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We attack this problem in three steps: we evaluate an early parallel /O
system, the Intel iPSC/860 Concurrent File System; we design and analyze the
performance of two classes of algorithms taking advantage of collective parallel
1/0; and we design MPI-IO, a collective parallel /O interface likely to become
the standard for portable parallel I/0O.

The collective I/O algorithms fall into two broad categories: data block
scheduling and collective buffering. Data block scheduling algorithms attempt to
schedule the individual data transfers to minimize resource contention and to
optimize for particular hardware characteristics. We develop and evaluate three
data block scheduling algorithms: Grouping, Random, and Sliding Window. The
data block scheduling algorithms improved performance by as much as a factor
of eight. The collective buffering algorithms permute the data before writing or
after reading in order to combine small file accesses into large blocks. We design
and test a series of four collective buffering algorithms and demonstrate improve-
ment in performance by two orders of magnitude over naive file I/O for the hard-

est, three-dimensional distributions.
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the main factors inhibiting broad acceptance of distributed memory parallel
machines for scientific computing are I/O performance and portability.

The major factor limiting parallel I/O performance is that the existing par-
allel 1/0 systems evolved directly from I/ O systems for serial machines. Serial
I/0 systems are heavily tuned for sequential, large accesses, limited file sharing
between processes, and a high degree of both spatial and temporal locality. Recent
experience [88, 107, 115] has shown there are significant differences between file
I/O on serial and parallel machines, presenting a new arena of challenges for the
designers of distributed memory parallel systems.

In the scientific world, a program is not considered truly portable unless it
not only compiles, but also runs efficiently. Thus, portability and performance are
inseparable. There are two emerging standards for parallel programming: High
Performance Fortran (HPF) and the Message Passing Interface (MPI). HPF, a data
parallel extension of Fortran 90, includes the Fortran intrinsics for file access, but
due to its immaturity, HPF is far from high performance. Implementors of HPF
are currently searching for a standard parallel file interface on which to build effi-
cient implementations of these intrinsics [80]. MPI provides a standard interface
for message passing, but lacks any support for file operations.

In this work, we propose a solution to both of these problems: a collective
parallel I/O interface with efficient algorithms to implement it. The proposed
standard collective I/O interface not only provides source code portability, but

also supports the unique file access patterns which occur in scientific applications.



These systems vary in size, complexity, software integration, and performance.
Distributed memory parallel systems fall into two general classes: workstation
clusters and “highly parallel systems”. Workstation clusters usually consist of a
few tens of UNIX workstations or PCs connected by a commodity network such
as Ethernet or FDDI. Each node of a workstation cluster runs its own independent
operating system, and add-on software provides facilities for running parallel
applications and managing the system as a single computer. Workstation clusters
of PCs [26], and Sun and SGI systems [28] have been used for parallel scientific
computing with good results. Highly parallel systems are typically larger, with
hundreds to thousands of nodes, and consist of more specialized hardware as
well as a more integrated operating system which provides the abstraction of a
single system image. The use of specialized network hardware on highly parallel
systems achieves very low latency and high bandwidth compared with the com-
modity networking technology available for workstation clusters. Examples of
highly parallel systems available today include: the Convex Exemplar [29], the
Cray Research T3D {110], the IBM SP series [74], the Intel Paragon [76], the Mas-
Par MP-2 [103], and the Meiko CS-2 [95]. As technology improves, the distinction
between the different classes of parallel machine is blurring, with systems such as
the IBM SP2 a cross between a workstation cluster and a fully integrated highly
parallel system.

Processing nodes are further designated as compute nodes and I/O nodes

(see Figure 1). Applications run on the compute nodes. Compute nodes are char-



the speed of the 1/0 interface. On some systems, such as the Intel Paragon, I/O
nodes are simply compute nodes with disks attached, while others, such as the
Thinking Machines CM-5, have special purpose I/O nodes, while yet others, such
as the IBM 5P2, blur the distinction between compute nodes and I/0 nodes, and
allow any node to act as either a compute node or an I/O node, or both simulta-
neously.

Storage devices, usually disks, hold quantities of data too large to fit in
physical memory for periods of time longer than a single application run. Storage
devices are not limited to simple disks. The Intel Paragon uses hardware RAIDs.
A storage device might even consist of an entire mass storage system such as Uni-
Tree or NAStore [140]. From the parallel system perspective, all storage devices
can be adequately characterized by the amount of storage provided, the block size
(the smallest amount of data which can be efficiently read or written), the latency
(time to transfer a block), and the bandwidth (maximum bytes per second the
device can transfer). As most parallel systems simply use disks, the term “disk” is
used interchangeably with storage device. A typical parallel system uses SCSI
attached disks with a 1-2 gigabyte capacity and a few megabytes per second
bandwidth {similar to what one would find on today’s PCs).

Interconnection networks provide the only means of transferring informa-
tion between the nodes of a parallel system. Network technology and perfor-
mance vary greatly from one parallel machine to the next, from simple

commodity (1 megabyte per second Ethernet), to proprietary, buffered, wormhole



for compatibility with existing applications which expect serial files, for ease of
migrating files between systems, and because parallel filesystems are often built
on top of serial filesystems.

In a parallel 1/O system, individual files are partitioned among I/O nodes
for performance (see Figure 2). This improves the performance of a single access
by allowing multiple disks to operate in parallel. The distribution of file data
among I/O nodes and disks is called the “file layout”. A file is broken down into
“file chunks,” each assigned to one I/O node. The most common file layout is a
round-robin distribution of the canonical file (in 4 - 64 kilobyte blocks) onto the
I/0 nodes. This layout, also called “striping” maximizes disk parallelism by
allowing large accesses to span muitiple 1/O nodes, while minimizing the possi-

bility that a set of smaller accesses will contend for a single I/O node.

1/0 Nodes

P — Mem

P — Mem

P 44 Mem
. ®
g ™
L M

FIGURE 2. Files are partitioned among I/O nodes for improved performance.
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mize performance while taking into consideration communication overhead, pro-

cessor cache utilization, load balance, and other algorithm specific factors.

Global Data Structure Compute Nodes
(3D Array)

a4

e

P
P
P
P

HlEEE
oe® BB
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FIGURE 3. Global data structures are distributed among compute nodes for
improved performance.

Collective Parallel I/O

Parallel I/O is the process of transferring a global data structure, distrib-
uted among compute nodes, to a file striped across storage devices. At the lowest
level, a parallel I/O operation can be viewed as a mapping between compute
node memories and disk addresses. Since this mapping can be quite complicated
and involve a significant amount of data movement, optimization of this map-
ping with respect to data distribution, file layout, and machine architecture is crit-

ical for parallel I/O performance. The programmer has two choices: to hand code
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approach the full bandwidth. Disks are notoriously inefficient when accessing
less than a full disk block. A write may require a costly read-modify-write cycle,
incurring two disk accesses to transfer a small amount of data, and a read cache
may be ineffectual when numerous small uncoordinated read requests are issued,
requiring each small access to read an entire disk block.

The major problem with the naive algorithm is its uncoordinated nature.
However, scientific applications are highty synchronized. The temporal behavior
of a generic scientific application is described in Figure 4.

Initialize
Repeat:
Compute
Communicate
Perform I/0 (read, write, read-write)

Checkpoint (every few iterations)
Finalize

FIGURE 4. Temporal behavior of a generic scientific application.

During each cycle, the individual processes of the parailel application are nearly
synchronized, and al! processes start performing their respective I/O accesses
more or less at the same time. The uncoordinated nature of the I/O operations in
these applications is not inherent to the application, nor is it inherent to parallel
I/O—instead, it is an artifact of the poor file I/O interface.

A collective I/O interface has the potential to solve both performance and
portability problems. Collective I/O is that in which both compute nodes and I/0

nodes participate in a coordinated way utilizing global knowledge of the 1/O



scientific world requires source code which both compiles and runs fast. The
interface and algorithms developed in this work satisfy both needs simulta-

neously.

14
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The Parallel I/O Behavior of Scientific Applications

Supporting high performance 1/0 on traditional computing systems used
for scientific processing (from workstations to vector supercomputers) is largely a
solved problem. I/O behavior on these systems has been well studied [97]: files
are large (megabytes to gigabytes); file accesses are large; files are accessed com-
pletely; and files are accessed sequentially. These characteristics lead to efficient
caching and prefetching, allowing the I/O system to run at near peak perfor-
mance. Until recently it was believed that the I/O behavior of parallel scientific
applications was identical to that of “serial” scientific applications, but no studies

existed to verify this belief,

CHARISMA

The CHARISMA project was initiated in June 1993 to CHARacterize [/O in
Scientific Multiprocessor Applications. CHARISMA is the first (and to date, the
only) project to look at real scientific workloads on parallel systems, Two studies
have been so far been published: one on the Intel iPSC/860 at NASA Ames
Research Center [88], and one on the Thinking Machines CM-5 at the National
Center for Supercomputing Applications [115].

The CHARISMA studies show two significant differences between tradi-

tional supercomputer scientific applications and parallel scientific applications:
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analysis, write mostly for data generation, and read /write for out-of-core solvers.
The details of the I/O behavior are determined by how data structures are stored
in memory, and how I/O accesses are specified using a particular interface or
library. We restrict our attention to the large class of data generation applications,
typified by computational fluid dynamics (CFD) applications. Using an example
algorithm, we show how the data structures for a parallel application are inher-
ently different from the data structures used for the serial version of the same
algorithm.

The NAS Parallel Benchmarks have become the de-facto standard for mea-
suring the performance of parallel computers [5]. The benchmarks are representa-
tive of the algorithms used for computational fluid dynamics (e.g. simulating
airflow over a wing). They are “pencil and paper” benchmarks, specifying algo-
rithms only, and not implementations. In this way, implementors are free to tune
for architectural idiosyncracies, and the performance measured will reflect the
“best” performance of the algorithm on a machine, not the performance of a pre-
specified generic implementation. This eliminates the problem of the benchmark
inadvertently favoring a particular architecture.

