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Computer algebra systems, such as GAP and Magma, are widely used for study-
ing groups. Practical algorithms underlying these systems have been under develop-
ment for over 30 years. More recently, there have been deep theoretical investigations
into the asymptotic complexity of group-theoretic problems. The results have in-
cluded demonstrations of polynomial-time solvability of problems whose traditional
implementation, though usually efficient, would require exponential time in the worst
case. This dissertation focuses on deterministic algorithms that meet both practical
and theoretical standards of efficiency.

Most permutation-group computation employs a point-stabilizer series, a data
structure first suggested by Sims in the 1960s. Variations by Knuth and Jerrum of
Sims’s basic algorithm had been shown to run in worst-case time O(sn? + n®), where
n is the size of the permutation domain and s is the number of generators for the

group. Certain important questions about the permutation group G , however, can

be answered substantially faster than the time needed for just setting up Sims’s data
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structure. We present such fast algorithms. Testing nilpotence of a group is shown
to have deterministic time complexity O(snlognlog™n). Solvability is shown to be
testable in time O(sn?).

Data structures are developed for computations in the families of nilpotent and
solvable permutation groups. While reflecting the normal series that characterize
the respective group family, these data structures are also naturally constructed and
viewed within the permutation domain. Furthermore, they can be computed faster
than the point-stabilizer series. The effectiveness of the data structures is demon-
strated in their facilitation of algorithms that are based on the use of normal series.

For subgroups G and H of a nilpotent group, we consider computation of the
following subgroups: the normalizer of H in G; the intersection of A and G: the
centralizer of H in G.

The use of the data structure for solvable groups is illustrated in the implemen-
tation of a method for finding Sylow subgroups. It makes essential use of the vector
space representation of the factors in the normal series.

All algorithms have been implemented in GAP and proved to perform well in

practice, especially the recognition algorithms.
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CHAPTER 1

INTRODUCTION

History

The roots of computational group theory go back to the last century, when
mathematicians, including Hélder and Mathieu, were using hand calculations for de-
termining certain types of groups (the groups of order pgr and the first sporadic
groups, respectively). It was in the beginning of the 20th century when Dehn formu-
lated problems for finitely presented groups (word, conjugacy, isomorphism problems)
that asked whether there even was an algorithmic solution. Later, Novikov proved
the unsolvability of the word problem, and then came the proofs that there is no
algorithm to decide whether a finitely presented group is trivial, finite, abelian, etc.
Then, in the early “computer age”, researchers started to use computers locking for
special kinds of groups, or calculating structures of certain groups. However, the
major impetus was given by the 1967 Oxford conference “Computational Problems
in Abstract Algebra”, where many of the fundamental methods in modern computa-
tional group theory were first presented; among those, the still-fundamental algorithm
for permutation groups, namely, Sims’s method for computing point stabilizer chains.
In the next decade along with other new algorithms and applicational successes came

the need for a machinery that could make programming easier!. In Aachen, Germany,

1For a more detailed history, see Neubiiser’s An Invitation to Computational Group
Theory [Neu]
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under the direction of Neubliser and in Sydney, Australia, led by Cannon, systems,
with different distribution and “transparency” policies, but similar contents, starled
to evolve, now known as GAP and Magma, respectively.

Concrete computational results included the proof of the existence of the group
called the “Baby Monster” by Sims, the proof of existence of Janko’s J, by Norton,

and the construction of the Cambridge “Atlas of Finite Groups”.

Polynomial-Time Algorithms for Permutation Groups

The serious study of computational-complexity issues in group-theoretic compu-
tation began around 1980, inspired originally by applications to the classical problem
of testing graph isomorphism [Lul]. This required an evaluation and extension of a
polynomial-time library for permutation-group computation.

It was observed that Sims’s method for testing membership could be imple-
mented in polynomial time [FHL), specifically, in time O(sn? + n®), where s is the
number of generators describing the input group and n is the size of the permutation
domain. Subsequently, Knuth in {Kn)] gave an organization of the algorithm that he
proved to run in time ©(n® + sn?). Jerrum in {Je} used a different data structure to
achieve the same asymptotic time complexity.

Sims'’s algorithm uses a data structure that is based upon a specified chain of

subgroups. It is set up as follows.

Given G < Sym(),G =Gy > Gy > ---> G, =1
fori=0tot—-1
find a right transversal for G;; in G;

find (Schreier) generators for Gy,



For membership testing and other problems this data structure often enables trans-
ferring the problem from G; to Giyy (see Chapter II).

The problem with settitng up the data structure is that the number of generators
possibly increases by a factor of n — ¢ at the ith iteration of the loop if we use point
stabilizer series (G; is the subgroup fixing the first i points) and we just naively apply
Schreier’s lemma (see Chapter II). If we just want to establish polynomial time, it
is enough to observe that the number of generators for any group G permuting n
elements can be kept under n? by the following process: Let S be a generating set
for G. While there are g,k € S\ Gy such that gh~! € G, then replace & with gh™!
and discard duplicates. After this, there will be at most one generator for each coset
of G1, in addition to elements of Gy (which do not necessarily generate G1). Repeat
the process for SN G; with respect to Gy, etc. At the end, we will have at most
|Go : G1l +1G1 : Go| + ... 4+ |Gz : Guey| € n(n + 1)/2 elements, that still generate
G.

With a more careful organization, Knuth shows that the number of generators
can be kept at O(n). This is crucial to his O(n® 4 sn?) time bound, which he goes on
to show is the best possible utilizing point stabilizer chains (see [Kn]).

Another approach for setting up a data structure for membership testing (and
computing the size of the group) [BLS1], using a different kind of subgroup chain
achieves an O(nlog®n + sn?) time, and an even better asymptotic time bound of
O(snlog°n) is given in [BLS2]. However, to achieve this the authors employ a
very complicated algorithm, and use the classification of the finite simple groups. In

[LRW2] for the special case of nilpotent groups an O(n* + sn?) method is mentioned
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which uses yet another kind of subgroup chain. This latter bound is further improved
In this dissertation to O(sn®), using an easily programmable algorithm that performs
very well in practice, too. (To see that this is an improvement, we note that the size
of the input is sn.)

There is a large number of problems that have polynomial-time solutions, many
of them are described in [Lu2] and [KL]. Some of the basic ones are: finding orbits
of a group; finding minimal blocks of imprimitivity for a transitive group, therefore
testing primitivity; finding the order of a group; testing membership in a group. As a
consequence of membership-testing, there are polynomial time algorithms for: finding
out whether a group is a subgroup of another; finding normal closures of subgroups;
finding the commutator subgroup; testing solvability; testing nilpotence.

There are problems that are not known to have a polynomial-time solution in
the general case, but we might have one in some special cases. A good example of this
is the normalizer problem: given G, H < K < Sym(f), find Ng(H), the normalizer
of H in G. This problem has no known polynomial-time solution in the general case
but, for nilpotent X, there is a polynomial-time solution in [KL), with no apparent
attempt to make it practical. In [LRW2] (and in this dissertation) there is a version
that was programmed and, in practice solved cases, with which the built-in methods
for both Magma and GAP, that are based on backtracking, were not able to deal.
The normalizer problem is known to be in polinomial time for solvable X, too.

Another example is the centralizer problem: given G,H < Sym(f), find
Cg(H), the centralizer of H in G. Polynomial-time solutions are known if G not-
malizes H, or when G is in the class 'y, that includes all solvable groups.

This dissertation shows novel data structures for the special cases of nilpotent
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and solvable groups. Using these data structures, some algorithms that were proved
to have polynomial-time asymptotic behavior, can be turned into efficient computer
programs. The usefulness of these data structures comes from finding natural nor-
mal series for the groups and natural maps from permutations to the vector spaces
corresponding to the elementary abelian factors in these series.

The time necessary for the computation of these data structures is not negligible,
even though it is less than setting up the usual point-stabilizer chain. This is not an
issue if the input is known be nilpotent or solvable, respectively. However, as with
any algorithm, that applies only to a special case but is more efficient in such a case,
one should consider the cost of testing whether the input has the required properties.
With this in mind, it is important to have very fast ways to test for the properties.

One of the main results of this dissertation is the presentation of such tests.
Our algorithm for testing nilpotence of a group is extremely fast, both asymptotically
(O(snlognlog”n)) and in practice. The test for solvability is not much worse. Its
asymptotic running time is dominated by finding a block system for a transitive
group, so it runs in O(sn?) time; the rest of the algorithm runs in O(sn log® n) time.
This test is also very fast in practice. Note that the input size is ©(sn), so testing
nilpotence is “almost linear” (see [BCFS],[Se]).

To illustrate the utility of the data structures, we show some algorithms that
make good use of them. For nilpotent groups, algorithms for three problems are
shown: if G and H are subgroups of a nilpotent group, we find Ng(H), N N H and
Cg(H). These were known to be in polynomial time [Lu3] [KL], our data structure
facilitates programs for them that perform well in practice.

For solvable groups, we illustrate the usefulness of the data structure by showing
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how to reduce finding Sylow p-subgroups of a solvable group to solving a series of
linear equations. For permutation groups, this problem has long been known to be
in polynomial time, even for non-solvable groups (see {Ka], wich also has a simplified
algorithm for solvable groups). In [KT] a different algorithm is given for solvable
groups. An NC (parallel) algorithm is given for the solvable case in [KLM]. In a
more general setting an algorithm requiring a polynomial number of group and field
operations is presented in [EW}. Our algorithm has a similar abstract structure to
that of [EW] and is a variation of the one in [KLM], making use of the vector spaces
that naturally arise from the permutation structure and are part of our data structure.

The structure of this dissertation is the following. In Chapter II we summarize
the notation and recall basic definitions used throughout the whole dissertation. In
Chapters III to V we provide theoretical background for and show how to build a data
structure for permutation p-groups that represents more structural information about
the group than the usual point-stabilizer chain. Furthermore we show that building
our data structure costs less asymptotically than computing the point-stabilizer chain.
In Chapter VI we describe a very fast method for recognizing whether a permutation
group is nilpotent. This algorithm utilizes a p-group test, which is also given. In
Chapter VII we present some algorithms the implementation of which utilizes the
data structure described in Chapter V. The last three chapters deal with solvable
permutation groups. We start with a description of the structure of solvable permuta-
tion groups in Chapter VIII, then we describe a data structure that corresponds to a
normal series with elementary abelian factors, and provide means to treat the factors
as vector spaces enabling the use of linear algebra in computations. In Chapter IX

we show how to build that data structure. In Chapter X we present an algorithm for
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recognizing solvability of a permutation group and then we illustrate the usefulness

of the data structure in an algorithm for computing Sylow p-subgroups.



CHAPTER II

NOTATION AND BACKGROUND

Basics

Let (! be a set. We denote the group of all permutations on by Sym(Q). If
0 ={0,1,...,n — 1} then we write Sym(n) instead of Sym(Q). Let G < Sym(Q).
We denote the elements of G by small Roman letters, the elements of Q by small
Greek letters, and if the permutation g takes w to 7 then we write 7 = w9, Sets
of permutations, including subgroups of Sym(£2), will be denoted by capital letters.
Products of permutations are written left to right, i.e. wo* = (w?),

If G is a group, £ is a set, and there is a homomorphism 8 : G -+ Sym({2) then
we say that G is acting on Q. If the kernel of this homomorphism consists of the
identity element of G' then we call the action faithful. 1f G < Sym(Q) is acting on
the set A and the homomorphism involved is obvious, we denote the image of G in
Sym(A) by GA.

Let A C Sym() be a set of permutations and w € {1, then we use the notation
w* to denote the set {w? : g € A}. The group G < Sym(Q) is called transitive iff
w% = Q. For a nontransitive group G, the set {w€ : w € O} is a partition of 0 into
orbits of G. On each orbit A, G acts naturally (the mentioned homomorphism being
the one that maps a permutation to its restriction to A), this action is transitive and
is called a fransitive constituent of G, denoted by G® in accordance with the notation

used for actions. The kernel of this action is the subgroup of G that pointwise fixes



the orbit.

Let A C 2, let G be a group acting on 0 and let g € G. We denote AY = {69 :
6 € A}. Let G be transitiveon Q and let A Q. If A # 0 and, for all ¢ € G, either
A% = Aor ANA = () then we call A a block (of imprimitivity). In this case, the
set {A?: g € G} is a partition of Q into blocks, and is called a block system. Trivial
block systems are {1} and {{w} : w € 9}, other block systems are called nontrivial,
If A is a block system, G acts on A. The kernel of this action is the subgroup of
G that setwise stabilizes the blocks. If a group has no nontrivial block systems, it is
called primitive.

By (5} we will denote the group generated by the elements in § , Where S C G.
In the following, when we say “given a group...”, we always mean it is given by a set
of generators.

We will use the usual notation H < G to denote that  is a subgroup of G.
We write H < G if H is not necessarily a proper subgroup. We denote the fact that
H is a (not necessarily proper) normal subgroup of G by H «G. The trivial group is
denoted by the 1.

Let H < G, then we call a complete set of right coset representatives, (i.e. a set
T for which Usgr Ht = G and Vi, 1, € Tty #1p: HhyN HL, = B), a right tfansversal
(for H in G).

A construction of Schreier plays a central role in computational group theory.
It produces generators for a subgroup. If the subgroup is of moderate index, for
which we have an efficient method to recognize membership (such as point stabilizer

subgroups of permutation groups), the method is useful in algorithms.

Lemma 2.1 (Schreier)
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Let G be a group, H < G a subgroup, and let T be a right transversal
for H in G. Let S be a generating set for G. Then H = ({t;st;! : 1),t, €
T,s€ S}NH) o

Note that for any (;,s) pair there exists exactly one ¢, such that ¢,st;' € H,
so the number of the Schreier generators does not exceed |S||G : H| (there might be

repetitions).

The permutations in G < Sym(f) that fix w € Q form a subgroup, which we
call the point stabilizer subgroup (of w in G) and denote by G,,. For the subgroup of
G that fixes all the points in A C § we use the notation G, and call it the pointwise
set stabilizer (of A in G), while for the subgroup that stabilizes A as a set only, i.e.
{9 € G:V6€ A, € A} we use the name set stabilizer (of A in G), and the notation
Ga). If A = {4}, we use the notation G5 for Ga. Trivially Ga < Ga}.

A fundamental structure in computational permutation group theory is the
point stabilizer chain. Let @ = {wi,...,w,}, then the series G = G©® > gV >

. 2 G® 1) =1 is called a point stabilizer chain with respect to the sequence
(w1, ... wn) if GO = GE-Y. This makes it possible to solve the most natural problem

in computational group theory:

Membership problem.
Given a group by a set of generators, G = (S) and an element of a
supergroup of G (in the permutation group setting an element of Sym((2)).

Isge G? O

To see how a series of subgroups helps in answering the above question, we

introduce the following:
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Lemma 2.2
Let K be a group, < G < K, let T be a right transversal for H in G
and let ¢ : K — T a (computable) map such that Vg € G, gé(g)~! € H.
Let us assume, furthermore, that we can decide membership in H. Then

we can decide also whether an element of K is an element of G.

Proof
Let g € K. Then g € G iff gé(g)~! € H. 0

One can make use of this lemma using a subgroup chain G =Gy > G, > --- >
G, = 1, with transversals for the subsequent groups in the chain to test membership
in G. It is costumary to refer to this procedure as sifting.

In the permutation group setting, we can get all the ingredients of the above
lemma for any two successive elements of the chain, so we can use sifting to test
membership. The base case is a test of whether a given permutation is the identity.
The ingredients that we are looking for are a right transversal T, and a mapping ¢
with the required property. Let L < K and w € ). We want a right transversal for
L, in L. A useful property of point stabilizer subgroups is that for any two elements

g and h of L, g and & are in the same coset of L, iff w? = wh®

, since this is equivalent
with w™ = w, i.e. gh™! € L,. So, for T, we only need to find elements ¢, of
L that take w to 7, for all T € w’. This can be done easily in conjunction with a
naive transitive closure algorithm that computes the orbit of w. While doing this,
the computation of ¢ is an easy matter, if w? € w’, let ¢(g) = tus, otherwise, let
$(g) = tu-

Having a subgroup chain with the transversals also makes it easy to compute

the size of the group, for given H < G and a right transversal T of H in G, |G| =
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|H||G : H| = |H||T].

Special Cases

Not surprisingly, if we restrict the domain of our interest, we may find that there
exist polynomial-time solutions for problems that are not necessarily polynomial in
the wider domain, or faster methods for special cases even when the general case
is polynomial. A natural restriction of the permutation group domain could be the
investigation of solvable groups, or the more restricted domain of nilpotent groups,
which are direct products of p-groups.

