INTELLIGENT SACKTRACKING ON CONSTRAINT
SATISFACTION PROBLEMS: EXPERIMENTAL

AND THEORETIOAL RESUJLTS

by

ANDR¥W B. BAKER

A DISSERTATION

Presented to the Department of Computer and Information Science
and the Graduate School of the University of Oregon
in partial fulfillment of the requirements
for the degree of
Doctor of Philosophy

March 1995

“Intelligent Backtracking on Constraint Satisfaction Problems: Experimental and
Theoretical Results,” a dissertation prepared by Andrew B. Baker in partial fulfill-
ment of the requirements for the Doctor of Philosophy degree in the Department

of Computer and Information Science. This dissertation has been approved and

accepted by:

Wm(,(g

Dr. Matthew L. Ginsberg, Co-chair 7fhe Examining Committee

Corn W Lden

Dr. Eugent M. Luks, Co-chair of the Examining Committee

af 1|98
Date ! h

Committee in charge: Dr. Matthew L. Ginsberg, Co-chair
Dr. Eugene M. Luks, Co-chair
Dr. James M. Crawford
Dr. Thomas G. Dietterich
Dr. William M. Kantor

Vice Provost/dnd Dean of the Graduate School

iii

An Abstract of the Dissertation of
Andrew B. Baker for the degree of Doctor of Philosophy
in the Department of Computer and Information Science
to be taken March 1995
Title: INTELLIGENT BACKTRACKING ON CONSTRAINT SATISFACTION
PROBLEMS: EXPERIMENTAL AND THEORETICAL RESULTS

ol Cc_\

Dr. Matthew L. Ginsberg, Co-chair

Coaprn W L4,

@. Eugene M. Luks, Co-chair

Approved:

Approved:

The Constraint Satisfaction Problem is a type of combinatorial search problem
of much interest in Artificial Intelligence and Operations Research. The simplest al-
gorithm for solving such a problem is chronological backtracking, but this method
suffers from a malady known as “thrashing,” in which essentially the same subprob-
lems end up being solved repeatedly. Intelligent backtracking algorithms, such as
backjumping and dependency-directed backtracking, were designed to address this
difficulty, but the exact utility and range of applicability of these techniques have
not been fully explored. This dissertation describes an experimental and theoretical
investigation into the power of these intelligent backtracking algorithms.

We compare the empirical performance of several such algorithms on a range of
problem distributions. We show that the more sophisticated algorithms are especially

useful on those problems with a small number of constraints that happen to be dif-

iv
ficult for chronological backtracking. We also illuminate some issues concerning the
distribution of hard and easy constraint problems. It was previously believed that
the hardest problems had a small number of constraints, but we show that this result
is an artifact of chronological backtracking that does not apply to the more advanced
algorithms.

We then study the performance of a particular intelligent backtracking algo-
rithm that has been of much interest: dynamic backtracking. We demonstrate exper-
imentally that for some problems this algorithm can do more harm than good. We
discuss the reason for this phenomenon, and we present a modification to dynamic
backtracking that fixes the problem.

We also present theoretical worst-case results. It is known that dependency-
directed backtracking can solve a constraint satisfaction problem in time exponential
in a particular problem parameter known as the “induced width.” This algorithm,
however, requires about as much space as time; that is, its space requirements also
grow exponentially in this parameter. This suggests the question of whether it is
possible for a polynomial-space algorithm to be exponential in the induced width.
We show that for a large class of constraint satisfaction algorithms, it is not possible.

That is, there is a trade-off in intelligent backtracking between space and time.

CURRICULUM VITA

NAME OF AUTHOR: Andrew B. Baker

GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED:

University of Oregon
Stanford University
Harvard University

DEGREES AWARDED:

Doctor of Philosophy in Computer Science, 1995, University of Oregon
Master of Science in Computer Science, 1993, Stanford University
Bachelor of Arts summa cum laude in Physics, 1987, Harvard University

PROFESSIONAL EXPERIENCE:

Computer Science Researcher, Microelectronics and Computer Tech-
nology Corporation, Palo Alto, California, Summer 1990

Teaching Assistant, Stanford University, Stanford, California, January-
April 1989

Computer Science Researcher, Rockwell International Science Center,
Palo Alto, California, Summer 1988

Programmer, Merle Systems, Boston, Massachusetts, Summer 1987

Robotics and Machine Vision Researcher, RCA Advanced Technology
Laboratory, Moorestown, New Jersey, Summers 1985 and 1986

Programmer, GRASP Laboratory, University of Pennsylvania,
Philadelphia, Pennsylvania

AWARDS AND HONORS:

Air Force Office of Scientific Research Graduate Fellowship, 1987-1990
National Science Foundation Gradunate Fellowship (Declined), 1987
Phi Beta Kappa, 1987

John Harvard Scholarship (Honorary), 1984-1986

Willingboro High School Valedictorian, Willingboro, NJ, 1983

PUBLICATIONS:

1. Andrew B. Baker. A simple solution to the Yale shooting problem.
In Proceedings of the First International Conference on Principles of
Knowledge Representation and Reasoning, pages 11-20, 1989.

2. Andrew B. Baker. Nonmonotonic reasoning in the framework of
situation calculus. Artificial Intelligence, 49:5-23, 1991.

3. Andrew B. Baker. The hazards of fancy backtracking. In Proceed-
ings of the Twelfth National Conference on Artificial Intelligence, pages
288-293, 1994.

4. Andrew B. Baker. Intelligent backtracking on the hardest constraint
problems. Journal of Artificial Intelligence Research, 1995. In press.

5. Andrew B. Baker and Matthew L. Ginsberg. Temporal projection
and explanation. In Proceedings of the Eleventh International Joint
Conference on Artificial Intelligence, pages 906-911, 1989.

6. Andrew B. Baker and Matthew L. Ginsberg. A theorem prover
for prioritized circumscription. In Proceedings of the Eleventh [nterna-
tional Joint Conference on Artificial Intelligence, pages 463-467, 1989.

7. James M. Crawford and Andrew B. Baker. Experimental results
on the application of satisfiability algorithms to scheduling problems.
In Proceedings of the Twelfth National Conference on Artificial Intelli-
gence, pages 1092-1097, 1994.

vi

ACKNOWLEDGEMENTS

I would like to thank my advisor, Matt Ginsberg, for his wise advice, his tech-
nical leadership, and his many acts of assistance and kindness. It is no exaggeration
to say that without him this disserfation would never have been written; indeed, it
would not even have been started. Matt encouraged me to come to Qregon to finish
up my Ph.D. and improve my employment prospects. I was a bit skeptical at first,
but everything worked out exactly the way he said it would.

Jimi Crawford has been a source of invaluable technical expertise and of many
good ideas; I have benefited greatly from his help. I would also like to thank Eugene
{uks, Thomas Dietterich, and William Kantor for their useful comments on this
dissertation.

I have enjoyed working with all the other members of the Computational Intelli-
gence Research Laboratory, especially Will Harvey, Tania Bedrax-Weiss, Ari Jénsson,
and David Etherington. Laurie Buchanan kept the lab running smoothly, and Betty
Lockwood (at the Computer Science Department) helped shepherd me through the
various requirements of the Ph.D. program.

This work has been supported by the Air Force Office of Scientific Research
under grant number 92-0693 and by ARPA /Rome Labs under grant numbers F30602-
91-C-0036 and F30602-93-C-00031. My earlier work at Stanford was supported by
a graduate fellowship from the Air Force Office of Scientific Research. I owe many
thanks to these funding organizations, and thus ultimately to the American taxpayers.

Finally, I am grateful to my parents for their steadfast love and support through

good times and bad. I cannot thank them enough.

viii

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION ittt e it ettt eie e 1
Constraint Satisfaction Problems 2
Backtracking Algorithms 5
Overview of the Rest of the Thesis 21

II. INTELLIGENT BACKTRACKING ON THE HARDEST CONSTRAINT
PROBLEMS i et et et ie e 25
Introduction e 25
Graph Coloring and Backtracking 27
Backjumping e e 33
Dependency-Directed Backtracking 41
Summary e e e e e e e e e e e e 47
IIT. THE HAZARDS OF FANCY BACKTRACKING 49
Introduction e e e e 49
Dynamic Backtracking 52
Experiments e e .. 55
Analysis e e e e e e e 58
Solution e e e 61
SUMMArY . . . o h e e e e e e e e e e e e e e e e e e e 63
IV. BACKTRACKING AND THE INDUCEDWIDTH 65
The Induced Widthof a CSP 66
Dependency-Directed Backtracking 76
Backtracking and Backjumping, 82
Dynamic Backtracking, 85
Polynomial-Space Caching 92
SUMMArY . o . v vttt i e e e e e e e e e e e e e e e e e 97
V. OPTIMAL SEARCH ORDER AND THE INDUCED WIDTH 99
Introduction 99
Optimal Backtracking and Backjumping 101
Optimal k-Order Learning 106
Resolution-Based Methods 112

ix

Page

Polynomial-Space Resolution 137

Summary e e e e 141

V.. RELATEDWORK 143
Backtracking Algorithms 143
Constraint Propagation 154
Nonsystematic Methods 159

Tractable Classes of CSPs 162

Proof Methods v.... 172

VII. CONCLUSION ittt e et et ee e 176
Contributions 176

Future Work e e . 178

BIBLIOGRAPHY i i e e e e 180

LIST OF TABLES

Table Page
1. Space and Time Complexity with Respect to the Induced Width 23
2. Average Performance over the Problem Set 45
3. Performance on the Hardest Example for Various Values ofv. 46
4. A Comparison Using Randomly-Generated 3-SAT Problems 57
5. The Same Comparison as Table 4, but with the Heuristics Disabled .. 60
6. The Same Comparison as Table 4, but with Dvnamic Backtracking Mod-

ified to Undo Unit Propagation When It Backtracks 63

Figure

© 0 N e oo oA e N

T I N R N e L T S e o S S I = S
B H S ® ® N S ok ® 8 =D

23.

LIST OF FIGURES

Page
Exhaustive Search 7
Backtracking 10
Backjumping 11
Dependency-Directed Backtracking 14
k-Order Learning 16
Generalized Dependency-Directed Backtracking 16
Dynamic Backtracking 20
Median Search Cost for Backtracking; Percentage with Solution 29
Mean Search Cost for Backtracking 29
Various Percentiles of the Search Cost for Backtracking 30
Maximum Search Cost for Backtracking 39
Distribution of Search Costs for Backtracking 32
Median and 95% Level for Backjumping and Backtracking 36
Mean for Backjumping and Backtracking 37
The 99.5% Level for Backjumping and Backtracking 38
The 99.95% Level for Backjumping and Backtracking 38
Maximum Search Cost for Backjumping - - -« - - - | 39
The 99.995% Level for Backjumping. 39
Distribution of Search Costs for Backjumping 40
Mean Search Cost for Backjumping (Using Million Samples) 41
Various Percentiles for Dependency-Directed Backtracking 43
The 99.95% Level for Dependency-Directed Backtracking and Back-
jumping e e e 43

The 99.995% Level for Dependency-Directed Backtracking and Back-
JUMPING . o o v e 44

24.
25.
26.
27.
28.
29.
30.
31.
32.
33.

Distribution of Search Costs for Dependency-Directed Backtracking
Freuder’s Algorithm for a Width-1 CSP
Adaptive Consistency
The Constraint Graph of Problem P; from Example IV.10
The Constraint Graph of Problem P; from Example IV.14
The Induced Graph of Problem P, from ExampleIV.14
The Constraint Graph of Problem P;4 from Example IV.18 and IV.21
The Localized Pigeonhole Problem
The Constraint Graph of Problem P; of Example V.21
Bandwidth vs. Front Length vs. Induced Width

CHAPTER 1

INTRODUCTION

Constraint satisfaction problems are a type of combinatorial search problem
of much interest in Artificial Intelligence and Operations Research. In a constraint
satisfaction problem, or CSP, we are given a set of variables to which values must be
assigned, and we are also given a set of constraints that restrict these assignments.
The challenge is to assign values to all the variables without violating any of the
constraints — or to determine that no such solution is possible [29, 56, 58, 59, 66).

One example of a constraint satisfaction problem is graph (or map) coloring.
Here the variables are the vertices (or countries), the values are the available col-
ors, and the constraints require that adjacent variables be colored differently. Other
CSPs are important in scheduling, design, temporal reasoning, natural language un-
derstanding, scene interpretation, and a slew of other applications.

The simplest algorithm used in practice is backtracking, or depth-first search.
It has long been noticed, however, that simple backtracking can suffer from a variety
of maladies, referred to as “thrashing,” in which time is wasted exploring portions
of the search space that cannot possibly contain any solutions. A number of more
intelligent backtracking algorithms have been developed with the goal of reducing the
amount of thrashing, e.g., backjumping {40], dependency-directed backtracking [79],
k-order learning (28], and dynamic backtracking [42]. The exact utility and range of
applicability of these techniques, however, have not been fully explored.

On what type of constraint problem is intelligent backtracking most likely to be

2

useful? Is it helpful only on a few pathological examples, or can it actually improve the
average performance? What are the disadvantages, if any, of the various techniques?
What type of worst-case guarantees can one give? This dissertation is an experimental
and theoretical investigation into the power of the various intelligent backtracking
algorithms, and it will shed some light on these questions.

The experimental results are in Chapters I and III, and the theoretical results
are in Chapters IV and V. Sections I.1 and 1.2 review some basic concepts that are
necessary for understanding the dissertation, and Section 1.3 provides an overview of
the new results.

(This document is formatted to comply with the standards of the University of
Oregon. Readers interested in the version with a more modern format should contact

the author.)
Constraint Satisfaction Problems

A constraint satisfaction problem, or CSP, consists of a set of variables that
must be assigned values from certain domains, subject to a set of constraints. Each
constraint specifies allowed combinations of values for some tuple of variables. More

formally:

Definition 1.1 A constraint satisfaction problem is defined by a triple (V, D, C). Here,
V is a finite set of variables, and D is a mapping from V to the domains; for each
variable v € V, D, will denote the domain of v, that is, the finite sel of values that v
may assume. Finally, C is a finite sel of constrainis; each constraint in C is a pair
(W, Q), where W = (wy,...,ws) is a list of variables fromV, and Q@ C D, x---x D,
is a predicate on these variables. A solution fo the problem is a total assignment f

of values to variables, such that for eachv € V, f(v) € D, and for each constraint

3

((wry ey wie)y @), (f(wr),..., f(we)) € Q. If there is no such solution, then we will

say that the problem is unsatisfiable.

We are interested in the search problem for a CSP, that is, the problem of finding a
solution if one exists, or otherwise returning the answer UNSAT (short for unsatisfi-
able). There are other problems that one might also study: the decision problem (de-
termining whether or not a solution exists), the enumeration problem (finding all the
solutions), or even the counting problem (determining the number of solutions)[70].
There are some obvious relationships between the various problems, but in general,
when we refer without further elaboration to a “CSP algorithm,” this will mean an
algorithm for the search problem.

For any variable v, we will refer to |D,|, the number of allowed values for v,
as the domain size of that variable. A Boolean CSP is one in which the maximum
domain size is 2. A constraint that involves k variables, say ((wq,...,w), @), will be
called a k-ary constraint; if & is 2, then it will also be called a binary constraint. The
arity of a CSP is the maximum arity of any of its constraints, and a binary CSP is
one with arity 2.

To illustrate these definitions, consider a very small example with three vari-

ables.

Example 1.2 Let V be {a,b,c}, let D, = Dy = D, = {1,2,3}, and let W be

{((a,d),G), ((b,¢), G),((c,a), G)},

where G is the predicate {(z,y) : ¢ > y}.

Example 1.2 requires that a, b, and ¢ all be integers from 1 to 3,such that a > 6> ¢ >

a. (Note that this is a binary CSP since each constraint connects only 2 variables.)

4

The CSP, of course, has no solution. If we modified the example by eliminating the
constraint ¢ > a, then we would have exactly one solution, namely the function f,
where f(a) =3, f(b) =2, and f(c) =1.

The computational complexity of a problem is generally discussed in terms of
the size of its encoding as a string, so we should say something about the encoding
that we are assuming. Consider a problem with n variables and a maximum domain
size of a. For each domain, the only real information is the number of values in that
domain, and this will require O(log a) space per variable or O(nloga) altogether.?
To encode the k-ary constraint, ((wy,...,ws), @), we first use O(klogn) to list the

relevant variables, and we then use

k
H |Dws|

i=1

bits to encode the predicate ¢ (that is one bit for each combination of values). Thus,
if there are m constraints altogether, if a is the maximum domain size, and if the

constraints are at most k-ary, then the size of the problem is
O(nlog a + m(klogn + a*)) (1.1)

The details of formula (I.1) are of little importance. The only thing to note is the
exponential dependence on k; as long as k is bounded, (I.1) is polynomial in all the
parameters, but when k is unbounded for some class of problems, we will have to be

more careful: in that case, we might want to represent the constraint as a procedure

1This is the standard notation for representing asymptotic complexity [21]. We say
that f(n) = O(ggu)? if there are positive constants ¢ and ng such that f(n) < cg(n) for
all n > ng. Similarly, f(n) = $2(g(n)) if there are positive constants ¢ and np such that
f(n) > cg(n) for all n > n,.

instead of as a giant table.

It is clear that in its most general form, the constraint satisfaction problem
is NP-hard. This is true even for some quite restricted special cases. Consider,
for example, the class of Boolean CSPs with maximum arity 3. This subsumes 3-
SATISFIABILITY, which is NP-complete [37]. Alternatively, consider the class of bi-
nary CSPs with maximum domain size 3. This includes GRAPH 3-COLORABILITY
as a special case, and that problem is also known to be NP-complete [37]. If we re-
quire all constraints to be binary end all domains to be Boolean, then we finally
have a tractable problem, 2-SATISFIABILITY, which can in fact be solved in linear
time [4]. This case is so restricted, however, that it is of little practical interest, and
as we have just noted, relaxing these restrictions even slightly would immediately
make the problem NP-hard again.

One thing that might be interesting would be a measure of problem “difficulty”,
for which the time complexity of the problem would be exponential only in this
parameter, regardless of the size of the problem. Thus for any fixed difficulty level,
the class of problems of this difficulty would be a tractable problem class. As Dechter
and Pearl [30] have noted, the induced width is such a parameter, and we will discuss

the induced width in some depth in Chapters IV and V.

Backtracking Algorithms

This section will discuss the major systematic search algorithms for constraint
satisfaction problems. All of the algorithms make use of partial assignments. A
partial assignment assigns values to some subset of the variables in the problem,
leaving the others unbound. Two special cases are a fotal assignment, which assigns

values to all of the variables, and the null assignment, which assigns values to none of

6

them. The search algorithms to be described all work as follows. They start with the
null assignment, and then extend it incrementally by assigning values to successive
variables. If at some point, they determine that the current partial assignment is a
dead end, that is, that it cannot be extended to a total assignment that satisfies all of
the constraints, then the algorithms “backtrack” by unsetting some of the variables in
the current partial assignment. Eventually, they either succeed in finding a solution,
or in proving that no solution exists. Where the various algorithms differ is in how

quickly they can discover a dead end, and how far they are then able to backtrack.
Exhaustive Search

About the simplest approach imaginable is to generate each of the

IT 1D

veV

total assignments in order until one is found that satisfies all of the constraints. It is
not a very eflicient search strategy, but it will serve as a convenient starting point for
our analysis. The algorithm, EXHAUSTIVE-SEARCH, is displayed in Figure 1.7

The top-level procedure, EXHAUSTIVE-SEARCH-TOP, is called with one argu-
ment, P, which should be a CSP of the form (V,D,(C), and it returns a solution
to the CSP, or UNSAT if no solution exists. It does this by creating an empty as-
signment, and then calling the recursive procedure EXHAUSTIVE-SEARCH to do the
work. EXHAUSTIVE-SEARCH takes a partial assignment f as its first argument, and

it returns some completion of this assignment that satisfies all of the constraints, or

2We use the following conventions in our pseudocode: procedures (like EXHAUSTIVE-
SEARCH) and symbolic constants (like UNSAT) are written in small capitals, and variables
are in italics; program structure is indicated by indentation alone in order to avoid the clutter
of begin and end statements or other delimiters; finally, the line numbers are not part of
the code, but merely serve as convenient labels to facilitate discussion of the algorithms.

EXHAUSTIVE-SEARCH-TOP(P) {where P is a CSP of the form (V,D,C)}
1 f := the null assignment
2 return EXHAUSTIVE-SEARCH(f, P)

EXHAUSTIVE-SEARCH(f, P)

1 if f is a total assignment of the variables in P

2 if f satisfies the constraints in P

3 answer := f

4 else

5 answer := UNSAT

6 else

7 v := some variable in P that is not yet assigned a value by f
8 answer := UNSAT

9 for each value z € D, while answer = UNSAT
10 fl@):===

11 answer := EXHAUSTIVE-SEARCH(f, P)

12 return answer

Figure 1: Exhaustive search

UNSAT if there is no such total assignment. If f is already a total assignment, then
the procedure just has to check whether f satisfies the constraints or not. If f is
not yet a total assignment, the algorithm chooses an unbound variable v, and then
recursively invokes EXHAUSTIVE-SEARCH for each possible value of v. The for-while
loop on lines 9-11 is set up to terminate as soon as the first solution is found; it would
be straightforward to modify the algorithm to instead collect all of the solutions.
The procedure, as described, is nondeterministic because it does not specify
which variable is selected on line 7, and nor does it specify the order in which the
values are enumerated on line 9. The question of how to make these decisions wisely
is actually a very important issue when solving CSPs. One possibility is a static
variable ordering in which the variables are simply instantiated in some fixed order,
say vy, V2,...,Vs. Jimilarly, a static value ordering would always enumerate the values

in some fixed order. A more sophisticated strategy would be to make these decisions

8

dynamically based on the current state of the search. For example, after setting
v; to some value, one might branch on v;, but after going back and setting v, to
some other value, one might then branch on v;. For the simpleminded EXHAUSTIVE-
SEARCH algorithm, this would not make much of a difference, but for some of the more
sophisticated search algorithms, there is substantial evidence that dynamic orderings
help {23, 43, 49, 87]. We will have something to say on this subject later, but for now,

the examples we use to illustrate the various algorithms will all use static orderings.
Backtracking

The most obvious inefficiency in EXHAUSTIVE-SEARCH is that it does not check
any of the constraints until it gets to the bottom of the search tree. Consider a problem
in which the variables are selected in the (static) order vy,v,...v100, and the only
possible values for any of the variables are 1 and 2; suppose the value 1 is always tried
before the value 2. Suppose further that there is a constraint that v, and v; cannot
both be 1 at the same time. After setting v; and v, to be 1, the exhaustive search
approach will not notice the contradiction until the other 98 variables have been set,
and it will have to rediscover this contradiction for each possible completion, or up to
2% times altogether. This type of pathology, in which the search algorithm repeatedly
fails for the same reason, is sometimes referred to as “thrashing.” It would be more
efficient to check the constraints immediately after each variable is assigned a value,
and this is what backiracking does (8, 12, 17, 46, 55, 84].

The only difference between the backtracking algorithm in Figure 2 and the
exhaustive-search algorithm in Figure 1 is in the location of the consistency check.
After assigning a value to a variable on line 7, BACKTRACKING checks at once (on

line 8) whether the partial assignment still satisfies the constraints; if it does not, the

9

procedure will move on to the next value immediately. The nature of the consistency
check on line 8 is slightly different from that of EXHAUSTIVE-SEARCH. In the earlier
procedure, we were checking a total assignment against all of the constraints. Here
we are checking a partial assignment, so many of the constraints will not yet be
applicable. If we have some constraint (W, @), where W is a list of variables, and
(2 is a predicate on these variables, then the constraint will only be applicable if the
current partial assignment values all of the variables in W; if any of these variables
are not yet bound, then the constraint will be ignored for now. Furthermore, if
all the variables in W are bound, but the current variable v is not in W, then the
constraint can also be ignored since its consistency must have already been verified
at an earlier stage. In other words, instead of checking all of the constraints at
the bottom of the tree, the BACKTRACKING routine checks them incrementally on
the way down. Backtracking, then, is just a depth-first search of the tree of partial
solutions. Sometimes, it is referred to as “chronological” backtracking to distinguish

it from the more sophisticated algorithms that we will discuss below.
Backjumping

Backtracking reduces the amount of thrashing, but it does not eliminate it.
Consider a slight modification of the above example. Suppose that the variables are
again selected in the order v;,vs,...,v100, and the values are again selected in the
order 1 and then 2. Finally, assume that we have the constraint that vy > vigg. If v is
set to 1, then there is no possible value for vyg0, but backtracking will take a long time
to learn this. After setting v, through wvg all to 1, and failing with both values of vqq,
BACKTRACKING will go back, set vgg = 2, and then try v,90 again. Of course, this

will not help at all since the contradiction was solely with v;. BACKTRACKING will

10

BACKTRACKING-TOP(P) {where P is a CSP of the form (V,D,C}}
1 f := the null assignment
2 return BACKTRACKING(f, P)

BAGCKTRACKING(f, P)

1 if f is a total assignment of the variables in P

2 answer := f

3 else

4 v := some variable in P that is not yet assigned a value by f
5 answer 1= UNSAT

6 for each value z € D, while answer = UNSAT
7

8

9

1

flv) ==
if f satisfies the constraints in P
answer := BACKTRACKING(f, P)
0 return answer

Figure 2: Backtracking

have to go through all 2%® combinations of values for v, through vee before backing
up to v;.

What backtracking lacks is some mechanism for keeping track of the reasons for
a failure. If one knew which variables were relevant, one could immediately “jump
back” to the most recent of these variables instead of backtracking futilely through all
the intermediate irrelevant variables. This is the idea behind Gaschnig’s backjumping
algorithm [39, 40); see Figure 3 for the algorithm.®

The BACKIUMPING procedure, like BACKTRACKING, takes two arguments, a
partial assignment f and a constraint satisfaction problem P, but it now returns
two values. The first value has the same meaning as before, namely, it is a total

assignment that extends f and solves the problem, or the value UNSAT if f cannot

3 Actually, Gaschnig’s original backjumping [39, 40] was less powerful than the algorithm
in Figure 3. His algorithm only jumped back from leaf nodes (that is, calls to the procedure
for which all the constraint checks failed immediately without any further recursive calls),
and then backtracked normally thereafter. Our algorithm corresponds to backjumping as
described by Ginsberg [42] and to what Prosser {67} calls “conflict-directed backjumping.”

11

BAcKIUMPING-TOP(P) {where P is a CSP of the form (V, D, C)}
1 f := the null assignment

2 (answer, conflict-set) := BACKIUMPING(f,P)

3 return answer

BACKIUMPING(f, P)

1 if f is a total assignment of the variables in P

2 return (f, @)

3 else

4 v := some variable in P that is not yet assigned a value by f
5 answer := UNSAT

6 conflict-set :=

7 for each value z € D,

8 flv) ==z

9 if f satisfies the constraints in P

10 (answer, new-conflicts) := BACKIJUMPING(f, P)

11 else

12 new-conflicts := the set of variables in a violated constraint
13 if answer # UNSAT

14 return (answer, @)

15 else if v & new-conflicts

16 return {UNSAT, new-conflicts)

17 else

18 conflict-set := conflict-set U (new-conflicts — {v})

19 return (UNSAT, conflict-set)

Figure 3: Backjumping

12

be extended to a solution. The second value is the reason for the failure, if there is
indeed a failure. (If the first value is not UNSAT, then the second value is irrelevant;
by convention, we will set it to @ in that case.) By a reason for a failure we mean a
subset of the variables bound by f such that there is provably no solution with these
variables having their current values. We will call this set the conflict set.

How is the conflict set computed? After the variable v is selected on line 4, the
loop on lines 7-18 iterates through all the values in the domain D,. If the constraint
check on line 9 fails for a given value, this means that there is some constraint (W, Q)
that prevents v from taking that value; in that case, on line 12, the variable new-
conflicts is set to W, the set of variables in the constraint. If the constraint check on
line 9 succeeds, but the recursive invocation of BACKJUMPING fails, then the new-
conflicts will be returned by this recursive call. If the current variable is not one of
the new conflict variables (this can only happen in the case of the recursive call), then
the procedure immediately returns (lines 15-16), and pops up the stack in this fashion
until it reaches a relevant variable. If there is never an opportunity to “backjump”
in this fashion — and if none of the values lead to a solution — then the conflict-set
that is updated on line 18 will in the end contain all of the preceding variables that

were involved in any of the failures. The conflict set will be returned on line 19.
Dependency-Directed Backtracking

While backjumping is more powerful than simple backtracking, it still can-
not avoid all thrashing. Let us suppose, once again, that the variable order is
¥1,V2,- .., V100, and the allowed values are {1,2}. Assume that there is some subset
of the constraints involving only the variables vgg,vs,...,v100 that together imply

that vso cannot have the value 1. Assume further that these are the only constraints

13

that are used once wvsp has been set to 1. So at some point BACKJUMPING is invoked
with the partial assignment that assigns values to the variables v, through vso (with
vso being assigned 1), and after some (possibly) huge amount of search, it returns the

values (UNSAT, {vso}). It has conclusively proven that:

V50 ?1-7 1 (1.2)

So what does BACKIUMPING do? It sets vsg to be 2, and then completely forgets this
new piece of information! If the algorithm subsequently backtracks to v49, and then
returns to vsg, it will have to discover (I.2) all over again, perhaps as many as 2%°
times altogether.

Dependency-directed backtracking, which was introduced by Stallman and Suss-
man [79], is designed to address this problem. We will call formulas like (1.2) nogoods,
and the dependency-directed backtracking routine in Figure 4 will accumulate them
over the course of the search. The recursive procedure DDB will take three argu-
ments: a partial assignment f, a CSP P, and a set of nogoods I'; and it will return
three values: the answer, the conflict set, and the new set of nogoods (alternatively,
the nogood set I’ could just be a global variable).

Each time a backtrack is about to occur, the function MAKE-NOGOOD learns
(on line 19) a nogood « from the current conflict set and the current assignment f.
This nogood asserts that it is not possible for all of the variables in the conflict set
to simultaneously have their current values. For example, if the conflict set consisted
of the variables a,b,c, and if for the current partial assignment f, we had f(a) = 1,

f(b) = 2, and f(c) = 1, then the nogood v would be

a#£1Vb#2Vc#S3. (1.3)

14

DEPENDENCY-DIRECTED-BACKTRACKING-TOP(P)
{where P is a CSP of the form (V,D,C)}

1 f := the null assignment

2 T:=0

3 (answer, conflict-set, I') := DDB(f,P,I')

4 return answer

DDB(f,P,T)

1 if fis a total assignment of the variables in P

2 return (f,0,T")

3 else

4 v := some variable in P that is not yet assigned a value by f
5 answer := UNSAT

6 conflict-set :=

7 for each value x € D,

8 flv) =«

9 if f satisfies the constraints in both P and T’

10 (answer, new-conflicts, I') := DDB(f, P,T)

11 else

12 new-conflicts := the set of variables in a violated constraint or nogood
13 if answer # UNSAT

14 return (answer, §,I')

15 else if v & new-conflicts

16 return (UNSAT, new-conflicts,I')

17 else

18 conflict-set := conflict-set U (new-conflicis — {v})
19 ~ := MAKE-NOGOOD(conflict-set, f)

20 [:=Tu{y}

21 return (UNSAT, conflict-set, T')

Figure 4: Dependency-directed backtracking

15

Line 20 adds the new nogood + to the set [', and DDB returns I' as its third value;
this ensures that this work will never have to be repeated. The nogoods get used on
line 9 of DDB when the current partial assignment is checked not only against the
original constraints of the problem P, but also against the new nogoods in I' that
have been learned so far; and if the clash is with a nogood, then the variables in this
nogood will be the new conflict variables on line 12 — for the nogood (1.3), the new

conflict variables would be a, b, and ¢.
Generalized Dependency-Directed Backjumping

Dependency-directed backtracking would seem to avoid “thrashing” (although
it is hard to say, as we never formally defined the term), but at an enormous cost in
memory. Every time the procedure backtracks, a new nogood is learned, making the
space complexity of dependency-directed backtracking comparable to its time com-
plexity, and since the constraint satisfaction problem is NP-hard, both complexities
may be exponential. With current computing technology, space is a scarcer resource
than time, and thus we will often exhaust our memory before we exhaust our patience.
For this reason, fancy backtracking procedures that use exponential space are often
too expensive for practical use.

We might want to use something in between backjumping and full dependency-
directed backtracking. One simple idea would be to retain only those nogoods up to
a certain size, say k. That is, if the number of variables in the conflict set is less than
or equal to k, then we save the nogood in I'; otherwise, we discard it. Let us call this
approach k-order learning {28]. Figure 5 shows the new section of this algorithm (the
rest is the same as dependency-directed backtracking). For any fixed &, the k-ORDER

LEARNING procedure uses only polynomial space since if there are n variables and

16

the maximum domain size is e, then the total number of possible nogoods of size at

most & is
E |l n
> a!
1=0 7
k-ORDER LEARNING(P)
19 if |conflict-set| < k
20 v := MAKE-NoGooD(conflict-set, f)
21 I:=Tu{y}
22 return {UNSAT, conflict-set, T)

Figure 5: £-Order Learning
Both k-order learning and full dependency-directed backtracking are special
cases of a more general approach, generalized dependency-directed backiracking. The
new part of GENERALIZED-DDB is presented in Figure 6; the crucial step is on line
20 where UPDATE-NOGOODS computes a new nogood set from the old nogood set I’

and the new nogood v. In general. we will require that
UppATE-NoGgooDs(T,v) € TU {v}. (1.4)

In other words, v is the only new nogood that may be added, but any number of old

GENERALIZED-DDB(P)

19 v := MAKE-NOGOOD(conflict-set, f)

20 [:= UpPDATE-NoGoODS(T',)
21 return (UNSAT, conflict-set, T')

Figure 6: Generalized dependency-directed backtracking

17

nogoods may be deleted. This allows for the possibility of “forgetting” old nogoods
that have become irrelevant in order to make room for new ones that are now of more
importance.

