PARALLEL 1/O- AND COMMUNICATION-SENSITIVE SCHEDULING
ON HIGH-PERFORMANCE PARALLEL COMPUTERS

by

JENS MACHE

A DISSERTATION

Presented to the Department of Computer and Information Science
and the Graduate School of the University of Oregon
in partial fulfillment of the requirements
for the degree of
Doctor of Philosophy

March 1999

it

“Parallel I/O- and Communication-Sensitive Scheduling on High-Performance Pai-
allel Computers,” a dissertation prepared by Jens Mache in partial fulfillment of
the requirements for the Doctor of Philosophy degree in the Department of Com-

puter and Information Science. This dissertation has been approved and accepted

by:

Dr. Virginia M. Lo, Chair of the Examining Committee

Manck &, 1999
Date

Committee in charge: Dr. Virginia M. Lo, Chair
Dr. Sharad Garg
Dr. Richard Koch
Dr. Marilynn Livingston
Dr. Allen Malony
Dr. Andrzej Proskurowski

Accepted by:

iii

An Abstract of the Dissertation of
Jens Mache for the degree of Doctor of Philosophy
in the Department of Computer and Information Science
to be taken March 1999
Title: PARALLEL I/O- AND COMMUNICATION-SENSITIVE
SCHEDULING ON HIGH-PERFORMANCE PARALLEL

COMPUTERS

Dr. Virgini}a M. Lo

Approved:

A serious bottleneck to high-performance parallel computing is the high cost of
data transfer. As communication and I/O traffic on the links in the interconnection
network increases, network contention becomes a critical problem, drastically reduc-
ing effective data throughput. Minimizing network contention is crucial in order to
achieve fast job response times and high system throughput.

One factor that affects network contention is the resource management issue
of processor allocation, the assignment of a set of processors to each scheduled job.
Previous processor allocation strategies have essentially ignored the I/O and com-
munication demands of parallel applications and the resulting network contention.

Our analysis shows that the spatial layout of the compute nodes and the I/O nodes

iv
in relation to each other within the interconnection network topology is a key factor
that affects network contention. Based on the results of this analysis, we design and
test new processor allocation strategies that minimize network contention by being
sensitive to spatial layout and its effect on communication and parallel 1/0.

Our analysis is based on analytic modeling and on simulations driven by syn-
thetic workloads and realistic workload traces captured at supercomputing sites.
We analyze and minimize network contention in three different situations. First, we
concentrate on communication intensive jobs. We analyze inter-job link contention
due to communication among compute nodes, and we design a new strategy that
allocates each job as compactly as possible. Second, we concentrate on parallel 1/0
intensive jobs. We analyze traffic hotspots due to data transfer between compute
nodes and I/O nodes, and we design new strategies that optimize the shape and
location of jobs relative to the I/O nodes. Strategies that are optimal for parallel
I/0 often conflict with strategies that are optimal for communication. Thus as a
final step, we design an integrated allocation strategy that accommodates work-
loads that are both communication intensive and parallel I/O intensive. Our new
strategies are successful in improving both average job response times and system
throughput, and thus make a contribution towards efficient resource management

of teraflops-scale computing systems.

CURRICULUM VITA

NAME OF AUTHOR: Jens Mache
PLACE OF BIRTH: Karlsruhe, Germany

DATE OF BIRTH: April 10, 1970

GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED:

University of Oregon
Southern Oregon University
Universitat Karlsruhe, Germany

DEGREES AWARDED:

Doctor of Philosophy in Computer Science, 1999, University of Oregon

Master of Science in Mathematical and Computer Science, 1994,
Southern Oregon University

Vordiplom in Computer Science, 1992, Universitat Karlsruhe

PUBLICATIONS:

Lo, Virginia, Mache, Jens, and Windisch, Kurt. A Comparative
Study of Real Workload Traces and Synthelic Workload Models
for Parallel Job Scheduling. In Proceedings of the 4th Workshop on

Job Scheduling Strategies for Parallel Processing, IPPS 98, pp.
1-16, 1998.

Mache, Jens, and Lo, Virginia. The Effects of Dispersal on Message-
Passing Contention in Processor Allocation Strategies. In Procee-
dings of the 3rd Joint Conference on Information Sciences, Volume
3, Sessions on Parallel and Distributed Processing, pp. 223-226,
1997.

Mache, Jens, Lo, Virginia, and Windisch, Kurt. Minimizing Mes-
sage-Passing Contention in Fragmentation-Free Processor Alloca-
tion. In Proceedings of the 10th International Conference on Parallel
and Distributed Computing Systems, pp. 120-124, 1997.

Mache, Jens, Lo, Virginia, Livingston, Marilynn, and Garg,
Sharad. The Impact of Spatial Layout of Jobs on Parallel 1/0
Performance. In Proceedings of the 6th Workshop on I/0 in Paralle!
and Distributed Systems, FCRC ’99, 1999.

Vi

vil

ACKNOWLEDGEMENTS

I am very grateful to my advisor, Dr. Virginia Lo. She is an exceptional
scholar and mentor. She persistently pushes for highest quality.

I would like to thank the members of my committee, Richard Koch, Allen
Malony and Andrzej Proskurowski, and especially Sharad Garg and Marilynn Liv-
ingston.

Thanks to the people who made a big difference in my life: my parents,
Gudrun and Holm-Rainer Mache, my sister, Daniela, as well as Dirk Notheis, Lee
Hill, and Ursula Schwantag.

Thanks to my friends and acquaintances around the world: Timo Ans-
bach, Vimala Appayya, Achim Baumgartner, Sanda Bilcar, Sue Blair, Jerry and
Katharine Boness, Chris Bornman, Jana Brocking, Thomas and Michaela Bund-
schuh, Terry and Anne Carter, Aida Chouchane, Michael Curry, Eck Doerry, Sri-
nath Duvuru, Enrique Franco, Arne Frick, Susanne Friese, Patrick Gee, Michael
Haag, Chris Harrop, Oliver Hauck, Hans Heidle, Birgit and Rob Hindman, Chris
Hundhausen, Tobias Kasser, Brendan Kane, Jan Kratochvil, Thomas Lingle, Mark
Lawson, Benjamin Lu, Jayne Miller, Bernd Mohr, Marcus Munk, Bill Nitzberg, Di-
ane Notheis, Silja Pamme, Ferenc Rakoczi, Yolanda Reimer, Steflen Rodig, Martin
Saar, Gunnar Sacher, Bethina Schmitt, Gordon Seitz, Miley Semmelroth, Sameer

Shende, Oliver Stern, Craig Thornley, Tammi Vincik, and Kurt Windisch.

viii

DEDICATION

To Ursula

TABLE OF CONTENTS

Chapter
I. INTRODUCTION it
II. BACKGROUND AND RELATED WORK

I1I.

IV,

VL

Architecture
High-Performance Applications
Scheduling and Allocation
Network Contention

......................

.........................

.......

Minimizing Network Contention
Our Approach: Tuning the Spatial Layout of Jobs
Analytic Modeling L
Simulations L. L Lo L

TION

.................................

Motivation L.
Dispersal Metrics
Impact of Allocation Compactness
Discussion i e e e e

TION

.................................

Motivation e
The MC Allocation Strategy
Performance Evaluation
Conclusions

..............................

ANALYZING 1/O-BASED NETWORK CONTENTION

Motivation
Analytic Modeling
Simulations
Conclusions

..........................

..............................

..............................

ix

Chapter

VII. MINIMIZING [/O-BASED NETWORK CONTENTION

MOLIVALION « v v v v o e e n e e e e
Parallel 1/0-Sensitive Allocation Stralegies -« e
Parallel [/O- and Communication-Sensitive Allocation

VIIL. CONCLUSIONS . . . oo e

QUIIMALY « + o o o o oo s s
ContribUlIONS . . o v« o vt e e o e
Future Worls o o v o

BIBLIOGRAPHY . . - o« o oo

Figure

=I

© o

10.
11.
12.
13.
14.
15.
16.

17.

18.
19.
20.

LIST OF FIGURES

...........................

..........................

Four Examples of Topologies of Interconnection Networks

.......

Pipelined Flow of Message Flits in Wormhole Switching

Minimal Dimension-Ordered Routing

..................

Typical Architecture of High-Performance Computers

.........

Example of Sequential Data Transfer vs. Parallel Data Transfer . . .

Global Data Structures Distributed Among Compute Nodes

Data Distribution and File Layout for a Scientific Application .

Job Scheduling and Processor Allocation

........

Snapshot Showing Contiguous Allocations of Four Jobs
Snapshots Showing Different Non-Contiguous Strategies
How MBS Allocates a Job of Size 2 x 3

.................

Inter-Job Link Contention

........................

Strategies for Minimizing Network Contention

Modifying Processor Allocation Has an Effect on Communication-
Based Network Contention

......................

Modifying Processor Allocation Has an Effect on [/O-Based Network
Contention

Communication and 1/0 Traffic Patterns

...............

Sample Performance Graph

.......................

Snapshots of Different Non-Contiguous Strategies

...........

%i

Figure

35.
36.
37.
38.
39.
40.

