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The developers of previous computer graphic image rendering algorithms have
not accounted for the fact that synthesized pictures are ultimately intended to be
viewed by a human observer. This has led to the creation of algorithms that can
waste large amounts of time refining areas of an image that are already visually
acceptable, while neglecting regions of an image containing perceptible artifacts.
The human visual system has a varying acuity for error that depends on the context
in which the error is viewed. Exploiting the subjective nature of perceptual response
holds the key to improving the performance of image synthesis algorithms.

This dissertation presents a new perceptually based adaptive sampling algo-
rithm. This algerithm makes subjective quality assessments during the progression
of a rendering algorithm. These assessments are used to focus the effort of the
rendering algorithm on the regions of the image containing the most perceptible
artifacts. In this manner, images of a given visual quality are produced faster than
is possible with existing image synthesis techniques. The new algorithm also allows

the user to select a perceptual quality for the output image. This feature eliminates



the guesswork involved in halting a rendering and allows the production of visually
consistent results.

This work includes a number of important and novel contributions. The first
is the development of a new and comprehensive error metric for Monte Carlo ray
tracing. This metric is used to characterize and control the objective accuracy of
a rendered image. This metric is additionally employed to determine the optimum
number of rays to spawn from each surface intersection. The next major contri-
bution is the design of a new high speed, color visual difference predictor. This
predictor is capable of rapidly assessing the perceptual impact of objective differ-
ences between two color images. The third contribution is the design of a frequency
based adaptive sampling algorithm. This algorithm synthesizes images directly into
the frequency domain. This permits the use of a simple, frequency dependent image
quality metric to control the placement of samples. The final and most important
contribution is the development of a second generation, perceptually based adaptive
sampling algorithm. This algorithm employs the high speed, color visual difference
predictor to control image sampling in accordance with the perceptibility of error
in the reconstructed image. This technique is shown to improve the performance of

a realistic image synthesis algorithm.
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CHAPTER 1
INTRODUCTION

Computer graphics is a budding field within the discipline of computer sci-
ence. This area of study is just beginning to reach its potential with the advent
of modern computers and advanced rendering techniques. These two developments
have coupled to allow the synthesis of images containing levels of detail and realism
that would have been unimaginable only a few years ago. This realism is a major
factor fueling the growth of the computer graphics industry. It has allowed computer
graphics to expand into such fields as motion picture entertainment, architectural
design, and other areas where the realistic visualization of synthetic scenes is of
significant importance.

A recent advancement in rendering technology is the development of photo-
realistic rendering techniques. These techniques are used to produce images that
portray physically correct views of synthetically defined scenes. The images gener-
ated by these methods are more than simple, pretty pictures. Rather, they are the
results of an elaborate simulation of the physics of light as it interacts with objects
in the environment. These simulations can be employed to create stunning images
that are virtually indistinguishable from photographs taken of real environments.

A fundamental formula known as the radiance equation is the foundation of

this work {76]. This equation defines a recursive, physically based expression of
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how light propagates and scatters within a three-dimensional environment. This
expression describes the theoretical relationship that must be solved to produce
realistic images of a synthetic scene.

The rendering methods that are based on this equation are termed global
illumination algorithms. These algorithms produce images by solving the radiance
equation at the surfaces of a scene and projecting the result onto an image plane.
This yields a physically correct representation of the amount of light reflected from
the scene along a given viewing direction.

Ray tracing is currently the most powerful and widely used global illumination
algorithm. This method employs a point sampling technique to solve the radiance
equation. This is the only technique currently available that is capable of solving the
full generality of the radiance equation. Unfortunately, the applicability of the ray
tracing method is currently limited due to the expense of this technique. Improving
the performance of this algorithm is therefore key to the broad acceptance of this
most powerful, photo-realistic rendering technique. The increased practicality and
acceptance of this technique would lead to more realistic renderings, which would
in turn foster the continued growth of the computer graphics field.

Adaptive sampling is a powerful technique for reducing the expense of ray
traced renderings. In ray tracing, images are produced by sampling the light in-
tensity at numerous locations of the image. Each sample can be very expensive to
compute, involving numerous intersection operations, realistic shading calculations,
motion translations, and deformations. Adaptive sampling seeks to improve the
efficiency of the ray tracing algorithm by minimizing the number of samples that

are necessary to accurately reconstruct an image.
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In a given rendered image there are typically areas of both high and low spatial
frequency variations, as well as areas that produce more or less noisy samples.
Areas of high variation require a large number of samples, whereas areas of low
variation can be accurately reconstructed with relatively few samples. Adaptive
sampling seeks to exploit this by taking the minimum number of samples required
to accurately reconstruct each region.

The key element that makes this operation possible is the use of an error met-
ric. Adaptive sampling techniques employ an error metric to make iterative quality
predictions during the progression of the rendering algorithm. These predictions are
used to determine the appropriate sampling rate in each region of the image.

Previous adaptive algorithms use a number of ad hoc and incomplete error
metrics to determine the accuracy of the reconstructed image. This leads to ineffi-
ciencies in the placement of samples by these algorithms. The first major develop-
ment contained in this dissertation defines a new and comprehensive error metric
for Monte Carlo ray tracing. This metric can be used to accurately characterize and
control the presence of error within a synthetically generated image. The new error
metric shows how the quality of an image depends on both the number of samples
taken at the image plane and the number of samples spawned from each surface
intersection. This work additionally discusses how this error metric is used to derive
the optimal number of rays to spawn from each surface intersection. The use of
these optimal spawning rates can improve the efficiency of Monte Carlo ray tracing.

Understanding how to characterize and control the accuracy of a synthesized
image is an important aspect of developing an efficient adaptive sampling algorithm.

However, it is just a starting point for the primary focus of this doctoral work. The



problem with existing adaptive sampling algorithms is that they are based on objec-
tive assessments of the accuracy of an image. These objective error measurements
are typically performed in RGB energy space. Measuring error in this space neglects
the fact that the images produced are ultimately intended to be viewed by a human
observer. The human visual system has a widely varying sensitivity to error that
depends on the context in which the error is viewed. It is ultimately the percepti-
bility of this error and not its absolute magnitude that should be used as the basis
of adaptive sampling algorithms.

A number of perceptual quality models have been developed by the image
processing community. These models are imbedded in what are known as visual
difference predictors. A visual difference predictor provides a means to determine
the visibility of differences between two input images. This type of algorithm can
be used to make the kind of subjective quality assessments that should be employed
to drive an adaptive sampling algorithm.

The latest visual difference predictors model a number of significant aspects of
the human visual system. These include spatial frequency and orientation selective
channels, nonlinear contrast response, variations in contrast sensitivity with spatial
frequency, and masking. Each of these components has a pronounced affect on the
perceptibility of error.

The developers of previous image quality metrics have gone to great lengths
to accurately model the sensitivity of the human visual system. Unfortunately,
efficiency is seldom a design criteria in creating these metrics. This limits the utility
of the metrics for applications such as adaptive sampling where speed is a primary

concern. In addition, the majority of previous visual difference predictors are only



designed to process achromatic images. The models that do include color processing
neglect the significant effect of chromatic aberration.

The second major contribution of this dissertation is the design of a high
speed, color visual difference predictor. This predictor is based, in part, on a model
by Lubin [88]. The new predictor is designed to run efficiently and extended to
handle color, including the effect of chromatic aberration. This new color image
quality model is shown to execute in a fraction of the time required by existing
metrics.

Recently, there has been an increasing amount of interest in exploiting as-
pects of human visual perception in the field of computer graphics. This is not
surprising given that computer graphics is primarily dedicated to the production of
visual stimuli. A few authors have investigated the use of visual difference predic-
tors for assessing the accuracy of rendered images, others have utilized models of
visual adaptation to develop tone reproduction operators !, and a few rudimentary
attempts have been made to employ perceptual metrics to control aspects of a ren-
dering algorithm. However, despite the enormous interest in this line of work, the
previous applications of human visual perception are very limited.

One major problem with previous attempts to incorporate elements of a per-
ceptual model within an adaptive sampling algorithm is that all prior adaptive
algorithms have operated in the spatial domain. This means that the image approx-
imation and the error estimate is calculated at discrete locations within the image
plane. The perceptual sensitivity of the human visual system is strongly frequency

dependent. Therefore a frequency based estimate of the image and the error is

1A tone reproduction operator defines an intensity mapping that is intended to match the
subjective experience of viewing a real and synthesized image.



necessary to fully exploit variations in visual sensitivity.

The third major contribution of this dissertation develops a new adaptive
sampling algorithm that synthesizes images directly into the frequency domain. The
synthesis of images into this domain allows a simple frequency dependent perceptual
quality model to be used to guide the placement of samples. This model incorpo-
rates a number of key aspects of the human visual system. These include contrast
sensitivity, spatial frequency response, and a rough approximation of masking. This
work is novel in that it is the first time that frequency dependent aspects of the
visual system are used to direct the effort of a rendering algorithm. This allows
the most perceptible artifacts to be eliminated before those that are less apparent.
In addition, the frequency representation that is employed by this algorithm is the
same as that used in common image and video compression schemes. Synthesiz-
ing images directly into this representation reduces the expense and waste of first
rendering a high quality image and then converting it into a compressed form. It
additionally allows the algorithm to exploit a number of features of a common image
compression technique.

This adaptive algorithm is a preliminary attempt to guide the production of
synthetic images based on a perceptual model. The basic ideas contained in this
algorithm are refined to create a second generation, perceptually based adaptive
sampling algorithm. The new algorithm significantly improves upon the speed and
practicality of the original technique. The new adaptive algorithm additionally
incorporates a more advanced model of human perception that includes the affect
of visual masking and chromatic aberration.

The second generation algorithm uses a high speed, color visual difference pre-
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dictor to make perceptual quality assessments during the production of a synthetic
image. The use of this predictor allows the algorithm to automatically detect the
regions of the image containing visible artifacts. By focussing effort on these areas,
the new algorithm is able to produce images of a given visual quality using fewer
samples than previous sampling techniques. In addition, this algorithm allows the
user to select a perceptual quality for the output image. This feature eliminates
the guesswork involved in halting a rendering, and allows consistent results to be
achieved regardless of the scene or shading technique that is employed.

The new adaptive algorithm is based on a novel technique that calculates the
image approximation and error estimate directly in a pyramidal, wavelet domain.
This allows the algorithm to use information about the frequency characteristics of
an image and facilitates a rapid application of the perceptual model. It also provides
a means to exploit the frequency characteristics of typical images to make informed
guesses about the error contribution of unrefined regions.

An enhanced version of the basic technique is also presented. The enhance-
ments incorporated into this final approach significantly increase the performance
of the adaptive algorithm by limiting the number of times and locations at which
the visual model is applied. These enhancements are shown to allow the algorithm
to not only reduce the number of samples required to produce an image of a given
visual quality, but the overall execution time as well. A number of timing tests will
be presented that demonstrate that the new perceptually based adaptive sampling
algorithm is able to synthesize visually accurate images using only a fraction of the
time required by existing sampling techniques.

Including this introduction, the dissertation is divided into eleven chapters. In



the second chapter the radiance equation is derived. The third chapter overviews
global illumination algorithms and motivates the focus of this dissertation on the
visibility tracing technique. In the fourth chapter the existing adaptive sampling
algorithms are discussed. This is followed in the fifth chapter by the development
of a new error metric for Monte Carlo ray tracing. Chapter six presents the prior
perceptual quality models that have been developed by the image processing com-
munity. The seventh chapter describes the design of a new high speed, color visual
difference predictor. A discussion of previous applications of perception in the com-
puter graphics field is contained in chapter eight. Chapter nine presents the initial
frequency based adaptive sampling algorithm. This is followed in chapter ten, by
the development of the new perceptually based adaptive sampling algorithm. Final

concluding remarks are contained in chapter eleven.



CHAPTER 11
THE RADIANCE EQUATION

The radiance equation is the fundamental equation describing how light flows
within a three-dimensional environment. This equation is physically based, mean-
ing that if seeks to accurately model the large scale physics of light interaction with
the participating media. The basis for this equation comes from the fields of radia-
tive transfer and transport theory. The radiance equation was first introduced to
computer graphics by Kajiya in 1986 [76]. It has since formed the foundation of
all physically based global illumination algorithms. All such algorithms provide an
approximate solution to this equation.

This chapter outlines the important steps in the derivation of the radiance
equation. A complete discussion of this equation is included in the appendices.
The chapter begins with a description of the transport equation which defines a
balance relation between the flow of abstract particles within a three-dimensional
environment. This transport equation is then converted to an integral equation
in order to incorporate the boundary conditions found at the surfaces within the
environment. This is followed by the introduction of some basic radiometric concepts
in order to convert from the notion of abstract particles to concrete and measurable
quantities of light energy. Finally, the full radiance equation is described along with
its most common simplification. The development of this section draws heavily on

the works of Glassner [56], Arvo [70] and Kajiya [55].
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The Transport Equation

The transport equation seeks to describe the relationship that governs the
flow of particles within Euclidean space. In the development of this equation we
will leave behind the concept of light transport and instead focus on the interaction
of abstract particles with an environment. The particle nature of light is used in
the later section on radiometry to tie this equation back to the specifics of light
interaction.

The primary quantity of interest in the transport equation is called the flux.
Flux describes the quantity of particles passing through an environment per unit

time. It is defined as

- dQ lpa'rtictesl ,

T odt S

where (} is the number of abstract particles.

The transport equation is developed by forming a balance relationship between
the flux gains and losses in a volume of space and over the directions of interest.
There are five categories of gains and losses which are illustrated in Figure 1. They
are streaming, emission, absorption, outscattering and inscattering.

Streaming describes the amount of flux that is either injected into or escapes
from the surfaces of a volume. Emission and absorption describe the volumetric
effects from flux being either produced or consumed from within the volume itself.
Finally, outscattering and inscattering are the result of particles being deflected
away from or into the direction of interest.

When the system is in equilibrium the flux gains from emission and inscattering
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(B) (C)

(D) (E)

FIGURE 1. The five categories of gains and losses (after Glassner [56]). A) Stream-
ing B) Emission C) Absorption D) Outscattering E) Inscattering

exactly balance the losses from streaming, outscattering and absorption. This yields

the expression

b+ Ki®) = Vo, + 0. K7 +0,D,, 2)

which describes a balance relation for the flux at an arbitrary point in space r. In this
expression, position is denoted by the subscript and inscattering and outscattering
are denoted by the superscript ¢ and o respectively. The emission term (e, ) represents
the emitted flux at the point r. The inscattering term (K:®!) is given by an integral
operator (/(}) that computes the percentage of incoming flux (®:) that is deflected
along the direction of interest. The streaming term (V,,®,) is formed by a gradient
operator (V) which computes the change in the flux (®,) at the point r. The

outscattering term (®,K?) is the product of the flux at the point r and another
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integral operator(/?) which computes the percentage of lux deflected away from the
direction of interest. Finally, the absorption term {(¢,®,) is given by the percentage
of the flux absorbed (o;) times the flux at the point r. These terms are discussed
in detail in Appendix A, pages 226-231.

This equation merely specifies a balance relationship which all points and
directions in space must satisfy. In order to actually determine the flux at a specific
point we must specify a set of boundary conditions. These conditions explicitly
describe the flux at a series of boundary points (the surfaces of objects). The most
general form of boundary conditions expresses the flux (®,) at a surface in terms
of the emitted and reflected (inscattered) flux along the direction of interest. This

expression is

D, = ¢, + KO, (3)

where the subscript s indicates the surface point, the emission term {e,) represents
the flux emitted from the surface and the inscattering term (K:®!) represents the
percentage of incoming flux that is reflected from the surface along the direction of

interest.

The Integral Equation

The transport equation allows us to compute the flux at an arbitrary point
in space. However, the form of this equation is not particularly easy to work with
since it contains both an integral and a derivative of the unknown quantity & (see
Appendix A, pages 226-231).

This equation may be converted to a more useable form by observing that the
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transport equation can be expressed as a linear first-order differential equation (see
Appendix A, pages 231-232). This equation can be solved for the flux at a specific
point (¥,) through the use of integrating factors. This yields the integral form of
the transport equation which expresses the flux in terms of volumetric effects and
the contributions from the nearest surface point backwards along the direction of

interest:
8
P, = p(s—nyPs + f Hia—sr) (ea + K;tl)f,) da. (4)

Within this expression the term p signifies the percentage of flux lost between
two points in space due to outscattering and absorption. The expression pigs_.,y P,
gives the flux contributions to the point of interest r from the surface point s. This is
simply the surface flux from the boundary conditions, weighted by the percentage of
flux lost as it travels to the point of interest. The integral on the right-hand side of
Equation 4 accounts for the flux contributions due to volumetric effects. The term
(€a + K} @) represents the flux gains due to volumetric emissions and inscattering
at the point . This is weighted by the term g,y which is the percentage of flux
lost as it travels to the point of interest r. The integral is then the sum of these

gains across all points from the surface to the point of interest.

Radiometry

The transport equation is defined in terms of flux, which is the rate of flow of
some abstract particle. In this section we explore the field of radiometry in order to
relate the abstract notion of flux to measurable quantities of radiant (light) energy.

The fundamental unit of radiant energy is the Joule. In terms of the particle
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model, we may think of each particle as being a photon carrying some quantity of

radiant energy (. The radiant flux is then

e _ 4Q° J_
@ =2 [ s = Watt] . (5)

Flux is a measurement of flow. However for this quantity to have physical
meaning we must answer the question: flowing through what? In the radiance
equation we will want to be able to measure the flux across a patch of surface and
through a set of angular directions. In order to do this we must define a flux density
which is the ratio of flux to both area and solid angle. This term is called the

radiance and it is defined as

L

= dATdw dAdw® ~ dAdwcosl

d2de d2Pe d2de W
[ ] , (6)

sr-m?

where dA” is the projected area in the direction w, dw® is the projected solid angle
onto the surface patch dA and & is the angle between the surface normal and w.
Radiance is an important radiometric term because it allows us to compute the flux
between two surface patches given only the surface geometry and the radiance along
the line between the surfaces.

Since the radiance equation will eventually be defined in terms of radiance, we
need to be able to express the scattering that occurs at points in space in the same
manner. The scattering term that allows us to do this is called the bidirectional
reflectance distribution function (BRDF). It is defined as

L(r,w') [ 1 ] ,

’ e ———————————————————— —
frlrw = ) = L(r,w)cosfdw sT
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where f.(r,w — ') defines the percentage of the radiance at the point r that
is scattered from an incident solid angle centered around the direction w, into the
outgoing direction w’. In this expression L(r,w} is the incident radiance at the point
r and direction w, L(r,«') is the scattered radiance along direction w’ and cos@dw
is the incident projected solid angle. This expression implies that if we know the
incident radiance and the solid angle over which that radiance is defined, then the
BRDF allows us to compute the contribution to the outgoing radiance along any
specific direction.

The inscattering that occurs at a point in space r is found by integrating the
product of the BRDF and the incident radiance across all incident projected solid
angles. The inscattering integral operator B: is defined to perform this operation.
This operator is similar to the scattering operator K} discussed earlier, except that

it is defined in terms of radiance instead of flux.

The Full Radiance Equation

The full radiance equation is the goal of this section. It provides a complete
description of the radiance at a point in space. This equation is based upon the
integral form of the transport equation but is defined in terms of radiance instead
of the abstract notion of flux.

The radiance equation is defined as
Ly = pomry [L + BLLE] + f Has) [LE + BLLE) dav (8)

This expression is derived from the integral form of the transport equation (Equa-

tion 4} by converting from flux (®) to radiance (L) and from the scattering operator
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FIGURE 2. The geometry of the radiance equation in a vacuum (after Glassner [56]).

(K) to a BRDF operator {B). It additionally incorporates the boundary conditions
from Equation 3 to determine the radiance at the surface point s.

This expression is commonly simplified by assuming that all synthesis occurs
in a vacuum. This eliminates all volumetric effects from the expression and yields

the final simplified version of the radiance equation:

L =L+ BiL. (9)

This expression says that the radiance (L,) at a point r is just the sum of the emitted
radiance (L?) and the inscattered radiance (BiL!) from the nearest surface point
s. The incident radiance (L!) is found by recursively applying Equation 9. This
situation is illustrated in Figure 2. This limited form of the full radiance equation

is what current realistic image synthesis algorithms are dedicated to solving.
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Summary

This chapter discussed the theory underlying physically based realistic image
synthesis. This theory is embodied in a fundamental formula known as the radiance
equation. The derivation of this equation introduced the basic concepts that facil-
itate the production of physically correct images. This chapter also laid important
groundwork for the remainder of this dissertation.

The derivation of the radiance equation proceeded through a number of basic
steps. First, a balance relation was developed that governs the flow of particles
in three-dimensional space. Next, the boundary conditions found at the surfaces of
objects were incorporated, and the balance relation was solved for the particle flow at
a particular point in space. The radiometric concept of radiance was then introduced
to convert from an abstract characterization of particle flow to measurable units of
light energy. The BRDF was also presented as a means to describe the scattering
that occurs at the surfaces of objects. Finally, these radiometric concepts were
incorporated to develop the full radiance equation, as well as its most common
simplification.

This simplified version of the radiance equation describes a recursive relation
whereby the outgoing radiance along a particular direction in space can be calculated
by evaluating the incident radiance, at a surface point, from all possible directions.
The next chapter describes the photo-realistic techniques that produce images by

solving this equation. These techniques are known as global illumination algorithms.
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CHAPTER 111
GLOBAL ILLUMINATION ALGORITHMS

Global illumination algorithms provide a mechanism to generate physically
based renderings of synthefic scenes. These techniques are based on the theory
described in the preceding chapter. This type of rendering method produces images
by first solving the radiance equation across the surfaces of the scene and then
projecting the result onto the image plane. The illumination calculation is global in
the sense that all surfaces contribute to the radiance solution.

Global illumination algorithms are state-of-the-art image synthesis techniques.
Rendering programs that utilize these methods can synthesize images that are indis-
tinguishable from photographs taken of a real environment. This chapter contains
an introductory discussion of these algorithms and provides background informa-
tion on several approaches to realistic image synthesis. The discussion focuses on
the two most prevalent global illumination algorithms: ray tracing and radiosity. A
number of variations on the ray tracing algorithm are also presented. This chapter
concludes with a comparison of the various algorithms in order to motivate why this

dissertation utilizes a form of ray tracing called visibility tracing.

Ray Tracing

Ray tracing was first introduced in papers by Appel in 1968 [4] and by Gold-

stein and Nagel in 1971 {57]. Ray tracing defines a point sampling solution to the



19

radiance equation. Inray tracing, infinitely thin rays are intersected with the objects
of the scene in order to evaluate the radiance at specific positions within the envi-
ronment. There are two major forms of ray tracing: visibility and photon tracing.
In visibility tracing, rays are used to gather incident light from visible points within
the scene. Photon tracing is an alternative technique which uses rays to project
energy from the light sources into the scene. These two methods can be combined
to produce a technique known as bidirectional ray tracing. These methods as well

as two powerful acceleration techniques are described in this section.
Visibility Tracing

In visibility tracing rays are cast from the eye point through the pixels of
the image plane in order to point sample the incident light at various positions
on the image plane. The rays are intersected with the objects of the scene and the
reflected radiance from these points is evaluated. The radiance that is reflected from
a surface point is calculated from the radiance equation given in Equation 9. This
equation defines the reflected radiance as the sum of the surface emittance and the
incident radiance from all directions multiplied by the surface scattering function
(BRDF). In order to evaluate the incident radiance, additional rays are spawned
from the surface. These rays are similarly intersected with objects of the scene to
compute the radiance contributions from these points. The process recurses until
the contributions of the rays is below some tolerance. The rays that are generated
form a tree which is evaluated in a bottom-up manner in order to ultimately define

the incident radiance at a position on the image plane.



Classical Ray Tracing

Classical ray tracing is based on a model presented by Whitted in 1980 [156].
This method is an early solution to the problem of visibility tracing. It provides a
simplified approximation to the process outlined above. In classical ray tracing a
simple local illumination model is evaluated at the surfaces of objects to determine
the outgoing radiance along a ray’s direction.

A novel contribution of Whitted’s work is that he was the first to spawn rays
from the surfaces of objects fo evaluate the local illumination model. Whitted cast
rays at the light sources to determine the direct lighting contribution. He addi-
tionally cast rays in the reflected and transmitted directions in order to determine
the radiance contributions from these sources. The reflected and transmitted rays
recurse through the scene to form a ray tree. This ray tree provided the first coarse

approximation to a global algorithm.

Monte Carlo Tracing

Monte Carlo ray tracing (also known as distributed ray tracing) is based on
papers presented by Kajiya [76] and Cook [33, 34]. This method powerfully extends
classical ray tracing through the use of stochastic sampling and the distribution
of rays across sampling dimensions. Monte Carlo ray tracing makes it possible to
simulate the entire range of diffuse inter-reflections. This allows the method to
incorporate a much wider range of effects than classical ray tracing which can only
simulate point light sources, reflection and transmission.

In the Monte Carlo algorithm, the shading calculation at a surface point is

evaluated by randomly distributing rays across all incident directions. This enables



the shading calculation to account for the radiance contributions from all visible
surfaces as well as area light sources. This ray tracing method can be viewed as the
direct use of a Monte Carlo integration technique to evaluate the shading integral.

The full BRDF is required for this calculation.

Path Tracing

Monte Carlo ray tracing spawns many rays at each surface reflection. This
causes an exponential growth in the number of rays at the lower levels of the ray tree,
where the ray’s contribution are the least significant. Path tracing was introduced by
Kajiya [76] to eliminate this problem. In path tracing a single randomly positioned
ray is spawned from each surface reflection. This method requires more initial rays
to be cast from the eye point but because the number of rays does not grow; more
effort is concentrated at the higher levels of the tree where the ray’s contribution is

the greatest.
Photon Tracing

Photon tracing was originally introduced by Appel in 1968 {4] and further ex-
plored by numerous authors including Shirley, Rushmeier, Pattanaik and Mudur {108,
109]. Photon tracing simulates the projection of photons from the light source into
the scene. In this method rays are originated at the light sources and projected
outward into the scene. These rays represent the portion of the light’s radiance
that is projected along the direction of the ray. These rays are intersected with
the objects of the scene and new rays are scattered from the surface. These new

rays represent the fraction of the light’s radiance that is reflected from the surface
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along the outgoing directions. The rays which eventually reach the image plane
represent the fraction of the light’s radiance which enters the eye of the observer.

The contribution of these rays are combined to yield the final image.
Bidirectional Ray Tracing

Visibility tracing excels at sampling the visually important directions, however,
it is very poor at evaluating indirect lighting. Photon tracing, on the other hand,
excels at sampling the important lighting directions but is very poor at producing
rays which actually pass through the image plane. The strengths of these two
techniques can be combined to produce a method known as bidirectional ray tracing.
This method was introduced by Arvo in 1986 [6).

In bidirectional ray tracing an initial photon tracing pass is performed followed
by a visibility tracing pass. The photon tracing pass is used to deposit indirect
illumination of the surfaces of objects. This indirect radiance contribution is stored
in an illumination map. This illumination map is then used in the subsequent
visibility tracing pass in order to determine the indirect lighting contribution along

the visually important directions.
Acceleration Methods

Ray tracing is inherently a very expensive process. It is therefore important
to perform this process as efficiently as possible. This section will explore two of the

more important acceleration methods.



Bounding Volumes

It is estimated that 95% of the time to generate a ray traced image is spent
performing ray-object intersection tests. It is therefore imperative to perform these
tests as efficiently as possible. The use of bounding volumes has been proposed by
a number of researchers to accelerate the ray-object intersection test. An excellent
survey of these algorithms is presented by Arvo and Kirk [54].

The basic idea is to enclose the objects of a scene within a simplified bounding
volume such as a sphere or a box. The intersection of a ray with this bounding vol-
ume can be performed much faster than the intersection with the object itself. The
vast majority of these bounding volume tests will fail and only those that succeed
will require the more complex object intersection tests. This idea can be expanded
further by creating a hierarchy of nested bounding volumes. The intersection test
then proceeds by testing the top-most bounding volume. If the test succeeds then
the nested bounding volumes will be tested and the process iterates. This technique
can reduce the complexity of the intersection tests from the order of the number of

objects in the scene to the log of this number.

Diffuse Interpolation

The second acceleration method was presented by Ward [149]. He observed
that diffuse reflection generally varied very slowly across the surfaces of a scene.
This diffuse reflection is extremely expensive to compute through the use of Monte
Carlo ray tracing. He therefore proposed that this value be stored each time it is
computed. Then whenever a ray strikes a surface, we can find the nearest points at

which this value has already been computed. If these values are within a reasonable



distance then they can be interpolated to find the diffuse reflectance at the surface

point. Otherwise a new value will be computed and stored.

Radiosity

Radiosity was introduced to computer graphics by Goral et al. in 1984 [59],
Nishita and Nakamae in 1985 [105], and Cohen and Greenberg in 1985 [31]. Ra-
diosity defines an analytic solution to the radiance equation by constructing a set
of explicit equations relating the distribution of radiance in the scene.

In order for this solution to be tractable, radiosity makes a number of simplify-
ing assumptions about the environment. It assumes that all surfaces are opaque and
that they reflect only diffusely. Radiosity further simplifies the solution by meshing
the surfaces of all objects into smaller patches of constant radiance.

These simplifications allow the radiance equation to be re-expressed as

B;=E;+p;y_ B.Fix, (10)
k=1

where B; is the outgoing flux per unit area from patch i, E; is emitted flux per
unit area from patch i, p; is the reflectivity of the patch and F;y is a “form-factor”
expressing the ratio of flux from patch & that reaches patch ¢. This expression
establishes a system of linear equations which relates the radiosity (B) of a surface
patch to the emittance of that patch and the reflected radiosity from all other patches
in the environment.

These equations form a matrix relation which can be inverted to solve for the



radiosity at all surface patches:
B = (I-PF) 'E, (11)

where I is the identity matrix and P is a diagonal matrix of patch reflectivities.
The solution of this equation gives a view-independent description of radiosity at
the surfaces of objects in the scene. The radiosity of the surface patches can then

be projected onto a given view plane to form the final image.

Global INlumination as a Foundation for Perceptually
Based Rendering

Early graphics algorithms were characterized by very simple shading calcula-
tions. These algorithms compute the light reflected from a surface by taking into
account only the direct contribution of point light sources. The latest global illu-
mination techniques, on the other hand, are based on the radiance equation, and
calculate the reflected light by recursively evaluating the incident light from all an-
gular directions. These techniques are capable of producing stunning, photo-realistic
images that contain a number of advanced effects, including diffuse inter-reflections
between surfaces, complicated reflection models, and realistic lighting with soft shad-
OwWS.

Unfortunately, the applicability of these realistic rendering methods are presently
limited by their expense. As mentioned in the introduction, this dissertation shows
how utilizing knowledge about the perceptual sensitivity of the human visual sys-
tem can be used to improve the efficiency of a global illumination algorithm. This

work will concentrate primarily on the visibility tracing algorithm discussed in pages
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19-21 of this chapter. There are a number of reasons for this choice, including the
popularity of visibility tracing, the wide range of effects that can be simulated by
the algorithm, and most importantly the view-dependent approach this method uses
to generate images.

Visibility tracing is the oldest and still the most popular of the global illumi-
nation algorithms discussed in this chapter. One reason for the popularity of this
algorithm is its simple recursive architecture. In visibility tracing the same tech-
nique is employed to determine the contribution of primary rays from the viewpoint,
as is used to find the contribution of rays spawned from subsequent reflections and
transmissions. Calculating the contribution of a ray is a relatively straightforward
operation involving an intersection test and a shading operation. This process is
much simpler than the complicated steps of discretizing the surfaces of a scene,
evaluating the form factors, and inverting a large matrix that are necessary in the
radiosity algorithm. In addition, visibility tracing does not incur the extra overhead
of building the illumination map that is required for bidirectional ray tracing. The
construction of this illumination map adds extra complexity to the algorithm and
significantly increases the amount of memory required. Another reason for the pop-
ularity of visibility tracing is its use of point sampling as a technique for evaluating
the radiance of the scene. It is far easier to take point samples in order to solve
complicated functions, than it is to solve such functions analytically. This point
sampling technique allows visibility tracing to easily handle functionally defined ob-
jects, texture maps and general BRDF’s. These elements are extremely difficult to
incorporate into an analytic radiosity algorithm.

The second reason for choosing visibility tracing as the basis for this work



is the wide variety of effects that can be simulated by this algorithm. Visibility
tracing is currently the most powerful global illumination algorithm, and it is the
only algorithm capable of solving the most general form of the radiance equation.
Radiosity, and to a lesser extent bidirectional ray tracing, must restrict the shading
calculation to include only opaque surfaces that reflect diffusely. This restriction is
necessary in order for these algorithms to calculate the view-independent illumina-
tion at the surfaces of the scene. Visibility tracing, on the other hand, needs no
such restrictions.