Of special interest are those generalized dependency-directed backtracking pro-
cedures that can guarantee that the nogood set I' will never exceed some maximum
size, where this maximum size is polynomial in the size of the CSP. We will call such
a procedure a polynomial-space dependency-directed backiracking algorithm; k-order
learning is one such algorithm, but obviously there are many other possibilities as

well.
Dynamic Backtracking

Let us discuss one last algorithm, Ginsberg’s dynamic backtracking [42}. The
motivation for dynamic backtracking is similar {but not identical) to the motivation
for dependency-directed backtracking. Recall the example from the beginning of
Section 1.2.3 where after instantiating the variables v, through vgs, we discovered
that the value of v; did not not allow any consistent assignment to v,g0. Backtracking
wastes its time trying out new values for variables vgg back to v, before finally fixing
the real problem at v,. Backjumping is more intelligent since it returns directly to v,
but it is still not a perfect solution. The problem is that as backjumping pops up the
stack, it discards the values for variables vgg through v,. This seems rather silly since
for all we know, v, through vge may be a completely independent problem from v; and
vy00- It might be better to simply go back and revise the value of v; without erasing
the work for the intervening variables, and this is exactly what dynamic backtracking

does.?

4Like backjumping, dependency-directed backtracking also discards the values for the
intervening variables, but since it is saving all the dependency information in its nogood

18

Because of this ability to preserve the intermediate work, dynamic backtracking
cannot easily be written in the recursive depth-first style that we have been using for
the other approaches; it is most naturally expressed as an iterative algorithm. The
DyYNAMIC-BACKTRACKING procedure is presented in Figure 7. Since the algorithm
is iterative, it cannot use the stack to keep track of its place in the search space, so it
uses a two-dimensional culprits array. For each variable v and value ¢ (where z is in
the domain D,), culprits[v,z] will be the set of variables whose current assignments
preclude v from being set to z; if v = z is currently allowed, then culprits|v, z] will
be set to the constant VALUEALLOWED.

The DYNAMIC-BACKTRACKING procedure begins by initializing the whole cul-
prits array to VALUEALLOWED; it then enters its main loop. After choosing an un-
bound variable v (on line 5), it checks each value of v against the current constraints.
If there are values for v that are currently allowed, but would violate constraints, then
the culprils array is updated (on lines 6-9) to disallow these values and to record for
each value the reason why it is disallowed. If there is any value left, then v is set to
this value, and DYNAMIC-BACKTRACKING returns to the top of its loop. Otherwise,
the algorithm backtracks as follows.

It first computes the conflici-set on line 13. As long as all of the variables in this
set have their current values, it will be impossible to find any consistent assignment for
v. If conflict-set is empty, then the problem is unsatisfiable. Otherwise, DYNAMIC-
BACKTRACKING selects the most recently bound variable w in the conflict set and
prepares to unbind this variable. This corresponds to backjumping from v to w, but

without erasing any intermediate values. The one tricky thing is that w may be one

set, it can quickly recover its position in the search space. One motivation for dynamic
backtracking is to try to enjoy some of the advantages of dependency-directed backtracking
while using only polynomial space.

19

of the culprits for another variable. If for some variable u and value z, we have

w € culpritsfu, z],

then this indicates that the current assignment for w is one of the reasons that u
cannot have the value z. Since we are about to go back and erase the value for w,
we have to delete this culprits information, and set culprits{u,z] back to VALUE-
ALLOWED (lines 18-20). We then proceed to erase the value of w (line 22) after
recording the justification for the backtrack (line 21). The loop continues until we
have either constructed a total assignment or proven the problem to be unsatisfiable.

It may not be immediately obvious that DYNAMIC-BACKTRACKING terminates.
Certainly if it terminates, it will return a correct answer, either a solution or UNSAT,
but how do we know that it will not loop endlessly? Ginsberg [42] proves that dynamic
backtracking will in fact always terminate, but going over the proof here would take
us too far afield. We will simply note that the key step in his proof relies on the
fact that the backtrack variable w chosen on line 17 is always that variable in the
conflict set that was most recently bound; as Ginsberg notes, if we instead chose an
arbitrary variable from the conflict set, then dynamic backtracking could get stuck in
an infinite loop.

One interesting property that dynamic backtracking shares with full dependency-
directed backtracking is that of compositionality; if a CSP is the union of several in-
dependent subproblems, then dynamic backtracking will solve the CSP in time that
is the sum (up to a polynomial factor) of the times required to solve the subproblems
individually. By contrast, backtracking and backjumping can take time that is the
product of the individual times. McAllester [61] calls procedures with this compo-

sitionality property “aggressive dependency-directed backiracking” algorithms, and

20

DYNAMIC-BACKTRACKING(P) {where P is a CSP of the form (V, D,C)}
1 f := the null assignment
2 for each variable v, and each z € D,

3 culpritsv, z] ;== VALUEALLOWED

4 loop until f is a total assignment of the variables in P

5 v := some variable in P that is not yet assigned a value by f
6 for each value ¢ € D,

7 if culprits|v,z] = VALUEALLOWED

8 if setting f(v) = = would violate a constraint in P

9 culprits{v, z] := the variables other than v in that violated constraint
10 if there is some = such that culprits[v,z] = VALUEALLOWED
11 flw): ==

12 else

13 conflict-set := U, p, culprits(v, z]

14 if conflict-set = 0

15 return UNSAT

16 else

17 w := the variable in conflici-set that was most recently bound
18 for each variable u, and each =z € D,

19 if w € culprits|u, z]

20 culpritsju,z] := VALUEALLOWED

21 culpritsjw, f(w)] := conflict-set — {w}

22 Remove the binding of f(w)

23 return f

Figure 7: Dynamic backtracking

21

he notes that dynamic backtracking appears to be the first such procedure that is

polynomial space.

Overview of the Rest of the Thesis

We have described a number of constraint satisfaction algorithms. The question
is how well they perform. There are various ways of answering this question.

One approach is to study the performance empirically on randomly-generated
problems. We will take this approach in Chapter II using random graph coloring
problems as our benchmark. We will be particularly interested in how the various
algorithms perform as we vary the number of edges in the graph. If there are only a
small number of edges, then there will probably be a solution to the graph coloring
problem; furthermore, it will usually be easy to find this solution. If there are too
many edges, then there probably will not be a solution, and it will often be fairly
easy to prove this. Somewhere in between is the “crossover” point, where around
half of the problems have solutions. A number of previous researchers have presented
evidence that the hardest constraint satisfaction problems tend to arise near this
crossover point. Some recent papers, however, argue that while this is true of the
median search cost, the mean search cost has an entirely different behavior. The
mean search cost appears to be dominated by a relatively small number of extremely
difficult problems, and these problems typically have constraint graphs that are much
sparser than those of the problems near the crossover point.

In Chapter II, we will show that these outliers among the sparse graphs are
not fundamentally difficult problems. They are hard for chronological backtracking
only because of thrashing, and they are easily handled by more sophisticated search

strategies such as backjumping and dependency-directed backtracking. Thus, they

22

are quite different in character from the crossover-point problems, which appear to
be difficult for all known search algorithms. We will present our experimental results
and discuss their implications.

Chapter III will cover some experiments with dynamic backtracking. The point
of dynamic backtracking is that the search procedure should be able to return to the
source of a difficulty without erasing the intermediate work. For this chapter, we will
use randomly-generated propositional satisfiability problems as our benchmark. We
will see that dynamic backtracking can sometimes be counterproductive, and in fact
can cause an exponential increase in the size of the ultimate search space (compared
to backtracking or backjumping). We will discuss the reason for this phenomenon,
and we will present a modification to dynamic backtracking that fixes the problem.

Another approach to studying a constraint satisfaction algorithm is to analyze
its worst-case performance theoretically. Since constraint satisfaction is NP-hard, one
cannot hope to have an algorithm that runs in polynomial time for all problems. We
will do our analysis in terms of a certain problem parameter known as the “induced
width” [30]. This concept will be discussed in detail in Chapter IV, but for now, the
reader should simply think of the induced width as a measure of the complexity of
the constraint graph, where the constraint graph is formed by placing edges between
any problem variables that share constraints. For a fully connected constraint graph
with n variables (that is, for a problem where every variable interacts with every
other variable), the induced width will be » — 1. For a problem where the constraint
graph is a simple chain (that is, for a problem where each variable i only interacts
with variables z — 1 and ¢ + 1), the induced width will be 1. Constraint problems of
intermediate complexity will have intermediate induced widths.

It is well known that the time complexity of dependency-directed backtracking

23

is exponential only in the induced width. That is, its complexity can be written
as the problem size raised to the power of a function of the induced width. This
is better than simply being exponential in the size of the problem. It means that
dependency-directed backtracking will run in polynomial time for any problem class
of bounded induced width. Unfortunately, the space requirements of dependency-
directed backtracking are also exponential in the induced width. As remarked earlier,
with present computing technology, space is often a dearer resource than time; for
example, a typical workstation can easily write to all of its fast memory in a few
minutes. Therefore, there is particular interest in constraint algorithms that use
only polynomial space. Now, standard backtracking uses only polynomial space (in
fact, it needs only linear space), but it can require time exponential in the size of
the problem. These possibilities are displayed in Table 1, where z is the size of the
problem, w* is the induced width, ¢ is some constant, and f is an arbitrary function
(of course, the minimal values of ¢ and f will not be the same for the different entries
in the table). The question suggested by the last row of Table 1 is whether there is a
third possibility that combines the advantages of the other two approaches. Is there

a polynomial-space CSP algorithm that is exponential only in the induced width?

Table 1: Space and time complexity with respect to the induced width

Algorithm Space Time
Chronological backtracking ¢ Ezp(z)
Dependency-directed backtracking zf (") /(")
? z¢ oflw?)

Our conjecture is that no such algorithm is possible. We will not, however, be
able to prove this conjecture in its full generality. For one thing, if the conjecture
were true, it would immediately imply that P # NP since a polynomial algorithm

is trivially exponential only in the induced width. Presumably, then, any reasonable

24

proof of our conjecture would have to assume P # NP, and perhaps make other
fundamental assumptions as well.

Instead, we will begin in Chapter IV by examining the various polynomial-
space intelligent backtracking algorithms from Section [.2. We show that none of the
following algorithms are exponential only in the induced width: backtracking, back-
jumping, dynamic backtracking, and k-order learning. Finally, we prove that there
is no polynomial-space dependency-directed backtracking procedure (in the sense of
Section 1.2.5) that is exponential only in the induced width.

In Chapter IV, we only consider search algorithms that branch on their variables
using a fixed, static order. In Chapter V we will consider algorithms that use an
optimal, dynamic order. That is, at each branch point, they can choose an arbitrary
unassigned variable to branch on next, and to give these algorithms every benefit of
the doubt, we will assume that they make these decisions optimally. We will show
that even with these assumptions, the following algorithms are not exponential only
in the induced width: backtracking, backjumping, dynamic backtracking, and k-order
learning. Finally, we state (but do not prove) a more general conjecture concerning
polynomial-space resolution procedures.

Chapter VI surveys the CSP literature and discusses related work. Chapter VII

contains concluding remarks and some suggestions for future research.

25

CHAPTER II

INTELLIGENT BACKTRACKING ON THE HARDEST CONSTRAINT
PROBLEMS

Introduction

In this chapter, we begin our experimental investigation into intelligent back-
tracking.! There has been much recent interest in the empirical study of constraint
satisfaction problems, and several important lessons have emerged. These lessons
concern the relationships between the number of constraints in a problem, the prob-
ability that the problem has a solution, and the typical difficulty of such a problem
for a search algorithm [13, 23, 63].

Suppose we randomly generate constraint satisfaction problems of some partic-
ular type {e.g., graph coloring}. The probability of there being a solution will depend
on the distribution used to generate these problems. If the problems only have a
few constraints, then they are very likely to have solutions. Such a distribution is
often referred to as being underconstrained. On the other hand, if there are too many
constraints, there probably will not be solutions; these problems are overconsirained.
Somewhere in the middle is the crossover point at which half of the problems are
solvable and half are unsolvable. One important lesson is that the transition from the
underconstrained region to the overconstrained region is often very abrupt [13, 15, 23].

For sufficiently large problems, increasing the number of constraints by even a few

!This chapter is a revised version of [6].

26

percent will drastically reduce the probability of there being a solution.

The second important lesson concerns the difficulty of the problems for a search
algorithm. We assume that the task of the search algorithm is either to find a solution
if one exists, or otherwise to prove that the problem is unsolvable. Underconstrained
problems are typically quite easy; there are so few constraints that it is usually
not difficult to find a solution. Overconstrained problems are also relatively easy;
there are so many constraints that a backtracking algerithm will be able to quickly
rule out all the possibilities. The hardest problems appear to arise at the crossover
point. For sufficiently large problems, the crossover-point examples can be orders of
magnitude more difficult than those in either the underconstrained or overconstrained
regions [13, 23, 63].

In a recent paper, however, Hogg and Williams [51] offer a third lesson. In a
careful study of graph coloring, they show that the distribution of problem difficulty
is more subtle than previously believed. Although most of the underconstrained
problems are quite easy, there are a small number of outliers among them that are
extremely hard — so hard, in fact, that the peak of the mean difficulty (unlike that
of the median) appears to be located well into the underconstrained region. Gent and
Walsh [41] have reported similar results for the problem of propositional satisfiability.

On the face of it, this phenomenon is somewhat counterintuitive, and neither
Hogg and Williams nor Gent and Walsh provide any explanation. In this chapter,
we will show that the outliers in the underconstrained region are not fundamentally
difficult problems. Rather, they are difficult only for the particular search algorithm
used by the above authors: chronological backtracking. Chronological backtracking
sometimes suffers from a malady known as “thrashing,” in which the search algorithm

ends up solving essentially the same subproblem over and over again. Thrashing can

27

be reduced or eliminated by more sophisticated search algorithms such as backjump-
ing {40] and dependency-directed backtracking [79]. Thus, these “hard” problems
in the underconstrained region are different in character from the crossover-point
problems, which appear to be difficult for all known search algorithms.

The organization of this chapter is as follows. We begin in the next section by re-
viewing the backtracking experiments from Hogg and Williams [51} that demonstrate
the existence of inordinately difficult underconstrained problems. In Section 1.3, we
explain what is going wrong with backtracking in these experiments. Our analysis
suggests that backjumping should ameliorate the problem, and we will present ex-
perimental results confirming this conjecture. It turns out that while backjumping
helps a great deal, it still seems to leave room for further improvement. We will see in
Section I1.4, however, that dependency-directed backtracking completely eliminates
the problem (at least, up to the precision of our experiments). Finally, in Section

I1.5, we will discuss the meaning and significance of these findings.

Graph Coloring and Backtracking

Given a graph and a fixed number of colors, the Graph Coloring Problem is to
assign a color to each vertex so that no two adjacent vertices (i.e., vertices joined by
an edge) are assigned the same color. Graph coloring is a well-known NP-complete
problem [37] that is of some interest in artificial intelligence and operations research;
scheduling, for example, can sometimes be reduced to graph coloring. Hogg and
Williams {51] used graph coloring for their constraint satisfaction experiments, so in
order for our results to be comparable with theirs, we also use graph coloring. _

In fact, we follow the experimental setup from [51] as closely as possible. All of

the problems are 3-coloring problems, that is, there are three different colors available.

28

The graphs all have 100 vertices. The number of edges will be described in terms of
the average degree v of the graph (i.e., the average number of edges incident on a
vertex). If there are n vertices and e edges, then we have e = yn/2 (since each edge
is incident on two vertices). For our experiments, the average degree of the graph
was varied from 1.0 to 7.0 in increments of 0.1, and we generated 50,000 problems at
each point (for a total of 3,050,000 problems altogether). Each problem was randomly
generated using the uniform distribution over all graphs with the appropriate number
of vertices and edges.

Following [51], we use a standard backtracking search (i.e., depth-first search)
guided by the Brélaz heuristic [9, 82]. The Brélaz heuristic is a dynamic variable-
ordering rule that chooses the vertex with the smallest number of available colors (or,
in other words, with the greatest number of distinctly colored neighbors). Ties are
broken by preferring nodes with the most uncolored neighbors, and further ties are
broken arbitrarily.? No value-ordering heuristic is used; the colors are simply tried in
order.

We search in this manner until we find the first solution, or until all possibilities
have been exhausted (if the problem is unsolvable}. Actually, we never backtrack
past the first two vertices; if the initial colors for these two vertices do not work, then
there cannot be a solution since graph coloring is symmetric under permutations of
the colors. We use the number of nodes explored in this backtracking search tree as
our measure of problem difficulty. The results of these experiments are displayed in
Figures 8-12.

Figure 8 shows the median search cost of the backtracking algorithm plotted as

2We simply choose the first vertex in some arbitrary order. In {51], each tie is broken
randomly; this small difference does not seem to have affected our results.

29

200
3 150
K
=
L")
o
3 100
=]
E
=
Z
50
0 T T ST Trr T ..1.............?.*.f..._...._-___|_.______._
1 2 3 4 5 6 7
Average degree of graph

Figure 8: The solid curve is the median search cost for backtracking; the dashed curve
is the percentage of problems with a solution (scaled to range from 100% on the left
to 0% on the right).

10000

1000

100 U

raaesnl

Number of nodes

10 1 1 1]
I 2 3 4 5 6 7
Average degree of graph

Figure 9: The mean search cost for backtracking.

30

100000 T T | | E|
., 10000 3
=] 3
B .
= o
Sy
ht 1000
L} e
£ E
[L
2 5
100 E
10 !
1 2 3 4 5 6 7

Average degree of graph

Figure 10: Various percentiles of the search cost for backtracking. The lowest curve
is the 50% level, followed by the 95%, 99.5%, and 99.95% levels.

a function of the average degree of the graph. This data is superimposed on a plot
of the fraction of the problems having solutions. The crossover point with respect to
~ is somewhere between 4.4 and 4.5, and this is also where the median search cost
peaks.® This important phenomenon of the hardest constraint satisfaction problems
being those at the crossover point has been noted by a number of authors [13, 23, 63].
These authors have gone on to investigate how this behavior scales with increasing
problem size; they have shown, among other things, that the difficulty at the crossover
point appears to grow exponentially.

Hogg and Williams [51] (and Gent and Walsh {41] for propositional satisfiabil-
ity), however, took a different approach by instead studying in more depth the results

for a fixed problem size. After all, the median is only one particular statistic. One

3The reader might be curious why the median search cost for the underconstrained
problems is exactly 100 nodes, while the overconstrained problems seem to be easier. The
answer is that if a problem is solvable, then we have to assign a color to each vertex (and
there are 100 vertices here), so even if we never backtrack, we will still need 100 nodes in
our search tree.

31

might wonder, for example, what a plot of the mean would look like. The mean
search cost is displayed in Figure 9, and it is clear that the mean is quite different
from the median. While the median peaks at the crossover point, the mean seems to
be substantially larger in the underconstrained region. Most of the underconstrained
problems are quite easy, but there are also some extremely difficult ones. These sam-
ple means are also quite volatile; apparently, 50,000 experiments are not sufficient to
accurately estimate the mean.

To give a better sense of the distribution of problem difficulty, Figure 10 shows
several percentiles: the 50% point (the median), the 95% point (i.e., that number such
that 95% of the problems used fewer nodes, and only 5% required more nodes) the
99.5% point, and the 99.95% point. As the percentile is increased, the peak shifts to
the left. The median peaks at the crossover point, but the 99.95% point is more than
an order of magnitude greater at v = 3.0 than it is at v = 4.5. This behavior is even
more dramatic if we examine the mazimum at each point (Figure 11). The hardest
of the 50,000 examples at -y = 4.5 required only 6,186 nodes, while both v = 1.7 and
«+ = 1.8 each had a problem that could not be solved in a billion nodes.

Figure 12 presents another view of this data. It compares the full distribution
for the underconstrained problems at v = 3.0 with that of the crossover problems at
~ = 4.5. For each search cost in Figure 12, the ordinate represents the fraction of
problems that used at least that number of nodes. We see that the probability of
an example being moderately difficult is higher for the crossover problems, but the
probability of an example being extremely difficult is higher for the underconstrained
problems.

So far we have merely reproduced the results from [51). We will now discuss

what is going wrong with these difficult underconstrained problems, and we will show

32

le+09 T T T] J |
le+08 F -

a 1e+07 | .
B .]
< le+06 | = |
B []
.é 100000 =
b= - -
Z 10000 E M =

100 i | | | 1 |
1 2 3 4 5 6 7
Average degree of graph

Figure 11: The maximum search cost for backtracking (out of the 50,000 samples per
data point).

] L) LI RR] |

0.1
=
g
3 00l
£

0.001 |

O'OOOI [i [1 llllll L] [[lllll[i i] Illll' L 1 I-'l 1101}

1 10 100 1000 10000

Number of nodes

Figure 12: The distribution of search costs for backtracking for v = 3 (solid curve)
and v = 4.5 (dashed curve).

33

that properly handled, the problems are not really difficult at all.

Backjumping

The argument that the crossover-point problems should be the hardest is a
fairly intuitive one. If there are too few constraints, then almost any path down the
search tree that has not yet hit a dead end (i.e, 2 constraint violation} will ultimately
lead to a solution; hence, we will not have to backtrack very much. If there are too
many constraints, then almost any path down the search tree will quickly hit a dead
end, and thus it will be easy to exhaustively search the tree. At the crossover point,
however, there will be many dead ends that manifest themselves deep in the search
tree. In other words, there will be many partial solution that initially seem promising,
but for complicated reasons cannot be extended to total solutions.

What about the hard underconstrained problems? Our conjecture is that these
problems are difficult solely as a result of thrashing. To understand how thrashing
might apply to graph coloring, consider an extreme example: the problem of 3-
coloring a 100-node graph, with the graph consisting of 96 isolated vertices and 4
vertices connected in a clique, that is, with an edge between every 2 of these 4 vertices.
(Since this graph has only 6 edges, it could not have been generated in any of the
experiments in this chapter, but it will serve to explain the basic idea.) Suppose that
some backtracking program begins by assigning colors to all the isolated vertices, and
then attempts to color the clique. It is impossible to color a 4-clique using only 3
colors, so the program would be forced to backtrack. It would assign a new color to the
last isolated vertex, and then attempt once again to color the 4-clique, and of course
it would fail once again. Continuing in this fashion, the backtracking program would

repeatedly fail for the same reason as it proceeded through the different colorings of

34

the isolated vertices. Thus, an easy problem can be very difficult for backtracking.

Now, the Brélaz heuristic would not have any trouble with this particular exam-
ple since the heuristic would always begin with the vertices in the clique instead of the
isolated vertices. We cannot, however, expect any heuristic to be perfect. Suppose
some graph consisted of two connected components, one of which was 3-colorable and
one of which was not. If the colorable component had a maximum degree exceeding
that of the non-colorable component, then Brélaz would end up doing the colorable
component first, and thrashing would arise just as before.

It should be clear from this discussion why thrashing is a particular problem in
the underconstrained region. The backtracking program is wasting its time enumer-
ating all of the solutions to some irrelevant subproblem, and if there are not many
constraints, then this subproblem is likely to have many solutions. If the problem
were more constrained, then the irrelevant subproblems would tend to have fewer
solutions, and thrashing would be less harmful. It also seems likely that even on the
underconstrained problems, thrashing will be relatively rare, but that when it occurs,
it can be arbitrarily costly. Thus, thrashing is a plausible explanation of the results
reported by Hogg and Williams [51] and Gent and Walsh [41]. To show that it is in
fact the correct explanation, let us consider some experiments with a more intelligent
search algorithm.

One simple method to deal with the particular examples of thrashing discussed
above would be to first identify the connected components of the graph and then
backtrack on each component separately. It turns out, however, that there are slightly
more complicated types of thrashing behavior that would still exist even with this
method. It is better, therefore, to proceed in a more systematic fashion. We will use

backjumping (28, 40, 42, 67].

35

For the full backjumping algorithm, the reader should consult Figure 3 (and the
accompanying discussion) in Chapter I. Here, we will briefly indicate how backjump-
ing applies to graph coloring. With ordinary backtracking, when you have to back up
in the search tree, you back up one step and try a new value for the previous variable;
that is why it is sometimes referred to as chronological backtracking. With backjump-
ing, you instead “jump back” to the last variable that was relevant to the dead end,
skipping over the irrelevant intervening variables. For example, if it were determined
that one component of the graph is not colorable, then the algorithm would jump all
the way back to the beginning of the problem (and declare it unsolvable) since the
other components cannot possible be relevant. The variables that are relevant to a
dead end are referred to as the conflict set, and this set can be computed as follows.

Suppose we have assigned colors to some subset of the vertices, and we have
now selected some new vertex v to color. Let n represent the node in the search
tree corresponding to this task. If the vertex has no possible color, this means that
some adjacent vertex v, uses the first color, some adjacent vertex v, uses the second
color, and some adjacent vertex v; uses the third color. The conflict set, in this
case, is simply {v,,v2,v3}. If, on the other hand, none of these colors have been
ruled out, then the node n will have three children in the search tree, corresponding
to the different ways to color the vertex v. If all these nodes ultimately fail, then
the conflict set for n can be obtained by taking the union of the conflict sets of the
children, after subtracting out the vertex v. Of course, if v is not present in one of
these conflict sets, then this means that the particular color of v was not relevant to
the contradiction, and the algorithm will immediately jump back to the most recent
vertex that was relevant rather than wasting its time examining the other children

of n. The intermediate case (where some, but not all, of the colors are initially

36

disallowed) is equally straightforward.

We ran backjumping on the same examples that were used in Section I1.2.
Figure 13 shows the results for the median and the 95% level for both backtracking and
backjumping. Evidently, backjumping does not help much with the easier problems
since thrashing is not all that common. Figure 14, however, compares the means for
backtracking and backjumping. Here, backjumping makes an enormous difference.
The large means that were observed in the underconstrained region with backtracking

are no longer present with backjumping.

1000 | |] |]
200 -
800
700
600
500 +
400
300 |
200
100

0 | |
1 2 3 4 5 6 7
Average degree of graph

Number of nodes

Figure 13: The median and 95% level for backjumping (solid curves) and backtracking
(dashed curves).

Figure 15 compares the 99.5% points for backtracking and backjumping. This
is the number such that 99.5% of the problems required fewer nodes, and only 0.5%
required more. Similarly, Figure 16 shows the 99.95% points for both methods. Fig-
ures 13-16 demonstrate that backjumping helps significantly with the hard problems
in the underconstrained region, but that it does not have much effect elsewhere.

In particular, backjumping does not help much with the hardest problems at the

crossover point. This suggests that the hard problems at the crossover point are

37

-

1000

Number of nodes

100 LA

10 I ! 1 1 1
1 2 3 4 5 6 7
Average degree of graph

Figure 14: The mean for backjumping (solid curve) and backtracking (dashed curve).

quite different from the hard underconstrained problems.

While backjumping is a significant improvement over backtracking, it does not
completely eliminate the problem of thrashing. Even in Figure 16, we can see that the
99.95% curve for backjumping seems similar in some respects to the 99.5% curve for
backtracking (see either Figure 10 or Figure 15). That is, there appears to be a second
peak to the left of the crossover point. Figure 17 displays the maximum difficulty
(out of the 50,000 samples) for each value of v; although the individual data points
are not statistically significant estimates of anything, the graph as a whole strongly
suggests that even for backjumping the hardest problems are in the underconstrained
region, not at the crossover point.

To further explore this idea, we ran a larger set of backjumping experiments.
This time, for each value of v, we generated a million random problems. Figure 18
shows the 99.995% curve computed on the basis of these experiments; it clearly peaks
in the underconstrained region. Figure 19 shows the full distribution of problem dif-

ficulty for these experiments at 4 = 3.0 and v = 4.5. It is instructive to compare

38

2500 ,

2000

1500

1000 |-

Number of nodes

500 -

1 2 3 4 5 6 7
Average degree of graph

Figure 15: The 99.5% level for backjumping (solid curve) and backtracking (dashed

curve).

—
g
=)
o

T T 11|
Sy

L}

h]

s
ANEREIT

1000

Number of nodes

100

10
1 2 3 4 5 6 7

Average degree of graph

Figure 16: The 99.95% level for backjumping (solid curve) and backtracking (dashed
curve).

39

1e+06

" 100000
H]
B
=
ey

E 10000
o
£
E
Z.

1000

100 | | | | |
1 2 3 4 5 6 7

Average degree of graph

Figure 17: The maximum search cost for backjumping (out of the 50,000 samples per
data point).

25000 T T T T T

20000 1 -

15000 - -

10000 |- -

Number of nodes

5000 .

1 2 3 4 5 6 7
Average degree of graph

Figure 18: The 99.995% Level for Backjumping.

40

0.1

0.01

0.001

Fraction

0.0001 &

1e-05 | | , | , a
[l 1 11 [1 1 4 L L Il 1 ‘ I 1 I 2
1 4] 100 1000 10000 100000
Number of nodes

Figure 19: The distribution of search costs for backjumping for ¥ = 3 (solid curve)
and v = 4.5 (dashed curve).

Figure 19 with the analogous graph for backtracking (Figure 12). While backjump-
ing has postponed the point at which the sparser problems become harder than the
crossover-point problems, it has not altered the qualitative structure of the phe-
nomenon.

Finally, in Figure 20, we show the sample means for these larger experiments.
With backtracking, there were so many difficult underconstrained problems, that
the mean obviously peaked to the left of the crossover point (see Figure 9). With
backjumping, however, even a million experiments per data point are insufficient to
resolve the issue. It is entirely possible that with a billion (or a trillion) experiments
per data point, backjumping would begin to exhibit the same phenomenon observed
with backtracking. It is also possible that there are just not enough sufficiently hard
problems for backjumping, and that the mean continues to peak at the crossover
point. In order to decide which is the case, we would have to know (for instance)
how far the 4 = 3.0 curve in Figure 19 can be extrapolated. It seems likely that the

true population mean for backjumping achieves its maximum in the underconstrained

41

350] 1 T T T

300
250
200 |

150 |-

Number of nodes

100

1 2 3 4 5 6 7
Average degree of graph

Figure 20: The mean search cost for backjumping (computed on the basis of a million
samples per data point).

region, but we will have to leave this question open for now.

Dependency-Directed Backtracking

We have seen that almost all of the underconstrained problems that were difficult
for backtracking can be solved very easily with backjumping. We have also seen,
however, that a few of these problems continue to be very difficult for backjumping.
It makes sense, then, to explore even more powerful search algorithms.

When backjumping determines that a node in the search tree is a dead end
(perhaps after an extensive search of the node’s descendents), it computes the conflict
set, the subset of the previously colored vertices whose current colors are relevant to
the dead end. Backjumping then jumps back to the last vertex in this conflict set.
This is, in fact, the appropriate place to jump back. The problem is that backjumping
does not remember this conflict set for future reference. If at some later point in the
search, the variables in the conflict set are reassigned their old values, backjumping

will have to rediscover the contradiction all over again. In the worst case, this can

42

happen many times.

Dependency-directed backtracking {79] differs from backjumping in that it learns
during the course of the search. Each time it jumps back from a dead end, dependency-
directed backtracking remembers a nogood for future reference. For example, if the
conflict set were {v;,vs,v7}, and the current colors for these vertices were red, green,

and blue respectively, then the new nogood would be

(v1 # red) V (va # green) V (vs # blue).

This asserts that there is no solution in which these three variables simultaneously
have their current values. The new nogood is then treated just like the original
problem constraints. At every node, the algorithm will make sure that not only are
no two adjacent vertices assigned the same color, but also that none of the nogoods
are violated. In this way, dependency-directed backtracking can ensure that it never
has to learn the same nogood more than once.* For the full dependency-directed
backtracking algorithm, see Figure 4 in Chapter 1.

We ran dependency-directed backtracking on the same randomly generated
problems that were used for the larger set of backjumping experiments (a million prob-
lems for each value of). Figure 21 shows the various percentile levels, all of which
peak at the crossover point. Figure 22 compares the 99.95% level for dependency-
directed backtracking with that of backjumping, and Figure 23 compares the 99.995%
levels for the two algorithms. Dependency-directed backtracking has eliminated the
problem that was noted in the last section.

Finally, Figure 24 shows the full distribution of search costs for dependency-

4The term “jump-back learning” has also been used to describe this technique [35).

10000

1000

Number of nodes

10

100 E

T 1 l||||l'|

L L L iAdt]

|||||.|

3 4 5 6 7
Average degree of graph

43

Figure 21: The various percentile levels for dependency-directed backtracking: 50%,
95%, 99.5%, 99.95%, and 99.995%.

