REASONING ABOUT LINEAR CIRCUITS

IN SINUSOIDAL STEADY STATE

by

JUAN JOSE FLORES ROMERO

A DISSERTATION

Presented to the Department of Computer
and Information Science
and the Graduate School of the University of Oregon
in partial fulfillment of the requirements
for the degree of
Doctor of Philosophy

August 1997

i

“Reasoning About Linear Circuits in Sinusoidal Steady State,” a dissertation pre-
pared by Juan Jose Flores Romero in partial fulfillment of the requirements for the
Doctor of Philosophy degree in the Department of Computer and Information Science.

This dissertation has been approved and accepted by:

A

Dr. Art Farley, Cha.ir\o?;e Examining Committee

20 \{\ueﬁi \q%

Date

Commitee in charge: Dr. Art Farley, Chair

Dr. Andrzej Proskurowski
Dr. David Etherington
Dr. Davison Soper

Vice Provost a Dean of the Graduate School

iii

An Abstract of the Dissertation of
Juan Jose Flores Romero for the degree of Doctor of Philosophy
in the Department of Computer and Information Science
to be taken August 1997
Title: REASONING ABOUT LINEAR CIRCUITS IN SINUSOIDAL

STEADY STATE

Approved: m

Dr. Art Farley

Most of the work on behavior prediction on the field of Qualitative Reasoning
has focused on transient behavior and responses to perturbations; very little has
been done about systems in steady state. A large class of systems, especially in the
area of power systems, are designed for sinusoidal steady-state operation. Thus, an
understanding of the steady state of electrical circuits is very important.

This dissertation presents a framework for reasoning about linear electrical cir-
cuits in sinusoidal steady state. The reasoning process relies on a constraint-based
model of the circuit, derived from electro-magnetic theory and generated automati-
cally from the structure of the circuit. In a linear circuit operating in steady state, all
quantities are sinusoidals of the same frequency as the source. Since any sinusoidal

can be expressed as the real part of a complex exponential, we use the complex form,

iv

which simplifies computations; this complex form, characterized by magnitude and
angle, is called a phasor. In order to capture magnitude and phase angle information
in the model, all constraints operate on phasor variables.

Constraint propagation (CP) is the main inference mechanism. The CP module
reasons with as much information and precision as the user provides, ranging from
qualitative to quantitative. Intervals provide a general representation mechanism.

The framework presented in this dissertation has been implemented in a pro-
gram called Qualitative Phasor Analysis (QPA), which performs the following rea-
soning tasks: analysis, parameter design, diagnosis, control design, and structure
simplification. Circuits with multiple sources are solved using the superposition prin-
ciple.

Power systems can be modeled as linear circuits and normally operate in steady
state. A power system problem is translated to a circuit problem and solved by QPA;
the results are then translated back to the original power system.

By extending the circuit ontology to include phasor information, this disserta-

tion extends the range of problems that can be solved by qualitative reasoning.

CURRICULUM VITA

NAME OF THE AUTHOR: Juan Jose Flores Romero
PLACE OF BIRTH: Zamora, Michoacan, Mexico

DATE OF BIRTH: June 2nd, 1961

GRADUATE AND UNDERGRADUATE SCHOQOLS ATTENDED:

University of Oregon
Centro de Investigacion y Estudios Avanzados, IPN
Univesidad Michoacana de San Nicolas de Hidalgo

DEGREES AWARDED:

Doctor of Philosophy in Computer and Information Science, 1997,
University of Oregon

Master of Science in Computer Science, 1986,
CIEA, IPN, Mexico,

B.Sc. in Electrical Engineering, 1983,
UMSNH, Morelia, Mexico.

vi

ACKNOWLEDGEMENTS

I would like to thank my advisor, Professor Art Farley, for his guidance and
encouragement to achieve my goals. He spent so many hours of discussion about dif-
ferent issues in my research, proof-read every paper I submitted and this dissertation.

I would also like to thank Professors Andrzej Proskurowski, David Etherington,
and Davison Soper for serving on my Ph.D. committee, reading the drafts, attend-
ing to meetings, and giving valuable comments. James Crawford had to leave the
University of Oregon and therefore my committee, but he still kept reviewing and
commenting my work. Elizabeth Bradley, from the University of Colorado, and Ed-
mundo Barrera, from the University of Michoacan, took the time to read the drafts
and held various discussions about the applicability of this work in Electrical Engi-
neering. I appreciate the cheers and help from several Mexican graduate students in
other Universities and my fellow grad students at the University of Oregon.

I want to thank my wife, Gina, for her love, understanding, and support. I
thank my children: Gina, Mayra, and Pablo, for understanding so many times that
I had to go back to work, instead of staying with them. Thanks to my father for
always encouraging me to keep studying, and to my mother (que en paz descanse) for
teaching me, by example, to live in God’s way. Thanks to my brothers and sisters,

who always helped me with all sorts of paper work back home. Thanks to my aunts

vii

and my wife’s family, who kept alive the desire to go back home.
This research was supported by a Conacyt-Fulbright scholarship, the Universi-

dad Michoacana de San Nicolas de Hidalgo, and the University of Oregon

viii

DEDICATION

To my wife: Gina

ix

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION e 1
Background L 3
Qualitative Phasor Analysis 6

Thesis Statement and Research Issues 16
Implementation and Evaluation 17
Dissertation Organization 19

II. ELECTRICAL CIRCUITSANDPHASORS 21
Phasors 21

Power Factor and Phase Angle. 25
Complex Fans i 28

Related Work 69

Chapter Conclusions 70

III. HYBRID REPRESENTATION CONSTRAINT PROPAGATION ... T2

Constraint Propagation. 73
Order of Magnitude Constraints 77
Value Propagation 82
First-Order Reasoning 85
Mixed Propagation 86
Propagation Across Algebraic Constraints 88
UserInterface 89
Examples 91
Related Work L 99
Chapter Conclusions 102
IV. REASONING ABOUT ELECTRICAL CIRCUITS 106
Constraint-Based Circuit Model 109
Circuit Analysis, 111
First-Order Reasoning 116

Behavior Tree Generation 119

Diagnosis5 seen e aeenE en WUASE B B 3 120

Control Design 128

Related Work 4 v en evmie won i b wiiis 135

Chapter Conclusions 138

V. POWER SYSTEMS ;o oo sone sk sfsm e e5a0s & 142

Power Systems Modeling 144

Control Design 149

Power System Analysis00 .'.u.. 156

Topological Simplifications 163

Related Work4 &0 30 550 20 059 3% 2250 . 163

Chapter Conclusions 165

VI. CONCLUSION2 s o6 ¢5s o8 visie 5 0%0% § 168

Evaluation 168

Limitations and Future Work 169

Contributions e e 173
APPENDIX

EVALUATION EXAMPLES. v .. 178

Circuit Examples 178

Power Systems Examples 191

BIBLIOGRAPHY4 c‘éis oo o900 &% 00008 ok s . 208

Table

S A

—
=

LIST OF TABLES

Page
Properties of Circuit Elements, 23
AND Table for OM Constraints 80
OR Table for OM Constraints 81
AND Table for Angle Order Constraints 82
OR Table for Angle Order Constraints 82
Constraints for Single Elements 110
Constraints for Series and Parallel Clusters 111
Generation of the BSOC 113
Selected Diagnosis Rules 124

Design Rules for Control Transformers 154

Figure

© o N o e ® N e

[R X e e e
P E S ®® NS o R R R =D

LIST OF FIGURES

An Electrical Circuit, its Configuration, and Constraints
A Possible Phasor Diagram for Circuit in Figure 1.
Tree Containing All Fully Constrained Models
Structural Simplification by Order of Magnitude Reasoning
Faulty Observed Behavior
Diagnosed Fault
QPA’s Architecture
Graphical Representation of Ce®™*
An Electrical Circuit,
A Possible Phasor Diagram for Circuit in Figure 9.
Power in a Circuit with Unity Power Factor
Power in a Circuit with Lagging Power Factor
RL Circuit and Corresponding Phasor Diagram
RLC Circuit and Corresponding Phasor Diagram
Exampleofa ComplexFan
Notation
Imprecision Added by Representation Changes
Phasor Addition, Case I

Maximum and Minimum Angles in Phasor Addition

Pseudo-Code for Case 1

..........................
......................

xii

Page

23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.

Pseudo-Code for Magnitude, Case 2.
Case where Correction Is Needed, and Computationof¢
Pseudo-Code for Angle, Case 2
Fan Addition, Case 3
Pseudo-Code for Magnitude, Case 3.
Fan Addition, Case 3
Angle Correction for Case 3
Pseudo-Code for Angle, Case 3
Spurious Results in Complex Fan Addition
Complex Fan Addition Is Not Associative
Magnitude to Magnitude Influence
Pseudo-Code for Magnitude to Magnitude Influence
Pseudo-Code for Magnitude to Angle Influence
Pseudo-Code for Angle to Magnitude Influence,
Angle to Angle Influence,
Pseudo-Code for Angle to Angle Influence
Waltz's Algorithm,
Global Propagation Algorithm
The Floyd-Warshall Algorithm
Order of Magnitude Operators
Value Propagation Algorithm
Value Refinement from OM relations
An Electrical Cirenit L.
Example 1. Reducing the Number of Possible Behaviors
Graphical Representation of Complex Fans for Example 1
Example 2. Value Refinement by Order of Magnitude Constraints .

Example 3. Detecting Inconsistencies

Example 4. Discovering OM Constraints from Value Constraints

xiil

47
48
a0
ol
52
a3
53
o4
87
28
62
64
65
66
66
68
74
76
78
78
84
88
91
93
95
95
96
97

51,
32.
23.
54.
35.
56.
57.
38.
99.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
79.
76.
77.
78.

xiv

Example 5. First Order Reasoning 98
Explanation for Example 5. 99
Iteration Loop in Value Propagation 104
Qualitative Phasor Analysis (QPA) 108
Circuit Definition 111
Simple Circuit 112
Printout of a Circuit Model 114
Example of Parameter Design 117
Part of the Behavior Tree for Model of Figure 57 120
Fault in an Element of a Series Cluster 121
A capacitor Being Short Circuited by a Resistor 123
Pseudo-Code for Diagnosis 127
Observations for Circuit of Figure 57 128
Results of Diagnosis 129
Pseudo-Code for Design-Step 132
Pseudo-Code for Incremental Design 133
Design Task #1 and Solution 134
Design Task #2 and Solution 134
Architecture of the Complete System 145
One-Line Diagram of a Simple Power System 146
Modeling of PS Elements 147
Definition of the Power System of Figure 70 148
Circuit Model of PSof Figure 70 148
Design Task Definition for Power Factor Correction 150
Circuit Design Task Definition Produced by PSAD 150
QPA Solutions to a Power Factor Correction Problem 151
Circuit Solution to the Power Factor Correction Problem 151
Translation of QPA’s Solution 151

79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.

100.
101.
102.
103.
104.
105.
106.

Power System Translation of Circuit in Figure 77
A Power Distribution Problem
Design Task Definition for a Power Distribution Problem
Translation of QPA’s Solution
Rerouting Current by Inserting a Capacitor
Rerouting Current by Inserting a Control Transformer
Superposition Algorithm
Component DuetoV,
Component Dueto Vp
Printout of Component Dueto V,
Printout of Component Dueto V.
Different Solutions to the Power Distribution Problem
Verifying Design Using FOR.
Reduction of Circuit of Figure 87 by Order of Magnitude Reasoning . .
Circuit #2 o
Results for Circuit #2
Circuit #3 e
Results for Circuit #3
Circuit #4 and Design Task
Results for Circuit #4
Circuit #5 e
Results for Circuit #5,
Circuit #6, Definition, Input, and Output
Results for Circuit #6

...........................

Mechanical System and Equivalent Circuit
Results for Circuit #7
Circuit #8
Results for Circuit #8

Xv

163

107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.
119.
120.
121.
122.
123.
124.
125.
126.
127.
128.
129.

xvi

Circuit #£9 e e 190
Cireuit #10 e 190
Results for Circuit #10. 191
Power System #2, and Its Circuit Model 192
Results of Power System #2 193
Design Task on Power System #2 193
Power System #3, and Its Circuit Model 194
Results of Power System #3 195
Power System #4, and Its Circuit Model 196
Results of Power System #4 197
Power System #5, and Its Circuit Model 198
Results of Power System #5 199
Power System #6, and Its Circuit Model 200
Results of Power System #6 200
Power System #7, and Its Circuit Model 201
Analysis of Power System #7 under Normal Conditions 202
Short-Circuit Analysis of Power System #7 203
Power System #8, and Its Circuit Model 203
Results of Power System #8 204
Short-Circuit Values for Sources of Power System #8 205
Power System #9, and Its Circuit Model 205
Results of Power System #9 206

Power System #10 207

CHAPTER 1

INTRODUCTION

One of the main objectives of qualitative reasoning is to derive the behavior of
a system from a description of its components and their interrelationships [12, 17,
28, 52|. Prediction of behavior has been achieved by traditional physics at different
levels and in different areas. In particular, in the area of circuit analysis there are a
number of numerical methods to analyze circuits of different kinds and under different
conditions [27, 49]. Those methods take as input a circuit topology and exact values
for the parameters, perform some computation (mainly based on linear algebra or
iterative methods to solve non-linear or differential equations), and return exact values
for the variables representing the unknown quantities. In this process, causality and
explanation are discarded; the only goals are precision and efficiency.

This dissertation presents a framework for performing qualitative analysis of
linear circuits in sinusoidal steady state. We call this approach Qualitative Phasor
Analysis (QPA). QPA is based on three main ideas regarding modeling and quali-
tative physics. First, it develops a constraint-based model of the circuit, where the
constraints are derived from general knowledge of circuit theory and the circuit’s

topology. A constraint-based model can be generated automatically, this feature

makes the system able to analyze any series/parallel decomposable circuit. Another
feature provided by constraint-based reasoning is that the order of computation is
not fixed, i.e., any variable can be used as input or output. This property allows us
to perform parameter design, based on circuit analysis.

Second, it is able to propagate constraints of different kinds (e.g., algebraic,
value, order of magnitude, etc.). Constraints of different types are kept in different
sets, and the rules to propagate those constraints are different. Value propagation
is extended to deal with interval values. Mixed constraint propagation allows us to
derive order of magnitude relations from values and to refine values from order of
magnitude relations.

Third, phasor analysis can be done with as much information about circuit pa-
rameters and quantities as provided by the user, ranging from qualitative (sign) to
numerical (real) values. This characteristic is implemented by uniformly represent-
ing all values as intervals. Signs can be represented as intervals with open infinite
extremes, and reals can be represented as point intervals. Value propagation can also
handle phasors with interval magnitudes and phase angles.

Based on the results of circuit analysis, several reasoning tasks can be performed.
The reasoning tasks we have in mind are qualitative/quantitative circuit analysis,
parameter design based on first-order reasoning, circuit analysis, circuit simplification
by order of magnitude reasoning, the derivation of all possible qualitatively different

phasor diagrams (corresponding to qualitatively different states of the circuit), fault

diagnosis, and control design.
This chapter explains the basic problems this dissertation addresses, states the
thesis, and identifies some of the important research issues. It then discusses imple-

mentation and evaluation.

Background

The foundational contributions to the field of qualitative reasoning are those
by DeKleer [12], Kuipers [28], and Forbus [17]. DeKleer proposed an approach based
upon confluences, which captures a sense of causality and reasons about change.
Forbus developed qualitative process theory, QPT, a mechanism that allows us to
reason about physical objects and their interaction modeled as processes. Kuipers
developed QSIM, a system that predicts all possible transient behaviors of physical
systems, for systems that can be described by sets of ordinary differential equations.

Several systems have been built to reason about and derive the qualitative
behavior of electrical circuits. Most of them focus on either digital circuits or DC
analog circuits (see for example, DeKleer {10], Hamscher [22], Williams [52]). None
has addressed the analysis of linear circuits in sinusoidal steady state. QSIM can
simulate the behavior of linear circuits, but since it is based on differential equations,
its scope is limited to transient state analysis. Also, QSIM’s formalism is not able to
represent a sinusoidal source in terms of the given types of constraints. The response

description given by QSIM is at a microscopic level with respect to time, describing

the possibilities at each distinguished time point. It is a well known fact that all
variables in a circuit in steady state will be steady sinusoidals; there is no point in
trying to find out if a peak (defined by a landmark) will be greater, equal or less than
the next one. That microscopic view prevents us from getting the big picture of what
is happening in the circuit and generates unnecessary ambiguity.

DeKleer’s confluences allows us to reason about change, but only in terms of
magnitudes of scalar quantities. Since the main tool used to solve steady state prob-
lems is phasors (i.e., a particular kind of vector), we need a way to represent angular
information and the interaction between the magnitudes of different quantities and
their phase angles.

Trying to describe the behavior of an electrical circuit in terms of processes
is awkward. Similar to Kuiper’s approach, the kind of description that QPT yields
would be at the microscopic level. This kind of representation would involve charges,
and how the process of moving charges (i.e., electrical current) would result from the
application of an electrical field. We need something at a higher level of abstraction,
where the existence of a stable oscillation of alternating currents is already known
and not the goal to be established. Thus, QPT is not suited to solving the problems
addressed in this dissertation.

Few researchers have worked on qualitative analysis of power systems. Struss [42,
43] developed a system to diagnose faults in power transmission networks. He follows

a relational approach to the modeling of power system components; consistency-based

diagnosis is used to find faults in the system, based on the reading of “distance pro-
tection relays”. The analysis he performs is not based on circuit theory; it focuses
on what relays have tripped and if the observations are consistent with the models of
those relays.

QPA is able to simplify a circuit, based on order of magnitude relations. If
QPA determines (based on order of magnitude relations given by the user) that a
current (voltage) is negligible, it can discard that part of the circuit, replacing it by
an open (short) circuit. We call this feature structural ezaggeration. A similar kind
of transformation is presented by Liu's ARC [32], which eliminates parts of a circuit
if the operating region of an element indicates it behaves like an open circuit. The
system is then recasted according to its new topological configuration. Also related to
model changes, Struss presents a diagnosis system that works with models at different
levels of abstraction. The simplifications presented in his work deal with the internal
model of each device, refining it to yield more accurate results when necessary. The
overall structural description of the system does not change with the use of different
models. QPA’s structural exaggeration, by contrast, can simplify the overall structure
of the circuit, supported on the circuit’s operating conditions.

Bibliographic surveys are given at the end of each chapter to contrast the con-

tributions presented in this work with previous results in related fields.

Qualitative Phasor Analysis

The electrical engineering community has been very successful in predicting be-
havior of linear circuits in steady state. The main tool they use in circuit analysis
is the phasor. Phasors [27, chapter 5] are a mathematical transformation that maps
sinusoids from the time domain to the frequency domain, allowing us to replace com-
plicated simultaneous differential equations by simultaneous algebraic equations in
the complex domain. In addition to their power to solve linear circuits, phasors can
be expressed in an intuitive graphical form; the so called phasor diagrams. These
diagrams allow electrical engineers to have a better understanding of what happens
inside a circuit and can be used to produce causal explanations of physical phenom-
ena. This characteristic of phasors is the one that we want to capture in a suitable
representation, allowing us to reason about linear circuits in the same way as in
explanations found in books.

A mathematical model of a circuit includes a set of algebraic relations that
constrain its behavior. For instance, we know that current and voltage are in phase
in a resistor or that the currents of two parallel branches add to the total current
of the combination. We can capture this information and represent it as a set of
qualitative constraints, which will enable us to reason about a circuit’s behavior.

To determine the set of algebraic constraints, we will represent the circuit as
a recursive structure of series/parallel clusters [32]. We can recursively traverse that

clustering structure, generating constraints for each cluster and single element we en-

counter. The resultant set of constraints can be partitioned into constraints of several
types: Algebraic (e.g., Vaa = Zps * Ine), Ordering (e.g., Im > Ig), Order of Magni-
tude (e.g., /s > Ic), Phase Angle (e.g., Vg InPhase Ig;), and Confluences! (e.g.,
OVp —3Zp — 8Ig = 0). These constraints are derived from basic electro-magnetic
and circuit theories. Confluences, which represent the dynamic properties of the
circuit, can be derived from algebraic constraints.

Let us consider the circuit of Figure 1, which shows a circuit and its topological
configuration in terms of series/parallel clusters. Figure 1 also shows examples of
the type of constraints that can be generated for each component and cluster of the
circuit.

The set of all constraints that can be derived from the circuit topology, based
solely on electrical circuit theory, are what we call the Basic Set of Constraints
(BSOC). Once the BSOC has been generated, propagation is used to maintain the
transitive closure of the constraints and their implications. For instance, from the
constraints Isy = Ip; and Ig; = I we can derive that Ip, = I;. If the user has
any further information about features of the circuit, he or she can express them in
the form of additional constraints. For instance, the user can say that Zp, < Zg;
propagation will return to the user the implied constraints, informing him or her that

Io < Ips.

A confluence has the usual meaning and use [12]. For instance, for Ohm’s law in a resistor
Vr = ZgrIg, we have the qualitative counterpart 9V — 82z — 8Ig = 0. This confluence indicates
(among other things) that if Zp decreases and Vi does not change, Iy increases.

V81 = ZS1 181

VR2 = ZR2 IR2
avst- 9zs1- Bis1=0

9 VR2- 37R2- S1R2=0

VSl =VRI + VL
VRI>VL

VR2 InPhase [R2

/ VC=ZCIC
Algebraic 8vc- 8zc- Bic=0
Value e
Constraints Order of Magnitude IC Ahead VC
Phase Angle
Confluences VALUE Angle(ZC) = 90

FIGURE 1. An Electrical Circuit, its Configuration, and Constraints

The values that variables can take on range from qualitative signs to reals. In
between those extremes, one can specify values by intervals, with as much precision
as needed. Of course, the more precise the provided information is, the more precise
the results will be. While analyzing a circuit, one can specify values for some of the

variables, and propagation will compute the resulting values for the rest of them.

For instance, for the circuit of Figure 1, one can specify W = 60, Vg = 100, C
[0.0024,0.0026], R, = [14.9,25.1], etc. QPA will solve for the rest, e.g., Vg =
100, Ic = [1.4857,1.9539]/[301.37,307.32], Ip, = [0.3867,0.5365]£[211.37, 217.32],

etc. (all these quantities are phasors; the first interval represents the magnitude and

the second one the angle —see Chapter II)

If the user then asks if I < I, can be true, the system can respond with the

following answer:

Contradiction detected. Ip < I, contradicts the constraints
I = [1.4857,1.9539]£[301.37,307.32], and

Iy = [0.3867,0.5365)£[211.37, 217.32).

The set of all quantities in a circuit represents the set of possible behaviors the
circuit can exhibit. When the quantities are allowed to range in intervals (magnitudes
and angles of phasors as well), each possible combination of assignments of values to
variables represent a behavior. Thus, the set of constraints represents a set of ac-
ceptable behaviors of the circuit. Reducing the interval domains of the variables (by
asserting new constraints) reduces the number of possible behaviors. If all quantities
take on real number values, the behavior of the circuit is unique. By refining the
interval values of quantities until all of them become point intervals (i.e., real num-
bers), the set of predicted behaviors reduces to one and coincides with the behavior
predicted by a conventional circuit solver.

Mixed propagation can also be performed. That is, from value constraints, order
of magnitude relations can be discovered. The converse is also possible, given order
of magnitude constraints, the values of the involved variables can be refined to make

sure the given relation does not result in an inconsistency.

10

Causal reasoning, also known as First Order Reasoning? (FOR) is important
if we want to be able to explain a circuit’s behavior. Confluences capture the inter-
action among different variables in the circuit, and how changes in one variable can
produce changes in other variables. For example, if the user asks “what happens if

C increases?” (expressed as the constraint 8C = +), the system replies®

“If C increases, Z¢ decreases, which causes Zp; and Zg, to decrease.
This makes Igy,Is), and Ip; increase. If Ig, increases, Vs, increases,
and since Vg, is constant, this causes Vpy, Vo, and Vi to decrease. If
Ve decreases, Ig, decreases, causing IC to increase. Since Ipy decreases
and JIC increases, the phase angle (I, Ip1) will increase and the angle

L(Ipy, Ic) will decrease.”

Confluences are equations, whose variables are rates of change, taking on values
from the domain of qualitative signs (i.e., -,0,4). Our value propagation mechanism
propagates changes in variable values through a network of algebraic equations, where
the values variables take on can be reals, intervals, or qualitative signs, all of them
uniformly represented as intervals. Therefore, first order reasoning is a particular case
of value propagation with interval values.

The BSOC is a Partially Constrained Model {PCM) of the circuit, which will

2The term First Order Reasoning comes from the fact that we are dealing with the first order
derivatives of quantitites. Similarly, value propagation is called Zeroth Order Reasoning

3No natural language interface has been built or used. In the rest of this document, we paraphrase
al questions and answers. Example 5 (figures 51 and 52, on pages 98 and 99) show a transcript of
the system interaction and the results of explanation.

11

allow us to perform the reasoning task we have in mind. A PCM corresponds to a
set of circuit behaviors; the more constrained the circuit model is, the smaller the set
of possible behaviors is. For instance, we can tell that the phase angle of) lies in
the interval (0, 90), represented by the constraint £/Zg; = (+£[0 90]). After asserting
that I < Iga, we know that ZZg; = (+Z[0 45]). The set of constraints represents the
set of possible behaviors a circuit can exhibit. Figure 2 shows one phasor diagram
(behavior of the circuit), of the many possible for the circuit model of Figure 1. That
phasor diagram was drawn under the added assumptions Ip, > I, Vi > Vi, and

Va1 > Vpr.

IR-_pI \'Fl‘

FIGURE 2. A Possible Phasor Diagram for Circuit in Figure 1

After the user has provided a number of constraints, it is more likely that further
constraints are rejected as inconsistent with the partial solution. At that point the
user can say “OK, give me all possible, fully constrained models ...”. Even if the
user was able to provide all constraints available, one of the goals of the system
is to produce all possible, fully constrained models of the circuit (i.e., all possible
qualitative behaviors of the circuit under the actual set of constraints). Traversing
the circuit’s structure, QPA determines what variables are interrelated and produces

all relevant constraints. If no constraint involving those variables is found in the

12

PCM, all possible constraints that include those variables are produced. Nodes with
constraints that produce inconsistencies are pruned and not included in the tree. The
result is a tree like the one shown in Figure 3* where the leaves correspond to sets of

constraints representing fully constrained models of the circuit.

Vs1=Vpy

FIGURE 3. Tree Containing All Fully Constrained Models

QPA also handles order of magnitude constraints. Order of magnitude con-
straints can be used to simplify a circuit, when appropriate. Returning to the circuit
shown in Figure 1, if the user tells the system that Z¢ > Zg,, the system responds
that Jc <« Ip;. This is interpreted by QPA in the appropriate way; the current
through that branch is negligible, therefore, the whole branch can be omitted (open
circuited). The resulting circuit is shown in Figure 4. In general, if after running
propagation it is determined that the current through a branch in a parallel cluster is
negligible, the element can be substituted by an open circuit. A similar simplification

can be done for the case where the voltage through an element in a series cluster is

4The tree in Figure 3 was formed using only operators <, =, and >. The system is general
enough to accept any other set (e.g., the set of order of magnitude operators)

13

'@ s

FIGURE 4. Structural Simplification by Order of Magnitude Reasoning

negligible; in that case, the element is substituted by a short circuit. Opening an
element or cluster is equivalent to removing it from the circuit; short-circuiting is
equivalent to removing that element or cluster and to collapsing its end-points into
one. After these structural modifications, a new model of the circuit is rebuilt, and
propagation on the given constraints must be recomputed.

Now consider the process of measurement interpretation or diagnosis, based
on a QPA representation. Suppose that the observed state of the circuit is shown

in Figure 5. The observed state, measured by physical instruments, can be easily

lm Ve

FIGURE 5. Faulty Observed Behavior

translated to a set of constraints. For instance, we observe that Vs = (95/3.5),
Ve = (7.5£309), Ic = (3.8£323), etc. Those constraints can be verified against
the circuit model by following the circuit’s topology in a top down manmner. If a

contradiction is found, the circuit is considered faulty and a set of possible faults are

14

suggested to the user. In this example we start by checking the constraints for cluster
S2; while no contradictions were found at this level, we need to continue verifying
the rest of the circuit, traversing its structure. We continue checking S, P;, and
inside them, until we find that the phase angle of the current and voltage in the
capacitor does not correspond to the model of that element. By the characteristics
of the observation, we conclude that “the capacitor is leaking”. In other words, it is

shorted by a small resistance Ry (see Figure 6).

oot ---Ysj---------_--, X
)Vl\‘{\’ m‘m—d Inzl lcl +

FIGURE 6. Diagnosed Fault

Order of magnitude reasoning, as proposed above, should allow the system, for
example, to prove that a short-circuit with resistance, for which the fault resistance
is very small (negligible), is equivalent to a circuit with a perfect short (i.e., with
zero resistance). First, QPA infers Io < Igy, which leads it to eliminate C. Then,
it infers that Vs; > Vp;, which eliminates the whole cluster P,. The final circuit is
equivalent to the situation where there is an ideal short circuit in C.

Another problem we are addressing is Control Design. Control design answers

questions similar to those in FOR. (e.g., “How can I get the phase angle of cluster

15

Sy to decrease?”). In some cases, if one or more parameters are variable, we can
solve those questions by FOR alone. In some other cases, even if there are some
variable parameters, there is no setting of those parameters that would make us
achieve the goal(s). Furthermore, we might want to further constrain the solution to
those problems (e.g., “How can I get the phase angle of cluster S; to decrease, without
changing Vs,7"). The approach we take is similar to means-ends analysis, where the
initial situation is represented by the working model, and the goal situation by the
goals and the design constraints. The operators are circuit modifications, that, when
applied to the circuit, change its conditions. We design by inserting one modification
at a time until all goals are satisfied and no constraint is violated.

Given these basic reasoning capabilities, one domain of application suitable for
using QPA is Power Systems Analysis and Control. Power Systems are modeled by
linear circuits [20, 19}, with lumped, constant parameters, and are normally operated
under sinusoidal steady state; those are exactly the kinds of circuits QPA reasons
about. By using QPA, we can solve basic problems in the area of power system
analysis. Some of those problems are power factor correction and power distribution.
Industrial loads are typically composed of resistive and inductive elements, therefore
having a lagging power factor. Connecting a capacitor bank in parallel with the load
corrects its power factor. The power distribution problem arises in situations where
the transmitted power increases, and one of the lines is not capable of holding the

resulting amount of current. Power redistribution can be accomplished by installing

16

capacitors, or tap changing or phase shifting transformers in series with the transmis-
sion lines. QPA can reason from first principles to determine such solutions to power

system problems.

Thesis Statement and Research Issues

Research in qualitative circuit analysis (and even in behavior prediction in the
field of qualitative reasoning) to date focuses on analysis of transient response. Previ-
ous work cannot be applied to reasoning about the response of such systems in steady
state, because it focuses only on magnitudes of scalar quantities. Quantities in electri-
cal circuits in steady state are represented as a special kind of vector, called phasors,
where not only magnitudes, but also angles play an important role. To develop a
computational framework capable of reasoning about such systems, this dissertation

investigates the following thesis statement:

By extending the circuit ontology to include phasors and by using a
constraint-based model of the circuit, we can extend the range of problems

that can be solved by qualitative reasoning about complex systems.

To explore the development of such a computational framework, this dissertation

addresses the following research issues.

¢ Can the circuit ontology be extended to adequately represent phasor and phase

angle information?

17

e Can we use this representation to reason effectively about electrical circuits in

steady state?

e What modifications to normal constraint propagation procedures are needed to

deal with constraints of different kinds?

o How can the structure of a circuit be simplified, based on order of magnitude

information derived from constraint propagation?

e Can we, by using a single representation, reason about the circuit at several

degrees of abstraction, from qualitative to quantitative information?

o Can we design solutions for the problems of operation, diagnosis, and control

of power transmission systems, based on first principles of phasor analysis?

Implementation and Evaluation

The system has been implemented in Allegro Common Lisp for Sun Work-
stations. The system consists of three layers: Power System Analysis and Design
(PSAD), Qualitative Phasor Analysis (QPA), and Hybrid Representation Constraint
Propagation (HRCP). Figure 7 shows the proposed architecture of the system.

The interface for this project is a textual symbolic description of the input and
output. The input is the topological configuration of the circuit or power system,
which includes the definition of each of the elements and their interconnections. The

input constraints are of the form mentioned in the preceding section. The output

Constraints
PS Tree

18

PSAD
"o LB
Modeling
. Interface
Circ.
3
Circ] Copstr. | Tree
QPA Circuit Y ‘lY
Constraints QPA Cire. .
Interface
»| Circuit]] 1, Constrains
Diagnosis Modiﬁcmiog
Design — e
£ Decomposition Circuit - l,
* Constraints Circuit —
Circuit
¥ | Clustering Automatic
Circuit Clustering Constraint
e i Genermtion
Clustering BSO
F (Tree)
Generation
Constraints T
Constraints
HRCP
/O
O Constraint Sets

FIGURE 7. QPA’s Architecture

19

of the system is a set of constraints, representing the partially constrained model of
the circuit or power system. Value propagation, which includes first-order reasoning,
forms a trace of the propagation process, which can be used to provide explanations
like the ones mentioned above. In the case of diagnosis or control design, the new
topological configuration of the circuit will be returned to the user.

The performance of the system was evaluated by comparing its results with
examples found in textbooks, and with the results of the application of standard
techniques used in circuit analysis. The usability and applicability of the system
has been evaluated by experts in the area of Electrical Engineering, Artificial Intel-
ligence, and Power Systems. For that purpose, we contacted a power engineer from
Bonneville Power Administration, a faculty member from the University of Colorado,
and a faculty member from the School of Electrical Engineering of the University of

Michoacan.

Dissertation Organization

Chapter II presents an overview of the basic concepts in electrical engineering,
phasors and our proposed representation, called compler fans. Chapter III focuses
on the proposed modifications to constraint propagation to deal with constraints of
different kinds, including order of magnitude relations, and confluences. Chapter IV
addresses the reasoning tasks QPA (Qualitative Phasor Analysis) performs about lin-

ear circuits in sinusoidal steady state. Chapter V gives an introduction to QPA’s

20

main field of application, Power Systems, as well as examples of how the techniques
developed for QPA can be used to solve problems of importance to the field. Chap-
ter VI concludes the dissertation by discussing its contributions and limitations, as
well as directions for future research. Each chapter includes a brief survey of related

research, as appropriate.