41.
42.

xii

Page
Inter-Job Link Contention 46
Enclosing Rectangle and Communicationfor Job 36 48
Enclosing Rectangle and Communication for Job 37 49
Bitvectors and Communication for Job 4l, 51
K-Ary N-Cube: Communication for Job 41 53
Communication Patterns 57
Scatter Plot of Per Job Dispersal Metric 58
Scatter Plot for Five Communication Patterns 61
Scatter Plot for 20 Jobstreams, 61
Rank Correlation for Six Allocation Strategies 62
MC Pseudocode 67
Shells Around B, Requestof 1 x3. 67
Block-Based Strategies, Request of 2 x4 69
Allocation of a 3 X 2 Request by Block-Based Strategies and Resulting
Inter-Job Link Contention 69
Average Response Time and Average Dispersal 72
Average Contention and Average Service Time 73

Simple Example Showing That Spatial Layout Affects /O Throughput 76
Parallel I/O Throughput Degradation 78
Five Classes of Spatial Layout of OneJob 79

Two Spatial Layouts That Achieve the Worst Case and the Best Case
Value for Maz_Contention

Lowest Value for Link_Contention on Middle I/O Link

Location of Hotspots 87

Figure
43.
44.
45.
46.

47.
48.

49.
50.

o1.
52.
53.
4.

55.

56.

57.
58.
59.
60.
61.

K111

Page

1/0 Throughput (32 x 32 Mesh, Write Traffic, f=6) 90

1/O Throughput (16 x 16 Mesh, Write Traffic, f =6) 91

1/0 Throughput and Spatial Layout (32 x 32 Mesh) 93
Effect of Balanced and Unbalanced Spatial Layout on Network Con-

tention 98

Balance Factors in a Snapshot of Five Allocated Jobs . ., 99

Link_Contention When Allocating a Job of Size 4 in an Empty 4 x 4
Compute Mesh 101

Algorithm to Compute the Matrix of Figure 48 and Figure 50 101

Link_Contention When Allocating a Job of Size 14 in an Empty 16 x 16

Compute Mesh 102
Scanning Order of PLAS (Parallel Layout Allocation Strategy) 103
Pseudocode of PLAS L oL, 103

Average Response Time (SDSC Workload of 6087 1/0O-Intensive Jobs) 108

Average Response Time (Synthetic Workload of 1000 1/0-Intensive
Jobs) . . L 108

Average Balance Factor (Synthetic Workload of 1000 I/0O-Intensive

Jobs) . .. 109
Average Maz_Contention (Synthetic Workload of 1000 1/O-Intensive
Jobs) . . . e 110

Average Service Time (Synthetic Workload of 1000 I/0O-Intensive Jobs)111

Inter-Job Link Contention of PLAS vs. MC Elongated 113
Pseudocode of MC Elongated for £ x £ Mesh 115
How MC Elongated and MC Allocate a Job of Size8§ 117
100% 1/0 Traffic (Synthetic Workload) 118

80% I/0 Traffic (Synthetic Workload) 118

Figure Page
63. 60% I/O Traffic (Synthetic Workload) 119
64. 40% I/O Traffic (Synthetic Workload) 119
65. 20% I/O Traffic (Synthetic Workload) 120
66. 0% I/O Traffic (Synthetic Workload) 120
67. 100% I/O Traffic (SDSC Workload) 121
68. 75% I/0O Traffic (SDSC Workload) 121
69. 50% I/O Traffic (SDSC Workload) 122
70. 0% I/O Traffic (SDSC Workload) 122
TL. Average Balance Factor i i e en wiais s sas 124

72. Average Dispersal Metric. | &9 ol scsr 38 a0y 9a. 124

XV

LIST OF TABLES

Table Page

1. Correlation for Per Job Dispersal Metrics (MBS Strategy, 16x32 Mesh) 58

2. Correlation for Average Dispersal (16x32 Mesh) 60
3. Correlation for Average Dispersal (8-Ary 3-Cube) 60
4. Notation and Definitions 79
5. Maz_Contention and Spatial Layout (k=n=m). 87
6. Network Throughput and Spatial Layout (k=n=m) 88
7. Characterization of the Synthetic Workload and the Real Workload
Trace e e 106
8. Balance Factor vs. Maz_Contention 111

9. Average Service Time and Ranking for Different Ratios of [/O Traffic
vs. Communication Traffic

CHAPTER I

INTRODUCTION

The biggest obstacle to effective use of teraflops-scale computing systems is
getting data into, out of and around such systems fast enough to avoid severe
bottlenecks. Paul Messina [48]

Today’s high-performance parallel computers have the potential to achieve
processing powers of more than one trillion floating point operations per second.
However, as expressed in the above quote, the cost of data transfer needed to sup-
port communication and 1/O has become a key limiting factor in the quest for
teraflops performance. The data and 1/O demands of applications in many fields
— especially in computational science, visualization, database, and multimedia -
are increasing at an unprecedented pace. Whereas the world-wide web (WWW)
today contains less than one terabyte of HTML, satellite image databases grow by
one terabyte in a few hours. The Sloan Sky Survey operates on 40 terabytes of
data, and NASA’s Earth Observing System Data and Information System (EOS-
DIS) will operate soon on 15 petabytes of data. Other extremely data-intensive
projects include digital libraries, deciphering nature’s DNA code or modeling the
atmosphere and the oceans.

These vast amounts of data must be moved between compute nodes and I/0
nodes, and among compute nodes as well. A crucial challenge is effective and

efficient use of the shared medium for data transfer: the interconnection network.

]

As the traffic on the links in the network increases, network contention becomes
a critical problem, drastically reducing effective data and I/O throughput rates.
Network contention occurs if several data {ransfers want to use the same network

link at the same time (see Figure 1).

network

O compuie node or [/O node

—== data transfer

network contention

FIGURE 1. Network Contention

Network contention has been reported to cause significant delays in commu-
nication traffic (9, 6, 33, 40, 42] and to degrade I/O performance [5, 10, 20, 28]. For
example, measurements on a Symult 2010, an Intel DELTA and an Intel Paragon
showed that contention for network links increased the communication time per
message exponentially as the communication-to-computation ratio increases [9].
As another example, /O measurements on a TFLOPS machine with up to nine
I/0 nodes and several hundred processor nodes at Intel [22, 24] showed that cer-
tain placements of compute nodes and I/O nodes saturated the bandwidth of some
network links, resulting in serious parallel /O performance degradation [23].

Minimizing network contention is crucial in order to achieve fast job response
times and high system throughput. A large body of research has focused on tech-

niques to minimize network contention, ranging from theoretical work in mapping

and embedding, to the implementation of communication and 1/0 libraries, to the
design of specialized hardware for efficient data transfer.

The approach we take focuses on the role played by the resource management
task known as processor allocation. In a typical message-passing parallel machine,
jobs arrive, are scheduled for execution on one or more compute nodes, execute,
and depart the system. Processor allocation is one part of the scheduling procedure
in which a set of processors is selected from the pool of available processors for
assignment to the job. Previous research has shown that the spatial layout of
nodes involved in data transfer within the network topology, coupled with the
underlying routing schema, directly affects the network contention levels. Yet, no
one has conducted a systematic analysis of the effects that the processor allocation
strategy, through its spatial layout decisions, has on network contention, and little
effort has been made to tune processor allocation strategies for communication and
I/O-intensive workloads.

The goal of our research is the development of communication and I/0O sen-
sitive processor allocation strategies for high-performance message-passing archi-
tectures. To this end, we investigate the effect of spatial layout of compute nodes
and 1/0O nodes on network contention. Spatial layout includes location, shape and
compactness of allocated nodes. We focus on contention arising from two distinct
arenas: (1) communication traffic among compute nodes and (2) I/O traffic be-
tween compute nodes and [/O nodes. For each domain, we develop a model and
appropriate metrics for measuring contention. Through graph theoretic analysis
and dynamic simulation, we analyze the relationship between spatial layout, net-

work contention, and throughput. We then apply what we have learned to the

design of several new processor allocation strategies, and evaluate their perfor-
mance through simulation using both stochastic and real workload traces.

The results of this research show that spatial layout has a much greater effect
on network contention than previously believed. We show that communication-
sensitive and I/O-sensitive processor allocation algorithms can be designed which
minimize the degree of network contention, and thus significantly improve overall
performance. The results of this work has the potential to influence policies and
decisions made within all dimensions of a high-performance system: from applica-
tion program design to architectural configuration decisions to operating system
libraries and resource management policies.

Our contributions are the following.

1. We analyze the impact of spatial layout of jobs on inter-job link contention
due to communication between compute nodes under non-contiguous allo-
cation. Results motivate the need for allocation compactness in order to

minimize communication-based network contention.

o

. We design a new communication-sensitive allocation algorithm that maxi-
mizes allocation compactness and thus minimizes inter-job link contention
and improves the average response times of communication-intensive jobs,

yet achieves all the advantages of non-contiguity.

3. We analyze the impact of spatial layout of jobs on i(raffic hotspots due io
data iransfer between compute nodes and 1/O nodes. Results motivate the
need for careful spatial layout of compute nodes in order to minimize parallel

[/O-based network contention.

4. We design new parallel {/0-sensitive allocation algorithms that optimize the
spatial layout of compute nodes relative to [/O nodes and thus alleviate

traffic hotspots and improve the response times of I/O-intensive jobs.

5. Finally, we design new allocation algorithms thaf consider both sensitiv-
ity to parallel I/0 and sensitivity to communication, and thus improve the
performance under workloads that contain parallel I/0- and communication-

intensive jobs.

The remainder of this dissertation is organized as follows: Background and
related work is provided in Chapter 1I. Chapter III describes our problem model
and research methodology. Chapters 1V and V focus on communication-based
network contention; Chapter IV analyses intra-job link contention and Chapter
V presents a new communication-sensitive algorithm. Chapters VI and VII focus
on parallel I/0-based network contention; Chapter VI analyses traffic hotspots
and Chapter VII presents new parallel I/O-sensitive algorithms, as well as strate-
gies that accommodate workloads that are both communication intensive and 1/0

intensive. Chapter V1II concludes the work.