The final and most important reason for selecting visibility tracing as the basis
of this work is that it is a view-dependent algorithm. View-dependence implies that
the entire rendering process is dedicated to constructing a single view of a scene, as
defined by a specific eye point and image plane location. As previously mentioned,
this dissertation will show how human perception can be exploited to accelerate the
rendering process. The ability of the visual system to perceive error will be shown
to vary based on a number of factors that are strongly dependent on specific image
content. Therefore, it is impossible to fully exploit the benefits of variations in
the visual system’s sensitivity in a view-independent illumination calculation. Since
radiosity and bidirectional ray tracing spend a significant fraction of their execution
time eveluating the view-independent illumination at the surfaces of a scene, there
is less opportunity to exploit view-dependent visual effects within these algorithms.
Photon tracing is a view-dependent algorithm, since it generates only a single view
of a scene. However, the samples in this algorithm are initiated at the light sources
and passively collected at the image plane. This process makes it more difficult to

alter the sampling of the scene in order to achieve a given accuracy at a particular
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location in the final image.

Summary

This chapter has described the major global illumination algorithms devel-
oped by the computer graphics community. These powerful, photo-realistic render-
ing techniques are state-of-the-art image synthesis algorithms. These algorithms
produce images by solving the radiance equation at the surfaces of a scene and
projecting the result onto an image plane.

There are two major global illumination algorithms that have been discussed:
ray tracing and radiosity. Ray tracing uses a point sampling approach to solve the
radiance equation, whereas radiosity is based on an analytic technique. A number of
variations of the ray tracing algorithm have also been presented. Visibility tracing is
a technique that is driven from the image plane, photon tracing is a method where
rays are initiated at the light sources, and bidirectional ray tracing is a combination
of these two approaches.

The final section of this chapter motivated the focus of this dissertation on the
visibility tracing technique. This methed stands out as the predominant algorithm
in which to exploit the benefits of perceptually based rendering. In addition to
its popularity and power, visibility tracing is view-dependent. This fact makes it
possible to exploit all of the factors affecting how error is perceived in the final
image. Moreover, the sampling in visibility tracing is initiated at the image plane.
The following chapter will show how this fact makes it relatively straightforward
to alter the sampling distribution in order to efficiently control the error at specific

locations of the image plane.



CHAPTER 1V
ADAPTIVE SAMPLING ALGORITHMS

Visibility tracing is the most powerful of the global illumination algorithms
described in the previous chapter. This technique is capable of solving the general
radiance equation and creating images of unrivaled realism and subtlety. However,
the quality produced by this algorithm comes with the price of lengthy execution
times. It is, therefore, important that this technique computes an image by the
most efficient means possible.

Visibility tracing generates an image by evaluating many samples of the light
intensity that is reflected from a synthetic scene. These samples can be very expen-
sive to compufe since each sample is the result of a recursive, photo-realistic shading
calculation. The quantity of samples that are necessary to reconstruct an image is
one of the primary factors affecting the speed of the algorithm.

This chapter reviews the previous sampling techniques that have been em-
ployed in the visibility tracing algorithm. The nature of these techniques is seen to
have a pronounced effect on the expense of the rendering algorithm. The chapter
begins with a discussion of the sampling and reconstruction problem that is inher-
ent in the production of images by the visibility tracing technique. A few basic
approaches to the solution of this problem are also presented. This is followed by
a detailed description of previous adaptive sampling techniques. These techniques

are capable of significantly reducing the number of samples required to accurately
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reconstruct an image. This is accomplished by varying the sampling density across
the image plane so that each area of the image receives only the minimum number
of samples necessary to accurately reconstruct it. The discussion of these adaptive
methods includes a description of the base sampling patterns, refinement tests, and

reconstruction techniques that are the primary components of these algorithms.

Introduction to Sampling and Reconstruction

Visibility tracing is a point sampling and reconstruction problem. In visibility
tracing rays are cast through locations on the picture plane to determine the image
radiance at a series of discrete points. These samples are then filtered to reconstruct
a continuous intensity profile of the image. Finally, this continuous function is
resampled at the pixel locations in order to generate the resulting picture.

Point sampling and reconstruction is a classic problem that is discussed at
length in many of the standard engineering texts [106, 117]. The theory for the
ideal solution to this problem is described in Shannon’s sampling theorem {129).
The sampling theorem states that a signal must be sampled at twice the rate of
the highest frequency present in the signal in order to accurately represent it. This
rate it known as the Nyquist rate. If a signal has been uniformly sampled at the
Nyquist rate it is possible to exactly reproduce the original function by convolving
the samples with a sinc reconstruction filter. Sampling a signal below the Nyquist
rate results in an artifact known as an alias. Aliasing is produced by the overlap
of the frequency spectra in under-sampled signals. In computer graphics, aliasing
is commonly manifested as “jaggies,” which are jagged intensity contours. This

situation can result when the sample from one pixel falls on one side of an intensity
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contour and the sample from an adjoining pixel falls on the other. This produces
a harsh discontinuity between the two pixels, although the contour may gradually
transition between them.

The sampling theorem provides an important theoretical background for the
sampling and reconstruction problem in visibility tracing. However, it is just a
starting point for developing practical algorithms. Due to the nature of visibility
tracing, it is extremely difficult and inefficient to directly apply the sampling theorem
to this problem. The first reason for this difficulty is that the spatial frequency
spectrum of an image is generally not known prior to rendering a scene. This makes
it impossible to determine a priori what the Nyquist rate should be. In addition, a
number of factors can produce step luminance discontinuities in the image. These
factors include object edges, shadow boundaries, and discontinuous textures. These
discontinuities imply that the spatial frequency spectrum of an image can be, and
often is, non-bandlimited. According to the sampling theorem an infinite number
of samples are required to exactly reconstruct functions that are not bandlimited
(although fewer samples are required to reduce the error below the color resolution of
the display). Finally, the sampling theorem only applies to deterministic functions.
Monte Carlo integration is a common technique used to evaluate the shading integral
defined in the radiance equation. When this technique is employed, rays are spawned
in random directions from a surface in order to evaluate the incident radiance. On
average, this approach will return the true radiance at a particular location of the
image plane. However, there is a certain amount of variance associated with each
sample. This non-determinism is not handled by the sampling theorem and alternate

techniques must be used to determine the appropriate sampling rate in this situation.
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The earliest and simplest approach to sampling the image plane is to take a
single sample at the center of each pixel. The intensity of each pixel is simply given
by the radiance of the sample taken within it. This method, however, can severely
under-sample the image. Modern scenes can be represented by thousands and even
millions of polygonal primitives. The complexity of these objects coupled with the
widespread use of texture mapping to add detail can produce images with a great
deal of spatial variation. In addition, realistic shading calculations and the Monte
Carlo integration techniques that are used to solve them can introduce significant
variation in the intensity of the samples. A single sample per pixel is rarely enough
to adequately sample scenes with large amounts of spatial and intensity variation.

Supersampling is one commonly used approach for dealing with situations
where one sample per pixel is inadequate. In supersampling many samples are
taken through each pixel of the image plane and the intensity of a pixel is given by
the average of the samples. The number of samples per pixel is typically specified by
the user. Selecting the appropriate sampling rate involves a good deal of guesswork
and a fair amount of expertise on the part of the user. This process can also be
inefficient since a number of trial and error attempts may be necessary before the
correct sampling rate is determined.

Supersampling the image at a constant rate can be enormously expensive. In
order to accurately compute the intensity of each pixel, this approach must sample
all pixels at the rate necessary for the greatest spatial and intensity variance. Within
a given image the spatial frequency content and the magnitude of the intensity
variation can differ significantly based on the location within the image plane. The

majority of the pixels within an image can often be accurately calculated with far
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Divide the image into regions

Sample region

Apply refinement test

If above threshold
Supersample region

Reconstruct image

FIGURE 3. Pseudocode for a generalized adaptive sampling algorithm.

fewer samples than is necessary at the location of peak variance.

In visibility tracing the number of samples used to construct an image is one of
the predominant factors affecting the execution time of the algorithm. Each sample
can be very expensive to compute, involving numerous intersection operations, re-
alistic shading calculations, motion translations, and deformations. Therefore, it is
important to guide this algorithm by the sampler’s credo, which states that “every
sample is precious [56].”

Adaptive sampling is a powerful technique that seeks to improve the efficiency
of visibility tracing algorithms by varying the sampling rate at different regions
of the image plane. The goal of this approach is to take the minimum number of
samples necessary in each region to calculate that portion of the image to a specified
error tolerance. Because the number of samples required to accurately construct a
region can differ significantly within a given image and because the samples can be
s0 expensive to compute, this technique can significantly reduce the amount of time
required to render an image.

The adaptive sampling algorithms that have been developed share a number
of common elements. A generalized outline of these algorithms is contained within
Figure 3. The first step in an adaptive sampling algorithm is to divide the image

plane into a number of regions. These regions define the resolution of the adaptive
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algorithm. A low density set of pilot samples are taken within each region. Then
a refinement test is applied to these samples in order to determine whether further
sampling of the region is necessary. If the test determines that the error of the region
is above a given threshold, more samples are taken within the region. Finally, after
all samples have been taken, they are filtered and used to reconstruct the output
image.

There are two techniques that are commonly applied to define regions and
the supersampling that occurs within them. These are the two-pass and tree-based
refinement strategies. In the two-pass method, regions are commonly defined to be
either a single pixel or a small group of pixels. If the refinement test determines that
further sampling of a region is necessary this approach resamples the area using a
fixed rate, high density sampling. This technique is relatively crude, since it only
chooses between two fixed sampling densities. However, only a single test needs to
be performed in each region. The tree-based refinement strategy defines the initial
region to encompass the entire image plane. As the refinement test determines that
more sampling is required, new regions are formed by dividing the existing region
into quadrants. More pilot samples are taken in each of the newly defined areas
and the refinement test is applied independently on each quadrant. This process
continues until a maximum resolution is reached. Tree-based refinement provides
greater control over the placement of samples, but it requires that the refinement test
be applied more often. In choosing between these two methods one must tradeoff
the expense of more refinement tests versus the reduction of samples that comes
with finer control over the sampling distribution.

There are three important aspects to any adaptive sampling algorithin. These
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are the base sampling pattern, the refinement test, and the reconstruction technique.
The following sections will review the prior work that has been performed in each

of these areas.

Base Sampling Patterns

The base sampling pattern specifies the locations at which samples are placed
within a region. These patterns are typically refineable so that they can define the
placement of samples for both the initial pilot sampling and the later supersampling
stages of an adaptive algorithm. There are two types of sampling patterns: uniform
and nonuniform. Uniform sampling was a common technique used in early adaptive
algorithms and bears close ties to classic sampling theory. Nonuniform sampling is
a more recent approach. This method is often preferable because it can produce
images in which the error is less objectionable than it would be had the samples
been placed uniformly.

Uniform sampling patterns place samples at the vertices of a periodic lattice.
The simplest such pattern places samples at the vertices of a rectangular grid [74,
122, 156, 163]. This produces the uniformly spaced, rectangular sampling pattern
that is the basis of the two-dimensional sampling theorem. If the underlying signal
is known to be bandlimited then the sampling theorem specifies how to produce an
exact reconstruction of the signal using this sampling pattern.

Other uniform patterns that have been proposed include hexagonal [40, 117]
and triangular [133] sample placements. These patterns place samples at the vertices
of a hexagonal and triangular lattice respectively. The benefit of these distributions

is that they provide a denser packing of samples within a given area. It has been
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shown that the hexagonal sampling distribution requires 13.4% fewer samples than
a rectangular distribution to accurately represent signals whose spatial frequency
spectrum lies within a circle [56].

A pattern which places samples at the vertices of a diamond lattice has been
proposed by Bouville et al. [18]. This pattern is formed by rotating a rectangular
distribution by 45 degrees. In his paper Bouville showed the correspondence be-
tween this pattern and the directional sensitivity of the human eye. The directional
sensitivity of the human visual system is known to have a diamond shaped cutoff
with greatest sensitivity at horizontal and vertical orientations. The increased den-
sity of this pattern along the horizontal and vertical dimensions can produce images
which are visually superior to those produced with a rectangular sampling pattern.

A difficulty with uniform sampling is that this method can produce highly
objectionable error patterns when the signal is under-samnpled. This occurs because
coherent structure in the sampling distribution can combine with structure in the
signal to produce patterns of error in the reconstructed image. The visual system
is adept at recognizing patterns within an image. Therefore structured error can
produce very visible artifacts within an image.

Nonuniform sampling patterns overcome this problem by randomly distribut-
ing samples within a region. This approach eliminates the periodicity of uniform
sampling. The result is that the structured aliasing artifacts produced by uniform
sampling are traded for noise in the reconstructed image. Noise is much less objec-
tionable to the human visual system since we tend to overlook this incoherent error
and instead concentrate on the underlying patterns within the image.

The simplest nonuniform sampling method is to place samples at completely
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random locations within a region. This is known as Poisson sampling {34, 40, 93,
130]. A problem with Poisson sampling is that the randomly placed samples can
clump together in one area while placing sparse samples in other areas. An optimal
pattern is therefore one that places samples randomly, but with an even coverage of
a region.

This goal is achieved by the Poisson-disk sampling pattern [33, 40, 98, 99]. In
a Poisson-disk distribution, samples are placed randomly such that no two samples
are within a specified distance of each other. This pattern is optimal in many senses,
however the methods that have been proposed to generate this pattern tend to be
somewhat expensive.

A cheaper alternative is to use a jittered sampling pattern [33, 40, 130]. A jit-
tered pattern is achieved by perturbing the location of samples in any of the uniform
sampling patterns by a limited, random distance. These patterns are inexpensive
to generate and share many common characteristics with the Poisson-disk sampling

pattern.
Refinement Tests

The refinement test is the most important element of an adaptive sampling
algorithm. It is this test that ultimately governs the sampling density across the
image plane. A refinement test is a metric that is applied to the samples within a
region in order to determine whether the existing number of samples can produce
an accurate representation of the image within the region. These tests are typically
based on some measure of the uniformity of the samples within a region. If the

samples are similar then the region can be accurately reconstructed with relatively
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few samples. However, if the samples vary significantly, a higher sampling density
is usually required. If the test result indicates that a portion of the image contains
too much error then more samples will be taken within that region. Optionally, the
refinement test can be applied again to the new sample values and the process can
recurse until a specified tolerance is reached.

The following two subsection will discuss the refinement tests that have been
previously developed. These metrics can be divided into two categories based on
the type of information used in the test: object based and radiance statistics. A
good review of existing refinement tests can also be found in a recent book by
Glassner [56]. In addition to the metrics described in the following subsections, a
few tests have been developed that apply a limited perceptual criteria to determine

the accuracy of an image within a region. The discussion of these tests will be

deferred until Chapter VIIL
Object Based Tests

Object based refinement tests use information about the objects in a scene
in order to determine the appropriate sampling rate within a region. In visibility
tracing, samples are taken by casting rays into a scene. These rays usunally return
only the radiance along the ray’s direction. However, the information returned by
a ray can be easily expanded to include items such as what object was intersected
by the ray and what light sources illuminated the object. This information can be
used to infer the locations of object edges and shadow boundaries. These areas are
often indicative of radiance discontinuities which require a higher sampling rate.

This idea was introduced in an edge following algorithm by Roth [122]. His
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algorithm tested neighboring samples to see if they intersected the same object. If
two samples fell on different objects, 2 new sample was taken midway between them.
In this manner a binary search is performed to localize the position of object edges.

The simple test used by Roth was extended in papers by Argence [5] and
Akimoto et al. [2]. They suggested that for neighboring samples we should compare
not only the first object intersected, but also the entire ray tree (which can contain a
number of levels of reflected and transmitted contributions). Difference at any node
in the ray tree was proposed as an indicator of the need for further refinement. In
their papers Argence and Akimoto suggested a number of elements to be compared
with the ray tree. These elements included the objects that were intersected, which
light sources were illuminating the objects in the tree, and whether the same objects
were intersected for specular and transmitted rays. Akimoto also proposed that
texture mapped objects receive a higher sampling rate. Argence noted that objects
are often composed of a number of smaller surface patches. The intersected patch
was incorporated in his test as well. Argence additionally included a test for small
objects.

Testing for small objects was first suggested by Whitted [156]. He noted
that small objects can be missed when the sampling density is low. He suggested
enclosing the objects of the scene with a bounding sphere that is at least one pixel
wide in screen space. The intersection of rays with such a bounding sphere can be
used to indicate when a small object lies between the existing samples, and a higher
sampling rate can be triggered.

A similar idea was proposed by Thomas et al. [140]. In Thomas’ algorithm

bounding surfaces were placed around the objects of a scene. These surfaces were
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called “covers”. As in Whitted’s method these covers were at least one pixel wide.
This aids in the detection of object edges. One novel aspect of Thomas’ work is that
he was able to pre-filter object edges by calculating the pixel to object distance in
screen space.

Another approach to detecting object edges was described by Hashimoto et
al. [69]. In his paper Hashimoto suggests that a perspective projection of the object
edges onto the image plane be performed prior to rendering a scene. The pixels that
contain an object edge are identified as “active pixels,” wherein a high sampling
rate is necessary.

Finally, van Walsum noted that additional tests are necessary to determine
when high frequency spatial detail is present as a result of texture mapping [143].
He proposed a metric that consisted of three criteria for determining when refinement
is required. These criteria were the distance between the samples in texture space,
the uniformity of the texture between the samples, and whether the sample values
at a specific location in the texture map is close to a filtered local average.

Object based refinement tests are very good at detecting areas of spatial vari-
ation caused by object edges. Some of the tests described in this section are also
capable of detecting variation caused by shadow boundaries and texture maps. How-
ever, all other sources of spatial and intensity variation will be neglected by these
algorithms. This includes variations due to shading gradations, surface curvature,
Monte Carlo shading calculations, and others. This lack of generality is a significant
weakness of object based refinement tests.

A second problem with object based tests is that while the presence of an edge

may indicate the need for a higher sampling rate, it does little to specify what this
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rate should be. It is therefore up to the user to select the appropriate sampling rate
for regions that do and do not contain edges. In the next subsection we will see a

number of refinement tests that seek to address these issues.
Radiance Statistics Tests

The second category of refinement tests utilize metrics that are based on the
radiance statistics. These metrics analyze the radiance, or light energy, returned by
the samples in a region. The appropriate sampling rate is determined from some
measure of the uniformity of these samples. Since this type of test does not utilize
any a priori knowledge about the location of objects in the scene, it can be more
difficult for these algorithms to isolate object edges. However, the generality of these
tests makes them applicable to a wide variety of situations.

The simplest refinement test in this category is based on a comparison of the
maximum and minimum radiance within a region. This test was first proposed
by Whitted [156] and a similar idea was suggested by Jansen and van Wijk [74].
In Whitted’s algorithm four samples are taken in the corners of a region. If the
maximum and minimum radiance of these samples differs by more than a threshold
value then the region is refined. A region is refined by dividing it into quadrants
to form four new regions, samples are taken in the corners of the new regions, and
the process recurses. This continues until the threshold is satisfied or a maximum
resolution is reached. Glassner states that a good value for the threshold difference
is given by the minimum displayable color difference of the frame buffer [56].

A more advanced statistical test was presented by Dippé and Wold [40]. They

observed that noise is the predominant source of error in images produced by nonuni-



form sampling patterns. They suggested the use of the signal to noise ratio (SNR) as
a means to measure the magnitude of this error. The SNR is a common metric used
to measure the quality of a communications line. It is equally useful for measuring
the quality of an image in the presence of noise. Dippé and Wold cite evidence that
indicates that the noise detection threshold of the human visual system occurs at
a SNR of about 100 (40 db). In their adaptive algorithm samples are repeatedly
taken within a region and the SNR is estimated from the radiance of the samples.
Sampling is halted once the SNR. reaches this threshold.

A similar test was suggested by Lee et al. [81]. In Lee’s test variance is used
to measure the quality of the image within a region. The variance is a statistical
measure of the range of values of a function. When this range is small the function
can be accurately estimated with few samples. If the range is large more samples
are required. Omne advantage of variance over SNR is that the variance is very simple
to estimate from the sample values. Lee noted that the variance of the image within
a region is equal to the variance of the samples divided by the number of samples
taken. This rule provides a simple estimate of the quality of the image. Since the
variance is only estimated, this value is somewhat imprecise. In order to handle this,
Lee used a chi-squared (x”) test to determine the probability that the variance is
less than a threshold value. In Lee'’s algorithm samples are iteratively taken within
a region until the x? value is less than a user specified threshold. The result of this
algorithm is that all regions of an image will be sampled until their variance is below
some value and the remaining error will be spread equally across the image plane.

A derivative of Lee's refinement test was described by Purgathofer [118]. In

his test Purgathofer utilizes the same approach to estimating the variance within
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a region. A t-test is then applied to the variance estimate in order to construct a
confidence interval for the estimate of the image. When this test is satisfied the
estimated image is known to lie within a given range of the true image with a
user specified probability. Purgathofer also points out that the variance estimate
is less accurate when the sampling density is very low. He proposes a technique
for determining the minimum sampling rate based on an assumption that the worst
case image is described by an asymmetric binomial distribution.

Painter and Sloan developed a refinement test that is specifically designed for
a tree-based refinement strategy {107]. Their algorithm utilizes a k-D tree as its
primary data structure. The root node of this tree is defined to encompass the
entire image. As nodes in this tree are selected for refinement, two new child nodes
are created by splitting the parent node alternatively along the x and y axis and
taking samples within the new regions. At the leaf nodes a heuristic is computed
that indicates a refinement priority. They define this heuristic to be the variance
within the region of the node times the area of the node. In this manner nodes which
cover a large area will tend to be refined before nodes which cover a smaller area.
For interior nodes the refinement priority is defined to be the maximum priority of
the two child nodes. This allows the algorithm to select the node that most needs
refinement by simply traversing the tree in a top-down fashion and selecting the
branch with the largest refinement priority. As their stopping criteria, they use a
confidence interval test based on the student-t distribution. This test is similar to

that described by Purgathofer.



44

Reconstruction Techniques

After the scene has been sampled, the sample values are used to reconstruct the
final image. If a single sample is taken at each pixel, this process can be as simple as
setting the radiance of each pixel to the radiance of the sample that was taken within
it. For other uniform sample distributions reconstruction is guided by the two-
dimensional sampling theorem. This theorem states that an exact reconstruction of
the image is possible if the scene has been uniformly sampled at the Nyquist rate.
Reconstruction proceeds by first convolving the samples with a sinc reconstruction
filter in order to produce a continuous representation of the image. The continuous
representation is then lowpass filtered to bandlimit the signal to the resolution of
the display. Finally, the signal is resampled at the pixel locations to form the final
image.

Unfortunately, practical reconstruction techniques are not so straightforward.
Due to the use of adaptive sampling as well as jittered and Poisson sampling pat-
terns, the samples are generally distributed nonuniformly across the image plane.
This implies that within a given image some pixels may not receive any samples
whereas other pixels may be heavily sampled. The optimal method to reconstruct
an image from a set of nonuniformly distributed samples is still an open question.
This section will describe a number of reconstruction techniques that have been
proposed in the literature.

One of the simplest approaches to reconstructing an image is to generate a
piecewise constant representation of the image from the sample values. This ap-
proach was first described by Whitted [156). He proposed tiling the image plane

with a series of non-overlapping rectangular regions, such that each region contained



a single sample. This approach is especially suited for tree-based refinement strate-
gies, since these algorithms naturally divide the image plane into such regions. In
Whitted’s method the radiance across each region is defined to be constant at the
value of the sample taken within it. The intensity of a pixel is given by the average
radiance of these constant patches across the area of the pixel. This average value
is found by taking the weighted sum of the fraction of the pixel covered by each
region times the radiance of the regions.

A more sophisticated tiling method is presented by Wyvill and Sharp [163]. In
the adaptive stage of their algorithm, samples are taken along the edges of a pixel.
These samples are analyzed to determine the locations of color changes along this
border. This information is used to divide the pixel into a number of triangular
regions. Two of the vertices of each triangle are placed along the edge of the pixel
at the locations of neighboring color transitions. The third vertex is placed within
the pixel at the centroid of the color edges. Each triangular region is defined to
have a constant radiance. The intensity of the pixel is given by the area weighted
average of the radiance of these regions.

The quality of a piecewise constant reconstruction can often be improved by
additional filtering. This technique was used by Painter and Sloan [107]. In their
method the image plane is tiled with constant rectangular regions in a similar man-
ner to that described by Whitted. The intensity of each pixel is defined to be the
integral of a lowpass filter over the rectangular regions within the filter’s support.
For a piecewise constant image representation this integration reduces to determin-
ing the volume of the filter across each region. For many simple filters, this value

can be determined analytically. For more advanced filters, they suggest the use of
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a “summed area table” for determining filter volume.

The most widely used reconstruction technique involves the application of
local filtering. In local filtering the reconstruction, lowpass filtering, and resampling
stages are combined into a single operation. This is accomplished by centering a
filter over each pixel and applying the filter directly to the sampled values.

The simplest example of this technique is known as box filtering. In box
filtering the intensity of a pixel is defined to be simply the average of the radiance
of the samples taken within the pixel’s boundaries. Conceptually, this is the same
process as centering a box filter over each pixel, summing the product of the filter
and the sample values, and normalizing the result by the volume of the filter.

A number of more sophisticated filters have been proposed within the litera-
ture. Cook suggested a filter that is the difference of two Gaussians (DOG) {33].
Mitchell and Netravali developed a family of piecewise cubic filters [100]. They em-
ployed a panel of experts and an informal experiment to determine the best filter
from within this family. This panel judged the quality of these filters based on the
amount of ringing, blurring, and anisotropy present within a reconstructed image.

A normalized, raised cosine filter was employed by Dippé and Wold [40]. They
suggested varying the filter width based on the amount of noise present within a
region. They developed an equation for the filter width that limits the reconstruction
error to within a given bounds.

Grain noise can be a significant problem when local filtering is applied to a
set of nonuniformly spaced samples. This artifact is introduced when neighboring
filter locations contain a widely varying number of samples. In this case, unwanted

intensity fluctuations may be present within the reconstructed image. To solve this



47

problem, Mitchell suggested the use of a multi-stage filter [98]. Mitchell’s multi-
stage filter involves the repeated application of a box filter to the samples within
a region. At each stage of the filtering process the box filter is doubled in width
and applied to the results of the previous filtering operation. This technique is
better able to handle variations in sampling densities since clumps of samples wili
be averaged locally before they are combined with neighboring values.

Lee observed that nonlinear filters are often able to better eliminate noise from
images produced by stochastic sampling [80]. He suggested the use of a nonlinear,
alpha-trimmed filter. The alpha-trimmed filter works by discarding the outlying
samples within a region and averaging the remaining samples. In this manner very
noisy samples will not affect the quality of the reconstructed image.

Rushmeier and Ward developed another nonlinear filter that is energy pre-
serving [124]. They noted that a great deal of effort is expended in the calculation
of each sample, and that all samples do contain valid information. Therefore, sam-
ples should not be discarded. They instead constructed a method whereby noisy
samples are distributed over some region of influence. In their approach samples
with outlying values are spread over a wider region than samples with consistent
values. This technique preserves the hard-won sample information, but minimizes
the presence of noise in the reconstructed image.

The reconstruction algorithms described so far operate solely within the spatial
domain. There are, however, a number of advantages to developing reconstruction
methods that operate within the frequency domain. Two of these advantages are
that bandlimiting the image and interpolating between samples are trivial opera-

tions within the frequency domain. Bandlimiting can be accomplished by simply
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discarding a number of high frequency terms and interpolation is easily achieved
with an inverse Fourier transform.

Kim and Bose developed an algorithm that exploits the frequency domain in
order to reconstruct an image from a set of nonuniformly spaced samples [78]. In
their paper they describe a technique for building a transformation matrix that can
map nonuniform samples within the spatial domain to uniform samples within the
frequency domain. The final image is produced by performing an inverse Fourier
transform on the frequency samples.

Sauer and Allebach developed a high quality reconstruction algorithm based
on the technique of “alternating projections onto convex sets” [126}. This technique
alternates between projecting the image onto the spatial and frequency domains.
At each stage the error in the representation is minimized subject to a constraint.
In the spatial domain the representation is constrained to fit the sample values. In
the frequency domain the representation must satisfy a bandlimiting constraint. A
relaxation technique is employed to converge to the nearest solution of these two
antagonistic constraints. The frequency based reconstruction techniques proposed
by Sauer and Allebach and by Kim and Bose both can produce an excellent recon-
struction of the image. However, these particular frequency based techniques are

generally too expensive to be commonly employed.

Summary

This chapter described the previous sampling and reconstruction techniques
employed in the visibility tracing algorithm. The earliest such technique is to take

a single sample at each pixel in order to determine its value. This approach can
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severely under-sample the image and result in noisy or aliased images. Some authors
have proposed reducing these artifacts by supersampling the image. However, this
technique is inefficient because all areas of the image do not require the same number
of samples to be accurately reconstructed. The inefficiency of supersampling has led
to the development of a number of adaptive sampling algorithms.

Adaptive sampling algorithms can significantly reduce the number of samples
and the total execution time required to generate a synthetic image. This is accom-
plished by varying the sampling rate in different regions of the image, so that each
area receives the minimum number of samples required to refine it within a given
tolerance. There are three primary components of any adaptive sampling algorithm.
These are the base sampling pattern, the refinement test, and the reconstruction
technique. This chapter has discussed the prior work in each of these areas.

The refinement test is the most important element of any adaptive sampling
algorithm. This test is based on an error metric that estimates the image accuracy
and governs the distribution of samples. Unfortunately, little attention has been
paid to the nature of error metrics and the implications they have for constructing

optimal sampling distributions. This issue is addressed in the following chapter.
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CHAPTER V
AN ERROR METRIC FOR MONTE CARLO RAY TRACING

Understanding the nature of error has significant implications for image syn-
thesis algorithms. It is therefore surprising that so little attention has been given
in computer graphics to the theory of error metrics. An error metric describes the
relationship that governs the accuracy of synthetically generated images. This met-
ric allows the acceptability of the final renderings to be determined and controlled.
Error metrics additionally provide important insights into the factors that affect
the accuracy of the image. This information can be used to develop more efficient
rendering algorithms.

In Monte Carlo ray tracing an image is produced by casting a number of rays
through the pixels of the image plane. These rays are intersected with the objects
of the scene and the light reflected from the surfaces is evaluated. The amount of
light reflected from a surface is a function of the surface reflectance and the incident
light from all other points in the environment. Monte Carlo ray tracing determines
the amount of light incident on a surface by spawning a number of new rays from
each surface intersection. These rays are similarly intersected with the objects in
the environment and the process repeats.

Previous metrics for Monte Carlo ray tracing characterized the accuracy of an
image based solely on the number of samples taken at the image plane. However, the

quantity of samples spawned from each surface intersection has an equally significant



effect on the accuracy of the image. In order to develop an optimal ray tracing
algorithm it is important to understand not only the effect of spawning on the
accuracy of the image, but also whether the error is most efficiently minimized by
varying the number of initial rays or by varying the number of rays spawned from
each surface.

In this chapter a new error metric for Monte Carlo ray tracing is developed.
This metric can be used to accurately characterize and control the presence of error
within a synthetically generated image. The error metric that is presented is based
on the number of rays taken at the image plane, as well as the quantity of rays
spawned from each surface intersection. This allows the effect of spawning on the
accuracy of the image to be precisely determined. This chapter additionally shows
how this error metric can be used to determine the optimal number of rays to spawn
at each surface intersection.

This chapter is divided into five additional sections. In the first section previ-
ous work concerning the spawning of rays and the categorization of error is discussed.
Section two describes the construction of the new error metric. Sections three and
four discuss how this error metric can be used to determine the optimal spawning
rates. In section five an implementation is presented that was developed to illustrate

and test the results of this theory. Finally, section six describes the results.

Previous Work

Monte Carlo ray tracing was introduced by Kajiya as a method for solving the
rendering equation [76]. In his paper Kajiya first broached the issue of how many

rays to spawn from each surface intersection. He noted that bushy ray trees were
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inefficient because they spent too much effort sampling the depths of the ray tree
where the contribution is smallest. He suggested path tracing as an alternative.

The number of rays to spawn from surface intersections was further explored
by Arvo and Kirk (8]. In their paper they briefly introduced the concept of splitting
(spawning many rays from each surface intersection) and Russian Roulette (proba-
bilistically terminating rays). They also suggested that Russian Roulette be applied
after the weight of a ray drops below some fixed threshold. Although they did not
give any specific guidelines for the use of splitting, they did note that splitting can
be more efficient than path tracing under certain circumstances.