21

CHAPTER I

ELECTRICAL CIRCUITS AND PHASORS

This chapter covers basic concepts in electric circuits, focusing on the solution
of circuits under sinusoidal steady state. The main representational tool used in
electrical engineering to perform circuit analysis in sinusoidal steady state is the
phasor. We review the concept of phasor and its use in the solution of linear circuits,
and present a proposed representation, called complex fans, that allows us to handle

phasor information under uncertain conditions.

Phasors

The behavior of a linear circuit can be characterized by an ordinary differential
equation (ODE) [4, 27, 49, 39]. If the forcing function is a sinusoid, the analytical
solution of the equation, in the steady state regime, indicates that the response will
also be a sinusoid. When performing circuit analysis, instead of using a real-valued
driving function, we use a complex one, whose projection on the real axis (when
rotating) produces the same sinusoidal. This complex quantity is called a phasor. By
the use of phasors, the solution to a linear circuit in sinusoidal steady state can be

obtained by relatively easy manipulation of complex numbers.

22

A phasor diagram is a graphical representation of complex exponentials, in the
complex plane [27, chapter 5). Consider the function Ce?*!, whose characteristics

are described in equation II.1 and represented graphically in Figure 8.

Ce’t = (a + jb)est
[Cet| = Va? + b2

LCe =i+ LC

(IL.1)

L1C = a.rctan%

Im

[C +at Re
a

FIGURE 8. Graphical Representation of Ce/¥t

In a circuit excited by a sinusoidal voltage source of frequency w, all variables
(i.e. currents and voltages) are also sinusoids oscillating at the same frequency. If we
represent each variable by a phasor, they will rotate at the same angular frequency,
as if fastened together; what changes between each variable are its magnitude and

phase angle. So a phasor diagram can be seen, at any given moment, as a snapshot

In electrical engineering, the complex operator = /=1 is used instead of the mathematical
symbol i. w is the frequency of a sinusoidal wave, see equation I1.2, and ¢ is time.

23

of the set of rotating phasors that represent all quantities of the circuit.
Let us now consider a circuit with a pair of terminals, for which a voltage V'
and a current I can be defined
V(t) = Re(Ve/*) = [V} cos (wt + £V)
(I1.2)
I(t} = Re(Ieit) = |I|cos (wt + £I)
where V(¢) and I(t) represent (real) functions of time, and V and I represent pha-
sors in the frequency domain. The ratio between voltage and current will be called
impedance, denoted by Z, and its inverse admittance, denoted by Y7 i.e.,
Z{jw)=V/I
(I1.3)
Y(jw) =1/V =1/Z(jw)
The impedance and admittance for individual resistors, inductors, and capacitors are

given in the Table 1.

Element | Z(jw) | Y{jw) %l A
R R 1/R R 0
L jwl | 1/jwLl| wL +90

C 1/jwC | jwC |1/jwC | —90
TABLE 1. Properties of Circuit Elements

For series elements, the current phasor is common and the voltage phasor is

the sum of the element voltage phasors; so impedances in series add as in the case of

24

resistors in series. The analogous case holds for elements in parallel

Zser(jw) = 2, Zi(jw)

Ypar(jw) = ; Yi(jw)

(IL.4)

Impedances and admittances can be used to perform circuit analysis using the same
techniques as for networks with direct current sources, except that now all the quanti-
ties will be complex numbers; in the end, only the real parts will be considered as the
result. This permits a graphical representation of Kirchoff’s laws in terms of addition
of phasors. This can be illustrated with the circuit in Figure 9, for which one phasor
diagram (of the many possible) is shown in Figure 10.

P 5 R Lot i ic

i I i E
V@)) ""1 R2§ C::f;vw

FIGURE 10. A Possible Phasor Diagram for Circuit in Figure 9

25

Power Factor and Phase Angle

An important concept that deserves consideration at this point is that of power
factor. Power is defined as the rate of energy transfer; in terms of a circuit quantities,
it is defined as the product of the instantaneous voltage and the instantaneous current

that appears through an element.

p=VI (IL.5)

If the voltage and current of a circuit element are expressed by

V = Viar cos{wt) (IL6)
I1.6

I = Ipeq cos(wt —)

the instantaneous power is

P = Vinazdmax cos(wt) cos(wt — 6) (I1.7)

A positive value of P indicates power is being absorbed by the element. That is,
the element is acting as a load or consumer of energy. This situation is encountered
when the current has the same sign as the voltage drop in the element(i.e. current is
flowing in the direction of voltage drop). In the other case, when voltage and current
have different signs (i.e. current is flowing in the direction of voltage rise), energy is
being transferred from the element to the system.

For a purely resistive element, voltage and current are in phase; current always

26

flows in the direction of voltage drop, therefore, it is always absorbing power. In a
pure inductor or capacitor, the current is always 90 degrees out of phase with respect
to the voltage. In that case, power alternates flowing to and from the element (i.e.
acting as a load and a source, respectively).

By using trigonometric identities, the expression of equation I1.7 is reduced to

Vma:z:Imaz:

2

Vma:z: I maxr

5 Cos 0(1 + cos 2wt) +

0= sin 8 sin 2wt (I1.8)

The first term of equation I1.8 is always positive, and is normally referred to as the real
or aciive power. The second term alternates between positive and negative values; it
is known as the reactive power and expresses the flow of energy alternately toward the
load and toward the system. The cosine of the phase angle # between the voltage and
current is called the power factor. An inductive circuit is said to have a lagging power
factor, and a capacitive circuit is said to have a leading power factor. A resistive load
has a unit power factor (i.e. voltage and current are in phase, so ¢ is zero). Power,
active power, and reactive power are very useful terms in describing the operation of
a Power System (see section V).

Figures 11 and 12 show the current, voltage, and power sine waves for circuits
with unity and lagging power factors, respectively. Figure 11 represents a circuit with
a net resistive effect. Power in a resistive circuit is always positive, that is, resistors
have no means to store energy and are always dissipating it in form of heat. Figure 12

represents a circuit with net resistive and inductive effects, like the one in Figure 13.

27

FIGURE 12. Power in a Circuit with Lagging Power Factor

In that case, the inductor is storing energy (in the form of a magnetic field) when p
becomes positive, and returning it to the system when p becomes negative. Notice
that the average consumed power is the part dissipated by the resistor. Although
the dissipated power depends only on the resistive part of the circuit, the magnitude
of the current does increase with the reactive power. This increase in current will
be reflected by an increase in losses and higher capacity and size are required in all
transmission equipment.

This problem can be corrected by inserting a capacitor in the circuit, as shown

in Figure 14.

28

© =

Ig xl-% L i

FIGURE 13. RL Circuit and Corresponding Phasor Diagram

Iy
Ip xC:"_" I :

Ic {, Ig v

< 4
>4
Ed

FIGURE 14. RLC Circuit and Corresponding Phasor Diagram

In that case, (part of) the reactive power needed by the inductor is supplied by
the capacitor. As a result, there is no reactive power traveling back and forth from
the source to the load, and the magnitude of the resulting current is smaller. We can

say that the power factor has been corrected.

Complex Fans

An important feature of our reasoning engine is the ability to transition smoothly
from qualitative to quantitative values in the process of reasoning. This can be ac-
complished by representing every value as an interval and performing all operations
using interval algebra. Phasors are complex quantities, so we need two numbers to

represent such a quantity. If we choose the rectangular representation, those two

29

numbers are the real and imaginary components of the complex number. In polar
representation, a phasor is expressed by its magnitude and angle. Traditionally, in
the field of Electrical Engineering, complex numbers are represented in rectangular
form, because arithmetic operations are simpler in this representation. Qur represen-
tation language talks about magnitudes and phase angles; for instance, given values
for quantities V; and V3, the order relation V; > V, can be used to limit the possible
values of the magnitude of both quantities. If those quantities were represented in
rectangular form, we can reduce the real, the imaginary, or both components to reduce
the resulting magnitude. Similarly with angle values and angle ordering constraints.
So, we decided to represent phasors in polar form.

If we allow the magnitude and angle of a phasor to range over intervals, the
resulting objects, instead of denoting a point in the complex domain, now span over
circular segments. We call those circular segments complez fans. For example, fan V
of Figure 15 is a phasor whose magnitude ranges from a to b, and whose angle ranges
from a; to ajy.

In this section, we develop the complex fan arithmetic that will be needed to
perform value propagation on the domain of interval phasors, or complex fans. In
developing the complex fan arithmetic, we pay special attention to providing mini-
mality in the results. That is, the results of an operation is the smallest complex fan
that encloses all possible results of that operation.

The basic arithmetic operations that need to be defined are +, —, *, and /.

30

FIGURE 15. Example of a Complex Fan

Other operations can be defined in terms of the basic ones. The formulae for prod-
uct, division, and negation (i.e. unary —}, operate independently on magnitudes and
angles. So the formulae for phasors can be used, performing standard interval opera-
tions, instead of real-valued ones. The formulae for addition (and subtraction, which
is defined in terms of addition and negation) are more complicated, and we cannot
just apply interval operators in a straightforward manner.

In this section, we develop an algorithm to evaluate complex fan addition, yield-
ing the minimum complex fan that encloses all possible results. The derivation of the

algorithm is justified by the mathematics for deriving the formulas presented here.

Notation

The complex fan shown in Figure 15 can be represented as

V =Vmev, (I1L.9)

31

where V,, represents V's magnitude, and V, its angle. V,, ranges over the interval
0 <a <V, £b, and V, ranges over the interval o) < V, < a,. Then, the complex

fan V' can also be expressed as

V = [a, by, ag (I1.10)

Note that if @ = b and a; = ay, the complex fan reduces to a phasor (i.e. a point in

the complex plane).

Throughout the rest of the chapter, when we deal with two fans, we assume

Vi = VimiVie = [a, b] 4]y, az)

Vo = Vo dVie = [c, d] |3, 04] (IT.11)

In the figures of section I1.3, we (arbitrarily) number the corners of the fans as
indicated in Figure 16. Also, the addition of two corners i and j will be indicated by

point ij. For example, addition of points 2 and 5 yields point 25, as shown in the

same figure.

Product

As mentioned above, formulae for product, division, and negation of complex

fans can be obtained by simply replacing real-valued operations by interval operations

in the respective formulae for phasor arithmetic.

32

FIGURE 16. Notation

The product of two phasors V' = V] ¥ V, is given by the formula

V = ([a,] * [¢, d]) L{[et1, @a) + [e3, 04]) (I1.12)

Division

The quotient of two phasors V =V, /V} is analogous to the product

V = ([a, 4)/[c, d]) L([e1, a] = [o3, cua)) (IL.13)

Negation

The negation of a complex fan is another complex fan, with the same magnitude,

and whose angle is the complement of the angle of the original fan.

V = -V = [a,b]£(Jon, as) + [180, 180]) (I1.14)

33
Subtraction

Subtraction can be defined in terms of addition and negation as follows

V=W -Va=V+(-V) (11.15)

Addition

Addition presents a complication. There is no formula to add two phasors in
polar form. In one approach, the addends (i.e. phasors) are converted to rectangular
form, the addition is performed and then the result is transformed back into polar
form. When we generalize the idea to intervals, the smallest rectangle that encloses
a fan includes some points not present in the original fan. Then, when we convert
the resulting rectangle to a fan, more points are included than are needed. This is

illustrated in Figure 17

.............................

v

FIGURE 17. Imprecision Added by Representation Changes

34

We will present an algorithm that computes the smallest possible fan that en-

closes the result of ¥} + V3, where

Vi+Va={v+w]| (v,w) e V) x V} (I1.16)

‘The result of the addition must be complete and minimal. To be complete, it
must contain all possible results of the addition, as defined above. To be minimal,
its boundaries (both, magnitude and phase angle) must be such that the intervals
they represent cannot shrink without leaving possible results out. This implies that
at least one result must fall on each of the boundaries of the resulting complex fan.

Clearly, one possible value can be obtained by adding the corners of the fans.
Nevertheless, these extreme values do not necessarily produce the extreme values of
the result. The only case when the corners produce the extreme results is when the
fans span less than 90 degrees. So, we will decompose V; and V; into four fans,
representing their intersection with each quadrant, taking as reference the smallest
angle of the first fan (i.e. V; always starts at zero). Ensuring this assumption might
require a rotation, in which case, the final results will need to be corrected back to

the original reference. For instance, V; will be

= U W (I1.17)

35

where

Vi = (0,00)£[90(i — 1),90] n W, (I1.18)

Thus, addition can be expressed as

L Vi+V,
- (Vi1 UVi2 U Vig U Vig) + (Var U Vi U Via U Vyy) (I1.19)

= {v+w | (v,w) € (Vi1 UViaUVi3U Vig) x (Var U Vaa U Va3 U Vay)}

and since Cartesian product distributes over union,

V = {'U+’w|('v,w)E(V11+V21UVu+%2...)}

= U Vu+Vy (11.20)

ij=i..4

Each partial addition is performed with fans that do not extend more than 90
degrees. We can categorize each partial addition into one of three cases: when the
two addends are in the same, adjacent, or opposite quadrants. We analyze each case
and determine a procedure to compute the partial results. The final result is the
union of all the partial results. For each case considered, we will demonstrate that

the minimality condition is met.

36

Case 1: Same Quadrant

In this part, we consider the case when both fans are in the same quadrant. The
analysis is made for the first quadrant; for other quadrants, we just apply a rotation,
which will be corrected at the end of the process.

Consider the addition V = V| + V,, where a; = 0, since we take V; as our

reference. Vector algebra states that

Vi = V2 + VZ, + 2VimVam cos §

TR (Vim 50 Via + Vo sin Vaa) (I1.21)

Vim €05 Vig + Vo cos Vo,

where 8 = Vi, — Vo,
Since square root is a monotonic function, V;, reaches an extreme when V;2 does.
Since addition monotonically increases with its addends, and cosine is monotonically

decreasing in §’s domain (i.e. 0 < @ < 90), we have the following,

2 2 2
VITI.ma_z - ‘flmma:: + ‘/Q.Mmaz + 2‘/lmmn:nv2mma:: cos 9!71(11:

= b? + d? + 2bd cos O,

2 2 2
mein = Vlmmin + Vampnin + 2Vimmin Vommin €08 Omin

= a’+ ¢ +2accosfmgs (I1.22)

37

The final computation for the extremes of # and V,, (see Figure 18), can be

expressed as follows

Braz = ma-x(a4 =y, 0 — 0!3)
0 ViaNVee # ¢ (02 2 a3)

gmin -

a3 — g otherwise

— 2
mea:: - VH’ImaJ:

Vinmin = Vinz i (I1.23)

FIGURE 18. Phasor Addition, Case 1

For the computation of V,,, tan~! is a monotonic function. To find the extremes
of the function, all we need to do is find the extrema of its argument. A change of

variables simplifies the expressions,

rsinu+ ysinv
Zcosu+ ycosv

flz,y,u,v) = (I1.24)

The parallelogram rule for vector addition [46] suggests that the smallest pos-

38

sible angle occurs adding points 2 and 5, denoted by point 25 in Figure 19, and the

largest angle occurs adding points 3 and 8, denoted by point 38 in the same figure.

FIGURE 19. Maximum and Minimum Angles in Phasor Addition

To prove our intuition, we first show that the minimum angle has to occur when

adding some points in the boundaries of minimum angles. For a given z, and y, (i.e.

fixing the magnitudes of both fans),

Tosinu + o sin v

91(w,v) = T COS U + 3o COS U (11.25)

The extremes are found where the gradient is zero,

Vg = 0 (11.26)
Og: _ Zpcosu{zocosu + ypcosv) — (—Tpsinu)(Tosinu + yosinv) 0

du (o cOS u + o cos v)? -

O0g1 _ yocosv(zecosu + Yo cosv) — (—yosin v)(zosinu + yp sinv)

v

=0
(zo cos u + yp cos v)?

39

Tg + Yo cos{u — v) =0 (IL.27)

Top = —Yg cos(u — v)

Since zg, yo, and cos(u — v) are positive, there is no solution to equation II.27.
Therefore, the function has no extremes in the given domain. So, we analyze how the
function behaves on each variable. For a given ug (i.e. fixing the angle of the second

fan),

h(v) = gi(ug,v)

2 + i cos(ug — v)
K(v) = 2 IL.2
1(v) (zp cos ug + yg cos v)? (1.28)

and for a given vy,

ho(u) = gi{u,vp)

By(u) = Yo + ToYo cos(u — vp)
2 (zo cos u + g cOS vg)?

(I1.29)

Since

—90<up-v<90, 0<cos(zg—v) <1 (I1.30)

therefore

40

hy(v) >0

h(u) > 0 (I1.31)

This indicates that f (the angle of the result) grows with u and v (the angles

of the addends), so it reaches its maximum (minimum) value in the domain, when u

and v are maxima (minima).

We proceed to determine f’s behavior with respect to z and y (the magnitudes

of the addends).

92(z,)

V92($: y)
992
oz

092
Oy

f(z,y, uo, vo) (11.32)

T sin ug -+ ¥ sin vy
T COoSty + Y COS Y

0

sin o (x cos %y + 3 ¢0s Ug) — (C0s up)(z sin ug + ysin vg)
(z cosug + y cos up)?

sin vo(x cos ug + y cos vp) — (cos vg){w sin ug + ¥ sin vy)
(z cosug + y cos vg)?

Il
o

y sin{up — vp) (I1.33)

I
o

z sin{vp — up)

41

Since = and y are both positive, solving equations I1.33 reduces to solving
sin(ug — v} = 0 and sin(wg — up. The solution to the first is found for 4y — vy =
km, k=0,1,2..., which is located outside the domain of the angle difference for the
case we are analyzing. We analyze how the function behaves with respect to z and y

(magnitudes). For a given yp (i.e. fixing the magnitude of the second fan),

T sin ¥y + Yo Sin v
T COSUg + Yo COS Yy
; _ yo sin(ug — vp)

(z) =

ha(z) = g(z,) =

II.
4 (z cos ug + yo cOS vg)? (1.34)
and for a given z
) e e Ty Sinup + ysin vy
N\ = 9y "~ TpCos g + Y COS Vg
() zq sin(vg — up) (IL.35)

(zo cos up + y cos vy)2

From equations I1.31, we see that to compute the maximum angle, we need
to use ap and a,. Assuming ug = a3 and vy = a4, we can distinguish three cases.
When o3 > a4, sin{up — vp) > 0, which makes Aj(z) > 0 and h}(y) < 0, we compute
the maximum angle using = = b (the maximum) and y = ¢ (the minimum). When
ap < a4, which makes hj(z) < 0 and Ai(y) > 0. We compute the maximum angle
using z = a and y = d. When a; = a4, the maximum angle is equal to ay = ay, i.e.
it does not depend on the values of of z and y.

‘To compute the minimum angle, we assume uy = @; and vy = a3. Here, we

42

have only one case, @) < @3, and the minimum angle is computed using z = b and
y==c

Figure 20 shows a summary of the partial computation of fan addition for case

AddCasel(Vl, Vz)
if [4%] 2 i3
Bm:'n =0
else
Omin = a2 — a3
Omez = max(aq — oy, 3 — a3)

Vinmin = V@° + ¢ + 2accos 0,0,
Viamaz = VD + d? + 2bd 05 Omin

= -1 { bsiney $esinay
Vamm = tan~! (bsma csina)

bcosa +ccosas

if ap < ay
V. = tap~! (asinazxtdsinay
amazx an

acos az+d cos oy
else if s > ay
- =1 { bsinaz+csinay)
V“maz = tan (bcosa2+ccosm
else if ay > ay

Va maz — &2

I‘Btlll'll([me,‘m mea:l:] 3 A[Vnm:'m Vamuz})

FIGURE 20. Pseudo-Code for Case 1

Case 2: Adjacent Quadrants

We can assume that fan ¥} will be in the first quadrant, and fan V, will be in

the second. If that is not the case, we can make a rotation, and the results will be

43

corrected af the end. So, we have the following conditions for case 2:

0<a; <y <90
90 < a3 < a4 < 180

and (04 e 0!1) > 90 (1136)

If the last condition (a4 ~ a;) > 90 is not satisfied, the problem can be reduced
to Case 1 by a simple rotation. From equations I1.21, if we fix the magnitudes, V;,

depends solely on 6.

Vi = fa(z,9,0) = 3* + 4 + 2zy cosd (11.37)

Since 0 < § < 180, and cosine is monotonically decreasing with respect to 8, V,,
reaches a maximum when # is at its minimum value. When 8 < 90, 0 < cosf < 1,
and f, reaches a maximum when z and y reach their maxima. When 8 > 90, —1 <

cos @ < 0, we have a more complex situation. Analyzing how f, changes with 4,

of _ .

'—'6-9- = 2my(—sm9)

90 < 6<180

8f

22 <

5 <0 (11.38)

we have a minimum where the derivative is zero (i.e. § = 180). If that point does not

44

belong to §’s domain, we know that the function is monotonically decreasing with
respect to §. That is, Viypee occurs for 8, and Vi, occurs for Gmey.

Now, let us see how V};; behaves with respect to z and y, for a given 6.

Vm = fg(m,y)=f($,y,90)

Vfs =0 (I1.39)
GBS 2z +2ycosbp =0

Oz

%% = 2y+2zxcosfy=0

T = —ycoshy

y = —xzcosfy (I1.40)

To compute Vi, We consider g = 8|;n;n. We distinguish three regions.

< 90

by = 90 (I1.41)

> 90

For the case when 8y < 90, cosfy > 0, so we see that

0fs
oz

45

=50 (11.42)

therefore, ¥, reaches a maximum at T;,0z, Ymaz- That is,

Vinmaz = /02 + d? + 2bd 08 O (11.43)

For the case when 90 < 63 < 180, —1 < cosfp < 0,

7]
—a—? = 2z -+2ycosfy=0
T = -—ycosby (I1.44)

We note that %1%— = 2, which implies the extrema above is a minimum. This in
turn implies that the maximum of V,, has to be in one of the corners of Vi X Vo,

when the angle is minimum. That is (see Figure 21),

Vinmaz = Max(p35m, p36m, p4Sm, p46,1) (IL.45)

To compute fnin we consider 8y = Oner = @4 — ;. We find only one case, 90 <
6o < 180 (see the case definition, equation I1.36), and the minimum is not necessarily
in one of the corners. From equation I1.44, if x and y are reals, we find a minimum at

z = —ycosfy. In general, z and y are real intervals, so if I, = N —ycos§y # 0, we

46

FIGURE 21. Fan Addition in the Second Case.

have a minimum at T, = Izy,. If they do not intersect, depending on whether z falls
to the left or right of —y cos 0,42, We can use Tmqz O Zyin, respectively (see Figure 22).

The situation is symmetric for ¥, depending on whether y intersects, or falls to the left

magnitude’s
ST T T TS TS o
~ . e
. s minimum
b NS
______ ~ \‘
~
\“ \\ \\
~ . ‘\
~ \\ -
~ . N
[N . N
tyad—i— I]
L__I 1h;| —ro
X . X
% 1)
N 1
i)
-y Cos

FIGURE 22. Minimum Magnitude of Phasor Addition; z and % Are Intervals.

or right of —z cos ,z, we can use ¥, = Iy ., Ymaz, OF Ymin, respectively. Figure 23

shows the algorithm to compute the magnitude for fan addition, for Case 2.

We now proceed to derive the minimum and maximum values for the angle.

From equation II.31, we have that A{(v) > 0 and h%(u) > 0. This indicates that the

maximum angle has to be computed using «; and aj.

From equation I1.40, we have that zy = —1 cosd, where 0 < # < 180. For 8 =

MagnitudeCase2(V;, V;)
amin. =03 — Qg
Omez = 04 —
if Opin < 90
men:r: = \/b2 + d? + 2bd cos Gmin
else
Vinmae = max(p35m, p36m, p45m, p46y,)

I:r. = ‘/lm n (_I/Zm Cos amaz:)
ifr,#£0

Ty = I:z:rm'n
else if @ > —d cos G0

Tm=a
else if b < —ccos ey
Ty, =0

Iy = V-Zm n (_v’lm cos gma:n)

if I, # 0
UYm = Lymin

else if ¢ > —bcos g
Ym =C

else if d < —a cos 0,
Ym =d

Vinmin = /22 + ¥2 + 2TmYm COS Ouas

return((meim meaz])

FIGURE 23. Pseudo-Code for Magnitude, Case 2

47

48

90 there is no solution, since zg > 0, y > 0, and cosf = 0. For 6 < 90, 0 < cosf < 1,
so there is no solution in the domain either, since zp > 0, %3 > 0, and cosé > 0.
Later on, we will show that point 38 yields the maximum angle.

For the case when & > 90, —1 < cosf < 0, from equation I1.40, we can

determine the angle for which the extreme happens.

8 = cos~! (——) (IL46)

This is the value of § that produces the maximum angle. Figure 24 shows a case
where the extremes for the angle cannot be computed using the corners of the fans.

The same figure shows a diagram of the computation of # and ¢. Depending on the

® @

FIGURE 24. Case where Correction Is Needed, and Computation of ¢

values of ¢, we can determine the maximum magnitude as follows

€ V, use § to compute max angle

94 < Vs use point38 (11.47)

> V, use point36

49

To prove that points 38 and 36 yield the maximum angle, we have to analyze
how the angle behaves with respect to z and y. From equation I1.33, we find a solution
for k =1, 8 = 180. This is a special case, when angle doesn’t change with z or .

From equations I1.34 and I1.35, with 0 < # < 180, we have that

hi(z) < 0

hy(y) > 0 (I1.48)

which shows that V,, reaches a minimum for z,,;,, and 9.,. Similarly, V,, reaches a
maximum for ., and Ymip.

The algorithm to compute the minimum angle is the mirror image of the one
for the maximum angle. Summarizing, the algorithm to compute the angle of fan

addition for the second case is shown in Figure 25.
ase 3: Opposite Quadrants

This section covers the partial computation of V = V] + V3, for the case where
V) and V4, are in opposite quadrants. Again, we can assume that fan V; will be in
the first quadrant, and fan V; in the third one. If that is not the case, we can make

a rotation, and the results will be corrected at the end. So, the following conditions

AngleCase2(V}, V)
Vamin = min p25,, p27,
Vama:l: = max pl18,, p38,

if Vamaz < 90
8 = @y +sin~'(d/a)
p=64+90
if gV,
Vamuz s 9
else if ¢ < a3
Vama:c = p36q

else if ¢ > oy
Vamez = p38a)
if Vamin > 90
6 = a3 — sin™!(b/c)

¢=0-90
if N Vip
Vam:’n = qb
else if ¢ < o
Vamin = p25,
else if ¢ > ay
Vamin = pd3,

return([Vamin, Vamaz|)

FIGURE 25. Pseudo-Code for Angle, Case 2

define this case:
0< o < ap £90,
180 S g S V2a S 471 S 270:
(IL.49)
90 < (a3 — o) < 180,
90 < (ag — o) <180
If any of the last two conditions (90 < (a3—a2) < 180 0r 90 < (ay—a;) < 180) is

not satisfied, we can make a rotation and reduce the problem to case 2. A consequence

of those two last conditions is that the maximum angle 8,,,; = 180. An example of

51

case 3 is shown in Figure 26.

FIGURE 26. Fan Addition, Case 3

To compute the extremes of the magnitude, considering 90 < 8, < 180, we
can compute Vi, following the procedure for case 2, using the minimum of angles
6, = a3 — oz and 8 = ay — 1. Vi can also be computed using the procedure for
case 2, with O, = 180. Figure 27 shows the algorithm to compute the magnitude
for case 3.

For the determination of the extremes of the resulting angles, from equations 11.24

to I1.27, and using interval computation, the solution to equation II.27 turns to

0€z—ycosbma (I1.50)

Since e = 180, we distinguish three sub-cases here.

>0

£+y4 50 (I1.51)

<0

MagnitudeCase3(V;, V3)
b= a3 — o
02 = 360 — (G!4 - 041)
if 6, <8y
Vinmaz = max(p35m, p36.m, p45im, p46,,)
else
Vinmez = max(pl7,,, p18,,, p27m, p28,,)
I= Vlm n Vém
ifr#9
Tm = Imin
Im = Imin
elseifa > d
Tm =0
Ym =d
elseifb<ec
Im=2b
Ym=2¢C
mein = \/x?n + y,?n - 2-'1711'1'ym =ZTm— Um
return{[Vinmin, Vinmaz))

FIGURE 27. Pseudo-Code for Magnitude, Case 3

In the first sub-case, the magnitude of one of the fans is large enough to pull
the resultant to ifs side (the third sub-case is symmetrical to this one). In the second
sub-case, the resulting fan has points scattered at all angles. So, the resulting angle
can be anything, i.e. {0,360]. Figure 28 illustrates these cases.

Angle correction for sub-cases 1 and 3 (and the angle computation) is similar
to that performed in case 2, except that, in these cases, we might need to perform
angle correction in both extremes. See Figure 29.

In summary, Figure 30 shows the pseudo-code for the computation of the angle

for case 3.

FIGURE 28. Fan Addition, Case 3

FIGURE 29. Angle Correction for Case 3

AngleCase3(V;, V2)
Ornaz = 180
MagDiff = Vi,,, — Vo €05 0oz
if 0 € MagDiff
return([0, 360])
else if MagDift > 0
Vomaz = p36q
if Vamaz > 90
f =sin™! -“f + Qg
d=6+90
if ¢ € Vo,
Vamaes =0
else if ¢ < a3
Vamaz = 364
else if ¢ > ay
Vamaz = p384
Vamin = p18a
if Vagin > 270
¢’ = 360 — sin™? £

d=6-9
if ¢ € Vo
Vamin =6
else if ¢ < a3
Vamiu = plﬁa
else if ¢' > ay
Vamin =pl8,

else

... case MagDiff< 0 is symmetrical

return([vamin, Vﬂ man:])

FIGURE 30. Pseudo-Code for Angle, Case 3

54

25

Completeness and minimality

Completeness and minimality are the two desired properties of our algorithm.
Completeness refers to the fact that the solution fan V encloses all possible points
in the operation V; + V5. By minimality we understand that the result ¥V cannot be
reduced and still comprise all possible results.

Equation I1.20 guarantees completeness if each partial result is complete. For
each case we have shown completeness, since the resulting fan includes the minimum
and maximum of magnitude and angle of all possible results of the complex fan
addition. Therefore, all possible results are included in the answer.

Given that each case has been proven to guarantee completeness, all we need
to guarantee completeness of the algorithm is an adequate definition for complex fan
union. Let V) = [a,b]/[e, a2 and Vi = [c, d]4{s, 4] be complex fans. We define

complex fan union as follows:

V=VuV,=a,bUled){a, a] U[as, ayl. (11.52)

If we see a phasor as a pair (magnitude, angle), a complex fan is the set of all phasors
in the Cartesian product of the magnitude and phase angle of that complex fan.

Given that definition, it is clear that

([a': b] U [C! d]) X ([al’ a’?] U [aih CM4]) 2 ([a‘:b] X [-‘11, 02]) U ([c! d] X [013, O!4]). (11'53)

a6

so0, complex fan union guarantees completeness and so does our algorithm.

Each partial case of complex fan addition guarantees that the partial result has
at least one of the possible results on each of its boundaries. The union of two complex
fans is defined as the independent union of their magnitudes and phase angles, and
computed by interval union, which is set union. This makes sure that the final result
still contains at least one point on each of its boundaries. Therefore, those partial
results cannot be reduced without missing some of the possible results.

The preceding algorithm was derived considering all extremes of the fans as
closed. If the fans have open extremes, we still have to do the computation as if they
were closed. At the end, we have to take into consideration what points are producing
the extreme of the intervals and verify whether those points have to be included in
the result or not.

For example, in computing the maximum angle for the second case (see Fig-
ure 25), we use point p36 (in one of the cases), which is the result of adding points 2
and 6. We can say that a point is included in the fan if both boundaries are closed;
in the case of point 3, if the minimum magnitude and maximum angle of fan V] are
closed, point p3 is included. If both points, p3 and p6 are included in fans V; and Vs,
respectively, the right extreme of the angle of the result will be closed.

There is an important issue regarding the evaluation of expressions involving
more than one addition. The above results guarantee minimality with respect to a

addition in the sense that there is no smaller fan that encloses all the results of the

a7

operation. Even if the result is expressed with the minimum fan possible, it contains,
most of the time, spurious results. That is, there are regions that are enclosed by
the resulting fan, and do not form part of the actual result. Figure 31 shows two
complex fans, its real addition (a very irregular shape), and the computed complex
fan. All points not in the irregular shape are spurious results, produced by complex

fan addition.

A+B
(Computed)

A+B
(Real)

FIGURE 31. Spurious Results in Complex Fan Addition

In most cases, the extremes of the resulting case are computed using the corners
of the addend fans, and that is precisely where the spurious result lie in the resulting
fan of an addition. When the result of an addition is added to another fan, it is very
likely that spurious behaviors lying in the corners will be used to compute the new
result. This problem is caused by the uncertainty contained in the representation,
which propagates through arithmetic operations. How much uncertainty is being
generated depends on the order of evaluation. In other words, complex fan addition

is commutative, but not associative. Figure 32 shows an example of how how the order

98

of evaluation alters the result; we first define three complex fans more equidistant in
angles; we evaluate a + b + c in all possible ordering combinations. Figure 32 proves

that the evaluation order may affect the results.

USER(957): (setq a (polar (interval [10 20])
(interval [10 20 1))
([10.0000, 20.0000] L [10, 20]1)

USER(958): (setq b (polar (interval

{(interval [130

([10.0000, 20.0000] L (130, 140])
(setq c¢ (polar (interval [i 2

USER(959) :

([1.0000,

USER(960) :

([6.4524,

USER(961) :

([6.3229,

USER(962):

([6.4524,

USER(963) :

([6.3229,

USER{964) :

([6.3229,

USER(965) :

([6.3229,

{interval [250

2.0000] L [250, 260])

(setq abc
22.1928] L
(setq acb
22.1141] L
(setq bac
22.1928] L
(setq bca
22.1141]1 L
(setq cab
22.1141] L
(setq cba
22.1141] L

{polar+ (polar+ a b)
[28.8175, 121.1825])
(pelar+ (polar+ a c)
[26.3283, 117.1285])
(polar+ (polar+ b a)
[28.8175, 121.1825])
(polar+ (polar+ b c)
[32.8715, 123.6717])
(polar+ (polar+ c a)
[26.3283, 117.1285])
(polar+ (polar+ c b)
(32.8715, 123.67171)

{10 20 1)

140 1D))
1)
260 1))
c))
b))
c))
a))
b))

a))

FIGURE 32. Complex Fan Addition Is Not Associative

From our minimality results, we have that each evaluation contains all the
possible results of addition a + b + ¢. Therefore, the intersection of all of them must
as well enclose all the results, and it is at least as small as any of the results for the
different evaluation orders. Taking the intersection in this example, reveals that none
of the evaluation orders provides a minimal result. This indicates that there is not

a straightforward method to provide an evaluation ordering which provides optimal

99

results for addition expressions of complex fans. More work needs to be done in this

direction.