CHAPTER II

BACKGROUND AND RELATED WORK

This chapter provides background information on the data transfer needs of
high-performance applications and on the architecture of high-performance parallel
computers. A detailed understanding of interconnection networks, of routing and
switching, and of the I/O subsystem is needed to understand network contention
and its effect on performance. This chapter also summarizes the state of the art
in scheduling and allocation as a foundation for our approach to minimize network

contention through the tuning of allocation strategies.

Architecture

A distributed-memory parallel system consists of a collection of processor
nodes, each with local memory, that are connected to each other via an intercon-
nection network. The means of data transfer between nodes is message-passing
over the interconnection network.

Two classes of distributed-memory parallel systems are clusters and highly
parallel systems. Clusters (also known as networks of workstations) typically con-
sist of a few tens of workstations connected by a local area network such as Ether-
net, FDDI or Myrinet. While each node of a cluster runs its own operating system,
add-on software provides facilities for running parallel applications and managing
the system as a single computer.

We concentrate on the second class of distributed-memory systems known as

highly parallel systems. They typically consist of hundreds or thousands of nodes.
The operating system i1s more integrated, and specialized network hardware can
achieve much higher bandwidths. Examples of highly parallel systems include the
Intel TFLOPS (ASCI/ Red), the IBM SP2 and the Cray T3E.

Figure 2 shows the typical architecture of a node in a highly parallel system.
A node consists of a processing element and a router. The processing element con-
sists of one or more processors, local memory and an interface to the router. The
router supports data transfer between nodes (also called interprocessor communi-
cation). Depending on the topology of the interconnection network, the router has
several bi-directional channels, one channel to the local processing element and the

rest to routers of other nodes.
O
< - K>

FIGURE 2. Architecture of a Node

N |

For example, a node of the Intel TFLOPS consists of four off-the-shelf Pen-
tium Pro processors, a node of the Intel Paragon consists of two 1860 processors,

and a node of the Cray T3E consists of one DEC Alpha processor.

Interconnection Network

Engineering and scaling reasons preclude large machines from having fuily
connected interconnection networks. We focus on direct networks where each node
is directly connected to some neighbors in a point-to-point fashion. If sender and
receiver are not directly connected, their message-passing requires multiple hops
using multiple links.

Popular topologies of the interconnection network are hypercubes, meshes
and tori. Hypercubes have low diameter and short path lengths which is very im-
portant if store-and-forward switching is used. The topology of the interconnection

network of the Intel iPSC/860 is a hypercube. Figure 3a shows a four-dimensional

hypercube.

TR
i"&

G

FIGURE 3. Four Examples of Topologies of Interconnection Networks

We concentrate on mesh topologies. In a mesh topology, each node is con-
nected to both direct neighbors in each dimension. Meshes differ from hypercubes
in that they are much simpler and easier to wire and that they can have wider
channels and faster communication rates. Since wormhole switching (described
later) reduces the importance of path length, the higher diameter of meshes is not

a problem. A mesh topology is used in the Intel TFLOPS (ASCI/Red), the Intel

Paragon, the MIT Alwife and the Symult 2010 (previously Ametek). Figure 3b
shows a two-dimensional mesh.

Adding wrap-around links between the first and the last nodes in each di-
mension transforms a mesh into a forus. A torus topology is used in the Cray
T3E, Cray T3D, and a modified torus is used in the Tera MTA. Figure 3c shows
a two-dimensional torus and Figure 3d shows a three-dimensional torus.

Hypercubes and tori belong to a class known as k-ary n-cubes. Some of our

results for the mesh-interconnect are extensible to k-ary n-cubes as well.

Routing and Switching

Message-passing performance and the degree of network contention are highly
dependent on the underlying routing and switching mechanisms. We concentrate
on the current technologies of minimal dimension-ordered routing and wormhole
switching. In wormhole switching [44], the flits of 2 message (the smallest units of
data transmission) traverse the network in a pipelined fashion from the source to
the destination node (see Figure 4). If the header flit is routed to a busy channel,
the header and its trailing flits stop moving and block whichever channels they
occupy in the network.

The message-passing delay of a packet transmitted through the interconnec-
tion network is composed of transmission delay and blocking time. Transmission
delay is the interval between the time when the header flit of a packet enters the
network at the source node and the time the tail flit arrives at the destination
node, provided that there is no other message in the network (i.e. no network

contention). Transmission delay determines a lower bound on the message passing

10

source

node 1

node 2

destination

network delay

FIGURE 4. Pipelined Flow of Message Flits in Wormhole Switching

delay and is dependent on the switching technology used. For wormbhole switching,
the transmission time is ko + &y *d + ky % (I — 1), where d is path length, ! is packet
length (number of flits) and kg, k; and k; are system dependent constants. The
first term, kg, represents a fixed overhead. The second term, k; * d, represents the
time for the header flit to set up a path, and the last term, kg * (I — 1) is the time
to transmit the remainder of the packet after the path is set up. Thus, transmis-
sion delay depends on path length and packet length. However, since the packet
length is typically much larger than the path length, transmission delay depends
primarily on the length of the packet, not on the distance it travels. Wormhole
networks have the property that message-passing delay is almost independent of
path length, provided that there is no other message in the network.
Transmission delay reflects the latency of packets sent in the absence of other
network traffic. In contrast, blocking time reflects the dynamic behavior of the net-
work resulting from the passing of multiple packets. Blocking occurs when several
packets require the same network link. This is called network contention; we de-

scribe it in greater detail later in this chapter. Blocking time is high if the network

11

traffic is high or unevenly distributed. Qur goal is to optimize resource manage-
ment strategies such that blocking time due to network contention is minimized.
Routing determines the path taken for a packet traveling from a sender node
to a receiver node. In minimal dimension-ordered routing, each packet is routed in
one dimension at a time, arriving at the proper coordinate in each dimension before
proceeding to the next dimension. In a two-dimensional mesh, the architecture we
focus on, each node is represented by its position (x,y) in the mesh, and the
minimal dimension-ordered routing algorithm is called XY routing. A packet to
node (z4,y4) is sent first along the X dimension until it reaches the coordinate x4
and then along the Y dimension. Figure 5 shows an example. Minimal dimension-
ordered routing avoids deadlock, allows no detours and is deterministic, i.e. there
is only one path between a given source and a given destination. This architectural

feature turns out to be important in our analysis of contention.

Y My My (T Y Y
} O Y _/ \ U/ \w . O unallocated node

™ My Fa T I 7y e 1\
2 C/ \y I S ./ _/ _/ \)1\ . allecated node
N I I o I I e -
: CJ o/ Ay S N/ \y \)T ——= affecicd link
0 O oy Ty I T Y o
~ — e N
wx 0 1 2 3 3 5 6 7

FIGURE 5. Minimal Dimension-Ordered Routing from (2,0) to (7,3)

12

I/O Subsystem

In order to achieve high-bandwidth, low-latency data transfer between mem-
ory and disks, the parallel I/O subsystems typically consists of a collection of I/0
nodes [20], each managing and providing access to a set of disks (see Figure 6).
Disks are typically arranged in RAIDs (redundant arrays of inexpensive disks),

supporting different levels of fault tolerance.

/O nodes compute nodes

FIGURE 6. Typical Architecture of High-Performance Computers

In a parallel I/O system, individual files are striped across I/0 nodes for
performance. This improves the performance of a single access by allowing multiple
disks to operate in parallel (see Figure 7). The distribution of file data among 1/0
nodes and disks is called the file layout. A file is broken down into file chunks,
each assigned to one I/O node. As an example, 36 out of 32 x 38 x 2 nodes on
the Intel TFLOPS are I/O nodes. Each 1/O node has 20 disks attached via two
buses. Realistically, an I/O node bandwidth of =~ 64 MB/s can be sustained. Each

channel of the interconnection network can sustain a bandwidth of ~ 380 MB/s

per direction.

13

sequential data transfer rate:
3 MB/s

file 1: 9 MB, transfer time 3 sec.

parallel data transfer rate:
9 MB/s

file 2: striped, 9 MB, transfer time 1 sec.

FIGURE 7. Example of Sequential Data Transfer of File 1 vs. Parallel Data
Transfer of File 2

High-Performance Applications

High-performance applications can be classified as compute intensive, com-
munication intensive, I/O intensive or a mix [50]. In all but compute intensive
applications, the time incurred for data transfer is usually the most significant
source of parallel processing overhead and can affect the job execution time signif-

icantly [31].

Communication

In order to take full advantage of available parallelism, parallel jobs distribute
their data among compute nodes (see Figure 8). A variety of data disiributions are
supported by parallel compilers such as [27]. As a result, compute nodes have to
communicate, and these pattern are often characterized by spatial and temporal
regularities.

A classic example is the well-known n-body algorithm. Another example is
an image-smoothing algorithm that performs a smoothing operation for each pixel

of an image. Fach smoothed pixel is the average value of the pixels in a window

giobal data structure (3D array) compute nodes

// // // /8

.\Y\
Q

4
)/

L/

FIGURE 8. Global Data Structures Are Distributed Among Compute Nodes for

Improved Performance.

centered around that pixel. Several pixels are distributed to each compule node.
While each compute node can execute the smoothing operations for those pixels
within the interior of its subimage, pixels along the border of each subimage have
to be transferred between compute nodes. Additionally, synchronization requires
message transfer between nodes.

There are a few basic communication patterns that are frequently used as

building blocks in a variety of parallel algorithms.

