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Research in TIBBIT(Timing Insensitive Binary to Blnary Translation) proposed

a methodology to provide timing equivalence as well as semantic equivalence in binary-
to-binary translation of real-time applications by inserting synchronization at regular
intervals. However, the timing equivalence of programs generated by TIBBIT is
not guaranteed. In this dissertation, we provide a method to guarantee the timing
equivalence of the generated target binary programs.

We use an interval-based approach, first invented by Allen and Cocke, to test
timing equivalence of a translated target binary program with respect to a source
binary program. We introduce the concept of timing sensitivity, the maximum timing
difference between the source and target programs, to judge how closely the target
program will mimic the source program’s timing.

We say that a target program is executable with timing equivalence if the timing

sensitivity can be reduced to zero, and with timing invariance if the timing sensitivity
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can be bounded by a constant. We have discovered necessary and sufficient conditions
to provide timing equivalence and invariance for target programs.

If a target program is executable with timing equivalence or invariance, it must
be enforced by a synchronization scheme. When the target program is executable
with timing invariance, the timing sensitivity depends on how and where the target
program is synchronized. We use a local synchronization scheme that removes local
timing error to provide timing invariance. We develop a static method to measure
timing sensitivity with the local synchronization scheme. We also develop optimiza-
tion techniques to minimize timing sensitivity.

In summary, the main research contributions of this dissertation are 1) necessary
and sufficient conditions for timing equivalent and invariant translation 2) an algo-
rithm to find timing sensitivity of the target program and 3) techniques to minimize

timing sensitivity of the target program.
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CHAPTER I

INTRODUCTION AND RATIONALE

The goal of this thesis is to investigate timing issues in Binary-To-Binary Trans-
lation (BBT) of real-time applications. While BBT provides a means of smooth
migration of legacy software to newer architectures, it does not handle real-time
applications properly. In real-time applications, it is often the case that doing some-
thing too quickly is as unacceptable as doing it too slowly. Thus, the translation of
real-time applications must preserve timing equivalence of all visible events as well
as semantic equivalence of the source application programs. The TIBBIT [14, 13]
(Timing Insensitive Binary to Blnary Translation) project introduced the problem of
providing timing equivalence in binary-to-binary translation of real-time applications.
The TIBBIT system delays the execution of the target program at regular intervals
assuming the target machine is faster than the source machine. However, the TIBBIT
system does not guarantee timing equivalence of the generated target binary programs
when some instructions take more time on the target machine. This thesis provides a
method to guarantee the timing equivalence of the TIBBIT-generated target binary

programs. Major questions this thesis answers include:

o How to guarantee timing equivalence of the TIBBIT-generated target binary

programs.
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e What are the necessary and sufficient conditions to guarantee timing equivalence

of the generated target programs.

o How to convert a target binary program that is not timing equivalent into an

equivalent one.
e How to minimize timing differences between source and target programs.

Binary-to-binary Translation

Binary-to-binary translation (BBT) is a method that takes a binary executable
program (source binary) for a machine (source machine) and translates it into another
executable program (farget binary) to run on another machine (target machine),
without referencing the original source program[51, 5]. The translated target binary
program is a sequence of target machine instructions that reproduces the behavior of

the source binary program. Figure 1 depicts the binary-to-binary translation scheme.

Source Target
Bin BBT Binary

Source Target
Machine Machine

Figure 1: Binary-to-binary translation

!

The main advantage of this approach is that it is not necessary to have access
to the original source program in order to perform the translation. A complicated
application includes many software components developed using many different tools

and compilers. One example of this is Microsoft Word, which is partly written in its
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own macro language, with other portions written in C and assembly language. Port-
ing this complicated software to a new architecture requires all tools and compilers
available on the target machine before one starts. BBT provides a method to avoid
this complication. The BBT technique has been used by many companies such as
IBM [50], DEC [51], Tandem][5], and Apple.

The translation of a binary code involves two program translations. One is the
application binary code translation and the other is operating system code translation

as shown in Figure 2.

Program Target
Translated OS
X Target OS

Translation

Source

Binary Program

Source OS

Source
Machine

Target
Machine

Figure 2: Components of binary-to-binary translation

Translation of operating system code involves many complicated issues as dis-
cussed in [50]. We concentrate on real-time embedded-systems where the operating
system and application binary program are combined together.

The main disadvantage of the BBT approach is performance degradation. In
general, for the given set of instructions on the source machine, finding an optimal
set of instructions on the target machine that reproduces the behavior of the source
instruction set is a difficult problem. Also, some conditional statements must be added

to make sure the architectural differences between the two machines are handled



correctly. Detailed discussion on these issues can be found in [50].

Binary-to-binary Translation of Real-Time Applications

Previous Binary-to-binary Translation (BBT) approaches provide only semantic
equivalence between source and translated target programs where the optimization
goal is reducing the total execution time of the program on the target machine.

For real-time applications, however, the translator must preserve the timing
equivalence as well as semantic equivalence of the source binary program. In this
case, the goal of optimization is to reduce the timing difference between source and
target programs. Figure 3 depicts the problem of preserving the timing equivalence

of all visible events (ifo events).

Source Target
Bin Binary

Source

Target

Machine

Machine

Equivalent
I/O Timing

Figure 3: The problem of providing the timing equivalence between source and target
programs

The TIBBIT project (14, 13] addressed this timing issue, i.e., the problem of
preserving the timing equivalence between source and translated target programs. In
TIBBIT, the time required for each basic block on the source machine is computed.
While running on the target machine, the TIBBIT system compares source and target

timing at regular intervals and adjusts the execution of the target program. The
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translated target program executes faster than the source on the target machine, but

is periodically delayed.

Source Timeline

\

Progress of translated application

Target Timeline

Figure 4: TIBBIT algorithm to provide timing equivalence

The example shown in Figure 4 depicts the algorithm used in TIBBIT. A node v
in the control flow graph has an extra node that contains the execution time required
on the source machine Ms, denoted by ( EzecTime(v, Ms)). A limitation of TIBBIT
is that it generates timing equivalent target binary programs only if all basic blocks

take less time on the target machine.
Rationale

To provide timing equivalence in binary-to-binary translation, it is important
to know the processing speed difference between the two machines, source and target.
At minimum, the target machine must be faster than the source machine. However,

the concept of processing speed difference of two machines is ambiguous. Modern
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processors, such as RISC-based architectures, achieve their speedup over old proces-
sors through optimization of the most frequently used instructions while paying some
penalty for less frequently used ones. On average, these newer processors are faster
than older ones, but some instructions are actually slower than those of corresponding
instruction sequences in the old processors.

Also, some translation overhead exists. As mentioned, it is a difficult problem
to find the optimal corresponding set of target machine instructions for the given set
of source machine instructions. In addition, there exists runtime overhead added to
target binary programs. Some information that is available to higher-level translators
is not available to a binary-to-binary translator. Thus, even when all corresponding
instructions in the target machine take less time than the source machine instructions,
some basic blocks in the translated target binary program may take longer on the
target machine, simply because of translation overhead.

For these two reasons, the current TIBBIT system is not sufficient. When there
exist some basic blocks that take a longer time on the target machine, the execution
time difference between source and target program cannot be maintained by delaying
the program execution (synchronization) on the target machine.

Consider the example given in Figure 5. We assume that the time required
to execute a given basic block is computable for both source and target machines.
We also assume that the required execution time for all i/o instructions remain the
same on the target machine. Each node v in the control flow graph has an extra
field containing the execution time required on both source and target machines
for the node v, represented as (EzecTime(v, Ms)/EzecTime(v, Ms)). The target

machine is faster than the source machine on average. However, one basic block
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takes a longer time on the target machine. When executed on the target machine,
the application may execute faster or slower depending on how often this slow basic
block executed at the particular execution. When the application executes faster on
the target machine, inserting synchronizations on the target program provide timing
equivalence. However, when the application executes slower on the target machine,

inserting synchronization does not provide timing equivalence.

£
=
E
=
]
g
=
[=}
w
Progress of translated application
ilo @ Target Timeline

Figure 5: Timing equivalent translation with slower instructions

Considering these factors, the goal of this research is to develop a method that
analyzes a program to determine if it is always possible to execute a program timing
equivalence.

Here, we are to test if the maximum timing difference between source and target
(the maximum drift) can be bounded by a constant. The maximum drift between
source and target applications is shown in Figure 6. In the graph, the timing difference

between source and target is bounded by a constant denoted by the distance between



two dotted lines.

P

Source Timeline

—
o

Target Timeline

Figure 6: Timing difference between source and target applications limited by a
constant

This dissertation answers the following questions.

When is the maximum drift bounded by a constant?

How to find the maximum drift (the constant) if it is bounded?

How to ensure that bounds exist?

How to reduce the maximum drift?

To answer these questions, we assume the following.
» The control flow graph of the translated target program is given with execution

time required for each basic block on both source and target machines.

» Environments, such as networks and i/o devices, remain the same, i.e., only the

processor and possibly part of the memory system are replaced.



Related Work
Binary-to-Binary Translation

Many commercial companies use binary-to-binary translation schemes to pro-
vide a speedy upgrade path to newer architectures. Most of these binary-to-binary
translation schemes have been developed with a particular source and target platform
in mind. The optimization goal of these binary-to-binary translators is to minimize
total execution time on the target machine. Issues of providing timing equivalence

for real-time applications are completely ignored.

DE

Kronenberg [37] and Sites [51] at Digital Equipment Corporation (DEC) use
binary-to-binary translation techniques to port VAX VMS, MIPS Ultrix, and 80x86-
based programs to the Alpha architecture. They successfully ported a large number of
applications to the new architecture in minimal time. Because the Alpha architecture
was designed with binary translation of MIPS code in mind, the performance of binary

translated programs are comparable to that of native compiler generated programs.

IB

Silberman and Ebcioglu at International Business Machines (IBM) developed
a binary-to-binary translator that supports migration of system code as well as self-
modifying code [50]. Applications are represented in both “migrant” and “native”
forms, and a hardware-assisted “migrant engine” is used to execute sequences of code

when the native engine fails due to either untranslatable or self-modifying code.
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Tandem Non-Stop Systems

Tandem Non-Stop Systems used a BBT system [5] to upgrade all of its vendor
and user software from a proprietary stack-based CISC architecture to new R3000-
based RISC machines. Both the operating system and applications were ported, and

relied upon a combination of static translation and run-time interpretation.
HP

Bergh [7] at Hewlett Packard relies on a combination of object code translation
and emulation to execute HP3000 software on the HP Precision architecture family,

using a "compatibility mode” environment in the target operating system.
Hunter Systems

Hunter Systems developed a system called XDOS [25] for binary-translating
DOS applications to UNIX environments. The system was intended to be used
by developers as an aid to porting, and relied upon a combination of human- and

machine-translation techniques.
Decompilation

Decompilation is a process that reads a binary executable program and trans-
lates it into an equivalent program in a high-level language. Decompilation techniques
are useful in understanding the binary code during the maintenance process [8] and
in verifying compiled binary programs for safety-critical systems [52, 46]. All of these
systems ignore timing issues that occur in many real-time systems. One exception

is the original version of the TIBBIT translator which takes an executable binary
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program and generates C code that is both semantically and temporally equivalent

to the binary code.

Breuer and Bowen

Breuer and Bowen [8] describe a method to decompile programs generated by
a simple Occam-like compiler. They construct an abstract syntax tree from the
executable binary code and generate an equivalent program in the logic programming

language, Prolog.

Spector and Pave

NASA used a decompilation technique [52] to verify the program called System
Management (SM), which is used in their space shuttle. The decompiler decompiles
the memory images generated by the SM preprocessor and compare the results with
the original inputs.

Pavey and Winsborrow [46] also used a decompilation technique to compare the
source code and PROM contents of a safety-critical system used in the UK nuclear

industry.

Gough and Cifuentes

Gough and Cifuentes [11, 10] describe issues in decompiling 80x86 binary pro-
grams. Many optimization techniques that have been used in optimizing compilers are
used in their decompiler. Their goal is similar to that of binary-to-binary translation

but it also provides portability.
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Cogswell and Segall

A version of the TIBBIT translator [13] takes an executable binary program
and generates C' code to provide portability. The generated C code can be compiled
for any target machine. This version of the TIBBIT translator computes execution
times on the source machine for each basic block. For each basic block, the translator
inserts C' code that accumulates the execution time of basic blocks in a global counter
that accumulates these execution times. The TIBBIT-generated target C program is
compiled by a C' compiler on a specific machine. The TIBBIT system interrupts the
execution of the target binary program at regular intervals and delays the execution

if it runs too fast.
Timing Analysis

For a real-time program, we must be able to predict the computation time of
the program on the target machine. There are a number of techniques that predict
the execution times of programs written in both low-level and high-level languages.

In our analysis, it is assumed that the execution time required for any basic
block on both source and target machines is computable. In Chapter IX, we discuss

how to deal with instructions that have non-constant execution time.

High-level Languages

Shaw [49, 45} describes a method to predict the execution time of high-level lan-
guage statements. The method takes a program written in a high-level language (C),
and bounds for each loop, and predicts the upper and lower bounds on execution time

of each source level construct. The method decomposes programs into basic blocks
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and predicts the implementation of each basic block. The execution time of each
basic block is determined for a specific target machine. The accuracy of the predicted

execution time is dependent on how accurately it can predict the implementation.

Low-level languages

Most older processors have a constant execution time for each instruction. If
we know the bounds of each loop, it is not difficult to compute the execution time
of programs written in low-level languages such as assembly language. However, the
execution time of instructions on a newer processor with pipelines and cache is not
constant. Issues of computing tight worst-case execution time of instructions for these
machines are discussed in [40, 19, 60].

Zhang [60] presents a method to find worst-case execution times of instructions
on pipelined processors.

Caches are extensively used in most recent computer systems to improve per-
formance of the system. While caches improve performance of the system on average,
they impose significant difficulties on timing analysis. Min [40] describes an analysis
technique that accurately predicts the worst-case execution times of programs in the
presence of caches.

Most timing analysis techniques are machine dependent. Since machine archi-
tectures evolve rapidly, developing a retargetable timing analysis method is important.
Harmon [19] describes a portable timing analysis technique called micro-analysis. It
predicts best and worst-case bounds for point-to-point execution times, based on a
pattern matching scheme that uses a machine description and a set of timing rules.
This scheme is capable of taking into account the architectural characteristics of the

target processors and their effect on instruction execution time.
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Translation of Real-Time Programs

Translation of real-time applications must preserve both functional and tem-
poral requirements specified in the source programs. Temporal requirements are
specified either implicitly or explicitly depending on the language used in the source
program. Some source programs are written in higher-level languages with real-time
constructs in which case all temporal requirements are expressed explicitly. Other are
written in assembly language in which cases all temporal requirements are expressed

implicitly.
RT-ASLAN

RT-ASLAN [6] is a real-time programming language which allows programmers
to express timing constraints explicitly in a program. The kind of systems specifiable
in RT-ASLAN are loosely coupled systems communicating through formal interfaces.
From RT-ASLAN specification, performance correctness conjectures are generated.
These conjectures are logic statements whose proof guarantees the specification meets

critical time bounds.

Real-Time Fuclid

Real-Time Euclid {33] does not allow some general programming constructs,
including while(), recursion, and recursive data structures. The schedulability an-
alyzer of Real-Time Euclid computes the worst-case execution time of a task by

assuming the execution time of each instruction is constant.
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Modechart

Mok [27] describes a real-time specification language called Modechart. The
semantics of Modechart is given in terms of RTL (Real Time Logic) [26] that is
amenable to reasoning about the timing of events. The translation of a Modechart
specification into RTL formulas results in a hierarchical organization of the result-
ing RTL assertions. This hierarchical organization allows filtering of assertions that

concern lower levels of the abstraction.

Flex

In many hard real-time systems, obtaining an approximate result before the
deadline is more desirable than obtaining an exact result after the deadline. Flex [31]
is a real-time programming language that allow computations to return imprecise
results. This provides the flexibility needed to guarantee all important events meet

their deadlines under all circumstances.
TCEL

In most real-time programming languages, timing constraints can be specified on
blocks of code. In most real-time applications, however, these timing constraints are
imposed on observable i/o events. TCEL [17] allows a programmer to express timing
constraints between i/o events. In TCEL, unstructured constructs such as goto
are not allowed. The compiler takes programs written in this high-level language
and generates binary executable target programs. The compiler tests if the real-
time scheduler can schedule the program so that the timing constraints expressed

in the program can be guaranteed. If not, the compiler decomposes the program
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into reference blocks and constraint blocks. By moving code in reference blocks, the
compiler improves schedulability of the program. If the program is not schedulable
with a single processor, the compiler schedules it with multiple processors. If worst
case timing of the control structure in the constraint blocks does not meets its timing
requirements, if is not schedulable.

Since the compiler takes a program written in a high-level language and does
not allow unstructured constructs, the control flow of the program is known and all
control flow in constraint blocks is well structured.

Since we take binary executable programs as input, control flow of the programs,
which may be unstructured must be determined. We use interval analysis to find the
control flows in the program. The timing requirements also have to be found by
analyzing the control flow of the program. The model we use here is more general
than that of TCEL in the sense that timing requirements do not have to be expressed

explicitly between constraint blocks.
TIBBIT

The TIBBIT system is a binary-to-binary translator for real-time systems. In
binary source codes, timing requirements are implicitly expressed, Thus, the TIBBIT
system must analyze the timing of all instructions in the binary source code and
generate a target binary code which mimics its timing behavior. It assumes that

execution time for an instruction on the source machine is constant.
Program Analysis

Program analysis is to facilitate optimization of programs where the meaning of

optimization is subjective. To optimize programs, a compiler must perform some sort
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of program transformation based on the information obtained through the analysis

of source programs. Typical two analyses a compiler performs are control fiow and

data-flow analysis.

Control Flow Analysis

Control flow analysis (2, 1] is used to find the control structure of a program so
that the information can be used for optimizing transformations and other analysis. In
control flow analysis, the most important goal is finding loops. One way to find loops
is to find strongly connected regions (SCR) as discussed in [53]. While this methods
finds all cycles in a control flow graph, it does not reveal hierarchical structures of
the program.

Another way to analyze the structure of a control flow graph is interval analysis,
which finds hierarchical structures in the control flow graph. Interval analysis, as
formulated by Allen and Cocke, provides a way to solve data flow equations more
efficiently. There are a number of quite different proposals in defining intervals |3, 2,
20, 18, 4, 48]. In general, an interval is a special form of loops. The specific definition

of interval we use is the one defined in [18].

Data-flow Analysis

Data-flow analysis [43, 30, 20, 21, 23] is used to find where variables (data) are
defined and used. Data-flow information is required for many optimization techniques.
We use similar analysis methods to find how the timing differences between source

and target machines flow over the control flow graph.
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Comparison to Previous Work

All of the binary-to-binary translators and decompilers discussed above ignore
timing issues required in translation of real-time applications. Most translators for
real-time programs deal with programs written in a high-level language, where timing
constraints are explicitly expressed. We are dealing with binary programs where
timing constraints are expressed implicitly.

The current TIBBIT [13] system provides some degree of timing equivalence
in binary-to-binary translation of real-time applications. The condition required to
make the TIBBIT approach work is that every basic block takes less time on the
target machine. This condition is stronger than the conditions presented here for
timing equivalent translation. Even with stronger conditions, the TIBBIT system
does not provide timing equivalence since it uses a dynamic synchronization scheme,
e.g., synchronize every 10 ms. We present necessary and sufficient conditions for
timing equivalent and invariant translation even in cases where some basic blocks
in target binary are slower than corresponding block in the source binary program.
When the timing equivalent translation is not possible, we provide the worst case

timing error.

TIBBIT Project Overview

This research has been conducted as part of the TIBBIT project. An overview
of the TIBBIT project is depicted in Figure 7.

ASTRA is a program that takes the description of source and target OS’s and
machines and generates a TIBBIT translator. This thesis describes partially the

Timing Validation and Feedback part of the project. New algorithms are added to test
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Source Machine Source OS Source
Description Description Binary Program

Automatic Timing
Generator TIBBIT <= | Validation &
(ASTRA) Translator Feedback

Target Machine Target OS Timing Sensitivity

Description Description Target of Target Program

Binary Program
Figure 7: The overall structure of TIBBIT

if the generated target binary program is timing equivalent with respect to the source
binary program. It also provides methods to reduce the maximum drift between the

source and target programs.

Summary of Contributions

"The goal of this thesis is to investigate timing issues in binary-to-binary transla-
tion of real-time applications. For the translation of real-time applications, preserving
both semantic and timing equivalence are important, where others require preserva-
tion of semantic equivalence only. With the given source and translated target binary
applications, the necessary and sufficient conditions that can guarantee timing equiv-
alence have been found. Also, a number of optimization techniques which reduce the

timing difference between the source and target applications are applied. The major
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contributions of this dissertation include the following:

¢ A framework to analyze timing equivalence between source and target programs.

¢ Necessary and sufficient conditions for timing equivalent and timing invariant

translations.

o Relevant timing sensitivities for “real-world” usage.

A method to find timing sensitivities of the given target program.

Optimization techniques for timing equivalence.

Thesis Organization

The rest of this dissertation is organized as follows. In Chapter 2, we define
real-time system terminology and provide necessary background on real-time sys-
tems. In Chapter 3 we define basic terminology for compiler-related concepts to be
used throughout this dissertation. In Chapter 4 we define timing equivalence between
source and target systems. In Chapter 5 we present an analysis algorithm for tim-
ing equivalence testing. In Chapter 6 we present two synchronization schemes which
enforce timing equivalence. In Chapter 7 we present algorithms that find timing
sensitivities for the given source and target programs. In Chapter 8 we present algo-
rithms that minimize the timing difference between the source and target programs.
In Chapter 9 we discuss a number of implementation issues. Finally, in Chapter 10

we summarize our result and provide future research directions.



CHAPTER II

BACKGROUND

This chapter presents necessary background on real-time systems. We first
define terminology related to time and events. We then present issues on real-time

languages, programs and translators of them.
Timelines and Events

A timeline is a progression of time from the past to the future. An event, E, is
an occurrence at a point in time, i.e., a happening at a cut of the timeline, which itself
does not take any time. These terms are borrowed from Koepet and Ochsenreiter
{36). The time value of an event(E), denoted by TV(E), is the value of the time at
the event E. The time duration of two events F; and E;y,, denoted by T D(E;, Eiy1),
is the time interval between these two events, i.e., the section of the timeline between
the two events. T D(E;, E;4,) is defined as Equation IL.1. Figure 8 depicts timeline,

events and time duration between two events.

TD(E:, Eiy1) =| TV (Eir1) — TV(E;) | (IL1)

Real-Time Systems

An epplication is a program running on a specific machine. A real-time appli-

cation is an application that interacts with the external world in a way that involves
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Figure 8: Timeline, events and time duration between two events.

time-related conditions. A real-time system is a more general term to refer to a
combination of software and hardware that deals with outside events that have time
constraints. The main characteristic of real-time programs is the existence of temporal
(or timing) requirements in addition to functional requirements. Temporal require-
ments specify timing constraints for sequences of events, while functional requirements
specify required transformations of inputs to produce outputs of the system. Typical
real-time systems are control systems (manufacturing systems, robotics), monitoring
systems (patient monitoring, air traffic), and communication systems. The poten-
tially high cost associated with incorrect operations of these systems has created a
demand for rigorous testing and implementation for both functional and temporal

requirements.