The question of how to quantify the accuracy of computer graphic renderings
has received surprisingly little attention within the literature. One work in this area
is that of Arvo et al. [9]). In their paper they outline a general framework for the
analysis of error. This discussion, however, mainly focuses on the radiosity method.

Lee, Redner and Uselton [81] discuss the accuracy of distributed ray tracing,
but limit their analysis to the image plane. In their paper they show that the
variance of the intensity estimate at a pixel is equal to the variance of the incident
radiance divided by the number of samples taken within a pixel. The algorithm they
describe makes use of this fact by computing a variance estimate in the image plane
and employing it to determine when the accuracy of the pixel has been computed

to a given threshold.
Error of Monte Carlo Simulations

In this section an equation is developed that describes the accuracy of Monte

Carlo simulations. Most of this section and part of the following section are based
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upon the work of Kahn [75] and Mikhailov {97]. In his paper Kahn outlined the basic
Monte Carlo technique for a simple function of two variables. Mikhailov expanded
this result to an arbitrary number of variables for splitting. This work extends
their results to an arbitrary number of variables for Russian Roulette, allows the
intermixing of splitting and Russian Roulette, and accounts for terminations.

Monte Carlo is an integration technique that is used to approximate the ex-
pected value (or mean) of functions. This is accomplished by randomly assigning
values to the variables of a function in order to produce samples of the function.
These samples are then averaged to determine the approximate expected value.

In order to describe the accuracy of Monte Carlo ray tracing let us first cast
it in a functional form. The radiance of a sample in the image plane can be viewed
as the evaluation of the function f(xg,;,zs,...}. In this expression z, represents
the position of the sample in the image plane, z; indicates the direction of the
ray spawned from the first surface intersection, x5 specifies the direction of the ray
spawned from the second intersection, and so on. In general, the number of variables
present in this representation is given by the number of levels of recursion in the ray
tree plus an additional variable for the image plane location.

The intensity of a pixel is given by the expected value E[f] of this function
across the pixel. In a Monte Carlo simulation this value f is approximated by

averaging Ny random samples taken across the pixel:
Fo Lm0
E[f}“f="]\,—zf($0a$11$2,‘--)~ (12)
0=

This technique is known as path tracing in the computer graphics literature [76].

Since Monte Carlo integration is inherently a random process, its accuracy can
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be expressed in terms of variance. The variance V[f] of a function is given by
VIf1= E[f] - B[f]” (13)

The accuracy of the Monte Carlo approximation at a pixel is related to both the

variance of the function that is being sampled and the number of samples:
VIl = V1) (14)
=W .

This well known expression states that the variance of the pixel intensity is equal
to the variance of the function being sampled divided by the number of samples
taken. This expression implies that if we know the variance of f, then the number

of samples required to obtain a desired accuracy Vy[f] in the image plane is

_ vy
7il =
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The discussion thus far has assumed that a single ray is spawned from each
surface intersection. However, what is the effect on the variance of spawning more
or less than one ray from each surface? This is one of the primary questions that
this chapter seeks to address.

In order to evaluate the effect of spawning at the various levels of the ray tree,
we must first be able to express the overall variance in terms of the variance at each

level of the tree. The expression that allows us to do this is

VIfl = VE[f|zo] + EV[f|zo]. (16)



This expression states that the variance of a function is equal to the variance of the
expectation of f given zy plus the expectation of the variance of f given z,. For
Monte Carlo ray tracing, the first term can be thought of as the variance within
a pixel given that the radiance is exactly computed at each location. The second
term represents the average variance of the rays spawned from the first surface

intersection. If we apply this expression recursively we have

where EV [E[f|zo---«L]lzo- - - ©1-1) is given by calculating the expected value of
f given variables zg-.-zy, computing the variance of this expectation across all
values of x; with variables zy---zp_; fixed, and finally evaluating the expected
value of this variance over all possible values of zq---x;_;. More simply put, this
is the expected variance incurred by the L variable in the function. This equation
implies that for the case of path tracing, the variance of f is equal to the sum of the

variance across the pixel and the variance incurred at each level L of the ray tree.
Splitting

The technique known as splitting in the Monte Carlo literature involves taking
more than one sample of a variable for a single sample of a previous variable. The
value returned is the average of these samples. For a simple function of two variables,

this can be described as

i 1 3 @
18 = 5 2 g, 2. (18)
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This process is analogous to spawning multiple rays from a surface for each incident
ray. In this case the variance of the function given the first variable is reduced by a

factor of Wl{‘
1
Vifs|zo] = FIVM%]- (19)

Only the last term in Equation 16 is affected by this process and the variance of f

becomes
VIAl = VEU o] + 5 BVl (20)

Therefore the overall variance has been reduced, but at the expense of additional

samples. This technique make sense when the EV'[f|zg| is high compared to V E[ f|zq)].
Russian Roulette

Russian Roulette is an alternative technique which seeks to increase the effi-
ciency of the simulation by killing off unimportant rays. Thus, for a given sample of
a prior variable, we may with some probability decide to discontinue sampling and
simply return 0. Otherwise, we sample the variable and increase the weight of the

sample to avoid introducing bias. The new function can be represented as

@ (i)
Nzo %) ) with probability (P;)

0 with probability (1 — P;)



This has the effect of increasing the variance by a factor of PL. plus an additional

factor that is related to the square of the expected value of the ray:

. 1-P
V(frrizo) = -}i—lV[ﬂ:r:g] + ( B 1)E[f|$0]2. (22)
The net result on the variance of f is
V) = VE(fia - E[Blflao] + 5 (BVIfleo + E[Blflaal]).  (23)

Thus, the overall variance has been increased but the expense has been reduced. This
technique makes sense when both EV/[f|zo] and E [E[f|zc)?] are small compared to
V E{f|zo)-

General Case

In general we would like to establish an expression for V[f] that allows an
arbitrary number of variables with either splitting or Russian Roulette performed
at the various levels of the ray tree. This equation can be derived by recursively

applying Equations 16, 19 and 22. This yields the result that

1 1
= —_— — 000 )
VI(f] = Do+ . Dy + NN, Dy + (24)

where N specifies the splitting rate or the Russian Roulette (R.R.) probability at
level L,

VE no R.R. at L=1
VEy,— EE} R.R. at L=1
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and for L > 0
r VE, no R.R. at L or L+1
Dy i | VE, + EE3 R.R. at L, no R.R. at L+1
VE,- EE} | no R.R. at L, R.R. at L+1
| VEL+ EE; - EE},, RR.atLandL+l.

This expression has been simplified by assuming

VE, = EVI[E[flzo- -z )lzo-- 21— for L >0

EE] = E[Elflzo- - z11)"] for L > 0.
This equation is significant because it provides a complete categorization of the
variance of Monte Carlo ray tracing based on the variance of the environment and

the sampling that is being performed at each level of the ray tree.

Optimum Splitting and Russian Roulette

The computer graphic literature has previously described the number of rays
to spawn at a given level of the ray tree in a somewhat ad hoc fashion. The number
of rays to spawn is usually described as one (path tracing) or many, where some
number N has been determined to be good enough. When Russian Roulette is
described it is usually applied after a fixed number of bounces or when the weight
of a ray drops below some fixed threshold. As it turns out, we can do better.

In order to derive the optimal number of rays to spawn at a given level of the

ray tree, we must first establish a quality metric. The quality metric described by
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Kahn [75] and used in various places within the Monte Carlo literature is

Q@ = cost x V[f). (25)

An algorithm is considered optimal if it produces a minimal Q. This means that it
is producing the most cost effective variance reduction. Since the cost of casting a
new ray at each level of the ray tree is essentially equal, the cost can be expressed

as
COSt=1+N1+N1N2+"'. (26)

Deriving the optimal number of rays to spawn for a function of two variables is easily
obtained by differentiating cost x V[f] with respect to Ny, setting the result to 0
and solving for N,. The extension of this result to an arbitrary number of variables
is provable by induction (see Appendix B). The result is that the optimal number

of rays to spawn at any given level of the ray tree is described by the relation

[ Dy,
= 2

The application of this formula is complicated by the fact that Dy and D;_,

are dependent on whether Russian Roulette is being performed at levels L — 1, L
and L+ 1. However, whether Russian Roulette or splitting should be applied and at
what levels is exactly what we are trying to compute. A simple trick can be used to
solve this problem. We start at level 1 and work toward increasingly deep levels. At

each level we assume that Russian Roulette is being applied at this level and level
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L+ 1. If Ny is less than 1 we progress to the next level. However, if N;, is greater
than or equal to 1 then we should not be doing Russian Roulette at this level. We
then recurse backwards to level L — 1 and recompute Ny _,. If N;_; was less than 1
and is now greater than 1 continue backwards. Otherwise, progress back up to level
L computing the final Ny, (Note: it is possible to have Ny, less than 1 and yet have
Russian Roulette be invalid. This can occur when the expected value is too large to
allow Russian Roulette even though VE; < VE._,. In this case N, should be set

to 1.).
Terminations

The preceding discussion assumed that rays from a given level of the ray tree
always propagate to the next level. However, this is rarely the case. Rays can
terminate at any level of the ray tree by striking light sources or escaping from
the environment. This fact must be taken into account in order to derive the final
expression for the variance and optimal spawning rates.

Terminations can be accounted for by observing that the variance added by the
LY bounce of the ray tree is zero for rays that terminate at level L — 1. Therefore,
the expected value of the variance at level L taken over all rays at level L — 1 is
equal to the percentage of rays R;, that reach level L from level L — 1 times the
expected variance taken over only the rays that intersect a surface at level L. This

relationship allows us to re-express Equation 16 as

VIf] = VE[f|zo] + RiEV[f|zo]. (28)

where EV[f|zo] is the expected variance across the rays from z, which intersect a
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surface at level 1 of the ray tree. The complete expression for V[f] that accounts for
terminations can be derived by recursively applying Equations 19, 22 and 28. This

yields the result that

V[f] =D{,+1-V1—1-R1D’l+ﬁR,R2D;+--- (29)
where
D, = J V Ey no R.R. at L=1
VE,— R EE? R.R. at L=1
and for L > 0 ~
r VE; no R.R. at L or L+1
D, = | VE,+ EE} R.R. at L, no R.R. at L+1
VE, — R nEE? | no R.R. at L, R.R. at L+1
\ VE,+EE] — RunEFE},;, R.R. atL and L+1.

In this expression the terms VEy and EE} are calculated over only the rays which
successfully propagate to level L of the ray tree.

The effect of terminations on the optimum splitting and Russian Roulette
formula can be derived by noting that cost is reduced by the presence of termination.

The new expression for the cost is

COSt=1+N1R1+N1N2R1R2+'“. (30)

The optimal number of rays to spawn at a given level can by derived by solving for



Ny that minimizes cost x V[f| as before. This yields the result that

Dy

A Dy

(31)

where we have re-used the definition of Dy from Equation 24 with the modification
that the terms V E; and EE} are calculated over only the rays which successfully

propagate to level L of the ray tree.

Implementation

An implementation was developed to illustrate and test the theory described
in the preceding section. This algorithm uses the mean radiance across the spectrum
as its primary quantity of interest. The basic approach of the algorithm is to use
a set of pilot samples to estimate the optimal number of rays to spawn on a per-
pixel basis at each level of the ray tree. Based upon the number of rays to be
spawned, the variance in the image plane is estimated. This variance is then used to
determine the number of rays that must be cast through each pixel in order to reach
a specified tolerance. After this is accomplished the final sampling is performed
using the optimal spawning rates. The net result is a method that can render an
image to any specified tolerance using the most effective spawning rates at each level
of the ray tree.

The algorithm receives as input the pilot sampling rate and target variance
within the image plane. Because the algorithm must calculate the variance at each
bounce of the ray tree, the pilot sampling rate must spawn many rays from each
surface intersection. However, this number can usually be attenuated at the deeper

levels of the ray tree since more rays are typically present at these levels.
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As pilot samples are taken within each pixel, the variance of these samples
is calculated to yield V[f]. Additionally, at each surface intersection the variance
and the expected value squared is calculated for the rays spawned from the intersec-
tion point. This corresponds to the terms V/|f|zo] and E[f}z]® when computed at
the first level of the ray tree and V/|f|zo---2;—¢) and E[f|zo---z;_1}* when com-
puted at the L level of the ray tree. These values are averaged with the variance
and expected values from all other surface intersections at the given level to yield
EV[fizo:--z1-1) and E[E[f|zo---zL-1)?). Additionally, during the pilot sampling
stage the ratio of the number of rays spawned at level L — 1 to the number of rays
that intersect a surface at level L is calculated to estimate R;.

After all the pilot samples have been taken at a given pixel we can now estimate

the VEL term. The expression that allows us to do this comes from Equation 20.

It is
VEy=VIf] - ﬁll-,sRlEV[famol (32)
and for L > 0
VE, = BVIflgo- 5] = zp—Runt BV {flaa- - 1] (33)
L+1

where Nf is the pilot spawning rate at level L.

At this point we have all the necessary terms to calculate the optimum splitting
and Russian Roulette rates at each level of the ray tree. This is done by using
Equation 31. The variance at the image plane can then be caiculated based on this
new splitting rate using Equation 29. The number of initial rays necessary to reach

a specified tolerance can then be derived from Equation 15. Finally, we cast the
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specified number of initial rays, use the optimum splitting and Russian Roulette
rates at each level of the ray tree, and compute the pixel intensity.

A few words should be said about the practicality of the method just described.
In general it is as expensive to compute the necessary variances and expected values,
as it is to compute the final radiance at a pixel. Therefore, this system was imple-
mented primarily to illustrate and evaluate the theory described in the preceding
sections. However, the practical benefits of this method can be seen if one considers
that a large number of samples are necessary in any Monte Carlo rendering. There-
fore, it makes sense to use a portion of the total number of samples to estimate the
optimum sampling rates. These estimated rates can be used to bias the original
guess toward the optimum rate, where the amount of bias should be based on the

size of the pilot set.
Results

The mountain scenes illustrated in Figure 4 provide a good illustration of the
nature of the optimum sampling and spawning rates. The images and the sampling
rates were computed using the method just described. On the left of this picture the
final rendered images of a high and low frequency fractal mountain are shown. The
middle panels show the optimal number of initial rays to cast at each pixel. The
images on the right show the optimal number of 12 bounce rays to spawn from the
surface contained within that pixel. The color scale is linear, with fully saturated
green indicating the point of maximal sampling.

It is interesting to note that the interior of the low frequency mountain requires

very few pixel samples but should have many rays spawned from each surface inter-
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FIGURE 4. Low and high frequency mountains (left) with optimal initial (middle)
and first bounce (right) sampling rates.

section. This is because the variance across the pixel (V Ey) is very small compared
to the variance of the rays spawned from the surface (V E;) (which either escape or
hit a bright light source). This is the relationship deseribed in Equation 31.

On the other hand, the high frequency mountain and the edges of the low
frequency mountain have a higher variance within the image plane. This decreases
the ratio of Equation 31 and reduces the optimal number of rays to spawn from
the surface. Since there are less rays spawned from the surface and the variance in
the image plane is large, the variance of the initial rays (V[F]) will be large and
therefore require a greater number of rays to reach the specified tolerance. One may

notice that there are areas of high surface spawning within the interior of the high
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frequency mountain. This is the result of the fact that variances are calculated on
a per pixel basis and regions of smoothness within the high frequency mountain are
similar in nature to the interior of the low frequency mountain.

The radiosity box shown in Figure 5 serves to further illustrate the point. For
this image the optimal splitting and Russian Roulette rates are illustrated. The
Monte Carlo rendered radiosity box is on top. The middle panels from left to right
indicate the optimal number of rays to cast in the image plane, on the first bounce,
and on the second bounce. All values are relative to the pixel at which the ray tree
is rooted. Increasing splitting and Russian Roulette is indicated by increasing green
and cyan intensity respectively. The bottom panels have had a logarithmic contrast
function applied to enhance the visibility of detail.

Within the panels we see that the sampling rate for the initial rays is high-
est around edges and predominantly around the bright light source. The greater
sampling rate at the front edge of the light source than at the back occurs because
the variance across a pixel depends on the fraction of the pixel covered by the light
source. The middle panel illustrates the spawning rate at the first bounce. Since
the variance across the image plane is low, this first bounce spawning rate is high
on the foor and walls because they have a good chance of striking the light source.
The panel on the far right is perhaps the most interesting. In this panel Russian
Roulette is being applied on the floor and walls. This is because on the first bounce
rays originating from these regions had a high variance, but on the second bounce,
the variance and expected value of rays from these regions is beginning to decline
due to attenuation and termination. Therefore, the ratio of Equation 31 is less than

one and Russian Roulette is applied. The ceiling and areas that are in shadow, how-
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FIGURE 5. Monte Carlo rendered radiosity box (top row) with optimal initial, first,
and second bounce sampling rates (middle row, from left to right). The bottom
images are contrast enhanced initial (left) and first bounce (middle) rates.
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ever, had no chance to hit the bright light source on their first bounce and therefore
had a low first bounce variance. The rays that originated from these regions and
are on their second bounce now have a chance to strike the light source. As a result

the second bounce variance increases and splitting is applied.

Summary

This chapter presented a new error metric for Monte Carlo ray tracing. This
metric describes a comprehensive expression that can be used to determine the
accuracy of a synthetically generated image. The error metric that was presented is a
function of both the number of initial rays taken at the image plane and the quantity
of rays spawned at each level of the ray tree. This is a significant advancement
over previous error metrics that are only based on the number of initial rays. By
including the quantity of spawned rays within an error metric we can, for the first
time, evaluate the effect of splitting and Russian Roulette on the accuracy of the
image. This chapter has additionally shown how the accuracy of the image can be
controlled by varying the sampling rate at the different levels of the ray tree.

Prior to this work, there has been very little information available on how to
select the appropriate number of rays to spawn from a surface. This has led to
algorithms which apply splitting and Russian Roulette in an ad hoc fashion. The
current work has demonstrated how minimizing the amount of error with respect to
a quality function can be used to determine the optimal number of rays to spawn
at each level of the ray tree. This included the decision to perform either splitting
or Russian Roulette. The efficiency of Monte Carlo rendering algorithms can be

increased by employing these optimal spawning rates.
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Adaptive sampling algorithms seek to control the local accuracy of an image
by varying the sampling rate. However, this chapter has shown that accuracy is
dependent on both the number of initial rays and the number of spawned rays. This
raises the important question of whether an optimal adaptive sampling algorithm
should control the accuracy by varying both the quantity of initial and spawned
rays. The answer to this question comes from the theory discussed in this chapter.
Equation 31 shows that the optimal number of rays to spawn at each level of the ray
tree is, in fact, independent of the target variance of the image. Therefore adaptive
sampling algorithms should always spawn the optimal number of rays at each level
of the ray tree, and they should control the accuracy of the image by varying only
the number of initial rays taken through the image plane.

An implementation was developed to illustrate and test the theory discussed
in this chapter. Although this implementation is not intended to be practical, it
does provide insight into how an optimal Monte Carlo ray tracer should perform.
This chapter has also discussed how a more practical algorithm could be developed
by using a portion of the early rays to estimate the optimal sampling rates. The
estimated rates could then be used in the remainder of the simulation.

This chapter has presented a mechanism whereby the objective accuracy of
an image can be determined and controlled. In the following chapter we will see a
number of factors that make objective error a poor measurement of the perceptual
quality of an image. However, understanding the nature of error and how to control
it is a necessary step toward ultimately developing a rendering algorithm that can
exploit the inability of the human visual system to perceive certain errors that exist

in an image.
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CHAPTER. VI
PRIOR PERCEPTUAL IMAGE QUALITY MODELS

The two previous chapters have illustrated that error is an important quantity
of interest in computer graphic applications. Chapter IV described a number of
adaptive sampling algorithms that have been previously developed. These adaptive
algorithms use an estimate of the local accuracy of an image in order to efficiently
distribute samples at the image plane. Chapter V presented a new, comprehensive
error metric and described how it can be used to categorize and control the accu-
racy of rendered images. These two chapters have shown how the accuracy of a
synthesized image can be estimated, and how this estimate can be used to vary the
sampling rate to efficiently minimize the error.

The error metrics that have been described in the previous two chapters are
objective measurements of the accuracy of an image. Objective error metrics do not
take into account how perceptible error is to a human observer. These metrics are
instead only concerned with how variable the intensity (typically measured in RGB
energy space) is at locations of the image plane. This approach to quantifying error
neglects the fact that the images produced are ultimately intended to be viewed by
a human observer. In this chapter previous work on quantifying the visibility of ob-
jective differences will be reviewed. These perceptual error measures are embedded

in algorithms called image quality models.
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Contrast Models

In order to determine the perceptual accuracy of an image, a number of image
quality models have been developed by the image processing and vision research
communities. In general, these metrics seek to quantify the difference between two
images by processing each image in a manner similar to that done by the human
visual system. The difference between the two images is calculated in the resulting
perceptual space. The output of this operation is a measure of the visual difference
between two images. The most simple image quality model is one which only takes
into account variations in visual sensitivity as a function of brightness. This type of
model is termed a contrast model.

A classic experiment has been developed for measuring contrast sensitivity
over a range of background illuminations [127]. In this experiment the background
brightness is set at a fixed level. The intensity of a small disk in the center of the
field of view is raised above the background illumination until the two regions are
just noticeably different. When this test is performed we get the results contained
in Figure 6. In this figure the vertical axis represents the threshold luminance
difference between the center and surround (AL), and the horizontal axis represents
the background luminance of the surround (L). The results of the threshold study
are plotted for both the rod and cone receptors found in the human retina. The
response of the rods is normally associated with dark adapted vision, whereas the
cone response is limited to bright adapted vision. The combination of the output of
these two types of receptors yields the overall response characteristic of the visual
system. The graph contained in this figure shows that the amount of contrast

necessary to produce a perceptible difference increases as a function of background
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FIGURE 6. Contrast detection thresholds as a function of background luminance
for both the rod and cone receptors. The inset figures show the dimensions and
duration of the test patterns (from Ferwerda [43]).

luminance. At a background luminance above 2 log units this rate of increase (%)
is constant and indicates a Weber law behavior.

There are two broad categories of contrast models: point nonlinearity and
non-point contrast models. Point nonlinearity models apply a compressive function
to the intensity values of individual pixels in an image. The difference between the
pixel intensities of two images is measured after the application of the compressive
nonlinearity. This approach captures the effect that differences are less apparent in
bright regions than in dark. The disadvantage of this method is that it assumes
that the eye can adapt at the resolution of a pixel; however, this model is simple to
implement. Non-point contrast models take into account the fact that adaptation
to background luminance levels generally occurs over a larger area than a single
pixel. These models are somewhat more expensive to implement, but are closer to

the true nature of the visual system.



73

Point Nonlinearity Models

A number of approaches have been taken to modeling the compressive point
nonlinearity. A popular, early technique was to take the logarithm of intensity
values. This method was used by both Stockham [138] and by Hall and Hall {67].
Power law functions have also been commonly employed. The most popular of these
is the cube-root function as was done in Mannos and Sakrison [90].

Recently a number of more advanced point nonlinearities have been proposed.
Daly [36] developed a contrast model which adapts the shape of the compressive
curve based on the intensity of a pixel. At lower intensities Daly’s model performs
similarly to a cube-root model, whereas at higher intensities the response is more
logarithmic. This technique avoids the prediction inaccuracy of the cube-root and
logarithmic models at high and low intensities respectively. Pelli [113] took a very
different approach to modeling contrast. He noted that “observers asked to detect or
discriminate near-threshold contrasts act as though they are uncertain among many
signals and choose the likeliest.” This contrast uncertainty could be attributed to
the random nature of photon absorptions and neural firing rates, as well as other
sources of randomness within the visual system. He developed a contrast model
based on a number of decision variables affected by Gaussian noise. A decision
between these variables was made by a maximum-likelihood receiver. This metric
was shown to have a good correspondence with the contrast response of the human

visual system.
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Non-Point Contrast Models

In the contrast experiment described at the start of this section, sensitivity is
determined as a function of background luminance. The point nonlinearity models
assume that background luminance is defined by the intensity of each pixel. How-
ever, the eye cannot adapt to arbitrarily fine resolutions. This is the reason for the
development of non-point contrast models. These models utilize a larger area of the
image plane in order to determine the adapted intensity of an observer.

The first such model is the ratio of Gaussians model developed by Zetzsche
and Hauske [164]. In this model the input image is divided into a number of repre-
sentations by applying a hierarchical set of Gaussian lowpass filters with successively
lower cutoff frequencies. This representation is termed a Gaussian pyramid. A se-
ries of confrast images are then generated by dividing each Gaussian filtered image
by the adjacent, lower frequency, Gaussian filtered image. This produces a set of
contrast images, at varying scales, that exhibit a Weber law behavior.

A similar approach was taken by Lubin [88]. Lubin’s model utilizes a Gaussian
pyramid. However, contrast images are generated by first differencing neighboring
levels of the pyramid before dividing by the image at a lower frequency level of the
pyramid. This operation is equivalent to determining the magnitude of an edge at
a given resolution and dividing that magnitude by the local image intensity. This
approach is advantageous because it corresponds with the fact that the visual system

is sensitive to edges rather than absolute luminance levels.
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Fourier CSF Models

The next stage in the evolution of image quality models was to incorporate
variations in perceptual sensitivity as a function of spatial frequency. The easiest
technique for accomplishing this is to take a linear systems approach to modeling
the human visual system. Fourier theory has shown that an arbifrary image can be
represented by a sum of sinusoidal gratings at various frequencies. If a system is
linear, then the response to an arbitrary function can be predicted by the sum of
the responses to these component gratings. This is the approach taken by the visual
metrics discussed in this section. These metrics utilize the sensitivity of the visual
system to individual sinusoidal gratings in order to predict perceptual sensitivity to
an arbitrary image.

In order to measure the visual system’s sensitivity as a function of spatial
frequency, a classic experiment has been developed. This experiment measures the
magnitude at which a sinusoidal grating is just noticeably different from a constant
background. A two alternative forced choice procedure is generally used in this
experiment. The point at which the observer is able to correctly identify which
of two intervals contain the grating, with a 75% probability, is identified as the
threshold contrast for that grating. This experiment is repeated for a range of
grating frequencies. Sensitivity is defined as one over the threshold contrast. A plot
of sensitivity as a function of spatial frequency is given in Figure 7 for achromatic
gratings. In this figure it can be seen that the visual system has a peak sensitivity at
around 4 cycles per degree of visual angle, and that sensitivity declines at higher and
lower spatial frequencies. This curve is known as the contrast sensitivity function.

This experiment was first introduced by Schade [127], and the results were
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FIGURE 7. The achromatic contrast sensitivity function (plotted from the CSF
model presented by Barten [10]).
incorporated into his photoelectric model of the visual system. In his system the lens
of a camera was used to simulate the lens of the eye, photoconductive cells were used
to model the receptors, and the output of the cells were fed into a computer in order
to replicate higher level neural processing. Schade’s approach was a very early model
of the visual system, however, if included a number of important features, including
contrast nonlinearity, contrast sensitivity, and a rudimentary color mechanism.

Schade’s model incorporated the contrast sensitivity function by performing
a Fourier transform of the input image. The magnitude of the Fourier coefficients
were then weighted by the contrast sensitivity of the associated spatial frequency.
A similar technique has been used in a number of other image quality models [63,
90, 67, 10].

A problem with the linear system approach to vision modeling is the presence
of the contrast nonlinearity. In order to incorporate the sensitivity variations that

occur due to both illumination level and spatial frequency, most authors apply a



contrast nonlinearity followed by a weighting by the contrast sensitivity function.
This is the approach taken by Schade and by Mannos and Sakrison [90]. The
presence of the nonlinearity, however, violates a basic assumption of linear systems.
This violation is merely accepted by most authors. Another approach is to eliminate
the contrast nonlinearity, as was done by Granger and Cupery [63]. However, this
neglects a significant aspect of the visual system. Hall and Hall [67] suggested
that the impact of this nonlinearity could be minimized by dividing the contrast
sensitivity function into its optical and neural components. The optical component
was modeled with a lowpass filter that simulated the defocusing of light caused by
the optics of the eye. The neural component is incorporated by a highpass filter that
models the effect of lateral inhibition found in the neural pathway. The contrast
nonlinearity was placed between these two components. This approach is intuitively
appealing since it follows the structure of the visual system (i.e. optics, receptors,

neural pathway).

Spatial Frequency Channel Models

The models described in the previous section assume that the visual system
is able to perform some type of Fourier decomposition on an input image. This
allows the perceptual response to an arbitrary image to be exactly determined by
the cumulative response to component gratings. There is now significant evidence
that this is not the case. A number of experiments have shown that there exists a
limited number of discrete channels in the visual pathway which are tuned to bands
of spatial frequencies, and that the contrast sensitivity function is determined by

the cumulative responses of these channels.
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The first evidence of the existence of channels was presented by Campbell and
Robson (25]. They tested the sensitivity of the visual system to square wave gratings.
They found that the detectability threshold for a square wave was different from
that predicted by a linear systems model. This threshold was instead determined
by the threshold of the strongest sinusoidal component of the square wave. This
led them to speculate that various sinusoidal components are encoded in discrete
channels, and that a threshold response of an individual channel is necessary to
achieve a threshold response for the aggregate image. Similar results were found for
compound gratings by Graham, Robson, and Nachimias [62).

Further evidence of the existence of spatial frequency selective channels was
presented by Blakemore and Campbell [12]. They found that when a subject viewed
a grating of a given spatial frequency for a prolonged amount of time, the subject’s
sensitivity to neighboring spatial frequencies decreased. This would occur if the
neighboring frequencies were encoded within the same spatial frequency channel.
The final evidence of the existence of channels comes from the masking experiments
of Legge and Foley [82]. Masking describes the ability of one signal to interfere
with the detectability of another signal. As with the adaptation effect explored by
Blakemore and Campbell, masking was found to occur over a band of neighboring
spatial frequencies.

Spatial frequency channels were first incorporated into image quality models
by Carlson and Cohen [26], and by Wilson and his colleagues [159, 162, 160]. There is
still an ongoing debate over the shape and number of channels present in the human
visual system. A recent survey by Ahumada [1] lists quality models containing from

3 to 12 spatial frequency channels. As an example Figure 8 illustrates the frequency
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FIGURE 8. The sensitivity of the six spatial frequency selective channels employed
by Wilson and Gelb [160].

selectivity of the model proposed by Wilson and Gelb [160]. This metric contains
six channels with center frequencies of 0.8, 1.7, 2.8, 4.0, 8.0, and 16.0 cycles per
degree.

The typical structure of an image quality model containing spatial frequency
channels is as follows. First, the input images are processed by a contrast nonlin-
earity. Then each image is decomposed into a number of channel images. This is
often accomplished by applying a series of spatial filters, with varying frequency
selectivity, to the input images. For example, Wilson and Gelb used filters which
were the difference of two or three Gaussians. These channel images isolate contrast
as a function of spatial frequency. The channel images are then weighted so that
the responses of individual channels combine to give the response characteristic of
the contrast sensitivity function. Finally, the differences between the channel rep-

resentations of each of the two input images are combined to yield a measure of the
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perceptual difference between the two images. More detail on how these differences

are combined will be given in pages 84-86 of this chapter.
Orientation Channel Models

The previous section described quality models that contain a number of spatial
frequency selective channels. There is also good evidence that there exist channels
in the visual pathway that are tuned to a number of discrete orientations. The
models described in this section augment the spatial frequency channel approach
with an additional orientation selective component.

The evidence for the existence of orientationally selective channels comes from
both adaptation and masking experiments. Adaptation experiments were performed
by Campbell and Maffei (24] and by Bradley et. al. [19]. In these experiments viewers
fixated on sinusoidal gratings of a given orientation. After the fixation period,
gratings of differing orientations were presented to the user and the discrimination
threshold for these gratings were measured. The results of this experiment showed
that adaptation to a grating of a given orientation reduced sensitivity to neighboring
orientations. This effect decreased as the differences in orientation increased.

A similar result was found in masking experiments by Campbell and Ku-
likowski [23] and by Phillips and Wilson [114]. The orientation channel bandwidths
predicted from masking experiments are generally somewhat larger than those pre-
dicted from adaptation experiments. As with spatial frequency channels, there is
still debate as to the appropriate number of orientation channels. Visual metrics
have been developed that contain anywhere from 3 to 12 channels spanning the 360

degree range [1].
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There have been a number of popular transforms developed that decompose an
image into component spatial frequency and orientation selective channels. The first
such method is the cortex transform presented by Watson [153]. This method first
converts an input image into the frequency domain via the fast Fourier transform.
Then component images are generated by applying a set of spatial frequency and
orientation selective filters. These filters are defined as the product of difference-of-
mesa filters and fan filters. The difference-of-mesa filters isolate spatial frequency
bands and the fan filters isolate ranges of orientations. This transform has been
successfully incorporated into image quality models by Watson [152} and Daly {36].