1. In one-to-all broadcast, a single compute node sends identical data to all other
compute nodes of the same job. The opposite pattern is single-node accu-
mulation. Both patterns are used in several important parallel algorithms

including matrix-vector multiplication, Gaussian elimination, shortest path,

and vector inner product.

o

In all-io-all broadcast, each compute node of a job sends data to all other
compute nodes of the same job. All-to-all broadcast is used in matrix opera-

tions, including matrix multiplication and matrix-vector multiplication. The

15

opposite pattern is multinode accumulation. The all-to-all broadcast pattern
can also be used to perform other operations, such as reduction, prefix sum

or scan.

3. In one-to-all personalized communication, a single compute node sends unique
data to all other compute nodes of the same job. This operation is also known

as single-node scatter. The opposite pattern is single-node gather.

4. In all-to-all personalized communication, also known as complete exchange,
each compute node sends distinct data to all other compute nodes of the
same job. Unlike all-to-all broadcast, each sender sends different data to
different receivers. This operation is used in parallel fast Fourier transform

(FFT), matrix transpose, and some parallel database join operations.

5. In circular shift, each compute node sends data to exacily one other com-
pute node of the same job. This pattern finds application in some matrix

computations, as well as in string and image pattern matching.

A large body of research [31, 6, 16] discusses efficient implementation of
these basic communication patterns on various parallel architectures using store-

and-forward or wormhole routing schemes.

Parallel 1/0O

Several studies analyzed the [/O requirements of typical scientific applica-
tions [39, 29, 49, 47, 13, 3|. I/O-intensive applications can be grouped into three
basic categories: read-mostly, write-mostly and read-write. Read-mostly applica-

tions, such as data mining, read volumes of data, process the data, and typically

16

produce only a small amount of output. Write-mostly applications, such as simula-
tions with visualization back-ends, begin with a small set of initial data, compute
a step, write out the data, and repeat. Read-write applications, such as out-of-core
solvers, repeatedly scan part of the data which is too big to fit into main memory,
process that data, write it out, and repeat.

Scalar Pentadiagonal (SP) and Block Tridiagonal (BT), part of the NAS
Parallel Benchmarks [4], are examples of 1/0-bound applications. These two ap-
plications account for a large portion of the computational fluid dynamics workload
at NASA Ames {46]. In both applications, a three-dimensional grid of variables is
repeatably computed and saved to a striped file which can be processed by visual-
ization software. A parallel implementation of SP and BT that provides good load
balancing and coarse-grain communication employs the Multi-partition method
[46]. This method uses the following date disiribution: If there are n compute
nodes, the three-dimensional grid of data items is broken up into n,/n sub-cubes.
The location of the \/n sub-cubes per compute node is chosen such that for any
plane of sub-cubes, each compute node gets exactly one sub-cube from that plane
(see Figure 9a).

One possible file layout is shown in Figure 9b. A file represents a linearization
of the global data structure, such as the row-major ordering of a three-dimensional
array. This linearization is often called canonical file. In a striped file, chunks of the
canonical file are distributed across /O nodes, typically in a round-robin fashion.
It is easy to see that for the data distribution of the Multi-partition method, every

compute node has to write to every I/O node, regardless of the stripe size.

17

S5 /6 /4
9 /1 /8 .
1 2 3
81 €
I ’ 3 ' 7 la‘D:od:_g
2
v L
) ’ 6 I |y nod A G
/0 node B
9 J / :od:A
7 8 9 / k! %ﬁx ET‘ v
/0 node A
CEIC IR IR MRy file layout (3 VO nodes)
®)

FIGURE 9. Data Distribution and File Layout of a Three-Dimensional Grid of
Data Items for a Scientific Application

Scheduling and Allecation

A high-performance parallel computer is an expensive resource that is typ-
ically shared among a community of users. As part of the operating system, the
system scheduler is in charge of parallel job scheduling, i.e. allocating resources to
competing jobs. The goal is to minimize the response time of jobs and maximize
the system throughput over a stream of jobs. Paralle! job scheduling is not to be
confused with the scheduling of tasks within a parallel job which is done by the
programmer or the runtime system.

Given a workload of jobs, the system scheduler has to decide when to run
each job and how many and which compute nodes to assign to each job. Most
high-performance parallel systems employ space sharing and variable partitioning.
In space sharing, multiple jobs run on disjoint subsets of the processor nodes.
Variable partitioning [19] means that each job is assigned as many compute nodes
as it requested and that each job runs on those nodes for its entire lifetime.

Under the assumptions of space sharing and variable partitioning, the sched-

18

uler decides (1) in what order to run the jobs and (2) what spatial layout of nodes to
assign to each job (see IFigure 10). The former decision is made by the job schedul-
ing strategy. This strategy controls the temporal admission and queuing of jobs.
Previously proposed strategies include first-come first-served (FCFS), smallest job
first (SJF), backfilling {51] and scan [30]. These policies are used in commercial
scheduling systems including NQS, LoadLeveller, EASY, PBS and PSched. Our

focus is on the latter decision, made by the processor allocation strategy.

waiting queue parallel computer
IQN

- - - 81 —-\.\ L4
\ N L&
job scheduling allocation -°\“~°....

FIGURE 10. Job Scheduling and Processor Allocation

Contiguous Processor Allocation Strategies

Processor allocation (also known as system partitioning) is the problem of
assigning a portion of the processor “space” to each scheduled job. Early processor
allocation algorithms allocated nodes in a “contiguous” manner only. Intuitively,
contiguity means that all the nodes allocated to a job form a convez shape such
that all message-passing between nodes of a job stay within the job’s area. This
constraint often is enforced by requiring the nodes allocated to a job to form a
subgraph of the original topology (e.g. a submesh in a mesh). Figure 11 shows an
example of four jobs allocated contiguously in a two-dimensional mesh topology.

Contiguity ensures thal messages from different jobs do not interfere with

19

unallocated node {idle)

node allocated to job 72

node allocated to job 75

node allocaled to job 76

® © O @& O

node allocaled to job 78

FIGURE 11. Snapshot Showing Contiguous Allocations of Four Jobs

each other even if the jobs run at the same time. Thus, each job can think of
owning the machine exclusively, and several runs of the same job result in almost
equal execution times.

Contiguous processor allocation was an area of research for about a decade
until the mid 1990’s. Examples of contiguous allocation strategies for mesh topolo-
gies are 2D Buddy {32], Frame Sliding [11] and First and Best Fit [58]. For hyper-
cube topologies, examples are Gray Code [8] and Partners [1].

The key disadvantage of conliguous processor allocation strategies is frag-
mentation. Consider an additional job in Figure 11 that requests four nodes. Six
nodes are unallocated at this time, but there is no contiguous block of four nodes
available. The nodes (2,3), (2,4), (3,4) and (4,4) for example are not contigu-
ous because they do not form a convex shape. This situation is called ezternal
fragmentation.

Additionally, internal fragmentation can arise from requesting j nodes but
getting 1 > j nodes because of constraints of the machine or constraints of the

allocation strategy. Both types of fragmentation result in unused nodes and thus

low utilization of the machine. Typical utilizations of only 34% to 66% for con-
tiguous allocation strategies are reported [32, 58, 30, 33]. This is unfavorable and
contradicts the goal of high throughput over a stream of jobs.

To solve the fragmentation problem, non-contiguous processor allocation
strategies have been proposed [25, 33, 55, 53]. These strategies allocate nodes that
are possibly dispersed throughout the system (see Figure 12). These strategies are

also called scattered or fragmentation-free allocation strategies.

Non-Contiguous Allocation Strategies

Non-contiguous strategies experience neither internal nor external fragmen-
tation and thus outperform contiguous strategies reaching utilizations of up to
78% for common workloads [33, 55, 53]. The bigger physical distance between
dispersed nodes allocated to the same job turns out to not be a problem because

due to wormhole switching - the network latency is almost independent of the
path length, as long as messages do not interfere. However, as we will see later,
the potential impact from messages that do interfere cannot be ignored.

FFor mesh topologies, the following non-contiguous strategies have been pro-
posed:

(1) “Paging” [33] scans the topology in fixed order for unallocated nodes, e.g.
row by row in the mesh. Paging was shown to have very good performance [35]
and was used at NASA Ames Research Center for their Intel Paragon.

(2) “Multiple Buddy Strategy”™ (MBS) [33]} typically allocates several con-
tiguous blocks to a job. It is a hierarchical strategy and maintains free lists, i.e list

of blocks that consist of idle nodes of sizes 2! x 2!, 0 < i < LEELN Each request is bro-

)
S

=)
p

*—0 0 0 O i ¢
*—0—0 0O I @
R——O—0O—0 I ®
R——0O0—0—0——0—e
1] | 2 3 4 3]
MBS
¢ > —0 0§ I
2 X—e——0O I
O I O—e—0—@ I
O—CO—0—0—0—0—0
o 1 2 3 4 5 6
Paging
o—O *—CO—0—@
o—O —O——1I
o—O I O—e——O
O—8—CO0—RK—"—C0—0—@
kL] 1 1 i 4 5]

Random

FIGURE 12. Snapshots Showing Different Non-Contiguous Strategies

(O unallocated node
(O node allocated to job 11
{% node allocated to job 12

. nede allocated to job 15

(O unallocated node
(O node aflocated to job 11
R4 node allocated to job 12

. node allocated 10 job 15

() unallocated node
() node allocated to job 1|
{53 node allocated to job 12

@ node allocated 1o job 15

22

ken down into base-four subrequests and MBS attempts to satisfy these requests
with the first blocks in the corresponding free lists. Bigger blocks or subrequests
are only broken down further if this is necessary to avoid external fragmentation.
As an example, Figure 13 shows a snapshot where two blocks of size 2 x 2 and two
blocks of size 1 X 1 were available. The next job requests 2 x3 =6 =44 141

nodes, and thus one 2 x 2 and both 1 x 1 blocks are assigned.