Reasoning about change

In the previous subsections, we derived arithmetic operators for the complex
fan domain. Those operators will be used in evaluating expressions while performing
value propagation (see Chapter III}. Another form of reasoning that we need to
provide as part of the complex fan abstract data type is first order reasoning (i.e.
reasoning about change).

The problem to solve in first order reasoning is to infer how a quantity changes
as a result of the changes in other quantities. For instance, in Ohm’s law, V = Z1I,
we know that if Z does not change and V increases, I increases, and we can say that
the change in I was a result of the change in V. This notion is captured by DeKleer’s
confluences [12], which are a qualitative version of equations involving derivatives.
For instance, the confluence equation for Ohm’s law is 8V — 8Z — 61 = 0, where
0X = [%], for any quantity X.

DeKleer's model deals with scalar quantities and their rate of change. Phasors,
in the other hand, are vectors in two dimensions, and the confluence model needs
to be extended to deal with them. A phasor has magnitude and angle, which can
vary and can be affected by other phasors independently. A phasor derivative will

be represented as a phasor 0X = (0X,,{0X,), where the magnitude (8X,,) and

60

angle(0.X,) represent the rate of change of magnitude and angle of the corresponding
phasor X.

In the general case, we have a confluence involving two or more phasors and we
need to derive how the changes in magnitude and phase angle of all but one phasor
affect the remaining phasor. In cur model we have equality, product, addition, and
parallel confluences, and their inverse relations. Equality confluences arise from the
fact that series currents and parallel voltages are equal (e.g. Is = I;). Product
confluences arise from Ohm’s law (see example in preceding paragraph). Addition
confluences arise from the fact that voltages in series and currents in parallel add
(i.e. Vs =V} + V3); also, impedances in series add. Parallel confluences result from

Xy

impedances connected in parallel (i.e. Z = par(X,Y) = £.5).

Equality

For equality constraints, it is obvious that changing the magnitude of one

changes the magnitude of the other, without affecting the angle, and vice-versa.

0X = oY
0X, = 08Y, (11.54)

0X, = 0Y,

61

Product and Division

Let us consider the phasor product

Z = XY
(I1.55)

ImlZ, = (XpYp)l(X.+Y,)
It is clear that the magnitude of the result does not depend on the angle and vice-

versa. So, one phasor product confluence can be seen as two independent confluences

8Zp — 80X — Y, =0
(11.56)
82, - 8X, - 8Y, =0

Division X = Z/Y can be derived in the same way, or directly solved from the

above confluences.

OXm —0Zm+8Y, =0
(I1.57)

0X,—0Z,+0Y, =0

Addition and Subtraction

As in the case of complex fan operations, complex fan confluence addition is
considerably more complex. In this case, we see that changes in magnitudes and
angles are not independent; changing a magnitude or angle can affect the magnitude
and/or angle of the resultant. Those effects add, and can be computed independently.
That is if we have Z = X + Y, to compute the final effect on 8Z,,, we can add the

influences of dX,,, 0X,, 0¥, and 8Y,. This leads to the consideration of four cases

62

of influences, magnitude to magnitude, magnitude to angle, angle to magnitude, and
angle to angle. In all those cases, knowing how X and 3Y is not enough to compute
0Z, we also need to know the values of X and Y, because the confluences change in
different regions of the complex plane.

For the derivation of confluences in the four cases, consider the phasor addition
Z = X +Y. First we consider magnitude to magnitude influences. In this case,
our intuition misguides us. For example, if the magnitude of ¥ remains steady and
the magnitude of X increases (no changes in the angles), we might think that the
magnitude of Z must increase. That is correct for some values of X and Y, however,
it is not always true. Figure 33 shows in the left the case where 3Z,, decreases with

0X ., and on the right the case where 8Z,, increases.

R T =
[7
’ Ld U
’ U
i /'— '
Y b 2
........... B . - ’
o S] g :
~oh ‘' B .
Y N =F " '
- ’ !
\," TS - # ’
e ot
L e

FIGURE 33. Magnitude to Magnitude Influence

There is a point that limits both regions. Since 8Z,, = — in the left region
and 8Z,, = + on the right one, there must be a minimum for Z,, somewhere in
between. The expression that relates magnitudes in phasor addition is Z2 = X2 +
Y2 +2XmYnm cos a, where a = Y, — X,. Considering only the magnitude of X changes

(i.e. Y, =0,0Y; =0, and 8X, = 0), we can find the place where the derivative of

63

Zm is zero,

%3" =2Xn 82 + W cosain =0
K (92X + 2V cosa) = 0 (11.58)
a= cos“(—%),){m <Y,
'To compute how Y, influences Z,,,, we follow the same procedure, obtaining the
condition,

= cos‘l(—;;—m), Yn < X (11.59)

Let us consider complex fan X; X, and X, denote its magnitude and angle, and
0X,» and 80X, the sign of the rates of change of its magnitude and angle, respectively.
We will use the notation I + (0Zy,0Xn),I — (02y,8X,,), and I £ (8Z,,,0X,,)
to denote positive, negative and both influences of 8X,, in 8Z,,; same for other
variables and subscripts. Figure 34 shows the pseudo-code to compute the magnitude
to magnitude influences in phasor addition.

Now, we consider magnitude to angle influences. When the magnitude of one of
the addends increases, it tends to “pull” the resultant to its side, influencing the angle
towards it (e.g. right part of Figure 33). To prove it, we start from the expression

for the angle of the resultant, taking X as reference (X, = 0),

Z, = tan'l(YmsSin Yo)

Xm+ YncosY,
= tan~!(e) (11.60)

Magnitude-to-Magnitude(0Xr, 0Ym, X, Yin)
if X, <Y,
e =cos H(~Yn/Xn)
if > a,
I-(0Zy,0X5)
else if o < a,
I+(8Z,,0Xn)
else
I+ (8Zy,0Xm)
else if X,,, > Y,
I+ (0Z,,0X,)
else
I+(0Z2,,0X,)

ifY, <X,
e = €05~ (=Xn/Ym)
if a>a,
I—(8Zy,0Y,)
else if o < a
I+(0Z,0Y,)
else
I1+(0Z,,,8Y,)
else if ¥,, > X,
I+ (0Z,,,0Y)
else
I+ (02,,0Y,)

FIGURE 34. Pseudo-Code for Magnitude to Magnitude Influence

65

Since tangent is a monotonic function, it presents an extreme where its argument

does (if there is one in its domain). So, assuming only the X,, changes,

dt (Xm + YmcosY,)?
—Y, sin Y,,d—zﬂ =0 (I1.61)

Since Y}, cannot be zero, we find extremes only when sinY; = 0 or sin ¥, = 180,
which is when both addends are parallel. In this case, a change in magnitude in the
addends does not affect the angle of the resultant. The pseudo-code for this case is

shown in Figure 35.

Magnitude-to-Angle(8X,,, 8Yy, Xim, Yir)
if not parallel(X,)
I—-(82,,0Xn)
I+(08Z,,8Yy)

FIGURE 35. Pseudo-Code for Magnitude to Angle Influence

Let us now consider the effect of a change in the angle of one addend to the
magnitude of the resultant. Assuming the magnitudes do not change, the resultant

will grow when the angle & decreases and vice-versa.

Z:i = X:+Y2+2X,Y,cosa

dz2

- = —=2XYsina

sina = 0 (11.62)

66

The roots are found at &« = 0 and @ = 180. Since a = Y, — X,, Z, will
decrease when Y, decreases and when X, increases, and vice-versa. When the angles
are equal, any change in angles would decrease the magnitude of the resultant. When
the angles are opposite, any change would increase the magnitude of the resultant.

The pseudo-code for this case is shown in Figure 36,

Angle-to-Magnitude(0X,,, Y, X1, Yon)

if not parallel(X,Y)

I+(0Zy,,0X,)

I - (82,,,08Y,)
else if X, =Y,

I- (6Zm1 _(IaXal + |8Ya|))
else if X, = -Y,

I+ (0Z, —(|0Xa| + |8Ya[))

FIGURE 36. Pseudo-Code for Angle to Magnitude Influence

Finally, we consider angle to angle influences. When the angle of Y changes,
the resultant travels along the circle described by Y. For a region of Y,'s domain,

increasing Y, will decrease Z, and for the rest, it will increase. See Figure 37.

FIGURE 37. Angle to Angle Influence

Taking the derivative of equation II.60, considering everything constant except

67

Y., we have:

de _ (Xm + YmcosYo)Yincos YVolks + Yusin ¥, Y, sin ¥V, 4

dt (Xm + YincosY,)?
dY,

YmE{'(Xm cosY, +Yn)=0

XcosY,+VY,=0

1ty ox (IL.63)

Y, = cos X,

A similar situation is present when analyzing the effects of 8X, in 8Z,. The
pseudo-code for this part is shown in Figure 38.

Note that the pseudo-code presented in this section is in declarative form, in-
dicating how changes in the addends affect the resultant. To compute the overall
change in the resultant, we add all partial influences.

Phasor subtraction can be expressed in terms of addition, adding the minuend
plus the negation of the subtrahend. When negating a phasor, the rates of change of
its magnitude and angle are not affected. So, to compute confluence subtraction, we

compute addition with the same rates of change and the negation of the subtrahend.
Parallel and Parallel Inverse

The only remaining constraint to be solved is the parallel confluence for impedances.
Since the parallel constraint can be expressed in terms of product, addition, and divi-
sion, all of which have been solved, we just compute partial results for the numerator

and denominator, and then perform the division. Similarly, parallel inverse can be

Angle-to-Angle(0X,, 0Y o, Xm, Yi)
if X, <Y,
ae = cos™H =Y/ Xn)
if > a,
I-(82,,0X,)
else if & < o
I+(8Z,,0X,)
else
I+(82,,0X,)
else if X,;, > Y,
I+(0Z,,0X,)
else

I+(82,,0X,)

if Y < X
a, = cos™H (=X /Ym)
ifa>a,
I - (0Z,,0Y,)
else if a < a,
I+(0Z,,0Y,)
else
I +(08Z,,0Y,)
else if ¥;, > X,
I +(0Z,,0Y,)
else

I+ (8Z,,9Y,)

FIGURE 38. Pseudo-Code for Angle to Angle Influence

68

69

expressed in terms of parallel.

Related Work

Although there has been a considerable amount of work in the area of interval
computation, no one has dealt with interval complex numbers expressed in polar
form (i.e. complex fans). Alefeld [1] and Moore [35] provide very comprehensive
texts on interval arithmetic, calculus, and interval-based numerical methods; the need
to deal with complex numbers with interval attributes is mentioned, but restricted
to rectangular form. Bandemer [2] gathered several papers on modeling uncertain
data through interval computation, and none of them mention any work related to
interval complex numbers represented in polar form (i.e. complex fans). Davis [7],
in his article on constraint propagation with interval labels, presents a good survey,
including expressions for complexity of constraint propagation, languages used at the
time, and several examples. Still, none of the examples he presents include anything
similar to the methods developed in this chapter. R. Baker Keafott [26] presents an
implementation of an interval abstract data type. Our complex fan ADT relies on a
complex interval ADT; their implementation is more general, since it is aimed for a
more general use, our is more limited in the number of functions but it works with
intervals with symbolic limits and considers closed and open extremes.

DeKleer and Brown [12] developed the confluence model, which allows reasoning

about change and accounts for causality. Those concepts were developed to deal with

70

scalar quantities. The concept of confluence has been extended here to deal with two
dimensional quantities expressed in polar form (e.g. phasors).

In developing the algorithms for first order reasoning, we realized that the state
of the involved variables may change the confluences, raising the need to deal with
different models for different instances of the same problem. Other work (17, 31]
has solved problems where devices exhibit different behaviors in different operating
regions. In our case, the number of possible state combinations to be considered would
be very large, and the system would need to be constantly switching from model to
model as the state of the variables change. Instead, we developed the concept of
conditional confluence, where the sing of the variables in a confluences depend on the

state of the involved variables.

Chapter Conclusions

The first part of this chapter gives a brief introduction to the electrical engi-
neering terms used in this dissertation, defining phasors and stating why they are
important in the solution of linear circuits. The second part defines complex fans and
derives algorithms for implementing the necessary arithmetic operations. We have
proven that fan addition is complete but not sound. Nonetheless, if the information
provided is precise, the algorithm converges to the same result as polar computation
with real values for magnitude and angle, being therefore complete and sound.

We have also proven that the procedure to compute fan addition determines

71

the smallest possible fan that contains all results of the addition. By developing
this algorithm, we stay in the polar form representation, handling uncertainty for
magnitude and angle values and generating the least number of spurious results.

To complete the work on complex fans, in the last part of this chapter, we
presented a confluence model applicable to phasors. This is the first work on applying
confluences and causal reasoning to non-scalar quantities. The form of the confluences
changes depending on the state of the involved variables. We solved this problem by
developing conditional confluences, which are confluences that are activated when a
given condition is met.

In phasor confluences, changes in both magnitude and angle in one of the vari-
ables may affect the magnitude and/or variable of another variable; this results in a
complex model of interactions. The way we solved the problem is by considering the
different influences independently and adding their effects. The final result must, of
course, be consistent with results for that variable computed through other paths in
the constraint network.

In summary, we developed a representation for vectors with interval magnitude
and angle attributes, providing the arithmetic operations needed to perform value
propagation. Also, the confluence model was extended to cope with vectors expressed

in polar form.

72

CHAPTER. III

HYBRID REPRESENTATION CONSTRAINT PROPAGATION

Constraint propagation is an important inference engine for a variety of Al
applications that reason about quantities. Many systems [12, 17, 28, 52, 45] represent
the knowledge they reason about in terms of mathematical relations on qualitative
or quantitative values of quantities.

As mentioned in the previous section, we model electrical circuits as a set of
constraints and perform constraint propagation to infer as much (qualitative and/or
quantitative) information about the circuit as possible. Thus, constraint propagation
has to be implemented efficiently to allow our system to react in a reasonable time.
The constraints that form the circuit model can be classified into disjoint sets; this
allows us to implement specialized propagation algorithms, which are more efficient
than general ones. This section presents the design and implementation of HRCP
(Hybrid Representation Constraint Propagation), a constraint propagation engine
that separates constraints into sets presenting different domains and types of con-
straints with different representations. All this, of course, must be transparent to
the final user of the propagation engine, who sees the constraints in a uniform rep-

resentation. A circuit can be modeled in terms of the Kirchoff and Ohm’s laws that

73

govern its behavior; these mathematical relations are normally recorded as algebraic
constraints. Besides algebraic constraints, the user will provide the inference engine
with additional information. In general, constraints can be algebraic expressions,
qualitative or quantitative values for the involved variables, ordering and order of
magnitude relations, confluences, etc.

Several observations led us to the current implementation. A constraint-based
circuit model contains different types of constraints. While propagating ordering
constraints, we do not need to use value information. Also, ordering constraints
never compare quantities of different types; if we keep them separate, the problem
size reduces. If we keep constraints of different kinds separate, one can carefully
implement constraint propagation algorithms that perform efficiently for specialized
sets. Worst case analysis of constraint propagation shows this to be a hard problem [7].
These facts suggest the separation of constraints into sets that do not interact with
each other. By separating the constraints, we are applying the divide-and-conquer

principle to reduce the complexity of the algorithm.

Constraint Propagation

The observation that constraints can be classified into different sets, with dif-
ferent properties, leads to a heterogeneous representation. If we can make such a
classification and design a propagation algorithm for each set to be as efficient as

possible, we will obtain better overall performance. Although the sets of constraints

74

are disjoint, the sets are not totally independent. Some propagation procedures will
need constraints from other sets to complete the propagation, and some sets will have
(propagated) effects on other sets. Thus, we need to find a way to establish an order
of propagation in the different sets, to record what sets have been modified, (i.e. need
to be propagated), and when propagation has reached quiescence.

The idea to order propagation on sets of constraints has been taken from Waltz's

algorithm [50], which is shown in Figure 39. Waltz’s algorithm registers the con-

Propagation(constraints_to_be_propagated)
result «— empty
queue « constraints_to_be_propagated
while not(empty(queue))
constraint « remove(queue)
new_constraints «— propagate(constraint)
insert new_constraints into result
insert new_constraints into queue
return result

FIGURE 39. Waltz’s Algorithm

straints to be propagated in a queue. It then enters a cycle until quiescence is reached.
In the cycle, it removes a constraint from the queue, propagates its effects (when pos-
sible), determines what variables were affected and what constraints can be affected
by those variables, and registers them as constraints to be propagated. Quiescence
is reached when there are no more constraints to be propagated. In our case, we will
have a set of constraints of some type that will be propagated by some algorithm and

can result in new constraints being posted to different sets. Those constraints will

75

produce subsequent changes in those sets and possibly in other sets. The idea is to
register the constraint sets to be propagated in the same way Waltz's algorithm reg-
isters individual constraints. When a different constraint set is modified, it is added
to the sets to be propagated. Quiescence is reached when there are no more sets to
be propagated.

Instead of keeping track of the constraint sets to be propagated in a queue, we
decided to propagate sequentially, in a round-robin fashion. In the beginning, all slots
are marked as needing propagation. Each slot is visited in order; if the set needs to
be propagated, the propagation function is called and the propagation flag reset. If a
constraint set is visited and it is not marked, it is skipped. If constraints are posted
to a constraint set, that set will be marked. The system reaches quiescence when
it has visited all sets and finds no constraint sets to propagate. The result of each
partial propagation is recorded and the union of all produced constraints is returned.
This algorithm is shown in Figure 40.

Since we will have various implementations for our constraint sets, we need a
system flexible enough to accept any implementation of a constraint set that uses its
own propagator as defined by the ezpert (i.e. knowledge engineer). Assuming the set
of constraints represent a model of the device we are reasoning about, we will call the
whole set of constraints a model. A subset of the model will be called a constraint set.
A model will have several slots to store each constraint set. The slots will be defined by

the expert; a slot definition consists of a slot name, a class, an initialization function,

76

Global_propagation(model)
change « true
result « nil
while change
change « nil
for each constr_set in model
partial «— nil
when marked(constr_set)
partial « partial propagation(constr_set)
append partial to result
when partial
for each constr in partial
mark constraint.set of constr
change « true
return result

FIGURE 40. Global Propagation Algorithm

and matching templates. The expert is responsible for providing a class definition
and an initialization function for the object that will store each constraint set. The
matching templates will be used to determine the set where a new constraint will be
placed. HRCP will take those definitions and create a device model, with all the slots
initialized and ready to start receiving constraints.

In addition to the structure of each slot and its internal representation, the ezpert
must provide a propagation function. This propagation function will be responsible
for propagating effects of new constraints to its own and possibly to other constraint
sets. We have implemented several representations for constraints and tested the

system on some examples that will be discussed in section III.8.

7

Order of Magnitude Constraints

Ordering constraints impose a partial order on the quantity space. Examples
of this kind of constraint are A = B, A < B,and A > B, where A and B are
any two quantities that belong to the model. Given the constraints 4 < B and
B < (' the system should be able to infer 4 < C (all valid inferences need to be
sanctioned, of course). We know this problem is equivalent to that of computing the
transitive closure of a labeled graph, where the vertices are variables and the edges
represent relations among any two vertices. The Floyd-Warshall algorithm [6] can
be used to solve this problem in time bounded by O(n®), where n is the number of
variables involved in all constraints in the set. This algorithm is easier to code if the
constraint set is represented as a matrix M, indexed by variable and where M, g =7
iff ArB for any A, B variables in the model. Figure 41 shows the algorithm, where
n is the order of the matrix (i.e. number of variables), and T and T,y are temporal
variables.

The main idea of the algorithm is to compute the relation between two variables
i, and j, based on an auxiliary varjable k. Returning to the example in the previous
paragraph, leti=A, j=B, k=C, T;; =< (ie. A < B),and Tj; = < (i.e.
B < () at the time of the assignment statement in the algorithm. AND(<, <) = <
represents the intuitive knowledge A < B, B<C — A < C. OR(?,<) = < means
that if we did not know anything about the relation between 4 and C, and we discover

that A < C, we can consider the discovered relation a valid one.

78

Transitive_closure(M)
T —« M
Fork=1ton

Tk, k] « =
Fork=1ton

Told « T

Fori=1ton

Forj=1ton
Ifi # j then
T[i,j] « OR(T-dld[i,j),
AND(T(i, k], T[k,3]))

Return T

FIGURE 41. The Floyd-Warshall Algorithm

‘The same algorithm can be used to represent Order of Magnitude (OM) con-
straints between variables. The modifications involve developing consistent semantics
for the order of magnitude operators, and code the functions AND and OR. In our
case, we have developed a semantics that does not correspond exactly to that of
Mavrovouniotis and Stephanopoulous [33], but is very similar. The allowed operators

are shown in Figure 42.

0 c (14e)"

1
L L i L L.
1] 1]] 1]
= > > >
L
1]

FIGURE 42. Order of Magnitude Operators

All operators have the intuitive semantics, expressed in [33]. A = B has the
standard meaning. A ~< B means A is slightly less than B; A— < B means A is

significantly less than B; A « B means A is negligible with respect to B; A < B

78

means A is less than B, and represents the union of the three intervals between
operators ~< and <<). The semantics we sanction for the AND and OR functions
are expressed in tables 2 and 3. In those tables sections are separated by double lines;
for each section, the first two columns are the operands and the third one the result.
For instance, given A ~< Band B < C, using Table 2 (fourth section, row 1), we
can infer A « C; if we previously knew that A < C, using Table 3 (section 2, row
1), we can update our knowledge to reflect that A <« €. On the other hand, if we
knew that A ~< C, Table 3 (section 4, row 1), would detect that our new discovery
is inconsistent with our previous knowledge. The inference rules in tables 2 and 3
are intuitively correct and allow the system to draw reasonable inferences.

Phase angle ordering constraints between phasor variables can also be repre-
sented in the same way; the same algorithm can be used for constraint propagation.
The allowed constraints of this kind are Ahead, In_Phase, and Behind. These con-
straints are defined on the phase angle of phasors, whose domain is the interval
[0, 360]. This domain has the particularity that is circular, i.e. 0 = 360 and all angles
are expressed modulo 360. We need to be a little careful here; we can say that a
phasor A is ahead of B only if all values of A’s angle are ahead of all values of B’s
angle by no more than 180 degrees. This definition made us not sanction situations
like A Ahead B and B Ahead C — A Ahead C.

The table for the AND and OR functions for phase angle ordering constraints

are shown in figures 4 and 5.

V v A

VVVYV e A Aleer e v ed A A A A A

|

v Vv b A v Vv 2 A

<<_~=>>>>7_<<_~__>>>>?

lvvvvvvvvvy

222 el UUAANNANANNANNNNANNA

V v i A

VVVYV] Ve Ac[Veioe AAANANNANe o0 o0 0r 000 0o 000 e 0o

v Vv o boA v Vv ol A v Vv 2l A

VVI2ZHNAAAACVV I 2N AAAAC|VV I ZHAAARANC

VVVVVVYVYVVY VYV

3 01000 A ANAANANN AN Ao e e e e e e

Y, 2 A AAAAA

fv vvVvVvVvVvVvaeceaecmellVa Ve AAAA Ao AAAAAAA-

v VYv 20 A v Vv 2l A llv Vv 2l A

VVI2ZHNAAAASIVV I ZHAAAACIVVEZITAAAAS
22 2 UUIAANAANAANANAANNA

VVVVVVVVVVIAAAAAAAAAAIAAAAANANAANAA

VVVVYV v Vv 2l A

v vVVvVVVVVaca]VVIZINIAAAAC

<<<~_>__< Vv 2l A

VVI2ZHNAAAACIVV E 21 AAARARE

VVVVVVVVVY

VVVVVVVVVVVIR D031

TABLE 2. AND Table for OM Constraints

81

TABLE 3. OR Table for OM Constraints

<< | << [<< || < L | | =< | << | fail | ~< | << | fail
<< | < << || < < < -< | < -<f~< | < ~<
<< | =< | fail | < - < | -<|=-<|=-<|=-<||~< |=-<{ fail
<< |~ | fadl || < ~S el | =<~] fadl || v | g | g
<< | = fail | < = fal | —< | = fail | ~< | = fail
<< [>~ | fail || < >~ | faill | —< [>~ | fail | ~< | >~ | fail
<< | >~ | fail || < >— | fail | =< |>—=| fail | ~< [> =] fail
<< [> fail | < > fal |- < | > fail || ~< | > fail
<< | >> | fail || < >> | fail | -< | >> | fail | ~< |>> | fail
<< |7 << < ? < -< |7 —-<|f~< |7 ~<
= [<< [fail [>~ [<< [faill [>=]<< |fail | > |<< | foil |
= < fail j| >~ | < fail | >— | < fail || > < fail
= —< | faill | >~ |—<|fail {>—-|=-<| fail | > — < | fail
= ~< | fail)| >~ | ~< | fadl | > = | ~< | fadl || > ~< | fail
= = = >~ | = faill | > - | = fail || > = fail
= >~ | fail || >~ >~ > [> = >~ | fadil || > > | >
= >—|fail | >~ I>—|faill [[>=|>=|>-|> >—-|>—
= > fail | >~ | > >~ > = > >— | > > >
= >> | faill | >~ [>> [fail |[>—|>> | fail | > >> [>>
= ? — >~ |7 >~ [>—- 17 >—| > 7 >

>> | << | fad || ? << | <<

>> | < fail || 7 < <

>> | =< | fail || ? -<|-<

>> [~< | fail || ? ~g | g

>> | = fail || ? = =

>> | >~ | fail || ? > [>

>> | >— | fail || ? >—|>-

>> | > >> [? > >

>> | >> [>> || ? >> | >>

>> | ? >> || ? ? ?

32

ahead ahead ? in — phase ahead chead |
ahead | in — phase | ahead | in — phase | in — phase | in — phase
ahead behind ? in — phase behind behind
ahead ? ? in — phase ? ?
behind ahead ? ? ahead ?
behind | in — phase | behind ? in — phase ?
behind behind ? ? behind ?
behind ? ? ? ? ?

TABLE 4. AND Table for Angle Order Constraints

ahead ahead ahead || in — phase ahead fail
ahead | in —phase | fail | in — phase | in — phase | in — phase
ahead behind fail || in — phase | behind fail

| _ahead ? | ahead || in — phase ? [in—phase

[behind ahead | fail | ? ahead ahead
behind | in — phase | fail ? in — phase | in — phase
behind behind behind ? behind behind
behind ? behind ? ? ?

TABLE 5. OR Table for Angle Order Constraints
Valug Propagation

Value propagation (also known as label propagation [7]) is often needed, so
we implemented it as well. Variables can take on qualitative signs, real intervals,
or precise values for scalar magnitudes, or complex fans for phasor quantities (see
section I1.3). The sign of a number can be —, 0, or +. These qualitative values can
be expressed as intervals (e.g. + = (0, 00) notice the interval is open on both ends).
A precise value is represented as a point interval (e.g. 5 = [5,5]). So, we can express
any value a variable takes on as an interval and have a uniform representation for the
different levels of abstraction. By using this representation, we can mix information

available at different levels of abstraction. In order to do that, we have developed

83

an interval arithmetic package that can deal with qualitative values (e.g. co in one
of the limits). The qualitative interval package relies on a qualitative arithmetic
package, which has an extensible structure. If any application needs to deal with other
qualitative landmarks, they can be easily incorporated into the qualitative arithmetic
and automatically handled by the interval package. So, if a variable can take on values
from those domains, we can reason about devices at different levels of abstraction,
from qualitative reasoning provided by sign algebra to quantitative reasoning like
that provided in traditional numeric simulators. The more precise the information
the user provides, the more accurate the answer to queries will be.

An important feature of value constraint propagation is its multi-directional
nature. That is, if we have a constraint A = B+ C, any of A, B, or C can be
computed given values for the other two variables.! Generally, if we have a constraint
involving n variables, we can propagate values only if one of the variables is undefined.
This does not happen in the case of interval value propagation. That is, we could
have the three values defined and still infer additional information from the constraint.
For example, let A=B+C, A= (0, 20), B= (3, 5], and C = {1, 20]. Applying
propagation, we could derive A = [4, 20], and C = [1, 15]. Note that the computed
interval for A was [4, 25], but we took the intersection between that and the old
value. An interval can be seen as another constraint; therefore, the computed value

must be consistent with the old one. This guarantees that the intervals always shrink

! This feature is not present in imperative languages, where the order of computation is fixed by
the program designer.

84

and that the propagation procedure will converge for linear functions [45].

Our implementation of value propagation maintains a list of variables, associ-
ating with each variable a value and a list of expressions in which it is found. For the
previous example, A would contain the value A = [0, 20|, and the two expressions
B = A-C,and C = A-B. When we discover a new value for A, we can efficiently
determine what variables might be affected by that change. With each constraint set,
we store the constraints that have not been propagated yet, i.e. the variables whose
values have changed and need to be propagated. The propagation algorithm starts
with the list of unpropagated variables; it takes one variable at a time, propagates its
value, and place any modified values at the end of the list. The algorithm is shown

in Figure 43.

Value_propagation(variables_to_be_propagated)
result «— empty
queue + variables_to_be_propagated
while not(empty(queue))
this_var «— remove(queue)
new.variables « propagate_variable(this_var)
append new_variables to queue
append new_variables to result
return result

FIGURE 43. Value Propagation Algorithm

85

First-Order Reasoning

Reasoning about change can be accomplished if we represent the model of a de-
vice in terms of confluences or qualitative differential equations. Confluences represent
constraints about change [12]. For instance, for Ohm’s law in a resistor Vi = ZrIp,
we have the qualitative counterpart Vg — 8Zr — 8 = 0, where X represents the
sign of the derivative of variable X with respect to time (i.e. X = [dX/dt]). This
confluence indicates, for example, that if Zp decreases and Vj does not change, I
increases. The values 0X can take on, for any variable X, are signs. Therefore, 8X
can be considered as a simple variable, and confluences can be viewed like any other
algebraic constraint. Given this, the same representation and propagation scheme
used in value propagation can be used in first order reasoning.

In Chapter II the concept of confluence was extended to deal with phasors. In
the case of phasor confluences, the form of the confluence (i.e., the sign of the terms
in a confluence) depends on the value of the variables involved in the confluence. A
phasor is a complex quantity, represented by a couple containing magnitude and angle.
In a phasor variable, each component (magnitude or angle) of the involved variables
can vary independently. In the cases of product and division, magnitude affects
magnitude, and angle affects angle, and the expressions to compute the resulting
effects are simple. In addition, magnitude and angle can be affected independently; to
compute the final change in each component of the result variable we have to consider

how the magnitude and angle of the other two variables influence the magnitude and

86

angle of the result variable. See Chapter 11

Mixed Propagation

Another type of inference needed in our application domain is the discovery of
order of magnitude relations from numeric values (reals or intervals) and vice-versa.
For instance, from 4 = 0.0001, and B = 5000, we can conclude A « B. Our
implementation follows the semantics expressed in [33]. These semantics express a
relation A < B in terms of the relative value of one variable to the other (i.e. the
ratio of the variables). How big or small can the ratio of the two variables be, so that
we can assert a given relation? For example, A « B iff A/B < e, for some small
e. This leads to the definition of the different OM relational operators as intervals
on the ratio of the two related quantities. Figure 42 (page 78) shows the different
operators and the intervals on the ratios they represent. The parameter e can be
defined independently for each constraint set.

For any two given numbers, it is easy to verify if they satisfy a given relationship,
but in the presence of intervals, the discovery of these relations can be tricky. To be
able to assert an order of magnitude relation between two variables we need to make
sure that the relation is preserved for any allowed value. As an example, consider
A =11, 10], and B = [5, 5000]. If A = 1, and B = 5000, they satisfy the relation
A< B, butif A =10, and B = 5, B < A. Therefore we cannot say anything

about the relation between those variables. If, on the other hand, 4 = [1, 10], and

87

B = [15, 5000], we can at least say that A < B. In that case, if we want to find all
possible relations between any two variables, every time a variable is updated it must
be compared with the rest of the variables.

The phasor domain is not an ordered set, therefore a relation like A < B makes
no sense if A and B are polar variables. The real semantics of A < B in that case is
magnitude(A) < magnitude(B). Similarly, we have other ordering operators (Ahead,
In_Phase, and Behind) that relate angles of polar quantities. So, A In_Phase B really
means angle(A) In_Phase angle(B).

In the discovery of phase angle relations, phase angle ordering operators have
different properties than OM operators. For instance, the condition for an angle A to
be Ahead of an angle B, is related to addition, not to product. That is, A Ahead B
iff A— B € [0,180].

Inferences can be drawn in the other direction, too. If you have two variables, an
OM constraint that involves those two variables can refine their values. For instance,
A = [15,900], B = [15,1500], and the user asserts A < B (interval(<) = [0, 0.05]).
The largest value of A which is much less than the largest value of B is 75, and the
smallest value of B which is much greater than the smallest value of A is 300. So, we
can reduce the intervals to A = [300,1900] and B = [15, 75] (see Figure 44).

In general, if A = [a, 8], B = [c, d|, A op B and interval(op) = [op;, op,], A

can be refined as indicated in equation I11.64 (an analogous expression can be derived

A<<B
15 B 1500
: ''''''' : ' :
y Vv p—
0 75 300 o
) A A
: =
1 t | S
4 1
15 A 1900

FIGURE 44. Value Refinement from OM relations

for B).

e
M

interval(op)
A C interval(op)B
(111.64)
[0,, b] - [Oph Opr][c$ d]

Anew = [max(e,c op), min(b,d op,)]
Propagation Across Algebraic Constraints

Besides computing the transitive closure of OM relations, we sometimes need to
propagate them across algebraic expressions. For instance, for a parallel cluster with
a resistor and a capacitor we have the constraints Vg = Zrlg, Vo = Zelg, Vi = Ve
If we add Zr < Z¢, HRCP must be able to infer Iz 3> I. Pairs of equations related
by a third one, like in the precious example, will be called equivalent equations. To
perform this type of inference in an efficient manner, we need to keep track of all the
pairs of equivalent equations, as they are introduced into the model. These pairs are

associated with each variable on the right hand sides of both equations, such that when

89

a new ordering relation involving one of those variables is discovered, equations are at
hand and the new computation can be done efficiently. This procedure will generate

new OM relations to be propagated later, using the transitive closure algorithm.

User Interface

HRCP has two kinds of users: the ezpert (i.e. a knowledge engineer), who
defines what sets of constraints are available, their semantics, and the propagation
and verification functions for each set of constraints; and the client, who uses the
reasoning engine as a tool in the AI application. HRCP is a flexible and extensible
reasoning engine that allows the ezpert to define how the set of constraints is to be
partitioned into disjoint sets. All this manipulation is transparent to the client, who
sees a uniform representation for all constraints.