3500

3000

2500

2000

1500

Number of nodes

1000

500

3 4 5 6 7
Average degree of graph

Figure 22: The 99.95% level of dependency-directed backtracking (solid curve) and
backjumping (dashed curve).

44
directed backtracking for v = 3.0 and « = 4.5; this final graph was computed using
an even larger set of experiments, with ten million random problems for each of the
two values of y. Unlike the graphs for backtracking and backjumping (in Figures 12

and 19 respectively), there is no point at which the sparse problems become more

difficult than the crossover-point problems.

25000 T | T | |
]
20000 [~ f"“. -
1] ,r' 4
2 15000 | A -
Ty [})
o i A
5 ;oo
'E 10000 - H) -
= i \
Z ‘l \\
5000 |- ’ S .
,f 3
s .
0 [Pt = 1]
| 2 3 4 5 6 7
Average degree of graph

Figure 23: The 99.995% level of dependency-directed backtracking (solid curve) and
backjumping (dashed curve).

These results demonstrate that the phenomenon reported by Hogg and Williams
is an artifact of chronological backtracking. The supposedly “hard” underconstrained
problems are not really hard at all, and are actually quite easy for the more sophisti-
cated search strategies. For example, while the two hardest problems for backtracking
required more than a billion nodes each, dependency-directed backtracking needed
only 78 nodes for one of these problems and 122 nodes for the other.

There remains the question of how well the various algorithms perform in terms
of time. This will, of course, depend on implementation details, but we can at least
give a general indication. Table 2 shows the mean number of nodes, the mean

time in seconds, and the mean nodes per second for backtracking, backjumping,

45

ﬂ-’ T ™7 TTIT
01 [
001 F
g -]
£ 0001 .
8
a0 - J
0.0001 [~]
1e-05 | 3
1e-06 F 1 1 11 Illllt [1 1 Ill'll ' 1 Vi lll!l L L L l}.‘l?
| 10 100 1000 10000

Number of nodes

Figure 24: The distribution of search costs for dependency-directed backtracking for
v = 3 (solid curve) and y = 4.5 (dashed curve).

and dependency-directed backtracking (DDB). This data was computed using the
3,050,000 problems on which all three of the algorithms were tested. (The algorithms

were implemented in C++, and the experiments were performed on a SPARC 10/51.)

Table 2: Average performance over the problem set.

Nodes | Seconds | Nodes/second

Backtracking 1206 0.046 26482
Backjumping 107 0.006 18781
DDB 101 0.008 12020

Backjumping is taking 41% more time per node here than backtracking, and
dependency-directed backtracking is taking another 56% over backjumping. These
relationships, however, are not constant over all the problems. To give a better sense
of what is going on, Table 3 shows this same information for three particular problems,
namely the hardest problems for dependency-directed backtracking (out of the 50,000
sampled) at the following values of v: 3.3, 3.5, and 4.4.

46

Table 3: Performance on the hardest example for various values of -.

¥ Algorithm Nodes Seconds Nodes/second
Backtracking 291804 11.77 24792

3.3 Backjumping 10010 0.44 22750
DDB 1225 0.10 12250

Backtracking 135541 5.63 24075

3.5 Backjumping 68371 3.00 22790
DDB 2814 0.32 8794

Backtracking 8312 0.40 20780

4.4 Backjumping 8256 0.42 19657
DDB 4668 0.87 5366

We see that for the larger problems backjumping is only taking an overhead of
around 5% to 10%. The figures in Table 2 were somewhat misleading in this respect
because most of the problems are so easy. There is a fixed cost in initializing the data
structures (and cleaning them up at the end), and backjumping did not have very
many nodes over which to amortize this cost.

Dependency-directed backtracking, however, has an increasing overhead as the
problems get harder. Every time it backtracks, it learns a new nogood, so as the search
trees get larger and larger, dependency-directed backtracking will have to remember
more and more nogoods; and every time it moves up or back in the search tree,
it will have consult some number of these nogoods. For sufficiently hard problems,
dependency-directed backtracking might be too expensive for practical use.

In Chapter I, we mentioned some algorithms that strike a compromise between
backjumping and full dependency-directed backtracking. One useful approach is k-
order learning [28]. If the size of the conflict set at a dead end does not exceed k (where
k is a constant), then this technique will save the new nogood; otherwise, it will not.
For a small k, this will greatly reduce the number of nogoods that have to be learned,

and furthermore, it is precisely these short nogoods that are most likely to be useful.

47

We have found empirically that 1-order learning or 2-order learning often captures
most of the benefits of full dependency-directed backtracking. Another possibility is
to delete nogoods that are no longer “relevant,” or likely to be useful. This is the idea
behind dynamic backiracking (42, 45], although, as we will see in the next chapter,

there are some possible hazards with dynamic backtracking if it is used carelessly.

Summary

This chapter has presented experimental results on the utility and applicability
of intelligent backtracking algorithms such as backjumping and dependency-directed
backtracking. We have shown that these techniques are especially important on those
underconstrained problems that are the hardest for backtracking, but are of less value
on the more highly constrained problems.

We have also illuminated some issues concerning the distribution of hard and

easy constraint problems. In [51], Hogg and Williams write:

An interesting open question is whether these hard, sparse graphs have
qualitatively different structure than the more densely connected cases

associated with the peak in the median.

We have shown that the hard underconstrained problems are in fact quite different
from the hard crossover-point problems. The crossover-point problems seem to be fun-
damentally difficult since their search trees tend to contain a large number of distinct
dead ends. The search trees for the hard underconstrained problems, however, tend
to contain a small number of distinct dead ends repeated over and over again (which
is why they are so easy for backjumping and dependency-directed backtracking).
The experiments in this chapter have all been graph coloring problems (further-

more, the problems have all had 100 vertices and 3 colors). We believe, however, that

48

the lessons are more general and will apply to other constraint satisfaction problems

as well.

49

CHAPTER III

THE HAZARDS OF FANCY BACKTRACKING

Introduction

In the last chapter, we saw some of the benefits of intelligent backtracking. We
will now turn to a possible hazard. There has been some recent interest in back-
tracking procedures that can return to the source of a difficulty without erasing the
intermediate work. We will show that for some problems it can be counterproductive
to do this, and in fact that such “intelligence” can cause an exponential increase in
the size of the ultimate search space. We will discuss the reason for this phenomenon,
and we will present one way to deal with it.!

In particular, we will discuss dynamic backtracking; let us first review the mo-
tivation behind that algorithm, using an example from [42]. Suppose we are coloring
a map of the United States (subject to the usual constraint that only some fixed set
of colors may be used, and adjacent states cannot be the same color).

Let us assume that we first color the states along the Mississippi, thus dividing
the rest of the problem into two independent parts. We now color some of the western
states, then we color some eastern states, and then we return to the west. Assume
further that upon our return to the west we immediately get stuck: we find a western
state that we cannot color. What do we do?

Ordinary backtracking would backtrack to the most recent decision, but this

1This chapter is a revised version of [5].

50

would be a state east of the Mississippi and hence irrelevant; the search procedure
would only address the real problem after trying every possible coloring for the pre-
vious eastern states.

Backjumping [39, 40] is somewhat more intelligent; it would immediately jump
back to some state adjacent to the one that we cannot color. In the process of
doing this, however, it would erase all the intervening work, i.e., it would uncolor the
whole eastern section of the country. This is unfortunate; it means that each time
we backjump in this fashion, we will have to start solving the eastern subproblem all
over again.

Ginsberg has recently introduced dynamic backtracking [42] to address this dif-
ficulty. In dynamic backtracking, one moves to the source of the problem without
erasing the intermediate work. Of course, simply retaining the values of the inter-
vening variables is not enough; if these values turn out to be wrong, we will need to
know where we were in the search space so that we can continue the search systemat-
ically. In order to do this, dynamic backtracking accumulates nogoods to keep track
of portions of the space that have been ruled out.

Taken to an extreme, this would end up being very similar to dependency-
directed backtracking [79]. Although dependency-directed backtracking does not save
intermediate values, it saves enough dependency information for it to quickly recover
its position in the search space. Unfortunately, dependency-directed backtracking
saves far too much information. Since it learns a new nogood from every backtrack
point, it generally requires an exponential amount of memory — and for each move
in the search space, it may have to wade through a great many of these nogoods.
Dynamic backtracking, on the other hand, only keeps nogoods that are “relevant”

to the current position in the search space. It not only learns new nogoods; it also

51

throws away those old nogoods that are no longer applicable.

Dynamic backtracking, then, would seem to be a happy medium between back-
jumping and full dependency-directed backtracking. Furthermore, Ginsberg has pre-
sented empirical evidence that dynamic backtracking outperforms backjumping on
the problem of solving crossword puzzles [42].

Unfortunately, as we will soon see, dynamic backtracking has problems of its
own.

The plan of this chapter is as follows. The next section reviews the details
of dynamic backtracking. Section III.3 describes an experiment comparing the per-
formance of dynamic backtracking with that of backtracking and backjumping on a
problem class that has become somewhat of a standard benchmark. We will see that
dynamic backtracking is worse by a factor exponential in the size of the problem.
Note that this will not be simply the usual complaint that intelligent search schemes
often have a lot of overhead (see, for example, Table 3 and the associated discussion
towards the end of the previous chapter). Rather, our complaint will be that the
effective search space itself becomes larger; even if dynamic backtracking could be
implemented without any additional overhead, it would still be far less efficient than
the other algorithms.

Section II1.4 contains both our analysis of what is going wrong with dynamic
backtracking and an experiment consistent with our view. In Section III.5, we describe
a modification to dynamic backtracking that appears to fix the problem. Concluding

remarks for this chapter are in Section IIL6.

52

Dynamic Backtracking

We have already presented the dynamic backtracking algorithm in Figure 7, but
it will be useful to slightly paraphrase that algorithm for the purpose of this chapter.
The dynamic backtracking algorithm in Figure 7 makes use of a two-dimensional
culprits array. The meaning of the culprits array was that for a variable v and value
z, if culprits[v, z] is some set of variables, then as long as the these variables have their
current values, v cannot have the value z. This array entry can be viewed as a nogood
as in dependency-directed backtracking (see the discussion below). In this chapter,
we will deal with the nogoods directly, and ignore the lower-level data structures like
the culprits array. This should help simplify some of the explanations, and it is in
keeping with the more recent style of dynamic backtracking work [45].

Like regular backtracking, dynamic backtracking works with partial solutions;
a partial solution to a CSP is an assignment of values to some subset of the variables,
where the assignment satisfies all of the constraints that apply to this particular
subset. The algorithm starts by initializing the partial solution to have an empty
domain, and then it gradually extends this solution. As the algorithm proceeds, it
will derive new constraints, or “nogoods,” that rule out portions of the search space
that contain no solutions. Eventually, the algorithm will either derive the empty
nogood, proving that the problem is unsolvable, or it will succeed in constructing a
total solution that satisfies all of the constraints. We will always write the nogoods

in directed form; e.g.,

(‘01 = 9‘1) ARRRNAY ('Uk-l = Qk-—x) = v # gk

tells us that variables v; through v, cannot simultaneously have the values g, through

53

g respectively.

The main innovation of dynamic backtracking (compared to dependency-
directed backtracking) is that it only retains nogoods whose left-hand sides are cur-
rently true. That is to say that if the above nogood were stored, then v, through v,
would have to have the indicated values (and since the current partial solution has
to respect the nogoods as well as the original constraints, v, would either have some
value other than g, or be unbound). If at some point, one of the left-hand variables
were changed, then the nogood would have to be deleted since it would no longer be
“relevant.” Because of this relevance requirement, it is easy to compute the currently
permissible values for any variable. Furthermore, if all of the values for some variable
are eliminated by nogoods, then one can resolve these nogoods together to generate

a new nogood. For example, assuming that D,, = {1,2}, we could resolve

(m=a)A(va=c)=>v#1

with

(v2=b)A(va=c)=> vy #2

to obtain

(i=a)A{ve=b)=>v3#¢c

In order for our partial solution to remain consistent with the nogoods, we would
have to simultaneously unbind v;. This corresponds to backjumping from vy to vs,
but without erasing any intermediate work. Note that we had to make a decision
about which variable to put on the right-hand side of the new nogood. The rule of
dynamic backtracking is that the right-hand variable must always be the one that was

most recently assigned a value; this is absolutely crucial, as without this restriction,

54

the algorithm would not be guaranteed to terminate.

The only thing left to mention is how nogoods get acquired in the first place.
Before we try to bind a new variable, we will check the consistency of each possible
value? for this variable with the values of all currently bound variables. If a constraint
would be violated, we write the constraint as a directed nogood with the new variable
on the right-hand side.

We have now reviewed all the major ideas of dynamic backtracking. Since we
have already presented the algorithm once, we will give the algorithm below in a

somewhat informal style.
Procedure DYNAMIC-BACKTRACKING

1. Initialize the partial assignment f to have the empty domain, and the set of
nogoods I' to be the empty set. At all times, f will satisfy the nogoods in I as

well as the original constraints.

2. If f is a total assignment, then return f as the answer. Otherwise, choose an
unassigned variable v and for each possible value of this variable that would

cause a constraint violation, add the appropriate nogood to I

3. If variable v has some value z that is not ruled out by any nogood, then set

f(v) = z, and return to step 2.

4. Each value of v violates a nogood. Resolve these nogoods together to generate
a new nogood that does not mention ». If it is the empty nogood, then return
UNSAT as the answer. Otherwise, write it with its chronologically most recent

variable (say, w) on the right-hand side, add this directed nogood to I', and

2A value is possible if it is not eliminated by a nogood.

55

call ERASE-VARIABLE{w). If each value of w now violates a nogood, then set

v = w and return® to step 4; otherwise, return to step 2.
Procedure ERASE-VARIABLE(w)
1. Remove w from the domain of f.

2. For each nogood v € I whose left-hand side mentions w, call DELETE-

NogooD(y).
Procedure DELETE-NOGOOD(y)
1. Remove v from I'.

Each variable-value pair can have at most one nogood at a given time, so it is
easy to see that the algorithm only requires a polynomial amount of memory. In [42],
it is proven that dynamic backtracking always terminates with a correct answer.

This is the theory of dynamic backtracking. How well does it do in practice?

Experiments

To compare dynamic backtracking with backtracking and backjumping, we will
use randomly-generated propositional satisfiability problems, or to be more specific,
random 3-SAT problems with n variables and m clauses.? Since a SAT problem
is just a Boolean CSP, the above discussion applies directly. Each clause will be
chosen independently using the uniform distribution over the (’:;')23 non-redundant

3-literal clauses. It turns out that the hardest random 3-SAT problems appear to arise

3This differs from the earlier algorithm in that it automatically includes an obvious
variable-ordering heuristic.

‘Each clause in a 3-SAT problem is a disjunction of three literals. A literal is either a
propositional variable or its negation.

56

at the “crossover point” where the ratio of clauses to variables is such that about half
the problems are satisfiable [13, 63]; the best current estimate for the location of
this crossover point is at m = 4.24n + 6.21 [23]. Several recent authors have used
these crossover-point 3-SAT problems to measure the performance of their algorithms
(23, 77].

In the dynamic backtracking algorithm, step 2 leaves open the choice of which
variable to select next; backtracking and backjumping have similar indeterminacies.

We used the following variable-selection heuristics:

1. If there is an unassigned variable with one of its two values currently eliminated

by a nogood, then choose that variable.

2. Otherwise, if there is an unassigned variable that appears in a clause in which

all the other literals have been assigned false, then choose that variable.

3. Otherwise, choose the unassigned variable that appears in the most binary

clauses. A binary clause is a clause in which exactly two literals are unvalued,

and all the rest are false.®

The first heuristic is just a typical backtracking convention, and in fact is in-
trinsically part of backtracking and backjumping. The second heuristic is unit propa-
gation, a standard part of the Davis-Putnam procedure for propositional satisfiability
[26, 27]. The last heuristic is also a fairly common SAT heuristic; see for example
[23, 87). These heuristics choose variables that are highly constrained and constrain-
ing in an attempt to make the ultimate search space as small as possible.

For our experiments, we varied the number of variables n from 10 to 60 in

50n the very first iteration in a 3-SAT problem, there will not yet be any binary clauses,
so instead choose the variable that appears in the most clauses overall.

57

increments of 10. For each value of n we generated random crossover-point problems®
until we had accumulated 100 satisfiable and 100 unsatisfiable instances. We then
ran each of the three algorithms on the 200 instances in each problem set. The mean

number of times that a variable is assigned a value is displayed in Table 4.

Table 4: A comparison using randomly-generated 3-SAT problems.

Average Number of Assignments
Variables | Backtracking | Backjumping | Dynamic Backtracking
10 20 20 22
20 54 54 94
30 120 120 643
40 217 216 4,532
50 388 387 31,297
60 709 705 212,596

Dynamic backtracking appears to be worse than the other two algorithms by a
factor exponential in the size of the problem; this is rather surprising. Because of the
lack of structure in these randomly-generated problems, we might not expect dynamic
backtracking to be significantly better than the other algorithms, but why would it
be worse? This question is of more than academic interest. Some real-world search
problems may turn out to be similar in some respects to the crossword puzzles on
which dynamic backtracking does well, while being similar in other respects to these
random 3-SAT problems — and as we can see from Table 4, even a small “random

3-SAT component” will be enough to make dynamic backtracking virtually useless.

%The numbers of clauses that we used were 49, 91, 133, 176, 218, and 261 respectively.

58

Analysis

To understand what is going wrong with dynamic backtracking, consider the

following abstract SAT example:

a o z (IT1.5)
= -a (I11.6)
-a = b (111.7)
b = c (II1.8)
c = d (111.9)
z = -d (II1.10)

Formula (IIL.5) represents the clause —a V z; we have written it in the directed form
above to suggest how it will be used in our example. The remaining formulas corre-
spond to groups of clauses; to indicate this, we have written them using the double
arrow (=). Formula (III.6) represents some number of clauses that can be used to
prove that a is contradictory. Formula (IIL.7) represents some set of clauses showing
that if a is false, then b must be true; similar remarks apply to the remaining formulas.
These formulas will also represent the nogoods that will eventually be learned.
Imagine dynamic backtracking exploring the search space in the order suggested
above. First it sets a true, and then it concludes = using unit resolution (and adds
a nogood corresponding to (III.5)). Then after some amount of further search, it
finds that e has to be false. So it erases a, adds the nogood (III.6), and then deletes
the nogood (IIL.5) since it is no longer “relevant.” Note that it does not deiete
the proposition z — the whole point of dynamic backtracking is to preserve this

intermediate work.

59

It will then set a false, and after some more search will learn nogoods (II1.7)-
(IT1.9), and set b, ¢ and d true. It will then go on to discover that = and d cannot
both be true, so it will have to add a new nogood (III.10) and erase d. The rule,
remember, is that the most recently valued variable goes on the right-hand side of the

nogood. Nogoods (II1.9) and (IIL.10) are resolved together to produce the nogood

z = e (II1.11)

where once again, since ¢ is the most recent variable, it must be the one that is
retracted and placed on the right-hand side of the nogood; and when c is retracted,
nogood (II1.9) must be deleted also. Continuing in this fashion, dynamic backtracking

will derive the nogoods

z = -b (I11.12)

T = a (ITL.13)

The values of b and a will be erased, and nogoods (II1.8) and (II1.7) will be deleted.
Finally, (ITL.6) and (III.13) will be resolved together producing

= -z (111.14)

The value of z will be erased, nogoods (II1.10)-(III.13) will be deleted, and the search
procedure will ther go on to rediscover (II1.7)-(1I1.9) all over again.

By contrast, backtracking and backjumping would erase = before (or at the
same time as) erasing a. They could then proceed to solve the rest of the problem

without being encumbered by this leftover inference. It might help to think of this

60

in terms of search trees even though dynamic backtracking is not really searching a
tree. By failing to retract =, dynamic backtracking is in a sense choosing to “branch”
on z before branching on a through d. This virtually doubles the size of the ultimate
search space.

This example has been a bit involved, and so far it has only demonstrated that
it is possible for dynamic backtracking to be worse than the simpler methods; why
would it be worse in the average case? The answer lies in the heuristics that are being
used to guide the search.

At each stage, a good search algorithm will try to select the variable that will
make the remaining search space as small as possible. The appropriate choice will
depend heavily on the values of previous variables. Unit propagation, as in equation
(II1.5), is an obvious example: if a is true, then we should immediately set z true
as well; but if a is false, then there is no longer any particular reason to branch
on x. After a is unset, our variable-selection heuristic would most likely choose to
branch on a variable other than z; branching on = anyway is tantamount to randomly
corrupting this heuristic. Now. dynamic backtracking does not really “branch™ on
variables since it has the ability to jump around in the search space. As we have seen,
however, the decision not to erase z amounts to the same thing. In short, the leftover
work that dynamic backtracking tries so hard to preserve often does more harm than
good because it perpetuates decisions whose heuristic justifications have expired.

This analysis suggests that if we were to eliminate the heuristics, then dynamic
backtracking would no longer be defeated by the other search methods. Table 5
contains the results of such an experiment. It is important to note that all of the
previously listed heuristics (including unit resolution!) were disabled for the purpose

of this experiment; at each stage, we simply chose the first unbound variable (using

61

some fixed ordering). FLor each value of n listed, we used the same 200 random

problems that were generated earlier.

Table 5: The same comparison as Table 4, but with the heuristics disabled.

Average Number of Assignments
Variables Backtracking Backjumping Dynamic Backtracking
10 77 61 51
20 2,243 750 478
30 53,007 7,210 3,741

The results in Table 5 are as expected. All of the algorithms fare far worse than
before, but at least dynamic backtracking is not worse than the others. In fact, it is
a bit better than backjumping and substantially better than backtracking. So given
that there is nothing intrinsically wrong with dynamic backtracking, the challenge is
to modify it in order to reduce or eliminate its negative interaction with our search

heuristics.
Solution

We have to balance two considerations. When backtracking, we would like to
preserve as much nontrivial work as possible. On the other hand, we do not want to
leave a lot of “junk” lying around whose main effect is to degrade the effectiveness
of the heuristics. In general, it is not obvious how to strike the appropriate balance.
For the propositional case, however. there is a simple modification that seems to help,
namely, undoing unit propagation when backtracking.

We will need the following definition:

Definition I11.1 Let v be a variable (in a Boolean CSP) that is currently assigned a
value. A nogood whose conclusion eliminales the other value for v will be said to

justify (his assignment.

62

If a value is justified by a nogood, and this nogood is deleted at some point, then the
value should be erased as well. Selecting the given value was once a good heuristic
decision, but now that its justification has been deleted, the value would probably
just get in the way. Therefore, we will rewrite DELETE-NOGOOD as follows, and leave

the rest of dynamic backtracking intact:
Procedure DELETE-NOGOOD ()
1. Remove v from I,
2. For each variable w justified by v, call ERASE-VARIABLE(w).

Note that ERASE-VARIABLE calls DELETE-NOGOOD in turn; the two proce-
dures are mutually recursive. This corresponds to the possibility of undoing a cascade
of unit resolutions. Like Ginsberg’s original algorithm, this modified version is sound
and complete, uses only polynomial space, and can solve the union of several inde-
pendent problems in time proportional to the sum of that required for the original
problems.

We ran this modified procedure on the same experiments as before, and the
results are in Table 6. Happily, dynamic backtracking no longer blows up the search
space. It does not do much good either, but there may well be other examples for
which this modified version of dynamic backtracking is the method of choice.

How will this apply to non-Boolean problems? First of all, for non-Boolean
CSPs, the problem is not quite as dire. Suppose a variable has twenty possible
values, all but two of which are eliminated by nogoods. Suppose further that on this
basis, one of the remaining values is assigned to the variable. If one of the eighteen
nogoods is later eliminated, then the variable will still have but three possibilities

and will probably remain a good choice. It is only in the Boolean problems that

63

Table 6: The same comparison as Table 4, but with dynamic backtracking modified
to undo unit propagation when it backtracks.

Average Number of Assignments
Variables Backtracking Backjumping Dynamic Backtracking
10 ' 20 20 20
20 54 54 63
30 120 120 118
40 217 216 209
50 388 387 375
60 709 705 672

an assignment can go all the way from being totally justified to totally unjustified
with the deletion of a single nogood. Nonetheless, in experiments by Jénsson and
Ginsberg it was found that dynamic backtracking often did worse than backjumping
when coloring random graphs [52]. Perhaps some variant of our new method would
help on these problems. One idea would be to delete a value if it loses a certain

number (or percentage) of the nogoods that once supported it.

Summary

Although we have presented the research in this chapter in terms of Ginsberg’s
dynamic backtracking algorithm, the implications are much broader. Any systematic
search algorithm that learns and forgets nogoods as it moves laterally through a
search space will have to address—in some way or another—the problem that we
have discussed. The fundamental problem is that when a decision is retracted, there
may be subsequent decisions whose justifications are thereby undercut. While there
is no logical reason to retract these decisions as well, there may be good heuristic
reasons for doing so.

On the other hand, the solution that we have presented is not the only one

possible, and it is probably not the best one either. Instead of erasing a variable that

64

has lost its heuristic justification, it would be better to keep the value around, but in
the event of a contradiction remember to backtrack on this variable instead of a later
one. With standard dynamic backtracking, however, we do not have this option; we
always have to backtrack on the most recent variable in the new nogood. Ginsberg
and McAllester have recently developed partial-order dynamic backiracking [45], a
variant of dynamic backtracking that relaxes this restriction to some extent, and it
might be interesting to explore some of the possibilities that this more general method
makes possible.

Perhaps the main purpose of this chapter has been to sound a note of caution
with regard to the new search algorithms. Ginsberg claims in one of his theorems that
dynamic backtracking “can be expected to expand fewer nodes than backjumping
provided that the goal nodes are distributed randomly in the search space” [42].
In the presence of search heuristics, this is false. For example, the goal nodes in
unsatisfiable 3-SAT problems are certainly randomly distributed (since there are not
any goal nodes), and yet standard dynamic backtracking can take orders of magnitude
longer to search the space.

Therefore, while there are some obvious benefits to the new backtracking tech-

niques, the reader should be aware that there are also some hazards.

65

CHAPTER IV

BACKTRACKING AND THE INDUCED WIDTH

In Chapters II and III, we studied the performance of various algorithms ex-
perimentally. In this chapter and the next one, we will prove theoretical worst-case
results. These results will be stated in terms of a problem parameter known as the
induced width.

We begin in Section IV.1 with the definition of the induced width. To help
motivate this definition, we will discuss Dechter and Pearl’s adaptive consistency
algorithm. This non-backtracking constraint satisfaction algorithm has the interesting
property of being “exponential only in the induced width.” This means that its worst-
case time complexity can be written as the problem size raised to the power of some
function of the induced width. Animmediate consequence of this is that the algorithm
is polynomial time for problems of bounded induced width. The central project of this
chapter will be to examine which of the backtracking algorithms from Chapter I share
this property; we will be especially interested in the polynomial-space algorithms.

It is well known that dependency-directed backtracking (a non-polynomial-space
algorithm) is exponential only in the induced width; we will review this result in Sec-
tion IV.2. In the subsequent sections of this chapter, we will show that none of
the polynomial-space algorithms from Chapter I are exponential only in the induced
width. In particular, we will prove this for backtracking and backjumping in Sec-
tion IV.3, for dynamic backtracking in Section IV.4, and for k-order learning and

polynomial-space dependency-directed backtracking in Section IV.5. Strictly speak-

66

ing, we could omit the discussions of backtracking, backjumping, and k-order learn-
ing since these algorithms are special cases of polynomial-space dependency-directed
backtracking. The special-case arguments, however, are simpler, and might help with

some readers’ intuitions.
The Induced Width of a CSP

The induced width of a constraint satisfaction problem (CSP) is defined in
terms of the CSP’s constraint graph. The constraint graph captures the pattern of
interaction between the various variables, while abstracting away the actual constraint
predicates. It is formed by placing an edge between any two variables that share a

constraint. More formally:

Definition IV.1 The constraint graph of a CSP (V,D,C) is the (undirected) graph
G = (V, E), where the vertices V are the variables of the CSP, and the edges are

E = {{z,y}:A(W,P)e C,z € W,y € W,z # y}.

We will also need the notion of an ordering for a graph or a CSP.

Definition IV.2 Consider a graph (V,E) or a CSP (V,D,C), where |V| = n. An
ordering for the graph or CSP is a bijection h from V to {1,2,...,n}.

The ordering h corresponds to the vertices or variables being listed in the order
(h7(1),h71(2),...,h7}{n)). If two variables are connected in the graph, it is some-
times helpful to think of the one that comes first in the ordering as being the “parent”
of the second, and the second as being the “child” of the first.

Before defining the induced width, let us define the simpler concept of width.

67

Definition IV.3 Let G = (V, E) be a graph, and let h be some ordering for this graph.
The width of a vertex v under this ordering is the number of vertices that are connected
to v and precede it in the ordering (i.e., the number of parents of v). The width of
the graph under the ordering is the mazimum width of any of the vertices under the

ordering. Finally, the width of the graph is its minimum width under any ordering.

For example, a tree will have width 1, and a fully connected graph with n vertices

will have a width of n — 1. We also have the following straightforward definitions:

Definition IV.4 The width of a CSP under a given ordering is the width of its con-
straint graph under that ordering, and the width of a CSP is the width of its constraint

graph.

The idea of width was used by Freuder [34] to show that a CSP with width 1 can
be solved in linear time using the SOLVE-WIDTH1-PROBLEM algorithm in Figure 25.
First, the procedure identifies a width-1 ordering 4 for the problem P; this can be
done by performing a preorder tree walk of the constraint graph rooted at an arbitrary
vertex. Then, SOLVE-WIDTH1-PROBLEM makes two passes over the variables, first
a backward pass (that is, backward with respect to the order k), and then a forward
pass. The backward pass is a call to DIRECTIONAL-ARC-CONSISTENCY, which does
some constraint propagation on the problem P in order to produce a simpler (but
equivalent) problem P'. The forward pass is a call to the backtracking algorithm® for
P!, but because of the constraint propagation phase, the backtracking procedure will

never have to backtrack.

1For the purpose of SOLVE-WIDTH1-PROBLEM, we have extended BACKTRACK-TOP,
the top-level call to the backtracking algorithm of Figure 2, to take an ordering h as its
second argument. The backtracking search will be conducted using the static variable
ordering h; that is, on line 4 of BACKTRACKING, the variable v that is selected will always
be the first unbound variable in the ordering.

68

SOLVE-WIDTH1-PROBLEM(P) {where P is a CSP of the form (V,D,C)}
1 A := a width-1 ordering for P

2 P’ := DIRECTIONAL-ARC-CONSISTENCY(P, h)

3 return BACKTRACK-ToP(P', k)

DIRECTIONAL-ARC-CONSISTENCY(P, h)

1 fori:=ndowntol

2 for each variable v; that is a parent of v;

3 D; := UPDATE-DOMAIN(v;, D;,v;, D;, C)
4 P :=(V,D,C)

5

return P’

UPDATE-DOMAIN(u, Dy, v, Dy, C)
1 for each value z € I},

2 if there is no value y € D, such that setting v to z and v to y would satisfy
the binary constraint(s) in C between u and v

3 D, :=D, - {z}

4 return D,

Figure 25: Freuder’s algorithm for a width-1 CSP

The constraint propagation procedure, DIRECTIONAL-ARC-CONSISTENCY,
works as follows. It takes as its arguments a CSP P (as usual, the CSP is a triple
(V,D,C) of variables, domains, and constraints), and an ordering k for the CSP. It
processes the variables in the reverse order (vy,...,v;}, where v; abbreviates A~1(z).
For each variable v, it inspects the parents of v (on line 2), or in other words, those
variables connected to v that precede it in the ordering; for a width-1 problem, the
number of parents will always be 0 or 1. It then calls UPDATE-DOMAIN to remove
from the domain of the parent any value that is not consistent with at least one value
in the domain of the child. This is surely a sound transformation as the value being
removed cannot be part of any solution. After this preprocessing has been completed,
the new problem is directionally arc consistent [30]. This means that for any value in

the domain of a variable, and for any child of this variable, there will be at least one

69

value in the domain of the child that is consistent with the value of the parent. This
is a weaker version of full arc consistency, as defined by Mackworth [58].? When back-
tracking is called on a ordered width-1 problem that is directionally arc consistent,
it never has to backtrack. More precisely, if a given value z satisfies the constraints
on line 8 of BACKTRACKING, then the recursive call on line 9 must succeed. It is not
hard to see that with the appropriate data structures, the entire SOLVE-WIDTH1-
PROBLEM procedure will run in time O(na?), where n is the number of variables and
a is the maximum domain size. This is linear in the size of the problem.

Since width-1 CSPs are so easy, one might conjecture that the problems would
get progressively more difficult as the width increases. Unfortunately, it turns out
that even width-2 problems can be intractable. To see this, note that any binary
CSP can be compiled to a width-2 problem by creating a new copy of a variable for
each time that the variable is used in a constraint, and then adding a new constraint
asserting that the copy must have the same value as the original. If our ordering places
the originals before the copies, then the ordering will have width 2. (An alternative
transformation proceeds by reifying the constraints.) Therefore, we will not have
much use for the width except insofar as it is used to define the more sophisticated
notion of induced width.