3 O @ @ . node allocaied to job A
5 I I ~ @ nede allocated 1o job B
T T 7
~ Y O unallocated before request
1l ¢ f>]<\ f]\ P X chaice made
I I 1
0 oy
X Q(} L_J -y
o -
¥in [} ! 2 3 4 5 6 7

FIGURE 13. How MBS Allocates a Job of Size 2 x 3

(3} “Modified 2-dimensional Buddy” (M2DB) [53], in use on the SDSC
Paragon, is similar to MBS. However, if there are choices, it satisfies subrequests
with blocks from the corresponding free lists that are at minimal distance from the
block allocated to the biggest subrequest.

(4) “AS&MB?” [52] is a hybrid strategy employing the non-contiguous MBS
strategy if the contiguous Adaptive Scan strategy [14] fails.

[55] describes similar algorithms for k-ary n-cube topologies.

Previous research (33, 53, 42| showed that non-contiguous processor allo-
cation strategies are very successful in increasing system utilization by avoiding

fragmentation. However, if jobs transfer data due to communication or 1/0, the

increased potential for network contention due non-contiguous allocation can be a
problem. Lo et al. {33] showed that non-contiguous allocation strategies perform
better overall than contiguous ones - even when network contention is considered
- and that non-contiguous allocation strategies that provide some degree of con-
tiguity exhibit the best performance. To obtain optimal performance, processor
allocation strategies have to consider network contention due to communication

and I/0 needs of applications.

Network Contention

Communication- and I/O-bound jobs transfer large amounts of data. Net-
work contention occurs when multiple data transfers use the same communication
link at the same time. Each link of the interconnection network can only be used
by one packet at a time, other packets have to wait.

There are two kinds of network contention. Inira-job link contention or inter-
nal contention occurs when two or more data transfers from the same job contend
for a link. In contrast, inter-job link contention or external contention occurs when
two or more data transfers from different jobs contend for a link. Figure 14 shows
an example of inter-job link contention. Data transfer from job A and data transfer
from job B both use the link between node (6,0) and node (7,0).

Both kinds of network contention affect the data transfer time of messages,
execution time of jobs, and ultimately job throughput of the machine. Although
contention has been shown to be neglectable in case of small messages [33, 42] or
high software latency [42], it in general is the deciding performance factor within

the class of non-contiguous processor allocation strategies.

24

Ay

T
N/

. node allocated to job A

(_/ O node allocated to job B
I £ I et T

O O O O ~—> link affected by job A

Y
A

~ O L/ i T O unallocated node

iy
p—y
Y
-y
o—O—CO——0O
T Yy
Ny
T
-y

yin 0 i 2 3 4 5 6 7
+++= > link affected by job B

FIGURE 14. Inter-Job Link Contention for the Link Between (6,0) and (7,0}

The research on communication-based network contention involves both si-
mulation-based and empirical studies on actual parallel machines. Regarding in-
ternal contention, Chittor and Enbody {9] investigated the communication perfor-
mance degradation caused by network contention. They performed measurements
on a Symult 2010, an Intel DELTA and an Intel Paragon. Their results showed
that contention for network links increased the communication time per message
exponentially as the communication-to-computation ratio increases. Bokhari et al.
[6] investigated whether it is wise to trade-off contention cost with synchronization
cost. Their measurements on an Intel Paragon showed that contention-bounded
message schedules perform best. Eberhart and Li [16] devised contention-free
message schedules for shift and transpose patterns. Their simulations showed im-
provements over random schedules. Moritz et al. [43] introduced contention into
the LogP model.

Regarding inter-job link contention, Min and Mutka [40] developed a con-
tention model. Nitzberg, Lo et al. [33] performed contention measurement on

an Intel Paragon. They showed that for large messages, contention grows lin-

early as a {unction of the number of competing messages on a link. Based on
their observations, they concluded that non-contiguous allocation strategies must
take contention into account. Moore and Ni’s [42] results indicated that in systems
with low software latency, allocations with less contention result in faster execution
times for communication-intensive applications.

Research on network contention due to I/Q traffic is limited. Baylor et al.
[5] investigated the I/O performance of the IBM Vulcan, the predecessor of the
IBM SP series. Their results showed substantial degradation in I/O performance
due to network saturation as the I/O request rate increases. Winslett et al. [10]
optimized the placement of half-time [/O nodes in a network of workstations in
order to avoid data transfers and thus minimize network contention. Garg et al.
[23] performed 1/O measurements on an Intel TFLOPS machine with up to nine
I/0O nodes and several hundred processor nodes. Their results showed that certain
placements of compute nodes and I/O nodes saturated the bandwidth of some
network links, resulting in serious parallel I/O performance degradation. Feitelson
et al. [20] and Kotz et al. [28] mention network contention as a concern but do
not investigate further.

In summary, no one has conductled a systematic analysis of the effects that the
processor allocation strategy, through its spatial layout decisions, has on network
contention, and little effort has been made to tune processor allocation strategies

for communication and [/O-intensive workloads.

26

CHAPTER III

PROBLEM DESCRIPTION AND APPROACH TAKEN

Minimjzing Network Contention

Any non-trivial application has to transfer data due to communication or
I/0 needs. The high cost of data transfer over the interconnection network, which
is a serious bottleneck to high-performance parallel computing, is exacerbated by
network contention. Therefore, it is crucial to minimize network contention in
order to achieve fast job response times and high system throughput.

Network contention can be reduced through several strategies which fali into
three main categories: elimination of data transfers, scheduling of data transfers so
that they do not contend in time or spatial rearrangement of data transfers. These
different strategies are illustrated using the simple example of Figure 15 showing
the original situation where one node on the right receives data from three nodes
on the left. In this figure, the underlying mesh topology is not shown. Contention
occurs because messages sent from the top two nodes contend for a common link

on their way to the target node.

(a) Eliminating data transfers by modifying the traffic pattern. If the node on
the right only receives data from the lower two nodes on the left, as shown
in Figure 15a, one data transfer from the original situation is avoided and
no contention occurs. A similar approach has been proposed by Winslett

et al. [10]. By placing half-time I/O nodes in network of workstations so

original situation

27

) (el) (c2)

FIGURE 15. Strategies for Minimizing Network Contention: Original Situation
(Upper Left), Eliminating Data Transfers (a), Scheduling Data Transfers at Dif-
ferent Times (b), Modifying Routing (d), Modifying the Spatial Layout of Nodes
(el, e2)

that local data can be exploited, they eliminated data transfers. However,
in general situations, modifying the traffic pattern may not be an option.
The traffic pattern depends on the parallel algorithm, the data distribution
across compute nodes and the file layout across I/O nodes, all of which are

determined by the application, the compiler or the system configuration.

Scheduling different data transfers at different time slots can reduce the num-
ber of data transfers using the same network link at the same time. In Fig-
ure 15b, the data from the lower two nodes on the left is sent at time 1,
while the data of the upper node on the left is sent at time 2. As a result, no
contention occurs. Algorithms and heuristics to find contention-[ree message

schedules have been proposed by Jain et al. [26], by Eberhart and Li [16]

and by Bokhari et al. [6]. However, possible problems include the high syn-
chronization cost that has to be paid, the possible deterioration of disk seek
times due to reordered data transfers, as well as the fact that the architec-
ture and system software of most parallel computers currently do not permit

sufficiently fine-grained control over the timing and order of I/O operations

[26].

(c) A more coarse-grain approach is to modify the temporal job miz by limit-
ing the number of communication- and/or 1/0-bound jobs scheduled to run

concurrently. We address this option in Chapter VIII.

(d) Modifying routing can result in different network links taken. In the example
of Figure 15, if the data from the node in the upper left deviates from minimal
XY routing and takes the path shown in Figure 15d, no contention occurs. It
has been proposed to provide additional links to the interconnection network
(54} or to use adaptive routing [44]. However, for reasons of low overhead and
to avoid deadlock, routing in high-performance parallel computers is most

often fixed to minimal dimension-ordered routing.

(e) Modifying the spatial layout of nodes can result in given data transfers using
different network links, even if routing is not changed. In Figure 15el, the
location of the target node is changed. In Figure 15¢2, the node formerly in

the upper left changed location. Both changes in spatial layouts result in no

contention occurring.

In this work, we concentrate on strategy (e), on tuning the spatial layout of

the compute nodes in relation to the [/O nodes which are at fixed location within

the interconnection network topology.

Qur Approach: Tuning the Spatial Layout of Jobs

Our approach is to allocate processors to jobs in a more careful - parallel
I/O- and communication-sensitive - way. Changing the spatial layout of jobs can
have a significant effect on network contention. An example of how spatial layout
impacts communication-based network contention is shown in Figure 16. Given
the situation in Figure 16a and a new job D requesting eight nodes, the allocation
strategy has to choose among 12 idle nodes. Two possible spatial layouts are shown
in Figures 16b and 16¢. There is a significant difference in inter-job link contention
if all four jobs do all-to-all personalized communication. In the layout shown in
Figure 16b, communication of job D interferes with communication of all other
jobs. In contrast, in the layout shown in Figure 16¢, communication of the job D
interferes only with communication of job A.

An example of how spatial layout impacts [/0-based network contention is
shown in Figure 17. The allocation strategy has a choice between 4 idle nodes
to assign to a job of size two. Two possible spatial layouts are shown. There
is a significant difference in internal contention if the job does parallel 1/0 and
writes data from each compute node to each I/O node. For the layout shown in
Figure 17a, four data transfers are contending for the link left of CN1. In contrast,
in the second layout, the maximum number of data transfers contending for a link
is two.