The Scalar Pentadiagonal (SP) and Block Tridiagonal (BT) pseudo-applica-
tion benchmarks represent the two common methods of numerically simulating
high speed compressible airflow. The area to be simulated is represented as a
three-dimensional grid of five components (velocity in x, y, and z, density, and

temperature). Time is simulated in discrete steps—one iteration of the algorithm
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On a distributed memory parallel computer, there are three common meth-
ods of implementing these algorithms, differentiated by how each method dis-
tributes the three-dimensional grid among processes [135, 136]:

1. Pipelined Gaussian Elimination

2. Dynamic Block-Cartesian Decomposition

3. Multi-partition
The data is distributed to maximize load balance and minimize communication
overhead—hopefully this results in maximum performance. However, it is the
distribution of the data structure which makes the I/O inherently more difficult.
We will see in "Parallel I/O: The Low-level Perspective” on page 34 why these
data distributions lead to the small non-sequential accesses found in the CHA-
RISMA studies.

In the following discussion of these algorithms, let P be the number of pro-

Cesses.

Pipelined Gaussian Elimination

The Pipelined Gaussian Elimination method breaks the three-dimensional
grid into P chunks, one for each processor. Consider Figure 5. In this example,
there are 8 processors, and the grid size is N x N x N. The three-dimensional grid
is cut in half in each dimension, yielding 8 smaller cubes. During a traversal in the
x dimension, nodes 1, 3, 5, and 8 start computing the information for their grid

points, while nodes 2, 4, 6, and 7 wait. As soon as node 1 finishes solving a line of



Compute Nodes
3D Grid
Mem Pl

8 7 / Mem [—P;

FIGURE 5. Pipelined Gaussian Elimination method on 8 processes: the 3D grid is
partitioned into 8 cubes and one cube is assigned to each process.

Dynamic Block-Cartesian Decomposition

The Dynamic Block-Cartesian method slices the three-dimensional grid
into P planes, one for each compute node (see Figure 6). Rather than pass bound-
ary values, the Dynamic Block-Cartesian method ensures that every traversal can
proceed without any communication. Initially, the grid is sliced into x-y planes,
allowing the first two traversals to be performed without any communication.
After these two traversals, the entire grid is redistributed into x-z planes, allowing
the z dimension to be traversed, followed by the x dimension of the next time
step. Finally, another redistribution into y-z planes allows the last two traversals
of the next time step to be completed. A total of three complete transpose opera-

tions must be performed for every 6 traversals (2 time steps). Each transposition
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each compute node is given /P sub-cubes, arranged so that for any plane of sub-
cubes, each compute node gets exactly one sub-cube of data from that plane (see
Figure 7). This means that all compute nodes operate on each plane of sub-cubes.
Although similar to pipelined Gaussian elimination, this scheme enables all
nodes to be active at all times, without waiting for a pipeline fill. Each traversal
requires (J/P-1)N? grid points to be transferred between nodes in a total of

(JP-1)P messages. The multi-partition method requires P to be a perfect square.

Compute Nodes
[Mem}—,
[Mem}—P,
[Mem}—P,
[Mem|—P,
[Mem}—P;
[Mem}—Pg

9|,/ [Mem|—P,

7189 [Mem]—Pg

[Mem]—Py

FIGURE 7. Multl-parhtlon method onto 9 compute nodes; the three-dimensional
grid is broken into 27 (/) sub-cubes arranged for optlmal load balance (all
compute nodes operate on each plane of sub-cubes, maximizing parallelism).

3D Grid

/4

(s
¥
2
A
5

N\ \-b\

The Multi-partition scheme provides good load balancing and coarse-grain com-
munication, and performs perhaps the best across a wide range of parallel archi-

tectures [3, 136].
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(%C:E:I Canonical

Structure (a) File

(data distribution) / (file layout) \
Data Data Data < N - N - I <
| |G| |t << {3 ()

Memory Memory Memory L Disk  Disk Disk Disk

FIGURE 8. Parallel I/O is a mapping problem which can be viewed from (a) the
global perspective and (b) the low-level physical perspective.

Global Perspective

At the highest level, a read (or write) operation simply copies a global data
structure from a file into memory (or from memory into a file). Both the global
data structure and the file are logical objects. We define the following terms which
will be used throughout this dissertation. The global data structure is the logical
view of the data from the application’s point of view. The global data structure is
distributed (data distribution) among compute node memories by cutting it into
data chunks and storing each chunk in a separate compute node’s memory. The file
represents a linearization of the global data structure, such as the row-major
ordering of a three-dimensional array. We call this linearization the canonical file.
The canonical file is distributed among the storage devices attached to I/O nodes.

We use the term file layout to describe the distributing or partitioning of a file into
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ture into many small pieces (specified as the distribution size or block size) and
deals these pieces out to the P compute nodes in a round-robin fashion until all
pieces have been dealt. Both HPF BLOCK and HPF CYCLIC specify one-dimen-
sional distributions (Figure 9). To express more than a one-dimensional distribu-
tion, each dimension is independently distributed using one of the HPF
distribution directives (Figure 10).

Figure 10 shows how data from an 8x8 array is distributed onto 4 pro-
cesses. The figure shows which data elements are assigned to which processes by
process number. For example, the upper left 4x4 square is assigned to process 1
for the HPF (BLOCK, BLOCK) distribution. We use “*” to designate that a partic-

ular dimension is not distributed.
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uses a combination of (BLOCK, BLOCK, BLOCK) and CYCLIC. In addition, there
are a few simple distribution patterns which are inexpressible using HPF direc-
tives. For example, a random pattern, where data is distributed to nodes ran-
domly, and the broadcast read /write reduce patterns, where all data is
distributed to every node.

ARC3D is a parallelized scalar pentadiagonal time-stepping flow solver,
which uses pipelined Gaussian elimination. The ARC3D distribution is hand-
tuned to avoid a load balancing problem exhibited by the HPF BLOCK distribu-
tion. A straight HPF BLOCK distribution forces all nodes (except the last few) to
receive the same amount of data. Although this makes the job of an HPF compiler
easier, when the number of compute nodes does not divide the data size evenly, a
serious load imbalance may result. For example, a 25 element array distributed
via HPF BLOCK onto eight nodes leaves two nodes nearly empty (Figure 11). For
a three-dimensional array, this load imbalance is further magnified: a 25 x 25 x 25
element array distributed using HPF (BLOCK, BLOCK, BLOCK) onto 8 x 8 x 8
nodes leaves 296 out of 512 empty or nearly empty. ARC3D’s distribution algo-
rithm avoids this problem, giving each node approximately the same number of

grid points.
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distribution is hard for an I/O system to optimize, because it lacks any regular

pattern.

File Layout

The key to performance is maximizing parallelism. In a scientific applica-
tion, better computational performance is attained when clever data distributions
minimize communication overhead and lead to good load balance and increased
parallelism. For application 1/0, parallelism is exploited by distributing files
across multiple storage devices located throughout the system. File layout is the
partitioning of a file into file chunks, and the distribution of these chunks to stor-
age devices. A file chunk is the portion of a file assigned to any single storage
node.

File layout is another form of data distribution. Here, the global data struc-
ture is the file, and the file is distributed among storage devices rather than com-
pute node memories. Clever file layouts lead to good load balance within the I/O
subsystem and increased I/O performance. Spreading file chunks out among
storage devices improves performance by allowing multiple chunks to be
accessed from different storage devices simultaneously. Distributing the file
chunks can also reduce contention for specific storage devices.

The canonical file, a linearization of the global data structure, is a one-
dimensional sequence of bytes (the standard UNIX byte stream). This definition

of the canonical file stems from the fact that current parallel I/O systems evolved
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by multiple I/O nodes. In general, file block size is chosen to be a small multiple
of disk block size, large enough to minimize seek overhead somewhat, but small
enough to provide ample parallelism.

All currently available parallel file systems use an HPF CYCLIC distribu-
tion of the canonical file (in file blocks) onto disks (see Figure 12). This file layout
is also called striping, and the file block size is referred to as the striping unit. For
example, the default file layout on the IBM SP2 PIOFS is an HPF CYCLIC distri-

bution of 32 kilobyte file blocks.

Canonical file (a sequence of file blocks)

-

NN

Three I/O nodes (each I/O node gets every third block)

FIGURE 12. File layout: the canonical file is distributed in an HPF CYCLIC
distribution onto 3 1/O nodes.

Parallel 1/0O: The Low-level Perspective

At the lowest level, i.e. at the level of physical data transfer, parallel I/O

can be seen as a complex mapping problem from compute node memories to disk
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N? array onto P compute nodes using an HPF BLOCK distribution yields a data
block size of ’—;’; elements, while an HPF (BLOCK, BLOCK, BLOCK) distribution
yields a much smaller % data block size. Thus, the compute nodes are concur-
rently writing multiple streams of data blocks to the disks. On the receiving end,
the I/O nodes must buffer the data blocks of a certain size as they are received
from compute nodes and transfer them to disk. As discussed earlier, the optimal
unit of data transfer with respect to the disks is the file block size, which typically
bears no relation to the data block size. Furthermore, the order in which data
blocks arrive at a given I/O node bears no relationship to their locations on disk,
potentially leading to highly inefficient disk I/O.

Without some kind of coordination of activities, parallel I/O performance
can be seriously degraded by the mismatch in spatial layout, mismatch in the
sizes of the units of data to be transferred, and temporal mismatch in the order in
which writes are issued by compute nodes and the ideal order in which they
should be received at I/ O nodes. The challenges faced by the designers of parallel
I/0 systems lie in the specification of the mapping of data in compute node mem-
ory to blocks on disk and the efficient transfer of these blocks given the spatial,
temporal, and size mismatches.

We address these problems through the development of a coordinated
approach to parallel I/O. We attack the parallel I/O problem through two ave-

nues. First, we address the low-level problem of efficient data transfer through the

design of algorithms that perform coordinated data movement based on knowl-
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was first described in 1984 by Salem and Garcia-Molina [121, 122]. Disk striping
speeds up file access by partitioning a file and distributing file chunks among
multiple disks---servicing a file access with multiple disks simultaneously speeds
file access. Disk striping, and its successor, RAID technology [30, 65, 111], focus on
hooking together multiple disks to create one logical disk which is both faster and
more reliable. In [70] Herbst provides a good review of striping and RAID tech-
nology as of 1991.