1/0 FEvents

An application generates i/o events to communicate with outside systems, i.e.,
receives inputs and generates outputs. All observable events from outside the system
are ifo events. Most systems generate these ifo events by reading and writing data
from/to one or more of the system ifo ports. Since i/o events are generated by a
computer, every i/o event takes some time to complete. Thus, every i/o event io has

two events associated with it, stert(io,) and finish(ios). The time duration of an i/o
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event io, denoted by T'D(io,,i04) or T D(i0) for short, is the time interval between
to, and Zos. An ifo event is represented by its start event. Thus, the time duration of
two i/o events, i0; and 10;4, is the time interval between start events of i0; and 10i41-
An application P has two special events, Program Start(Ps) and Program Finish( Pr)
events, which are not i/o events but we treat as i/o events. Both Ps and Pr events
take no time to complete. Figure 9 shows two i/o events io; and i0;y; with program

start and finish events.

start start Pro
gram
Program finish finish

Start Finish
I b 1 e
/ " TD(ioj o)

TDYio; ) N

10 101

Figure 9: Timeline, ifo events and duration between two i/o events.

Suppose an application PS is running on a machine Ms. The application time
value (ATV) of an ifo event(PSE) in PS, denoted by ATV(PSE, Ms), is a function
that returns the time duration from the point of the Program Start(PSs) to PSE.
The ATV(PSs, Ms) is zero and ATV(PSg, Ms) is equal to the total execution time
of P§ on Ms. The ATV(PSFr,Ms) is oo if the application never finishes. Now,
suppose the application PS is translated into PT so that it can be executed on a
machine Mr. The ATV(PTs, Mr) is zero and ATV(PTr, Mr) is equal to the total
execution time of PT on Mr. Here, ATV(PSs,Ms) = ATV(PTs,Mr) = 0 but
ATV(PSF, Ms) is not necessary equal to ATV (PTr, My).



Machine Models

Suppose a real-time application (source application) running on a specific ma-
chine (source machine) is translated into another application (target application) so

that it can run on another machine (target machine) as shown in Figure 10.

Source Target
Application Translation Application

Source Target
Machine Machine

Figure 10: A source application for source machine and a translated target application
for target machine.

To provide timing equivalence on the translated target application, the target
machine must be at least as fast as the source machine. However, it is not so clear
what we mean by “a machine is faster than the other.” We thus define the meaning
of faster and slower machine more clearly.

Let the sets I and Is be instruction sets of machines My and Mg, respectively.
Let OCIS be an ordered combination of instructions, where every element ocis €
OCIS is in Is. Also, let OCIT be an ordered combination of instructions, that is
functionally equivalent to OCIS, where every element ocit € OCIT is in Ir. The
execution time required for an ordered combination of instructions OCT on machine
M is written as EzecTime(OCI, M). We say machine My is definitely faster than

machine M if for all OCIS, there exists a functionally equivalent set of instructions
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OCIT such that OCIT takes less time than OCIS, i.e.,

(YOCIS)[AOCIT > EzecTime(OCIT, Mr) < ExecTime(OCIS, Ms)).  (11.2)

Machine M7 is said to be average faster than machine M5 if for any large n,

1 EzecTime(OCIT;, M7) < iy EzecTime(OC1S;, Ms)

n n

. (IL3)

Svnchronization

Suppose source and equivalent target applications are running on source and
target machines, respectively. The goal of synchronization is the elimination of timing
differences between the two systems. Synchronization of the target application with
respect to the source application can be always achieved by delaying the execution
of the target application when the target machine is definitely faster than the source
machine.

While synchronization can be performed at any time/place in the target appli-
cation, the timing of i/o events is significant for real-time applications. The reason
is that only i/o events are observable from the outside. Thus, we are only concerned
with timing differences between corresponding i/o events on source and target appli-
cations. A target application that is semantically equivalent to the source application
said to be timing equivalent if all i/o events in the target application are synchronized
with respect to the corresponding ifo events in the source application.

Figure 11 shows such an example. An i/o event is represented as 1. There are
two i/o events, SE; and SE,, in the source application. The application time value

of these events on the source machine are ATV (SE;, Ms) = 6 and ATV(SE;, Ms) =
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Program
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Source Timeline l T I]O { ?20 I =
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Target Timeline T! 5 IIO T; !20 .
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Delay

Figure 11: Synchronization of corresponding i/o events

20. The application time value of corresponding events, TE; and T E;, on the target
application are ATV(TEy, M) = 4 and ATV(TE,, Mt) = 14. Through synchro-
nization, these two applications are timing equivalent, i.e., ATV(STE;, Mr) = 6 and
ATV (STE,;, M) = 20.

The same synchronization also can be viewed as shown in Figure 12. Synchro-
nization can be performed either statically or dynamically. Dynamic synchronization
methods decide synchronization points at run-time. The TIBBIT system [14] uses a
dynamic synchronization method. In TIBBIT, the target application is synchronized
at regular time intervals, every 10ms for example. Static synchronization schemes
decide synchronization points statically over the control flow graph so that synchro-
nization is performed every time the particular point in the control flow graph is
executed. One simple static synchronization method is synchronization of all i/o

nodes.
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Figure 12: Synchronization of source and target programs

Real-Time Languages and Programs

In real-time programs, temporal requirements must be expressed in addition
to functional requirements. These temporal requirements can be expressed either
explicitly or implicitly in the program. Most older real-time programs are written in
assembly languages because of lack of suitable real-time programming languages and
compilers. Timing requirements in this case are expressed implicitly in the program.
Programmers must embed timing requirements in the program implicitly by inserting
some delay code. More recently, real-time languages are proposed and developed
to allow programmers to express timing constraints explicitly in the program by
providing timing constructs in the programming language. Language constructs to
express timing requirements are discussed in [15, 33, 6].

Figure 13 shows an example of a real-time program written in a high-level
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real-time programming language. This example has three i/o nodes, i.e., one input
(receive()) and two outputs (send()). In this program, the timing requirements
are explicitly specified in the program with special timing constructs, every (stime)

do. In this specification, timing constraints are imposed on blocks of code.

every 10ms do
receive(Sensor, &data)
cmdl = nextCmd(state, data, s1);
cmd2 = nextCmd(state, data, s2);
state = nextState(state,data);
send (Actuatori, cmdi);
send (Actuator2, cmd2);

enddo

Figure 13: A simple real-time program

In most real-time applications, however, these timing constraints are imposed
on observable i/o events. More advanced real-time programming languages called
eveni-based real-time programming languages are proposed to allow the programmer
to specify timing constraints between observable events. One such real-time program-
ming language is Time-Constrained Event Language (TCEL){17]. Figure 14 shows the
same example of real-time program written in TC E L (also see related work section in
Chapter I). In this program, the timing constraint are specified between i/o events.

Once a program is written, it is the compiler’s duty to translate the real-time
program into target machine code which preserves both temporal and functional

requirements specified in the source program.
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every 10.0 ms do
receive(Sensor, &data)
start after 1.0 ms finish within 5.0 ms
begin
cmdl = nextCmd(state, data, s1);
cmd2 = nextCmd(state, data, s2);
state = nextState(state,data);
send (Actuatorl, cmdi);
send (Actuator2, cmd2);
end
enddo

Figure 14: A simple real-time program with event-based timing constructs

Program Translation

In general, program translation can be viewed as a process that converts a pro-
gram executable on one machine model to an equivalent program that is executable
on another machine model. Consider a program written in a higher-level program-
ming language. This program can be viewed as a program that is executable on the
conceptual machine, which is described in the language specification. A translator
(or compiler) converts this program into ancther program that is executable on a
specific target machine. A translator takes source program and source and target
machine descriptions and generates a target program which is an executable on the
target machine. Figure 15 depicts such a translator.

A program translation can be formulated as a function as shown in Equa-
tion I1.4, where TP is target program, SP is source program, SM is source machine, TM

is target machine and F is a translation function or translator.



30

Source Target
Program Translator Program
—_— (F) L
¥ i}
Source Target
Machine Machine
Description Description

Figure 15: Translator

TP = JF(SP, SM, TH). (1L.4)

The characteristics of the translator depend on a number of categories: equiv-
alence between source and target programs, “optimality” of the generated target

program, and input and output languages.
Equivalence

While the equivalence test of two programs in general is an undecidable prob-
lem, two programs are said to be “equivalent” if all transformations performed by
the translator are sound and complete within the boundary of “equivalence.” Every
translator must provide some degree of equivalence between source and target pro-
grams. We consider two different categories for the equivalence: functional (semantic)
and temporal (timing) equivalence. For most systems, only semantic equivalence is

required.

Definition 2.1

A translator F preserves semantic equivalence, denoted by TP £ SP, if SP

and TP are semantically equivalent. m
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In this case, all functional requirements specified in the source program (SP) are
preserved in the target program (TP). All compilers or translators must preserve the
semantic equivalence. For real-time applications, however, preserving timing equiva-

lence is also important.

Definition 2.2
A translator F preserves timing equivalence, denoted by TP = SP, if SP

and TP are semantically equivalent and for all corresponding i/o events

to, and to;, ATV (ioy, M7) = ATV (io,, M5s). 0

In this case, both functional and temporal requirements specified in the source

program (SP) are preserved in the target program (TP).
Optimality

The goal of optimization may vary depending upon system requirements. In
most cases, the goal of optimization is to reduce the total execution time using fewer
resources (performance optimization). Performance optimization has a long history
(1, 3, 39]. However, the major goal of optimization for real-time systems is to meet the
timing requirements specified in the source program, i.e., providing timing equivalence
between two programs, source and target. One such example is TCEL [17, 16, 24].
The TCEL compiler optimizes target programs to comply with the timing constraints

specified in programs.
Input and Output Languages

Both input and output can be anything from binary object code to programs

written in high-level languages such as C or Prolog. In TCEL, like most other com-
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pilers, input programs are written in a higher-level programming language and the
output is binary executable code. Decompilers [8) takes binary executable codes as
input and generates high-level codes such as C or Prolog. A binary-to-binary trans-

lator [51] takes binary executable code for a machine and generates another binary

code which is executable on another machine.
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CHAPTER Il

THEORETICAL TERMINOLOGY AND NOTATION

Most compilers use a form of control flow graph, an intermediate representation
of programs, to analyze and optimize programs. This chapter explains our control
flow graph used in timing analysis. We first provide some mathematical notations to
define control flow graphs. We then define the control flow graph and spanning and
dominator trees for it. A table providing a summary of notations is given at the end

of this chapter.
Set

A set § is a collection of distinct objects. An element s is a member of set S,
written s € S, if s is an object that is in the set S. The cardinality of a set | S| is the
number of elements in the set S. A set is empty, written §, if |[S| = 0. A set is an
infinite set if |S] = co. A set S is a subset of T, S C T, if every element of S is also
an element in T. A set S can be partitioned into k nonempty disjoint subsets whase

union is equal to S.

Directed Graph, Paths and Trees

A directed graph G = (V, E) consists of a set of nodes V and a set of edges E,
where each edge e € E is an ordered pair of nodes, written (v;,v,), and vy, v, € V.

An edge e also can be denoted as v; — v;. If the edge v; — v, € E, the node v,
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is called tail and v, is called head of the edge. If vy — v, is an edge of G then v; is
the predecessor of v, and v, is the successor of vy. The set SUCC(v) is the set of all
successors of v and the set PRED(v) is the set of all predecessors of v. The in-degree
of a node v is the number of edges of the form u — v, and the out-degree of v is the
number of edges of the form v — w. A node is a source if its in-degree is zero and a
sink if its out-degree is zero. A graph H is a sub-graph of G if Vg C Vg and Ey C Eg
such that an edge in Ey has both the tail and head nodes in V.

A path p of length % is a sequence of nodes {ay, . .., ar) such that there is an edge
(ai,aiy1) for all i = 0,..., k-1. We say a node v supports a path p if v appears in p. A
path (ao, . ..,ax) can be divided into smaller paths called sub-paths. A particular sub-
path (ao, . ..,ar_1) of p is denoted by p°. We say a sub-path {a;,...,q;) of (ay,..., ax)
supporis the path (ao,...,ax). A trivial path is a path of length zero, i.e., a single
node. A path is simple if all nodes in the path are distinct. A non-trivial path p from
ztoyisacycleif z = y and is a simple cycle if it is a cycle and p° is simple. An
edge (v1,vs) is called a self looping edge if v; = v;. For a given two nodes z,y € G,
there may exist many distinct paths which are denoted by the set p(x,y). The set
p(z,y) can be infinite if there exist cycles between two nodes. The set of all simple
paths from z to y is denoted by o(z,y).

A directed acyclic graph (DAG) is a directed graph with no cycles, i.e., any path
between two nodes in a DAG is stimple. A directed graph is cyclic if it is not a DAG.
A tree of a directed graph is a DAG with the following three properties: There is a
single source node, called root which has zero in-degree; every node in the tree except
the root has in-degree of one; and for every node in the iree, there exists a simple

path from the node root. If there is a path from u to v in the tree i.e., u = v, then
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u is an ancestor of v and v is descendant of u. The node u is proper ancestor of v
and v is a proper descendant of u if u # v, i.e., u 5 v. The node u is an immediate
ancestor of v and v is an immediate descendant of u if the length of the path is one,

L.e., u — v.

Control Flow Graphs

Our control flow graph is a directed graph G with a set of nodes and edges.
A node represents a basic block, where a basic block can be either an i/o basic
block (denoted by a rectangle) or computation basic block (denoted by an oval). A
computation basic block contains a sequence of instructions in which the flow of
control enters at the beginning and leaves at the end, without halt or possibility
of branching except at the end. If any instruction in a basic block is executed, all
instructions in that basic block will be executed. An i/o basic block contains an i/o
function call but nothing else.

Assume M is the source machine and My is the target machine. For each
node v € V, the execution time on source and target for v, denoted by EST(v), is
an ordered set (EzecTime(v, Ms), ExecTime(v, Mr)). This ordered set is denoted
as (EzecTime(v, Ms)/EzecTime(v, Mr)) in the graph. We assume that our control
flow graph is obtained from the translated target program, where it may contain some
nodes that are not in the control flow graph obtained from the source code. If v € V
is not in the control flow graph obtained from the source code, EzecTime(v, Ms) = 0.
The required execution time difference between source and target machine for a node
v € V, STD(v), is defined as ExecTime(v, Mr) — EzecTime(v, M5s).

An edge represents potential flow of control between basic blocks. Conditional

branches are represented by nodes with two successors. A control flow graph G can
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be represented as a triple G = (V, E, Entry), where

e V is a set of nodes, where each node can be either an i/o node or a computation

node;
e E is a set of edges which is subset of V x V;
o The Entry is a node in V with zero in-degree (source).
e (Yv € V)[Entry > v].

A node v € V with zero out-degree is called an ezit node. There may exist
multiple ezit nodes in G. The set of all i/o nodes in G is denoted by I0(G).

A complete path(cp) of G is a path from the Entry to an exit node. The set of
all complete paths of G is denoted by CP(G). A cp is a complete simple path(csp) if it
is simple. The set of all complete simple paths in the graph G is denoted by CSP(G).
A cp € CP(G) that is not a member of CSP(G) contains a csp € CSP(G). The set
C P(G) is roughly equivalent to all execution instances of the program represented
by the graph G. A node v € V may support a cp € CP(G) many times if it is in
cycles in G. The set INST(v,cp) = {ivy,...,iv,} represents instances of v on cp,
where iv; is an execution instance of v in cp. We denote a complete path cp over a
specific control flow graph G as {i Entry,,...,1Exit,}, where i Entry; abd iEzit, are
the only instances of Entry and Ezit nodes, respectively.

A complete path cp € CP(G) is denoted by cps if it is running on the source
machine. The set of all complete paths on the source machine is denoted by CPS(G).
A complete path cp € CP(G) is denoted by cpt if it is running on the target machine,
while set of all complete paths on the target machine is denoted by CPT(G). An

instance cpy; on cp has corresponding instances on both cps and cpt, which are cpsv;
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on cps and cptv; on cpt. Here, cp is a conceptual path defined in the graph G while
cpt is the execution of cp on target machine and cps is the execution of cp on source
machine. Also, the path cpt can be viewed as a translated target path from cps by a
translator.

The set SC(G) is the set of all simple cycles(sc) in G. A path is repeatable if it
is in a cycle and non-repeatable if it not in a cycle. The number of executions for a
repeatable path is not generally known statically while the number of executions for
a non-repeatable path is at most one. A repeatable path is simple if it is in a simple
cycle. Any repeatable path can be sub-divided into simple repeatable paths. Suppose
a simple cycle sc is given. The mazimum simple repeatable path of sc, denoted by
msrp(sc), is sc°.

The set of all maximum simple repeatable paths in G is denoted by MSRP(G).
Any cp € CP(G) is decomposable with a csp € CSP(G) and multiple instances

of msrp € MSRP(G). In a cp, nodes that support a csp or msrp may not be in

consecutive order.

Example 3.1

Figure 16 shows a control flow graph G. In this graph, the Entry node
is labeled with @. Each node v € V has another oval which is labeled
with EST'(v). The node g is the only ezit node in G and the set 10(Q)
is {a,d, g}. There are many complete paths in G including;

(11, 2by, €1,€1,101),

(ta1,1b1, 01,1 f1,1be,1co, €1, 141),

(ial, i.bl, C, E'fl, 262, i1Co, 3f2, Z.b3, 2.03, i€y, igl), etc...
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Figure 16: An example of a control flow graph

The set CP(G), in this case, is infinite.
The set CSP(G) is {(ia1,1by,ic1,1e1,i01), (a1, iby,1d1,1e1,i01)}.

The set SC(G) is {{b,c, f,b),{b,c,e, f,b),{b,d,e, f,b)}. Thus, the set
MSRP(G) is {{b,c, [}, (b,c,e, f),(b,d,e, f)}. Consider a complete path
{tay,iby,icy,if1,1bo, 40,1 f2,1b3,1c3,1€1,19,) over the graph G. The first
node ia; is an instance of node a and is a part of a csp. The maximum
simple repeatable path (b, ¢, f) is repeated twice after ¢a;. The rest of the

complete simple path (ibs,ics,ie1,1¢,) finishes the cp. 0

Suppose a path p = (a;,...,ax-1,a;) in G is given. The execution time re-
quired for a path p on a machine M is represented as EzecTime(p, M) as defined in

Equation III.5.
k
EzecTime(p, M) = > (EzecTime(a;, M)) (II1.5)

=1

For the given path p, EST(p) is ({ EzecTime(p, Ms), EzecTime(p, M7)). The
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execution time difference between source and target machine for the path p, ST D(p),
is defined as ErecTime(p, MT) — ExecTime(p, Ms). Consider two nodes z,y € V.
A 0; € o(z,y) is a simple path from x to y. The function MazEST(z,y) returns the
EST(o,) such that

STD(oy) = max (ST D(ai(z,y))). (IIL6)

U.Ea{z,y)
The function MinEST (z,y) returns the EST(o,) such that

STD(c,) = min (STD(si(z,y))). (I1L.7)

0|€0(I‘y)

Example 3.2
Consider the control flow graph given in Figure 16, again. The set o(b, f)
is {{b,c, f), (b,c,e, f), (b, dye, f)}.
EST((b,c, f}) = (14,4), EST({b,c,e, f)) = (16,14), and EST({b,d,e, f))
= (11,13).
STD({b,c, f}) = -10, STD({b, c,e, f})) = -2, and STD((b,d,e, f)) = 2.

Thus, MazEST(b, f} returns (11,13) and MinEST (b, f) returns (14,4).

0

Spanning Trees and Fdges

A spanning iree of G = (Vg, Eg, Entryg,) is a tree ST = (Vr, Er, Rootr) such
that Vr = Vg, Er C Eg and Rooty = Eniryg. In general, ST of a G is not unique
by definition. Two different spanning trees of G have two different subsets of edges
from Eg. Given a spanning tree ST of a graph G, edges in G are partitioned into

four groups.
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o Tree edges are edges (v1,v9) in G that are also edges in ST.

o Forward edges are edges {vy,v2) in G that are not in ST but v, is a descendant

of vy in ST.

o Hetreating edges are edges (vz,v;) in G such that v; = v, or v, is an ancestor of

Vg in ST

o Cross edges are edges (v;,v7) in G such that v, is neither an ancestor nor a

descendant of v, in ST

Example 3.3

Figure 17: A spanning tree of the CFG shown in Figure 16

Figure 17 shows a spanning tree ST of the control flow graph G given in
Figure 16. For the given ST, d — e is a cross edge, c — f is an advancing

edge and f — b is a back edge. a
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Dominators and The Dominator Tree

A node = dominates node y, denoted by = DoM y, if every path from the Entry
P

to y includes z. If x boM Y, then any path Entry — y can be split into two parts:
P

Entry = z and = 5 y. A node z strictly dominates y, denoted by = *23™ y, if
z #yandz boM y. A node z immediately dominates y, denoted by z '23M y, if

z S2GM y and there is no node z such that z 2M 2 and » P2M y. It is easy to see

that each node has a unique immediate dominator if it has any [41]. The dominator
tree (DOM tree in short) of a control flow graph G = (Vg, Eg, Entryg) is a tree
DT = (Vr, Er, Rootr}, where Vr = Vi, Rootr = Entryg and Er is the set of edges

of the form z 28 y. The DOM tree of a G is unique since every node has a unique
q

immediate dominator [41]. A node u is a proper ancestor of v if u “ 29" u. An
algorithm to find dominator relationship can be found in [41, 54]. A more efficient
algorithm is shown in [38]. A back edge in G is an edge {v;,v;) such that v, is a

predecessor of v; in the DOM tree. A back edge also defines a loop which is different

than that defined by a retreating edge in a spanning tree.

Example 3.4

Figure 18 gives the DOM tree of the control flow graph shown in Figure 16.

There is only one back edge in G, which is f — &.
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Figure 18: The dominator tree of the CFG shown in Figure 16

Summary
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In this chapter, we provided some mathematical notations. Using these nota-

tions, we defined our control flow graph. The definitions of spanning trees and the

dominator tree of a control flow graph are also provided. A summary of notations is

shown in Table 1.

[Defimition [ Deseription

[p° | A sub-path (ao,.. .,a5-1) of p = (ao,...,a;)

)

Set of all paths from ztoy

,Y) Set of all simple paths from z to y
E' T(v) (EzecTime(v, Ms), ExecTime(v, Mr))
S D(v) EzecTime(v, Mr) — EzecTime(v, Ms)
CP(G) Set of all complete paths in G
SC(GQ) Set of all simple cycles in G
MSRP(G) Set of all maximum simple repeatable paths in G

MazEST(z,y)

EST(op(z,y)) such that STD(o,(z,y)) =
MaX,, (zy)eaz (ST D(0i(z, ¥)))-

MinEST(z,y)

EST(0y(z,y)) such that ST D(a,(z,y)) =
Mily (s o (zu) (ST D(oi(z, ¥))).

Table 1: A summary of notations
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CHAPTER IV

TIMING EQUIVALENT TRANSLATION

A real-time translator must preserve temporal equivalence as well as functional
equivalence. This chapter defines temporal equivalence of the translated target pro-
gram. We first define two timing sensitivities, absolute and relative timing sensitiv-
ities, of a given complete path. These timing sensitivities extend to the program.
Using these concepts of timing sensitivity, three different levels of temporal equiva-
lence, equivalence, invariance and divergence, are defined. The problem of deciding

timing equivalence for a target program is discussed in Chapter V.

Execution Instances and Complete Paths

In Chapter III, we introduced an abstract model to represent possible flow of
control in a program called a control flow graph. The control flow graph abstraction
does not exactly model the flow of control in a program. Consider the program given
in Figure 13. The control flow graph of this program is shown in Figure 19. There
is only one execution instance for the given program which executes the loop every
(10ms) do forever. However, there are an infinite number of complete paths in the
control flow graph but every given complete path is of finite length. In fact, any
control flow graph that has cycles has an infinite number of complete paths.

