively defined. 1t calls epm_iter and itself recursively.

In order to show the termination of epm, it is sufficient to show that

¢ each call to epm_iter terminates and

 in successive calls to epm_iter, either the set of unscheduled literals becomes

smaller or the set of available variables becomes larger.

since there are only finite number of body literals and clause variables.

The termination of function epm_iter is easy to establish. It is not a recursive
function and all the functions it calls such as useful, update, set union, set

subtraction terminate.

Each call to epm_iter either returns T in which case epm terminates or changes
the current state and returns the changed state. The possible computations of

epm.iter are discussed below.

The set of available variables in the current state covers all the input variables
of one or more unscheduled literals; in which case, these literals are added to
scheduled set and removed from unscheduled set and thus the unscheduled set

becomes smaller in the next state.

If the unscheduled set does not become smaller, then the available variables did
not cover all the input variables of any of the unscheduled goals. This means

that epm_iter will either find a useful head argument and refine it to input or

181

return T signifying failure to extend the partial mode. If epm_iter did find a
useful argument, then the set of available variables in the next state is larger

than the set of available variables in the current state, by definition of usefulness.

a

Note that in the above proof, we did not use the fact that p was non-mutually recur-
sive procedure. This is because the function extend_partial.mode will terminate for both
mutually recursive and non-mutually recursive cases. In the former case, the result will
be just an approximation of a permissible mode. These approximations will have to be
successively refined until they stabilize. This is the purpose of the “wrapper” algorithm
given in Figure 12. -

The proof of termination of the algorithm for extending the partial modes of mutually

recursive procedures (Figure 12) is given below.

Theorem 5.4
Let P be a program and SCC be a maximal set of mutually recursive procedures
in P (i.e., SCC is 2 maximal strongly connected component of the call graph of
P). Let CurApprox be an array of sets of partial permissible modes of procedures
in SCC. Let k be the dfs number of the procedures in SCC and PM denote
an array of the permissible modes for all procedures with dfs numbers less than

k. Then the call epm_mr(SCC, CurApprox, PM) terminates. o

Proof
Function epm.mr simply adds the partial permissible modes CurApprox to PM
and calls epm.mr.iter just once. Hence, we must prove the termination of

epm.mr_iter.

Function epm.mr.iter calls the function extend.partial_mode and itself recur-

sively. The termination of extend_partial_mode has already been shown. It

182
remains to be shown that epm_mr_iter will call itself only finitely many times.

The current approximation of permissible modes for the procedures in SCC
is a two-dimensional finite array of approximate permissible modes. Function
epm_mr_iter refines each of these finite number of approximate modes (keeping
others constant) by calling extend_partial mode. The next approximation is the

result of updating once all the current approximate modes.

Function epm_mr_iter recursively calls itself only when the next approximation
of permissible modes for the the procedures in SCC is not equal to the current
approximation. This means at least one approximate mode has changed in the

next approximation.

A refinement of a mode can map it to T in which case it is removed from the
set of permissible modes of procedure p by epm_mr_iter. An approximation of a
permissible mode can be refined/extended to a better approximation only a finite
number of times, since an extension of a consistent mode simply changes the
modality of one of the arguments from L to + or — and the arity of procedures

is finite. O

Soundness

According to proposition 5.1, the mode intersection of the sets of permissible modes
of the clauses of a procedure results in permissible modes for the procedure. Hence, to prove
the soundness of the algorithm for deriving permissible modes, we just need to establish the
soundness of the algorithm for extending a partial mode of a clause to a permissible mode.

The definition of well-modedness and permissible mode are repeated below for convenience.

183

Definition 5.15
Let ¢ = h « by,...,b; be a clause and modey, modey,, ..., modey, be the
modes of the head and the body predicates of ¢ respectively. Let < be a partial
ordering of the body goals by,...,b; and let prede(i) = {j | j < i} denote the

set of predecessors of literal 7 in the partial order <.

Clause c is well-moded with respect to modes mode, and modey,, ..., mode,
(or mode, and modey,, ..., mode;, is a well-moding for clause ¢) iff there exists

a partial ordering < on the literals by, ..., by such that for 1 < i < &,

invars(b;, modey,) \ invars(h, modey) C U {outvars(j, mode;) | j € pred (i)}
(m]

Definition 5.16
Let c be a clause h « b,,...,b. A mode m for clause ¢ is a permissible mode,
if it satisfies permissible mode constraints 1, 2 and 3 and there exist permissible
modes PM = {mode,,, ..., mode, } for the body goals of ¢ such that the clause

¢ is well-moded with respect to mode m and PM. O

Proposition 5.5
Any extension of a partial mode using the algorithm in Figures 12 or 10 and 11

satisfies permissible mode constraints 1, 2 and 3. m]

Proof
By definition, partial permissible modes satisfy permissible mode constraints 2
and 3. We will show that extension of a partial mode satisfies permissible mode
constraint 1, which requires that the head literal and recursive body literals, if

any, must have the same mode.

The function extend_partial_mode ensures that all recursive literals (if any) in

the body of a clause have the same mode as the head literal before starting

184

the iterative mode extension process. We will show that the function epm_iter
maintains this invariance and thus satisfies permissible mode constraint 1. Then
a simple induction on the number of states in the computation that extends a

partial mode to a permissible mode completes the proof.

The only place where a mode is extended is in the function epm_iter and there
are two possible refinements of a mode. When the current set of available
variables does not cover the input variables of any of the unscheduled goals, the
modality of a useful head argument is refined from L to 4. At the same time,
the modes of recursive body literals, if any, are also refined from L to +. Thus,

the invariance is maintained.

The second possible refinement of a mode also occurs in epm_iter. When-
ever a recursive literal is scheduled, it may generate some argument positions.
For example, when a recursive literal p with an approximate permissible mode
p(+,+, .1, L) is scheduled, we need to know the variables produced by p. Sup-
pose that a groundness analysis shows that the groundness of the first two
arguments of p implies the groundness of the fourth argument, then we can
refine the mode p(+,+, L, L) to p(+, +, L, —). We do so and immediately up-
date the modes of the head literal and all other recursive literals. Once again,

the invariance that the head and recursive literals must have the same mode is

maintained. O
Theorem 5.5
Let p be a non-mutually recursive procedure and ¢ = h — b1,...,b, be a clause

of p. Let mode; be a partial permissible mode of ¢ and PM be the array of
permissible modes of procedure with a dfs number smaller than the dfs number

of p. Then, extend_partial_ mode(mode., PM) returns either T or a permissible

185

mode modey for c. a

Proof
We need to show that extending a partial mode mode, of ¢ using the function
extend_partial.mode results in a permissible mode for ¢. Proposition 5.5 shows
that the permissible mode constraints hold for modeys. In particular, proposi-
tion 5.5 shows that all recursive literals (if any) and the head have the same
mode when epm terminates successfully. Thus, all we need to show is that there
exist permissible modes PM, = {modey,..., modey,} for the body goals with
smaller dfs numbers than the dfs number of p such that PM, and the mode

together induce well-modedness for c.

For body literals with a dfs number less than that of procedure P, the array PM
has the permissible modes. These are the ones used by the function epm._iter
in scheduling goals. Therefore, existence of permissible modes for these goals is
established. Thus, what remains to be shown is that there is a partial ordering

of the body goals with induces well-modedness,

The function extend_partial_mode constructs the needed partial ordering of body
goals via the functions epm and epm_iter. Let state? be the 7-tuple state
(unsched,,,sched,,,PO.,,PM 9, availy, when_sched,, q) of the g*¢ iteration of the
function epm. The function epm maintains the following invariances at each

state g = 1,...,q" where ¢’ is the last state of computation.

o The set of available variables at iteration ¢ is equal to the set of input
variables of the head literal (according to its mode PMJ) union the output

variables of the scheduled literals (if any) sched?.

o I a literal j is scheduled at iteration i + 1 (i.e., when_sched,(j) = i + 1),

then the input variables of literal j are a subset of available variables of

186

iteration 1.

o If (j,k) € PO, then when_sched,(j) < when_sched,(k), i.e., if j precedes k

in the partial order at iteration g, then 7 was scheduled before k.

It is easy to check that these invariances are maintained at the initial state
g = 1, by inspecting the function extend_partial_mode. Each subsequent state is
created by the function epm_iter either by scheduling one or more literals, or by
backtracking to a previous state. Once again, these invariances are maintained
whether new goals were scheduled in a state or not. A simple induction on ¢
establishes these invariances. This shows the existence of the partial ordering
of body goals. The partial ordering together with the permissible modes that
were actually used in scheduling body goals and the clause mode mode. show

the well-modedness of clause . 0

Theorem 5.6
Let P be a program and SCC be a maximal set of mutually recursive procedures
and CurApprox be the partial permissible modes of the procedures in §CC. Let
PM,; denote a permissible mode of a procedure p where 1 < i < arity of pif

the dfs number of p is less than that of a procedure in SCC or undefined if p is

in 5CC.
Then, epm_mnSCC, CurApprox, PM) returns PM' where for each p in SCC

PM, is either empty or a non-empty set of permissible modes for procedure

p. o

Proof
Function epm_mr just updates PM with the initial approximate modes (partial
permissible modes) of procedures in SCC and then calls function epm_mr_iter.

The initial partial permissible modes of all procedures p in SCC are consistent

by Proposition 5.4. The correctness of epm_mr.iter is proved by induction on

the number of iterations.