To define new constraint sets, the ezpert must provide a definition of the class
that represents each constraint set, and a function that creates such an object. Be-
sides the class definition, the expert has to provide function definitions for insertion,
consistency checking, and propagation of constraints.

For the client, the functions HRCP provides are assert, verify, and consistent?.
Assert includes a constraint (or list of constraints) in the model and then runs prop-
agation, and returns the result of propagation: a list of constraints that are conse-
quences of the new constraint plus the previous model. If the constraint is incon-

sistent, an error message is returned, indicating what constraints are contradicted.

90

Verify checks if a constraint is included in the model. Since the inference process
takes place at the moment of asserting a constraint, this step reduces to checking
whether the constraint is in the respective constraint set of the model. Consistent?
verifies that a constraint is consistent with the model, without actually inserting it.
The constraint is inserted in a copy of the model; if any inconsistency arises, we can
answer no. If not, the answer is yes.

For assert, first a copy of the actual model is made, and the constraint is then
inserted in the copy. If a contradiction is found it is reported to the user and the
model remains unaltered. Otherwise, the consequences of the insertion are returned
to the user and the model is updated.

There are two desirable features in a constraint propagator: one is the ability
to retract a constraint, and the other is the ability to explain the effects of the
assertion of a constraint. Both problems involve keeping track of the chain of effects
the assertion of a given constraint has; perhaps using a mechanism similar to the ones
used to maintain dependencies in ATM’s [11, 34]. This process is expensive in terms
of memory and time, and would also complicate and obscure the code. Instead of
implementing this bookkeeping mechanism, we chose to implement a history of the
events, with the respective copies of the model, as it evolves with those events. If
we keep track of that information, we can undo the effects of an assertion, by just
retrieving the copy of the model before that assertion happened.

To obtain the second feature, we implemented a limited explanation facility,

91

based on the trace of the propagation process. While propagation is taking place,
every time a variable is updated, the new value is recorded, together with the cause
(i.e. what variable produced the change through what constraint). When propagation
finishes, the user can ask HRCP to explain how a variable got its final value. HRCP
analyses the record of changes to variables and responds with the path of latest update
to the enquired-about variable. This produces an explanation of the events occurring

in the device.

Examples

HRCP has been tested on a number of circuits. In this section we present
examples that show how adding more and more constraints to the circuit model
changes the state of the circuit, reducing the number of possible behaviors the circuit
can exhibit under those conditions. Other examples show that HRCP can indeed
derive the kind of knowledge we will use in the different reasoning tasks proposed in
this dissertation. The circuit we will refer to is the one shown in Figure 1, repeated

here as Figure 45. When the circuit topology is provided to QPA, the circuit analyzer

s Ry L sml ..:J
R

* i ! i : ;
v@) ! IPIE Rzg C::’w)u;

FIGURE 45. An Electrical Circuit

92

(see Chapter IV) forms the BSOC, i.e. a constraint-based circuit model. The user
then interacts with HRCP, adding more constraints, until the analysis task has been

completed or an inconsistency is found.

Example 1

This example shows how HRCP allows us to do circuit analysis at different levels
of abstraction. Intervals, our general data representation, allow the circuit parameters
and variables to take on values that range from qualitative to quantitative, passing
through intervals. Qualitative values are represented as intervals with (possibly)
infinite extremes, i.e. — = [-00,0],0 = (0,0),and+ = [0,00]. Intervals with
finite limits allow us to express different levels of uncertainty, depending on their
lengths. Real values can be expressed as point intervals, e.g. 5 = [5,5].

We first assert a set of constraints that assign interval values to parameters
and/or variables of the circuit. We also assign real values to parameters and variables;
for instance w, the frequency of the system, was assigned the value 60, and Vi, the
voltage of the series cluster S;, was assigned the value 100. Figure 46 shows the
constraints and important details of the results. Since plotting the complex fans of
all variables in the circuit gets complicated, we are focusing on variables I, Jg,, and
Ip;. Figure 47 shows how the complex fans for those variables reduce as we reduce
the intervals of the input parameters, until they converge to a single point, when all

parameters are reals.

Asserting:

((variables (value W 60)) (variables (value VS2 100))
(variables (value L [0.5, 1.5 |)) (variables (value R1 [15, 20 }))
(variables (value C [0.002, 0.003])) (variables (value R2 [20, 30 |)))

Result:

((variables (value VV 100)) (variables (value ZL ([6, 120] £ 90)))

(variables (value ZR1 [5, 25]))
(vanables (value VL ([60.238, 191.722] £ [10 247, 54.149])))

(vana.bles (value IC ([0.474, 6.249] £ [290.739, 346.769])))
(variables (value IR2 ([0.131, 2.603) £ [200.739, 256.769])))
(variables (value IP1 ([1.107, 4.425] / [280.247, 324.149])))

Asserting:
({variables (value L [0.9, 1.1})) (variables (value R1 {16.9, 17.1)))
(variables (value C [0.0024, 0.0026])) (variables (value R2 [24.9, 25.1])))

Result:

((variables (value IC (]1.485, 1.953] £ [301.371, 307.320])))
(variables (value IR2 ([0.386, 0.536] £ [211.371, 217.320])))
(variables (value IP1 ([1.583, 1.970] £ [287.044, 291.736])))
)

Asserting:

((variables (value L 1)) (variables (value R1 17))
(variables (value C 0.0025)) (variables (value R2 25)))

Result:

((variables (value IC (1.697 £ 304.067)))
(variables (value IR2 (0.452 £ 214.067)))
(variables (value IP1 (1.756 £ 289.136)))

FIGURE 46. Example 1. Reducing the Number of Possible Behaviors

94

Notice that, as opposed to a regular circuit solver, constraints allow all variables
to be seen as input or output variables, without any previous declaration or modifi-
cation of the model. For instance, in example 1, the input is Vg, which is a voltage
variable not an input parameter. Based on the value of Vs,, the program computes

the value for the voltage of the source, seen by circuit solvers as the input parameter.

Example 2

This example shows how the inclusion of an order of magnitude constraint can
refine the values of the variables involved. Figure 48 asserts the same values as
the above example, only this time the constraints V; < Vs, and 75Aheadlp; were
included. Note that the inclusion of the constraint Vp;, < Vg, also generates other
OM constraints. The second constraint does not allow Ip,’s angle to take on values
that exceed 75, i.e. Ip; has to be Behind 75. Since our constraint language does
not allow inclusion of constants in constraint expressions, we had to create a dummy
variable. The effects of those constraints on the involved variables modify their values
and those changes are propagated through the constraint network. You can see how

the variables for those variables changed relative to example 1.

Example 3

In the event that the value of a variable becomes the empty set, or that by

propagating order of magnitude constraints we get to a contradiction (e.z. A > B

FIGURE 47. Graphical Representation of Complex Fans for Example 1

Asserting:

((variables (value W 60)) (variables (value VS2 100))
(variables (value L [0.5, 1.5])) (variables (value R1 [15, 20]))
(variables (value C [0.002, 0.003])) (variables (value R2 [20, 30]))
(variables (value IDUM (10 £ 75)))

(Ahead IDUM IP1) (< VP1 VR1))

Result:

({(< VC VRI) (< VR2 VR1)

(variables (value VC ([68.404, 100) £ [10.247, 48.728))))
(variables (value VP1 ([3.953, 52.077] £ [200.739, 256.769))))
(variables (value VR1 ([16.617, 88.507] £ [280.247, 324.149])))

(variables (value IC ([0.474, 6.249] £ [290.739, 346.769])))
(variables (value IR2 ([0.131, 2.603] Z [200.739, 256.769])))
(variables (value IP1 (| 1.107, 4.425] £ [280.247, 324.149])))

)
FIGURE 48. Example 2. Value Refinement by Order of Magnitude Constraints

95

96

Asserting:

((variables (value W 60)) (variables (value VS2 100))
(variables (value L 1)) (variables (value R1 17))
(variables (value C 0.0025)) (variables (value R2 25)))

Result:

Inconsistency:

Type: Values violate OM constraint
Executing: Value propagation
What: ((value VP1 (11.316 £ 214.067))
(value VR2 ([105.408, co) £ [0.0d0, 360.0d0))))
Contradicts: (= VP1 VR2)

FIGURE 49. Example 3. Detecting Inconsistencies

and B < A), the program does not insert the given constraints and the state of the
circuit remains untouched. Figure 49 shows an example where the values provided
by the user are inconsistent. HRCP computes values for the variables Vp, and Vg
which contradict with the constraint Vp, = Vp, (derived from the fact that R, is an

element of the parallel cluster P,, therefore, they exhibit the same voltage).

Example 4

Figure 50 illustrates how HRCP discovers order of magnitude constraints based
on the values of the variables.

Constraint ZL >—ZR1 indicates that ZL is greater than ZR1, but they are not
really close together nor very far apart. On the other hand, the constraint ZP1 < Z52

is indicating that there are values for ZP1 and ZS2 that can make ZP1 <« ZS2 or

97

Asserting:

((variables (value W 60)) (variables (value VS2 100))
(variables (value L [0.5, 1.5])) (variables (value R1 [15, 20]))
(variables (value C [0.002, 0.003])) (variables (value R2 [20, 30]})))

Result:

((variables (value ZL ([30, 90] £ 90)))

(variables (value ZR1 [15, 20]))

(variables (value ZP1 ([3.568, 12.043] £ [280.491, 292.619})))
(variables (value ZS2 ([22.59, 90.264] ¢ [35.850, 79.752])))
(variables (value IR2 ([0.131, 2.6039] £ [200.739, 256.769])))
(variables (value IS1 ([1.107, 4.4253] £ [280.247, 324.149])))
(variables (value IC ([0.474, 6.2493] ¢ [290.739, 346.769])))
(> — ZL ZR1) (< ZP1 Z52)
(Behind IR2 IS1) (Ahead IC IR2)

FIGURE 50. Example 4. Discovering OM Constraints from Value Constraints

ZP1- < ZS52 valid. Only the more general constraint ZP1 < Z52 can be asserted,
because it hold for all values in ZP1 and Z52.

The reader can also verify the angle constraints discovered from the values
displayed above. E.g., the maximum value that JR2’s angle can take on is 256.769,
while the minimum possible angle of 151 is 280.247, which indicates that TR2 will

always be behind I51.

Example 5

Another important kind of reasoning that QPA needs to exhibit is first order

reasoning. As explained in preceding sections, reasoning about change can be imple-

98

mented in terms of value propagation, where the variables represent derivatives and
take on qualitative (sign) values. Figure 51 shows the response of the system to the
query “what happens if the value of C increases?” (assuming the rest will remain

without change). Note that in Figure 51, (P V) stands for 8 V.

Asserting constraints:

((confluences (value (P VV) (0 L 0)))
(confluences (value (P R1) (0 L 0)))
(confluences (value (P L) (0 L 0)))
(confluences (value (P R2) (0 L 0)))
(confluences (value (P C) (+ L 0))))

Result:

((confluences (value (P VL) (+ L 7)))
(confluences (value (P VR1) (+ L ?)))
(confluences (value (P IL) (+ L ?)))
(confluences (value (P IR1) (+ L ?)))
(confluences (value (P VS1) (+ L ?)))
(confluences (value (P IV) (+ L ?)))
(confluences (value (P IP1) (+ L ?)))

FIGURE 51. Example 5. First Order Reasoning

In most cases, a simple change in a variable’s rate produces many paths of
ramifications, and HRCP just returns the set of all consequences of the asserted
constraint. To help the user understand those results and separate the different
causal paths, we have developed a simple explanation mechanism. Figure 52 shows
the explanation of how the change in C affects 8 Ip;.

The program output can be paraphrased as follows:

“When C' increases, Z¢ decreases, causing Zp; to decrease, which in turn

99

Explaining variable (P IP1)
((P IP1) (+ L ?) (P 152)
(confluences (== (P IP1) (P I82))))
((P 182) (+ L 7) (P Z52)
(confluences (== (P IS2) (DERIV/ (P V52) (P 252)))))
((p ZS2) (- L 7) (P ZP1)
(confluences (== (P ZS2)
(DERIV+ (P ZS2) (P ZS1) (P ZP1)
Z52 781 ZP1))))
((P ZP1) (- L =) (P ZC)
(confluences (== (P ZP1)
(DERIV-PARALLEL (P ZP1) (P ZR2) (P ZC)
ZP1 ZR2 ZC))))
((PZC) (-LO) (P C)
(confluences (== (P ZC) (DERIV-NEGATE (P C)))))
User provided: (P C) = (+ L 0)

FIGURE 52. Explanation for Example 5

causes Zsz to decrease. The decrease in Zg; causes Ig, to increase, causing

Ip; to increase as well, since they are the same current.”

Related Work

This chapter presented HRCP, an extensible reasoning engine that performs
constraint propagation. This reasoning engine is the main inference engine behind
the programs that reason about electrical circuits. In this section, we contrast our
work with the work in the fields of constraint programming and interval constraint
propagation.

In the area of constraint programming [29], and constraint logic program-

ming [5], several languages have been developed, to solve problems expressed as a

100

set of constraints. Screamer [40], CLP(R) [25], and Ilog [37] are examples of such
languages. These languages are more geared toward discrete constraint satisfaction
problems (CSP). In a CSP you have a set of constraints on variables with discrete
finite domains. The problem is to find an assignment to each variable such that all
constraints are satisfied. In contrast to CSP, our problem domain does not require
generating a particular solution to a given problem; determining the sets of possible
values the variables can take on is what is needed. For a completely specified problem,
the precise (single) solution will be generated, though. Since we are not performing
backtracking, the main feature of constraint programming languages would be of no
use at all to solve our problem. Besides, we would need to program our own propa-
gators to deal with our data types, specially complex fans. That is why we decided
to implement HRCP instead of using an existing system.

HRCP can be characterized as an “anytime algorithm”, as defined in [48]; that
is, the solution improves with time. As intervals and fans can only decrease in size,
the solution can only get better, until the system reaches quiescence.

Efficiency of constraint propagation depends on the implementation of the par-
ticular propagators for each constraint set. For the case of order relations, we have
implemented the Floyd-Warshall algorithm, which has time complexity O(n3). Qur
implementation of value propagation is comparable to AC-3 [47], where only con-
straints affected by variables whose values have changed are revisited.

There are other systems that perform constraint propagation over interval val-

101

ues. Davis (8] provides a complete study on constraint propagation with interval or
sign values. In his paper, Davis includes examples of applications to several domains,
characteristics of different constraint languages, their strengths and weaknesses, and
a complexity analysis for various cases. TMM [13] keeps a set of events, denoting par-
ticular instants of time. The time at which a given event happens, or the difference
between events are bounden by intervals. Constraint propagation is used to infer as
much as possible about time relationships between events. CLP(intervals) [3] imple-
ments a constraint logic programming language on interval domains. The authors
of CLP(R) focus on the application of the Newton interval method to solve systems
of non-linear equations; they are solving a different problem, our main concern is
just constraint propagation with values in the interval and complex fan domains.
Hyvonen [24] presents a numerical constraint propagation system that works with
intervals. He deals with closed intervals only; in our problem, we need to represent
intervals with open ends, such that —oo, 0, and oo are never part of a variable’s
domain. Ward et al [51] present a formalism to perform constraint propagation with
interval values, and applications to mechanical design. Although many people have
worked on constraint propagation before, their implementations are not readily avail-
able, so we could not really evaluate if their work would have been useful to solve our

problem or not.

102
Chapter Conclusions

Constraint languages allow us to model a device by a set of constraints. The
device model normally contains constraints of different kinds, which can be parti-
tioned into several sets with (possibly) different representations. We take advantage
of this fact to develop a framework for constraint propagation in which the user can
define how to partition the constraints in the model. Different representations allow
us to take advantage of the characteristics of each constraint set and to implement a
special propagation algorithm for each set.

A higher-level constraint propagation engine is provided, which ensures the
completeness of the propagation process. HRCP’s implementation is, in essence, an
eager reasoning mechanism. That is, as soon as the user enters a constraint, all its
consequences are computed. So, when the user enquires about a constraint, all the
system has to do is verify whether it belongs to the model. The system provides a
transparent representation for the client user, who sees an engine capable of recording
constraints in a declarative fashion, propagating them, and preserving consistency.

In this domain of application, we encounter several kinds of constraints: order-
ing constraints, value constraints, value-difference constraints, confluences, etc. The
system accepts all data in a uniform format (i.e. a constraint is expressed in prefix
form).

Our representation allows variables to have sets of values represented as con-

tiguous intervals (or complex fans, in the case of phasors). This constrains the kind

103

of constraints we can handle; for instance, we allow equality, but not inequality, since
propagation across inequality constraints can produce non-contiguous intervals (i.e.
intervals with holes). The value propagation mechanism is general and independent
of the domain of the variables in it. That is, the same mechanism is used to propagate
polar values for circuit variables as to propagate qualitative sign values for first order
reasoning.

In Section II.3 we mentioned the way uncertainty propagates through complex
fan addition, making them larger than the real result. We showed that complex fan
addition is commutative, but not associative; that is, when we have more than two
operations, the result depends on the order of execution. If we had all operations
in a single expression, we could try to find an optimal evaluation order, and reduce
the number of spurious results. In constraint propagation the operations need to be
evaluated when a constraint is being propagated. We do not have all the operations,
therefore we cannot change the order of evaluation. In performing value propagation,
complex fans are seen as constraints. If we compute a larger complex fan as a result
of propagating a constraint, this result will represent a weaker constraint, and when
intersected with the old value of the variable the recently introduced spurious results
will not contribute to make it grow (i.e. complex fans will never grow). This property
stops the propagation of uncertainty, which would grow unwieldly otherwise. Still, the
final values will contain spurious results, but they will not diverge due to uncertainty.

Ernest Davis presents a complete discussion on complexity of constraint prop-

104

agation with interval labels [8]. In his paper, Davis shows that propagation on linear
constraints with unit coefficients always quiesces if the starting state is consistent.
In our case all constraints are additions and products with unitary coefficients. A
problem arises in special cases, where propagation of one constraint iterates through
successively more refined intervals. Figure 53 shows the constraint, the initial values

for the variables, and part of the trace where the iteration takes place. This prob-

Propagating variable ZP1
evaluating : (== ZS1 (- 282 ZP1))
(- ([9.782, INFINITY} L [287.612, 43.788])
((5.901, 8.300] L [287.612, 292.619]))
Zz51=([1.481, INFINITY} L [39.266, 43.788])
inserting 251 in queue
Propagating variable ZS2
Propagating variable Z51
evaluating : (== 752 (+ ZS1 ZP1))
(+ ([1.481, INFINITY} L [39.266, 43.788])
([5.901, 8.3001 L [287.612, 292.619]))
2s2=([9.782, INFINITY} L [297.478, 43.788])
inserting Z52 in queue
Propagating variable Z52
evaluating : (== ZS1 (- ZS2 ZP1))
(- ([9.782, INFINITY} L [297.478, 43.788])
({5.901, 8.300] L [287.612, 292.619]))
Z51=([1.667, INFINITY} L [39.266, 43.788])
inserting ZS1 in queue
Propagating variable ZS1

FIGURE 53. Iteration Loop in Value Propagation

lem arises because non-linear functions (i.e. trigonometric functions) are involved in
the computation of fan addition. Since the arithmetic is being done at a given de-

gree of accuracy e, either the values change at least that amount, or our comparison

105

function indicates no change, in which case iteration terminates. Let us say X is in-
volved in a constraint that is iterating, and only its maximum limit X, is decreasing
from its initial value X,,, tending to X,;. The maximum number of iterations will
be (X;o — X,s)/e. If both limits are changing, the maximum number of iterations
for a given constraint is the maximum number for both limits. Even if the initial
value is (X,, = oo, the process always terminates in a finite number of iterations;
in this case, the first reduction takes the infinite value to a finite one, and the case
reduces to the previous one. Davis also mentions the FIFO heuristic we are using to
select constraints to be propagated in Waltz’s algorithm is much better than LIFQ
or best-first, in which case the number of evaluations (interval refinements) can grow
exponentially.

The implementation of the algorithm makes constraint propagation usable in
both on-line and off-line schemes. The main function of this inference engine is
to provide the expert user with a scheme to easily and rapidly implement efficient
constraint propagators to suit the application needs. On the other hand, the client
user sees a transparent interface, with a uniform representation.

The flexibility that HRCP offers to the user has proven to be of great value in
debugging the modeling language for our domain of application. We needed to find
a representation language that captures all information we want to express about a
circuit. In the process of finding such a language, we have changed the representation

several times, without having to change the constraint propagation algorithm.

106

CHAPTER IV

REASONING ABOUT ELECTRICAL CIRCUITS

In this chapter we address the reasoning tasks we wish to perform regarding
linear circuits in sinusoidal steady state. The main reasoning tasks we have devel-
oped are Analysis, First Order Reasoning (reasoning about change), Diagnosis, and
Incremental Design. Other reasoning tasks include the reduction of a circuit by order
of magnitude reasoning, and the generation of all qualitatively different states for a
given circuit. The set of programs that perform these reasoning tasks about circuits
in steady state have been grouped in a module called Qualitative Phasor Analysis
(QPA).

All reasoning tasks that QPA addresses are based on the concept of constraint-
based model of the circuit. First, the system generates the the BSOC. Next, the
user asserts a set of constraints that represent the circuit’s operating conditions.
Propagation of those constraints reduces the number of possible behaviors of the
circuit, yielding the Working Model of the circuit (WMC). Based on the WMC, QPA
performs the reasoning tasks described in the following paragraphs.

First Order Reasoning (FOR) is reasoning about change; i.e. determining what

the effects on the circuit variables are when we allow one or more circuit parameters

107

or variables to change. Typical questions solved by this module are “What happens if
R; increases?”, or “How can I get the phase angle of cluster S; to decrease?”. These
problems can be modeled and solved by confluences. The representation of confluences
can be seen as a particular case of the more general problem of value propagation, with
the characteristic that the algebraic expressions only involve addition and subtraction
and the values the variables take on are signs (i.e. —, 0, +).

Diagnosis can be seen as the process of measurement interpretation. The sys-
tems constantly probes a subset of the circuit variables, if any symptom is detected, a
set of candidate faults are generated. Those candidate faults can be verified by mod-
ifying the circuit (according to the suggested fault), simulating the new circuit and
verifying whether the observed behavior is an expected behavior of the new circuit.

The last problem we are addressing is Control Design. Control design answers
questions similar to those in FOR (e.g. “How can I get the phase angle of cluster
S) to decrease?”). In some cases, if one or more parameters are variable, we can
solve those questions by FOR alone. In some other cases, even if there are some
variable parameters, there is no setting of those parameters that would make us
achieve the goal(s). Furthermore, we might want to further constrain the solution
to control design problems (e.5. “How can I get the phase angle of cluster S; to
decrease, without changing V5,7”). The approach we take is based on means-ends
analysis; the initial situation is represented by the working model, the goal situation

by the constraints in the goal plus the design constraints, and the operators are circuit

108

modifications that, when applied to the circuit, change its conditions. We design by
inserting one modification at a time until all goals are satisfied and no constraint is
violated.

This module, responsible for reasoning about circuits in steady state, is called
QPA (Qualitative Phasor Analysis), and is sketched in the diagram in Figure 54,

illustrating its interaction with the constraint propagation engine (see section III).

Constr
Circuit Tree

QPA Circuit
Constrainis QPA Cire. m
Interface ~
Circuit t Consirinls
Diaghnsis Mudilication
Design ircui Tree
g Decomposition Circuit o ;
* Consimmints Circuit p—
N Clustering Automatic
Circuit Clustering Constrinl
Solver Clustering s Gencration
o . {Tree)
Constraints T
Cunstrainls
HRCP
o Constraint Setz

FIGURE 54. Qualitative Phasor Analysis (QPA)

The QPA interface receives ciruit descriptions and requests from the user or
another module and routes them to the appropriate component or to the propagation

module. The interface is also responsible for keeping a record of the circuit being

109

solved and its (possibly partial) solution. The different reasoning tasks that QPA can

perform are explained in the following sections.

Constraint-Based Circuit Model

The main idea behind our approach to qualitative circuit analysis and the other
reasoning tasks is to express the problem as a constraint propagation problem. In
that way, the user can assert facts about the circuit, and the constraint propagation
engine will compute the logical consequences of the assertions in the circuit model.
Those logical consequences can be used to verify that a given property or relation
among variable values holds, or how a change in the circuit parameters or topology
would affect the predicted behavior.

General knowledge {27, 49, 39} about the domain can be expressed in terms of
constraints (algebraic equations) obtained from basic electro-magnetic theory, Kir-
choff’s laws, and vector algebra. From those algebraic constraints, we can also derive
the respective confluences. We can express all that knowledge about the domain in
constraints of the following types: algebraic, value, phase angle, order of magnitude,
and confluences. Algebraic, value, order of magnitude, and phase angle constraints
will be used to determine the circuit behavior. Confluences will allow us to reason
about how changes in some variables cause change in other variables of the system.
Order of magnitude constraints can be used to simplify the circuit structure, when

possible.

110

To determine the set of algebraic constraints, we represent the circuit as a recur-
sive structure of parallel/series clusters [32]. From that structure, we can derive the
necessary algebraic and qualitative constraints that allow us to perform the reasoning

tasks we have in mind. For each single element, we can derive the constraints shown

in Table 6.
Element | Algebraic | Phasor Confluences
Constraints | Information L
R Zp=R [(Zp=0 dZr = OR

VR = ZRIR In—Phase(IR, VR) BAZR =0

OVr =0Zgr + 08I
C |Zo=X% |lZ2c=-90 |02Zc=-9C

Vc = Zcfc Ahead(Ig, Vc) BZZC =0

Ve =0Zc + 0l
L |Zi=wL |[Z,=90 02, = 8L
V=21, Ahead(VL, IL) 0.2, =0

oV, =0Z; + 81,

TABLE 6. Constraints for Single Elements

The constraints we derive for each cluster are shown in Table 7. In the table,
we assume a series cluster S5 with elements 1 and 2, and a parallel cluster P with
elements 1 and 2. Impedances, currents, and voltages are indexed accordingly. Notice
we are not sanctioning constraints like V; < Vs for the series cluster, since voltages
are phasors and the constraint does not hold under all conditions.

Figure 1, on page 8, graphically represents the idea of hierarchical clustering and
the production of constraints for each element and cluster in the circuit. Chapter III
mentions how the different constraints can be represented and how the constraint

propagation mechanism works. Chapter II mentions how addition and parallel con-

111

Cluster | Algebraic Confluences
Constraints |

Series |Is=1, |8ls =0l

S IS = Ig 6I s = 8I2

Ve=WVi+VWV, | OVs =0V; + V>

Ve = Zsls OVs = 0Zs + 0l

Zs = Z] + Zz BZS = 621 + 6Z2
Parallel | Vp =1} Ve = oV;

P V=1V, OVp = 0V,

Ip=5L+15 Olp = 01, + 81,
Vp=Zplp Ve =0Zp+ dip

Zp= EZTI-I-_ZZZ; 0Zp = parallel(6Z2,,87Z,)

TABLE 7. Constraints for Series and Parallel Clusters
fluences can be computed.
QPA provides a function that takes a circuit description and creates a circuit
object. The circuit is defined by means of its components and their interconnections.

For example, the circuit in Figure 1 (page 8) would be defined as shown in Figure 55

(define~circuit

:name test-circuit-1

:components
((voltage-source V 1 0)
(resistor R1 1 2)
(inductor L 2 3)
(resistor R2 3 Q)
{capacitor C 3 0)))

FIGURE 55. Circuit Definition

Circuit Analysis

We have a mechanism to represent and propagate the information in the constraint-
based circuit model. Given that, the process of circuit analysis can be seen as solving

the set of constraints that govern the circuit behavior. We start with a basic set

112

of constraints, the Basic Circuit Model (BCM), which represents the set of possible

behaviors the given circuit may exhibit.

Figure 9, repeated in Figure 56 illustrates one way to cluster our example cir-

I SSRR IR | Py

—AMA—N—F— +

I THR) L ilnzl Icl

i — T
e : Is) i _
V@) i § § ==iVpy |
- i Ie1]i Ra2 c E

52| P

...

FIGURE 56. Simple Circuit

cuit, and Table 8 shows how the circuit’s structure is traversed, and the constraints
generated.

Every time the user posts a new constraint, the set of expected behaviors is
(possibly) reduced by conmstraint propagation. The user-provided constraints (nor-
mally) represent the operating conditions of the circuit. After asserting the operating
conditions in the BCM, and running propagation, we obtain the WMC.

QPA provides functions to assert and verify constraints related to a given circuit.
Asserting constraints consists of passing the same constraint to the model of the circuit
and running propagation. To verify if a given constraint holds in a model, we check
if it is explicitly recorded; if it is, the constraint holds. If the constraint does not
exist in the model, it can be verified via constraint propagation. The constraint is
asserted to (a copy of) the model, and propagation is run. If propagation detects an

inconsistency, the constraint clearly does not hold. If propagation does not fail, we can

113

| Region | Algebraic | Phase Angle Confluences |
[Series | I, = I, dls, = 0I5,
Sy Is, =1Ip dls, = Olp,
V32 = Vs, + Vp, 3V52 = aVs, + anl
Vs, = Zs,1s, Vs, = 0Zs, + 01,
Zs, = Zg, + Zp, 0Zs, = 82Zs, + 0Zp,
Series | Ig, = I, OIs, = 0Ip,
81 I.5'1 =IL BISI =6IL
Vs, = Vg, + Vi 3V51 = BVRI + 0V,
Vs, = Zs,Is, 6V.5‘1 = 6251 -+ BIS,
Zs, =Zp + Z; 0Zs, = 0Zp, + 07,
Rl ZR, S Rl [ZRI =0 BZRl = 3R1
Vi, = Zg,Ip, In-Phase (IRU VR;) 8VR1 =0Zp, + OIp,
L Zy=wL {2, =90 8Z,=08L
V=21, Behind (IL, VL) oV, = 0Z; + dI,,
Parallel VP; = VRz an, = 6Vnz
P, Ve, = Ve Ve, = OV
Ip,=IR2+IC 6IP1=8I;;2+6IC
Ve, = Zp, Ip, 0Vp, =0Zp + OIp,
Zp = g2t 8Zp, = parallel(8Zr,,02¢)
(R, Zr, = Ry [Zp, =0 0Zp, = OR,
Ve, = Zg,In, In-Phase (Ig,, Vr,) | 0Vg, = 0Zp, + 0Ip,
C ZC = % LZe=-90 0Z¢c = —0C
Ve = Zclc Ahead (Ic, Ve) Ve = 0Z¢c + 81c

TABLE 8. Generation of the BSOC

say the constraint is holds, and even show the user the consequences of that constraint

in the model (the resulting constraints of propagation). Chapter III presented several

examples of how propagation works and how it can be used to perform circuit analysis

and first order reasoning. Figure 57 shows part of the set of constraints printed

following the circuit structure (i.e.

constraints are not shown in the figure.

clustering). Confluences and other algebraic

QPA presents several advantages over conventional circuit solvers. Verifying

that a relationship among circuit variables (a constraint) holds can be accomplished

ComponentI:
Single VOLTAGE-SOURCE: V

Component?2:
SERIES cluster: S2
nodes: (1, 0)
252 = ([20.3477, 22.3792] L [19.7045, 29.6023])
V52 = 100.0000
IS2 = ([4.4684, 4.9146] L [330.3977, 340.2955])

OMC = ((= V52 VV) (= IS2 IV) (= IS2 IP1) (= IS2 IS1))
Component1:

SERIES cluster: Si

Component2:
PARALLEL cluster: P1

Componentl:
Single RESISTOR: R2
nodes: (3, 0)
R2 = [20.0000, 21.0000]
ZR2 = [20.0000, 21.0000]
VR2 = ([26.3706, 40.7957] L [258.0103, 272.9154])
IR2 = ([1.25657, 2.0398] L [258.0103, 272.9154])
OMC = ((= VR2 VP1))
Component2:
Single CAPACITOR: C
nodes: (3, 0)
€¢ = [0.0020, 0.0025)

ZC = ([6.6667, 8.3333] L 270.0000)
VC = ([26.3706, 40.7957] L [258.0103, 272.9154])
IC = ([3.7853, 5.0618] L [348.0103, 2.9154])

OMC =_((= VP1 ¥C)

FIGURE 57. Printout of a Circuit Model

114

115

by verifying that constraint against the circuit model; if it preserves the model’s con-
sistency, we say it holds, otherwise it does not. A circuit model becomes inconsistent
if we have two contradictory ordering constraints (e.g. Vg, > Vp, and Vg, < Vp,), or
whenever the range of values for a variable becomes empty.

In this process, the values of the variables can range from qualitative to quan-
titative, in an intermixed form. That is, some variables may be precisely specified
(real numbers), while others may be partially specified by the use of intervals, and
yet others be left totally unspecified (i.e. we know all values must be positive). This
characteristic allows the user to provide the system with as much information as avail-
able at a given time. The system produces results as specific as its knowledge about
the circuit being analyzed. Of course, if all parameters are precisely specified, the
result is precise and coincides, in the numeric results, with any conventional circuit
analyzer.

An interesting characteristic found in constraint programming is that any vari-
ables can be input or output at any time in the computation; even change its role in
one execution. This makes the system ideal for situations where the user knows some
desired operating conditions and some parameters, and wants to design an accept-
able range of values for other parameters. The user can express the desired operating
conditions as value constraints, and QPA computes the range of values that the rest
of the parameters may take on to achieve the goal state. The point stated in the

preceding paragraph also applies here, the more precise the provided information is,

116

the more precise the design of the parameters will be. Figure 58 shows an example
of parameter design for the circuit in Figure 56. In this example, the user provides
values for all parameters but C, and some values for currents and voltages. A range
for C' and some other circuit variables are computed.

In specifying the operating conditions, or in designing ranges of parameters, the
information may be available incrementally. Perhaps the user asserts that the value
of the resistance R2 = [5,100]; later on, (s)he decides that Vs, > Vp,; later, more
information is obtained about R2, refining its value to R2 = [10,15]. The computed
interval for the capacitor will be refined as information arrives, getting more and more

precise. Examples of these properties were given in Chapter III.

First-Order Reasoning

The process of determining the impacts of changes in certain parameters to the
rest of the variables is known as First-Order Reasoning (FOR). The name comes from
the fact that the first derivative expresses the rate of change of a given variable; so,
FOR is the process of reasoning about first-order derivatives. Following the same
idea, the process in which we compute the possible values the circuit variables can
take on is called zeroth order reasoning.