We consider three aspects of spatial layout: compactness. shape and location.

1. The spatial layout of job A is more “compact” if communication among

30

node allocated to job A

© @

node allocated to job B

node allocated to job C

unallocated before request
choice made <o

- 00 O

message-passing contention

FIGURE 16. Modifying Processor Allocation Has an Effect on Communication-
Based Network Contention

31

ION

orthogonal layout parallel layout

(a) (b)

FIGURE 17. Modifying Processor Allocation Has an Effect on I/0-Based Network
Contention

o

nodes of job A affects fewer foreign nodes (nodes not assigned to job A). In
the communication example of IMigure 16, the spatial layout of job D in Fig-
ure 16c was more “compact” than the spatial layout of job D in Figure 16b.
Rectangular contiguous layouts are as compact as possible while layouts that
occupy only the first and last column of the mesh are the worst, “sandwich-
ing” all the compute nodes in the whole machine. In situations where it
is impossible to allocate the job contiguously (e.g. the situation shown in
Figure 16), possible layouts differ in degree of compactness. In Chapter IV,
we define dispersal metrics that capture the opposite of compactness: disper-
sal. In Chapter V, we aim at separating jobs such that their communication

traffic interferes as little as possible.

Shape is a characteristic of contiguous allocations. In the 1/0 example of
Figure 17, the job in Figure 17a has a horizontal shape which is orthogonal
to the I/O nodes, whereas in Figure 17h, the job has a vertical shape which is
parallel to the 1/O nodes. For non-contiguous allocations, the shape of a job is
defined by the shape of the rectangle enclosing all its nodes. The approaches

used by current commercial allocation software fall into two categories: block-

32

based allocation schemes [53] or linear allocation [41, 45]. In Chapter VI, we
consider the basic shapes: block, vertical, horizontal and diagonal. While it
is in general not possible to separate the I/O traffic of one job from the I/0
traffic of another job, we aim for even distribution of I/0 traffic such that

hotspots are alleviated (Chapter VII).

3. Besides compactness and shape, there often remain choices of different fo-
cations. These include distance from other jobs, closeness to I/O nodes or
positions in the middle of columns (which can result in even traffic distribu-

tions if 1/0 nodes are placed horizontal, see Chapter VII).

Our goal is to design parallel I/O- and communication-intensive allocation
strategies that minimize network contention. We work towards this goal in the fol-
lowing manner. First, we focus on communication-based network contention. We
investigate the effect of allocation compactness on network contention. Applying
our results, we design new allocation algorithms that are communication-sensitive.
Then, we focus on I/0-based network contention. We investigate the effect of spa-
tial layout (shape and location) on network contention. Applying our results, we
design new allocation algorithms that are parallel I/O-sensitive. Finally, we de-
sign new allocation algorithms that consider both the sometimes conflicting goals
of sensitivity to parallel I/O and sensitivity to communication, and thus improve
the performance under workloads that contain parallel 1/0- and communication-
intensive jobs.

For both communication traffic and parallel I/O traffic, we develop a model
and appropriate metrics for measuring contention. Through graph théoretic anal-

ysis and dynamic simulation, we analyze the relationship between spatial layout,

33

network contention, and throughput. We evaluate the performance of our new
allocation algorithms through simulation using both stochastic and real workload

traces.

Analytic Modeling

To analyze the effects of spatial layout on network contention, we conduct a
careful static analysis using a graph theoretic model and looking very closely at

communication and I/O intensive jobs.

Communication Traffic Model

We concentrate on the communication pattern of all-to-all personalized broad-
cast, also called “complete exchange”. This pattern is at the heart of parallel al-
gorithms for matrix transposition, matrix-vector multiplication, the fast Fourier
transform and a method for solving partial differential equations. This pattern
requires data movement from each compute node to all other compute nodes, and
can be represented as a complete directed graph (see Figure 18a). It is the dens-
est possible communication requirement, and the time spent executing it is an
important performance parameter.

We also consider one-to-all broadcast, n-body computation, fast Fourier
transform (FIF'T) as well as those patterns executed by the multigrid benchmark
and the kernel conjugate gradient (CG) benchmark from the NAS parallel bench-

marks [4].

34

ION

ION ...~ CN

communication traffic /O traffic graph
graph (for write)

(a) (b)

FIGURE 18. Communication and I/O Traffic Patterns

[/O Traflic Model

We assume an 1/0 traffic pattern in which every compute node exchanges
data with every I/O node and data transfered in each message is unique. This
I/O traffic pattern, which can be modeled by a complete bipartite graph (see
Figure 18b), is representative of a wide range of scientific applications in which a
large data structure is read from or written to a file striped across [/O nodes and
is then re-distributed to the compute nodes according to one of the classic data

distribution patterns, such as those defined in High Performance Fortran (HPF)
[27].

Graph Theoretic Model

We define communicalion traffic graphs and 1/0 traffic graphs Lo model the
dala transfer needs of jobs. A system graph defines the target architecture.

Definition: The communication traffic graph of a job is a directed graph
Geomm = (Veomm, Ecomm) Where each vertex represents a task of the parallel job,

| Veomm | equals the number of compute nodes required by the job, and each edge

35

(Vi, V) € Eromm indicates data transfer from V; to V.

We concentrate on the all-to-all personalized communication pattern; its
communication traffic graph is a complete graph.

Definition: The //0 traffic graph of a job is a directed bipartite graph G/ =
(11/0,Crj0, E170) where Ipo represents /O nodes, Cyjo represents the tasks of
the parallel job, and each edge of Ey/p indicates data transfer for 1/0.

In a read traffic graph, all edges go from I;/0 to Cro. In a write traffic
graph, all edges go from Cp/o to I1j0. We concentrate on the 1/0 traffic pattern in
which every compute node exchanges data with every I/O node, whose 1/0 traffic
graph is a complete bipartite graph.

Definition: The sysiem graph of a machine is a directed graph G,,, =
(Vsyss £osys)y Vays = Vion U Ven, where Vion represents [/O nodes and Veon repre-
sents compute nodes and Iy, represents channels corresponding to the topology
of the interconnection network.

We concentrate on mesh topologies. We assume a two-dimensional number-
ing scheme for the nodes where Npg is the node in the lower left hand corner and
Nap is a to the right and b up. An edge between two nodes N;,, Ny € Vi, is in
Eys ifeitheri=F%and |j—Il|=1lorj=1land |i—k |= 1. We concentrate
on machine configurations where the 1/0 nodes occupy the leftmost column of the
mesh, i.e. Vion = {Noo, N1o... Nko}.

Definition: An allocation a assigns compute nodes to a job with communica-
tion traffic graph Geomm such that a(Veomm) = S € Von and | S |=] Viomm |- Sim-
ilarly, an allocation a assigns nodes to a job with I/O traffic graph G/ such that

a(Cro) =5 C Von, 1 S |=| Cijo |, with the additional constraint a(f;;0) = Vion.

36

Intuitively, the allocation of a job doing I/O can be modeled by embedding

the I/O traffic graph into the system graph subject to the following constraints:

1. the m I/O nodes of the I/O traffic graph are mapped bijectively to the m

I/O processors in the system graph;

2. the n compute nodes of the I/O traffic graph are mapped injectively to some

subset of the compute processors in the mesh;

Due to multiprogramming, there can be several jobs in the system at the
same time. At any instant {, for two jobs ¢ # j running at the same time, their
allocaied compute nodes do not overlap, i.e. a(V')Na(V?) =). However, the 1/0
nodes are shared among all jobs, i.e. a(I') = a(I’) = Vjon.

Definition: The path a(e) of a data transfer is the image of an edge e = (V;, V)
of the job’s communication traffic graph (or I/O traffic graph), given an allocation
a. The path is a sequence of edges of the system graph defined by the routing
function for data transfer between nodes a(V;) and a(V}).

For dimension-ordered XY-routing, if the endpoints of an edge in Geomm (or
G1/0) are mapped to Ny and Nig s for the case where k1 < k2 and /1 < 12, the
path includes all vertical edges of the system graph between nodes N;j; and Nipqn
for k1 < i < k2 as well as all horizontal edges between nodes N, ; and Ny ;44 for
{1 €7 < {2. Similar constraints hold in the case where k1 > k2 or [1 > 12,

Intuitively, each edge from I/O node i to compute node j in the 1/O traffic
graph is mapped to the path from I/O processor a(z) to compute processor a(j)
according to the XY-routing scheme of the mesh.

Two important metrics for our analysis are link contention and max_contention.

37

Definition: Link coniention on link ! occurs if for two edges e; # e;,l €
a(e;) Al € a{e;). It is intra-job link contention if e; and e; are members of the edge
set of the same job. It is inter-job link contention if their are members of the edge
set of different jobs.

Definition: A link with maximal link contention is a hofspot and the value of

this maximum contention is denoted by maz_contention.

Simulations

The second phase of our research involves dynamic simulations in order to
further investigate the relationship between spatial layout and network contention.
Our analysis leads to the development of parallel I/O- and communication-sensitive
allocation strategies. They are all non-contiguous algorithms that achieve the
benefits of fragmentation-free approaches while minimizing network contention.
Our new allocation strategies can be tested using simulations to model the dynamic
behavior of mesh-based systems.