Actually, SOLVE-WIDTH1-PROBLEM will continue to work for any CSP (pro-
vided that we replace the width-1 ordering % on line 1 with an arbitrary ordering),
but the algorithm will no longer run in linear time. It is instructive to examine what
goes wrong. The constraint propagation of DIRECTIONAL-ARC-CONSISTENCY will

still make the problem directionally arc consistent, but this property is not as useful

ZFreuder’s original algorithm [34] actually used full arc consistency instead of directional
arc consistency; we presented the simplified version here because it is both more efficient
and easier to understand.

70

for an arbitrary problem as it is for those of width 1. Consider a width-2 constraint
graph in which v; has two parents, v, and v,. If we have assigned values to v; and
vy, then even if the problem is directionally arc consistent, there need not be any
consistent assignment for v3. There must be some value for v; that is consistent with
the value of v;, and there must be some value for v; that is consistent with the value
of vy, but these might be different values; therefore, BACKTRACKING might have to
backtrack. If we want to solve the problem without backtracking, then we will have
to do more preprocessing than that of DIRECTIONAL-ARC-CONSISTENCY. In par-
ticular, we will have to induce new constraints between variables like v, and v,. The
induced width of a graph takes into account these extra induced edges.

Dechter and Pearl [30] first define the notion of the induced graph with respect
to a given ordering. This induced graph adds edges to the original graph so that
whenever = and y are parents of some vertex, there will also be an edge between z

and y. More formally:

Definition IV.5 Given a graph G = (V, E) and some ordering h, the induced graph
G' = (V,E') is defined as thal graph with the minimal set of edges E' such that
E' 2 E, and such that if {z,v} € E', {y,v} € E', h(z) < h(v),h(y) < h{v), and
z #y, then {z,y} € E'.

The induced graph can be constructed in one pass by processing the vertices in
reverse order; that is, first connect the parents of the last vertex, then the parents of
the penultimate vertex, etc. It is now straightforward to define the remaining notions

that we will need:

Definition IV.6 The induced width of a graph under an ordering is the width under
that ordering of the induced graph under that ordering. The induced width of a graph

is its minimal induced width under any ordering. The induced width of a CSP under

71

an ordering is the induced width of its consiraint graph under that ordering, and the

induced width of a CSP is the induced width of its constraint graph.

There are some other terms that are synonymous with induced width. It is also
referred to as the tree width or sometimes as the dimension of the graph. There is also
the notion of a partial k-tree; a partial k-tree is simply a graph whose induced width
does not exceed k [1]. We use the term “induced width” because of its popularity in
the constraint satisfaction literature.

Dechter and Pearl [30] show that given a CSP and an ordering, the CSP can be
solved in time exponential only in its induced width under that ordering. Thus, the
induced width can be thought of as a measure of problem difficulty. Their algorithm
is displayed in Figure 26. As with Freuder’s algorithm, the CSP is first simplified by
a constraint propagation procedure that processes the variables in reverse order; the
reduced problem can then be solved without backtracking.

The ADAPTIVE-CONSISTENCY procedure first constructs G, the constraint
graph of the problem (line 1). (Note that G is initially the ordinary constraint graph,
not the induced graph; the induced graph ends up being constructed over the course
of the algorithm.) The variables are processed in reverse order, and a new constraint
is added for the parents of each variable v; (lines 3-5). If there are (say) k parents
of v;, then the new constraint will be a k-ary constraint. The predicate for this con-
straint, which is computed by the INDUCED-PREDICATE procedure, only allows those
k-tuples of values for which there is some value for v; that is consistent with these
values, where consistency here means with respect to both the original constraints
and the constraints that we have added. Finally, edges are added between all the
parents (line 6-7), and these extra edges will be taken into account when computing

the parents of subsequent variables (on line 3). When ADAPTIVE-CONSISTENCY has

ADAPTIVE-CONSISTENCY-TOP(P, k) {where P is a CSP of the form (V, D, C),
and k is an ordering for that CSP}

1 P':= ADAPTIVE-CONSISTENCY(P, k)

2 return BACKTRACK-TOP(P', k)

ADAPTIVE-CONSISTENCY(P, k)

1 G := the constraint graph of the CSP P

2 fori:=mndown tol

3 W := the parents of v; in the graph G under ordering h
4 @ := INDUCED-PREDICATE(W, v;, P)

5 C:=CU((W,Q)

6 for all vertices z,y € W, where =z # y

7 Add the edge {z,y} to G

8 P :=(V,D,(C)

9 return P’

INDUCED-PREDICATE(W, v, P}
1 @ := a new |W|-ary predicate over the domains of the variables in W
2 for each |W|-tuple w over these domains

3 if there is some value z € D, such that setting v to z and W to w
would satisfy the constraints

4 @(w) := TRUE

5 else

6 @(w) := FALSE

7 return @

Figure 26: Adaptive consistency

72

73

finished, the CSP can be solved without backtracking.

In short, adaptive consistency is similar to directional arc consistency, but it
will ensure a backtrack-free search for any problem, not just for a problem of width 1.
For a more general discussion of dynamic programming algorithms for NP-complete
graph problems, see the survey paper by Arnborg [1]. Let us now look at the time
and space complexity of adaptive consistency. If w* is the induced width of the CSP
with respect to the given ordering, then the parent sets will each have size of at most
w*. Thus, if n is the number of variables, and ¢ is the maximum domain size, the
space to store the new predicates is O(na™"). The time to construct these predicates is
O(na“"*!) multiplied by whatever time is required to do the constraint check one line
3 of INDUCED-PREDICATE; this latter time will depend on the exact implementation,
but it is obviously polynomial in the size of the problem. Since n and a are polynomial
in the problem size, and since all the other costs of adaptive consistency are also
polynomial in the problem size, it follows that adaptive consistency has both space

and time complexity of

0 (2°a*") (IV.15)

where z is the problem size, and ¢ is some constant.

The above analysis assumes that we are given an ordering along with the prob-
lem. What if the problem happens to have a small-induced-width ordering, but we
do not know what it is? Finding the smallest induced width (or an ordering with this
induced width) is actually NP-hard (2], but this complexity is also growing exponen-
tially only in the induced width, so the overall cost of adaptive consistency remains
the same.

Now, let us be more precise about what it means for an algorithm to be expo-

nential only in the induced width. We have discussed a particular example of such an

74

algorithm, adaptive consistency, with the complexity given in formula (IV.15). More

generally, we will proceed as follows.

Definition IV.7 When g is a real-valued function of two arguments, a CSP and an
ordering for that CSP, then we will say that g is exponential only in the induced

width if there is some function f such that g is
0 (/) (IV.16)

where z is the size of the encoded problem and w* is the induced width of the problem
under the given ordering. If the worsi-case running time of a CSP algorithm, when
given a CSP and an ordering, is ezponential only in the induced width, then we will

say that the algorithm is ezponential only in the induced width.

Note that f in this definition can be an arbitrary function. In practice, f
is usually a linear function, but we do not require this. Perhaps, one might say
“exponential only in some function of the induced width” in order to more explicit,
but we will stick with the shorter “exponential only in the induced width.”

For future reference, let us record the following lemma:

Lemma IV.8 A CSP algorithm is exponential only in the induced width if and only if

it runs in polynomial time on any problem class in which the induced width is bounded.
Proof. The forward “only if” direction is an immediate consequence of Defini-

tion IV.7: for any induced width bound k, let ¢ be

max f(w");

75

then from formula (IV.16), we know that the running time on a problem class of

induced width not exceeding k£ will be

O (z°*).

This is actually the only part of the lemma that we will need, but in the interest of
completeness, we will now establish the other direction as well.

Suppose a CSP algorithm runs in polynomial time on any problem class in
which the induced width is bounded. Then, for any k, there are z, by and ¢, such
that for all problems of size z > z;, and induced width w* < k, the running time will
not exceed

bzt

Let us assume that the problem size z is at least 2. Then, this time bound can be
written as

z

(just let di = c; -+ log, bi). To handle the problems of size ¢ < =; as well, let f(k) be
the maximum of d; and

max log, t(z),

where #(z) is the maximum running time for a problem of size = (and induced width
not exceeding k). These maxima exist since there are only a finite number of problems
bounded by any fixed size.

It should be clear that f satisfies the conditions of Definition IV.7, provided
that we disallow problems of size z = 1. To handle this trivial case, we can simply

adjust the constant that is permitted by the O() notation of formula (IV.16). This

76

completes the proof.]

We are interested in the relation between the space and time requirements of
the various backtracking algorithms from Chapter I. We are particularly interested
in the possibility of a polynomial-space algorithm that is exponential only in the
induced width. In order to fully specify the various algorithms from Figures (2)-(7),
we should say how they choose the unassigned variable at each stage, and in what
order they enumerate the values for that variable. Following Definition IV.7, we will
assume that each of the algorithms has been extended to take a variable ordering
as an additional argument; and that whenever an unassigned variable needs to be
selected, the algorithm will choose the first unassigned variable under that ordering.
We will assume that the values are selected in numerical order. These assumptions
will allow us to make a fair comparison between adaptive consistency and the various
backtracking algorithms. In Chapter V, we will consider more sophisticated variable

and value orderings.

Dependency-Directed Backtracking

In this section, we give a proof for the following known result:

Proposition IV.9 Dependency-directed backiracking is ezponential only in the induced
width.

The reason in short is that the variables in any nogood must be parents in the induced
graph of some other variable, and thus the total number of nogoods is exponential
only in the induced width; and by the nature of dependency-directed backtracking, it
never has to learn the same nogood twice. To follow the details of the following proof,
the reader may wish to refer back to the DDB (dependency-directed backtracking)

procedure on page 14.

77

Proof. Over the course of the search, dependency-directed backtracking will accu-
mulate nogoods in the set I'. We claim that the variables mentioned in any nogood
in 'y and the variables in any conflict set returned by the DDB procedure, both
have the following property: these variables are a subset of the parents of some other
variable in the induced graph. As usual, the induced graph here is the induced graph
of the CSP under the given ordering. We will prove this claim by induction on the
number of times that DDB has returned.

The base case is trivial as I’ is initially empty and the procedure has not yet
returned. If DDB returns a solution to the CSP (line 2 or 14), then the induction
step is trivial as conflict-set is set to 0, and I is passed through unchanged. If the for
loop (on lines 7-18) terminates early (on line 16) because the current variable was not
relevant to the backjump, then the induction step is also trivial, as both conflict-set
and I' are passed through unchanged.

The only interesting case is when the for loop exits normally after trying every
value for the variable. Let v be the variable over whose values we are iterating. Each
time through the loop, new-conflicts will be assigned some set of variables (on line
10 or 12), and v will always be one of these variables (since the other cases were
covered in the last paragraph). We can see that the other variables in new-conflicts
must be parents of v in the induced graph by considering the various possibilities: if
a constraint is violated, then the other variables in new-conflicts will be parents of v
in the original graph; and if a nogood is violated or if a recursive call to DDB returns
the new-conflicts (on line 10), then from the inductive hypothesis, we know that all
of these variables (including v) must be parents in the induced graph of some other
variable, and thus by the definition of the induced graph, the remaining variables will

be induced-graph parents of v. The conflict set that is returned by DDB will be the

78

union of all the sets of new-conflicts minus the variable v. This verifies the inductive
step for conflict-sef. The new nogood + (that is formed on line 19) contains the same
variables that are in the conflict set; this completes the inductive argument.

So how many possible nogoods are there? Let n be the number of variables in
the CSP, a be the maximum domain size, and w* be the induced width under the
given ordering. Then we can choose a variable in n different ways, and each of its
induced-graph parents can either be assigned one of at most a values, or omitted from
the nogood. This gives an upper bound of »(a + 1)*" possible nogoods.

When a nogood is learned, the algorithm backjumps up the stack until it reaches
a variable in the nogood. If the variables in this nogood are ever instantiated again
with the same values, then the nogood will cause a constraint violation {on line
9), preventing DDB from being invoked with this assignment. Therefore, the same
nogood will never be learned more than once.

The maximum number of steps between the learning of two nogoods can be
bounded in the following way. It takes O(n) steps to backjump up the stack. DDB
can then assign at most n variables, doing at most a consistency checks for each
one. The time required by the consistency check on line 9 of DDB will depend
on the details of the implementation. One might imagine representing the nogoods
for the parents of a given variable by a multidimensional array (as in ADAPTIVE-
CONSISTENCY), but let us consider instead the straightforward implementation, in
which I' is just a list of nogoods. It might then take time |T| = O(n(a + 1)*")
(multiplied by a polynomial factor) just to search down this list. This gives a total

time for dependency-directed backtracking of:

O(=*(a +1)™),

79

where z is the size of the problem, and c is some constant. This satisfies the criterion
of formula (IV.16); therefore, dependency-directed backtracking is exponential only

in the induced width. 0

Despite the superficial differences between dependency-directed backtracking
and adaptive consistency, the two algorithms are fundamentally quite similar. Both
procedures save the solutions to a certain type of subproblem so that these results
will not have to be repeatedly recomputed. Adaptive consistency follows the tradi-
tional dynamic programming approach of doing the computation from the bottom
up, while dependency-directed backtracking follows the “memoization” variant of
dynamic programming in which the computation is done top-down, but with the in-
termediate results being cached [21]. Memoization has the advantage that it does not
have to solve the subproblems that never get used. Consider for example, a problem
with a huge induced width, but very weak constraints. Adaptive consistency will
spend a lot of time computing huge induced relation tables that are of no use, while
dependency-directed backtracking (like regular backtracking and backjumping) will
probably find a solution very quickly. On the other hand, memoization sometimes
requires more overhead than the bottom-up dynamic programming approach.

Actually, dependency-directed backtracking differs in an interesting way from
being a straightforward memoized version of adaptive consistency. If v is some vari-
able and P(v) is the set of parents (in the induced graph) of this variable, then if at
some point there were no consistent assignment for v, the memoized version of adap-
tive consistency would in effect make the conflict set equal to P(v) and learn a new
nogood based on the current values of all the variables in this set. In dependency-
directed backtracking, on the other hand, the conflict set might be a strict subset of

P(v), depending on which variables in P(v) were actually involved in the constraint

80

violations; this might permit more backjumping, and it would also lead to the learn-
ing of a more general nogood. One might imagine a variant of dependency-directed
backtracking that performed a fully static dependency analysis based solely on the
structure of the constraint graph; Dechter calls this approach graph-based dependency-
directed backtracking [28]. Standard dependency-directed backtracking requires more
overhead than the graph-based version, but for some problems, it can have more
pruning power [35].

Because of the extra flexibility and pruning power of full dependency-directed
backtracking, one might speculate that it would be exponential only in the induced
width of the problem, regardless of which ordering is used. In other words, suppose
the problem has some ordering with a small induced width, but dependency-directed
backtracking searches using a completely different ordering. Will this still always

yield an efficient search? It will not. This is demonstrated by the example below.

Ezample IV.10 Consider the problem class {P, : n > 1}, where P, is defined as
follows. The variables are {X1,Xz,...,Xn-1,Xn, Y1, Y2} (50 there are n+2 variables
altogether). Fori from I to n, the domain of X; is {1,2}; and the domains of Y; and

Y: are {1,2,...,2n}. Fori from I to n, we have the constrainis?®

Xi=1 = Y #2—1,
X:=2 = Y #2,
Xi=1 = Y, #2%,
Xi=2 = Y,#2%—1.

3In Definition 1.1, we defined a constraint to be an ordered pair (W, Q), where W is a
tuple of variables and @ is a predicate on these variables. Using that notation, the first
constraint of this example for i = 1 would be written as ((X1, Y} ,% (w,v):u=1=v#1}).
The more concise notation that we use instead is merely a shorthand; it does not mean that
we necessarily represent the constraints internally in that particular syntax.

81

Finally, we have the constraint:

n="r.

Figure 27 shows the constraint graph for this ezample when n is 4.

Xl Xz X3 X4

Yi Y,

Figure 27: The constraint graph of problem P, from Example IV.10.

First of all, note that all of the CSPs in the problem class of Example IV.10
are unsatisfiable. Suppose, for example, we set Y; = Y2 = 1. Then there would be no
possible value for X, because if X, is 1, then Y] cannot be 1, but if X; is 2, then Y;
cannot be 1. If we instead made ¥; = Y; = 2, then X, would still have no consistent
assignment (for the opposite reason in each case). If we made ¥} = Y; = 3, then X,
would now have no consistent assignment, etc.

As we have just seen, it easy to do this problem if we order the variables Y;
and Y; before any of the X; variables. Under any such ordering, the problem will
have an induced width of 2, and we know from Proposition IV.9 that dependency-
directed backtracking under this ordering will run in polynomial time (as would back-
jumping for this particular example}. Suppose, however, that we ordered Y; and Y;
last, after all of the X; variables. The induced width under this ordering would be
n + 1, so Proposition IV.9 would no longer guarantee polynomial-time performance.
Dependency-directed backtracking with this perverse ordering will in fact require time

£2(2") since for each of the 2" assignments to the X; variables, there will be no solu-

82

tion, and the conflict set will in each case include all n of the X; variables; thus the
nogood that is learned will never be reused. Since the encoded size of this problem
is O(n?), which is polynomial in =, it follows that dependency-directed backtracking
does not run in polynomial time on this example. Therefore, the most we can say
is that dependency-directed backtracking is exponential only in the induced width

under the ordering that it actually uses.

Backtracking and Backjumping

In the last section, we gave a positive result (i.e., an upper bound) for
dependency-directed backtracking. In the remainder of this chapter, we will present
negative results (i.e., lower bounds) for the less memory-intensive algorithms. We will
show that none of these other algorithms are exponential only in the induced width.
In order to show that an algorithm is not exponential only in the induced width, we
will exhibit a sequence of problems of fixed induced width for which the algorithm’s
running time is nonetheless more than polynomial.

For backtiracking and backjumping, it is easy to do this. Here is the counterex-

ample:

Ezample IV.11 Consider the problem class {P, : n > 1}, where the problem P, will
be defined as follows. The ordered set of variables is (X1, Xa,...,Xn).* All of the
variables will have the same domain: {1,2,3}. For each i from 1 to n — 1, there will

be a binary constraint:

X,'=/-'3=>X§+1?!-'3,

40r more verbosely, the set of variables is {X;, Xs,...,X,}, and the ordering is the
function k such that A(X;) = i.

83

and finally there will be a single unary constraini:

X, =3.

Each of these problems has an induced width of 1 under the given ordering
since the only parent of the variable X;, for z > 1, is the variable X;_;. Furthermore,
each problem has exactly one solution, namely setting all the variables to 3. The
backtracking algorithm, however, will take a long time to discover this solution.

We will make use of the backiracking search tree of each problem, which will be
defined as follows. Each node in the tree is a partial assignment that assigns values to
an initial subsequence of the variables, i.e., to the variables X;, X,,..., X} for some
k where 0 < k < n. The root node of the search tree is the null assignment. For any
such assignment f where k < n, f; will refer to the new assignment obtained from f by
assigning the value 7 to the next unbound variable (X4,). If a call to BACKTRACKING
with the partial assignment f makes recursive calls to BACKTRACKING, then the
children of f are the partial assignments that are passed to these recursive calls; if
this initial call does not make any recursive calls, then f is a leaf node.

Since (by assumption) the values are tried in numerical order, the variable X,
will be assigned the wrong values 1 and 2 before being assigned the correct value 3.
Once X; has been assigned a wrong value, the backtracking algorithm will have to
explore the entire subtree below this value, and this subtree will contain 2"~2 leaf

nodes. More formally:
Proposition IV.12 Backtracking is not ezponential only in the induced width.

Proof. For a given partial assignment f in the backiracking search tree of some

problem P, of Example IV.11, let V(f) be the value that BACKTRACKING returns

84

when called with f, and let L{f) be the number of leaves in the subtree under f.
Consider a partial assignment f that assigns either a 1 or a 2 to each of the first &
variables, where 1 < k < n — 1. We will show by induction that V(f)=UNSAT and
L(f) = an=1=k. this will be by backwards induction on k. The base case is when
k = n — 1; f assigns either the value 1 or 2 to X,_;, and thus there will be no
consistent assignment for X,. Therefore, V(f) =UNSAT and since f is itself a leaf
node, L(f) = 1. When 1 < k < n—1, f assigns either the value 1 or 2 to X}, and both
1 and 2 (but not 3) are consistent assignments for Xi.,. By the inductive hypothesis
then, we know that V(f;) = V(f2) = UNSAT and that L(f,) = L(f) = 2n-1-(k+1),
Therefore, V(f) = UNSAT, and L(f) = L(fi) + L(f.) = 2""'*, which is what we
want. The number of leaf nodes under a given assignment is a lower bound on the
total number of calls to BACKTRACKING on this assignment.

The initial call to BACKTRACKING with the empty assignment will first call
BACKTRACKING with the assignment of 1 to X,. By the above paragraph, this will
take time £(2"~2). The size of the problem is O(n). Therefore, the running time of
BACKTRACKING on this problem class is not polynomial. By Lemma IV.8, it then

follows that backtracking is not exponential only in the induced width. O

Backjumping will not help at all on Example 1V.11. We show below that the
conflict set that backjumping uses to determine which past variables contributed
to a dead end will always include the last variable that was instantiated; hence,

backjumping will search exactly the same tree as backtracking.
Proposition IV.18 Backjumping is not ezponential only in the induced width.

Proof. Consider the backjumping search tree for some problem P, of Example IV.11;

this tree is defined analogously to the backtracking tree, with the children of any node

85

corresponding to the recursive calls of the BACKIUMPING procedure. For a given
partial assignment f,let V(f) be the first value returned by BACKIUMPING (either a
solution or UNSAT), let C'(f) be the conflict set returned, and let N{f) be the number
of leaf nodes in the subtree under f. As before, let f be some partial assignment that
assigns 1's and 2's to the first & variables, where 1 €< k& < n — 1. We claim that
V(f)=UNsAT, C(f} = {Xi}, and L{f) = 2"~!~*. For the base case of k = n —1, the
current value of X,,_, (either 1 or 2) will rule out the value of 3 for X,,, and the other
values for X, will be ruled out by the unary constraint on X,. Thus, for such an
> V(f)=Unsar, C(f) = {Xn-1}, and L{f) = 1. Now consider an assignment f of
length k, where 1 < k < n—1. By the inductive hypothesis, the recursive calls to both
f1 and f; will fail, in both cases setting new-conflicts to {Xy41}; since Xp4; will be
in both of these returned conflicts sets, there will be no opportunity to exit the loop
early. The constraint check on f; will fail, setting new-conflicts to {Xi, Xp41}. The
returned conflict-set is obtained by taking the union of these new-conflicts sets, and
filtering out the branching variable X;,. So we have: V(f)=UNsaT, C(f) = {X:},
and L(f) = L(f1) + L(f;) = 2~~'~*. This gives the same lower bound Q(2"~2) as for
backtracking. Therefore, backjumping is not exponential only in the induced width.

O

One odd thing about Example 1V.11 is that the reverse of the given variable
ordering, that is, the ordering (V,,, Va-1,..., V2, V1), would have worked just fine. This

will not always be the case, however, as we will see in Chapter V.

Dynamic Backtracking

Dynamic backtracking is potentially more powerful than backjumping because

it can often preserve dependency information for variables over which it has already

86

backtracked. Consider Example IV.11 from the last section. Suppose dynamic back-
tracking is working with a partial assignment f that assigns values to the first &
variables, with the variable X taking the value 1. Like backjumping, dynamic back-
tracking will, after some amount of search, determine that f cannot be extended to
value the variable X}, and because of the linear structure of the constraint graph,
the only variable in the conflict set would be X,. Backjumping would just discard

this information when it backs up, but dynamic backtracking would remember that

culprits| X;, 1] = 0.

The culprits entry is the empty set because X, = 1 has been determined to be a
dead end regardless of the values of the other variables. Dynamic backtracking will
not make the mistake of setting X to 1 again. It will go on to learn similar culprits
entries for all the variables, and it will quickly solve the problem.

In general, dynamic backtracking can solve problems with width-1 orderings in
polynomial time. In this respect, it is better than backtracking and backjumping, and
the same as Freuder’s algorithm and k-order learning when & = 1. Unlike the latter
two algorithms, however, dynamic backtracking can cache dependency information

involving more than one variable, e.g., for some problem it might learn

culprits[v, z] = {w,,w,}, (Iv.17)

meaning that as long as variables w, and w, have their current values, v cannot
take the value z. Unlike full dependency-directed backiracking, however, dynamic
backtracking cannot store such dependency information indefinitely; as soon as w, or

w, changes its value, this culprits entry must be deleted. If w, or w; is later changed

87
back to its original value, then (IV.17) will have to be derived all over again. Because
of this limitation, dynamic backtracking is not exponential only in the induced width.

To demonstrate this fact, we will use the following modification of Exam-

ple IV.11.

Ezample IV.14 Consider the problem class {P, : n > 1}, where the problem P, will
be defined as follows. The ordered set of variables is (Vi,Va,...,Van—1, Van, Vanyg1)
(so the number of variables is 2n + 1). For all i from 1 to 2n, the domain of V; is
{1,2,3}; and the domain of Va4, is {1,2}. For each i from 1 to 2n — 2, there will

be the constraint:

Vi£3= Ve #3.

Finally, we have the consiraints:

%n—l # 3 = l/21'1-]-1 "/'l" 11

%n?"'s = ‘Grﬂ-l?"'z-

Figure 28 shows the constraint graph for this ezample when n=J, and Figure 29 shows

the corresponding induced graph.

i Vs Vs Vz
. . .
Vo
® . .
V2 Va Ve Vs

Figure 28: The constraint graph of problem P, from Example IV.14.

First, we will show that this problem class has a bounded induced width.

88

Vo

Va Va Vs Vs

Figure 29: The induced graph of problem P, from Example IV.14.

Lemma IV.15 Every problem P, of Ezample IV.1} has an induced width of 2 under

the given ordering.

Proof. It is straightforward to prove by induction that for ¢ > 2, the only parents

of V; in the induced graph are V,_; and V,_,. (]

Note that there are no solutions to this CSP with both V; and V; simultane-
ously set to values other than 3. The nature of the ordering ensures that dynamic
backtracking will begin by setting both variables to 1. We just have to prove that it
will then take exponential time before retracting these assignments. It turns out that
on this example, dynamic backtracking does just as poorly as simple backtracking be-
cause (1) it never gets a chance to backjump, and (2} each new piece of information
in the culprils array gets deleted before it can be reused. To follow the details of the
following proof, the reader may wish to refer back to the DYNAMIC-BACKTRACKING

algorithm on page 20.
Proposition IV.16 Dynamic backtracking is not ezponential only in the induced width.

Proof. Consider some problem P, from Example IV.14. Define a tree of partial
assignments as follows. The root node is the partial assignment that assigns 1 to both
Vi and V,. We will say that the root node has a “depth” of 2 (since it assigns two

variables). For each node f in the tree of depth d, where 2 < d < 2n, the children of

89

f will be f; and f;; as in the last section, f; is the partial assignment f extended by
assigning : to the first variable that is not bound by f. We will say that these children
have depths d + 1. It should be apparent that the leaves of this tree are assignments
to all the variables except V3,.1, and that there are 22°~2 such leaves. Note that
we cannot assume in advance that dynamic backtracking will actually search this
tree; after all, dynamic backtracking is not even a tree search algorithm since it
can dynamically rearrange the order of past variables. We will show, however, that
dynamic backtracking must in fact perform a full walk of the tree (a full walk of a
tree lists the vertices when they are first visited and also whenever they are returned
to after a visit to a subtree [21]); this is more than enough to show that dynamic
backtracking will have to visit all 22"~2 leaves.

We will monitor the state of the DYNAMIC-BACKTRACKING procedure at the
top of its main loop (i.e., when it is about to execute line 5); each time through, we
will be interested in the current values of the assignment f and the array culprits.
In order to state the appropriate inductive hypothesis, let us define the notion of a

trivial culprits entry; we will call the following entries trivial:

culprits[v,z] = VALUEALLOWED for any variable v and value z
culprits(Vi, 3] = {Vi-2} for3<k<2n
Culprits[%ﬂ+l1 1] = {‘/Zn—l}

culprits[Vani1,2] = {Van}

In other words, an entry in the culprils array is trivial if allows the value, or if it
could be obtained directly from one of the original constraints; in either case, it does

not cache any useful work.

90

Our claim, which we will prove by induction, is as follows. Assume that
the current partial assignment f assigns the values (u,a,...,ux) to the variables
(V1, Va, ..., Vi) respectively, where k > 2 and all the u; are in {1,2}. Further assume
that the culprits array has no nontrivial entries for variables that are currently un-
bound, i.e., for variables Vi+ where k' > k. Then, we claim that by the time that
dynamic backtracking unsets the value of V}, it will have performed a full walk of the
subtree with root f (in the graph described above), and that the only new non-trivial

entry in the culprits array at the end of this process will be

culprits(Viyus] = {Vis}.

The base case is for a leaf node, that is, where ¥ = 2n. There will be no
assignment for the variable V5,4, consistent with f; it cannot be 1 because of the
current value of V2,_1, and it cannot be 2 because of the current value of V;,, (whether
because of the constraints or because of trivial culprits entries, it does not really
matter). The conflict-set variable will be set {(on lire 13) to {Van_1, V2n}, and the
backtrack variable w will be set {(on line 17) to Va,; therefore culprits{Ven, ua,] will be
set (on line 21) to V3,3, which is what we want. Finally, since this is a leaf node,
the “full walk” claim is fulfilled trivially; this concludes the base case.

Now, for the inductive step where k < 2n. The variables up to V; will have been
assigned values, so the next open variable is Vi4;. This cannot be 3, either because
of a pre-existing entry

culprits[Vis1,3] = {Vie1}, (IV.18)

ot because of the problem constraint (which will then be recorded as a trivial culprits

entry on lines 8-9). If there are no nontrivial culprits entries for Vir, where &' > k,

91

then in particular there will be no entry preventing V., from being set to 1. Since
there are also no constraints that prevent this, Vi, will be set to 1, and then by
the inductive hypothesis, the algorithm will then walk the entire subtree under this

augmented assignment before finally unsetting V;4; and learning that

culprits[Viyr, 1] = {Vi}. (IV.19)

Then, Vi4+1 will be set 2, and that subtree will be walked, producing the entry

culprits[V]cH, 2] = {‘fk}. (IV.?U)

Now there will be no more allowed values for V.,. The conflict-set will be computed
(on line 13) from entries (IV.18)-(1V.20), yielding {Vi_;, Vi}. Thus, the backtrack
variable w will be Vi, causing the deletion of (IV.19) and (IV.20) (on lines 18-20).
The value of culprits[V;,u,] will be set to Vi_,, and finally V; will be unbound. This
completes the inductive argument.

Dynamic backtracking will start with the null assignment, and it will set V;
and V; to 1 on the first two iterations through the loop. By the argument above, we
know that dynamic backtracking will then perform a full walk of the subtree rooted at
this assignment, taking time £(22*~2). The size of the problem is O(n), so dynamic
backtracking requires more than polynomial time. Since the induced width of the
problem class is fixed, it follows that dynamic backtracking cannot be exponential

only in the induced width.]

As an aside, Example IV.14 also demonstrates that Frender’s algorithm in Fig-

ure 25 is not exponential only in the induced width. The directional arc-consistency

92

procedure will accomplish absolutely nothing, as the problem as given is already di-
rectionally arc consistent. Backtracking will then have to backtrack over the entire

space.
Polynomial-Space Cachin

Before discussing arbitrary polynomial-space dependency-directed backtracking
algorithms, let us cover the special case of k-order learning. This idea, remember,
was that a new nogood would only be saved if it had k or fewer variables in it. If the

induced width does not exceed k, then k-order learning will work just fine:

Proposition IV.17 Consider a class of problems with induced widths less than or equal
to some k (as usual, each problem here is ¢ CSP with an ordering, and the induced
width is under that ordering). Then k-order learning will run in polynomial time on

these problems.

Proof. From the proof of Proposition 1V.9, we know that dependency-directed
backtracking will never learn nogoods that are larger than the induced width under the
given ordering. Therefore, if the induced widths do not exceed k, then k-order learning
will be equivalent to full dependency-directed backtracking, which is polynomial time

on such a problem class. O

Once the induced widths exceed k, however, k-order learning will no longer be
tractable. The counterexample that will establish this is a generalization of Exam-

ple IV.14.

Ezample IV.18 Define the problem P, as follows, where m > 0 and n > 0. The
ordered set of variables is (V1,Va, ..., Vin, Vinng1). For alli from 1 to mn, the domain

of V; is {1,2,3}; and the domain of Vmnty is {1,2,...,m}. For each i from I to

93

m(n — 1), there will be the constraint:

V;%S':}Vt-km?é:;

Finally, for j from 1 to m, we have the constrainis:

Vain-1)45 # 3 = Vamnp1 # J.

Figure 30 shows the constraint graph for this example when m = 3 and n = 4.

Note that the problem P, has an induced width of m, and further note that it does

not have any solutions without at least one of the first m variables being set to 3.

Proposition IV.19 For any fized k, the k-order learning algorithm is not ezponential

only in the induced width.

Proof. Consider the class of problems {Pn, : m = k+ 1,n > 1}, where k is the
parameter of the k.-ORDER LEARNING algorithm. Let f be some partial assignment
that assigns the values 1 or 2 to each of the first j variables, where m < j < mn; this
assignment cannot be extended to a solution.

