RELIABILITY OF PROGRAMS SPECIFIED WITH

EQUATIONAL SPECIFICATIONS

by

BORISLAV NIKOLIK

A DISSERTATION

Presented to the Department of Computer
and Information Science
and the Graduate School of the University of Oregon
in partial fulfillment of the requirements
for the degree of
Doctor of Philosophy

December 1998

“Reliability of Programs Specified with Equational Specifications,” a dissertation
prepared by Borislav Nikolik in partial fulfillment of the requirements for the Doctor
of Philosophy degree in the Department of Computer and Information Science. This

dissertation has been approved and accepted by:

/ZAM/CV// / W/

Dr. Dick Hamlet, Co-thair of the Exammmg Committee

1
— %f‘_/_(ot It":.‘--._______-t—._.'l--_h_‘____‘_-_-_-___—»:J

ﬁrrmijegalh Co-chair of the Examining Committee

l//a;/?j

Date

Committee in charge: Dr. Dick Hamlet, Co-chair
Dr. Zary Segall, Co-chair
Dr. Amr Sabry
Dr. Chris Wilson
Dr. Shlomo Libeskind

Accepted by:

R

Deanfof the Graduate School

iii

An Abstract of the Dissertation of

Borislav Nikelik for the degree of Doctor of Philosophy

in the Department of Computer and Information Science to be taken December 1998

Title: RELIABILITY OF PROGRAMS SPECIFIED WITH EQUATIONAL

SPECIFICATIONS

Dr. Dick Hamlet, Co-Chair

A 4 W/Q)—' A
pproved: Qﬂu (/

Dr. Zary Segall, Co-Chair

Approved:

Ultrareliability is desirable (and sometimes a demand of regulatory authorities) for
safety-critical applications, such as commercial flight-control programs, medical ap-
plications, nuclear reactor control programs, etc. A method is proposed, called
the Term Redundancy Method (TRM), for obtaining ultrareliable programs through
specification-based testing. Current specification-based testing schemes need a pro-
hibitively large number of testcases for estimating ultrareliability. They assume avail-

ability of an accurate program-usage distribution prior to testing, and they assume

iv
the availability of a test oracle. It is shown how to obtain ultrareliable progratns
(probability of failure near zero) with a practical number of testcases, without accu-
rate usage distribution, and without a test oracle.

TRM applies to the class of decision Abstract Data Type (ADT) programs specified
with unconditional equational specifications. TRM is restricted to programs that do
not exceed certain efficiency constraints in generating testcases.

The effectiveness of TRM in failure detection and recovery is demonstrated on

formulas from the aircraft collision avoidance system TCAS.

CURRICULUM VITA

NAME OF AUTHOR: Borislav Nikolik
PLACE OF BIRTH: Skopje, Macedonia

DATE OF BIRTH: August 26, 1969

GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED:

University of Oregon
Portland State University

DEGREES AWARDED:
Doctor of Philosophy, 1998, University of Oregon

Master of Science, 1993, Portland State University
Bachelor of Science, 1992, Portland State University

AREAS OF SPECIAL INTEREST:

Software Testing
Software Reliability

PROFESSIONAL EXPERIENCE:

Software Consultant
College Instructor

vi

ACKNOWLEDGEMENTS

I thank my wife Daniela for her emotional, linguistic, and technical support.
[thank my advisor, Dick Hamlet, for sparking my interest in the area of Software

Testing and Reliability, as well as for his support over the years.

vii

TABLE OF CONTENTS

Chapter Page

L. INTRODUCTION i e i it e e, 1

II. RELIABILITY BACKGROUND 8

Reliability Overview 8

Reliability Theory 12

Reliability Modeling 17

Fault Tolerance 23

Result Checking/Data Diversity 27

ADT Program Reliability 29

III. TERM REDUNDANCYMETHOD 32

TRM Description i e 32

Definitions and Notation 37

TestingPhase 42

Self-Checking Phase 46

Scope of Term Redundancy Method 51

Work Related to TRM 57

IV. TRM AND BOOLEANADTS 62

TCAS Boolean ADT 63

TCAS Experiment, 65

V. SUMMARY AND FUTUREWORK 71
APPENDIX

CLP(R) IMPLEMENTATION OF TCAS EXPERIMENT 74

BIBLIOGRAPHY e 80

Figure

AU

©

10.
11.
12.
13.
14.
15.
16.
17.

viii

LIST OF FIGURES

Page
Stack-of-Boolean-Values ADT Program 4
C Fault and Failure Example 12
Self-Checking of a Multiplication Procedure 27
Stack-of-Boolean-Values ADT Program 32
Stack of Boolean Values TRS 36
Term Distribution Dependent on an if Statement 37
RBTR Algorithm o i i 44
TRM Testing and Checking Algorithms. 48
TCAS Specifications i e 64
Boolean ADT Specification 64
Exhaustive Mutated rs Rules 66
Boolean Bi-Directional TRS 68
TRM Effectiveness 0 i 69
Correct BTRS Axioms it v i, 74
Mutated BBTRS Axioms« o o i i i it it it 75
CLP(R) Implementation of TCAS Specification 76
Illustration Driver Code oo o 77

CHAPTER I

INTRODUCTION

Many safety-critical systems, such as medical, weapon, nuclear reactor, and
avionics systems, depend on software for their functioning. Software failures, which
are deviances of required and actual software outputs, in these systems can have
severe consequences for people and the environment, including loss of human life
and environmental pollution. For example, the radiation therapy machine Therac-
25 has overdosed several patients, due to software faults in the control system [47].
It is important that such systems function ultrareliably; i.e., that the probability of
software failure on a randomly chosen input is close to zero. In fact, some govern-
ment regulatory authorities, such as FAA, demand ultrareliability for commercial
flight-control programs [47, 60]. Therefore, one needs to be able to assess the reli-
ability of the software under consideration in order to determine if the software is
indeed ultrareliable.

Existing theory for assessing the reliability of software does not view software
failures as deterministic events, but rather as random events, allowing the software
to be characterized by random variables, such as Mean Time to Failure (MTTF)
or Mean Time Between Failures (MTBF). Software reliability involves two kinds of
models: reliability growth and reliability [51].

Reliability growth models the process of repeated debugging, failure detec-

tion by testing, and fault removal, until an acceptable reliability level is obtained.
Reliability growth predicts the reliability of future program versions obtained from
previous ones by fault removal.

Reliability, on the other hand, predicts MTTF or MTBF for the current ver-
sion. Testing uncovers no failures, and reliability estimates are made based on the
number of testcases executed. (If a failure occurs during testing, the program is
corrected, and the testing process begins again.)

Unfortunately, in the reliability model it is impractical to show by straightfor-
ward sampling that software is ultrareliable, because prohibitively many testcases
are needed, and the predictions depend critically on the availability of accurate
usage information for the program under study.

Butler and Finelli define the “ultrareliable” region as program failure proba-
bilities of 10~® (per run) and below, and they present a very convincing argument
that it is impractical to gain failure intensities in this region by testing, because
too many testcases are needed [19]. Currently, it is considered that the practical
reliability region is program failure probabilities of 10~* and greater [51).

Whenever a statistical prediction is involved, one needs to assure that the
sample on which the prediction is based is representative in order for the predic-
tion to be accurate [32]. A representative random input sample for a program is
a set of program inputs that are drawn from the same input distribution as the
inputs drawn by the users of the program. In some cases, this distribution is known
prior to program release, such as for jet engine controllers; however, this distribu-
tion is usually not known for new software, or for experimental software where the

distribution changes based on the experiment being conducted. Therefore, it is of

critical importance that reliability estimates do not depend on a particular input
distribution; i.e., that the estimates are accurate for an arbitrary input distribution.

Random testing involves determining if the program under test failed on a par-
ticular testcase or not. An effective procedure for evaluating outcomes of testcases
is called a test oracle. Random testing for ultrareliability without a test oracle is
infeasible due to the large number of testcases that need to be executed in order to
estimate ultrareliability. Usually, test oracles are unavailable.

Many safety critical systems, such as military systems, involve Abstract Data
Type (ADT) programs (coded mainly in ADA). ADT's can be specified by equational
specifications, which can be transformed into Term Rewriting Systems (TRSs). A
method for obtaining ultrareliability of ADTs specified with TRSs might encour-
age the development of many more such systems. Thus, a method for obtaining
ultrareliable ADTs would be of value.

A method is proposed, called the Term Redundancy Method (TRM), that
can obtain ultrareliability with a practical number of testcases for decision ADT
programs specified with equational specifications. TRM’s ultrareliability predictions
hold true regardless of the input distribution chosen by the user of the software.
TRM does not need a test oracle.

A brief description of TRM is given here. For a detailed, complete, and formal
treatment of TRM see chapter III.

Programs employing ADTs involve ADT terms in their code that need to
be evaluated as the program executes. For example, a program might be a C
main function which at execution time needs a result of a term. Such programs

can be viewed as consisting of parts that are responsible for obtaining inputs from

main(){

s = empty;
read(b);
b = top(push(s,b));
print(b);
}

FIGURE 1. Stack-of-Boolean-Values ADT Program

the environment, parts that give outputs back to the environment, and parts that
evaluate the terms (evaluators).

For example, consider the C main program of figure 1. The read statement
is the part of the program that obtains a value for b, which becomes a part of
the term top(push(s,b)). For presentation purposes, suppose the read statement
reads in 0 for b, giving raise to the grounded term top(push(empty,0)) at the
assignment statement. The (perhaps incorrect) implementation of the top, push,
and empty procedures together with the mechanism for calling them as directed by
the term top(push(empty,0)) is the part of the program that evaluates the term
(evaluator). The print statement is the part of the program that outputs the value
of the term back to the environment. Evaluators may unfortunately evaluate some
terms incorrectly. For example, a Stack-of-boolean-values evaluator might give a

value of 1 (instead of the correct value 0} when given the term:
top(push(empty,0))

as input. TRM forces such incorrect evaluation to occur rarely; i.e., TRM forces
the evaluation of terms to be ultrareliable. Next, it is described how TRM obtains

ultrareliable evaluations.

An input is given to a main program, which in turn gives rise to a ground
term (call it the original term) that needs to be evaluated. Instead of evaluating
only the original term, TRM generates multiple random equivalent terms from the
equational specification of the ADT. TRM then gives these random terms (including
the original term) to the evaluator, and returns the majority of evaluator outputs
as the result of the original term. The main program then continues operation with
this majority value and eventually produces an output (if it terminates).

The majority values can be trusted to the extent of the amount of pre-testing
performed on the evaluator; i.e., more testing gives a higher confidence that the
majority values can be trusted. Thus, TRM consists of two phases: (a) estimating
the failure rate of an evaluator on a randomly chosen term through testing (called the
testing phase), and (b) generating and executing the evaluator on a set of random
equivalent terms, which comprise a self-check (called the self-checking phase), and
performing 2 majority vote on the results of the executions. In phase (a), a statistical
theory is used to obtain estimates on the failure rate of an evaluator. In phase (b),
when a user requests a result of a term ¢ at execution time, TRM generates a self-
check {c;, 3, ...,cn} using a TRS, by applying random rewrite rules to ¢, such that
all of the random terms c, ¢, ¢, ..., ¢, are equivalent according to the TRS. Then,
the evaluator is executed on each term in the check. TRM uses majority vote on
the execution results to decide on the result that it returns to the main program.
The terms {e¢y, ¢y, ..., ¢n} that TRM generates are failure-independent terms. The
idea of giving programs multiple random inputs was introduced by Blum [13] and
Ammann [2].

TRM obtains ultrareliability with a practical number of testcases. For exam-

ple, if the probability of failure of an evaluator on a randomly chosen term from
the equivalence class of ¢ is 1074, then the probability of failure agreement of three
failure-independent executions on three randomly chosen terms from the equivalence
class of ¢ is 10712,

TRM’s predictions do not depend on a particular user distribution over terms,
because TRM samples from the equivalence class of ¢ from an appropriate fixed
distribution that is the same in both phases. If testing in phase (a) shows a particular
failure rate based on a particular distribution over terms, the same failure rate has
to be observed in phase (b) for each term chosen according to the same distribution
over terms as in {a). TRM assures that in phase (b} the terms for checking are
chosen according to the distribution in (a).

TRM applies to decision term-evaluators, specified with unconditional equa-
tional specifications [44]. Informally, a decision term-evaluator is a program that
takes as inputs a large set of terms, and it classifies these terms into a small number
of output classes. For example, a Stack-of-boolean-values evaluator is a decision
term-evaluator since it evaluates every term to either 1 or 0. This restriction of
TRM to decision evaluators is necessary to assure that a practical number of terms
are used in the testing phase.

An example of a conditional equation is
if not empty(S) then push(pop(S)) = S,

where the condition not empty(S) guards against the exception case, and the pop
operation removes an element only from a stack that is not empty. In theory, TRM
could be applied to conditional equatioﬁa.l specifications by generating equivalent

terms through conditional rewriting [44]. In particular, random conditional rewrit-

ing would be used to generate random equivalent terms. However, in practice, such
a rewriting would introduce additional complications, which are not present in the
unconditional case, so TRM in this work is applied only to unconditional equational
specifications.

TRM does not apply to anything more then a set of unconditional equations
{t: = s1,...,tn = s,}. For example, TRM would not apply to specifications which
allow equational specifications to be associated to operational pre/post conditions
of program interfaces through abstraction functions. That is, TRM is strictly a
“black-box” method, which is not concerned with the internal details of evaluators,
such as element arrangement in a stack, a particular implementation strategy of the

stack, or a particular evaluation strategy.

CHAPTER II

RELIABILITY BACKGROUND

Software quality involves various aspects, such as reliability, functionality, us-
ability, performance, serviceability, capability, installability and maintenability. The
most important aspect of software quality is considered to be reliability, since it

quantifies software failures [58].

Reliability Overview

Software reliability concepts have been adapted from hardware reliability.
Both software and hardware reliability involve random testing. In this section,
a general overview of software reliability concepts, an overview of random testing,

as well as the differences between software and hardware reliability, are given.

Software Reliability

Software reliability is usually defined as the probability of failure-free software
operation for a specified period of time in a specified environment (time domain
definition) [51]. Software reliability is also defined (data domain definition) as the
probability of failure-free software operation on a random program input selected
from a specified environment. TRM uses the data domain definition.

Discrete-time (data domain) system reliability treats executions of programs

as discrete events. Let p be the probability of a system failure at a randomly chosen

input point. Let Ry(k) be the probability that no system failure occurred during
an execution comprising k input point selections. Then the discrete-time system

reliability is (assuming failure independence)

R(k) = (1 - p)".