Inductive Hypothesis: Assume that the current approximation of the permissible
modes CurApprox, of each procedure p in SCC is consistent. Each permissible
mode CurApprox, ; in the current approximation of permissible modes of p is re-
fined for each clause ¢ in the procedure p and the mode intersection of the refine-
ments of all clauses in p is taken. Recall that the definition of mode intersection
removes inconsistent modes from the intersection. Since extend_partial mode
and mode intersection are sound, then by induction on the number of clauses in
procedure p, the operation

mode._intersection({extend_partial_mode({ Curapprox, ;,c, PM) | clause ¢ € p})

returns a consistent set of approximate permissible modes, which may be empty.

We have thus shown that each iteration of epm_mr_iter refines a consistent set
of approximate permissible modes for each procedure p in SCC and maintains
the consistency. The set of permissible modes refined at an iteration may be
empty or non-empty; if empty, the theorem is proved. Consider the non-empty
case. We have already shown termination. Since the function epm_mr._iter
terminates only when the previous approximation and current approximation of
permissible modes for all procedures p in SCC are equal, the scheduling of any
call to a procedure pin SCC occurring in any of the clauses of p must have used
a permissible mode. This, combined with the fact that PM initially contains
permissible modes for all procedures with a lower dfs number than a procedure

pin SCC proves the permissibility of the modes PM, of p.

187

188
Complexity Analysis

The worst-case complexity of the partial mode extension algorithm
extend_partial.mode (Figure 10) is bounded by the time taken for the groundness analysis
and a polynomial in following parameters: n is the number of variables of a clause, { is the
number of literals of a clause, a is the arity of a clause, and m is the number of permissible
modes of a body goal. Under reasonable assumptions, the worst-case time complexity of
the mode intersection operation and that of the permissible modes derivation algorithm for
mutually recursive procedures are also polynomial in the following parameters, in addition
to the ones mentioned above: ¢ is the number of clauses in a procedure, and p is the number
of procedures in a maximal set of mutually recursive procedures.

The partial mode extension algorithm extend_partial_mode is parametrizable by an
abstract interpretation scheme for groundness analysis. This is because the algorithm needs
to know the set of output variables of a body goal when scheduled. One can use the ground-
ness analysis proposed by Debray [29] (as part of his sequential mode analysis scheme) or
a more precise analysis based on Pos. Debray’s groundness analysis has polynomial time
complexity if the maximum arity of predicates is bounded. Groundness analysis of Marriott
and Sondergaard [56] using Pos likewise has polynomial time complexity if the maximum
number of clause variables is bounded. Both analyses are efficient in practice, but Pos is
more precise than the other. In the following complexity analysis of our partial mode ex-
tension algorithm, we assume a polynomial time groundness analysis. The time taken for

groundness analysis of a program and a given goal is denoted by 7.
Analysis of extend_partial_mode

The partial mode extension algorithm extend.partial_mode has two clearly identifiable
parts: function epm.iter which either schedules a goal, or refines the modality of 2 head

argument from L to +, and function epm which calls epm_iter repeatedly until all goals

189

are scheduled or epm.iter returns T signifying failure to extend a partial mode. The time
complexity of extend.partial_mode is determined by the number of times epm_iter is invoked
multiplied by the time taken by epm_iter.

Function epm.iter has three clearly identifiable parts. The first part schedules goals,
whenever possible. The second part identifies a head argument (if any) that needs to be
refined from L to +. The third part backtracks as and when needed.

The first part schedules a goal, if its input variables (according to one of its permissible
modes) is covered by the set of available variables. The scheduling of a literal involves set
union, set subtraction, updating an array of scheduled literals, and adding the output
variables of a scheduled literal to the set of available variables. We represent sets as ordered
lists, and set union and intersection can be done in time linear in the sizes of the sets.
Depending on the set, this translates to a worst-case time complexity of O(I} or O(n)
where [is the number of body literals and n is the number of clause variables. The time
taken for finding the output variables of a goal is, as mentioned before, T,. Updating
the array of scheduled literals can take O(!) time. Thus the time for scheduling a goal is
O(max(T,, 1, n)).

The second part of epm_iter finds a useful head argument (if it exists) whose modality
is changed from L to +. The definition of useful involves computing a least j such that
the j** head argument is unconstrained and that argument has variables that are needed
to schedule one or more goals and these variables are not already available. Finding an
argument with modality L can be done in time O(a) where a is the maximum arity of a
predicate. Each body goal may have m permissible modes and hence the potential input
variables of each bedy goal can be computed in time O(ma). This need be computed just
once before epm_iter is ever called, and looked-up in epm_iter. Hence, we will not include
it in the complexity of epm.iter. The size of the set of input variables of a goal is bounded

by the number n of clause variables, and the intersection of the set of variables in head

- 190

argument and the sets of input variables of a body goal can be done in time O(a + n).
Since all body goals may have to be considered for finding a useful head argument, the time
complexity of useful is O(l(a + n)) = O(la + In)

The third part of epm_iter checks if backtracking is necessary. This involves taking
the intersection of the set of scheduled literals, and the set of recursive literals whose modes
have now been revised. Clearly, this can be done in time O(1) where ! is the number of
body goals.

The time complexity of an invocation of epm_iter is the maximum of the time com-
plexities of its three parts, which is O(max(T,, la +In)) where T, is the time for groundness
analysis, [is the maximum number of body goals, n is the maximum number of clause
variables, and a is the maximum arity of a predicate.

The next step is to derive the number of times epm_iter may be invoked by epm. If
there is no backtracking at all, then each call to epm_iter must schedule one literal and there
are only / such literals. But backtracking complicates the picture by unscheduling sched-
uled literals. Note that only the scheduling of a recursive literal may cause backtracking.
Consider a recursive literal r scheduled first (i.e., before all other goals) whose right place
is actually last in the ;erering of body goals. This may not be discovered until { — 2 more
literals have been scheduled and the last one is about to be schéduled. Thus, the wrong
scheduling of r as the first goal, may cause { — 2 more calls to epm_iter. When backtracking
occurs, the set of available variables becomes larger due to refining a useful head argument.
If r is still schedulable as the first goal even after backtracking, then we would not have
backtracked to r in the first place. In other words, if the set of available variables in the
backtracked state covered the input variables of r according to the extended partial mode,
the refinement did not invalidate the original scheduling. Thus each backtracking causes
the set of available variables to grow and moves a wrongly scheduled literal at least one

step towards its right place in the ordering of body goals. Wrong scheduling as the first

191

goal may cause [— 1 calls to epm_iter and similarly wrong scheduling as the i** goals causes
I — 1 calls to epm_iter. There can be at most /(! — 1)}/2 such calls and thus the maximum
number of calls to epm_iter will be O(I?).

Notice that when backtracking occurs, we backtrack to the earliest wrongly scheduled
goal and the position of the earliest wrongly scheduled goal can vary from one to { — 1 and
thus the wasted iterations can at most be O(i2).

Thus, the worst-case time complexity of partial modes extension algorithm is O(/?) x
O(max(Ty,le + In)) which is O(max(1®T,,%a + 13r)). The groundness analysis of De-
bray [29] has polynomial-time worst-case complexity assuming a bound on the maximum
arity of predicates, which is reasonable. Debray’s abstract domain does not have the con-
densation property discussed earlier in this chapter. Hence if it is used with our the partial
mode extension algorithm, we will have to compute fixed-points for each goal and each call
substitution. On the other hand, if we use Marriott and Sondergaard’s Pos domain which
has the condensation property, then the fixed-point representing the abstract meaning of a
program need be computed just once. The worst-case time complexity for Debray’s anal-
ysis is exponential in the arity of a predicate but polynomial if we assume bounded arity.
Likewise, groundness analysis using Pos domain has worst-case complexity exponential in
the number of clause variables but assuming bounded number of clause variables results in
polynomial-time complexity.

The main point of the above discussion is to show that our algorithm for extending
a partial mode for a clause has polynomial-time worst-case complexity for the explicitly
specified computation, and when coupled with a practical groundness analysis method,

results in an efficient algorithm.

192

Complexity of Mode Intersection

Once the permissible modes for all clauses of a procedure are computed, they are
combined to yield the permissible modes of a procedure. In theory, the mode intersection
of the permissible modes of the clauses of a procedure may result in exponential number of
permissible modes for a procedure, i.e., mode intersection of m permissible modes each of
s clauses of a procedure may yield m* permissible modes for a procedure. The worst-case
scenario assumes that the set of permissible modes of a clause is independent of that of
another clause of the same procedure, and their intersection could result in all possible
combinations of the two sets of modes. In practice, however, the modes of the clauses are
not independent of each other, and the number of permissible modes for a procedure is less
than the arity of the procedure.

There are two reasonable assumptions we can make. One is that the maximum arity
of a predicate is bounded, which implies that the maximum number of permissible modes
is also bounded (but very large). Another assumption is that the number of minimal
permissible modes of procedure is bounded by the arity of that procedure. Under these
assumptions, the worst-case time complexity of mode intersection is bounded by ca?, where
¢ is the maximum number of clauses in a procedure and @ is the maximum arity of a

procedure,
Complexity of Function epm_mr

The time complexity of the function epm_mr which extends the partial permissible
modes of mutually recursive procedures to permissible modes is determined by the time
complexity of mode intersection and that of the function extend_partial_mode.

Function epm.mr calls epm_mr_iter just once, and epm_mr_iter calls
extend_partial_mode recursively. Each call to extend.partial_mode refines the mode of at

least one argument of one clause in the set of clauses of mutually recursively predicates.

- 193

Let the maximum number of clauses in a procedures be ¢ and the maximum number of
procedures in a maximal strongly connected component be p. Then, there can be at most
pema calls to extend_partial_mode, where ¢ and m are the same as before, i.e., a is the
maximum arity of a predicate, and m the maximum number of permissible modes for a
predicate.