Another successful transform has been made by the combination of a Laplacian
pyramid [22] and a set of steerable filters [48, 77]. This transform operates in the
spatial domain. The first stage of this transform is to decompose an input image into
a pyramid of new images, by applying Gaussian lowpass filters. These filters have
successively lower frequency cutoffs. Images at neighboring levels of the pyramid
are then differenced to yield a new set of images that contain only a specific band of
spatial frequencies. Finally, these bandpass images are used to generate a number
of orientation selective images by applying filters that are the directional derivatives
of Gaussians. This transform is used in Lubin’s {88] visual difference predictor.

A number of other similar transforms have been proposed. The Gabor trans-
form is one popular alternative {151, 104, 86]. Zetzsche and Hauske [164] suggested
a ratio-of-Gaussians pyramid combined with oriented filtering. Watson et. al. [154]
have utilized the discrete cosine transform. The important commonality of all these
models is that they mirror the spatial frequency and orientation selectivity of the

human visual system by decomposing the input image into a number of discrete



channel representations.

Masking Models

The next stage in the development of image quality models was to incorporate
the effect of masking. The first metric to include the masking effect was created by
Carlson and Cohen [26]. This model was introduced shortly after the development of
the first spatial frequency channel model. Masking describes the ability of one signal
to improve or interfere in the detectability of another. This section will discuss the
masking effect and the models that include it.

Legge and Foley [82] presented the basic experiment used to study masking. In
this experiment an observer is asked to discriminate between two images. The first
image contains only a sinusoidal grating, which is called the mask. The second image
contains the mask superimposed with an additional sinusoid called the test. The
experiment measures the magnitude at which the mask plus the test is discriminable
from the mask alone.

The results of Legge and Foley’s study are plotted in Figure 9. The horizontal
axis indicates the magnitude of the mask and the vertical axis represents the effect on
the detectability of the test. This figure contains the data for a number of masking
experiments plotted on an arbitrary scale. The point at which each curve intersects
the vertical axis represents the magnitude of test required for discrimination without
the presence of the mask. This data shows that low mask contrasts facilitate the
detectability of the test (indicated by the “dipper” portion of the curve), and that
high mask contrasts can significantly interfere with the perceptibility of the test

(indicated by the elevated right side of the curve). This effect is strongest when
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FIGURE 9. Threshold elevation due to masking. In this experiment the “test”
grating is a 2.0 cycle/degree sinusoidal. The individual curves show the results for
different “mask” frequencies. Each curve is plotted on an arbitrary scale to allow
presentation on a single graph. The dotted line indicates the unmasked threshold
(from Legge and Foley [82]).
the orientation and spatial frequency of the mask and the test is the same. This
can be seen for the case of spatial frequency by comparing the center curve to those
above and below. This orientation and spatial {requency selectivity has been cited
as evidence for the existence of channels in the previous two sections. The masking
effect is significant because it describes how image content affects the visibility of
contrast.

There are two primary approaches for incorporating masking into a quality
metric. The first method uses the threshold elevation curve illustrated in Figure 9,
and the second method utilizes a nonlinear transducer. These methods are generally

incorporated after processing by a contrast nonlinearity, decomposition into spatial

frequency and orientation channels, and a weighting by the contrast sensitivity func-
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tion.

The first technique assumes that threshold experiments can be used to de-
scribe the magnitude of the masking effect at all levels, threshold or otherwise. In
this approach the contrast difference between an identical channel of the two input
images is divided by the amount of threshold elevation. One image is selected as the
mask and the other as the mask plus the test. The result is that contrast between
the two channels is reduced when the intensity of the mask is high, and increased
when the intensity of the mask is low. A number of image quality models have been
developed that utilize this technique [162, 36, 154).

The second approach to modeling masking is to use a sigmoid-like nonlinear
transducer. This transducer is employed to modify the channel response for each
of the input images. The response of a channel is augmented for low contrasts and
compressed at high contrasts. The net result is, once again, that differences between
channels of the two input images is decreased when the contrast of the bands is high
and increased when the contrasts of the bands is low. This is a very similar result
to that achieved with the threshold elevation technique. However, this method does
a better job of modeling suprathreshold differences. Masking transducers have been
utilized in quality metrics by Legge and Foley [82], Watson [152], Zetzsche and
Hauske [164], and Lubin [88].

Distance Summation

The final stage of an image quality model is to accumulate differences between
the two input images. This stage is equivalent for spatial frequency channel mod-

els, orientation selective models, and masking models. For this reason, difference
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summation has been deferred until this section.

These three types of models share the idea that the perceptual response to
an image is given by the magnitude of a number of neural images called channels.
The amplitude of these neural images, at a given location, can be thought of as the
response of a detector in the visual pathway. These detectors are tuned to bands
of spatial frequencies and orientations, and their output has been modified by a
number of levels of visual processing. The visual system is assumed to determine
the difference between two images based on changes in the outputs of these detec-
tors. This section describes how variations in the response of these detectors are
accumulated across channels to yield the aggregate perceptual difference.

The majority of visual metrics combine differences in detector output with
Quick’s vector summation rule {119]. This method calculates the total perceptual

difference (AP) between two images via the expression

4

1/Q
AP = (Z (P1, - ch)‘?) : (34)

In this equation P1, and P2, indicate the response of the detector in channel ¢
for the first and second image respectively. The variable Q) is a free parameter, and
there is some debate over the appropriate choice for this variable. If ) is set equal to
1 then differences in the detectors combine additively. However, if Q is set to infinity
then the total perceptual difference is based solely on the detector with the largest
delta. This second method was proposed in a model by Legge and Foley {82]. It
assumes that the channels do not interact in any way and that the response of each
detector is measured independently by the visual system. Most authors take a more

conservative approach. Setting @) equal to 2 is one popular choice [164, 160, 161].
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This equates to using an Euclidean norm. A number of authors have suggested
using a Q of 4 [159, 162, 92]. This implies a greater degree of independence between
the detectors. Finally, Lubin [88] proposed the compromise that @ should be set to
2.4.

A limited number of alternate methods have been described to combine channel
responses. Daly [36] presented a probability summation technique that utilizes a
psychometric function to map changes in channel outputs onto a 0 to 1 range that
indicates the probability that the difference is detectable. A product rule is then used
to combine detection probabilities. Another alternative technique was described by

Watson [151]. This method is based on the use of an optimal Bayesian classifier.
Color Models

The quality models described in the preceding sections have focussed on the
detectability of differences in achromatic images. There has been far less effort
devoted to the development of color image quality models. This section will discuss
the preliminary work that has been done in this area.

A very simple technique for handling color was included in a quality model
by Wilson [158]. The first stage of this model decomposed the input image into
the responses of the three different classes of cone photoreceptors found in the hu-
man retina. These three types of receptors are respectively selective of the short,
medium, and long wavelengths of light. This stage of the model was followed by a

contrast nonlinearity that was applied to each color channel ! to simulate each class

'The wavelength selective bands used to represent a color image are commonly referred to as
channels. However, the term channels is generally also used to refer to bands of spatial frequencies
and orientations. These concepts are similar. In order to avoid confusion this section will use the
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of receptor’s nonlinear response to light. Finally, a Euclidean distance metric was
used to collapse the color channels into a single achromatic channel for processing
by the remainder of the visual metric. Wilson's model can be primarily viewed as
an achromatic model. However, it does include the important stages of receptor
processing and their subsequent contrast nonlinearity.

The concept of an opponents color representation was first introduced in
Schade’s visual model (although it was not significantly used) [127]. There is now
abundant evidence that the responses of the receptors are processed into an oppo-
nents representation in the upper levels of the visual pathway [21, 147, 38]. This
opponents representation is made up of a single achromatic and two opponent color
channels. The two color channels are commonly referred to as the red/green and
yellow/blue channels, since these colors roughly correspond with the opposite ends
of their spectra.

The human visual system’s contrast sensitivity response, as a function of spa-
tial frequency, is significantly different for the chromatic channels than it is for the
achromatic channel. This fact was demonstrated by the contrast sensitivity exper-
iments of Mullen [101]. Figure 10 plots the results of these experiments for the
achromatic and chromatic channels. In this figure it can be observed that while
achromatic sensitivity is bandpass, chromatic sensitivity is lowpass, with a lower
peak sensitivity and a lower spatial frequency cutoff.

This fact was exploited in image quality models by Lloyd and Beaton [86] and
by Martin et. al. {92]. These models include a transformation into an opponents

color space, followed by a decomposition into spatial frequency and orientation selec-

word “channel” to describe wavelength selectivity and the word “mechanism” to describe spatial
frequency and orientation selectivity.
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FIGURE 10. Achromatic versus chromatic (either red-green or yellow-blue) spatial
frequency respounse (after Mullen [101]).

tive mechanisms. This decomposition is performed for each of the opponent channels
and corresponds with data that indicates that there are chromatic detectors selec-
tive of both discrete spatial frequency and orientation bands [19, 87]. In Lloyd and
Beaton’s model the lower chromatic sensitivity is exploited by utilizing less spatial
frequency selective bands for the chromatic than for the achromatic image repre-
sentation. Martin ef. al’s model employs the same number of spatial frequency
mechanisms for all channels, but weights the responses of these mechanisms to cor-
respond with the chromatic and achromatic contrast sensitivity functions.

The differences in chromatic and achromatic sensitivity have also been ex-
ploited in the recently proposed spatial CIELAB metric [165, 166, 168]. The CIELAB
color space is an international standard. Differences in this color space are commonly
used to measure color reproduction errors. However, this space was developed based
on color appearance judgements of large uniform fields. Spatial CIELAB is an at-
tempt to incorporate spatial variations in perceptual sensitivity into this metric.

This approach accounts for differences in spatial frequency sensitivity, but does not
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account for the effect of masking. This algorithm proceeds by first transforming the
image into an opponents color representation. After this stage, each color channel is
lowpass filtered with differing width spatial filters. This process is somewhat analo-
gous to a spatial application of the contrast sensitivity function. The least filtering
is applied to the luminance channel and successively lower pass filtering is applied
to each of the red/green and yellow/blue channels. The fact that lower frequency
filtering is used in the yellow/blue than in the red/green channel models the visual
system’s lower sensitivity to this channel due to axial chromatic aberration [91).
This result did not appear in Mullen’s original data because she corrected for this
effect.

The lower spatial frequency cutoff of the yellow/blue contrast sensitivity func-
tion has also been incorporated into a quality metric by Faugeras [42]. This metric
uses a Fourier CSF model with an additional color processing element. It includes
an initial processing by the receptor sensitivities, a logarithmic contrast nonlinearity,
a matrix to an opponent color space, and a final spatial filtering that accounts for
contrast sensitivity response. An increasing lower frequency cutoff is used for the
spatial filtering that is applied to each of the achromatic, red/green, and yellow/blue
channels.

Ferwerda et. al [45] presented a color image quality model that included the
effect of masking. The initial portion of this model utilizes the receptor processing,
contrast nonlinearity, and opponent color space developed in the work discussed in
Chapter IX. These stages are followed by a decomposition into spatial frequency and
orientation tuned mechanisms for each color channel. Finally, a threshold elevation

technique is used to incorporate the masking effect. This technique is applied to
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the color channels exactly as it has been described for the achromatic channel. This
work draws upon the results of Losada and Mullen [87], and of Gergenfurther and
Kipper [50] that indicate that equivalent masking effects happen in the achromatic

and chromatic channels, and that cross-channel masking does not oceur.

Summary

This chapter reviewed previous research on perceptual image quality. This
work has produced a number of visual quality models. These models are used to
predict the magnitude of visual differences between two input images.

The most recent quality models contain a number of important steps. The first
step is to take into account variations in sensitivity with image brightness. This is
accomplished with either a point nonlinearity or a non-point contrast metric. This
stage is followed by an image decomposition into spatial frequency and orientation
tuned mechanisms. The responses of these mechanisms are scaled by their associated
contrast sensitivity response. This incorporates differences in perceptual sensitivity
as a function of spatial frequency. The affect of masking is then simulated using
either a threshold elevation technique or a nonlinear transducer. This stage models
sensitivity variations with signal content. These steps are generally applied to each
of two input images and differences in the resulting perceptual space are accumulated
with a distance summation. This yields the final measure of the visual difference
between two images.

A few quality models have been created for color images. The important
stages in these metrics are a processing by the short, medium, and long receptor

sensitivities, a conversion to an opponents color space, and a processing by the
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differences in achromatic and chromatic spatial frequency response. These elements
are incorporated in varying degrees within previous color image quality models.
Quality models provide a method to map objective accuracy measurements to
subjective image quality. As has been shown in preceding chapters, adaptive sam-
pling is a powerful technique for improving the performance of rendering algorithms.
Prior adaptive algorithms are based on objective measurements of the accuracy of
the reconstructed image. The use of objective accuracy metrics limits the bene-
fits of adaptive algorithms by neglecting the fact that the images are ultimately
intended to be viewed by a human observer. An image quality model provides the
means to incorporate the response of a human observer into these adaptive sampling

algorithms.



CHAPTER VII
A HIGH SPEED COLOR VISUAL DIFFERENCE PREDICTOR

The preceding chapter reviewed the prior image quality models that have been
developed by the image processing and vision research communities. These models
provide a means to convert from the objective error measurements used in existing
adaptive sampling algorithms, to subjective measurements of perceptual quality.
This is the technique that will be used in this dissertation to ultimately develop
a rendering algorithm that distributes samples based on the visibility of error in a
synthesized image. The current quality metrics provide a good starting point for
such an algorithm. However, they are limited in a number of areas.

Previous image quality models have gone to great lengths to accurately simu-
late the perceptual sensitivity of the human visual system. Unfortunately, efficiency
is seldom a design criteria in developing these systems. This limits the utility of
these algorithms in applications where speed is a primary concern. The incorpora-
tion of a visual model within an adaptive sampling algorithm will require that the
metric be used to make many iterative judgements of the quality of an image during
the progression of the algorithm. If the perceptual metric takes too long to execute
then the gains achieved by the more efficient sample distribution will be offset.

Another weakness of the existing visual quality models is their limited ability
to accurately predict differences between color images. The majority of previous

models have been designed to only handle achromatic images. The few metrics



that do include color processing have generally neglected the significant effect of
chromatic aberration.

In this chapter a new, high speed, color image quality model will be presented.
This model will be shown to execute in a fraction of the time required by existing
metrics, without a significant loss in accuracy. This new model is also designed to

handle color images, and it includes the effect of chromatic aberration.

Model Description

The last chapter described a number of perceptual quality models. Two of
the most comprehensive are the Visual Difference Predictor (VDP) by Daly [36]
and the Sarnoff Visual Difference Metric (VDM) by Lubin [88]. A recent study by
Li [83, 84] compared the results of these two metrics. In this study it was found that
although the Sarnoff VDM required somewhat more memory, it executed faster and
produced better difference predictions. Another advantage of the Sarnoff model is
its use of a pyramidal transformation to isolate spatial frequency and orientation
selective channels. The nature of this type of transform offers substantial efficiency
benefits as will be seen in the adaptive sampling algorithm described in Chapter X.

For these reasons, the Sarnoff VDM was selected as a starting point for the
development of the quality model discussed in this section. The new model has
been modified to run efficiently, and it has been extended to handle color. This
color extension is necessary because the original Sarnoff metric was only designed
for achromatic images.

The perceptual metric that will be described has been imbedded into a visual

difference predictor. This predictor receives as input two images represented in CIE
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FIGURE 11. Input and output of the visual difference predictor.

XY7Z color space. It returns as output a map, specified in terms of just noticeable
differences (JND’s), of the perceptual difference between the two images. One JND
corresponds to a 75% probability that an observer viewing the two images would be
able to detect a difference, and the units correspond to a roughly linear magnitude
of subjective visual differences [88].

The input and output of this predictor are illustrated in Figure 11. In this
example input 1 contains a chapel image, and input 2 is the same image distorted
by an equal energy sinusoidal grating. It should be apparent that while the grating
is uniform, its perceptibility is not. The distortion is most visible in the dark
areas at the base of the chapel and less perceptible in the bright regions at the
top of the image. The grating is also completely invisible inside the upper right
archway because the lattice work in this area hides, or masks, the detectability of
the grating. The output of the predictor is shown in the visual difference map on

the right side of the figure. This image utilizes increased brightness to indicate areas
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FIGURE 12. Block diagram of the visual difference predictor.

with more perceptible differences. The difference map can be seen to have a good
correspondence with a subjective comparison of the two inputs.

A block diagram of the visual difference predictor is given in Figure 12. This di-
agram illustrates the various stages of processing that are involved in this predictor.
The steps cone fundamentals through spatial pooling are carried out independently
on both input images. The differences between the two images are accumulated in
the distance summation step.

In the first stage of the vision model entitled cone fundamentals, the pixels of
the input image are encoded into the responses of the short (S), medium (M) and
long (L) receptors found in the retina of the eye. Figure 13 illustrates this process.
The input image is on the left, the spectral sensitivities of the short, medium, and

long receptors are drawn in the center graph, and the resulting receptor response
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FIGURE 13. Flow graph of the cone fundamentals stage of the visual difference

predictor.

images are on the right. This transformation converts from CIE XYZ to SML space

via the following matrix equation [94]:

S

L

0.0000 0.0000

—0.4227 1.1723

0.5609
0.0911

0.1150 0.9364 -0.0203

Z

The next step in the model is to apply a corter filtering operation. This

process decomposes the receptor images into the responses of spatial frequency and

orientation tuned mechanisms present in the visual pathway. The evidence that

indicates the existence of such mechanisms was presented in the previous chapter.

The decomposition of an image into spatial frequency and orientation tuned



channels is the most expensive operation performed by a visual model. Therefore, in
order to significantly improve the execution time of a model, a high speed transform
must be selected. The choice of this transform should also be influenced by the desire
to incorporate the quality model within an adaptive sampling algorithm. During
the progression of an adaptive algorithm it is necessary to make numerous, iterative
judgements about the quality of an image. Successive judgements are often made
after modifying only a small region of the image. It would therefore be advantageous
if small image modifications had a limited effect on the cortex representation, and
if this effect could be rapidly calculated.

In order to satisfy these requirements, the Haar wavelet transform was selected
to model the spatial frequency and orientation selectivity of the human visual sys-
tem. This transform provides the fastest mechanism capable of decomposing an
image into these selective channels. The Haar transform can be computed in O(N)
time, and as will be shown in Chapter X, it can be updated in O(log N) time during
the progression of an adaptive sampling algorithm.

A number of other transforms were considered for this stage of the model.
The cortex transform by Watson [153] was one option. The disadvantage of this
method is that it is based on a Fourier transform of the image. This transform
requires O(N log N) time to compute. In addition, iterative refinement is slow
because modifying the intensity of a single pixel affects all of the terms in this
representation. A variety of other pyramidal transforms were also investigated.
These included the steerable pyramid used in the Sarnoff model [88], Daubechies’
family of wavelets [37], and the biorthogonal bases of Cohen, et. al [30]. These

methods were deemed undesirable because of the larger, overlapping spatial filters
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that are used in the transforms. The size of these filters slows down both the direct
and iterative calculation of the transform, and the fact that the filters overlap would
have complicated the error estimation stage of the adaptive sampling algorithm
discussed in Chapter X.

The Haar transform employed is the two-dimensional non-standard decompo-

sition. This transform can be expressed as:

I 1
cl—l[a,% = (Cl[$:U]+Cl[$+1,y]+
alr,y+ 1] +afr+ 1,y +1])/4
T 1 =
diaf5,5) = (aleyl—ale+1,9) +

Cl[-'l?,?} + 1] - Cl[$+ 1sy + 1])/4

Ty
dzz-l[g, 5]

(alz,y] +alz+1,y] -

alz,y+1) —alz+ 1,y + 1])/4

T

d?-—-l[a!

1
g (alz,y] —alz+1,y] -

ale,y + 1] +alr+ 1,y +1])/4, (36)

where ¢ specifies the lowpass coefficients of the level ! Haar basis, d}, d? and d}
are the detail coefficients of the three two-dimensional level [ Haar wavelets, and
Clevets—1{Z, Y] corresponds to the response of either the small, medium or long re-
ceptors at a pixel location (where levels represents the number of levels in the
quad-tree). This decomposition is carried out for each of the S, M and L channels
and is stored in a quad-tree representation with the highest frequency details at the
bottom and lowest frequency at the top. The detail coefficients of the Haar trans-

form constitute the cortex representation. These detail terms indicate variations in
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FIGURE 14. Flow graph of the cortex filtering stage of the visual difference predic-
tor.

the image that are localized in space, frequency, and angular direction.

The frequency selectivity of the detail terms at a given level of the tree is
defined as the frequency in cycles per degree (cpd) to which the wavelet at that
level is optimally responsive. The detail coefficients are additionally tuned to three
angular directions. The d! and d? terms are respectively selective of horizontal and
vertical variations, and the d® terms isolate changes along both diagonal orientations.
The poor frequency selectivity and limited orientation tuning of the Haar wavelet
is acknowledged as a limitation of this approach. However, the efficiency gains are
substantial.

Figure 14 illustrates the Haar transform applied to one of the color channels.
In the image on the right, increased brightness indicates larger detail magnitudes.
The highest frequency terms are arranged in the bottom and right side of the image
and the lowest frequency term is in the upper left. At each level there are three
blocks of detail coefficients. The top, left, and lower right blocks respectively contain
the horizontal, vertical, and diagonally selective terms.

The next step in the image quality model incorporates the effect of chromatic
aberration. This model is novel in its inclusion of this effect. Chromatic aberration

describes the defocusing of light as a function of wavelength by the optics of the
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FIGURE 15. Flow graph of the chromatic aberration stage of the visual difference
predictor.

eye. This defocusing most strongly affects the response of the short wavelength
receptors, and severely attenuates the visibility of high spatial frequency detail in
this channel. The center graph of Figure 15 depicts a plot of the sensitivity loss
due to chromatic aberration in the short wavelength channel. This plot shows that
sensitivity drops to less than half its original value at 4 ¢pd and is virtually non-
existent at frequencies higher than 8 cpd. The original chromatic contrast sensitivity
experiments performed by Mullen {101] corrected for chromatic aberration. In order
to accurately apply the results of her work at the latter stages of the model it is
necessary to reintroduce this effect.

Figure 15 illustrates how chromatic aberration is included in the image quality
model. The unmodified cortex representation of the S cone receptors is illustrated
on the left side of the figure. The response of these receptors are attenuated by
the effect of chromatic aberration as a function of spatial frequency. The lowpass
filter used is contained in the center graph. This filter was generated by a fit to
the data of Marimont and Wandell [91]. The lowpass filtering operation can be
performed very rapidly because the cone responses are stored in a frequency based

representation. Filtering in this domain is accomplished by merely scaling the detail
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FIGURE 16. Flow graph of the local contrast stage of the visual difference predictor.

coeflicients by the amount of attenuation at the associated spatial frequency. The
decreased response at high spatial frequencies can be seen in the resulting image on
the right of the figure.

In the next stage, labeled local contrast, the eye’s non-linear contrast response
to light is modeled. This is accomplished by dividing the detail coeflicients of each
color channel by the associated lowpass coefficient one level up in the quad-tree.
This operation produces a local contrast value which is functionally equivalent to
the standard cone contrast calculation of 42, 88 and 4%. It additionally avoids the
assumption, found in other models [36, 45], that the eye can adapt at the resolution
of a pixel.

Figure 16 demonstrates this process. In this example the local contrast calcu-
lation can be seen to increase the relative magnitude of the detail coefficients in the
dark regions at the base and left side of the chapel. This corresponds with the fact
that the visual system is more sensitive to variations at low illuminations than at

high illuminations.

The following stage in the model consists of a transformation of the cone
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FIGURE 17. Flow graph of the opponents contrast stage of the visual difference
predictor.

contrasts to an opponents contrast space. This space consists of a single achromatic
(A} and two opponent color channels (C) and C,). As discussed in the preceding
chapter, there is significant evidence that the signals produced by the cones undergo
this type of transformation.

Figure 17 illustrates this stage of the model. The local contrasts for the short,
medium, and long receptors are contained on the left side of the figure, the spectral
sensitivities of the A, €|, and C; channels are plotted in the center graph, and
the resulting contrasts of the opponent channels are on the right. The conversion

of the cone contrasts to an opponents contrast space is accomplished using the
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transformation matrix [94]:

A 0.0001  0.2499  0.7647 S
Cy | =1 00018 29468 -2.5336 | | as |- (37)
C, 1.0111 —0.3877  0.2670 L

This equation shows that the achromatic channel is primarily determined by the
combined responses of the medium and long wavelength receptors, the C; channel
is composed of the difference in the responses of the medium and long wavelength
receptors, and the C; channel largely isolates the responses of the short wavelength
receptors.

The sixth step of the quality model, labeled CSF filtering, incorporates vari-
ations in achromatic and chromatic contrast sensitivity as a function of spatial
frequency. A diagram of this stage is contained in Figure 18. Different contrast
sensitivity functions are used for the achromatic and chromatic channels. For the
achromatic channel the human visual system has a peak sensitivity to signals of
around 4 cpd, and significantly less sensitivity at higher and lower spatial frequen-
cies. The model uses the equation for the achromatic contrast sensitivity function
that was presented by Barten [10]. For the chromatic channels visual sensitivity is
strictly lowpass, with a lower peak sensitivity and a lower frequency cutoff than is
present in the achromatic channel. The chromatic contrast sensitivity function that
is used in the model is implemented with a Butterworth filter that has been fit to
the chromatic sensitivity data from Mullen [101].

At this stage in the algorithn the square of the contrast for each of the 4, C,

and C, channels is multiplied by the square of that channel’s contrast sensitivity as
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FIGURE 18. Flow graph of the CSF filtering stage of the visual difference predictor.

a function of spatial frequency. The square of the contrast and contrast sensitivity
function is used to model the energy response that occurs for complex cells, as
described in the Sarnoff VDM. This transformation has the result of making the
model less sensitive to the exact position of an edge, which is a property shared by
the human visual system as well [88].

The images on the right side of Figure 18 show the results of applying the
achromatic and chromatic contrast sensitivity functions to the opponent contrast
images. In the achromatic image, contrast response has been attenuated for both
low and high spatial frequencies. For the chromatic channels contrast response
declines with increasing spatial frequency. The fact that the C; channel has a lower

frequency cutoff than the C) channel is the result of attenuation due to chromatic
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FIGURE 19. Flow graph of the masking transducer stage of the visual difference
predictor.
aberration that was modeled at an earlier stage of the algorithm.

The next stage of the model labeled masking transducer, incorporates the
effect of visual masking. Masking describes the phenomena where strong signals of
a given color, frequency, or orientation can reduce the visibility of similar signals.
This property of the visual system is incorporated through the use of a non-linear,

sigmoid transducer described in the Sarnoff VDM:

9 A2.25/2

T(A) = A20572 4 1

(38)

In this equation, T(A) is the transducer output and A is the weighted contrast

produced from the previous stage of the model. This transducer is applied indepen-
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FIGURE 20. Flow graph of the spatial pooling stage of the visual difference predictor.

dently to the contrasts of each of the A, C,, and C; color channels.

This step is illustrated graphically in Figure 19. A plot of the transducer is
contained in the center diagram. This function augments low contrasts and com-
presses high contrasts. The net result is that differences between high contrast
signals are reduced, whereas low contrast differences are increased. This simulates
the masking and facilitation effect described by Legge and Foley [82).

In the next stage of the model labeled spatial pooling, the transducer outputs
are filtered over a small neighborhood of surrounding nodes at each level of the
quad-tree. This is similar to the pooling operation performed in the Sarnoff VDM.
It captures the fact that foveal human sensitivity is larger for sine wave gratings

containing multiple cycles than it is for single cycle gratings. The inputs and outputs
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FIGURE 21. Local visual differences calculated in the distance summation stage of
the visual difference predictor.

of this stage are illustrated on the left and right sides of Figure 20 respectively. The
pooling filter used in this model is contained in the center of the figure. The decision
to use a 3x3 filter rather than the 5x5 filter specified in the Sarnoff VDM was made
to improve the speed of the algorithm. This filter also corresponds better with the
results of Wilson {158], who indicated that sensitivity reaches its peak for gratings
containing 2.5 cycles.

In the final distance summation stage the differences between the pooling
stages of the two input images are computed and used to generate a visual difference
map. The local visual difference (LVD) at each node of the gquad-tree is defined to
be the sum across all orientations (6) and color channels (¢) of the differences of the

pooling stages (P, and P) of the two images raised to the 2.4 power:

VD=3 S (Rl6d] — 0,6 (39)

#=1¢c=1

The output of this process for the two example images is shown in Figure 21.

Brighter regions denote areas where the difference between the two images are more
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FIGURE 22. The final visual difference map.

perceptible.

The final difference map is generated by accumulating local visual differences
across levels. This is accomplished by summing the local difference down each path
in the quad-tree and storing the result in the leaves. The output of the algorithm
is given by the leaf differences raised to the 1/2.4 power. This distance summation
stage is an application of Quick’s vector summation technique with a 2.4 expo-

nent [119]. The resulting visual difference map is contained in Figure 22.
Results

This section discusses the results of applying the new visual difference predictor
to a number of demonstration images. The first example tests the ability of the
predictor to accurately model how achromatic and chromatic contrast sensitivity
varies as a function of spatial frequency. The images on the left side of Figure 23

show contrast sensitivity illusions for each of the opponent color channels. These
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FIGURE 23. Achromatic and chromatic contrast sensitivity illusions and compari-
son against a uniform gray field.
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images contain sinusoidal gratings that vary around a neutral gray. The contrast
of the gratings increases logarithmically from the top to the bottom of the images,
and the spatial frequency of the gratings increases logarithmically from left to right.
The gratings vary along the achromatic axis in the top image, the C, axis in the
middle image, and the C, axis in the bottom image.

These illusions demonstrate the contrast sensitivity function for each of the
opponent color channels. Within these images a subjective contour is generated
at the points where the contrast of the grating becomes just noticeably different
from the gray background. For the achromatic illusion this contour has the shape
of an inverted “U” that can be seen along the top of the image. This indicates the
bandpass contrast sensitivity response of the achromatic channel. In the chromatic
channels the subjective contour is strictly lowpass, with no drop-off at low spatial
frequencies. It should also be apparent that the peak sensitivity to chromatic con-
trast is less than for achromatic contrast, and that the spatial frequency cutoff for
the chromatic channel occurs at a much lower point than for the achromatic channel.
The fact that the cutoff for the C» color channel is less than that for the C) is the
result of chromatic aberration due to the optics of the eye.

The illustrations on the right side of Figure 23 show the output of the visual
difference predictor when comparing the contrast sensitivity illusions on the left
side of this figure with a constant gray image. White indicates areas of large visual
difference while black denotes regions of low visual difference. In these images we see
that the algorithm is able to correctly predict the shape and cutoff of the subjective
contours for each of the color channels.

The next demonstration illustrates the ability of the model to predict the
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visibility of noise in the presence of another signal. In computer graphic renderings,
error primarily is manifested in the form of noise. Therefore, it is worthwhile to give
special attention to the issue of noise masking. Noise in the achromatic channel is
often the result of aliasing due to under-sampling or can result from poor Monte
Carlo light source integration. An illustration of the grayscale contrast sensitivity
illusion perturbed by the introduction of random noise is given in the upper left
of Figure 24. In this image the noise is readily apparent above and to the sides of
the subjective contrast sensitivity contour, but is less perceptible in areas where the
sinusoidal grating is visible. This result occurs because the strong visual sensitivity
to these frequencies masks the presence of a portion of the frequency spectrum of
the noise. The image in the upper right of this figure shows the output of the visual
difference predictor when comparing the original contrast sensitivity illustration to
the contrast sensitivity illustration with noise added. In this image we see that the
perceptual metric has correctly predicted that the error is less visible in the lower
center region where masking is strongest.

Noise in the chromatic channels can arise when Monte Carlo integration is
performed with multiple colored lights or is used to compute diffuse inter-reflections.
Fine grained noise is not masked significantly in the color channels due to the lower
frequency cutoff for the chromatic contrast sensitivity function. However, masking
can still have a strong affect on the visibility of coarse grained noise. In the middle
left and bottom left images in Figure 24 we have overlaid the chromatic contrast
sensitivity illusions with coarse grained noise. In these illustrations the noise is
very apparent in regions where sensitivity to the chromatic grating is low (top and

right of the images), but less visible in regions where the chromatic grating is very
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FIGURE 24. Achromatic and chromatic contrast sensitivity illusions with noise,
and comparison with noiseless contrast sensitivity illusions.
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FIGURE 25. Top - Original chapel (left) and chapel with sinusoidal distortion
(right). Bottom - Results of the Sarnoff VDM (left) and new vision model (right)
visual difference predictions.

perceptible (lower left of the images). The images on the right once again show the
output of the visual difference predictor when comparing the images with noise to
the original chromatic contrast sensitivity illusions. In these illustrations we see that
the algorithm has correctly predicted that the coarse grained noise is less perceptible
in the lower left region of the images.