We recall the definitions of the above mentioned classes of groups. Let G be a
group, g, h € G. The commutator of g and h is defined to be the product g~1h~1gh,
and is denoted by [g, k]. If H is a subgroup of G, we denote by [G, H] = {{[g, 4] :
g € G,h € H}). We call & = [G,G] the derived group of G. If the series G >
G' > G" > ... stabilizes at the trivial group, we call the group G solvable. The series
G = L°(G) = LY(G) =2 L*(G) = ..., where L(G) = [G, L""1(G)] for i > 0, is called
the lower central series of G. If it stabilizes in the trivial group, G is called nilpotent.
(Other, equivalent, definitions of both classes may be found in group theory texts.) It
is not hard to see that if G = (S) > H = (U) then [G, H] = {{[s,u] : s € §,u € U})%,
where for X < G, X denotes the normal closure of X in G, i.e. the unique smallest
normal subgroup of G that contains X.

I G, H < Sym(f1), we denote Ng(H) = {9 € G:Vh € H,g"'hg € H} and call
it the normalizer of H in G, similarly, we denote Cq(H) = {g € G: Vh € H,gh =
hg}, and call it the centralizer of H in G. If Ng(H) = G, we say that G normalizes
H, if Ce(H) = G, we say that G centralizes H. Z(G) = Cg(G) is called the center
of G.
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CHAPTER III

THE STRUCTURE OF PERMUTATION p-GROUPS

In this chapter, we will see a description of the Sylow p-subgroups of Sym(n),
the symmetric group acting on the set {0,...,n — 1}. In the whole chapter, p is a
fixed prime number. Since every p-subgroup of Sym(n) is a subgroup of some Sylow
p-subgroup, and the Sylow p-subgroups are conjugates of each other, i.e. they can be
obtained from one another by relabeling points, it is sufficient to exhibit the structure
of one of them.

The structure of Sylow subgroups of the symmetric groups is well known. In

[Ha] (pp. 81-83) there is a discussion in terms of wreath products.

Definition 3.1
Let H and G be permutation groups on sets ) and £ = {oy,...,0¢}
respectively. For hy,...,h € H and g € G we define f = (hy,..., ks, g) as

a permutation of 2 x ¥ by (w, ;) = (wh,o{). Then the wreath product

of H and G, written as x1H { G, is defined as the group of permutations
{(h1y...,hiyg) : hay...,he € H g € G}. m}

The wreath product is associative in the sense that for G € Sym(Q), H <
Sym(ZE) and K < Sym(0), (Gl H)1 K is isomorphic to G} (H 1 K) and if we identify
the sets (2 x £) x © and 2 x (¥ x O), in the natural way, with Q@ x ¥ x O, then

they are identical. If we denote the cyclic group of order p by P, then the Sylow
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p-subgroups of the symmetric group on a set of p* elements can be identified with
P1P---} P, where there are k factors.

We give a description here that is logically equivalent with the above but is in
terms of the possible transformations of a series of mechanical structures (toys). The
toys are devices on which one can move around distinctly marked dots in a controlled
way. After finishing each movement, the each dot stops at one of the numbered
positions of the toy. A permutation corresponds to each possible transformation
(movement) that takes the number 7 to j iff the dot that before the move occupied
position ¢, is moved to position j. For each & we construct a toy Dy and a set of
permutations {r;,...,7} that will belong to elementary movements of the device,
and we will show that these permutations generate a Sylow p-subgroup of Sym(p¥)
by showing that the number of possible positions of the toy equals the size of that
Sylow subgroup. We will call this Sylow subgroup the canonical Sylow p-subgroup
P® of Sym(p*) and we will call the generators {ry,...,7:} the canonical generating
set for P(*¥),

The toy D, is a disk that has p dots on it, arranged at vertices of a regular
p-gon. The disk can be turned around an axle at its center and has stop positions at
angles divisible by 360/p degrees, so it can assume p different positions. The positions
are numbered 0,1,...,p—1, clockwise in cyclic order. The permutation 1, associated
with D, is (0,1,...,p—1), this corresponds to the turn of the disk clockwise by 360/p
degrees.

D;, for © > 2 is disk that can be moved the same way, but at the vertices of
the regular p-gon, instead of dots, it has a copy of a D;_, toy attached. So it has

disks of decreasing sizes, each of which can be turned into p different positions. The
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turn of a disk of course moves all the smaller disks attached to it. The smallest disks
have the dots on them (p* dots altogether) and the positions are numbered using the
following scheme. The positions of dots belonging to one of the second biggest disks
are numbered according to the numbering of D;_,. The numbering of the positions
belonging to the other disks are derived from this as follows. We assign the number
7P~ +m to the position where the dot covering position m would end up if we turned
the biggest disk by 360;/p degrees clockwise, not changing the relative positions of
the attached smaller disks (0 < i < p). The permutations associated with D; are
{r1,...,m}, where j% = j + p™!, where the addition is modulo p*. Sometimes we
will refer to 7 as the size of the biggest disk of D;. A D, toy for p = 3 is shown on
Figure 1.

We call a series of movements of the disks that are permitted by the constraints,
a transformation of the structure. These transformations correspond to permutations
of Sym(p*), and these permutations obviously constitute a subgroup. The size of this
subgroup is the number of different configurations, i.e the number of possible positions
of the p dots. Let us denote this number by m;. It is easy to find a recursive formula
for m;. For i = 1, the description of D; shows that my = p. For i > 2, we can turn
the outermost wheel into p different positions, and in each position we can turn each
of the p copies of D;_; into m;_; different positions independently, so m; = pm!_,.

-
The solution of this recursion is m; = p%. This holds for 7 = 1, and it is also
=1 _4 Eu'—l_l ' i= i
straightforward, that p(p 77 )P =p 71 P*! = p57 _ since %11-_1?4‘1 - P;Efi =
p=1
-1’

This computation shows us that the group corresponding to all possible positions

of the numbers on D; is a Sylow p-subgroup of Sym(p'), for the largest power of P
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in p'! is exactly m;. (The exponent of p in the prime power decomposition of n! is
|n/p] + [n/p?] +--- + |n/p*], where k is such that p*+! > n.)

The toy Dy by its construction immediately reveals the block structure of the
Sylow p-subgroups of Sym(p'). The points corresponding to any disk on D; are nec-
essarily moving together, constituting blocks. The disks with the same size constitute
block systems, these are organized to a hierarchy by the sizes of the disks. This hi-
erarchy can be depicted as a p-ary tree in which every node corresponds to a disk
(block) and each node is connected to those corresponding to maximal subblocks of it.
This tree is usually called a structure tree for the group. For p-groups, if we impose a
cyclic order on the nodes with common parent node, the group becomes a subgroup
of the automorphism group of its structure tree. In the case of a Sylow p-subgroup
of Sym(p') we have the full automorphism group, since in this case the tree and D;
are functionally equivalent (think of the axels of the disks in D; as the nodes in the
tree, the same cyclic order is imposed on the substructures in both cases).

It is also easy to see that the permutations {m,..., 7} constitute a generating
system for the group corresponding to I);. This is trivially true for ;. Now sup-
pose that all the possible movements of D;_; can be achieved using the elementary
movements corresponding to {n,...,7-1}. Then we can achieve every movement of
D; by first moving each of the size 1 — 1 disks in the position of the first one turn-
ing the biggest disk (this corresponds to a power of 7;), then rearrange the smaller
disks in that position using the inductive hypothesis. After we did this for all size
i — 1 disks, we can turn the biggest disk into its desired position, again using a move

corresponding to a power of ;.
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Normal Structure

From the theory of p-groups it is well known that they have normal series with
factors of size p, which is necessarily a chief series (see [Ha]). Here, and in the next
chapter we will see a constructive proof of this, using the permutation action (in
particular, block structure) of the group, to obtain a normal series that corresponds
to the block hierarchy, and then further refining it to get the whole chief series. It
is enough to show this for a Sylow p-subgroup of Sym(p*), since every p-group can
be embedded into direct products of such groups, since every transitive constituent
of a p-group is acting on a p-power number of points. For direct products, it is easy
to obtain a chief series from the chief series of the direct factors. Finally, if H is a
p-group and we have a chief series H = Ho > Hy; > - > Hp, = 1for H and G < H,
then, after removing duplicates GNHy > GNH; > ... > GN }.'Im =1 is a chief series
for G.

Let now P = P be the canonical Sylow p-subgroup of Sym(p*). We will
call the subgroup, that fixes all of the disks of size j (and therefore all of the disks
of bigger sizes) on the corresponding Dy, a level stabilizer. It is clear that a level
stabilizer is normal in P, because it is the kernel of the homomorphism that maps the
group corresponding to Dy to the one corresponding to Dy_; by identifying the size j
disks with the dot the number of which is 1/p’ times the smallest number belonging
to the disk. )

Let us denote the series of the level stabilizers of P = P® by P = P, > P,y >
...> Py = 1. Then the factors V; = P;/{P,_;,i=0,...,k — 1 are elementary abelian
p-groups, since they correspond to movements of the size ¢ disks on Dy, while the

bigger size disks are fixed. Since P contains the permutations corresponding to every



19

possible movement of the disks, and there are p*~* disks of size 7, the size of V; is L
Since V; is elementary abelian, it can be viewed as a vector space over GF(p), the
basis vectors being the permutations corresponding to transformations that rotate
one of the size z disks clockwise by 360/p degrees and fix all the other disks of size i.
P-normal subgroups that lie between P; and P;_,; correspond to P-invariant subspaces
of Vi, where the action of g € P on V is defined by (hP;y1)? = h?P;,,. It is easy
to see that this action is simply a permutation of the coordinates. To show this,
we have to show that all elements of a generating system have this kind of action.
For the canonical generating system, it is trivial: the generators ny,...,7iy; € Pipy,
7; turns the size ¢ disks not changing their positions, so conjugating by it fixes the
basis vectors. The rest of the generators, moving whole blocks, do not interfere with
with the amount of rotation on each disk on the ith level either, so they move each
basis vector to another. In the next chapter we will see a construction of P-invariant
subspaces of GF(p)”, via a basis that is easily computable and has additional useful

properties.
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CHAPTER IV

INVARIANT SUBSPACES OF GF(p)**

In Chapter III we saw that in order to refine the normal series corresponding to
the level stabilizer subgroups of P to a chief series, we need to find invariant subspaces
of V.= V) = GF(p)*" under the action of P, We also saw that P is acting on
this vector space as a group of linear transformations that permute the coordinates
of vectors written in a natural basis. We will denote this basis by eg,ey,..., e ;.
Our goal is now to find a series of subspaces V=V >V, >-.. > Vi = 1 and a basis
b, by, .. .,bpk_l such that V; = Span(b;, by, ... ,b,,k_,) and V; is invariant under
the action of P. In what follows, we identify the elements of GF(p) by the integers

modulo p. We define a series of linear transformations of GF(p)*, Ty, T2,...,T; by
enli=e,nforj=1,....kkm =0,...,p" — 1.

Here {r;,..., 7} is the canonical generating set for P**), defined in Chapter III.
These transformations directly correspond to the action of the canonical generating
system of P on V. In the following proposition we will denote the dot product of two

vectors u and v by (u,v).

Proposition 4.1
There exists a p* by p* matrix B® such that, if we define b; = f;};l B,-(";-) e;

and V; = Span(b;,b;y4,..., by_q) for i =0,1,...,p* — 1 then



a.) Vi is invariant under T}, for 1 < j < k,0<1i<pt
b.) {vi,v;) =0for v; € V;, v; € V; where i +j > ?*, but
(Vis vj) # 0 for vi € Vi\Viyr, v; € V\Viyy if i+ 5 = p* — |,

c.) BB~ = pt),

Furthermore, V; is the unique p* — i-dimensional subspace that has the

property in a.) .

Proof
The proof is a construction of such a matrix. We do the construction

recursively.
For k£ =1 let by = ¢¢ and let b; = b;_; — Tibi_; fori=1,...,p—1. This
is obviously a basis. Let the ith row of B = B(!) be the coordinates of b;

in the natural basis. In the following we show why the properties a.)-c.)

are frue.

a.) Vi = Span(b;,...,b,_;) is invariant under T}.

It is easy to see that b;[j] = ((—1) C)) mod p. Since for p prime

= (—=1)’ mod p,

(p—l) _(p=1)(p=2)--(p—3j)
3 ] 1-2.--3

by1 =(1,1,...,1). So for i = p — 1, the statement is trivially true.
Suppose that for j > i V; is invariant under T1. Then we show that
V; is invariant under 7} as well. It is enough to show that T1b; € V.

But this follows from the fact that b; — T)b; = bim€eVy,CV.

b.) About the dot products.



It is enough to show that the statement holds for the b’s in place of

the v's . So let i + j > p, we want to show that (b;,b;) = 0.

=g (Jer() - £ ()

o "l
hl:'? =(z.+.3)'50modp
] it

since i < p <1+ j and j < p and so there is a factor of p in the
numerator, but there is none in the denominator. (For the previous
well-known equality one can imagine how many ways one can choose
j balls from a basket of ¢ red and j blue balls, all distinguishable
from each other. The terms in the sum stand for the cases where {
red and j — ! blue balls were chosen.)
Ifi+j=p—1then (b;,b;) = (*;') mod p = (-1).

c.) B:=BW = BW™!
This is equivalent to B? = I. We use B;; for the jth coordinate of
b;.

o= g = S () () =B () ()

=0 1=0 1=0 AUSS

(Consider two methods of counting how many ways one can paint j
balls red and [ — j balls blue out of ¢ distinguishable white balls. The
first method is to select the [ balls to be painted first and then select
j out of the ! to be painted red, the second method is to select the
balls to be painted red and then the balls to be painted blue. Also
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note that (—1)"* = (—1)*-9.) So

(g ()

Now the sumis 1 if i = j, 0 if ¢ < j because in this case each term
is 0, and it is just another expession for (1 —1)~7 if £ > j
So B,?'J- = (;) b;,; = 6; ;, where 6 is the Kronecker symbol, which shows

that B2 =1.

Vi’s are unique.
Suppose W is a T invariant subspace of V = GF(p)?. Since
bg, - -+, b,y constitute a basis for V, each vector in W is expressible
as wobg+.. .+ wp_1b,_1. Let i be the smallest index, for which there
exist w € W such that w; # 0. Clearly dim(W) < p - i{. We show
that W must contain b;,...,b,_1,s0 W D V;, and since V;isa p—1

dimensional subspace of V, it follows that V; = W.

w; = w =wib;+ -+ 4wy b,.y €W, s0
def
Wip1 =  wi—Iw;  =wbya 4+ +wpab,n; € W0
o —T = w;b 1b W
Wp—2 = Wp_3 1Wp_3 = WiDp-2 + wip p—1 € y SO
def
Wp_1 = Wp_3 — lep_.g = w,-b,,_l (S W,

so b,_y € W (since w; # 0) and from this and the last but first line

above it follows that b,_, € W, etc.
Remarks:

(i) In the proof of c.) it is not important that p is prime.



(ii) b.) remains true if we substitute p by some ¢™ where ¢ is prime and

we write modq whereever we had written modp in the proof.

(1i1) The transformation I — T} takes each but the last basis vector to a
higher indexed one (namely to the next one) and takes the last one

to 0.

Now let us concentrate on the £ > 1 case. The construction is the follow-
ing. Suppose we already constructed (using this recursive procedure) the
matrix with properties a.)-c.) for GF(p)**”" and the basis corresponding
to it is bt(,k-l),. .. ,bgf,:})_l. We construct bl(,k), e ,bgﬁ)_l as follows:

if pli then let

(k 1} k=1
ifg <
bgk)[ﬂ = '/p Ul Ier

0 otherwise
and if pfz then let
K k
b = biZ) — Tebi2).

We observe that this construction is the equivalent to

b[s] = b7 mod p*1 b4, [Li/2* ],

because T; moves around the coordinates, that have the same index mod-

k-1

ulo p, in a p-cycle. (in particular, the first p°' coordinates of each bfk)

vector constitute a copy of b“ p| and ka( ), = bf:_l fori=1,...,p*1).

IP—

a.) By induction on k we show that for each of the transformations
Ti,..., Tk, I —T; takes bgk) to some bfk), where [ > 1, or to 0. This

is enough, since then ijgk) € V; following the argument of the proof
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for the k = 1 case. The base case for the induction is the £ = 1 case,
for which the statement holds. Suppose it holds for £—1 and consider
b{,.. ., bgf,)_l. (1 =T = bgf_)l if i+ 1 |p and O otherwise follows
directly from the construction. For j < k observe that (I — Tj)bs")
is the same vector as (7 — T-)b(lf/;lj) augmented with p* — p*=! 0
coordinates. Since by the inductive hypothesis (I —T; )bl /o) }is either
0 or some b{*™") for some ! > [#/p], the augmented vector is either

0 or some b,p , where Ip > 1.

For the proof of b.) and ¢.} we introduce another basis for GF(p)?"