Fundamental to reliability are the notions of failure and environment. Failure
means that the program in its functioning has not met user requirements in some
way. Failures are of a dynamic nature; i.e., the program has to be executing for a
failure to occur. Reliability represents a user-oriented view of software quality. It
relates to program operation rather than to the design of the program. Therefore,
in general reliability is affected by the way the program is operated; i.e., by the
program environment. The environment is described by the operational profile for
the program. An operational profile is the set of program inputs that the program
can take, along with the probabilities with which they will occur during the execution
of the program. It may not always be practical to determine all the probabilities for
all the inputs, because of the potentially large number of them. Furthermore, the
operational profile of a program may not be known at all. Thus, it is of importance
that reliability estimates do not depend on an operational profile.

Random testing is used to estimate the reliability of software.

Random Testing

Reliability is established by random testing: the input domain of the software
is sampled according to its operational profile, and the program is executed using the

random sample. The random testing involved in this process is a form of black-box

10

(or specification-based) testing, where the random samples are generated from the
specification of the program’s external behavior. This form of testing is different
from white-box (structural or coverage) testing, which involves covering program
internal structures, such as statements.

As can be seen from the discrete-time system reliability formula above, in
order to estimate ultrareliability, where Ry(k) > 1 — 10~9, more than 10° testcases
are needed. Unfortunately, currently only less than 10* is considered practical.

Testing requires means to evaluate the outcome of each testcase (random sam-
ple) in order to determine if a failure occurred or not. A test oracle is a computable
procedure for deciding if the output of a program matches its specified output.
Since random testing for ultrareliability involves a large number of testcases, testing
without an efficient oracle is infeasible. Currently, evaluating outcomes of testcases
is mainly manual. In most cases, human visual inspection of the output and the
specification (usually written in a natural language) determines if a failure occurred.

Thus, random testing for ultrareliability currently needs an impractical num-

ber of testcases, the usually unavailable test oracle, and an operational profile.

Software vs. Hardware Reliability

Software reliability has been adapted from hardware reliability {67]. The prin-
cipal difference between software and hardware is that the source of failures in
software is design faults, whereas the main source of failures in hardware has been
wearout (and other physical causes) {58]. Software does not wear out, and design re-
liability has not been studied in hardware systems, mainly because hardware design

faults are insignificant compared to physical deterioration faults.

11

Not only is the source of faults (design for software and wearout for hardware)
different, but the environments in which hardware and software reliabilities are
studied is different as well. The environment for hardware involves parameters
such as temperature, pressure, acceleration, etc., while the environment for software
involves inputs to the software (operational profile). The operational profile has
profound influence on software reliability. In particular, the software can be incorrect
in the sense of the conventional program correctness theory, but still have reliability
of one. This could happen when the operational profile of the program is such that
it does not allow selection of inputs that cause the program to fail (probability of
chosing these inputs is zero).

The crucial differences between hardware and software have prompted many
to question the validity of applying hardware reliability to software. Some justifica-
tion for using hardware reliability on software could be given in terms of a particular
random variable: MTTF, which is the most common random variable that charac-
terizes failure in time. MTTF is the sum of interfailure times divided by the number
of failures. A bigger MTTF means that on average the software is going to operate
longer without failure. Is MTTF a random variable for software? The question is a
consequence of the common argument which says that the software is either correct
in which case its reliability is one, or it is incorrect in which case its reliability is
zero. For MTTF to be a random variable, there have to be some random fluctua-
tions present in the software and/or in the software environment, which would make
interfailure times subject to uncertainty. The random fluctuations in software come
from the uncertainty of the execution conditions that will actually occur during

the use of software. One cannot, for example, predict what inputs are going to be

12

presented fo a space shuttle’s sensors at some arbitrary time in space. Therefore, it

seems reasonable to apply hardware reliability to software.

Reliability Theory

Reliability theory defines and relates basic concepts such as failure, fault, fail-

ure intensity, mean time to failure and reliability [67). Essential to the definition

vo id main(}{

int i;

scanf ("%d" ,&i);

i=1%2;

printf{("%d",i);
}

FIGURE 2. C Fault and Failure Example

of reliability is failure. Failure is a departure of the external results of a program
operation from requirements. Requirements are statements about the intended ex-
ternal operation of the program. Failure is distinct from but related to the notion
of a fault, which is a defect in the program text. For example, if the requirement
of the C program given in figure 2 is to output ¢ + 2, the program has a fault in
the statement i = i * 2, and a failure would occur when scanf reads in any value
different than 2.

Reliability theory considers software failures to form a random process, which
is nothing more than a set of random variables characterized in time. Each value of a
random variable is assigned a probability. The function that assigns these probabil-
ities is called the probability density function. When the random variable represents

failures, the probability density function is called the failure density function. Next,

13

the notions of reliability and failure density functions are given more formally, and
the relations between them are given as well. The following continuous time-domain
reliability formulas are taken from [67).

Let T be a random variable representing the failure time of software. The

probability that the software will fail by time ¢ is

Fi)=PT <t = [f(e)ds,

where F(t) and f(t) are the curnulative distribution function and the failure density
function, respectively. The probability that the software is going to survive until
time t is:

R(t)=P[T > t]=1—- F(t) = [“ f(z)dz,

where R(t) is the reliability function. Failure rate is the conditional probability that

a failure occurs in the interval [t,,1;], given that failure has not occurred before ¢;.

That is,
Plty < T < 15|T > 1]
ta—1)

Plt < T < 1))
(tg - tl)P[T > t]]

_ Ftz) - F(t)
(ta — 1) R(t1)

The failure intensity z(t) is the derivative of the failure rate. If we let the interval

14

be {t, At], and let At — 0, the failure intensity at time ¢ is

. F(t+At) - F()
20 = i~ ATRQ)

= f(t)/ R(t).

The failure intensity is the failure rate at time {, given that the software survives

up to t.

Failure Intensity

All the formulas in the previous section depend on the failure density function.
The usual assumption of conventional software reliability theory is that the failure

density function is an exponential distribution for software [68] i.e.,

ft) = xe™, 2> 0.

(This distribution is a special case of the Poisson distribution where the number of
events, in our case failures, experienced in the time interval [0, {} is one.) Using the
formulas of the previous section, we arrive at the following cumulative distribution

function

F(t)=1—e™,

where) is a constant. The continuous-time reliability function is

R(t) = e_M,

15

and the failure intensity is

z(t) = A

When failures follow an exponential law then programs have constant failure inten-
sity A; i.e., failure is equally likely to occur at any time. The average lifetime of the
software (MTTF) is 1/A.

Lyu [51]) shows the relation between discrete (data domain) and continuous
(time domain) time system reliability as follows. Let #. be the execution duration
associated with an input selection (assuming ¢. is same for every input selection).
The time elapsed since the start of the execution is { = kt.. Let p/t. have a finite
limit A as ¢, approaches zero. Then,

R(t) = lim Ry(k) = e,

te—+0

which is exactly the time-domain reliability with a failure rate A. (Ry(k) is the
probability that no system failure occurred during an execution comprising & input

point selections.)

Operational Profile

The reliability formulas above do not take into account the fact that reliability
depends not only on the failure density function, but also on the way the software is
used. The formulas do not reflect this intuition, because they are hardware reliability
formulas. Hardware failures are not dependent on the way a hardware component is
used, because the simplicity of hardware circuitry allows one to assume that design

faults are practically nonexistent, and the failures result primarily from random

16

fluctuations in the component, which are independent of the way the component is
used. For software, the situation is different since only design faults are responsible
for failures.

Failure is a function of the way software is used since the software could be
such that some inputs may cause failures to occur, while other inputs may not.
Since different users may use the program differently, some users may observe more
failures than others. For example, users make different operating system calls than
system administrators do. As a result, the operating system may have quite different
reliability levels in these two cases. As a concrete example, consider the faulty C
program given in figure 2, whose requirement is to print : + 2. If 90% of the time
users input 3, and 10% of the time they input 2, the probability of failure for the C
program is 9/10. However if users have 2 as an input 90% of the time, and they have
3 as an input value 10% of the time, the probability of failure for the C program is
only 1/10. Next, the notion of “the way software is used” is made more precise.

Let P be a program and D be P’s input domain. The frequency of selecting
inputs from D defines a probability density function over D, expressing the proba-
bility that a particular input is going to be selected as input to P. This frequency
defines P’s usage. Let d(z) be the input probability density function, reflecting the
frequency of input selection from D. In general, d(z) will weight some inputs more
heavily than others, reflecting the actual usage expected of P. Given a discrete den-
sity function d(z), the operational distribution F(z) is the cumulative probability

that = will occur in actual use

Fla)= Y dw)

17

In practice, the best that can be obtained, in general, is a crude approximation to
d(z) called the operational profile [57]. The function d(z) is approximated in cases
where the usage information is not available. Usage information may be unavailable
for new software that has never been used before and as such has no usage history.
Another example of unavailable usage information is experimental software, where
each experiment is different form the previous one, and requires different inputs
from the rest of the experiments. Among others, Miller 55, 54] points out that it is
difficult to ensure that the distribution from which testcases are selected is identical

to the operational distribution.

Reliability Modeling

In this section, the two distinct kinds of reliability models: relfiability growth
and reliability [64] are considered. Reliability is a limiting case of reliability growth

where the number of observed failures is zero.

Reliability Growth Models

Software goes through a testing and debugging cycle until a release quality is
obtained. Models that describe this process are called reliability growth models [58].
Reliability growth models reflect the intuition that on average, as faults are removed
from the software, failure intensity drops and consequently reliability increases.

Let successive failures of a program obey a nonhomogeneous Paisson process.
Let N{t) be the cumulative number of failures observed during time interval {0,].
Let H(t) = E[N(t)] be the mean value of N(t), and h(t) = dH(t)/dt be the failure

intensity. Reliability growth occurs when A(2) is nonincreasing. Reliability can grow

18

on some interval [0,T], despite local fluctuation of h(t) on [0, T, if the expected
number of failures in any initial interval (of the form [0,%]) is no lower than the
expected number of failures in any interval of the same length occurring later (of
the form [z,z +).

Reliability may fluctuate between growth and decrease on [0, T] because the
fault removal process may not be perfect (one that may not always remove faults
or/and one that may introduce new ones). Changes in the operational profile of a
program may change reliability as well. Furthermore, an imperfect fault removal
could increase reliability w.r.t. one operational profile, but decrease reliability w.r.t.
another one.

Reliability growth is analyzed through the use of trend tests [64]. Trend
tests are used to determine if the system undergoes reliability growth or reliabil-
ity decrease. The most commonly used trend test is the MTTF test consisting of
calculating 7(i) the arithmetic mean of the first i observed interfailure times ¢;:
(1) = (1/7) j=1 t;. When 7(i) forms an increasing sequence, reliability growth is
deduced.

The two most commonly used reliability growth models consider failures to
obey a nonhomogeneous Poisson process [58]. The two variations of the model are
the bastc model and the logarithmic Poisson model. The failure intensity assumed

for the basic model is

Alp) = Ao(1 = pfvo),

where Ag is the initial failure intensity, p is the average or expected number of
failures experienced at a given point in time, and v is the total number of failures

that would occur in infinite time. The failure intensity assumed for the logarithmic

19

model is

Ap) = ’\Oe—ﬁu?

where f is the failure intensity decay parameter. § represents the relative change
of failure intensity per failure experienced. Changes in failure intensity may occur
only after a (possibly imperfect) fault removal process is conducted.

Both of the models allow imperfect fault removal by increasing the value of
vo and decreasing the value of 8. The difference between the two models is that
the basic model is used for programs with uniform operational profiles, and the
logarithmic for 2 highly nonuniform profiles. This is so because the failure intensity
decreases very slowly for the logarithmic Poisson process, which results from infre-
quent executions of some inputs that cause failures. On the other hand, the failure
intensity in the basic model is a linear function, so removal of faults results in a
proportional drop of the failure intensity.

Reliability growth models are divided into those with finite failures and those
with infinite failures. Most published models assume a finite number of failures in
infinite time. For example, the basic model assumes a finite number of failures in
infinite time. The logarithmic Poisson model assumes infinite failures in infinite
time. Each model in a category is characterized by type and class attributes. The
type attribute gives the distribution of the number of failures experienced by time
t. The class attribute gives the functional form of the failure intensity in terms of
time.

The two types of models in the finite failure category are the binomial-type
model, which assumes perfect fault removal at each failure experienced, and the

Poisson-type model, which assumes that the total number of failures is a random

20

variable with a given mean value. That is, the Poisson-type model, unlike the
binomial-type model, assumes imperfect fault removal.

Important classes in the binomial-type model are the exponential and the
Weibull class; i.e., the failure intensities have exponential and Weibull distribution
respectively.

Reliability growth models are essentially empirical fitting of curves to observed
data [67). For the basic and the logarithmic Poisson models, the values of three
parameters need to be estimated: Xp, vp and f. Failure data is gathered, the
parameters estimated, and a particular failure intensity function selected from a
family of functions by instantiating the parameters [58].

The main models that belong to the class of finite failures with exponential
failure intensity are Jelinski-Moranda model [56), NHPP model [28], Schneidewind’s
model, Musa’s basic execution time model [58], and the Hyperexponential model.
The main models in the class of finite failures with Weibull and Gama failure time
are Weibull model [58], and the S-shaped reliability growth model [51]. Some of the
models in the infinite failure category are Duane’s model, Geometric model, and the
Musa-Okumoto logarithmic poisson model [58]. The best known Bayesian model
is Littlewood-Verrall reliability growth model [51), which accounts for increase in
reliability if no failures occur during operation, and it reflects the fact that different
faults have different impact on the reliability of the program. The numerous models

are compared and evaluated in [58].

21

The Reliability Model

Conventional reliability theory relates a number of successful tests, failure
intensities and confidence bounds [68]. Let P be a program and D be the input
domain of P. A testset T is a subset of D. An element of T is called a tesicase. Let
S be P’s specification. A testcase z € T is successful if [P)(z) = S(z) (where [P]
denotes the function computed by P).

Suppose a distribution d(z) is given over D, constant failure intensity #, and
n testcases drawn from D according to d(z). Suppose all n testcases are successful.
The probability that a testcase fails is 8, 1 — @ is the probability of success. Given
that the n testcases are independent, the probability that they all succeed is (1—8)".
The upper confidence bound « on 8 is defined as the probability that the failure
intensity of P is below #. The confidence bound is related to the testset size n and

the failure intensity by (call this formula the confidence bound formula)

a< (l_a)n’

which is obtained from the binomial formula as a special case in which the number
of failures is 0. If one needs the failure probability to be less than 6, and one has
run n successful testcases, the probability that an unacceptable product would pass
the test is no higher then «. This means that 1 — a is the confidence bound on
6 expressing the probability that @ exceeds the correct value for P. One continues
testing without failure to make a acceptably low [60]. The confidence bound formula
allows statements like “1 million test points gives 99% confidence that the failure

intensity of P is below 4.6 x 10~¢, a MTTF of about 220,000 runs”{example taken

22

from [33]).