The final demonstration compares the results of the original Sarnoff VDM with
the results of the new model for a set of complex images. This comparison is shown
in Figure 25. The two input images are illustrated at the top of the figure. These
images are achromatic versions of the chapel images used in the previous section.

The results of the Sarnoff model’s prediction is contained in the bottom left image
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and the output of the new model is shown in the bottom right.

The visual difference map that is produced by the new algorithm contains a
number of blocking artifacts that are caused by the Haar wavelet decomposition.
However, the results of both algorithms are similar and correspond well with a sub-
jective comparison of the input images. The Sarnoff VDM processed one channel in
a gray-scale image representation and the new model processed three color channels.
The new difference predictor executed in 1/60* of the time of the original Sarnoff

metric.

Summary

This chapter has presented a new, high speed, color visual difference predictor.
This predictor is capable of rapidly assessing the perceptibility of objective image
differences. This subjective measurement is calculated by processing the compared
images in a similar manner to the human visual system.

The new predictor is an efficient implementation of an existing image quality
model. This predictor utilizes the Haar wavelet transform to decompose the input
images into spatial frequency and orientation tuned channels. This allows the model
to execute in a fraction of the time required by previous metrics without a significant
loss in accuracy. The use of the Haar transform also allows the model to make rapid,
iterative predictions, as will be discussed in Chapter X.

The new model has been extended to perform color difference predictions.
This addresses an important aspect of the visual system that has been neglected
in the majority of previous quality models. It has additionally advanced the state

of the art for color image quality models by including a novel chromatic aberration
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stage. This stage corresponds with the structure of the visual pathway and allows
the model to make accurate contrast sensitivity predictions for both opponent color
channels. As discussed in the previous section, the speed of the algorithm is still
superior to existing achromatic image quality models even though the new predictor

is able to process color images.
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CHAPTER VIII

PREVIOUS APPLICATIONS OF PERCEPTION IN
COMPUTER GRAPHICS

There are only a limited number of prior applications of human visual per-
ception in the field of computer graphics. This is surprising, given that computer
graphics is primarily dedicated to producing images that are viewed by a human
observer. The previous two chapters discussed how variations in visual sensitivity
significantly affects the perceived quality of an image. Exploiting the varying sen-
sitivity of the visual system has the potential to benefit a wide variety of computer
graphics applications.

The importance of this line of study is underscored in a recent survey of leading
computer graphics researchers [131]. In this survey, “dealing with human perceptual
issues” is listed as one of the top two unsolved problems in the field of realistic image
synthesis. The limited amount of work that has been done in this area, coupled with
the significance of the problem, illustrates the novelty and importance of this topic.

This chapter reviews previous applications of perception in the field of com-
puter graphics. The existing work in this area falls into three categories. These
groupings are 1) the evaluation and application of image quality models, 2) the de-
velopment of tone reproduction operators, and 3) the design of perceptually based

sampling techniques. Each of these areas will be discussed in turn.
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Image Quality Models and Applications

The use of visual metrics to measure the perceptual quality of an image is
a relatively new idea in the field of computer graphics. This topic has received
increasing amounts of attention in recent years. This section discusses various works
that evaluate and apply image quality models for computer graphics applications.

Rushmeier ef. al. [125] presented one of the first papers to suggest the use of
perceptually based image quality models. The focus of this work was to evaluate
the accuracy of a realistic image synthesis algorithm. This was accomplished by
comparing luminance measurements of a real scene to the luminances computed by
rendering an image of the same environment. A number of metrics were considered
for this task. These included quality models by Mannos and Sakrison [90], Gervais et.
ol. [51], and a modified version of Daly’s Visual Difference Predictor (VDP) [36]. The
results of these models were analyzed and compared to an objective measurement
of the mean squared error (MSE). In this study MSE was found to be a poor
measurement of image quality. This was illustrated by an example in which MSE
found the real luminances to be a closer match to a random noise image than to
the rendered image. This was obviously not the case. The perceptual metric by
Gervais et. al. was the next worst performer. This metric was adversely affected by
its inclusion of phase information. Differences in phase caused edge mis-alignments
to be a significant factor, which is not a property shared by the human visual
system. The modified Daly VDP was found to produce the most accurate results
of the three quality models. This metric was found to have a good correspondence
with a subjective impression of image quality. The excellent results of the Daly

VDP illustrates the utility of an image quality model for accessing the accuracy of
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synthetically generated images.

A more comprehensive study of two image quality metrics was performed
by Li [83, 84]. This work compared the results of the VDP by Daly with the
results of the Sarnoff Visual Discrimination Metric (VDM) by Lubin [88]. Computer
graphics images were utilized in this comparison. A variety of distortions were
applied to these images and the two metrics were used to compute the visibility
of the distortions. The two image quality metrics produced similar results. The
Sarnoff model required more memory, but executed faster and produced slightly
more accurate difference predictions.

Ferwerda et. al. [45] developed a new color visual difference metric by modify-
ing the Daly VDP and adding the ability to handle color. This model was discussed
in Chapter VI. The new metric was used to demonstrate how the presence of a
texture can mask the appearance of faceting on a polygonalized object. The use of
this model allows textures or polygonal detail to be selected so as to produce images
of an acceptable visual quality.

The final work in this area was performed by Myszkowski [102]. His paper
evaluated the accuracy of the Daly difference predictor and applied this metric to
a number of aspects of an image synthesis algorithm. The accuracy of the VDP
was evaluated by performing quality predictions of images produced at subsequent
stages of a progressive radiosity algorithm. A number of components of the model
were varied during these tests. In general, the VDP was found to produce quality
assessments that correspond with a subjective impression of the images. However,
superior results were obtained by replacing the point nonlinearity employed in the

VDP with the local contrast metric used in the Sarnoff VDM. The VDP was then
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applied to the image synthesis tasks of measuring convergence rates, determining
when an image has been rendered to a specified quality, and controlling adaptive
meshing in a radiosity-algorithm. The techniques proposed for these operations used
a brute-force application of the VDP that severely impacts the execution time of

the rendering algorithm.

Tone Reproduction Qperators

Models of human visual perception have also been used to develop tone re-
production operators. Tone reproduction operators provide a mapping from the
luminance values computed by a rendering algorithm to the luminance values that
are actually reproducible on a given display. This mapping is constructed so that the
visual experience of viewing the displayed image is as close a match as possible to
the experience of viewing the real scene. In order to provide this “sensation preserv-
ing” mapping, fone reproduction operators have been developed that utilize a model
of visual adaptation. These adaptation models enable the operators to account for
perceptual differences caused by the limited dynamic range of the viewing device.
Adaptation models simulate a somewhat different aspect of the visual system than
is necessary for image quality comparisons. However, tone reproduction represents
what is currently one of the most successful applications of visual perception in the
field of computer graphics.

The first tone reproduction operator was developed by Tumblin and Rush-
meier [141]). They noted that luminances encountered in the real world can range
from between 107° to 10° cd/m?. However a typical CRT only has a luminance range

of 1 to 100 cd/m?®. Reproducing the visual experience of a real world scene with



the limited dynamic range of modern display devices is made possible by the nature
of the human visual system. Humans are very poor judges of absolute luminance.
Instead, the visual system tends to adapt to the average luminance and differenti-
ate only spatial intensity variations. Therefore it is possible to remap the average
luminance of the real scene to within the range that is displayable on a given device.
This shift in the mean intensity is largely ignored by the visual system. However,
when performing this transformation, it is necessary to account for how changes in
illumination affect the visibility of contrast. Tumblin and Rushmeier account for
this effect by employing a model of brightness and contrast perception developed by
Stevens [137, 136]. This model is used to match the apparent contrast for the two
different adaptation levels of the real and displayed images.

A very similar tone reproduction operator was created by Ward [148]. This
method also employs a model of luminance adaptation, but it is based on a linear
mapping from real to displayed intensities. This mapping is founded on a study by
Blackwell [29]. The results of this study were used to derive a scalefactor that can
be multiplied with the image radiances to generate the final display values. This
technique provides a simple mechanism capable of reproducing both contrast and
feature visibility.

The two previous methods assume that the eye adapts globally to the average
intensity of an image. However, adaptation actually occurs locally over a small
region of the image plane. Chiu et. al. [27] exploited this by developing a spatially
nonuniform tone reproduction operator. The amount of scaling performed by the
operator, at a given location, is based on a local average of the image intensity.

An alternate approach was proposed by Tumblin et. al [142]. In this method the
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viewer is assumed to fixate on a specific point in the scene. This point is selectable
by the user. The adapted luminance is determined by the average intensity in a
small region surrounding this point. The size of this region is selected to cover the
foveal portion of the eye where adaptation occurs. A global mapping is then applied
to the entire image based on the intensity in this area.

A number of authors have created tone reproduction operators that include
the effect of glare [27, 150, 111]. Glare is caused by scattering of light in the cornea,
lens, and retina, and by diffraction in the cell structures on the outer radial areas of
the lens. This creates a number of visible artifacts around small, bright objects such
as stars and light sources. These artifacts include bloom, flare lines, and colorful
lenticular halos. A physical and psychological model of glare was created by Spencer
et. al. [134]. This model applies a digital point spread function to an image in order
to simulate these effects.

The effects of luminance adaptation on color sensitivity and spatial acuity
were included in a tone reproduction operator by Ferwerda et. al. [44]. At high
illumination colors appear bright and saturated, and spatial frequency sensitivity is
quite good. However, when the lighting is very dim, colors are perceived as being
very desaturated and tend toward a neutral gray. The spatial frequency cutoff of
the visual system also declines under low light conditions, causing images to appear
blurred. Ferwerda's operator can be used to produce images that capture these
effects over a wide range of lighting conditions. Color saturation is modeled by
simulating changes in the spectral sensitivity of the rods and cones as a function of
luminance. The loss of spatial acuity under low light conditions is reproduced by

applying a lowpass filter to the image. The cutoff of this filter decreases with the
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illumination.

A similar tone reproduction operator was developed by Ward Larson et. al. [150).
Their operator uses a novel histogram adjustment technique. The technique allows
clusters of adaptation levels to be easily located and mapped to display values in a
manner that preserves local contrast visibility. This mapping uses a model of human
contrast sensitivity, glare, spatial acuity, and color sensitivity to match subjective
viewing experiences between real and displayed images.

The latest tone reproduction operator was presented by Pattanaik et. al. [111].
This operator bears many similarities to the one developed by Ferwerda et. al.. How-
ever, the new operator utilizes a more advanced model of visual adaptation. This
model incorporates an opponents representation of color and a contrast sensitivity
function based on spatial frequency selective channels. The highlights of this model
include its ability to simulate both chromatic and achromatic adaptation effects,
and to modify the appearance of an image based on changes in both the shape and
cutoff of the contrast sensitivity function.

Gibson and Hubbold [52] utilized a tone reproduction operator to determine
display intensities during the progression of a radiosity algorithm. This problem is
difficult because radiosity computes a view-independent measure of the illumination
at the surfaces of a scene. This requires an a priori estimate of the adaptation
luminance. However, by using a suitable approximation they were able to map scene
radiances to display infensities during the progression of the algorithm. An error
metric based on differences in these display intensities in a perceptually uniform
color space was used to control a number of aspects of the radiosity algorithm.

These included adaptive patch refinement, shadow detection, and a posteriori mesh
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optimization.

Perceptually Based Sampling Techniques

There have been a few previous attempts to incorporate aspects of a vision
model within an adaptive sampling algorithm. These methods have sought to vary
the sampling density across the image plane so that effort is focussed on the regions
of the image containing the most perceptible error. The primary limitation of these
techniques is that they use very simplistic visual metrics.

Mitchell {98] proposed the first adaptive sampling algorithm to utilize a per-
ceptually based refinement metric. In this algorithm the image plane is divided
into a number of small cells and a low density set of samples is taken within each
area. A test is then applied to determine which regions of the image require further
refinement. Mitchell's test utilized a contrast calculation based on the maximum
and minimum luminance returned by a sample within a cell. This measure of the
contrast accounts for nonlinear variations in perceptual sensitivity as a function of
background luminance. The contrast calculation is performed for each color channel
and collapsed to a single quality metric by differentially weighting the responses of
the red, green, and blue channels. This provides a simple, although incomplete,
model of sensitivity changes as a function of wavelength. Finally, the cells with a
weighted contrast larger than a user specified threshold were resampled at a fixed,
high density sampling rate.

Meyer and Liu [95] developed an adaptive sampling algorithm that exploited
limitations in the visual system’s chromatic contrast sensitivity response. The algo-

rithm that they created was based on Painter and Sloan’s [107] tree-based refinement
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strategy discussed in Chapter IV. This method iteratively refines an image from low
to high spatial frequencies by repeatedly subdividing regions of the image as more
samples are taken. Meyer and Liu extended this algorithm by utilizing an opponents
space to store color information. In this work, they showed that less refinement was
necessary in the chromatic than in the achromatic channel. This is the result of the
lower spatial frequency cutoff of the chromatic contrast sensitivity function.

The issue of bias in a perceptually based sampling algorithm was addressed
in a paper by Tamstorf and Jensen [139]. Bias is a statistical artifact of adaptive
sampling that causes the intensity of a pixel to converge to a value slightly different
than the true intensity mean [79]. They modified an adaptive algorithm by Pur-
gathofer [118] so that the refinement test included a model of nonlinear contrast
response. The bias of the algorithm was then estimated using a nonparametric
bootstrapping method. They found that in the majority of cases the effect of bias

was negligible, and that it was less than the display’s color resolution.

Summary

This chapter reviewed previous applications of perception in the field of com-
puter graphics. This is a new area of exploration that has generated significant
interest, but has yet to be fully exploited. The existing work has focussed on the
evaluation and application of image quality models, the design of tone reproduction
operators, and the development of perceptually based sampling algorithms.

Perceptually based image quality models have been evaluated by a number of
authors. These evaluations have been decidedly favorable. Two of the most complete

and widely used image quality models are the Visual Difference Predictor and the
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Sarnoff Visual Discrimination Metric. Image quality models have been mainly used
to perform image comparisons. However, the application of these models to other
aspects of the rendering process is beginning to be explored.

Tone reproduction operators have been developed in order to create images
that match the subjective experience of viewing a real scene. These operators are
based on models of visual adaptation. Adaptation models serve a different purpose
than the models used to determine image quality. However, the success of tone
reproduction illustrates one of the many benefits of incorporating aspects of human
visual perception within computer graphics algorithms.

Perceptually based sampling algorithms that utilize aspects of an image quality
model have been developed. These algorithms seek to focus effort on the regions of
an image containing the most visible artifacts. However, existing work in this area
has been limited, and it has yet to incorporate many of the key features of visual

sensitivity. This issue will be addressed in the final two chapters of this dissertation.
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CHAPTER IX
A FREQUENCY BASED RAY TRACER

In Chapter VIII, the previous attempts to incorporate aspects of a percep-
tual model within an adaptive sampling algorithm were described. These existing
techniques are significantly limited by the fact that they operate in the spatial do-
main. This means that samples are distributed based on an estimate of the image
and its error at discrete locations within the viewing plane. The difficulty with this
approach is that the perceptual response of the human visual system is strongly
frequency dependent. There are, therefore, few aspects of visual sensitivity that can
be exploited by spatially based adaptive techniques.

This chapter describes the design of a new adaptive sampling algorithm. This
algorithm synthesizes images directly into a spatial frequency based representation.
The synthesis of images into this representation allows a simple frequency dependent
perceptual quality model to be used to direct the placement of samples. This enables
the algorithm to reduce the number of samples that are necessary to produce an
image of a given visual quality by eliminating the most apparent artifacts first, and
progressing to the less apparent artifacts as time and resources permit.

The frequency domain that is chosen as the basis of this algorithm is the same
as that employed by common image and video compression schemes. This reduces
the steps necessary to compress the resulting image and allows the algorithm to

exploit a number of advantageous features of these compression techniques. One
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significant feature of these compression methods is that they utilize the perceptual
phenomenon of visual masking to determine the necessary accuracy of each of the
frequency terms. This aspect of the visual system will be used in a similar fashion
in the new adaptive sampling algorithm to determine the sample accuracy that is
required to resolve each of the terms in the frequency representation of an image.

The direct synthesis of images into a frequency representation also offers a
number of advantages when considered solely as a sampling and reconstruction tech-
nique. This chapter shows how changes in the frequency spectrum can be used to
estimate the amount of aliasing present in regions of an image. This provides a
novel error metric that is used to guide the adaptive sampling process. By care-
ful placement of additional samples, the new algorithm also provides a method to
refine images from low to high spatial frequency. This method offers a unique so-
lution to the difficult problem of reconstructing a bandlimited image from a set of
nonuniformly spaced samples. Finally, the development of an image in a frequency
representation is shown to simplify the final filtering of the image. This step is
necessary to remove any residual aliasing artifacts from the resulting image.

The remainder of this chapter is divided into five major sections. The first sec-
tion discusses the design of a simple, frequency dependent perceptual quality model.
In the second section the JPEG image compression algorithm is described. This is
the particular compression algorithm that is most directly exploited in this work.
The third section presents the design of the new frequency based adaptive sampling
algorithm. Results are discussed in section four, and the work is summarized in

section five.
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A Frequency Dependent Perceptual Quality Model

This section discusses the design of a simple, frequency dependent perceptual
quality model that will be used to direct the placement of samples by the adaptive
sampling algorithm. This model falls into the class of Fourier CSF models discussed
in Chapter VI, pages 75-77, and includes an additional color processing element.
The model that is described is most closely related to the work of Faugeras [42] and
utilizes the color spaces and spatial filters presented by Meyer and Liu [95].

This model is similar in many respects to a number of image quality models
that have been successfully employed by the image processing and vision research
communities. It includes an initial receptor stage, followed by the application of
a contrast nonlinearity, a matrix to an opponents color representation, and a final
spatial frequency filtering. These stages simulate the processing that is performed
by the visual pathway on incident light. The measurement of differences in the
resulting perceptual space can be used to determine the visibility of changes in the
incoming light intensity.

The first stage of the model simulates the spectral absorptions of the three
types of cone receptors found in the retina. These three classes of receptors are sen-
sitive to the short (S), medium (M}, and long (L) wavelengths of visible light. The
wavelength selectivity of these receptors is the fundamental building block of human
tri-chromatic color vision. In order to determine the response of these receptors, the

incident light is linearly transformed from the device independent CIE XYZ space
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FIGURE 26. Spectral sensitivities for S (dashed), M (solid), and L (dot-dashed)
components of SM L space.

to SML space via the expression

S 0.0000 0.0000 0.5609 | | X
M | =| -04227 1.1723 0.0911 Y |. (40)
L 0.1150 0.9364 —0.0203 A

Figure 26 illustrates the short, medium and long spectral sensitivities that result
from this operation.

The next stage of the model accounts for the receptors nonlinear contrast
response. This aspect of the visual system causes equal differences in light energy
to be more perceptible in dark regions than in bright. This effect is demonstrated
in Figure 27. The interior squares in both the left and right examples are equally
different from the surrounding region in terms of luminance (light energy). However,
the perceptible difference between the center and surrounding squares is larger in
the left example than in the right.

This variation in sensitivity is accounted for in the model by applying a com-
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FIGURE 27. Center and surrounding squares of equal luminance difference but not
equally perceptible difference.

pressive point nonlinearity to the responses of the short, medium and long receptors.

The nonlinearity that was selected is given by a power law with a ﬁ exponent:

1
2.2

s S
M |=|M : (41)
L L

This has the effect of reducing the sensitivity of the cone responses to differences at
increasing illumination levels.

At the next stage in the model the cone responses are transformed into an
opponents color space. This space consists of a single achromatic (A) and two

opponent (C; and C;) color channels. The response of these channels are given by
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FIGURE 28. Spectral sensitivities for A (solid), C, (dot-dashed), and Cy (dashed)
components of AC,C5 space.

the following transformation of the cone responses:

A 0.0001  0.2499  0.7647 g
C, | =| 0.0018 29468 —2.5336 M| (42)
Cs 1.0111 —0.3877  0.2670 L

Figure 28 depicts the spectral sensitivities of the color channels that result.

There is strong evidence that the signals produced by the cones undergo this
type of transformation (see pages 86-90 of Chapter VI and [21, 39, 71, 73]). A
number of different opponents spaces have been proposed [117]. The space that was
selected for this model was developed by Buchsbaum and Gottschalk [21). They
applied the discrete Karhunen-Loeve expansion to the SM L fundamentals to de-
velop a space that is optimal in terms of statistical communication theory and is
consistent with other spaces that have been derived psychophysically. This space
has additionally been used to select the wavelengths at which to perform synthetic

image generation [94].
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FIGURE 29. Achromatic versus chromatic (either C; or Cs) spatial frequency re-
sponse (after Mullen [101]).

The final stage of the model accounts for differences in the visual system’s
achromatic spatial frequency sensitivity. The response of the visual system is
strongly dependent on both the color and the spatial frequency of the stimulus.
This is partially the result of axial chromatic aberration due to the optics of the
eye. Chromatic aberration describes the defocusing of light as a function of wave-
length that is caused by the lens optics. This effect is strongest for the short wave-
lengths of light and severely limits the visibility of high frequency detail in this
channel. The relative densities of the cone receptors also contributes to the differ-
ences in chromatic spatial frequency response. This is because a denser packing
of the receptors is required to adequately sample higher spatial frequency detail.
Cicerone and Nerger [28] have shown that there are approximately twice as many
long wavelength receptors as there are medium wavelength receptors, and Williams
et. al. {157} have found that the spacing of the short wavelength receptors is very
sparse (approximately one in every ten minutes of visual arc).

The visual system’s chromatic and achromatic spatially frequency response
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FIGURE 30. From left to right, spatial acuity wedges depicting variation in the A,
C, and C; channels.

has been measured by Mullen [101}. The results of her experiments are depicted
in Figure 29. This figure plots contrast sensitivity {one over the magnitude of the
sinusoidal grating that is required to produce a threshold response) versus spatial
frequency for the achromatic and chromatic (either C) or Cj) channels. These
experiments show that the cutoff for the achromatic channel is 34 cycles/degree and
for the chromatic channels is 11 cycles/degree. More recent work by Poirson and
Wandell [115] that accounts for chromatic aberration has shown that the cutoff for
the Cp channel may be as low as 4 cycles/degree.

The differences in these visual cutoffs is demonstrated in Figure 30. This
figure depicts three acuity wedges that vary along the A, C,, and C; axes. In this
illustration it can be seen that it is easier to resolve the high frequency detail at the
bottom of the achromatic wedge than it is for either the Cy or C; wedge.

This aspect of the visual system is incorporated into the model by transform-
ing the opponent signals into the frequency domain and applying a set of spatial
frequency filters. This operation is performed independently to each of the A, Cy,

and C, channels. The spatial frequency response of each channel is modeled as a
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Butterworth filter with the frequency cutoffs mentioned above. The net result is a
perceptual representation of the input signal that will be used as the basis of the

adaptive sampling algorithm.

The JPEG Compression Algorithm

The goal of image compression algorithms is to represent images of a high
visual quality using a minimal number of bits. Adaptive sampling algorithms seek
to produce images of a high visual quality using a minimal number of samples.
There are a number of similarities between these two operations, and important
insights into the design of efficient adaptive sampling algorithms can be achieved by
investigating image compression techniques.

The JPEG still image compression standard is one of the most powerful and
popular image compression methods. This algorithm is able to achieve substantial
compression rates by transforming an input image into the frequency domain and
then utilizing the properties of visual masking to determine the appropriate accuracy
for each of the frequency terms. These are two important elements that will be
exploited in the new adaptive sampling algorithm. The remainder of this section
will describe the various stages of the JPEG compression algorithm.

The first step in the JPEG algorithm is to break the input image into a series of
8 by 8 pixel blocks. This is done to both increase the tractability of the subsequent
frequency transform and to exploit the large correlation of intensity values found
in blocks of this size. The values of the 8 by 8 blocks are then transferred into the
frequency domain by means of the Discrete Cosine Transform (DCT).

The DCT decomposes each block into an 8 by 8 sum of harmonicaily related
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FIGURE 31. The basis functions of the Discrete Cosine Transform.

cosine basis functions in a manner similar to the Discrete Fourier Transform. These
basis functions are depicted in Figure 31. The lowest frequency or “DC” term is
located in the upper left corner, and the “AC” terms increase in horizontal frequency
from left to right and in vertical frequency from top to bottom.

The forward and inverse DCT are respectively given by the following two

equations [145):

T T
Flu,u) = 38() 33 F(2,9)CenCon (43)
z=0y=0
7T 7
flzy) = 3—12 Y &(u)k(v) F (1, v)CruCy, (44)

u=Dv=0
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where

2
C}l,B = (CO0S {(ﬁ‘l)ﬂl

16

ane

’{u), k(v) = 1/v/2 foru,v=0

r{u),k{(v)= 1  otherwise.

The forward transform takes as input an 8 by 8 block of intensity values f(z,y) from
the input image and returns an 8 by 8 block of frequency coefficients £(u, v). These
frequency coefficients give the magnitudes of the cosine basis functions which, when
summed, will exactly reproduce the original image block. This summation is given
by the inverse transform that takes the frequency coefficients F'(u, v} and returns
the original intensity values f(z,y).

An important aspect of the DCT is its ability to represent the majority of the
image'’s energy within the first few low frequency terms. This is demonstrated in
Figure 32. This figure depicts the magnitude of the 4 by 4 low frequency coefficients.
The magnitude of all 64 coefficients were not shown due to the imperceptibility
of the higher frequency terms. The inset images were generated by dividing the
input image into 8 by 8 blocks, applying the DCT to each block, and collecting the
magnitudes of a specific frequency coefficient. The DC terms are depicted in the
upper left image. The remaining images show the AC terms for bases that increase
in horizontal and vertical frequency from left to right and top to bottom respectively.

This figure demonstrates that in a DCT representation of an image, the major-



FIGURE 32. Magnitude of the 4 by 4 low frequency components in the DCT
representation of a chess board image.

ity of the frequency coefficients will be very small and that the magnitude of these
coefficients rapidly declines with increasing spatial frequency. Rao and Yip [120]
have shown that the DCT is asymptotically equivalent to the optimal Karhunen-
Loeve transform in its ability to pack the energy of the image into the low frequency
terms. The fact that most of the higher frequency coeflicients are small or zero
imparts a large amount of redundancy to this representation that will be exploited
at a latter stage of the compression algorithm. This aspect of the transform is also
interesting from an adaptive sampling standpoint, since the areas of the image that
contain high frequency information are the only areas that require a high sampling

rate in order to be accurately reconstructed.
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16 11 10 16 24 40 51 61
12 12 14 19 26 58 G0 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
7292 95 98 112 100 103 99

FIGURE 33. A sample quantization table (after Wallace [145]).

The next stage of the compression algorithm reduces the accuracy of the fre-
quency coeflicients by means of a scalar quantization table. This lowers the bit rate
that is required to encode the image by further increasing the redundancy of the
frequency terms. An example quantization table is shown in Figure 33. This table
specifies the quantizer step sizes Q(u,v), that are applied to determine the final

coefficients F(u,v) that will be encoded. This is accomplished by the formula

FP(u,v) = Integer Round [ZEZ:Z;] . (45)

The quantization table applies different step sizes to the various frequency
terms. This allows the algorithm to achieve larger compression rates by discarding
information that is the least perceptually significant. High frequency coefficients
can be represented much less accurately than low frequency coeficients without
adversely affecting the perceived quality of the image. This is largely due to the

effect of visual masking.
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FIGURE 34. Visibility of noise when images with different spatial frequency content
(top row) are quantized to 4 bits per color channel (bottom row).

One aspect of this effect is that the presence of high frequency information can
reduce the detectability of other high frequency stimuli [128}. This is demonstrated
in Figure 34. The top two images in this figure show the original versions of low and
high frequency fractal mountains. In the bottom row the intensity of the images has
been quantized to 4 bits per color channel. The quantization error is clearly evident
in the low frequency mountain. However, the quantized high frequency mountain is
virtually indistinguishable from the original image.

At the next stage in the compression algorithm the frequency coefficients in
each block are arranged in a zig-zag order. This ordering is illustrated in Figure 35.

This operation facilitates the following entropy encoding step by placing low fre-
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FIGURE 35. The zig-zag sequence (after Wallace [145]).

quency coefficients (which are more likely to be non-zero) before high frequency
coefficients. This ordering also emphasizes horizontal and vertical frequencies more
than diagonal frequencies and is therefore consistent with the anisotropic spatial
frequency response of the human visual system.

The final step in the JPEG algorithm applies a number of conventional com-
pression techniques to remove the redundancy from the ordered frequency terms.
The DC values are handled separately from the AC values. The DC values are
encoded as the difference from the DC value of a neighboring block. This technique
is known as Differential Pulse Code Modulation, and exploits the strong correlation
in the average color of adjacent blocks. The AC values are entropy encoded using
either a Huffman or an Arithmetic technique, and the result is run-length encoded.
The output of these operations forms the final bit stream that is stored as the com-

pressed representation of the image. Further detail on these final techniques can be
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found in a paper by Wallace [145].

Synthesis Into the Frequency Domain

This section describes a new algorithm that synthesizes images directly into
the DCT frequency domain. The simple, frequency dependent perceptual quality
model will then be used to determine the visibility of image error in this domain.
This enables the algorithm to focus the effort of the rendering engine on the regions
of the image containing the most perceptible artifacts and to channel the remaining
error into the areas of the image where it is the least apparent. In addition, the
synthesis of images into the DCT domain will allow the algorithm to exploit the
prevalence of low frequency energy, and the property of visual masking that have
been utilized in the JPEG compression algorithm.

The algorithm begins by dividing the image into a series of 8 by 8 pixel blocks.
A sorted list of these blocks is maintained with the block at the head of the list being
the next to receive a sample. Once a sample is taken, a least squares technique is
used to find the AC,C, frequency representation that best interpolates the data.
As more samples are placed within a given block, frequency terms are added to the
representation in a low to high frequency order. The algorithm takes advantage
of the masking effect by reducing the precision of the illumination calculation as
higher frequency terms are added. The vision model described in pages 128-134 of
this chapter is used to determine where to put the updated block back on the list of
sorted blocks. After the image has been refined to the desired tolerance, a frequency
based filtering is performed to minimize any residual aliasing. The remainder of this

section provides additional details on these various steps.
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FIGURE 36. Ordering metric used to drive the selection of samples in the quad-tree
subdivision method.

Sampling the Scene

Once a block has been selected from‘the sorted list, a decision must be made
about where to place a sample within the block. A fixed sampling sequence is
employed for all blocks. This will be seen to minimize the computation required to
generate the frequency representation in pages 144-149 of this chapter. As samples
are taken they are placed as far as possible from any neighboring samples. This
provides the best coverage of the sample space and constrains the interpolation of
samples to values that are within the range of the existing samples.

The sampling sequence for each block is based on a quad-tree subdivision
technique. The root node of this tree is defined to encompass the entire 8 by 8§ block.
The first four samples in the sequence are taken through the outermost corners of
the block in the order indicated in Figure 36. After these samples have been taken
the repeated portion of the sequence is begun. The next sample is placed at position
A in the center of the block. A random choice is then made between positions B and

C to determine the location of the next sample. The subsequent sample is placed
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at whichever location was not chosen initially. This random ordering is employed
to evenly distribute samples in both the horizontal and vertical directions.

After samples A, B and C have been taken within a given node, it is subdivided
into nodes a, 8, v, and § which form four new leaves of the tree. A breadth first
search is then performed to select the leaf that will receive the next sample. This
process then repeats, placing one sample in each new node at either location A, B,
or C before returning to take subsequent samples.

There is one additional step that is necessary to complete the sampling se-
quence. Inspection of the existing sequence shows samples are evenly distributed
throughout the interior of the block and across the top and right edges. However,
except for the initial samples, no locations are chosen at the left and bottom edges
of the block. In order to remedy this problem, whenever a sample is taken at the
top or right edge a subsequent location is inserted into the sequence at the oppos-
ing edge. Thus, positions A’ and B’ would immediately follow positions A and B
respectively. The first fourteen locations in this sampling sequence are illustrated
in Figure 37.