Let ag“) = eg and a,(k) = agf}l - S(")a‘(-f)l, where S*)(e;} = e;41, where i + 1
is taken modulo p*. It is not hard to see that a;[j] = (— 1)’() mod
p. In fact alV = b, Let A(k) = a*[j], then for £ > 1 A(k} =
Ai(fn;?p,‘_, Jmodp"‘lAE}p"'l L/t To show this we prove by induction

on k the last row of A¥) consists of all 1’s. It is true for & = 1, since

AN = B, Suppose that the last row of A*~*) consits of all 1’s. The

first p*=! rows of A(¥) are the rows of A*-1) augmented by 0’s. Therefore
1 ifj=0
ARL =4 -1 i =p

0 otherwise

k—1

In the next pF~! rows we will have a copy of A%~ then a copy of —A(-1),
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followed by all 0’s. In the next row we have:

I ifj=0

_ | -2 if j =pt!
L=

1 if j = 2p*!

0 otherwise

From this we can see the pattern. Each p*-! by p*=! block of AW s a
copy of A¥=1) multiplied by a constant, which is in the upper left corner
of it. The series of these constants equals a row of A1), By the induction
hypothesis, this constant will fill up the last row of the block, and the
upper left corners of the next row of blocks will be filled up with the
numbers from the next row of A(1), Since the last row of A is all 1’s, so
is the last row of A®), Now ifi = T pF 14 +i1p+ig and § = jr_,p*F 14
-+++ 71p+ jo then it follows that ASfj-’ = Al(:,)jnAt(ll.)jz e A'(.:ll-jk—l Similarly,

for B® from observation after the description of its construction it follows

that B,-(";) = B!:L :joB'(J;Ilzujl e Bf:'{,-k_l and since A = B{!) we can see that
a*) = b%) where f is the permutation of {0,...,p* — 1} which switches
a number with its reversed in base p (using leading 0's where necessary).
It is immediate from the above equations from Ag? and B}";) that A,(-‘k_,-) =
AS‘?)J(;‘) and BYY) = B}?E)J(i) or, in matrix form FI AR FK) = 408 5n9
FRBW®F® = B where F*) is the permutation matrix corresponding

to f. Since f is an order 2 permutation, F)™! = p)T = FO) After

this it is easy to prove the remaining:

b.) Using the above notation, we have to prove that B® BT is a matrix
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that has all 0’s under its secondary diagonal and nonzeros in the
secondary diagonal itself. For ABAWT it 45 5 slight generalization of
what is in the proof of b.) for the k=1 case. On the other hand A =
BRF®, g0 AT = FBBRT 55 AW AWT = B PR ptt) T _

B(")B(")T, so the above applies to B(")B(")T, too.

c.) Again, the proof for A®)? = T iz the same as for the k = 1 case and
BR2 = AR p(F) 4(R) f(8) — A(R)? gince F) AR plk) — AlR)

Uniqueness of subspaces:
We will show this by induction, too. The basic observation is that
for each b;y(i = 0,...,p* — 2) there exists some j = ¥ (3) such
that T;b; = biyy. For k=1 this is the case with j((i) = 1. For
k>1,p )i+, j®@E) = k from the constm;ction, otherwise
79¥)(#) = 7¢=1(|i/p]). From this following the argument of the proof

for the & =1 case, the uniqueness of the chain of subspaces follows.

]

In [LRW2] there is another, shorter proof of this proposition that is based on a

different numbering of the coordinates.

Application to the Level Stabilizer Factors

Let P be the canonical Sylow p-subgroup of Sym(p'-‘). As we saw in Chapter III,
we can map the factors of consecutive level stabilizers of P, V; = P;/ P4, to GF(p)"",
t=0,1,...,k —1, via observing the amount of rotation on the size k — i disks on
the corresponding toy. In Sym(p*), because of the numbering of the positions on the

toys, this means that the jth coordinate of the vector corresponding to hP,y,, can be
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computed using the following formula:

k—i )h - J'pk—i
pk—i—l

vei(h)[5] = L(j” | forj=0,1,...,p' = 1.

Here we identify the elements of GF(p} with the integers modulo p. We prove the
correctness of the formula by induction on k. For k = 1 the only possible value for
both z and j is 0 and the formula obviously gives the amount of turn on the only
disk. For k& > 1 and ¢ = k —~ 1, the denominator is 1 so we have to prove that
the amount of rotation on the jth size 1 disk in the transformation corresponding
to & is vee_1(R)[7] = (§p)* — jp. It is easy to see from the numbering process
that the smallest number on that disk is jp. Since all bigger disks are fixed by A,
0 < ver—1(R)[7] < p, so this number is the amount of rotation of the disk. Fori < k—1
we can think of the size 1 disks az dots on a Dj_; and the label of a dot corresponding

to the size 1 disk B is |m/p|, where m is the Di-label of any dot on B. Now

— k—ih
k—l—i) k—1—% k—i)h

: TN i —; lh%)_.]_- k=1=i : ke
vii()l] = veera(B)lj] = |edd—] = P = = ()
where  denotes the action of & on the labels assigned to the size 1 disks by the above

scheme, i.e. m* = [!—’EEL"J.

The final observation that we want to make here is that there is a direct cor-
respondence between the action of the canonical generators of P that do not fix V;
(i.e. Tk—i41,...,7k) on the elements of V; and the transformations Ty,... , I;, in the
sense that T; permutes the coordinates of vy, € V the same way as Tk-i+j permutes
the blocks corresponding to the size k — 7 disks. Let o : P,/ Py, — GF(p)”i be the
homomorphism for which o(hP;y) = vy = Z;-’:ol vi[flej. Thenif P, > N > Py,
N a P if and only if ¢(N) is invariant under the linear transformations Ti,...,T;. As

we have shown that there is a unique series of such subspaces, we can conclude that
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there is a unique normal series for P refining the level stabilizer series into a chief
series.

Let B = No > Ny > -+ > N, = Py, the part of the chief series of P between
two level stabilizers. Then for any A € P; we can tell which is the smallest N; that

still contains h by expressing its image in GF(p)? as

pl
Vi = Z C[bj.
=1

I j is the smallest index for which ¢; # 0 then h € N; but h € N,4,. To compute the
¢i’s we have to multiply the coefficient-vector of v, (expressed in the natural basis) by
BH™" = B o get the coefficient vector in the b-basis. There is, however, another
step by step method for this purpose. Suppose we know already that A € N; and
we want to check whether 2 € Nj;;. In this case, we can simply compute the dot
product @ = (v, byi_;_1). Then a = 0 exactly when k € Nj4;. Moreover, if we have

n; € N; \ Njyy such that (an,bpl_j_l> =1, then hn;“ € Nj;.
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CHAPTER V

DATA STRUCTURE FOR. p-GROUPS

In this chapter we will describe a data structure for permutation p-groups that
corresponds to a chief series and provides a useful framework for algorithms that
exploit that kind of series. The structure builds on the permutation action of the

groups and uses the linear structure of the elementary abelian factors introduced in

Chapters III and IV.

Definition 5.1
Let G be a group with a series of subgroups G = Go >G>+ >
Gy =1. Let § = {91,92,.-.,8:} C G be such that (G:in S) = Gy for

1 =0,1,...t, then we call § a strong generating set relative to the series.

Ifg; € Gjand i < k < rimply g, € G, then we call (91, 92,---,9:) a

strong generating sequence relativeto G = Gy > Gy > --- > Gy=1. O

For our data structure we will make use of a normal series of G that natu-
rally arises from the permutation action of any permutation group. For intransitive

groups, we show how to obtain a normal series using normal series for the transitive

constituents.

Lemma 5.1

Let G < Sym(Q) be a permutation group and let A, and A; be disjoint

G-invariant subsets of (). Let N « G®2, and let H < & be the subgroup
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that fixes all the points in A;. Then M = {9 € H:g|a,€ N} is anormal

subgroup of G.

Proof
M = HN K, where K is the kernel of the natural homomorphism from @
to G®2/N. Since H is the kernel of the natural homomorphism from G to

G2, both K and H are normal and therefore so is their intersection. O

This observation gives us a way to compute normal series based on the or-
bit structure of the group G and normal series for the transitive constituents. Let
Ay, ..., A be the orbits of G and let G; be the subgroup of G that fixes all points in
the sets Aq,...,A;, then G = Gy > G, 2 -+ 2 Gy =1, is a normal series for G and
it can be further refined using Lemma V.1.

For transitive groups any block system provides a normal subgroup, namely the
kernel of the action on the blocks. Thus, a hierarchy of finer and finer block systems
provides a normal series. For the p-groups we will further refine this series.

The data structure that we will use for the p-group G, will consist of two series.
Ore is a series of strong generators for the chief serjes G=Ge>G > >G =1
that we get by refining the normal series defined by the orbits of G using the normal
series obtained for the transitive constituents, utilizing the results of Chapters III and
IV. The other part of the data structure is a series of homomorphisms from the level
stabilizers of the transitive constituents into the vector spaces GF(p)”k. These maps
will allow us to use vector space computations to decide whether a given ge Piisin
Fiy1 and if not, which power z[" of the corresponding strong generator z; should be

factored out of it so that the residue, 27™g, is in Pi,.
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In order to use the results of Section IV, we should embed each transitive
constituent of G into the canonical Sylow p-subgroup P < Sym(p*). This means
that we should assign labels to the points of the orbit A from the set {0,1,...,p* -1}
so that the action of G’ on the labels is a subgroup of P*). We will do this recursively.
Let I(w) denote the label of the point w € . For k = 0, the labeling is obvious: label
the only point w € Q with 0. For k > 1, first compute a maximal block, A,, and
generators for H = Gf‘&l}. Then label the points in A, recursively with the numbers
{0,1,...,p*"1 — 1} and fix gx € G\ G{a,} Label w% with l{w) + jp*-!, for w € A,
and =1,2,...,p—1.

With this labeling, G4y is acting on the labels as a subgroup of P{(g....,p"-'}}’
the subgroup of P*) that setwise fixes the block {0,1...,p*~? —1} (and therefore all
blocks {7p*=1,7p* ' +1,...,(j + 1)p¥' =1} for j = 0,1,...,p — 1). We show this
by induction on k. For k& =0 it is trivial. Let us suppose that for j < k this labeling
gives the desired result. We want to show that if |A| = p*, G{a}, labeled by the above
algorithm, acts on the labels as a subgroup of the canonical p-subgroup of Sym(p*).
The action on A, has this property because of the inductive hypothesis. The actions
on the other blocks can be obtained by conjugation by gi and 7{, respectively, and
both of these transform the labels of A; the same way. It remains to be shown that
gx’s action on the labels is in P(F). To see this, observe that 77 lg, fixes all labels
> p*71, while for the labels in {0,...,p*"! —1} the action of it is the same as that of
gi- Since g} fixes A, gf | Ay acts on {0,...,p*'} as an element of P*~1), Therefore

77 gr € P which means that g's action on the labels is indeed in P}, too.
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Computing the Series of Maps

Let G = Go > Gy 2 -+ 2 G, = 1 be a chief series for G obtained by the
procedure described above, that is, this series is a refinement of the orbit stabilizer
series using the embedding of the transitive constituents into the canonical Sylow
p-subgroups for obtaining normal series for the transitive constituents, Then each G;
fixes all the points in the orbits A;, Ag,...,Aj;)—; but not Djiys Bl = g, the
group G2i9 is embedded into the canonical Sylow p-subgroup P*) of Sym(p*®)
and for the ima.gc‘e H; of G? P, > H; > P,, where P, and P, are successive level
stabilizers in P, with P/P, = V. = GF(p)*¥), where j(i), k(i) and d(i) are
defined by the above.

The homomorphisms that map the elements of each G; into the corresponding
vector space V(i) can be computed as maps o; : G; — V(). The computation of o(g)
is done in two steps. First, map the points of A;;) to the labels {0,1,...,p*® — 1}
as shown above, call this map 6 : A;i — {0,1,...,p*) — 1}. Then compute the
coordinates corresponding to 6(g), using the formula from Chapter IV. The first part
of the computation is meaningful for all g € G, but the second part makes sense only
if g is in the level stabilizer corresponding to Gi.

For the first part, 0 can be represented as two arrays. One holds the values §{wy,)
for wm € Aj(;), the other for the inverse images 8='(m) for m = 0,1,...,p*() — 1.
Then the action of ¢ € G on these labels can be computed by using two table look-ups
per point in addition to the computation of the action of g (which is another table
look-up if we use the usual representation of permutations).

For the second part, we use a constant number of arithmetic operations per

coordinate.
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Note that when we want to compute the vector representation of some gh™,

g, h € Gi, 0 < m < p, where we know veclor representations for ¢ and h, we do not
have to starl from scratell, since g, is a homomorphism, so Ughm = vy + mug. This
observation is very useful to speed up computations while still working in the same
vector space. We need Lo recompute vectors only when crossing the level stabilizer

boundaries.

Computing the Series of Strong Generators

Let P be the direct product of the canonical Sylow p-groups corresponding to
the orbits. Then for P we have the chief series without much computation, because
we can compute permutations corresponding to vectors by observing the movement of
the labels on the toy, turning the disks according to the coordinates of the vector, and
we have to use the row vectors of the appropriate B} matrices, to get inverse images
of the P-invariant subspaces. Lel us denote the chief serjes of Pby P=F>P >
-y Pr=1,then |P,/P.yy| = p, so for any piy1 € B\ Py, P = (piy1, Pi41), therefore,
for gencrating the P’s, it is enough to have the inverse image of the generators of the
invariant subspaces.

Il G is embedded into P by the injection ¢ : G — P then for H = o(G)
we can get a chiel series for /1 by considering the distinct subgroups in the series
Ho=HnNPR>H=Hnp>.. 2Hi=HNOPF =1. Let hy, € H\ Hi if
Hi > Hipy, then by, € P, \ P41, too, so we can replace pi4q by hiyy in the strong
generating sequence of P, and we stil] have a strong generating sequence. This shows
that either H, Py, = Py, in which case we say that H covers the factor Pi/Piyy, or
(HOP)\ Pyy =0 in which case we say that I avoids that factor.

If we have a sequence 4, ho, ..., ke, such that ki = 1if H avoids P/ P,y and
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hiy1 € Hi\ Hiz1 if H covers P;/Pi,,, then we can use this sequence to sift through
H, i.e. to determine whether ¢ € P is in H or not. Figure 2 shows the algorithm.

If the algorithm returns true then g = A" A% - - - A™ where for the m;’s not defined

{input: A strong generating sequence for H,
(hty..., 1), and g € P}
{output: true if g € H, false otherwise}
begin
t:=1
whilei <tand g #1 do
if h; =1 and g € P, then return false
Compute m; such that h;™g € B,

g:=h"g
return true
end.

Figure 2: Sifting using a strong generating sequence

by the algorithm we can use any integer, since then h; = 1. This shows that if the
algorithm returns true for g then ¢ € H. On the other hand, if the algorithm returns
false then there is h € H such that gh € Pi_; \ P; and H avoids the factor P._,/P;,
which means gh € H, that is, ¢ € H. We can compute m; by computing the vector
representation of ¢ and taking the leading coefficient of it, provided that the vector
representation of #; has leading coefficient 1.

Now imagine that we have a series hi, ha, ..., hy such that h; € (H N Py \
P)u {1} for i = 1,2,...,1, and we want to show that this is a strong generating
sequence for H, that is, the distinct elements of the series Hy > H, > --- > H,,
where H; = (h;41,...h.), constitute a chief series for H. For this, we have to show

that H; « H and that AY € H; for i = 1,2,...t. The first condition means that we
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have a normal series, the second, that for the nontrivial steps, i.e. when H;_, # H;,
|Hi-1 : Hi| = p. To verify that these conditions are satisfied, we have to sift A?,
for each generator z of H (using any generator set for H) and for each 7 = 1,...,¢
through the series for H;_;, and sift kY for each ¢ = 1,...,t through the series for H;.
H everything sifts through, we have a strong generating sequence.

We can use this sifting proof with a slight modification to obtain the strong
generating sequence from a set of generators for H. Start with a sequence of all 1's
and a stack containing the generators of . Modify the sifting procedure of Figure 2
so that instead of returning true, it returns ¢ + 1 and instead of returning false, it
inserts the current value of g into the sequence and returns the position of the failure.
Let us call this event “g got stuck at level i”. In this case, push A to the stack along
with hf, for all generators z of H, noting that the sifting should start at level ¢ and
t — 1, respectively, this is because we know that the stuck element is in P._, which is
normalized by H. Repeat the process with the first element on the stack, until the
stack gets empty. Figure 3 shows the algorithm. When this algorithm finishes, we
have sifted all the elements necessary to check for proving that the “stuck” elements
constitute a strong generating system for H. If we have had started with what the
procedure returned, everything would have sifted through, since in this case the stuck

elements would have been multiplied by their own inverse in the process.