The testing process described above is called hypothesis testing [60, 65]. The
statement “the failure rate of P is below 6" is the hypothesis to be tested in the
case above. a is the probability that the alternate (wrong) hypothesis is accepted
(known technically as Type II error [65]; the Type I error — rejecting the right
hypothesis — is not considered in this work).

Conventional reliability practice involves sampling the input domain of the
software according to the expected way of use, executing the software on the samples
and estimating the reliability of the software based on the outcomes of the samples.
Next some problems of conventional reliability are discussed.

Musa [57] has given heuristics for constructing operational profiles; however,
the expected use of the software is in general not known prior to the testing process,
since obtaining precise profiles requires predicting the future use of the program.
Availability of an operational profile prior to the testing process is crucial, since
predictions based on non-representative samples have no statistical meaning.

Obtaining high levels of reliability is not practical since in general it requires
prohibitively large number of test samples, as can be witnessed from the confidence
bound formula. For example, the confidence bound formula requires more than 10°
test samples for predicting ultrareliability with a confidence bound higher than 90%.
Butler and Finelli [19] present a very convincing argument that it is impractical to
gain failure intensities in the ultrareliable region by testing.

A fundamental assumption of software testing is availability of means to eval-
uate testcase outcomes. Usually, the success or failure of a testcase is evaluated

through a visual examination by a programmer, with a slower but more reliable ver-

23

sion of the program under investigation, or with an independently developed version
of the same program. Automatic oracles could in some cases be built from formal
program documentation [61] and from executable specifications [5, 40]. Since ultra-
reliability testing requires large number of samples, testing without an automatic
oracle is infeasible.

Apparently unrelated test samples may be correlated by the program text.
Statistical testing assumes that the objects under test are not correlated in any way.
If the sample-independence assumption does not hold, the study is invalidated;
testing a program on n correlated inputs is equivalent to repeating the same test n
times. The problem of determining correlation between points in the input domain
of software is, in general, undecidable since it requires solving the halting problem, so
reliance on a precise operational profile is essential in obtaining meaningful estimates

[34]. If the operational profile is correct then the correlation of test samples is

irrelevant.

Fault Tolerance

Fault tolerant software can be found in various systems, such as railway sys-
tems, military and civilian aircrafts, and space shuttles. Fault tolerance has mainly
been used for dealing with hardware faults [64, 50, 46], however fault tolerance has
been used to tolerate software faults as well [71, 53, 47). The goal of tolerating
software faults (software fault tolerance) is to increase the reliability of systems,
such as the ones above, by allowing software to continue with correct operation in
presence of software faults. The reasoning behind considering software fault toler-

ance is that complex software cannot be practically shown to be fault free, since

24

the primary technique for showing fault absence, proof of program correctness, is
currently considered not to be practical for complex software.

Fault tolerant software consists of two mechanisms: result-verification, which
determines if the software is producing correct outputs, and error recovery, which

attempts to correct the failures as detected by the self-checking mechanism.

Result Verification

The goal of Result Verification is to determine if the software produces a cor-
rect output at run time. Result verification is usually based on run-time comparison
of results of different but functionally equivalent software versions. Majority and
consensus voting schemes have been designed for this purpose [51]. Various other
techniques for checking software outputs have been developed, such as self-checking
and error-detecting codes. Self-checking involves inserting software redundancy in
the program, including both instruction and data redundancy [71, 53]. In most
cases, a complete check on the correctness of the output is infeasible and only
the reasonableness of the output is checked [47]. The most commonly used checks
are functional checking, control sequence checking, and data checking. These rea-
sonableness checks are in general hard to formulate and the checks might be as
error-prone as the software they are supposed to check [47).

Another result-verification technique is self-checking based on executable as-
sertions [53, 4]. In the most crude case, to make a program self-checking is to insert

after its code the assertion:
if not assertion(So,Sy) then error,

where assertion(Sp, S;) is a predicate of the initial state Sy and the final state Sy

25

that the computation has to satisfy. This solution is subject to memory, time and
most importantly to complexity constraints [53]. In particular, assertion(So, S 1)
might be as complex as the program, and therefore as error-prone as the program
itself.

Algorithm-based fault tolerance [37] uses error detecting and correcting codes
for performing reliable computations with specific algorithms. This approach mod-
ifies algorithms to operate on encoded data, and to output encoded data as well.

Certification of computational results [30], is based on the idea of a certifica-
tion trail — a trail of data left by an execution of the program. Another, simpler
and faster program, solves the original problem using the trail information left by
the program under check. The results of the two programs are compared and if
they agree the results are accepted as correct; otherwise an error is reported. This
method is similar to the one proposed by Babai [8], where the original algorithm
is modified to output additional information called a “witness”. These methods
require encoding of the input with an error-correcting code.

Once a failure has been detected, run-time error recovery can take place. Error
recovery takes the form of a backward or forward recovery. Backward recovery takes
(rolls back) the system into a previously saved state, and the execution is resumed
from that state. Forward recovery transitions the system into a new correct state,

or masks the fault by compensating for the fault.

Basic Error-Recovery Techniques

The two basic error recovery techniques are N-version programming (which is

an error detection technique as well) and recovery blocks. N-version programming

26

1s considered a forward error recovery technique, and recovery blocks is a backward

recovery technique.

N-Version Programming

In N-version programming, unrelated software teams implement the same spec-
ification, the versions are run against the same input, and a voting scheme choses
a result {7, 6]. If the versions are failure independent, this approach answers the
impractical ultrareliability problem given that each version is independently tested
to obtain a certain reliability estimate [19].

Apart from the N-version approach requiring an increase in the number of pro-
grammers, maintenance costs, and additional parallel hardware, strong arguments
against the independence of versions assumption have been given [45, 18, 17]. Ex-
periments carried out in {45] show that programs based on different algorithms failed
on the same inputs. The dependence of versions usually arise from the difficult parts
of the problem solved, and not from the dependencies in the solution techniques [47].

Butler and Finelli [19] explore the possibility of showing failure independence
of versions so that N-version programming can yield ultrareliability. They conclude
that showing independence of versions by testing requires impractical number of

test samples.

Recovery Blocks

The recovery blocks approach consists of executing N modules, and subjecting
module outputs to an acceptance test 63]. The process starts by executing the
first module and checking its output with an acceptance test. If the module does

not pass the test, the system is rolled back into the state prior to execution of the

27

y= f(.'E - 1"1,‘9‘-1‘2) +f(.’L' —Tl.,f'z) +f(rlsy— 7"2) +f(1"1,7‘2)
Ye = [Pl(z = r1,y — r2) + [P](z — r1,72) + [P)(r1,y = r2) + [P](r1,72)

FIGURE 3. Self-Checking of a Multiplication Procedure

first module, and then the next module is executed. If none of the modules passes
the test, the system fails. Apart from the inefficiency of this method, it relies on a
highly reliable acceptance test; i.e., an oracle.

The hope with introducing distinct but functionally equivalent units in the
system is that these redundancies are easy to systematically introduce, and that
these redundancies increase the reliability of the system. The main problem is
that redundancies may not result in obtaining ultrareliable software (or increase
in reliability at all) when the redundancies cause correlated failures. Showing that
redundancies give raise to statistically independent failures is infeasible by testing
[19]. Furthermore, the introduction of redundancies has mainly been ad hoc, result-

ing in considerable human effort in constructing redundancies for specific programs

[51).

Result Checking/Data Diversity

Result checking improves software reliability by executing the program under
study muitiple times with inputs that are randomized over the program’s input
domain [15]. Consider the following multiplication example given in [12]. Let P be a
multiplication procedure over a finite field. Let [P] denote the function computed by
the procedure P. Suppose that P keeps no internal state information from execution

to execution; i.e., the result of [P](z,y) depends on z and y only. Suppose that P

28

fails only on 1/100 of total pairs < z,y >. Let f(z,y) be the true multiplication
function over the same finite field. Consider the ezpanded formulas given in figure
3, where ry,r; are randomly chosen from a uniform distribution, causing each call
to P to be on a uniformly distributed pairs of inputs. The first expanded formula,
after simple algebraic manipulation, collapses to y = f(z,y) (+ and — are the
usual addition and subtraction functions). If f = [P] and + and — are the correct
addition and subtraction operators, then y. = [P](z,y) as well. The probability
of failure for y. in the expanded formula is 4/100 (because there are four calls
to P). By computing several outputs y!,...,y* using new r,,r; for each y', and
choosing the majority of results as a final result, the chance of failure can be made
arbitrarily small. This method solves the impractical ultrareliability problem and
the operational profile problem. Clearly, 1/100 failure rate could be estimated by
practical testing. An operational profile is not needs since the expanded formula
involves a uniform distribution of inputs to P regardless of P’s operational profile,
that is, independent of z, y instantiations.

Of critical importance to this method is the relation among outputs based
on the random inputs; i.e., the expanded formula in figure 3. Currently, this usu-
ally non-trivial relation is in general left to the developer/tester to discover. This
relation has been already established for a few well-known problems, such as ma-
trix multiplication, polynomial multiplication, etc. However, no general method has
been given for establishing this relation for a general class of problems, such as for
the class of all computable functions. Result Checking does not provide a test ora-

cle. Result checking is considered in more detail, and compared to TRM in section

“Work Related to TRM.”

29

ADT Program Reliability

An ADT is defined as a set of values and a set of operations over these val-
ues [39]. ADTs are the basis for the “information-hiding” design philosophy that
supports software engineering activities such as maintenance and reuse [59]. Infor-
mation hiding is an important technique for dealing with the complexity involved in
constructing large software systems. ADT's are supported in a number of languages,
such as C++, SIMULA, CLU, Java and ADA.

The behavior of an ADT can be characterized by equational specifications [29),
which have been used to specify non-trivial problems. In particular, Goguen [39]
specifies a database system for an airport scheduler in OBJ-T. Equational specifica-
tions have been used to specify programming environments, which include interac-
tive tools such as syntax-directed editors, debuggers, interpreters, code generators,
and prettyprinters [43, 9]. Bergstra gives a complete equational specification of the
“ToolBus,” a coordination architecture that contains concurrency and time [10]. Be-
cause of their formal nature, equational specifications are very suitable for rigorous
analysis and manipulation.

The following methods consider correctness and testing of ADTs. Theories of
ADT correctness have been given in [24, 31, 39, 26]. The problem of correctness of a
specification w.r.t. some mathematical model is considered as a problem of finding
an isomorphism from the specification to the mathematical model [39]. Correct-
ness of specifications without regard to a particular mathematical model consists of
showing that a specification is sufficiently-complete and consistent [31].

Testing of ADT's has been investigated in [25, 40, 23, 29, 27, 52]. The axioms

of an axiomatic specification are used to test the consistency of an axiomatic spec-

30

ification with an implementation [25]. Axioms are compiled into driver programs
that make calls to implementation functions with data supplied by a user. This
approach addresses the test evaluation problem: the axioms are test oracles.

Rewriting is used as a test oracle by rewriting a term to obtain its expected
result [40, 29]. Testcases can be obtained by syntactic manipulation of the axioms
[40], rather than by rewriting. Marre deals with generating testcases automatically
based on traces [27].

Out of the ADT testing methods, the closest to TRM is the one proposed
by Frankl and implemented in ASTOOT {23]. Frankl proposes that each testcase
consists of a tuple of sequences of terms, coupled with tags indicating if these terms,
when executed, should put the implementation under test into equivalent states or
return equivalent results. That is, Frankl notes that it is important to consider the
semantic part of the axioms, since different grounding of arguments in a term lead
to different abstract states of the specification, resulting in a more comprehensive
coverage of states. For example, given a Stack-of-Integers TRS, Frankl would use

rewriting to generate the following testcases:

(1) (top(push{empty,56)),top(push{push(empty,23),56)), equivalent)

(2) (top(push(empty,56)),top{push(push(empty,78),10)), not-equivalent)

Both testcases consists of two terms each, and two tags indicating the expected
outcome of the execution of these testcases against the implementation. In testcase
(1), the implementation has to be in an equivalent state after the execution of the

implementation on the two testcases. In testcase (2), the implementation has to

31

be in a non-equivalent state after the execution of the implementation on the two
testcases. The two testcases could be executed against the Stack-of-Integers im-
plementation, and the resulting states or outputs of the implementation could be
checked for equivalence.

The benefits of ASTOOT are the automatic generation of testcases by rewrit-
ing and the automatic verification of test results by comparing implementation re-
sults. However, since Frankl is concerned with providing a testing methodology, the
ASTOOT does not offer any benefits relating to the reliability of the implementa-

tion.

32

CHAPTER 1I1

TERM REDUNDANCY METHOD

In this chapter, TRM is described formally, the analogy between TRM and the
related method of Result Checking is established, and the scope of TRM is given.
TRM is illustrated on a simple example involving a Stack-of-Boolean-values ADT.

(In chapter IV, TRM is illustrated on a more comprehensive example.)

TRM Description

Programs employing Abstract Data Types (ADTs) involve ADT terms (terms
in the logic sense) in their code that need to be evaluated as the program exe-
cutes. For example, consider the C main program of figure 4. The main program
involves the term top(push(empty,0)), that needs to be evaluated when program
control reaches the print statement. This grounded term is obtained from the term
top(push(s,b)) by replacing s with empty, and b by 0. In general, programs in-

volve ungrounded terms, that get grounded with actual values, as main reads in

main(){

s empty;

h=0;

print (top(push(s,b)));
}

FIGURE 4. Stack-of-Boolean-Values ADT Program

33

values from the environment. The program that evaluates terms is called an eval-
uator. In the example of figure 4, the evaluator consists of the implementation of
the top and push procedures together with the mechanism for calling push and top
as directed by terms, such as top(push{empty,0)). When a grounded term occurs
during program execution, that term needs to be evaluated so that execution of the
program can proceed. Thus, ADT programs involve grounded terms that may need
to be evaluated ultrareliably. TRM is aimed at obtaining ultrareliable evaluations
(probability of giving an incorrect value for a random term is less then 10-9). Of
particular interest to TRM is the case in which an evaluator correctly evaluates most
of the terms, but fails on “isolated” terms, which testing is very unlikely to “hit”.

For example, an implementation of a Stack-of-Boolean values might fail only on
top(push(pop(push(empty,1)),0))

by evaluating it incorrectly to 1, but succeed on every other term.