In general, this abstraction is acceptable since for many loops the number of

iterations to be executed is not known statically. Since the control flow graph does
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send

send

Figure 19: The control flow graph for the program shown in Figure 13
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not contain this information, it is assumed that any loop (cycle) may execute in-
finitely, and thus can generate infinite many complete paths. One advantage of this
assumption in our timing equivalence analysis is that it is easier to distinguish tim-
ing differences accumulated by the repeated execution of a loop. These accumulated
timing differences by loops are too big to be accepted for most real-time systems even
though the difference is limited by a constant. For any loop where the number of
iterations is not known, it is covered by the infinite number of complete paths for
the graph G. Thus, for our timing equivalence analysis, complete paths of a control
flow graph are used instead of an application which is an execution instance of the

programi.

Global Virtual Clocks and Synchronizations

Two global virtual clocks, source and target, are maintained throughout the
analysis. These global clocks are used to keep track of execution times of complete
paths. The source clock, accumulated source time (ASTime), and the target clock,
accumulated target time (AT Time), are increased as the path progresses along nodes
in the control flow graph by the time required for these nodes on the source and
target machine, respectively. The source and target clocks are obtained by inserting

the following two statements on every v € V — { Entry}. Both ASTime and AT'Time

are initialized to zero at the Entry node.

ATTime <= ATTime + EzecTime(v, M)
ASTime < ASTime + ExecTime(v, Ms)
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Consider a cp = (cpv1,cpva,. .., cpvy, cpuy,...,cpvy). The ASTime at Ccpy, is
Yio( EzecTime(cpu;, Ms)) and ATTime at cpy, is 0 o(EzecTime(cpy;, Mr)).

In a complete path ¢p € CP(G), there may exist many instances of a node
v € V, denoted by iv; for some ¢, if the node v supports cycles in G. For a given cp, the
function AST(iv;) returns AST7me at iv; and the function ATT (iv;) returns AT Timne
at 1v;. Here, AST(iv;) is the same as ATV (iv;, Mg) and ATT(iv;) is the same as
ATV (iv;, Mr) except AST(iv;) and AST(iv;) are defined over complete paths and
thus are computed, but ATV (iv;, Mr) and ATV (iv;, Ms) are defined over execution
instances and thus are measured.

Since we use static synchronization methods, the synchronization is performed
over the control flow graph by inserting synchronization functions on either nodes or
edges. When the synchronization function is inseried on edge (v, w), every instance of

the edges on every cp € CP(G) are to be synchronized. The synchronization function

we use is shown in Figure 20.

Sync({v,w)) {
if ATT(iw)) < AST(iw;)
Delay(AST (tw;) — ATT (iw;))

Figure 20: Synchronization algorithm

In this algerithm, synchronization of the edge is valid only when ATT(iw;) <
AST(iw;). The basic function to delay program execution on the target machine is
Delay(dtime) which postpones program execution for dtime. We assume the target

system provides functionality to implement Delay(dtime).



Example 4.1

A . Synchronization

Figure 21: A control flow graph with a synchronized edge

Figure 21 shows the control flow graph shown in Figure 16 with one syn-

chronized edge. Consider the complete path

(ml, ‘lbl, iC], ifl, ibz, iCq, !fg, 163, iC3, z'el, 2g])

over the graph G. Since the edge (f, b) is synchronized in G every instance
of the edges in the cp must be synchronized. For the given cp there are two
instances of this edge, i.e., (1f1,2b;) and (i fz,ibs). In this cp, AST(iby) =
15, ATT(iby) = 5, AST(ibs) = 29 and ATT(ibs) = 9. Thus, after the
execution of if;, the execution must be delayed for 10 which delays all

following instances of nodes in the cp. The cp resumes its execution of ib,

47
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when ATTime = ASTime = 15. Because of the delay after i f;, ATT(ibs)
now becomes 19. After the execution of if;, the execution is delayed for

10 to synchronize ib; at ASTime = ATTime = 29, O

Timing Sensitivity

Timing sensitivity is used to represent temporal differences between source and
target programs. With a given control flow graph G, two different timing sensitivities,
i.e., absolute timing sensitivity (A(G)) and relative timing sensitivity (¥(Q)) are to
be defined.

Absolute Timing Sensitivity

One intuitive concept of timing sensitivity is the maximum timing difference
between corresponding i/o events in source and target programs. These differences
are critical for many real-time systems. Absolute timing sensitivity addresses these
timing differences between corresponding i/o events on source and target programs.

Suppose a sub-path p of a cp € CP(G) with an i/o event pe is given. The path
p is denoted by ps if it is running on the source machine and pt if it is running on the
target machine. The i/o events pe on p become pse on ps and pte on pt. The absolute
timing sensitivity of pe, denoted by A(pe), is defined in Equation IV.8. Figure 22

depicts absolute timing sensitivity.

A(pe) =| ATT(pe) — AST(pe) | (IV.8)

The absolute timing sensitivity of cp with n i/o events, denoted by A(cp), is
defined in Equation IV.9.
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Program
Start
@ pse ps
Source Timeline | ==
: AST(pe)
. pte pt
Target Timeline - = >
A(pe) ATT(pe)

Figure 22: Absolute timing sensitivity

A(ep) = max A(cpe;) (Iv.9)

Example 4.2

Consider the example shown in Figure 23. The source execution path
cps has four ifo events, cpse; at AST(cpe;) = 10, cpse; at AST (cpe;) =
31, cpses at AST(cpes) = 48 and cpsey at AST(cpey) = 67. The total
execution time of the path is 84. Total execution time of the translated
execution path cpt is 77. The corresponding target i/o events cpte; ex-
ecuted at cpte; at ATT(cpe;) = 6, cptes at ATT(cpez) = 22, cples at
ATT(cpes) = 54 and cptey at ATT(cpey) = 66.

The absolute timing sensitivity of cp (A(cp)) is the maximum value of

Acper) = 4, Acpez) = 9, A(cpes) = 6, and A(cpey) =1, whichis 9. D

The absolute timing sensitivity of &, denoted by A(G), is defined in Equa-
tion IV.10.

A(G) = TR A(cp) (IV.10)
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Program prasram
Start Finish
Source Timeline 1« : A | 1«‘ : 1\ l L1, ._°cps
"o 20 ko 40 "s0 60! 70 80 90
cpse, cpse, cpse, cpsey Program
¢ ,} 1‘ ,r Finish cpt
Target Timeline — l ; ! ] ——— =
10 20 30 40 50 60 70 ' 80 90
Cpte] Cpte 2 cptes CPtB4

Figure 23: A complete path on the source and target machine
Relative Timing Sensitivity

In many real-time applications, maintaining the execution time between two
consecutive i/o events is also critical. Relative timing sensitivity addresses this issue.

Suppose a sub-path p of cp € CP(G) with two i/o events pe; and pe;,, is given.
The path p is denoted by ps if it is running on the source machine and pt if it is
running on the target machine. Two i/o events pe; and pe;y; on p becomes pse; and
psei41 on ps and pte; and pte;y, on pt. The relative timing sensitivity between two
i/o events, denoted by ¥(cpe;, cpeiyy), is defined in Equation IV.11. Figure 24 depicts

the relative timing sensitivity between two i/o events.

W(pei, pei1) = | TD(ple;, pleis) — TD(pses,pseiss) | (IV.11)

The relative timing sensitivity of the path cp with n i/o events, denoted by
U(cp), is defined in Equation 1V.12,

U(ep) = r:ﬁ:a;x\lf(cpe;,cpe.-.,.l) (Iv.12)
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ATT(pe, ) / ATT(pe,

TD(pte, , pte,,, )

Figure 24: Relative timing sensitivity

In Equation IV.12, the event peg is the Program Start event (E,) and pen4, is

Program Finish event (Ej).

Example 4.3
Consider the example shown in Figure 23 again. The relative timing
sensitivity, ¥(cp), of the execution path ¢p is the maximum of e
=]6=10 =4, Yicpey,cpes) = | 16 — 21 |= 5, W(epe cpes) = | 32 ~ 17 |=
15, W(cpes cpe) = | 12 =19 |= 7, and T(epe, cpeyy) = | 11 — 17 |= 6, which is

15. a

Theorem 4.1

0 < ¥(cp) < 2 x Alcp)

Proof

0 < W(cp) part is obvious. For any i/o event cpe; on cp, A(cpe;) < Alcp),



by definition. Two cases where ¥(cp) = 2 x A(cp) are shown in Figure 25.

It is easy to see ¥{cp) < 2 x A(cp) for all other cases.

Program
Start
se
pse; \p i+1 .
Source Timeline N -
TD(pse;, pse;,;)
pte, , | PP pt
Target Timeline ‘A ; - >
Acp) : TD(pte, , ptejy;) *%
(cp) PLE, , PI€j4) L Aep)
: pADte, pte.
Target Timeline - i Bla

.

-

A(Cp)g TD(pte; ,pte,;) i Alep)

Figure 25: Two cases where ¥(cp) = 2 x A(cp)

a

The relative timing sensitivity of G, ¥(G), is defined in Equation IV.13.

A(G) = max P(cp)

cpECP(G)

Time Deadline

92

(IV.13)

Another definition we use for a path is {ime deadline. Again, suppose a sub-path

pof acp& CP(G) is given. We say p meets its time deadline if ExzecTime(p, Mr) <

EzecTime(p, Ms) or ST D(ep) < 0.



a3

Timing Equivalence, Invariance and Divergence

Using the definition of absolute timing sensitivity, we define three different lev-
els of temporal equivalence (timing equivalence, invariance and divergence) of the

program represented by GG. We start defining them with a complete path.
Timing Equivalence of a Complete Path

The translated target path cpt is timing equivalent with respect to eps, denoted
by cpt e cps, if A(ep) = 0. The translated target path cpt is executable with timing
equivalence if there exist synchronization methods which guarantee the timing equiv-
alence of cpt. If the translated target path cpt is executable with timing equivalence,

it is timing equivalent when proper synchronizations are inserted.

Theorem 4.2
Assume a complete path cp has n i/o events. The complete path cp is
executable with timing equivalence if and only if TD(cpte;,cpteiyy) <

T D(cpse;,cpseiyr), 0 <7< n, o

Proof
(If part)
It is easy to see that inserting a synchronization at every i/o event provides
timing equivalence.
(Only if part)

Suppose there exist two i/o events cpe; and cpe;y; on cp such that

T D(cpte;,cpteiry) > TD(cpse;, cpseiqr ).
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To be timing equivalent, synchronization of both i/o events must be
valid. Assume we synchronized the i/o event cpe;, i.e, ATT(cpe;) =
AST(cpe;,). In this case, synchronization of the i/o event cpe;y, is in-
valid since ATT(cpeis1) > AST(cpeiy1). Thus, A(cpe;) = 0 but 0 <
A(cpeig) = ATT (cpeiyr) — AST (cpeiya). o

For any given target complete path cpt, there exists a constant C such that
A(cp) < C since both ATT(cp) and AST(cp) are constant. Thus, any given cpt that
is not executable with timing equivalence is timing invariant. However, there are

infinite number of complete paths for a given graph G.
Timing Equivalence of a Target Program

Since there may exist infinite number of complete paths for a given graph G,

three different levels of temporal equivalence are defined as follows.

Definition 4.1

The program represented by G is said to be timing equivalent if

(Vep € CP(G))[A(cp) = 0]. (IV.14)

Definition 4.2

The program represented by G is said to be timing invariant if there exist

a constant C such that

(Yep € CP(G))A(ep) < C. (IV.15)
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Definition 4.3
The program represented by G is said to be timing divergent if there is no

constant C such that

(Vep € CP(G))[A(ep) < C). (IV.16)

Target Timeline

(d)

Progress of translated application

—
o

Source Timeline

Figure 26: Timing equivalence, invariance and divergence of paths

Figure 26 depicts the difference between timing equivalence, invariance and
divergence. The path (a) is timing equivalent, path (b) is timing invariant, and paths
(c) and (d) are timing divergent.

However, some timing divergent paths, such as path (c), can be converted to

timing equivalent or invariant ones by inserting synchronization, while other paths,
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such as path {d), can not be converted to timing equivalent or invariant ones by

inserting synchronizations. To distinguish these two cases, we define following;

Definition 4.4

The graph G is executable with timing equivalence if all cp € CP(G) are

executable with timing equivalence. O

Definition 4.5
The graph G is ezecutable with timing invariance if there exist a synchro-

nization method that provides the timing invariance for all possible paths

on G. !

Theorem 4.3
A(G) £ C implies that there exists some constant C’ such that ¥(G) <
C’, but ¥(G) < C' does not imply A(G) < C. ]

Proof
A(G) £ C implies ¥(G) < 2C < €' by Theorem 4.1. There are cases
such that ¥(G) < C’ does not imply A(G) < C. Consider a complete
path ¢cp given in Figure 27. Assume the cp contains multiple instances of
a msrp(sc). Since the set CP(G) is infinite, there always exist another
cp € CP(Q) such that it has one more msrp(sc) on it. Thus, even though

¥(G) is 10 and thus limited by a constant, A(G) is not limited by any

constant. g



a7

Program
Start
1 J cps
Source Timeline ? T ? ? ? ? >P
10 20 30 '40 50 60 '70 80 90
4‘ cpt
Target Timeline I : Jf —t— s
10 20 30 140 50 60 70 8 90

Figure 27: A complete path

Summary

In this chapter, we defined two timing sensitivities, i.e., absolute and relative
timing sensitivity. Using these timing sensitivities, we defined three different levels of
temporal equivalence (timing equivalence, invariance and divergence) of target pro-

grams. In the following chapter, we describe our approach to test timing equivalence

of target programs.



CHAPTER V

TIMING EQUIVALENCE ANALYSIS

This chapter discusses issues in testing timing equivalence or invariance of a
target program represented by a control flow graph. We first develop a method
to test if a target program is executable with timing invariance. This problem is
converted into a data-flow problem which can be solved using intervals. If a target
program is executable with timing invariance, we also test if it is executable with
timing equivalence. A program that is executable with timing equivalence can be
converted to an equivalent one by inserting synchronization on every i/o node.

If a target program is executable with timing invariance but not with timing
equivalence, the maximum timing error of the target program depends on how and
where it is synchronized. Synchronization schemes which reduce the maximum timing
error are presented in Chapter VI.

Static methods which measure timing sensitivities of target programs are pre-

sented in Chapter VIIL
Problem Statement

The problem is how to test if the given graph G is executable with timing
equivalence or invariance. If the graph G is executable with timing invariance, syn-
chronizations must be inserted on G to convert it into a timing invariant one.

We defined timing invariance of G in terms of CP(G). In most cases, however,
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the set C'P(G) is infinite. Thus, it is not possible to check all cp € CP(G). Here, we
present an algorithm which tests and provides timing invariance of G without testing
all cp € CP(G).

A complete path cp € CP(G) is composed of simple paths, repeatable and
non-repeatable, over the graph G. If all repeatable paths meet their time deadline,
synchronization of these repeatable paths provides timing invariance. It is obvious
that any repeatable path is a sub-path of a cycle since any path that is not a sub-
path of cycle is non-repeatable. All repeatable paths in G can be found by finding
all mazimum simple repeatable paths(M SRP(G)) of G. The set MSRP(G) can be
found by finding the set SC(G).

The absolute timing sensitivity of G, defined in Equation IV.10, is the maximum
timing difference between corresponding i/o events on source and target paths,where
an ifo event is an execution instance of an i/o node in G. Consider an i/o node
io € JO(G). The node io may have many instances in a given cp € C P if it supports
cycles. The set INST(io,cp) = {iioy,...,710,} is the set of execution instances of 10
in ¢p. The absolute timing sensitivity of io on cp, denoted by A(io, cp), can be found

as in Equation V.17.

A(io,cp) = A(inst), (V.17)

max
tnst€INST (io,cp)

where A(inst) =| ATT(inst) — AST(inst) |.
Many i/o nodes may support a cp. Let the set CPIO(cp) = {ioy,...,i0n,} be

the set of all i/o nodes that support cp. The absolute timing sensitivity of cp can be



60

found as in Equation V.18.

A(ep) = 8% 0 A(epio, cp) (V.18)

Also, an {0 may support many cp € CP(G). Let the set JOC P(io) be a subset
of CP(G) such that io supports the iocp € IOCP(G) at least once. The absolute

timing sensitivity of {0, denoted by A(io) can be found as in Equation V.19.

Afio) = A(io,io0cp) (V.19)

max
i0cpe IOC P(G)

The absolute timing sensitivity of G' can be found as in as in Equation V.20.

A(G) = A(io,i0cp) = A(io,iocp) (V.20)

max max max max
i0€I0(G) iocpe IOCP(G) iocpE IOCP(G) ioe10(G)

Theorem 5.1
A control flow graph G is executable with timing invariance [Definition 4.5)

if and only if every maximum simple repeatable path meets its time dead-

line, i.e.,
(Vsc € SC(GY)[STD(msrp(sc)) < 0]. (V.21)
a
Proof
(If Part)

We prove that inserting a Sync() on an edge of every sc € SC(G) provides
timing invariance to G if the Equation V.21 is satisfied. By Equation V.20,
the A(G) is limited by a constant if for all io € IO(G), A(i0) is not co.



Consider an i0 € JO(G) and the set IOC P(io). If io supports cycles,
the set IOCP(io) is an infinite set. If for every iocp € IOCP(io),
ATT(INST(io,i0cp)) — AST(INST(io,i0cp)) is limited by a constant
C, then A(io) is limited by C. Let the set JOMSRP(io) be a sub-set
of MSRP(G) such that io supports iomsrp € IOMSRP(io) and let
MIOMSRP(io) be the set MSRP(G) — IOMSRP(io). Consider an
iocpy € IOCP(i0) with A(iocp) = Cy. Consider a longer path iocp, €
IOC P(i0) which is composed of iocp, and a msrp; € MSRP(G). The
absolute timing sensitivity A(iocp;) does not decrease since msrp, €
MSRP(G) is synchronized. Thus, A(iocp,) is the maximum of A(iocp,)
and A(msrp) unless msrp, is inserted in the middle of an instance of

msrp; € MSRP(G) over the iocp;.

When msrp, is inserted in the middle of an instance of msrp, € MSRP(G)
over the iocp,, synchronization of msrp; may cause ASTime < AT Time
at the synchronization point of msrp, which makes the synchronization
invalid. An example of this is shown in Example 5.2. Once this happens,
any synchronization after this are invalid until ATTime < ASTime. How-
ever, since every masrp meets its time deadline, ATTime will be smaller

than ASTime by repeated execution of msrp.

The maximum of ATTime — ASTime for any i/o nodes can be decided
statically by examination of all possible paths from all previous synchro-

nization points. Thus, ATT(i0) — AST(i0) does not increase indefinitely.

(Only If Part)
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Conceptually, if any msrp € MSRP(G) does not meet its time deadline,
A(G) depends on how many times this path is executed in a cp € CP(Q).
However, the number of executions for the path is not decidable stati-
cally since we only use control flow graph. Thus, the maximum value of
ATTime— ASTime for any instance of an i0 € IO(G) can not be decided
statically. More formally, assume A(iocp;) = C for a iocp; and msrp; does
not meet its time deadline. There always exists another iocp; € TOC P(io)
which is composed of iocp; and a msrp; € MSRP(G). The A(iocp;) is
bigger than the A(iocp;) since 0 < ST D(msrp;). In this case, any strat-
egy that uses Delay() on the target machine will fail to provide timing
invariance. Thus, the condition Equation V.21 is necessary to provide

timing invariance.

Example 5.1

Consider the graph G shown in Figure 21 again. There are two complete
simple paths in G, i.e., (a,b,c,e,g) and (a,b,d, e, g). The set MSRP(G)
is {mrspy = (b, ¢, f},mrsps = (b,c,¢, f),mrsps = (b, d, e, f}}.

By inserting a synchronization on the edge (f,b), all sc € SC(G) are

synchronized. The execution time of these paths on the source and target

machine are described in Table 2.

Since there exists a msrp € MSRP(G) that does not meet its time dead-

line, the graph G is not executable with timing invariance. Consider a
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msrp; | ExecTime(msrp(sc;), Ms) | ExecTime(msrp(sc;), M)
msrp;, | 14 4

msrp; | 16 14

msrps | 11 13

Table 2: Execution Time on Source and Target Machines for All Simple Paths in
Figure 21

complete path iocp € JOCP(d),

(1a1,by,icy,1f1,1ba,idy, Te1,1f2,1ba, id2, 1€, 1 f3, b4, iCa, TE3, 101 )

over the graph G. The given iocp is composed of one csp ({a,b,¢, ¢e,g))
and two msrp ((b,c, f) and (b,d,e, f}). Since the edge (f,b) is synchro-
nized, all instances of the edges on the iocp are to be synchronized. Three

instances of the edge (f,b) are (i f1,ibs), (if2,1b3} and (ifs,1b4).

Since AST(ib;) = 15 and ATT(ib;) = 5, the execution after i f; is delayed

for 10 to synchronize at ib,.

The A(dy,i0cp) =| 16—17 |= 1. The next synchronization at ibs is invalid,
since AST (ibs) = 26 and ATT(ib3) = 28. Here the A(d,,iocp) =| 27 —
16 |= 1. The next synchronization at b, is also invalid, since AST(ib,) =
37 and ATT(ib,) = 41. Thus, A(d,iocp) = 1. 1t is also easy to see
that for any iocp; € IOC P(i0) there exists iocp; € TOCP(io) such that
A(io,t0cp;) < Alio,iocp;) by having another iomsrp € IOMSRP(io)

over tocp;.



Example 5.2
Consider the example given in Figure 28. There are four complete sim-
ple paths in G, ie., {(a,d,e, f,hk), (a,d, e, g, k), {(a,b,c,d,e, f h,k)
and {(a,b,c,d,e,g,h, k). There are four simple cycles in G, i.e., s¢; =
{d.e, f,1,d), scoy = (e, 9, ], €}, sca2 = (e, f, h, e} and sca3 = (e, g, h,e). The
maximum simple repeatable path of each sc € SC(G) are msrp(sc;) =
(d,e, £,i), msrp(sca) = (e,g, 7}, msrp(sczs) = (e, f, ) and marp(sez) =
{e,9,h).

A : Synchronization

Figure 28: An Example of Control Flow Graph

By inserting a synchronization on the edges (i,d), (j,e) and (h,e), all
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sc € SC(G}) are synchronized. The execution time on source and target

machine of these paths are as in Table 3.

msrp(sci) | ExecTime(msrp(sc;), Ms) | EzecTime(msrp(sc;), Mr)
msrp(se;) | 28 28

msrp(sca ) | 16 9

msrp(sces) | 30 30

msrp(scea) | 25 13

Table 3: Execution Time on Source and Target Machine for All Simple Paths in
Figure 28

Since all msrp € MSRP(G) meet their time deadlines, the graph G is

executable with timing invariance. Consider a complete path cp
(iar,idy,deq,igu, i1, €2, 11, 101, idy, D€, iy, Thy, dey, g3, iha, iky)

The given cp is composed of one csp ({(a,d, e, g, h,k)) and three msrp
({e,9,7), {e,g, k) and {d, e, f,7) ). Note that an instance of (e, g, 5},
(te1,ig1,171) is inserted in the middle of an instance of {d,e, f, i),
(¢d,1,ieq,1f1,i1,). Since three edges (i,d), (j,e) and (h,e) are synchro-
nized, all instances of these edges on the cp are to be synchronized. Three

instances of these edges are (iji,iez), (ii1,idy) and (ihy,ieq).