Chapter I introduces the idea of FOR with an example query. In Table 8 we
derive some confluences directly from algebraic constraints. For instance, Ohm's law

for a resistor states that V' = ZJ. Deriving both sides of the equation and taking

(assert-constraint
‘((value W 60) (value VS2 100)
(value L [0.1 21]) (value R1 (5 25 1)
(value R2 [10 50 1)
(value IS1 ([1.583, 1.970] L [287.044, 291.736]1))
{value IR2 ([0.386, 0.536] L [211.371, 217.320]1))

(value VR2 ([9.707, 13.360] L [211.371, 217.320]1)))
ex01)

SERIES cluster
name: 52
nodes: (1, 0)

Component:
SERIES cluster
name: S1
.. values for other variables were computed as well

Component?2:
PARALLEL cluster
name: P1
nodes: (3, 0)

ZP1 = ([4.9255, 8.4355] L [279.6346, 290.2753])
VPl = ([9.7073, 13.3605] L [211.3713, 217.3201])
IP1 = (([1.5839, 1.9708] L [287.0449, 291.7367])

Componentl:

Single RESISTOR
name: R2
nodes: (3, 0)

Component2:
Single CAPACITOR
name: €
nodes: (3, 0)
C = [0.0019, 0.0034]

ZC = ([4.9680, 8.9924] L 270.0000)
VC = ([9.7073, 13.3605] L [211.3713, 217.3201])
IC = ([1.4858, 1.9640] L [301.3713, 307.3201])

FIGURE 58. Example of Parameter Design

117

118

the signs we have 9V = 8Z + 91, where X = [%], and |] is the sign operator.
Also, if V, Z, and I are phasors, we can relate the change rate of their angles by the
confluence 04V = 9/.Z + 041

In Chapter IT we derived the conditional confluences needed for phasor addition,
product, and to compute the equivalent impedance of a parallel cluster. Conditional
confluences express how derivative variables are related under different operating
conditions of the circuit. The same concept was captured in other work (17, 32] by
switching models when simulation reached a different operating region of a device.
In the case of linear circuits, we do not have many changing confluences, or models
that change drastically in the different states of the device. So, instead of creating
a different model for each possible combination of the variables involved in those
situations, we express the model of the circuit as a single set of constraints, where
only a subset of them can be used; determining whether a confluence can be applied
or not depends on the current situation of the circuit (i.e. the set of variable values).

A set of confluences allows us to derive the impacts of changes in magnitudes on
angles and vice-versa. This enables a complete first-order reasoning scheme, where we
can derive all possible consequences a change in a parameter or variable can generate.

FOR itself answers some design questions like “What can I do to make ZZg,
smaller?”. If there is a combination in changes in the parameters that can produce

that constraint as an effect, those changes are the answer to the problem.

119

Behavior Tree Generation

At any point, the user can ask QPA to automatically generate all possible
order of magnitude constraints consistent with the actual model of the circuit. For
example, if two elements are in parallel, a fully constrained model must include some
ordering constraint that relates the currents of both elements (since they share the
same voltage).

The Automatic Constraint Generation module traverses the circuit clustering,
verifying for each cluster, whether its variables (currents for parallel, and voltages
for series clusters) are already involved in a constraint. If they are not, it generates
a branch for each possible constraint and verifies if it is consistent, forming a tree;
inconsistent branches are pruned. This module returns a tree with all possible fully
constrained models of the circuit, which represent all qualitatively different solutions
for the circuit. For example, for the circuit model shown in Figure 57, we can see that
current I¢, in cluster Py, can be smaller, equal, or greater than current I',. Figure 59
shows part of the behavior tree for the same example.

Figure 59 shows only the order of magnitude constraints and the condition at
which branching takes place. The tree shown is very skinny, since the model did not
contain much imprecision. At the third level, only branch number one succeeded;
i.e. only I, < I¢ is consistent with the model, and branches containing I, = I and
I, > Ic were pruned. Since the tree can become very large, the nodes are numbered

in a systematic way.

ld)
Condition : NIL

Children
Id : 3

Children
Id
Condition
Voltage OMC

Current OMC :
Children

Id
Condition

Current OMC

Children

Voltage OMC : ((= VV VS2) (
Current OMC : ((= IS2 IV) (
(= ISt IL) (

I8
Is

: 33
: (>
: (>

(=
((=
(=

1]

VP1 VC) (= VP1 VR2))
IS2 IP1) (= IS1 1IS2)
IS1 IR1))

Condition : (> VS1 VP1)

Voltage OMC : ({= VV VS2) (< VP1 VS1) (= VP1 VC)
(= VP

Current OMC : ((=
(=

1 VR2))
2 IV) (= 182 IP1) (= IS1 1IS2)
1 IL) (= 151 IR1))

VR1 VL)

VR1 VL) (= VV VS2) (< VPi VS1)
VP1 VC) (= VP1 VR2))

IS2 IV) (= IS2 IP1) (= IS1 1S2)
Is1 IL) (= IS1 IR1))

: 331
: (< IR2 IC)

Voltage OMC :

: ((< IR2 IC)

((> VR1 VL)

(= VV v52) (< VP1 VS1)
(= VP1 VC) (
(

VP1 VR2))
IS2 IV) (= IS2 IP1)
(= Is1 1s2) (= IS1 IL) (= IS1 IR1))

FIGURE 59. Part of the Behavior Tree for Model of Figure 57

Diagnosis

120

Now let us consider the problem of diagnosis as measurement interpretation.

Given an electrical circuit, for which we have its description, model and operating

conditions. QPA can derive the set of expected behaviors the circuit may exhibit

under those conditions. We have measurement devices to probe a subset of the

circuit’s variables, and probe the circuit periodically to determine if the exhibited

121

behavior belongs to the set of predicted behaviors. If that is the case, we continue
probing and testing. If at some point we find the behavior unacceptable (e.g. some
currents or voltages are out of range), we have to determine and report the possible
fault or set of faults that made the circuit behave abnormally.

All quantities in a circuit are tightly related; the slightest fault may affect the
currents and voltages in most elements. As a result, magnitudes and phase angles of
voltages may be out of range even in normal elements or clusters, making them look
faulty. This fact complicates the process of diagnosis.

Let us think of a series cluster with two elements e, and e, forming part of any

linear circuit, as illustrated in Figure 60. Now assume a fault occurs in element e,

: el €2 :
E Rf s]E

FIGURE 60. Fault in an Element of a Series Cluster

short-circuiting it through a small resistance (a non-ideal short circuit). The total
impedance Z., will decrease and the current Jg, will increase, making V,, increase
and Ve, decrease. Depending on the nature of ¢, its current’s phase angle may also
change, affecting the phase angle of e;’s current, since the clusters are in series. The
rest of the circuit’s variables will exhibit similar effects.

Now, looking at element e;, we see that its current’s phase angle changes, but

its voltage’s phase angle changes also, indicating that its main characteristics have

122

not changed. Therefore, it is not a faulty element. An element’s or cluster’s phase
angle is defined as by {V — /I. Looking at the definition of impedance, assuming
phasor quantities, we have that the phase angle of a component (element or cluster)

corresponds to the angle of the component’s impedance

Vo V.V,
AN FER A
Vin
Z2 = Zmzza=}—z(vu- o) (IV.65)

We can measure absolute magnitudes of voltage and current on any element, and
phase angle difference (i.e. /V, — £1;) as well. That information can be used to com-
pute the magnitude and angle of the element/cluster’s impedance. The impedance is
then compared with the expected impedance of the element to determine if there is
a fault and, if so, of what kind.

To detect a symptom, we compare the observed magnitude and angle of a
variable with their expected values. If they intersect, we can say there is not an
inconsistency; otherwise, the element is symptomatic. Now consider a series cluster S;
(a similar consideration can be done for a parallel cluster), consisting of two elements
ey and ep, with impedances Z,, and Z,,. If both components of S; are normal (not
faulty), their observed impedances can be used to compute what we call the ezpected-
observed impedance of cluster S). In this situation, instead of checking Zs, against its
expected impedance, we verify it against its expected-observed impedance, which may

be a smaller set. This increases the accuracy of results in the presence of uncertain

123

information.

The determination of a fault is done using a set of production rules, derived
from first principles. That is, for each kind of element and cluster, we analyze the
consequences of adding each kind of element in series and parallel. For instance,
Figure 61 shows a situation where a capacitor C is short-circuited with a resistor B in

parallel. Note that the capacitor was renamed C, and the parallel cluster corresponds

Ico

Ze < Zeo
L Zc > /Zco

FIGURE 61. A capacitor Being Short Circuited by a Resistor

to the faulty capacitor, now called C, because it is the capacitor we are observing.
The phasor diagram shows the current before the fault I, the fault current I , and
the total current of the faulty capacitor I;. The current’s angle and magnitude are
drawn relative to the cluster’s voltage V. Based on the change in the ratio V/I¢, we
observe a decrease in impedance magnitude and a decrease in impedance angle. Each
possible situation corresponds to one rule, where the consequences of the situation
will be the condition of the rule and the added element the consequent of the rule.
We can consider ideal short and open circuit as special situations. In both, the

current in the element is zero; the difference is that in short circuit, the voltage is

124

also zero. There is still one more detail to take into consideration. When two or more
elements are connected in series, and they are open-circuited, all currents are zero.
Since no current is circulating by any of those elements, their voltages are zero, except
for the one that has the open circuit. The reason for the voltage of the faulty element
not to be zero can be derived from Kirchoff’s voltage law applied to the series cluster.
Since the voltage of all elements is zero (because their currents are zero), the voltage
of the faulty element must equal the voltage applied to the whole series cluster. The
dual situation is observed for short circuit of elements in a parallel cluster. Some of

the diagnosis rules are illustrated in Table 9.

Element Preconditions Fault
V=0 ..
Any I>0 Short circuit
I=0 .
V>0 Open circuit
. zZ < Z, .
Capacitor /7> 17, Parallel Resistor
Z < Z, .
(2 =12, Parallel Capacitor
Z < Z, .
Inductor (2 < 12, Parallel Resistor
Z>Z,
LZ =17, Parallel Capacitor
orlZ =12,— 180
. Z>Z, . .
Inductive Cluster (7 < 12, Series Resistor
zZ>Z, .
(Z< 12, Parallel Capacitor

TABLE 9. Selected Diagnosis Rules

One of the claims of this work is to be able to reason about the circuit with as

much information as available. This idea translates to diagnosis in two dimensions:

125

imprecise information and incomplete knowledge. Imprecise information captures
errors in measuring devices, and can be expressed by intervals. In this case, the
procedure outlined above works, using the interval and complex fan ADTs.

Incomplete knowledge occurs when the set of probed variables is a subset of the
circuit’s variables, i.e. we do not know anything about some variables. This situation
produces another set of possibilities. If we had no readings from e; in the series cluster
in Figure 60, none of the above rules would apply (i.e. the values of voltages and
currents are undefined, therefore they agree with any expected behavior); the fault
would go undetected. A fault in one of the components propagates upward in the
cluster hierarchy; a faulty element affects the impedance of the cluster it belongs to,
and so on recursively. How much a faulty element affects its parent cluster (i.e. how
fat do the effects propagate) depends on how precise the information is. The effects of
a faulty element vanish when it is combined with other elements; as the effect travels
upwards in the clustering tree, there must be a point where they go undetected. For
this example, if we find cluster S, with symptoms, and e; is not being measured,
there is a possibility that the fault resides in e;, or in S}, or in both.

If the two elements in Figure 60 exhibit observed impedances Z,;, and Z,_,
respectively, we can compute the expected value for the observed impedance of clus-
ter Sy; namely, Zsy,, = Za1, + Z,3,. Since our observations are normally real values,
comparing Zg; with Zg;_, will produce a discriminarion at least as good as the one ob-

tained by comparing it with the expected impedance Zs;,, which may be an interval.

126

This computed value Zg,,,, is called ezpected-observed impedance.

'The diagnosis process can be decomposed into several steps. First, we transform
the observations into a hierarchical data structure similar to the circuit clustering,
where each node will have the expected, observed, and expected-observed impedances.
This structure is called the monitor tree. While forming the monitor tree, the diag-
nosis rules are applied to each element and cluster, associating a set of possible fanlts
to each element or cluster. Next, the monitor tree is traversed computing all combi-
nations of possible faults; each combination (i.e. a conjunction of faults) is called a
fault candidate. Finally, each fault candidate will be applied to the original circuit
to model the diagnosed faulty circuit; the faulty circuit’s working model is formed
and the observations verified. Verification is done by asserting the ohservations (as
value constraints) to the faulty circuit model. If no inconsistency is detected, we say
the faulty circuit models the faulty behavior, and the fault candidate is promoted to
fault, otherwise, the fault candidate is rejected. The set of all faults that pass the test
are returned to the user. Figure 62 shows the pseudo-code for the diagnosis process.

Under this scheme, results improve with the amount of information available.
The more elements that are probed, the better is the diagnosis we can produce. Qur
diagnosis mechanism compares the observed impedance with the expected-observed
impedance first, and then with the expected impedance. The more elements we probe,
the more nodes will have a value for expected-observed impedance, and the diagnosis

will be more accurate. Also, for a given set of probed variables, the more precise

127

Model-Diagnosis(circuit, observations)

monitor-tree = gen-monitor(circuit, observations)

fault-cands = all-possible-faults(monitor)

result = nil

for each fault in fault-cands
new-circuit = modify-circuit(circuit, fault)
generate-model(new-circuit)
if not error(assert-constraints(new-circuit, observations))

result += (fault, new-circuit)
return result

FIGURE 62. Pseudo-Code for Diagnosis

our working model is and the more precise the readings are, the more accurate our
diagnosis is.

Figure 63 shows a set of observations and figures 64 shows part of the monitor
tree and the resulting diagnoses. Notice that since there is no information about
capacitor C, which is the faulty element, the diagnosis process takes into consideration
the possibilities of a fault in C, in Py, or in both. The result is sorted by number
of faulty elements in each fault expression, so the fault (PARALLEL C R) is the
first candidate to be tested; the test succeeds and we conclude that capacitor C is
being shorted by a resistor. Also, notice that node P, is the only one with fault
candidates; consequently, the result of the procedure all-possible-faults is equal to

the fault candidates in P;.

Ubservations:
((vv 100)
(Iv (4.207 L 322.031))
(Vs2 100)
(Is2 (4.207 L 322.031))
(VS1 (95.396 L 3.455))
(IS1 (4.207 L 322.031))
(VR1 (71.531 L 322.031))
(IR1 (4.207 L 322.031))
(VL (63.116 L 52.031))
(IL (4.207 L 322.031))
(VP1 (7.474 L 309.723))
(IP1 (4.207 L 322.031))
(VR2 (7.474 L 309.723))
(IR2 (0.373 L 309.723)))
(VC (7.474 L 309.723))
(IC (3.843 L 323.219)))

FIGURE 63. Observations for Circuit of Figure 57

Control Desi

128

Now let us consider the problem of circuit design. A control design task can be

defined in terms of an existing circuit, the goals to be achieved, and a set of design

constraints. The goals are to be specified as changes in the circuit’s variables, involv-

ing either magnitudes, angles, or both. For instance, for the circuit of Figure 56, a

design goal could be 9/Zg, = —, subject to the design constraint 8V, = 0. In words,

we want the phase angle of cluster S to decrease, without altering its voltage. We

are to find modifications to the current circuit that entail the goals without violating

the design constraints.

The control design problem can be seen as a planning problem, where the current

circuit is the initial state, the current circuit plus the goals and the constraints are

129

MONITOR:

SERIES cluster
name: S92
. no faults found in 82

Componentl:
SERIES cluster
name: S2
. no faults found in S1

Component?2:
PARALLEL cluster
name: Pi
nodes: (3, 0)

Expected voltage: ([10.095, 88.010] L [220.761, 289.974])
current: ([2.829, 7.307] L [300.270, 357.355])
impedance: ([3.568, 12.044] L [280.491, 292.619])
Observed voltage: (7.474 L 309.723)
current: (4.207 L 322.031)
impedance: (1.776 L 347.692)
expected/observed impedance: (+ L ?77)
Fault candidates: (((PARALLEL C R)) ((PARALLEL P1 R))

((PARALLEL C R) (PARALLEL P1 R)))
Componentl:

Single RESISTOR
name: R2
. no faults found in R2

Component2:
Single CAPACITOR
name: C
. no faults found in C2 (no observations)

Diagnosis = (((PARALLEL C R)) ({PARALLEL P1 R))
((PARALLEL C R) (PARALLEL P1 R)))

FIGURE 64. Results of Diagnosis

130

the goal state, and the modification actions are the operators. The problem is to find
a sequence of operators (a set of modifications to the circuit), such that the resulting
circuit satisfies the task definition.

To define the operators, we observe what happens to each element and cluster
when another element is connected in series or parallel. The consequences of the
modification will be the consequences of the application of that operator. The set of
operators (we call them design rules) are exactly the same as the set of diagnosis rules,
but the semantics of use are inverted. In the case of diagnosis the consequences are
seen as preconditions, to be matched with the observations. For a given design task,
we first select one goal to be achieved, and select the design rules that contain that
goal as a consequence. When applying an operator, the consequences indicate what
changes that operation causes to the current circuit. To compute all the ramifications
of the action, we can assert the rule’s consequents in the circuit model, but doing so
would cause inconsistencies. For instance, if we know that the impedance of a cluster
does not change (under normal conditions) and the rule says it will decrease (under
the faulty assumption), an inconsistency will be discovered immediately. To solve
this problem, we suspend all confluence value constraints for the cluster in question
and all its components; i.e. we make it a black box. That way, we could assert the
consequents and run propagation without producing inconsistencies.

The asserted consequences may entail some of the goals or violate design con-

straints. The application of each rule reduces the number of goals to be achieved, and

131

may satisfy or deny some of the design constraints; thus yielding a reduced design
task.

Each design task keeps a record of what design goals and constraints have been
satisfied so far. If a new design step violates any previously satisfied goal, we prune
the search tree at that node. This decision was taken to avoid design loops; e.g. rule
71 that ensures goal g, and violates g,, and r; that ensures g, and violates g1 will take
us back to the beginning. At each design step, we record the rule used and its relevant
consequences. Relevant consequences are the intersection of the consequences of the
rule with goals and constraints. This information is used to generate an explanation
sequence of the design process.

A design task can be formalized as a tuple <C,Rg,Sg,DC,IC,H>, where C is a
circuit, Rg are the remaining goals, Sg the satisfied goals, DC the design constraints,
IC the initial conditions, and H the history list. The procedure Design-Step, shown
in Figure 65, takes as input dtask, a design task, and returns a list of all design tasks
derived by satisfying one of dtask’s remaining goals.

We implemented a breadth first exploration of the search space. A queue of
remaining design tasks starts with only one element, the initial design task. Each
application of a Design-Step produces a set of new design steps, one for each applicable
rule. A node is removed from the queue; using Design-Step, its descendants are
computed and then enqueued to be explored later.

If all the goals of a design task have been achieved we then check that none of

132

Design-Step(dtask<C,Rg,Sg,DC,IC,H>, goal)
if Rg
rules = select-rules(goal)
result = nil
for each (rule € rules)
init-conds = suspend-values(this-goal,IC)
new-constraints = assert(init-conds+consequences(rule)+Sg)
if not(error?(new-constraints))
rel-constraints = (consequences(rule) + new-constraints)
N (Rg + Sg)
new-Rg = Rg — rel-constraints
new-Sg = Sg + rel-constraints
new-H = H + <rule,rel-constraints>
result 4+ = <new-C,new-Rg,new-Sg,init-conds,new-H>

FIGURE 65. Pseudo-Code for Design-Step

the constraints are violated. If any design constraint is violated, the system generates
a new goal that would reverse those undesirable effects.

In the search process, we have a parameter to indicate the maximum depth to
be searched (i.e. the maximum number of elements to be included in the design). We
can also indicate how many solutions to find; the number of solutions is typically one
or all, but may be any number. Figure 66 shows the search algorithm for incremental
or control design.

Figure 67 shows an example of the definition of a design task, together with a
transcript of two of the design solutions. The first solution causes Zg, to decrease,
leaving the magnitude undetermined. This causes the voltage Vs, to be undeter-
mined, therefore not violating the constraint. That is, there must be a setting for the

inserted capacitor that make the angle of S; decrease, without altering its voltage.

133

Incremental-Design(dtask<C,Rg,Sg,DC,H>)

result = nil
queue = dtask
while q

dt<C,Rg,Sg,DC,H> = remove(q)
selected-goal = select-goal(Rg)
new-designs = design-step(dt, selected-goal)
for each new-dt € new-designs
if not violates-constraints(sol-dt Sg(new-dt))
look-for-satisfied-goals(new-dt)
if not(Rg(new-dt))
if |H| <= *max-depth*
q + = Design-Step(dt)
else
if not (violates-constraints C, DC)
if |result] = *num-designs*
return result
else
result + = dt
else
q + = violated-constraint-to-goal (dt)
return result

FIGURE 66. Pseudo-Code for Incremental Design

The second solution causes the phase angle of S; to decrease, but also makes Vs,
decrease. Another resistor is inserted in parallel to P, which makes $,’s current and
voltage increase. This effect adds to the previous one, making the total outcome am-
biguous; this indicates that there must be a setting for the parameters of the design
elements such that the constraint is preserved (not violated).

Figure 68 shows another design example, with two goals and one constraint and
part of its solution. It is important to note that every time the design algorithm

inserts an element, it computes all its consequences, and it may be the case that

(def-dtask
:circuit ex01
:rem-goals ‘((confluences (value (P ZS1) (7
:constraints ‘({confluences (value (P VS1) (0

Solution:
(PARALLEL S1 C)
provides ((CONFLUENCES (VALUE (P ZS81) (7
(CONFLUENCES (VALUE (P VS1) (7 L

-

Solution:

(PARALLEL S1 R)

provides ((CONFLUENCES (VALUE (P ZS1) (7 L
(CONFLUENCES (VALUE (P VS1) (- L

(PARALLEL P1 R)

provides ((CONFLUENCES (VALUE (P ZP1) (- L
(CONFLUENCES (VALUE (P IP1) (+ L
(CONFLUENCES (VALUE (P IS1) (+ L
(CONFLUENCES (VALUE (P VS1) (+ L

L -)))
L2

=)
?))))

=)
7))))

7))
7))
(93)]
)

FIGURE 67. Design Task #1 and Solution

(def-dtask
:circuit ex01
irem-goals ‘((confluences {(value (P ZS1) (7
(confluences (value (P IP1) (+
rconstraints ‘((confluences (value (P VS1) (0

Solution:

(PARALLEL S1 R)

provides ({(CONFLUENCES (VALUE (P ZS1) (- L
(CONFLUENCES (VALUE (P ZS2) (- L
(CONFLUENCES (VALUE (P IS1) (+ L
(CONFLUENCES (VALUE (P IP1) (+ L

(PARALLEL P1 P)

provides ((CONFLUENCES (VALUE (P ZP1) (- L
(CONFLUENCES (VALUE (P ZS2) (- L
(CONFLUENCES (VALUE (P VS1) (? L

L-))»
L 7))))
L 2)))))

-)))
-)))
+)))
+))))

+)))
+)))
™)

FIGURE 68. Design Task #2 and Solution

134

135

some additional goals and/or constraints can be satisfied by the same operator. In
this example we see that inserting a resistor in parallel with S; causes 0Zg, = (—L=)
which in turn causes 8Zs, = (—/—). This makes the currents Is, and I p, increase.
By trying to meet one goal we have satisfied both. The constraint is violated and
an action is needed to satisfy that constraint. The system suggests the insertion of a

resistor in parallel with P, completing the design for this particular solution.

Related Work

There are numerous publications about analysis, design, and diagnosis of elec-
trical systems using qualitative reasoning, or model-based approaches. Most of them
are designed to solve problems with digital or DC analog circuits. Very few mention
analysis of linear circuits in sinusoidal steady state, and none of them have developed
and formalized a system to reason about linear circuits.

Stallman and Sussman [41] developed EL, a rule-based system capable of doing
circuit analysis. Their approach is based on constraints, expressed as rules. Those
rules fire when they have enough information to produce a result. This is one of
the first works where this kind of inference is called constraint propagation. The
applications they present are limited to circuit analysis with DC sources. Their main
focus is on controlling the search by use of dependencies derived from the constraints.

Sussman and Steele [45] present a language for describing constraint networks

and computing via those constraints. Their main field of application is electrical

136

circuits; their language allows the user to define circuit elements and their models.
Slicing is a mechanism they provide to have different views of a portion of a circuit;
this is equivalent to our clustering mechanism. They mention analysis of linear cir-
cuits in sinusoidal steady state, but they do not provide an antomatic way to generate
the constraint-based model; instead, they derive all constraints and do some algebraic
manipulation by hand. They mention some aspects of parameter design explicitly.
QPA provides modules to perform analysis and design based on the constraint repre-
sentation of the circuit. Heintze and Michaylov perform numerical analysis of linear
circuits in steady state using CLP(R) [23]. They generate the circuit model automat-
ically by using constraint templates that are instantiated at run time. They use a
complex arithmetic module, using rectangular representation. Their analysis is purely
numeric, their intent is to illustrate the applicability of CLP(R) in the electrical en-
gineering domain; they do not perform any reasoning about the circuit.

DeKleer's EQUAL [10] applies confluences to figure out how circuits work. His
work uses first-order reasoning to derive causal chains due to perturbations in DC
circuits. We have extended the concept of confluences to work with variables in the
complex fan domain. This enables us to perform first-order reasoning about linear
circuits in steady state. Williams [52] presents Temporal Qualitative Analysis, a
technique to derive transient behavior of non-linear circuits. This technique performs
large signal analysis of non-linear circuits by representing each circuit element, by its

different operating regions, and switching models when crossing boundaries.

137

In the area of diagnosis, there are quite a few publications, but most of them deal
with digital circuits, or DC non-linear circuits. Davis [9] presents a methodology for
diagnosis of digital circuits. His structural representation includes electrical, physical,
thermal, and electro-magnetic adjacency; he claims that many of the faults are not
only due to misbehavior inside an element, but also to interaction among elements.
He develops the concept of constraint suspension for troubleshooting. The idea of
constraint suspension is to find a constraint (element) whose retraction would leave
the model in a consistent state. We use a similar concept in design, when we eliminate
the derivative values of the element being modified, to avoid inconsistencies. Davis
uses a discrepancy detection criteria; when a discrepancy between the expected and
observed behavior is found the program traces back the discrepancies to the input,
verifying every element in every possible path. That approach is conceivable because
combinatorial circuits have a sense of direction from input to output. QPA also
uses a discrepancy criteria, following the clustering paths on the tree that present a
symptom, in the context of steady-state circuit behavior.

Genesereth [18] makes use of design descriptions to diagnose faults in combina-
torial circuits. Given a set of symptoms, the program DART generates tests, simulates
the results and generates a diagnosis. Hamscher [22] presents a system to diagnose
combinatorial circuits. The paper focuses on how to model specific devices to get

better results on diagnosis. That is, they focus on representing structure, behavior,

and faults.

138

QPA’s diagnosis process is limited in scope; dealing only with linear circuits.
Other systems [14, 44] have used more general modeling languages, like the one used
in QSIM. Nevertheless, most of them are unable to work with multiple faults, and
none of them, to my knowledge, works with incomplete and uncertain information
using intervals as the basic representation.

Subramanian and Dechter [44] present a diagnosis algorithm based on circuit
structure. The circuits they diagnose are combinatorial circuits, and they claim their
system works for circuits with cycles (sequential circuits). The diagnosis process is
presented as an optimization process to yield minimal-cardinality solutions. QPA
also provides minimal cardinality solutions to diagnosis problems.

In summary, most of the work in the field of circuit analysis, diagnosis, and de-
sign has focused on combinatorial and non-linear circuits, not involving linear circuits
and the interaction of phasors. Our work shares many basic features of others and
extends some other points. In particular, the characteristic of improving the diagnosis

with the amount and accuracy of information available is unique to this work.

Chapter Conclusions

This chapter showed the usefulness of our modeling approach. By using a
constraint-based model of the circuit, QPA can reason about linear circuits in si-
nusoidal steady state. QPA is capable of performing several reasoning tasks, such

as circuit analysis, diagnosis, and design, circuit simplification by order of magni-

139

tude constraints, and the derivation of all possible qualitatively different states of the
circuit.

All reasoning in QPA is based on a circuit model. Since the circuit model is
formed by decomposing the circuit in series/parallel clusters, the kind of problems
we can solve are limited to those that are series/parallel reducible; for other circuits
we can use delta-star transformations (see [30]) and implement a more general solver.
Delta-star transformations are well known in the field of electrical engineering; the
extension of this work to perform those transformations does not seem to be difficult.
Only the module that clusters the circuit needs to be modified, and the rest of the
modules are general enough to support the extension. Delta-star transformations
would raise other issues around our reasoning processes; one problem is that these
transformations eliminate some nodes and elements, and include new ones. In first-
order reasoning, for instance, causal chains would include variables corresponding to
elements that do not exist in the original circuit. This problem is not present in
series/parallel transformations, since the voltages and currents remain essentially the
same; the transformation is very intuitive. Another problem is that the formulas
for this transformations are more complicated; that would make value propagation
considerably slower, and more chattering in propagating constraints would be present.
Also, the more complex formulas, the more ambiguity will be present in confluence
propagation, making the results less useful.

Using constraint propagation we can perform circuit analysis, which can be seen

140

from several points of view. The use of intervals allows us to deal with information at
several degrees of abstraction, ranging from qualitative (sign) to quantitative (floating
point) values. The same mechanism can be used to express uncertainty. Measuring
devices, for example, do not yield accurate readings; the values they represent can
be expressed as the measured value plus/minus an error. That imprecision can be
expressed by intervals.

Constraint propagation gives all variables a double role; any variable can be seen
as input or output. This feature allows us to perform normal circuit analysis, where
we specify the parameters and the value for the sources, and all currents and voltages
are computed. Another possibility is to specify a subset of the parameters and a
subset of the variables, and let QPA compute values for the rest of the parameters
and variables. This feature can be used in parameter design, where we want to
determine in what range the unspecified parameters can be set, so that the circuit
exhibits the desired behavior.

An algorithm for diagnosis was presented in this chapter. This algorithm works
with as much information as it is available from the user. Imprecise and/or incomplete
information in the readings are tolerated by QPA. AS with analysis, the results of
diagnosis will be as accurate as the information we provide. The diagnosis process will
detect only those faults that maintain the circuit’s topology series/parallel-reducible.

Control design or incremental design consists of the insertion of a few elements

into an existing circuit to change its behavior. A design task specifies goals to be sat-

141

isfied and design constraints, which have to be preserved (not violated). The method
we present is basically means-ends analysis, where the initial situation is the current
circuit, the operators are the modification actions, and the goal state is specified by
the goal and constraints. The algorithm presented here provides a qualitative solu-
tion to the design problem. Once the design module returns a qualitative solution
to a design problem, the user can use parameter design to specify the value of the
parameters of the newly inserted elements, completing the design cycle.

The next chapter will explore the usefulness of our representation and reasoning
scheme one step further, applying it to the solution of problems from the domain of

power transmission systems.

142

CHAPTER V

POWER SYSTEMS

One domain of application suitable for using QPA is Power Systems Analysis,
Diagnosis, and Control Design [19, 20, 15). Power Systems are composed of linear cir-
cuits, with lumped, constant parameters, normally operated under sinuscidal steady
state. Typical components of a power system are generators, transformers, transmis-
sion lines, capacitor banks, and loads (normally containing resistive and inductive
components). Generators are energy sources that will deliver power to the system at
a fixed voltage. Transformers and transmission lines are responsible for transporting
energy from the production to the consumption sites. The loads are an abstraction
of the different devices consuming energy from the system.

Some of the problems that require solution in power systems are:

Fault Analysis. Given a power system under faulty conditions (normally a short
circuit), determine the voltage and currents in all elements and nodes. The
information derived from the solution of this problem is used in determining

adequate protection for the system against high currents and voltages.

Contingency Analysis. Similar to Fault Analysis, except that the changes in this

case are inclusion and/or disconnection of lines, transformers, etc. The problem

143

is to determine the changes in currents and voltages in all elements and nodes

of the system.

Power Factor Correction. There are problems in the operation of power systems
that require a slight modification in the system to achieve the desired behavior.
For instance, if the power factor in a load site is low (large phase angle), a
capacitor can be inserted in parallel with the load, with the resulting increase ‘
in power factor (decreasing in phase angle). A low power factor will increase
the reactive power circulation in the transmission lines and transformers, which
implies higher losses, the need for larger protection and switching devices, etc.

This situation is, of course, undesirable.

Power Distribution. Another problem that requires structural changes to be de-
signed is that of distribution of power transmission between parallel transmis-
sion lines. This problem arises in situations where the transmitted power in-
creases, or one of the parallel transmission lines fails and one of the remaining
lines is not capable of holding the resulting amount of current. In that case,
the problem is solved by rerouting part of the current through transmission
lines that still have some capacity. That is normally accomplished by installing
capacitors, tap changing or phase shifting transformers in series with the trans-

mission lines.

Load Studies. Given the voltages on the sources (generators) and the required

144

power on the loads, determine the necessary power (real and reactive) the
sources must deliver to the system, and the voltages on the loads. This in-

formation is important in systems planning.

Economical Load Distribution. Given the costs of generation and transmission,
determine how much of the required load each generator is to produce. This

information is very important for an economical operation of the system.

Fault and contingency analysis can be done by indicating the modifications to
the circuit, and letting QPA do the analysis work. The new currents and voltages can
then be compared to the original ones. Power factor correction and power distribution
are special cases of incremental design. The last two problems require a model that
handles power. We are not modeling power, but it would not be hard to include it in
the model, and our system is flexible enough to adapt to those modeling changes.

'To address the above problems, another layer, called Power System Analysis
and Design (PSAD), is built on top of QPA, as shown in figure 7 and repeated as
figure 69. The rest of this section illustrates how QPA can be used to solve some of

the problems in Power Systems.

Power Systems Modelin

Power systems, in their vast majority, are three-phase systems. Nonetheless,
their topology is usually depicted in a one-line diagram, which shows only one of those

phases, and a simplified version of the interconnections, with the ground omitted.

145

Constraints
Ps Tree
PSAD
] ps -
| ¥ L PS
Cire, | tterface W
Circ.| Copsir. | Tree
QPA Circuit
Constraints QFA |, Cire. -
et (G
Circuit] Constraints
Diagnhosis Modificatior
Desi T Tree
s Decompasition Cimut . J
+ i ircuit
Consimints L Circuit
= Clustering Automatic
Ciruit | Clustering Canstraint
Solver Clustering p— Generation
{Tree)
¢!
Constraints t
Constraints
HRCP

Constraint Sets

FIGURE 69. Architecture of the Complete System

146

Figure 70 shows a simple power system, represented by a one-line diagram.