Equational specifications are expressive enough to specify any ADT, and ADTs
are powerful enough to compute any computable function [21]. Equational specifi-
cations can be turned into rewrite rules, effectively obtaining a computational model
known as a Term Rewriting System (TRS). This conversion is trivial — it involves
a syntactic replacement of = by —. A TRS is essentially an executable (but very
inefficient) equational specification. TRM uses the TRS in order to obtain ultrareli-
able evaluations of ADT terms. In particular, instead of evaluating only the term
given to the evaluator (the original term), TRM uses the original term and the TRS
specification of the ADT to generate multiple random terms (all equivalent to the
original term according to the TRS). TRM then gives these random terms (including

the original term) to the evaluator, and returns the majority of evaluator outputs

34

(if defined) as the result of the original terrn. This phase of TRM is called the
self-checking phase. The main program then continues operation with this majority
value and eventually produces an output (if it terminates).

The majority values are trusted to the extent of the amount of testing per-
formed prior to the self-checking phase; i.e., more testing gives a higher confidence
that the majority value can be trusted. The phase that established this confidence
is called the testing phase.

In the testing phase, statistical testing was performed prior to self-checking in
order to obtain estimates on the failure rate of the evaluator. This failure rate is not
the same as that of evaluating a term by TRM, since TRM involves multiple calls to
the evaluator. The failure rate of the evaluator obtained in the testing phase is used
in the self-checking phase. TRM assures failure independence, since the distribution
of terms in the testing an self-checking phase is the same. For example, suppose
that the testing phase estimates probability of failure of an evaluator on a randomly
chosen term as less than 107%. Then the probability of failure agreement of three
random evaluator executions on three randomly chosen terms in the self-checking
phase is less than 10712, if the three terms are chosen from the same distribution
used in the testing phase. Thus, TRM uses the failure rate estimated in the testing
phase, in order to obtain ultrareliable term evaluations in the self-checking phase
by sampling from the same distribution in both phases.

In order to obtain ultrareliable term evaluations, TRM needs to sample from
the same distribution in both the testing and self-checking phase. Thus, it is of
crucial importance that a sound procedure for sampling over terms in both phases

is given. How are random terms generated in the self-checking phase? Consider the

35

TRS rules of figure 5, which is a part of a specification of a Stack-of-Boolean-Values
(SBV) ADT. The variable s is a SBV variable, and the variable b is a Boolean
variable. Informally, the & symbol means that any term that matches [44] the
left-hand side of — can be replaced by the right-hand side of =, but not the other
way around. A Bi-directional TRS (BTRS) is obtained from the TRS in figure 5 by
replacing — with <. Informally, the symbol <+ means that any term that matches
the left-hand side of ++ can be replaced by the right-hand side of ¢+, and vice versa
(details are given in section “Definitions and Notation.”

For example, given ¢; = top(push(empty,0)), TRM might generate the term
i = top(push(pep(push(empty,0)),0)),

in a random fashion as follows. Suppose that a random choice was made to make
one replacement to ¢;. Let r; be chosen randomly from {r),r;}, which is the set
of possible rules that could be applied to ¢;. The Bi-directional rule r; could be
applied to the term empty in the <+ direction to obtain either pop(push(empty,0))

or pop(push(empty,1)). Let pop(push(empty,0)) be chosen randomly from
{ pop(push(empty,0)), pop(push(empty,1)) }.

Replacing empty in ¢; with pop(push(empty,0)) gives t;. Since the choice of rule
as well as the choice of the number of replacements to be made was random, the
resulting term ¢, is random over all possible terms that can be reached from ¢, by
replacements. (The detailed algorithm for generating random terms from a BTRS
is described in section “Testing Phase.”) Thus, TRM generates random terms in
the self-checking phase by chosing a random number of replacements, and applying

a random choice of rules for each replacement to the original term.

36

r1 : pop(push(s,b)) — s
2 : top(push(s,b)) = b
r3 : replace(s, b) — push(pop(s), b)

FIGURE 5. Stack of Boolean Values TRS

How are random terms generated in the testing phase? Consider the TRS rules
of figure 5, where b is a Boolean variable holding 0 or 1. This specification gives
either a value of 0 or 1 for each term. These two values are technically called normal
forms. In fact, the specification classifies all the terms into two equivalence classes:
the equivalence class of 0, and the equivalence class of 1. In the testing phase, TRM
tests both classes individually, generating randorn testcases by applying < to 0
and 1 respectively, using the same sampling procedure as in the self-checking phase.
Thus, TRM generates random testcases for each equivalence class in the testing
phase by starting with a normal form, chosing a random number of replacements,
and applying a random choice of rules for each replacement to the normal form.

ADT programs do not take terms as input values, rather they take values
of program variables storing (say) sensor readings such as temperature, pressure,
etc. These values become parts of terms in the code, in the sense that they replace
variables in terms throughout the code as the ADT program executes. Based on
these input values, the control of the program may never reach certain terms, and
may reach others only with a set of specific program-variable values. Since the
distribution of terms evaluated by an evaluator is directly related to the input values
given to the program, it seems to be necessary to know the distribution of these input
values prior to testing of the evaluator in order for the predictions over terms to be
accurate. Fortunately, this distribution does not affect TRM’s predictions, since

when a term is reached with specific values replacing its variables, a self check is

37

main(){

s = empty;
read(b);
if (b==0)
print (top(push(s,b)));

FIGURE 6. Term Distribution Dependent on an if Statement

generated from it, whose terms are distributed randomly over the equivalence class
of the specific term.

For example, consider the C code in figure 6. The print statement is only
reached with b = 0, giving raise to the term top(push(s,b)). When this term is
given to TRM, it generates a self-check from the equivalence class of top(push (empty,0)),
making the distribution over b irrelevant to TRM’s predictions. Even if the user re-
quests the same term c every time, by always selecting the same value for the input
variables such as 0 for b in the example, TRM’s predictions hold, since the result of
¢ is obtained through terms randomly chosen from the equivalence class of ¢. Since
the requested result of every term is obtained through the results of terms randomly
chosen from the equivalence partition of the requested term, the distribution of the

requested terms does not affect TRM’s predictions.

Definitions and Notation

TRM requires an equational specifications of a decision problem, turned into

a TRS, and an implementation of the TRS.

38

Term Rewriting Systems

A TRS is a pair < Z,R> of a signature ¥ and a set of rewrite rules R [44].
Let Ter(X) denote the set of terms over ¥. Ground terms are terms with no vari-
ables. The set of all grounded terms is denoted by Ter,(£). A rewrite rule is a pair
<t,s>, where t,s € Ter(Z). Rewrite rules are written as r : { — s, where r is an

identification of the rule # = s. Two conditions must be met:

i) the left-hand side ¢ is not a variable and

ii) the variables occurring in the right-hand side s occur in 4.

A substitution ¢ assigns terms (values) to the variables in a term. s* denotes the
term obtained from s with substitution ¢. A term with no variables is called a
grounded term. c; — ¢; denotes a rewrite step. A rewrite step means matching [44]
the left-hand side of the rule r with ¢; and replacing ¢; with the right-hand side
of r. An expression that can be rewritten is called a redez. The relation — is the
transitive reflexive closure of —. That is, ¢ = ¢; means ¢; = ¢; or ¢; = ¢; and
¢k =+ ¢;. ¢; — ¢; is a reduction, and c; is reduced from ;. c; is reachable from ¢; if
there exists a reduction from ¢; to ¢;. A term is in a normal form if it cannot be
reduced.

Ezample 1: Let ¥ = {top,push, pop,replace,empty} with arities 1,2,1,2,0
respectively, and let R be the set of rewrite rules given in figure 5, where b ranges
over the Boolean value set {0,1}, and s ranges over the set SBV. Informally, the
operation pop removes the top Boolean value from the stack s, push puts the Boolean

value b on the top of the stack s, top returns the top element from the stack, and

39

replace changes the top element of s to b. The reduction
top(pop(push(push(empty,1),0))) 3 top(push(empty,1))
is obtained by applying r; to the redex
pop{push(push(empty,1),0)).

The term push(empty,1) is a normal form.

A non-constructor is a function that maps the type of interest, such as a Stack-
of-Boolean-values, to values that are outside of the type of interest, such as 0 and 1
in the Stack-of-Boolean-value case. For example, top is the only non-constructor in
Example 1 because its codomain is {0,1}. A non-constructor term is a term that
has as its left-most function a non-constructor. TRM considers only non-constructor
terms. This is not a restriction on TRM since ADT programs give outputs only when
non-constructor terms are evaluated. The set of grounded non-constructor terms is
denoted by Terz(X).

The result of a term ¢ € Terg(X), denoted by v(c), is the normal form of c,
obtained by rewriting c. Let c;,¢; € Terg(Z) be two terms. Then, v(¢;) = v(c;) if ¢
and c; rewrite to the same normal form. Two terms ¢;,c; € Terz(Z) are equivalent
(or result-equivalent) iff v(¢;) = v{c;).

Ezample 2: Suppose Terg L)} is the set of grounded non-constructor terms
built from push, pop, empty, and top over Boolean values, as in example 1. Let the

terms ¢y, ¢j, cx € Terg(E) be:

¢; =top(push (pop (push(empty,0)),1)),
¢; =top(push(empty,1)), and

cx =top(push(empty,0)).

40

Then, v(&) = v(c;), and v(c;) # v(ck)-

A TRS is strongly terminating if no infinite sequence of reduction steps ex-
ists. A TRS is confluent if for all reductions ¢; =+ c; and ¢; — ¢, there exists a
term c, and reductions ¢, — ¢, and ¢ —+ ¢;. A TRS that is strongly terminat-
ing and confluent is called complete [11]. These definitions are needed since TRM
could handle equational specifications that do not have these properties (see section
“Specifications”).

A self-check is a finite set of result-equivalent terms.

The distance between ¢; and c; is a subset of N U oo (oo is greater than every

element in N), defined as

{nlc; 2 &)} ife; 2 o
d(ci, ¢;) =
{oo} otherwise
where n(r) is the number of rewrite steps in the reduction r. The distance set

d(ci,c;) contains the numbers of reduction steps in all the possible reductions from

¢ to ¢;.

Implementations

The symbol §(c), ¢ € Terg(L), denotes the result given by an evaluator § on
input ¢. An evaluator is a program that returns a value obtained by calling the im-
plementations of the functions that occur in a term. For presentation convenience,
no distinction is made between an evaluator and the function computed by an eval-
uator. Let ¢;,¢; € Terz(X) be two terms. Then, §(c;) = §(c;) if d(c;) and &(c;) give

a syntactically identical value. It is assumed that an evaluator halts on all inputs.

41

An evaluator may not evaluate every term correctly. For presentation clarity,
it is assumed that the codomains of v and § are identical. In practice this is not
true, and the comparison of v and § involves the difficult mapping from the program
codomain to the specification codomain [25]. A failure of an evaluator & on a term
¢ € Terg(L) with respect to a TRS is a deviance of the actual and expected result
of é(c) i.e., v(c) # 8(c). That is, only input/output failures are considered. Qther
failure types are not considered, such as ones that cause the evaluator to be deleted
from memory, or the evaluator not to terminate. Failure rate is the probability that
an evaluator fails on a randomly chosen input from a particular input distribution.

A decision evaluator is an evaluator that involves classifying a set of inputs into
a set of outputs, where the cardinality of the output set is small. An example of a
decision evaluator is an operating system scheduler, where the input is a particular
process and the output is a value in the set containing “running”, “blocked”, or
“ready”. Another example is a nuclear reactor shut-down system where the input
set contains sensor readings such as temperature, and the output set contains “shut
down” or “don’t shut down”. A more specific decision evaluator is the aircraft
collision avoidance system called TCAS [47, 70], considered in detail in chapter IV.

The majority of results of §(cy), ..., 8(cm) is g if at least m/2+1 of §(cy), ..., 6(cCm)
equal ¢, and it is undefined otherwise.

Oracle is a procedure for determining if the outcome of a testcase is as specified;

i.e., if v(c) = é(¢).

42

Testing Phase

In the testing phase, an evaluator is tested in isolation with terms sampled
from each individual equivalence class of the decision specification. Random terms
are generated from an equivalence class, the evaluator is executed on these terms,
and the success or failure of the execution results is judged. Based on the number
of successful testcases executed, the reliability of the evaluator on terms from an

equivalence class is estimated. TRM uses a BTRS to generate random testcases.

Bi-directional TRS

TRM turns the equations in the equational specification of an ADT into a

BTRS by a simple syntactic change. For example, the equation:

pop(push(s,b)) = s

becomes
pop{push(s,b)) & s.

The ¢+ relation involves the ¢ relation. ¢; ¢ ¢; denotes a reverse reduction step
using rule r. A reverse reduction step ¢; < c; means matching [44] the right-
hand side of the rule » with ¢; and replacing c; with the left-hand side of r. Note
that a reverse reduction step may introduce ungrounded variables in terms. ¢ in
¢; ¢ c; grounds all the ungrounded variables with randomly chosen values over
the appropriate domains. The relation < is the transitive reflexive closure of «.
That is, ¢; € c; means ¢; = c;j or ¢x + ¢; and ¢ ¢ ¢ The reduction ¢;¢c; is
called a reverse reduction. ¢; is reachable from c; if there exists a reverse reduction

from ¢; to ¢;. The same terminology, such as a reder, a substitution, etc., that is

43

used for rewriting, is used for reverse rewriting as well. The relation « partitions
Terz(X) into a set of result-equivalent classes II. Two terms ¢;,c; are in the same
class m, € 1 if ¢; = ¢; or ¢; & ;.

Ezample 3: In Example 1,

top(push(empty,1)) & top(push(pop(push(empty,0)),1))

since
pop(push(empty,0)) & empty,
and therefore both,
top(push(empty,1)) and top(pop(push(empty,0),1))

belong to the same equivalence class 1 also belongs to.

Bi-directional rewriting makes it possible to reach every term in an equivalence
class from every other term in the equivalence class. If used in a random way, bi-
directional rewriting can generate a set of random terms over an equivalence class,

starting from any given term in the equivalence class.

Random Generation of Testcases

TRM uses Random Bi-directional Term Rewriting (RBTR) to generate ran-
dom testcases from reéult—equiva.lent classes. Informally, RBTR is essentially the
traditional term rewriting, except rewrites go in either direction a randem number
of times, and rules and subterms to be rewritten are chosen at random as well.
This informal description is made precise in the RBTR algorithm, given in figure 7.