Since AST (iez) = 28 and ATT(ie;) = 21, the execution after ij; is de-
layed for 7 to synchronize at ie;. By synchronizing the edge (ij1,1e,),
the next synchronization point id; is invalid since AST(id;) = 49 and
ATT(idy) = 54 and thus 0 < ATTime — ASTime. However, since all

msrp € MSRP(G) meet their time deadline, the value of ATTime —



ASTime decreases until it becomes negative as we will see. The last syn-

chronization point is (ik1,ie4). Since AST(ze,) = 81 and ATT(ie4) = 69,

the execution after ih; is delayed for 12 to synchronize at ies. Since

A(j,ep) =[ 20 — 17 |) = 7, the A(4,cp) =| 53 — 58 |= 5 and A(k,cp) =|

94 — 106 |= 12, the absolute timing sensitivity of the cp, A(ep) = 12. This

cp on the source and target machine is shown in Figure 29.

start event P7
P1 P3- P4 P3_ P3- P6 P6
Source | ooy iﬁ """" | e v S TSSO ooeese < e ] BAMMAAA r>£
Timeline[—t—1 t fi T H— ; T ; —
10 20 30 40 50 60 0 8 9% 19 110
B3- pd . 7
Target [<Bl->-F\c. . 4 - .}.1?.3!f A P, _ .,;....P.ﬁ.l ..... ? N
Timeline L ' ' N LLIL ) T i >|
10 20 30 40 50 60 70 8 90 100 110
Figure 29: A complete path divided into simple paths
a
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If G is executable with timing invariance, Sync() must be inserted in the graph

G to provide timing invariance. Let SG be a synchronized version of G. Where and
how G is synchronized affects timing sensitivities of SG significantly. We will discuss

more on this issue later. If A(SG) =0, SG is timing equivalent and G is executable

with timing equivalence.

The problem now is how to find all cycles in a control flow graph. There exist
different approaches in finding cycles in a control flow graph. A program decomposi-
tion method, strongly connected components (SCC) discussed in [53], finds all cycles

in a control flow graph. This algorithm decomposes a control flow graph into strongly

connected components. A strongly connected component is a maximal strongly con-
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nected region, where a strongly connected region is a set of nodes S such that there is
a path S; 5 S, for any two nodes $1,5; € S. A cycle in a control flow graph forms
a strongly connected region. Strongly connected components cover all form of loops,
i.e., it is the most general form of loops. Strongly connected components uniquely
partition the nodes of any directed graph. Once strongly connected components are
found in a control flow graph, we can test timing invariance of the program by testing
each strongly connected region. A target program is timing invariant if all strongly
connected components in the control flow graph are timing invariant. A strongly con-
nected component is timing invariant if all cyclic paths of strongly connected regions
meet their time deadline. However, strongly connected regions in a strongly connected
component may not be uniquely defined. Also, there may be multiple Entry and Erit
points for a strongly connected component which may hinder our timing analysis.
An alternative method is using natural loops, discussed in [1]. A natural loop is
a strongly connected region with a unique Eniry called a header which dominates all
nodes in the region. Even though natural loops provide a better solution in finding
all repeatable paths in a control flow graph, they are not general enough to cover all
kinds of loop structures found in programs. In the next section we shall discuss a

more powerful decomposition method, called interval analysis,

Interval Analysis

Interval analysis, first invented by Allen and Cocke [4], has been used to facilitate
data flow analysis. It finds hierarchical structures in a control flow graph by dividing
it into intervals, which helps in solving data-flow equations efficiently.

An interval is defined with respect to the dominator tree of a control flow graph.

A number of quite different definitions of interval have been proposed for better per-
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formance and applicability {4, 56, 55, 18]. Ryder and Paul [48] present a comparison

study between different definitions of interval. The definition of interval we use is

essentially the same as S-set defined by Graham and Wegman [18].
Definition of Interval

For a given control flow graph G, there exists a unique dominator tree, denoted
by DT(G) [41). Let BE(h) is the set of dominator tree back edges in G, whose head
node is h. A dominator tree back edge be € BE(h) defines a strongly connected

region. An interval I(A) is the union of strongly connected regions defined by the set

BE(h), where h is the header of the interval I(k).

incoming edges

back edges .
exit edges

Figure 30: The structure of an interval

The structure of an interval is shown in Figure 30. Given an interval I(), edges

are partitioned into four groups.
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o Exif edges are edges (vy,v) such that v, € I(h) and v, & I(h). We call v; an

exit node. The set of all exit nodes for the interval J(k) is denoted by X N(I(k))

e Incoming edges are edges (vy,v;) such that v, € I(h) and v, € I(h). The head
of all incoming edges are the same node, i.e., the header node %, since there is

only one entry for the interval I(A).

o Back edges are edges (vy,vy) such that vy € I(h) and v, = h. We call v; a back
node. The set of all back node of the interval I(4) is denoted by BN(I(k)).

o Interval edges are edges (vy,v;) such that vy, v; € I(h) and v, # .

Intervals may be nested. An interval I(h;) is a sub-interval of I(h;) if (1) &,
dominates h; and (2) every ezit node of I(h;) has a path to either an ezit or back node

or both of I(h;) without passing h;.

(a) A Compound Interval (b) DOM Tree for (a)

Figure 31: A nested interval and its dominator tree

Figure 31 shows a nested interval and its dominator tree, where the wiggly lines

denote node disjoint (except for the endpoints) paths. The compound interval I (k)
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has one sub-interval, two back nodes and two exit nodes. The sub-interval I(%;) of
I{h) is a simple interval which has two back nodes and two exit nodes.

An interval may contain arbitrarily many sub-intervals. An outer-most interval
is an interval that is not a sub-interval of any other interval. The nesting level of a
graph G is the maximum nesting level of the sub-intervals of the outer-most interval
of G. An inner-most or simple interval is an interval that does not contain any

subinterval inside. A compound interval is an interval that contains sub-intervals.

(a) A General Compound Interval (b) DOM Tree for (a)

Figure 32: A general compound interval and its dominator tree

Figure 32 shows a more general compound interval. The interval I(A1) is sub-
interval of I(h) since k1 is dominated by h and each exit node of J(h1) has paths

to exits and/or back nodes of I(h). For similar reasons, both I(h2) and I(h3) are
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sub-intervals of I(h).

For a given control flow graph G, all intervals can be found using back edges
in the dominator tree of G. The set H(G) is all header nodes of G. A header node
h € H(G) has at least one back edge and it is the only Entry of the interval I(k). The
Immediate header of v in G is the header of the inner-most interval that contains v.

For a given interval I(h), we define two simple paths, head-to-back and head-to-exit

paths.

Definition 5.1
A head-to-back path of an interval I(h) is a simple path from k to a bn €
BN(I(h)). The set of all head-to-back paths of an interval I(#) is denoted
by HBP(I(h)). The set HBP(I(h)) can be found as in Equation V.22,

O

HBP(I(h)) = U o(h,bn) (V.22)
bneBN(I(A))

Definition 5.2
A head-to-exit path of an interval I(k) is a simple path from & to an zn €
XN(I(h)). The set of all head-to-exit paths of an interval I(%) is denoted
by HXP(I(h)). The set HXP(I(h)) can be found as in Equation V.23.

O

HXP(h)= |y o(h,zn) (V.23)
xne X N(I(h))
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Consider a compound interval I(k;) with a sub-interval I(k;). A sc € SC(I(k;))
may or may not include nodes in I(k;). If it does, it must include both A; and an

xn € XN(I1(h;)), i.e., a head-to-exit path of I(k;).

Example 5.3

Consider the control flow graph G shown in Figure 16 again. The dom-
inator tree of G is given in Figure 18. The only back edge in G is {f, b).
Thus, there is only one simple interval, I(b). The node e is the only ezt
and f is the only back node of I(b). Three head-to-back paths in I(h)
are (b, c, f}, (b,c,e, f) and ({b,d,e, f). Two head-to-exit paths in I(b) are
(b,c,e) and (b, d,e).

Example 5.4

Consider the control flow graph G shown in Figure 28. The dominator
tree of the graph is shown in Figure 33. Three back edges in G are (i, d),
(7, €), and (k,e). Since (j, €}, and {h, e) have the same head, they together
define an interval, /(e). The edge (i,d) defines a compound interval /{d)

that has I(e) as sub-interval.

In I(e), there are two back nodes (h and 7) and two ezit nodes(f and k).
Three head-to-back paths in I{e) are (e, f, k), (e, g, k), and (e, g, 7). Three
head-to-ezit paths in I(e) are {e, f}, (e, f, k), and (e, g, k).
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b

G
:

Figure 33: The dominator tree of the G shown in Figure 28.

In I(d), there is one back node(i) and one ezit node(h). The only head-
to-back paths is (d, e, f,i) and two head-lo-ezit paths are {d,e, f, k) and
(d,e,g,h)). Note that the edge (h, k) is exit edge for both I(e) and I(d).

O
Reduction of Control Flow Graph

Many program analysis and optimization algorithms are designed for reducible
control flow graphs, which occur quite often in practice as stated in [22]. If a graph
is irreducible, the graph can be converted into a reducible one via a node splitting
transformation as discussed in [1, 4]. In our discussion, we assume the control flow
graph is reducible.

We present an algorithm which reduces a reducible graph into a single node by
finding and reducing intervals. For our timing analysis, a slightly modified control

flow graph Gy is used. We use two transformations to reduce the modified graph Gy.
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By repeated application of these transformations, a reducible graph Gy is reduced

into a single node.

Modification of Control Flow Graph

The modified control flow graph Gy = (G,TE), where TE is the set of all
technical edges. A technical edge te € T'E is an edge from an zn € XN(G) to the
Entry. By adding technical edges, we make every complete simple path repeatable.
The justification of this is that the program represented by G' may be a part of a
larger program so the main program may call this unit multiple times. In this case,
the program implicitly has a loop outside the program. Another advantage of having
these technical edges is that it simplifies the reducibility test of G' by removing the

necessity of T3 transformation discussed in [18].

Transformations

We now describe the two transformations, T} and T, used to reduce the modified
control flow graph G. The transformation T is applied until there exists a unique

h € V — {v} such that (k,v) € E, at which point T} is applied.

Definition 5.3
Let Gas be a modified control flow graph. If for some v € V there exists
an edge e € £ such that e = (v,v) and there exists a unique & € V — {v}

such that (&,v) € E then the transformation T is given by

(G, (v,v)) = Gar = {{v,0)}).
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The transformation 77 removes a self looping edge. Figure 34 shows a graphical

representation of 7 transformation.

G

N

Figure 34: Graphical representation of T} transformation

Definition 5.4
Let G be a modified control flow graph. If for a node v € N — { Entry)
there exists a unique & € N — {v} such that (k,v) is in E and there exist

any e = (v,w) in E, where v # w, the transformation T} is given by
To(Gpmy hyv,w) = (N, EY, Entry),

where if v has no immediate successors other than w, then N' = N — {v},
E' = EU {(h,w}} — {{h,v),{v,w}} and otherwise N' = N, E' = FU
{(hww)} - {(U’w)}' =

The transformation T; creates another graph, which is (N, E', Entry), We say
both node v and edge (v, w) are consumed by T5(k, v, w). Figure 35 shows a graphical
representation of the T3 transformation.

These two transformations are the same as T{ and T, in [18] and T and T in {1].
Using these two transformations, we present an algorithm that reduces a reducible

graph Gy into a single node.
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S

Figure 35: Graphical representation of T, transformation
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Interval Algorithm

The algorithm shown in Figure 36 is a portion of the algorithm in [18]. In
Figure 36, the transformation T3 has been removed since the modified control flow
graph Gas becomes an interval by itself through the addition of technical edges over
G. The complexity of our algorithm is the same as the algorithm in [18] since T3 is a
constant factor.

The process of reduction provides hierarchy for the intervals since the reduction

process starts from the inner-most and moves to the outer-most intervals.
Characteristics of Reducible Graphs

As mentioned, there are a number of quite different definitions of an interval
[48]. Despite the differences in the definition of intervals, the reducibility of G re-
mains the same [22]. Reducible graphs have many desirable properties that help in
program analysis and optimization. The properties of reducible control flow graphs
has been studied by Hecht and Ullman [22]. Two of them are given in Lemma 5.1

and Lemma 5.2.

Lemma 5.1

A graph Gjs is reducible if and only if its DAG is unique. o
Proof

See Theorem 5 in [22]. ]
Lemma 5.2

A graph Gy is reducible if and only if for each simple cycle sc € SC(Gn)



Algorithm: Reducelnterval
N: nodes in Gy
E: edges in Gy

T1(v is node of self looping edge)
{ E=E-{@v}}
Ty(h,v,w: nodes of edges (h,v) and (v,w) in E)
{ E=FEU{(w} - {(v,v)}
if (v has no immediate successor in G) {
N=N-{v}; E=FE - {(hv)}
}
}
Reduce(I: set of nodes, h: node in I)
{ while (exists (h,v}),{v,w) € E with veI—-{h}, wel, v#£uw,
such that if (u,v} € E then either u=h or u=1v) {
choose any such (v,w)
if ((v,v) € E) {
Ty (v)
}

T‘z(ha'va w)
}
}
main()
{ T = {u| (v,u) is a dom tree back edge in Gp}
while (T" is not empty) {
h = a node in T not dominating any other node in T
I'={veN|h dominates v and there is a path p from v
to h such that all nodes on p are dominated by & }
Reduce(/,h)
T =T - {h}

Figure 36: An interval algorithm
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there exists an entry node h of sc which dominates all other nodes in the

sc. 0
Proof

See Theorem 7 in [22]. w
Theorem 5.2

If Gz is reducible,

SC(Gw)= U SC(I(h)), (V.24)

ReH{G )
where SC(I(k)) is the set of all simple cycles in I(k) and H(Gps) is the

set of all interval headers in Gyy. m}

Proof

By Lemma 5.2, the set H(G ) is uniquely determined, where h € H(Gy)
is an element of a simple cycle sc € SC(Gy) and dominates all nodes in
such simple cycles. Thus, the set SC(Ga) is the union of all simple cycles

for all intervals in Gas. ]

Theorem 5.3
If Gp is reducible,

MSRP(Gu)= |J MSRP(I(R)), (V.25)
heH(G )

where MSRP(I(h)) is the set all mazimum simple repeatable paths in
I(h). 0
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Proof
Immediate from Theorem 5.2 and the definition of mazimum simple re-

peatable path for a simple cycle. al

Timing Invariance Analysis Using Intervals

We now present a method to perform timing analysis using intervals.

Lemma 5.3

Let I(h) be a simple interval. The set MSRP(I(h)) can be found as in
Equation V.26.

MSRP(I(h)) = HBP(I(h)) (V.26)

Proof
Immediate from Lemma 5.2 and by the definition of an interval. All

sc € SC(I(h)) are of the form h = bn — h, where bn € BN(I(k)). O

Lemma 5.4

A simple interval, I{h), is executable with timing invariance if

(Vhbp € HBP(I(h)))[STD(hbp) < 0). (V.27)

Proof

Immediate from Lemma 5.3 and Theorem 5.1. O
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Lemma 5.5

A compound interval I(k) is executable with timing invariance if (1)
(Vhép € HBP(I(h)))[STD(hbp) < 0] and (2) all its sub-intervals are

executable with timing invariance. D

Proof

Immediate from Theorem 5.1 and 5.3. Here, a sub-interval can be either

simple or compound. ]

Theorem 5.4
The graph Gjs is executable with timing invariance if the outer-most

interval of G is executable with timing invariance (|

Proof
The outer-most interval of Gy is either a simple or compound interval.

a

The algorithm shown in Figure 36 reduces from the inner-most intervals to
the outer-most ones. In the following examples, we show how to use the reduction

algorithm of Figure 36 in testing timing invariance of modified control flow graphs.

Example 5.5

Figure 37 shows the modified control flow graph Gjs of the control flow

graph shown in Figure 21.

There are two intervals, I(e) and I(b), in Gy. The algorithm starts with

I{b), the inner-most interval. The execution times required on the source



Figure 37: The modified control flow graph G of G given in Figure 16.

and target machines for each hbp € HBP(I(b)) are EST((b,c,f)) =
(14,4), EST((b,c,e, f)) = (16,14) and EST((b,d,¢, f}) = (11,13).

Since there exists a hbp; € HBP(I(b)) which does not meet its time
deadline, the interval /(b) is not executable with timing invariance. The

algorithm must stop at I(b).

Example 5.6

Figure 38 shows the modified control flow graph Gy of the control flow
graph shown in Figure 28. There are three intervals I(a), I(d) and I(e)

in the graph.

The algorithm starts with I{e).

82



Figure 38: The modified control flow graph G of G given in Figure 28.
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The execution times required on the source and target machines for each
hbp € HBP(I(e)) are EST((e, f, h)) = (30,30), EST({e, g, h}) = (25,13)
and EST({e,g,5)) = (16,9). Thus, the interval I(d) is executable with

timing invariance.

Next, the algorithm reduces J7{d). This interval is also executable with
timing invariance since the only head-to-back path (d, e, f,i) meets its
time deadline and the only sub-interval I(e) is executable with timing
invariance. The head-to-back path (d,e, f,%) includes a head-to-erit path
of the sub-interval I(e).

The last stage of the algorithm examines I(a).

The node & is the only back node in the interval. Four head-to-back
paths in I(a) are (e¢,d,¢, f, 1, k), (a,d,e,g,h,k), {(a,b,c,d,e, f, h, k) and
(a,b,c,d,e,g,h, k). The execution times required on the source and target
machines for each hbp € HBP(I(e})) are EST((a,d, e, f, h, k}) = (43,43),
EST((a,d,e,g,h, k)) = (38,26), EST((a,b,c,d,e, f, h, k)) = (49,45) and
EST({a,b,c,d,e,g,h,k}) = (44,28). The interval I(a) is executable with
timing invariance since all head-to-back paths meet their time deadline

and the only sub-interval I(d) is executable with timing invariance.

Thus, the modified control flow graph Gy is executable with timing in-

variance. O

The problem here is how to find the set HBP(I(h)) for each interval I{h)
efficiently. One can find the set H BP(I(h)) using super-blocking techniques discussed

in [9]. However, it can be very expensive by having many copies of the same nodes in
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the interval. In the next section, we show how to use a data-flow approach to solve

this problem.

Data-Flow Approach

A data-flow analysis technique is a compile-time method used to reason about
the run-time flow of data in a program. Data-flow information is essential for program
optimization [1, 30]. The systematic study of data-flow analysis techniques begins
with Allen and Cocke [2, 3, 4], although various data-flow analysis methods were in
use. Since the Allen and Cocke papers, numerous research efforts have been devoted
to finding and solving data-flow problems {32, 20, 42, 23, 28, 29, 48]. Kennedy’s
survey paper [30] gives a list of data-flow problems and optimizing transformations
that use data-flow information. We use a data-flow analysis technique to find timing
information for head-to-back and/or head-to-erit paths in intervals.

For the timing invariance test it is not necessary to find all simple cycles in the

graph. Lemma 5.4 and 5.5 can be re-stated as Theorem 5.5.

Theorem 5.5
An interval, simple or compound, I(%) is executable with timing invariance

if and only if all sub-intervals are executable with timing invariance and
hbpstd, .. (I(h)} <0,

where

hbpstdmes(I(h)) ST D(hbp).

= max
hbpe H B P(1(h))
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Proof
If hbpstdmaz(I(h)) < 0 then (Vhbp € HBP(I(h)))[ST D(hbp) < 0]. (m}

Theorem 5.6

The condition hbpstd;.-(1(k)) < 0 is satisfied if and only if

(Vbn € BN(I(h)))[hbnstdmas(h,bn) < 0],

where
hbnstdmez(h,bn) = STD(MazEST (o (h,bn))).
a
Proof
Immediate from Lemma 5.3. a

We use a data-flow approach to find hbnstdnes(h, bn) for each interval, where

bn € BN(I(h)).
Data-flow equations

Solving data-flow problems involves the computation of information about the
flow of data along execution paths in the control flow graph. Data-flow analysis
sets up and solves a set of equations that relates information at various points in a
program. Here, a point in the program is a spot in the control flow graph between two
nodes. For each node in the control flow graph, some basic attributes are defined that
can be determined unambiguously from an analysis of the problem. Then, inherited

and synthesized attributes are defined in a set of data-flow equations to be solved.
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The data-flow equations for our timing analysis can be stated as follows:

(0,0), v = header,
In(v) = (V.28)
MSTD(v), otherwise,

LT(v), v = header,
Out(v) = (V.29)
In(v)+ LT(v), otherwise,

where
e In(v) is the inherited attribute for the node v,
e Out(v) is the synthesized attribute for the node v,
o LT(v) is the basic attribute for the node v (equal to EST(v)) and

e The function M ST D(v) returns an Qut(p) such that

TD(Out = T D(Out(p)).

STD(Out(p)) = _max STD(Oui(p))
In the above data-flow equations, we associate information with nodes. One
also can associate the information with edges instead of with nodes. This allows
information to propagate between intervals more easily. If e is an edge (v, w), then

let eloc(e) be LT (v). The data flow equations now are as follows:

(0,0), v = header,
In(v).hvmazest = (v.30)

MAXEST(v), otherwise,
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eloc({v,w)), v = header,
ehvmazest((v,w)) = (V.31)

MA((v,w)), otherwise,

where

e The function MAX EST(v) returns the ehvmaxzest(e) such that

MazSTD(h,v)= max STD(ehvmazest(e))
e€inEdge(v)

e The set InEdge(v) is the set of all edges of the form (w,v) and
o MA({v,w)) = In(v).hvmazest + eloc({v,w))

Using these data-flow equations and the interval algorithm, we develop an al-

gorithm which finds hbnstdy,q.(k, bn) for all intervals in Gpr, where bn € BN(I(R)).
Algorithm

We modify the interval algorithm shown in Figure 36 so that it can test timing
invariance for each interval. We use the data-flow equations, defined above, to find
timing required for paths from the header node.

The algorithm starts with one of the inner-most intervals, which is a simple
interval by definition, in the graph. The algorithm stops as soon as it finds an
interval that is not executable with timing invariance. A compound interval is tested
if all sub-intervals are tested as executable with timing invariance. If the outer-most
interval is executable with timing invariance, the graph Gy is executable with timing
invariance.

We start our modification with the main() function. The main() function
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initializes In(h).hvmazest and ehvmazest((h,w)), where k is the header node of the
interval under testing (reducing). Also, In(s).hvmazest for all s € SUCC(h) are

initialized. Figure 39 shows the modified main() function.

main()

{

(1) T = {u] (v,u) is a dom tree back edge in G};
(2} while (T is not empty) {

(3) h = a node in T not dominating any other node in T';
(4) I'={veN|h dominates v and there is a path p from v
to h such that all nodes on p are dominated by A };
(5) In(h).hvmazest = (0,0);
(6) forall (s € SUCC(h)) {
(7) ehvmazest((h, s}) = eloc({h, s});
(8) In(s).hvmazest = ehvmazest({h, 3));
}
(9) Mark h visited ;
(10) Reduce(I,h);
(11) T=T-{h};

}

(12) msg(‘‘timing invariant’’);

}

Figure 39: Algorithm for timing analysis

The function Reduce() is modified so that an interval is reduced if all hbp €
HBP(I(h)) meet their time deadline. The modified version of Reduce() is shown
in Figure 40. In Reduce(), the header node & consumes all nodes and edges in the
interval, except ezit nodes, by calling T5(). As soon as it finds a hbp that does not
meet its time deadline, the algorithm stops. If all hdp € HBP(I(h)) meet their time

deadline, the interval is reduced.

Once reduced, after the while() loop, these nodes need to be initialized. Line 14
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- 15 in Reduce() propagates timing information of head-to-ezit to the outer interval.