@ @ ?
¢
¢ |
T TL L

FIGURE 70. One-Line Diagram of a Simple Power System

Mapping from power systems to electrical circuits is straightforward. First, we
must decide what models we are going to use to represent each component. The choice
of what model to use depends on the precision we need in the answer. At this point,
the model we have chosen is the one typically used for fault analysis: the simplest
model that accounts for the inductive reactance of transformers and transmission
lines, without paying any attention to losses or capacitive effects. We chose this
model because the resulting circuit has relatively few elements. Since the number of
constraints and variables grow with the number of elements, choosing simpler models
will make constraint propagation be faster. Simpler models simplify the confluences;
since we will be using sign values in confluences, there is no reason to use complicated
models when, at the end, our methods are going to lose the model’s precision. Also,
the inclusion of more elements would unnecessarily increase ambiguity in confluence
propagation, without giving any insight to behavior prediction. Since our reasoning
methods for design and diagnosis depend mainly on confluences, it is appropriate to
choose the simplest model. Figure 71 shows all the power system elements and their

respective models in the circuit domain.

147

Power System | Circuit Power System | Circuit
Component Equivalent Component Ecguivalent

I | Ztl
Bus Transm. Line

o] -
-_——

Ve Zg _Vm_ Zm
(| S| (O | &8

Generator Synch. Machine
¢
Zir % _VC[+ Zct

‘g g; _@D\— > (T nct
Transformer Control Transf.

I R 7 I__l H Ze

L nl \ S _‘(

Load Capacitor Bank

FIGURE 71. Modeling of PS Elements

At the time we define a power system, we can specify what model is to be
used and, at the end, compare the results of using different models. This makes the
system amenable to modification and extension. Although these are all the elements
considered at this point, and those are the only models we have used in our analysis,
the modeling module of PSAD provides a flexible way of declaring more power system
elements and different models for each power system element. If the user needs
more accuracy, the modeling mechanism is open to modifications; the model may be
changed, or new power system elements may be added.

Figure 72 shows the definition of the power system of figure 70; figure 73 shows
the circuit definition that PSAD generated for that power system, and its correspond-

ing circuit diagram.

148

(def-PS-element

:type GENERATOR
:name G

:models fault-analysis))

. other elements are defined here

(define-PS
:name PS1
:elements
(G (1)
(T (1 2))
(TL (2 3))
(L @GNN

FIGURE 72. Definition of the Power System of Figure 70

(def-circuit

:name PSl-circ 1 m\ > f@j\

:elements X1 Xu
((Vg (0 ng)
(Xg (ng 1)) Xg % ! l Xl
Xt (1 2N : n
(Xtl (2 3)) ., |me E

(X1 (3 nl))
(RL (nl 0)))) '“_'g@

FIGURE 73. Circuit Model of PS of Figure 70

149

Reasoning about a power system is done by producing the circuit model of the
power system and then calling QPA to perform the analysis of the given circuit under
the set of constraints the user defined. When the power system module receives the
results from QPA, those have to be translated back to their original meaning in the
power system. This process is straightforward, but represents an important concept
in the user interface; it would be really disconcerting for the user to receive an answer

in terms of unknown circuit elements.

Control Design

The kind of problems the Control Design Module addresses are Power Factor
Correction and Power Distribution [20]. To solve these problems, the power system
is modeled as a linear circuit, all operating conditions are passed to QPA, and then
the design task is translated to circuit terms and handed over to QPA for solution.
The results are translated back into power system terms and returned to the user.

Our design mechanism handles general design specifications. In particular, it

has been used to solve the two incremental design problems mentioned above.

Power Factor Correction

As pointed out in Chapter II, the electrical equipment that must be installed
to supply a given load is determined by its total power, and therefore affected by the

load power factor. Normal industrial loads operate at a lagging power factor, which

150

can be improved or corrected by the connection of capacitor banks in parallel with
the load.

As an example, consider the power system shown in figure 70; we want to
decrease the phase angle of the load. The design goal is 9Z; = (7¢=). PSAD
translates the design task to §Zs, = (?/~). The circuit and the design task are
passed to QPA, which solves the problem. Figure 74 shows the design task definition
and figure 75 shows the results of the translation to circuit terms, performed by

PSAD.

(def-PS-dtask
:PS PS1
:rem-goals ’((confluences (value (P ZL) (? L -))))
:constraints nil

FIGURE 74. Design Task Definition for Power Factor Correction

(def-dtask
:circuit PSl-circuit
:rem-goals ’({(confluences (value (P ZS1) (7 L -))))
:constraints nil

FIGURE 75. Circuit Design Task Definition Produced by PSAD

Among the solutions returned by QPA is the connection of a capacitor in parallel
with the series cluster S; figure 76 shows the results of QPA and figure 77 shows the
circuit diagram. The translated solution is shown in figure 78 and its corresponding

one-line diagram is shown in figure 79.

151

wolution:
(PARALLEL S1 ©)
provides ((CONFLUENCES (VALUE (P Z2581) (? L -0

FIGURE 76. QPA Solutions to a Power Factor Correction Problem

FIGURE 77. Circuit Solution to the Power Factor Correction Problem

Solution:
(PARALLEL L C)
provides ((CONFLUENCES (VALUE (P ZL) (? L -))))

FIGURE 78. Translation of QPA’s Solution

® @ @
ORH—
¢ | B
ZC

FIGURE 79. Power System Translation of Circuit in Figure 77

152

Power Distribution

There is another problem that can be solved by slight modification of the power
system: the problem of power distribution on transmission lines. All methods to
reroute power over parallel transmission lines require the insertion of a new element.
Those elements can be Capacitors, Tap Changing Transformers, or Phase Shifting
Transformers.

Consider two parallel transmission lines with equal inductive reactance, as

shown in Figure 80. The currents through both lines are equal and we want to design

@ Ia@

| §
- ——
>
v L
Ib

FIGURE 80. A Power Distribution Problem

a solution that ensures that I, < I,. Figure 81 shows the design task definition for
this problem in power system terms.

In all solutions, the correction element goes where the dashed circle is placed.
The first solution involves inserting a capacitor in series with the line whose current
is to be increased. Alternative methods to redistribute the current are by insertion
of a tap changing transformer (TCT), or a phase shifting transformer (PST)!. Both

transformers are modeled by the insertion of a voltage source that accounts for the

1[20, chapter 2] explains how these devices work

153

(define-PS
:name P52
:elements
(¢ (1))
(4 (120
(B (1 2))
(L (21))

(def-PS-dtask
:PS P52
:rem—goals ’((confluences (value (P IA) (- L 7))))
;constraints ’((confluences (value (P IB) (+ L 7)))))

FIGURE 81. Design Task Definition for a Power Distribution Problem

increase in voltage or phase shift produced by the control transformer, compared to
the other line.

The insertion of a capacitor is already covered in the design rules, but not
the insertion of transformers. Table 10 shows how control transformers affect the
behavior of inductances. It shows, from left to right, the inserted element, the phasor
diagram, and the consequences, or expected changes. Vi, is the old voltage in the
inductor, while V}, is the voltage of the inductor after the insertion of the control
element (same notation for currents); V7 is the voltage of the source modeling the
control transformer. For the case of a TCT, the voltage source is normally in phase
with the main source and for the case of a PST, they are very close to 90 degrees.
Similar rules have been derived for how those transformers affect other elements.

The design task is passed to PSAD, which models the power system and trans-

lates the design task in circuit terms, and then passes the problem to QPA. Among

154

Vo 07, =0
L7, =0

—@—/@D— Vio oV = +
LV, =0

TCT L Vr oI, =+
I 1, 0Ll =0

0Z; =0
8.Z, =0
a/Vy, = —
PST L oI, = +
BZIL = i==

TABLE 10. Design Rules for Control Transformers

the solutions that QPA produces are the three mentioned above (see figure 82).

The first solution includes a capacitor in series with transmission line b, as
shown in figure 83. The model of the line is a single inductor; including a capacitor in
serjes is equivalent to reducing the magnitude of the impedance of the line. Therefore,
the current in that branch of the solution circuit will be greater than the current in
the other branch. Note that the phase angle of the current is not altered by the
insertion of the capacitor. This explanation was paraphrased from the causal chain,
derived by QPA from the design operation.

Figure 84 illustrates both solutions, inserting 2 TCT and inserting a PST; since
both solutions are qualitatively equivalent, what makes them different is the numeric
values of magnitude and phase angle of the voltage source that models the trans-

former. At some point in the design process, while exploring the design search space,

dolution:
(SERIES B C)
provides ((CONFLUENCES
(CONFLUENCES
(CONFLUENCES

(SERIES B TCT)
provides ((CONFLUENCES
(CONFLUENCES

(SERIES B PST)
provides ((CONFLUENCES
(CONFLUENCES

(VALUE (P
(VALUE (P
(VALUE (P

(VALUE (P
(VALUE (P

(VALUE (P
(VALUE (P

ZB)
1B)
I4)

IB)
IA)

1B)
IA)

—~ o~
+ |
ol

0)))
0)))

(-Lo»N»

(+L-))»
(-L+)N

(+L -
(- L +)))

FIGURE 82. Translation of QPA’s Solution

YN

FIGURE 83. Rerouting Current by Inserting a Capacitor

155

QPA tries to satisfy the goal 81, = +, suggesting the insertion of a control trans-

former. The consequences of that rule are asserted to the circuit model; as a result,

we have that dI, = — is a also satisfied. The design is complete and returned to the

user; no more modifications need to be done.

156

Iy
“ _o-p— P
+ - Vt + ZI Zh]
Vg iz

FIGURE 84. Rerouting Current by Inserting a Control Transformer
Power System Analysis

As mentioned in the previous chapter the design module provides a qualitative
solution to the problem. To complete the design task, we can perform parameter
design for the new elements.

In performing to the analysis of the circuit in figure 84, we encounter a new sit-
uation: it contains two voltage sources. To solve circuits containing multiple sources,
QPA uses the superposition principle [27]. The circuit is decomposed into as many
circuit components as it has sources. In each component, only one source appears and
the rest are short-circuited. The idea of superposition is to compute the contribution
of each source to the solution, and then add all the components to get the final result.
QPA automatically performs the circuit decomposition, generates a partial model for
each component and the necessary relations to gather all partial results to yield the
overall solution. The algorithm for circuit solution is shown in figure 85.

Applying the superposition principle to this example, we short-circuit Vi, the
modified circuit is shown in figure 86. Short-circuiting V,, yields the circuit in fig-

ure 87.

157

Circuit Decomposition:
for each source Vi in the original circuit
form circuit component by short-circuiting all other sources
label this component Cvi

Component Solution:
for each component Cvi
Model component using QPA
Each variable X will be renamed Xvi

Gather solutions:
put all models (constraints) together
for each variable X in the circuit
add constraint X = sum(Xvi)

FIGURE 85. Superposition Algorithm

o =

e
e 2 I
+ ZL

FIGURE 86. Component Due to V,

QPA generates the partial models and the links that put the partial models
together to form the total model. Note that the current Iyr is in the opposite
direction to the current I,y,. So, the totaling constraint is I, = Iyyg — Liyr. QPA
considers the first source as the reference source and determines in what direction the
current flows through each element. For the rest of the sources, QPA verifies whether
the current flows in the same or opposite direction. Those polarities are recorded

with each circuit component, so that the circuit modeling module can determine the

158

_Z [\

s The -_ I
4 Lt
@) > I
Z a Z L

FIGURE 87. Component Due to Vi

right totaling constraints. Figure 88 and 89 show the partial components formed in
the circuit decomposition of the circuit of figure 84.

By providing precise values to each of the designs, we can see the difference in
behavior, even though they all satisfy the design. Figure 90 shows a comparison of
those results.

The main difference between those methods are in the final distribution of power
(current) over the lines. Using a Tap Changing Transformer, the real component of the
current (responsible for the real power) stays the same, and the imaginary component
(responsible for the reactive power) is redistributed. Phase Shifting Transformers do
not touch the imaginary part, but redistributes the real part of the current. Capacitors
redistribute both components of the current, without changing their phase angles.
These characteristics were in fact found by QPA, which derived the right phase angle
constraints. For instance, for the capacitor solution, it found that I, InPhase I Ly
while in the TCT solution, J, Ahead I;, and in the PST solution, J, Behind I L-

After the design module returns the solution “insert a tap changing transformer

in series with line b”, the user can ask: How can I make the current in line a

159

Circuit component: Vg
Polarities: ((La Vg +) (Lb Vg +) (S1 Vg +) (LL Vg +) (RL Vg +))
SERIES-PARALLEL cluster
name: SP1
nodes: (0, 2)
Component1:
Single VOLTAGE-SOURCE
name: Vg
nodes: (0, 2)
Component?2:
SERIES cluster
name: S2
nodes: (2, 0)
Component1:
PARALLEL cluster
name: P1
nodes: (2, 3)
Componenti:
Single INDUCTOR
name: La
nodes: (2, 3)
Component2:
Single INDUCTOR
name: Lb
nodes: (2, 3)
Component?2:
SERIES cluster
name: S1
nodes: (3, 0)
Componentl:
Single INDUCTOR
name: LL
nodes: (3, 4)
Component2:
Single RESISTOR
name: RL
nodes: (4, 0)

FIGURE 88. Printout of Component Due to V,

160

Circuit component: VT
Polarities: ((Lb VT +) (La VT -) (S1 VT +) (LL VT +) (RL VT +))
SERIES~-PARALLEL cluster
name: SP2
nodes: (1, 2)
Componentl:
Single VOLTAGE-SQURCE
name: VT
nodes: (1, 2)
Component2:
SERIES cluster
name: 53
nodes: (2, 1)
Componenti:
Single INDUCTCR
name: Lb
nodes: (2, 3)
Component2;
PARALLEL cluster
name: P2
nodes: (3, 1)
Component1l:
Single INDUCTOR
name; La
nodes: (3, 1)
Component2:
SERIES cluster
name: S1
nodes: (3, 1)
Component1:
Single INDUCTOR
name: LL
nodes: (3, 4)
Component2:
Single RESISTOR
name: RL
nodes: (4, 1)

FIGURE 89. Printout of Component Due to Vi

161

'
!
[
1
i
y
&
WS

) - > TCT
Tl 3= PST

—= Capacitor

.
.
===
.

L
FIGURE 90. Different Solutions to the Power Distribution Problem

decrease even more? A transcript of the explanation is shown in figure 91. What
the explanation shows is the affected variable, its value, the variable that affected it,
and the constraint that produced a change in it. What the query really asks is if
there is a change in Vr that can cause an increase in magnitude of I,. The result of
this query indicates an increase in the voltage of source V¢ would cause that change.
Translating this to power systems terms means increase the tap position in the TCT.

The explanation can be paraphrased as follows:

“An increase in Iy, causes I,y to increase,? this makes Vi 1 increase
and the same happens to Vpyyr, the parallel equivalent. This in turn
causes the current Ipyyr to increase, which causes the current Igyyp to

increase. As a result Vgsyr increases, which makes Vo increase.”

The question could have been asked in the other direction: “what happens when

the tap changes, increasing the voltage in the corresponding voltage source?”. The

2This is because I Lavg does not change. Ir,v, does not change because Vg doesn’t change and
none of the impedances change. This part was also included in the explanation, but not shown here
for brevity.

162

Asserting constraints:

((CONFLUENCES
(CONFLUENCES
(CONFLUENCES
(CONFLUENCES
(CONFLUENCES
(CONFLUENCES
(CONFLUENCES

Result:
((CONFLUENCES
L)

(VALUE (P Vg)
(VALUE (P VT)
(VALUE (P La)
(VALUE (P Lb)
(VALUE (P LL)
(VALUE (P RL)
(VALUE (P

(VALUE

(0L 0O)))
(7 L 2)))
(0L O
(0L O
(0L O
(0L O
ILa) (- L +))))

(P VT) (+ L ?)))

Explaining variable (P VT)
((PVT) (+ L 7

(CONFLUENCES
((P VS3VT) (+
(CONFLUENCES
((P IS3VT) (+
(CONFLUENCES
({(P IP2VT) (+
(CONFLUENCES
((P VP2VT) (+
(CONFLUENCES
((P VLaVT) (+
(CONFLUENCES
((P ILaVT) (+
(CONFLUENCES

User Provided:

T

L
T
L
T
L
T
L
T
L
T
L
T

(P VS3VT)
(== (P VT) (P VS3VT))))
?) (P IS3VT)
(== (P VS3VT) (DERIV* (P ZS3VT) (P IS3VT)))))
?) (P IP2VT)
(== (P IS3VT) (P IP2VT))))
7) (P VP2VT)
(== (P IP2VT) (DERIV/ (P VP2VT) (P ZP2VT)))))
?) (P VLaVvT)
(== (P VP2VT) (P VLaVT))))
?) (P ILaVvT)
(== (P VLaVT) (DERIV* (P ZLaVT) (P ILaVT)))))
?) (P ILa)
(== (P ILaVT)

(DERIV- (P ILaVT) (P ILa) (P ILaV)

(- ILaVT) ILa ILaV))))

(P ILa) = (- L +)

FIGURE 91. Verifying Design Using FOR

163

system would predict a decrease in current I, and an increase in current Iy,.

Topological Simplifications

In Chapter IV, we mentioned QPA’s ability to simplify circuits based on order
of magnitude constraints. Consider the circuit in figure 87, the component due to the
source in the control transformer. If the user asserts that the impedance of the load
is much greater than the impedance of the transmission lines, i.e. X > X,, QPA
can reduce the circuit to that of figure 92. In that case we infer that I;, < I, and

the load branch can be eliminated.

|

+
=
<
- |
]
5

'

&

3

—l<
@

o R,

N
-

]
__3

Zy

FIGURE 92. Reduction of Circuit of Figure 87 by Order of Magnitude Reasoning

Related Work

In the area of power system analysis, most of the work relies on matrix meth-
ods, for efficiency reasons [20]. Even some later work using constraint programming
languages bases their computations on linear algebra [38]. All those methods, while
gaining in efficiency, are sacrificing reasoning capabilities. Our methods have a greater

inference capacity, but are not as efficient as theirs.

164

Few researchers have worked on qualitative analysis of power systems. Struss {42,
43] developed a system to diagnose faults in power transmission networks. He uses a
relational approach to model power system components; consistency-based diagnosis
is used to find faults in the system, based on the reading of “distance protection
relays”. The representation he uses is not based on circuit theory; it focuses on what
relays tripped and whether the observations are consistent with the models of those
relays. Our system, QPA, is more focused on the understanding of behavior of electri-
cal circuits, and supports diagnosis based on its components’ behavior and on phase
angle information.

Hagman [21] addresses the diagnosis of power systems, focusing on the voltage
decay problem. When there is a short circuit and the protection devices do not
operate, most voltages present a decay, some branches present high currents, and
others present almost zero currents. Hagman uses a qualitative approach to solve the
problem, based on currents. His program uses the heuristic that sensors after the
fault will show decreased or zero currents, those before the fault will show increased
currents, and sensors in other branches will show a decrease in current. In Hagman's
approach, the circuit is traversed following the direction of current flow, comparing
observations with expected behavior. Starting at the highest element, a list is made
with all the element’s successors. If the current at a successor increased, the process
is repeated recursively, starting at that element. Otherwise, the element is discarded.

Diagnosis is performed by simple comparison, based on his heuristics. His approach

165

does not handle uncertain or incomplete information; reading for all the elements in
the path of a fault need to be available in order to diagnose the faunlt. Furthermore,
his reasoning capabilities are limited to diagnosis.

Pettersson [36] developed an approach to power system diagnosis similar to
ours. Based on readings of voltage and current, impedances are computed. The
elements that present discrepancies between predicted and observed impedances are
considered faulty. Our approach has the advantage that it deals with incomplete

and/or uncertain information. Pettersson’s approach is limited to real numbers.

Chapter Conclusions

Notice that reasoning about circuits in terms of phase angles is crucial to the
solution of these problems. This kind of reasoning is done by extending the circuit
ontology to include phase angles and phasor components. This capability is unique
to QPA; previous work in the field could not solve these kind of problems because
they did not include these components in the representation.

PSAD contains an interface to deal with the user’s requests and to keep track of
the power systems and the different results. Keeping track of that information allows
the user to easily compare and contrast different behaviors for the different control
options PSAD produces.

The application presented in this chapter shows that QPA can solve a set of

problems of interest to the power systems community. Those problems have been

166

studied extensively by electrical engineers and there are many different numerical
solutions to them. Nevertheless, those solutions only do numerical processing, where
all the knowledge to produce them is given by the engineer or programmer and the
results are analyzed by the power systems engineer. QPA captures the basic knowl-
edge about electrical circuits that allows PSAD to reason about the circuit, not only
to yield numerical information.

The methods in this dissertation and traditional methods are not rivals; they
complement each other. Automating the reasoning processes is necessary if we want
to have intelligent agents that assists electrical engineers in taking better and faster
decisions in design/operation of power systems. On the other hand, exact numeric
information is always necessary to determine protections for the system, forecast load,
etc.

In addition to the application of QPA to power systems, we envision the appli-
cation of QPA or PSAD to education, training of operators, etc. Simulation programs
only yield numerical results, giving the student no information about why results ap-
pear in the solution of a problem, or how a given solution was found. It will be very
useful for a student to get a chain of causal effects to questions like “What happens to
V5 if there is a short-circuit in cluster $37”, “What happens to V3 when V; increases?”,
or “Suppose transformer T'1 changes to a higher tap, how does the current (flow of
power) in line from buses 5 to 3 change?” In fact, those questions appear all through

the books on Power System Analysis, see for example [20, problem 3.13 on page 139;

167

problem 7.16 on page 282; problem 9.17 on page 379).

168

CHAPTER VI

CONCLUSION

In this chapter we discuss the evaluation of the implementation, the limitations
of this work, and future directions of research, the main contributions made by this

dissertation, and the final conclusion.

Evaluation

All ideas presented in this dissertation have been implemented in Allegro Com-
mon Lisp for Sun workstations. The different modules have been tested with numer-
ous examples. To demonstrate that our representation captures enough detail and
allows us to reason about circuits and power systems in the same terms we found in
books, we have tested the programs several examples from circuit and power systems
books. We did all the examples and problems found in chapter 5 of Kerr’s book Elec-
trical Network Science [27]; as an example, problem 5.10 gives a solution to a phase
angle correction problem, and asks the student to determine the value of the capaci-
tor to be inserted. Our system was able to produce that particular solution (among
others) to the design problem, and then perform parameter design to determine the

appropriate size for the designed capacitor. We also solved selected problems from

169

Walton’s [49] and Lancaster’s [49] circuit books.

To test the power system layer, we chose several examples from chapters 1, 2,
4, 7, and 10 of Grainger’s book Power System Analysis [20]. Some of those examples
involved transient analysis, but we were able to determine values for transient currents
and voltages using steady state analysis. Fault analysis can be performed by means
of steady state analysis by using the appropriate models (see [20] for a derivation of
short-circuit models) for each element, and analyzing the resulting circuit. Some other
problems had to be slightly modified, since they were not series/parallel reducible. In
some cases by removing one element, our system was able to solve them.

Several of the solved problems involved two or more sources. The problem
mentioned in Section V.2 involved two sources in the design solution and our system
proved to be useful in performing circuit analysis, parameter design, and first-order
reasoning with the multi-source circuit.

All of the above problems were small in size, i.e. less than 10 elements per
circuit. However, we tested the program with a system with 20 elements and three

sources. The set of test problems are presented in the Appendix.

Limitations and Future Work

‘There are several limitations in the representation and implementation we present
in this dissertation. The first of them is that the system is restricted to solving ciz-

cuits that are series/parallel reducible. Circuits that are not series/parallel reducible

170

can be still analyzed by using delta-star transformations. When the series/parallel re-
ductions get stalled, we perform a delta-star (or the converse) transformation, which
allows us to continue performing the series/parallel reductions. The main reason why
we decided to restrict the system in this aspect is that series/parallel reductions do
not change the circuit topology; when we reduce two parallel or series elements, what
we are doing is adding a different way of seeing the combination of those two elements
(ie. adding the constraints that allows us to model them in a different way). Delta-
star transformations, on the other hand, do change the topology of the circuit, adding
or removing nodes and connections. This fact complicates the reasoning process; we
are not only interested in getting numerical results, but an intelligible account of how
things occur in the circuit, based on first principles. We need to further investigate
the ramifications of including those transformations in the modeling process.

In the development of the representation and modeling process, we had to face
several trade-off situations. In constraint propagation, storing justifications of what
caused a variable to change gives us the ability to retract constraints, but it takes
more memory and time resources. The decision not to store that information led to
two main losses: constraints cannot be retracted, and results cannot be explained.
Although we are not storing a complete history of what variables changed, the causes,
etc., in the way TMSs do, constraint propagation records a trace of the last propaga-
tion process; this propagation trace represents the paths followed in the hyper-graph

of constraints in the propagation process. A path from one node (i.e. a variable)

171

to another represents the causal chain that explains how the first node affects the
other one. So, we could use those paths to generate explanations; however, the graph
may contain many paths from one node to another, or even have loops. Displaying
all paths would overwhelm the user and would not be useful; so, we decided to use
the path of latest update, which has proven to be useful in many situations but does
not provide the most interesting chain of causal effects in others. It may even be the
case that more than one path is necessary. This exposes another avenue for future
research, how to produce better explanations of a given result.

When modeling power systems with multiple sources we encountered several
problems. The superposition principle makes us decompose the circuit into several
components, for which different series/parallel clusterings are formed; this makes us
lose the sense of structure we have in single-source circuits. Our diagnosis mechanism
relies heavily on the structure of the circuit; in order to still be able to solve some
diagnosis problems, we do as much clustering as possible before decomposing the
circuit, so that at least some structure common to all components is preserved and
the diagnosis procedure still (partially) works for these type of circuits. We need to
investigate better ways to diagnose circuits with multiple sources.

In power systems control design, the power system modeler translates the design
tasks directly into circuit terms, disregarding what elements are involved and physical
restrictions on the kind of solutions that can be considered acceptable for certain

problems. For instance, QPA generates solutions like “connect a capacitor in parallel

172

with a transmission line”, which is obviously an infeasible solution. PSAD could
provide QPA with some topological constraints to avoid those problems and prune
the search space accordingly.

In the development of the system, we did not pay much attention to the user
interface, since it was not the main issue of this dissertation. However, to make
the system practically usable, we need to develop a much better graphical interface.
There are many tools available to develop WYSIWYG circuit editors, and to display
the result graphically. Unless all parameters are precisely specified, most quantities in
the system will be complex fans, which do not have a clear graphical representation.
Up to this point we have not searched for a single solution to the circuit analysis
problem under uncertain conditions; we limited ourselves to computing the domain
from which each variable can take on values (i.e. complex fan or interval values). A
solution is a member of the set of behaviors represented by the circuit model under the
operating conditions. A precise solution does have a clear graphical representation:
a phasor diagram. We envision a graphical interface where all changing parameters
can be interactively changed (e.g. slide bars to assign values in the allowed ranges),
and a window showing the corresponding phasor diagram updated for the given set of
parameters. The main problem with this scheme is time; constraint propagation on
interval labels is an NP-complete problem [7], the computation time would make this
solution infeasible. Perhaps restricting constraint propagation to allow only certain

operations, or lowering the accuracy of the system could yield faster implementations.

173

In Chapter V we mentioned the possibility of applying this work to educa-
tion. This extension would involve an incursion into the fields of intelligent tutoring
systems, student modeling, etc. This is closely related to the topic of explanation;
a human expert gives different explanations to different persons, depending on the
amount of knowledge the student has about the area or the particular system in
question.

An interesting extension would be to implement the physical interface to probe
real circuits, and experiment with the monitoring/diagnosis process in a power sys-
tems laboratory. This work would involve the development of measuring devices,
which would be probing the system constantly and providing their readings to the
monitor process. We believe this is a feasible plan, since constraint propagation
can be left out of the loop monitor/diagnosis; propagation would be performed only
when the operating conditions of the system change, to predict the set of expected

behaviors, and, at the end, to validate the fault candidates.

Contributions

In this dissertation we have developed a representation that enables us to reason
about linear circuits in sinusoidal steady state. This representation uses one of the
main tools in the field of electrical engineering, phasor analysis. The main idea is to
represent the circuit by a set of constraints that limits the set of allowed behaviors of

the circuit. The set of constraints involves magnitude and phase angle information for

174

each of the circuit variables. Based on this representation, we can perform qualitative
analysis of electrical circuits, covering both zeroth- and first-order reasoning.

An interesting capability of this system is the ability to perform circuit analysis
with as much information as provided by the user. This allows us to smoothly move
from totally qualitative to completely quantitative information as the user acquires
more knowledge about the conditions of operation of the circuit. This reasoning at
different levels of abstraction is realized by representing all quantities as intervals; sign
values can be represented as open intervals with infinite ends, uncertain information
can be expressed by means of interval values; finally, precise information (i.e. real
values) can be expressed as point intervals. Representing all values as intervals can
be used to express knowledge about the circuit at different levels of abstraction, or it
can be seen as a mechanism that allows QPA to perform analysis in the presence of
incomplete information. If the user has no knowledge about the value of a variable,
he or she just does not provide anything and QPA considers it simply to be positive,
as all values in this domain are positive.

Since QPA is based on a constraint-based model, its inference mechanism is
constraint propagation. Constraint propagation provides the feature that any variable
can be an input or output variable, or even change roles in the same execution of the
program; a feature not present in traditional circuit solvers. This feature allows
the user to perform parameter design by specifying the desired values that current

and voltage variables take on, as well as a subset of the parameters; QPA computes

175

the corresponding values for the rest of the parameters. The price to pay for these
features is computational efficiency; constraint propagation on arbitrary intervals is
known to be NP-hard. To provide an efficient implementation, a general constraint
propagation module was developed. This module stores constraints of different sets
in data structures with different representations; this allows us to develop specialized
constraint propagators, which are more efficient than general ones. The result of this
implementation, called Hybrid Representation Constraint Propagation (mentioned in
Chapter III) was published in an international conference [16).

The reasoning tasks we have in mind make polar representation of phasors more
adequate than the rectangular counterpart. The combination of interval computation
with phasors led us to the complex fan representation. In this representation, we
developed algorithms that guarantee completeness, correctness, and minimality of
results for the defined algebraic operations.

The proposed representation and modeling of linear circuits enables us to do a
number of reasoning tasks that were not possible previously with the state of the art

in qualitative reasoning and or electrical engineering. With QPA we can perform:
e circuit analysis at different levels of abstraction
s parameter design by means of circuit analysis

e the characterization of all qualitatively different phasor diagrams (i.e. states of

the circuit)

176
e reduction of the circuit topology, based on order of magnitude reasoning
e circuit diagnosis based on measurement interpretation

e control design as circuit modification

All these reasoning techniques take full advantage of QPA’s ability to deal with un-
certain and incomplete information. For instance, diagnosis with uncertain or missing
readings guarantees diagnoses as accurate as the provided information allows, modulo
losses from the complex fan representation.

A main field of application of QPA, Power System Analysis, was introduced in
Chapter V. That chapter mentions two design problems solved using QPA, power
factor correction and power distribution on transmission lines. Power systems diag-
nosis was also mentioned in the same chapter. Contingency and fault analysis can be
performed by modeling the original system, modifying the system topology, solving
both systems, and comparing the results (this comparison must be done by the user
at this point). First order reasoning can alsc be used to plan control actions, provided
the system has one or more variable elements. After QPA determines which control
action is to be done, circuit analysis can be used to design the value of the parameters
to be changed, completing the design process.

QPA is an analytical tool that not only returns numerical results from a circuit
simulation, but is also able to reason about the circuit using the same terms found
in the explanations given in text books. This makes QPA an important tool to help

the student of electrical circuits to really understand what is happening inside the

177

circuit, as well as what would happen if parts of the circuit, or its operating conditions
change.

We conclude this dissertation stating that by extending the circuit ontology
to include phasor information, we have been able to broaden the range of systems
that can be analyzed and the number of problems that can be solved by qualitative

reasoning techniques.

178

APPENDIX
EVALUATION EXAMPLES

In this appendix, we present a series of examples used to evaluate the system.
These examples were useful in verifying the expressive power of our representation,
knowing the limitations of the system, evaluating the efficiency of our implementation,
and debugging our code. This appendix is divided in two sections, the first one
presents circuit examples and the second one power system examples. The circuit
examples were taken from Kerr [27], Walton [49] and Lancaster [30]; the power system
examples were taken from Grainger [20].

Circuit Examples

This section will be subdivided by circuit; in some cases, we have more than
one problem related to the given circuit. In each example we will show a diagram
of the circuit’s topology, a transcript of the input and output of the program, and
a brief discussion highlighting the important point of the given examples. In some
cases, the limitations of our system do not allow us to solve all parts of a problem;
in those cases, we changed slightly the problem statement, or solved only the parts
we could. In some other problems, the book provided partial designs and asked to
complete the design numerically; we went beyond the problem statement, designing
the solutions provided by the book and then solving the parameter design problems.
Very seldom the books provide design problems, they do not provide diagnosis either,
and of course, do not even mention interval computations. We made up some design,
diagnosis, and analysis problems to cover those cases. The first examples show more
or less complete transcripts of the input and output. In subsequent cases, we will show
only the interesting parts, basing our discussions at the circuit level and providing
explanations similar to those found in text books.

Circuit #1

The circuit that we made more experiments with is the one presented on the
examples throughout the dissertation. We performed nine cirenit analysis problems,
three design problems, and seven diagnosis simulations. That circuit is not presented
here, since it was extensively discussed throughout the dissertation.

179

Circuit #2

This circuit corresponds to problem 5.6 of page 187 of Kerr's book. The problem
statement asks to draw a phasor diagram; our system lacks that capability, but it
can perform the circuit analysis with the data the book provides, and the user can
draw the diagram from the results. Figure 93 shows the problem definition and
diagram. Notice that the clustering, unique in this example, corresponds to the one
of Figure 93. Based on the clustering, QPA produced the BSOC, which is not shown
here, for brevity. This problem was also solved using mixed information: real and
interval values. The introduction of a few interval values, causes most of the rest of the
quantities to take on interval values. Figure 94 shows the results of the computation
for the second case. We are not showing the first case for brevity.

Circuit #3

This circuit corresponds to problem 5.5 of page 187 of Kerr’s book. This problem
asks to find the voltage transfer ratio Ve, (jw)/Vs(jw) for the circuit of Figure 95. The
only symbolic manipulation that QPA performs is solving a constraint for all variables,
when an algebraic constraint is inserted in the model. Thus, QPA was unable to solve
this part of the problem. The second part of the problem asks to compute Vg, for a
given value of Vs. This part was solved, as illustrated in Figure 96.