This sequence is stored in a list that is indexed into at varying positions for
all blocks. If a block requires a sample position that is not currently on the list, the
location is calculated and added to the tail of the list. Otherwise, sample locations
are obtained by merely stepping through the existing entries.

Samples that are taken on the edge of an 8 by 8 block are used to refine the
frequency representation of all blocks that they border. A cache is employed for
each block to store the values of bordering samples returned for neighboring blocks.

This is necessary to avoid taking redundant samples since a strict ordering has been
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FIGURE 37. The initial 14 sample positions given by the quad-tree sampling
method.

placed on the sample sequence.
Computing the Frequency Representation

As each new sample is taken within a given block, its value is first transformed
into the AC,C5 color space as described in the first three stages of the vision model.
The final stage of the model will be applied at a later point in the algorithm. A least
squares fit is then used to determine the DCT frequency representation that best
interpolates the existing sample values. This representation is iteratively refined
with the introduction of each sample and is calculated independently for each of the
A, Cy, and Cy color channels.

From Equation 44 we see that within a specific channel, a block of the image



can be reconstructed from N cosine frequency terms by the equation

N-1

flz,y) = 3 Glui, v3)Cr,Cyp,- (46)

i=0

In this expression the subscript 7 imposes a zig-zag ordering on the frequency terms

% and v and

Clus,v) = %ra(ui)ﬁ,(vi)F(u,-, o) (47)

The sum of the squared error between an arbitrary DCT representation and S

sample values is given by the expression

S5
Z: [f(ma: ys) - 0!(338, ys)]2 1 (48)

s=0

where (z,,¥,) is the position of a sample within the block, and af{z,,y,) is the
sampled value. The least squares method is used to find the frequency coefficients

that minimize this residual error. These coefficients are given by the equation
[xX] = 17 (1, (49)

where X and Y are N x 1 column vectors, J is an N x N matrix, and

S
JtJ = Z Cxlvui Cyn Ll CJ:_;,UJ' CU." Wy
§=0
S
Y; = Z (s, Ys)Cr,; Cp, g
5=0

X;' = G('U.,‘,'U,‘).
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The actual frequency coeflicients F'(u, v) are obtained from the column vector X by
inverting Equation 47.

The solution of Equation 49 requires the inversion of an N by N matrix for
each new sample location. However, the cost of this operation can be reduced since
the frequency representation is being iteratively refined as additional samples are
taken. The matrix J can be iteratively inverted in O(N?) time using a rank one
inverse matrix modification technique that is tuned to suppress the accumulation of
error [116]. This technique is used to calculate the inverse matrix (J')~! that solves
the least squares equation for (S + 1) samples from the inverse matrix (J)~! that

solves the equation for § samples. This is accomplished by the formula

(JY) P = (J+AAT)! (50)
. (A=JtpaTgt
JT+ (ATT-1v) ; (51)

where A is an IV x 1 column vector and

v = A(ATA)+JA

A = C

TS+1ati

C,

US41.Ys

The expense of computing the least squares solution is also reduced by ob-
serving that the inverse matrix in Equation 49 is solely dependent on the sample
locations and not the actual sample values. This is the reason that the same sam-
pling sequence is used for all blocks of the image. The use of a fixed sampling
sequence implies that this matrix only needs to be inverted once for each position in

the sequence and can be used to calculate the frequency representation of all blocks



of the image. The inverse matrices are stored on a shared list. This list is grown
dynamically with the next matrix inverse being calculated for the first block to reach
the new sampling position. The frequency representation for a given block is then
determined by simply retrieving the inverse matrix from the list and performing a
matrix multiplication to yield the frequency coefficients for the A, Cj, and C, color

channels.
Adding Additional Frequency Terms

The blocks of an image are initially represented with only a DC term after
the placement of a single sample within each block. As the algorithm progresses
and additional samples are taken within a given block, terms are added to the
blocks representation in a low to high frequency manner. This provides a gradually
resolving, bandlimited image representation that interpolates the existing sample
values.

The zig-zag pattern specified in the JPEG compression algorithm is used to
determine the order in which frequency terms are added. This pattern introduces
the terms that are most likely to be non-zero first, and additionally emphasizes
the more perceptually significant horizontal and vertical frequency terms. A new
term is added to the frequency representation after the placement of every 2 or 3
samples. Since the sampling theorem specifies that sampling be done at twice the
highest frequency present in the solution, this prohibits introducing a frequency
term until there are enough samples to represent it. It also prevents the presence of
singularities in the inverse matrix, which can occur if the frequency coefficients are

not uniquely constrained. New terms are added to the frequency representation as
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required, up to the maximum 64 terms. No new terms will be added after the 64,
but the existing terms can continue to be refined with the placement of additional
samples.

The calculation of an additional frequency coefficient requires the expansion
of the (J)~! matrix and the ¥ column vector. Frobenius’ relation [13] is used to
compute the expanded inverse matrix. This relation allows the matrix expansion
to also be performed in O(N?) time. Frobenius' relation shows that the inverse
matrix (Jy4+1)~! that computes the least squares solution for (N + 1) terms can be

calculated from the inverse matrix (Jy)~! for N terms by the equation

-1

Jv B

(JN+1)-1 =
BT D
- JN)"1 0 JN)TIBATIBT( Iy —(Jy)"'BA-!
_ (Jn) . (In) (Jn) (Jn) (52)
0 0 —ATIBT(Jy)! AL

where B is an N X 1 column vector and

A = D-BT(Jy)'B

5
B, = ZCra.uicymvicxmtwﬂCys'vN+l
s=0
5
D = ZC’—’-‘:.MNHCys,‘"NH'
8=0

The resulting inverse matrix can then be multiplied by the expanded ¥ vector to
yield the vector X that contains the (N + 1) frequency coefficients as shown in
Equation 49. The 64 term versions of J and Y are maintained to yield B, D and

the expanded Y vector in an expedient manner.
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The first section of this chapter discussed how visual masking reduces the de-
tectability of high frequency error in the presence of other high frequency informa-
tion. This aspect of the human visual system is exploited in the JPEG algorithm by
reducing the accuracy of the higher frequency coefficients. The resulting error does
not adversely affect the perceived image quality. This effect is similarly employed
by the new rendering algorithm to determine the appropriate sample accuracy when
computing each of the frequency terms for a given block.

A Monte Carlo ray tracer is used as the basis of this rendering algorithm. This
permits physically correct illumination calculations, as well as providing a means to
vary the sample accuracy. In a Monte Carlo ray tracer, numerous rays are spawned
from each surface intersection to evaluate the amount of light that is incident on
the surface. The spawning of many rays will produce an accurate estimate of the
incident light and thus return an accurate sample of the light reflected from the
scene. However, as the number of spawned rays decreases the initial samples become
increasingly noisy.

The new rendering algorithm exploits the affect of visual masking by reduc-
ing the number of rays that are spawned from each surface intersection as more
frequency terms are added to a block’s representation. This produces error in the
high frequency coefficients. However, due to the presence of high frequency image
content, the error will be imperceptible and the expense of the rendering algorithm
will be decreased. Figure 38 shows a plot of the two-dimensional function that is
used to attenuate the spawning rate based on the latest frequency term that has
been added to the representation. This function is modeled after the quantization

table used in the JPEG algorithm.
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FIGURE 38. Rate at which the number of rays spawned decreases as higher fre-
quency terms are added.

Choosing the Next Block

Within a given image, all regions of the image do not generally contain the
same amount of spatial detail, nor do they require the same number of frequency
terms to be accurately represented. This can be seen by inspecting Figure 32, that
was used to demonstrate the energy packing ability of the DCT. This image shows
that most regions of the image can be accurately represented using only a limited
number of low frequency terms. Only the few areas of the image that contain high
frequency energy need the dense sampling that is required to reconstruct the high
frequency detail.

The perceptual sensitivity of the human visual system also has a significant
effect on the accuracy that is required in each region of the image. Areas of the
image where the error is very apparent should receive a higher sampling rate than

areas where the error is less perceptible. The areas of the image that contain the
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most visible artifacts should also be scheduled for processing first in order to produce
the most visually pleasing images in the allotted time.

In order to achieve these goals, a priority is calculated for each block in the
image. This priority is used to arrange the sorted list of blocks according to the
order in which they should receive an additional sample. The priority of a given
block is updated after a sample is taken in the block and its frequency representation
has been refined.

The priority of a block is based on the application of the visual metric (de-
scribed in pages 128-134 of this chapter) to determine the perceptibility of image
error. The first three stages of this model were applied to transform the sample
values into the AC|Cy color space. The remaining stage is applied as part of the
priority calculation and does not affect the actual image representation.

The first step in the priority calculation is to filter the frequency represen-
tation of each AC,C; channel by the associated spatial frequency response of the
visual system as described in the final stage of the visual model. Next, the root
mean squared change in the filtered frequency representation that resulted from the
current sample is calculated. This value is a measure of the perceptual significance
of the aliasing that was removed by the current sample. It is used as an indicator
of the need for further refinement. The validity of this indicator is based on the
assumption that blocks in which a large amount of aliasing has occurred tend to
need refinement the most and blocks in which a small amount of aliasing has oc-
curred tend to be well defined. This value is combined with decreasingly weighted
previous values and an initial uncertainty measure to generate the final priority.

The initial uncertainty measure is added to this calculation to assure that blocks



whose frequency representation is not changing still receive an adequate minimum
sampling. The priority is then used to sort the current block back onto the list of
blocks such that the block at the head of the list should be the next to receive a

sample.
Displaying the Final Result

The frequency based synthesis technique described in the preceding sections
generates and refines a functional representation of an image. This representation
interpolates the sample values and can be used to construct a full resolution image
even at the early stages of the algorithm. Before the image is displayed, however, it
should be low pass filtered to remove any residual aliasing due to under-sampling,.

In the initial stages of the algorithm, aliasing can occur in the low frequency
terms. As the algorithm progresses and more samples are taken within a block
the aliasing decreases and is only present in the high frequency terms. In order
to minimize this aliasing a lowpass filter with a variable cutoff is applied to the
frequency representation of each block.

The frequency coefficients of each block are transformed back into a linear
luminance space before a simple two-dimensional Butterworth filter is applied. The
cutoff of this filter increases with the square root of the number of samples that
have been taken. As the sampling rate increases the width of the filter grows large
and its effect is greatly diminished. The final image is then produced by transform-
ing the filtered coefficients back into the spatial domain using the inverse DCT in

Equation 44.
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FIGURE 39. Sampling density for the contrast squares in Figure 27.

Results

The image displayed in Figure 27 was created using the new frequency based
ray tracing technique. The sampling densities that were used in generating this
image are shown in Figure 39. In this figure, lighter areas indicate regions of denser
sampling. This example consists of two sets of squares. The intensity of the interior
square in each set is an equal luminance difference from the surrounding region.
However, due to the nonlinear contrast sensitivity of the human visual system, the
interior square on the dark surround is more apparent than the interior square on
the bright surround.

Figure 39 shows that the new algorithm correctly detected that the edges of
the squares were the only areas of the image containing high frequency content and,
therefore, required a higher sampling rate. It additionally shows that more samples
were used to reconstruct the interior edge in the left set of squares than in the right.
This demonstrates how the algorithm incorporates nonlinear contrast response to

determine that edge artifacts are more apparent in dark regions than in bright.
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FIGURE 40. Sampling density for the acuity wedges in Figure 30.

The acuity wedges shown in Figure 30 were also generated using the new
rendering algorithm. The sample densities that were employed are displayed in
Figure 40. In this example the wedges increase in spatial frequency from top to
bottom. The left wedge varies along the A axis of AC,C, space, the middle wedge
varies along the C) axis, and the right wedge varies along the C; axis. The amplitude
of the oscillation in each wedge is equal. The fact that the oscillations can be
resolved further down the achiromatic wedge than the chromatic wedges illustrates
the differences in the cutoffs of the visual system’s spatial frequency response curves
in these channels.

Figure 40 shows that the frequency based rendering algorithm has detected
that more samples are required to accurately reconstruct the higher spatial frequen-
cies at the bottom of the wedges. However, less samples are required to reconstruct
the C) and C, wedges than are required for the achromatic wedge. The result-
ing artifacts are not perceptible to a human observer. This demonstrates that the
algorithm is able to exploit the fact that achromatic differences are more visually

apparent than chromatic differences.



FIGURE 41. Images with different spatial frequency content rendered by spawning
1000 rays for every intersection (top row} and 100 rays for every intersection (bottom
TOW).

The fractal mountains in Figure 41 were rendered using a version of the fre-
quency based ray tracer that did not attenuate ray spawning as discussed in pages
147-149 of this chapter. The geometry for these mountains was created using a
Fourier synthesis technique to produce two-dimensional fractional Brownian motion.
The frequency distribution has been cut oft at a lower frequency for the mountain
on the left than the mountain on the right. The lighting for this scene is very di-
rectional and is produced by a small area light source. The nature of this lighting
creates a significant amount of noise in the Monte Carlo intensity calculation.

In the top two images, 1000 rays were spawned at each surface intersection to

evaluate the incident light. In the bottom two images, only 100 rays were spawned.



FIGURE 42. Images with different spatial frequency content rendered using a tra-
ditional Monte Carlo ray tracer and one ray per pixel (top row). Same images
rendered using the frequency based ray tracer and one half ray per pixel (bottom
left) and one ray per pixel (bottom right).
The resulting noise is apparent in the image of the low frequency mountain in the
bottom left. This demonstrates that masking affects the visibility of noise in a
similar manner to how it affects the visibility of quantization error. It additionally
shows that fewer rays can be spawned from surface intersections when high frequency
image detail is present without adversely affecting the perceived image quality.
The final demonstration, shown in Figure 42, compares the results of the
complete frequency based ray tracer with the results of a standard Monte Carlo ray

tracer. The top two images were produced by the standard ray tracing algorithm.

These images were generated by taking one sample per pixel and spawning 1000
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rays from each surface intersection. In these images, note that noise is visible in
the interior of the low frequency mountain and that aliasing is evident around the
circumference of both mountains.

The bottom two images were created by the complete frequency based ray
tracing algorithm. This algorithm attenuates the number of rays spawned from sur-
face intersections as discussed in pages 147-149 of this chapter. The low frequency
mountain in the bottom left of the figure was generated by taking an average of one
sample for every two pixels. There is less noise and aliasing present in this image
than in the image produced by the standard technique even though half as many
samples were used in its production. This demonstrates the benefit of the band lim-
ited interpolation that is done by the frequency based technique. The effect of this
interpolation is somewhat similar to the ray cache developed by Ward ef. al. [149)],
but is performed in image space.

The high frequency mountain displayed in the bottom right was created by
taking one sample per pixel. However, as more frequency terms were added to the
solution, the number of rays spawned from each surface intersection was rapidly
reduced from an initial rate of 1000 rays according to the rolloff curve depicted in
Figure 38. The imperceptibility of differences between this image and the image
created by the standard ray tracer shows that the affect of visual masking allows
fewer rays to be spawned in high frequency regions without reducing the perceived

quality of the image.
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Summary

This chapter has presented the design of a new ray tracing algorithm that
synthesizes images into the spatial frequency domain. This technique, for the first
time, allows the spatial frequency characteristics of an image and its error to be
directly exploited within an image synthesis algorithm. The availability of this
spatial frequency representation enables the new algorithm to use elements of human
perception and modern compression algorithms to reduce the number of samples
that are required to produce high quality images.

The new ray tracing algorithm employs a simple, frequency dependent per-
ceptual quality model to direct the placement of samples. This model consists of an
initial receptor stage, followed by a contrast nonlinearity, & matrix to an opponents
color space, and a final filtering by the spatial frequency response of each color chan-
nel. The use of this model allows images of a given visual quality to be produced
with fewer samples than existing techniques. In deciding where to place samples,
the new algorithm takes more samples for luminance differences in regions of low
intensity than in regions of high intensity because of the visual system’s nonlinear
contrast response. Achromatic variations also receive more samples than chromatic
variations due to differences in the cutoffs of the perceptual spatial frequency re-
sponse for these channels.

The new algorithm synthesizes images into the DCT frequency domain that is
used in the first stage of the JPEG compression algorithm. The synthesis of images
into this domain reduces the number of steps that are necessary to compress the
final image. Additionally, it allows the algorithm to exploit a number of features

of this compression algorithm. One feature that is particularly exploited is the



159

frequency quantization that is made possible by the affect of visual masking. This
property of the visual system is used in the new rendering algorithm to determine the
appropriate number of rays to spawn from each surface intersection when evaluating
the different frequency terms. Low frequency regions of the image are produced by
interpolating a few high quality samples, each of which is averaged from a large
number of spawned rays. Conversely, high frequency regions are produced with many
samples, but the quality of these samples is reduced by attenuating the spawning
rate. The resulting high frequency noise is not perceptible to a human observer.

The synthesis of images into the frequency domain has also been seen to offer
a number of advantages when considered solely as a sampling and reconstruction
technique. The detection of changes in the frequency spectrum of an image provides
a novel means of detecting aliasing and directing the effort of an adaptive sampling
algorithm. In addition, the least squares technique that is used to resolve images
from low to high spatial frequency detail offers a unique method of reconstructing
a bandlimited image from a set of nonuniformly spaced samples. Finally, the direct
filtering of the frequency representation of an image provides a rapid means of
removing aliasing in accordance with where it is occurring within the frequency
spectrum.

The work described in this chapter is novel in several respects. However, there
are areas of the algorithm that could be improved. A number of techniques have
been employed in this chapter to reduce the cost of synthesizing images into the
frequency domain from O(N?) to O(N?). In the following chapter a new technique
will be presented that reduces this cost to O(log N). This performance enhance-

ment will significantly improve the practicality of frequency based image synthesis.
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In addition, the simple perceptual metric described in this chapter has been en-
hanced in subsequent work. This work led to the development of the high speed,
color visual difference predictor presented in Chapter VII. This new image quality
model incorporates a number of advanced features, and will enable a more refined
application of the affect of visual masking. This new model will be incorporated
into the perceptually based adaptive sampling algorithm discussed in the following

chapter.
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CHAPTER X

A PERCEPTUALLY BASED ADAPTIVE
SAMPLING ALGORITHM

In this chapter a new rendering algorithm is developed. This algorithm utilizes
a high speed, color visual difference predictor to make perceptual quality assessments
during the construction of a synthetic image. The use of a perceptually based quality
metric enables the algorithm to automatically detect the regions of the image that
contain visible artifacts. By focussing effort on these areas, an image of a given
visual quality can be produced with fewer samples and a lower overall execution
time than with previous techniques. In addition, this algorithm allows the user
to select the perceptual quality of the output image. This feature eliminates the
guesswork involved in halting a rendering, and allows different scenes and shading
techniques to produce consistent, predictable results.

In order to accomplish these tasks the new algorithm is required to make
many, iterative predictions of the perceptual image quality. These predictions must
be performed very rapidly in order to avoid offsetting the gains achieved by the more
efficient sample distribution. Chapter VII has already discussed the design of a high
speed, color visual difference predictor. This predictor is an integral part of the
new rendering algorithm. A novel image synthesis technique is developed to render
images directly into a Haar wavelet representation. This representation corresponds

with the cortex transform performed at an early stage of the visual metric. The



synthesis of images directly into this frequency based domain facilitates expedient
predictions of image quality. This technique has the additional benefit of allowing
the algorithm to exploit the statistical properties of natural images to estimate
values in unrefined regions.

Two variations of the new perceptually based sampling method are presented.
The basic perceptual algorithm is discussed first. This technique employs the image
quality model to place each sample at the location of the most perceptible error.
This simplified version of the final approach is used to discuss key features of the al-
gorithm and provides a basis for direct comparison with existing objective adaptive
sampling techniques. The enhanced perceptual algorithm is then described. This
complete version of the adaptive sampling algorithm employs a number of perfor-
mance enhancing techniques to further improve the overall execution time of the
perceptually based algorithm.

This chapter is divided into five major sections. The first section describes the
basic perceptually based adaptive sampling algorithm. This section also discusses
how the frequency statistics of natural images are used to make informed guesses in
unrefined areas. In the second section the final enhanced version of the perceptual
algorithm is developed. The third section presents the results of the new percep-
tually based algorithm. In section four the new algorithm is compared with two
previous sampling techniques. This comparison covers both the required sampling
rates and the executfion time that is necessary to produces images of a given visual
quality. Finally, the major developments contained in this chapter are summarized

in section five.
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Basic Perceptual Algorithm

An adaptive sampling algorithm has been developed that is based on the
perceptual image quality model described in Chapter VII. This algorithm receives
sample values as input and specifies the placement of samples at the image plane as
output. The goal of this basic adaptive algorithm is to iteratively place each sample
at the location that currently contains the most visible error.

The key to developing this perceptually based adaptive sampling algorithm
comes from two primary insights. The first is that an estimate of the image and its
error can be used to construct two boundary images that may be used as input into
a visual difference predictor. The output of this difference prediction can then be
used to direct the placement of subsequent samples. The second insight is that a
given sample only affects the value and accuracy of a very limited number of terms
at each pyramidal level of a Haar wavelet image representation. This fact makes
the algorithm tractable because it implies that only a small number of operations
are necessary to refine the image approximation, its error estimate, and the visual
difference prediction for any given sample.

The algorithm proceeds through a few basic steps. First, as samples are taken
of the scene, a Haar wavelet image approximation is generated and refined. Next,
a multi-resolution error estimate is developed and similarly refined. This error esti-
mate is an objective measurement of the image accuracy and is expressed in terms of
the variance of the detail terms in the Haar representation. The image approxima-
tion and error estimate are then used to construct two boundary images which serve
as input to the visual difference predictor. The ocutput of the difference predictor

is accurnulated in a hierarchical tree. The nodes of this tree specify the maximum
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FIGURE 43. Block diagram of the basic adaptive sampling algorithm.

visual difference present at the current nodes and the children below it. This tree is
traversed choosing the branch with the largest visual difference in order to determine
the location on the image plane with the greatest perceptual error.

A Dblock diagram of the algorithm is illustrated in Figure 43. As samples are
taken their values are first transformed from CIE XYZ to SML space in the step
labeled cone fundamentals. The Haar image representation and its error estimate
are constructed in this space.

In the refine cortex representation stage the Haar image approximation is cre-
ated and refined. This is done through a technique similar to the “splat and pull”
method used by Gortler, et. al. [60]. The Haar image representation is stored in
a quad-tree data structure. The leaves of this structure are defined to contain the
intensity of single pixels in the image plane and the interior nodes contain the lower

resolution lowpass and detail terms of the Haar representation. As a sample is passed
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into this stage it is “splatted” at the leaf containing the sample. The intensity at
this leaf is simply the average of the samples taken within the pixel it is defined to
cover. The lower resolution lowpass and detail terms are generated by “pulling” the
updated leaf intensity up through the tree. During this process, if all children of a
node contain at least a single sample, then the lowpass and detail terms are given by
a local application of the Haar transform contained in Equation 36. If only a single
child contains a sample, then the detail terms are left undefined and the lowpass
term is set equal to the lowpass of the child containing the sample. If only two or
three children contain samples, then a simple scheme is used to fit the lowpass and
one or two detail terms, respectively, to the values of the defined children. In this
manner the image representation is gradually resolved as samples are taken of the
scene. It is also worth noting that this process is very fast since the addition of a
sample only requires the updating of a single path up the tree.

Figure 44 contains a demonstration of the results of this technique. The num-
ber of samples used fo construct the inset images increases from left to right, and
from fop to bottom of this figure. As more samples are taken of the scene, new
detail terms are added and the existing terms are refined. This process resolves the
image from low to high spatial frequencies.

At the next step labeled refine error estimate, the error of the current Haar
approximation is determined. This process is similar in some respects with the
algorithm described by Painter and Sloan [107]. The error estimate is expressed in
terms of the variance of the lowpass and detail coefficients. For leaf nodes containing

at least two samples the variance of the (lowpass) pixel approximation (V{leaf]) is
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FIGURE 44. Illustration of the refine cortex representation stage. The number of
samples used to construct these images increases from left to right, and from top to
bottom.

given by the relation

V[samples]

Viteaf] = # samples’

(53)

where V{samples] and # samples respectively indicate the variance and quantity of
the samples taken in the leaf region (see pages 52-55 of Chapter V and references {16,
81]). The error of the lowpass and detail terms in the interior nodes is defined with
respect to the error of their children. If the variance is defined for all children of a
node, then the variance of the lowpass and detail terms at the node (V [interior]) is

determined by the expression

4
Viinterior] = % 3 Vichildy]. (54)
i=1
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In this equation (V[child;]) is the variance of the lowpass terms for the " child and
the index 7 sums over all four children. This result comes from the rule V [i a;a;).=
i a;V[z;] and inspection of Equation 36. If the error is not defined for all children
of a node and at least 2 samples have been taken, then the variance is given by the
variance of the samples taken within the node divided by the number of samples in
the node. As in the case of refining the Haar representation, updating the multi-
resolution error estimate requires that only a single path in the tree be modified for
the addition of each sample.

The next stage in the algorithm labeled construct boundary images is con-
cerned with defining the two input images for the visual difference predictor. In
an ideal situation the accuracy of the current image would be determined by com-
paring an exact version of the image to the current approximation. However, an
exact version of the image is not known during the progression of the rendering
algorithm. Therefore a statistical technique is employed that uses the current image
approximation and an estimate of its error to construct two images that represent
the boundaries of what the actual image could be. These boundary images are then
used as input to the difference predictor, and on average the perceptual difference
between these two images is equal to a subjective measurement of the accuracy of
the current image approximation.

The boundary images are constructed in a wavelet representation in order
to facilitate the application of the quality model. In this representation the input
images are described by the magnitude of their detail coefficients which are used
to determine the local contrast at an early stage in the perceptual model. The

details for the two boundary images are derived from the details in the current image
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FIGURE 45. Illustration of the seclection of detail terms at the construct boundary
images stage of the adaptive algorithm.
approximation and the variance of those details. The magnitude of the approximated
detail specifies a mean value and the square root of the variance defines the spread
of the standard deviation curve. The magnitudes of the details for the boundary
images are taken from the 25% and 75% points on this curve. This process is
illustrated in Figure 45. In this manner two boundary images are specified which
should contain the true value 50% of the time. The boundary images are organized
so that image 1 contains the detail of minimum energy contrast and image 2 contains
the detail of maximum energy contrast. These boundary images can also be rapidly
refined for the introduction of each new sample. Since a sample only affects the
image approximation and error estimate along a single path in the tree, the detail
terms for the boundary images only need to be updated along this path as well.

A local visual difference prediction is performed at the updated nodes in the
next step of the algorithm. This is accomplished by passing the detail terms of
the boundary images through the chromatic aberration to the first portion of the

distance summation stages of the image quality model. These stages are highlighted
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FIGURE 46. A block diagram of the image quality model. The stages of the model
employed in the local visual difference prediction are contained in the gray region.
in Figure 46. The output of this operation is a measure of the local visual difference
(LVD) contribution at each of the updated nodes. This difference contribution is
defined by Equation 39 in Chapter VII. It equals a local sum of the perceptual
distance between the boundary images across each detail and color channel raised
to the 2.4 power. During this process the transducer outputs at the current node
are stored in the tree for fast re-use in the pooling stages of neighboring nodes.
The next step, labeled update mazimum error tree in Figure 43, accumulates
the updated LVD’s into a hierarchical tree. At each node a measure of the maximum
visual difference (MVD) is stored. This value is recursively defined to be the sum
of the LVD at a node and the largest MVD contained in either of the four child

nodes. The magnitude of the MVD indicates the largest cumulative perceptual
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FIGURE 47. An example of the update mazirnum error tree stage. The updated
path is denoted by the bold arrows. The values of the maximum visual difference
(MVD) and the local visual difference (LVD) are indicated for a number of nodes
in the quad-tree. The quad-tree is represented by a binary tree for simplicity.

error contained at and below a given node in the tree. The MVD of the root node
is raised to the 1/2.4 power and represents the magnitude of the most perceptible
error contained at any location within the image plane (in units of just noticeable
differences). This value is tested against a user specified threshold to determine
when the image has been rendered to the desired visual quality. An example of this
process is depicted in Figure 47.

In the final stage, labeled determine next sample location in Figure 43, a sample
location is selected at the point in the image plane containing the most perceptible
error. The location is selected by traversing the quad-free in a top-down fashion
and, at each node, selecting the branch of maximum visual difference. This traversal
continues until a leaf node is encountered or an interior node is found which contains
less than eight samples. If a leaf node is reached, a sample is randomly placed

within it. If the traversal stops at an interior node, then a sample location is chosen

randomly from a child’s quadrant so that the number of samples in each child node
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FIGURE 48. An example of the determine nest sample location stage of the adaptive
algorithm. The traversed path is indicated by the bold arrows.

is balanced to a tolerance of one sample. An example of this traversal is contained
in Figure 48.

The discussion thus far has assumed that only a single path in the quad-tree
is affected by a given sample. However, this is not strictly the case. Due to the local
contrast and spatial pooling stages of the vision model the modification of one node
in the quad-tree can have an affect on the visual difference at neighboring nodes.
One solution to this problem is to update multiple paths up the tree. However,
this approach was deemed too expensive. Instead the problem is effectively solved
by adding a small amount of randomness to the traversal of the maximum error
tree. As each node in the tree is visited, there is some likelihood a neighboring
node will be chosen instead. In this manner, if a particular path is traversed often,
there is a chance of selecting neighboring paths. This creates the opportunity to
incorporate updated values into the local contrast and spatial pooling calculations
for these paths.

The algorithm continues recursively until the maximum error of the root node

drops below a specified tolerance. The output image is reconstructed by simply
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doing an inverse Haar transform of the image representation and converting pixel
values from SML to the frame buffer space. This technique can also be used to

construct an iterative display of the image during the progression of the algorithm.
Selecting Values for Unknown Quantities

A difficulty with adaptive sampling algorithms that are based on the sample
variance is knowing when and to what extent to believe the error estimate obtained
from the samples. This is especially true for the hierarchical variance estimation
scheme described in this chapter. If the first two samples obtained from the scene
return exactly the same values and therefore have zero variance, can we conclude
that the image has been computed exactly and stop? If the image has been sampled
densely and two samples from within a particular pixel of the image plane are the
same, can we say that the intensity of the pixel has been computed correctly? A
person analyzing these two situations would certainly believe that the scene has not
been adequately sampled in the first case, but would probably be willing to stop
sampling in the second case. The reason for this difference stems from the statistics
of natural images.

A number of authors have analyzed the statistics of images commonly en-
countered in nature [46, 47, 123, 128]. These authors have found that the frequency
spectra of natural images is not random, but tends to be highly correlated and con-
tains a 1/f drop-off in the magnitude of the frequency terms. This fact is illustrated
for the example natural scene depicted in Figure 49. A Fourier transform was ap-
plied to the two-dimensional intensity values of this image. A plot of the magnitude

of the frequency spectrum that results is contained in Figure 50. The 1/f decline in
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FIGURE 49. An example image of a natural scene.

the magnitude of the coefficients is clearly evident in this graph.

Therefore, if only two samples have been taken of a scene, we have just begun to
compute the low end of the frequency spectra. Based on our experience with images
found in the natural world, we know that an average image contains higher frequency
detail, and therefore believe that the scene has not been adequately sampled. Thus,
we have some a priori knowledge about the error of an image approximation. If
a portion of the frequency spectra has not been computed, then, on average, the
approximation of the image contains an amount of error that is equivalent to the
1/f magnitude of the uncomputed spectra. This fact is simple to exploit in the
adaptive sampling algorithm because the objective error is estimated for each of the
frequency coeflicients of the image.

We can also draw upon the statistics of natural scenes when we must deter-
mine the error contribution of the chromatic channels. The frequency content of

naturally occurring spectral reflectances is known to be very low [89]. This means
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FIGURE 50. A plot of the two-dimensional frequency spectrum of the image con-
tained in Figure 49.

that reflectances are more likely to be uniform across the spectrum than they are
to be spikey. The result of this is that the average color in the natural world is
quite desaturated. This is illustrated for an example scene in Figure 51. This figure
contains plots of the RGB pixel intensities from the image in Figure 49 along the
red/green and green/blue axes. These intensity values can be seen to be strongly
grouped along the central achromatic axis. This implies that in the absence of other
knowledge about the chromatic content of an object, setting the difference contri-
bution of the chromatic channels close to zero is as good a choice as one can make.
Again, this statistic is easy to exploit because the adaptive algorithm stores color
information in an opponents representation.

As previously mentioned, the statistics of natural images are employed within
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FIGURE 51. RGB pixel intensities from Figure 49, plotted along the red/green axis
(top) and green/bluc axis (bottom).

our adaptive sampling algorithm. This is accomplished by initializing the two
boundary images to a uniform gray for one, and a statistically average image for
the other. The visual difference predictor is run on these two input images and the
output is used to seed the visual difference at each node in the quad-tree. Initially,
the estimated visual difference of the rendering is based on the comparison of the
gray and statistically average image. As the algorithm progresses and the image
approximation and error estimate is calculated at new nodes in the tree, the visual

difference based on the average statistics is traded for the visual difference that is
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based on the variance and content of the scene samples.