In 1987, Ellis, Dibble, and Scott extended the idea of disk striping to apply
to supplying fast file access to a parallel application rather than a single process.
This extension was called “file interleaving”. They demonstrated the first parallel
file system based on file interleaving: Bridge [52, 55]. Bridge was implemented on
the BBN Butterfly. Disks were simulated by reserving memory and having the
disk driver insert the appropriate delays a real disk would exhibit. The file layout
pattern was HPF CYCLIC, distributing file blocks in a round-robin manner.
Shortly thereafter, several commercial parallel file systems (based on file inter-
leaving) were introduced. Thinking Machines Corporation introduced the Con-
nection machine CM-2 DataVault [132] which interleaved files at both the
individual bit and file block level, and Intel Corporation introduced the iPSC/2
Concurrent File System (CFS) [75, 112], which interleaved files in 4 kilobyte file
blocks. On all of these systems, file interleaving, what we call file layout, was

done in an HPF CYCLIC pattern.
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ing in a single cell. A productized version of Vesta is available for the IBM SP2 as
PIOFS [6, 39].

These new parallel file systems focused on providing a high-level interface
to the hardware, but their implementations were based on the commonly held
assumption that the 1/O behavior of scientific applications did not change
between serial and parallel versions. Miller and Katz {97] analyzed scientific
applications on a Cray vector supercomputer and found that file access were large
and sequential. However, recent studies of parallel scientific applications show
that scientific applications for distributed memory parallel machines behave quite
differently from their sequential Cray equivalents. We dissected a representative
scientific application, the NAS BT benchmark, from the algorithm perspective.
Rather than focus on a specific implementation, we investigated all of the com-
mon methods of implementing the algorithm and showed that the small file
accesses, which are the heart of the parallel I/O performance problem, are an
inherent part of the parallelization process, and not an idiosyncracy of current
implementation practices. Crandall, et. al. {43] analyzed the access patterns of five
scientific applications via run-time instrumentation. These applications exhibited
the small accesses which the BT analysis illustrates. In the CHARISMA project
[88, 107, 115], Kotz et. al. studied the scientific file access patterns by instrument-
ing the systems software on two systems with real scientific workloads (at NASA
Ames and NCSA). The CHARISMA project supports our analysis that scientific

applications perform small file accesses, and our choice of using a three-dimen-
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They demonstrate an order of magnitude performance improvement reading an
out-of-core two dimensional array on the Intel Delta and nCUBE systems. Two-
phase I/O is essentially collective buffering with HPF BLOCK target (abbreviated
CB-B). We demonstrate similar performance improvements writing 3D arrays.

The “Extended Two-Phase” algorithm of Thakur and Choudhary [128, 130]
extends the two-phase algorithm to allow dynamic assignment of I/O work to
compute nodes. Thakur and Choudhary test the extended two-phase algorithm
on the Intel Delta, but only compare its performance to the naive method of per-
forming I/O (rather than to the two-phase algorithm). The extended two-phase
algorithm is essentially collective buffering with file layout target (abbreviated
CB-FL). Finally, Bennett, et. al., describe “Local Collective I/ O Optimization” [10],
which uses auxiliary nodes to perform the permutation operation. However, com-
pute nodes are limited to accessing whole file blocks from the auxiliary nodes,
which could lead to significant communication overhead (due to receiving more
data than is needed from auxiliary nodes). Qur collective buffering provides a sin-
gle uniform framework flexible enough to cover two-phase I/O, extended two-
phase, local collective I/O optimization, and others.

An approach taken by Seamons et. al. in Panda [125] is to eliminate the
grain size mismatch entirely, by changing the file layout to match the data distri-
bution. Preliminary performance writing 3D arrays in 3D chunks on the iPSC/860

is promising, but format conversion back to a one-dimensional file (e.g. for visual-
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tributions for the pipelined Gaussian elimination, and a balanced three-dimen-
sional distribution with multiple blocks assigned to each process for the muiti-
partition method. The only interface capable of describing the multi-partition dis-
tribution so that access to the 3D grid can be done in a collective call is MPI-IO
(see Appendix for details). PIOUS [99, 100] is only capable of handling one-
dimensional distributions, and is essentially a portable version of the Intel PFS
built on top of PVM. Vesta and PASSION (19, 31, 32, 129] provide mechanisms to
describe two dimensional decompositions (2D arrays). Panda [124] supports
three-dimensional distributions of 3D arrays, but only in HPF (BLOCK, BLOCK,
BLOCK) and balanced 3D block distributions (where every process gets a single
subcube). PPFS [72, 73] is a new parallel file system which may be able to repre-
sent the multi-partition distribution, but it is unclear from the documentation
how this would be accomplished.

These interfaces/libraries also differ in their target application domain:
MPI-10 is a library interface targeted at both in-core and out-of-core message
passing applications, Panda is a library targeting data generation applications.
PASSION and Jovian target out-of-core algorithms and were designed with the
intention integrating them into a parallel compiler. PPFS focuses on configurable

generality to support parallel file system research rather than user applications.
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and software design of the CF5, and suggest several alternative hypothesis to
explain unexpected performance results. Finally, we present a method of obtain-
ing near peak performance in the face of the unexpected (negative scaling) perfor-

mance.

CFS Hardware

All of the performance tests were run on the iPSC/860 at the Numerical
Aerodynamic Simulation (NAS) facility at NASA Ames Research Center. The
iPSC/860 system is a hypercube-based MIMD parallel computer. The system at
the NAS facility consists of 128 compute nodes, 10 I/O nodes, 1 Ethernet node,
and an IBM PC-class front end computer. The CFS consists of the 10 I/O nodes, 10
SCSI disks, an Exabyte 8Bmm tape drive, and various library routines and servers

(see Figure 13).
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travel through the hypercube network (shaded area in Figure 13) to the destina-
tion compute node. The peak rate of the I/O system (also the peak rate of the CFS)

is limited by the slowest link in the data path (see Table 1).

TABLE 1. Throughput Speeds

EDevice Mbytes/sec
Hard Disk (Maxtor 87605, 760 MB) | 1
SCsI 4
I/0 Node memory bandwidth (16 Mhz 80386) 64
Hypercube Interconnect (per link) 2.8
Compute Node memory bandwidth (40 Mhz i860 XR) 160

In this case, the slowest link is the disk itself, with an estimated throughput
of approximately 1 megabyte/second. This implies that the peak throughput the

hardware could sustain is 10 megabytes/second.

CFS Software

The software is divided into four parts: node libraries linked into user
applications, NX operating system subroutines which are replicated on every
compute node, disk block servers running on each I/0 node, and a name server
running on one I/O node. The iPSC/860 was running the NX operating system,
version 3.3.1, 3/92 update.

A user application running on the compute nodes can access data on the
CFS by first performing an open() system call. The call causes a request to be sent

to the name server process which converts the file name into an absolute disk



50

Peak Software Rates

The performance of the system was examined in the following manner (see
Table 2). Performance was measured for:
1. 1/0 node memory bandwidth,
2. compute node memory bandwidth,
3. requesting and sending 4 kilobytes worth of data through the hypercube
interconnect,

4. reading and writing a single disk from a node.

TABLE 2. Measured Software Rates

Operation MB/sec
I/0 Node Memory Bandwidth (using memset()) — | 115 |
Compute Node Memory Bandwidth (using memset ( )) 48.7
Hypercube Network (Request/Reply with 4 kilobytes)
nearest neighbor 2.2
across the whole machine 20
Disk to Compute Node (reading or writing) 0.82

These measurements imply that the maximum sustained 1/0 throughput

of the CFS is 8.2 megabytes/second (= 10 disks * 0.82 MB/sec per disk).

Performance Tests

Five different tests were performed: broadcast reading, reading and writ-
ing an HPF BLOCK distribution, and reading and writing an HPF CYCLIC distri-

bution. Broadcast reading simulates loading an initial data set onto every node.



52

Wall clock time was independently measured on each node. The time
reported for a test is the maximum of these times. The global synchronization
ensures that this maximum corresponds to the wall clock time.

Consider the example in Figure 15. The shaded areas represent the individ-
ually measured running times. Without the global synchronization, the maximum
running time would be 11 time units (node 1). However, the total wall clock time
required to complete the job on all nodes is 12 time units. The global synchroniza-
tion forces wall clock time to be measured from the beginning of the first node’s
execution to the end of the last node’s execution. Otherwise, a node with maxi-
mum individual running time which finished before another node would cause

the running time to be under reported.

sync sync
Node 0 [

Node 1

Node 2

FIGURE 15. Example Runtime Chart.



Selected tests were re-run on a fully dedicated system (with no users on the
iPSC/860 or the front-end, and the system isolated from the network) to verify
that the NQS runs were true reflections of the performance of the CFS. The perfor-
mance difference between the fully dedicated and semi-dedicated system runs

was insignificant.

Performance Results

The performance results should be viewed in light of the fact that timings
varied by more than 20% from one run to the next. For example, a write test using
an HPF CYCLIC distribution on 32 nodes, a 32 megabyte file, and a 32 kilobyte
block size was repeated six times or a dedicated machine. The performance
ranged from 5.5 to 7.6 seconds (4.2 to 5.8 megabytes/second), which is more than
a 20% difference. Small timing variations that occur can be magnified by the asyn-
chronous nature of the iPSC/860 to cause large overall timing variations.

Results are reported in megabytes per second, and are plotted against the
number of nodes used in the test (Figure 17 - Figure 25). In general, the perfor-
mance of a perfectly scaling I/O system should increase linearly with the number
of nodes up to the peak I/O rate. Once the peak rate is reached, the performance
should remain at the peak rate up to the maximum number of nodes in the system

(Figure 16).
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Note that the peak rate (14 MB/sec) is higher than the stated theoretical
peak rate for the installed hardware (10 MB/sec). This increased throughput is the
result of caching on the I/O nodes, as the same data is being read by all nodes.

In this example, disk bandwidth is the limiting factor. Broadcasting data
from a file on disk can be performed much faster by reading the data into a few
nodes’ memories, then performing a tree broadcast using the hypercube intercon-
nect of the iPSC/860 system. A better estimate for peak throughput in this case
would be approximately 60 MB/sec; eight nodes read the file, then perform a tree

broadcast using the hypercube interconnect.
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FIGURE 18. HPF BLOCK Write Performance (128 MB file).