Circuit #4

This circuit corresponds to problem 5.10 of pages 187-188 of Kerr’s book. This
problem asks to design the value of the capacitor to make the power factor unity.
In this example, we started with the circuit without the capacitor, and executed the
control design module. The solutions that control-design returned, included the one
proposed by the book. To complete the design process, we asserted value constraints
for all parameters, except the capacitor, which was the unknown in the process.
Figure 97 shows the circuit and task definition; the diagram includes the designed
capacitor, drawn with dashed lines. Figure 98 shows part of the trace of the control
design process and the parameter design query and answer. Notice that S;’s current’s
phase angle is zero, as specified in the statement of the problem, and the appropriate
value for the capacitor was computed.

Circuit #5

This is the circuit of problem 5.20 of page 189 of Kerr's book. This is an
interesting problem, because it includes two sources, one of which is a current source.
The superposition principle is applied, decomposing the circuit in two components.
Each component contains only one source, the rest are eliminated (i.e. voltage sources
are short circuited, and current sources are open circuited). Figure 99 shows the

(def-circuit
:elements '((r1 1 2)

name ‘ex21

(c 223)
(r2z 3 4)
(1 40)
(r3 30
(s 10))))

S3i

FIGURE 93. Circuit #2

Asserting conatraints:
((variables (value W
(variables
(variables
(variables

1)}

{variablea (value
(value R1 [0.50, 1.50]1})} {variables (value
(value R3 [2.00, 4.00])) {variables (value
(value C [1.00, 3.001)))

Vs i»
R2 21
L an

180

SERIES-PARALLEL cluster

SP1

nodes: (1, 0)

Component
Single
name:
nodes:
Vs =1
IS = (

Component
SERIES
name:
nodes:
Z53 =
V53 =
I83 =

1:
VOLTAGE-SOURCE
s

i, 0

[0.22, 0.83] L [337.17, 34.58])
2:

cluster

sa

i1, ©

([1.20, 4.51) L [325.41, 22,
1

([0.22, 0.83] L [337.17, 34.

82]

58]

Component1:
SERIES cluster

name:
nodes:

251
V51
Is1

s1

(1, 3)
= ([0.60, 1.80] L ([296.56,
= ([0.13, 1.49] L [273.74,
= ([0.22, ¢.83) L [337.17,

347.471)
22.051)
34.58])

Componentl:

Single RESISTOR

name: R1

nodes: (1, 2)

R1 = [0.50, 1.50]

ZR1 = [0.50, 1.50]

VA1 = ([0.11, 1.24] L (337.17, 34.58])
IR1 = ([0.22, 0.83] L [337.17, 34.58])

Component2:

Single CAPACITOR

name: C

nodes: (2, 3)

c =11, 3]

¢ = ([0.33, 1.00] L 270)

Ve = ([0.07, 0.83]1 L [247.17, 304.58])
IC = ([0.22, 0.83] L [337.17, 34.58])

Component2:

PARALLEL cluster
name: P1
nodes: (3, 0)
zpr1 = ([1.07, 2.88] L [19.44, 29.74])
VPL = ([0.23, 1.74] L [356.61, 64.32])
IPt = ([0.22, 0.83] L [337.17, 34.58])
Component]:

Single RESISTOR

name: R3

nodes: (3, 0)

R3 [2, 4]

ZR3 [2, 41

VR3

IR3
Component2:

SERIES cluster

name: 352

nodes: (3, 0)

252 = {(3.60 L 56.30)

([0.23, 1.74] L [356.61, 64.321)
([0.05, 0.87] L [356.61, 64.32])

V52 = ([0.23, 1.74] L [356.61, 64.32))

1s2 = ([0.08, 0.48) L [300.30,
Componentl:

Single RESISTOR

name: R2

nodes: (3, 4)

R2 =2

ZR2 = 2

8.01])

VR2 = ([0.13, 0.96] L [300.30, 8.01])
IR2 = ([0.08, 0.48) L [300.30, 8.01])

Component2:
Single INDUCTOR
name: L
nodes: (4, 0)
L=3
ZL
VL
iL

(3 L 90}

([0.06, 0.48] L [300.30,

([0.19, 1.45] L [30.30, 98.01))
8.01])

FIGURE 94. Results for Circuit #2

(def-circuit
:name "exdl
telements ‘({rl 1 2)
{r2 2 3)
el 2 @)
{e2 3 0
s 101

Vi

FIGURE 95. Circuit #3

181

Asserting constraints:

((varjables (value W 1))
(variables (value ¥S 1))
(variables (value R1 1))
(variables (value R2 1))
(variables (value C1 2))
(variables (value C2 2)))

SERIES-PARALLEL cluster
name: SP1
nedes: (1, 0)
Componentl:
Single VOLTAGE-SOURCE
name: §
nodes: (1, 0)
Vs =1
IS = (0.84 L 18.43)
Component2:
SERIES cluster
name: 52
Componentl:
Single RESISTOR
name; Rl
nedes: (i, 2)

Component2:

PARALLEL cluster
name: P1
nodes: (2, 0)
ZP1 = (0.39 L 288.43)
VPL = (0.33 L 308.86)
IP1 = (0.84 L 18.43)
Componentl:
Single CAPACITOR
name: C1
nodes: (2, 0)

Component2:
SERIES cluster
name: 51
nodes: (2, 0)
251 = (1.1t L 333.43)
¥81 = (0.33 L 306.B6)
ISt = (0.29 L 333.43)
Component]:
Single RESISTOR
name; R2
nodes: (2, 3)

Component?2:
Single CAPACITOR
name: €2
nedes: (3, 0)
c2 =2

2C2
vCc2
IC2

(0.50 L 270.00)
(0.14 L 243.43)
(0.29 L 333.43)

FIGURE 96. Results for Circuit #3

(def-circuit
tpame ‘exdld
:elements '((r1 1 2)
(r2 2 0)
1 20
(v 10))

(design
(def-dtask
icirecuit exdid
irem-goals *{(confluences
(value (P Z51) (7 L =))})))}

182

=
0

FIGURE 97. Circuit #4 and Design Task

w»% looping ##+ |q| = O
Remaining goals:
({CONFLUENCES (VALUE (P Z51) (? L -})))
Goal selected:
(CONFLUENCES (VALUE (P 251) (? L -}))
Executing Design Step:
rules selected: 4
Rule:
(INDUCTIVE-CLUSTER?
((CONFLUENCES (VALUE (P 251) (? L -)}))

(CONFLUENCES (VALUE (P ZCD1) (+ L 0))))

(SERIES 51 C})
Consequences:
((CONFLUENCES (VALUE (P 251) (? L -)))
(CONFLUENCES (VALUE (P ZCB1) {(+ L 0))))
Sat goals: NIL
Asserting constrainta:
((CONFLUENCES (VALUE (P 251) (7 L -}))
(CONFLUENCES (VALUE (P ZCD1) (+ L 0))}))
Result of propagation:
((CONFLUENCES (VALUE (P 252) (7 L =}}))

Design Step returns 4 successor design tasks
Analyzing Design Task:
no additional satisfied goals
no remaining goals
does not violate constraints
Solution found
Final Result:
Selution:
(PARALLEL S1 R) provides
((CONFLUENCES (VALUE (P 251) {? L -)}))
Solution:
(PARALLEL 51 C) provides
((CONFLUENCES (VALUE (P 2Z51) {7 L =)}))
Solution:
(SERIES S1 R) provides
((CONFLUENCES (VALUE (P 251) {7 L -))})}
Selutien:
(SERIES 51 €) provides
((CONFLUENCES (VALUE (P 251) (7 L -))))

(assert-constraint
‘{(variables (value V¥V 1))
(variables (value W 2))
(variables (value L 33}
(variables (value R1 1))
(variables (value R2 2})
(variables (value IS2 (+ L 0))))
(fourth ex41d))

SERIES-PARALLEL cluster
name: SP1
nodes: (1, 0}
Componentl:
Single VOLTAGE-SOURCE
name: V
nodes: (1, 0)

Component2:
SERIES cluster
name: 52
nodes: (1, 0)

Component]:
SERIES cluster
name: S1
nodes: (1, 3)
251 = {1.1661 L 329.0307)
V51 = (0.4165 L 329.0307)
IS1 = 0.3671
Componentl:

Component2:
Single CAPACITDR
name: C
nodes: (2, 3)
C = 0.8331
ZC = (0.6000 L 270.0000)
VC = (0.2142 L 270.0000)
IC = 0.357¢

Component2:

FIGURE 98. Results for Circuit #4

183

circuit definition and diagram. Note that the component currents of R, subtract,
while the component currents of R; add; this is shown in the polarities, and reflects
in the numeric computation. Figure 100 shows the components, and the numeric
value of the parameters for the different elements. The book asks for the voltage
Vha, which was correctly determined. Note that in the final results, all voltages are
positive; the voltage of the Vi-5 = 1, the voltage of Vpy = 1.3333, and Vy, = 0.3333,
but the nodes polarities indicate that the voltage Vg, goes from node 1 to node 0.

+

v
/AN
)
(def-circuit
rname 'ex5l

:elements '({is 1 0) +

(r1 1 0) . Q)
(va 2 1)
(r2 2 0))) R} R3 Vr2

FIGURE 99. Circuit #5

Circuit #6

Problem 5.20 (pages 189-190) of Kerr’s book is another multiple source circuit,
whose solution requires the use of superposition. The problem asks for the total
voltage for V. Figure 101 shows the circuit definition, diagram, the input, and final
output, and Figure 102 shows the components.

Circuit #7

Problem 5.21 (pages 189-190) of Kerr’s book presents a coupled mass-spring
system and its equivalent electrical circuit. In this analogy, mass is equivalent to
inductance, the spring to a capacitor, the damping coefficient to resistance, and force
to voltage. Figure 103 shows the mechanical system, its analogous circuit, the circuit
definition and the value constraints to be asserted. Figure 104 shows the results.

Circuit #8

Problem 3.9, pages 189-190 of Lancaster’s book asks the student to show that
the equivalent impedance of the circuit in Figure 105 is independent of the frequency if
R? = L/C. Our system lacks the ability to the symbolic manipulation, therefore, this
problem cannot be solved. What we did is to verify their assertion, by simulating the
circuit at several frequencies, and check the resulting impedance. Figure 106 shows

184

Circuit component: V3
Polarities: ((R2 VS +) (R1 VS -))
SERIES-PARALLEL cluster
name: SP2
nodes: (2, 1)
Component?l:
Single VOLTAGE-SOURCE
name: VS
nodes: {2, 1)
VVSVS = 1.0000
IVSVS = 0.3333
Component2:
SERIES cluster
name: St
nodes: (2, 1)
Z51¥S = 3.0000
VS51¥S = 1.0000
IS1V¥S = 0.3333
Componentl:
Single RESISTOR
name: R2
nodes: (2, 0)
R2¥S = 2,0000
ZR2VS = 2.0000
VR2VS = 0.6667
IR2VS = 0.3333
Component2:
Single RESISTOR
name: Rl
nodes: (0, 1)
RiV5S = 1.0000
ZR1VS = 1.0000
VR1VS = 0.3333
IRLVS = 0.,3333

Circuit component: IS
Polarities: ({R1 IS +)} (R2 IS +))
SERIES-PARALLEL cluster
name: SP1
nodes: (1, 0)
Componentl;

Single CURRENT-SOURCE

name: IS

nodes: {1, 0)

VISIS = 0.6667

II5IS = 1.0000

Component2:
PARALLEL cluster
name: P1
nodes: (1, 0)
ZP11S = 0.6667
VP1I5 = 0.6667
IP1IS = 1.0000
Component1:
Single RESISTOR
name: Rt
nodes: (1, 0)
R1IS = 1.0000
ZR1IS = 1,0000
VR1IS = 0.6667
IRIIS = 0.6667
Component2:
Single RESISTOR
name: R2
nodes: (1, 0)
R2I§ = 2.0000
ZR2IS = 2.0000
VR2IS = 0,6667
IR2IS = 0.3333
Final values
Single CURRENT-SOURCE
name: IS
nodes; (1, 0)
YIS = 0.3333
IIS = 1.0000
Single RESISTOR
name: Ri
nodes: (1, Q)
R1 = 1,0000
ZR1 = 1.0000
VR! = 0.3333
IAl = 0,3333
Single VOLTAGE-SOURCE
name: V§
nedes: (2, 1)
V¥S = 1.0000
IVS = 0.6667
Single RESISTOR
name: R2
nodes: (2, 0)
R2 = 2,0000
ZR2 = 2.0000
VR2 1.3333
IR2 = 0.6667

FIGURE 100. Results for Circuit #5

/1

O\

(def-circuit
:name 'ex61
relements '((ri t 2)
(¢ 20)
(r2 2 3)
(r1 3 0)
(vs 1 0)
(is 3 2))))

Asserting constraints:
((VARIABLES (VALUE W 1))
(VARIABLES (VALUE ¥VS 1))
(VARIABLES (VALUE IIS 1))}
(VARIABLES (VALUE R1 1)}
(VARIABLES (VALUE C 1))
(VARIABLES (VALUE R2 1))
(VARIABLES (VALUE RL 1))}

Final values

Single RESISTOR

name: R1

nodes: (1, 2)

R1 = 1.0000

ZR1 = 1.0000

VA1 = (0.7845 L 11.309%)
IR1 = (0.7845 L 11.3099)
Single CAPACITOR

name: C

nodes: (2, Q)

€ = 1.0000

2C = (1.0000 L 270.0000)
VC = (0.2774 L 326.3089)
IC = (0.2774 L 56.3099)
Single RESISTOR
name: R2

nodes: {2, 3)

R2 = 1.0000

ZR2 = 1.0600

VR2 = (0.3922 L 191.3099)

IR2 = (0.3922 L 191.3099)
Single RESISTOR

name: HL

nedes: (3, 0)

RL = 1.0000

ZRL = 1.0000

VRL = (0.6202 L 352.8750)

IRL = {0.6202 L 352.8750)
Single VOLTAGE-SOURCE
name: VS

nodes: (1, 0)

V¥5 = 1.0000

IVS = {0.7845 L 11.3099)
Single CURRENT-SOURCE
name: IS

nodes: (3, 2)

VIS = (0.3922 L 191.3099)
IIS = 1.0000

FIGURE 101. Circuit #6, Definition, Input, and Output

186

Circuit component: V§
Polaritiea:
((RL VS +) (C V5 +) (R2 VS +) (RL VS +))
SERIES-PARALLEL cluster
name: SP1
nodes: (1, 0)
Componentl1:
Single VOLTAGE-SOURCE
name: V8
nodes: (1, 0)
YVSVS = 1.0000
IVSVS = (0.6202 L 29.7449)
Component2:
SERIES cluster
name: 52
nodes: (1, Q)
Z52V8 = (1.6125 L 330.25561)
VE2VS = 1.0000
IS2¥S = (0.6202 L 29,7449)
Componentl:
Single RESISTOR
name: Ri
nodes: (1, 2)
ZR1VS = 1,0000
VRIVS = (0.6202 L 29.7449)
IRIVS = (0.6202 L 28.7449)
Component2:
PARALLEL cluster
name: P1
nodes: (2, 0)
2P1VS = (0.8B944 I, 296.5651)
VPiVS = (0.5547 L 326.3099)
IPIVS = (0.6202 L. 29.7449)
Componentl:
Single CAPACITOR
name: C
nodes: (2, 0)
ZCVS = (1.0000 L 270.0000)
VCVS = (0.5547 L 326.3099)
ICVS = (0.5647 L 56.3099)
Component2:
SERIES cluster
name: 51
nodes: (2, 0)
Z51¥5 = 22,0000
V51V5 = (0.5547 L 326.3099)
IS1VS = (0.2774 L 326.3099)
Componentl:
Single RESISTOR
name: R2
nodes: {2, 3)
ZR2VS = 1.0000
VR2VS = (0.2774 L 326.3099)
IR2VS = (0.2774 L 326.3099)
Component?2:
Singie RESISTOR
name: RL
nodes: (3, Q)
ZRLVS = 1.0000
VALVS = (0.2774 L 326.3099)
IRLYS = {0.2774 L 326.3099)

Circuit component: IS
Polarities:
((R2 IS =) (RL IS +) (R1 IS +) (C IS -))
SERIES-PARALLEL cluster
name: SP2
nodes: (3, 2)
Component1:
Single CURRENT-SOURCE
name: IS
nodes: (3, 2}
VISIS = (0.6202 L 352.8750)
IISIS = 1.0000
Component2:
PARALLEL cluster
name: B3
nodes: (3, 2)
ZP3IS = (0.6202 L 352.87ED)
VP3IS = (0.6202 L 352.8750)
IP3IS = 1.0000
Componentl:
Single RESISTOR
name: R2
nedes: (3, 2)
ZR21S = 1.0000
VR2IS = (0.6202 L 352.8750)
IR2IS = (0.6202 L 352.8750)
Component2:
SERIES cluster
name: 53
nodes: (3, 2)
28318 = (1.6811 L 341.5651)
VS3IS = (0.6202 [352.8760)
IS3IS = (0.3922 L 11.3099)
Component1:
Single RESISTOR
name: RL
nodes: {3, 0)
ZALIS = 1.0000
VRALIS = (0.3922 L 11.3099)
IRLIS = (0.3922 L 11.3099)
Component2:
PARALLEL cluster
name: P2
nodes: (0, 2)
2P2I5 = (0.7071 L 315.0000)
VP2IS = (0.2774 L 326.3099)
IP2IS = (0.3922 L 11.3099)
Componenti:
Single RESISTOR
name: Rl
nodes: (0, 2)
ZR1IS 1.0000
VR1IS = {0.2774 L 326.3099)
IR1IS = (0.2774 L 326.3099)
Component2:
Single CAPACITOR
name: C
nodes: (0, 2)
2CIS = (1.0000 L 270.0000)
VCIS = (0.2774 L 326.3099)
ICIS = (0.2774 L 56.3099)

it

FIGURE 102. Results for Circuit #6

187

{def-circuit

XI(t) X2(1) :name ’ex71
I = :elements '((r1 1 2)
(11 2 3)
(c1 3 0)
— _f@_ - W—E (x2 3 4)
F(t) (12 4 5)
ki k2 (c25 0)
(v 10

Asserting constraints:
((VARTABLES (VALUE W 1))
(VARIABLES (VALUE VV 1))
(VARIABLES (VALUE R1 1))
(VARIABLES (VALUE L1 1))
(VARIABLES (VALUE Ci 2))
(VARIABLES (VALUE RZ 1))

= (VARIABLES (VALUE L2 1))
(VARIABLES (VALUE C2 2)))

FIGURE 103. Mechanical System and Equivalent Circuit

the results for frequency w = 1; we performed the simulation, for w = 10 and w = 60
as well.

Circuit #9

Section 4.22, on page 56, of Lancaster’s book provides an example that asks
the student to determine the value of C such that the phase angle of the circuit
is zero. Figure 107 shows the circuit definition and diagram. This is a parameter
design problem; it tried solving it by using circuit analysis, asserting value constraint
for all parameters, except C, indicating that the source’s current’s phase angle is
zero. Nevertheless, the model has too many unknowns, and propagation is unable to
compute a value for C. QPA can solve the problem if we provide the magnitude of
the total current as well.

The problem can be solved by deriving an expression of the resulting impedance,
equating its angle to zero, and solving for C. This process is normally performed
using rectangular representation, which produces simpler algebraic expressions. The
impedance for the parallel cluster is

_ Ry +jwl)(—Zk)

p= - . A.66
(Ra+49D) — (25 (469

The angle of this expression is zero when its imaginary part is zero
wl?C —wL+ RWwC =0 (A.67)

and solve for C. For the conditions stated in the problem, C = 1/2. We simulated
the circuit with those values; the simulation proved that our results are correct.

SERIES-PARALLEL cluster Componentl:
name: SP1 Single CAPACITOR
nodes: (1, 0) name: C1
Componentl: nodes: (3, 0)
Single VOLTAGE-SOURCE C1 = 2.0000
name: V ZC1 = (0.5000 L 270.0000)
nodes: (1, 0) ¥C1 = (0.4152 L 274.7636)
V¥ = 1.0000 IC1 = (0.B305 L. 4.7636)
Iv = {0.7428 L 338.1986) Component2:
Component2: SERIES cluster
SERIES cluster name: S3
name: 54 nodea: (3, 0)
nodes: (1, 0) Z53 = (1.11B0 L 26.5651)
254 = (1.3463 L 21.8014) ¥S3 = (0.41562 L 274.7636)
VsS4 = 1.0000 183 = (0.3714 L 248.1986)
IS4 = (0.7428 L 338.1986) Componentl:
Componenti: SERIES cluster
SERIES cluster name: 52
name: 51 nodes: (3, 5)

nodes: (1, 3)
Z51 = (1.4142 L 45.0000)
V81 = (1.05058 L 23.1986)

282 = (1.4142 L 45.0000)
V52 = (0.5252 L 293.1586)
152 = (0.3714 L 248.1986)

I51 = (0.7428 L 338.1986) Component1:
Component1: Single RESISTOR
Single RESISTOR name: R2
name: R1 nodes: (3, 4)
nodes: (1, 2) R2 = 1.,0000
A1 = 1,0000 ZA2 = 1.0000
ZRt = 1.0000 VA2 = (0.3714 L 248.1986)
VR1 = (0.7428 L 338.1986) IR2 = (0.3714 L 248.1986)
IRl = (0.7428 L 338.1986) Component2:
Component2: Single INDUCTOR
Single INDUCTOR name: L2
name: L1 nodes: (4, 5)
nodes: (2, 3) L2 = 1.0000
L1 = 1.0000

ZL1 = (1.0000 L 90.0000)
VL1 = (0.7428 L 68.1986)
IL1 = (0.7428 L 333.1986)

Component2:
PARALLEL cluster
name: P1
nodes: (3, 0)

ZP1 = (0.5690 L 296,5651)
VP1 = {0.4152 L 274.7636)
IP1 = (0.7428 L 338.1986)

2L2 = (1.0000 L 90.0000)
VL2 = (0.3714 L 338.1986)
IL2 = (0.3714 L 248.1988)

Component2:

Single CAPACITOR

name: C2

nodes: (5, 0)

€2 = 2.0000

ZC2 = (0.5000 L 270.0000)
VC2 = (0.1857 L 158.1988)
IC2 = (0.37:4 L 248.1986)

FIGURE 104. Results for Circuit #7

(def-circuit

relements '((r1 1 2)

(1L 20
(r2 1 3)
(c 30)
(ve 1 0)))

+

-~
)
Vv

FIGURE 105. Circuit #8

189

SERIES-PARALLEL cluster
name: SPL
nodes: (1, 0)
Componentl:
Single VOLTAGE-SOURCE
name: V5
nodes: (1, 0)
¥vs = 1,0000
IVS = 0.5000
Component2:
PARALLEL cluster
name: P1
nodesa: (1, 0)
ZPt = 2.0000
VP1 = 1.0000
IPt = 0.5000
Componentl:
SERIES cluster
name: 51
nodes: (1, 0)

281 = (240.0083 L 89.5225)

V51 = 1.0000

IS1 = (0.0042 L 270.4775)

Componenti:
Single RESISTOR
name: R1
nodes: (1, 2)
R1l 2.0000
ZR1 = 2.0000
VR1
IRl

(0.00B3 L 270.4775)
(0.0042 L 270.4775)

Component2:
Single INDUCTOR
name: L
nodes: (2, 0)
L = 4.0000
L
VL
IL

Component2:

SERIES cluster
name: 52
nodes: (1, 0)
252 (2.0001 L 359.5225)
vs2 1.0000
152 = (0.5000 L 0.4775)
Componentl:
Single RESISTOR
name: R2
nodes: (1, 3)
R2 2.0000
ZR2 2.0000
VR2 = (1.0000 L 0.4775)
IR2 = {0.5000 L 0.4776)
Component2:
Single CAPACITOR
name: C
nodes: (3, 0}
[1.0000
2C = (0.0167 L 270.0000)
V€ = (0.0083 L 270.4775)
IC = (0.5000 L 0.4775)

(240.0000 L 90.0000)
(1.0000 L. 0.4775)
(0.0042 L 270.4778)

FIGURE 106. Results for Circuit #8

190

{def-circuit AVAV\V
:name ’'c9 Ry L
relements ’((ri 1 2) +
(¢ 20) -
aza V@) c
(r2 3 0)
(va 1 O))) Ra

FIGURE 107. Circuit #9

Circuit #10

Chapter 10 of Walton’s book Network Analysis and Practice studies attenuators
and filters. The chapter starts by mentioning how voltage dividers work and then
gives examples of divider circuits with resistors. Unfortunately, it is not possible to
build a perfect resistor; all resistors include a capacitive component. Those capacitive
components make voltage dividers change the reduction on magnitude and introduce
a phase shift at high frequencies. The problem is solved by introducing variable
capacitors in parallel with the resistors (see Figure 108), and setting them to the
appropriate values to avoid phase shift. Again, doing some algebraic manipulation, it
can be shown that if R)C; = R,C}, the voltage divider’s performance is independent
of the frequency. Figure 108 shows the voltage divider circuit and its definition.
Figure 109 shows an example that tests such condition for frequency w = 1; the
same exercise was done with several other frequencies, and in all of them, the voltage
divider’s phase angle was zero, which means that the voltage drop across each resistor-
capacitor combination will have a zero phase angle, therefore, dividing the voltage
proportionately.

{def-circuit

tname 'c9 -+
:elements *((r1 1 2)
c 20 vV
{1 2 3)
(r23 0) -
{vs 1 0}))

FIGURE 108. Circuit #10

191

SERIES-PARALLEL cluster

Component2:
name: 5P1 Single CAPACITOR
nodes: (1, 0) name: Cl
Componenti: nodes: (1, 2)
Single VOLTAGE-SOURCE Cl = 2.0000
name: VS 2€1 = (0.0500 L 270.0000)
nodes: (1, 0) ¥c1 = 0.3333
Vs = 1.0000 IC1 = (6.6667 L 90.0000)
Ivs = (6.6750 L B7.1376) Component?2:
Component2: PARALLEL cluster
SERIES cluster name; P2
name: St nodes: (3, 2)

nodes: (1, 0)

2P2 = (0.0999 L 272.8624)
Z51 = (0.1498 L 272.8624)

YP2 = 0.6667
¥51 = 1.0000 IP2 = (6.6750 L 87.1376)
151 = (6.6750 L 87.1376) Component1:
Componentl: Single RESISTOR
PARALLEL cluster name: R2
name: P1 nodes: (3, 2)
nodes: (1, 2) R2 = 2.0000
2Pt = (0.0499 L 272.8624) ZR2 = 2.0000
VPt = 0.3333 VA2 = 0.6687
IPt = (6.6760 L 87.1376) IR2 = 0.3333
Compfmentl : Component2:
Single RESISTOR Single CAPACITOR
name: Ri name: C2
nodes: (1, 2) nodes: (3, 2)
Rt = 1.0000 €2 = 1.0000
ZR1 = 1.0000 2C2 = (0.1000 L 270.0000)
VR1 = 0.3333 VC2 = (,56667
IRl = 0.3333 IC2 = (6.6667 L 90.0000)

FIGURE 109. Results for Circuit #10

Power Systems Examples

The problems in this section were extracted from Grainger’s book Power Sys-
tems Analysis [20]. Most of the problem in Grainger’s book ask for analysis under
different conditions, mainly steady state and fault analysis. There are some problems
where certain parameters have to be designed, normally capacitors for power factor
correction, or control transformers for power distribution problems. For the control
problems, we not only provided parameter design solutions, but let PSAD and QPA
design the proposed solutions and then performed parameter design. In the case of
fault analysis, we did not implement a power system modification function, we trans-
formed the power system by hand and supplied it to PSAD for analysis. A fault
modification function would not be difficult, since we have already developed one for
the circuit module, so this extension would be straightforward.

Power System #1

The power distribution problem, mentioned in Chapter V (Figure 80 on page 152)
is the same as the one mentjoned in problem 2.21 on page 85 of Grainger’s book. That
problem was extensively studied in that chapter and is not mentioned again here. For

192

that example, a design problem was solved (to redistribute power), each design so-
lution was analyzed, and numerical values for the parameters of the design elements
were determined. Also, causal reasoning provided a qualitative verification of effects
the design elements have on the currents of the parallel transmission lines.

Power System #2

This example corresponds to an illustration (Chapter 2, page 70, of Grainger’s
book) about the role of transformers in power systems. In that chapter Grainger
illustrates the use of circuit models to perform power systems analysis; the model
generated by our system corresponds to the fault-analysis model given in the book.
More complex models can be provided by the user, if the circuit needs to be analyzed
at higher levels of accuracy. Figure 110 shows the power system'’s one-line diagram and
definition, as well as its circuit equivalent and the definition generated automatically
by PSAD. Note that L is a pre-clustered combination of R; and L;. The reason to
cluster this combination before doing the general clustering, is to preserve the notion
that those two elements are inseparable. Besides, this way the user can refer to the
load cluster as L. Figure 111 shows the results of PSAD.

@® @ ©);
C l g ¢ | | ” V+ @) R,
TR TL L E
(def-PS
:name ‘P52
telements *{{G 1)
(TR 1 2) (def-circuit
{TL 2 3) :name *PS52-CIRC
L 3 :elements ‘((lg 4 1)
(1tr 1 2)
(1tl 2 3)
a 30
(g 20

FIGURE 110. Power System #2, and Its Circuit Model

Besides analysis, we performed a design task for this power system. The query
was “How can we increase the power factor of the load?”, which in terms of impedance
means to decrease the load’s impedance’s phase angle. Among other solutions, PSAD
determines the expected one: connect a capacitor in parallel with the load. Figure 112
shows the design task and the design solutions provided by PSAD.

193

SERIES-PARALLEL cluster
name: S5P1
nodes: (4, 0)
Componenti:
Single VOLTAGE-SOURCE
name: VG
nodes: (4, 0)
YVG = 1.0000
IVG = (0.1000 L 330.0000)
Component2:
SERIES cluster
name: 53
nodes: (4, 0)
253 = (10.0000 L 30.0000)
V53 = 1.0000
1S3 = (0.1000 L 330.0000)
Componentl:
SERIES cluster
name: 52
nodes: (4, 3)
Z52 = {(0.3000 L 90.0000)
v¥s52 = (0.0300 L 60.0000)
152 = (0.1000 L 330.0000)
Componentl:
SERIES cluster
name: 51
nodes: (4, 2)
281 = (0.2000 L 90.0000)
V51 = (0.0200 L 60.0000)
IS1 = (0.1000 L 330.0000}
Componentl:
Single INDUCTOR
name: LG
nodes: {4, 1)
LG = 0.0017
ZL6 = (0.1000 L 90.0000)
VLG = (0.0100 L 60.0000)
ILG = (0.1000 L 330.0000)

Component2:
Single INDUCTOR
name: LTR
nodea: (1, 2)
LTR = 0.0017
ZILTR = (0.1000 L 80.0000)
VLTR = (0.0100 L 60.0000)
ILTR = (0.1000 L 330.0000)
Component2:
Single INDUCTOR
name: LTL
nodes: (2, 3)
LTL = 0.0017
ZLIL = (0.1000 L 90.0000)
VLTL = (0.0100 L €0.0000)
ILTL = (0.1000 L 330.0000)
Component2:
SERIES cluster
name: L
nodes; (3, 0)
ZL = (9.8534 L 28.4891)
VL = (0.9853 L 358.4891)
IL = (0.1000 L 330.0000)
Componenti:
Single RESISTOR
name: RL
nodes: {3, §)
RL B.6603
ZRL = 8.6603
VRL = (0.8660 L 330.0000)
IRL = (0.1000 L 330.0000)
Component2:
Single INDUCTOR
name: LL
nodes: (5, 0)
LL = 0.0783
ZLL = (4.7000 L 90.0000)
VLL = (0.4700 L 60.0000)
ILL = (0.1000 L 330.0000)

FIGURE 111. Results of Power System $#2

(design
{det-PS-dtask
:PS ps12
:rem~goals
'({confluences (value (P ZL)
(L -2DDN

Solution found ...
History:
(({INDUCTIVE-CLUSTER?
{{CONFLUENCES (VALUE (P ZL) (- L -)))
(CONFLUENCES (VALUE (P ZRD1) (- L 0))))
(PARALLEL L R))
({CONFLUENCES (VALUE (P ZL)} (? L -))1)))

Solution found ...
History:
(((INDUCTIVE-CLUSTER?
((CONFLUENCES (VALUE (P ZL) (7 L -)))
(CONFLUENCES (VALUE (P ZCD1) (- L 0))))
(PARALLEL L C))
((CONFLUENCES (VALUE (P ZL) (? L -})))))
Sclution found ...
History:
{((INDUCTIVE-CLUSTER?
((CONFLUENCES (VALUE (P ZL) (+ L =)))
(CONFLUENCES (VALUE (P ZRD1) (+ L 0))))
(SERIES L R))
((CONFLUENCES (VALUE (P ZL) (7 L ~))))))

FIGURE 112. Design Task on Power System #2

194

Power System #3

This example illustrates the typical situation, where a generator produces power,
and a transformer raises the voltage for transmission. At the end of the transmission
line, another transformer reduces the voltage, to provide usable energy to the load
(page 69 of Grainger’s book). For this example, we only provided power system anal-
ysis under steady state conditions. We illustrate the use of circuit models to perform
power systems analysis; Figure 113 shows the power system’s one-line diagram and
definition, as well as its circuit equivalent and the definition generated automatically
by PSAD. Figure 114 shows the results of the analysis performed by PSAD.

())
L‘ L'n“ L‘n_ LTuu]"l-
0] @ Ci) @
¢ | 26] - .
@—Ha | N ; R,
TRI TL T™R2 ¢
{def-PS
:name ‘P52
:elements *({G 1) {def-circuit
(Tt 1 2) :name 'PS3-CIRC
(TL 2 3) telements {{1g & 1)
(12 3 4) (1t1 1 2)
L 4N (1t1 2 3)
(1t2 3 4)
4] 4 0)
(vg 500

FIGURE 113. Power System #3, and Its Circuit Model

Power System #t4

This example is a little larger in size (i.e. number of elements), and has the
interesting characteristic of having two voltage sources. PSAD models this power
system as a single circuit, and QPA is in charge of decomposing it into its two com-
ponents. Figure 115 shows the power system’s one-line diagram and definition, as
well as its circuit equivalent, generated automatically by PSAD. Figure 116 shows
the final results of the analysis performed by PSAD.