Reduce(/: set of nodes, h: node in 1)

{
(1)

(2)
(3)
(4}

(5)

(6)
(7
(8)
(9)
(10)
(11)
(12)
(13)

(14)
(15)
(16)

while (exists (h,v),{v,w) € E withvelI—-{h}, wel, v#£uw,
such that if (u,v) € E then either u=h or u=1v) {
choose any such (v,w)
if ((v,v) € E) {
Ti(v);
}

Ih(h,v,w);
}
Clear h visited;
In(h) .hvmaxest = (0,0);
forall (zn € XN(I(h))) {
if (zn#h) {

Clear zn visited;
In(zn).hvmazest = (0,0);
ehvmazest({h,zn)) = (0,0);

; eloc({h,zn}) = (0,0);
forall(ss € SUCC(zn)) {
eloc{{xn, ss}) = ehvmazest({zn, ss));
ehvmazest((zn, ss)) = (0,0);
}
}

Figure 40: Algorithm for modified Reduce()

The transformation T() consumes nodes and edges in the interval. When a

node v is visited, at which time T3(h,v, SUCC(v)) is called, timing information of

v is propagated to all successors of v by 1 - 3 in 7;. When bn € BN(I(h)) is

visited, at which T5(k, v, k) is called, the hbnstd,,,, for the back edge bn is found. If

hbnstd,.- < 0, all paths from A to bn meet their time deadline. Two functions used
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in Ty() are defined as follows:

¢ InMaxEST(est, est;) returns

esty, tf STD(est;) < STD(esty) or esty = (null, null),

esty, otherwise.

e MPlus({as,a:),(b,, b)) returns (a, + by, a; + ;).

T>( h,v,w: nodes of edges (h,v)} and (v,w) in E)
{

(1) if (v not visited) {

(2) forall (s € SUCC(v)) {
(3 ehvmazest((v,s)) = MPlus(In(v).hvmazest, eloc({v, s}));
(4) Mark v visited ;

}

(8) In(w).hvmazest = InMazEST (ehvmazest({v,w)), In(w).hvmazest);
(6) if (h=w) {
(M if (0 < STD(In(w).hvmazest)) {
(8) Msg(‘‘timing error: In(w).hvmazest’’);
(9) Exit();
}

}
(10) E=E U {{h,w)};
(11) ehvmazest((h,w)) = In(w).hvmazest;
(12) E=E - {{v,w)};
(13) if (v has no immediate successor in G) {
(14) N=N - {v};
(15) E=E~-{(hv)};

}
}

Figure 41: Algorithm for T5() transformation
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Consider a node v in (%) with out-degree of m. To delete v, the node has to be
consumed m times. If the node v is not deleted after the while() loop in Reduce(),
the node v is consumed less than m times. This happened when some out-edges of v

are not in J(k). Such a node v is an exit node by definition.

Lemma 5.6
The first time a node v is consumed, the first time T3(k, v, SUCC(v) is
called, ehvmazest({v, SUCC(v)}) = MazEST (o (h,v)). O

Proof

At line 5 in main(), In(h).hvmazest is initialized to (0,0).

At line 6 - 8in main(), (Vs € SUCC(h)) [ehvmazest((h,s)) = EST(v)
and In(s).hvmazest = EST(v)]. By Line 1 in Reduce(), a node v is
consumed only when there is no u such that « — v and u is neither
h nor v. Thus, to consume v, all InEdges(v) in I(h) — {h} must be
consumed. If all InEdges(v) in I(h)—{h} are consumed, In(v).hvmazest

has MazEST(o(h,v)) because of Line 5 in Ty().

The first time T5(h, v, SUCC(v)) is called, where v is consumed the first
time, ehvmazest({v, SUCC(v))) has MazEST(c(h,v)) by line 2 - 3 in
Ta().

Lemma 4.7

The function Reduce(7, k) shown in Figure 40 tests if a simple interval

I(R) is executable with timing invariance. 0



Proof
Since an interval is reducible graph by itself, all nodes in I(k) are visited
at least once. Since all nodes in I(h) are visited at least once, all bn €
BN(I(h)) are also visited at least once. If a bn € BN(I(h)) is visited,
hbpstd.z for the bn is found by Lemma 5.6. By Line 7 - 9 in Ty(), the

condition hbnstdmaz(h, bn) < 0 is examined. O

Theorem 5.7

The algorithm shown in Figure 39 tests if a reducible Gy is executable

with timing invariance. m

Proof
The modified graph G is an interval by itself. By line 3 in the main(),
the inner-most interval, a simple interval by definition, is reduced first.
Once an interval is reduced, only header and exit nodes remains. At this
stage, ehvmazest of Qui Edges(zn) contains Maz EST(p(k,zn)) by line
14 - 15 in Reduce(). The MazEST(p(h,zn)) and MazEST(p(h,bn))
of the outer interval can be found by having MazEST(p(h,zn)) of all
sub-intervals. No compound interval is reduced until all its sub-intervals
are reduced by line 3 in main(). A compound interval becomes a simple
interval when all its sub-intervals are reduced. When a compound interval
is reduced all of its sub-intervals have been tested as executable with
timing invariance. Thus, a compound interval is executable with timing
invariance if all of its head-to-back paths meet their time deadline. By

Lemma 5.7, this is tested by Reduce(). o



94
Example 5.7
Consider the example shown in Figure 37 again.
The outer-most interval I(a) has a sub-interval /(). The algorithm starts

with the inner-most interval, /(). In the following, we show snapshots of

the process that reduces the inner-most interval I(b).

In main() :

T={ab}lh=0b

I = { byc,def}; In(b).hvmazest = (0,0)
ehvmazest((b, c)) = (2,1); In(c).hvmazest = (2,1)
ehvmazest((b, d)) = (2,1); In(b).hvmazest = (2,1)
Reduce(1, )

Assume the consumption order in Reduce(I,b) is as follows.

Ta(b, ¢, f) : ¢ not deleted
T5(b,c,€) : c deleted

Ty(b,e, f) : e deleted

(
(

Ty(b,d,e) : d deleted
(

Ty(b, f,b) : timing error: In(b).hvmaxest

The order of consumption shown above is not required except that

T3(b, e, f) must be after T5(b,d, e) and T5(b, c, e); To(b, f,b) must be last,
since f can not be consumed until all predecessors of it are consumed.

Now, we show the snapshot of T3(b, ¢, f) and Ta(b, f, b).
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T2(bs da e)

ehvmazest((c, f)) = MPlus(In(c).hvmazest, eloc({c, f))) = (8, 3)
ehvmazest((c, e)) = MPlus(In(c).hvmazest, eloc({c, €))) = (8, 3)
In(f).hvmazest = (8,3)

E = EU{(b /)

ehvmazest((b, f)) = In(f).hvmazest = (8,3)

T2(b: f1 b)
ehvmaxzest({f, b)) = (11,13).

In{f).hvmazest = (11,13).

timing error: In(b).hvmaxest

At the function call Ty(b, f,b), ehvmazest((f, b)) has MazEST (o (b, f))
and b € BN(I(h)). Thus, the only hbnstdmaz(h, bn), i.e., hbnstdpqz (b, f),
is found which is STD(MazEST(c(b, f)). Since 0 < hbnstdmq:(b, f) = 2,
the interval I(b) is not executable with timing invariance. The following
table shows the content of In(v).hvmazest and ehvmazest({v, SUCC (v)})

during the reduction process of the interval I{b).

Node | In(v).hvmazest ehvmazest({v, SUCC(v)))
b (0,0) (2,1)

c (2,1) (8,3)(8,3)

d (2,1) (3,2)

e (8,3)(3,2) (5,12)(5,12)

f (8,3)(5,12) (11,13)
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Example 5.8
Consider the example shown in Figure 28 again. The outer-most inter-

val I(a) has a sub-interval I(d) which also has a sub-interval /(e). The

algorithm starts with the most-inner interval I{e).

In main():
T={a,de}; h=¢
I={e, f,9,h,j}; In(e).hvmazest = (0,0)
ehvmazest({e, f}) = (10,5); In(f).hvmazest = (10,5)
ehvmazest({e,g)) = (10,5); In(g).hvmazest = (10, 5)
Reduce(I,€)

Assume the consumption order in Reduce() is as follows.

To(e, : [ not deleted

frh
g

=3

)
e,g,h) : g not deleted
)

: h not deleted

5 5

(

(

(e, hye
(e,9,7) : g deleted
Ta(e, g, €)

e, 7,€): j deleted

Again, this is not the only computation order. Timing is checked when

both Ty(e, h,€) and T(e, j,€) are called.

Since both hbnstdmez(e, k) and hbnstdnaz(e,j) meet their time deadline,
the interval J(e) is executable with timing invariance. The following ta-
ble shows the content of In(v).hvmazest and ehvmazest({v, SUCC(v)))

during the reduction process of the interval I(e).



Node | In{v).hvmazest ehvmazest({v, SUCC(v)))
e (0,0) (10,5)

f (10,5) (20,25)

g (10,5) (15,8)

h ((20,25)(15,8))  (30,30)

j (15,8) (16,9)

The graph after this step is shown in Figure 42.

Figure 42: After I(e) is reduced

Since the interval I(e) is executable with timing invariance, the algorithm

can examine the outer interval of it. Before it starts the next interval, it
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cleans up the header node and exit nodes of I(e). Each exit node zn €
XN(I(h)) has Maz EST(e, zn), which is saved on eloc({zn, SUCC(zn))).

Now, the algorithm starts to reduce the interval I(d).

In main():

T={adhh=d

I={dgefi}; In(d).hvmazest = (0,0)
ehvmazest({d,e)) = (7,2); In(e).hvmazest = (7,2)
Reduce(I,d)

The reduction order in Reduce() for the interval I(d) is as follows.

Ti(e) : self-looping edge (e, e} deleted
T»(d,e, f) : e not deleted

Tsx(d, f,i) : [ deleted
Ty(d,i,d) : 1 deleted

Timing is checked when T5(d, ¢, d) is called. Since hbnstdn.-(d, i) meet its
time deadline, the interval I(d) is executable with timing invariance. The
node e is not deleted since it becomes the only exit node for the inter-
val I(d). The following table shows the content of In(v).hvmazest and

ehvmazest({v, SUCC(v))) during the reduction process of the interval
I(d).



Node | In(v).humazest ehvmazest({v,SUCC(v)})
d (0,0) (7,2)

e (7,2) (7,2)

f (7,2) (27,27)

i (27,27) (28,28)

The graph after this stage is shown in Figure 43.

Figure 43: After I(d) is reduced

Since the interval I(d) is executable with timing invariance, the algorithm
can examine the outer interval of it. Again, it cleans up the header node

and exit nodes of I(d). Each exit node e has MazEST(d,¢), which is

99
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saved on eloc(({e, h}). Now, the algorithm start to reduce the interval I{a).
The rest of the reduction process for the graph Gy is straightforward. The
resulting graph is a single node a with a self-looping edge. The graph G
is executable with timing invariance since the outer-most interval I{a) is

also executable with timing invariance.

Timing Equivalence Analysis

If a target program is executable with timing invariance, we test if it is exe-
cutable with timing equivalence. It is easy to see that insertion of a synchronization
on each i/o node provides timing equivalence if for all v € V, EzecTime(vMr) <
EzxecTime(v, Ms). The precise conditions for timing equivalence are stated in The-

orem 5.8.

Theorem 5.8
Let PIOIO(Gu) be the set of all simple paths from an ifo node in
T0(Gar) to another ifo node in JO(Gpy) that does not contains any other
i/o node in it. The graph Gy is executable with timing equivalence if and

only if it is executable with timing invariance and

(Vpioio € PIOIO(Gy))[EzecTime(pioio, M) < EzecTime(pioio, Ms)]
(V.32)
a

Proof
(If Part)
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For any cp € CP(Gu), no two ifo events cpe; and cpe;4, exist on the ¢p

such that T'D(cpte;, cpteiy1) < T D(cpse;, cpseiy ) if Equation V.32 is true.

(Only If Part)
There exist at least one ¢cp € CP(Gpy) that contains two i/o events such

that T D(cpte;, cpteiy1) > T D(cpse;, cpseiy,) if Equation V.32 is not true.
Thus, the theorem is obvious by Definition 4.4 and Theorem 4.2.

c

If the graph Gas is executable with timing equivalence, it is easy to see that
the insertion of a synchronization on each i/o node in the graph provides timing
equivalence. If Gy is timing equivalent, both A(Gps) and ¥(Gyy) are zero. The set

PIOIO(Gpm) is easy to find using a data-flow approach.

Summary

This chapter derived necessary and sufficient conditions to provide timing equiv-
alence and invariance for target programs. We used a program decomposition method,
called interval analysis, to test the conditions. The problem of timing equivalence
testing is converted into a data-flow analysis problem which uses intervals. When
a control flow graph is executable with timing equivalence or invariance, we must
convert it into an invariant or equivalent one. Chapter VI presents methods to pro-
vide timing invariance or equivalence for the graph that is executable with timing

invariance or equivalence.
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CHAPTER VI

ENFORCEMENT OF TIMING EQUIVALENCE

Chapter V presented a method to test if a target program represented by Gy
is executable with timing equivalence or invariance. If it is executable with timing
equivalence, inserting synchronization on i/o node provides timing equivalence. If
it is executable with timing invariance but not with timing equivalence, the timing
sensitivity of the target program depends on how and where the target program is
synchronized. This chapter presents two different synchronization schemes, global
and local, to improve timing sensitivity of the target program.

Chapter VII presents a method to find both timing sensitivities, A(Gy) and

U(Gum). Chapter VIII presents methods to optimize these timing sensitivities.
Problem Statement,

We are to convert the target program into a timing invariant one if it is ex-
ecutable with timing invariance. If all simple cycles are synchronized, the graph is
timing invariant by Theorem 5.1. Synchronization of all simple cycles can be achieved
by inserting synchronizations on all back edges in the graph Gy, since all simple cy-
cles in a reducible graph must include back edges. If the graph G is executable with
timing invariance, but not with timing equivalence, the quality of the target program
depends on timing sensitivity it has, i.e., A(Ga) and ¥(Gp). These timing sensi-

tivities depend on where and how the graph is synchronized. This chapter discusses
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how to add synchronization to improve timing sensitivities of the target program. So
far, we have used a global synchronization scheme which uses a single global clock
for each system, source and target. In this chapter, we first discuss problems with
the global synchronization scheme and then present another synchronization scheme
called “local synchronization,” which uses multiple clocks for each system. With the
local synchronization scheme, it is easier to find the timing sensitivities of the graph

and the timing sensitivities are reduced.

Global Synchronization

The synchronization method discussed in Chapter IV is a global synchroniza-
tion scheme which synchronizes the global target clock to the global source clock at
synchronization points (only on back edges, so far). Even though this global synchro-
nization scheme provides timing invariance whenever possible, there are a number of
problems with it. With the global synchronization scheme, synchronization of an edge
in the graph may invalidate other synchronizations as seen in Example 5.2. Thus,
finding timing sensitivities of the graph Gas with this scheme requires consideration
of all paths from all possible synchronization points that may reach each an i/o node.
This is not a desirable characteristic for timing sensitivity analysis. This also makes

the timing sensitivities of Gas worse than necessary as we will see in Example 6.1.

Example 6.1
Consider the example given in Figure 44. Four back edges are synchro-

nized with the global clock. The set JO(Gy) is {d,7,1}.

Consider a following complete path ep € CP(Gyy).

<3a]v z'511 iflv Zhly 121,11, ih?a iiZs é]?: ih31 ii3i iJS: ‘lhq, ikls “11
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2o
C o o)
C e Xoud e XUs0

Figure 44: An example of control flow graph for global synchronization



£b21 iC], idla ieh lb31 zf21 ihS, ikh “21 z"'—n'l)

In the cp given above, there are three instances of j (71, 72 and j3), two
instances of node [ ({; and l3) and one instance of node d (d;). The
global source and target times at each instance of ifo nodes (ASTime

and ATTime at iio;) are given in the following table.

INST(i0) | AST(iio;) | ATT(iio;)
i1 125 9

iz 140 12

if3 155 15

il 167 117

idy 179 173

ily 351 282

Synchronizations are performed after instances of nodes ijy, ijs, ijs, i,
iey, and imy. These synchronizations are to match ATTime to ASTime

at 126, 141, 156, 168, 230, and 353.

With the global synchronization scheme, the following will happen when
the program is running on the target machine: since no synchronization
was performed before the ifo event ij1, ij; occurs at 9. After ¢j;, the
program execution is delayed for 116 from 10, which makes AT Time = 126
(synchronized). The ¢j; event occurs at 128 and the program execution
is delayed for 12 from 129, which makes ATTime = 141 (synchronized).
The 273 event occurs at 143 and the program execution is delayed for 12

from 144, which makes ATTime = 156 (synchronized). After delaying for
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101, the il; event is executed at ATTime = 257. At 258, synchronization
is invalid, since ASTime < ATTtme. The id; event is executed at 313 and
the synchronization at 316 is also invalid. The i/o event il; is executed
at 422 and the last synchronization is invalid also. Figure 45 shows the
execution time of the given cp on source and target machine with global

synchronization scheme.

start event

—t
—
/

Source Timeline j T

Target Timeline |
Global Clock

T
>

—
Y

Figure 45: With global synchronization scheme

The absolute timing sensitivity for the cp, A(cp), with global synchroniza-
tion is 134, since the A(JNST(i0)) for each INST(i0) is computed as in

the following table.

INST(io) || AST(iie;) | ATT(si0;) | Asio;)
i1 125 9 | —116 |
ij2 140 128 | 12|
ij3 155 143 | —12 |
ily 167 257 |90 |
idy 179 313 1134 |
ily 351 429 {71
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In this example, A(G)s) is unnecessary big, since the synchronization on ij; —
thy delayed the program execution too long (over commitment). This over commit-
ment invalidate the synchronization on il; — ib;. When this happened, all other
synchronizations after this event become invalid until ATTime < ASTime. This
over commitment also hinders analysis and optimization of timing sensitivities. In
the next section, we present another synchronization scheme which reduces the value

of timing sensitivities and make timing sensitivity analysis easier.

Local Synchronization

To resolve problems with the global synchronization scheme, a local synchro-
nization scheme is proposed. Our local synchronization scheme uses multiple local
clocks instead of the single global clock for each system. In the local synchronization
scheme, each interval /() maintains both source and target clocks, LASTime(h)
and LATTime(h). Synchronization of any instance of edges in I(h) is performed
with its own local clocks. In the global sense, this local synchronization is not a
synchronization, but is a delay which removes the timing error introduced by the
interval.

The source and target clocks for each interval I(h) are obtained by inserting

the following two statements for every v in I(h) — {h}.

LATTime(h) < LATTime(h) + EzecTime(v, M7)
LASTime(h) <= LASTime(h) + EzecTime(v, Ms)
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At each header node h € H(Gy), its own local clocks are initialized to zero,
i.e., LATTime(h) = LASTime(h) = 0.

For a given cp, the function LAST (iv;, h) returns LASTime(h) at the iv; and
the function LATT (v;, h) returns LATTime(h) at the iv;,

Consider a compound interval I(ki) with a sub-interval I(hj). Every node v
in I(hj) also maintains local clocks of I(hi). When the flow of control enters an
interval I(hj) from an outer interval I(hi) (through hj), the local clock of the in-
terval I(hi) are kept running and local clocks of I(hj) are initialized to zero, i.e.,
LATTime(hj) = LASTime(hj) = 0. When there is a local synchronization of I(kj),
the program execution is delayed for LASTime(hj) — LATTime(hj) at the synchro-
nization point. When the flow of control exits from interval I(kj) to I(hi) (through
a zn € XN(I(hj)) of course), local clocks of I{hj) are no longer available.

Since every interval in Gy is a sub-interval of the outer-most interval, the

local clock of the outer-most interval is the same as the global clock. The local

synchronization function we use is shown in Figure 46.

LSync({v,w), k);

{
if (LATT(iw;, h) < LAST (iws, b)) {
Delay(LAST (iw;, h) — LATT (iw;, b))

Figure 46: Algorithm for local synchronization

Here, an instance of local synchronization is valid if 0 < LAST(iw;, h) —

LATT (iw;, h).
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Lemma 6.1
If all back edges in Gps are locally synchronized and if the graph Gy is
executable with timing invariance, all instances of these synchronizations

on all cp € CP(Gy) are valid. O

Proof
Obvious, since all msrp € MSRP(Gp) meet their time deadline and
inserting local synchronization on all back edges removes only local timing
error introduced by the cycle defined by the back edge. Notice that no
synchronization is inserted on head-to-exit paths, which is a part of the

outer-interval’s head-to-back paths. O

Theorem 6.1

The local synchronization scheme provides timing invariance to the Gy

if it is executable with timing invariance. m

Proof
For all sub-intervals, any timing difference caused by the sub-interval is
removed by local synchronization of all back edges. Thus, all timing differ-
ences in an interval are local, i.e., timing difference from the header node
to the current node. Since all local timing differences are determined stat-
ically, and since the graph Gy itself is an interval, the timing difference
for the graph (/ps is determined statically. If the timing difference is de-
termined statically, the graph Gy is executable with timing invariance by

definition. a

If every simple cycle in Gy takes the same amount of time on both source

and target machines, the graph is timing invariant. If all back edges in the graph
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are locally synchronized and if the graph is executable with timing invariance, all
simple cycles takes the same amount of time on source and target machine. By
Lemma 5.2, any simple cycle in a reducible graph includes an interval header node.
Thus, synchronization of all back edges in the graph enforces timing invariance on a

graph that is executable with timing invariance.

Example 6.2

Consider Example 6.1 with the local synchronization scheme. In the in-
terval I(k), there is only one back edge, (j,2). Thus, the local synchro-
nizations of I(%), LSync({j, k), h) are performed after ij,, ij,, and ij3 on
the given cp.

There are two back edges in I(b), i.e, LSync((l, ), b} and LSync({e, b}, b).
The local synchronizations of I(b) are performed after ¢/; and id, on the

given cp. There is one technical back edge m — a which forms the outer-

most interval I(a).

Every cp starts with Eniry and every cp has only one instance of Entry
which generates the Program Start event. At the event iay, the local
clocks of I{a) are started by initializing them to zero, i.e., LASTime(a)
= LATTime(a) = 0. When the flow enters to b, local clocks of the inter-
val I(b) are initialized. When the flow enters to &, before ik, on the ¢p,
LAST(b) =110, LATTime(b) = 6, LASTime(a) =111 and LATTime(a)
= 7. Also, local clocks of I{k) are started by initializing them, i.e.,

LASTime(h) = LATTime(h) = 0. Since no synchronization occurs be-

fore ij1, the ij; event occurs at ATTime(a) = 9. After ij;, the pro-



gram execution is delayed for 12 (LAST (igs, k) — LATT (igs, h) = 15 -
3) from ATTime(a) = 10, which makes ATTime(a) = 22. When the
flow reaches to the header node h, local clocks of I{k) are initialized to
zero. The ij; event occurs at ATTime(a) = 24 and is delayed for 12
(again, LAST (igs, h) — LATT(igs, k) = 15 - 3) from ATTime(a) = 25,
which makes ATTime(a) = 37. The ij; event occurs at AT Time(a) =
39 and is delayed for 12 from ATTime(a) = 39 which makes ATTime(a)
= 52. When the flow reaches to the header node A, local clocks of I(h)
are initialized to zero, again. When the flow exits from interval I(h) to
I(b) through h, local clocks of I(k) are not available anymore. At this
point LAST (iky,e) = 166, LATT(iky,a) = 53, LAST(iky,b) = 165 and
LATT (iky, b) = 52.

The il; event is executed at ATTime(a) = 153 which is 100 from 53. The
program execution is delayed for 14 (LAST (iag, b) — LATT(ias, b) = 167
- 153) from ATTime(a) = 154 which makes ATTime(a) = 168. When
the flow reaches to the header node b, local clocks of (b) are re-initialized
to zero, i.e., LASTime(b) = LATTime(b) = 0.