The HPF BLOCK read tests (Figure 19), however, exhibits a surprising
sharp drop in performance. The performance scales nicely from 2 megabytes per
second on one node through 8 megabytes per second on 16 nodes, but then drops
to below 1 megabyte per second on 64 and 128 nodes. Not only does this read test
not scale, but the performance is worse at 128 nodes than it is on a single node.
This performance anomaly is due to resource contention for the read cache, and is

examined in "Investigating Disk Cache Behavior" on page 64.
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The read tests (Figure 21) perform identically to the HPF BLOCK read tests
through 8 nodes (increasing from about 2 megabytes per second to about 7-8
megabytes per second). When run on more than 8 nodes, the performance
degrades. Except for the 32 and 64 kilobyte block sizes, the larger the block size,
the worse the performance on more than 8 nodes. This is expected (given the HPF
BLOCK test results} as the 1 megabyte block size, 128 node tests have identical
data distributions. The 512 kilobyte block size tests, although not identical, are
very similar, etc. It is unclear why the 64 kilobyte block size performed so much

better than the others.
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FIGURE 20. HPF CYCLIC Write Performance (128 MB file).
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connected in a hypercube, each I/O node is connected over a single link to one
compute node. It is standard manufacturing practice to anchor (connect) the 1/0
nodes to the low numbered compute nodes. In our system, the I/O nodes are con-
nected to compute nodes 2, 6, 10, 14, 18, 26, 30, 34, 38, and 42. Further, all of the
CFS tests allocated nodes starting from node 0. So, a 16 node test would use nodes
0-15, while a 64 node test would use nodes 0-63. Although all of our tests used all
10 I/0 nodes, the placement of the I/O nodes within the system combined with
the placement of the CFS tests among the compute nodes may have led to signifi-
cant network contention, and contributed to the performance drop.

First, we investigated message latency as a possible cause. Since the speed
at which disk requests can be made decreases as distance increases (see Table 2 on
page 50), we re-ran selected 16 node tests, varying the location of the 16 compute
nodes used within the system. If latency is a major factor in performance, one
would expect the tests run on low numbered nodes {close to the I/O nodes) to
perform the best, and the tests run on high numbered nodes (far from the I/O
nodes) to perform the worst. However, performance was not affected by location,
implying that internal network latency is not causing the problem.

Next, we investigated contention. If multiple messages are sent across a
network link simultaneously, they must contend for access to the link; typically,
the message transfers are serialized. For example, if a network link runs at 1
megabyte per second, and two messages, each 1 megabyte in size, are sent over

the link, it will take at least two seconds to complete the transfer. The iPSC/860



Investigating Disk Cache Behavior

The most likely explanation for the drop in read performance is thrashing.
The I/O system on the iPSC/860 uses disk block caching and pre-fetching to
improve performance. However, in this case, it backfires. In this section, we
describe why the combination of caching and pre-fetching on the iPSC/860 yields
greatly reduced performance for the HPF BLOCK read tests.

Caching improves performance by exploiting data re-use. If a disk block is
read multiple times, it can be read from disk once (an expensive operation), stored
in cache, and then read from cache for succeeding operations. However, since
cache size is limited, typically, only recently accessed blocks are stored in cache.
The HPF BLOCK and CYCLIC reading and writing tests did not re-use any data.
In fact, for reading and writing large solution files, it is doubtful that caching
would ever be used.

However, the I/O system also uses pre-fetching to improve performance.
Pre-fetching depends on locality of reference and requires caching to be effective.
When a disk block is accessed, it and several successive blocks are read into cache.
It is typically more efficient to read multiple blocks from disk in a single operation
than to read the same blocks, one disk operation at a ime. When the successive
blocks are accessed by the application, they can simply be returned from cache. If,
however, the successive blocks are not accessed, or are purged from cache before

they are accessed, then the extra disk I/O to pre-fetch them was wasted. All of the
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Now consider running the HPF BLOCK read test using 64 compute nodes.
Restrict attention to one I/O node for simplicity. The first 31 nodes read a block,
causing 31 pre-fetch operations, using 248 of the 250 cache blocks available. When
the next 31 nodes read a block, they also cause pre-fetch operations, but since
there is no more free space in cache, each pre-fetch must purge the data from a
previous pre-fetch operation. Most likely, data is purged before anything but the
first block is read by the requesting node. This continues for the entire file. For
every read operation, 8 blocks are pre-fetched, 1 block is returned, and the other 7
are purged from cache before they can be read. This should result in an 8X slow-
down from 16 to 64 nodes, but no performance difference between 64 and 128
nodes—exactly what was measured (Figure 19).

HPF CYCLIC reading exhibits this problem too. For large block sizes, the
results are the same as for the HPF BLOCK tests. As the block size is decreased,
performance improves. A smaller block size allows better use of cache. As the
block size decreases, the reads are closer together in the file, and there is more
chance that each read will be able to use pre-fetched data. Since there is no way to
use pre-fetching for writes, the writing does not suffer from this problem.

Note that a second performance drop can be seen for both the HPF
CYCLIC read and write tests. Performance drops for small block sizes (4, 8, and
16 kilobytes) above 16 nodes. Further investigation is required to determine the

cause of this performance drop.



68

that this method would scale above 128 nodes. The slight drop (from 8 to 7 mega-

bytes per second) can be attributed to synchronization overhead.
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We propose a better approach is to fix the problem directly: develop algorithms
and techniques for optimizing parallel access, such as grouping, and implement
these optimizations as part of a portable parallel I/O library. It is beyond the
scope of this work to fix filesystem design flaws, although we attempt to reveal

flaws and suggest fixes.

Parallel I/O Library

Highly parallel systems are difficult to program, and in general, obtaining
peak performance from the I/O system requires a significant effort. Further, this
effort must be repeated for each highly parallel system one wishes to use. A
library of global I/O routines would not only allow portable programs to be writ-
ten with minimal effort, but it would also allow programmers to concentrate on
algorithm development and execution speed instead of I/O performance. A col-
lective parallel I/O library provides the framework for machine dependent 1/O
algorithms, such as “grouping”.

The library should include routines for reading and distributing, as well as
collecting and writing, one-, two-, and three-dimensional decompositions of
arrays. On the iPSC/860, the library could incorporate both the grouping of nodes
and the “transpose” operation necessary to ensure that block sizes are above 4

kilobytes. This would greatly increase throughput for the average user.
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tion remains essentially the same. Fineberg [60] measured the performance of the
BTIO benchmark [61], which uses the multi-partition distribution method, on the
Paragon and SP2. Both systems were capable of providing 40 megabytes per sec-

ond, yet BTIO achieved only 90 kilobytes per second on the Paragon and 1 mega-
byte per second on the SP2--still slow by about two orders of magnitude. Other

parallel file systems studied [17, 23, 90, 114] show similar results: performance on
small accesses is abysmal. These studies, including our iPSC/860 study, motivate

the need for improved parallel I/O performance.
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applications at NAS which use three-dimensional data sets for aircraft perfor-
mance simulations, and by the use of 3D meshes in a wide range of other scientific
applications. These are described thoroughly in Chapter II, but we review them
here for convenience.

The global data structure used in these experiments is a three-dimensional
array. This data structure is distributed among compute nodes in a manner which
maximizes load balance and which minimizes communication overhead for the
computation. For the class of scientific algorithms involved, communication is
necessary to exchange boundary elements, so the communication overhead of an
application is proportional to the number of boundary elements. For this reason,
arrays are generally distributed in all three dimensions, minimizing the surface to
volume ratio, thus minimizing the number of boundary values to be exchanged
(see Figure 5 - Figure 7). In this case, the data chunks assigned to individual com-
pute nodes are sub-cubes of the global, three-dimensional array.

The canonical file is the logical view of the data from the perspective of the
file system. In this study, we assume that the canonical file is a single sequential
file resulting from a linearization of the multi-dimensional mesh, based on some
ordering of the elements such as row-major order. This definition of the canonical
file stems from the fact that current parallel I/O systems evolved directly from
Unix-based file systems for sequential machines. All commercially available sys-
tems (e.g. Intel iPSC/860 CFS, Intel Paragon PFS, IBM SP2 PIOFS, and Meiko CS-

2) use the canonical view of a file as a sequential byte-stream. The file layout pat-
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FIGURE 26. Parallel 1/0O Complexity: two-dimensional sub-blocks of the global
array are mapped to compute nodes, but the array is mapped in slices to disks.

The challenges faced by designers of 1/O transfer algorithms are best illus-
trated by taking a close lock at the current method used for performing parallel

1/O. We refer to this transfer method as the Naive Algorithm.
Naive Algorithm

The Naive Algorithm basically treats parallel I/O the same as workstation
I/0O. It allows the programmer to treat her application as a collection of standard
Unix processes accessing a shared file. Until recently, programmers have been
forced to use the Naive algorithm, as parallel I/O interfaces were incapable of
describing the complex three-dimensional data distributions common to scientific

applications. Today, there are only three interfaces capable of supporting these
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requires that the previously flushed contents be read back from disk, the new data

block(s) added to the buffer, and then the updated disk block re-written.

”’@

Disk Cache
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W ~write ¥
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FIGURE 27. Naive Algorithm: (1) compute nodes independently send small
requests to the I/O nodes; (2) data travels through the network and arrives at /0
nodes in an uncoordinated fashicn; (3) I/O nodes must perform
read /modify/write operations due to inefficient caching.

The Naive Algorithm exposes the major problems involved in parallel 1/O:
resource contention for both the network and OS services; poor locality (both tem-
poral and spatial); arrival of data blocks in arbitrary order, resulting in excessive

disk access that cannot be remedied by caching; and load imbalance in which one

or more disks is overloaded while others remain idle.
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Data Block Scheduling

On a serial system, I/O transfer operations are often reordered to minimize
disk head seeks, but there is little other benefit from scheduling I/O accesses. In
addition to scheduling to maximize the efficient use of resources (e.g. disk head
seeks), the many-to-one relationship imposed by the parallel I/O architecture
(many compute nodes to a few I/O nodes) coupled with the volumes of data
which must be transferred for a global 1/O operation, combine to create the
potential for significant contention for resources. In an ideal system, contention
effects would merely place an upper bound on performance, but in real systems,
contention effects can result in thrashing—causing aggregate performance to
drop off sharply. This performance reduction can result from optimistic network
protocols (e.g. with back-off and retry algorithms), from misguided caching
schemes, and from architectural limits of the hardware (e.g. small number of
hardware thread contexts). The simplest way to reduce the effects of this conten-
tion is to schedule transfers intelligently, allowing sufficient parallelism to reach
peak performance, but not enough to induce thrashing,.