To find the number of times mode intersection is computed by epm_mr_iter, we must
know the number of times epm_mr_iter calls itself. Each call to epm_mr.iter must update at
least one permissible mode of at least one_predicate in the strongly connected component.
Let the maximum number of predicates in a strongly connected component be p. Then
the maximum number of calls to epm_mr_iter, and the maximum number of mode inter-
sections-computed by function epm.mr_iter is pa. Since the worst-case time complexity of
mode intersection is exponential in the number of clauses, and that of extend.partial mode
is polynomial in the number of literals, clause variables, the arity of the head predicate,
and the maximum number of permissible modes for body goals, the time complexity of
epm.-mr is dominated by that of mode intersection. However, if we assume that the
number of permissible modes per procedure is bounded by the arity of the procedure,
then mode intersectioil takes ca?, ane hence the worst-case complexity of epm_mr_iter is
(pa x ca?) + (pema x (O(1?) + T,)) = O(pca® + pema(l? + T,)) where T, is the complexity
of groundness analysis.

Analysis of a number of programs show that the number of permissible modes for a
procedure is less than the arity of the procedure and is usually less than four. The arity of
predicates do not increase with the size of the program and is bounded by a small constant.
Likewise, the number of iterations needed to reach convergence in the case of mutually
recursive procedures is also four or less. Since the assumption of bounded arity predicates
and bounded permissible modes per procedure appear to hold, the analyzer has polynomial

time complexity in practice.

Program Tot Noof | Max PM | CL || Calls to | Total | Gr Anl

PM Procs per proc Gr Anl | Time Time
Ackermann 1 1 1 4 9 0.52 0.37
Perm 4 2 2 4 5 0.15 0.07
Perml 4 2 2 4 5 0.18 0.12
Naiv-rev 4 2 2 4 b} 0.16 0.07
Ndmerge 2 1 2 4 4 0.23 0.18
Quicksort, 6 3 2 7 13 0.51 0.38
Mergesort 6 3 2 9 10 047 0.29
N-queens B8 5 2 9 13 0.34 0.15
Iso B8 6 2 11 14 0.65 0.34
Serialize 7 6 3 12 18 1.42 1.18
Grammar 6 6 1 15 15 0.31 0.18
Path 3 2 2 18 5 0.35 0.20
Plan 19 16 2 29 35 2.48 1.94
Degl 19 13 2 31 46 2.11 1.35
Browse 17 16 1 32 4 68 2.03 4.16
Gabriel 28 20 3 45 66 4.84 4.01
Bid 24 21 2 52 50 2.37 1.49
Disj 36 34 2 63 69 4.59 3.67
Boyer 32 25 2 139 92 | 18.52 16.22
Semigroup 23 20 2 48 | 67 | 34.02 32.82
Peepl 20 18 2 227 69 | 51.69 42.69
Pressl 75 48 4 158 164 | 61.51 57.91

Table 3: Minimal Modes Derivation

194

195

Empirical Measurements

The algorithm for deriving permissible modes has been implemented, using the ground-
ness analysis of Chapter 3. In this section, we discuss the results of an empirical study.

Table 3 lists some statistics about the analysis of 22 programs. The statistics are:
the total number of permissible modes derived by our algorithm for the whole pr(.)gra.m, the
number of procedures, the maximum number of permissible modes for a procedure derived
by our algorithm, the number of clauses, the time for permissible modes derivation, the
part of the time spent in the groundness analysis component of the analyzer, and finally
the number of calls to the groundness analyzer when deriving permissible modes.

Execution times are in seconds, as measured on an HP 735 workstation using Sicstus
Prolog 2.1.8 in bytecode emulation mode.

Many of the programs are the ones used to measure the precision and efficiency of the
sharing and groundness analyzer of Chapter 3. The benchmarks include small programs
such as quicksort, perm, perml, ackermann, merge, mergesort, and n-queens and
medium-size programs such as Pressi (a symbolic algebra package), Boyer, and Peepl
(peephole optimizer for Stonybrook Prolog).

The maximum number of permissible modes per procedure derived by our method
ranges from one to four for the programs tested. The number of permissible mades is less
than the maximum arity of a procedure in all cases. Thus, the mode intersection of the
modes of clauses of a procedure does not result in an exponential number of permissible
modes for a procedure. The algorithm fails to derive permissible modes in some cases; these
are due to our definition of input and output modes as denoting fully ground terms. The
limitation and proposed extensions are discussed in the last chapter.

For the programs tested, the modes derived by our algorithm are minimal. The
permissible modes algorithm derives at most » modes per clause, where n is the arity of

the head predicate of the clause. A natural question to ask is: What fraction of the set of

196

permissible modes is derived by the algorithm for the programs tested? For small programs
such as quicksort, perm, mergesort, path, n-queens, and iso, the algorithm derives all
minimal modes. The textual ordering of body goals does not affect either the number of
minimal modes derived or the time taken for the analysis.

For larger programs, it is hard to say how many permissible modes were missed by
our method. This because it too expensive to compute all minimal permissible modes,
and then check how many of these were missed by our method. Qur method did not find
any permissible mode for one clause in programs serialize, browse, and semi20, for two
clauses in peep1, for three clauses in boyer2, and for nine clauses in pressi. These misses
are either due to an imprecision in the implementation groundness propagation or due to
the standard Prolog practice of using partially instantiated structures. When compared
to the total number of modes (352) derived by the algorithm for all the programs tested,
the number of misses is not unreasonable. However, only three of these misses cause the
analyzer to abort and these happen to be the top-level goals. In our implementation, if the
analyzer fails to derive at least one permissible mode for a clause ¢ but is able to derive
permissible modes for one or more clauses in the same procedure, it warns the user about
missing modes for clause ¢ but proceeds with the rest of the analysis using modes from
other clauses. Only when it fails to derive at least one permissible mode for a procedure
P, and a permissible mode for p is needed in some clause ¢ (because a call to p appears in
clause c), does the analyzer abort. The handling of partially instantiated data structures is
an extension of our current proposal and is discussed in the last chapter.

In general, our algorithm may derive non-minimal modes where an analysis using a
fixed control low may find minimal modes, and vice-versa. This does not imply that our
permissible mode derivation algorithm and a sequential mode analysis are comparable in
their performance and usefulness. We define the notion of permissible modes and use it

to derive data flow and control flow simultaneously. A sequential mode analysis algorithm,

197

on the other hand, simply describes what modes may arise in a sequential computation; in
such an analysis, there is no notion of permissible modes to ensure desirable data flow.

We now discuss the efficiency of the implementation. The execution times of the
analyzer are more or less proportional to the size of the program analyzed, except for the
programs semi20, peepi, and pressi. The variation in the times for programs other than
semi20 and pressl are due to the presence or absence of built-in evaluable predicates
such as arithmetic and relational predicates. These impose strong directionality on their
argume;lts, and their permissible modes are input to the system and do not involve fixed-
point computations.

The higher analysis times for semi20, press1 and peepl have two main reasons.
First is the use of the sharing and groundness domain of Chapter 3 which does not have
the condensation property. When extending a partial mode, the scheduling of a literal
leads to computing the output variables of that literal. Finding the output variables of a
literal entails fixed-point computations, if a non-condensing domain is used for groundness
analysis. These fixed-point computations may be shared, if they involve computing the
abstract success substitution of a goal for the same abstract call substitution more than
once. However, the abstract call substitutions of a predicate p that arise in the course of
extending a partial mode are not the same most of the time.

The time spent by our algorithm in deriving permissible modes for a procedure is
dominated by the time spent in the abstract interpreter for groundness analysis. The time
spent in groundness analysis as a percentage of the total time for deriving permissible
modes ranges from 44% for small programs to 96% for semi20 and 94% for pressi. For
other programs such as peepi, disj, and boyer, the time spent in groundness analysis is
more than 80% of the total time for permissible mode derivation. If we consider the time
for deriving permissible modes ignoring the time for groundness analysis, the execution

times are almost linear in the size of the program. The number of calls to the groundness

198

analyzer (each of which entails a fixed-point computation) is two to four times the number
of procedures in a program. With a condensing domain for groundness analysis such as
Pos, there will be exactly one fixed-point computation per procedure. Hence, it appears
that a condensing domain such as Pos for groundness analysis should be very useful since
it avoids repeated fixed-point computations.

The second reason for the high analysis times for pressi and peepi is that these
programs have many sets of mutually recursive predicates. Recall that the time complexity
for deriving permissible modes for mutually recursive procedures is O(pca®+ pema({? +T))
compared to Oca? + (12 + Ty)) for a non-mutually recursive procedure, where p is the
numbeér of procedures in a strongly connected cofnponent, ¢ is the number of clauses in a
procedure and m is the number of permissible modes for p.

The permissible mode analysis presented in the previous sections is actually a frame-
work with some parameters in place. The parameters are now discussed, which leads t& the

main limitation of our definitions of input and output modes.

Parameters of the Permissible Mode Analysis

The parameters of the framework are as follows.

¢ In the definition of input and output modes, we equated input and output modalities
with ground terms; input argument must be ground on call and output argument
must be ground on success. This is done to illustrate the derivation of permissible
modes and to have a concrete implementation whose performance can be evaluated.
We realize that it is too restrictive. The example below illustrates the limitation of

the current analysis in deriving permissible modes.

The framework itself does not depend on the exact definitions of input and output
arguments. A combination of modes and regular types have been proposed for Prolog

programs by Bruynooghe and Janssens [12], Bronsard, Lakshman, and Reddy [10], and

199

Somagyi [74]. Polymorphic type systems have been proposed Zobel [93], Lakshman
and Reddy [49], among others. It is possible to redefine permissible modes and partial
modes to allow finer specification of input-output modes in combination with types,
using one of the above systems with necessary modifications. This is an extension we

intend to pursue.

e The second parameter to the permissible mode derivation algorithm is the ground-
ness analysis. As mentioned before, any abstract interpretation scheme for groundness
analysis may be used as part of the permissible modes derivation algorithm. It would
be better to use a condensing groundness analysis in order to minimize the number
of fixed-point computations. When input-output modes are redefined as suggested
above, the analyzer will need derive types and modes instead of groundness of vari-

ables.