The id, event occurs at ATTime(a) = 223 and after ie; the program
execution is delayed for 5 (LAST(ibs,b) — LATT (ibs,b) = 62-57) from
ATTime(a) = 225, which makes ASTime(e) = ATTime(a) = 230.
When the flow reaches to the header node b, local clocks of I(b) are ini-

tialized to zero, again.

The il; event occurs at ASTime(a) = 351 and ATTime(a) = 337. The
given cp finishes at ASTime(a) = 353 and ATTime(a) = 339, but delayed

111
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for 14 for the synchronization of the technical edge.

Figure 47 depicts the local synchronization scheme for the given ¢p.

start event
Source Timeline } s T 5? ﬂ f | } ? } —
100 200 300 400
Target Timeline | p | L b, , |
L l C]Ock I Il‘-' 1 IU 1 1 | ] ) 1
oca 100 200 300 400

Figure 47: With local synchronization scheme

The absolute timing sensitivity of the given cp, A(cp), with local synchro-

nization is 116. O

By using the local synchronization scheme, the absolute timing sensitivity is
reduced from 134 to 116. However, there are problems with the pure local synchro-
nization scheme also. By having only a local view on synchronization, some possible

synchronizations which improve timing sensitivity may be omitted.

Example 6.3

Consider the example given in Figure 48 which is the same as in Figure 44,

but with different EST(k). Consider the same cp as in Example 6.1 which

is:

<iaIv zbl: zfl'r lhla 121,201, ihb 112,172, ih31 13,173, Zh4, ikl's ill?

?:bz, iCl, l.dl, iel, ibs, 'tlfz., ihs, ikg, 7:12, zml)
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Figure 48: An example of control flow graph for local synchronization scheme



With no synchronization, ASTime and ATTime of i0 € IO(Gp) are as

shown in the following table.

INST(io) || AST(iio;) | ATT (3i0;)
if 125 9

ija 140 12

i3 155 15

il, 171 18

idy 183 74

ily 359 84

With the global synchronization scheme, the instances of i0 € JO(Gy)

occur at 9, 128, 143, 158, 227 and 242. The absolute timing sensitivity of

the given cp, A(cp), with global synchronization scheme is 117. Figure 49

depicts the execution of cp with global synchronization.

Program
Start

Source Timeline

e

Target Timeline |/

Local Sync.

100

Figure 49: With global synchronization scheme

With the local synchronization scheme, instances of {0 € TIO(Gp) occur

at 9, 24, 39, 54, 227 and 241. The absolute timing sensitivity of the given

cp, A(cp), with local synchronization is also 117. Figure 50 depicts the

execution cp with local synchronization.

114
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Program
Start
Source Timeline } l ? ? IT 1;? i | l !? ! e
100 200 300 400
Target Timeline % : ‘h-l_@ : : I : |
st 100 200 ) 3(I)0 4100 |

Figure 50: With local synchronization scheme
O

In this example, local synchronization does not improve timing sensitivities of
the given path cp over the global synchronization scheme. Here, timing sensitivities
of the cp can be improved dramatically by inserting synchronizations on incoming

edges of intervals as shown in Example 6.4.

Example 6.4
Consider the example shown in Figure 51, which is the same graph as in

Figure 48, but synchronizations on all incoming edges of h.

Consider the same ¢p as in previous Example which is:

(2&1, lbl, '?:fl, HL], i'ih th, ihz, i‘ig, ]2, ‘lha, iia, Z'jg, ih‘{, ik], ill,

ib% 2'01, idh iel? lbg,, E'fg, ih5, 2k21 ”21 1m1>

Synchronizations are performed after the following instances: ia,, i1, ij;,
ij2, 1J3, th, t€; and if;. With synchronizations on all incoming edges of
intervals, i/o events occurs at 113, 127, 143, 158, 226 and 345. With this
scheme, A(cp) is 44. Figure 52 depicts the execution of cp with optimized

local synchronization.
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Figure 51: Adding additional synchronization to optimize local synchronization

start event
Source Timeline } 1 !1; T? | } ! ET | =
100 200 300 400
Target Timeline :;Z{th_ﬁ: | ?.-._,A__.._-_A; | .
| T T [] I |
Local Sync. 100 200 300 400

Figure 52: With optimized local synchronization scheme
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O

By inserting synchronizations on all incoming edges of intervals, the absolute
timing sensitivities are reduced from 117 to 44. However, inserting synchronization
on these edges does not always help in providing better timing sensitivities as in
Example 6.1. Chapter VIII discusses issues on optimizing timing sensitivities by

inserting more synchronizations.

Summary

When a program is executable with timing equivalence or invariance, it must be
enforced by a synchronization scheme to be timing equivalent or invariant. This chap-
ter described two synchronization schemes, global and local synchronization, which
provide timing invariance to a graph that is executable with timing invariance. A
main advantage of using the local synchronization scheme is that it reduces timing
sensitivity of the target program by avoiding over commitment that occurs in the
global synchronization scheme. Another advantage is that it simplifies timing sen-
sitivity analysis which we will discuss in the next chapter. The under commitment
problem in the local synchronization scheme is solved by inserting additional local
synchronizations. Chapter VIII presents timing optimization algorithms by inserting

additional synchronization.
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CHAPTER VII

TIMING SENSITIVITY ANALYSIS

Chapter V presented methods to test if a given target program represented by
G is executable with timing equivalence or invariance. Chapter VI presented methods
to enforce timing invariance or equivalence.

This chapter presents static algorithms that find two timing sensitivities of a
target program defined in Chapter IV. These timing sensitivities are used to judge
how closely the target program mimics the source program. We assume every back
edge is synchronized with local clocks for our timing sensitivity analysis.

Methods that optimize these timing sensitivities are presented in Chapter VIIL
Problem Statement

In Chapter IV, two timing sensitivities of a target program represented by Gy,
A(Gpm) and ¥(Gy), are defined in terms of the set CP(Gp). In Chapter V, the
absolute timing sensitivity of an i/o node io0 in Gy, denoted by A(i0), is defined in
Equation V.19. To find A(io), all complete paths that contains at least an instance of
2o must be considered. Similarly, the relative timing sensitivity of 7o can be defined.
The program represented by Gy is timing invariant if for all io € IO(Gy), A(io) is
limited by a constant. Both absolute and relative timing sensitivities of Gas can be
found when the timing sensitivities of all i0 € JO(G)) are found. In this chapter, we

develop methods which find these timing sensitivities for all i/o nodes.
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Absolute Timing Sensitivity

To compute absolute timing sensitivity of a graph Gas, we must find the absolute
timing sensitivity for each i/o node io € JO{Gas). Once the absolute timing sensitivity
of each i/o node is known, the absolute timing sensitivity of G is the maximum of
A(io) for all io € IO(Gyy).

If an edge (v,w) is globally synchronized, ASTime = ATTime at any instance
of w that comes after an instance of v for any cp € CP(Gys). The node w is said to be
a possible global synchronization node. If all InEdges(w) are globally synchronized,
w is a global synchronization node. The Entry is always a global synchronization
node.

Suppose psn is a globally synchronized node and there exist paths from psn
to an i/o node io not passing through another global synchronization point. Such
a node psn is called a previous synchronization node of io. With the pure local
synchronization scheme, the only global synchronization point for all io € JO(G)y) is
the Eniry. Figure 53 shows a control flow graph with two header nodes (&; and k;),
one i/o node (i0) and a global synchronization node (psn). The node psn is the only
previous synchronization node of io. The header node h; has one back edge and h;
has two back edges with local synchronization.

For a given previous synchronization node psn of io, MazST D(psn,io) and

MinST D(psn,io) are defined as in Equation VII.33 and Equation VIL.34.

MazST D(psn,io) = max_STD(p]) (VIL.33)

pi€p(pan,io)
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y exit edges

Figure 53: Previous synchronization node of an i/o node

MinSTD(psn,io) = min STD(p?) (VIL34)

pi€p(psn,io)

The absolute timing sensitivity of io from a previous synchronization node psn,

denoted by A(psn,io), can be found as in Equation VIL35.

A(psn,io) = Maz(| MazST D(psn,io) |,| MinST D(psn,io) |) (VIL35)

In Equation VIL.33 and Equation VIL.34, the set p(psn,io) may be infinite.
With the local synchronization scheme, however, it is not necessary to consider all

pi € p(psn,io) to find A(psn,io).
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Theorem 7.1
With local synchronization,

max STD(p))= max STD(o?)

piEp(psn,io) o;€Eo(psn,ic)

and

min  STD(p?)= min STD(c?).

pi€p(pan,io) oi€o(pan,io)

Proof

With local synchronization on every back edge, EzecTime(msrp, Ms) =
EzecTime(msrp, Mr) for any instance of any msrp € MSRP(Gy). If
any path p; € p(psn,io) is not in o(psn, o), it has to have at least a msrp
in it by definition.

The simple cycle sc that defines msrp starts from the header node in
o(psn,io) and finishes at the header node and EzecTime(msrp, M;s) =
EzecTime(msrp, Mr) for all msrp € MSRP(Gp). Thus, any msrp in
pi can be ignored in finding ST D(p;). If all msrp in p; are ignored, the

path p; is in o(psn,i0). o
By Theorem 7.1, MazST D(psn,i0) and MinST D(psn,io) can be obtained as

in Equation VII.36 and Equation VII.37.

MazSTD(psn,io) = max STD(c?) (VIL.36)

¢iEc(psn,ioc)
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MinST D(psn,io) = min STD(s}) (VIL.37)
o,ec(pan,io)
psn

o cptloA ) cpsio cp,

Timeline P —— >
A'I'r(ioi } STD( io i) AST(io; )

cpsio A cptio cp.

Timeline ——> <—>:€______ - )
AST(o; ) 0.y ATTUO )
j STD( io j)

cpsio | A cptio .,

Timeline <——a- -
/ STD( io k)'\

AST(io K A’I"I‘(io:)k )

Figure 54: Simple paths from a previous synchronization node

Figure 54 shows three simple paths from psn to zo0. Suppose these three paths
are the set of all simple paths from psn to io, i.e, o(psn,io0). By ignoring all instances
of all msrp € MSRP(Gy) that occur between an instance of psn and instances of
i0, all tocp € IOC P(io) can be viewed as one of these three paths.

We only need MaxST D(psn,io) and MazST D(psn,io) to find A(psn,io) for
the previous synchronization node psn. In the example above, M azST D(psn,to) is
ST D(iog) and MinST D(psn, io) is ST D(io;). Thus, A(psn,io) is ST D(ioy). If psn
is the only previous synchronization node of o, the absolute timing sensitivity of io,

A(io), is A(psn,io) and thus Equation VIL.38.
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A(io) = Maz(| MazST D(psn,io) |,| MinST D(psn,io) |). (VIL.38)

Since we only need MazST D(psn, io) and MinST D(psn, io) to find A(psn, io),
we use a simplified method to represent this information as in Figure 55.

sn AdjST(psn,io
Unified : iST )

Timeline l

| <7—>|<_R—)

MinSTD(psn,io) MaxSTD(psn,io)

Figure 55: Adjusted source timing of io for a previous synchronization node psn

In Figure 55, three timelines are unified into one timeline and AdjST(psn, i0)
is used to represent three source times, where the value of AdjST(psn,io) itself is
not significant. The values of MazST D(psn,i0) and MinST D(psn,io) are the only
significant information.

We may insert synchronizations on the outer-most interval for optimization pur-
pose as we will discuss in Chapter VIII. In this case, there may exist multiple previous
synchronization nodes for a given i/o node io € JO(Gp). Let PSE(io) be the set
of all edges such that a pse € PSE(io) is a previous global synchronization edge of
to. If an edge (v,w) is in PSE(io), w is called a possible previous synchronization
node of i0. Let PSN(io) be the set of all possible previous synchronization nodes
of io. Any path from Entry to 7o includes an edge pse € PSE(io) and there is at
least one simple path from a psn € PSN(io) to io without passing through an edge
pse € PSE(io). For the given set PSN(io), MazD(io) and MinD(io) are defined as
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in Equation VII.39 and Equation VII.40.

Maz D(i0) = oo Maz ST D(psn,io) (VIL.39)
MinD(io) = . MinST D(psn, io) (VIL.40)

Suppose the set PSN(io) is {p,q,7}. Figure 56 shows unified timelines for each
psn € PSN(io) with MazST D(psn,io) and MinSTD(psn,io). In this example,
MazD(io) = MazST D(r,i0) and MinD(io) = MinST D(q,i0).

AdjST(p,io)
P MinSTD(p,io) MaxSTD(p,io)
T~ b A"
Timeline N >
MinSTD{(q,io)
AdjST(q.io)

Timeline T >

. / AdjST(r,io) MaxSTD(r,io)

MaxSTD(q,io) poA A—

Timeline I >

/

MinSTD(r,io)

Figure 56: Multiple previous synchronization nodes

The only information we need is the maximum of MaxzST D(psn,i0) and min-
imum of MinST D(psn,io), denoted by MaezD(io) and MinD(io), for all psn €
PSN(io). Here, another unification of timelines can be done as in Figure 57.

Once the MazD(io) and MinD(io) are known, the absolute timing sensitivity

of the io can be found as in Equation VII.41.
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PSN(io) AdjST(io0)
Timeline I A A o

Figure 57: Unification of timelines for multiple previous synchronization nodes

A(io) = Maz(| MaxzD(io) |,| MinD(io) |) (VIL41)

When A(io) for all io € TO(Gp) are known, the absolute timing sensitivity of

a target program represented by G can be found as in Equation VII.42

A(Gy) = P A(io) (VI1.42)

Example 7.1

Consider the example given in Figure 58 which is the same graph as in
Figure 38, but with a synchronization on each back edge. We assume the
pure local synchronization scheme is used. There are four i/o nodes in
G'ar and there is only one global synchronization node which is a. To find

A(Gum), we have to find the A(io) for all 10 € IO(Gpy).

There is only one simple path from a to b. The absolute timing sensi-
tivity for & is 5, since MaxD(b) = MinD(b) = 5. There are two sim-
ple paths from a to ¢ which are (a,d,e, f,¢) and (a,b,c,d, ¢, f,i). The

absolute timing sensitivity of i is 5 since MazD(i) = MazSTD(a,7)
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A Synchronization

Figure 58: An example of control flow graph for timing sensitivities
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= 5TD({a,d,e, f}}) = STD(32,37) = 5 and MinD(i) = MinSTD(a,i)
= STD((e,b,c,d,e, f)) = STD(38,39) = 1. There are also two simple
paths from a to j which are (a,d,e,g,7) and (a,b,¢,d,e,g,5). The ab-
solute timing sensitivity of j is 11 since MazD(j) = MazSTD(a,j) =
STD({a,d,e,g)) = STD(27,20) = -7 and MinD(j) = MinSTD(a,j) =
STD({a,b,c,d,e,g)) = STD(33,22) = -11. There are four simple paths
from a to k which are (a,d,e, f,h,k), (a,d,e,g,h, k) {(a,b,¢, d,e, f,h, k)
and (a,b,¢,d,e,g, h, k). The absolute timing sensitivity of k is 16 since
MazD(k) = MazST D(a,k) = STD({a,d,e, f,h)) = STD(42,42) = 0
and MinD(k) = MinST D(a, k) = STD({a,b,c,d, e, g,h)) = ST D(33,22)
= -16.

Thus, the absolute timing sensitivity of Gar, A(Gu), is 16. O
Relative Timing Sensitivity

The absolute timing sensitivity of an i/o node io € JO(Gyy) is determined by
previous synchronization points of i0. However, the relative timing sensitivity of an
i/o node io € IO(Gp) is determined by previous i/o nodes of 7o.

Let PIO(z0) be the set of all possible previous i/o nodes that have at least a
simple path to 10 without passing through another i/o node. Some pio € PIO(i0) isin
o(Entry,io), but others are not in o(Entry,io). If a pio is not in o( Entry, io), every
simple path from pio to io includes an edge (v, w) such that the edge is a back edge
in Gy and w supports a path in o(Eniry,io0). Figure 59 shows an i/o node io and
its previous i/o nodes. A pio € PIO(i0) may be inside the same interval as ;0 which
reaches through one of the back edges or outside of the interval which reaches through

one of the incoming edges of the interval. For each node io € IO(Gy), we already
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pio

hi

incoming | Pio
edge

3:_)
b1 el

bn €n

back edges .
exit edges

Figure 59: Previous i/o nodes for io

computed Maz D(i0) and MinD(ic) to compute the absolute timing sensitivity of io.

Using MazD(io) and MinD(io), the maximum relative timing sensitivity between

two adjacent i/o nodes pio and io can be found as in Equation VII.43,

¥(pio,io) = Maz(| MazD(pio)— MinD(io) |,| MazD(io)— MinD(pio) |) (VIL43)

For the given set PIO(io), we define MazPI0(io) and MinPIO(io) as in

Equation VII.44 and Equation VII.45.

Maz PIO(i0) = pl_oé?)?,g(ia) Moaz D(pio) (VII.44)
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MinPIO(io)= min  MinD(pio) (VI1.45)

Figure 60 shows two possible previous i/o nodes of io, pio; and pio;. In this

figure, we can see MazPIO(io) = MazD(pio;) and MinPIO(i0) = MinD(pio;).

Ad_]ST(plo.i) ' AdjSTiio)
Timel; i MinD(pio,) 4 : A 5
imeline; : 5 . H ' o
AdjST(pioj) MaxD(pio;} Mi'nD(io) MaxD(iq
- . \ :
Timelinej 4‘—4 : — —— ’: _
MinD(pio j)' NiaxD(pio P AdjST(io)

Figure 60: MaxPIO(i0) and MinPIO(io)

Again, we can unify timelines for all pio € PIO(i0) as seen in Figure 61.

AdjST(pio) AdjST(io)
A
Timeline |4 4 A A A

TR <

MinD(io) MaxD(io)
MinPIO(io)  MaxPIO(io)

Figure 61: MaxM:in(io) and MinMaz(io)

With Maz PI10(io) and MinPIO(io), we define Maz Min(io) and MinMaz(io)
as in Equation VII.46 and Equation VII.47.

MazMin(io) = MazPIO(io) — MinD(io) (VIL.46)
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MinMaz(io) = MazD(io) — MinPIO(io) (VIL4T)

It is easy to see | MaxMaxz(io) | and | MinMin(io) | are smaller than either
| MazMin(io) | or | MinMaz(i0) |. Once MazMin(io) and MinMaz(io) are com-

puted, the relative timing sensitivity of io can be computed as in Equation VII.48.

W(io) = Maz(| MazMin(io) |,| MinMaz(io) |) (VIL48)

Once the relative timing sensitivity of all io € TO(Gas) is computed, the relative

timing sensitivity of the program G can be computed as in Equation VII.49.

U (Guy) = iaerlrcl)%u) ¥(70) (VIL.49)

Example 7.2

Consider the example given in Figure 58, again. There are four i/o nodes,
{b,4,4,k}. The Entry nodes a is also treated as an i/o node which has
always (MazD(io) = 0, MinD(io) = 0). In the following, (MazD(i0),

MinD(i0)) for each i/o nodes are given.
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For each i/o node f0, Maz PI0(i0) and MinPIO(io) can be found. With
MazPIO(i0) and MinPIO(io), MazMin(io) and MinMaz(io) can be

also found. The following table summarizes the results.

io | (MazPIO(io), MinPIO(i0)) | (MazMin(io), MinMaz(io))
b | (0,0) (0-5,5-0)

i | (5,11) (5-1,5411)

7 | (5,-11) (5+11,-7+11)

k| (5,11) (5+16,0+11)

The relative timing sensitivity of G is 21 since the relative timing sen-

sitivity of each i/o node is computed as following;

(b) = Maz(| -5, 5 1) = 5,
U(i) = Maz(| 41, 16 |) = 16,
(7) = Maz(| 16 |,|4]) = 16 and
(k (

= Maz(| 21 |,| 11 |) = 21.

Algorithm

To find A(io), the values of MazD(io) and MinD(io) are needed. Since no
timing difference comes from back edges, we can find A(io) for all ifo node io €
I0(Gu) using the DAG of Gp. By Lemma 5.1, the DAG of G is unique. The
DAG of Gy is easy to find by deleting all edges in the set BE(Gy).

To find ¥(io0), we also need the values of MazPIO(io) and MinPIO(i0). To

find MazPI10(i0) and MinPIO(i0), it is necessary to consider all possible previous
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i/o nodes of io, i.e., PIO(i0). Since some previous i/o nodes of io are reached through
back edges, we have to scan the DAG twice. At the first scan, all header nodes
h € H(Gu) can find timing information, MazD(pio) and MinD(pio), of any pio
that reaches through back edges of I(h) from the Entry. At the second scan, all
timing information of previous ifo nodes for 7o can be reached to 7o.

We solve these two problems together in two phases. The first phase is to find
A(Gwm) by finding MazD(io) and MinD(io) for all io € IO(Gay). Also, for all header
nodes h € H(Gp) find the maximum of MazD(hio) and minimum of MinD(pio) for
all hio € HIO(I(h)), where HIO(I(h)) is the set of all i/o nodes that reach through
a back edge of I(h) without passing through another i/o node from the Entry.

The second phase is to find ¥(G) by finding MinPIO(io) and MazPIO(i0)

for all io € TO(Gpm). These problems can be solved using a data-flow approach also.
Data-flow Equations

We setup data-flow equations as in the following:

(0,0), v is globally synchronized,
In(v).psmazest = (VIL.50)
MAXEST(v), otherwise.

) (0,0), v ts globally synchronized,
In(v).psminest = (VIL51)
MINEST(v), otherwise.
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eloc({v,w)), v is globally synchronized,
epsmazest({v,w)) = ({v, ) 7 v (VIL.52)
PMA({v,w)), otherwise.
eloc({v,w)), v is globally synchronized,
epsminest({v, w)) = ({o,0)) I v (VIL53)
PMI({v,w)), otherwise.
, v = header,
In(v).piomazstd(v) =
MazST D.¢rnpagew)epiomazsid(e), otherwise.
(VIL54)
0, v = header,
In(v).piominstd(v) =
MinST D e Eage(vyepiomazstd(e), otherwise.
(VIL55)
MazD(v), v € IO(Gum)
epiomazstd({v, w}) = (VIL56)
In(v).piomazstd, otherwise.
MinD(v), v € I0(G
epiominstd({v,w)) = (v) (G) (VIL.57)
In{v).piominstd, otherwise,
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where

o PMAXEST(v) returns the epsmazest(e) such that

MazST D(h,v) = mezT.emEdge(v)ST D{epsmazest(e))

o PMINEST(v) returns the epsmazest(e) such that

MinSTD(h,v) = min e rnsieisySTD(epsminest(e))

o PMA((v,w)) = In(v).psmazest + eloc({v,w)) and
o PMI({v,w)) = In(v).psminest + eloc({v, w)).
Phase 1

The first phase of the algorithm, shown in Figure 62 and 63, is to find MazD(v)
and MinD(v) for all v € V using the data-flow equations shown in Equation VII.50-
VIL.53. The algorithm also finds Maz D(hio) and MinD(hio) for all h € H(Gr) using
the data-flow equations shown in Equation VIL54-VIL57. The function Phase;(),
shown in Figure 62, is similar to the function Reduce(} and the function P,T5(),
shown in Figure 63, is similar to the function Ty(). The function Phase,() repeatedly
calls P;T3() to reduce the graph into a single node, after initialization of the Entry
node and edges of it. The node Eniry is treated as an i/o node, since it generates the
event Program Siart. Here, the calling order of P,T3() is not fixed by the algorithm.
Every call of P,T() consumes an edge in Gps. Thus, the complexity of this algorithm
is O(| E |), where | E | is the number of edges in Gy.