When k-ORDER LEARNING is called with this assignment, it will have to ex-
amine 2™~ leaf nodes, and it will then return a conflict set consisting of the last m
variables in the partial assignment, that is, the variables X;_,,11,...,X;; since m is
greater than k, no new nogood will be learned. This can be proven formally using
the same type of inductive argument that was used to establish Proposition IV.13.

Since k-order learning begins by assigning 1 to the first m variables, it must
examine at least 2™("~) leaf nodes altogether. The size of the problem is only O(mn),

so k-order learning is not polynomial time on this problem class. The induced width

94

of the problem class is constant; therefore, k-order learning is not exponential only

in the induced width. |
° ° .
Vi Vi Va Vio
* o o o Via
V2 Vs Vs Vit
® ° °
Vs Ve Va Viz

Figure 30: The constraint graph of problem P, 4 from Examples IV.18 and 1V.21.

We have looked at some special cases of polynomial-space dependency-directed
backtracking; now let us consider the general case. As defined on page 17, such a
procedure may use an arbitrary method to determine whether or not to cache the new
nogood, and it may also choose to delete any set of old nogoods; the only restriction
is that the nogood set I' can never be larger than some polynomial in the size of
the problem.® Unfortunately, this polynomial-space restriction itself is sufficient to

preclude the algorithm from being exponential only in the induced width.

Theorem IV.20 There is no polynomial-space dependency-directed backtracking algo-

rithm that is ezponential only in the induced width.

In order to prove Theorem IV.20, we will have to modify Example IV.18 slightly.

We will keep the same constraint graph, as illustrated by Figure 30, but we will expand

50One might object that perhaps some implementation of dependency-directed backtrack-
ing could use less memory than the maximum || size by using a clever data structure en-
coding some collection of m nogoods in less than O(m) space. Qur answer to this objection
is that if such a representation could actually compress an exponential number of nogoods
down to polynomial size, then we would no longer consider it to be a dependency-directed
backtracking algorithm.

95

the domains (for all but the last variable) from {1,2,3} to {1,2,...,n,n + 1}, and

modify the constraint predicates accordingly.

Ezample IV.21 Define the problem P, , as follows, where m > 0 and n > 0. The
ordered set of variables is (W, Va, ..., Vi, Vinng1). For all i from 1 to mn, the domain
of V; is {1,2,...,n,n+1}; and the domain of Vppyy is {1,2,...,m}. For eachi from

1 to m(n — 1), there will be the consiraint:

ViEFn+l=>Vim#Fn+ 1.

Finally, for j from 1 to m, we have the constraints:

Vm(n—l)'i‘j 7& n+l= an+1 ﬁé j-

We can now prove the theorem:
Proof. A polynomial-space dependency-directed backtracking algorithm must have
some constant b such that the maximum cardinality of the nogood set T' is O(z?),
where z is the size of the problem encoding. We will consider the class of problems
{Ppn:m=3b+2,n > 1} from Example IV.21. These all have induced widths of
3b + 2. The size of the problem encoding is O(n®) as there are O(n) constraints and
each constraint takes O(n?). Thus the maximum size of ' is O(n®) = O(n™~2); we
will show that this is not large enough for the algorithm to run in polynomial time
on this problem class.

Consider a partial assignment f that assigns values to the first j variables,
where m < j < mn, where this assignment does not assign the value n + 1 to any
of these variables. We can define some tree of such partial assignments, in which the

root node values the first m variables, and each non-leaf node has n children. This

96

tree has n™"1) leaf nodes. As before, the level of a node is the number of variables
to which it assigns values, so the root nodes is at level m. We will call this the
“backtracking tree,” since it is clear that standard backtracking will have to search
all the nodes in this tree.

First, we claim that if the nogood set T' is initially empty when the dependency-
directed procedure is called on the root node, then when the procedure returns from
level j, the conflict set and thus the new nogood -y (whether or not it is cached) will
contain precisely the last m variables in the current assignment, that is, the variables
Vi, where j—m < i < j. It is straightforward to prove this by mathematical induction.

Now, consider the actual search tree of the polynomial-space algorithm when it
is called on the root node with I' initially empty. We will call this the pruned tree.
The pruned tree will be a subset of the backtracking tree. We will say that a node in
the backtracking tree is pruned if it does not appear in the pruned tree. If a node is
pruned, but its parent is not pruned, then we will say that the node is directly pruned.
Let L; be the set of level : nodes in the backtracking tree, and let M; be the level 1

nodes that are directly pruned. We will show that

M _ g (%) . (IV.21)
Let f be a node at level i —m, and let f’ be some descendent of f at level i. Suppose
f' is about to be directly pruned. From the discussion of the previous paragraph,
it follows that the only way that this can happen is if at the time that f’ is being
considered, the nogood set I’ contains the nogood that rules out the last m values of
the assignment f'. But when could this nogood have possibly been acquired? It could
only have been acquired at some previous time at which these m variables had the

exact same values that they have now. This must have been before f was processed.

97

Therefore the nogood in question must have been in I' when f was visited. But
I’ can only contain O(n™~2) nogoods at any time, and there are n™ level-i descendents
of f. Therefore, only O(1/n?) of these nodes can be directly pruned. This argument
applies to every such group of nodes at level i, establishing (IV.21).

Finally, consider the set of leaf nodes, Ly,,. Let @ be the set of pruned leaf
nodes. Each such node must have exactly one ancestor (possibly itself) that is directly
pruned. Let @; be the subset of ¢ whose directly pruned ancestor is on level i; then
Q =QmUQ@nuU...UQnu, Given the structure of the tree, we can conclude

from (IV.21) that for all ¢,

1o =0)

|£L| =0 (%) '

Since there are exponentially many leaf nodes, and only O(n~!) of them are being

Therefore,

pruned, the algorithm in question does not run in polynomial time on this prob-
lem class. The induced width of the problem class is fixed; therefore, we conclude
that there is no polynomial-space dependency-directed backtracking procedure that

is exponential only in the induced width. o

Summary

In this chapter, we have analyzed a number of backtracking algorithms to de-
termine which of them have a worst-case time complexity that is exponential only
in the induced width. We have shown that full dependency-directed backtracking is
exponential only in the induced width, but that none of the polynomial-space algo-

rithms from Chapter I have this property. In Chapter V, we extend these results to

cover more sophisticated algorithms.

98

99

CHAPTER V

OPTIMAL SEARCH ORDER AND THE INDUCED WIDTH

Introduction

Our most powerful result so far is Theorem IV.20, which proves that there
cannot be a polynomial-space dependency-directed backtracking algorithm that is
exponential only in the induced width. This result, however, is not as general as
we would like. We have assumed that the search algorithm is forced to order the
variables using the static ordering that it is given. In fact, the pathological examples
from Chapter IV can be fixed simply by searching the variables in the opposite of the
given order! We have also assumed that the values must be enumerated in a fixed
order. A more general framework would allow the search algorithm to make these
ordering decisions for itself. In this chapter, we will extend some of our previous
results to cover this possibility.

We will assume in this chapter that the search algorithms make optimal choices
with respect to the variable and value orderings. We make this assumption in order
to give the various approaches every benefit of the doubt. If even the version using
an optimal ordering cannot solve a problem efficiently, then certainly this result will
apply with even greater force to any actual implementation. Of course, for a satisfiable
CSP, a backtracking algorithm that made optimal choices would have no problem;
it would simply move to a solution immediately by setting all the variables to the

appropriate values. For this reason, all of the counterexamples in this chapter will be

100

unsatisfiable problems.

Earlier, when we defined what it meant to be exponential only in the induced
width, we were interested in algorithms that took, as arguments, a CSP and a variable
ordering. Since we are now assuming that the algorithm will automatically find the
best ordering, there is no longer any reason to supply it with an ordering as one of
its arguments. Therefore, we can slightly simplify Definition IV.7 for the case of an

algorithm that is only given a CSP:

Definition V.1 A CSP algorithm thal takes one argument, the CSP, is exponential
only in the induced width if there is some function f such that the worst-case running

time of the algorithm is

0 (;,_.f(n"))
where © is the size of the CSP, and w* is the induced width of the CSP.

Recall that the induced width of a CSP is its minimal induced width under any
ordering. Therefore, Definition IV.7 reduces to Definition V.1 when a CSP algorithm
that is given an ordering simply ignores this ordering,.

In the next section, we show that even with an optimal search order, neither
backtracking nor backjumping is exponential only in the induced width. Section V.3
proves the analogous claim for k-order learning. We then note in Section V.4 that the
various constraint algorithms that we have been discussing can be viewed as special
cases of resolution theorem proving [71). This idea is used in Section V.5 to prove
that, even with an optimal search order, neither dynamic backtracking nor any of its
recent generalizations [45, 61] is exponential only in the induced width. Finally, in

Section V.6 we present some more general conjectures.

101

Optimal Backtracking and Backjumping
The following counterexample will work for both backtracking and backjumping:

Ezample V.2 Consider the problem class {P, : n > 1}, where the problem P, will be
defined as follows. The variables are {X,,X»,...,Xn}. All of the variables have the

same domain: {1,2,...,2n}. Fori from 1 to n — 1, we have the constraint:

X" = X{+1 (mod 2).

We also have the constraints:

X;=0 (mod 2),

X,=1 (mod 2).

Each of these examples is an unsatisfiable problem having an induced width of 1.
The reason these are hard for backtracking is that the inconsistency is global; in
order to prove that there is no solution, information has to be propagated all the way
from X, to X,,, but backtracking cannot do this without repeatedly solving the same
subproblems.

First, let us consider the case where backtracking uses a static variable ordering.

Proposition V.3 Backiracking, with an optimal static variable ordering and an opti-

mal value ordering, is notl exponential only in the induced width.

Proof. Consider the problem P, of Example V.2, and suppose backtracking uses
the variable ordering (X; ,X,,...,X;,). The search tree of partial assignments can
be defined as follows. The null assignment is the root node, which is considered to

be at level 0; and for any node f at level k (where 0 < k < n), the children of f

102

are those assignments that extend f by assigning a value to the variable Xj . that

k41
is consistent with the values of the previous variables.

Consider the nodes at level n — 1. These assign values to all of the variables
except X;,. How many such nodes are there? We can consistently assign any even
value to any Xj; for which j < i,, and we can assign any odd value to any Xj for
which j > ¢,. Thus, there are at least n"~! nodes in level n — 1 of the search tree.
Note that the size of the problem is O(n?), which is polynomial in ». Hence, the
backtracking search tree is exponential in the problem size, and since the problem is
unsatisfiable, backtracking will have to search the entire tree regardless of the order it
uses to enumerate the values. Therefore, even with an optimal static variable ordering

and an optimal value ordering, backtracking is not exponential only in the induced

width. (]

We now consider the more general case of a dynamic variable ordering. Static
orderings require that every path down the tree orders the variables in the same way.
In other words, all the nodes at a given level must branch on the same variable. A
dynamic ordering, on the other hand, allows this decision to be made individually
for each node. More formally, while a static ordering for a set of n variables is
a bijection between {1,2,...,n} and the set of variables; a dynamic ordering is a
mapping from the set of partial assignments to the set of variables not present in the
partial assignment.

The use of a dynamic variable ordering for Example V.2 can significantly reduce
the size of the search space. We can divide the problem in half by first branching on the
variable X|,,/2). For each even value of this variable, we have created an unsatisfiable
subproblem involving only the variables from X|,/;) to X,; we can then divide this
problem in half by branching on X34 . Similarly, for each odd value of X|,/z,

103

we have created an unsatisfiable subproblem involving only the variables from X, to
X|n/2, 50 we can divide this problem in half by next branching on X|,/4). By this
divide-and-conquer approach, the search space can be reduced from approximately
n" down to approximately (2n)'°827, This is still not polynomial, however, and we

cannot do any better:

Proposition V.} Backtracking, with optimal variable and value orderings, is not ez-

ponential only in the induced width.

Proof. Define a search tree of partial assignments for the problem P, of Example V.2
as follows. The root node is the null assignment. For any node f, let V{(f) be the
variable that the backtracking algorithm branches on when it is called with f. Then,
the children of f are all the assignments that can be obtained from f by assigning
some value to the variable V(f) without violating any of the constraints. Obviously,
a node will have from 0 to 2n children.

Since the problem is unsatisfiable, backtracking will have to examine the entire
tree; let us compute a lower bound on the size of this tree. If f assigns values to
variables X; and X; (where ¢ < j), and it assigns an even value to one and an odd
value to the other, then we will say that [i,j] is a bracket in f. The intuition here
is that the inconsistency has been “trapped” between X; and Xj; in order to prove
that f is impossible, one need only branch on the variables of the form X, where
i < k < j. Similarly, if f assigns an odd value to some X;, then we will say that [0,
is a bracket, and if f assigns an even value to some X;, we will say that [{,n+1]is a
bracket. Finally, [0,7n + 1] is a bracket for any assignment. The difficulty of a bracket
[a,b] is b — a, and the difficulty of the node f is the smallest difficulty of any of its

brackets.

104

We claim that if d is the difficulty of f, and d > 2, then the smallest backtracking

tree rooted at f has at least

pllogz dl-1 (V.22)

leaf nodes; the proof is by induction. First, note that if f violates a constraint, then
it must assign either an odd value to X, or an even value to X, or values of opposite
parity to two successive variables. In each case, the difficulty of f must be 1; hence
if f has a difficulty of at least 2, then it cannot yet violate any constraints.

For the base case of d = 2, formula (V.22) is just n® = 1, and the tree obviously
has this many leaf nodes. Now, consider a node f with difficulty d > 2. Regardless of
which new variable is selected by V/(f), f must have at least n children with difficulties
of at least d' = [d/2]. Since d' is at least 2, these children must be consistent with
the constraints. We can then apply the inductive hypothesis to conclude that the

tree rooted at f must have at least

n (nnﬂszrdfz.ﬂ-l) > n““l!z‘ﬂ‘l

leaf nodes.

Since the root node has a difficulty of n+1, any backtracking tree for the problem
must have more than n!°82"~! leaf nodes. This is not polynomial in n, and since the
problem size is O(n?), it is not polynomial in the problem size. This completes the

proof. o

Now, let us move on to backjumping. It turns out that when you use an opti-
mal dynamic variable ordering, backjumping confers no advantage over backtracking.
Backjumping helps to reduce the damage from “mistakes,” but this does not matter

if you do not make any mistakes:

105

Lemma V.5 For any CSP, the number of nodes in the smallest backiracking tree is

the same as the number of nodes in the smallest backjumping tree.

Proof. With any variable and value ordering, backjumping will obviously do at
least as well as backtracking would do with that ordering. Therefore, the smallest
backjumping tree will be at least as small as the smallest backtracking tree. We will
now show that the converse is true as well.

Note also that if the CSP has a solution, then an optimal version of either
procedure will simply select the right value for each variable, and thus this lemma
would be true trivially. Assume then that the CSP is unsatisfiable.

Consider the smallest backjumping tree. As usual, the backjumping tree is
defined as follows. The root node is the null assignment. For each node f, V(f) is
the variable that backjumping chooses to branch on when it is called with f, and the
children of f are the partial assignments that are passed to the recursive calls to the
backjumping procedure.

Now, imagine doing regular backtracking, selecting for each node f, the same
variable V(f) that backjumping selects. The only way that backjumping could out-
perform this backtracking routine would be if it actually gets to “backjump,” i.e.,
if the BACKJUMPING procedure gets to exit the loop early (on lines 15-16 of the
algorithm on page 11). This happens when there is some node f and some child of f,
say g, such that when backjumping is called on g, it returns a conflict set that does
not include V(f). This would allow backjumping to prune the siblings of g that have
not yet been visited. In that case, however, the original backjumping tree could have
been improved. Since the variable V(f) was not in the final conflict set, there was
no reason to assign it a value, and we could simplify the tree by setting V(f) to be

the variable that was the V(g) in the original tree. This contradicts our assumption

106

that the original tree was optimal. Therefore, the best backjumping tree is no better

than the best backtracking tree. O

Proposition V.6 Backjumping, with optimal variable and value orderings, is not ez-

ponential only in the induced width.

Proof. This is an immediate consequence of Proposition V.4 and Lemma V.5. D

Optimal k-Order Learning

To show that k-order learning with an optimal search order is not exponential
only in the induced width, we will use a variant of the well-known pigeonhole problem.
The pigeonhole problem involves n pigeons and n — 1 holes, the problem being to
assign each pigeon to a hole such that no two pigeons are assigned the same hole.
In constraint satisfaction terms, the pigeons are the variables and the holes are the
values. Each of the n variables has n — 1 possible values, and between each pair of
variables, there is an inequality constraint. Obviously, the problem has no solution
since there are more pigeons than holes.

It is not hard to see that even full dependency-directed backtracking will have
to go through a search tree of size (n — 1)! before proving the problem unsolvable.
This is not particularly surprising given some results from Haken [47] that we will
discuss in Section VI.5. The standard pigeonhole problem, however, is not useful
for our current purpose. Since every variable shares a constraint with every other
variable, the induced width is n — 1, and we need an example with a fixed induced
width. Therefore, we will modify the pigeonhole problem as follows.

We will think of the pigeons as being arranged along a line, with a hole between

each two consecutive pigeons. In other words, pigeon ¢ (for 1 < ¢ < n) will be thought

107
of as being at position 7 along some axis, and hole j (for 1 < 7 < n—1) will be thought
of as being at position j + 1/2; see Figure 31, where the disks are the pigeons, and
the circles are the holes. Furthermore, each pigeon will be constrained by a leash
of length m (where m is some fixed constant) that prevents it from occupying any
hole other than the m nearest holes on either side of it. For example, if m were 2
in Figure 31, then pigeon X; could only occupy holes 1 or 2, pigeon X, could only
occupy holes 1, 2, or 3, pigeon X3 could only occupy holes 1, 2, 3, or 4, pigeon X,
could only occupy holes 2, 3, 4, or 5, pigeon X; could only occupy holes 3, 4, or 5, and
pigeon Xs could only occupy holes 4 or 5. The constraint that two pigeons cannot
occupy the same hole remains in effect, but we no longer need constraints between
every pair of pigeons. For example, we do not need a constraint between X; and
X; since their domains are disjoint anyway. In general, we only need a constraint
between pigeon X; and X if |i — j| < 2m. The idea is that we will choose an m that
is large enough to defeat the k-order learning algorithm, but then fix this m as the

number of pigeons grows.

X X, X3 X4 Xs Xe
® O ® O] O ® O ® O e

—_
b
-]
.
o

Figure 31: The localized pigeonhole problem

We need one more complication, however, for technical reasons. Each pigeon,

besides being assigned a hole, will also be assigned an “orientation.”

Each pigeon
will have n possible orientations, where the n here is also the number of pigeons. In
other words, if there are g holes that some pigeon might occupy, then that pigeon

variable will have ng possible values, with the value encoding both the position and

108

the orientation. The constraints will now require that regardless of the orientations,
two pigeons cannot occupy the same hole (and regardless of the orientations, the
pigeons are free to occupy any two distinct holes that would otherwise be allowed).
The orientation, then, is a nuisance parameter that plays no interesting role in the
problem besides increasing the domain size. If the domain size were fixed, then even
backtracking would be able to solve the problems efficiently using a simple divide-and-
conquer approach. The branching factor would be a constant, and the depth of the
tree would be O(log n), giving a total cost that is polynomial. With the orientations,
however, the branching factor will now be a multiple of n, giving a total cost that is
n®Ue8n) which is not polynomial. This same trick was used in Example V.2 in the
previous section.

More formally, we have:
Ezample V.7 Define the localized pigeonhole problem P, (for m,n > 1) as follows.
The variables are {X1,Xs,...,Xn}. First, the set of legal holes H; for variable X; is:

{h:i—-m<h<i+mandl <h<n}

(The asymmeiry between the lower and upper bounds is a consequence of how the
pigeons and holes are numbered; see Figure 31.) The domain D; of X; is then defined
as:

{hn+j:he€ H; and0 <j <n}.

For notational convenience, we will define the following abbreviations:

hole(z) = |z/n],

orientation(z) = z —n|z/n].

109

For all i # j such 1 <14,j < n and |i — j| < 2m, we have the constraint:

hole(X;) # hole(X;)

Theorem V.8 For any fized k, k-order learning with optimal variable and value or-

derings is not ezponential only in the induced width.

Proof. Consider the set of problems {Ppmn : m = k+ 1,7 > 1} from Example V.7.
We have set the “leash length” m for our localized pigeonhole problem to be one
more than the order of the learning algorithm. Consider an arbitrary backjumping
search tree for some P, in this set. Using the argument that was used to establish

Proposition V.6, it is easy to show that this tree must have at least

nlog, n=1

nodes. We now claim that k-order learning does not do any better than backjumping
here. In particular, it will never cache a useful nogood.

Consider some path down the tree of length g that terminates at a backjump
point. The path assigns values to the variables § = {X;,,Xi;,-.-Xi,}. The conflict
set will be some subset of Q; a new nogood will be cached only if the size of the
conflict set does not exceed k. Suppose that the conflict set is all of @. Then the
nogood (if learned) will be of no use whatsoever; it includes every single variable along
the path, so it prunes a portion of the search tree that will never be revisited anyway.
Therefore, assume that the conflict set is a strict subset of Q. We will prove that
every such conflict set will have a size of at least m, and thus will never be retained
by the k-order learning algorithm since k is less than m.

Assume by way of contradiction that the conflict set is a strict subset of @

110

and has a size less than m, say m'. Since it is a strict subset of @, we can select
some variable X in ¢ that does not appear in the conflict set. Now, consider the
nogood that would be formed by prohibiting the members of the conflict set from
having their current values. By the definition of generalized dependency-directed
backtracking, this nogood must be a logical consequence of the original problem
constraints. Furthermore, it must be derivable without using any of the constraints
involving the missing variable X; if a constraint on X were used, it would still be in
the conflict set since variables are only removed from the conflict set when all of their
values have been branched on, whereas X is above the current backjump point in the
search tree. Thus, the nogood has the following two properties: it has a size m' < m,
and it can be derived without using any constraint of X. We claim, however, that
such a nogood cannot exist.

Imagine a modification to our localized pigeonhole problem in which the variable
X is omitted, and the m' variables in the conflict set are preassigned their current
values. The purported nogood states, in effect, that this problem has no solution. If
this problem had a solution, then the nogood would not be a logical consequence of
the original constraints of the variables other than X. We now show that the modified
problem does in fact have a solution (and thus the purported nogood is not valid).
We construct the model as follows: for each pigeon from X, up to X,, (except X and
those in the conflict set), assign the pigeon to the first unoccupied hole (in numerical
order). Since the modified problem has n —1 —m' pigeons and holes, there will always
be some unoccupied hole; we need to show, however, that the smallest open hole will
always be in range of the current pigeon. There are two things that might go wrong:

the first open hole might be out of range to the right, or it might be out of range to
the left.

111

The first possibility is easy to disprove. Suppose we are currently trying to place
pigeon i (henceforth, we will refer to pigeon 7 instead of using the more verbose X;),
and the first open hole is out of range to the right. Then, this means that pigeons 1
to i — 1 together with those in the conflict set (that is, at most ¢ 4+ m' — 1 pigeons
altogether) have collectively occupied holes 1 through ¢ +m — 1; but this is impossible
since m’' < m.

The other possibility is that the first open hole is out of range to the left.
Suppose we are trying to place pigeon i, and that j; of the pigeons with indices less
than 7 were among the preassigned pigeons in the conflict set, and that j; of the
pigeons with indices less than i were omitted from the problem (i.e., 7, is 1 if the
index of X is less than ¢, and 0 otherwise). We will prove by induction that all holes
h, such that 1 < h < ¢ — j; — j2, are already occupied. For the base case, i = 1 and
71 = 72 = 0, so the claim is true trivially. Assume then that the inductive hypothesis
is true for . If ¢ is a pigeon that we have to place, then the leftmost position that it
could possibly go to is i — j; — j»; therefore, if that position is not currently occupied,
it certainly will be after 7 is placed in a hole. Thus, when we get to pigeon i + 1, all
holes h such that 1 < h < (i + 1) — 7; — j2 will be occupied, verifying the inductive
hypothesis for this case. The other case is that pigeon : is either in the conflict set
or is the omitted variable X. In that case, the new j; + j» will be 1 higher than the
current one, again verifying the inductive hypothesis. This completes the proof of the
inductive lemma. We know, however, that j; < m' and j; < 1. Therefore, all holes h
such that 1 < A < 1 —m' — 1 will be occupied when we try to place pigeon ¢. Since
m' 4+ 1 < m, it follows that all holes that are out of range to the left will already be
occupied. Together with the previous paragraph, this proves that the leftmost open

hole will be in range. The purported nogood is therefore invalid, and hence k-order

112

learning will do no better than backjumping.
Thus, the size of the k-order learning tree is more than polynomial. Since the
induced width of the problem set is fixed (at 2m—1), it follows that optimally-ordered

k-order learning is not exponential only in the induced width. O

Resolution-Based Methods

In this chapter, for reasons already explained, we are focusing on unsatisfiable
examples. The task of a search algorithm, on such an example, is essentially to
construct a proof of its unsatisfiability. Before moving on to the analyses in the
remainder of this chapter, let us review some material on unsatisfiability proofs.

All of the search algorithms that we have discussed can be viewed as special cases
of resolution theorem proving [71]. Resolution is usually presented as an inference rule
in predicate calculus or propositional logic, but it can also be used for non-Boolean
problems.

In propositional logic, a literal is either a variable or its negation; i.e., it is either
asserting that the variable is TRUE, or that it is FALSE. A clause is a disjunction of

literals. For example, if we had the propositional variables p, g, and r, then

pV-gqV-r (V.23)

asserts that either p is TRUE, or g is FALSE, or 7 is FALSE. Resolution is an inference
rule that works with two clauses, one containing some variable negated, and the other
containing that variable unnegated. Resolution creates a new clause by disjoining all

the literals of the two clauses, with the exception of those two literals. So if we had

113

the clause

sV TVt (V.24)

then we could resolve this clause with (V.23) to conclude

pV-gVsVl

This is a sound inference because » must be either TRUE or FALSE. If r is TRUE, then
from (V.23) we can conclude pV g, and if r is FALSE, from (V.24) we can conclude
sV—t. If at some point, we have derived the clauses v and - for some variable v, then
we can resolve these two clauses together to get the empty clause, or in other words,
FALSE. This is a proof that the original set of clauses was inconsistent. Resolution
is said to be refutation complete because given any set of unsatisfiable clauses, it can
ultimately derive the empty clause.

1t is straightforward to extend resolution to handle non-Boolean CSPs. If v is
some problem variable, and x € D, is some value in that variable’s domain, then a
literal for the CSP will be some expression of the form v # z. As before, a clause
is a disjunction of literals. A resolution step, now, will have to resolve together |D, |
clauses for some variable v. For example, if the domain of v is {1,2,3}, then we can

resolve together the clauses

(v £1)V (a #2),
(v#£2)V(b#1),
(v#3)V(c#2)

114

to conclude

(@£2)V(#LV(c#2)

If we start with the clauses that are direct consequences of individual constraints of
some CSP, and we then derive the empty clause by resolution, then we have proven
that the CSP is unsatisfiable.

Let us make this a little more formal.

Definition V.9 Let (V,D,C) be a CSP. A literal is an ordered pair (v,w) where v € | %
and w € Dy; it is intended to represent the assertion v £ w. A clause is a set of
literals that does not repeat any variable; the clause represent the disjunclion of ils
literals. If c is a clause, then Vars(c) is the set of variables that appear in c. If
(v,w) € ¢, then we will define Val(v,c) = w. Finally, ifc =0, then we will call c the

empty clause.

The intended meaning of a clause is that all of the variable assignments cannot hold
simultaneously. For example, the clause ¢ = {(z,1), (¥,2),(z,3)} represents the for-
mula

£V #2)V(z73)

and we would have Vars(c) = {z,¥, z}, Val(z,c) = 1, Val(y,c) = 2, etc. A clause is
a set because the order of the fiterals does not matter, and we do not allow a clause
to repeat a variable because such a clause would be vacuous since we know in advance
that a variable cannot have more than one value.

Next, we need some definitions concerning inference.

Definition V.10 For a particular CSP, a clause ¢ will be called a primitive clause if
the CSP has some constraint that directly entails that clause. More precisely, the CSP

must have some constraint (W,Q), where as before, W = (w1, w2, .., wg) is the list

115

of the variables in the constraint, and @ is a predicate on these variables; such that

W consists of the variables in the set Vars(c), and

(Val(wy,c), Val(wz,c)s .- Val(we,¢)) € Q.

The other possibility is a clause that is derived by resolution.

Definition V.11 Let c be @ clause, and let T be a set of clauses. We will say that ¢
can be obiained by resolving together the clauses in T if there is some variable v such

that the following conditions all hold:

For all vy € T,v € Vars(y).

For all 11,72 € I, Val(v,m) # Val(v,72).

lrl = |Du|-

e=J7v-{(v,x):z € Do}

~el

e There is no variable w and values T, # z2 such that (w,z,) € c and (w,z2) € €.

Here, v is the variable that is being resolved on, and the first three conditions ensure
that for each value z € D,, (v,z) appears in exactly one clause in . The fourth
condition defines the clause ¢ that is the result of the resolution step, and the fifth
condition ensures that ¢ is in fact a nonvacuous clause.

We can now give a formal definition of a resolution proof for a CSP:

Definition V.12 A resolution proof for a CSF is a sequence of clauses 1,72+ +1¥m
together with a justification function J that maps integers to sets of integers, such that:
For all i from 1 to m, either J (})=0 and 7 is a primitive clause for the CSP, or

J(3) € [1,4) and v; can be obtained by resolving together the clauses in {v;:7€J({)}

116

If 4 is the empty clause, then we will call this a resolution proof of unsatisfia-

bility.

It is well known that the various CSP algorithms that we have discussed are
essentially constructing resolution proofs. Consider the BACKJUMPING procedure,
when it is called with a partial assignment f that cannot be extended to a solution.
The conflict set that BACKIUMPING returns is a set of variables that cannot simul-
taneously have their current values. This can be written as a clause. For example if
we had f(v;) = z; for 1 < ¢ <9, and the returned conflict set were {vs, vs,v9}, this

would correspond to the clause

(‘03 ?’-‘ :'l!s) vV (’Us ?‘5 25) \' ('Ug 7& 2:9). (V25)

When backjumping loops over the values for some variable v, the returned conflict
set will be the union of the conflict sets returned from the recursive calls (or from the
direct constraint violations) with the exception of the variable v; this corresponds to
resolving these clauses on v. Suppose the variable v from the above example had only
the two possible values zg and =z}, and after backtracking and setting f(vg) = z§, the
backjumping procedure again returned UNSAT, with the returned conflict set being

{v4,vs,ve}, corresponding to

('Uq 7,& -".74) \'% (1)5 9& :135) \' (‘Ug T,é -"}'g). (V.26)

Then the backjumping call would return the conflict set {v3, vy, v5}, corresponding to

('U3 T,é Eg) vV (‘04 ?é .1'14) vV (1)5 ?’1 1:5). (V.27)

117

Clause (V.27) is the result of resolving the clauses (V.25) and (V.26).

Dependency-directed backtracking is also constructing resolution proofs, but
since it saves the clauses that it derives, it can often build shorter proofs than back-
jumping can. In other words, if a clause gets used several times in the proof, back-
jumping will have to rederive it each time, while dependency-directed backtracking
will only have to derive it once. Dynamic backtracking and the various types of gen-
eralized dependency-directed backtracking are intermediate in sophistication between
backjumping and full dependency-directed backtracking; sometimes they can reuse a
clause, and sometimes they have to rederive it.

Let us record the following well-known facts:

Proposition V.13 A CSP is unsatisfisble if and only if there is a resolution proof of
its unsatisfiability. The length of the shortest such proof is ezponential only in the
induced width of the CSP.

Proof. The soundness of resolution is obvious. The completeness follows from the
correspondence between resolution and any of the search algorithms mentioned above.
The induced-width property follows from the correspondence between resolution and
dependency-directed backtracking, or alternatively, from the correspondence between

resolution and adaptive consistency. |

Now that we have reviewed the basics of resolution proofs, we can use these tools
to analyze some CSP algorithms. We will define restrictions on resolution correspond-
ing to the types of proofs that these algorithms construct. If we can show that the
shortest resolution proof subject to these restrictions is not exponential only in the in-
duced width, then this result will also apply to the running time of the corresponding

CSP algorithms, even when these algorithms makes their choices optimally. We will

118

discuss dynamic backtracking in the next section, and polynomial-space dependency-

directed backtracking in Section V.6.

Dynamic-Backtracking Resolution Proofs

In Chapter IV, we showed that dynamic backtracking using a fixed variable and
value ordering is not exponential only in the induced width. We would now like to
extend this result to handle an ideal version of dynamic backtracking that uses the
best search order. Dynamic backtracking maintains both a partial assignment and an
entire array of dependency information, and it is possible that the best search decision
at a given stage may depend on both pieces of information. Therefore, specifying the
optimal search rule may be difficult.

Furthermore, there are some new versions of dynamic backtracking that differ
in subtle but crucial ways from the original algorithm. Specifically, McAllester (61}
has introduced generalized dynamic backiracking and partial-order backiracking, and
Ginsberg and McAllester [45] have introduced partial-order dynamic backiracking.
When standard dynamic backtracking has to backtrack, it always revises the most
recently bound variable in the conflict set (this variable is selected on line 17 of the
algorithm on page 20). The newer algorithms, however, allow a greater flexibility
in this decision; in turn, these algorithms require more bookkeeping to keep track
of which backtrack decisions are permissible at any point. Given the variety and
complexity of the different dynamic backtracking algorithms, it would be tedious to
analyze them case by case. Instead, we will proceed more generally.