Complexity

The number of elements that get stuck is exactly the length of the chief series
for H, that is O(n), if n denotes the size of the permutation domain. Therefore we
sift O(ns) elements, where s = |S|. Each sift costs O(n?) work, because it takes

O(n) work to get from one level to the next and there are O(n) levels. To compute
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{input: H < P, given by the generating set S
P has chief series P=FPy> Py >---> P =1}
{output: a strong generating system for H}
begin
T := emptystack()
(hhhg,...,hg) = (1,1,...,1)
for all z € § do push((z,1),T)
while T is not empty do
(9,7) := pop(T)
1= Sift(g)ja (hl: h21 LRy ht))
ifi#1t+1 then
{ sift() already inserted the new strong generator &; }
push((hf,i+1),T)
for all z € S do
push((hi,1),T)
return (hq, ha, ..., k)
end.

Figure 3: Computing the strong generating sequence
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the maps to set up the structure takes O(sn?) time, including finding orbits, blocks,
and the embeddings of the transitive constituents into the canonical Sylow p-groups.

Therefore the whole complexity of the computation of the strong generating sequence

is O(sn®).
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CHAPTER VI

RECOGNIZING NILPOTENCE OF PERMUTATION GROUPS

In the previous chapters we developed a data structure that can be used for P
groups, and we will see that it can be used for fast algorithms dealing with nilpotent
groups. In order to use these algorithms, however, we have to be sure that the
groups to which we want to apply them, are in fact nilpotent. In this chapter we
will see a very fast way to answer this question by basically just looking at the
generators of the group, computing only orbit and block structures. The tests are
fast by both theoretical and practical measures, much faster than computing the size
of the group. Thus we can use these tests to decide whether we are able to use the
faster nilpotent group algorithms, or we should fall back to a general algorithm. As
nilpotent permutation groups are direct products of their Sylow p-subgroups, testing
a group for nilpotency can be done by using this property.

The idea of using the orbit/block structure of groups for reducing the testing
problem to the primitive case is not new, e.g. McKenzie uses it to prove that the
problem of testing whether a group is a p-group is in NC [Mc]. Here we provide
details of a test that runs faster than the algorithm for finding a block system (for
the transitive case).

The material presented in this chapter has been published in [R4) .
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The p-Group Test

The Algorithm

Let p be a prime. In this section, we characterize transitive p-groups and de-

scribe an algorithm for their recognition.

Lemma 6.1

Let G be a transitive permutation group. Then G is a p-group iff

1. G has a p-element block system A = {A1,4,,...,4,}
2. G acts on A cyclically

3. If G, is the subgroup of G that stabilizes the blocks in A then GM

is a p-group

Proof
We have already seen in Chapter III that a transitive p-group has the

stated properties.

To show that (1)-(3) implies that G'is a p-group, it is enough to show that
(3) implies that not only the action of Gy on Ay, but the subgroup itself is
a p-group. This follows from the fact that the action of G on each of the
other blocks is isomorphic with its action on A; (by conjugation via an
element of G that maps A, to the given block), so Gy, being a subgroup

of the direct product of p-groups, is a p-group. o

Combining this with the added observation that if G is transitive, then the

action of G, on A; is also transitive (because if an element of @ takes w € A to
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T € A4, that element should be in Gy, since from (2) it follows that if an element of
G stabilizes one block, it stabilizes all of them), we get that the algorithm shown on

Figute 4 tests whether (the transitive) G is a p-group. Some details are explained in

the following subsections.

IsTransitivepGroup(S)

{input: G, e transitive permutation group on
{wi,...,wu}, given by a set of generators S}
{output: true if G is a p-group, false otherwise }

begin

if G is the trivial group (i.e. k=0) then return true

if £ =1 then
if IsCyclic(G) then return true
else return false

A:=MaximalBlocks(S5)

if Size(A) # p then return false

Let g € S be the first generator that does not
stabilize A,

if g does not permute the blocks cyclically then
return false

for each generator g; € S do
Find I such that ¢'g; stabilizes A;
if g'g; does not stabilize the other blocks then

return false

Let S be the set of (Schreier) generators for the A-
constituent of the subgroup of G that stabilizes the
blocks

return IsTransitivepGroup(S5)

end.

Figure 4: Algorithm for testing whether a group is a p-group
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Finding Maximal Blocks

The algorithm on Figure 4 calls the procedure MaximalBlocks, which is sup-
posed to return a block system consisting of maximal blocks, if the group generated
by S was a p-group, and any system of blocks otherwisg. The best result known for
finding a nontrivial block system for an arbitrary group is ©(|S|n?), and there is an-
other algorithm of Beals that runs in time O(n log® |G|), which is O(n log® n) for “small
base” groups, that is for groups that have a base of size less than log® n [Be]. Schénert
and Seress [SchSe] report a similar result, with implementation of the algorithm in
GAP. They state that they find a minimal block in time O(n log® |G| + nslog |G]), s
being number of generators.

Unfortunately, p-groups do not fall in the small base group category, as the base
for a p-group on p* points can be as big as p*~!.

Atkinson’s test of primitivity [At] involves an algorithm (we will call it
Blocks(S, A)) for finding a block system in which one of the blocks is the small-
est block that contains the set A (see [Bu] for practical implementational remarks).
Therefore, if we know that there exists a nontrivial block that contains the points of
A (|A] > 1) then Blocks(S, A) will return a system of nontrivial blocks. The run-
ning time of Blocks is O(a(n,4|S5|n)). Here a(z,y) denotes the time required for
Union and y Find operations in a Union-Find data structure, the asymptotically best
implementation of which runs in time O(z log*(z +y)) (see [Tar], he proves an asymp-
totically somewhat stronger result in terms of the inverse Ackermann function, we use
log™ here for easier formulation of the final time bound). An implementation of the
algorithm can be found in GAP [Sch] (namely Blocks(< G >,< D >, < seed >)).

The following proposition provides foundation for finding a suitable set A:
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Lemma 6.2

Let G be a p-group acting transitively on the set 1. Let g,2 € G. Then
the blocks in A of Lemma 6.1 are stabilized by [g, £].

Proof
The action of G on A is cyclic, so the action of the commutator is trivial.

That means that each orbit of [g,%] is entirely contained in one of the

A’s. (]

So, taking the points of any nontrivial orbit of the commutator of any two ele-
ments of a transitive p-group will provide us with the seed for Atkinson’s algorithm.
If we find two elements that do not commute then the commutator will have a non-
trivial orbit. However, we do not have to find two noncommuting elements to find
blocks. If we have an element z of the centre that does not generate a transitive
subgroup, the orbits of (z) constitute a block system, since () is normal. Finally, if
we find a central element z that does generate a transitive subgroup of size greater
than p then the 2P will generate a nontrivial nontransitive normal subgroup.

Figure 5 shows the. algorithm for finding a system of maximal blocks for p-
groups. It will return a system of blocks in the non-p-group case, too, but that
system might not consist of maximal nontrivial blocks. Note that MaximalBlocks

is never called with G being a p-element group, except for the recursive call in it.
Timing

In timing arguments, n will always mean the size of the permutation domain,
and we will use s = |S|. First, we give the timing for MaximalBlocks. Finding

whether there is an element in the generating set that does not commute with the first
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MaximalBlocks(5)

{input: @G, a transitive permutation group on
{wiy...,we}, given by a set of generators S}
{output: A nontrivial system of mazimal blocks, if
G is a p-group, a (possibly trivial) system of (not

necessarily nontrivial) blocks otherwise }

begin

if £ =1 then return {{w1}, {w2},...,{wp}}
Let g be the first element of S.
if 3h € S such that [g, k] # 1 then
g:=[g,h]
LetA be a set consisting of the points in a nontrivial
orbit of g
A := Blocks(§,A)
else
if ord(g) = p* then g := g”
A := Orbits({g))
if |[A| < p then return A :
Let T be a generating set for the action of G on the
blocks in A
I’ := MaximalBlocks(T)
Unify the blocks in A that are in the same block in T’
return the resulting block system
end.

Figure 5: Algorithm for computing maximal blocks for a p-group
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generator costs O(s) permutation multiplications and inversions, so it takes O(sn)
time. If we find such an element, the call to Blocks takes O(a(n,4sn)) time, in the
other case the call to Orbits takes even less, O(sn). Computing a generating set
for the action takes O(sn/p) time, and the unification of the blocks at the end takes
O(n). The recursive call is with input size at most 1 /p of the original input size, so
the whole procedure takes O(c(n,4sn)) time.

For IsTransitivepGroup, in the nonrecursive case it takes O(sn) (in this case
n = p) time to find out whether S generates a cyclic group. As we saw, Maximal-
Blocks takes O(a(n,4sn)). To check whether a generator permutes the blocks cycli-
cally, costs O(p), and for each generator in the for loop finding ! takes constant time
since we could mark the blocks with the power of g that moves the first block there
while checking whether g permutes the blocks cyclically. Then finding out whether ¢'g;
stabilizes all of the blocks takes O(p) time again, giving O(sp) cost for the for loop.
Finding the generators for the A;-constituent of the subgroup stabilizing the blocks is
tricky, but it can be done in time O(sn). These generators are the Schrejer generators
for Gy (that are of the form g*s(¢=*)™, 0 < k < p and m such that the product setwise
fixes the blocks), restricted to A,. First, we compute where ¢* moves the points of A,
for 0 < k < p, and at the same time we mark 69° with 6, this way we can tell with a
couple of table lookups §7°9™"}™ with the appropriate m, for each § € A. After this
preprocessing (which costs O(n)) we can compute the A;-constituent of the Schreier
generators in the time necessary to write them down, i.e. O(sn), since there are at
most ps of them, each being of size n/p. Since we have a recursive call, this gives us
the following recursive formula for the timing: T'(s, p*) = T(ps, P*1)+0(a(p*, 4sp*)).

Since afp*,4sp*) > a(p*~!,4psp*~1), and the right hand side term will appear when
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we express T'(ps, p*~1), we get T(s,n) = O(log na(n,4sn)).

The Nilpotency Test

The Algorithm

As in the p-group case, first we characterize transitive nilpotent groups in a
way that directly leads to our recognition algorithm. A nilpotent group is the direct
product of its Sylow-p-subgroups, so in particular, let G be a nilpotent group, then
G = P x P, where P is a p-group and P is a nilpotent p’-group (a p’-group is a group
the order of which is not divisible by p). Furthermore, if G = (S}, and for g € G we
define g, and g, the following way: let us denote the order of g by o(g); if o(g) = p*r,
where p does not divide r, then let g, = ¢" and let g,y = g**, then P = ({sp:s€8})
and P' = ({sp : s € S}). Trivially, both P and P’ are normal in G.

If, in addition, G is transitive, then the orbits of both P and P’ are blocks for
G. The lengths of the orbits of P are p-powers, and the lengths of the orbits of P’
are not divisible by p.

Figure 6 shows the algorithm for testing nilpotence.
Correctness of the Algorithm

Lemma 6.3
The function IsTransitiveNilpotent returns true for all nilpotent groups

and false for all others.

Proof
By the characterization given above, IsTransitiveNilpotent returns true

for all nilpotent groups. The only thing to show is that if the function
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IsTransitiveNilpotent(S)

{input: G, a transitive permutation group on
{wi,...,wa}, given by a set of generators S}
{output: true if G is nilpotent, false otherwise }

begin

if n =1 then return true

Find a prime p that divides n

if n = p* for some k then
return IsTransitivepGroup(G)

Compute the p and p’ parts of the generators,
P and P’

if the orbits of (P) do not form a block system for G
then return false

if the orbits of (P’) do not form a block system for G
then return false

if the length of an orbit of {P) is not a p-power
then return false

if p divides the length of an orbit of {P')
then return false

Let T be a set of generators for the action of G on
the orbits of {F)

Let U be a set of generators for the action of G on
the orbits of {P')

return IsTransitivepGroup(T) and

IsTransitiveNilpotent(U/)
end.

Figure 6: Algorithm for testing nilpotence
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returns true, G' was in fact a nilpotent group. To show this, it is enough
to prove that if the function does not return false, then G is the direct
product of P and P'. Since the orbits of P (P') are blocks for G, P
(P’) is contained in the normal subgroup that stabilizes those blocks. Let
us denote this normal subgroup by N (N'). Now (N,N') = @, since
(P, P'}y = G. On the other hand, M = NN N’ is normal in N (N). So for
each orbit of N (N'), the restriction of M to that orbit is normal in the
restriction of N (N') to the same orbit, hence the orbits of the restriction
of M are blocks for the restriction of N (N'), so the size of them divides
the size of the orbits of N (V! ). Finally, since the sizes of orbits of N and
N' are relatively prime to each other, we can conclude that M’s orbits
are of length 1 which means that M is the trivial group,so G =N x N/,
But P< N, P SN, (PPY=GNNN =1 implies that P = N,
P =N, O

Timing

Factorization of n is O(y/n log? n) (even by the brute force method). The p-
group test is in O(logn a(n,4sn)) as shown above. Factoring the generators seems
to require to compute the order of them, which can be a large number in the general
case, but for a transitive nilpotent group it is a divisor of n. (For p-groups it follows
from the fact that each cycle of an element of a permutation p-group has p-power
length and n = p*, and if we have a nilpotent group that is not a p-group then we can
factor it to a p-group acting on p* points and a nilpotent group acting on r points,
where n = pfr.} So we first check whether g" = 1 for each generator g. This can

be done in O(nlogn) time per generator. If any of them fails the test, the group is
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not nilpotent, otherwise, we can do the factoring in O(nlogn) time. Computing the
orbits is O(sn). Checking whether a given partition is a block system uses O(sn) time.
Computing actions (given the block system) costs O(sm) where m is the number of
blocks. The call to IsTransitivepGroup takes time O(ka(p*,4sp*)), and finally,
the recursive call is made on an input sized at most 1 /p times the original input size,
so it only affects the constant in the timing of the whole algorithm. Thus, we can
conclude that the complexity of the whole algorithm is O(logn a(n,4sn)), just as it

was for the p-group case.

Implementation

We tested our algorithm by programming it in GAP [Sch], running on a Sun
Sparcl0 computer, under the operating system SunOS 4.1.3. Since there is no function
in GAP that tests whether a group is p-group or not (although it is easy to write —
one can just factors the size), we compared the nilpotence testing functions. GAP’s
IsNilpotent function computes the lower central series of the group and returns true
iff the last element of that series is the trivial group.

The tests were conducted for both nilpotent and non-nilpotent subgroups of
Sym(100). The nilpotent groups were éubgroups generated by 2 or 3 elements of
direct products of a p;-group and a p2-group, acting on disjoint sets, having the
direct product act on the union of the two domains. Other nilpotent groups were
cyclic groups and p-groups. We measured GAP’s time after the computation of the
point stabilizer series. We found that for the cyclic groups, GAP gives a result sooner,
but in all the other cases we found our program working faster, our test never took
longer than 2 seconds, while, for example, it took more than 5 minutes for GAP to

compute the lower central series for a Sylow-2-subgroup of Sym(80). For smaller
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groups the times were closer.

For non-nilpotent groups, we used wreath products of p-groups with the 2- or
3-element group and the primitive groups from GAP’s group library (which contains
primitive groups on up to 50 points). For these groups, our algorithm showed to
perform even more favorably: for similar size groups it gives a rejecting result even
faster than an accepting one, while it seems that for GAP it is harder to reject than

fo accept.
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CHAPTER VII

SOME ALGORITHMS FOR NILPOTENT GROUPS

In this chapler we will see some examples where the data structure that we
presented in Chapter V is a natural one to use. We can decompose nilpotent groups
into the direct product of their Sylow p-subgroups, as we saw in Chapter VI. For
the problems in this chapter, the answer is always the direct product of the answers
involving the p-components, so we will present the algorithms for p-groups.

The material presented in this chapter has been published in [LRW2] .

The Normalizer Algorithm

The Problem

Given K < Sym(Q), K nilpotent, and H < K, G < K. Find Ng(H) = {g €
G: H = H}, the normalizer of ¥ in G.

If K = Ky x K; then H = H, x H; and G = G, x G, where Hy,G; C K; and
H, Gz C K and for (hy, h2) € Hy x Hy and (g1, 92) € Gy X Gy we have h? = (h$!, k%),
and Ng, xg, (H1 X Hy) = Ng,(H,) x Ng, (Ha), so we can indeed decompose this problem

to the p-components.
The Overall Design of the Algorithm

From here on we will describe how to solve the normalizer problem for p-groups.

Let therefore K be a p-group for some prime p and H,G < K. Let furthermore K
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have the chief series K = Ko > Iy > -+ > K, = 1, that is K; a K and |K;_,/K;| = p
for ¢ = 1,...,t. Then this is necessarily a central series, i.e. for k1 € K; and
k € K, [kit1,k] € Kips. This is a consequence of the fact that the action of K by
conjugation on the factors K;/K;,, is necessarily trivial, since it necessarily fixes one
of the p cosets (the one that contains the identity) and then there is no room for an
orbit of length p on the remaining p — 1 cosets.