Section “Scope of TRM” discusses values of k£ for which TRM is practical. The step

44

RBT Ri(c;)
(1) do k times
(1la) pick a uniform random redex p; in ¢;
(1b) generate c; from ¢; by rewriting p, one step
(1c) assign c; to ¢
(2) return ¢

FIGURE 7. RBTR Algorithm

(1a) of the algorithm uniform-randomly decides which term to rewrite ¢; to. At step
(1b) of each iteration of the loop, ¢; is rewritten fo ¢; that is one step away from
¢, such that ¢; is uniform-randomly chosen from all the terms that can be reached
from ¢; in one rewrite step (either direction).

In the algorithm, the number %k controls the number of loop executions, and
determines the number of rewrites performed on ¢;. It is obvious that v(c;) =
v{RBT Ri(c;)), that is, RBT Ri{c;) generates equivalent terms. Furthermore, the
rewrite rules are such that every term is reachable from every other term in the
equivalence class. That is, the rewrite rules are terminating, and the rules do not
under-specify the type under consideration. If the rules are non-terminating, there
is always going to be a set of terms that are not going to be reachable from ¢;. If
the rules under-specify the type, there is going to be some ¢; that is not going to be
reachable from c¢;.

To illustrate RBTR, consider the SBV specification from figure 5, which has
two equivalence classes, with normal forms 0 and 1. The equivalence class of 0
is tested by generating random testcases making muitiple calls to RBTR(0). For
example, let k = 2. The set of redexes is {0}. At step (1a} of the algorithm in the

first iteration of the do loop p, = 0. ¢; is top(push(empty,0) at step (1b), where

45

empty is a random grounding of s. In the second iteration of the loop, the set of
redexes is: {empty, 0, top(push(empty,0)))}. Let RBTR pick empty. ¢; becomes
top(push(pop(push(empty,1)),0)), where 1 is a random grounding of b. RBT R;(0)
returns top(push(pop(push(empty,1)),0)) as a random term from the equivalence

class of 0. Similarly, testcases from the equivalence class of 1 are generated by

making multiple calls to RBT R(1).

Test Oracle

TRM executes the evaluator on a set of testcases generated by RBTR by
calling the implementation procedures, in the example, empty, top, push, and pop.
TRM also decides if the evaluator gives the expected outputs. In general, deciding
if a test has passed or failed is currently (in practice) done by manual means. Even
when formal specifications are available, and an effective pass/fail procedure is in
place, testing may still be infeasible, because the expected result of every testcase
needs to be computed, in order for it to be compared to the result given by the
implementation. Thus, it is important that TRM does not need to compute the
expected result of each testcase.

TRM does not need an oracle to determine if the cutcome of a testcase is a
pass or a failure. This is a result of the way in which TRM generates testcases.
Let v be a normal form for some class of terms. A testcase from the equivalence
class of v is a success if 6(RBT R(v)) = v; otherwise, it is a failure. Therefore,
no computation is needed to determine the expected outcome of evaluating a term.

This fact adds to the overall efficiency of TRM in obtaining ultrareliability.

46

Self-Checking Phase

Self-checking involves generating a self-check from a term using RBTR, ex-
ecuting the evaluator on the self-check, and returning the majority of execution
outcomes. Self-checking can obtain ultrareliability given that testing with a practi-

cal number of testcases has been performed prior to the checking phase.

Reliability Estimates

Let § be an evaluator and < I,R > be a TRS. First it is shown how to
obtain statistical estimates on the failure probability of é on an arbitrary term in
an equivalence class ; over Terg(X). Then, these estimates are used to state a
probability that N executions of é on random terms chosen from w; will fail. These
estimates are adjusted for RBTR in this section under “Reliability Adjustment.”

Suppose the given are: constant failure rate 8 of 7;, and n random terms drawn
from m;, executed on & without failure. The probability that é fails on a randomly
chosen term from =; is 8, and 1 — @ that it will succeed. Given that the n terms
are independent, the probability that § succeeds on all the terms is (1 — 8)". The
confidence bound a on @ is defined as the probability that the failure rate of 4 is
below 8. The confidence bound is related to the testset size n and the failure rate ¢
by

a<l-—(1-0)". (I11.1)

Formula II1.1 could be used to estimate the confidence bound on the failure rate of
d on a majority of N random terms generated by RBTR. Suppose a successful test
(no failures occurred during the test) of 4 on n terms is conducted at test time. Half

of N terms (majority) falsely agreeing at run-time gives a failure rate of at least

47

(N/2n). Therefore, substituting N/2n for 8 in equation IIL.1 yields

a<1l-(1- (ZE))". (I11.2)

n

The meaning of the confidence bound is the probability that the failure rate is below
N/2n for a repetition of the test. For example, 1 — a = 6.0 x 10~ with N = 33
and n = 10%. As the example shows, TRM’s ultrareliable predictions do not need
the infeasible amount of testcases that are needed in [19]. Formula II1.2 allows a
tradeoff between amount of testing time (function of n) and execution time penalty
(function of N) for a particular failure rate and confidence bound. That is, one has
the flexibility of doing less testing, but executing the program more times when a
result is requested.

Unfortunately, as the number of result-equivalent classes grows, TRM becomes
impractical, because TRM tests each class independently. Therefore, an additional

constraint is added to formula I11.2 to obtain:
N.. 4
051—(1—(%)) AQ@*n < 10°% (HI3)

where @ is the number of equivalence partitions. The constant 104 is what is con-

sidered a practical number of testcases.

Self-Checking Algorithm

TRM conducts testing of equivalence classes through a procedure Test, given
in figure 8, which is essentially an implementation of Formula I11.2. N is the size of

the self-check, R is a set of rewrite rules, o is a confidence bound, and T is a variable

Test (N,a, R, T)
1:= solve(a <1 — (1 - (N/2n)")
for j :=1 to size(T) do

vi=T;
do 1 times
C := RBT Ri(v)
if (v # é(C)) then return fail
endo
endfor
return pass
end

Check (N, C,$)
M=29
do N times
M := M US(RBTR(C))
endo
return majority(M)
end

FIGURE 8. TRM Testing and Checking Algorithms

48

49

that ranges over an indexed set of normal forms that characterize the equivalence
classes. Ty picks the j-th element of set T. In the algorithm, n is the testset size
(number of terms).

The function

solve(a <1 — (1 —(N/2n)")

returns the largest n that is a solution to

a<l1l-(1-(N/2n)".

If Tesi(N,a,R,T) returns fail, then the failure is corrected in &, and the test is
repeated. If Test(N,a, R, T) returns pass, then & has the desired reliability, with
confidence a.

TRM conducts self-checking through a procedure Check(N,C,d). The pro-
cedure Check(N,C,$) collects results of N random executions of § in the set M,

and it returns the majority of M. The confidence bound on the majority given by

Check(N,C, &) depends on a and N in the Test(N, a, R, T).

Reliability Adjustment

The RBT Ri(t) procedure generates non-uniform random terms from a set of
terms that can be reached from ¢ in k rewrite steps. Furthermore, the term distri-
bution obtained using RBT R,(t) depends on . That is, when RBT R, starts from
different terms, the distribution obtained using RBT R; may vary. Therefore, the
reliability estimates, as given in formulas I11.2 and II1.3 in this section under “Re-

liability Estimates,” may not hold. This section shows how to adjust the reliability

50

estimates given by these two formulas, so that the readjusted formulas reflect the
fact that RBTR samples non-uniformly.

RBT Ry(t) samples some terms more often than others; however, every term
is going to be sampled with some probability pmin or greater regardless of £. This
probability can be calculated, and it can be used to adjust the size of a self-check
in order to obtain ultrareliability.

For example, let RBT R(v), where v is a normal form, be used to generate
10* test terms. The evaluator probability of failre on those terms is roughly 10~4.
At self-checking time, RBT Ry(t) might not sample terms with the same probability
as RBT Ry(v) did, and the product failure rate of 10™* x 10~* might not hold for
a self-check size of two. The worst case occurs when the RBT Ry(t) choses: terms
that had chance of selection in the testing phase of pmin (8ay pmin = 1/10). That
is, the self-checking terms had a low probability of being selected in the testing
phase. In the example, out of the 10 terms, roughly 10® hit terms with selection
probability pmin (10% X pmin = 10%), giving roughly a failure probability on those
terms of 1073, A self-check of size three would give failure probability on three terms
of 10% x 103 x 10%. Thus, ultrareliability is obtained by a self-check size of three,
one more than in the case with no adjustement.

What is the least probability pmin with which RBT R(t) is going to sample
any term, and how is it used to adjust the self-check size?

Consider the RBTR algorithm from figure 7. At the end of each iteration of
the do loop, RBT Ry(t) would have chosen a term that has the same probability
of being selected as all the other terms that can be reached from ¢ in one step.

Each term t has a number of terms i, that rewrite to ¢ in one — step. Each term

al

t has a number of terms o, that rewrite from ¢ in one — step. The fan-in of a
term £, denoted by fi, is i;/(1; + o), and the fan-out of a term ¢, denoted by fo,,
is 0¢/(i+ + 0:). Let frmin be the smallest fan-in or fan-out of any term in the term
space covered by RBT R;(v). RBT Ri(t), for any t, samples terms with probability
greater than (finin)*, that is pmin > f5, .

For example, in the SBV specification of figure 5, given rules r; and r3, finin
is 1/3, because each term has i, of 1 and o, of 2, giving fan-in of 1/3 and a fan-out
of 2/3. Given k = 4, pmin > 1/100.

Informally, the probability pmin gives the worst case sampling by RBTR. That
is, there exists no term that RBTR can sample with probability less then pm;n. In
the worst case, RBTR would pick terms with probability of selection close to pmin
in the self-checking phase. This worst case can be bounded, and an increase in the
self-check size can correct the worst case, as described next.

A testset of size n, generated by RBT Ry(v), is going to hit terms with prob-
ability of selection pmin at least n X pmin times. Let the probability of failure of a
random term with a probability of selection ppni, be p, based on n x pp;, samples.
The self-check size N is determined by p"V < 10~8. For example, let n = 10* and let
Pmin = 1/100. At least 10? terms chosen by RBT Ri(v} are of selection probability
Pmin- Then p is roughly 10~2. In order to obtain probability of failure 10~%, N needs

to be at least 5.

Scope of Term Redundancy Method

TRM gives ultrareliable evaluation results with a practical number of testcases;

however, in practice, the time to obtain these testcases might be prohibitively long

52

due to the large number of rewrites necessary to sample from the whole term space.
In this section, constraints on the number of rewrite steps are given, which make
TRM applicable in practice. Also, this section considers equational specification

properties, such as termination, needed for TRM to function properly.

Efficiency Constraints

Unlike life testing [19] of evaluators, which would require testing an evaluator
with an infeasible number of terms, TRM requires a practical number of testcases.
However, care needs to be taken to assure that the actual generation of testcases
is not prohibitively long. That is, in order for TRM to be used in practice, the
number of bi-directional rewrites in the testing and self-checking phases needs to
be bounded by a number that is considered practical. This constraint restricts the
sample space w.r.t. term length (the number of operators involved in the terms).
For example, if a rule introduces m operators in a term, then k applications of that
rule (starting from a normal form) would result in a term of length km. The testing
and the self-checking phases of TRM are carried out in such constrained term sample
spaces. In the testing phase, RBT Ri(v) is used to generate test cases, where k is
a practical number of rewrite steps. In the self-checking phase, RBT Ry(c;) is used
as well with k set to the same value as in the testing phase. However, TRM need
to make sure that ¢; is in the sample space, as well as that RBT Ri(¢;) stays within
the sample space, as determined by term length. If ¢; is within the sample space,
TRM self-checks ¢; and it returns its result; otherwise, it returns “term is out of
range, don’t trust its result.” Next, the above discussion is made more precise.

Suppose k rewrite steps are considered practical. Let 14 denote the set of

53

terms that can be reached from the normal form v in k steps. Let maz(1}) C vy,
be the set of terms that involves the maximum number of operations; that is, the
maximum number of operations that a term could possibly have when k rewrite

steps are applied to v. For example, in the TRS of figure 5, 15 is

{top(push(empty,1)), top(push(pop(push{empty,0)),1)),
top(push(pop(push(empty,1)),1)),

top(push(empty,top(push(empty,1)})) }.

The set maz(1,) is

{top(push(empty,top(push(empty,1)))),top(push(pop(push(empty,0)),1)),

top(push(pop(push(empty,1)),1)) }.

Let [be the number of operations in any mazx (i) term (if more than one, all of them
have the same). In the example, ! = 4. The count { is algorithmically obtained
by scanning the list of rules and finding the rule(s) rm,. that introduces the most
operations, (say) g operations. Then, { = gk. In the example, if £ = 100, then
Tmer = {T1,T2,73}, ¢ = 2, and ! = 200. Informally, if TRM starts from a normal
form and applies RBT Ryoo to it, the maximum length term that RBT R0 could
return would have 200 operations in it. TRM uses ! in the following way. Let o(c;)
be the number of operations in a term ¢;. In the self-checking phase, when given a
term ¢;, TRM checks if | < o(c;). If so, TRM returns “term is out of range, don’t
trust its result.” Otherwise, TRM self-checks ;.

RBT Ry(c;) is a special case of RBT R(c;) described in section “Testing Phase.”
RBTR(c;), as shown in section “Testing Phase,” returns a random term from the
equivalence class of ¢;. RBTRi(c;) returns a random term from the set of terms

that are at most k-distant from c;.

94

The restriction of TRM to a small k dictates a trade off between the number
of random rewrites, the time it takes to generate a self check, and the number of
operations in a random term. Given a maximum practical time T’ to generate a
random term ¢;, and a time ¢ for a random rewrite, the following simple relation
exists between k, T, ¢, and !. The average number of rewrites is k/2, and the average
number of operations in ¢; is {/2. Then, k < 2T/t, and [< (2T/t)q, where ¢ is the
maximum number of operations that a rewrite step introduces in ¢;.

Thus, TRM could be used in practice if the number of rewrites is restricted to
some small number k, by testing and self-checking terms in the range of terms that

k spans.

Specifications

TRM is intended to be used on evaluators whose behavior is captured by a set
of equations. The only constraint on these equations is that they are terminating,
that is, when the equations are turned into a traditional rewriting system, the TRS
is strongly terminating. This constraint is necessary so that every term is reachable
from every other term in an equivalence class. However, the TRS need not be
confluent or consistent. Furthermore, the TRS need not (and due to complexity
might not) be correct. As a result, obtaining results directly from these TRSs might
not be possible (in the non-confluent and inconsistent cases), and/or the results
might not be correct (in the case of an incorrect TRS).