® The partial modes extension algorithm deterministically chooses a useful head argu-
ment for refinement. The current implementation makes no special effort in choosing
a head argument for refinement; the head arguments are maintained as an ordered
list, the list is examined sequentially. Changing the search order does not seem to
have much effect when the modes are coarse and for the programs tested. However, it
would be worth exploring various options when the input-output modes are redefined

to include types.

Example 5.17
The procedure pairs_list takes a list of terms as the first argument and constructs
a list of pairs of terms, such that the first component of each pair is a term from
the first list and the second component of each pair is a free variable. For exam-

ple,pairs1ist([a,b,c], A) will bind A to [pair(a,X),pair(b,Y),pair(c,2)].

200

1. pairslist((], 0).
2. pairslist([AlAs], [pair(A,A1)|Rest]) :-
pairs.list{As, Rest).

3. p(D.

4. p{lpair(X,X1){Rest])} :-
q(x, x1),
p(Rest)}.

6. r(A) :-
pairslist(a, B),
p(B).

a

Our algerithm will derive the permissible modes pairslist(+,?) and pairs_list(-,+)
for pairs list. Notice that in the former mode, the second argument of pairs_list does not
become a fully ground term. It will, however, be a finite list of pairs. Suppose another
procedure p is intended to take the list of partly instantiated pairs and produce bindings
for the uninstantiated variables (via another procedure q). The permissible mode for p is
p(+). Since pairs_list(+,?) does not produce ground bindings for its second argument, our
method will fail to derive permissible modes for r. The problem here is that in order for
pairs_list and p to terminate, it is enough if the first argument is a complete list, i.e., the
tail is not a variable. It does not matter if the elements of the lists are uninstantiated or
partly instantiated.

This limitation is due to our definition of input and output. Instead of requiring the
input and output arguments to be fully ground terms, we need finer characterization, based

on a system of types and modes.

Derivation of Control Flow using Permissible Modes

The mutual dependency of data flow and control flow analyses was illustrated in
the introduction to this chapter. The notion of permissible modes is used to characterize
certain data flow as desirable and disallow certain others, and to break the cyclic dependency

between data flow and control flow. The permissible modes derivation algorithm constructs

201

a partial ordering of the body goals to show well-modedness. However, such a partial
ordex:ing is only one of many that are possible.

Recall procedure partition of the quicksort example 5.16 (Page 176). The built-in
goal X =< Y and the recursive goal partition(Xs, Y, Ls, Bs) can be executed in parallel
or in any order. Since the execution of built-ins such as X =< Y may fail, it is better to
solve the built-in before the recursive call.

Furthermore, it is possible to detect, via static analysis, deterministic computations in
logic programs using the method proposed by Debray [31]. A call to partition conforming to
the mode partition(+,+, —, —) can be shown to be deterministic. Thus, permissible modes
which induce to deterministic computations are to be preferred to those that do not.

The clauses of a procedure may have a unique control flow associated with a mode,

even though the procedure itself may be non-deterministic with respect to that mode.

Example 5.18

Consider the permutation program, reproduced here for convenience.

1. pern([1, [1).

2. perm(fX|Xs], TYlYs]) :-
deleta([X|Xe], Y, Zs),
perm(Zs, Ys).

3. delete([AlRest], &, Rest).

4., delete([A,BIBs], X, [AlRest]) :-
delete([BIBs], X, Rest).

o

The procedures perm and delete are both non-deterministic in the modes perm(+,—)
and delete(+,—,—), because they can produce multiple solutions for a query such as
perm([1,2,3,4], A) which satisfies the mode perm(+,—). These solutions may also be
produced in any order in a parallel implementation. However, when we derive a minimal
permissible mode delete(+, —, ~) for delete, it induces only one minimal permissible mode

perm(+,—) which in turn induces a unique control flow for perm; the recursive call of

203

Related Research

Our research is complementary to the recent work in automating termination proofs
of logic programs and is inspired by the work of Naish [64] on negation and control in Prolog.
We therefore start the section with a brief discussion of termination proof procedures and

their connection to our research, and then discuss research directly related to ours.
Termination Proofs

Frameworks for termination proof procedures (whether automated or not) for logic
programs rely on the programs meeting some pre-conditions. Our research aims, in part, to
meet the pre-conditions of termination proof procedures by deriving data flow and control
flow simultaneously.

The earliest work in improving the termination behavior of logic programs is due to
Naish [64]. Many approaches for proving termination of logic programs have been proposed
by Apt, Pedreschi, Bol, and Klop [3, 4], Plumr [70], Baudinet [8], Bezem [9], Janssens and
Bruynooghe [45], Vasak and Potter [86), Verschaetse and De Schreye [87], and Ullman and
Van Gelder [85). A common theme underlying most of these approaches to proving termina-
tion is to assume the well-modedness of the clauses of a program with respect to some given
control flow and then constructing a well-founded ordering on the sequence of resolvents.®
A well-founded ordering is usually shown to exist by means of 2 norm. Termination is
proved by showing that any sequence of resolvents of an initial goal conforming to a given

mode, results in a corresponding well-founded sequence of norms.

8A well-founded ordering < on a set T is an irreflexive and transitive ordering such that
no infinite descending chains of the form z; > z;4; > 2;42 > ... exist in T, where > is the
inverse of <.

202

perm must be executed after the call to delete, for the mode perm(+,-). Likewise, the
permissible mode for delete induces a unique control flow.

Thus non-determinism and unique control flow are orthogonal attributes of a proce-
dure. When more than one control flow is possible for a clause and a permissible mode, we
need a mechanism to evaluate the alternative control flows. The possibility of multiple con-
trol flows for the same mode signifies search-type programs. One may have to use heuristics
such as scheduling deterministic calls before non-deterministic ones, and preferring goals
which generate more variables than those that do not.

Consider two goals p(X,Y) and ¢(X,Y). Assume that both can be scheduled, both
will terminate, and variable X is bound to a ground term, variable Y is free, and P and
g may create m bindings for Y. If m is smaller than =, it may be better to solve p first.
Likewise, if n is smaller than m, it may be better to solve g first. The idea is to constrain
the search space for solutions. The solutions and the number of solutions remain the same
regardless of the order in which p and g are solved. In the presence of infinite derivations, the
system may not find all the solutions. The programmer may have to specify the control flow
for search-type programs. Even in search-type programs, not all procedures may involve
search. Thus we expect minimal programmer intervention.

The current implementation derives permissible modes and a partial ordering of body
literals for each permissible mode. As discussed above, this suffices for procedures that have
unique data flow per call pattern. Non-search-type procedures appear to have a unique
control flow associated with a permissible mode, even though the procedure may be non-
deterministic. For search-type programs, the partial ordering constructed by our method
for each mode is not likely to be unique. When the partial ordering is not unique for a call
pattern the current implementation does not derive any more orderings. It is one of the

planned extensions.

- 204

Example 5.19
Consider the familiar concat program.
1. concat(d, L, L).

2. concat([X|Xsl], Y, [XIZs]) :-
concat(Xs, Y, Zs).

If we use list size as the norm and concat(+,) as the mode for concat, then any
goal which conforms to the above mode will generate a sequence of resolvents
whose norms form a decreasing sequence of positive numbers. Since the set
N has no infinite descending chains, the decreasing sequence of norms of the

resolvents of concat must reach zero and terminate. (]

In the presence of recursive goals, it is clear that one or more arguments of a recursive
goal must be non-variable. For example, if concat is invoked as concat(X,Y,2) with all
the three arguments being unbound variables, then the recursive call concat(X’,Y’,Z’)
(whose arguments are also unbound variables) will not be smaller than the original call using
any norm. In fact, there is an infinite sequence of resolvents of the form concat(X,Y,Z),
concat(X?,Y',Z?), cpncat(}(‘ VYR L,Z200), e .This is the main reason for one of our
permissible mode constraints for recursive procedures, which says that at least one of the
arguments of a recursive procedure must be input. (Note that th.e permissible mode con-
straint does not say that one of the arguments must be ground.) This is also the reason
for comparing pairs of arguments of the head and a recursive goal of a clause of a simply
recursive procedure. We already mentioned that the current definition of an input mode is
solely for experimentation. A more expressive domain for types and modes such as the ones
used by Ueda and Morita [82], Janssens and Bruynooghe [12], Bronsard, Lakshman, and
Reddy [10], and Somogyi [74] may be used to specify that the first or the third argument
must be a complete list.

It is no surprise that proofs of termination, an operational concept, use another

205

operational concept, namely directionality of procedures. Consider the following program

for reversing lists.

1. reverse([], L, L).
2. reverse([X|Xs], Li, L2) :-
reverse(Xs, [X|L1], L2).

Suppose that reverse is called with all three arguments being complete lists, possibly
containing unbound variables. The initial call to reverse may either succeed or fail, but there
will not be an infinite derivation. This is because the first argument size decreases with
each call. However, if we use list size as the norm for the arguments and consider the sum
of the list sizes of all the arguments of reversa as the norm for reverse, then termination
cannot be shown, since the sum of the list sizes of the three arguments of reverse does not
decrease; it stays the same. When constructing a norm for a predicate, only a subset of the
arguments must be considered so that the norm of these arguments (such as the list length
of the first argument of reverse) decreases with each recursive call; these are the “input”
arguments. We once again emphasize that “input” does not mean ground terms.