Data block scheduling consists of two approaches: the multiple streams of
1/0 requests are reordered (spatial scheduling) and sets of I/ O requests are per-
formed in phases (temporal scheduling). Spatial scheduling performs the same
optimization as in a serial machine where it supports efficient use of the underly-

ing system. However, on a parallel machine, it is greatly complicated by the need
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also perform the function of coalescing a given I/O request from multiple nodes.
Finally, the grain size mismatch is more complex due to the fact that data distribu-
tion and file layout are completely independent of each other.

Collective buffering uses global knowledge of the data distribution, file
layout, and machine architecture characteristics to perform a permutation step
which maps the data distribution on compute nodes to the file layout on disks. In
other words, the data is rearranged by the compute nodes prior to the issuance of
I/O operations, in order to minimize the number of disk operations needed on
each disk node (see Figure 28). The permutation can be performed “in-place,”
where the compute nodes transpose the data among themselves, or “on auxiliary
nodes,” where the compute nodes transpose the data by sending it to a set of aux-
iliary buffering nodes. The target distribution of the permutation, the number of
nodes used, and the amount of memory used to for buffering are chosen to opti-
mize performance. The “two-phase I/O” of del Rosario, et. al. [49] is a particular
instance of the “in-place” permutation while the “local collective I/Q optimiza-
tion” of Bennett, et. al. [10] is a particular instance of the “on auxiliary nodes” per-
mutation; both were independently developed. Note that the two permutation
techniques perform the identical operation, but “in-place” requires extra memory
on each compute node, while “on auxiliary nodes” requires extra compute nodes
to do the buffering. The latter has the advantage of permitting true asynchronous

I/O with little interference to the work of the original compute nodes.
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In collective buffering, data to be written to disk is first organized into rela-
tively large sequential pieces. Each piece resides on a single node, which then
writes to disk. This organize-write operation can happen simultaneously on many
nodes. Permutation of the data prior to disk I/O takes advantage of the low
latency times of the communication network. Although permutation increases
network traffic, it avoids the high disk latencies that would result from data
accesses that have not been optimized for disk I/O. The permutation operation is
particularly efficient on machines with hardware support for scatter/gather oper-

ations.

Experiments with Collective I/O Transfer Algorithms

In this section we describe experiments we conducted to test the perfor-
mance of our data block scheduling and collective buffering transfer algorithms.
These algorithms were implemented and tested on two widely used parallel
machines: the IBM SP/2 and the Intel Paragon, both housed at NASA Ames NAS
Division. First, we describe the basic hardware and software architecture of the
two target machines. We then discuss the architectural and file-related parameters
we have chosen. Finally, we describe the algorithms and the algorithm parame-

ters selected for these experiments, and give results for each transfer algorithm.
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Various architectural performance parameters for the Paragon are given in

Table 4.
TABLE 4. Intel Paragon Performance
Performance Measured Peak
Memory Bandwidth 140 MB/sec | 200 MB/sec
Latency 60 usec
N k
SeL Bandwidth (per link) 70 MB/sec | 175 MB/sec
RAID-3 (Local) | Write Bandwidth (per RAID) | 2.5 MB/sec | 5 MB/sec

Paragon PFS stripes file blocks across I/0O nodes in an HPF CYCLIC pat-
tern. The stripe block size is set at filesystem creation time. All experiments were
performed with the PFS striped across 6 I/0 nodes, using a stripe block size of 64
kilobytes. Although the PFS interface supports “file modes” for defining data dis-

tribution patterns, they were not powerful enough to specify more than a simple
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space sharing, so all tests ran on dedicated compute nodes. However, the 8 I/O
nodes were used for development work in addition to being PIOFS servers, which

may have contributed to the timing variations from one run to the next.

RS6000/590 RS6000/590 SCSI
Muitistage Switch S MBJsec
RS6000/590 = 1___E
W128MB [ = - e
— ®
[ ] —
L =] [— ®
® ] =
/ 40 MB/sec —\
RS6000/590 RS6000/590 SCSI
w/128 MB w/128MB ["5MB/sec | 2 OB
5 MB/sec
Compute Nodes 1/0 Nodes

FIGURE 30. IBM SP2 at NAS: 160 RS56000/590 processors, each with 128 MB
memory and 2 GB local disk; software partitioned into compute and I/0 nodes.

Various architectural performance parameters for the SP2 are given in

Table 5.
TABLE 5. IBM SP2 Performance
Performance Measured _Peak
Memory Bandwidth 12GB/sec | 2GB/sec
Latency 45 usec
Network
e Bandwidth (per link) 35 MB/sec | 40 MB/sec

Disk (Local) Write Bandwidth (per disk) | 2.7 MB/sec | 5 MB/sec
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PIOBENCH ran on top of the highly portable MPI message passing library. All of
the transfer algorithms were hand-coded into the PIOBENCH program using MPI
calls for synchronization and communication (pseudocode for these algorithms is
given later). All data access was via the standard UNIX read and write system
calls.

In order to realistically test the performance of our I/O transfer algorithms,
we ran experiments over a wide range of parallel I/O parameters, including data
distribution, file size, and number of compute nodes for both hardware platforms
described above. We ran PIOBENCH on 1, 2, 4, 8, 16, 32, 64, and 128 compute
nodes, with small (16 megabyte) and medium (128-192 megabyte) sized files. We
used the standard HPF data distributions—BLOCK, CYCLIC, (BLOCK, BLOCK,
BLOCK), as well as a Random distribution. Under HPE, both BLOCK and
(BLOCK, BLOCK, BLOCK) have fixed data block sizes dependent on the file size,
number of compute nodes, and compute node distribution. For CYCLIC and Ran-
dom, we varied the data block size from 128 bytes to 1 megabyte. The file layouts
used were those of the underlying parallel file systems: HFP CYCLIC(64 kilo-
bytes) for Paragon PFS, and HPF CYCLIC(32 kilobytes) for SP2 PIOFS.

In all experiments, we measured total I/O time. Timing runs were
repeated, and results reported are the average over a minimum of three trials, and
represent at most a 20% error (10% error for the Paragon PFS) with a 90% confi-

dence level. Selected runs which required more than 10 minutes were run only
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Data block size is a function of distribution, file size, and the number of
compute nodes. The data block size for the HPF CYCLIC and random distribu-
Hons is a parameter of the distribution, and can take any value from one byte to
the entire file size. For the HPF BLOCK distributions, however, the data block size
is the file size divided by the number of nodes (in the first dimension). Given a file
size and number of compute nodes, there is exactly one data block size for an HPF
BLOCK distribution; this is reflected as a single large data block size on the per-
formance graphs. The three-dimensional (BLOCK, BLOCK, BLOCK) distribution
has some leeway: the size of each of the three dimensions of the global data struc-
ture, and the size of each of the three dimensions for distribution onto the nodes
can be chosen. We fix the size of the three dimensions for distribution onto the
nodes to be equal (or as equal as possible, assigning leftover nodes to the first
dimensions). The sizes of the three dimensions of the global data structure range
from all equal to having slightly more data in the first dimension; this allows us to
measure across several data block sizes while retaining the (BLOCK, BLOCK,
BLOCK) distribution pattern. All of the (BLOCK, BLOCK, BLOCK) distributions
result in small data blocks (less than 2 kilobytes for even the larger file sizes).

For small data blocks, the absolute performance of both the Paragon and
the SP2 was abysmal. On Paragon PFS (Figure 32 - Figure 35), performance
peaked at approximately 0.025 megabytes per second for 128 byte data blocks (the
smallest data block size tested). Performance increased linearly with an increase

in the data block size doubling to 0.05 megabytes per second for 256 byte data
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FIGURE 33. Paragon Performance comp#e;‘?zg data distributions writing a 16 MB
file using 256 byte data blocks.
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FIGURE 34. Paragon Performance compgg;eg. data distributions writing a 16 MB
file using 512 byte data blocks.
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FIGURE 37. SP2 Performance comparing data distributions writing a 16 MB file
using 256 byte data blocks.
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For large block sizes, performance of both the Paragon and the SP2 was
good, peaking at just under 20 megabytes per second on both systems. On the
Paragon (Figure 40 - Figure 42), a distinct performance jump can be seen at, and
above, 64 kilobyte data blocks which is both the striping unit size and file system
block size. Performance for data blocks of 64 kilobytes and greater is nearly iden-
tical, with larger data blocks yielding no greater performance. Again, the perfor-
mance for the different data distributions is similar, with the performance of the
random distribution exceeding HPF CYCLIC for data block sizes greater than 64
kilobytes (recall that the HPF (BLOCK, BLOCK, BLOCK) distributions do not pro-
duce large data block sizes). The apparent drop in performance as the number of
compute nodes increases between graphs is an artifact of the PEOBENCH pro-
gram—a small file size coupled with a large data block size results in a significant
percentage of execution time being devoted to open/close overhead rather than

performance measurement.
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FIGURE 42. Paragon Performance comparing data distributions writing a 16 MB
file from 64 compute nodes.

SP2 performance (Figure 43 - Figure 45) increases more smoothly with
increasing data block size, noticeably rising at 4 kilobyte data blocks (the file sys-
tem block size). There is no distinct performance jump, as there is on the Paragon,
at the striping unit (32 kilobytes). In fact, except for a peak at 512 kilobytes, per-
formance is relatively level across data block sizes in the range 16 kilobytes to 1
megabyte. As with Paragon performance, data distribution is not as important as
data block size for performance, and although the random data distribution out-

performs the others, performance of ail distributions is similar.
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/* Make elementary datatype (x,y,2z,temp,pres) */
MPI_Type_contiguous(5, MPI_DOUBLE, &etype);

/* Make datatype for each subcube */
for (each subcube assigned to this process) {
MPIO_Type_make_nd_datatype(

global_array_dimensions(0..2],
dimensions_of_ local_subcube[0..2],
location_within_global_array[0..2],
&subcube_type(i]l):

1

/* Combine subcubes intoc one filetype */

MPI_Type_struct(nsubcubes,
subcube_type[0..nsubcubes],
subcube_file_positions(0..nsubcubes],
&filetype);

/* Make MPI datatype for subcubes in memory */

MPI_Type_struct(nsubsubes,
subcube_type[0..nsubcubes],
subecube_memory_locations[0..nsubcubes],
&memtype);

/* Open the file using filetype created above */
MPIO_Open(“output-file”,

MPIO_CREATE | MPIO_WRONLY,

etype,

filetype,

&fp);
/* . . . Compute . . . */

/* Write global data structure to output-file */
MPIO_Write_all(fp, &local_data, memtype);

FIGURE 89. MPI-IO pseudocode for saving the 3D solution array for the NAS BT
benchmark using the multi-partition distribution.