Non-complete TRSs are essentially useless for obtaining results of terms di-
rectly, because in such systems there are multiple normal forms for the same term

and/or one may never obtain a normal form because of infinite reductions, so one

59

cannot simply use the equational specification directly to obtain results. TRM
can use a non-complete specification in both the testing and self-checking phases.
TRM could generate terms through RBTR that are equivalent, and TRM could
then check the consistency of the evaluator with the non-complete/incorrect spec-
ifications. However, if the evaluator is incomplete and/or incorrect in the same
way the specification is, TRM would not be able to detect this problem. That is,
it could happen that the specification has the same faults as the implementation;
however, this should be unlikely due to the distinct nature of the specifications and
the implementations.

An example will demonstrate how the termination and confluence difficulties
in TRSs affect TRM.

Suppose the SBV of chapter I1I were specified as follows:

71 : topx(replacex(s,b)) = b

ry : replacex(s,b) — pushx(popx(s),b)

The system is not confluent because
topx(replacex(pushx(s,1),0)) 30
and
topx (replacex(pushx(s,1),0)) 3 topx(pushx(popx(pushx(popx(s),1)),0)),
but

topx (pushx{popx(pushx(popx(s),1)),0))+/A 0.

This specification suffers from underspecification, since there is no rule to bring the

term
topx(pushx (popx(pushx(popx(s),1)),0))

to a normal form. Thus, if traditional rewriting is used on this system, there would
be two results for the term topx(replacex(pushx(s,1),0)), but the two results
cannot be shown to be equivalent by traditional rewriting using the non-confluent
sl;eciﬁca.tion above. Therefore, one does not know if the system is consistent or not,
and results given by such a system have no meaning.

Whereas non-confluent systems cause rewriting to produce multiple results
for a term, non-terminating systems cause rewriting never to reach a normal form.
Thus, in non-terminating systems, rewriting does not produce a value for some

terms. For example, consider the SBV of chapter III, specified as follows:

ry : topy(replacey(s,b)) — topy(replacey(popy(pushy(s,b),b))
7 : popy{pushy(s,b)) = s

ra : replacey(s,b)— pushy(popy(s),b)

This system is non-terminating since

replacey(pushy(empty,1),0) -3 relpacey(popy (pushy(pushy(empty,1),1)))
3.

Deciding if a system if confluent and terminating is undecidable in general.
TRM deals with non-confluent specifications by simply ignoring the meaning
of the equations when converted to BTRSs, and generating terms through RBTR.

For example, RBTR could generate in the non-confluent case:

57

{topx(replacex(pushx(empty,1),0)),

topx (pushx(popx(pushx{popx(empty),1)),0)) }

In non-confluent systems, RBTR can generate random terms from the set of
terms related by « starting from any term, because if RBTR is given any term,
RBTR can reach every other term that is related to it by ++. Unfortunately, in non-
terminating systems, RBTR cannot generate random terms from the set of terms
related by ¢ starting from any term, since the starting term given to RBTR. could
be such as to keep RBTR from reaching some terms that are related to it by .

Thus, TRM can be used when the TRS is non-confluent, inconsistent, and

incorrect, as well as on correct TRSs.

Work Related to TRM

TRM has been inspired by the development of Result checking [13, 2]. TRM
is related to the certification trail method [30] as well.
There is an interesting analogy of TRM to Blum’s result checking. Consider

the expanded multiplication formula from figure 3:

Ye = [Pl(z = r1i,y — r2) + [P)(z = r1,r2) + [P](r1,¥ = r2) + [Pl{r1,72),

where 71,72 are randomly chosen from a uniform distribution. The right-hand side of
the expanded formula is a term over P, 4, —. This term gives rise to a set of grounded
terms when the variables r,y,r;,r2 in the term get grounded to particular constant

values. The “=" relation partitions the set of grounded terms into equivalence

classes. For example,

[PI(2-1,3-2)+[P](2-1,2) +[P)(1,3 - 2) + [P](1,2)

and

[Pl(2-2,3-1)+[P)(2-2,1) + [P)(2,3 - 1) + [P](2,1)

belong to the same class 6 belongs to. TRM partitions terms into equivalence
classes as well, making the two methods the same in that respect. The departure
of TRM and Blum’s approach is that Blum does not restrict his method to any
particular number of partitions. TRM on the other hand is restricted to a small
number of partitions. His method reduces to computing the program on random
inputs (terms) such as < 2 — 1,3 — 2 >, etc. TRM executes the evaluator 4 on
random inputs (terms) as well. The difference is that Blum's inputs come from
a uniform distribution over the whole input domain, while é's inputs come from
a uniform distribution over a set of equivalent terms (inputs). Since TRM starts
with a particular term in the class, it could not be applied to an overall sample.
The correspondence between result checking and TRM is thus easily established as
follows. Blum executes the multiplication procedure multiple times at execution
time on uniformly-random inputs. TRM executes é on uniformly-random terms
multiple times as well. The difference is that Blum does not restrict his method to
decision problems as TRM does.

Blum suggests that the low reliability involving the 1/100 failure rate can be
obtained by practical testing, but he does not specify the test distribution over which

the testing was conducted in order to estimate the reliability of P. if the testing were

59

conducted from a distribution different than uniform, his predictions would not hold
since the expanded formula involves uniformly distributed inputs in the calls to P.
For example, suppose P was tested on inputs chosen according to the distribution
which selects each of < 1,1 >,< 2,2 >, < 3,3 >,< 4,4 > and < 5,5 > with
probability of 1/5. Suppose P was tested by drawing testcases from this distribution,
and it showed failure rate of 1/5. In particular, let P fail on < 1,1 > and let it
succeed on the rest of the inputs, that is f(1,1) # {P)(1,1) and f(i,7) = [P](4,1) for
t = 2,3,4,5. Furthermore, for presentation convenience, suppose P fails on all other
inputs in P’s domain. (Testing according to the distribution above is not going to
show this, of course). Since P is only correct on four input pairs, the probability
of P being correct on a uniformly-randomly chosen input over the whole domain is
almost 0. If r;,r; in y. are chosen from a uniform distribution, each P has a chance
of failing of almost 1 and not 1/5 as predicted by testing, and the probability of
failure of y. is almost 1, and not 4/5. Thus, Blum has to test P according to a
uniform distribution.

Self checking, as used by Blum, is applicable to certain clean mathematical
functions [14], such as integer multiplication, modular multiplication, matrix mul-
tiplication, inverting matrices, computing the determinant of a matrix, computing
the rank of a matrix, integer division, modular exponentiation, and polynomial mul-
tiplication. Rubinfeld [66] has shown that functions which satisfy robust functional
equations are suitable for self checking. Veinstain [69] has shown that a large class
of functions that satisfy polynomial functional equations are suitable for self check-
ing. Lipton [49] shows that multivariate polynomials over finite fields are random

self-reducible (a property that allows self checking). Rubinfeld [62] has shown that

60

polynomials are random self-reducible over more general domains such as ratjonals
and non-commutative rings. Lipton shows how to efficiently check computations
with polynomial-time verifiers. Blum [16] shows how self checking could be applied
to processor arithmetic operations.

Data diversity [2, 1], which was proposed independently of result checking,
could be looked at as an attempt to apply result checking more complex problems
than those considered above. For example, Ammann [2] considers an antimissile mis-
sile launch decision program which involves differential equation solvers. Ammann
also showed how to build an arbitrarily reliable sine function.

TRM is related to result checking and data diversity in that TRM generates
multiple program inputs and checks if the expected relation (in our case equality)
holds between program outputs. However, TRM applies to a different class of prob-
lems than the ones addressed by the self checking and data diversity approaches.
TRM algorithmically derives the expected relation between program outputs form
the equational specification alone, without any need for an outside assistance. Both
self checking and data diversity rely on the user to supply this usually non-trivial
and potentially error prone relation (a relation such as the formula 3. Furthermore,
TRM does not need a test oracle, while a test oracle is needed in the self checking
and the data diversity approaches.

The difference between the certification-trail method [30](as described in chap-
ter II) and TRM is that the certification-trail method is code based, and TRM is
specification based; i.e., the certification-trail method needs a particular encoding
for each implementation of a particular specification whereas TRM is not tied to a

particular implementation of the specification. Furthermore, the certification-trail

method is not probabilistic, and it involves executing the program only once.

61

62

CHAPTER 1V

TRM AND BOOLEAN ADTS

This chapter illustrates TRM’s effectiveness in failure detection and recov-
ery. The following paragraphs outline the work, which is described in detail in the
sections to follow.

To illustrate TRM’s effectiveness, a set of Boolean formulas are taken from
TCAS II, an aircraft collision-avoidance system. In a program implementing TCAS
II, these formulas would need to be evaluated by routines that perform Boolean
arithmetic. The Boolean evaluation can be specified by a set of rewrite rules. When
the Boolean-term evaluator is given a TCAS II Boolean formula, TRM can be
used to self-check the Boolean-term evaluator using the Boolean-term evaluator
specification.

Instead of implementing a Boolean-term evaluator and introducing faults in
the implementation for TRM to detect, this illustration introduces faults in the
TCAS formulas themselves. Thus instead of selecting random equivalent terms for
the possibly faulty evaluator to evaluate, possibly faulty terms are sent to a correct
evaluator. The result should be the same: there is a possibility that that evaluator
will return incorrect results.

The effectiveness of TRM is measured as the probability that the majority of
values obtained by self-checking the Boolean-term evaluator implementation falsely

agree.

63

TCAS Booglean ADT

Boolean-term Evaluator Inputs

Leveson et al. [48] use an AND-OR table representation of the conditions for
state transitions to specify pats of TCAS II, an aircraft collision avoidance system.
The state-transition conditions are Boolean formulas in five to 14 variables, with
the average containing ten distinct variables. Weyuker et al. [70] use the Boolean
formulas from TCAS II as a basis for evaluating the eflectiveness of their method
for automatically generating test data from Boolean specifications. They used ten
of the larger Boolean T'CAS II formulas in evaluating their method. TRM used
the same ten Boolean formulas given in [70], and shown here in figure 9, as a basis
for illustrating the effectiveness of TRM in failure detection and recovery. These
formulas when grounded become inputs to a2 Boolean-term evaluator.

Each TCAS formula from figure 9 was grounded (values given for variables)
once to obtain a total of ten grounded TCAS formulas. (The grounding was random,
chosing uniformly from the set {0,1} for each varable in each TCAS formula.) Let
the formulas from 9 be called original formulas, and let the original formulas with

the random grounding be called grounded original formulas.

Boolean-term Evaluator Specifications

The Boolean-term evaluator is specified with the equational specification of
figure 10. The original formulas represent various combinations of conditions that
occur in the aircraft collision avoidance system. The equational specification of
figure 10 gives meaning to these formulas. In particular, the equations assign a

value of 0 or 1 to each of the ten formulas, depending on the particular grounding

64

1. (ab)(def + def + def){(ca(d + e}h + a{d +)R + be + f))

2. (affc + d + e)g + af + c(f + g+ h + 9} + (@ + b)(c + d +
e)i)(ab) (cd} (ce) (de) (fg) (Fh) (f1) (gh) (hi)

3. (a(d + & + de(fghi +hi)(folk +7ik)) + (Fohi+Thi) (Fglk+Tik)(b + cmi +
£))(abt + abc + abe)

4. a(b+T)d+e

5. a(b + ¢+ be(Fghi +ghi) (Folk +ik)) + f

6. (ab+ ab)(cd)(fgh + Fgh + Fgh)(7k)((ac + bd)e(f + (i(g] + Ak))))

7. (@b + ab)(cd) (gh) (&)((ac+ bd)e(i +Tk + 7 (R +k)))
8. (@b + ab)(cd) (gh)((ac+ bd)e(fg+ Fh))
9. (cd)(2f7 @(be+ bd))

10. abedef(g + G(k + 1)) (FkFl + m)
FIGURE 9. TCAS Specifications

it (yz)z = y(zz)
rz2:y+(z2) =(y+z)(y + 2)

FIGURE 10. Boolean ADT Specification

65

of its variables.

Boolean-term Evaluator Implementation

In the main program implementing TCAS 11, the grounded original formulas
would need to be evaluated. In particular, as the main program executes, the original
formulas become grounded, and would need to be evaluated. Let the program that
would evaluate grounded TCAS formulas be called a TCAS evaluator. For the
purposes of this illustration, the TCAS evaluator is a correct implementation of
the Boolean ADT, specified with the equational specification of figure 10, and as
such evaluates every grounded TCAS formula correctly. The TCAS evaluator is

implemented as a correct TRS with the rules of figure 10.

TCAS Experiment

The Fault Model

The TRM effectiveness demonstration is based on the Operator Reference Fault
(ORF) (20, 41, 42, 70, 22, 36], which involves replacing a Boolean operator with
another one, or omiftting a negation operator from a grounded original formula.
ORF faults could plausibly arise in a variety of situations [70].

ORFs are systematically introduced into the grounded original formula by
applying ORF-seeded specification rewrite rules to the grounded original formula.
ORFs are exhaustively introduced in rules r7 — ry; of BBTRS. For example, rule 7
gives raise to the set of mutated rules given in figure 11. That is, from each rule
T7 — T12, a set of mutated rules was generated by single mutations; i.e, by mutating

only one operator. There are a total of 27 mutated rules w.r.t. ORF and rules

66

(zy)z @ 224 y2
(z+y)+zez2+4yz
(z+y)z & z2yz
(z+y)zez+z+4y:z
(z+y)zez24+y+2z

FIGURE 11. Exhaustive Mutated r; Rules

77 — ry2. Introducing ORF in the specification rewrite rules instead of in the TCAS
evaluator effectively simulates faults in the TCAS evaluator. For example, when
the mutated rule (zy)z 4+ zz+yz is used to generate random equivalent terms, the
application of this rule to a term effectively simulates a fault in the TCAS evaluator
that is characterized as incorrect evaluation of (zy)z to zz + y=.

Self-checks are generated by applying ORF mutated rules to grounded TCAS
I formulas. Based on these faults, the correct Boolean evaluator may either obtain
the correct Boolean value or it may not. Using a correct program on incorrect inputs
is a convenient fault abstraction — Ammann [3] also uses fault abstraction for an
experimental validation of his data redundancy technique on a differential equation
solver.

In order for this illustration to match the TRM theory, the random formulas
generated from a particular grounded TCAS formula have to be equivalent according
to the Boolean ADT specification. What is the relation between the outputs of the
TCAS evaluator when given random formulas generated by faulty rewrite rules? If
the faults were in the TCAS evaluator instead of in the TCAS formulas, the rewrite
rules would not need to be incorrect to simulate these evaluator faults, and the cor-
rect rewrite rules would always generate equivalent formulas. Therefore, effectively

the faulty random formulas are equivalent — it is only the TCAS evaluator faults

67

(captured by incorrect rewrite rules) that may make these formulas non-equivalent.