With a more complicated procedure such as quicksort, in order to drive termination
proofs, one must have a well-moded clauses for a procedure and the norms must consider
inter-argument relationships. The goals of a well-moded clause can be partially ordered such
that when the predecessors of a goal ¢ are solved, g’s input constraints are satisfied. Thus,
the concepts of well-modedness and directionality are fundamental to proving termination
of logic programs.

As shown in the introductory section of this chapter, assuming a fixed control flow will
render many clauses and procedures ill-moded for some calling patterns and well-moded for
others. OQur research attempts to fill this gap by providing a framework for deriving control
flow and data flow simultaneously. Our algorithm finds permissible modes which induce

well-moded clauses. The fact it does not always succeed does not detract from its usefulness.

206

Its intended use is in a compiler which reconstructs the permissible modes omitted by the
programmer. Whenever, it fails to derive a desired permissible mode the programmer may
add the permissible mode declarations which are then verified by the system.

The current algorithm sacrifices completeness for tractable complexity and is ex-
pected to be useful in a system where the responsibility of permissible mode inferencing

and reconstruction is shared between the system and the programmer,
Naish

Naish’s research (64] on handling control in Prolog is the work most relevant to ours.
He discusses problems of non-termination in Prolog and suggest using wait declarations
which delay a goal if some of the arguments are not sufficiently instantiated. For example,
a call to the concat procedure must be delayed in the first and the third argument are both
variables. He gives an algorithm which generates wait declarations automatically. The
essence of the algorithm is in comparing pairs of arguments of the head and a recursive goal
of a clause; whenever a head argument is less general than the corresponding goal argument,
a wait declaration is created. This procedure is applied to all recursive procedures. The
algorithm fails when all the arguments of a head are as general as the arguments of a
recursive call. The wait declarations are tested at run-time for each call to a procedure that
has wait declarations. Note that wait declarations are generated for each procedure without
considering the wait declarations of other procedures. This may appear as intra-procedural
analysis. However, it is not so because no analysis of the body goals of a clause is done to
ensure that input output requirements are met. In fact, there is no notion of input output
requirements.

We use the same idea of comparing head and goal arguments, but only for simply
recursive procedures, as a starting point. We define different rules for partial permissible

modes of non-simply-recursive procedures, define the notion of permissible modes, and give

- 207

a sound and terminating algorithm for deriving permissible modes. We use a control flow
independent abstract interpretation scheme to derive the output variables of literals. The
partial order (if unique) induced by a permissible mode is used as the control flow within a
clause,

The wait declarations of Naish disallow unbound variables in procedure calls at certain
argument positions, i.e., does not reciuire them to be fully ground terms. Qur current mode
definition expects the input arguments to be fully ground. However, as mentioned before,
the framework does not depend on the definitions of input and output modes; the mode

definitions can be refined.

Sagiv, Ullman, Van Gelder

The research of Sagiv and Ullman (71], and Ullman and Van Gelder [85)] is concerned
mainly with proving termination of top-down (or goal-directed) evaluation of logic programs
in the context of deductive data bases. The language is usually restricted to have no function
symbols. Bottom-up evaluation of function-free programs will always terminate because
the Herbrand universe (the set of first order ground terms) is finite; since the domain is
finite, fixed-point computations of monotonic functions will terminate. However, top-down

evaluations may not terminate even if there are no function symbels.

Example 5.20
Consider a transitive relation path defined on a directed graph by the following
program. Assume that the edges of the graph are represented by a set of facts of
the form edge(A,B) (not shown here), where A and B are vertices in the graph.
There is a path from X to Y if there is an edge from X to Y. In the transitive case,
there is a path from X to Y if there is an edge from X to Z and there is a path

from Z to Y.

208

1. path(X,Y) :- edge(X,Y).
2. path(X,Y) :- edge(X,2), path(Z,Y).

The above program does not have function symbols. A bottom-up evaluation
will terminate, whether the graph has cycles or not. A naive top-down evaluation

will have infinite derivations, if there are cycles in the graph.? o

However, a top-down or goal-directed computation can be more efficient than a
bottom-up computation since the former only computes what is necessary, unlike naive
bottom-up methods which compute facts afier facts whether they are needed are not.1°
Hence, researchers have concentrated on using top-down methods for query evaluation in
deductive databases [83, 84). The problem with top-down is that naive evaluation may
not terminate. Termination is essential in deductive database context, especially since an
ordinary user who types in a query in a high level query language is not expected to worry
about termination. “Capture rules” are used to guide top-down evaluation in deductive
databases. A capture rule is similar to a mode in logic programs; it says when a goal is
sufficiently instantiated for evaluation. As mentioned before, the research of Ullman and
Van Gelder [85] is aimed at proving termination of capture rules. Sagiv and Ullman studied
the complexity of one such capture rule and show that it has better worst-case complexity
than Naish’s [64] method.

Our research is complementary to the above research and other research in proving
termination. Once we have a permissible mode for all predicates, the termination proof
procedures can be applied to show termination. The derivation of permissible modes which

ensures that the data dependencies of body goals are satisfied (assuming termination) is

9Experienced Prolog programmers would write the above relation with an extra param-
eter Visited which keeps track of the nodes visited and thus avoid loops.

19This is the same argument made about naive bottom-up computation of fixed-points
and the top-down directed computation of Minimal Function Graph fixed-point semantics
in Chapter 4

209

akin to showing partial correctness of programs. Partial correctness, in program verification
context, means proving statements of the following form. “If some property P holds at the
start of a program and the execution reaches point A, then the property Q holds for the
program state at point A.” Point A may be the end of a program, in which case, the
statement becomes: “If a property P holds at the start of a program, and if the program
terminates, then property Q holds.” If one proves termination in addition to proving the

above, then one has proved total correctness.
Debra;

Debray is one of earliest researchers in the field of data flow analysis of logic programs.
Among his contributions are data flow analyses for deriving modes for sequential logic
programs [29], and a framework for analysis of parallel logic programs [28].

The last mentioned work on analysis of parallel logic programs appears relevant to
our work, since it does not assume a sequential control flow. However, it assumes that the
control flow is given, either by the programmer or derived automatically by some other
method. This is a departure from the usual assumption that body goals are executed left-
to-right. However, the the problem of deriving control flow without assuming data flow and
vice versa was not addressed.

In a technical report [27], Debray considers the problem of deriving a control flow,
given “needs assertions” for procedures. “Needs assertions” are similar in spirit to our
permissible modes, except that he does not define “needs assertions™ and does not provide
an algorithm for deriving them. Assuming that needs assertions are provided either by
the programmer or by the some other method, he shows that the problem of deriving a
partial ordering of body goals, in order to maximize parallelism, contains an NP-Complete
problem of computing maximal independent subsets as a sub-problem. He then gives a

greedy approximation algorithm for deriving a partial ordering to maximize parallelism.

210

We did not consider the problem of deriving a partial ordering for the body goals,
given permissible modes, in detail; in many cases (even for non-deterministic programs), a
permissible mode for a procedure induces a unique control flow for the clauses of a procedure.
When more than one control flow is possible, Debray’s algorithm for deriving a partial

ordering may be used.

Ueda and Morita

Ueda and Morita [82] proposed a system of types and modes for Guarded Horn Clause
programs. In their system, the types of terms are represented by rational trees, and each
path in the tree is assigned a unique mode. They propose a set of mode inference rules
or constraints for deriving the modes of all paths in a program. A constraint propagation
system is used for deriving missing modes and for signaling mode violations, if any. Tick and
others [81] provide an algorithm based on cyclic unification for deriving modes according
to Ueda’s mode inference rules. An FGHC program is well-moded if and only if every path
in the program has a unique mode.

At a high level of abstraction, the notion of modes as constraints and mode derivation
as constraint propagation point to the similarities between Ueda’s and our approach to mode
analysis. In fact, this is a common theme in all mode analyses. We also use a notion of
well-modedness in defining permissible modes. The constraint rule that recursive calls in
the body of a clause must have the same mode as the head is similar to one of Ueda’s mode
inference rules. However, there are some significant differences.

The first and foremost difference is that FGHC programs have an implicit notion
of inputs and outputs. Head-goal matching in FGHC programs is not allowed to bind
variables in the goal. If an actual parameter is less instantiated than the corresponding
formal parameter of a clause, execution suspends. Thus structures and constants (non-

variable terms) appearing in the head of a clause therefore signify input modality. In Horn

211

Clause Logic (HCL) programs, there is no such restriction, i.e., structures in the head of
a clause do not restrict the actual parameter to be input. This makes mode inferencing
harder in the case of Horn Clause Logic programs. Similar to head-goal matching, guards
in a clause may be used for inferring modes for an FGHC procedure. There are no guards
in HCL programs.

The second difference is that HCL procedures may have more than one permissible
mode. Moded GHC programs restrict each procedure to one mode only. Another difference
is that -every path in an FGHC program must have a mode. For HCL programs, some
arguments of a procedure may not have a mode.

Currently, our definition of modes is restrictive: “input” mode denotes a fully ground
term at call time. Ueda's notion of modes is more fine-grained and similar in spirit to other
proposals by Bruynooghe and Janssens [12], Bronsard, Lakshman, and Reddy [10], and
Somogyi {74).

In our framework, mode conflicts or failure to derive permissible modes can be local-
ized to clauses. Permissible mode derivation continues as long as at least one permissible
mode is derived for a clause in a procedure. In Ueda’s [82] and Tick’s [81] approach, mode
conflicts are not always localized to clauses. Attribution of errors to specific clauses is

difficult because of the manner in which constraints are propagated.