The DYNAMIC-BACKTRACKING algorithm that we discussed in Chapter 1 stored
its dependency information in a culprits array. Suppose f is the current partial as-

signment, v is a variable, and z € D, is some value in the domain of v. Then, if

119

culprits[v, z] is not VALUEALLOWED, it will be a set of variables whose current as-
signments preclude v from being set to the value z. This information can be written
declaratively as a clause. For example, if currently f(v;) = z;, for 1 < ¢ < 9, then the

entry culprits[v,z) = {vs,vs} corresponds to the clause

(va # z3) V (vs # z5) V (v # z).

It is customary in the dynamic backtracking literature to write this clause in the

directed form

(va = z3) A (vs = z5) = v £ 2. (V.28)

We will calls these statements, directed nogoods, or just nogoods, for short. When
dynamic backtracking records a nogood of the form (V.28), it unsets the variable
v; conversely, whenever dynamic backtracking retracts an assignment f(v) = z, it
records the reason for this backtrack with a nogood whose right-hand side is v # .

Dynamic backtracking also deletes dependency information. If w € culprits[v, z]
and the current value of the variable w is then retracted, then culpritsfv, z] is set back
to VALUEALLOWED. This corresponds to deleting the associated nogood. Since the
only time that the value of w can be retracted is when a new nogood is learned
whose right-hand side rules out the current value of w, the deletion rule can be
formalized entirely in terms of nogoods with no reference to the current assignment
f. The deletion rule of dynamic backtracking is that if a nogood is acquired whose
right-hand side is v # z, then every nogood whose left-hand side contains v = z
must be deleted. One might think of this in terms of “relevance.” As long as all
the assignments in the precondition of a nogood are true, this nogood actually has

immediate power; it prevents the variable on the right-hand side from assuming a

120

particular value. If any assignment in the precondition is not currently true, then
the nogood is temporarily irrelevant since it does not prevent the assignment in its
conclusion. Dynamic backtracking immediately deletes any nogood that has become
irrelevant. The problem, of course, is that a nogood that is currently irrelevant
may become relevant again, and then dynamic backtracking will have to derive it
all over again (this is what happened in Example IV.14, the example that was used
to establish Proposition IV.16). Now that we have reviewed the role of nogoods in
dynamic backtracking, let us move on to the new material of this section.

We will show in this section that regardless of the search order, neither the
original dynamic backtracking algorithm, nor any of its recent variants like partial-
order dynamic backtracking, is exponential only in the induced width. In fact, we
will show something even stronger. We will define the notion of a DB-consistent
resolution proof, in which nogoods are deleted using the deletion rule from dynamic
backtracking, and then prove that no such procedure can yield unsatisfiability proofs
that are exponential only in the induced width. To put it another way, even for
problems of bounded induced width, the lengths of the shortest unsatisfiability proofs
that dynamic backtracking can construct may grow faster than any polynomial in the
size of the problem.

First, we will need a few preliminary definitions.

Definition V.14 If ¢ is a clause for some CSP, and v € Vars(c) is some variable
that appears in that clause, then (c,v) will be called a directed nogood, or simply
a nogood, for short. If c is the emply clause, then (c,0) will be the corresponding

nogood, which we will call the empty nogood.

The nogood is intended to represent the directed version of the clause. For example,

121

the nogood v = {{(=,1), (v,2),(z,3)},y) represents

(z=1)A(z=3)=>y#2 (V.29)

We will need a few abbreviations for referring to the components of nogoods, just as

we did for clauses.

Definition V.15 For a nogood v = (c,7), we will define Clause(y) = ¢, Rvar(y) =r,
Vars(y) = Vars(c), Lvars(y) = Vars(c) — {r}, and Val(v,7) = Val(v,c).

For the nogood 7 of (V.29), we would have Vars(y) = {z,y, 2}, Lvars(v) = {z, z},
Rvar(y) =y, Val(z,7) = 1, Val(y,7) = 2, etc.
The definitions of inference for nogoods are based on the corresponding defini-

tions for clauses.

Definition V.16 For a particular CSP, a nogood v will be called a primitive nogood if
Clause(7) is a primitive clause for the CSP. Ify is a nogood, andT is a set of nogoods,
then we will say that v can be obtained by resolving the nogoods in I' if Clause(y)
can be obtained by resolving the clauses {Clause(z): z € I'} on the variable v, where

v = Rvar(g) for allg € T.

In other words, we may only resolve a nogood on the variable on its right-hand side.

For example, assuming that the domain of z is {1,2}, we could resolve

r=1=z#1

with

y=1=2#2

122
to obtain either

r=1=>y#1

or

y=1=>z#L

We are now almost ready to give the definition of a DB-consistent resolution
proof. As in dynamic backtracking and partial-order dynamic backtracking, the rule
:s that if the consequent of the new nogood appears on the left-hand side of an old

nogood, then the old nogood must be deleted.

Definition V.17 Let 1 and v, be nogoods, and let + = Rvar(m). Nogood m deletes
vo if € Lvars(yz) and Val(r,11) = Val(r,72)-

In a particular proof, of course, 7, may have already been deleted by the time that
~y is derived (or 4; may be derived before ;). In any event, if 71 deletes vz, then 72
will not be in memory immediately after 71 1s derived. A DB-consistent resolution

proof is simply a resolution proof in which one uses only nogoods that have not been

deleted. More formally:

Definition V.18 A DB-consistent resolution proof for a CSP is a sequence of nogoods
TisY2s0eesTms together with a justificaiion function J that maps integers to seis of
integers, that has the following property: For all i from 1 to m, either J(i) = @ and
~; is primitive; or J(i) is a set of integers in the interval [1,7), such that v; can be
obtained by resolving together the nogoods {7; : j € J(i)}, end for every j € J(3),
there is no k, j < k <1, such that 7. deletes ;.

If Ym is the empty nogood, then we will call this a DB-consistent resolution ﬁroof

of unsatisfiability.

The following lemma provides the rationale for the above definitions.

123

Lemma V.19 If 41,924+ 2 Tm are the nogoods that are generated (in this order) by
the dynamic backtracking algorithm running on some some CSP, then 71,72, sUm
must be a DB-consistent resolution proof for that CSP. If f(p) is the minimal running
time of dynamic backiracking with optimal control for an unsatisfiable CSP p, and if
g{p) is the length of the shortest DB-consistent resolution proof of unsatisfiability for
p, then f(p) = g(p)). This result also applies to generalized dynamic backtracking,

partial-order backtracking, and partial-order dynamic backtracking.

Proof. This is obvious for the original dynamic backtracking. We have not described
the other algorithms in detail, but the interested reader can easily verify this lemma

by referring to [45, 61]. 0

We can now state the main result of this section.

Theorem V.20 There ezisis a colleciion of unsatisfiable CSPs with a constant induced
width, such that the lengths of the shortest DB-consistent resolution proofs of unsat-
isfiability grow faster than any polynomial in the size of the problem. Therefore, the
length of the shortest DB-consistent resolution proof of unsatisfiability for a C5P 1is

not exponential only in the induced width,
Here is the example that will be used to establish the theorem.

Ezample V.21 The problem P, will be defined as follows. The set of variables is
{X,h,X2,Ya,... . X, Ya}. The variables will all have the same domain: {1,...,2n}.
To define the consiraints, we will use the abbreviation M(z,y) for the remainder of

x +y modulo 2. The constraints will be as follow:

M(X,,Y:) =0, (V.30)

M(X.,Ya) =1, (V.31)

124

and for1 <i < m:

M(Xi,Yi) > M(Xiy1,Yit1). (V.32)

The constraint graph corresponding to P; is pictured in Figure 32.

Xl Xz Xs X4 XB

Y Y, Ys Y, Ys

Figure 32: The constraint graph of problem Fs of Example V.21.

All of the problems in this sequence are unsatisfiable, and have a constant in-
duced width (of 3). The maximum domain size is O(n), and there are O(n) constraints
with a maximum arity of 4, so the size of the problem is O(n(n*)) = O(n®). Since
this is polynomial in the parameter n, all we have to show is that the length of the
shortest DB-consistent resolution proof of the unsatisfiability of P, is not polynomial
in n.

Note that a resolution proof of unsatisfiability corresponds in an obvious way to
a labeled directed acyclic graph with the leaves being labeled by primitive nogoods,
and the root node being labeled by the empty nogood. We will refer to this graph
as the proof graph. For the current example, every node in the proof graph that
is labeled by a non-primitive nogood will have exactly 2n children, labeled by the
nogoods that were resolved together to deduce that nogood. We will show that the
smallest proof graph for problem P, has a super-polynomial number of leaf nodes.

We need to define an appropriate measure of “difficulty” for nogoods. All of the

subsequent definitions in this section will be specific to Example V.21. Let us start

125

with the notion of a bracket:

Definition V.22 Consider a nogood vy. Let the left bracket, b, of v be the mazimum
i such that X; € Vars(y), Y; € Vars(y), and

M(VGI(X,-, 7)': Val(Y;a 7)) =0.

If no such i ezists, then set b to 0. Similarly, the right bracket, b, is the minimum 1

such that X; € Var(y), Y; € Vars(y), and

M(Val(X;,v), Val(Y;,y)) = 1.

In this case, if there is no such i, then set b, to be n+1. If by < b,, we will say that

the nogood v is orderly, and we will call [by,b,} the bracket of the nogood.

To give some examples for n = 8: the nogood

Xa=6=>Ys £ 7 (V.33)

would have the bracket [0, 3], the nogood

Xs=6=Y;#6 (V.34)

would have the bracket {3,9], the nogood

(X2 =6)A(Ya=6)A(Xs=6)=Ys #£7 (V.35)

126

would have the bracket [2,3], and the nogood

(X2 =6)A(Yz=T)A(Xs =6) = Ys#6

would be a disorderly nogood.

The intuition here is that for an orderly nogood, the inconsistency is “trapped”
in the bracket; everything outside the bracket is essentially irrelevant. In order to
prove the nogood, we would have to somehow reason from one end of the bracket to
the other. The question is how hard it is to do this; for this purpose we introduce

the notion of a sub-bracket.

Definition V.23 Let v be an orderly nogood with bracket [b,b,). We will call the
pair (¢,7) a sub-bracket of v if by < 7 < j < b, and for dll k in the open interval
(1,7), neither Xy nor Y} is in Lvars(v). The difficulty of this sub-bracket is j —t.
Finally, we say that a sub-bracket (a, b) is contained in another sub-bracket (i,j) when

i<a<b<y.

For example, the nogood

has a bracket of [0,3], and it has sub-brackets of (0,1), (1,2), (2,3), and (1,3), with
difficulties of 1, 1, 1, and 2 respectively. Note that there is no requirement that a
sub-bracket be maximal {and hence if (i,7) is a sub-bracket for some nogood, and
if we have some a and b such that ¢ < a < b < j, then (a,b) will be a sub-bracket

as well). Note also that the variable on the right-hand side is used in defining the

127

bracket but not the sub-bracket; thus the nogood

(X3 =6) A (Ya =T7) = (Xi #5),

unlike the nogood (V.36), would have a sub-bracket of (0,3) even though the two
nogoods are logically equivalent.
We want to show that a nogood with a sub-bracket of high “difficulty” is indeed

difficult to prove. The following two propositions are straightforward.

Proposition V.2, Any primitive nogood is orderly, and its only sub-bracket has diffi-

culty 1.

Proof. A primitive nogood must be directly entailed by one of the original problem
constraints. If this constraint is of the form (V.30), then the nogood will rule out

some values z; and y; for X; and Y, respectively such that

x + n= 1 (mod 2).

Thus, the bracket will be [0,1]. Similarly, if it is of the form (V.31), its bracket will
be [r,n + 1]. For the final possibility of a constraint of the form (V.32) for 1 < < n,
the bracket would be [i,7 + 1]. In each case, the only possible sub-bracket will have

the same bounds as the bracket, and will thus have a difficulty of 1. |

Proposition V.25 The empty nogood is orderly, and it has a sub-bracket of difficulty

n+1.

Proof. The bracket of the empty nogood is [0,n+1], and (0,n+1) obviously satisfies

128

the requirements for being a sub-bracket. 0O

It is also the case that one step of resolution cannot increase the overall difficulty

very much:

Lemma V.26 Let v be an orderly non-primitive nogood that is obtained by resolving
together the nogoods in I'. Assume that v has some sub-bracket (i,7) of difficulty
d = j — 1. Then at least n elements of I' are orderly nogoods, each having a sub-

bracket contained in (i,7) with a difficulty of at least d/2.

Proof. Let Rvar(v) have index k, i.e., be either X, or Yi. We will define the sub-
brackets of the desired elements of I' as follows. If k is not in the open interval (1, j),
then (¢,7) will be the new sub-bracket; otherwise, choose the larger of the intervals
(,k) or (k,7). Call this new range (a,b). If {a,b) is a sub-bracket for n nogoods in
T, then the lemma is proven since b—a > (j —1)/2.

To show that (a,b) is indeed a sub-bracket for a particular nogood 4’ € T', we
will have to show two things. First, note that when you resolve some 4' with other
nogoods to produce <y, you will only eliminate the right-hand variable of 4. Thus,
Lvars(v') C Vars(y), and so Lvars(’) is disjoint from the open interval (a, b) since
Vars(v) is disjoint from this interval.

Second, we have to show that 7' is orderly and that (a,b) is contained in its
bracket. Note that all of the elements of ' will have the same right-hand variable;
without loss of generality, let it be X,. If Y; is not in Vars(y), then it also cannot
be in Vars(y') (since Lvars(y’) C Vars(vy) and Rvar(vy') # Y;). In this case, X,
cannot affect the bracket since its partner Y is missing. Since X, is the only variable
in Vars(v') that is not present in Vars(y), it follows that 4’ is orderly and that its

bracket includes the bracket of 4 and hence (a,b) as well.

129

The remaining possibility is that Y; € Vars(y). Note that by the construction
of (a,b), it is then impossible for ¢ < g < b. So if ¢ < a, then select those ¥/ € ['
such that M(Val(X,,7'), Val(Yy,v)) = 0; and if g > b, then choose those such that
M(Val(X,,7'), Val(Yy,7)) = 1. Exactly half of the 2n elements of T will satisfy this
condition. Any ' € T that satisfies this condition will be orderly and will have a

bracket that includes (a,b). This completes the proof. O

Lemma V.26 {together with Propositions V.24 and V.25) would be sufficient to
show that the resolution proof iree is super-polynomial. We are interested, however,
in the proof graph. The difference is that, in the graph, a node can have more than one
parent, allowing work to be reused; but since we are only considering DB-consistent
resolution proofs, there are limits to how much work can be reused (as we will soon
see).

Let go be a proof graph for some example P,. We will make use of various
subgraphs of go. Each such subgraph induces a partial order if we assume that
children precede their parents. If a subgraph has a single maximal element (i.e., an
ancestor of every other node in the subgraph), then we will say that the subgraph 1s

rooted:

Definition V.27 If g is a subgraph of go, we will say that it is a rooted subgraph
if there is some root node in g that is an ancestor of every other node in g, where

ancestorship is defined relative to g.
Of particular interest are those rooted subgraphs that have the self-deletion property:

Definition V.28 If g is a rooted subgraph of go, then we will say that g is self-deleting

if every non-root node in g is deleted by al least one of ils ancesiors in g.

The intuition here is that once the root node has been derived, the rest of the subgraph

130

will have been deleted. Such a condition will be crucial in limiting the extent to which
work can be reused.
Happily, there is a simple condition that will ensure that a subgraph is self-

deleting,.

Lemma V.29 Let g be a rooted subgraph of go with root v. Assume that (i,]) is a
sub-bracket for v, but for no other nodes in g. Finally, assume that each node in g

has some sub-bracket that is contained in (t,7). Then, g is self-deleting.

Proof. Let z be a non-root node in g. By assumption, z will have some sub-bracket
(a,b) such that i < a < b < j. We claim that Lvars(z) € Lvars(r). Let b be the
left bracket of z, and let b, be the right bracket of z; by our definitions, we know that
b < aand b<b,. If we had & < ¢ and j < b, and Lvars(z) disjoint from the open
interval (i, 7), then (i,7) would be a sub-bracket for z. Since we are assuming that
this is not the case, one of these three premises must be false. If the first premise
is false, then i < b < a. By the definition of the left bracket, at least two variables
in Vars(z) must have indices between i and a; since only one of them can be the
right-hand variable Rvar(z), at least one variable in Lvars(z) must be in this range.
Similarly, if b < b, < j, then some variable in Lvars{z) must be in the range (b,7)-
So in any of the three cases, Lvars(z) is not disjoint from the open interval (3,J)-
But by the definition of a sub-bracket, Lvars(r) must be disjoint from (¢,7); hence,
Lvars(z) € Lvars(r).

Therefore, there must be some variable v in Lvars(z) that is not present in
Lvars(r). Consider some path in g from « up to r. Let g be the first node on this
path such that v ¢ Lvars(g). Since resolution never directly eliminates a variable
from the left-hand side of a mogood, v must be the same as Rvar(g), and thus g

deletes z. Since z was an arbitrary non-root node, this shows that the subgraph is

131

self-deleting. O

The self-deletion property can be used in proving that certain subgraphs of go
are disjoint.
Lemma V.30 Let g, and g; be two self-deleting rooted subgraphs of go having roots r,

and r respectively such that the node r, does not appear in the graph g,, and the node

T2 does not appear in the graph g:. Then g, and g, are disjoint.

Proof. Assume by way of contradiction that g, and g, intersect, i.e., that some node
is present in both graphs. Let z be a maximal such node. Then there is a path from

rtonr

(z =v0,v1y...,0s =17y) (V.37)

and a path from z to =,

(z = wo,wyy...,w =173) (v.38)

such that each contains some node that deletes z. Let v; be the minimal such
element in the first path, and let w;, be the minimal such element in the second path.
These must be distinct since x is the maximal node that is common to both graphs.
Now, if v;, deletes z, this implies that Rvar(v;,) € Lvars(z); similarly, Rvar(w;,) €
Lvars(z). But since these are the minimal such deleters, neither Rvar(v;) nor
Rvar(w;,) can appear on the right-hand side of any v; such that 0 < i < ¢y, or any
w; such that 0 < ¢ < ;. By the definition of a path in the proof graph, we know
that vg is resolved with other nogoods to derive vy, and then v, is resolved with other
nogoods to derive v,, and so forth; and the same goes for the other path. We also
know that resolution cannot directly eliminate a variable from the left-hand side of a
nogood; in other words, if some variable is in Lvars(vo) but not in Lvars(v;), then

it must be equal to Rvar(v,), etc. Since Rvar(v;,) and Rvar(w;,) are not on the

132

right-hand sides of any of the nogoods just mentioned, they must be present on all
the left-hand sides. Therefore, both v;, and w;, not only delete z, but also delete all
v; such that 0 < 7 < 7;, and all w; such that 0 < ¢ < 7;. Now, consider the actual
proof, and assume without loss of generality, that v;, is derived before w;,. At the
time that v;, is derived there will be some maximal ¢ such that w; has been derived,
and ¢ will be less than 7,. But since v;, deletes this w;, w; cannot be used to later
derive w;y;. This contradicts our assumption that (V.38) is a path from z to r; in

the proof graph. Hence, g, and g, must be disjoint. O
In order to establish a lower bound on the size of the proof graph gy, we will
identify certain special subgraphs.

Definition V.31 Letl g be a rooted subgraph of go with root r. We will say that g is a

(8, d)-special subgraph of go if 8 2> 1 and d > 1, and the following properties all hold:

1. The root v has a sub-bracket (i,7) with difficulty j —i > d.
2. No other node in g has the sub-bracket (z,7).
3. Every node in g has some sub-bracket that is contained in (i,7).

4. Any non-leaf node ¢ in g has, as children, all the children of = in the original
proof graph go, with the exceplion of those children that violate condition § and

at most n — B other children.

This definition is rather complex, and its motivation will not be fully clear until we
use it in Lemma V.33. We will make one quick comment, however. The 3 in this

definition is related to the branching factor of the graph; specifically, we have:

Proposition V.32 If g is a (B,d)-special subgraph, then every non-leaf node in g has

at least B children.

133

Proof. Let z be a non-leaf node in g. It has 2n children in the original proof graph
go- From Lemma V.26, it is easy to see that at most n of these children will violate
condition 3 from Definition V.31. Since at most n — @ additional children can be

omitted, there must be at least 8 children remaining,. O

We will now proceed to give a lower bound on the size of a special subgraph.

Lemma V.33 Let g be a (B3,d)-special subgraph of go. Then g has at least

B+ |log,d] — 1
{log, d}

(V.39)

leaf nodes.

Proof. Let f(83,d) represent the minimal number of leaves in any (8, d)-special
subgraph. Let r be the root node of g, and let (i, j) be the sub-bracket referred to in
Definition V.31.

If » is a leaf node, then from Proposition V.24 and from condition 1 in Defini-
tion V.31, we know that d is 1. In this case, formula (V.39) is equal to 1, and the
lemma is true trivially.

If » is not a leaf node, then consider all the descendents of 7 in g that have a
sub-bracket contained in (z,7) with a difficulty of at least d/2. We claim that there
are at least 3 such descendents. From Lemma V.26, we know that at least n of the
children of = in the original graph go will satisfy this criterion; certainly, none of these
children can violate condition 3 of Definition V.31. Therefore, from condition 4 of
that definition, we know that at least 3 of these children will be present in g. Hence,
there at least 8 descendents that satisfy the criterion.

Consider some topological sort of these descendents where if node z; is a de-

134

scendent (in g) of node z,, then z; must precede z, in the topological sort. We will

define subgraphs of g rooted at the first 3 nodes in this topological sort:

g <1 < < E2 < Iy

Construct subgraphs of g in the following way. Node x5 has some sub-bracket {a, b)
such that (a,b) is contained in (Z,7), and b — a > d/2. Let gg be the largest rooted
subgraph of g with root zg for which all nodes have a sub-bracket contained in (a, b).
We claim that gg is a (8,d/2)-special subgraph. Condition 1 (with the sub-bracket
being (a, b), of course) was the criterion used to select the descendents of . Condition
2 can be shown by the following argument. If any descendent of 2 had a sub-bracket
of (a,b), then this descendent would itself be one of the z;’s since (a,b) is contained
in (i,7) and has a difficulty of at least d/2. Furthermore, any descendent of =5 must
precede it in our topological sort. This cannot be, however, since z; was defined to
be the first z; in the topological sort. Therefore, no descendent of z3 can have the
sub-bracket (a,b); this establishes Condition 2. Condition 3 is also satisfied, as we
chose g to be the largest subgraph of g rooted at zg that satisfied this condition.
Finally, to establish condition 4, consider an arbitrary non-leaf node z in gg. At most
n children of z in the original graph go will violate condition 3 for the sub-bracket
(a,b) (see Lemma V.26). The children of z that violated condition 3 for the old sub-
bracket (i,7) (and thus were not present in g) will continue to violate it for the new
sub-bracket (a,b). After all, (a,b) is contained in (i, j); if the child does not have a
sub-bracket contained in (i,), then it certainly cannot have one in (a,b). The only
other children of z absent from g are the (at most) n — 8 additional children of z
absent from g. Thus, condition 4 is satisfied as well, and gz is in fact a (3, d/2)-special

subgraph.

135

The above analysis has been for the new subgraph gs. We will now define
subgraphs gs_1, gs-2, ..., g1. For any ¢, such that 8 > { > 1, we will again have some
sub-bracket (a,b) of #; such that (a,bd) is contained in (i,5) and b — a > d/2. For
B > 1> 1,let g; be the largest rooted subgraph of g with root z; that does not include
the nodes z; for 8 > i’ > 1, and for which all nodes have a sub-bracket contained in
(a,b). The purpose of filtering out the zy that precede z; in the ordering is so that
condition 2 will continue to be satisfied. The only consequence of this filtering is that
g; will now be a (i, d/2)-special subgraph instead of a (3, d/2)-special subgraph. To
see this, note that a nogood cannot resolve with itself, so each of the earlier z; can
only be a child a single time of any parent.

Now, we can apply Definition V.31 to the subgraphs gg, gg-1, ..., 1. We
know from Lemma V.29 that these subgraphs must be self-deleting. By the above
discussion, the root of any one of these subgraphs cannot appear in any of the other
subgraphs. Therefore, by Lemma V.30, the subgraphs must be completely disjoint.
Since the subgraphs are disjoint, the number of leaves in the original graph cannot

be less than the sum of the leaves in the new subgraphs. Hence, we have shown:
B »
f(B,d) = 3 f(i,[d/2]).
i=1
We also know that
f(g,1) = 1

It will be easier to solve this recurrence if we convert it to an arithmetic reduction.

136

Define g(8,z) to be f(8,2%). Then we have the equations

9(B,z) > Y g(i,z-1),
9(8,0) =

It is straightforward to prove by induction that this is solved by

o> | P

&

Hence, we have

£(8,d) > B+ |log,d] —1
|.1°gz d|

which is what we want. O

Theorem V.20 now follows easily:

Proof. Let go be a proof graph for problem P, of Example V.21. The root node
of go is labeled by the empty nogood, so it has a sub-bracket of (0,2 + 1). Let r be
the minimal node in go with this property. Let g be the largest rooted subgraph of
go with root r such that all the nodes are orderly. According to Definition V.31, g is
a (n,n + 1)-special subgraph. Applying Lemma V.33, we conclude that g must have

at least

n + |logy(n +1)) — 1
[log,(n + 1)

leaf nodes, and thus any DB-consistent resolution proof of unsatisfiability for Problem

137

P, will have at least this many steps. For sufficiently large n, this is more than

: § ())uos,)
Llogz nJ - I.logz nJ -

For sufficiently large n, |log, n] is less than (say) %, and thus we have the asymp-

totic lower bound

n09° Llogy |

which is greater than any polynomial. o

Corollary V.84 Regardless of the search order, neither dynamic backiracking nor

partial-order dynamic backtracking is exponential only in the induced width.

Proof. This follows immediately from Theorem V.20 and Lemma V.19. o

Polynomial-Space Resolution

We have proven a number of lower bounds for various polynomial-space CSP
algorithms. In each case that we have considered so far, we have shown that the
algorithm is not exponential only in the induced width. In this section, we will make
some more general conjectures (but we will not prove anything).

We begin with the most obvious conjecture:

Conjecture V.35 There is no polynomial-space CSP algorithm that is exponential only

in the induced width.

Recall that for a CSP algorithm to be polynomial space and exponential only in the

induced width, we would need a constant c and a function f such that the algorithm

138

uses Oz*) space and O(z/ (")} time, where z is the size of the problem and w"* is its
induced width. Our conjecture is that there is no such algorithm.

Conjecture V.35 is at least as strong as the conjecture that P 7# NP. To see this,
consider the CSP Decision Problem, that is, the problem of determining whether the
CSP has a solution or not. This problem is clearly in NP, so if P were equal to NP,
then we would have a polynomial-time algorithm for this decision problem. It would
be straightforward, however, to use this polynomial-time algorithm for the decision
problem to construct a polynomial-time algorithm for the standard search problem of
actually finding a solution to the CSP. In other words, if P = NP, then we would have
a polynomial-time CSP algorithm. A polynomial-time algorithm would be (trivially)
exponential only in the induced width, and it would also be polynomial space since
you cannot use more space than time. Therefore, Conjecture V.35 implies P # NP.
One interesting project would be to try to reduce Conjecture V.35 to the question of
P # NP, or perhaps to some other open question or questions.

Let us record an even more general conjecture. Suppose we are only interested
in proving unsatisfiability. One might imagine an algorithm that, for ary unsatisfiable
problem, eventually returns the answer UNSAT, but otherwise need not terminate at

all. Qur conjecture is that this does not really help.

Conjecture V.36 There is no polynomial-space proof method (i.e., nondeterministic

machine) for recognizing unsatisfiable CSPs thal is ezponential only in the induced

width.

The reason that this conjecture is plausible is that the unsatisfiable problems seem
to be the hardest ones. For a satisfiable problem, you might get lucky and find a
solution very quickly, but for an unsatisfiable problem, you have to prove that there

is no solution. Just as Conjecture V.35 would imply that P # NP, Conjecture V.36

139

would imply that NP # co-NP.

Given that these two conjectures seem to be far beyond what we can prove, let
us consider a more specific conjecture that still generalizes our earlier results. Instead
of allowing an arbitrary proof method as in Conjecture V.36, we will restrict our
attention to resolution proofs.

In Chapter IV, we proved that there is no polynomial-space dependency-directed
backtracking algorithm that is exponential only in the induced width. There are a
number of ways that one might want to generalize this result. First of all, we assumed
that the search was performed using fixed variable and value orderings. Instead, one
might want to consider an algorithm that makes the optimal decision at each stage.
One might also want to consider alternative methods of constructing resolution proofs
besides the depth-first search strategy implicit in dependency-directed backtracking.
For example, one might precede (or interleave) the backtracking phase with a con-
straint propagation phase as in Freuder’s algorithm [34] and Dechter and Pearl’s
adaptive consistency algorithm [30]. In fact, there are a number of such constraint
propagation techniques [58], and we will discuss them in detail in Chapter VI. For
our purpose here, however, the important thing is that all of these methods are spe-
cial cases of resolution theorem proving. If we can prove that there is no resolution
method that is simultaneously exponential only in the induced width and polynomial
space, then we will have also shown that no combination of the above search methods
can achieve these two objectives at once.

Let us state this idea formally. First, let us rephrase the previous definition of

a resolution proof.

Definition V.37 A resolution proof for a CSP is a sequence of clauses 1,72, -+ Im

together with a sequence of sets of clauses T'1,I'ay.. s T,., and a justification function

140

J that maps integers to sets of clauses such that the following properties hold:
L] Pl = @.

e For alli from 1 to m, either J(i) = 0 and v; is a primitive clause for the CSP,

or J(i) C T; and v; can be obtained by resolving together the clauses in J (7).
o Foralli from1tom—1, Ty CTiU{%}
If 4 is the empty clause, then we will call this a resolution proof of unsatisfiability.

This definition is equivalent to Definition V.12 because we can always take I'; to be
{7; :1 £ j <i}. (We have also changed the definition of the justification function J
to be the set of clauses that are resolved instead of their indices.) Our interest will
be in resolution proofs that use only a limited amount of memory; this notion can be

formalized by placing restrictions on the T'; sets.
Definition V.38 Consider a resolution proof whose clause sets are 'y, I's ..., T'n. The
length of the proof is m, and the maximum cache size of the proof is

@2’,‘“ IT;]-

A resolution method is a function that when given an unsatisflable CSP returns
a resolution proof of its unsatisfiability. A resolution method is exponential only in
the induced width if the lengths of the proofs it returns are exponential only in the
induced width. A resolution method is polynomial space if the mazimum cache sizes

of the proofs it returns are bounded by some polynomial in the problem size.

These important definitions deserve a few comments. First, note that we are not

interested here in a resolution method as an algorithm; that is, we are not analyzing its

141

space and time complexity, but rather that of the proof that it returns. A resolution
method is simply an abstract function that returns a resolution proof when given a
CSP; it might for example return the shortest such proof that possesses a particular
property. If the length of such a proof grows only exponentially in the induced width,
then we say that the resolution method is exponential only in the induced width,
regardless of whether there is any algorithm that can efliciently discover this proof.
This is consistent with the policy in this chapter of giving the various search techniques
every benefit of the doubt. Second, note that the polynomial-space property applies
to the maximum size of the I'; sets — not to the proof as a whole. An actual CSP
algorithm has no need to store the entire proof in memory at any time; the maximum
cache size, then, is the logical lower bound on how much memory this algorithm will
require.

We can now state our conjecture concerning polynomial-space resolution.

Conjecture V.89 There is no polynomial-space resolution method that is ezponential

only in the induced width.

This is weaker than Conjecture V.36 because it only applies to resolution proofs rather
than an arbitrary proof system.

We believe it likely that Example V.7, the localized pigeonhole problem that
was used to establish the lower bound for optimal k-order learning, will also work for

Conjecture V.39, but for now, we will have to leave this as an open problem.

Summary

In this chapter, we have studied the worst-case performance of various CSP
algorithms. We have shown that k-order learning and dynamic backtracking are not

exponential only in the induced width, even when they are allowed an optimal search

142

order. We have also presented a more general conjecture concerning polynomial-space

resolution. If this conjecture were proven, it would generalize all the results of this

chapter and of Chapter IV.

143

CHAPTER VI

RELATED WORK

This chapter discusses the related work on constraint satisfaction problems.
We begin in Section VI.1 with a survey of the various backtracking ideas, focusing on
those that we have not covered yet. Section VI.2 discusses constraint propagation al-
gorithms; these are procedures, like those of Freuder {34] and Dechter and Pearl [30],
that enforce some type of local consistency on the constraint network. Section VI.3
discusses stochastic algorithms for CSPs. Since these procedures cannot prove un-
satisfiability, they are really outside the scope of this thesis, but they are sufficiently
important that no survey of CSPs would be complete without them.