We define a series Hy > Hy > -+ > H, for H by H; = HN K; for i =
0,...,%. Now the plan of the algorithm is to compute successively Ng(H;), starting
from the end, i.e. with Ng(H;) = Ng(1) = G and working towards Ng(Hp) =
Ng(H). To go from Ng(H;1) to Ne(H;), if H; # Hiyy, we will compute in succession
Ne(H;K;) 0 No(Hi), in this case starting from j = i, No(H;K;) N Ng(Hi) =
Ng(K;) N Ng(Hi1) = G N Ng(Hiy1) = Ng(Hiyr), and finally getting Ne(H:K:) N
No(Hip1) = Ng(H;) N Ne(Hip1) = No(H;). Let M = Ng(H;K;)n Ne(Hi4), then
Nym(H;Kj41) = Ng(HiK;41) N Ng(Hy.), since each g € G that normalizes HK; .,
normalizes H; K, too, so this is true in particular for the elements of Ng(H;4;). With
the observations that H,_; is necessarily central in K, so Ng(H;—1) = G, and that
[H:,G] < [K:i, K] = Kity, 50 No(H;K;) = Ng(H;K:41), we proved that the algorithm
shown in Figure 7 computes Ng(H).

Updating the Normalizer

The heart of the algorithm is the computation of Ny (H;Kjy;). We will show
that this normalizer is either M itself, or it is a maximal subgroup of it. What we
know at this point of the algorithm, either as result of the initial conditions, or as

consequence of previous computations, is the following:



{input: Subgroups G and H of a finite p-group K.
A chiefseries K =Ko 2 -2 K, =1 of K.
H.' =.K,'ﬂHfOT"i=0,...,i.}

{output: Ng(H).}

begin

M:=G

for i :=t —2 downto 0 and H; # H;;,do

forji=i+1tot—1do
M = NM(H,I(J.H_)
return M
end.

Figure 7: The normalizer algorithm for p-groups.

a.) M normalizes H;
b.) M normalizes H;K;
c)0<i<yi<t

d.) HK; = HK; 4

Now, if HK; = HI;,,, then H;K; = H;K;,,,s0 M already normalizes H; } 41y
so we have to deal only with the case H; = H;.,. In this case V = H;K;/Hi11 K4
is of order p?, and since it has two different nontrivial subgroups (H; X i1/ Hip1 K4
and Hi K/ Hi41K;4,), it is elementary abelian, so it can be thought of as a vector
space of dimension 2 over GF(p), with basis {hiy1 Hip1 K41, kj1 Hip1 K41}, where
hiv1 € H; \ Hiyy and kj;y € K; \ Kj41. Since M normalizes Hip,, M acts on
this vector space as linear transformations. The matrix of the transformation corre-
sponding to m € M is an upper triangular matrix with 1's on the diagonal, because

kT = hisalhiy1,m], where {hiyy,m} € Hiyn C Hip K, and kT = kjpakia, m),
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where [k;y1,m] € Kj1 C Hiz1 Ky This also means that the map 8 : M — GF(p),
for which kf,f_';‘) = [hiz1,m] mod Hiy K41, is 2 homomorphism. The elements of
Num(H:K;41) are exactly those m’s for which 6(m) = 0, therefore, indeed, they con-
stitute either a maximal subgroup of M, or the whole .

If we have a representation of M that consists of a strong generating system
for M corresponding to a chain of subgroups, M = My > M; > --- > M, =
1, where |M;_; : M;| = p, then we can find a similar system for M, a maximal
subgroup of M, using the following algorithm. Let m,,...,m, be a strong generating
system for the above series, m; € M;_; \ M;. Find s = min{i € {1,...,r} : m; €
Mifori <j<r} Fori=1,..,s—1, find o; such that 7; = m;m® € M.
Then m3,...,M;21, May1,. .. ,m, will be a strong generating sequence for M. Such
a;'s exist, since M is maximal in M and therefore the right multiplication action
of M on the cosets of M is cyclic. To prove that the above sequence is a strong
generating sequence corresponding to the series MoNM,... . M, ;N M, M,.,0M =
My,...,M.NM = M, = 1, it is enough to show that |M; : M;| = pfori=1,..., s~
1, where M; = (M, ..., 521, Mas1, . - . ,m,). This follows from (ms, M) = M; and
m; € M, C M..

To implement the above algorithm, we have to
a.) compute a strong generating system my,...,m, for M.
b.) compute 8(m) for m; € M.
c.) find s for which m, & Np(H;K;41).

d.) compute a;’s such that m;m% € Np(H;Kjy1).
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Since during the course of the algorithm a strong generating sequence for M is
maintained, it is enough that we compute such a sequence for the initial step, i.e.,
when M = G. The data structure proposed in Chapter VI is even more than what
we need (we do not require the corresponding subgroup-chain to be a normal series).

We compute § as follows. We need to express [hiry,m] as kaw where w €
Hip1Kj41. As kjy; commutes with K modulo K., this is equivalent to finding some
h € Hiyq such that [k, m]?z'—I € K, and then find the leading exponent, ¢, of its ®;-
image in GF(p)¢ (using the notations of Chapter VI). With this notation, #(m) = ¢.
Of course, for H we use the same data structure. We could compute % by sifting
[hi+1,m] through the H-structure, but we can do better, as the following argument
shows. We will keep an additional permutation z with each m, for which [Ris1,m] =z
(mod K;), and we will update it so that this congruence will'be true modulo X i1
after the updating step. If HK; = HK;,,, as we saw, the normalizer does not change,
but we have to update z, using a sifting step. In the other case, if there is no m in
the strong generating sequence of M for which #(m) # 0 then M normalizes H;I{ i1
and no computation has to be done. Otherwise, let 7T be the element with the largest
index in that sequence for which 6(7%) # 0. For each preceeding m we first compute
the « for which 8(m™ ) = 0. As 6 is a homomorphism, 8(mm *) = 8(m) + ab(m),
which we can solve for o, since 8(m) # 0. So we update m, m,., = m7 . After this
we update T: Tn.o = (T ~')*z ©. We have to show that z,,., € Hi1 Ky and that
[Ris1, Mnew] = Znew (mod Kjyy). We know that z,F € Hiyq, since [higy1, K] C Hip.

H; .1 is normalized by M, so

Toew = (T )%z © € Hipa (W ~1)%2T® = Hiyy.
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Let h = hiy, ¢ =0(m), §= 0(7). To show that [k, Mpey] = Tnew (mod I, ), we
may assume that Kj,y = 1. Then k = kjy; € Z(K), [h,m] = zk?, [k, 7] = Tk?, s0

h~'mh = gm='k?, h=Yih = 27 1%, so

[h,m ®] = ™Y (mm *) Vhmm * = k™' ~*hh~'m hmm ©

= (zmm ‘1)“k“$:rm'1k¢mﬁ ® = (zm “')Pzm'mm ofedtd — (zm ~1)2zmm @,

as stated, since a@ + ¢ = 0 from the definition of a.

Implementation

Figure 8 shows the details of the updating algorithm. Here we use the same
representation for both M and H that is based on the structure of the ambient
group K, that is, on the sequence corresponding to the direct product of the Sylow
p-subgroups of the transitive constituents. Note that we never need elements of this

group, the only place where such an element appears in the algorithm is the lines

Compute ¢(r) € GF(p) with

7 hivr, my] = kﬁ_'l) mod Ky,
but the only thing we are interested in here is the exponent of kj;,,, which we can
get by mapping 7 [hi41, m,] to its vector representation and assuming that we chose
k;j41 such that its vector representation has a 1 as the leading coefficient. Since we
are using this same exponent for Aj;, in the case H; # H;;;, when computing the
strong generating sequence for H, we make sure that all generators map to vectors
with leading coefficients 1. To make the computation of the a’s simpler, when we

found ¢,, we compute 8 = 1/a (mod p) and use m? in place of m, and 1 in place

of ¢, in further computations.
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It is also worth noting that if for some 7, both /1, = /{,,, and M N K;=MnN
K41, then we can skip that 7 in the main for loop, because then all @'s are necessarily

zeros. This condition can easily be checked by checking whether My =hyyy = 1.

Complexity of the Normalizer Algorithm

The normalizer algorithm consists of three nested for loops, cach iterated at
most ¢ times. In terms of n, the size of the permutation domain, ¢ is O(n). The
operations indicated in the innermost loops are permutation multiplications, raising
permutations to powers bounded by p, and computation of leading coeflicients (the
¢'s). Each of these operations can be carried out in time linear in the size of the
permutation domain. For permutation multiplications, this is trivial. For the powers,
to compule g* we can start computing w?" in time O(k) = O(n), then we can get the
images of the rest of the points in the orbit w' using the identity (W) = (w)?
in constant time per every new point. Since the nontrivial orbits are of size at least
p, the total time spent on this for all orbits is O(n). Finally, to compute the ¢'s
amounts to finding the vector representation of the permutation (constant time per
coordinate) and then taking the inner product of that vector (of length O(n)) with
another precomputed vector (a column of the change-of-basis matrix B). All of this

is linear in n. So the overall running time of the algorithm is O(nt).

Intersection of Subgroups of a Nilpotent Group

The Problem

Given K < Sym(Q), K nilpotent, and H < K, G < K. Find G N H. Here,

again, we can reduce the problem to finding intersections of subgroups of a p-group.
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{input: A sirong generating sequence my,...,m; for Ng(Hiz1).}
{output: A strong generating sequence for Ng(H;).}

begin
{Initialize.}
forr:=1to tdo
I, = 1 € H,‘.}.]
forji;=i4+1tot~-1do
{(my,...,my) is a strong generating sequence for M;,
T1,.., 2t € HH-I; z. =1 fOT’j <,
and [hij1,m,]| = z, mod K; forr=1,...,1}
forr:=1tojdo

Compute ¢(r) € GF(p) with

o7 hipr, me) = &2 mod Ky

if H; = H;;, then
if ¢(r) # 0 for some r then
s := max{r: ¢(r) # G}
forr:=1tos—1do
Solve ¢(s)a(r} + ¢(r) =0 for a(r) € GF(p)
m, 1= m,m2{"
T, i= (z,m71) )z, ma(n)
m, =1
Ty:=1
else {H; # H;i.}
for r:=1to j do
= :t:,.hf_(l_?
{(m1,...,m;) is a strong generating sequence for My,
Tiyer oy Tt € Hignyz, =1 forj+1<r,
and {hiy1,m;] = 2, mod K;yy forr =1,...,t}
return (m;,,...,m;)
end.

Figure 8: Normalizer update from Ng(H;y1) to Ng(H;).
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The Algorithm

The algorithm for the intersection problem builds on the same principle as
the normalizer algorithm, using the same data structure and setup. We will find,
successively, the intersection of G and HK;. For i = 0 the intersection is evidently
G, and for i = t it is GN H. It is also clear that GNHK;, =(Gn HEK)NHK;,,,
50 at each step we can use the result of the previous one. Another observation is tLat
|GNHK; : GNHK;,,| is either 1 or P, 50 We can use the maximal subgroup algorithm
for cutting down GNHK;_,. Figure 9 shows the details. Similarly to the normalizer
update algorithm, we will call the current intersection M, which we represent by a
strong generating sequence, (my,...,m,) and for each ™, in this generating sequence
we maintain a permutation z, € H such that z,m, € K;_,. Hf for some i not all
the z,m,’s are in K; and H does not cover K;_,/K; then we have to cut down
M. Again, similarly to the normalizer update, we select 71 = m,, and compute ¢,
for m, and @ for 7 such that z,m, = k?_{,l and TW = k?;l, then we compute q,
such that o, ¢ + ¢ = 0, and update m, and z,. For the verification of the update
step we can again assume that K;,.; = 1 and therefore kit1 € Z(K). Then we can
write z.m, = kff,, ie. =z, = m; kS, similarly 7 = ﬁ“kgl. Raising both sides
of the latter equation to the ath power and then multiplying it with the previous
equation we get Tz, = (M “kg_l)"'m:lkf’;l =W ~*m; lkf'_;_';‘;”' =m ~*m!, so

T z,m,m°" = 1, showing that the updates of the z,’s and m,’s are correct.
Complexity

Here we have one less for loop than we had in the normalizer algorithm, other-

wise the organization is the same, so the complexity is O(n?) after the setup time.
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{input: strong generating sequences for G and H
(may...,my) and (he,..., k), respectively}
{output: a strong generating sequence for GN H.)
begin
{Initialize.}
forr:=1totdo
z.:=1€H
é(r):=0
fori:=0tot—-1do
{(m1,...,m) is a strong generating sequence for G N (HK;),
z, € H and z,m, € K; forr = 1,...,t}
forr:=1totand m, #1do
Compute ¢(r) € GF(p) with z,m, = kﬂ? mod K,
if h,‘+1 =1 then
if ¢(r) # 0 for some r then
s := max{r: ¢(r) # 0}
forr:=1tos-1do
Solve ¢(s)a(r) + ¢(r) = 0 for o(r) € GF(p)
my 1= m,_m‘;"(’)
T, = o)z,

my =1
T,:=1
$(s) =0

else {HK; = HK;,}
forr:=1totandm,;éldo
TE— hi_ﬁtr)z,
return (my,...,m,)
end.

Figure 9: Subgroup Intersection Algorithm
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Centralizer in a Nilpotent Group

Element Centralizer Problem

Given K < Sym(Q), K nilpotent, and k € K, G < K. Find Ce(h)={g€@G:
gh = hg}. The reduction to the p-group case applies here, too.

The Algorithm for Element Centralizer

The main idea here is to compute Co(hK;/K;)for j =0,1,...,¢,or equivalently
to find a subgroup chain G =Gy > G, > --- > G, such that Gi={9€G:[hg]e
K;}. Clearly, Go = G and Gy = G,_, = Ce(h). Also |G} : G| € {1,p}. To prove
this, consider H = (h) and let i be such that h € K; \ Kiy1. Using the notation
H; = HNK;, we get H; = H. We use again M as a variable that changes from Gj to
G+ in each iteration of the outermost loop. (M now centralizes HK i/ K;, therefore
normalizes H;K; = HK;.) We can apply the results from the normalizer case that
M acts on the 2-dimensional vector space H;K, ilHi1 Kj41 = hK;/K;,1 and here we
are also looking for the kernel of this action. As we saw, this kernel is the same as
the kernel of the homomorphism @, where 0(g) is defined by [k, g] € k_g_(,:ql) K;i1. Here
we don’t need the z’s, because for all elements m € M » [k,m] € K; already. The
algorithm is shown on Figure 10. The fac.t that # is a homomorphism justifies the
modification step for the my’s, and we don’t need to check my, for £ > j because
in that case [h,mi] € Kppy < Kjs1. Also, we can start j from i, which can be
determined by examining the cycle structure of A to get to the level that it does not
stabilize and then computing its vector representation corresponding to that level and

finding the smallest K-invariant subspace to which it belongs.
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{input: a strong generating sequence m,,...,my for G < K, and
an element h of K.}
{output: a strong generating sequence for Cg(h).}

begin
if h € K,_, then return (m,,...,mg)
for j:=1tot—~1do
{(ms,...,m,) is a strong generating sequence for Cq(hK;/K;)}
forr:=1tojand m, #1do
Compute ¢(r) € GF(p) with [h,m,] = kﬂ_'l) mod ;4
if ¢(r) # 0 for some r then
s 1= max{r: ¢(r) # 0}
forr:=1tos—-1do
Solve a(r)¢(s) + ¢(r) = 0 for a(r) € GF(p)
m, := m,mg(")
m, =1
return (my,...,myg)
end.

Figure 10: Element Centralizer Algorithm
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Subgroup Centralizer Problem

Given K < Sym(Q), K nilpotent, and H < K, G < K. Find Ce(H)={g e
G:gh =hg, Vhe H}.
This reduces to the element centralizer problem, simply centralize the generators

of H by calls to the element centralizer, one at a time.
Complexity

Similarly to the intersection algorithm, the element centralizer algorithm runs
in O(n®) time after the setup, therefore the subgroup centralizer algorithm runs in

time O(sn®), where s is the number of generators for H.
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CHAPTER VIII

THE STRUCTURE OF SOLVABLE PERMUTATION GROUPS

In this chapter we will see how one can take advantage of the well-known struc-
ture of solvable permutation groups to obtain a normal series with elementary abelian
factors, together with homomorphisms of the factors into vector spaces over GF(p;),
where p; are the primes dividing the order of the group in question.

First we recall a standard embedding of a transitive but imprimitive permuta-
tion group into a wreath product (see, e.g. [Ca], Proposition 3.1.). We will use the

notation established in the definition of wreath products in Chapter III.