Conery

Conery [20] considered the problem of ordering body literals of a clause and discusses
a number of heuristics in the context of both sequential and AND-parallel executions. The
literal ordering strategies considered in sequential execution are: select literals in ascending
order of the number of solutions; when the number of solutions of literals are not known in
advance, select in ascending order of number of unbound variables in goals. This is known

as the “ground term is better” assumption. At least in a database context, more ground

212

arguments imply that the selection condition is stronger, and hence the number of tuples
which satisfy the selection criteria is expected to be equal to or smaller than the case when
fewer arguments are bound to ground terms.

In the parallel execution context, Conery’s literal ordering algorithm has static and
dynamic components. The algorithm works with or without mode annotations, either pro-
vided by the programmer, or derived by data flow analysis. The algorithm maintains two
sets of variables, those that have been assigned generators (G) and those whose producers
are unknown (U), and the set of literals yet to be ordered. The static comporent uses mode
information, if any, and initializes U and G accordingly. It also marks literals as generators
or non-generators of variables, depending on whether the variables occur in an output or
input argument. At run-time, mode violations are detected; variables are assigned gen-
erators based on some heuristics. For example, a connection rule heuristic schedules an
unscheduled literal g if g has at least one variable X that is already generated and one
variable Y yet to be generated such that g is not marked as a non-generator of Y. Another
heuristic used is the leftmost rule, which designates the leftmost unscheduled literal g as
the generator of all the variables in U for which g is not marked as a non-generator.

Our approach is fully static in detecting lack of permissible modes, which is similar
in spirit to detecting mode violations. Like all static methods, ours will be less flexible
than a dynamic method in scheduling goals, simply because there is more information at
run-time. For example, the connection rule in Conery’s approach requires that at least one
variable in a literal ¢ must have been generated before g can be scheduled. Clearly, the
generated variable can differ from call to call. In our scheme, the requirement that at least
one argument to a clause be input is similar in spirit. The argument required to be input
is chosen based on both the partial permissibility conditions and the input requirements of

body goals.

213

Qthers

All the other work in data flow analysis of logic programs such as those by
Bruynooghe [13, 11, 12], Jones and Sondergaard [47}, Winsborough [89]), Marriott and
Sondergaard [55], Mellish [57], assume a fixed control flow. Constraint Logic Programming
languages do not have a sequential control flow; the execution of the body goals may be
interleaved. However, the analysis of constraint logic programs is not related to our work
mainly because of the need to safely approximate the interleaving and the implied modality
of predicates. The unification of a head and a goal is not allowed to bind goal variables,
i.e., non-variable terms appearing in a head argument imply that the corresponding goal
argument is bound to the same structure; if not, the head-goal matching either fails (if the
goal argument is bound to a structure with a different functor) or suspends until the goal

argument is sufficiently instantiated by another process.

Summary

Data flow analyses to date have assumed control fiow and vice-versa. We studied
the problem of simultaneous data flow and control flow analysis and provided a framework.
The mutual dependency of data flow and control flow is handled by introducing the notion
of permissible modes. Permissible modes try to capture desirable data flow. We showed
that the problem of deriving all minimal permissible modes of a procedure is intractable.
We then defined an approximation algorithm, which has polynomial time complexity under
reasonable assumptions. The efficacy of the analysis is supported by our implementation
of the permissible modes algorithm and the analysis of a number of non-trivial programs.
Groundness analysis is shown to be a bottleneck in permissible mode derivation. We sug-
gested using a condensing domain such as Pos for groundness analysis to avoid repeated
fixed-point computations.

Well-modedness and partial ordering of literals of a clause are pre-conditions for

214

termination proof procedures. These pre-conditions capture what is intuitively desirable
data flow. We accomplish this by defining the notion of permissible modes and providing a
practical procedure for deriving permissible modes without assuming control flow a priori.
Using the permissible modes, we derived a partial ordering of body goals such that the
clause is well-moded. It is true that our procedure for deriving permissible modes is not
complete. When the analyzer fails to find a desired permissible mode, the user may declare
one which is then verified by the analyzer. The suggested use of our algorithm as part of a
compiler is to produce the permissible modes and one or more orderings for the clauses of
a procedure, from which the programmer may choose the ordering.

In an approach similar in spirit to static type inferencing and type reconstruction [23),
a compiler can share the responsibility of permissible mode specification/reconstruction with
the programmer. Once permissible modes are specified and reconstructed, the compiler
can generate the orderings and handle most of the details of choosing among different
orderings itself; ‘when it cannot decide on an ordering based on its rules, the programmer
may interact with the system and choose among the competing orderings. When combined
with a condensing domain for data flow analysis, our method will be efficient enough to
be used in practice. We believe that the proposed simultaneous data flow and control flow
analysis will relieve the programmer of many mundane details and catch far more errors
in data flow, than an analysis which assumes a fixed control flow and propagates errors in
data flow.

As mentioned in the introduction, the current definitions of input and output modes
limit the usefulness of the system. However, this is not a limitation of the framework. It
is just the current state of the implementation. The framework can be instantiated with a

more expressive mode system.

215

CHAPTER VI

SUMMARY, EVALUATIONS, AND FUTURE WORK

In this chapter, we summarize and evaluate our contributions, discuss limitations,

and present future research directions.

Summary and Fvaluations

We studied two important issues in static analysis of logic programs. The first issue
deals with precise derivation of data dependencies, specifically information about sharing,
freeness, and groundness of variables. The second issue is the derivation of combined data
flow and control flow analyses.

One of the main uses of sharing, groundness, and freeness analysis is to parallelize
independent subgoals of a clause. There are other uses such as reducing the strength of
unificatior instructions, and compile-time detection of reusable memory structures. Data
flow analysis for deriving sharing information is an actively researched area. The main
problems in sharing analysis pertain to intractability of precise analyses, and the imprecision
of tractable analyses. Predictably, there are two broad categories of sharing analyses: one
strives for tractable analysis at the expense of precision and the other aims to derive as
precise an analysis as possible.

Our work takes the middle ground. We start with a sharing domain proposed by
Jacobs and Langen [44]. This domain captures sharing information in a substitution pre-
cisely, but its lack of expressivity results in treating sharing as a transitive relation. This
leads to two practical problems. The analysis is not very precise in deriving sharing in-

formation, and the abstract unification has an exponential component which is exercised

216

often in practice. We define a new domain Asub of which the sharing domain of Jacobs and
Langen is 2 component, maintain information about the linearity and freeness of terms, in
addition to sharing information, and define an abstract unification algorithm that treats
sharing as non-transitive whenever it is safe to do so. We analyze the time complexity of our
abstract interpretation scheme and identify exponential components. Worst-case analysis
does not shed light on the practicality of an algorithm when the worst-case complexity is
exponential in some parameter. We introduce the notion of programs with and without
“stable call substitutions” property and use this characterization to show that our scheme
has polyromial time complexity for programs with stable call substitutions property. For
programs without this property, a widening operation mitigates the problem of exponential
complexity to a some extent.

A combination of widening, and a precise domain and operations appears to be a
better alternative to choosing coarser domains and imprecise operations. The aim is to
balance the concern for worst-case time complexity, and the need for improved precision in
the expected case. In a practical setting, an implementation must provide both an imprecise
but worst-case polynomial time analysis, and a precise and mostly practical but worst-case
exponential time analysis.

A precise sharing analysis is feasible under some conditions. Our implementation of
the abstract interpretation scheme and analysis of a number of programs show the feasibility
of the proposed domain and operations. Another contribution is the novel characterization
of programs with and without stable call substitutions property. We believe that this
technique can be effectively used to shed some light on the complexity of analysis for different
classes of programs. Instead of claiming that an exponential time analysis seems to be
mostly practical, we can say that the analysis has polynomial time complexity for a certain
class of programs and not for others. A limitation of this characterization is that while it

can be used to justify why an analysis was efficient, it cannot always be used to predict

217

whether the analysis will be efficient. This is because the characterization does not appear
to be a syntactic property of programs. It is determined by the programs and the abstract
domain.

The second issue studied in this dissertation is the combined derivation of data flow
and control flow, without assuming one or the other. All approaches to static analysis
so far assumed that either data flow information is known or control flow is given. A
fixed control flow is inflexible and there is a cyclic dependency between data flow and
control flow. The cyclic dependency is broken by introducing permissible modes. We
show the intractability of deriving minimal permissible modes and define a polynomial time
approximation algorithm for deriving minimal permissible modes. Analysis of a number of
programs shows the usefulness and practicality of deriving permissible modes. For many
programs, a permissible mode for a procedure induces unique control flow for all its clauses.
For search-type programs, there may be more than one control flow associated with a given
permissible mode. We suggest heuristics but do not explore this further in this dissertation.

Our current implementation (not the framework) has a number of limitations. Fore-
most among them is the definition of input and output modes. Input mode denotes a ground
argument at call time and output mode denotes a ground argument when a goal succeeds.
In logic programs, partially instantiated data structures are used often and we cannot rea-
son about them using our current definition of modes. However, there have been many
proposals for combined type and mode analysis (assuming control flow) for logic programs.
The next line of research is to explore how to translate these ideas into our framework.

By opting for tractable permissible modes derivation algorithm, we sacrificed com-
pleteness and minimality. Thus our analyzer may reject some programs that are well-moded.
It is easier to verify if a given mode is permissible than to derive one. Hence, a promising
avenue is to combine permissible mode specification by the programmer with automatic

derivation by the system. The programmer’s intervention is needed only when the analyzer

- 218
fails to derive expected permissible modes. This is analogous to combining type checking
and type inferencing in the same system. Permissible mode derivation and checking can be
combined effectively. The permissible modes derivation algorithm will be more useful when
extended to deal with partially instantiated structures, and when combined with occasional

help from the programmer.
Future Work

Defining a combined type and mode analysis is the first and foremost extension of our
system. There has been active research in this area for sequential languages and concurrent
logic languages. Since groundness analysis accounted for 40% to 96% of the total time
spent in permissible mode derivation, defining a condensing abstract domain of modes and
types is important. Recall that a condensing domain needs fixed-point computations only
once per procedure to represent the abstract meaning of the procedure in closed form. This
implies that the success substitution corresponding to a call substitution can be computed
efficiently without fixed-point computations.