Phasei {Ga) ;
{
(1) h = Entry;
(2) In(h).psmazest = (0,0);
(3) I (h).psminest = (0,0);
(4) In(h).piomazstd = 0;
(8) In(h).piominstd = 0;
(6) MazD(h) =0;
(7) MinD(h) =0;
(8) UpdateDelta(0);
(8) forall (s e SUCC(h)) {
(10) epsmazest((h, s)) = eloc({h, s});
(11) epsminest({h, s)) = loc(( s));
(12) epiomamstd((h s)) = In(h )pwmaa:std
(13) epiominstd({h,s)) = In(h).piominstd;
(14} In(s).psmazest = epsmazest({h, s));
(15) In(s) .psminest = epsminest({h,s));
(16} In(s).piomazstd = epiomazstd({h, s});
(17) In(s).piominstd = epiominstd((h, s});
}
(18) while (there exist an edge (v,w) € E such that
v € SUCC(h) and if (u,v) € E then either u="h or
u € BN(Guy)) |
(10) choose any such (v,w)
(20) PTy(h,v,w);
}
}
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Figure 62: Phase 1: finds A(Ga) and MazPIO(v) and MinPIO(v) for allv € V
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PT( hyv,w: nodes of edges (h,v) and (v,w) in E)

{

(1) if (weIO(Gu) ) {

(2) MazD(v) = STD(In(v).psmazest);

(3) MinD(v) = STD(In(v).psminest);

(4) UpdateDelta(Maz(| MazD(v) |,| MinD(v) |));

}

(6) if (v not visited) {

(6) forall (s € SUCC(v)) {
MP

(7 epsmazest({v, s)) lus(Jn(v).psmazest, eloc({v, s))) ;

(8) epsminest({v,s)} = MPlus(In(v).psminest,eloc({v,s))) ;
(9) if (v e IO(Gu) ) {
(10) eptomazstd({v,w)) = MazD(v);
(11) epiominstd({v,w)) = MinD(v);
(12) } else {
(13) eptomazstd({v,w)) = In(v).piomazsid;
(14) epiominstd({v,w)) = In(v).piominstd;
}
}
(15) Mark v visited ;
}
(16) In(w).psmazest = InMazEST (epsmazest({v,w)), In(w).psmazest);
(17) In(w).psminest = InMin EST f(epsminest({v,w)), In(w).psminest);
(18) In(w).piomazstd = InMaz D(epiomazstd((v,w)), In(w).piomazstd);
(19) In(w).piominstd = InMinD(epiominstd({v,w)), In(w).piominstd);

(20) if ({v,w) € BE(Gnm)) {
(21) E=E U{{huw)};
(22) epsmazest({h,w)) = In(w).psmazest;
(23) epsminest({h,w}) = In(w).psminest;
(24) epiomazstd({h,w)) = In(w ) piomazstd;
(25) epiominstd((h,w)) = In(w).piominstd;
(26) } elseif ((JnDegree(w )-1)&&(w7£Entry)) { N=N—{w}; }
(27) E=F — {{v,w)};
(28) if (v has no immediate successor in Gj) {
(29) if (g HGm)) { N=N-{v}; }
(30) E=FE- {{hv)};
}
}

Figure 63: Algorithm for P;Ty()
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Functions used in P175() are defined as follows:

InMinEST(est,, esty) returns

esty, if STD(est)) < STD(esty) or esty = (null, null),

esty, otherwise.

e InMaxD(maz,,maxzs) returns

mazy, tf maz, < maz, or maz, = null,

mazy, otherwise.

¢ InMinD(min;, min,) returns

miny, if min; < ming or ming = null
’ 1 ’

ming, otherwise.

UpdateDelta{Delta) updates A(Gpr) with Delta if A(Gar) < Delta.

Example 7.3
Consider the example shown in Figure 58, again. Figure 64 shows the first
part of the graph after the initialization at Phase;{). In the graph, every
edge is denoted with (epiomazstd((a,b)), epiominstd({a,b))) and every

node is denoted with (Jn(d).psmazest, In(d).psminest).

At the function call P,Ty(a, b, c), A(Gu) is updated to 5 by line 2-3, since
it is an i/o node and MazD(b) = MinD(b) = 5. Also, epiomazstd((b,c))
and epiominstd((b,c)) are replaced by MazD(b) and MinD(d) by line



Figure 64: After initialization in Phase;()

10-11. By line 18 -19, In(c).piomazstd = 5 and In(c).piominstd = 5

and the node b is deleted by line 29.

At the function call PTy(a,c,d), In(d).piomazstd = InMazD(5,0) = 5
and In(d).piominstd = InMinD(5,0) = 0 by line 18-19 and the node

c is deleted by line 29. Figure 65 shows graphs before and after the call
Png(a, c, d)

At the function call P\T5(a,d,e), d is not deleted by line 29, since it

is a header node. Figure 66 shows before and after the function call
P Ty(a,d,e).

At the function call P;T,(a, e, f), the node e is not deleted, since it is both
a header node and it has another successor node other than f, which is
g. At the function call P, Ty(a, f,1), the node f is not deleted, since it has

another successor node which is h. At the function call P,Ty(a,i,d), the

A(Gwm) remains the same, since MazD(z) = 5 and MinD(:) = 1. By line

138
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(5.0

Figure 65: Before and after P,T3(a,c,d)

@D @03

@y O e

(5,0

<D

Figure 66: Before and after P,T5(a,d, €)
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18-19, In(d).piomazstd = 5 and In(d).piominstd = 0. Both ¢ and d are

deleted after P1T5(a,z,d) by line 26 and 29. Figure 67 shows before and

after the function call P,To(a,t,d).

Figure 67: Before and after P,Ty(a,1,d)

At the call A Ty(a, f, k), the node f is deleted and In(h).piomazstd = 5
and In(h).piominstd = 0. At the function call P,Ty(a, e, g), the node e is
not deleted, since it is a header node. At the function call P, Ty(a,g, ),
the node g is not deleted, since it has another successor which is h. At the
function call P,T3(a,,¢), the A(Gpr) is updated to 11, since MazD(j)
= -7 and MinD(j) = -11. Similarly, In(e).piomazstd = InMaz D(-T7,5)
= 5 and In(e).piominstd = InMinD(-11,0) = -11. After this stage, the

node j is deleted but e is not since InDegree(e) is 2.
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At the function call PyT5(a,g,%), the node g is deleted. At the function
call P\Tz(a,h,e), the node k is not deleted, since there is another suc-
cessor node which is k, but e is deleted. The value of In(e).piomazstd
and In(e).piominstd remains the same, since In(e).piomazstd = 5 and

In(e).piominstd = -11. Figure 68 shows before and after the function call
P] Tg((l, h, 6).

(5.0

Figure 68: Before and after P,Ty(a, A, €)

At the function call P\Ty(a, h, k), the node h is deleted. At the function
call PTy(a, k,a), the A(Gpr) is updated to 16, since MazD(k) = 0 and
MinD(k} = -16. For the same reason, In(a).piomazstd = InMaz D(0,0)
= 0 and In(a).piominstd = InMinD(—16,0) = -16. Finally, the node &

is deleted and the graph G is reduced into a node. o
Phase 2

The second phase of the algorithm, shown in Figure 69 and 70, finds the rela-

tive timing sensitivity for each i/o node ¥(io) using the data-flow equations shown
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in Equation VIL54-VIL57. The first phase of the algorithm finds MazD(ie) and
MinD(io) for all io € IO(Gum) and Maz D(hio) and MinD(hio) for all header nodes
h € H(Gpp).

The second phase of the algorithm find MazPI0(i0) and MinPI0(i0) by prop-
agating MazD(hio) and MinD(hio) through the DAG. These can be obtained by
an algorithm similar to that of Phase;(). When the value of MazPIO(io0) and
MinPI0(io) are available for i0, MazMin(io) and MinMaz(io) are found. The com-
plexity of this algorithm is O(| E [) as well. Again, the node Entry is treated as an i/o
node since it generates the event Program Start. Since any incoming edge to the Entry
node is a technical edge, the value of In(Entry).piomazstd and In(Eniry).piominstd

are ignored.

Example 7.4

Figure 71 shows the result of Example 7.3. In the graph, each header
node h € H(Gp) has (In(h).piomazstd,In(h).piominstd) inside it and
each i/o node i0 € JO(Gpy) has (MazD(io), MinD(i0)) beside it. The
Entry is again treated as an i/o node. The value of In{Entry).piomazstd

and In(Eniry).piominstd are ignored by line 2-3 and 6-7.

At the function call P,T3(a,b,c), MazMin(b) = -5 and MinMaz(b) =
5, since In(b).piomazstd = 0 and In(b).piominstd = 0. The relative tim-
ing sensitivity of Gar, ¥(Gas), is updated to 5. At the function call
PyTy(a,c,d), the the node cis deleted. The values of In(d).piomazstd and
In(d).piominstd remain the same, since In(d).piomazstd = MazD(5,5)
= 5 and In(b).piominstd = MinD(5,0) = 0.
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Phases (Gar) ;
{
(1) h = Entry;
(2) MazMin(h)=0
(3) MinMaz(h)=0
(4) UpdatePsi(0);
(5) Mark h visited ;
(6) forall (se SUCC(h)) {
(7) epiomazstd({h,s)) = 0;
(8) epiominstd({h,s}) = 0;
(9) In(s).piomazstd = InMazD(0, In(s).piomazstd);
(10) In(s).piominstd = InMinD(0, In(s).piominstd);
}
(11) vhile (there exist an edge (v,w) € £ such that v € SUCC(h)
and if (u,v) € E then either u=~h or u € BN(Gy)) {

(12) choose any such (v,w)
(13) PaTa(h,v,w);

}
}

Figure 69: Phase II: finds relative timing sensitivity of Gyy.
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P,T3( h,v,w: nodes of edges (h,v) and (v,w) in E)
{
(1) if (v e I0(Gn) ) {
(2) MazMin(h) = In(v).piomazstd — MinD(v)
(3) MinMaz(h) = MazD(v) — In(v).piominstd
(4) UpdatePsi(| MazMin(h) |,| MazMin(h) |);
}
(8) if (v not visited) {
(6) forall (s € SUCC(v)) {

(7) if (v € IO(GuM) ) {
(8) eptomazstd({v,w)) = MazD(v);
(9) epiominstd({v,w)) = MinD(v);
(10) } else {
(11) epiomazstd({v,w)) = In(v).piomazstd;
(12) epiominstd((v,w)) = In(v).ptominsid;
}
}
(13) Mark v visited ;
}
(14) w}), In(w).piomaxstd);

In(w).piomazstd = InMaz D(epiomazstd({v
(15) In(w).piominstd = InMinD(epiominstd({v,
(16) if ({v,w) € BE(Gm)) {
(17) E=F U{{hw)};
(18) epiomazstd((h,w)) = In(w).piomazstd;
(19) epiominstd((h,w)) = In(w).piominsid;
(20) } elseif (InDegree(w) = 1) {N=N-{w }; }
(21) E=FE - {{v,w)};
(22) if (v has no immediate successor in Gu) {
(23) if (W€ H(GM)) { N=N-{v}; }
(24) E=F - {{h,v)};

}
}

w}), In(w).piominstd);

Figure 70: Algorithm for P,T5()



Figure 71: The control flow graph after phase I
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At the function call P;T3(e,d,e), the node d is not deleted, since it is a
header node. The values of In(e).piomazstd and In(e).piominstd remain
the same, since In(d).piomazstd = MazD(5,5) = 5 and In(b).piominstd
= MinD(0,~-11) = -11.

At the function call P,Ty(a,¢, f), the node e is not deleted, since it is
a header node. The values of In(f).piomazstd and In(f).piominstd are
changed to 5 and -11, since In(d).piomazstd = MazD(5,5) = 5 and
In(b).piominstd = MinD(-11,0) = -11.

At the function call PTy(a, f,7), the node f is not deleted, since it
has another successor node which is h. The values of In(i).piomazstd
and In(i).piominstd are changed to 5 and -11, since In(d).piomazstd =
MazD(5,5) = 5 and In(b).piominstd = MinD(—11,0) = -11.

At the function call P;T5(a,1,d), both i and d are deleted. In(d).piomazstd
and In(d).piominstd does not changed, since In(d).piomazstd = 5 and
In(b).piominstd = 0. The relative timing sensitivity of Gjs is updated to
16 since MinMaxz(i) = 16 and MazMin(i) = 4.

At the function call P;Ty(a, f,h), the node f is deleted. The values
of In(h).piomazstd and In(h).piominstd are changed to 5 and -11, since
In(h).piomazstd = Maz D(5,5) = 5 and In(h).piominstd = MinD(—-11,0)
= -11.

At the function call PyT3(a,¢€,g), the node e is not deleted, since it is
a header node. The values of In(g).piomazstd and In(g).piominstd are
changed to & and -11, since In{g).piomazstd = MazD(5,5) = 5 and
In(g).piominstd = MinD(~-11,0) = -11.
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At the function call P;T2(a,g,j), the node g is not deleted, since it
has another successor node which is A. The values of In(j).piomazstd
and In(j).piominstd are changed to 5 and -11, since In(j).piomazstd =
MazD(5,5) = 5 and In(j).piominstd = MinD(-11,0) = -11.

At the function call P,T,(a,j, ), the node j is deleted.

The values of In(e).piomazstd and In(e).piominstd are not changed, since
In(e).piomazstd = 5 and In(e).piominstd = -11. The relative timing sen-
sitivity of G is not changed, since MinMaz(j) = 4 and MezMin(j) =
16.

At the function call P,T,(a,g,h), the node g is deleted. The values of
In(h).piomazstd and In(h).piominstd are not changed. At the function
call P,Ty(a, k,e), the node k is not deleted, but e is deleted. The values

of In(e).piomazstd and In(e).piominstd are not changed.

At the function call P,Ts(a,h,k), the node A is deleted. The values
of In(k).piomazstd and In(k).piominstd are changed to 5 and -11, since
In(k).piomazstd = MazD(5,5) = 5 and In(k).piominstd = MinD(—11,0)
= -11.

At the function call P2T5(a, k, ), the node £ is deleted, but not a. The val-
ues of In(a).piomazstd and In(a).piominstd are changed to 0 and -16, since
In(a).piomazstd = MazD(0,0) = 0 and In(a).piominstd = MinD(~16,0)
= -16. The relative timing sensitivity of Gas is changed to 21, since

MinMaz(k) = 11 and MezMin(j) = 21.
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Summary

This chapter presents an algorithm to find both timing sensitivities for a given
control flow graph Gas. To find these timing sensitivities, the pure local synchroniza-
tion scheme is assumed. Optimization techniques that reduce these timing sensitiv-
ities further are discussed in the next chapter. The same algorithm can be used to

find these sensitivities for the optimized contro! flow graph.



149

CHAPTER VIII

OPTIMIZATION FOR TIMING EQUIVALENCE

Chapter VII presented a method to measure timing sensitivities for a given
target program. This chapter presents methods that minimize the timing sensitivities
for a target program. For the optimization of timing sensitivities, we assume the
local synchronization scheme is used and all back edges in the graph are locally

synchronized.
Problem Statement

The goals of an optimization performed by a translator vary depending on re-
quirements of the system. In most cases, optimization is to reduce the total execution
time of a program by using fewer resources. However, the optimization goal for real-
time systems is to minimize the timing difference of the target program with respect to
the source timing specified in the source program. In the context of binary-to-binary
translation of real-time programs, optimization can be one of two cases: converting
a timing divergent target program into a timing equivalent or invariant one and/or
reducing timing sensitivities of a timing invariant target program.

If a target program is timing divergent, the correctness of the resultant timing
is not guaranteed. It may maintain timing equivalence or invariance for a while,
but will not after some point. The exact timing behavior of this target program is

not known until run-time, which is dangerous by the definition of real-time systems.
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Thus, conversion of such a target program into a timing invariant or equivalent one
is an important optimization.

Even though the given target program is timing invariant, if the sensitivities of
it are greater than the desired or required level, the target program may not be useful.
Thus, the reduction of these timing sensitivities is also an important optimization.

To convert a timing divergent target program into an invariant one, we must
reduce the execution time required for each node or paths in the control flow graph
of the target program. The required execution time for each basic block or paths
can be reduced by ordinary compiler optimization techniques such as code motion
[34, 35], strength reduction [12, 59], constant propagation [47, 57, 58], elimination
of redundant computations [56, 44] etc.. These optimizing transformations require
analysis of codes inside basic blocks. A typical analysis used by most optimizing
transformations is data-flow analysis [1, 20, 28, 30, 21, 48].

Since we do not deal with codes inside basic blocks, we only discuss timing
optimization techniques that use program execution delay such as synchronization,
assuming the target program is executable with timing invariance.

Synchronization can be used both in enforcing timing invariance and in minimiz-
ing timing sensitivities of the target program. The enforcement of timing invariance
for the given target program was achieved by inserting synchronization on all back
edges in the control flow graph as seen in Chapter VI. We also showed an example
that used synchronization to reduce timing sensitivities in Example 6.4.

However, the insertion of synchronization does not always reduce timing sensi-

tivity. This chapter discusses how to insert synchronization to reduce timing sensi-

tivity.
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We mainly focus on optimizing the absolute timing sensitivity of a given graph.
We use the term “timing sensitivity” to mean the absolute timing sensitivity. Op-
timizing the absolute timing sensitivity does not always reduce the relative timing
sensitivity. In general, the relative timing sensitivity is reduced by reducing the ab-

solute timing sensitivity by Theorem 4.1.

Optimization Through Synchronization

After timing invariance of a target program is enforced by inserting synchro-
nization on every back edge, optimization of timing sensitivities can be performed
by inserting additional synchronizations in the graph. A synchronization can be in-
serted anywhere(node or edge) in the control flow graph, although inserting additional
synchronization does not always reduces timing sensitivities. We now mainly focus
on inserting synchronization on i/o nodes since timing sensitivities are defined with
respect to i/o events, and thus instances of i/o nodes.

Header nodes are special in that local clocks for each interval start from the
header node. If the sensitivity, timing difference, at the header node is high, the
timing sensitivity of any i/o node in the interval is also high. The local synchronization
scheme does not remove timing error caused by the outer intervals. Thus, by inserting
synchronization on the header node of the interval the timing sensitivity may be
reduced.

However, there are two different kind of edges in InEdges(h) for a header
node % , i.e., back and incoming edges. All back edges are synchronized using the
interval’s local clocks but incoming edges do not have access to the local clocks. It
must use the outer interval’s local clocks. To distinguish these two cases, we insert

synchronizations on incoming edges of the interval instead of on the header node. We
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showed an example that reduces timing sensitivity by inserting synchronizations on

incoming edges of intervals in Example 6.4.
Insertion of Synchronizations

The insertion of a local synchronization in a graph may invalidate some instances
of synchronizations on back edges. Some head-to-back paths in the graph may miss
their time deadline by the insertion. To make the local synchronization scheme work,

all instances of synchronizations on all back edges must remain valid.

Definition 8.1
An insertion of a synchronization in a control flow graph Gy is said to be
legal if all instances of synchronizations on all back edges remain valid for

all cp € CP(Gum) after the insertion. o

To examine if the insertion of a synchronization on v in I(k) is legal, it is
necessary to examine all head-to-back paths in the graph that v supports, all sub-
intervals in /() are already reduced. Some of these head-to-back paths may be in
HBP(I(h)) but others may not be in it. If v supports head-to-exit paths of I(h)
and all head-to-back paths that v supports meet their time deadline, the next outer
interval has to be examined since the head-to-exit paths of I{%) is a part of head-to-
back paths of the outer interval. This process continues until a head-to-back path that
does not meet its time deadline is found or all head-to-back paths in the outer-most
interval are examined.

Consider the control flow graph shown in Figure 72. There are three intervals:
I(Entry), I(hi), and I(hj). To examine if the insertion of a synchronization on 7o is

legal, it is necessary to examine if all simple paths from kj to bj1 that contain io meet
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incoming

<D
back edges

Figure 72: Insertion of synchronization at 7o
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their time deadline after the insertion. If they do, the next outer interval I(k) must
be examined. To examine (A7), all simple paths from ki to en that contain io have
to be examined. If all those simple paths meet their time deadline, the most-outer

interval I(Entry) is examined. If all head-to-back paths in the outer-most interval

meet their time deadline, the insertion is legal.

A : Synchronization

Figure 73: Legal but not positive

Even when the insertion of synchronization on v is legal, it does not always im-
prove timing sensitivity. Consider a control flow graph shown in Figure 73. Insertion
of synchronization on node b is legal but the timing sensitivity of the graph get worse
from 9 to 14 after the insertion. Thus, it is required to check if the insertion of a

synchronization improves timing sensitivity of the control flow graph.

Definition 8.2

An insertion of a synchronization in a control flow graph is said to be
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positive if it reduces the timing sensitivity of the graph. O

'To examine if the insertion of a synchronization in a graph is positive, the timing

sensitivity of the graph has to be computed after the insertion.

Definition 8.3
An insertion of a synchronization in a control flow graph Gy is said to be
safe if all instances of the synchronization for all cp € CP(Gyy) are valid

with local clocks. |

To be safe, the insertion must be legal and all simple paths from the header of
the interval to v must meet their time deadlines. By Lemma 6.1, it is obvious that
the insertion of synchronization on every back edge is valid if the graph is executable
with timing invariance.

An unsafe insertion of synchronization in a graph may improve timing sensi-
tivity if it is legal. Consider the example shown in Figure 74. The insertion of a
synchronization on e is legal but not safe. In the graph, the synchronization on e is
unsafe if the path (a, b, d) is taken, but safe if the path (a, c,d) is taken. By inserting
synchronization on e, the timing sensitivity of the graph is reduced from 15 to 1.

In Chapter V, we found MazEST(h,v) using a data-flow approach. To allow
unsafe insertions of synchronization in the graph other than back edges, we also
need to find MinEST(h,v) for each node in the interval. This also can be found
using the same data-flow approach, in fact, both Maz EST(h,v) and MinEST(k,v)
can be found together with the same algorithm. The data-flow equations to find

MinEST(h,v) are as in Equation VII1.58 and Equation VIII.59.
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A : Synchronization

Figure 74: Unsafe but positive

(0,0), v = header,
In(v).hvminest = (VIIL.58)

MINEST(v), otherwise,

eloc((v,w)), v = header,

ehvminest({v,w)) = (VIIL.59)
MI({v,w}), otherwise,

where

o The function MINEST(v) returns ehvminest(e) such that

MinSTD(h,v)= min STD(ehvminest(e))
eelnEdge(v)

o MI({v,w)) = In(v).hvminest + eloc({v,w))
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Data-flow Equations with Synchronizations

To insert synchronization in the graph, we need to test if the insertion is legal
and positive. Algorithm shown in Figure 39 and Figure 62 can be used to examine if
the insertion is legal and positive. However, it requires a modification on data-flow
equations to support these additional synchronizations.

Consider the control flow graph shown in Figure 72. Assume the insertion of
a synchronization on ie in I(kj) is legal. Since unsafe insertion of synchronization
is allowed, three cases occur after the insertion at 70 depending on ST D(a(h,v)) as
shown in Figure 75. In case 1, the insertion is safe since both MazST D(h,v) and
MinST D(h,v) are less than zero. In case 2, the insertion is not safe but the insertion
may reduces timing sensitivity of the graph since MinST D(h,v) is less than zero. In

case 3, the insertion is not safe and it does not change timing sensitivity of the graph.