Enhanced Perceptual Algorithm

This section describes the final enhanced version of the perceptually based
adaptive sampling algorithm. This enhanced perceptual algorithm incorporates a
number of elements that are omitted in the basic approach. These modifications
significantly improve the execution speed of the algorithm by limiting the number
of times and locations at which the visual metric is applied.

The basic perceptual algorithm is designed to provide a direct comparison
with existing adaptive sampling techniques that are based on objective assessments
of the image accuracy (as well as to establish a simple framework in which to discuss
the key features of the method). For this reason, the basic technique evaluated the
image quality model to direct the placement of each sample. This is similar to a
number of objective adaptive sampling algorithms that compute a simple refinement
test each time a sample is placed [81, 107, 118]. However, the additional expense of
the perceptually based refinement test limits the practicality of this approach.

The remainder of this section will describe three modifications of the basic
approach that are used to create the enhanced perceptual algorithm. These elements
are designed to increase the number of samples that are placed for each evaluation
of the quality metric. This is done in a manner that does not adversely affect the
number of samples required to produce an image of a given visual quality. Similar
enhancements could be applied to a number of prior objective adaptive sampling
algorithms. However, they would have a minor impact on the execution time of

these techniques due to the minimal overhead of the simple objective error metrics.



The first modification to the basic perceptual method is to perform a prelim-
inary low density sampling of the image prior to initiating the adaptive sampling
algorithm. This modification is somewhat obvious because at the very early stages
of sampling the image there is very little information on which to base a quality
assessment. By taking an initial sampling, the error characteristics and frequency
content of the image can be reasonably determined before undergoing the expense
of executing the image quality model. In addition, a minimum sampling of the
scene is necessary in order to insure that no relevant image detail is lost. The basic
algorithm determines this minimum sampling rate based on the perceptibility of
error in a statistically average image. The appropriate choice of this rate can be
determined by using the basic algorithm to render a uniform image to the visual
threshold. This algorithm requires approximately one sample for every two pixels
before it is convinced that the image has been adequately sampled. This rate rep-
resents a minimum sample density that is required for all scenes. It therefore is an
appropriate choice for the preliminary sampling rate based on the use of the average
statistics and the visual metric.

The enhanced algorithm incorporates this improvement by randomly selecting
one out of every two pixels to sample. The sample locations and values are stored
in the leaves of the quad-tree data structure. After the initial sampling is complete,
the Haar image approximation, error estimate, and visual difference prediction are
calculated at the affected nodes in the tree in a depth-first order. This modification
reduces the number of times that values are calculated for the interior nodes of the
tree. In the old method a complete path up the tree was updated for the addition of

each sample. This implies that values stored at the interior nodes would be updated
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multiple times during this initial sampling period (e.g. the lowest frequency values
stored at the root node are affected by every sample). However, with the new
method the values at each node are updated only once.

The second modification is fo sample all regions of the image with a perceptual
error higher than the user specified threshold before updating the image approxi-
mation, error estimate, and difference prediction. This change is applied after the
preliminary sampling is complete. The basic method placed each sample at the lo-
cation of most perceptible error. However, all locations with a lower accuracy than
desired would eventually receive additional samples. Sampling all of these areas
before updating, again reduces the number of times that values are recalculated in
the interior nodes of the tree.

This change requires a modification in the traversal of the maximumn error
tree. In the basic method a value was stored at each node that indicates the largest
visual difference contribution at and below that node in the tree. However, the total
difference was not indicated at interior nodes. This simple technique allowed the
location of the image containing the most perceptible error to be easily located. The
enhanced method must be able to rapidly find all locations of the image with more
error than the user specified threshold.

This search is accomplished by performing a depth-first traversal of the tree.
At each node a value is calculated that indicates the most perceptible error that is
contained in a location of the image that is reachable from the node. This value
is easily calculated by summing the local visual difference contributions down the
traversed path and adding this value to the maximum visual difference stored at

the node. This measure of the maximum total error is tested against the thresh-
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old to determine which branches contain areas that require refinement and should
be traversed further. In this manner all regions of the image that should receive
additional samples are rapidly located without investigating areas that are already
below tolerance.

After the sampling is complete, values are updated at the affected nodes. Only
one update is required per node, whereas before numerous updates could occur at
the interior nodes for the same number of samples. This process continues until all
regions of the image have been rendered to the desired accuracy.

The final modification to the basic algorithm is to take multiple samples in
each area requiring refinement before updating values. This is the most beneficial of
the enhancements discussed in this section. Regions of the image that are indicated
to need refinement generally require more than a single sample in order to reach the
specified accuracy tolerance. This is especially true of very high frequency areas and
when Monte Carlo shading techniques are employed. In these situations hundreds of
samples can easily be necessary within a given pixel. It is very inefficient to perform
hundreds of image quality assessments in such a region. Conversely, taking too many
samples when they are not necessary can also negatively impact the execution time.

In order to solve this problem, an oracle was developed that is able to roughly
predict the number of samples that should be taken within a given area. This oracle
is based on the observation that the perceptual error declines with approximately
the square-root of the sampling rate. This can be observed in the plots of visual
quality versus sample density contained in pages 188-206 of this chapter. This
relationship is obviously a crude approximation due to the complexity of perceptual

response. However, it is simple to compute and tends to work well in practice.
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This relationship allows the number of samples to be taken in a leaf region to be
easily calculated based on the current visual error and number of samples that have
already been taken in the area. This oracle is slightly conservative and multiple
iterations are generally still necessary before all regions of the image are computed
to the desired accuracy. However, by taking the number of samples estimated by
this relationship between updates, it is possible to significantly reduce the number

of times that the visual model is executed and utilize very few unnecessary samples.

Results of the Basic Perceptual Algorithm

This section discusses the results of applying the basic perceptually based
adaptive sampling algorithm to render a number of three-dimensional scenes. Sim-
ilar results are achieved with the enhanced algorithm as will be demonstrated in
pages 206-216 of this chapter. Simple environments will be considered first followed
by a scene with more complex geometry and lighting. Two shading techniques will
be used in these examples, direct and Monte Carlo light source sampling. The direct
sampling method uses a simple shading algorithm in which point light sources are
directly sampled each time a ray strikes a surface. The Monte Carlo method uses
area light sources and blind Monte Carlo integration to evaluate the shading integral.
In this approach the incident radiance at a surface point is evaluated by spawning
a number of rays at random orientations across the positive hemisphere. Blind in-
tegration is acknowledged as not being the most efficient means of evaluating the
shading integral. However, this technique provides a simple means of demonstrating
a situation where noise is present within the illumination calculation.

The first demonstration is illustrated in Figure 52. The images on the left
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FIGURE 52. Sampling densities for direct light source sampling,.



side of this figure have been rendered by the perceptual algorithm to a tolerance
of 1 JND. This corresponds with the threshold error visibility of the human visual
system. The three scenes consist of arrays of texture mapped disks. The spatial
frequency of these textures increases from left to right and the contrast increases
from top to bottom. The textures for the top image vary along the achromatic
axis in AC,C; space, the textures in the middle image vary along the C, axis, and
the bottom textures vary along the C» axis. The illumination calculation in these
examples uses direct light source sampling,

This shading technique produces consistent intensity computations at a given
location of the image plane. Therefore, the spatial frequency of the textures is the
main determinant of the appropriate sampling rate within a given disk. More sam-
ples are required to accurately reconstruct high spatial frequencies than are neces-
sary for low spatial frequencies. However, less samples can be taken in the chromatic
disks than in the achromatic disks due to the lower spatial frequency cutoff of the
chromatic contrast sensitivity function. The resulting error will not be perceptible
to a human observer. Additionally, less samples can be used to reconstruct the Cs
disks than the C, disks because of the effect of chromatic aberration.

The images on the right side of this figure illustrate the sampling that was
performed by the adaptive algorithm. In these images white indicates the areas
receiving the most dense sampling whereas black marks the regions where the fewest
samples are taken. These images show that the algorithm has correctly distributed
samples in accordance with these aspects of the visual system.

In the next example the scene containing the achromatic disks is rendered

again using Monte Carlo light source sampling. The resulting image and sample
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FIGURE 53. Sampling density for Monte Carlo light source sampling.

density map are shown in Figure 53. The use of the Monte Carlo shading technique
results in very noisy illumination calculations, and many samples are required to
reduce the error to an acceptable threshold. The effect of masking has a significant
impact on the visibility of this error. This is reflected in the placement of samples
by the new algorithm. Many samples are necessary to accurately reconstruct both
the high and low spatial frequency disks because the noise is very apparent in these
regions. However, fewer samples are taken in the middle frequencies because the
strong visibility of these textures makes the noise less perceptible.

In Figure 54 the environment is made more complex but a similar result is still
obtained. For the case of direct light source sampling there is no additional noise
and high frequency achromatic transitions receive the most samples. Regions that
vary along the C) and C, axis receive progressively less sampling. For the case of
Monte Carlo sampling, many samples are required across the entire image to reduce
the noise to an acceptable threshold. However, fewer samples are necessary for the

middle achromatic frequencies due to the effect of masking,.
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FIGURE 54. Sampling densities for direct (left} and Monte Carlo (right) light source
sampling. Color varies in the middle three rows along the Cy, C), and A axes of
AC,C, space. Contrast of the middle three balls in the C, and A rows is decreased
in the top two and bottom two rows respectively.

The final example illustrates the perceptually based stopping criteria. In this
example identical scenes are rendered to a number of visual tolerances using two
different shading techniques. The resulting images are shown in Figure 55. The
images on the left were produced using direct light source sampling, and the images
on the right used a Monte Carlo shading technique. The visual quality of these

images increases from the top to bottom of the figure. This demonstration shows

that the new algorithm is able to produce perceptually consistent results even though
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FIGURE 55. Image rendered at a visual tolerance of 7 (top), 5 (middle), and 3
{(bottom) using direct light source sampling (left column) and Monte Carlo light
source sampling (right column).
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radically different sample distributions and shading techniques are employed. In
the case of direct light source sampling, aliasing is the significant problem, whereas
for Monte Carlo shading, noise is the predominant artifact. However, at a given
tolerance, the algorithm is able to hold the worst case appearance of each type of

artifact to an equivalent level of visual impact.

Comparison with Existing Sampling Algorithms

This section compares the results of the new perceptually based adaptive sam-
pling algorithms with the results of two commonly used sampling strategies. This
comparison will cover both the quantity of samples that are required to produce im-
ages of a given visual quality and the overall expense of the algorithms. A number
of example renderings will be used to demonstrate the key features of the percep-
tually based technique. The two other sampling strategies that will be employed in
this comparison are uniform sampling and adaptive sampling based on an objective
error estimate.

Uniform sampling is the simplest and therefore one of the most prevalent meth-
ods for placing samples within the image plane. In this technique a refinement test
is not used and an equal number of samples are taken in each pixel. One of the
drawbacks of this strategy is that it is the responsibility of the user to determine the
sampling rate that produces an image of the desired quality. The usual approach
to applying uniform sampling is to take all samples at a given pixel before begin-
ning to sample the next pixel. This minimizes the amount of memory required.
However, this method does not allow a fair intermediate image comparison with the

other sampling strategies because regions of the image will be undefined until all
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samples are taken. Therefore the uniform sampling algorithm that is used in the
tests reported here, disperses intermediate samples more evenly across the image
plane. In this approach a single sample is first taken at each pixel. This sampling is
performed left to right, top to bottom across the image. After all pixels have been
sampled once, a second sample is taken in each pixel. This process continues until
the final sampling density has been reached. Within a given pixel the samples are
randomly distributed and the intensity of a pixel is defined to be the average of the
samples taken within it.

The second sampling strategy that will be used for comparison is adaptive
sampling based on an objective error estimate. This algorithm uses the variance of
the sample’s radiance in RGB color space as its error metric. This approach is similar
to a number of the prior techniques discussed in pages 41-43 of Chapter IV that use
sample statistics as the basis for their refinement test [81, 107]). The actual adaptive
algorithm was created by removing the stages that modeled the human visual system
from the basic perceptually based adaptive sampling strategy described in pages
163-176 of this chapter.

The adaptive sampling algorithm receives the sample’s RGB radiance as input.
The goal of this algorithm is to iteratively place each sample at the location contain-
ing the largest objective error. This is accomplished by creating and refining a Haar
wavelet image approximation and multi-resolution error estimate as described in the
refine corter representation and refine error estimate stages of the basic perceptual
algorithm (see pages 163-176 of this chapter). The local error (LOD) at each node

of the quad-tree is defined to be the sum of the detail variance (V) across all detail
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orientations () and RGB color channels (¢):

3 3

LOD =5 Z Vg, d. (55)

fi=1c=1

A maximum error tree is created by summing the largest local error up the branches
of the quad-tree as described previously. The result of this operation is that a value
is stored at each node of the tree that represents the largest variance present in the
region of the image which that node is defined to cover. The next sample location
is determined by fraversing the quad-tree in a top-down fashion and selecting the
node with the largest variance. In this manner samples are always placed in the

location of the image plane containing the largest objective error.
Required Sampling Rates

This section will discuss the number of samples required by the different sam-
pling strategies in order to produce images of a given visual quality. This discussion
compares the results of the basic perceptual algorithm with the results of the uni-
form and objective adaptive sampling techniques described in the previous section.
The examples that are described show that the new perceptually based adaptive
sampling algorithm is able to produce images of equivalent visual quality using
fewer samples than either of the existing uniform or objective adaptive sampling
algorithms.

A number of example renderings will be used to illustrate key features of the
new algorithm. In each of the examples the placement of samples by the three
approaches will be discussed. The images that are produced by the algorithms after

an equivalent number of samples will be shown in order to allow a visual inspection.
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Additionally, a visual difference prediction will be performed using the algorithm
described in Chapter VII to compare the images with a high quality rendering. This
will illustrate the areas of the image containing visible artifacts and further verify the
new difference predictor. Finally, a graph of the maximum visual difference versus
number of samples will be given for each of the three techniques. The maximum
visual difference is defined to be the largest difference found at any location in
the image, using the new visual difference predictor. A rendering is generally not
considered to be of high enough quality until all regions of the image are computed
accurately enough so that the error is below the visual threshold. Therefore, if even
a small region of the image contains significant perceptible error, the image can be
considered unusable. For this reason maximum visual difference is an appropriate
quantity in these comparisons.

The first example illustrates the benefit of adaptive sampling. A high quality
rendering of this scene is contained in Figure 56. This scene consists of simple
texture mapped disks which increase in spatial frequency from the left to right and
top to bottom of the image. The shading in this scene is accomplished by directly
sampling point light sources every time a ray strikes a surface. In this case there is
no variance in the intensity of a sample at a given location and the spatial frequency
of the texture is the primary determinant of the sampling rate that is necessary to
accurately render the scene.

According to the sampling theorem, more samples are necessary to accurately
reconstruct signals containing high spatial frequencies than are necessary for signals
containing only low spatial frequencies. For this reason uniform sampling performs

badly in this example. The disk in the lower right of the image contains the highest
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FIGURE 56. High quality image for the spatial frequency example. This scene
contains texture mapped disks which increase in frequency from left to right and
top to bottom.

frequency texture and therefore requires the most samples to accurately reconstruct
it. However, in order for the uniform sampling algorithm to take more samples in
this region, it must take more samples in every pixel of the image. This is inefficient
because the majority of the samples are spent calculating regions of the image that
have already been accurately computed.

The adaptive sampling algorithms are much more efficient in their placement
of samples. The images in the top row of Figure 57 show the sample density plots
for each of the sampling techniques. The result of uniform sampling is on the left,
the result of adaptive sampling based on an objective error estimate is in the center,
and the result of the perceptually based algorithm is on the right. Areas containing
the most dense sampling are marked in white and areas with the lowest sampling
density are marked in black. Intermediate densities are plotted on a square root

scale. The sample density plot for uniform sampling is included for reference and
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FIGURE 57. Comparison of uniform (left), objective (middle), and perceptual
(right) sampling strategies for the spatial frequency example. The rows contain the
sample density maps (top), the images produced after an average of 4 samples per
pixel (center), and the visual difference comparison with the high quality image
(bottom).
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indicates that a low number of samples have been taken equally at all pixels. In the
plots for the adaptive algorithms we see that both algorithms have correctly placed
the most samples within the highest frequency disks and very few samples in the
constant background and low frequency disks.

The middle row of Figure 57 shows the images that are produced after an
average of 4 samples per pixel have been taken. Again, the image created by uniform
sampling is on the left, objective sampling is in the middle, and perceptual sampling
is on the right. At this sampling density it is very difficult to discriminate any error
within the images produced by adaptive sampling, but the error is still very apparent
within the highest frequency disk in the case of uniform sampling.

The resulfs of visual difference predictions between these images and a high
quality rendering are contained in the bottom row of Figure 57. In these images
increased brightness is used to indicate areas of more perceptible error. The differ-
ence predictions provide a good correspondence with subjective impressions of the
images in the middle row. Again we see that the error is significantly more visible
in the highest frequency disk produced by uniform sampling, and less visible and
more evenly distributed for both of the adaptive sampling algorithms.

A graph of peak visual difference versus number of samples is plotted in Fig-
ure 58. In this example over a hundred samples per pixel are required to reduce the
error of the highest frequency disk to the visual threshold (visual difference = 1).
For the uniform sampling method this equates to taking over a hundred samples in
each pixel of the image. The two adaptive sampling algorithms, however, are able
to significantly reduce the total number of samples required. This is accomplished

by taking fewer samples in regions of low spatial frequency and more samples in
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FIGURE 58. Sampling rates for the spatial frequency example depicted in Figure 56.

regions of high spatial frequency. This technique allows the adaptive algorithms
to accurately render the image using roughly 12% of the samples required by the
uniform sampling algorithm.

The benefits of adaptive sampling are well known in the field of computer
graphics. it is often assumed that adaptive algorithms based on objective error will
always outperform uniform sampling. However, this is not the case. In the next
example we will see a situation where placing more samples in regions of large objec-
tive error will create images with more perceptible artifacts than if the same number
of samples had been placed uniformly. A perceptually based sampling algorithm is
therefore the only method which can efficiently handle this situation.

The scene for the next example consists of the simple sphere illustrated in
Figure 59. The sphere is illuminated by a small area light source. Blind Monte Carlo
integration is performed to evaluate the shading integral. This shading technique

spawns many rays at random directions from each surface intersection in order to
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FIGURE 59. High quality image for the contrast example. This scene consists of a
simple sphere illuminated by an area light source.

evaluate the radiance that is incident at a point on the sphere. Since this is a random
process there is a certain amount of variance in the intensity of the samples taken
of the sphere. Because there is very little spatial variation in this image, intensity
variation and the visibility of this variation at different illumination levels are the
primary factors that govern the appropriate sampling rate.

The sample density maps for the three sampling algorithms are shown in the
top row of Figure 60. The map in the center shows the sample density for the
objective method. In this image we see that the most samples are taken at the
brightest regions of the sphere and the least samples in the dark regions. This is
because the standard deviation of the samples scales with the reflectivity of the
sphere. Consider for example that the scene is illuminated by a 100 cd/m? light
source. At each point on the surface rays are spawned to determine the incident

light. Rays that strike the light source will return the intensity of the light. Rays



FIGURE 60. Comparison of uniform (left), objective (middle), and perceptual
(right) sampling strategies for the contrast example. The rows contain the sample
density maps (top), the images produced after an average of 20 samples per pixel
(center), and the visual difference comparison with the high quality image (bottom).
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that miss the light source will return an intensity of 0 ed/m?. Therefore, samples
that originate at the image plane and strike a point on the sphere that reflects 100%
of the incident light will return noisy values between 0 and 100 cd/m?, depending
on the number of spawned rays that strike the light source. However, samples from
the image plane that intersect a point on the sphere that only reflects 1/100* of the
incident light will only vary between 0 and 1 ed/m? (the difference in the reflectivity
of these two points is the result of the orientation of the surface relative to the light
source and eye position). Thus, the amount of noise in the first case will be 100
times greater than the amount of noise in the second case.

As it turns out, the sampling pattern produced by the objective algorithm is
extremely inefficient. This is because the sensitivity of the human visual system
varies with the local illumination level. The visual system is much more tolerant of
error in bright regions than in dark and is equally tolerant of error when % is a
constant (where AL represents the luminance error and L is the mean luminance).
In this example the mean luminance at locations of the image also scales with the
reflectivity of the sphere. The net result is that the visibility of the error at a given
sampling rate is uniform across the face of the sphere. This implies that uniformly
sampling the interior of the sphere is an optimal solution. This is the sampling
pattern used by the perceptual algorithm, as can be seen in the rightmost sample
density map.

The middle row of Figure 60 shows the images created by the three algo-
rithms after an average of 20 samples per pixel. Note that noise is very visible along
the dark underside of the sphere in the image produced by the objective method,

whereas it is difficult to discriminate the noise anywhere on the surface of the sphere
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FIGURE 61. Sampling rates for the contrast example depicted in Figure 59.

produced by the perceptual method. Additionally, the image rendered by the per-
ceptual algorithm has a somewhat higher visual quality than the image generated
by the uniform sampling strategy. This is because the perceptual algorithm cast
fewer samples in the constant background around the edges of the image and, in-
stead, concentrated these samples in the interior of the sphere where they were most
needed. These observations are further demonstrated by the visual difference maps
contained in the bottom row of this figure.

The visual quality of the images produced by these algorithms is plotted ver-
sus the sampling rate in Figure 61. The objective sampling algorithm has the worst
performance in this example. Because of the poor sample distribution used by this
method a large number of samples are wasted in the bright specular region of the
sphere before an adequate number of samples are taken in the darker regions. The
uniform sampling algorithm produced better results, requiring only a quarter of the

samples of the objective method. This is due to the fact that uniform sampling is
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FIGURE 62. High quality image for the chromatic spatial frequency example. This
scene contains three rows of texture mapped disks that increase in frequency from
left to right. The bottom row varies along the achromatic axis, the middle row along
the C) axis, and the top row along the C; axis.

exactly the right thing to do within the interior of the sphere. Again, the percep-
tually based algorithm faired the best, requiring only half as many samples as the
uniform method.

The third example that will be discussed in this section is illustrated in Fig-
ure 62. This example will demonstrate the benefit of exploiting differences in the
spatial frequency sensitivity of the achromatic and chromatic channels. This scene
consists of three rows of texture mapped disks. The spatial frequency of the tex-
tures increases from the left to right disk. In the bottom row the grating varies
achromatically, the grating in the middle row varies along the C; color axis, and
the top row varies along the C, axis. The magnitude of each sinusoidal grating is
equidistant in RGB radiance space. Direct sampling of point light sources is used

in the shading calculation.
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The sampling patterns produced by the uniform, objective, and perceptual
algorithms are shown in the top row of Figure 63. In this figure we see that both
adaptive algorithms have correctly sampled the disks with high spatial frequency
textures at a greater rate than the disks with low spatial frequency textures. The
difference in the two sampling patterns is that the objective algorithm cast an equal
number of samples in each row, whereas the perceptual algorithm took the most
samples in the achromatic row and successively less samples in the rows for the C,
and C; color channels. This result occurs because the objective error metric does not
take into account the spatial frequency sensitivity of the human visual system or the
differences between achromatic and chromatic sensitivity. The perceptual algorithm,
on the other hand, has modeled these elements. Because the achromatic contrast
sensitivity function cuts off at a higher spatial frequency than the chromatic contrast
sensitivity function, high frequency noise is more visible when it occurs along the
achromatic axis than either of the chromatic axes. In addition, due to the effect of
chromatic aberration, high frequency noise is more visible along the C; axis than it
is along the Cy axis. The sample distribution produced by the perceptual algorithm
is therefore more efficient than the one employed by the objective algorithin.

The middle row shows the images produced by the three algorithms after an
average of 2 samples per pixel. The image produced by the uniform sampling pattern
contains the worst artifacts. This is because the high frequency disks are severely
undersampled. It should also be apparent that noise on the achromatic disk is more
visible than the noise on the C) disk which is more visible than noise on the Cs
disk. The image produced by the objective sampling algorithm is better because

more samples are concentrated with the highest frequency disks. However, artifacts
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FIGURE 63. Comparison of uniform (left), objective (middle), and perceptual
(right) sampling strategies for the chromatic spatial frequency example. The rows
contain the sample density maps (top), the images produced after an average of
2 samples per pixel (center), and the visual difference comparison with the high
quality image (bottom).
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are still visible on the high frequency achromatic disk. The image produced by the
perceptually based algorithm contains even fewer artifacts. This is because samples
were concentrated in the high frequency achromatic disk rather than in other regions
where the error is less conspicuous. It is interesting to note that within this image
the high frequency C, disk contains rather coarse grained noise. However, the low
frequency cutofl of the contrast sensitivity function for this channel and the effect
of chromatic aberration make this noise invisible at standard viewing distances.

A visual difference prediction of the results of these algorithms is contained in
the bottom row. Again we see that both the uniform and objective methods have
left the most significant visual error within the high frequency achromatic disk. The
difference map for the perceptually rendered image shows that this algorithin has
succeeded in distributing the error equally across all high frequency disks. This
implies that an efficient sample distribution was employed. The large blocks that
are visible on the high frequency C; disk are indicative of the fact that only low
frequency error is visible for this color channel.

The graph contained in Figure 64 shows that uniform sampling has the worst
performance in this example, requiring approximately 30 samples per pixel to reach
the visual threshold. The objective sampling algerithm performs better requiring
only 1/3 as many samples. The perceptually based algorithm performs the best,
reducing the number of samples again by half through the correct incorporation of
contrast sensitivity as a function of spatial frequency and chromatic aberration.

The final example demonstrates the effect of masking. The image utilized in
this example is contained in Figure 65. This scene consists of two rectangles. The

left rectangle reflects a uniform gray. The right rectangle is texture mapped with the
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FIGURE 64. Sampling rates for the chromatic spatial frequency example depicted
in Figure 62.

top view of a section of carpet. This scene is illuminated with an area light source
and blind Monte Carlo integration is performed to evalnate the shading integral.
This process results in significant variation in the intensity of the samples at any
given location.

The sample density maps for this example are depicted in the top tow of
Figure 66. The map produced by the objective method shows that more samples
have been taken in the right rectangle than were taken in the left. This is because
the additional spatial variation of the carpet creates a greater sample variance than
in the left rectangle where there is only intensity variation caused by the Monte
Carlo integration. However, this sampling pattern is inefficient. The texture map
of the carpet contains significant energy at spatial frequencies to which the visual
system has a high sensitivity. This energy is additionally distributed across a numnber

of frequencies and orientations. The result of this energy distribution is that the
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FIGURE 65. High quality image for the masking example. This scene contains two
squares. The left square is a uniform gray and the right square is texture mapped
with the top view of a section of carpet.

white noise produced by the intensity variation is masked by the presence of the
carpet texture. Therefore, an equivalent amount of noise will be less apparent on
the texture mapped rectangle than on the uniform one, where no masking occurs.
This effect is correctly incorporated by the perceptual algorithm which takes more
samples in the left rectangle than in the right.

The images produced by the three algorithms after 10 samples per pixel are
shown in the middle row. At this stage noise is still apparent in all of the images.
Within the image produced by the objective algorithm the artifacts are the strongest
and occur within the left rectangle where there is no masking. The right rectangle
contains little perceptible error. The image produced by the uniform sampling
distribution is somewhat better because an equal number of samples are taken in
each rectangle. However, the error is still more apparent in the left rectangle than

in the right. The image from the perceptually based algorithm is the only one with
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FIGURE 66. Comparison of uniform (left), objective (middle), and perceptual
(right) sampling strategies for the masking example. The rows contain the sample
density maps (top), the images produced after an average of 10 samples per pixel
(center), and the visual difference comparison with the high quality image (bottom).
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a visibly uniform error distribution. This approach has significantly more objective
error in the textured rectangle than in the non-textured one. Due to the effect of
masking, however, the two are of equivalent perceptual quality.

Visual difference maps of images produced by the algorithms are contained
in the bottom row. The difference maps for the uniform and objective algorithms
show non-uniformity in how visible the error is in the two rectangles. The difference
map for the perceptual algorithm is more uniform. In the early stages of sampling,
the difference maps for the perceptually based algorithm still exhibit some non-
uniformity, with more error on the left rectangle than on the right. This occurs
because a number of samples are required before the algorithm can ascertain a
reasonable estimate of the spatial frequency spectrum.

Uniformity of perceptible error is a key idea in improving the performance of
sampling algorithms. If the perceptibility of error is uniform across the image plane
then the peak visual error has been minimized. This concept allows the perceptually
based adaptive sampling algorithm to minimize the number of samples required to
compute images to a given visual tolerance.

For this example, visual difference is plotted against number of samples in
Figure 67. In this graph it is shown that the objective sampling algorithm required
the most samples to accurately render the image, requiring roughly 1,000 samples
per pixel. This extraordinarily high sampling rate was required because of the large
sample variance and the inefficiency of the sampling pattern. Uniform sampling
performed better in this instance, requiring a little over half as many samples. By
correctly incorporating the effect of visual masking, the perceptual algoritlun per-

formed best of all, requiring only a third as many samples as the objective sampling
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FIGURE 67. Sampling rates for the masking example depicted in Figure 65.

algorithm.

This section has demonstrated that the perceptually based adaptive sampling
algorithm can significantly reduce the number of samples required to render all
regions of an image to the perceptible threshold. These sample reductions have been
shown in comparison to the previously designed techniques of uniform sampling and
adaptive sampling based on an objective error estimate. In some cases the sampling
rate has been reduced by as much as 80 to 90 percent. In the following section
the cost of this algorithm will be discussed, as well as the execution times of the

examples in this section.
Timing Tests

This section presents the results of a number of timing tests that compare
both variations of the perceptually based adaptive sampling technique with two

previous sampling strategies. These tests demonstrate the benefits of the modifica-
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tions contained in the enhanced perceptual algorithm. This enhanced algorithm is
additionally shown to produce images of a given visual quality in less time than is
required by previous sampling methods.

The timing tests employ a similar technique to the one used to determine
required sampling rates in the previous section. A number of example scenes will be
rendered using the various of sampling algorithms. The images that are produced
by these algorithms are output at specified intervals. The perceptual quality of
the images is then computed by a comparison to a high quality renderings of the
same scene. This comparison utilizes the visual difference predictor discussed in
Chapter VII. These resulfs are accumulated in a graph that plots the maximum
perceptual difference between the two images versus length of execution time. This
is essentially a remapping of the required sampling rate graphs along a time axis.

These graphs plot the results of four different sampling techniques. These
techniques are the basic perceptual algorithm described in pages 163176, the en-
hanced perceptual algorithm discussed in pages 176-180, and the existing uniform
and objective methods presented in pages 186-188. The timing tests have been
performed for each of the example scenes described in the previous section.

Figures 68, 69, 70, and 71 show the results of these tests for the scenes depicted
in Figures 56, 59, 62, and G5 respectively. The plots of maximum visual difference
versus execution time are contained at the bottom of these figures. The graph at the
top of these figures redisplays the results of the sampling rate tests that plot peak
visual difference against the number of samples. These charts are reshown to provide
an easy comparison between required sampling rates and length of execution time.

The plots of the sampling rates have also been augmented to include the results of
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FIGURE 68. Sampling rates (top) and timing tests (bottom) for the spatial fre-
quency example depicted in Figure 56.



L

—o— Uniform
—0— Objective
—A— Basic
—8— Enhanced

Visual Difference

0 50 100 150 200 250 300

—o— Uniform
—0— Objective
—A— Basic
—— Enhanced

Visual Difference

Time (hours)

FIGURE 69. Sampling rates (top) and timing tests (bottom) for the contrast ex-
ample depicted in Figure 59.
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FIGURE 70. Sampling rates (top) and timing tests {(bottom) for the chromatic
spatial frequency example depicted in Figure 62.
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FIGURE 71. Sampling rates (top) and timing tests {(bottom) for the masking ex-
ample depicted in Figure 65.
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the final enhanced perceptually based sampling algorithm.

There are a number of important points to observe in these charts. The first is
the good correspondence between the required sampling rates for the basic percep-
tual and the enhanced perceptual algorithms. These two techniques require roughly
the same number of samples to produce an image of a given visual quality. This can
be seen by inspecting the plots of visual difference versus average samples/pixel.