Power System #5

On Section 1.13, page 35, while explaining the role of one-line diagrams, Grainger
presents the example power system of Figure 117. This example contains three
sources; PSAD generates the circuit model, which is decomposed by QPA into its
3 components. Figure 116 shows the final results of the analysis of this power system,

195

SERIES-PARALLEL cluster
name: SP1
nodes: (5, 0)
Component!:
Single VOLTAGE-SOURCE
name: VG
nodes: (5, Q)
V¥G = 1.0000
IVG = (0.1000 L 330.0000)
Component2:
SERIES cluster
name: 54
nodes: (5, 0)
254 = (10.0000 L 30.0000)
V54 = 1.0000
IS4 = (0.1000 L 330.0000)
Componenti:
SERIES cluster
name: 53
nodes: (5, 4)
253 = (0.4000 L 90.0000)
V¥S3 = (0.0400 L 60.0000)
183 = (0.1000 L 330.0000)
Componentl;
SERIES cluster
name: 52
nodes: (5, 3)
252 = (0.3000 L 90.0000)
V52 = (G.0300 L 60.0000)
IS2 = (0.1000 L 330.0000)
Componentl:
SERIES cluster
name: S1
nodes: (5, 2)
Z51 = (0.2000 L 90.0000)
V51 = (0.0200 L. 60.0000)
IS1 = (0.1000 L 330.0000)
Component]:
Single INDUCTOR
name: LG
nodes: (5, 1)
LG = 0.0017

Component2:
Single INDUCTOR
name: LT1
nodes: (1, 2)
LT1 = 0.0017
ZLT1 = (0.1000 L 90.0000)
VLTL = (0.0100 L 60.0000)
ILT1 = (0.1000 L 330.0000)
Component2:
Single INDUCTOR
name: LTL
nodes: (2, 3)
LIL = 0.0017
ZLTL = (0.1000 L 90.0000)
VLTL = (0.0100 L 60.0000)
ILTL = (0.1000 L 330.0000)
Component2:
Single INDUCTOR
name: LT2
nodes: (3, 4)
LT2 = 0.0017

ZLT2 = (0.1000 L 50.0000)
VLT2 = (0.0100 L 60.0000)
ILT2 = (0.1000 L 330.0000)
Component?;
SERIES cluster
name: L

nodes: (4, 0)
ZL = (9.8061 L 27.9756)
VL = (0.9806 L 357.9766)
IL = (0.1000 L 330.0000)
Component]:
Single RESISTOR
name: RL
nodes; (4, 6)
RL = §.6603
ZRL =~ §.6603
VRL = (0.8660 L 330.0000)
IRL = (0.1000 L 330.0000)
Component2:
Single INDUCTOR
name: LL
nodes: (6, 0)

ZLG = (0.1000 L 50.0000)
VLG = (0.0100 L 60.0000)
ILG = (0.1000 L 330.0000)

LL

ZLL
VLL
ILL

= 0.0767

(4.6000 L 90.0000)
(0.4600 L 60.0000)
(0.1000 L 330.0000)

FIGURE 114. Results of Power System #3

196

: Lo |

@ @ é
Lg Lo
(d?:;pni P53 Vsl@) @ Ve

:elements '((C1 3) = -
(TL1 3 1)
(TL2 3 2)
(TL3 2 4)
(TL4 1 4)
(G2 4))

FIGURE 115. Power System #4, and Its Circuit Model

produced by PSAD.

Power System #6

This is the first of several examples on short-circuit analysis of power systems.
The diagram in Figure 119 (example 3.8, page 134, of Grainger’s book) can be consid-
ered as a part of a power system under a short circuit. This example asks to compute
the voltage at node 1, and the currents of the generators and the transformer, when
the indicated fault has occurred. Figure 120 shows the polarities for all inductances,
and the final results of the analysis.

Power System #7

Problem 10.8, on page 414 of Grainger’s book, asks to perform short-circuit
analysis on the system of Figure 121. We performed the analysis under normal
operation, and then under the presence of the fault. Figures 122 and 123 show the
results of both analysis.

Power System #8

Problem 3.12, page 139, of Grainger’s book, presents another short-circuit anal-
ysis problem (see Figure 124). This power system is of interest, because when the
fault is applied, the system becomes a set of three isolated circuits (sharing the ref-
erence node). Since QPA does not handle disconnected circuits, we had to model the

197

Finel values
Single VOLTAGE-SOURCE

name: VGi
nodes: (5, 0)
YVG1 = 1.0000

IVe1 = (3.3333 L 270.0000)
Single VOLTAGE-SDURCE
name: VG2
nodes: (6, 0)
YVG2 = 2.0000
IV62 = (3.3333 L 270.0000)
SERIES cluster
name: 54
nodes: (6, 5)
254 = (0.3000 L 90.0000)
V54 = 1.0000
IS4 = (3.3333 L 270.0000)
Componentl:
Single INDUCTOR
name: LG2
nodes: (6, 4)
LG22 = 0.0017
ZLG2 = (0.1000 L 90.0000)
VLG2 = 0.3333
ILG2 = (3.3333 L 270.0000)
Component2;
SERIES cluster
name: 53
nodes: (5, 4)
253 = (0.2000 L 90.0000)
¥53 = 0.6667
153 = (3.3333 L 270.0000)
Componentl:
Single INDUCTOR
name: LG1
nodes: (5, 3)
LGi = 0.0017
ZLG1 = (0.1000 L 90.0000)
VLG1 = 00,3333
ILG1 = (3.3333 L 270.0000)
Component2:
PARALLEL cluster
name: P1
nodes: (3, 4)
ZP1 = (0.1000 L 90.0000)
¥P1 = 0.3333
IP1 = (3.3333 L 270.0000)

Component]:
SERIES cluster
name: S1
nodes: (3, 4)
Z51 = (0.2000 L $0.0000)
V81 = 0.3333
IS1 = (1.6667 L 270.0000)
Component]:
Single INDUCTOR
name: LTL1
nodes: (3, 1)
LTL1 = 0.0017
ZLTL1 = {0.1000 L 90.0000)
VLTL1 = 0.1667
ILTL: = (1.6667 L 270.0000)
Component?2:
Single INDUCTOR
name: LTL4
nodes: (1, 4)
LTE4 = 0.0017

ZLTL4 = (0.1000 L 90.0000)
VLTL4 = 0.1667
ILTL4 = (1.6667 L 270.0000)
Component2:
SERIES cluster
name: 52

nodes; (3, 4)
Z52 = (0.2000 L 90.0000)
V82 = (.3333
182 = (1.6667 L 270.0000)
Componentl:
Single INDUCTOR
name: LTL2
nodes: {3, 2)
LTL2 = 0.0017
ZLTL2 = (0.1000 L 90.0000)
VLTL2 0.1667
ILTL2 = (1.6667 L 270.0000)
Component2:
Single INDUCTOR
name: LTL3
nodes: (2, 4)
LTL3 = 0.0017

ZLTL3 = (0.1000 L 90.0000)
VLTL3 = 0.1667
ILTL3 = (1.6667 L 270.0000)

FIGURE 116. Results of Power System #4

198

@ @
@H 36 |
¢] |3
< ' B — -
e TRI T ™2 |
L, L, Lm Ln Lnns
(def-P§
:name ‘PS54 + +
relements '({(G1 1) Vil Vu
(G2 1) - -
(TR1 1 2)
(rL 2 3)
(iR2 3 4)
(63 4)
(L 4

FIGURE 117. Power System #5, and Its Circuit Model

three parts of the power system independently. We believe that the modifications
required to make QPA work with disconnected circuits are minimum, but they have
not been implemented yet. Figure 125 shows the results of the analysis under nor-
mal conditions, and Figure 126 shows the results for the three sources. The problem
asks to draw the impedance diagram; PSAD does not draw it, but it determines its
components and interconnections correctly. The second part asks to determine the
short-circuit currents for each generator; those are shown in the partial results for
the disconnected components. Finally, the problem asks to compute the power sup-
plied by each generator. Qur system does not model power, but the indicated power
quantities can be computed directly, using the phasor values for voltage and current
on each generator.

Power System #9

Problem 3.13, pages 139-140, of Grainger’s book, presents another short-circuit
analysis problem (see Figure 127). This problem illustrates one of the limitations
of our system: the system’s model is not series/parallel reducible. Even though the
system’s model in normal operation is not series/parallel reducible, under faulty con-
ditions, it is reducible, and can be analyzed by QPA. Figure 128 shows the results of
the analysis of the part containing the two generators. The problem asks to compute
the short-circuit currents and voltages for both generators.

Power System #10

This last example is the largest we considered. We are not sure about the origin
of this example; it was provided in personal communication with Alberto Gonzilez
Avalos. This power system contains 21 power systems elements, including three
sources (see Figure 129); the circuit model, produced by PSAD had 26 elements,

199

Final values
Single VOLTAGE=-SOURCE
name: VG1
nodes; (5, 0)
VVGE = 1.0000
IVG1 = (5.5634 L 270.2258)
Single INDUCTOR
name: LG1
nodes: (5, 1)
LG1 = 0.0017
ZLG1 = (0.1000 L 90.0000)
VLG1 = (0.0209 L 70.4269)
ILG1 = (0.2094 L 340.4269)
Single VDLTAGE-SOURCE
name: VG2
nodes: (6, 0)
¥VvG2 = 1.0000
IVG2 = (5.5634 L 270.2258)
Single INDUCTOR
name: LG2
nodes: (6, 1}
LG2 = 0.0017
ZL62 = (0.1000 L 90.0000)
VLG2 = (0.0209 L 70.4269)
ILG2 = (0.2094 L 340.4269)
Single VOLTAGE-SQURCE
name: VG3
nodes: (7, Q)
VVG3 = 1.0000
IVG3 = (2.8169 L 292.4141)
Single INDUCTOR
name: LG3
nodes: {7, 4)
LG3 = 0.0017
ZLG3 = (0.1000 L 90.0000)
¥YLG3 = (0.1466 L 70.426%)
ILG3 = (1.4657 1 340.4269)
SERIES cluater
name: L
nodes: (4, 0)
2L = (0.5099 L 11.3099)
VL = (0.9609 L 351.7368)
IL = (1.8844 L 340.4269)
Componentl:
Single RESISTOR
name: RL
nodes: (4, 8)
RL = 0.6000
ZRL = 0.5000
VRL = (0.9422 L 340.4269)
IRL = (1.8844 L 340.4269)

Component2:
Single INDUCTOR
name: LL
nodes: (8, 0)
LL = 0.0017
ZLL = {0.1000 L 90.0000)
VLL = (0.1884 L 70.4269)
ILL = (1.8844 L 340.4269)
SERIES cluster
name: 52
nodes: {1, 4)
252 = (0.3000 L 90.0000)
VS2 = (0.1256 L 70.4269)
I52 = (0.4188 L 340.4269)
Component1:
SERIES cluster
name: 51
nodes: (1, 3)
251 = (0.2000 L 90.0000)
V51 = (0.0838 L 70.4269)
ISt = (0.4188 L 340.4269)
Componentl:
Single INDUCTOR
name: LTR1
nodes: (1, 2)
LTR1 = 0.0017
ZLTRL = (0.1000 L 90.0000)
VLTRL = (0.0419 L 70.4269)
ILTR1 = (0.4188 L 340.4269)
Component2:
Single INDUCTOR
name: LTL
nodes: (2, 3)
LTL = 0.0017
ZLTL = (0.1000 L 90.0000)
VLIL = (0.0419 L 70.4269)
ILTL = {0.4188 L 340.4269)
Component2:
Single INDUCTOR
name: LTR2
nodes: (3, &)
LTR2 = 0.0017
ZLTR2 = (0.1000 L 90.0000)
VLTR2 = (0.0419 L 70.4269)
ILTR2 = (0.4188 L 340.4269)

FIGURE 118. Results of Power System #5

200

_g

TR

(def-PS
:name P56
relements *((G1 1)
G2 1)
(TR 1 0)))

gl LgZ

+ +

HOROY

FIGURE 119. Power System #6, and Its Circuit Model

Circuit component: VG2
Polarities: {(LG2 VG2 +) (LGl VG2 =) (LTR VG2 +))
Circuit component: VG1
Polarities: ((LG1 VG1 +) (LG2 VG1 -} (LTR VGl +))

Final values
Single VOLTAGE-SQURCE

name: VG1
nodes: (2, Q)
VVGl = 0.9570

IVG1 = (1.8241 L 270.0000)
Single INDUCTOR

name: LG1

nodes:; (2, 1)

LG1 = 0.0063

ZLG1 = (0.3750 L 90.0000)
VLG1 = 0.6840

ILG1 = (1.8241 [270.0000)

Single VOLTAGE-SOURCE
name: VG2

nodes: (3, 0)

YVG2 = 0.9520

IVG2 = (0.9054 L 270.0000)
Single INDUCTOR

name: LG2

nodes: (3, 1)

LG2 = 0.0125

ZLG2 = (0.7500 L 90.0000)
VLG2 = 0.6790

ILG2 = (0.90564 L 270.0000)
Single INDUCTOR

name: LTR

nodes: (1, 0}

LTR = Q.0017

ZLTR = (0.:000 L 90.0000)
VLTR = 0.2730

ILTR = {2.7295 L 270.0000)

FIGURE 120. Results of Power System #6

201

TLI f@) f@)
@_ Ly Lo
LTL2
: TL3 p Ly % L.

)

@
(def-PS + +
:name 'PST
:elements '((G1 3) Vgl@) @ Vgg
Gz 4) - =
(TL1 3 2)
(TL2 3 4)
(TL3 4 2)))

FIGURE 121. Power System #7, and Its Circuit Model

including the voltage sources; its constraint-based model contains 2458 constraints.
PSAD took 02:02:42.267 user time, of which 27,784 msec are cpu time, to do constraint
propagation after the assertion of values to variables. The result of this example is
not displayed in this appendix because of its length.

202

Final values
Single VOLTAGE-SOURCE
name: VGI
nodes: (5, 0)
VYVGt = (1.0000 L 270.0000)
IVGL = (0.3609 L 42.8047)
Single VOLTAGE-SOURCE
name: VG2
nodes: (6, 0)
VVG2 = (0.6800 L 225.06000)
IVG2 = (0.3609 L 42.8047)
SERIES cluster
name: 53
nodes: (6, 5)
Z53 = (1.9609 L 90.0000)
V¥83 = (0.7076 L 132.B047)
iS3 = (0.3609 L 42.8047)
Componentl:
Single INDUCTOR
name: LGZ
nodes: (6, 4)
LG2 = 0.0133
ZLG2 = (0.8000 L 90.0000)
VLG2 = (0.2887 L 132.8047)
ILG2 = (0.3609 L 42.8047)
Component2:
SERIES cluster
name; 52
nodes; (5, 4)
Z52 = (1.1609 L 90.0000)
VY52 = (0.4188 L 132.8B047)
I52 = (0.3609 L 42.8047)
Componentl:
Single INDUCTOR
name: LG1
nodes: (6, 3)
LG1 = 0.0133

ZLG1 = (0.8000 L 90.0000)
VLG1 = (0.2887 L 132.8047)
ILG1 = (0.3609 L 42.8047)

Conmponent2:
PARALLEL cluster
name: P1
nodes: (3, 4)

ZP1 = (0.3609 L 90.0000)
VP1 = (0.1302 L 132.8047)
IP1 = (0.3609 L 42.8047)
Component1:

Single INDUCTOR

name: LTL2

nodes: (3, &)

LTL2 = 0.0062

ZLTL2 = (0.3731 L 90.0000)
VLIL2 = (0.1302 L 132.8047)
ILTL2 = (0.3490 L 42.8047)

Component2:
SERIES cluster
name: S1
nodes: (3, 4)
251 = (11.0075 L $0.0000)
V51 = (0.1302 L 132.8047)
I51 = (0.0118 L 42.8047)
Component]:
Single INDUCTOR
name: LTL1
nodes: (3, 2)
LTL1 = 0.0709

ZLTL1 = (4.2537 L 90.0000)

VLTL1 = (0.0503 L 132.8047)

ILTL1 = {0.0118 L 42.8047)
Component2:

Single INDUCTOR

name: LTL3

nodes: (4, 2)

LTL3 = 0.1128

ZLTL3 = (6.7637 L 90.0000)
VLTL3 = (0.0799 L 132.8047)
ILTL3 = (0.01:8 L 42.8047)

FIGURE 122. Analysis of Power System #7 under Normal Conditions

203

Final wvalues

Single VOLTAGE-SOURCE
name: VG1

nodes;: (5, 0)

VVG1 = (1.0000 L 270.0000)
IVG1 = (0.6000 L 180.0000)
Single INDUCTOR

name: LG1

nodes: (5, 3)

LG1 = 0.0133

ZLG1 = (0.8000 L 90.0000)
VLGl = (0.3559 L 297.4967)
ILG1 = (0.4449 L 207.4967)
Single VOLTAGE-SOURCE
name: VG2

nodes: (&, 0)

VV¥G2 = (0.6800 L 225.0000)
IVGZ = (0.3986 L 135.0000)
Single INDUCTOR

name: LG2

nodes: (6, 4)

LG2 = 0.0133

ZLG2 = (0.8000 L 90.0000)
VLG2 = (0.2637 L 152.7218)
ILG2 = (0.317t1 L 62.7218)

Single INDUCTOR
name: LTL1
nodes: (3, 0)
LTL1 = §.0709
ZLTLY = (4.2537
VLTLL {0.7038
ILTL1 = (0.1654
Single INDUCTOR
name: LTL2
nodes: (3, 4)
LTL2 = 0.0082
ZLTL2 = (0.3731
VLTL2 = (0.1261
ILTL2 = (0.3379
Single INDUCTOR
name: LTL3
nodes: {4, 0)
LTL3 = 0.1126
ZLTL3 = (6.7537
VLTL3 = (0.6494
ILTL3 = (0.0962

L 90.0000)
L 256.4979)
L 166.4979)

L 90.0000)
L 316.2330)
L 226.2330)

90.0000)
246.8445)
L 156.84456)

[l

FIGURE 123. Short-Circuit Analysis of Power System #7

— 0

a1,

(def-PS

:name 'PS8

:elements *{{G1 1)
(TR1 1 2)
(TL1 2 3)
{iL2 3 9)
({TR2 4 5)
(G2 5)
{TR3 6 3)
(G3 6)))

-+

.

FIGURE 124. Power System #8, and Its Circuit Model

204

Final values

Single VOLTAGE-S0URCE
name: VGl

nodes: (7, 0)

VVG1 = 0.6500

IVG1 = (0.0465 L ©0.0000)
Single VOLTAGE-SOURCE
name: VG2

nodes: (8, 0)

VVG2 = 0.9000

I¥G2 = (0.0106 L 90,0000)
Single VOLTAGE-SOURCE
name: VG3

nodes: (9, 0)

YVG3 = 1.0000

IV¥G3 = (0.05871 L 270.0000)
SERIES cluster

name: 52
nodes: (7, 3)
252 = (6.3000 L 90.0000)

V52 = {0.2929 L 180.0000)
IS2 = (0.0465 L 90.0000)
Companentl:
SERIES cluster
name: S1
nedea: (7, 2)
251 = (0.3000 L 90.0000)
VS§1 = (0.0139 L 180.0000)
IS1 = (0.0465 L 90.0000)
Compenentl:
Single INDUCTOR
name: LG1
nodes: (7, 1)
ZLG1 (0.2000 L 90.0000)
VLG1 (0.0093 L 180.0000)
ILG1 = {0.0465 L 90.0000)
Component2:
Single INDUCTOR
name: LTR1
nodes: (1, 2)
ZLTR1 = (0.1000 L 90.0000Q)
VLTR1 = (0.0046 L 180.0000)
ILTR1 = (0.0465 L 90.0000)

Component2:
Single INDUCTOR
name: LTL1
nodes: (2, 3)
ZLTL1 = (6.0000 L 90.0000)
VLTL1 = {0.2789 L 180.0000)
ILTL1 = (0.0465 L $0.0000)

SERIES cluster

name: 54
nodes: (8, 3)
Z54 (7.8000 L 90.0000)

V54 = (0.0829 L 180.0000)
IS4 = (0.0106 L 90.0000)
Componentt:
Single INDUCTOR
name: LG2
nodes: (8, 5)
ZLG2 = (0.2000 L 90.0000)
VLG2 = (0.0021 L 1B0.0000)
ILG2 = (0.0106 L 90.0000)
Component2:
SERIES cluster
name: 53
nodes: (3, B)
253 = (7.6000 L 90.0000)
VY53 = {0.0807 L 180.0000)
153 = (0.0106 L 90.0000)
Componentl:
Single INDUCTOR
name; LTL2
nodes: (3, 4)
ZLTL2 = (7.5000 L 90.0000)
VLIL2 = (0.0797 L 180.0000)
ILTLZ = {0.0106 L 90.0000)
Component2:
Single INDUCTOR
name: LTR2
nedes: (4, B)
ZLTR2 = (0.1000 L 90.0000)
VLTR2 = (0.0011 L 180.0000)
ILTR2 = (0.0106 L ©0.0000)
SERIES cluster
name: S5
nodes: (9, 3)
2586 = (0.3000 L 90.0000)
¥s5 = 0.0171
156 = (0.0571 L 270.0000)
Componentl:
Single INDUCTOR
name: LG3
nodes: (9, 6)
ZLG3 = (0.2000 L 90.0000)
VLG3 = 0.0114
ILG3 = (0.0571 L 270.0000)

nwa

nowmon

Component2:
Single INDUCTOR
name: LTR3
nodes: (6, 3)
ZLTRA = (0.1000 L 90.0000)
VLTR3 = 0.0057
ILTR3 = (0.0571 L 270.0000)

FIGURE 125. Results of Power System #8

FIGURE 126. Short-Circuit Values for Sources of Power System #8

Single VOLTAGE-SOURCE

name: VG1
nodes: (3, 0)
Y¥Gi = 0.6900

IVGL = (0.1095 L 270.0000)

Single VOLTAGE-SOURCE

name: VG2
nodes: (6, 0)
YVG2 = 0.9000

IvVe2 = (0.11584 L 270.0000)

Single VOLTAGE-SOURCE

name: ¥YG3
nodes: (7, 0)
V¥G3 = 1.0000

IVG3 = (3.3333 L 270.0000)

205

O m @ O @
¢ bt [3
¢] Is
@ ® @ e
E | T ! ! 3 | i
™ TR L] Thn

(def-PS

:name ‘P59

:elements *{(G1
(TR1
(TL1
(TR2
(G2
(TR3
{TL2
(Tha
(SH
(TRS
(TL3
(TR6

1 5)

B 6)
6 9)
9)
a7
78)
82)))

FIGURE 127. Power System #9, and Its Circuit Model

206

Final values

Single VOLTAGE-SOURCE
name: VG1

nodes: (9, 0)

VVG1 = 1.0000

IVG1 = (0.4715 L 270.0000)
Single INDUCTOR

name: LG1

nodes: (9, 1)

ZLG1 = (0.2000 L 90.0000)
VLG1 = 0.0943

ILGt = (0.4715 L 270.0000}
Single VOLTAGE-SOURCE
name; VG2

nodes: (10, 0)

V¥G2 = 2.0000

IVG2 = (1.3639 L 270.0000)
Single INDUCTOR
name: LG2
nodes: (10, 2)
ZLG2 = (0.2000 L 90.0000)
VYLG2 = 00,2728
ILG2 = (1.3639 L 270.0000)
SERIES cluster
name: 52
nodes: (1, 2)
Z52 = (5.1382 L 90.0000)
V52 = (0.8215 L 180.0000)
IS2 = {0.1569%9 L 90.0000)
Component!:
SERIES cluster
name: 51
nedes: (1, 4)
251 = (5.0382 L 90.0000)
VS1 = (0.8065 L 1B0.0000)
I51 = (0.1699 L 90.0000)
Componentl:
Single INDUCTOR
name: LTR1
nodes; (1, 3)
ZLTR1 = (0.1000 L 90.0000)
YLTR1 = (0.0160 L 180.0000)
ILTR1 = (0.1599 L 90.0000)

Component?2:
Single INDUCTOR
name: LTL1
nodes: (3, 4)
ZLTL1 = (4.9382 L 90.0000)
VLTLt = (0.7895 L 180.0000)
ILTLY = (0.1599 L 90.0000)

Component?2:
Single INDUCTOR
name: LTR2

SERIES cluster
name: 54
nedes: (1, O)
254 = (1.4345 L 90.0000)
V54 = 0.9057
154 = (0.6314 L 270.0000)
Componentl;
SERIES cluater
name: §3
nodes: (1, 6)
253 = (1.3345 L 90.0000)
V83 = 0.8426
153 = (0.6314 L 270.0000)
Component1;
Single INDUCTOR
name: LTR3
nodes: (1, 5)
ZLTR3 = (0.1000 L 90.0000)
VLTR3 = 0.0631
ILTR3 = (0.6314 L 270.0000)
Component2:
Single INDUCTOR
name: LTL2
nodes: (5, 6)
ZLTL2 = (1.2345 L 90.0000)
VLTL2 = 0.7794
ILTL2 = (0.6314 L 270.0000)
Component2:
Single INDUCTOR
name: LTR4
nodes: (6, 0)
ZLTR4 = (0.1000 L 90.0000)
VLTR4 = 0.0631
ILTR4 = (0.6314 L 270.0000)
SERIES cluster
name: S6
nodes: (0, 2)
286 = (1.4345 L 90.0000)
VS8 = (1.7272 L 180.0000)
IS8 = (1.2041 L 90.0000)
Component]:
SERIES cluster
name: S5
nedes: (0, B)
255 = (1.3345 L 90.0000)
VS5 = (1.6068 L 180.0000)
IS5 = (1.2041 L 90.0000)
Componentl:
Single INDUCTOR
name: LTRS
nodes: (0, 7)
ZLTRS = (0.1000 L 90.0000)
VLTRS = {0.1204 L 180.0000)
ILTRS = {1.2041 L 90.0000)
Component2:
Single INDUCTOR
name: LTL3

nouwou

FIGURE 128. Results of Power System #9

D g @
¢

TL2

¢
) (C

TL3

TL5

TL6

@+

@TRZ

207

FIGURE 129. Power System #10

208

BIBLIOGRAPHY

[1] Gotz Alefeld and Jurgen Herzberger. Introduction to Interval Computation.
Academic Press, New York, 1983.

[2] Hans Bandemer, ed. Modelling Uncertain Data. Akademie Verlag, Berlin,
Germany, 1993.

(3] F. Benhamou, D. Mc Allester, and P. Van Hentenryck. CLP(Intervals) revisited.
In Logic Programming, Proceedings of the 1994 International Symposium,
124-138, Ithaca, New York, November 1994.

[4] W. E. Boyce and R. C. DiPrima. Elementary Differential Equations. John Wiley,
New York, second edition, 1969.

[5] Jacques Cohen. Constraint logic programming languages. Comm. of the ACM,
33:52-68, 1990.

[6] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to
Algorithms. McGraw-Hill, USA, 1989.

[7] E. Davis. Constraint propagation with interval labels. Artificial Intelligence,
24:347-410, 1987.

[8] E. Davis. A logical framework for solid object physics. In Qualitative Reasoning
Workshop Abstracts. Qualitative Reasoning Group, University of Illinois at
Urbana-Champaign, 1987.

[9] R. Davis. Diagnostic reasoning based on structure and behavior. Artificial
Intelligence, 24:347-410, 1984.

[10] Johan de Kleer. How circuits work. Artificial Intelligence, 24:205-280, 1984.

[11] Johan de Kleer. An assumption-based tms. Artificial Intelligence, 28:127-162,
1986.

{12} Johan de Kleer and John Seely Brown. Qualitative physics based on confluences.
Artificial Intelligence, 24:7-83, 1984. Also in Readings in Knowledge
Representation, Brachman and Levesque, editors, Morgan Kaufmann, 1985,
88-126.

209

[13] T. L. Dean and D. V. McDermott. Temporal data base management. Artificial
Intelligence, 32:1-55, 1987,

[14] Daniel Dvorak and Benjamin Kuipers. Model-based monitoring of dynamic
systems. In Proc. 11th Int. Joint Conf. on Artificial Intelligence (IJCAI-89),
1238-1243, San Mateo, CA, 1989. Morgan Kaufmann.

[15] A. E. Fitzgerald. Basic Electrical Engineering. McGraw-Hill, New York and
London, 1945.

[16] Juan J. Flores. Hybrid representation constraint propagation. In In Proceedings
of the Nineth International Symposium on Artificial Intelligence, 340-347,
Cancun, Mexico, November 1996.

[17) Kenneth D. Forbus. Qualitative process theory. Artificial Intelligence,
24:85-168, 1984.

[18) M. R. Genesereth. The use of design descriptions in automated diagnosis.
Artificial Intelligence, 24:411-436, 1984.

[19] Turan Gonen. Modern Power System Analysis. John Wiley and Sons, New
York, 1988.

[20] John J. Grainger and William D. Stevenson. Power System Analysis.
McGraw-Hill, New York, 1994.

[21] Per Hagman. Using qualitative reasoning to solve voltage decay problems in a
model-based automated diagnostic system. Master’s thesis, Department of
Computer Engineering, University of Central Florida, Orlando, Florida, 1996.

[22] W.C. Hamscher. Modeling digital circuits for troubleshooting. Artificial
Intelligence, 51:223-271, 1991.

(23] Nevin Heintze and Spiro Michalylov. CLP(R) and some electrical engineering
problems. Journal of Automated Reasoning, 9:321-260, 1992.

[24] Eero Hyvonen. Constraint reasoning based on interval arithmetic. In Proc. 11th
Int. Joint Conf. on Artificial Intelligence (IJCAI-89), 1193-1198, 1989.

[25] P Stuckey J Jaffar, S Michaylov and R H C Yap. The CLP(R) language and
system: an overview. In Digest of papers, Spring COMPCON 91, Thirty-sizth
IEEE Computer Society International Conf, 376-381, 1991.

[26] R. Baker Kearfott. Algorithm 763: Interval arithmetic: A FORTRAN 90

module for an interval data type. Trenscation on Mathematical Software,
22(4):385-392, 1996.

210

[27] Robert B. Kerr. Electrical Network Science. Prentice-Hall, Englewood Cliffs,
NJ, 1977.

[28] Benjamin J. Kuipers. The limits of qualitative simulation. In Proc. 9th Int.
Joint Conf. on Artificial Intelligence (IJCAI-85), 128~136, San Mateo, CA,
1985. Morgan Kaufmann.

[29] V. Kumar. Algorithms for constraint-satisfaction problems: A survey. AJ
Magazine, 13(1):32-44, 1992.

[30] Gordon Lancaster. DC and AC Circuits. Calendar Press, Oxford, 1974.

[31] Z. Liu and A. Farley. Shifting ontological perspectives in reasoning about
physical systems. In Proc. 8th National Conf. on Artificial Intelligence
(AAAI-90), Menlo Park, Cambridge, London, 1990. AAAI Press/The MIT

Press.

[32] Zheng-Yang Liu. Qualitative reasoning about physical systems with multiple
perspectives. Technical Report CIS-TR-91-04, University of Oregon, 1991.

[33] Michael L. Mavrovouniotis and George Stephanopoulos. Order-of-magnitude
reasoning with O[M]. International Journal of Artificial Intelligence in
Engineering, 4(3):106-114, 1989,

[34] Drew McDermott. A general framework for reason maintenance. Artificial
Intelligence, 50:289-329, 1991.

[35] Ramon E. Moore. Interval Analysis. Prentice-Hall, Inc., Englewood Cliffs, NJ,
1966.

[36] G. Pettersson. Impedance driven model-based diagnosis of electic power
distribution system faults. Master’s thesis, Department of Computer
Engineering, University of Central Florida, Orlando, Florida, 1996.

[37] Jean-Francois Puget. A C++ implementation of CLP. In Proceedings of SPICIS
94, Singapore, November 1994.

[38] Archana Shankar, David Gilbert, and Michael Jampel. Transient analysis of
linear circuits using constraint logic programming. In Proceedings of the

International Conference on Practical Applications of Constraint Technology,
221-247, London, November 1996.

(39] W. Shepherd and P. Zand. Energy Flow and Power Factor in Nonsinusoidal
Circuits, Cambridge University Press, Cambridge, MA, 1979.

211

[40] Jeffrey Mark Siskind and David Allen McAllester. Nondeterministic LISP as a
substrate for constraint logic programming. In Proc. 11th National Conf. on
Artificial Intelligence (AAAI-93), 133-138, 1993,

(41] R. Stallman and G. J. Sussman. Forward reasoning and dependency-directed
backtracking in a system for computer-aided circuit analysis. Artificial
Intelligence, 9:135-196, 1977.

[42] Peter Struss. An application of model simplification and abstraction to fault
localization in power transmission networks. In Working notes of the workshop
Approzimaion and Abstraction of Computational Theories, 205-212, 1992.

[43] Peter Struss. A theory of simplification and abstraction for relational models. In
Working notes of the workshop Approzimaion and Abstraction of
Computational Theories, 213-226, 1992.

[44] Siddarth Subramanian and Raymond J. Mooney. Qualitative multiple-fault
diagnosis of continuous dynamic systems using behavioral modes. In Proc.
18th National Conf. on Artificial Intelligence (AAAI-96), 965-970, Menlo
Park, Cambridge, London, 1996. AAAI Press/The MIT Press.

[45] G. J. Sussman and G. L. Steele. CONSTRAINTS: a language for expressing
almost-hierarchical descriptions. Artificial Intelligence, 14:1-39, 1980.

[46] Earl W. Swokowski. Fundamentals of Algebra and Trigonometry. Prindle,
Weber and Schmidt, Inc., Boston, Massachusetts, 1975.

[47) Edward Tsang. Foundations of Constraint Satisfaction. Academic Press
Limited, London, 1993.

(48] Richard J. Wallace and Eugene C. Freuder. Anytime algorithms for constraint
satisfaction and sat problems. SIGART Bulletin, 7(2), 1996.

[49] Alan K. Walton. Network Analysis and Practice. Cambridge University Press,
Cambridge MA, 1987.

[50] David L. Waltz. Generating semantic descriptions from drawings of scenes with
shadows. Technical Report AI-TR-271, MIT Artificial Intelligence Laboratory,
Cambridge, MA, 1972.

[51] Allen C. Ward, Tomds Lozono-Pérez, and Seering Warren P. Extending the
constraint propagation of intervals. In Proc. 11th Int. Joint Conf. on Artificial
Intelligence (IJCAI-89), 1453-1458, San Mateo, CA, 1989. Morgan Kaufmann.

[52] Brian Carter Williams. Qualitative analysis of MOS circuits. Artificial
Intelligence, 24:281-346, 1984.

	August 1997_1 - Dissertation
	August 1997_2 - Dissertation
	August 1997_3 - Dissertation