MPI-IO is a proposed extension to the MPI standard. The MPI-1O interface
is equally suited for use with all proposed parallel 1/O algorithms, such as the
data block scheduling and collective buffering algorithms proposed in this work,

the disk-directed I/O proposed by Kotz, and the new file layouts proposed by
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of all file access operations, and defines filetypes, an extension of MPI datatypes,
to allow the programmer to specify the distribution of the global data structure. It
is expected that an implementation of MPI-1O for a particular system would tar-
get I/O optimizations to the file layout and machine architecture of that system.
For example, PMPIO [138], the portable implementation of MPI-IO, implements
collective buffering with an HPF CYCLIC target. It is expected that the system
administrator tune the target block size and number of nodes for the particular
configuration at hand. Recall that all currently available commercial systems use
an HPF CYCLIC file layout.

In order to illustrate how the MPI-IO interface is used, consider imple-
menting the multi-partition version of the BT benchmark (see "Multi-partition” on
page 23). In the example (Figure 7), the 3D array is distributed among nine com-
pute nodes, and each compute node is assigned three subcubes of the global
array.

An MPI-IO type constructor function is used to create each subcube, giving
the dimensions of the global 3D array, and the dimensions and placement of the
local subcube within that array. The three subcube types are combined to create
the filetype. The filetypes of each compute node are passed into the MPIO_Open

call, and together, specify the global data distribution (see Figure 88).
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1. Data block size dominates data distribution as a factor affecting perfor-
mance.

2. Grouping, which minimizes contention by reducing parallelism, can be
an effective technique for eliminating performance bottlenecks caused by
thrashing, independent of its cause.

3. The Random and Sliding Window algorithms showed promise for smail
data block sizes only, but for these sizes, collective buffering techniques
were orders of magnitude better.

4. Collective buffering, which combines small data blocks together to allow
larger data accesses, significantly improves parallel I/O performance by
up to two orders of magnitude, requiring only modest buffer space
(1 megabyte per I/O node).

The performance potential of these collective data transfer algorithms is clear. The
next step is to design a high-level collective parallel I/O interface, providing the
framework under which to implement these algorithms, thereby shielding users
from the prospect of hand coding intricate, non-portable optimizations to

improve I/O performance.

Discussion

Near peak parallel I/O performance can be achieved by using the collec-
tive I/O algorithms described in this chapter. However, it is not feasible to expect

individual programmers to implement these algorithms by hand. Our intention is
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FIGURE 87. Scatter/Gather Collective Buffering Performance on the SP2 writing
an HPF CYCLIC distributed 128 MB file on 128 nodes.

We have shown:

Collective Buffering Summary

1. Collective buffering significantly improves Naive parallel I/O perfor-

mance by two orders of magnitude for small data block sizes.

2. Peak performance can be obtained with minimal buffer space (approxi-

mately 1 megabyte per 1/0 node).

3. Performance is dependent on intermediate distribution (up to a factor of

2)

4. There is no single intermediate distribution which provides the best per-

formance for all cases, but a few come close
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of rounds times the number of target compute nodes. Using scatter/gather mes-

sage passing, each round requires only one message to be sent from each compute

node to each target compute node.

/* N nodes, Pt target compute nodes */
k = process_rank();
if (k < Pt)
allocate buffer space
for (r = 0; r < nrounds; r++) {
if (k < Pt)
/* setup to receive one big block */
barrier_synchronize();
foreach local data block 4 in this round {
dt = target node for d
add d to dt scatter/gather block
}
for (n = 0; n < Pt; nt++)
send n’s scatter/gather block to n
if (k < Pt) {
wait for the message to arrive
write out the buffer

}

FIGURE 85. Collective Buffering with Scatter /Gather Pseudocode.

We were unable to fully implement collective buffering with scatter /gather
(CBx) due to limitations of the message passing library used by PIOBENCH.
Instead, we simulate the scatter /gather operation by sending messages of size
identical to the messages which a real scatter/gather would send.

Simulated CBx performed as expected (Figure 86 - Figure 87), providing
peak performance down to the smallest data block sizes tested, on both the Para-
gon and SP2. Although the method we used to simulate CBx was slightly optimis-

tic, as it did not account for the time taken building scatter/gather buffers, we
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FIGURE 83. CB-C writing an HPF CYCLIC distributed 128 MB file from 32 nodes
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FIGURE 84. CB-C writing an HPF CYCLIC distributed 128 MB file from 64 nodes

on the SP2.
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FIGURE 81. CB-C writing an HPF (BLOCK BLOCK BLOCK) distributed 128 MB
file from 32 nodes on the SP2.
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FIGURE 82. CB-C writing an HPF (BLOCK BLOCK BLOCK) distributed 128 MB
file from 64 nodes on the SP2.
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FIGURE 80. CB-FL Performance on the SP2 writing a 128 MB file from 64 nodes.

Collective Buffering with HPF CYCLIC Intermediate Distribution (CB-C)

CB-FL is an ideal alternative to CB-B on the Paragon, able to sustain peak
performance for all medium data block sizes, while minimizing the required
buffer space. On the SP2, however, CB-FL reached only a little more than half of
peak performance. Peak performance was measured writing much larger sized
data blocks (greater than 256 kilobytes). This suggests that an alternative interme-
diate distribution for the SP2 should be used which has larger intermediate blocks
than the 32 kilobyte sized intermediate blocks of CB-FL. We generalize CB-FL to
allow any HPF CYCLIC intermediate distribution, abbreviated CB-C. Note that
both CB-B and CB-FL are special cases of CB-C. CB-B is an instance of CB-C using

all compute nodes as target nodes, and a target block size equal to the global data
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FIGURE 77. CB-FL Performance on the Paragon writing a 192 MB file from 64
nodes.

On the IBM 5P2, CB-FL used 8 compute nodes as the target of the permuta-
tion, and an HPF CYCLIC(32 kilobyte) intermediate distribution. Each target
node reserved a one megabyte buffer, yielding an aggregate buffer space of 8
megabytes. On medium sized data blocks, i.e. 4 kilobytes - 32 kilobytes, using CB-
FL on the SP2 (Figure 78 - Figure 80) attained the performance of the Naive algo-
rithm operating on 32 kilobyte data blocks—this is approximately half of peak
performance. Again, performance drops off below 4 kilobyte data blocks as seen

before.
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As with CB-B, CB-FL significantly outperforms the Naive algorithm across
a wide range of small and medium data block sizes with greatly reduced buffer
space.

On the Intel Paragon, CB-FL used 6 compute nodes as the target of the per-
mutation, and an HPF CYCLIC(64 kilobyte) intermediate distribution. Each target
node reserved a one megabyte buffer, for an aggregate buffer space of 6 mega-
bytes. CB-FL on the Paragon (Figure 75 - Figure 77) sustained peak performance
on data block sizes as low as 4 kilobytes. Below 4 kilobytes, the performance
drops off as seen in CB-B measurements. Buffer space was greatly reduced com-
pared to CB-B, from 192 megabytes, for these tests, to 6 megabytes, with no
apparent lack of performance. In addition, running CB-B on a file this large was
prevented by the message passing system software which did not support the

number of simultaneous messages required for a one-step permutation.
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FIGURE 73. CB-B Performance on the SP2 writing a 16 MB file from 64 nodes.

CB-B greatly improves performance for all small block sizes on both the
Paragon (for less than 64 kilobyte data blocks) and on the SP2 (for less than 8 kilo-
byte data blocks). The performance of CB-B is unaffected by the original data dis-
tribution, performing nearly identically on both HPF (BLOCK, BLOCK, BLOCK)
and the HPF CYCLIC data distributions. Performance when writing data blocks
as small as 1 kilobyte in size attains 75% of measured peak performance. How-

ever, performance for data blocks smaller than 1 kilobyte is still poor.

Collective Buffering with File Layout Intermediate Distribution (CB-FL)

CB-B works, but the BLOCK distribution requires a significant amount of

buffer memory, an amount equal to the size of the global data structure. For the
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FIGURE 70. CB-B Performance on the Paragon writing a 16 MB file from 64
nodes.

On the IBM SP2 (Figure 71 - Figure 73), CB-B significantly outperforms the
Naive algorithm for data block sizes between 64 bytes and 4 kilobytes. Above 4
kilobytes, which is the underlying AIX file system block size, performance is more
varied. On 16 compute nodes, CB-B is almost always superior to Naive; on 32
compute nodes, it is comparable to Naive through 64 kilobyte data blocks (the
PIOFS stripe unit), then the Naive algorithm is superior; on 64 compute nodes,
Naive is superior for data blocks sized from 4 kilobytes to 64 kilobytes, but not
above. Generally, CB-B works well for small data block sizes, but for larger data
blocks, the overhead of performing the permutation slows CB-B performance.
Finally, as on the Paragon, the overhead of message latency causes performance to

drop off below one kilobyte data blocks.



125

On the Intel Paragon (Figure 68 - Figure 70), CB-B significantly outper-
forms the Naive algorithm for all data block sizes from 64 bytes to 64 kilobytes.
Above 64 kilobytes, the data block size is large enough to take full advantage of
the PFS file system (which has a 64 kilobyte stripe unit), but even with the added
overhead of permuting the data, CB-B still outperforms the Naive algorithm by a
small margin for all but two of the data points shown. The performance of CB-B
on large data block sizes demonstrates that the larger data access size, the better
the performance. Performance using data blocks less than one kilobyte falls off
sharply, although it is still superior to the performance of the Naive algorithm.
This performance drop is most likely a result of the bandwidth/latency character-
istics of message passing on the Paragon. The overhead of message latency begins
to dominate as the number of messages sent increases and the amount of data per

message decreases.
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main computation. Using auxiliary nodes permits true asynchronous operation.
The computation can progress as soon as the permutation step has finished with-
out waiting for the I/O to complete. In addition, the ideal amount of buffer space
and the ideal number of nodes to use for the permutation can be chosen indepen-
dent of the application’s resource use. However, this approach requires the use of
a different, more valuable resource, additional compute nodes, which could have
been used for the current or some other application. As the trade-off between
using compute nodes or auxiliary nodes does not affect the algorithm, we have
restricted our attention to using compute nodes to support the permutation.