MinSTD(hj,io) MaxSTD(hjio) ~_LATTime(hj) = LASTime(hj)
A A "

Timeline : : : ~ > (a) Case 1
LSync(io) LSync(io)
MinSTD(hj,io0) MaxSTD(hj,io)
A A A
Timeline —— ; > (b) Case 2
LSync(io) \

LATTime(hj) = LASTime(hj)
MinSTD(hj,io) MaxSTD(hj,io)

Timeline L\ A A > (c) Case 3

LASTime(hj) =0
LATTime(hj) =0

LATTimec(hj) = LASTime(hj)

Figure 75: After the insertion of synchronization on ‘o.
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Similarly, if a synchronization is inserted on an edge, the synchronization is
performed before the node w only if the control is from the edge. Considering these
facts, the data-flow equations which find MazEST(h,bn) and MinEST(h,bn) for
all k € H(Gp) are changed as follows.

(0,0), v = header or
In(v).hvmazest = LSync(v) and STD(MAXEST(v)) <0
MAXEST(v), otherwise,
(VIIL60)
(0,0), v = header or
In(v).hvminest = LSyne(v) and STD(MINEST(v)) < 0
MINEST(v), otherwise,
(VIIL61)
(0,0), LSync({v,w)) and STD(MA({v,w))) <0

ehvmazest((v,w)) = | eloc({v,w)), v = header

MA({v,w)), otherwise,
(VIIL62)



(0,0), LSync({v,w)) and STD(MI({v,w))) <0
ehvminest({v,w}) = { eloc({v,w)), v = header

MI((v,w)), otherwise,
(VIIL.63)

where
e LSync(v) means the node v is locally synchronized

The algorithm that examines if an insertion of synchronization is legal can
be developed by modifying the algorithm given in Figure 39. If the insertion of
synchronization is legal, we examine if it is positive, i.e., reduces the timing sensitivity
of the graph. The algorithm that examines if the insertion is positive can be developed
by modifying the algorithm shown in Figure 62 with slight modification of the data-

flow equations. The data-flow equations are changed as follows:

4

(0,0), GSyne(v),

In(Header(v)).psmazest, LSync(v) and
In(v).psmazest = «
STD(In(v).hvmazest) < 0

| MAXEST(v), otherwise,

(VIIL64)
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4

(0,0, GSync(v),

In(Header(v)).psminest, LSync(v) and
In(v).psminest = «
STD(In(v).hvminest) < 0

| MINEST(v), otherwise,

(VIIL65)

r

eloc({v, w)), GSync((v, w)),

In(Header(v)).psmazest, LSync({v,w)) and
epsmazest({v,w)) = 4
ST D(In(v).hvmazest) < 0

| PMA({v, w}), otherwise,

(VIIL66)

£

eloc((v, w)), GSync((v, w)),

_ In(Head(v)).psminest, LSync({v,w)) and
epsminest({v,w)) = ¢
STD(In(v).hvminest) < 0

| PMI({v,w)), otherwise,

(VIIL67)

where

o GSync(v) means the node v is globally synchronized;

o Header(v) returns the intervals header of v.
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Algorithm for Timing Optimization

We now present our algorithm to insert synchronizations in the graph to opti-
mize the timing sensitivity of the graph. The algorithm finds where to insert local
synchronizations in the graph to reduce the timing sensitivity. As we mentioned, we
insert synchronization at every ifo node and incoming edges for all intervals if it is
legal and positive. The order of inserting synchronization is also important to reduce
timing sensitivity. Since the timing sensitivity is affected by previous global synchro-
nization points and the insertion of synchronization of a node v affects all successors
of v in the DAG, the algorithm starts with Entry. The algorithm used to find the
absolute timing sensitivity can be modified to insert synchronizations as shown in
Figure 76. The function 15T5() inserts a local synchronization on all i/o nodes and
incoming edges of intervals if it is legal and positive.

The functions used in this algorithm are defined as follows:

o The functions Legal(v) and Legal({v,w}) determine if the insertion is legal.
They return True if the insertion of synchronization at the node v or edge
(v, w) does not invalidate any synchronization on back edges in the graph. As
mentioned, these functions can be implemented using the algorithm shown in
Figure 39 with the modified data-flow equations. The complexity of a naive

version of this algorithm is the same as the interval algorithm, which is O(| E |

log | E |). [18].

e The functions Positive(v) and Positive({v,w)) determine if the insertion is
positive. They return True if the insertion of synchronization at the node v

or edge (v, w) reduces the timing sensitivity of the graph. As mentioned, these
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IST;(h,v,w: nodes of edges (h,v) and (v,w) in E)
if (v € IO(GuM)) {
If ( Legal(v) and Positive(v)){
InsertLSync(v)
}
}
if ({v,w) € BE(Gum)) {
if (w e H(Gu)) {
if (Legal({v,w)) and Positive({v,w))){
InsertLSyne({v, w))
}

}
E=E U{(hu)};

} elseif (InDegree(w) = 1) {
N=N-{w};

}
E=E —{{vu);
if (v has no immediate successor in Gu) {

if (v g€ H(Gum)) {

N=N —{v}
}
E=FE- {{hv)};
}
}
InsertLSync(Gar) ;
{
h = Entry;
while (there exist an edge (v,w) € E such that v € SUCC(R)
and if (u,v) € E then either u=h or u € BN(Gum)) {
choose any such (v,w)
ISTy(h, v, w)
}
}

Figure 76: Algorithm for timing optimization by inserting local synchronizations
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functions can be implemented using the algorithm shown in Figure 62 with

the modified data-flow equations. The complexity of a naive version of these

functions is O(log | E |).

Complexity of the algorithm is O(| E |2 log | E |) since each time the function
I8Ty() is called, an edge is reduced and each reduction requires invocation of both
Legal() and Positive(). Once the absolute timing sensitivity is found, finding the

relative timing sensitivity is easy to find using the algorithm given in Figure 69.

Example 8.1

Consider the example shown in Figure 77. There are four intervals, I(a),
I(c), I{d) and I(l), in the graph. The outer-most interval /(a) has a sub-
interval I(c) which itself has two sub-intervals, I(d) and I(I). The set
IO(Guy) = {bye,i,k,m,r} and H(Guy) = {a,¢,d,}.

The graph can be reduced by the algorithm shown in Figure 39. The
algorithm starts by reducing one of the inner-most intervals. In this graph,
the algorithm can start with either the interval I(d) or I(1). Figure 78
shows the graph after both /(d) and I(!) are reduced. Exit nodes (h and
o) and header nodes {d and {) of these reduced intervals are not deleted.
When an interval is reduced, values of ehvmazest({zn,ss)) are saved on
exit edges, eloc({zn, ss)), by line 15 in the algorithm shown in Figure 40.
Here, zn is an exit node and ss is a SUCC(zn). These values are denoted
on exit edges in the reduced graph. The next stage of the algorithm starts

since all ST D(ehvmazest({bn,h))) are less than zero.
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Figure 77: An example of control flow graph for optimization



Figure 78: After the two inner-most intervals are reduced
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A . Synchronization

Figure 79: After all sub-intervals are reduced



The next stage of the algorithm reduces the next outer interval, I(c).
Figure 79 shows the graph after the interval I(c) is reduced. Again, the

header node ¢ and exit node g are not deleted.

The algorithm finally reduces the given graph into a single node a since
ST D(ehvmazest({s,a))) is less than zero. Thus, the graph given is exe-
cutable with timing invariance. Once all back edges are locally synchro-

nized, the graph is timing invariant.

The absolute timing sensitivity can be found by applying Algorithm 62.
The absolute timing sensitivity of each i/o node are A(b) = 3, A(e) =
10, A(7) = 15, A(k) = 1, A(m) = 8, and A(r) = 10. Thus, the absolute

timing sensitivity of the graph is 15.

Now, we optimize timing sensitivity of the graph by inserting additional

synchronizations.

At the function call 15T5(a, b, ), the algorithm examines if the insertions
of a synchronization on both e and (b, ¢} are legal and positive. Consider
the insertion of a synchronization on b first. The function Legal() exam-
ines if it is legal by checking all header-to-back paths that contains b. This
can be performed with the reduced graph shown in Figure 79, where all
sub-intervals are reduced. The insertion of synchronization on b is legal
since ST D(ehvmazest((s,a))) = STD((27,20)) = -7 after the insertion.
Since the insertion of synchronization on b is valid, MazEST ({a,b)) =
(5,2), the absolute timing sensitivity may be reduced. After the insertion
of a synchronization on b, the absolute timing sensitivity of each i/o node

becomes A(b) = 0, A(e) =7, A(z) = 12, A(k) = 2, A(m) = 5, and A(r)
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= 7. The absolute timing sensitivity of the graph is reduced from 15 to

12 and thus the insertion of synchronization on & is legal and positive.

Figure 80 shows before and after 15T5(a, b, c).
GO
b [

Figure 80: Before and after 15T»(a, b,c)

The insertion of a synchronization on (b, c} is legal and but not positive.

At the function call 15T3(a, k,!), the insertion of a synchronization on &
is legal but not positive. Similarly, the insertion of a synchronization on

(k, 1} is legal but not positive.

The insertion of synchronization on m is not legal. The insertion of
synchronization on (p,d) is legal since ehvmazest((g,c)) is (39,37) and
ehvmazest((s,a}) =(56,47). After the insertion of a synchronization on
{p,d), the absolute timing sensitivity of each i/o node becomes A(b) = 0,
Ale) = 4, A(i) =9, A(k) = 2, A(m) = 5, and A(r) = 7. The absolute
timing sensitivity of the graph is reduced from 12 to 9 and thus the in-
sertion of synchronization on (p,d) is legal and positive. Figure 81 shows

before and after 15Ty(a, p, d).

The insertion of a synchronization on {c,d) legal but not positive.
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Figure 81: Before and after 1.5T,(a, p, d)

At the function call I5T5(a, ¢, f), the algorithm examines if Legal(e) re-
turns True. At the function call Legal(e), it first examines back edges of
I{d). Both ST D(ehvmazest((g,d))) and ST D(ehvmazest({j,d))) after
the insertion are less than zero. Since e supports a head-to-exit path of the
interval and ST D(ehvmazest({h, ¢})} increases from 0 (10-10) to 4 (9-5),

the algorithm examines all outer intervals.

To examine the outer interval I{c), we can use the graph shown in Fig-
ure 78 with the updated execution time of head-to-exit path that is denoted
on the exit edge (k,q) . It is not legal for the outer interval I(c) since
ST D(ehvmazest({q,c))) is greater than zero as seen in Figure 82. Thus,
the insertion of a synchronization on e is not legal. The insertion of a
synchronization on ¢ is legal since ST D(ehvmazest({j,d))) is less than
zero and and ¢ does not support head-to-exit paths of I(d). After the
insertion the timing sensitivity of 7 is reduced from 9 to 2 and thus the
timing sensitivity of the graph is reduced from 9 to 7. Thus the insertion

of synchronization on : is legal and positive.
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A : Synchronization

Figure 82: After the insertion of a synchronization on e
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The last optimization process is to insert synchronization on r. It is easy
to see it is legal and but not positive. The timing sensitivity of r is reduced

from 7 to 0 but the timing sensitivity of the graph remains at 7. o

Optimization Through Lazy Synchronization

There are cases where synchronization can not be inserted since the insertion
of synchronization is illegal, but the timing sensitivity can be reduced by delaying
the program execution. Consider the example shown in Figure 83. Insertion of

synchronization on e is not legal.

A : Synchronization
B : Lazy Synchronization

Figure 83: An example for lazy synchronization

To reduce timing sensitivity in such cases, we introduce another optimization
method called Lazy Synchronization. Lazy synchronization reduces timing sensitivity

by delaying program execution, but not completely synchronizing it.
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Definition 8.4

The function LazySync{dtime) at io delays program execution until

LASTime(h) = LATTime(h) — dtime dtime <0,

(VIIL.68)
LASTime(h) = LATTime(h) otherwise,

where dtime is MazST D(h,10).

O

The function LazySync(dtime) also can be implemented using Delay() as in

Figure 84.

LazySync(dtime) ;

{
if (LATTime(h)+ ditme < LASTime(h)) {
Delay(LASTime(h) — LATTime(h) + diime)
}

Figure 84: Algorithm for LazySync()

Timing sensitivity of the control flow graph shown in Figure 83 can be reduced
from 10 to 2 by inserting LazySync() on e. In general, three cases occur after the
insertion of a lazy synchronization in a graph as shown in Figure 85. In case 1,

MinST D(h,v) becomes equal to Maz ST D(h,v). In case 2, MinSTD(h,v) becomes

zero. In case 3, no execution delays.

Lemma 8.1

An insertion of lazy synchronization in a control flow graph is always legal



LASTime(h) = 0

LATTime(h) = 0

MinSTD
A

(h,v) MaxiTD(h,v)
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A

Timeline

MinSTD(h,v)

Timeline A f

—!

Lazy(v)

h\ = (a)Case 1
LATTime(h} = LASTime(h)
MaxSTDch,v)
A

S——

' Lazy(v)

Timeline

|

| = (b) Case 2

LATTime(h) = LASTime(h)

MinSTD(h,v) MaxSTD(h,v)

.

A A > (c)Case3

LATTime(h) = LASTime(h)

Figure 85: Timing sensitivity with lazy synchronization

and positive.

Proof

It is easy to see any insertion of a lazy synchronization in the graph is

legal since it can never change MazSTD(h,bn) for all b € H(Gp). The

absolute timing sensitivity of
| MazD(io) |.

be reduced if we reduce the

a graph is defined with | MinD(i0) | and

Thus, the absolute timing sensitivity of the graph can

value of | MinD(io) | or | MazD(io) |.

Considering the three cases shown in Figure 85, the value of | MinD(io) |

is always reduced by inserting

LazySync(). O

Thus, we insert lazy synchronization for every io € IO(G)) and all incoming

edges of all intervals in the graph. Also, even lazier synchronization may be possible
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by delaying even further. The local synchronization scheme works as long as all
instances of synchronizations on back edges are valid. Thus, the execution on i/o
nodes and incoming edges can be delayed even further as long as it it legal.

The timing sensitivity of the graph, after insertion of lazy synchronization can
be found by using the same algorithm given in Figure 62 with modified data-flow
equations. The modification of the data-flow equations to support lazy synchroniza-

tion is trivial.

Summary

This chapter presented two algorithms which reduce the timing sensitivity of a
given control flow graph. One works by inserting additional synchronization and the
other by inserting lazy synchronization. An insertion of a synchronization in a graph
is not always legal. Even a legal insertion of synchronization does not always improve
the timing sensitivity (positive). We provide an algorithm to test if the insertion
of synchronization is legal and positive. When an insertion of synchronization is not
legal, we use lazy synchronization. An insertion of lazy synchronization is always legal
and positive. Both synchronization and lazy synchronization use program execution

delay on the target machine.
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CHAPTER IX

IMPLEMENTATION ISSUES

This chapter discusses a number of issues regarding the actual implementation

of algorithms discussed in this thesis.

Engineering Problems

Implementation of algorithms described in this thesis is straight forward. Since
timing analysis and optimization are performed by a binary-to-binary translator, we
assume the control flow graph described in Chapter III is already constructed. We
also assume that the execution time required on the source and target machines
is computable. Implementation of the algorithm that reduces a reducible graph is
described in [18]. The algorithms for timing sensitivity analysis, described in Chap-
ter VII, and timing optimization, described in Chapter VIII, are straight forward.

Here, we discuss a number of engineering problems.
Control Flow Graph

When translating a binary code to another binary code, we have to deal with
architectural differences between the two machines, source and target. To deal with
these architectural differences, the translator may insert conditional codes on the
target binary program which change the control flow graph. Thus, we may have

to deal with control flow graph differences between the source and target binary
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programs. This problem can be dealt with by assigning zero execution time for source
machine for those nodes. If a node in the target control flow graph does not exist
on the source control flow graph its required execution time on the source machine
is zero. Figure 86 shows such an example. In the figure, (a) shows the control flow
graph of a source program with required execution time on the source machine and (b)
shows the control flow graph of the translated target program with required execution

time on both source and target machines. In the target control flow graph, d and e

are added.

Ca o)
d X o)

oy,
Ce Xano

(a) Source CFG (b) Target CFG

Figure 86: Source and target control flow graphs

Clocks and Multiple Clocks

With the local synchronization scheme, conceptually many local clocks are main-
tained for inner-intervals. The maintenance cost for multiple clocks is unnecessarily
high. In the implementation, however, we only need one global clock throughout the

system. Each interval maintains its local clocks to find local timing error. Local tim-
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ing error can be computed if we save the timing difference between two global clocks
at the header node of each interval.

Consider a control flow graph shown in Figure 87. Each interval has its own local
clocks and these clocks are updated at each node. When entering the interval I(b),
the timing difference between the two global clock is LASTime(a) — LATTime(a)
= 4. On the back edge (c,b), LASTime(a) — LATTime(a) = 9. If we save the

timing difference at the header, then the local timing error, which is 9-4 = 5, can be

computed.

LATTime(a) =0
LASTime(a) =0

LATTime(a) =1
LASTime(a) =5
LATTime(b) =0
LASTime(b) =0
LATTime(a) =2
LASTime(a) =8
LATTime(b) =i

LASTime(b) =3
D

LASTime(q) =12
LATTime(h) =2
LASTime(H) =7

Figure 87: Multiple local clocks

In the real system, it is not necessary to maintain the target time (LAT Time).
The computation of target time is necessary only for timing analysis and optimization.

Once the timing analysis and optimization are performed, target execution time can
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be measured directly from the target system’s clock.
Dealing With System Overhead

To enforce timing equivalence or invariance, the compiler must insert additional
codes that maintain clocks and that delays the program execution. This additional
code changes the required execution time for each node. However, these additional
codes are a constant factor for each node. Timing analysis and optimization must be

performed with consideration for these updated execution times.

Non-Engineering Problems

Tight Worst Case Execution Time

For our timing analysis and optimization, we assumed that the execution times
required for each basic block on both source and target machines are given. However,
it is quite difficult to compute the exact execution time for a given set of instructions
on a machine with pipelines and cache. The minimum requirement to apply our results
is that the exact source timing for each basic block must be available. Fortunately, for
most older machines, such as the MC-68000, the execution time for each instruction
is a constant and its execution time is known. If the exact execution time for each
basic block is not computable on the target machine, we must use worst-case execution

time. Issues in computing tight worst-case execution time are discussed in [40, 19, 60].
Environmental Changes

There are also a number of issues in dealing with the changes in the environment,

such as the network and disk, where different devices may have different degrees of
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speed improvement. In this thesis, we dealt with problems which happen when the
CPU is replaced with a faster one. If the environments are changed, other problems
may happen. For example, if data from a disk arrives too quickly and the CPU is not
ready to receive that particular data, the result may be not expected. To solve this
problem, we need a hardware version of TIBBIT that provides timing equivalence for

environmental behaviors such as disk and network accesses.
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CHAPTER X

SUMMARY AND FUTURE WORK

This chapter states the significance of our research problem, summarizes our

contributions, and discusses future research directions.

Significance of The Problem

Typical real-time systems include nuclear reactors, flight-control systems, and
process control systems for chemical plants. For such applications, verification of
correctness of the program is particularly important since a failure may result in
catastrophic destruction of property and life. The correctness of a real-time system
depends not only on the output of the system, but also when the output is pro-
duced. Assuming the correctness of a real-time program is verified, binary-to-binary
translation of such a program must provide timing equivalence as well as semantic
equivalence. Failure in providing either of these equivalences may result catastrophic
destruction.

The TIBBIT project addressed this problem, but the timing equivalence of
programs generated by the TIBBIT system is not guaranteed. This thesis provides a

method to guarantee the timing equivalence of generated target binary programs.
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Summary of Contributions

We studied two important issues in binary-to-binary translation of real-time
programs. The first issue is how to verify if a source binary program can be translated
with timing equivalence or invariance for a given target machine. The second issue
is how to reduce the timing sensitivity, the maximum timing error, on the target
machine.

We assumed a binary-to-binary translation is performed. Issues in translation
of binary programs are discussed elsewhere [51, 5, 50, 13].

We defined two timing sensitivities, absolute and relative, of target programs in
Chapter IV. These two timing sensitivities were used to judge how closely the target
program mimics the source program’s timing.

Using the absolute timing sensitivity, we provided a taxonomy:

e A translated target program is timing equivalent if for any execution of the

target program, the absolute timing sensitivity is zero.

e A translated target program is timing invariant if for any execution of the target

program, absolute timing sensitivity is bounded by a constant.

e A translated target program is timing divergent if the absolute timing sensitivity

is not bounded by a constant.

A target program is executable with timing equivalence if there exists a syn-
chronization method that makes the target program a timing equivalent one, and
with timing invariance if there exists a synchronization method that makes the target

program a timing invariant one.
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In Chapter V, we provided a method that examines if the target program is
executable with timing equivalence or invariance with respect to the source program.

We proved that a target program represented by a graph G is executable with
timing invariance if and only if all repeatable paths in G takes less time on the
target machine. We also proved that a target program represented by a graph G is
executable with timing invariance if and only if the graph G is executable with timing
invariance and all simple paths between two i/o nodes in G takes less time on the
target machine. We used interval analysis to find all simple cycles in the graph G.
To examine if every simple cycle in G takes less time on the target machine, we used
a data-flow approach with intervals.

If the graph G is executable with timing equivalence, inserting a synchroniza-
tion on every i/o node provides timing equivalence. If the graph G is executable
with timing invariance but not with timing equivalence, the timing sensitivity, the
maximum timing error, is dependent on how and where the graph is synchronized.
Chapter VI determines how to synchronize and Chapter VIII determines where to
synchronize the graph G.

In Chapter VI, we presented two synchronization schemes: global and local.
Both schemes have problems, over-commitment and under commitment, respectively.
However, the under commitment problem can be overcome by inserting additional
synchronization as seen in Chapter VIII.

If the target program after the addition of synchronization is timing invariant
but not equivalent, the maximum timing error, timing sensitivity, has to be found so
that the user can judge how closely the target program mimics the source program.

Chapter VII presented methods that find the maximum timing error, the absolute
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and relative timing sensitivity. We again used a data-flow approach to find both
timing sensitivities.

If the timing sensitivity of the target binary program is not under the desired
or required level, it is necessary to optimize the timing sensitivity. In Chapter VIIL,
we presented optimization techniques to minimize timing sensitivity by inserting ad-
ditional synchronizations.

In summary, we:

» developed a new method to analyze the timing equivalence properties of BBT
programs and provided necessary and sufficient conditions for timing equivalent

and invariant translations.

e identified the timing sensitivities that can be used to judge the quality of the

generated target program.

e developed timing sensitivities prediction and measuring models for target pro-

grams.
e developed a new synchronization based method for increased predictability

e developed criteria and techniques for achieving timing equivalence.

In this thesis, we created the theory and practical algorithms to give timing
assurance for the process of real-time binary-to-binary translators. With the theory
and algorithms, we make real-time binary-to-binary translation not only a practical
method but one supported by a sound theoretical base. Since we used an intermediate
representation (control flow graph), our theory and algorithms can be used for any

platform. Thus, we open the way for translation with timing properties from any

form to any other.
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Future Work

In this thesis, we assumed the input is a binary executable program. Our
results also can be applied when the input is a program written in a higher-level
language. In a real-time program, timing requirements are expressed either implicitly
as with binary executable programs or explicitly in programs written in a higher-
level language. The duty of the real-time translator is to provide timing equivalence,
as well as semantic equivalence, on the generated target program with respect to
the requirements expressed in the source program. OQur results can be applied in
translation of programs written in a higher-level language.

Another problem for future research is the application of ordinary compiler opti-
mization techniques to provide timing equivalence or invariance on a timing divergent
target program. The motivation of optimization in this case is different from that of
ordinary compiler optimizations (minimizing timing difference versus minimizing the

total execution time).
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