The modifications described in pages 176-180 of this chapter significantly re-
duce the number of times that the image quality metric is applied during the course
of the adaptive algorithm. This is especially true of the final enhancement that
utilizes an oracle to predict the quantity of samples that are necessary in a given
area of the image. The fact that an equivalent number of samples are required by
both the basic and enhanced algorithms demonstrate that these modifications are
able to lower the overhead of the technique without placing unnecessary samples.
This results in a faster overall execution time.

The plots of the required number of samples also show that the peak visual
difference is occasionally higher at intermediate sampling rates for the enhanced
algorithm than it is for the basic perceptual algorithm. This difference comes from
the nature of the two approaches. The basic algorithm always places samples at the
location of most visible error. This produces the highest quality image possible at
all points in the rendering process. However, it requires that the quality prediction
is always current and that a search is performed to determine the location of each
sample. The enhanced algorithm, on the other hand, tries to minimize the amount
of time required fo produce an image with the specified error tolerance. This is

accomplished by sweeping across the locations of the image that need refinement,



and at each spot taking the number of samples that are estimated to be necessary
in order to reach the desired accuracy. This process is far more efficient, but it does
imply that some parts of the image will be much more refined than others during
the intermediate stages of the algorithm. If a more uniform quality refinement is
desired, intermediate target tolerances could be employed, This would be beneficial
if the rendering needs to be halted before the image reaches the final accuracy.

The second point concerns the overhead of the sampling techniques. The top
charts in Figures 68, 69, 70, and 71 plot the number of samples that each method
uses to produce an image of a given visual quality. The bottom charts graph the
amount of time required. If all four algorithms took the same amount of time to
determine where to place samples, then the top and bottom graphs would exactly
coincide except for a change in units along the bottom axis. However, this is not
the case. The differences in the horizontal scaling of the curves in the bottom
chart therefore indicate the relative amount of overhead incurred by each sampling
method.

Let us begin by analyzing the performance of the uniform, objective, and basic
perceptual sampling strategies. Uniform sampling has the lowest overhead of any
sampling technique. This method does not employ any refinement test. It merely
steps across the pixels of the image plane and places samples at each location.
This approach therefore represents a baseline by which other techniques should be
measured.

The objective sampling algorithin incurs slightly more overhead than uniform
sampling because a refinement test is used to determine the placement of samples.

This is evidenced by the fact that the objective curve shifts to the right relative to



the uniform curve in the timing tests. The refinement test used by the objective
algorithm is based on a simple measurement of the sample variance. This test can
be rapidly calculated and therefore does not have an overly significant impact on
the total execution time.

The basic perceptual algorithm, on the other hand, utilizes a more expensive
refinement test. This test adds approximately 1 millisecond of overhead to the
amount of time required to evaluate every sample (on a 100 MHz CPU). The added
expense of this approach increases the relative amount of time required to take a
given number of samples. This is especially true when the samples can be evaluated
very quickly, as in the case of direct light source sampling. The overhead of this
technique produces a large shift in the timing curve that is plotted for the basic
algorithm. The net result is that while the basic algorithm requires the fewest
samples of these three methods (roughly 1/3 to 1/10 the number of samples used by
worst method in these examples), it is only a middle performer in terms of overall
execution time. This is, in itself, an accomplishment because the basic perceptual
technique has the added benefit of allowing the user to specify a perceptual quality
for the output image.

Finally, let us look at the performance of the enhanced algorithm. The modi-
fications incorporated in this method are seen to significantly reduce the amount of
overhead of the perceptually based sampling strategy. This is observed by comparing
the results of the timing tests for the basic perceptual and the enhanced perceptual
algorithms. Even though these two methods require approximately the same num-
ber of samples to produce an image of a given visual quality, the enhanced technique

uses significantly less time. The amount of overhead of the enhanced algorithm is
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still larger than the uniform method, but is on a par with the objective sampling
technique. These two results are demonstrated by the relative scaling of the en-
hanced curve in comparison with the uniform and objective curves in the timing
tests. This is a significant accomplishment given the complexity of the perceptually
based refinement test.

The last point to observe in these charts is the aggregate speed of the enhanced
algorithm in comparison to the two previous uniform and objective sampling tech-
niques. This comparison demonstrates the ultimate benefit of the new perceptually
based adaptive sampling method. The previous section discussed the number of
samples required by the uniform and objective methods to produce an image of a
given visual quality. These two approaches were shown to require three to ten times
the number of samples necessary with the basic perceptually based technique. The
enhanced algorithm has been shown to be able to produce images of a given visual
quality using the same number of samples as the basic technique, but with much
less overhead. This allows savings in the sampling rate to directly translate into a
savings in overall execution time.

This fact can be observed in the results of the timing tests. In these tests the
final enhanced algorithm is able to render images to the visible threshold using less
time than both the uniform and objective sampling techniques in every example.
There is also a variation in which of the uniform or objective methods produce the
best results in the different examples. This makes it difficult to determine which
of the two methods is preferable. The consistent speed of the enhanced perceptual
algorithm overcomes this limitation and produces desirable execution times in all

examples.
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FIGURE 72. A summary of the timing test results. The values are based on the
elapsed time required to render the images to the perceptual threshold. The time
are reported as a percentage of the slowest algorithm.

Figure 72 accumulates the results of these timing tests into a single chart. The
values are derived by rendering the images to the visible threshold (visual difference
= 1 in the timing graphs), and the times are reported as a percentage of the worst
case performer. In this chart we see that the enhanced algorithm is able to render
the example images using only 10.0 to 28.1 percent of the elapsed time required by

the existing algorithms. This is a significant increase in execution speed.

Summary

This chapter has presented a new perceptually based adaptive sampling al-

gorithm. This algorithm utilizes a high speed, color visual difference predictor to
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make subjective image quality assessments during the progression of the rendering
algorithm. These quality predictions allow the algorithm to determine the regions
of the image that contain visible artifacts and to focus effort on these areas. The
quality metric is also used to determine when the image has been rendered to a
desired perceptual accuracy. This allows the algorithm to be automatically halted
when the image reaches a specified threshold. This technique was shown to pro-
duce consistent, predictable results regardless of the scene or the shading method
employed.

The new adaptive sampling algorithm is based on a novel technique that com-
putes the image approximation and error estimate directly in a Haar wavelet domain.
This allows the algorithm to use information about the frequency characteristics of
the images and facilitates a rapid application of the visual metric. It addition-
ally provides a means to exploit the frequency statistics of natural images to make
informed guesses about the error contribution of unrefined regions.

Two variations of the new perceptually based sampling method were presented.
A simplified basic perceptual algorithm was presented first. This approach employs
the image quality model to place each sample at the location of most perceptible
error. This algorithm was used to describe the major features of the perceptually
based sampling technique, and allowed a direct comparison with previous objective
sampling methods. The final enhanced perceptual algorithm was described next.
This complete version of the adaptive sampling algorithm incorporates a number
of techniques that lower the expense of the perceptual algorithm by limiting the
number of times and locations at which the visual metric is applied.

A number of examples were presented to both demonstrate the correctness of



algorithm’s sample placements and to provide a comparison with existing sampling
techniques. This comparison showed that the new method is able to produce images
of a given visual quality using far fewer samples than prior algorithms. The quality
of these images were measured using the visual difference predictor described in
Chapter VII and verified by a presentation of the resulting images.

A further study of the required sampling rates demonstrated that the enhanced
algorithm is able to produce images of a given visual quality using an equivalent
number of samples as the basic technique. A number of timing tests were then
performed to analyze the overall execution time of the new method. The enhanced
algorithm was shown to have significantly less overhead than the basic approach.
This allows lower sampling rates and lower execution times. Finally, the aggregate
speed of the enhanced, perceptually based sampling algorithm was compared with
the speed of prior sampling techniques. The new algorithm was shown to produce
images of an equivalent visual quality using only a fraction of the time required
by previous sampling methods. This illustrates the success and benefit of the new

perceptually based adaptive sampling scheme.



CHAPTER XI
CONCLUSION

The developers of previous rendering algorithms have ignored the fact that
synthesized images are intended to be viewed by a human observer. This has led to
the creation of image synthesis algorithms that waste significant amounts of effort
refining portions of an image that are already visually acceptable while ignoring
regions that contain perceptible artifacts. This dissertation has presented work that
resolves this problem through the development of a new perceptually based adaptive
sampling algorithm.

The dissertation began with an overview of the theory and algorithms that
are used to produce realistic images of synthetically defined scenes. This discussion
included a derivation of the radiance equation. The radiance equation is a fun-
damental formula that must be solved in order to determine the amount of light
present at a given position and orientation in space. This equation is based on a
physical model of how light propagates and scatters within a three-dimensional en-
vironment. A number of global illumination algorithms were discussed next. These
algorithms produce images by solving the radiance equation at the surfaces of a
scene and projecting the result onto an image plane.

Global illumination algorithms are capable of producing stunningly realistic
images. These images are often indistinguishable from a photograph taken of a real

environment. However, the applicability of these algorithms is presently limited by



the enormous expense of these realistic simulations. Improving the performance of
a global illumination algorithm is therefore crucial to its broad acceptance and the
wide availability of realistic rendering systems.

This dissertation has focussed on the visibility tracing variant of the ray tracing
algorithm. This is the most powerful and popular of the global illumination methods.
Visibility tracing constructs an image from samples of the incident light cnergy
at various locations of an image plane. These samples can be very expensive to
compute, and the quantity of samples necessary to accurately reconstruct an image
is one of the predominant factors affecting the expense of the algorithm.

The previous approaches to minimizing the required sampling rate were dis-
cussed in Chapter IV. These approaches took the form of a number of adaptive
sampling algorithms. An adaptive sampling algorithm uses an error metric to deter-
mine the accuracy of regions of the synthesized image. The error estimate produced
by this metric can be used to determine when an adequate number of samples have
been taken in each area. This technique allows samples to be non-uniformly dis-
tributed across the image plane so that only the minimum number of samples are
taken that are required to accurately reconstruct each region.

Prior error metrics are only based on the sampling that is performed at the
image plane. However, the number of rays spawned from each surface intersection
has an equally significant effect on the accuracy of the image. In order to quantify
this effect, a new and comprehensive error metric for Monte Carlo ray tracing was
developed. The development of this error metric is somewhat tangential to the
primary thrust of this dissertation. However, a rigorous understanding of how to

quantify and control the accuracy of an image is an important building block in the
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development of a perceptually based adaptive sampling algorithm.

This error metric also yielded a number of significant results. It provides a
more complete method of determining image accuracy than is available with current
error metrics. This metric, for the first time, allows the effect of surface spawning
on image accuracy to be precisely determined. In addition, this work shows how
the metric can be used to derive the optimal splitting and Russian roulette rates at
each level of the ray tree. This is far more information than has been previously
available on the selection of appropriate spawning rates. The use of these optimal
spawning rates can improve the efficiency of Monte Carlo ray tracing.

The problem with the direct application of this type of error metric is that it
ignores the perceptual response of the human visual system when determining the
accuracy of an image. What is necessary is a means to map these objective error
measurements to units of subjective image quality. Toward this end, the existing
literature on subject image quality metrics was reviewed.

These metrics are embedded within what are known as visual difference pre-
dictors. These predictors are capable of determining the perceptibility of differences
between two images. This is accomplished by processing each of the images in a
manner analogous to that performed by the human visual system and measuring
the differences between the images in the resulting perceptual space. The latest
difference predictors model a number of key aspects of the visual system. These in-
clude contrast nonlinearity, separation of spatial frequency and orientation selective
channels, spatial frequency sensitivity, and masking. These recent models produce
results that are very similar to the perceptual response of a human observer.

The existing visual difference predictors are designed to produce quality pre-
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dictions that are as accurate as possible, with little consideration given to the speed
of the algorithm. This limits the utility of these predictors for applications such as
adaptive sampling where speed is a primary concern. In addition, the majority of
existing visual difference predictors are only designed to handle achromatic images.
This neglects a number of key aspects of human perceptual response.

These two problems are solved by the development of a new high speed, color
visual difference predictor. This predictor is a modified version of Lubin’s [88] image
quality model. The new predictor utilizes a Haar wavelet transform to decompose
an image into spatial frequency and orientation selective channels. This approxi-
mation improves the speed of both direct and iterative quality predictions without
a significant loss of accuracy. The predictor is also extended to perform color dif-
ference predictions. This addresses a significant aspect of the visual system that
was neglected in most previous image quality models. This extension includes a
novel chromatic aberration stage that corresponds with the structure of the visual
pathway and allows accurate quality predictions for both chromatic color channels.
The net result is a new difference predictor that can assess the perceptual quality of
color images in a fraction of the time used by previous metrics for images containing
only a single achromatic channel.

There are very few previous applications of perception in the field of computer
graphics. This is surprising given that computer graphics is so intimately tied to
the subjective impression of a human observer. This is perhaps one of the reasons
why dealing with human perceptual issues is viewed by many researchers to be one
of the top two unsolved problems in the field of computer graphics. This deficiency

is significantly addressed by this dissertation, not only by its development of prac-
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tical perceptual algorithms, but also by increasing the awareness of other computer
graphics researchers as to the relevance and specifics of human perceptual response.

One major factor that has made it difficult to incorporate perceptual models
within a rendering algorithm is that all previous image synthesis techniques have
operated in the spatial domain. Without knowledge of the frequency characteristics
of an image it is impossible to fully exploit the varying sensitivity of the human
visual system. This issue was first addressed by the work presented in Chapter IX.

This chapter describes the development of a new adaptive sampling algorithm
that synthesizes images directly into a frequency representation. This allows a sim-
ple, frequency dependent perceptual quality model to be used to direct the placement
of samples. In this way the most apparent image artifacts are removed before those
that are less visible. This work is also significant in that it is the first time that
the effect of visual masking is introduced to the computer graphics community, as
well as the first time that an attempt is made to synthesize images directly into a
compressed format.

The novel ideas presented in this work are refined further to create a second
generation, perceptually based adaptive sampling algorithm. This new algorithm
significantly improves the speed and practicality of the original technique. The
second generation algorithm also employs a more sophisticated perceptual quality
model that includes the effects of masking and chromatic aberration.

This new perceptually based sampling algorithm uses a high speed, color vi-
sual difference predictor to make subjective image quality assessments during the
progression of the rendering algorithm. These assessments allow the algorithm to

detect and focus effort on the regions of the image containing the most perceptible
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artifacts. These quality assessments are also used to determine when the image has
been rendered to a desired visual quality. This enables the algorithm to produce
images of consistent visual quality regardless of the scene or shading technique that
is employed.

The new adaptive algorithm uses a novel technique that computes the image
approximation and its error estimate directly in a Haar wavelet representation. This
allows the algorithm to rapidly compute the frequency characteristics of the image
and its error. The representation is also equivalent to the cortex transform performed
at an early stage of the visual model. This minimizes the overhead of applying this
model. In addition, the synthesis of images into the frequency domain permits the
use of statistical commonalties of natural images to make informed guesses about
the error contribution of unrefined frequency terms.

The simplified, basic adaptive algorithm employs a quality prediction to direct
the placement of each and every sample. This is clearly not necessary and adversely
affects the performance of the algorithm. The complete, enhanced version of the
algorithm includes a number of modifications that greatly reduce the overhead of
the adaptive technique. This is accomplished by minimizing the number of times
and locations at which the visual model is applied. These enhancements are shown
to allow a reduction in the sampling rate to directly translate into savings in the
overall execution time.

Finally, a number of tests were performed to evaluate the performance of the
new algorithm. These tests compared the results of the perceptually based adaptive
algorithm with the results of two previous sampling techniques. These tests show

that the new algorithm is able to outperform the previous sampling techniques in
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terms of both the number of samples and the elapsed time required to produce
images of a given visual quality.

In conclusion, this dissertation describes the benefits of utilizing a model of
human visual perception to guide the construction of synthetic images. This tech-
nique allows images to be produced in a manner that is consistent with how they
are perceived. The result of this work not only produces an interesting theoretical
result, but also a practical application that can improve the performance of realistic

rendering systems.
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APPENDIX A

DERIVATION OF THE TRANSPORT, INTEGRAL, AND
RADIANCE EQUATIONS

This appendix provides the complete derivation of the transport, integral and
radiance equations. These sections are intended to supplement the abbreviated
derivations discussed in Chapter II. The development of these sections is strongly

related to the works of Glassner [56] and Arvo [70].

Derivation of the Transport Equation

'This section describes the complete derivation of the particle transport equa-
tion. This equation describes a relationship that governs the flow of abstract parti-
cles within Euclidean space. This particle flow relationship has been used to model
a variety of phenomenon, including liquid dynamics, automobile traffic flow and
(most importantly) light transport.

A particle moving in space has 5 degrees of freedom; three for position and two
for direction. The equations in this and subsequent sections will use R3 to signify
the three dimensions of Euclidean space and S? to signify the set of all directions
defined across an encompassing unit sphere. The product of these two spaces R® x S2
is called the phase space. The term r will be used to describe a specific position in
R? and w will be used to describe a direction in S2. Additionally, the term V will

be used to describe a volume within R* and I will specify a solid angle in S? (i.e.
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a subset of the directions defined across the unit sphere).
The primary quantity of interest in the transport equation is called the flux.
Flux describes the quantity of particles passing through an environment per unit

time. It is defined as

dQ

p="2 [ (56)

dt

particles
S 1

where () is the number of abstract particles. A related quantity is the phase space
flux ®(r,w). The phase space flux is simply the flux present at a specific point in
space r, flowing in the direction w.

In order to develop the transport equation we seek to define a relationship
governing the flow of particles through an arbitrary volume V' in an arbitrary set of
directions I'. This relationship is based upon quantifying the flux gains and losses
over this specific region of phase space. A balance equation will then be developed
that relates these quantities and forms the final transport equation. There are five
categories of gains and losses which are illustrated in Figure 1 of Chapter II. They
are streaming, emission, absorption, outscattering and inscattering.

Streaming is a measure of the net flow of particles through a volume. It may
be thought of as the amount of flux that is either injected into or escapes from the
surfaces of a volume. The net change in flux due to streaming may be found by
integrating the flux across the surface of a volume. Since flux may be viewed as a
vector quantity, this value will be either positive or negative depending on whether

there is a net flow of particles into or out of the volume. The equation for the net
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change in flux due to streaming is

o, = ] f B (s, w)dsduw, (57)

rs

where we have additionally integrated this quantity over the directions of interest.

The emission term is a description of the flux contributions due to particles
emitted from within the volume itself. In order to describe this term we must assume
to have a volumetric emission flux function ¢(r,w) which describes the flux emitted
at all points and directions within the volume. The total flux emitted is then simply

the sum of emissions at all points and angles of interest:

D, = I[Vfe('r,w)alrdw. (58)

The absorption term describes the total flux absorbed within a volume. It
is similar in nature to the emission term except that we define a function o,(r,w)
which describes the percentage of flux absorbed at a specific point and direction
within the volume. The total fux absorbed is simply the sum over I' x V of the

percentage of flux absorbed times the flux at that point and direction:

P, = ] / T (1, w)P(r, w)dsdw. (59)
Y

Particles that interact with a media may also be scattered into some new
direction w’. A volume scattering probability function k{r,w — ') is defined to
account for this effect. This function describes the probability that a particle at r

originally traveling in the direction w will be deflected into the new direction «’'.
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The outscattering term is defined to be the quantity of flux that is scattered from

the original region of interest I" into some other direction. It is given by

D, = / / B(r,w) / K{r, w — w')dw'dsdw. (60)
rv s?

This is the integral over the volume and angles of interest of the flux at that point
times the total probability that a particle is deflected into any other angle.

The inscattering term is similar to the outscattering term except that inscat-
tering accounts for the flux due to particles originally traveling in any direction w’

that are scattered into the region of interest I'. This term is given by

P; = f[fh‘.l.fr,w' — w)B(r, ) dw dsdw. (61)
P

1 52

The transport equation is generated from these terms by assuming that the
system is in equilibrium. This means that the illumination levels are not growing
brighter or dimmer over time. When this is the case, the gains from emission
and inscattering exactly balance the losses due to streaming, outscattering and

absorption. This yields the equation:
O, +D; =D, + P, + D,. (62)

If we examine the terms in this expression we see that the outer two integrals
are the same for all terms except for the streaming term. This term contains a
surface integral rather than a volume integral. However, we can make use of Gauss’

theorem to convert this term to a volume integral. When we apply Gauss’ theorem



we get the result that
®, = f f w - VB(r,w)dV dw, (63)
r i

where V is the del operator.

Since the outermost integral of all terms is now the same, we can simply remove
them. In essence this is saying that the relationship that we have built for a volume
V and solid angle I" also holds for all specific points r and directions w. This yields

the standard one-speed particle transport equation:

(r,w) +/n(r, w — w)P(r,w)dw =
S2

w- VO(r,w) + O(r,w) /n(r,w — wdw' + a,(r,w)d(r, w). (64)
5

This equation describes the balance relationship that the flux at all points

and directions in space must satisfy. This balance relationship by itself does not
tell us anything about the actual value of the flux at a specific point. It merely
describes the flux in terms of the incident flux from all directions. In order to
actually determine the flux we must define boundary conditions which explicitly
describe the flux at some boundary points in space. The actual flux at all other
points can then be determined in relationship to the flux at these boundary points.
In terms of computer graphics these boundary conditions can be thought of as
describing the emissive and reflective properties of objects within the scene. Once

these properties are described it is then possible to compute the flux at all other
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points within the scene. The most general form of these boundary conditions is

D(s,w) = €5(s,w) + / k(s,w — w)B(s,w)dw'’. (65)

©i(s)
This expression describes the flux at a surface in terms of the emission at that
surface and the flux scattered from the surface from all incident directions. This
expression combined with Equation G4 allows us to explicitly compute the flux at

any point within the environment.

Derivation of the Integral Equation

The transport equation given by Equation 64 allows us to compute the flux at
an arbitrary point in space. However, the form of this equation is not particularly
easy to work with since it contains both an integral and a derivative (V) of the
unknown quantity ®. This section describes the conversion of the transport equation
to a purely integral form in order to simplify the process of solving for the flux.

The first step in this conversion process is to change the gradient (V) to a
standard derivative. This is accomplished by reparameterizing the position vector
7 by the expression r — aw |o—¢. This expression says that the position r is given
by the line that passes through r in the direction —w at the point where o« = 0.
This method of parameterization is also useful because we will eventually wish to
describe the flux at a point by looking backwards along w to see where that flux is
coming from. The expression w:V®(r,w) from the streaming term is just the change

in the flux at the point r along the direction w and may therefore be rewritten as

W V(I)(T, UJ) = —%‘D[T — aw,w:l 1(1:0 . (66)
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The next step is to simplify Equation 64 by defining some new terms. The
outscattering and absorption terms on the right-hand side of Equation 64 are simply
constants times the unknown function ®{r,w) so we can collect them into a single

term a,(r,w):

o lr,w) = | k(r,w — W)dw' + o,(r,w). (67)

S2
Additionally, the emission and inscattering terms on the left-hand side of Equa-
tion 64 are only infinitesimally dependent on the flux through the direction w and
can also be considered constant with respect to ®(r,w). These terms can be rewrit-

ten as a gain term:

G(r,w) = e(r,w) + f K(r, w — w)d(r,w)dw'. (68)
s°

Substituting these expressions into Equation 64 and reparameterizing in terms of a

allows us to express this equation in a much simpler form:

ﬁtb(r - aw,w) — B(r — aw,w)o.(r — aw,w) = —G(r — aw,w). (69)

This expression is simply a linear, first-order differential equation. It can be
solved for ¢ using the technique of integrating factors. This technique tells us that

if we define a term

plr — aw,w) = exp []] —o.(r — Tw,w)d'r] . (70)
0
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v(r,w)

FIGURE 73. The visible surface function (after Glassner {56)).

we can re-express Equation 69 as
d
£ [u(r — aw, w)B(r — aw,w)] = —p(r — aw,w)G(r — aw,w). (71)

Integrating both sides and solving for ®{r — aw,w) yields

O(r - aw,w) = u(r — ow, w)P(r - aw,w) + f,u(r — Tw,w)G(r — Tw,w)dr. (72)
0

This expression tells us how to compute the flux at a point r in terms of the
flux at some point r — aw backwards from r along the direction w. These points at
T - aw are simply our surface points s and the flux at these points are described
from our boundary conditions of Equation 65. We define a visible surface function
v(r,w) to aid us in finding these surface points. This function takes as input a point
r and returns the distance to the nearest surface point in the direction —w. This
function is illustrated in Figure 73.

The integral form of the transport equation can now be found by substituting

the surface point s for 7 — v(r,w)w and expanding the terms of G. This yields the



final equation that we seek:

h
O(r,w) = pu(r, s)0(s,w) +/
i

w7, a) (e(a, w) -l-fn('r, W — w)d(a, w’)dw’)]dcu, (73)
52

where

a = 7r—oaw
h = virw)
§ = r—hw
[r—s|
p(r,s) = exp f —0.(r — Tw,w)dr
0
ge(r,w) = /rc(r, w — wdw' + g,(r,w).

52

"This equation could probably stand explanation at this point. We will proceed
by first analyzing the sub-expressions found within this equation. The term o, is
simply the flux percentage lost due to outscattering and volumetric absorption at a
specific point along the direction of interest w. The term g is then the sum of these
losses between two points in space. The gain term embedded within the integral
on the right side of Equation 73 is just the flux gains due to volumetric emission
and inscattering. This term is similarly described at a specific point and along the
direction of interest w.

The term p(r, s)2(s,w) is the flux contribution to the point of interest r from
the surface point s. The flux at the surface peint s is found from our boundary
conditions of Equation 65. The flux at this surface point is weighted by p which is

the percentage of the surface flux lost due to volumetric absorption and outscattering



as it travels from s to 7.

The integral on the right-hand side of Equation 73 accounts for the flux con-
tributions due to volumetric effects. The terms within the integral represent the
flux gains from a point in space weighted by the percentage of that flux lost as it
travels from that point to the point of interest r. The integral is then the sum of
these gains across all points from the surface to the point of interest.

The integral form of the transport equation therefore describes the flux at a
particular point in space as the net contribution of these final two sub-expressions.
The first accounts for the flux contributions from the boundary surface and the
second accounts for the volumetric flux contributions between the surface and the

specified point.

Derivation of the Full Radiance Equation

This section describes the derivation of the full radiance equation as well as a
number of common approximations to it. The radiance equation is based upon the
integral form of the transport equation but is defined in terms of radiance instead
of the abstract notion of flux. It additionally incorporates the effects of blackbody
radiation, phosphorescence and fluorescence.

In order to generate the radiance equation we must first convert from flux to
radiance. This is accomplished by noting that since the transport equation defines a
relationship between the flux at all points and directions in space, it must therefore
define the same relationship for the flux densities at those points. Described another
way, this says that if a relationship holds for a function (®¢), it must also hold for

. . . 12e
the derivatives of that function (=)
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Since the relationship will be stated in terms of radiance we must also convert
the scattering term (x) to a BRDF term (f,cosf). The cosine is necessary to account
for differences in orientation of source and receiving patches.

The transport equation expresses emittance with the single term e. A more
specific expression should state that light emittance can be expressed in two forms;

blackbody €, and phosphorescence e,

€(p,t, A) = e(p,w, t,A) + €,(p, w, t, A). (74)

Blackbody emission can be thought of as direct or immediate emission. It is

given by

2rhy’ 1
¢t explhw/kT(p,t)] -1

en(v, w,p, t) = my(w) (75)

This expresses the emission in terms of basic quantities such as the frequency, wave-
length and speed of light. For convenience we will express this value in terms of its
radiance L°.

Phosphorescent emission is the result of a material trapping incident energy

for a period of time before re-emitting it. This term is given by
[4
(P, t, A) = my(w) f d(t — 7)P,(p, ) fL(p,w’,/\, 7)eost' dw'dr. (76)
oo &

This says that the phosphorescent emission is the result of a directional function
times the integral from the start of time to the present of the decay times the

phosphorescent efficiency function times the incident radiance from all directions.
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Fluorescence is the effect of a material trapping energy at one wavelength A
and re-radiating it at another wavelength A. This can be thought of as a scattering
that occurs across wavelengths. To account for this effect we change the incident
radiance in the scattering term to account for radiance scattered from other fre-

quencies. The scattering term then becomes

ff('P: w = w) _/ Pf(pr N o= ’\)L(Psw,:’\!)d’\'dw’: (77)
ot Ry

where we have generated the incident radiance by integrating across all wavelengths,
a fluorescent efficiency function (Py) times the radiance at that wavelength.
The full radiance equation can be given by combining all of the pieces above.

This yields the complete description of the radiance at a point in space:

Lir,w, Ay e, t) = p(r, s) [L%(s,w, t, A)

t
+mp,(w) f d(t — T)P,,(s,/\)[L(s,w’,/\,e,'r)cosﬁ'dw'd'r

o
+ff(s,w’ — w, A) f Pr(s, X' = N L(s,w', N, e, t)dXN costdw’
el' Ry

h{rw)

+ f p(r,a) [La,w, t, )
0

Hi

1

t
+m, (w) / d(t — 1) Py(a, A)[L(s,w',/\,e,r)cosﬁ'dw'dr

+ f fla,w' — w,\) f Pra, X — N L(a, o', X, e, t)dN cosf'do | dev. (78)
o R

To understand this expression we must analyze it a piece at a time. The portion
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of the expression within the two sets of square brackets is just the radiance gains
from a point in space. It includes blackbody emission, phosphorescent emission and
inscattering (including radiance scattered from other frequencies). In the first half
of the radiance equation this quantity is evaluated at a surface point and multiplied
by p which is the attenuation from the surface point to the point of interest. The
second half of the radiance equation accounts for volumetric emissions by evaluating
the radiance gains between the surface point and the point of interest. These gains
are then multiplied by the attenuation from the point of emission to the point of
interest.

The full radiance equation is obviously very complex, and it would take an
exorbitant amount of time to compute. We therefore seek to reduce it to a more
manageable scale. The first common simplification is to eliminate the effects of
polarization, phosphorescence and fiuorescence.

This means that we are assuming that light is unpolarized, that the different
wavelengths of light do not interact and that the illumination does not change
over time. These are somewhat uncommon effects and can therefore be eliminated

without a large loss of generality. The simplified equation is then

L(r,w) = pu(r,s) | L%(s,w) + jf(s,w' — w, A)L{s,w)cost du'
9;
hirw)
+ f w(r, a) L“(a,w)+ff(a,w'—>w,/\)L(a,w')cosl9'dw' da. (79}

0 9:1

The final simplification assumes that all synthesis occurs in a vacuum. This

means that there are no volumetric effects due to emission, scattering or absorption.
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FIGURE 74. The geometry of the outgoing form of the radiance equation (after
Glassner [56]).
We are therefore only concerned with the effect of surfaces on the radiance, and the

radiance equation reduces to

L{r,w) = L°(s,w) + ff(s,w' — w, \)L(s,w')cosf'dw'. (80)
&

This equation determines the radiance at a point in space by looking backward
from that point to determine radiance incident from the nearest surface in the
direction —w. It is often useful to instead express the radiance in the outgoing
direction from a surface point 7. This situation is illustrated in Figure 74. A
slight modification fo notation is all that is required to yield the outgoing form of

Equation 80:

L(r,w®) = L*(s,u°) + ff(s,w’ — w° M) L(r,w')cosf.du/. (81)
ai

3

This expression says that the outgoing radiance from a point r is just the sum of

the emitted radiance from that surface point and the reflected radiance from all
incident directions. This limited form of the full radiance equation is what most

current global illumination algorithms are dedicated to solving.
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APPENDIX B
PROOF OF OPTIMUM SPAWNING FORMULA

‘This appendix describes the proof of Equation 27. It is an extension of a proof
given by Mikhailov [97). The validity of this expression for the base case of two
variables is easily seen by minimizing cost x V/[f] with respect to N; and solving
for N,. For an arbitrary number of variables the proof proceeds by induction. The

variance and cost of a function of &£ + 1 variables can be expressed as

1 1 1 1
= —_— — —_— | = - D* 2
VIfl= Do+ N, (D1+ N2D2+ + Ng---NkD‘) Do + NID‘ (82)
and
COSt=1+N1(1+Ng+"'+Ng"'Nk)=1+NIC;. (83)

The product of Equations 82 and 83 yields @ (Equation 25). Minimizing @ with

= /2

Substituting this result into the expression for Q, we see that

respect to N yields

"

Q= (y/Do+JCiDi)’ (85)
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This equation is minimized when C}D} is minimized. Assuming that Equation 27
minimizes () for k variables (i.e. yields Ny--- N, that minimizes C;D?), then to
complete the proof we must show that Equation 27 also holds for ;. By inspection

of Equation 84 we see that this reduces to showing %i- = Dy, or in general that

VIiA _

cost

De. (86)

For & = 0 this result is obvious. For arbitrary & this can be seen by substituting

Equation 84 into the ratio of Equations 82 and 83.
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