All experiments were conducted using ProcSimity {57], a simulation tool de-
veloped for the evaluation of job scheduling and processor allocation algorithms for
distributed-memory parallel computers. ProcSimity models a variety of network
topologies and several current flow control and routing technologies. ProcSimity
supports a variety of communication and 1/O traffic pattern. Message-passing can
be simulated in detail at the flit level or at the packet level. ProcSimity’s visual-
ization and performance analysis tools allow for viewing a dynamic animation of
the selected algorithms as well as a variety of system and job level performance

metrics. ProcSimity has been successfully used in experiments investigating the

38

feasibility of non-contiguous processor allocation.

ProcSimity is built around a model in which independent user jobs arrive in
the system, requesting a particular sized partition of the system’s processors. If an
arriving job can not be run immediately, due to a lack of free processors or other
waiting jobs, the job is diverted to the system waiting queue. Before a waiting
job can leave the waiting queue, the scheduler must place the job at the head of
the queue, and the allocator must determine that a partition can be constructed
for the job from free processors in the system. When a job is ready to be run,
the allocator assigns the job the needed processors, depending on the allocation
strategy used. Although messages from other jobs may pass through this new
partition, the new job holds these processors exclusively until it finishes running.
At this time, it departs the system and its processors are freed for use by other
incoming jobs.

The ability to accurately model the arrival and servicing of jobs in the system
is a very important factor affecting the quality and validity of the simulation results
obtained. ProcSimity can be driven by probabilistic or real workload traces, and
running jobs can be simulated at three different levels of detail. First, jobs can sim-
ply delay for a certain time and then depart. This method is best for experiments
in which the service time for a job is assumed to be independent of other jobs and
independent of its spatial layout in the architecture. This allows us to test and
isolate the effects of different combinations of scheduling and allocation algorithms
on system fragmentation alone, without simulating specific applications.

The second and third level of detail simulates communication and /0O pat-

terns, with individual messages simulated either at the level of packets (second

39

level) or at the level of flits (third level) moving through the network. These meth-
ods allows for a more realistic comparison of different strategies by taking into
account message passing overhead. This is important because message-passing de-
lay may vary depending on the spatial layout of the allocation, and thus, on the
amount of message contention between different jobs.

Performance information is provided to ProcSimity’s visualization tool
through trace files generated by its discrete event simulator, modeling a distributed
memory multicomputer in a multiple-user environment. The simulator is imple-
mented in C, using the process-oriented, discrete event simulation toolkits YAC-
SIM, a general simulation library, and NETSIM, a library of network simulation
extensions [12]. The visualization tool was built using Tecl version 7.3 and Tk
version 3.6.

High level simulations such as ProcSimity pose a significant challenge in the
validation of simulation results. Because the simulation model is simplified, show-
ing only relative worst-case performance, simulation results cannot be compared
directly with results from real parallel computers. However, we have made exten-
sive efforts to verify and validate our simulation model and its implementation.

Cutput analysis, statistically studying the degree of variance in results ob-
tained from duplicate simulation runs, gives an indication of the reliability of the
simulation apart from any real system being modeled. All ProcSimity statistics can
be measured with less than 4% error given 95% confidence and a sufficiently long
simulation (at least 10 replicated runs with 1000 jobs each). Further, we validated
our simulator by comparing its results Lo other independently developed simula-

tions of similar systems. Windisch et al. [57] conducted experiments compar-

40

ing our simulator, without job communication, to Zhu's allocation simulator[58],
which simulates jobs according to the same probabilistic service delay scheme
used by ProcSimity. We also conducted experiments comparing our simulator,
with job communication patterns, to the Warp simulator {15] and to the Chaos
simulator{21], which we modified to execute independent jobs and ProcSimity’s
communication patterns. In all three comparisons, nearly identical normalized re-
sults were obtained, differing by no more than 7% in the worst case. Therefore,
through extensive code verification, testing, output analysis, and comparison with
other simulators, we conclude that ProcSimity provides an accurate and mean-

ingful facility for comparing the effects of scheduling and allocation strategies on

parallel computer performance.

Workloads

Simulation-based performance evaluation of resource management strategies
can be driven by either synthetic workload models that use probability distribu-
tions or by real workload traces gathered from scientific production runs on real
supercomputers. We use both methods. Real workload traces captured from pro-
duction machines can provide a very high level of realism when used directly in
performance evaluation experiments. A workload trace is a record of resource us-
age data about a stream of parallel jobs that were submitted to and run on a
given message-passing parallel machine. For our experiments, we use a real work-
load trace from a 400 node Intel Paragon housed at the San Diego Supercomputer
Center {56]. More details are reported later.

In contrast, synthetic workload models offer the convenience of a much more

41

manageable experimental medium that is free of the idiosyncratic site-specific be-
havior of production traces. This is both its advantage and a potential point of
criticism - the use of a tractable synthetic model provides a neutral, more univer-
sal experimental environment but does not yield the realism and pragmatic testing
desired by some researchers.

Our simulator models a stream of jobs that arrive, execute for a period of
time, and then deparl the system. The simulator is driven by a synthetic or
real workload traces that includes job arrival time and jobsize. Modeling the
work requirement of each job, we need to specify the internal job structure. As
stated in [18], there is not much hard data that has been measured about typical
distributions of internal job structures. However, it is clear that the most common
and clearly identifiable structures are the computational structure (parallelism and
barrier synchronizations), memory requirements, interprocess communication, and
I/0 needs. We focus on the latter two. Each job in our simulator sends messages
according to the following traffic patterns: heavy communication traffic (all-to-all

pattern), heavy parallel I/O traffic (complete bipartite), or both communication

and parallel [/O traffic.

Performance Metrics
We use the following performance metrics:

1. average response time: the elapsed time from when a job arrives for schedul-
ing to when it completes execution, averaged over the entire workload. Re-
sponse time includes both time spent in waiting queues and time spent in

execution.

42

2. average service lime: the elapsed time from when a job is allocated to com-
pute nodes to when it is done with all its computation, communication and
1/0, averaged over the entire workload. Execution time does not include

time spent in waiting queues.

3. average message blocking time: the blocking time for one message (from one
job) is the total time the message was blocked in router buffers along the route
from the sending node to the destination node. The per job average message

blocking time is the average blocking time for all of one job’s messages.

4. average interarrival time: the elapsed time between two consecutive sub-
missions of jobs to the system. This metric measures the offered load, and

appears as the independent variable in the graphs of experimental results.

It is important to realize that sustainable load, the system load value below
which average response time remains within reasonable bounds. is an important
focal point in performance evaluation. This critical point is visible as the “knee”
in the graphs of response time and system utilization (see Figure 19). Below the
critical point, the system load is at manageable levels so that the increase in job
response time is gradual and utilization continues to improve. At the knee, the job
response time suddenly begins to grow rapidly toward infinity. By the same token,
the system utilization levels off since the system is saturated with work. Thus, in
evaluating the relative performance of resource management strategies, we focus

our analysis on the phenomena observed near this saturation point.

response time

interarrival time

FIGURE 19. Sample Performance Graph

43

44

CHAPTER IV

ANALYZING COMMUNICATION-BASED NETWORK CONTENTION

Motivation

This chapter concentrates on communication-intensive jobs and investigates
the relationship between allocation compactness and inter-job link contention.

As seen in Chapter II, non-contiguous processor allocation strategies assign
nodes that are possibly dispersed, thus achieving vastly improved job throughput
for computation-intensive workloads by eliminating fragmentation. However, ear-
lier simulations [33] of the performance of several non-contiguous processor alloca-
tion strategies showed that although all non-contiguous strategies behave equally
well in {ragmentation experiments, their performance suffers in message-passing
experiments where jobs execute communication patterns.

Figure 20 shows snapshots of several non-contiguous allocation strategies
(33]) servicing a given jobstream. All snapshots show the same jobs 11, 12 and 15.
For the MBS strategy, the nodes allocated to jobs 11 and 12 are contiguous and
the nodes allocated to job 15 form two convex rectangles. In contrast, the job
allocations for the Paging strategy are “more dispersed”, job 11 and job 12 consist
of two clusters each and the nodes of job 15 are somewhat adjacent but do not
form a convex shape at all. The job allocations for the Random strategy are even
“more dispersed”.

Differences in spatial layout obviously affect inter-job link contention. If in

[}

yix

® O i *—0
® O I 9—0
& I I O I *—0
&% O—CO—C—0C—e—=0
[] 2 3 4 5 6 7
MBS
L —0 0 0 0 X
XL X—@—@—0O—0O—0
O I O——0—0—(O——0
O—O0—0—0—0—0 (0O
0 | 2 3 4 3 L] 7
Paging
o—O O—@ O
o—O O—& 9
o—O I *—0 ®
O—e—O L O—@ I X
L] 1 4 3 6 T
Random

FIGURE 20. Snapshots of Different Non-Contiguous Strategies

(O unallocated node
(O node allocated to job 11
133 node allocated to job 12

@ node allocated to job 15

(O umllocated node
(O node allocated to job 11
X3 node allocated to job 12

@ node allocated to job 15

(O unallocated node
(O node allocated to job 11
%) nede allocated (o job 12

@ node allocated to job 15

46

Figure 21 the second node of job A had been (3,0) instead of {7,3), then there
would have been no inter-job link contention.

3 C\ ' T M T T Y .
- N N h—y h—y Ay p—

O unallocated node

: () () () C) C) C) C) C)T . node allocated to job A
! C) () () () () () () ()T O node ollocated to job B
o Yy oy Fa I o e .)
C/ A .éu___;.uéu%_u__}_) =3 link affected by job A
yis 1] | 2 3 4 5 [7

-e+= 3> link affected by job B

FIGURE 21. Inter-Job Link Contention for the Link Between (6,0) and (7,0)

Clearly, contiguous allocation strategies restrict the location of nodes allo-
cated to a given job to form a convex shape and do not experience inter-job link
contention, while non-contiguous allocation strategies do not restrict the location
of the nodes allocated to a given job and do experience inter-job link contention.
The problem we address is the degree to which non-contiguous strategies with “less
dispersed” allocations are likely to experience less contention and how to define
“less dispersed”.