We developed and evaluated four collective buffering techniques. First, we
look at the simplest approach: using all the compute nodes to permute the data to
a simple HPF BLOCK intermediate distribution in a single step. Second, we refine
this approach by (a) realistically limiting the amount of buffer space used on com-
pute nodes and (b) using an intermediate distribution which matches the file lay-
out. Third, we consider the case of using a more general HPF CYCLIC
intermediate distribution. Finally, we investigate a method for eliminating the
latency dominated overhead of the permutation phase by taking advantage of
scatter/gather hardware, greatly increasing the applicability of collective buffer-

ing to applications which use small data blocks.
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FIGURE 66. SP2 Performance comparinéd;é::aéss ordering algorithms writing a
128 MB file using 1 megabyte data blocks.

Data Block Scheduling Summary

Performance of all of the data block scheduling techniques are disappoint-
ing. The only performance gains measured were for small data block sizes. The
abysmal absolute performance for these data block sizes outweighs the few per-
formance gains. Implementing these transfer algorithms would be unwarranted.
As we shall see in the next section, combining data blocks, and increasing the

effective data block size is much more promising.
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MB file using 512 byte data blocks.
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FIGURE 55. Paragon Performance comparing access ordering algorithms writing

a 192 MB file using 64 kilobyte data blocks.
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FIGURE 56. Paragon Performance comparing access ordering algorithms writing

a 192 MB file using 1 megabyte data blocks.
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any file system block caching avoiding costly read / modify/write operations. For
large data block sizes, the Sliding Window algorithm should minimize seek time
by keeping accesses near each other. Sliding Window, however, may limit I/O
parallelism, as its behavior is nearly opposite to the Random transfer algorithm. A
Generalized Sliding Window algorithm is proposed in "Future Work" on

page 153. This new algorithm slides multiple windows, one for each storage
device. This allows maximal parallelism within the I/O subsystem while still tak-

ing advantage of locality.

Access Ordering Algorithm Performance

Generally, access ordering, i.e. spatially reorganizing the data blocks, has
little effect. Across the full range of data block sizes, Paragon PFS performance is
not improved by either of the Random or Sliding Window algorithms. For data
block sizes smaller than 64 kilobytes (Figure 53 - Figure 54), the Naive algorithm
is best, and for larger block sizes (Figure 55 - Figure 56), performance of the

Naive, Random, and Sliding Window algorithms are identical.
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Access Ordering Algorithms

Access ordering algorithms schedule access operations on data blocks. The
Random algorithm performs file accesses in random order. The Sliding Window
algorithm schedules file accesses so that data closely positioned in the canonical

file is accessed at roughly the same time.

Random Algorithm

The Random transfer algorithm probabilistically maximizes access paral-
lelism to the I/O subsystem. The Random Algorithm issues writes from each
compute node in random order (see Figure 51). The unit of data transfer is the

data block.

/* N nodes writing */

randomize the list of data blocks

foreach data block rd in randomized list {
Perform I/0 on rd;

)

FIGURE 51. Random Algorithm Pseudocode.

The Random transfer algorithm probabilistically eliminates contention for 1/0O
resources (in a similar manner to randomized message passing algorithms which
avoid message contention). A highly structured data distribution can lead to all
compute nodes accessing a single storage device. For example, an HPF CYCLIC
distribution with size equal to the half the file layout stripe unit would have the

compute nodes accessing only half of the I/O nodes at the beginning of the I/O
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FIGURE 49. iPSC/860 CFS Grouped Read Performance reading a 128 MB file
distributed HPF BLOCK.

This type of performance anomaly is not limited to the older technology of the
iPSC/860. When first installed at NAS, the performance of the SP2 PIOFS exhib-
ited a similar performance drop for small numbers of nodes when scaling up the

data block size above 256 kilobytes (Figure 50).
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Grouping is indicated whenever negative scaling occurs: when adding
more nodes or accessing larger data blocks causes the aggregate performance to
drop. This phenomenon is a tell-tale sign of thrashing, which usually indicates a
system design flaw. In essence, grouping is a hack to mask a bug in the I/O sys-
tem. Grouping may, however, be the easiest way to solve the performance anom-
aly, and grouping can be easily implemented as part of a collective I/O library
without changing the operating system or hardware.

We give two examples where grouping benefits parallel I/O performance:
on the iPSC/860 CFS and on the SP2 PIOFS. As seen in Chapter III, the limited
memory available on I/O nodes combined with the poor caching policy of the
CFS caused a significant aggregate performance drop for all data block sizes

using the Naive algorithm and more than 16 compute nodes (Figure 48).
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Data Block Scheduling Algorithms

We consider two aspects of scheduling the transfer of the individual data
blocks to the I/O nodes:
1. grouping—"temporally” coordinating among compute nodes to modify
the speed and time at which requests are sent to the I/O nodes, and
2. access ordering—"spatially” rearranging the order in which a compute
node sends the individual transfer requests to an I/O node.
We developed three algorithms which take advantage of the collective interface
via data block scheduling; Grouping (node and data), Random, which employs
access ordering, and Sliding Window, which combines both coordination and

access ordering,.

Grouping Algorithm

Thrashing, induced by resource contention, can be a major source of per-
formance degradation. A simple technique which eliminates the contention, and
hence the thrashing, is to limit the parallelism for I/O operations so that limited
resources in the file system are not oversubscribed. We call this “grouping”.
Grouping can limit the amount of control parallelism (node grouping) or limit the
amount of data parallelism (data grouping).

Instead of a free-for-all, node grouping works by “coloring” each process

and ensuring that processes of at most one color perform I/O at one time (see
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Seamons, et. al. For a more detailed description of the MPI-IO interface, see the

appendix.
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Contributons

We evaluated an early parallel I/O system, the Intel iPSC/860 Concurrent
File System, revealing the inherent inefficiencies in the way the parallel I/O prob-
lem was attacked. This study led to our development of new interfaces and algo-
rithms for parallel I/0.

1. We devised a coordinated approach to performing global parallel I/O
operations—Collective I{O—which permits significant optimizations to be
performed.

2. We formulated a new model to describe the parallel 1/O problem provid-
ing insights into the inherent difficulties of efficiently supporting parallel
I/0. The key concept introduced in this model is the data block.

We designed two classes of algorithms taking advantage of collective par-
altel I/O: data block scheduling and collective buffering. In order to measure perfor-
mance, we performed real tests on real machines (the Intel Paragon and the IBM
SP2), and we designed algorithms to work with existing hardware and operating
systems. The key results from this work show that:

1. Data distribution is secondary to the amount of data accessed in individ-
ual file operations: the larger the accesses, the better the performance.

2. Parallelism, normally the key to performance, can lead to thrashing
caused by resource contention. Limiting the parallelism (via Grouping)

can improve performance by as much as a factor of eight.
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but do not guarantee disk parallelism, and disk orderings maximize disk parallel-
ism, but may still bottleneck by sending to a single compute node at a time (con-
tention effects). The ideal algorithm would ensure maximal parallelism at both
the compute nodes and 1/O nodes simultaneously. (Note that Random probabilis-
tically comes close.)

Over the life of a parallel application, the system environment (number of
running jobs, network usage, contention for disks, etc.} can change dramatically.
It should be possible to design dynamically self tuning algorithms which adjust to
this changing environment. For example, one could modify the Grouping algo-
rithm to change the group size based on current resource contention. Self tuning
algorithms would also be particularly useful for new architectures or new config-
urations of existing machines. Rather than re-running a rack of experiments to
determine the optimal algorithm for the new architecture, the algorithms could
converge to the best solution on-the-fly.

The Sliding Window aigorithm performed poorly, despite our intuition
that it would improve performance. We conjecture that the algorithm did not per-
form well because we slid a single window over the canonical file, which may
have limited the amount of parallelism available at both the compute nodes and
the I/O nodes! This unintentional parallelism reduction could be eliminated by a
generalization of our original Sliding Window algorithm. Rather than slide a sin-
gle window, the generalized algorithm would have D separate windows, one for

each I/O node. The windows would slide over the file chunks rather than the
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nodes. The synchronized nature of collective I/O may make it easier to use RAID
technology efficiently.

The processing nodes of parallel systems are usually segregated into com-
pute nodes and I/O nodes. It is unknown whether the best use of resources is to
dedicate nodes to perform I/O only, or to allow nodes to share compute and I/O
responsibilities. The tradeoffs between both approaches needs to be investigated.
Perhaps a dynamic approach in which the system responds to application
requirements for compute and 1/O requirements by reconfiguring would be the
best solution. Some preliminary work in this area has been started by Kotz [87].

Al of this work deals with supporting a single parallel application at a
time. The real key to making parallel systems ready for prime time is supporting
not just a single application, but supporting all of the applications within a work-
load simultaneously. The collective interface defines ideal boundaries for I/O
activity. These boundaries present the opportunity to schedule I/O activity across

a whole system.
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part of a parallel I/O environment if it supports a high-level interface to describe
the partitioning of file data among processes and a collective interface describing
complete transfers of global data structures between process memories and the
file. Further efficiencies can be gained via support for asynchronous I/0, allow-
ing computation to be overlapped with I/O, and control over physical file laycut
on storage devices (disks).

Parallel file systems and programming environments have typically solved
the probleﬁs of data partitioning and collective access by introducing file modes.
The different modes specify the semantics of simultaneous operations by multiple
processes. Once a mode is defined, conventional read and write operations are
used to access the data, and their semantics are determined by the mode. The

most common modes are described in Table 6 [12, 75, 119].

TABLE 6. Common “File Modes”

File Mode Description I Examples
broadcast all processes collectively PFS global
reduce access the same data CMMD sync-broadcast
scatter all processes collectively CFS modes 2 and 3

th access a sequence of data PFS sync &record
gather blocks, in rank order CMMD sync-sequential
shared processes operate independently, | CFS mode 1
offset but share a common file pointer | PFS log mode
allows programmer complete St
independent freedom PFS UNIX mode
CMMD local & independent
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be plugged-in, or defined procedurally, in order to evaluate (and optimize) paral-
lel 1/O performance.

Vesta [36, 37, 40, 59] is a library-based parailel file system which runs on
the IBM SP2. It provides user-defined parallel views of files for data partitioning,
collective operations for data access, and asynchronous operations. Vesta is
designed to scale to hundreds of compute nodes, with no sequential bottlenecks
in the data-access path.