A condensing domain becomes more important in the context of modular programs
and separate compilation. One cannot expect to do a global analysis (the source code may
not be available, for example) every time some part of a system is changed. Thus defining
condensing domains for mode and type analysis, and deriving incremental data flow and
control flow analysis seem to be promising.

In a joint work [78], we developed compile-time memory reuse scheme for concurrent
logic programs. A limitation of that approach is that it has to consider all possible in-
terleavings allowed by the semantics. Deriving all permissible modes for concurrent logic
procedures using input-output modality constraints imposed by the language, and using
that information to focus on a few orderings that satisfy mode constraints is likely to in-

crease opportunities for memory reuse.

219

A longer term goal is to study the applicability of our analysis to higher-order logic
programming language such as Lambda Prolog [63] which is cleaner and more powerful than

Prolog.

220

BIBLIOGRAPHY

{1] Aro, A., HorcRroOFT, J., AND ULLMAN, J. The Design and Analysis of Computer
Algorithms, first ed. Addison-Wesley Publishing Company, 1974.

[2] Ano, A., SETHI, R., AND ULLMAN, J. Compilers, Principles, Techniques, and Tools.
Addison-Wesley, Reading MA, 1985.

[3] ApT, K. R., BoL, R. N., aND KLOP, J. W. On the Safe Termination of Prolog
Programs. In International Conference on Logic Programming (1989), pp. 353-368.

[4) ApT, K. R., AND PEDRESCHI, D. Studies in Pure Prolog: Termination. Tech. Rep.
CS5-R9048, Centrum voor Wiskunde en Informatica, Amsterdam, 1990.

[5] Apr, K. R., AND vAN EMDEN, M. H. Contributions to the Theory of Logic
Programming. Journal of the ACM 29, 3 (July 1982), 841-863.

[6] BanciLHON, F., MAIER, D., SAGIV, Y., AND ULLMAN, J. Magic Sets and Other
Strange Ways to Implement Logic Programs. In Symposium on Principles of
Database Systems (1986), pp. 1-15.

(7] BarsuTi, R., BELLIA, M., LEVI, G., AND MARTELLL, M. On the Integration of Logic
Programming and Functional Programming. In International Symposium on Logic
Programming (February 1984), IEEE Computer Society Press, pp. 160-168,

{8] BAuDINET, M. Proving Termination Properties of Prolog Programs: A Semantic
Approach. In Annual Symposium on Logic in Computer Science (1988), IEEE
Computer Society Press, pp. 336-347.

[9] BEzEM, M. Characterizing Termination of Logic Programs with Level Mappings. In
North American Conference on Logic Programming (1989), MIT Press, pp. 69-80.

[10) BronsaRD, F., LaksuMaN, T. K., aND REDDY, U. S. A Framework of
Directionality for Proving Termination of Logic Programs. In Joint International
Conference and Symposium on Logic Programming (1992), pp. 321-335.

[11) BRuvyNOOGHE, M. A Practical Framework for the Abstract Interpretation of Logic
Programs. Journal of Logic Programming 10, 2 (February 1991), 91-124.

(12] BRUYNOOGHE, M., AND JANSSENS, G. An Instance of Abstract Interpretation
Integrating Type and Mode Inference. In International Conference and Symposium
on Logic Programming (August 1988), MIT Press, pp. 669-683.

[13] BRUYNOOGHE, M., JANSSENS, G., CALLEBAUT, A., AND DEMOEN, B. Abstract
Interpretation: Towards the Global Optimization of Prolog Programs. In
Symposium on Logic Programming (1987), IEEE Computer Society Press,

Pp- 192-204,

- 221

[14) Cuang, J. H. High Performance Ezecution of Prolog Programs based on a Static
Data Dependency Analysis. PhD thesis, Dept. of Electrical Engineering and
Computer Science, University of California at Berkeley, 1985.

[15] Cuen, W., KiFeEr, M., AND WARREN, D. S. HiLog: A First-Order Semantics for
Higher-Order Logic Programming Constructs. In North American Conference on
Logic Programming (1989), pp. 1090-1114.

[16] CiTrIN, W. V. Parallel Unification Scheduling in Prolog. PhD thesis, Dept. of
Electrical Engineering and Computer Science, University of California at Berkeley,
1988.

[17]) CobpisH, M., DaMs, D., AND YARDENI, E. Derivation and Safety of an Abstract
Unification Algorithm for Groundness and Aliasing Analysis. In International
Conference on Logic Programming (1991), MIT Press, pp. 79-96.

(18] CopisH, M., MULKERS, A., BRUYNOOGHE, M., DE LA BaANDA, M. G., AND
HERMENEGILDO, M. Improving Abstract Interpretation by Combining Domains. In
Workshop on Partial Evaluation and Semantics-Based Program Manipulation
(1993), ACM Press.

[19] ConEen, J. Constraint Logic Programming Languages. Communications of the ACM
28, 4 (1990).

[20] CoNERY, J. S. Parcllel Execution of Logic Programs. Kluwer Academic Publishers,
Boston, MA, 1987.

[21] CousoT, P., aND Cousor, R. Abstract Interpretation: A Unified Lattice-Theoretic
Model for Static Analysis of Programs by Construction of Approximation of
Fixpoints. In Symposium on Principles of Programming Languages (1977), ACM
Press, pp. 238-252.

[22] Cousor, P., aND CousoT, R. Systematic Design of Prograin Analysis Frameworks.
In Symposium on Principles of Programming Languages (1979), ACM Press,
pp. 269-282,

[23]) Damas, L., AND MILNER, R. Principal Type-Schemes for Functional Programs. In
Symposium on Principles of Programming Languages (1982), ACM Press,
pp. 207-212.

[24] DARLINGTON, J., FiELD, A. J., AND PuLL, H. The Unification of Functional and
Logic Languages. In Logic Programming: Relations, Functions, and Equations,
D. DeGroot and G. Lindstrom, Eds. Prentice-Hall, Englewood Cliffs, NJ, 1985.

{25] Davis, M. D., AND WEYUKER, E. J. Computability, Complezity and Languages.
Academic Press, 1983.

222

[26) DEBRAY, S. On the Complexity of Dataflow Analysis of Logic Programs. In
International Colloguium on Automata, Languages and Programming (1992),
no. 623 in Lecture Notes in Computer Science, Springer-Verlag, pp. 509-520.

[27] DEBRAY, S. K. Synthesizing Control Strategies for AND-Parallel Logic Programs.
Tech. Rep. TR-87-12, University of Arizona, Tucson, Arizona, AZ-85721, 1987.

[28) DeBRAY, S. K. Static Analysis of Parallel Logic Programs. In International
Conference and Symposium on Logic Programming (1988), MIT Press, pp. 711-733.

[29] Desray, S. K. Static Inference of Modes and Data Dependencies. ACM Transactions
of Programming Languages and Systems 11, 3 (July 1989), 418—-450.

[30) DEBRAY, S. K. Formal Bases for Dataflow Analysis of Logic Programs. Unpublished,
1993.

[31] DeBRAY, S. K., AND WARREN, D. S. Functional Computations in Logic Programs.
ACM Transactions on Programming Languages and Systems 11, 3 (July 1989),
451-481.

[32] DEmBINSKL, P., AND MALUSZYNSKI, J. AND-Parallelism with Intelligent
Backtracking for Annotated Logic Programs. In Symposium on Logic Programming
(1985), IEEE Computer Society Press, pp. 29-38.

[33] Despain, A., AND Touati, H. An Empirical Study of the Warren Abstract Machine.
In International Symposium on Logic Programming (1987), IEEE Computer Society
Press, pp. 114-124,

[34] DieETRICH, S. W. Extension Tables: Memo Relations in Logic Programming. In
International Symposium on Logic Programming (1987), IEEE Computer Society
Press, pp. 264-272.

[35] DincBAS, M. Constraints, Logic Programming and Deductive Databases. In
France-Japan Artificial Intelligence and Computer Science Symposium (1986),
Pp- 1-27.

[36] DincBas, M., SiMoNIs, H., AND VAN HENTENRYCK, P. Solving a Cutting-Stock
Problem in Constraint Logic Programming. In International Conference and
Symposium on Logic Programming (1988), MIT Press, pp. 42-58.

[37) DiNcBas, M., AND VAN HENTENRYCK, P. Extended Unification Algorithms for the
Integration of Functiona! Programming into Logic Programming. Journal of Logic
Programming 4 (September 1987), 199-227.

[38] EMDEN, M. H. V., AND KowaLsKI, R. A. The Semantics of Predicate Logic as a
Programming Language. Journal of the ACM 23 (1976), 733-742.

223

[39] ENGLEBERT, V., LE CHARLIER, B., ROLAND, D., AND VAN HENTENRYCK, P.
Generic Abstract Interpretation Algorithms for Prolog: Two Optimization
Techniques and Their Experimental Evaluation. In Programming Language
Implementation and Logic Programming (1992), vol. 631 of Lecture Notes in
Computer Science, pp. 311-325.

[40] GaLLAIRE, H., MINKER, J., AND NicoLas, J.-M. Logic and Databases: a Deductive
Approach. Computing Surveys 16, 2 (June 1984), 153-185.

[41] GAREY, M., AND JoHNsoN, D. Computers and Intractability. W.H. Freeman and
Company, New York, 1979,

[42] HERMENEGILDO, M. V., AND Rossi, F. On the Correctness and Efficiency of
Independent And-Parallelism in Logic Programs. In North American Conference on
Logic Programming (1989), MIT Press, pp. 369-390.