Self-check Generation

For presentation purposes, TRM was restricted to generate self-checks of ran-
dom TCAS formulas at distance one from the TCAS formulas given to TRM. For
each of the grounded original formulas, TRM generates a set of ten random equiva-
lent (to the grounded original formula) formulas using RBT R, on a set of mutated
rules. In order to apply RBTR; to the grounded original formula, TRM needs a
Boolean bi-directional TRS.

A Boolean TRS (BTRS) is a pair (Z, R) of a signature ¥ and a set of rewrite
rules R, where & = {+,-,—,0,1}. The binary operators + and - represent the “or,”
and “and,” Boolean operators, whereas the unary operator b represents the “not,”
Boolean operation applied to . The constants 0 and 1 denote “false” and “true,”
respectively. R is obtained from the equations in figure 10 where “=" is replaced
by “=".

Tery(X) denotes all the grounded Boolean terms, such as for instance 1-140-1
and (0 + 1)1. The result of a term ¢ € Tery(L), denoted by v(c), is either 1 or 0,
and is obtained by rewriting ¢ to its normal form. Two terms ¢;,c; € Tery(Z)
are equivalent (or result-equivalent) iff v(c;) = v(¢;). v partitions Ter,(X) into two
equivalence classes:

{z € Tery(T)|v(z) =1}

and

{z € Tery(Z)lv(z) = 0},

68

b11+0H1
bh:l1416e1
bsOlHO
b4:0-060
by:l-z e

FIGURE 12. Boolean Bi-Directional TRS

denoted by T and F, respectively. For instance, 0-1 € F,(1-0)+71 € T, and
(1-0)+1€eT.

A Boolean Bi-directional TRS (BBTRS) is a pair (T, R?) of a signature T and
a set of rewrite rules R®, where & = {+,.,—,0,1}. R’ is obtained from the equations
in figure 10, where “=" is replaced by “", and the rules from figure 12 are added,
where z,y and z are Boolean variables. The rules r, and r3 in BTRS have four
corresponding rules b, b, and b3,b, in BBTRS respectively. This is necessary since
l1+z + 1 and 0-x + 0 introduce ungrounded variables if present in BBTRS. Intro-
ducing additional rules to eliminate generation of ungrounded variables is possible
in this case because there are only two situation to consider. With the additional
rules in place, no rule in BBTRS introduces ungrounded variables, when applied in
either direction. In general, when no such rules could be conveniently added, when

BBTRS introduces an ungrounded variable, that variable is grounded.

Effectiveness Criteria

Based on the simulated faults, the results of the TCAS evaluator on random
formulas from the self-check may or may not agree on the correct Boolean value.
Furthermore, some results may agree on one value, and other results on another

value. The worst situation — the case where neither failure detection nor correction

69

-gpec. ry | 78 | 7o | Ti0 | 11 | 12 | Correct Failure
1(13[21]20] 15] 15| 13| 83.50 [1.49 x 10~
21266030 23| 27| 10] 7159 3.4 x10°°
33050 47| 25| 55| 26| 99.64| 3.6 x 10~ 2 |
4l o[o]l o of o] 0O 100 0
s{11]22[21] 9[22] 9 94.68] 1.7 x10"%°
6|21 [21 (18] 17| 31| 19| 92.75| 3.7 x 10~ 12
7114[19[30] 12| 20 13} 91.66 | 1.5 x 10~IT
gl11[10[19] 10| 17| 10} 93.50] 6.5 x 10~3
of 6 913 712 7] 79.62] 1.0x10°7
10101212 4| 20| 3| 9836 1.6 x 10~ |

FIGURE 13. TRM Effectiveness

is possible — is when the majority of results agree on a false Boolean value. The
effectiveness of TRM on TCAS is measured as the probability of the TCAS eval-
uator’s results falsely agreeing when evaluating ten randomly generated formulas.
The demonstration of effectiveness is implemented in CLP(R) [38, 35], and all the
code necessary is given in the Appendix. CLP(R) was chosen for its convenience in

manipulating rewrite rules.

Effectiveness Results

The effectiveness of TRM in detecting and correcting ORF in TCAS is mea-
sured as the probability that the majority of twenty uniformly randomly chosen
formulas from the equivalence class of an grounded original formula agree on the
incorrect Boolean value. The eflectiveness results are summarized in figure 13.
The column labeled “Spec” shows the TCAS formula used, and columns labeled
r7...r12 give the number of possible mutant formulas that can be generated by all

the possible ORF mutants of the rules r; — ry3.

70

The percentage of mutated formulas that evaluated to the same Boolean value
as the grounded original formula (from which these mutated formulas were created)
are given in the column labeled “Correct”. The column labeled “Failure” shows
the probability of ten uniformly-randomly chosen Boolean mutants agreeing on the
false Boolean value (the one that is different from the grounded original formula
from which these mutants were created). As the figure shows, most of the 10-failure
agreements fall into the ultrareliable region.

These effectiveness results should be taken with caution since — even though
very impressive — they are based on a simple fault model. Many faults may be
simple ones, but there are many faults which involve multiple simple faults that

interact in peculiar ways.

71

CHAPTER V

SUMMARY AND FUTURE WORK

A framework has been presented for reliability quantification of ADT pro-
grams specified with TRSs. In this framework, practical ultrareliable quantifica-
tions of ADTs are possible for the class of decision ADTs. The formal nature of
equational specifications has been exploited, as well as the explicit equality in them,
to systematically generate and execute redundancies in order to obtain ultrareli-
able computations. Unlike previous self-checking methods, the generation of the
redundancies with TRM is algorithmic. Furthermore, TRM extends self-checking
to any ADT program, making it applicable in principal to programs written in ADT
languages such as ADA, C++, CLU, Java, etc. Therefore, TRM has a potential
application to the rapidly growing object oriented technology. TRM can be used on
complete and non-complete specifications.

The effectiveness of TRM has been illustrated on the aircraft collision avoid-
ance system TCAS. The illustration has demonstrated how ultrareliability can be
obtained in the presence of a particular class of faults in term evaluators.

‘TRM may be applied to programs specified with non-equational specifications,
such as Hoare's input/output specifications. These specifications may be used to
systematically derive equations, by generating equations and using the input/output
specification to check if the equation holds. Consider for example input/output

specification of n procedures fi, fa,..., fa which take as inputs the vectors zi, 7y

72

i H .
s ooy T, Written as:

Si{f1(z1)}@s

SZ{f2(5;)}Q2

Sn{ £a(21)} @y

where S; and Q; are the pre- and post conditions of the procedure f;. Some lan-
guages for expressing input/output specifications are Euclid, VDM, GYPSY, Z,
etc. A generate-and-test procedure for constructing equations involving fi, ..., fa
could consist of combining fi, f3, ..., fn and their arguments into syntactically valid
terms, equating terms, and deciding if the equalities hold by using the pre- and
post-conditions of fi,..., fo. In particular, let be an input/output specification
consisting of a set of n procedures paired with pre- and post-conditions given in
the form above. Let = be a set of equations. Initially, = is empty. Let Ter(Z)
be a set of terms over the signature ¥ specifying a set of variables and the set of
function symbols fi,..., fr. For each term ¢ € Ter(X) a pre- and post-condition,
denoted by S; and @, could be constructed by syntactic manipulation of the pre-
and post-conditions of the procedures involved in t. Suppose we have constructed
S, {t1}Q1, and S, {12}Qy,, where ¢;,t, € Ter(X). The equation {; = t; is in = iff
Sy, © S, AQ, & Q-

For example, consider the following specification:

true{fi(z)}z =<' +1

73

true{ fa(z)}r = 2’ - 1,

where z' is the value of z prior to the execution of the fi, f2. Let t; be fi(f2(z))
and ¢, be fi(f2(fi1(f2(z)))). By manipulation of the pre- and post conditions of f;

and f;, we arrive at:

true{fi(fo(z))}z =2 —-1+1

true{ fi(L(filfo(e))))}e=2"-1+1-1+1

The equation ¢; = ¢; € = since

(true @ true)A(z=z'-1+1&z=2"-1+1-1+1).

It may be possible to derive equational specifications from other formal specifications
in the manner described above. In particular, a syntactic manipulation of the formal
specification is used to generate equations, and then the formal specification is used

to prove that the equations hold.

74

APPENDIX

CLP(R) IMPLEMENTATION OF TCAS EXPERIMENT

The complete CLP(R) code, necessary to carry out the TCAS illustration from
chapter IV, is given in this appendix. The T'CAS illustration involves executing a
correct Boolean evaluator on mutated TCAS formulas. The correct Boolean evalu-
ator is implemented as a TRS with the correct BTRS axioms, as given in figure 14.
The figure 14 also gives the operator precedence definitions. In particular, negation
has a higher precedence than plus and minus.

In the TCAS illustration, faults are introduced in the TCAS formulas, by
applying mutated Boolean rules to correct TCAS formulas. The mutated Boolean
rules are given in figure 15. The figure 15 gives all the possible ORF-mutated rules
for the associativity, distributivity, and the DeMorgan laws. The TCAS formulas
are implemented as CLP(R) predicates, as shown in figure 16. The illustration

starts by grounding the TCAS formulas of figure 16. This grounding is obtained

1= op(41,yfx,™+). “negation

1:- op(31,yfx,™*). rrule(™-0,1).
::- op(21,£x,7-). rrule(~-1,0).
%identity %izero

rrule(0 ~+ X,X). rrule(l ~+ X,1).
rrule(l ~* X,X). rrule(0 “* X,0).

FIGURE 14. Correct BTRS Axioms

%distributivity
dnrule((X ~+ Y)“*Z, X7*Z "+ Y7*Z).

mrule((X “# Y)“*Z, X"+Z ~“+ Y"%Z).
mrule((X “+ Y)“+Z, X"+Z ~+ Y"%Z).
mrule((X ~+ Y)"%Z, X"+Z ~+ Y"%Z).
mrule((X ~“+ Y)"*Z, X"*Z "% Y"%Z),
mrule((X ~+ Y)"*Z, X"+Z "+ Y"+Z).

Ymrule(Y~+(X"*Z), (Y +X)"*(Y"+Z)).
mrule(Y " *(X"*Z), (Y +X) "*(Y"+Z)).
mrule(Y"+(X“+Z), (Y +X) ~*(Y"+Z)).
mrule(Y "+ (X~*Z), (Y™ *X)~"*(Y"+Z)).
mrule(Y"+(X~*Z),(Y"+X)"+(Y"+Z)).
mrule(Y~+{X"*Z), (Y"+X) "*(Y"*Z)).

%associativity

dmrule((Y™+X)“+Z,Y"+(X"+Z)).
mrule((Y™*X)"+Z,Y"+(X"+Z)).
mrule((Y™ +X) "+Z,Y"+(X"+Z)).
mrule((Y™ +X)“+Z,Y"*(X"+Z)).
mrule((Y~ +X)~+Z,Y +(X"*Z)).

Ymrule((Y *X)"*Z, Y "« (X"*Z)).
mrule((Y~+X) ~*Z, Y *(X"*Z)) .
mrule{ (Y~ *X) “+Z,Y *(X"*Z)).
mrule((Y™ *X) " *Z,Y"+(X"*Z)).
mrule{ (Y~ *X)~*Z Y *(X"+Z)).

%DeMorgan

Ymrule (™= (X~+Y), -X"*("-Y)).
mrule((X~+Y), -X"*("-Y)).
mrule(~=-(X"*Y), -X"*("-Y)).
mrule("-(X"+Y) ,X"*("-Y)).
mrule("-(X"+Y), -X"+("-Y)).
mrule(" -(X"+Y), -X"*(Y)).

hmrule(T-(X"*Y) ,"-X"+("-Y)).
mrule((X~+Y), -X"+("-Y)).
mrule("=(X"+Y), " -X"+("-Y)).
mrule(~-(X"*Y) ,X"+("-Y)).
mrule("-(X"*Y), " -X"*("-Y)).
mrule(=-(X"*Y), -X"+(Y)).

FIGURE 15. Mutated BBTRS Axioms

76

tcas("-(A~*B) " * (D% ("-E)"*("-F)"+("-D) "*E~*("-F) "+
(7-D)"#("<E)“#(“-F)) " (C"*A~*(D"+E) “*H"+A"*
(D7+E)~*("-H)“+B~*(E~+F))).

tcas((A"+((C™+D"+E) "*G " +A"*F~+C~* (F"+G"+H " +I)) "+(A™+B) "#
(C™4+D™+E)“*I)~*~-(A~*B) "% ~-(C~*D)~#* ~-(C~#E)~#* ~-(D"*E)~#*
T=(F"*G)"* “-(F~+H)"*"-(F"*I)~* "-(G™#H) * ~-(H™*I)).

tcas((A™*(T-D"+ "-E"+D " *E"*("-("-F *G"*H™* ~-I ~+ “-G"*H *I)) %
(T=(T-F %G *L"*K"+("=G) "*("-I) "*K))) "+ (T-("-F™*G"*H™* ~-I"+
(T=G) "*xH™*I))" * ("~ ("-F G *L"*K"+("-G) "% ("-1)"*K)) “* (B +C™*
(T-M)"+F)) " #(A~* ("=B) “*("=C) "+ ("=A) "#B~*(~-C) "+ ("-A) “*
("-B)~*C)).

tcas(a~*("-b~+("-c))“*d +e).

tcas(A™*("-B"+("-C)"+B"#C * ("= ("-F *G " *H " *("-I)"+("-G) "*H"*I))
("= ("=F G *L"*#K"+("=G) “* ("~I)~*K))) "+F).

teas((“~A"*B™4A™%("=B)) "% ("= (C7+D))" * (F™#("=G) "% (~-H) "+ ("-F) "
G+ (“=H) “+("=F)"*("~G)"*(“~H)) "#("- (J"*K)) “*((A"*C"+B"*D) "¥E"*
(F~+(I#(G™*1"+H*+K))))).

tcas(("-A"*B ~+A"*("-B))~ *("-(C~*D)) “*("-(G"+H)) "*("-(J"*K)) ~*
((A"*C~+B~*D) "*E"*("-I"+("-G) " *("-K) "+ ("-1)"+("-H"+("-K))))).

tcas{("-A"*B +A™*("=B)) "% ("=(C™*D}) “* ("-(G"+H)) " *((A™*C~+B~*D)
“*E"* (F™*G~+("-F)~"%H))).

tcas("-(C™*D) "% ("-E"*F~*("-G) "*("-A) "*(B"*C~+("-B) "*C~+("-B) "*D))) .

tcas(A™*("-B) " *("=C)"*D"*("-E) “*F~*(G"+("-G) "+ (H"+I)) ~*
("~ (I *K"*("=J)"+L"+M))).