Lemma 8.1
Let G < Sym(Q1) be a transitive group and let A = (A,,...,A;) be a
block system for G. Let H = G{},;- Then G can be embedded into
G = H1G2 and Q can be identified with A; X A in such a way that G

is a subgroup of G.

Proof
Proof: We describe the identification of A; x A with  and show that the
elements of G are among the elements of G (viewed as a permutation group
on ). For each j =1,...,t let us fix z; € G such that AY? = A;. Let us
identify (6, A;) € Ay x A with §% € Q, for § € Ay, j € {1,...,t}. Then,
with this identification G acts on €. We will show that for each element

g € G there is an element § = (hy(g),. .., h:(g),7) of G such that § acts on
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1 as g. For g € Gand j € {1,...,1} we define j¢ so that AY = Ajs. For
j=1,...,tlet hj(g) = z;g2} |a,. It is easy to check that A:’gz’_g] = Ay,
so h;i(g) € H. Let g be the image of g by the action of G on A. Then
(6,4;)7 = (6"%), Ajs). Now (6,4;) is identified with w = 6% €  and
(8%9), Ajs) is identified with (6%(0))%ss = (§%49%% )50 = w9, s0 indeed, g

acts on {2 the same way as §g. (|

Lemma 8.2
With the notation in Lemma 8.1, let N be a normal subgroup of H. Then

N = {(n1,...,n,1) € G:ny,...,n, € N} is a normal subgroup of G.

Proof
We will show that for @ = (ny,...,n,1) € N and § = (hy,...,h:,7) € G,
gng~' € N. It is easy to check that §=! = (hy,~1,...,h,-1,7). Then,
h-1

-1
we just check that gng~! = (ni'} y-+-s4¢ ,1). The right-hand side is
clearly in NN, since n;-‘ € N for any h € H by the normalityof Nin H. O

It is obvious from the definition of N that it is isomorphic with the direct
product of ¢ copies of N.

In what follows in this chapter, all groups mentioned are assumed to be solvable
permutation groups, unless stated otherwise.

The following lemma has been known ever since Galois (see, e.g. [Hu], 3.2.

Satz).

Lemma 8.3
Let G be a primitive solvable group. Then G has a urique minimal nor-
mal subgroup A, which is elementary abelian and regular, and G is the

semidirect product of A and a point stabilizer subgroup. O
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As we have seen earlier, it is enough to show how to deal with the transitive
case. For the sake of easier description we define an elementary abelian normal series

with vector space representations of the factors as follows:

Definition 8.1
Let G be a finite solvable group.

We call the pair ((Go, ..., Gm), (d1,-..,6m)) an elementary abelian structure
for G if the following hold:

a.) GQ = G,
b.) Gi«aG,fori=1,...,m,
c.) Gi—1/G; is an elementary abelian pi-group,

d) ¢;: Gioy — GF(p;)% is a homomorphism with kernel G; for { =

1,...,m.

o

Here we do not require that the ¢;’s be nontrivial, i.e. we allow for G;_; = G,.

In the rest of the chapter we will see how one can recursively build an elementary
abelian structure for the transitive solvable group G. From this, just like in the case
of p-groups, one can build the structure for arbitrary solvable permutation groups.

In the base case, when G is the trivial group, we let m = 0, so the series of
homomorphisms is empty.

If G is a primitive group, by Lemma 8.3, G is a semidirect product of its
unique minimal normal subgroup A, and a point stabilizer subgroup H. Therefore,
H is a homomorphic image of Gysay ¥ : G — Hisa homomorphism with kernel

A. So if H has an elementary abelian structure, ((Hy, ..., Hn),(dy, ... +®m)), then
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(™' (Ho), ..., Y (Hp), A)y(¢10 ¥, ...,0m 0 ¥,)) will be an elementary abelian
series for G, where 7 is any homomorphism mapping A to GF(p)?, where |A| = p?.

Let now G < Sym(f) be transitive, but imprimitive. Since G is imprimitive,
there is a system of maximal blocks, {A,...,A,), on which G acts primitively. From
this action we get the beginning (“head”) of the elementary abelian structure for G.
Now we describe how to get the “tail” part of the structure. Let I be the kernel of the
above mentioned action. Let H = G?Al p» 1.e. the transitive constituent on the points
of A; of the subgroup of G that leaves A, invariant. Let ((Ho,..., Hn), (61,-- -, ¢m))
be an elementary abelian structure for H. Let z;,...,z; be as in Lemma 8.1 and let
g be an element of K. Then g leaves all blocks invariant, therefore, still using the
notation of Lemma 8.1 and Lemma 8.2, § is of the form § = (h,(g),..., hi(g),1). We
define

Gi={g€ K :hi(9) € Hi,j=1,...,t}.

Then G; = H;NGisnormal in G = GNG. Let ¥ : K — H' = Hx...x H
(t direct factors) be the map that maps (hi,...,H,1) € K to (hy,..., k) € H'.
Then ¥ is an embedding and ¥(G;) < Hf. So Gi_1/G}; is isomorphic with a subgroup
of Hf_|/H} = (H;_,/H;)! and therefore G;_,/G; is an elementary abelian p;-group.
Define t; = (¢ x -+ X ¢} 0 U : Gioy — GF(p;)", then ((Goy-..,Grm), (1, o))

can be used as the “tail” of the elementary abelian series for G.
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CHAPTER IX

DATA STRUCTURE FOR SOLVABLE PERMUTATION GROUPS

We saw in the previous chapter that for solvable permutation groups G there
is a recursively computable structure ((Go,...,Gm),(¢1,...,%m)) where the factors
Gi_1/G; are elementary abelian and ¢; : G;_; — G'F(p,-)”:ii are homomorphisms with
kernel G;. In this chapter we will see a description of a data structure and algorithms
for computing a strong generating system for the series of normal subgroups G;,
together with the computation of the maps ¢;. We will also see that coordinates of
the vector ¢;i(g) for ¢ € G, are computed quite naturally from the permutation
action of g (on a possibly extended domain).

In the previous chapter we used preimages to describe some of the subgroups
in the normal series, here we will see that in practice we will never have to compute
these preimages, it will be enough to be able to compute the maps themselves. The

procedure we are using also eliminates the trivial steps in the series.
The Data Structure

Our data structure for the solvable permutation group G will consist of a series
of elements of G, (911, .., §1d;5-+ -+ Gm1s- - - » Gmd )» and a series of maps, (¢1,..., Gm)
such that if we define G; = (g(ix1)15- -, GGH1)dip1r- -1 Gmls -+ 1 Gmdm)y fOri = 0,...,m

(note that G, is generated by the empty set, so it is the trivial group), then

a.) Gu = G,
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b.) Gi« G, fori=1,...,m,

c.) #i:Gioy — GF(p)% is a homomeorphism with kernel G;, for i = 1,...m

?

d.) #i(gix) = ex € GF(p;)*, where e, denotes the vector with all 0 coordinates with

the exception of the kth coordinate which is 1.

We start building the data structure with the computation of the maps, just as
in the p-group case. For an intransitive group, the maps for the transitive constituents
are computed exactly the same way as for p-groups. For a transitive but imprimitive
group, first we compute a system of maximal blocks, map the generators to act on
the block indices, then compute Schreier generators for the action on the first block.
We do not have to compute those generators as permutations on the whole domain,
we can restrict ourselves to compute the images of the points in the first block, A,,
only, just like in the case of p-groups. For the map that was denoted by ¥ in the
previous chapter, seemingly we need ¢ permutations, z,,...,z,, but here, again, we
only need the images of the points in A, by each z;, and the images of the points in
each block A; by z.

Note that this way we have the same number of generators for the primitive
part, and although the number of Schreier generators for the recursive call can be ¢
times the number of original generators, the size of the domajn on which these operate
has shrunk by the same factor, so the total input size for the recursive call did not

increase.

The Primitive Case

The really interesting part of the computation is the case of primitive G <

Sym(Q), |Q] = p?, in particular, how we compute (generators for) the elementary
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abelian normal subgroup A. The idea of the algorithm for this comes from Sims [Si2).
We want to go down on the derived series of G until we reach the last subgroup on it,
which is abelian. In our case (for a primitive solvable group), it is a minimal normal
subgroup, so it is necessarily generated by one normal generator (i.e. A = (a)€ for
some (any) 1 # a € A). The algorithm finds such a normal generator and enough
conjugates of it to generate A. This is done in stages, each stage corresponding to a
smaller member of the derived series than the previous stage. At each stage, we start
with an element of (7 that is obtained as a nontrivial commutator of two members
from the previous stage, therefore is known to be further down in the derived series
(we start with one of the original generators in the first phase). In each phase, we
are growing an abelian group, generated by the starting element of that stage and
its conjugates. If we found a new conjugate that does not commute with one of the
generators of the group that we are growing, we start a new stage with the commutator
of these two elements. When we reach a normally closed (in G) abelian subgroup, we
have (linearly independent generators for) A. The algorithm for this computation is
shown in Figure 11. (EANSG stands for elementary abelian normal subgroup.) Since
we add a new element to T only if it makes the group H = (T'} larger, the number
of elements that we consider in the while loop is less than |S|log |G|. In order to be
able to do membership test in H, we can maintain a point stabilizer chain for it. For
this, we can use Sims’s observation in [Si2} that updating a point stabilizer chain for
H with a new generator h that normalizes H requires a single pass down the chain
to get a point stabilizer chain for (H, k). We have this condition, since when we add

a new member y to T, ¥ commutes with all the elements in T', therefore it commutes

with H = (T).



EANSG(S, g)

{input: G, a solvable primitive permutation group
on §, given by a set of generators S. |Q| = p¢
and1#g€G.}

{output: A = (T), the unique minimal normal
subgroup of G}

begin
Y :={g}
=1
while Y # 0
LetyeY
Y=Y\ {y}
forallueT

z = [u,y]
if z # 1 then
{z is at least one step further
down in the derived series of G}
return EANSG(S, z)
{y commutes with (T} }
if y € (T') then

T:=TuU{y}
Y:=YU{y':s€ S5}
return T

end.
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Figure 11: Algorithm for computing generators for the minimal normal subgroup of

a primitive solvable group
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This procedure will necessarily provide d generators for A, each moving all
points, cyclically in batches of p. The group A is regular, since it is 2 normal subgroup
of a primitive group, therefore it is transitive, and an abelian transitive group is
regular. Furthermore, if we fix a point w € §, every g € G can be uniqely written as
9 = 9a, where g, € G, and ¢ is the unique element of A for which w9 = w®. The
map o : G — G, for which o(g) =g, is a homomorphism, because there is exactly
one element of G, in each coset of 4 in G. (Suppose h; and A, are in the same coset
and both fix w, then A;h;" € A, but then hik3! is the unique element of A that fixes
w, that is, the identity, so Ay = hy.) So G, is isomorphic to G/A.

Using these generators we can map the points of 0 to the set {0,...,p*—1}, such

that the homomorphism o can be computed quite easily. First, since A is a vector

space and the d generators a,. .., a4 constitute a basis for it, each element @ € A can
be written uniquely as a = afa?...a%, where ¢;, . ..rea € {0,...,p—~1}. Now if we

regard eje; ... €4 as a p-ary number, and we assign this number to w®, calling this map
v, then v{a®) = v(a) © »(w?), where © means modulo p subtraction at each p-ary
digit. The renumbering process is very straightforward. First, we set v(w) = 0. Then
we take each generator, starting from the end (i.e. with ag), and for each already
numbered point «, if #(a®) has not been set yet, we set v(e®) = v(a) + ptIH
Now we only have to tell how we compute the vectors for an element a € A
This, with the above map v in hand, is really easy, we simply take the p-ary digits of

v(a) as the coordinates of a vector in GF(p)*.

Computing the Strong Generating Sequence

With this, we have set up the homomorphisms that correspond to the ele-

mentary abelian structure described in the previous chapter. (Note, that the maps
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corresponding to the homomorphisms usually admit a broader domain than just the
subgroups of the elementary abelian structures that are encountered during the com-
putations.) The next thing to do is to compute the sequence of strong generators.
The algorithm for doing this is similar to the one that we saw for the p-groups, except
that in this case, there might be several “new” strong generators corresponding to
each subgroup G; in the elementary abelian structure, namely as many as the dimen-
sion of G;/G:41 is (this can also be 0). To see how the algorithm works, imagine that
we have the strong generating system, our task is only to prove that it is a good one,
e, Gict = {Gitye-sGidyse o rGmlse--sGmdm)y GiaG for i = 0,...m — 1, Gi_1/G; is
elementary abelian, i.e. a vector space and dim(Gi-1/G;) = d;. For this, we have
to prove that all commutators [gia,gis], 1 £ ¢ < b < d; and all p;-powers g% for
a=1,...,d; are in G;, and all conjugates of g7,,a =1,...,d;, g € S, are in G;;.

Now, if we have built such a system, we can sift through it, i.e. decompose
elements of G as products of elements of the strong generators. Also, if we take an
element A € Sym(S2), we can decide, using the sifting process, whether & € G. For
this, before applying any homomorphism in the sifting process, we should first check
whether the permutation to which we want to apply the homomorphism is in the
domain of it. If it fails to be, h € G. We can draw the same conclusion if at a
point in the sifting process we can map our permutation into a vector space, but the
resulting vector is not a linear combination of the vectors corresponding to the strong
generators at that level.

This sifting process can also be used to build the data structure, i.e. to compute
the strong generators. To do this, we sift through a partially built data structure, and

if something does not “sift through”, we add that permutation to the list of strong
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generators at the level it “got stuck”. In this case, we know that every permutation
that shows up during the computation is in G, since we start with the generators of G
and every newly computed element is either an inverse of a previous one or a product
of two earlier elements. Therefore, in this case we can be sure that whenever we want
to apply a map to a permutation % in the process, £ is in the domain of the map. So
the sifting can “get stuck” only for the second reason: at some level, we have to expand
our basis, i.e. add the new permutation to the strong generators corresponding to that
level. Whenever this happens, we sift further the commutators of the newly added
member with all previous members of the strong generating system at that level, it's
pith power, and its conjugates with all of the original generators of the group. At
the end of this process, we have sifted through everything that we had to (either it
sifted already through the partially built strong generating system, or the residue of
it was added to the system) in order to prove that we have the strong generating
system belonging to the elementary abelian structure. At the end of the process we
perform Gaussian elimination at each level to get generators corresponding to the unit
vectors. The outline of the algorithm is shown in Figure 12. The algorithm assumes
that sifi(g,7,(G1,...,Gm),(#1,...,0m)) starts sifting g at level j and it returns a

pair consisting of the residue of g and the level where it “got stuck”.
Complexity

Sifting through one level means computing a vector representation at that level
and then dividing out powers of the generators of the level. The first part takes
O(nlogn) time, while the second takes cnd time where c is a constant and d is
the dimension of the level. There are O(nlogn) levels, so a sift through the whole

structure takes O(n? log” n) steps for the first part and a total of O(n?) for the second,



{input: G, a solvable permutation group, given by the
the generating set S
(#1,.--,8m), a series of maps of an elementary abelian
structure for G is already computed }
{output: a strong generating system for H}
begin
T := emptystack()
(G11G21°'-7Gm) = (m:ma'“’@)
for all z € § do push((z,1),T)
while T is not empty do
(9,3) := pop(T)
(932) = Slft(g,_‘,', (Gh” . ?Gm)$(¢11- '-1¢m))
if i # m + 1 then
for all h € G; do
push(([g,h],i+1),T)
push((g™,i +1),T)
forall z€ 5 do

push((g®,7),T)
Gi:=G;U {g}
return (Gy,Gs,...,Gn)

end.

Figure 12: Computing the strong generating sequence
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because the dimensions add up to O(n). We have to sift O(n?) commutators, O(n)
powers and O(sn) conjugates, in addition to the s generators, a total of O(sn + n?)

permutations. So the total running time of the algorithm is O(sn® log? n+n'log?n).
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CHAPTER X

SOME ALGORITHMS FOR SOLVABLE PERMUTATION GROUPS

As we pointed out earlier, if one has special algorithms for input with special
properties, it is useful to have a fast way to test whether the input has the property.
In the first part of this chapter we show a method for testing solvability which is in the
general case faster than the usual ways (computing the derived series, or attempting
to compute a polyciclic generating sequence - see [Si2])

In the second part of the chapter we illustrate the usefulness of the data structure
of Chapter IX by showing an algorithm for computing Sylow p-subgroups of solvable
groups. With minimal modification the algorithm can be applied to compute Hall

subgroups, too.

Recognition of Solvability

In this section we will prove the following.

Proposition 10.1
Let G = (S) < Sym(Q), |S| = s, || = n. Then we can decide whether G

is solvable in time O(sn?). ]

We start with a lemma about properties that are inherited by results of cer-
tain operations. When we talk about permutation groups in the lemma, we do not

necessarily mean that the groups have the same permutation domain.
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Lemma 10.1
Let P be a property for permutation groups and suppose that P is in-
herited by subgroups, homomorphic images, wreath products and direct
products. Then a group G has the property P if and only if every primitive

group constructed from G by the above operations has P.