Jovian [10], PASSION [31, 129], and VIP-FS [51] target out-of-core algo-
rithms. Panda [124, 125, 126] supports a collective global array interface, and opti-
mizes file access by making the file layout correspond to the global array

distribution—a 3D array is stored in 3D “chunks” in the file.

Overview of MPI-IO

The goal of the MPI-IO interface is to provide a widely used standard for
describing parallel 1/O operations within an MPI message-passing application.
The interface establishes a flexible, portable, and efficient standard for describing
independent and collective file I/ O operations by processes in a parallel applica-
tion. In a nutshell, MPI-IO is based on the idea that I/O can be modeled as mes-
sage passing: writing to a file is like sending a message, and reading from a file is
like receiving a message. MPI-IO intends to leverage the relatively wide accep-
tance of the MPl interface in order to create a similar I/O interface. The MPI-IO

interface is intended to be submitted as a proposal for an extension of the MPI
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Emphasis has been put in keeping MPIFIO as MPI-friendly as possible.
When opening a file, a communicator is specified to determine which group of
processes can get access to the file in subsequent I/O operations. Accesses to a file
can be independent (no coordination between processes takes place) or collective
(each process of the group associated with the communicator must participate to
the collective access). MPI derived datatypes are used for expressing the data lay-
out in the file as well as the partitioning of the file data among the communicator
processes. In addition, each read /write access operates on a number of MPI

objects which can be of any MPI basic or derived datatype.

Data Partitioning in MPI-IO

Instead of defining file access modes in MPI-IO to express the common pat-
terns for accessing a shared file (broadcast, reduction, scatter, gather), we chose
another approach which consists of expressing the data partitioning via MPI
derived datatypes. Compared to a limited set of pre-defined access patterns, this
approach has the advantage of added flexibility and expressiveness.

MP] derived datatypes are used in MPI to describe how data is laid out in
the user’s buffer. We extend this use to describe how the data is laid out in the file
as well. Thus we distinguish between two (potentially different) derived
datatypes that are used: the filetype, which describes the layout in the file, and the
buftype, which describes the layout in the user’s buffer. In addition, both filetype

and buftype are derived from a third MPI datatype, referred to as the elementary
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MPI-IO provides filetype constructors to help the user create complemen-
tary filetypes for common distribution patterns, such as broadcast/reduce, scat-
ter/gather, and HPF distributions. In general, we expect most MPI-IO programs
will use filetype constructors exclusively, never needing to generate a complicated

MFPI derived datatype by hand.

slype D

pescor ioeces
G isoba

process | fiteype  Lod ] |
| .

process 2 filaiype

process 3 filetype :‘

liling a fila with 1ha filetypes:

FIGURE 91. Partitioning a file among parallel processes.

In MPI-IO, the filetype and etype are specified at file open time. This is the
middle ground between specifying the data layout during file creation (or file-
system creation) and during data access (read /write). The former is too restric-
tive, as it prohibits accessing a file using multiple patterns simultaneously. In
addition, static data layout information must be stored as file meta-data, inhibit-
ing file portability between different systems. Specifying the filetype at data
access time is cumbersome, and it is expected that filetypes will not be changed
too often.

In order to better illustrate these concepts, consider a 2-D matrix, stored in
row major order in a file, that is to be fransposed and distributed among a group

of three processes in a row cyclic manner (see Figure 92). The filetypes implement
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Note that using MPI derived datatypes leads to the possibility of very flex-
ible patterns. For example, the filetypes need not distribute the data in rank order.
In addition, there can be overlaps between the data items that are accessed by dif-
ferent processes. The extreme case of full overlap is the broadcast/reduce pattern.

Using the filetype allows a certain access pattern to be established. But it is
conceivable that a single pattern would not be suitable for the whole file. The
MPI-IO solution is to define a displacement from the beginning of the file, and
have the access pattern start from that displacement. Thus if a file has two or more
segments that need to be accessed in different patterns, the displacement for each
pattern will skip over the preceding segment(s). This mechanism is also particu-
larly useful for handling files with some header information at the beginning (see
Figure 93). Use of file headers could allow the support of heterogeneous environ-

ments by storing a “standard” codification of the file data.

first tiling

second tiling

1 structure:

Tﬁrst displacement T second displacement

FIGURE 93. Displacements.
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Positioning

UNIX file systems traditionally maintain a system file pointer specifying
what offset will be used for the read or write operation. The problem with this
interface is that it was primarily designed for files being accessed by a single pro-
cess. In a parallel environment, we must decide whether a file pointer is shared by
multiple processes or if an individual file pointer will be maintained by each pro-
cess. In addition, parallel programs do not generally exhibit locality of reference
within a file [88]. Instead, they tend to move between distinct non-contiguous
regions of a file. This means that the process must seek on almost every read or
write operation. In addition, in multi-threaded environments or when performing
I/O asynchronously, it is difficult to ensure that the file pointer will be in the cor-
rect position when the read or write occurs.

MPI-IO provides separate functions for positioning with explicit offsets,
individual file pointers, and a shared file pointer. The explicit offset operations
require the user to specify an offset, and act as atomic seek and read or seek and
write operations. The individual and shared file pointer operations use the
implicit system maintained offsets for positioning. The different positioning
methods are orthogonal; they may be mixed within the same program, and they
do not affect each other. In other words, an individual file pointer’s value will be
unchanged by executing explicit offset operations or shared file pointer opera-

tions. The MPI-1O data access functions which accept explicit offsets have no
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where in the file, so they can also point to an item that is inaccessible by this pro-
cess. In this case, the offset will be advanced automatically to the next accessible
item. Therefore specifying any offset in a hole is functionally equivalent to speci-
fying the offset of the first item after the hole. A relative offset is one that only
includes the parts of a file accessible by this process, excluding the holes of the
filetype associated with the process.

Absolute offsets may be easier to understand if accesses to arbitrary ran-
dom locations are combined with partitioning the file among processes using file-
types. If such random accesses are not used, relative offsets may be preferable. If
the file is not partitioned (all filetypes are identical), absolute and relative offsets

are the same.

process 2 olfsels:

FIGURE 94. Absolute and relative offsets.

File Pointers

When a file is opened in MPI-IO, the system creates a set of file pointers to

keep track of the current file position. One is a global file pointer, “shared” by all
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be different from the amount requested), and the file pointer is updated by that
amount. When MPI-IO non-blocking accesses are made using an individual or the
shared file pointer, the update cannot be delayed until the operation completes,
because additional accesses can be initiated before that time by the same process
{for both types of file pointers) or by other processes (for the shared file pointer).
Therefore, the file pointer must be updated at the outset, by the amount of data
requested.

Similarly, when blocking accesses are made using the shared file pointer,
updating the file pointer at the completion of each access would have the same
effect as serializing all blocking accesses to the file. In order to prevent this, the
shared file pointer for blocking accesses is updated at the beginning of each access
by the amount of data requested. For blocking accesses using an individual file
pointer, updating the file pointer at the completion of each access would be per-
fectly valid. However, in order to maintain the same semantics for all types of
accesses using file pointers, the update of the file pointer in this case is also made
at the beginning of the access by the amount of data requested.

Although consistent, and semantically cleaner, updating the file pointer at
the initiation of all I/O operations differs from accepted UNIX practice, and may

lead to unexpected results. Consider the scenario in Figure 95.
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safe for the user to reuse the buffer. With suitable hardware, the transfer of data
out/in the user’s buffer may proceed concurrently with computation,

Note that just because a non-blocking (or blocking) data access function
completes does not mean that the data is actually written to “permanent” storage.
All of the data access functions may buffer data to improve performance. The
only way to guarantee data is actually written to storage is by using the
MPIO_File_sync call. However, one need not be concerned with the converse

problem—once a read operation completes, the data is always available in the

user’s buffer.
Coordination

Global data accesses have significant potential for automatic optimization,
provided the I/O system can recognize an operation as a global access. Collective
operations are used for this purpose. MPI-1O provides both independent and col-
lective versions of all data access operations. Every independent data access func-
tion MPIO_xxx, has a collective counterpart MPIO_xxx_all, where “_all” means
that all processes in the communicator group which opened the file must partici-
pate.

Independent calls do not imply any coordination among processes. Collec-
tive calls imply that all processes belonging to the communicator associated with
the opened file must participate. However, as in MPI, no synchronization pattern

between those processes is enforced by the MPI-IO definition. Any required syn-
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Miscellaneous Features

File Layout in MPI-IO

MPI-IO is intended as an interface that maps between data stored in mem-
ory and a file. Therefore, the basic access functions only specify how the data
should be laid out in a virtual file structure (the file type), not how that file struc-
ture is to be stored on one or more disk. This was avoided because it is expected
that the mapping of files to disks will be system specific, and any specific control
over file layout would therefore restrict program portability. However, there are
still cases where some information will be necessary in order to optimize disk lay-
out. MPI-IO allows a user to provide this information as hints specified when a
file is created. These hints do not change the semantics of any of the MPI-IO inter-
faces, instead they are provided to allow a specific implementation to increase
I/0O throughput. However, the MPI-IO standard does not enforce that any of the

hints will be used by any particular implementation.

Read /Write Atomic Semantics

When concurrent data accesses involve overlapping data blocks, it is desir-
able to guarantee consistent interleaving of the accesses. For example, the UNIX
read /write interface provides atomic access to files. Suppose process A writes a
64K block starting at offset 0, and process B writes a 32K block starting at offset

32K (see Figure 96). The resulting file will have the 32K overlapping block (start-
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Note that the cautious mode only guarantees atomicity of accesses within
an MPI application, not between two different MPI applications accessing the
same file data. Therefore, its effect is limited to the confines of the
MPI_COMM_WORLD communicator group of the processes that opened the file,

typically all the processes in the job.

Current Status and Future Developments

Currently, four implementations of MPI-IO are in progress. NASA Ames is
working on a portable implementation, primarily targeted at workstation clus-
ters, IBM Research is working on an implementation for the SP2 built on top of
IBM’s PIOFS file system, and Lawrence Livermore National Laboratory is work-
ing on implementations for the Cray T3D and Meiko CS-2. Prototypes for the IBM
and NASA implementations are targeted for completion by May 15, 1995, will full
versions by the end of the year.

General information, copies of the latest draft, and an archive of the MPI-
IO mailing list, can be obtained via the WWW at:

http:/ /lovelace.nas.nasa.gov/MPI-10/
To join the MPI-IO mailing list, send your request to mpi-io-request@nas.nasa.gov

(see the Web page for details).
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