FIGURE 16. CLP(R) Implementation of TCAS Specification

v(0,F) :- reduce(0,F).
v(i,F) :~- reduce(1,F).

v(X~+Y,F):-
v(X,X1),
v(Y,Y1),
reduce(X17+Y1,F),!,

reduce(X,2) :- rrule(X,Y), v(Y,Z).

reduce(X,X).

drive(Ci,CiResult,Cj,CjResult):-

getTerm(Ci),
v{Ci,CiResult),
rewrite{(Ci,Cj),
v{Cj,CjResult).
gterm(Ci) :-
var(Ci),
rand(X),
X>=0.5,
Ci=1,!.
gterm(Ci) :- ground(Ci),!.

gterm(Ci) :-
var(Ci),
Ci=0, 4.
rewrite(Term,ResTerm) :-
mrule{Term,ResTerm).
rewrite(Term,ResTerm) :-
Term =.. [0p,L,R],
rewrite(R,RR),
ResTerm =.. [0p,L,RR].

77

v(X~*Y,F):-
v(X,X1),
v(Y,Y1),
reduce(X1~*Y1,F),!.

v(™-X,F) :-
v(X,X1),
reduce(™-X1,F),!.

getTerm(Ci) :-
tcas(Ci),
gterm(Ci).

gterm(Ci) :-
ci =.. [0Op,L,R],
gterm(L),
gterm(R),
¢ci =.. [0p,L,R],!.
gterm(Ci) :-
ci =.. [0p,R],
gterm(R),
ci =.. [0p,Rl,!.

rewrite(Term,ResTerm) :-
mrule(ResTerm, Term) .

rewrite(Term,ResTerm) :-
Term =.. [0p,R],
rewrite(R,RR),
ResTerm =.. [0Op,RR].

rewrite(Term,ResTerm) :-

.. [op,L,R],
rewrite(L,LR),
.. [Op,LR,R].

FIGURE 17. Illustration Driver Code

78

through the predicate gterm(Ci), given in figure 17. The predicate gterm(Ci)
parses a TCAS formula Ci, looking for a variable, which it randomly replaces with
either 0 or 1. The grounded formulas are evaluated using the correct rules of figure
14. The predicate v(Ter,Res) recursively (and correctly) evaluates the term Ter to
produce a Boolean value Res. The predicate reduce(X,Y) applies correct rewrite
rules to X in order to reduce X to Y. These correct values of grounded TCAS formulas
are needed in oder to compare the outcome of the TCAS evaluator on mutated and
correct TCAS formulas.

The mutated formulas are obtained by rewriting grounded TCAS formulas in
one step using the mutated rules of figure 15. The predicate reurite, that obtains
mutated TCAs formulas, is given in figure 17. The predicate
rewrite(Term,ResTerm) parses the grounded TCAS formula Term, searches for
a subterm of Term and a matching mutated rule, applies the mutated rule to the
subterm, and returns the resulting mutated TCAS formula ResTerm. These mutated
TCAS formulas are evaluated with a correct BTRS, and the value of this evaluation
compared to the value of the correct evaluation of the original TCAS formula (the
one from which the mutant was produced).

The predicate drive(Ci,CiResult,Cj,CjResult) drives the TCAS illustra-
tion. In particular, it calls getTerm(Ci), which gets a grounded TCAS formula Ci.
This formula is evaluated with a correct BTRS, using v(Ci,CiResult). That is,
CiResult is the correct value for the grounded TCAS formula Ci. The predicate
drive(Ci,CiResult,Cj,CjResult) then calls rewrite(Ci,Cj), which produces a
mutant from Ci by applying one mutated rule one time to Ci. The mutant Cj

is evaluated with a correct BTRS to obtain the value CjResult. For each TCAS

79

formula, the number of discrepancies of Ci and Cj are counted. The ratio of the
number of discrepancies and total number of evaluations gives the “Correct” column

in figure 13.

BIBLIOGRAPHY

[1] P. Ammann and J. C. Knight. Data diversity: An approach to software fault
tolerance. Digest FTCS-17, pages 122-126, 1987.

[2)] P. Ammann and J. C. Knight. Data diversity: An approach to software fault
tolerance. IEFE Transactions on Computers, 37:418-425, 1988.

[3] P. Ammann, D.L. Lukes, and J.C. Knight. Applying data redundancy to
differential equation solvers. Annals of Sofiware Engineering, to appear, 1997.

[4] D. Andrews. Using executable assertions for testing and fault-tolerance.

FTCS-9.

[5] S. Antoy and R. Hamlet. Self-checking against formal specifications. In
Internationel Conference on Computing and Information, pages 355-360,
Toronto, 1992.

{6] A. Avizienis. The n-version approach to fault-tolerant software. JEEE Trans. on
Soft. Eng., 11:1491-1501, 1985.

{7] A. Avizienis and J. Kelly. Fault tolerance by design diversity: concepts and
experiments. Computer, 17:67-80, 1984.

[8] L. Babai, L. Fortnow, L. Levin, and M. Szegedy. Checking computations in
polylogarithmic time. Proc. 28rd ACM Symp. Theory of Computation, pages
21-31, 1991.

[9] J. A. Bergstra, J. Heering, and P. Klint. Algebraic specifications. ACM press
frontier series, 1989.

[10] J. A. Bergstra and P. Klint. The discrete time toolbus. Technical Report
P9502, University of Amsterdam, pages 1-111, 1995.

[11] J. A. Bergstra and J. W. Klop. Conditional rewrite rules: Confluence and
termination. Journal of Computer and System Sciences, 32:323-362, 1986.

[12] M. Blum and S. Kannan. Designing programs that check their work. In 21st
ACM Symposium of Theory of Computing, pages 86-96, 1989.

81

[13] M. Blum and S. Kannan. Designing programs that check their work. JACM,
42:269-291, 1995.

(14] M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting with applications
to numerical problems. Journal of Computer and System Sciences,
47:549-595, 1993.

15| M. Blum and H. Wasserman. Program result-checking: A theory of testin
g g g
meets a test of theory. In 35th Annual Symposium on Foundations of
Computer Science, pages 382-391, Santa Fe, NM, 1994.

{16) M. Blum and H. Wasserman. Reflections on the pentium division bug. IEEE
Transactions on Computers, 45:385-393, 1996.

[17] Susan Brilliant, J. C. Knight, and N. G. Leveson. The consistent comparison
problem in n-version programming. IEEE Trans. on Soft. Eng., 15, 1989.

[18] Susan Brilliant, J. C. Knight, and N.G. Leveson. Analysis of faults in an
n-version software experiment. JEEE Trans. on Soft. Eng., 16, 1990.

[19] R. W. Butler and G. B. Finelli. The infeasibility of quantifying the reliability of
life-critical real-time software. IEEE Trans. on Soft. Eng., pages 3-12, 1993.

[20] J.J. Chilenski and S.P. Miller. Applicability of modified conditional/decision
coverage to software testing. manuscript.

[21) M. Davis, R. Sigal, and E. Weyuker. Computability, Complezity, and
Languages, 1994.

[22] R. DeMillo, R. Lipton, and F. Sayward. Hints on test data selection: help for
the practicing programmer. Computer, 11:34-43, 1978.

[23] R.K. Dong and G. P. Frankl. The astoot approach to testing object-oriented
programs. ACM TOSEM, 3, 1994.

[24] M. Ehrig and B. Mohr. Fundamentals of algebraic specifications 1. In
Springer-Verlag, Berlin, 1985.

(25] J. Gannon, R. Hamlet, and P. McMullin. Data abstraction implementation,
specification, and testing. ACM Trans. Prog. Lang. and Systems, 3:211-223,
1981.

(26} J. D. Gannon, R. G. Hamlet, and H. D. Mills. Theory of modules. JEEE
Trans. on Soft. Eng., 13, 1987.

82

[27] M.-C. Gaudel and B. Marre. Generation of test data from algebraic
specifications. In Second Workshop on Software Testing, Verification, and
Analysis, pages 138-139, Banff, Canada, 1988.

[28] A.L. Goel and K. Okumoto. Time dependent error detection rate model for

software and other performance measures. IEEE Transactions on Reliability,
R-28:206-211, 1979.

[29] J.A Goguen and J.J. Tardo. An introduction to obj:a language for writing and
testing algebraic program specifications. In Proc. Specifications of reliable
software conference, pages 178-189, 1979.

[30] G.Sullivan, D. Wilson, and G.Masson. Certification of computational results.
IEEE Trans. on Soft. Eng., 44:833-847, 1995.

[31] J.V. Guttag and J.J. Horning. The algebraic specification of abstract data
types. Acte Informatice, 10:27-52, 1978.

[32] D. Hamlet. Are we testing for true reliability? /EEE Software, pages 21-27,
July 1992.

[33] D. Hamlet. Random testing. In J. Marciniak, editor, Encyclopedia of Software
Engineering, pages 970-978. Wiley, New York, 1994,

[34] R. G. Hamlet. Probable correctness theory. Info. Proc. Letters, 25:17-25, 1987.

[35] N. Heintze, J. Jaffar, S. Michailov, P. Stukey, and R. Yap. The clp(r)
programmer’s manual. Monash University, Clayton, 1987.

[36] W. E. Howden. Weak mutation testing and completeness of test sets. I[EEE
Trans. on Soft. Eng., 8:371-379, 1982.

[37] K. Huang and J Abraham. Algorithm-based fault tolerance for matrix
operations. IEEE Transaction on Computers, 33:518-529, 1984.

[38] J. Jaffar and J-L. Lassez. Constraint logic programming. POPL Munich, 1987.

[39] J.A.Goguen, J.W. Thatcher, and E.G.Wagner. An initial algebra approach to
the specification, correctness, and implementation of abstract data types. In
In R.T. Yeh, editor, Current Trends in Programming Methodology, pages
80-149, 1978.

[40] P Jalote. Specifications and testing of abstract data types. In COMPSAC,
pages 508-511, 1983.

83

[41] K.A.Foster. Sensitive test data for logic expressions. ACM SIGSOFT Software
Eng. Notes, 9:120-126, 1984.

[42] K.C.Tai. Condition-based software testing strategies. Proc. Compsac 14th
Ann. Intl. Comput. Soft. and Applic. Conf., pages 564-569, 1990.

[43] P. Klint. A meta-environment for generating programming environments.
Lecture notes in Computer Science, 490:105-124, 1991.

44] J. W. Klop. Term rewriting systems. In Handbook of Logic in Computer
g
Science, vol. II, pages 1-112, Oxford University Press, 1992.

[45] J. C. Knight and N. G. Leveson. An experimental evaluation of the assumption
of independence in multi-version programming. IEEE Trans. on Soft. Eng.,
12:96-109, 1986.

[46] J. Laprie. Dependability, basic concepts and terminology. In Springer-Verlag,
Vienna, 1992.

[47] N. G. Leveson. Safeware system safety and computers. In Addison- Wesley,
1995.

[48] N.G. Leveson, M.P.E. Heimdahl, H. Hilderth, and J.D. Reese. requirements
specification for process-control systems. Tech. Rep. 92-106 Dept. of Inform.
and Comput. Sci., Univ. of Cal., Irvine, 1992.

[49] R. Lipton. New directions in testing. DIMACS Series on Discrete Mathematics
and Theoretical computer science, 2:191-202, 1991.

{50] B. Littlewood and L. Strigini. Assessment of ultra-high dependability for
software-based systems. CACM, 36, 1993.

[51] M. R. Lyu. Handbook of software reliability engineering. JEEE Computer
Society Press, 1995.

[52] B. Marre. Toward automatic test data selection using algebraic specification
and logic programming. Proc. of the 8th International Conference on Logic
Programming, pages 202-219, 1991.

[53] G. Metze and A. Mili. Self-checking programs: An axiomatization of program
validation by executable assertions. JEEE Trans. on Soft. Eng., pages
118-120, 1981.

[54] D.R. Miller. Making statistical inferences about software reliability. NASA
Contractor Rep. {197, 1988.

84

[55) D.R. Miller. The role of statistical modeling and inference in software quality
assurance. CSR Workshop on softawre certification, 1988.

[56] P.L. Moranda and Z. Jelinski. Final report on software reliability study.
McDonnell Douglas Astronautics Company, MADC Report number 63921,
1972.

[67] J. D. Musa. Operational profiles in software-reliability engineering. /EEE,
pages 14-32, 1993.

[58] J. D. Musa, A. Iannino, and K. Okumoto. Software Reliability: Measurement,
Prediction, Application. McGraw-Hill, New York, NY, 1987.

[59] D. L. Parnas. On the criteria to be used in decomposing systems into modules.
Comm. of the ACM, 15:1053-1058, 1972.

[60] D. L. Parnas, A. van Schouwen, and S. Kwan. Evaluation of safety-critical
software. Comm. of the ACM, 33:638-648, 1990.

[61] D. Peters and D. L. Parnas. Generating a test oracle from program
documentation. ISSTA, 1994.

[62] P.Gemmell, R. Lipton, R. Rubinfeld, M. Sudan, and A. Widgerson.
Self-testing/correcting for polynomials and for approximate functions. Proc.
23rd Symp. Theory of Comp., pages 32-42, 1991.

[63] B. Randell. System structure for software fault tolerance. IEEE Trans. on
Soft. Eng., SE-1:220-232, 1975.

[64] B. Randell, J. Laprie, H. Kopetz, and B. Littlewood. Predictably dependable
computing systems. In Springer Verlag, ESPRIT Basic Research Series,
1995.

[65] John A. Rice. Mathematical statistics and data analysis. Wadsworth and
Brooks/Cole, New York, 1988.

[66] R. Rubinfeld. On the robustness of functional equations. Proc. 35th Symp.
Foundations of Computer Science, pages 288-299, 1994.

[67] M. L. Shooman. Software Engineering Design, Reliability, and Management.
McGraw-Hill, New York, NY, 1983.

[68] R. Thayer, M. Lipow, and E. Nelson. Software Reliability. North-Holland, New
York, NY, 1978.

85

[69] F. Veinstain. Error detection and corection in numerical computations by
algebraic methods. Proc. 9th Int’l Symp. Applied Algebra, Algebraic
Algorithms and Error-Detecting Codes, pages 456-464, 1991.

[70] E. Weyuker, T. Gordia, and A. Singh. Automatically generating test data from
a boolean specification. IEEE Trans. on Soft. Eng., 20:353-363, 1994.

[71} S. S. Yau and R. C. Cheung. Design of self-checking software. In Proc. Int’l
Conf. on Reliability Software, pages 450-457, 1975.