Proof
If G has P then so does every group constructed from G by the men-
tioned operations by inheritance. Conversely, using those operations, by
the result expressed in Lemma VIIL] and the obvious embedding of an
intransitive permutation group into the direct product of its transitive con-
stituents, we can construct primitive groups from which we can rebuild G

using the permitted operations. So if all those primitive ingredients have

P, so does G. m]

By Lemma 10.1 we can reduce testing groups for a property P to testing prim-
itive groups for P, if property P satisfies the required inheritance condition. Now,
if P is the property of being solvable, the condition is satisfied, so testing solvability
reduces to testing solvability of primitive groups.

The method that we will use for testing primitive groups will attempt to com-
pute a subgroup chain with abelian factors for the group we are testing. If the attempt
is succesful, we report that the group is solvable. The next two lemmas provide us
with theoretical results that enable us to abort this computation if we have computed
a subgroup that is too big to be solvable, so we can report non-solvability in a timely

manner.
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By a result of Palfy {P4] and Wolf [Wo], solvable primitive groups are fairly

small,

Lemma 10.2

Let G be a solvable primitive permutation group on n points. Then |G| <

24=5p1+% where cp = 2.243 ... . m

Lemma 10.2 provides an O(log n) upper bound on the length of any subgroup
chain for a solvable group acting primitively on n points.
Dixon [Di] gives an upper bound on the length of the derived series of solvable

groups. If we apply his result to solvable primitive groups, we get the following,

Lemma 10.3
Let G be a solvable primitive permutation group on n = p? points. Then
the length of the derived series of G is not more than 1 + 2(logz d + 1).

O

‘This means that the length of the derived series of a primitive solvable group
acting on n points is O(log log n).

The algorithm for testing solvability of a primitive permutation group is a mod-
ification of Sims’s algorithm [Si2]. The modified algorithm is shown on Figure 13 and
Figure 14. We may assume that the group is acting on p? points, since otherwise it
could not be solvable (i.e. the test for solvability really starts with checking whether
the domain of the primitive action has a prime-power number of elements).

The heart of the algorithm is the function AbelianNormalSeriesPrim, that
has the following arguments: G is a primitive permutation group; g € G, U is a strong

generating sequence for the chain of G-normal subgroups Ny > Ny > --- > Ne=1,
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{input: G, a primitive permutation group on 2,
given by a set of generators S. || = p?}
{output: true if G is solvable, false otherwise}

begin

U:=() 1
[ := [24-§n3244)
ri=1+ 2(logzd +1)
forallge S
if g & (U} then
U := AbelianNormalSeriesPrim(S, g, U, r,[)
if U =false then return false
return true
end.

Figure 13: Algorithm for testing solvability of a primitive group

where N;_1/N; is abelian. We assume that ¢ € Ny. The other two parameters are
used to abort the computation if there is evidence that G cannot be solvable; r gives
an upper bound on the depth of recursion, while { is the maximum length of an
increasing subgroup chain for solvable G. The function returns a strong generating
sequence for (g, /). This sequence also has the property that no element of it is in
the group generated by all subsequent elements of the sequence. Therefore the length
of the sequence is a lower bound for the length of an increasing subgroup chain of G.
The goal in AbelianNormalSeriesPrim is to find a set of generators for a normal
subgroup of G that contains both g and (Up). These generators are being stored
in U and T. The generators in U will generate a normal subgroup of G, while the
generators in T’ will commute modulo {U). In Y we collect conjugates of elements of
T and eventually we prove that these are all in the group generated by T and U. To

reach this goal we sometimes add elements to T (if a conjugate happens to be outside
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AbelianNormalSeriesPrim(S, g, Uy, , )

{input: G, e primitive permutation group, given by a set of generators S,
1#g€G@G,
Us, a strong generating sequence for a G-normal series of (Up) <« G,
r, an indicator of g’s position in the derived series of G
[, an upper bound on the length of subgroup chains of G if G is solvable.}
{output: either false, in which case G is not solvable,
or a strong generaling sequence for a G-normal series of (Us,g)°.}

begin

if r=0 then return false
Y :={g}
U:.= Uo
T := () {an empty sequence}
while Y # 0
{{U} «G, (T, U)[(U) is abelian, {g} VTS C(T,U)UY C (Uo,9)°}
Let ye Y
Y=Y\ {y}
Vi=U
forallueT
z = [u,y]
if 2 ¢ U then
{z is at least one step further down
in the derived series of G than g}
U :=AbelianNormalSeriesPrim(S, z, U,r — 1,!)
if U = false then return false
{y commutes with {T') modulo (U) }
if U # V then
W= ()
forallueT
if u & (W,U} then add u to V as its first element
T:=W
if y & (T,U) then
add y to T as its first element
Y =YU{y':s€ 5}
if |T| + |U] > ! then return false
return the concatenation of 7' and U
end.

Figure 14: Algorithm AbelianNormalSeriesPrim
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of (T,U)) or increase U (by a recursive call, if a new perspective member of T does

not commute with an element of T' modulo {U})).
Correctness

To prove the correctness of the algorithm we have to show that it returns true
if and only if G is solvable. The algorithm returns true only if it computes a normal
series for G with abelian factors, and therefore G is solvable in this case. Conversely,
suppose that G is solvable. Then we have to prove that AbelianNormalSeriesPrim
always returns a generating sequence for (U, g). For this we have to check that the
algorithm never returns false. It is easy to see that |U/|+|T| < ! if G is solvable, since
when we add a new element to T, we increase the size of (T, /). By Lemma 10.2, we
cannot do this more than [ times. Similarly, in a solvable primitive group we cannot
descend on the derived series more than 1 + £(logyd + 1) times, by Lemma 10.3.
Now we prove that what AbelianNormalSeriesPrim returns is indeed a strong
generating sequence of a G-normal series with abelian factors. Let the derived series
of Gbe G=Go>G1>:-+>Gpr=1. For h € G we define e(h) = max{i : k € G;}.
We prove the correctness by induction on e(g) (starting from m — 1 and decreasing).
If e(g) = m — 1 then g commutes with all of its conjugates, so there will be no
recursive calls, and therefore the first part of the loop invariant is trivially true. The
other two are also very easily checkable. Now if e(¢) < m — 1 and there is a recursive
call, then in that e(z) > e(g), since z is a commutator of two conjugates of g, so by
induction it returns a strong generating sequence for a normal subgroup of G. The
statement starting with if U # V is used to update T in case of a recursive call that
increased (U). It restores the property of T that each element of it increases the size

of the group generated by the other elements of T and the elements of /. The next
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if statement adds y to T if necessary, and adds its conjugates to the elements that
should be checked. If there are no more elements to check, we now that (T, U) is

normal in G and since T consists of conjugates of g, (T,U) = {g, U)°.
Complexity of Testing Solvability

First we argue about the complexity of testing whether a primitive group G is
solvable. The crucial observation in the argument is that whenever AbelianNor-
malSeriesPrim is called recursively, both |U] and the size of the group generated by
U increased. This means that there will be no more than { calls altogether (for solvable
groups, this comes from the theoretical bound on the size of the group (Lemma, 10.2),
and for non-solvable groups from the check of |T'| + |U| that forces to return false
after at most [ calls. Other than the recursive calls, there is a while loop that is
executed as many times as there are elements in Y. As we put elements to Y only
when we add a new generator to T' (which increases the size of the group (T, U }), this
number is O(slogn). Within the loop, we do T' membership tests in (U}, possibly
another T' membership tests in (W, U) and possibly the same number of extensions
of the group (W,U) by a normalizing element, followed by possibly one more such
extension of (T',U). For these groups we keep a point-stabilizer series, with the help
of which, all extensions and membership-tests can be done in O(nlogr) time (since
the length of the stabilizer-chain is O(logn). This means that without the recursive
calls the time spent in AbelianNormalSeriesPrim is O(snlog®n). The algorithm
shown on Figure 13 also calls AbelianNormalSeriesPrim only in case U is to be
increased, so the total time spent in all invocations of AbelianNormalSeriesPrim
is O(snlog*n). The rest of the algorithm is just s membership-tests in (U}, therefore

the total time for deciding whether a primitive group is solvable is O(snlog* n).
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For transitive G, to find 2 system of maximal blocks (or decide that the group
is primitive) takes O(sn?) time. If G is primitive, to test solvability takes further
O(snlog*n) time. In the case of an imprimitive G, if the number of blocks is ¢,
we reduce the problem to finding out whether the action on the blocks is solvable
(O(stlog® t)) and recursively test whether the transitive group G{AA‘I} is solvable. For
this we compute st generators for G{A&l}, which permute n/t points. To find these
generators takes linear time (similarly to the p-group case in Chapter VI). So if
we denote by T'(s,n) the time required to find out whether a transitive group is
solvable, we have the equation T(s,n) < T'(st,n/t) + O(sn?), the solution of which is
T(s,n) = O(sn?).

Finally, for intransitive groups the time required to reduce the problem to de-
termine solvability of the transitive constituents is linear, with s staying the same

and n linearly decreasing, so the total time is still O(sn?).

Finding Sylow Subgroups in Solvable Groups

In this section we present an algorithm to compute generators for a Sylow p-
subgroup of the solvable group G. The algorithm needs to be changed only minimally
to compute Hall subgroups. It has a similar abstract structure to the algorithm in
[EW] and it is a variation of the one in [KLM]. It makes use of the vector spaces that
naturally arise from the permutation structure and are part of our data structure.

In addition to the utilization of the above mentioned vector spaces, the algo-
rithm also uses presentations of factors.

Let X be a set and let (X)) be the free group on X. Let G be a group and N<G.
Let ¢ : X — G, and let us denote the extension of ¢ to a homomorphism from F (X)
to G by ¢. Let R C F(X) and suppose that {($(X)IN = G and ¢~1(N) = (R)FX),
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Lemma 10.4

Under the above conditions, (X|R) is a presentation for G/N.

Proof
Let 7 : G — G/N be the natural homomorphism.

Then 7 0  : F(X) — G/N is an epimorphism with kernel (R)*(X). DO

Definition 10.1
Let X, G, N, R and ¢ be as above. Then we say that the presentation
(X|R) of G/N is realized via ¢. We also say that II = (X,¢|R) is a

constructive presentation for G/N. o

Figure 15 shows the outline of an algorithm for finding a Sylow p-subgroup for the
solvable group G (we describe the details in the following sections). This generic
algorithm is similar to that in [Ma] (see also [KLM]). We input G by its elementary
abelian structure, so G = Go > G; > --- > Gy = 1 is a normal series for G where
Gi-1/G; is an elementary abelian p;-group (i = 1,2,...,1), and we have homomor-
phisms B, : Gi-1 — GF(p;)%. We assume that we have constructive presentations for
the factors Gi_,/Gi.

We start by finding the first ¢ for which p; = p. Let r = min{¢ : p; = p}. Then
G still contains a Sylow p-subgroup of G. We also look for the largest G; that is still
a p-group, this may save some computation at the end. The real work is done in the
last while loop in which we maintain the constructive presentation Il = (X, ¢|R) for
H/G;_1, where H = (¢(X),Gi-1}).

The invariant for this last whiie loop is the following: (¢(X))}G;-1/G:i-1 is a Sy-

low p-subgroup of G/G;-, and Il is a constructive presentation for (¢(X))Gi_1/Gi-1.



{input: G, a solvable permutation group, given by an elementary
abelian structure ((Go, Gh,...,Gt), (¥1, %2, -, %)),
constructive presentations I1; = (X;, ¢:|R:) for Gio1/G;:, where
|Gi-1/Gil = 9, fori=1,2,...1
and a prime p.}

{output: A Sylow p-subgroup of G.}

begin
1:=1
whilei<tand p; #pdoi:=i+1
if i =t then return 1
whilet>iand p, =pdot:=it—1
if i = ¢t then return G,
I = (X, 4[R) = (3, 0/0)
while i < ¢
if p; = p then
IT :=ExtendPresentation(II, II;)
else
IT :=Complement(IL, I1;, ¢;}
ii=1+1
return {¢(X), G,)
end.

Figure 15: Sylow p-subgroup algorithm
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When we first enter the loop, i = r, H = Gy-1 and the presentation is the
empty presentation for G,._;/G,_; = 1. At each iteration we take one step down the
chain, i.e. we want to update H to T such that H/G;, is a Sylow p-subgroup of
G/Gi4a, we face one of two cases: ()pi=por(ii)p=gq # p.

In case (i), H/G; is a p-group, so we can take H = H and we have to compute a
new constructive presentation for H/G; from the constructive presentations of H /Gi-q
and Gi_;/G;. This includes adding new generators, computing new relators and
extending the map ¢ to § to include the new generators (see the details below, in
section “Extending the constructive presentation”),

In case (ii), we will find H < H such that H/G; = H/G;_,, we keep X and R
from the constructive Presentation, and we change ¢ to ¢ such that H/G; is realized
via¢: X — H. In both cases, H/G; is a Sylow p-subgroup of G/G; and we have &
presentation that is realized via g. Of course, we can stop the process if G; is already

a p-group (see the next section).

Finding Complements

We will examine case (ii) of the previous paragraph in a more general situation.
Let G be a group, N « G and (X|R) a presentation for G/N realized via the map
¢: X -G,

Definition 10.2
Wesay that C < Gisa complement of Nin G,if CNN =1 and G = CN.

O

We want to answer the question whether NV has a complement in G and if so,

find one. The following lemma provides a necessary and sufficient condition for the
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existence of a complement,

Lemma 10.5
Let G be a group, N oG and let (X [R) be a presentation for G/N realized
via ¢. Then N has a complement C in @ if and only if there exist a map

0 : X — G such that §(R) = 1 and 0(z)"'¢(z) € N for all z € X.

Proof
Note that the normality of N implies that V (z € X) (0(z)'¢(z) € N) if
and only if V (w € F(X)) (f(w)"'$(w) € N). This shows that (X|R) is
realized via 0, too. If C is a complement to N then every ¢ € (G can be
uniquely written as ¢ = g.g, with g, € C and gn € N. Let O(z) = ¢(z),,
then & satisfies the stated conditions. In the other direction, if we have
with the stated conditions, then let C = a(F (X)). We want to show that
CNN =1 Let w € F(X) such that §(w) € N. Then ¢(w) € N and
therefore w € (R)*%), 50 f(w) = 1. 0

To get an algorithm with better complexity, we will need a slightly stronger
statement. Suppose in addition that for some ¥ c X, B = (¢(Y)) and B is a
complement of N in BN and we are interested in the existence of a complement C

of N in G such that B < (.

Lemma 10.6
Let G be a group, N aG and let (X|R) be a presentation for G/N realized
via ¢. Let us suppose that for some ¥ ¢ X, B =(¢(Y)) and Bis a
complement of N in BN. Then N has a complement C > B in G if
and only if there exist a map 6 : X — G such that (i) d(R) = 1, (ii)
0(y) = ¢(y) for all y € ¥ and (iii) 8(z)~'¢(z) € N for all z € X.
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Proof
Suppose that such C exists. Then the 0 given in the proof of Lemma 10.5

satisfies the additional condition. Conversely, if there exist § with these

conditions, C' = §(F(X)) > (8(Y)) = (¢(Y)) = B. O

Let w be a word in the letters of X = {I:],.Tg,...,&.'k}. Let w(c) =
w(cy,€ay...,cr) denote the word that we get from w by substituting each occur-
rence of z; by the expression ¢; (and the occurrences of z7! by ci). If the ¢'s are
group elements (e.g. permutations), we will use the same notation for the group el-
ement (permutation) that we get doing the multiplications and taking the inverses
prescribed by w.

By Lemma 10.5 a complement of N in G exists if and only if there are
Ny...,nx] € N such that w(¢($1)n1,qb(mg)n2,...,qﬁ(mm)n|x|) =1 € @G for all
w€ER={w,...,wml.

If we write “unknowns”, i.e. new symbols in place of the n;’s, we can express the
condition in terms of solvability of a system of equations. Let ¥ = {y,1,..., yx1}
such that X NY = ). For each w;j we define v;, a word in X U Y, as U=
Wj(.'lily*l,mgyz,...,.'B'X':lj[xl).

Now the condition for the existence of a complement becomes: there is a solution
of the system of equations vi(g,y) = vj(gl,gg,...,g|X,,y1,y2,...,y|x|) =17 =
1,2,...,|R|, where g; = ¢(z;) and y,... »Y|x| are unknowns.

Kantor, Luks and Mark in [KLM] {Lemma 3.6) prove the following

Lemmma 10.7

Let N a G, N be abelian, g € G and let us use the notation 1

(1,...,1) € NI Then the map ®, : NI¥| - N, defined by &,(n) =
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v(g,1)"'v(g,n) is a homomorphism. o

In terms of the ®,’s, our equations take the form ®,,(y) = v;(g,1)"".