[43] Huet, G. Constrained Resolution : A Complete Method for Higher Order Logic. PhD
thesis, Case Western Reserve University, August 1972.

[44]) Jacoss, D., AND LANGEN, A. Accurate and efficient approximation of variable
aliasing in logic programs. In North American Conference on Logic Programming
(1989), MIT Press, pp. 154-165.

[45) JanssEN, G., AND BRUYNOOGHE, M. Deriving Descriptions of Possible Values of
Program Variables by Means of Abstract Interpretation. Journal of Logic
Programming 18, 1, 2, 3 and 4 (1992), 205-258.

[46] JonEs, N., AND MYCROFT, A. Data Flow Analysis of Applicative Programs Using
Minimal Function Graphs. In Symposium on Principles of Programming Languages
(1986), ACM Press, pp. 296-306.

[47) JoNEs, N., AND SONDERGAARD, H. A Semantics Based Framework for the Abstract
Interpretation of Prolog. In Abstract Interpretation of Declarative Languages,
S. Abramsky and C. Hankin, Eds. Ellis Horwood Limited, 1987, ch. 6, pp. 123-142.

[48] KowaLski, R. A. Predicate Logic as a Programming Language. In Proceedings IFIPS
(1974), Stockholm, pp. 569-574.

[49] Laksuman, T. K., AND REDDY, U. S. Typed Prolog: A Semantic Reconstruction of
the Mycroft-O'Keefe Type System. In International Symposium on Logic
Programming (1991), MIT Press, pp. 202-220.

{50] Lassez, J.-L., MAHER, M., AND MARRIOTT, K. Unification Revisited. In
Foundations of Deductive Databases and Logic Programming, J. Minker, Ed.
Morgan Kaufmann Publishers Inc., 1988, pp. 587-626.

[51] LE CHARLIER, B., AND VAN HENTENRYCK, P. Experimental Evaluation of a Generic
Abstract Interpretation Algorithm for Prolog. In International Conference on
Computer Languages (1992), IEEE Computer Society Press.

224

[52] Lroyp, J. W. Foundations of Logic Programming, second ed. Springer-Verlag, Berlin,
1987.

[53] MANNA, Z. Mathematical Theory of Computation. Computer Science Series. McGraw
Hill Book Company, 1974.

[54] MaRrrIOTT, K., AND SONDERGAARD, H. Abstract Interpretation of Logic Programs:
the Denotational Approach. To appear in ACM Transactions on Programming
Languages and Systems.

[55] MARRIOTT, K., AND SONDERGAARD, H. Bottom-up Dataflow Analysis of Normal
Logic Programs. In International Conference and Symposium on Logic
Programming (1988), MIT Press, pp. 733-748.

(56] MarRrIOTT, K., AND SONDERGAARD, H. Notes for a Tutorial on Abstract
Interpretation of Logic Programs. North American Conference on Logic
Programming, 1989.

[57] MELLisk, C. S. Abstract Interpretation of Prolog Programs. In International
Conference on Logic Programming (1986), pp. 463—475.

(58] MiLLER, D. A Logic Programming Language with Lambda-Abstraction, Function
Variables, and Simple Unification. Journal of Logic and Computation 1, 4 (1991),
497 - 536.

[59] MILNER, R., TOFTE, M., AND HARPER, R. The Definition of Standard ML. MIT
Press, 1990,

[60] Moss, C., AND STERLING, L. Prolog Thousand Database. Obtainable by anonymous
ftp from src.doc.ic.ac.uk, Aug 1993.

[61] MUTHUKUMAR, K., AND HERMENEGILDO, M. Determination of Variable Dependence

Information Through Abstract Interpretation. In North American Conference on
Logic Programming (1989), MIT Press, pp. 166-185.

[62] MuTHUKUMAR, K., AND HERMENEGILDO, M. Combined Determination of Sharing
and Freeness of Program Variables Through Abstract Interpretation. In
International Conference on Logic Programming (1991), MIT Press, pp. 49-63.

[63] NADATHUR, G., AND MILLER, D. Higher-Order Horn Clauses. Journal of the ACM
37, 4 (October 1990), 777 — 814.

[64] Naisu, L. Negation and Control in Prolog. No. 238 in Lecture Notes in Computer
Science. Springer-Verlag, 1986.

[65] NERODE, A., MAREK, W., AND SUBRAHMANIAN, V., Eds. Logic Programming and
Non-Monotonic Reasoning (1991), MIT Press.

[66] NiELsow, H. R., AND NieLsoN, F. Semantics with Applications. John Wiley and
Sons, 1992,

225

[67] NiLssoN, U. Abstract Interpretation: A Kind of Magic. In Programming Language
Implementation and Logic Programming (1991), vol. 528 of Lecture Notes in
_ Computer Science, Springer-Verlag, pp. 299-309.

[68] PaLamIDESSI, C. Algebraic Properties of Idempotent Substitutions. In International
Colloquium on Automata, Languages and Programming (1990), vol. 443 of Lecture
Notes in Computer Science, Springer-Verlag, pp. 386-399.

[69] PLOoTKIN, G. A Structural Approach to Operational Semantics. Technical Report
DAIMI FN-19, CS Department, University of Aarhus, 1981.

[70] PLuMER, L. Termination Proofs for Logic Programs. No. 446 in Lecture Notes in
Artificial Intelligence. Springer-Verlag, 1990.

[71]) Saciv, Y., aND UrLMAN, J. D. Complexity of a Top-Down Capture Rule. Tech.
Rep. STAN-CS-84-1009, Stanford University, Stanford, CA 94305, 1984.

[72] ScuMmIDT, D. Denotational Semantics, second ed. Wm.C.Brown Publishers, 1988.

[73] Suariro, E. Y. The Family of Concurrent Logic Programming Languages. ACM
Computing Surveys 21, 3 (1989), 413-510.

[74] SoMoGyYl, Z. A System of Precise Modes for Logic Programs. In International
Conference on Logic Programming (1987), MIT Press, pp. 769-787.

[75] STERLING, L., AND SHAPIRO, E. Y. The Art of Prolog. MIT Press, Cambridge MA.,
1986.

[76] SToY, J. E. Denotational Semantics: The Scott-Strachey Approach to Programming
Language Theory, first ed. MIT Press, Cambridge MA., 1977.

[77) SUNDARARAJAN, R., AND CONERY, J. An Abstract Interpretation Scheme for
Groundness, Freeness and Sharing Analysis of Logic Programs. In 12!% Conference
on Foundations of Software Technology and Theoretical Computer Science (1992),
no. 652 in Lecture Notes in Computer Science, Springer-Verlag, pp. 203-216.

[78] SuNDARARAJAN, R., SASTRY, A. V. S., AND TICK, E. Variable Threadedness
Analysis for Concurrent Logic Programs. In Joint International Conference and
Symposium on Logic Programming (1992), MIT Press, pp. 493-508.

[79] Tamakt, H., aND SaTo, T. OLD-Resolution with Tabulation. In International
Conference on Logic Programming (1986), pp. 84-98.

[80] TenneNT, D. The Denotational Semantics of Programming Languages.
Communications of the ACM 19, 8 (1976), 437-453.

[81] Tick, E., MassEy, B. C., Rakoczi, F., AND TULAYATHUN, P. Concurrent Logic
Programs a la Mode. In Implementations of Logic Programming Systems, E. Tick
and G. Succi, Eds. Kluwer Academic Publishers, 1994,

226

[82] Uepa, K., AND MoORITA, M. A New Implementation Technique for Flat GHC. In
International Conference on Logic Programming (1990), MIT Press, pp. 3-17.

(83] ULLMAN, J. D. Principles of Database and Knowledge-base Systems, vol. 1. Computer
Science Press, 1988.

[84] UrLMAN, J. D. Principles of Database and Knowledge-base Systems, vol. II.
Computer Science Press, 1988.

[85] ULLmMaN, J. D., AND GELDER, A. V. Testing Applicability of Top-Down Capture
Rules. Journal of the ACM 35, 2 (1988), 345-373.

[86] Vasak, T., AND POTTER, J. Characterisation of Terminating Logic Programs. In
Symposium on Logic Programming (1986), IEEE Computer Society Press,
pp. 140-147.

[87) VERSCHAETSE, K., AND DE ScHREYE, D. Deriving Termination Proofs for Logic

Programs, Using Abstract Procedures. In International Conference on Logic
Programming (1991), MIT Press, pp. 301-315.

(88] WARREN, D. H. D., HERMENEGILDO, M., AND DEBRAY, S. K. On the Practicality
of Global Flow Analysis of Logic Programs. In International Conference and
Symposium on Logic Programming (1988), MIT Press, pp. 684—699.

[89] WiNsBOROUGH, W. Automatic, Transparent Parallelization of Logic Programs at
Compile-time. PhD thesis, University of Wisconsin-Madison, 1988.

[90) WinsBoroUGH, W. Multiple Specialization Using Minimal-Function Graph
Semantics. Journal of Logic Programming 13, 1,2, 3 and 4 (1992), 259-290.

[91] WoLFE, M., AND BANERIEE, U. Data Dependence and its Applications in Parallel
Processing. International Journal of Parallel Programming 16, 2 (April 1987), 137 -
178.

{92] X1a, H., aND GiLol, W. K. A New Application of Abstract Interpretation in Prolog
Programs. In IFIP WG 10.0 Workshop on Concepts and Characteristics of
Declarative Systems (1988), pp. 125-134.

[93] ZoBEL, J. Derivation of Polymorphic Types for Prolog Programs. In International
Conference on Logic Programming (1987), MIT Press, pp. 817-838.