In this thesis, we have focused on one particular measure of CSP difficulty, the
induced width, noting that a CSP class of bounded induced width is tractable. In
Section VI.4, we discuss some other measures of CSP tractability.

We proved some results in Chapter V concerning the lengths of the shortest
unsatisfiability proofs subject to certain restrictions. In Section VI.5, we provide

some pointers into the literature on this important topic in computer science.
Backtracking Algorithms
Historical Notes

Backtracking is such a simple idea that it has undoubtedly been discovered

numerous times by various researchers. The term “backtrack” was apparently coined

144

by D.H. Lehmer in the 1950’s.! The first general exposition of the principle is due to
Walker [84). Golomb and Baumert [46] and Bitner and Reingold [8] provided early
surveys of backtracking. Knuth [55] gives a good introduction to backiracking, and
he discusses a stochastic method for estimating the size of the backtrack search tree.
For a modern survey of backtracking, the reader might consult [12] or [17]. We should
note that backtracking is useful for more than constraint satisfaction problems. It
is applicable on any search problem for which there is an easily computed predicate
on partial solutions that can be used to prune some of those partial solutions that
cannot be extended to full solutions. For some interesting examples, see the above

references.
Forward Checking

Forward checking is a simple idea that can often speed up a backtracking
search [49]; it has also been referred to as “preclusion” 8, 46]. Consider the operation
of a standard backtracking algorithm on a binary C5P. Suppose at some point, the
variable v has just been assigned a value, but there are other variables that are still
unassigned; we will refer to these unassigned variables as “future variables.” Standard
backtracking will not check the consistency of the new value of v with the values for
any future variable until this future variable is assigned a value in the course of the
search. Standard backtracking, then, does what one might call backward checking.

Forward checking, on the other hand, does this constraint checking in advance.
When v is assigned a value, forward checking removes from the domains of the future
variables any values that are inconsistent with the current value of v. If the forward

checking operation removes all the values from the domain of any future variable, then

1This is according to [8, 46); some other sources [17, 55] seem to credit Walker (84], but
this might be for the term “backtracking” rather than “backtrack.”

145

the search algorithm will backtrack immediately since the current partial assignment
must be a dead end. Note that by the time that a variable is processed, its domain
will include only those values that are consistent with all the past variables. We have
explained forward checking in terms of a binary CSP, but the idea is obviously more
general.

There are several perspectives that one might take on forward checking. First,
it can eliminate many repetitive consistency checks; in this respect, it is similar to
the backmarking idea, which we we will discuss in Section VI.1.6.

Second, it can cause dead-end branches to fail faster. Suppose that we have
assigned values to the first 10 variables, and that based on these values, there is no
consistent assignment for the 20th variable. Forward checking would fail immedi-
ately, while standard backtracking would fail for each combination of values of the
intervening variables. Thus, forward checking prunes the search space in a manner
analogous to that of backjumping (actually, it prunes the search space in the same
way as Gaschnig’s original backjumping — see the footnote on page 10).

Third, forward checking can be understood as a simple variable-ordering heuris-
tic. If all of the values for some variable have been eliminated, forward checking, in a
sense, chooses to branch on that variable next so that it can immediately backtrack.
The more sophisticated variable-ordering heuristics that we used for our experiments
in Chapters II and III included this feature as a special case (see the remarks in the
next subsection). The theoretical results in Chapter V allowed for an optimal variable
order, so they would not be affected by forward checking.

Finally, one can also view forward checking as a primitive constraint propaga-
tion algorithm. We will discuss some more sophisticated algorithms of this type in
Section VI.2 below.

146

Heuristics

The order in which variables and values are selected can greatly affect the effi-
ciency of a backtracking search, so there has been much interest in developing heuris-
tics for making these decisions wisely. We will briefly discuss a few of these heuristics.

One important variable-selection heuristic is to select at each point the vari-
able with the fewest number of remaining choices [8]. (Since a variable with zero
remaining choices will be most preferred, this heuristic subsumes forward checking.)
This principle has been referred to by a number of names, including cheapest first,
most-consirained first, search rearrangement, and dynamic search rearrangement. The
utility of this technique has been verified both theoretically [49, 68] and experimen-
tally [8, 43, 69, 80].

Since the goal is to make the ultimate search tree as small as possible, it makes
sense to take into account not only how constrained a variable is, but also how
constraining it is. One idea in this connection is to prefer variables that participate in
as many constraints as possible, or perhaps variables that most restrict the domains
of the future variables; one might even look ahead several levels in the search tree
in order to make this decision. A number of authors have explored variants of these
ideas [23, 49, 56, 69, 87].

The graph coloring experiments in Chapter II used the Brélaz heuristic 9, 82],
which employs both of the above ideas since it prefers vertices with the fewest number
of remaining colors, and breaks ties by preferring vertices with the most neighbors.
The satisfiability experiments in Chapter III also used a heuristic of this general
form; that heuristic preferred propositional variables whose values could be deduced,
and to break ties it preferred variables that appeared in the most binary clauses.

The examples in Chapter V suggest a divide-and-conquer heuristic in which variables

147

are chosen with the goal of breaking the problem into smaller pieces. It might be
interesting to explore this idea further.

Once the variable has been selected, one has to decide in which order to try out
its different values. Here, the conventional wisdom is that one wants to select first
the value that is least constraining. This maximizes the chance of finding a solution
without backtracking (of course, if the problem is unsatisfiable, it will not make any

difference one way or the other). Again, there are a number of variants of the basic

idea [30, 43, 49, 53, 78].
Davis-Putnam Procedure

A propositional satisfiability problem is a type of constraint satisfaction problem
in which the problem variables only take the values TRUE and FALSE, and the con-
straints are logical formulas of these variables. Usually, the constraints are assumed
to be in clausal form. That is, each constraint is a disjunction of literals, where a
literal is either a variable or the negation of a variable.

The well-known Davis-Putnam procedure for solving propositional satisfiability
problems is just a backtracking algorithm, together with a variant of forward checking
known as unit propagation [26]. Unit propagation says that if in a given clause, all
the literals but one have been assigned the value FALSE,? then the remaining literal
should be assigned the value TRUE. Since a clause is just a disjunction, this rule
of inference is obviously sound. The unit propagation rule is executed repeatedly
until it can no longer be applied. Since one umnit propagation can trigger another,
unit propagation is a more powerful constraint propagation algorithm than forward

checking. Alternatively, one can view unit propagation as forward checking together

2If a variable v has been assigned the value TRUE, then its negation —v is assumed to
have the value FALSE, and vice versa.

148

with the cheapest-first heuristic; this heuristic takes a particularly simple form here
since the non-empty domains must have sizes of either 1 or 2. Once unit propagation
has run to quiescence, the search algorithm needs to select a new variable, and all
the usual ideas about variable-selection heuristics apply; see for example {23, 87].
The backtracking algorithm used in the Chapter III experiments was a version of the
Davis-Putnam procedure.

Let us record two historical notes on the Davis-Putnam procedure. First, the
original purpose of the procedure was to prove unsatisfiability of formulas in first-order
logic [26, 27). Since it worked by generating successive ground instances of the first-
order formula and then applying the propositional method described above, it was not
as efficient for this purpose as the resolution method later proposed by Robinson [71].
Second, what we (and most others) call the “Davis-Putnam procedure” is actually
from a paper by Davis, Logemann, and Loveland {26]. An earlier paper by Davis and
Putnam [27] described a somewhat different method that is generally not as useful
in practice (although Dechter and Rish [31] argue that there are some problems for

which this earlier method is better).
Intelligent Backtracking

Intelligent backtracking procedures are those that determine the reasons for a
dead end in order to prune analogous nodes from the search tree. We have already
discussed at length the major algorithms of this type. In particular, we have covered
backjumping [39, 40], dependency-directed backtracking [79], k-order learning [28],
and dynamic backtracking [42]. Let us briefly consider a few additional variants.

Dechter [28] discusses graph-based versions of the various intelligent backtrack-

ing routines. The idea is as follows. Suppose some variable v cannot be assigned a

149

value consistent with the previously assigned variables. Normally, we would identify
the conflict set of variables that were used in excluding the various values of v. All of
the variables in this set must be neighbors of v in the constraint graph since these are
the only variables that share constraints with v. The graph-based intelligent back-
tracking algorithms simply set their conflict set to be all the neighbors of v that have
been assigned values; this might be a strict superset of the conflict set as determined
by the usual dynamic dependency analysis. The advantage of the graph-based ap-
proach is that it avoids the extra overhead at each constraint check. The disadvantage
is that it may prune fewer nodes from the search tree. The trade-off between these
two considerations is essentially an empirical matter.

Bruynooghe has proposed an algorithm called intelligent backiracking [11].°
Bruynooghe’s intelligent backtracking is quite similar to dynamic backtracking, with
an important difference.

In order to explain this difference, let us review one aspect of dynamic back-
tracking. Given a conflict set, dynamic backtracking always chooses to backtrack to
the variable in this set that was most recently assigned a value. We can define a
partial order as follows: for all variables v and w and values z, if w € culpritsfv, z|,
then w < v. Given the nature of dynamic backtracking, it is clear that this is in
fact a partial order, and that the variable to which dynamic backtracking chooses to
backtrack will always be a maximal element in this partial order.

Bruynooghe, on the other hand, allows his algorithm to backtrack to any vari-
able that is maximal in the partial order. Unfortunately, it is then possible for

Bruynooghe’s intelligent backtracking procedure to cycle endlessly and never termi-

3This may be confusing, since we are also using “intelligent backtracking” as a generic
term here. To avoid ambiguity, one might refer to this algorithm as “Bruynooghe’s intelli-
gent backtracking.”

150

nate. It is not clear whether Bruynooghe realized this or not, but in any case, his
paper [11] presents no termination proof, and it is not hard to construct a counterex-
ample, demonstrating that his procedure does not always terminate.* Intelligent back-
tracking has also been of some interest in the logic programming community [10, 22].

Ginsberg and McAllester have recently introduced partial-order dynamic back-
tracking [45]. This new algorithm allows more backtracking freedom than the original
dynamic backtracking algorithm, but less than Bruynooghe'’s algorithm, and it is

guaranteed to terminate.
Backmarking

We will now discuss backmarking, an idea due to Gaschnig [38, 40]. Backmarking
differs from the above intelligent backtracking routines in that it does not actually
prune the search space; it only eliminates redundant consistency checks. Assume
that we are searching using a static variable ordering v,vs,...,vs, and that there is
a binary constraint (possibly trivial) between each pair of variables. Assume further
that we always do these constraint checks using that same static ordering. That is,
when we want to assign some value z to some variable (say) v, we would (with
standard backtracking) check the consistency of v = with the current assignments
for the variables v, through v,g respectively, stopping at the first constraint violation;
if there is no constraint violation, we would proceed to set vy to z.

Backmarking rests on the observation that many of these consistency checks

may have been performed earlier, and would not need to be repeated if we had done

4Consider a problem with the Boolean variables, A, B, C, and D, such that any values
for any two of A, B, C will rule out both values of D. A very unlucky implementation
of Bruynooghe’s intelligent backtracking might learn A = B, and then learn C = -4
(forgetting the previous nogood), and then learn B = —C (forgetting the previous nogood),
etc. This example is based on a personal communication from Ginsberg.

151

some simple bookkeeping. Let us explain this principle by example. Suppose the last
time we checked the consistency of vy = z, the constraint check first failed with v,q.
That is, vop = = was consistent with the assignments for the variables v; through
vg, but inconsistent with v,0. Now, after some backtracking, we have returned to vs
again. If in the interim, we have only backtracked as far as (say) v;,, then we can
reject the assignment of x to vy without checking any constraints; since 12 > 10,
we have not yet changed the value of v19, and the same constraint would fail again.
On the other hand, suppose we had backtracked as far as v;. Then, we might have
changed the value of vq, so it is possible that z would be a consistent assignment
for v,9. Therefore, we would check the constraints of the variables starting with v;.
There is no need to check with the variables v; through v because the constraints
associated with these variables were satisfied last time, and the values have not yet
been changed.

The actual bookkeeping uses two arrays, a one-dimensional array new and a
two-dimensional array mark. For each variable v, the entry new[v] records how far
the procedure has backtracked since the last time that v was visited; and for each
variable v and value z, mark[v,] records how far the constraint checking got the last
time that v = z was considered.

From our standpoint, backmarking is not all that interesting. As we have al-
ready said, it does not prune the actual search space. It may reduce the average time
spent per partial assignment, but it does not change the number of partial assign-
ments considered. Therefore, all of the results in this thesis would stand unchanged
even if the various algorithms were augmented with some form of backmarking. Fur-
thermore, backmarking depends on the variables being ordered statically; it would

have to do more bookkeeping to handle dynamic variable orders. Finally, backmark-

152

ing is most useful on those problems where every variable shares a constraint with
every other variable. In many common problems, however, each variable is involved
in only a few constraints, and thus the whole problem that backmarking was invented

to solve does not even arise.
Iterative Broadening

Iterative broadening is a general search idea due to Ginsberg and Harvey [44]
that is often useful for constraint satisfaction problems. Consider a tree with branch-
ing factor b and depth d. In other words, there is one root node at level 0, and each
node at level i where 0 < 7 < d has b children at level ¢ + 1. Suppose some subset of
the leaf nodes are “solution nodes,” and our task is to find a solution or to show that
no solution exists. Iterative broadening is an alternative to the standard depth-first
strategy for exploring this tree.

With iterative broadening, we first search the tree using an artificial breadth
limit of 2. That is, we only consider 2 children of any node (probably those 2 children
that our heuristics deem most promising). After backtracking to a given node 2 times,
we would ignore its other children, and backtrack from that node to its parent. This
amounts to searching a subtree of the original tree containing only 2¢ rather than ¢
leaf nodes. If this search fails to find a solution, then the process is repeated, but
with the breadth cutoff set to 3. If this search fails, the breadth cutoff is incremented
again, and so on, until either an answer is found, or the until the original tree has been
fully searched; for this last search, the breadth cutoff will have to be b, the branching
factor of the original tree. Needless to say, the fixed branching factor b and fixed
depth d were merely for illustrative purposes; iterative broadening will work just as

well for the less regular search trees that arise in (for example) constraint satisfaction

153

problems.

In the worst case, iterative broadening has to eventually search the entire tree,
and for unsatisfiable problems, this worst case is unavoidable. Therefore, the worst-
case results in this dissertation would still hold even if the search algorithms made
use of iterative broadening. Nonetheless, iterative broadening is often a good idea in
practice.

The reason that it is a good idea in practice is that often the solutions to a CSP
are “clumped.” That is, the CSP may have many solutions, but these solutions might
not be randomly distributed among the leaf nodes. Perhaps the very first variable
selected has some values that lead to no solutions, but other values that easily lead
to many solutions. If a standard backtracking algorithm chooses a bad value for this
first variable, then it might waste a lot of time searching a huge portion of the space
that is devoid of solutions. It cannot revise its value for the first variable until it
has exhaustively explored this entire subspace. Iterative broadening, on the other
hand, is able to return to the first variable after performing only a partial search of
the subspace. In effect, it is determining that this subproblem is “difficult,” and it is
electing to perform a partial search elsewhere before returning to a more exhaustive
search of the original subspace.

Here is another way of looking at the situation. If the solutions are randomly
distributed among the leaf nodes, then any order for exploring the leaf nodes is as
good as any other. In particular, depth-first search would be just fine. If the solutions
are not randomly distributed, however, then we would like the search algorithm to be
as “random” as possible. Iterative broadening performs a fairer sampling of the leaf
nodes than does depth-first search. Another possibility would be a true stochastic

search that actually travels random paths down the tree. This is called iterative

154

sampling, and we will discuss this idea later.

Constraint Propagation

We have mentioned several examples of constraint propagation algorithms; these
are also known as local consistency algorithms. Freuder’s algorithm for solving width-
1 CSPs in linear time uses a preprocessing routine that ensures directional arc con-
sistency [34], while Dechter and Pearl’s adaptive consistency algorithm [30] achieves
a higher level of directional consistency. Forward checking {49] and unit propaga-
tion [26] are local consistency algorithms that are usually interleaved with a back-
tracking search. The purpose of all these algorithms is to simplify a CSP by removing
impossible values, so that a backtracking algorithm will waste less time thrashing. Let
us look at some other constraint propagation algorithms in more detail.

Consider a CSP with the variables ordered v;,v,,...,v,. Directional arc con-
sistency ensures that if there is a binary constraint between the variables v; and v;
where ¢ < 7, then for every value in the domain of v;, there will be some value in
the domain of v; that is consistent with it. Full arc consistency requires that this
condition holds, even when ¢ > j. Directional arc consistency can be achieved in
a single pass, and it is very useful if you plan to do a backtracking search using a
known static variable order. Arc consistency, however, is much more interesting as a
general preprocessing routine. Arc consistency and its generalizations to higher levels

of consistency have been the subject of much research.
Survey

One of the earliest papers on arc consistency was by Waltz [85]. He presented
an arc consistency algorithm (“Waltz filtering”) in the context of a program that

interpreted line drawings with shadows. Mackworth [58] discusses three different arc

155

consistency algorithms, AC-1, AC-2, and AC-3. Let us look at these algorithms in
some detail.

All of the Mackworth algorithms make use of a REVISE procedure. This pro-
cedure takes as arguments two CSP variables, v and w, and it removes from the
domain of v any values that are inconsistent with every value in the domain of w.
More formally, let D, be the current domain of v, let D,, be the current domain of
w, and let P be the constraint predicate that holds between v and w. Then REVISE

updates D, as follows:

D, :={z € D, : 3y € D, such that P(z,y)}}.

In a single pass over the problem, AC-1 applies REVISE to every ordered pair of
variables that share a binary constraint. A single pass, however, is insufficient to
achieve full arc consistency. If any values were deleted from any of the domains
during the last pass, then AC-1 has to make another iteration over the problem.

Let n be the number of variables, e be the number of constraints, and a be
the maximum domain size. Then AC-1 performs at most P(na) iterations. Each
invocation of REVISE takes O(a?) time, and thus each iteration takes O(ea?) time.
Therefore, the total time complexity of AC-1 is (nea®). (Since e is O(n?), this bound
is also (n®a®), but the earlier bound may be tighter if the constraint graph is sparse.)

AC-1 is rather inefficient. Just because a value has been removed from the
domain of a single variable, there is really no reason to process every constraint
again. One need only process those constraints involving that variable, Both AC-
2 and AC-3 maintain queues containing the edges that need to be processed. The
algorithms differ on the details of the queue; AC-3 is simpler, while AC-2 is intended

as a reconstruction of Waltz’s original algorithm. We will discuss AC-3. The queue is

156

initialized to contain all ordered pairs of variables that share constraints (so if there
is a constraint between v and w, both (v,w) and (w,v) will be placed on the queue).
Then, as long as the queue is nonempty, AC-3 will remove some arc (v, w) from the
queue, and call REVISE on this pair of variables. If this causes any values to be
removed from the domain of v, then AC-3 adds to the queue any edges of the form
(u,v) where u # w. When the queue is finally empty, full arc consistency will have
been achieved. The maximum number of times that an arc (u,v) can be processed is
a + 1, since it is on the queue initially, and it will be added to the queue only when
a value has been deleted from the domain of v. The time to process a constraint a
single time remains O(a?), and there are only 2e directed edges (since each constraint
is considered in both orders). Therefore, the time complexity of AC-3 is O(ea®),
which is better than the O(nea®) of AC-1.

Consider a constraint satisfaction problem that is arc consistent. The problem
might still be unsatisfiable, and even if the problem has a solution, it still might be
difficult to discover this solution. Therefore, it is sometimes useful to achieve a higher
level of local consistency than arc consistency.

For some CSP, consider k& — 1 variables v),v,,...,v,_1, and suppose we have
an assignment of values to these variables such that this assignment satisfies all the
constraints among these k — 1 variables. Now consider some other variable v;. It
might be impossible to extend this partial solution to value this additional variable
without violating any constraints. If it is always possible to extend a solution in this
fashion, then we will say, following Freuder, that the problem is k-consistent [33].
If the problem is k'-consistent for all &’ such that 1 < k' < k, then the problem is
strongly k-consistent. Arc consistency is synonymous with strong 2-consistency. The

special case of strong 3-consistency is also of interest, and it is known as path consis-

157

tency [58, 65). The concept of path consistency was introduced by Montanari [65],
and Mackworth [58] discusses two algorithms for path consistency, PC-1 and PC-2,
having complexities O(n®a®) and O(n®a®) respectively. Mackworth and Freuder {60}
discuss the complexities of the various algorithms from [58)] in more detail.

Mohr and Henderson [64} point out that Mackworth’s AC-3, with its time com-
plexity of O(ea®) is not optimal, and they present an improved arc consistency algo-
rithm, AC-4, having a time complexity O(ea?), at the cost of using more space. They
also propose a new path consistency algorithm, PC-3, which turned out to be un-
sound; Han and Lee [48] point this out, and present a working algorithm PC-4. This
path consistency algorithm has a time and space complexity of O(n%a®). Cooper [19]
extends these ideas to produce an optimal k-consistency algorithm.

Two other arc consistency papers deserve comment. Hentenryck, Deville, and
Teng {50] present AC-5, a “generic” arc-consistency algorithm, which can be instanti-
ated to produce either AC-3 or AC-4. AC-5 is particularly useful when the constraints
take a particular form, for example, functional dependencies; AC-5 can then avoid the
overhead that would be involved in treating the constraints as arbitrary predicates.

Finally, Bessiére (7] discusses AC-6, a compromise between AC-3 and AC-4. It
keeps the optimal worst-case time complexity of AC-4, while avoiding AC-4’s extra
space requirements. In the average case, AC-6 seems to outperform both AC-3 and

AC-4, at least according to the data presented in [7].
Discussion

From the perspective of this dissertation, the important observation is that all of
these local consistency procedures are performing resolution. Consider, for example,

the basic operation of arc comsistency. Suppose that there is a binary constraint

158

between the variables u and v, and that both variables have a domain of {1,2,3};
further suppose that for every value of u, the constraint prohibits v from being 2.
Then we can resolve together the following clauses (which follow directly from the

constraint and hence are primitive in the sense of Definition V.10)

(w# 1)V (v #2),
(u#2)V (v #2),
(w#3)V(v#2)

to conclude

v# 2. (V1.40)

If we had some other variable w, with the constraints

(v#1)V(w#l),
(v#3)V(w#1),

then we could resolve these clauses with (VI.40) to conclude that w # 1. Arc con-
sistency is simply a sequence of these resolution steps. The same principle applies to
path consistency and to higher levels of k-consistency.

Therefore, Conjecture V.39 (if true) would ensure that we cannot use any such
local consistency procedure to construct a polynomial-space CSP algorithm that is
exponential only in the induced width. This would be true regardless of whether
we first preprocessed the CSP using the constraint propagation procedure and then

performed backtracking, or if we instead interleaved the two operations.

159

Nonsystematic Methods

This thesis has been limited to systematic algorithms. A systematic CSP al-
gorithm is guaranteed to find a solution if one exists and otherwise prove that the
problem is unsatisfiable. Many problems, however, are so large and so difficult that
this guarantee is of only theoretical interest. Suppose we have (say) 10 hours of com-
putation time available, but the search space is so huge that even the best of the
known systematic algorithms would take centuries to search it exha.ustively.. If the
problem is unsatisfiable, we will not be able to prove it so within the 10-hour time
limit, and even if there are solutions, we will not necessarily find one since there is only
enough time to examine a small subset of the possibilities. It therefore makes sense
to consider algorithms that are good at exploring the portions of the search space
most likely to contain solutions, even when these algorithms are not systematic. The

local search procedures are one such category of algorithms.
Local Search

Local search procedures work in a completely different way from the algorithms
that we have discussed so far. Such a procedure typically starts by assigning random
values to all of the variables. Unless this initial assignment is a solution, it will violate
some (nonzero) number of constraints. The local search procedure then incrementally
modifies the current assignment by changing the value of one variable at a time in
an attempt to reduce the number of violated constraints. The goal is to eventually
reduce the number of violated constraints to zero.

These local search procedures are similar to the numerical optimization rou-
tines that try to maximize a function by following local gradients. Just as with

these numerical procedures, the CSP local search procedures can get stuck at local

160

minima. Therefore, they often have provisions for making random uphill moves or
restarting. The local search procedures have no guarantee of finding a solution in
any given amount of time, and of course they cannot prove unsatisfiability, On the
other hand, they can sometimes solve problems that are too difficult for any known
systematic method. We will discuss two local search procedures, Min-Conflicts [62]
and GSAT [77].

Min-Conflicts is a local search procedure that was developed by Minton and
his colleagues [62]. The hill-climbing step of Min-Conflicts works as follows. It first
identifies the set of variables involved in conflicts, that is, the set of variables that
participate in violated constraints. It then selects a random variable from this set.
Finally, it assigns this variable a new value that minimizes the number of other
variables that are incomsistent with it. This process is repeated until a solution
is found. Min-Conflicts has been used successfully to solve large-scale scheduling
problems [62]. It has also been used to solve instances of the n-queens problem,
the problem of placing n queens on an n by n chessboard so that no two queens
attack each other; Min-Conflicts can solve this problem for » = 1,000,000 in a few
minutes [62], while the best backtracking methods have trouble for even n = 1000.

GSAT is a local search procedure specifically designed for propositional prob-
lems by Selman and his colleagues [77]. It assumes that the problem is presented in
clausal form. GSAT begins by generating a random truth assignment for the problem
variables. Then for each variable, GSAT considers the effect of “Hipping” this vari-
able, that is, of changing its value from TRUE to FALSE, or vice versa. GSAT flips the
variable that give the greatest increase in the total number of satisfied clauses, with
ties being broken randomly. This iterative improvement step is repeated a maximum

of Maz-Flips times, where Maz-Flips is a parameter provided to GSAT. If no solution

161

has been found after Maz-Flips flips, GSAT starts over with a new randomly gener-
ated truth assignment. GSAT repeats this entire process a maximum of Maz- Tries
times (where Maz-Tries is another parameter), after which it gives up, returning “no
solution found” as its answer. Obviously, Minton’s Min-Conflicts algorithms could
also be embedded ir an outer loop of this kind.

Selman and Kautz have made a number of interesting improvements to the basic
GSAT algorithm (74, 75, 76]. One new feature associates a “weight” with each clause.
When the version of GSAT with weights computes the utility of flipping a variable, it
uses the sum of the weights of the satisfied clauses as its criterion, instead of simply
the number of such clauses. The weights are all initialized to 1, but clauses that are
often unsatisfied will have their weights increased gradually. Another improvement
allows more randomness in order to escape from local minima. With probability p,
this version chooses a random variable in any unsatisfied clause instead of choosing
the variable using the usual greedy heuristic. This has some of the flavor of simulated
annealing (54], but using a fixed “temperature” (determined by p) instead of an
annealing schedule.

GSAT has also been extended to handle non-clausal formulas [72]. In other
words, instead of being given a conjunction of disjunctions of literals, this version
is given an arbitrary propositional formula. It computes the number of clauses that
would be violated if this formula were converted to clausal form. This calculation
can be done efficiently even when the conversion itself would cause an exponential

blowup.

162

Iterative Sampling

Local search is not the only stochastic approach to constraint satisfaction prob-
lems. Iterative sampling _is another idea [57]. Iterative sampling is a tree search
algorithm that travels random paths down the tree. That is, it starts at the root, and
then moves to a random child of this node. It continues to move to a random child of
its current node until it reaches a goal node or a dead end. If iterative sampling hits
a dead end, it starts over again at the top of the tree. In the context of a CSP, the
root node is the empty assignment, and the children of a given node correspond to
the partial solution being extended by assigning the various values to the next vari-
able. Iterative sampling might also do some type of forward checking or constraint
propagation. In this case, the children will correspond to only those values that are
consistent with the prior values, modulo the constraint propagation algorithm.

Iterative sampling can be a good idea for the same reason that iterative broad-
ening (see Section VI.1.7 above) can be a good idea. If the solutions to a CSP are
clumped, then standard backtracking risks wasting its time exploring a portion of
the search space devoid of solutions, even when there are many solutions elsewhere.
Iterative sampling avoids this problem by randomly sampling the possible solutions.

On one type of scheduling problem, iterative sampling has been shown to outperform

both backtracking and GSAT [24].
Tractable Classes of CSPs

In Chapters IV and V of this dissertation, we have analyzed CSP algorithms
with respect to one particular measure of problem difficulty, the induced width. CSPs
with a fixed induced width can be solved in polynomial time provided that the algo-

rithm is willing to let its memory usage be exponential in this induced width. In this

163

section we discuss some other tractable CSPs. We divide them into three broad cate-
gories: restrictions on the constraint graph, restrictions on the constraint predicates,

and more complicated restrictions.
Tractable Constraint Graphs

There are other interesting parameters of a graph besides its induced width.
One such parameter is the bandwidth [14]. Consider a graph G = (V, E) with an
ordering h, where V is the set of vertices, E is the set of edges and & is a bijection
between V and the set {1,2,...,n = |V|}. The bandwidth of a vertex v € V under
the ordering h is the maximum value of |h(v) — A(w)| for any edge {v,w} € E. In
other words, the bandwidth of a vertex is the maximum distance between that vertex
and any other vertex that is connected to it, where distance is defined in terms of
the ordering h. The bandwidth of the graph under an ordering is the maximum
bandwidth of any of its vertices under that ordering. The bandwidth of a graph is
its minimum bandwidth under any ordering.

Zabih [86} discusses the bandwidth in the context of constraint satisfaction
problems. Let B(G, k) be the bandwidth of a graph G under the ordering A, and let
W(G, k) be the induced width of the graph under that ordering. Zabih [86] notes

that for any graph G and ordering A,

W(G, k) < B(G,h). (V1.41)

To see this, consider some arbitrary vertex v. If w is a parent of v (that is, a vertex
connected to v that precedes v under the ordering k), then by the definition of the

bandwidth, we must have |h(v) — h(w)| < B(G, k). Since w is a parent of v, we must

164

therefore have

h(v) — B(G, k) < h(w) < h(v).

Since the edges that are added when constructing the induced graph will only connect
the parents of some vertex, it follows by an inductive argument, that the induced
graph must also have this property. Therefore, v can have at most B(G, k) parents in
the induced graph, establishing (V1.41). Since the induced width cannot exceed the
bandwidth, a problem class with a limited bandwidth will also have a limited induced
width, and will therefore be tractable.

Seidel [73] defined the notion of the front length. Consider a graph G = (V, E)
and ordering k, and let v be some vertex in the graph. The front length of » under

the ordering is the cardinality of the set

{w : h(w) < k(v), 3z € V, h(v) < h(z), {w,z} € E}. (V1.42)

This set consists of all the vertices before v (under the ordering) that are connected to
vertices after or equal to v in the ordering. The front length of G under the ordering
k, which we will write as F(G, k), is the maximum front length of any of its vertices
under the ordering,” and the front length of the graph is its minimum front length
under any ordering.

Seidel [73] introduced these concepts in order to present a CSP dynamic pro-
gramming algorithm similar in some respects to Dechter and Pearl’s algorithm. For

our purposes, we need only note that

W(G,k) < F(G,h) < B(G,h). (V1.43)

® Actually, Seidel [73] refers to an ordering as an “invasion,” the set (V1.42) as a “front” in
this invasion, and the front length under the ordering as the “front length of the invasion.”

165

Zabih [87] proves the second part of this inequality, but both parts are straightforward.
Consider the set (VI.42) for some vertex v in the graph. For any w in this set, we
must have that h(v) — B(G,h) < h(w) < h(v) since w is connected to some vertex
z, where h(z) > h(v). Thus the size of the set (VI.42) is bounded by B(G,#); this
establishes the second part of (V1.43). To prove the first part, note that every parent
of v in the induced graph must either be a parent of v in the original graph, or the
parent of some vertex = that follows v in the original graph (that is, h(z) > h(v)).
But all vertices of this type will be in the set (VI1.42); this establishes the first part.
To see that the inequalities of (VI.43) can sometimes be strict, consider the
example in Figure 33, where, as indicated, the variables are ordered clockwise starting
from the upper left. The induced width under this ordering is 1, the front length is 5,
and the bandwidth is 9. On the other hand, for a completely connected graph with

n vertices, all three parameters would be n — 1.

Wi Va Va Vs Ve

Vio Ve Ve Vi Ve

Figure 33: Bandwidth vs. front length vs. induced width

Because the induced width is bounded by the front length and the bandwidth,
the latter two measures also define tractable classes of CSPs; but since the induced
width can be strictly less than the other two, it is the more informative parameter.
Figure 33 illustrated this point, but since it is based on a suboptimal ordering, per-
haps another example would be useful. Consider a CSP whose constraint graph is a
tree. The induced width is 1, but the bandwidth and front length are not bounded.

Therefore, the induced width identifies more tractable CSPs than the other two mea-

166
sures.

How do the bandwidth and the front length relate to the theoretical results in
this thesis? Note that the counterexamples of Chapters IV and V have bandwidths
identical to their induced widths. That is, while it is possible in principle for the
induced width to be bounded while the bandwidth diverges, we did not in practice
take advantage of this freedom. Therefore, we have really proven stronger results that
we have claimed. We have really shown, for example, that there is no polynomial-
space dependency-directed backtracking procedure that is exponential only in the
bandwidth.