If N is elementary abelian, we can treat N as a vector space and the ®,’s
become linear transformations. So in this case we have to find a solution of a system
of linear equations in order to find a complement. In fact, by solving the system, we
find all possible complements (including the case when there is none). The algorithm
for finding a complement in this case is shown on Figure 16.

In the case to which we apply this method for finding complements in the Sylow
p-subgroup algorithm, N is an elementary abelian g-group (G;/Git1), and in the role
of G we have H/G;4,1. Since H/G; is a p-group and p # g, we know that a complement
exists and it is a Sylow p-subgroup of H/G;,, therefore we know that our system of
equations has a solution. We only have to find one.

We set up the system of linear equations as follows. (This is similar to what is
shown and demonstrated on a small example in [CNW].) From a basis of N, we form
a basis of N¥1| let this basis be B = (b, bs,...,byjx)), where d is the dimension of
N. For each j € {1,2,...,|R|} we compute @,,(bx) € N (k = 1,2,...,d|X]), and
interpret it as the kth column of the matrix Tj. Then Tj is the matrix of the linear
transformation ®,, in the basis B. The right-hand side of the equations is the vector
corresponding to v;{g,1)~!. This way we set up d equations for each relator.

In the rest of this section we show how the data structure presented in Chap-
ter IX helps us to do the computations efficiently. In addition to what we have in the
data structure we need representation of the constructive presentations.

We will represent the relators as straight-line programs. This will save us some

in the evaluation of the relators. The term “straight-line program” in computational
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{input: Constructive presentations Il = (X, ¢|R) and T = (Y, ¥|T) for G/K
and N/K, respectively, where N a G, N/K is an elementary abelian q-group
and B : N — GF(q)* epimorphism with kernel K, such that the k-th
component of B(1(y;)) = bk; (Kronecker 6)}

{output: A constructive presentation for a complement of N/K in G/K. }

begin

(ula"‘aud) = ¢(Y)
(g15---,91x)) = $(X)
for z:=1to |X|do h,:=g.
forall w € R do

vw = Au(gr,. ., 9x)) — 1

bu=ﬂ('uw)

for z:=1to |X]| do

for k=1toddo

h; = gz
Dyld(z = 1) + &} := B(vulul b1, . .., Bixy))
h::=g9;
D b,
D= : and b:=|
Diry bir|
Let e = (ey,...,eqx|) be a solution of Dx = b if that exists and e := @ otherwise

bf if e = 0 then return false
for z:=1to |X]| do

n, = u:(:—l)d+lu;(z—!)d+2 o u;"‘
Let ¢ be defined by é(z.) = g.n.
return (X, 3|R)
end.

Figure 16: Complement algorithm
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group theory (the theory of the so called black box groups) is usually used in a more

restricted form than what we want to use it. We define a straight line program as

follows.

Definition 10.3
Let V = {v1,vq,...} be a set of symbols and let T be another countably in-
finite set, disjont from V. We call T" the set of operator symbols. Each v €

I has an arity r(7y), and I contains a subset {a;, ay,...} with r(a;) = 0 for

7 =1,2,.... We call the a;’s constant operators. A straight-line program
is a sequence of assignment statements A = (ay,ao,...,ax), where each
statement a; is of the form v; = y(vi,, vy, - - - ,v;‘_(_m), where 9; € I' and
il,ig,...,i,(w) <. ; 0O

If G is a group than we can interpret a straight-line program in G as follows. Let
(g1, 92, . . .) be a sequence of elements of G and for each y € T'let £, : G") - G be a
function, such that f,,() = ¢g;. Running the straight-line program A = (a,,4a.,...,ax)
in G on input (g1,92,...) means that we are successively substituting +; by f,; and
v;i by hi € G, where h; = f,(hi), hiy, ""h"r(v.-l)’ for i = 1,2,...,k The output of
the program is hy. We use the notation A(gy,¢z,...) for the output of running the
program A on input (g1,92,...). Of course, if m = max{7 : a; occurs in A}, we can
write A(q1,92,.-.,9m) With the same meaning.

In our data structure for solvable groups we have exactly what we need to
set up the linear equations: the generators of the ith level correspond to the unit
vectors in GF(p)%, and for each g € G;_; we can compute the vector corresponding
to gGi € Gi-1/G;. To set up the equations we proceed as follows. Let us denote the

straight line program that represents w € R by A,. For each w € R we will compute a
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di|X| by d; matrix D, and a vector bo. To get b, we compute 9=Tu(g,g2,... »gix1)
and then we compute the vector form of g7, To get the (di(z — 1) + k)th column
of D, (1 <2< |X]and 1 < k < d;), we compute h = l".,,(hl,hg,...,hlx|), where
hm =gm if 2 # m and k, = g,g; (using the notation from Chapter IX) and then we
compute the vector representation of g~ 'h. This way each relator yields d; equations
and finally we will have |R|d; of them. We solve this system of equations to get
the | X| vectors, which should be lifted back to the permutation domain to get the

modifiers for each g:.

Extending the Constructive Presentation

When p; = p, our task is to compute a new constructive presentation for 4 /G,
We have a constructive presentation for A /G: and we also have a constructive presen-
tation for the vector space G;/G;y,, this latter is (YIT), where Y is a set of fresh free
generators, and the relators are {vesym] :1<k<m< FimlU{t:1<m< Jis1}.
We define the extension of the map ¢ to @ by &(yx) = gix. For z € X, E(:l:) = ¢(z).

Luks in [Lu4] shows how to obtain a constructive presentation for H/N, given
constructive presentations for H/K and for K /N, where N < K are normal in H,
We use this procedure to compute the new constructive presentation. This is done
as follows.

Let H be a group and let N < K be normal subgroups of H. Suppose we have a
presentation (X, R) of H/K realized viz ¢ : X — I and we also have a presentation
(Y,T) of K/N realized viash : ¥ — K, where XNY = . We define ¢ : XUY — H by
#(z) = ¢(z) Yz € X and 3(v) = ¥(y) Yy € Y. We also define a set of new relations.
For each w € R find a word 7, € F(Y) such that w($(X)) = n(¥(Y)) mod K.
Also, for each pair (z,y) € X x ¥ find a word o, € F(Y) such that P(y)*®) =
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T2 y(P(Y))mod K. Let i = T U {w(X)r,(¥Y) ' tweR}U {v®ozy : (z,9) € X x Y}
We define RO T = U.

Lemma 10.8
Using the notation of the previous paragraph, (XUY|R®T) is a presen-
tation for H/N realized via ¢: X UY — H. O

To find a word 7, € F(Y) such that w($(X)) = 7,(¥(Y)) mod K, in the case we
are using this in the Sylow p-group algorithm, K /N is the elementary abelian p-group
Gi-1/G:, we have §; : Gi1/G; = GF (p)”d‘, and in the constructive presentation of it
¥(Y) is mapped onto the standard generating system of GF(p)*™. So if the coefficient-
vector for f;(w(4(X))) in the same basis is (c,, ... 1¢4;), then 7, =yt .-y 3%,

To find the words 7, and o, we have to start with ¢(w)-€ Gi_; and P(y)*=) ¢
Gi_1, respectively, and sift them through the level G;_,/G;, and whenever we per-
form an operation, we add a step to the straight-line program which prescribes that
operation (the operands are the sifted word and a strong generator).

Let us examine the presentation we get applying this method in the Sylow p-
subgroup algorithm. In that case, /N will be G; /Gis1 in the data structure for some
2, and it is isomorphic with GF(p)% (p = pi). Let Y = {y1,...,p0.}, let ¥ : Y = G
such that ¥(y;) = g;;. Then (Y,9|T) is a constructive presentation for G;/Giy,,

whereT:{y}’:lsjsd,-}u{[yj,yk]:lSj<k$d,-}.

Definition 10.4
Let X = {z,...,z.m} and let (X, ¢|R) be a constructive presentation for

H/N. We say that this presentation has the tail-presentation property,

if for each X; = {z;,2i41,...,2m}, (Xi, ¥x,{(X:) N R) is a constructive
presentation for ((X;))N/N. O
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Lemma 10.9
The constructive presentation IT that appears in the algorithm in Figure 15

always has the tail presentation property.

Proof
It is trivial that the constructive presentation described above for G; /Giza
has the property and it is easy to see that if both ({zy,...,z;}, d|R)
and (Zj41,..., 7k}, ¥|T) have the tail-presentation property then so does
{z1,-..,2:},dU$|R ® 7). From this, by induction on the length of the

construction, we get the statement of the lemma. O

This means that we can apply Lemma 10.6 to set up equations for one generator
at a time when we compute the complement, starting with the last one. There is
always a complement containing the already computed part, since any p-subgroup of
a group is contained in some Sylow p-subgroup, so by Lemma 10.6 there is always a

solution for the system of linear equations.

Complexity of the Svlow p-Subgroup Algorithm

Let I be the length of the composition series of G, that is | = dy + -+~ + d,,..
Then we will have to set up and solve O(I) systems of equations. To compute a com-
plement for G;_;/G; in H/G; when the dimension of G;_; /G; is d;, we solve a series
of systems of equations, each for d; unknowns, with a total of O(1*d;) equations (this
is the number of relations). To set up these equations, we have to evaluate O(%d;)
straight-line programs, each requiring O(l) group operations and one permutation-
vector transformation. To solve the system of equations costs O(12d¢") field operations.

The asymptotically best known algorithms for doing linear algebra provide o < 2.4
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(see e.g. [CLR]), but if we use good old Gaussian elimination, we can get o = 3.
To get the total number of field operations during the computation we have to sum
this over the ¢’s for which G;_,/G; is not a p-group, giving a total of O(I%**) field
operations, and O(I') permutation operations. Since [ = O(n), where n is the size
of the permutation domain, the whole running time is O(n®). These results seem to
match those in [EW], where similar tasks are performed in a slightly different setting.
If we haven’t used the result of Lemma 10.9, then we should have had to solve linear

equations of size O(!d;) unknowns and O({*d;), giving a total cost of O(I*+?¢),

Experiments

We conducted experiments comparing the techniques presented in this chap-
ter with built-in methods of GAP [Sch]. In the experiments we computed Sylow
p-subgroups of several solvable permutation groups using two methods. The first
method involves built-in GAP functions, first to convert the permutation group into
an Ag-group (GAP’s term for solvable groups represented by a power-commutator
presentation), then to convert it into a so-called Special Ag-group, in which getting
the Sylow subgroups is a trivial matter, finally mapping the result back to the per-
mutation domain. The second method is based on the algorithm discussed in this
chapter and on the data structure presented in Chapter IX. GAP also has a method
for finding Sylow p-subgroups of permutation groups, but that is incomparably slower
than any of the two methods described above.

The groups in the experiment were the following:

G, a solvable linear group of size 27-3°-7 in a primitive permutation representation

on 3% = 6561 points,
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G a supergroup of GG on the same points, of size 2!°-3°. 7.

G3 a linear group of size 27 - 3% represented on 3* = 81 points.
(The three groups above were suggested by W.M. Kantor)

Ga= 5315, size 27 - 3%, on 12 points.

Gs= Sal Sy, size 2'5 - 35, on 16 points.

Gs= Gs x Syl3(Sa1) x Gy, size 222 - 3'°, on 49 points.

G7= G x G, size 2*1 - 3%, on 98 points.

Gs= G7 x G, size 256 - 357 on 147 points.

Go= Gg % Gs, size 2% - 3™ on 196 points.

Gro= Gy x Gg, size 211°. 3% on 245 points.

Gu= G11 83, size 222 - 3%8.. 73, on 3° = 19683 points.

Gi2= G2 1 Sy, size 2%3 . 3%7. 7% on 38. 22 = 26244 points.

Ghz= G5 Sy, size 23! - 32!, on 3* - 2? = 324 points.

The groups were given by “nice” generators, that is, ones that reflect the product
structure. Then a set of subgroups of each group was computed by choosing four
random elements as generators - in the majority of the cases these random elements
generated the whole group (see the second column - composition length — of Table 1
and Table 2).

The experiments showed that although both methods are sensitive to the “nice-

ness” of generators, the one composed from the built-in functions takes considerably



98

(2 to 35 times) more time to finish even on smaller groups if the generators are not
“nice”. QOur method performed within a time factor of two, and if the size of the
“random” subgroup was smaller than the original group, then the times even went
down.

The two methods finish in time within a factor of two on small groups, the
built-in method is favorable (by a factor of 2 to 4) on the primitive groups G, and
G (relatively large permutation domain compared to the size of the group). In the
series (Fg to Gg we tried to get an empirical growth rate comparison between the
two methods, as far as the computations could be done in reasonable time. The
timing results suggest that the built-in method has a higher growth rate than our
method. This is especially true for the random generators case, when the relators
in the Ag-presentation are likely to contain more generators, so the multiplication of
two elements (by the method called collection) takes much more time.

In the experiments we measured the time spent in each of the steps for both
methods. For the built-in method these parts are computing the point-stabilizer
series for the permutation group, then converting the permutation group into an Ag-
group, then converting the Ag-group into a special Ag-group. The time required
for finding a Sylow subgroup of the special Ag-group and converting it back to a
permutation group is negligible compared to the rest. For our method the sub-tasks
are computing the linear stucture, then computing the strong generating sequence for
the elementary abelian structure (at which point we have about the same information
about the structure of the group as we have with an Ag-representation) then finally
computing the Sylow p-subgroup.

As expected, the bottleneck in the computations for small sizes is the middle
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part, that is, computing the strong generating set, but as the sizes grow, the bulk of

the computation shifts to the last one (computing the Sylow subgroup).

Table 1: Nice generators, whole groups

comp bss | Ag |S Ag" total | total
len perm ag
G| 17 84 | 571 01 [l27] 22 |03 143 | 52
G| 20 | 215] 67| 01 4 32| 38 |04 283 | 75
Gs| 12 [ 0.19 | 0.07| 0.01 [fo.06] 0.05 [0.16] 0.27 | 0.27
Gs] 12 | 0.03 [ 0.05| 0.01 JJo.05] 0.05 [0.15] 0.00 | 0.25
Gs| 20 [005]009] 011 [[01] 02 [o04] 025 [ 0.7
Gs| 41 0.1 [ 03[ 1.1 [o4] 27 |14 15 | 44
G,| 82 0.1 | 2.0 [ 126 || 1.3[ 40.1 |53 14.8 | 46.7
Gs| 123 || 03 | 29 [ 70.2 |§4.7]205.3 [14.1] 733 | 2241
Go| 164 [ 0.4 | 6.5 | 2815 9.7]668.0 [20.3]] 288.3 | 707.0
G| 205 || 0.5 {104 ({1144.4[[17.9]1675.8]54.2] 1155.3 | 1747.9
Gu| 53 | 21.1 [112.0] 42.0 [[20.7] 225.4 | 3.0 || 176.0 | 249.2
Giz| 84 | 59.1 [465.7] 192.1 [|82.6]1380.1]12.1)] 716.9 | 1474.8
Gia| 52 04 [ 22| 1.0 [[06] 63 [49] 36 [ 119

struct| sgs | Syl

The execution times are tabulated in Table 1 and Table 2. The numbers repre-
sent seconds of processor time as reported by the GAP function Runtime(), on a Sun

Ultrasparc-1 machine, with 64 Megabytes of memory workspace for GAP.



Table 2: Subgroups generated by random elements
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TP struct sgs Syl || pss | Ag | SAg S e

len perm ag
Hi| 17 |78 | 172 Jo2 25 [ 26| 05 | 251 | 56
H| 20 4 100 | 458 {09 29|59 ]| 08 [ 567 | 95
Hy| 12 [ 019 021 |0.00[0.06]004] 023 | 0.40 | 033
Hy| 12 || 002 | 007 [0.01[006]005]| 020 { 0.1 0.4
Hs| 20 J003| 02 [01fo01]02] 09 0.3 1.2
He|] 37 01 ] 08 [29 [ 0420 61 39 | 85
H| 1 02 | 44 |89 | 20 [223] 394 [ 135 | 63.7
Hy| 102 | 0.2 | 183 [39.2] 3.9 {979 369.24" 57.8 | 471.0
Ho| 128 | 0.3 | 36.9 [107.2] 6.8 |259.2] 2948.9 || 144.4 | 3218.2
Hio| 164 | 2.2 | 992 |446.4] 16.1 [748.0]20665.7| 547.8 |21475.9
Hu| 53 | 28.7 | 7024 | 68.9 || 63.3 [922.8] 424 || 800.0 | 10285
Hi| 84 | 85.9 [10945.8[454.2[[177.0[ * *4Hll485.9 *
Hiz| 52 § 03 | 161 | 1.5 | 08 }10.7] 482 [ 179 [ 59.7
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