There is another graph parameter that is sometimes of interest, the cycle-cutset
size [28]. We know that CSPs with tree-structured constraint graphs can be solved
in linear time. Suppose that a constraint graph is not a tree, but that it can be made
so by deleting a few of its vertices (along with the edges incident on these vertices).
We will call this set of vertices a cycle cutset, or simply a cutset for short. The CSP
can be solved efficiently by first assigning consistent values to the variables in the
cycle cutset, and then applying the tree algorithm to the rest of the problem; this
process might have to be repeated for each combination of values for these variables,
or a total of a° times altogether, where a is the maximum domain size, and ¢ is the
size of the cutset. We will say that the cycle-cutset size of a graph is the size of its
smallest cutset (it is NP-hard to compute this parameter).

How does the cycle-cutset size c relate to the induced width? If we order the
vertices in the cutset first, followed by the other vertices in some tree-like order, then
the induced width under this ordering cannot exceed ¢ + 1 since each vertex has at
most one parent in the tree, and at most ¢ parents in the cutset. Therefore, the

induced width is at most ¢ + 1, and we see that the induced width is at least as

167

informative (in terms of identifying tractable problems) as the cycle-cutset size. On
the other hand, the cycle-cutset size is not necessarily bounded by the induced width.
In fact, it is not even bounded by the bandwidth. In some of the counterexamples of
Chapters IV and V, the bandwidth is fixed, but the cycle-cutset size grows linearly
with the problem. Therefore, our theorems do not apply to the cycle-cutset size; it
is quite possible for a polynomial-space CSP algorithm to be exponential only in the

size of the cutset (we have just sketched such an algorithm in the last paragraph).
Tractable Constraints

So far, we have examined only those tractable CSPs that can be characterized
based purely on the topology of the constraint graph, irrespective of the actual con-
straint predicates. We will now consider the opposite extreme, namely, conditions on
the constraint predicates sufficient to ensure tractability.

One simple example is 2-SATISFIABILITY (also know as 2-SAT, or 2-CNF);
this was mentioned briefly in Chapter I. In this example, all of the variables are
propositional (that is, they take only two values, conventionally TRUE and FALSE).
The constraints are all binary clauses; equivalently, we can let the constraints be
arbitrary binary constraints between these propositional variables since any constraint
can be represented by at most 4 binary clauses. It is well known that 2-SAT can be
solved in linear time [4].

Cooper et al. [20] generalize this idea to an arbitrary binary CSP that is not
necessarily propositional. Consider two variables, v and w, that have a constraint
between them, with P being the actual constraint relation. Let D, be the domai1_1 of

v, and let D, be the domain of w. For each value z € D,, let h(z) be the values from

168

D,, that are consistent with z, that is, the set

{y € Dy : (z,y) € P}.

We say that the constraint from v to w is a directed 0/1/all constraint if for all
z € D,, h(z) is either the empty set, or a one-element set, or the entire set D,. If
the same condition also applies with the role of w and v reverse, then we will say
that the constraint is a 0/1/all constraint. If every constraint is a 0/1/all constraint,
then we will say that the CSP is a 0/1/all problem. Cooper et al. [20] show that any
0/1/all problem can be solved in polynomial time.

Consider the effect of assigning a value = to some variable v in a 0/1/all problem.
What will this let us conclude about the value of some other variable w? There
are only three possibilities. If h(v) = 0, then we have derived a contradiction. If
h(v) is a singleton, then we can propagate this value to the variable w. Finally, if
h(v) is just the set D,,, then we have gained no information at all. The algorithm
from [20] works as follows. First, it selects an unbound variable; we will call this
variable a “choice point.” Then, the algorithm assigns some value to the variable and
performs the constraint propagation indicated above; if this propagation leads to a
contradiction, then the next value is tried for the choice point until a consistent value
is found. If there is no consistent value for the choice point, then the problem must be
unsatisfiable, so the algorithm can return this fact. If there is some consistent value
for the choice point, the algorithm proceeds to choose a new unassigned variable as
the next choice point, and it repeats the above process, and so on. The key insight of
the algorithm is that if the new choice point yields a contradiction, then the problem
does not have to backtrack to the previous choice point — it can simply declare

the problem to be unsatisfiable. This follows from the nature of a 0/1/all problem:

169

after a new variable assignment has been constraint-propagated to quiescence, it has
no effect on the variables that remain unassigned. One can think of this algorithm
as combining unit propagation with backjumping. The backjumping just takes a
particularly trivial form, since if a choice point fails, the conflict set will always be
empty.

The original paper [20] actually presents a slightly more general definition of
a 0/1/all problem than the one that we have given here. Essentially, its definition
is equivalent to assuming that the problem is 0/1/all by our definition after arc
consistency has been established. One might wonder whether there are other tractable
constraints beside the 0/1/all constraints. Let S be a set of binary constraints that
includes some constraint that is not a 0/1/all constraint (in the expanded sense of
the original paper). Cooper et al [20] prove that provided § is closed under certain
operations (permutations of the values, restrictions on the domains, composition,
and intersection), the set of binary CSPs with constraints from S is not a tractable
problem class. Thus, in some sense, the set of 0/1/all problems is the largest tractable

class that can be obtained by restricting the nature of the constraints.

More Tractable Problems

A propositional satisfiability problem is a CSP in which the variables take the
values TRUE and FALSE, and the constraints are clauses. Each clause is a disjunction
of literals, where each literal is either a propositional variable or its negation. A literal
that is simply a variable will be said to be positive, and a literal that is the negation
of a variable will be said to be negative. A Horn clause is a clause that contains at

most one positive literal. For example, the clause

-pVgqV-r (VI.44)

170

is a Horn clause, while

pvVagVor

is not a Horn clause. It is often convenient to write Horn clauses in a directed form.

For example, (VI.44) is equivalent to the rule

pAT = q. (VI.45)

It is well known that satisfiability problems in which all the constraints are Horn
clauses are tractable, and can in fact be solved in linear time [32]. Furthermore, the
algorithm that accomplishes this is quite simple; it just performs unit propagation
starting from the original set of clauses. That is, if there is any clause that is simply
a single positive literal, then the variable of that clause is set to TRUE. Then, if there
is any rule whose precondition variables have all been set TRUE, then this rule’s
conclusion is set TRUE; for example if p and r had been set TRUE in (VI.45), then
g would be set to TRUE. This process continues until no more rules are applicable.
Now, there might be a clause consisting entirely of negative literals. In the directed
form, this clause would have an empty conclusion. If all of the precondition variables
of such a clause have been set TRUE, then the original theory must be unsatisfiable.
If this never happens, the search algorithm can complete the satisfying assignment by
setting all the unassigned variables to FALSE. It is not hard to see that the assignment
constructed in this way must satisfy all of the clauses.

Just as one can start with the set of CSPs with tree-structure constraint graphs,
which can be solved in linear time, and then define successive supersets (CSPs of in-
duced width no more than 2,3,4,...) that are progressively more difficult, one can

define a similar hierarchy starting with the Horn clauses. Let H be the set of sat-

171

isfiability problems in which all the clauses are Horn; as discussed above, any such
problem can be solved in linear time. Arvind and Biswas [3] identify a set of problems
S0, where Sp is a strict superset of H, that can be handled in quadratic time. Gallo
and Scutelld [36] define a sequence of classes of satisfiability problems Iy, T';,T,...

with the following properties:

Fo = H,
Pl = So,
[C Tipyfork>0,

|JTx = the set of all satisfiability problems,

k=0

such that any problem in ', can be solved in O(zn*) time, where z is the size of the
problem and n is the number of variables.

Thus, this Gallo-Scutella parameter k is in some sense analogous to the induced
width., For any fixed value of the parameter, the problem is tractable; and for all
satisfiability problems, the time complexity is exponential in this parameter. Inter-
estingly, the space complexity of the Gallo and Scutelld algorithm is also O(zn*),
and hence growing exponentially in k. Besides this fact, there does not appear to
be any obvious relation between k& and the induced width. The induced width, of
course, applies to all constraint satisfaction problems, while the Gallo-Scutella pa-
rameter applies only to propositional problems. Furthermore, this new parameter
seems less intuitive than the induced width. It is easy to visualize in terms of the
pattern of connectivity among the variables why a constraint problem might have a
small induced width, but it is harder to understand the Gallo-Scutelld parameter this

way.

172

We will mention one more technique for identifying tractable problems, Dalal’s
idea of intricacy [25]. Intricacy is defined for arbitrary formulas in first-order predicate
calculus, not just for constraint satisfaction problems, and it is far too complicated a
notion to discuss here in detail. The intricacy has a number of interesting properties,
however. When applied to CSPs, it takes into account both the topology of the
constraint network and the semantics of the constraints, and it appears to subsume
many of the other tractability ideas that we have discussed. Therefore, the intricacy
may be able to identify more tractable problems then any of the other methods.
Dalal [25] provides a decision procedure whose time and space complexities are both
exponential onlyin the intricacy. Given the results of this dissertation, it is not
surprising that Dalal’s method is so space intensive. Since the intricacy is always less
than the induced width [25], any class of problems with a bounded induced width will
also have a bounded intricacy. Therefore, the induced-width results in Chapters IV
and V apply to intricacy as well. For example, we know from Theorem IV.20 that
there cannot be a polynomial-space dependency-directed algorithm that is exponential

only in the intricacy.

Proof Methods

In Chapter V, we were able to bound the performance of certain types of CSP
algorithms by making a connection with theorem proving. For unsatisfiable problems,
a search algorithm must in effect construct unsatisfiability proofs. To analyze a
particular type of search algorithm, we should identify the type of proof that it is
constructing; if proofs of this kind are exponentially long, then the CSP algorithm will
require exponential time as well. The current section puts the results from Chapter V

in a broader context.

173

The complexity of different proof systems has been of some interest in the
theoretical computer science community. Generally, this work has been presented in
terms of propositional logic. Given a valid propositional formula (i.e., a tautology),
how long is its shortest proof? Obviously, this will depend on which proof system is
being used. Cook and Reckhow [18] define the general notion of a proof system as

follows.

Definition VI.1 A proof system is a function F from the set I* of strings on some
finite alphabet ¥ onto the set of valid propositional formulas, such that F can be
computed in polynomial time. If F(w) = A, then we will say that w is a proof of A

in the system.

Resolution proofs, for example, easily fit into this framework since the proof can be
regarded as a sequence of symbols, and if the string w is not a legitimate proof, then
we can just define F(w) to be some arbitrary tautology, say p V —p.

One question is whether there is any proof system F such that every tautology
has a polynomial-length proof in this system. This is equivalent to the question of
whether NP = co-NP, one of the outstanding open problems of computer science [18].
It is known, however, that resolution is not such a proof system [16, 47, 83]. To prove a
tautology using resolution, one converts its negation to clausal form, and then derives
a contradiction via some number of resolution steps. Haken [47] used the pigeonhole
problem to show that there is a sequence of unsatisfiable sets of clauses whose shortest
resolution proofs are growing faster than any polynomial in the size of the clause set.
Building on this work and on the work of Urquhart [83], Chvatal and Szemerédi [16)
were able to prove that if one generates random unsatisfiability problems (using the
appropriate distribution), almost all of these problems will require exponentially long

proofs.

174

In this dissertation, on the other hand, we have only considered examples that
have short resolution proofs (since the induced width has been bounded). We have
shown that these examples no longer have short proofs when we move to a weaker
proof systems such as DB-consistent resolution. Cook and Reckhow [18] also study
the relationships between various proof systems. A proof system F) is said to be
at least as powerful as system F; if for every formula A and proof p; in the second
system (such that F5(ps) = A), there is some proof p; in the first system (such that
Fi(p1) = A), such that |p1| < Poly(|pz|), where Poly is some polynomial. In other
words, the proofs in the F) system are just as short as those in the F, system, up
to a polynomial. Two proof systems are equivalent in power if each is as powerful
as the other. If F; is at least as powerful as F3, but not vice versa, then F) is
more powerful than Fj; this means that there are proofs using the first system that
blow up exponentially upon being translated into the second system. Cook and
Reckhow [18] give a partial order (in terms of power) of a number of proof systems.
Tree resolution, i.e., resolution when clauses cannot be reused, is less powerful than
standard resolution [81]. It is not hard to see that tree resolution basically corresponds
to the proofs that are constructed by backtracking or backjumping. The Cook and
Reckhow paper, however, does not consider the other cases that we have discussed
of proof systems weaker than resolution, namely, k-order learning, DB-consistent
resolution, and polynomial-space resolution.

Cook and Reckhow [18] also discuss several proof systems that are more powerful
than resolution: Frege systems, natural deduction, Gentzen with cut, and extended
resolution. From our standpoint, extended resolution is the most interesting of these.
Extended resolution, which was invented by Tseitin [81], augments resolution with

the ability to define new propositions. Specifically, if the proposition a does not

175

appear anywhere in the theory, then we may add the clausal version of the formula

a=(-pV q). (VI.46)

for arbitrary propositions p and g¢; this can be repeated any number of times as long
as a new a is used each time. Since (VI.46) is just a definition, it will not affect the
satisfiability of the original theory. For some problems, extended resolution can be
used to write proofs that are exponentially shorter than the corresponding resolution
proofs. If one could prove Conjecture V.39 concerning polynomial-space resolution,
it might be interesting to then investigate the power of polynomial-space eztended
resolution (using the CSP analog of extended resolution). The type of counterexample
that we have used in this dissertation, however, will be of little use in proving lower
bounds for this new proof method. For instance, in Example V.7, we could define a
new variable whose value is based on whether a particular pigeon is in a given hole

or not, thus abstracting away the orientations.

176

CHAPTER VII

CONCLUSION

Contributions

This dissertation has presented experimental and theoretical results on certain
constraint satisfaction algorithms.

In Chapter II, we studied the utility of backjumping and dependency-directed
backtracking on a range of problems. We showed that these advanced search tech-
niques were most useful on those problems with sparse constraint graphs that were
the hardest for chronological backtracking. These results deepened our understand-
ing of the distribution of hard and easy constraint problems. There was previous
speculation that the underconstrained problems that were very hard for backtrack-
ing were, in some sense, fundamentally difficult problems. Hogg and Williams [51]
suggested that these problems “represent the most challenging cases that Nature
supplies,” and Gent and Walsh [41] described these problems as being “on the knife
edge between satisfiability and unsatisfiability” and perhaps even being the source of
the “hardness of many NP-hard problem classes.” On the contrary, we have shown
that these “hard” underconstrained problems are usually quite easy for the intelligent
backtracking algorithms.

Chapter III identified a hazard of one particular intelligent backtracking al-
gorithm, dynamic backtracking. We showed that there can be a negative interac-

tion between this backtracking method and the heuristics that are used to order the

177

search. The basic problem is that when dynamic backtracking jumps back to an early
choice point, it tries to preserve as many intermediate decisions as possible; but since
these decisions were originally made on the basis of the earlier decision, they may no
longer be appropriate in the new context. We presented a modification to dynamic
backtracking that addresses this problem. This chapter was an object lesson that
seemingly well-motivated search techniques can sometimes do more harm than good.

Chapters IV and V proved theoretical results on the various algorithms. It was
previously known that dependency-directed backtracking is exponential only in the
induced width, or in other words, polynomial-time for any problem class of bounded
induced width. Full dependency-directed backtracking, however, can require a huge
amount of memory, so there was interest in investigating the properties of the sim-
pler intelligent backtracking algorithms. We proved in Chapter IV that there is
no polynomial-space dependency-directed backtracking algorithm that is exponential
only in the induced width, assuming that this algorithm searches using a given vari-
able ordering. In Chapter V, we showed that, even using an optimal search order,
neither k-order learning nor dynamic backtracking is exponential only in the induced
width. We also presented a more general conjecture concerning polynomial-space
resolution.

The lessons of this dissertation can be summarized as follows. From Chapter II,
we learned that intelligent backtracking can be very useful on average, even when
it only helps on a small number of very difficult problems. From Chapter III, we
learned that some intelligent backtracking methods can be hazardous because they
interfere with the efficacy of the search heuristics; fancy backtracking is important,
but so are heuristics. Finally, from Chapters IV and V we learned that even though

the polynomial-space methods seem to do very well in practice, they can do quite

178

poorly in the worst case; the induced-width guarantee that one can give for full

dependency-directed backtracking does not apply to the polynomial-space methods.
Future Work

There are a number of directions in which one might want to extend this work.
From a theoretical perspective, the outstanding open problem is Conjecture V.39.
A proof of this conjecture would extend and unify the other results that we have
presented. It would also be interesting to explore the relationship between Conjec-
tures V.35 and V.36 and other open problems in computer science. Furthermore,
we need a better understanding of the relationships between the various classes of
tractable CSPs. For example, is there any set of constraint graphs of unbounded in-
duced width that nonetheless ensures tractability for the underlying constraint prob-
lems?

The obvious project on the experimental side would be bigger and better ex-
periments. We have looked at medium-sized graph coloring and propositional satis-
fiability problems. It would be interesting to see how our results change for larger
problems or for other types of constraint problems. The more interesting questions,
however, concern the probability distributions that were used. After fixing the num-
ber of variables and constraints for a given type of CSP, we always used the uniform
distribution over the various possible problems. This was in keeping with most of the
work in this field, and it was a logical place to start, but one can also consider more
complicated distributions. The uniform distribution tends to generate problems with
very little structure, that is, any variable is equally likely to be connected with any
other variable. Alternative distributions can be used in order to generate problems

with more structure. There is reason to think that intelligent backtracking will be

179

even more useful on problems of this kind [31, 45]. Another way of looking at the
situation is as follows. With a uniform distribution, a small percentage of the under-
constrained problems were very difficult for backtracking; an alternative distribution
might generate these same difficult problems with a much higher frequency. It would
be useful to characterize this notion of “structure” more precisely, and to study its
relationship with the utility of intelligent backtracking techniques.

Finally, it will be important to understand the relevance of our results for real-
world constraint satisfaction problems. These problems are likely to have more struc-
ture than the uniformly-distributed random problems, so the above discussion is ap-
plicable. If we can determine what types of structure actually arise in practice, then
we might be able to use this information to design even better intelligent backtracking

algorithms.

150

BIBLIOGRAPHY

[1] Stefan Arnborg. Efficient algorithms for combinatorial problems on graphs with
bounded decomposability -— a survey. BIT, 25:2-23, 1985.

[2] Stefan Arnborg, Derek G. Corneil, and Andrzej Proskurowski. Complexity of find-
ing embeddings in a k-tree. SIAM Journal on Algebraic and Discrete Methods,
8:277-284, 1987.

[3] V. Arvind and S. Biswas. An O{n?) algorithm for the satisfiability problem of
a subset of propositional sentences in CNF that includes all Horn sentences.
Information Processing Letters, 24:67-69, 1987.

[4] Bengt Aspvall, Michael F. Plass, and Robert Endre Tarjan. A linear-time algo-
rithm for testing the truth of certain quantified boolean formulas. Information
Processing Letters, 8:121-123, 1979.

(5] Andrew B. Baker. The hazards of fancy backtracking. In Proceedings of the Twelfth
National Conference on Artificial Intelligence, pages 288-293, 1994.

[6] Andrew B. Baker. Intelligent backtracking on the hardest constraint problems.
Journal of Artificial Intelligence Research, 1995. To appear.

[7] Christian Bessiere. Arc-consistency and arc-consistency again. Artificial Intelli-
gence, 65:179-190, 1994.

[8] James R. Bitner and Edward M. Reingold. Backtrack programming techniques.
Communications of the ACM, 18(11):651-656, 1975.

[9] Daniel Brélaz. New methods to color the vertices of a graph. Communications of
the ACM, 22(4):251-256, 1979

[10] M. Bruynooghe and L.M. Pereira. Deduction revision by intelligent backtracking.
In J.A. Campbell, editor, Implementations of Prolog, pages 194-215. Halsted
Press, New York, 1984.

[11] Maurice Bruynooghe. Solving combinatorial search problems by intelligent back-
tracking. Information Processing Letters, 12:36-39, 1981.

[12] Maurice Bruynooghe and Raf Venken. Backtracking. In Stuart C. Shapiro, editor,
Encyclopedia of Artificial Intelligence (2nd Edition), pages 84-88. Wiley, New
York, 1992,

151

[13] Peter Cheeseman, Bob Kanefsky. and William M. Talyor. Where the really hard
problems are. In Proceedings of the Twelfth International Joint Conference on
Artificial Intelligence, pages 331-337, 1991.

[14] P.Z. Chinn, J. Chvatalova, A.K. Dewdney. and N.E. Gibbs. The bandwidth prob-
lems for graphs and matrices — a survey. Journal of Graph Theory, 6(3):223-
254, 1982.

[15] V. Chvatal and B. Reed. Mick gets some (the odds are on his side). In Proceedings
of the Thirty-Third Annual Symposium on Foundations of Computer Science,
pages 620-627, 1992.

[16] Vasek Chvdtal and Endre Szemerédi. Many hard examples for resolution. Journal
of the Association for Computing Machinery, 35:759-768, 1988.

[17] Jacques Cohen. Non-deterministic algorithms. Computing Surveys, 11(2):79-94,
1979.

[18] Stephen Cook and Robert Reckhow. On the lengths of proofs in the propositional
calculus. In Proceedings of the Sizth Annual ACM Symposium on Theory of
Computing, pages 135-148, 1974.

[19] Martin C. Cooper. An optimal k-consistency algorithm. Artificial Intelligence,
41:89-95, 1989.

[20] Martin C. Cooper, David A. Cohen, and Peter G. Jeavons. Characterizing
tractable constraints. Artificial Intelligence, 65:347-361, 1994,

[21] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to
Algorithms. The MIT Press, Cambridge, MA, 1990.

[22] P.T. Cox. Finding backtrack points for intelligent backtracking. In J.A. Campbell,

editor, Ifmplementations of Prolog, pages 216-233. Halsted Press, New York,
1984.

{23] James M. Crawford and Larry D. Auton. Experimental results on the crossover
point in satisfiability problems. In Proceedings of the Eleventh National Con-
ference on Artificial Intelligence, pages 21-27, 1993.

[24] James M. Crawford and Andrew B. Baker. Experimental results on the applica-
tion of satisfiability algorithms to scheduling problems. In Proceedings of the
Twelfth National Conference on Artificial Intelligence, pages 1092-1097, 1994.

[25] Mukesh Dalal. Tractable deduction in knowledge representation systems. In
Proceedings of the Third International Conference on Principles of Knowledge
Representation and Reasoning, pages 393-402, 1992.

182

[26] Martin Davis, George Logemann, and Donald Loveland. A machine program for
theorem-proving. Communicaiions of the ACM, 5:394-397, 1962.

[27) Martin Davis and Hilary Putnam. A computing procedure for quantification
theory. Journal of the Association for Computing Machinery. 7:201-215, 1960.

(28] Rina Dechter. Enhancement schemes for constraint processing: Backjumping,
learning, and cutset decomposition. Artificial Inielligence, 41:273-312, 1990.

[29] Rina Dechter. Constraint networks. In Stuart C. Shapiro, editor, Encyclopedia of
Artificial Intelligence (2nd Edition), pages 276-285. Wiley, New York, 1992.

[30] Rina Dechter and Judea Pearl. Network-based heuristics for constraint-
satisfaction problems. Artificial Intelligence. 34:1-33, 1988.

[31] Rina Dechter and Irina Rish. Directional resolution: The Davis-Putnam pro-
cedure, revisited. In Proceedings of the Fourth International Conference on
Principles of Knowledge Representation and Reasoning, pages 134-145, 1994,

[32] William F. Dowling and Jean H. Gallier. Linear-time algorithms for testing the
satisfiability of propositional Horn formulae. Journal of Logic Programming.
3:267-284, 1984.

[33] Eugene Freuder. Synthesizing constraint expressions. Communications of the
ACM, 21:958-966, 1978S.

[34] Bugene Freuder. A sufficient condition for backtrack-free search. Journal of the
Assoctation for Computing Machinery, 29:24-32, 1982.

[35] Daniel Frost and Rina Dechter. Dead-end driven learning. In Proceedings of the
Twelfth National Conference on Artificial Intelligence, pages 294-300, 1994.

[36] Giorgio Gallo and Maria Grazia Scutella. Polynomially solvable satisfiability prob-
lems. Information Processing Letters, 29:221-227, 1988.

[37} Michael R. Garey and Davis S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W.H. Freeman and Company, New York,
1979.

[38] John Gaschnig. A general backtrack algorithm that eliminates most redundant
tests. In Proceedings of the Fifth International Joint Conference on Avrtificial
Intelligence, page 457, 1977,

[39] John Gaschnig. Experimental case studies of backtrack vs. Waltz-type vs. new
algorithms for satisficing assignment problems. In Proceedings of the Second
Conference of the Canadian Society for Computational Studies of Intelligence,
Toronto, 1978.

183

[40] John Gaschnig. Performance Measurement and Analysis of Certain Search Algo-
rithms. PhD thesis, Carnegie-Mellon University, Pittsburgh, PA, 1979. Avail-
able as Technical Report CMU-CS-79-124.

[41] Tan P. Gent and Toby Walsh. Easy problems are sometimes hard. Artificial
Intelligence, 70:335-345, 1994,

[42] Matthew L. Ginsberg. Dynamic backtracking. Journal of Arfificial Intelligence
Research, 1:25-46, 1993.

[43] Matthew L. Ginsberg, Michael Frank, Michael P. Halpin, and Mark C. Torrance.
Search lessons learned from crossword puzzles. In Proceedings of the [ighth
National Conference on Artificial Intelligence. pages 210-215, 1990.

[44] Matthew L. Ginsberg and William D. Harvey. Iterative broadening. Artificial
Intelligence, 55:367-383, 1992.

[45] Matthew L. Ginsberg and David A. McAllester. GSAT and dynamic backtrack-
ing. In Proceedings of the Fourth Inlernational Conference on Principles of
Knowledge Representation and Reasoning, pages 226-237, 1994.

[46] Sclomon W. Golomb and Leonard D. Baumert. Backtrack programming. Journal
of the Association for Computing Machinery, 12(4):5316-524, 1965.

[47] A.Haken. The intractability of resolution. Theoretical Computer Science, 39:297-
308, 1985.

{48] Ching-Chih Han and Chia-Hoang Lee. Comments on Mohr and Henderson’s path
consistency algorithm. Artificial Intelligence, 36:125-130, 1988.

[49} Robert M. Haralick and Gordon L. Elliott. Increasing tree search efliciency for
constraint satisfaction problems. Artificial Intelligence, 14:263-313, 1980.

[60] Pascal Van Hentenryck, Yves Deville, and Choh-Man Teng. A generic arc-
consistency algorithm and its specializations. Artificial Intelligence, 57:291-321,
1992.

[51] Tad Hogg and Colin P. Williams. The hardest constraint problems: A double
phase transition. Artificial Intelligence, 69:359-377, 1994.

[52] Ari K. Jonsson and Matthew L. Ginsberg. Experimenting with new systematic
and nonsystematic search procedures. In Proceedings of the AAAI Spring Sym-
posium on Al and NP-Hard Problems, 1993.

(53] L.V. Kale. A perfect heuristic for the n non-attacking queens problem. Informa-
tion Processing Letters, 34(4):173-178, 1990.

184

[54] S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi. Optimization by simulated anneal-
ing. Science, 220:671-680, 1982.

(65] Donald E. Knuth. Estimating the efficiency of backtrack programs. Mathematics
of Computation, 29:121-136, 1975,

[56] Vipin Kumar. Algorithms for constraint-satisfaction problems: A survey. A[
Magazine, 13(1):32-34, 1992.

[57] Pat Langley. Systematic and nonsystematic search strategies. In Artificial In-
telligence Planning Systems: Proceedings of the First International Conference,
pages 145-152, 1992.

[38] Alan K. Mackworth. Consistency in networks of relations. Artificial Intelligence,
8:99-118, 1977.

[39] Alan K. Mackworth. Constraint satisfaction. In Stuart C. Shapiro, editor, En-
cyclopedia of Artificial Intelligence (2nd Edition), pages 285-293. Wiley, New
York, 1992.

[60] Alan K. Mackworth and Eugene C. Freuder. The complexity of some polynomial
network consistency algorithms for constraint satisfaction problems. Artificial
Intelligence, 25:65-T4, 1985.

[61] David A. McAllester. Partial order backtracking. Unpublished manuscript, avail-
able by anonymous ftp from ftp.ai.mit.edu:/pub/users/dam/dynamic.ps,
1993.

[62]) Steven Minton, Mark D. Johnston, Andrew B. Philips, and Philip Laird. Solv-
ing large-scale constraint satisfaction and scheduling problems using a heuristic
repair method. In Proceedings of the Eighth National Conference on Artificial
Intelligence, pages 17-24, 1990.

[63] David Mitchell, Bart Selman, and Hector Levesque. Hard and easy distributions
of SAT problems. In Proceedings of the Tenth National Conference on Artificial
Intelligence, pages 459-463, 1992.

[64] Roger Mohr and Thomas C. Henderson. Arc and path consistency revisited.
Artificial Intelligence, 28:225-233, 1986.

[65) U. Montanari. Networks of constraints: Fundamental properties and applications
to picture processing. Information Sciences, 7:95-132, 1974.

(66] Bernard A. Nadel. Constraint satisfaction algorithms. Computational Inteili-
gence, 5:188-224, 1959.

[67] Patrick Prosser. Hybrid algorithms for the constraint satisfaction problem. Com-
putational Intelligence, 9:268-299, 1993.

185

[68] Paul Walton Purdom, Jr. Search rearrangement backtracking and polynomial
average time. Artificial Intelligence, 21:117-133, 1983.

(69] Paul Walton Purdom, Jr., Cynthia A. Brown, and Edward L. Robertson. Back-
tracking with multi-level dynamic search rearrangment. Acta Informatica,
15:99-113, 1981.

[70] Igor Rivin and Ramin Zabih. An algebraic approach to constraint satisfaction
problems. In Proceedings of the Eleventh International Joini Conference on
Artificial Intelligence, pages 284-289, 1989.

[71] J. A. Robinson. A machine-oriented logic based on the resolution principle. Jour-
nal of the Association for Computing Machinery, 12:23-41, 1965.

[72] Roberto Sebastiani. Applying GSAT to non-clausal formulas. Journal of Artificial
Intelligence Research, 1:309-314, 1994,

[73] Raimund Seidel. A new method for solving constraint satisfaction problems. In
Proceedings of the Seventh International Joint Conference on Artificial Intelli-
gence, pages 335-342, 1981.

[74] Bart Selman and Henry Kautz. Domain-independent extensions to GSAT: Solv-
ing large structured satisfiability problems. In Proceedings of the Thirteenth
International Joint Conference on Artificial Intelligence, pages 290-295, 1993.

{75] Bart Selman and Henry A. Kautz. An empirical study of greedy local search
for satisfiability testing. In Proceedings of the Eleventh National Conference on
Artificial Intelligence, pages 46-51, 1993.

[76] Bart Seiman, Henry A. Kautz, and Bram Cohen. Local search strategies for sat-
isflability testing. In Proceedings of the Second DIMACS Challenge Workshop
on Cliques, Coloring, and Satisfiability, Rutgers University, 1993.

[77] Bart Selman, Hector Levesque, and David Mitchell. A new method for solving
hard satisfiability problems. In Proceedings of the Tenth National Conference
on Artificial Intelligence, pages 440-446, 1992,

[78] Stephen F. Smith and Cheng-Chung Cheng. Slack-based heuristics for constraint
satisfaction scheduling. In Proceedings of the Eleventh National Conference on
Artificial Intelligence, pages 139-144, 1993.

[79] R. M. Stallman and G. J. Sussman. Forward reasoning and dependency-directed
backtracking in a system for computer-aided circuit analysis. Artificial Intelli-
gence, 9:135-196, 1977.

{80] H.S. Stone and J.M. Stone. Efficient search techniques — an empirical study of
the n-queens problem. Technical Report Technical Report RC 12057 (#54343),
IBM T. J. Watson Research Center, Yorktown Heighis, NY, 1986.

186

[81} G. S. Tseitin. On the complexity of derivation in propositional calculus. In A. O.
Slisenko, editor, Studies in Constructive Mathematics and Mathematical Logic,
pages 115-123. Consultants Bureau, New York, 1968. Translated from Russian.

[82] Jonathan S. Turner. Almost all k-colorable graphs are easy to color. Journal of
Algorithms, 9:63-82, 1988.

[83] A. Urquhart. Hard examples for resolution. Journal of the Association for Com-
puting Machinery, 34:209-219, 1987.

[84] R.J. Walker. An enumerative technique for a class of combinatorial problems.
In Combinatorial Analysis (Proceedings of Symposium in Applied Mathematics,
Vol X), pages 91-94, Providence, Rhode Island, 1960. American Mathematical
Society.

[85] D.L. Waltz. Understanding line drawings of scenes with shadows. In The Psy-
chology of Computer Vision, pages 19-91. McGraw-Hill, New York, 1975. First
published as MIT Technical Report AI271, 1972.

[86] Ramin Zabih. Some applications of graph bandwidth to constraint satisfaction
problems. In Proceedings of the Eighth National Conference on Artificial Intel-
ligence, pages 46-51, 1990.

[87] Ramin Zabih and David McAllester. A rearrangement search strategy for de-
termining propositional satisfiability. In Proceedings of the Seventh National
Conference on Artificial Intelligence, pages 155-160, 1988.

	March 1995_1 - Dissertation
	March 1995_2 - Dissertation