In this chapter, we define several dispersal metrics that measure the spatial
layout of a given job’s allocation in order to capture the degree of compactness
of that allocation. We then study the degree of correlation between these metrics
and inter-job link contention. Metrics that have high correlation with inter-job
link contention and that are efficient to compute are useful for the evaluation and
design of processor allocation algorithms. We run simulations using ProcSimity

and compare dispersal metrics values for several known allocation strategies with

the corresponding contention measurements from the message-passing simulator.
Our analysis and experiments considered different topologies of machines, a wide
range of communication patterns and different workloads. Qur results show that
there is a very high correlation between degree of compactness as measured by
our dispersal metrics and inter-job link contention. Thus, maximizing allocation
compactness seems to be a very promising approach in order to minimize inter-job

link contention.

Dispersal Metrics

Qur first step is to develop a metric to quantify the degree of compactness of
a given allocation. We start with “per job” dispersal metrics that are calculated
on a per job basis. Per job dispersal metrics are based only on the addresses of the
nodes allocated to the job in question. The addresses of those nodes are available
at allocation time and are static over the lifetime of the job. Figure 22 shows a
snapshot of an 8 x 4 mesh topology with three allocated jobs. This example is used
throughout this section. We discuss three different categories of per job dispersal
metrics as well as algorithms to compute them: nodes_affected, links_affected as
well as distances and diameter. We consider two-dimensional mesh topologies
first. Afterwards, we extend the algorithms so that they work for k-ary n-cube

topologies as well.

Nodes Affected

Nodes_affecled represents the number of nodes in the whole system that po-

tentially suffer from inter-job link contention if the allocated nodes (i.e. the nodes

48

-)
3 § ‘C" ®! O unallocated node
1 ¢e Yo L]:L

(O node allocated to job 36

. (00
Ty o

{_/ W 5 : . node aflocated to job 41
b A

yix 0 1 2 3 4 5
—3= communication of job 36

FIGURE 22. Enclosing Rectangle and Communication for Job 36

allocated to the job we look at) do all-to-all communication. This is indicative of
contention because the more nodes are affected, the more likely is inter-job link
contention. If a foreign node (i.e. a node not allocated to this job) is affected
and it belongs to another job that does communication as well, messages from
both jobs are likely to contend, resulting in inter-job link contention. Figure 22
shows the all-to-all communication of job 36. If foreign node (7,3) of job 41 wants
to communicate with node (2,3) for example, inter-job link contention is likely to
occur.

A metric that approximates the number of affected nodes (nodes_affected)
finds the minimal enclosing rectangle that includes all the job’s nodes and counts
the number of nodes inside this rectangle. Let min, and maz, be the minimum
and maximum X coordinates among all nodes allocated to the job, and let min,
and maz, be the minimum and maximum Y coordinates among all nodes allocated
to the job.

Definition; nodes.affected = (maz. — min, + 1) * (maz, — min, + 1).

Figures 22 and 23 show the enclosing rectangle and the communication for

449

job 36 and 37, respectively. Nodes_affected for jobs 36, 37 and 41 is 16, 16 and 32,

respectively. The enclosing rectangle for job 41 is the entire 8 x 4 mesh.

~

RN

i

- O—0O—0——0
ey

O . O unallocated node

| v T
2 .T . . C)J,- () O node allocated to job 36
' . . . (;:ll @ node allocated 1o job 37

: H—o—@—“—‘*‘—l

O——0 @ nodeallocaied o job 41

—= communication of job 37

FIGURE 23. Enclosing Rectangle and Communication for Job 37

An efficient algorithm to calculate the enclosing rectangle examines each
allocated node once to determine the minimal and maximal coordinates in each
dimension. Thus, the algorithmic complexity for an n-dimensional mesh and job
of size j nodes is O(n * j).

Note that an exact count of the nodes affected only includes those nodes
visited by messages sent according to XY-routing in the mesh. Thus, while the
enclosing rectangle includes all nodes that are affected, it may also count nodes
that are not affected. Figure 23 shows the minimum enclosing rectangle for job 37.
Nodes (1,1), (1,2), (2,1) and (2,2) are inside the minimal enclosing rectangle, but
they are not affected by communication of job 37. However, the complexity of an
exact count is much higher: O(n#j2xk) where k is the maximum number of nodes
in one dimension. The worst case overestimate of nodes_affected occurs in a k x &k
mesh with one node allocated in the upper left corner and one node allocated in

the lower right corner. In this case, nodes_affected is k* while the number of actual

nodes_affected is approximately 4k.

Links Affected

The second metric we consider, links_affected, counts the number of links in
the system that potentially suffer from inter-job link contention if the allocated
nodes do an all-to-all communication. As defined above, let min, and maz, be
the minimum and maximum X coordinates among all nodes allocated to the job,
and let min, and maz, be the minimum and maximum Y coordinates among all
nodes allocated to the job. Let count, be the number of distinct positions in the
X dimension occupied by nodes assigned to the job; let count, be the number of
distinct positions in the Y dimension occupied by nodes assigned to the job,

Definition: links_affected = (maz.—min,)*count,+{maz,—min,)*count..

Figure 24 illustrates the computation of links_affected for job 41. count, and
count, are computed by taking the projections of job 41’s nodes onto the X and Y
axes, respectively, yielding a value of 7+4+3%4 = 40 links_affected for job 41. Note
that while nodes_affected for jobs 36 and 37 are both equal to 16, the links_affected
metrics differ for these two jobs with links.affected for job 36 equal to 24 and
links_affected for job 37 equal to 12. Thus, links_affected is more discriminating
and more accurately reflects the actual potential for inter-job link contention.

The complexity of an algorithm to compute links_affected for an n-dimensional
mesh and job of size j nodes is O(n * j) as well. There is no overestimate by
links_affected: it computes exactly the number of links that are potentially visited

by messages sent among the job’s nodes according to XY-routing.

ol

9, O unallocated node

1 .‘e‘.‘e*.% T o D '—"9'(")%'(

O nnde allocated to job 36

count_y={

9
D === — —>—I—:.-,_-_\—>-,_f)1\

@ node allocated to job 37

@ rode allocatcd 1o job 41

; I I p Y N
' =00 ===
3 4 5 7

count_x=4

FIGURE 24. Bitvectors and Communication for Job 41

Distances and Diameter

We consider several possible dispersal metrics motivated by the field of cluster

analysis [17].

1. Average_distance represents the average distance over all pairs of nodes allo-

cated to the job.

2. Summed_distance represents the sum of the distances between all pairs of

allocated nodes.

3. Distance_from_center represents the sum of the distances of each allocated
node to the allocated node that is most central, i.e. the allocated node for

which this sum is minimal.

4. Diameler represents the maximal distance between any two allocated nodes.

These metrics should correlate well with contenlion because the distance between
two nodes equals the path length if the pair communicates using minimal dimension-

ordered routing. The longer the path, the more likely is contention.

52

Let the nodes allocated to a given job be numbered arbitrarily from 1 to j, and
let { and m be any two nodes with coordinates (I;,{,) and (m.,m,), respectively.
Let distance(l,m) =| (l,—mz) | + | ({,—m,) | be the Manhattan distance between
nodes ! and m,

Definition:

Tie1 T distance(l,m)
i+ —1)

average distance =

i i
summed _distance = Y . Y . distance(l, m)

=1 m=1

J
distance_from_center = mlin(Y distance(l, m))

m=1

diameler = max(distance(l,m))

W

The complexity of an algorithm to compute all of the above metrics is O(n *

7).
Extension to K'-Ary N-Cube Topologies

While extensions to higher dimensional meshes are straightforward. some
modifications are needed for k-ary n-cube topologies. K-ary n-cubes differ from
n-dimensional meshes in that the & nodes in each dimension build a ring (the first
and last node are connected through a “wrap-around” link). Dimension-ordered
routing traverses one dimension at a time. To travel through one dimension, the

message can travel in either direction (e.g. left or right in X-dimension) because

53

of the wrap-around. The direction taken depends on which one takes fewer hops.

The algorithm to compute nodes_affected and links_affected for meshes can be
extended to k-ary n-cubes with minor changes. The complexity of the algorithm is
O(n#(j + k)) where j is the number of nodes allocated to the job, n is the number
of dimensions and k the arity of the k-ary n-cube. Whereas links_affected has no

overestimate for meshes, marginal overestimates for k-ary n-cubes can occur, see

D

g ') O unallocated node

A © node allocated ta job 36
O () node allocated ta job 37

Q<‘ @ rode altocated 1o job 41

] 7

W =2 communicalion of job 41

FIGURE 25. K-Ary N-Cube: Communication for Job 41

Figure 25.

1

L
A

i

F|

5
E
u |

For our distance and diameter metrics, we use the notion of Lee distance [7]

which extends the concept of Manhattan distance to n dimensions.

Definition:
lee_distance(l,m) = Z min(| lyim — Mdim |, 8= | laim — Maim |)
dim=1

where ! = (I}, 0, ...l;) and m = (m;,m,,..m,).
The definitions of average_distance, summed_distance, distance_from_center
and diameter for k-ary n-cubes are the same as those in the definition above, with

distance(l, m) being Lee distance rather than Manhattan distance. The algorith-

54

mic complexity remains at O(n * j2).

Average Dispersal

All the above dispersal metrics are computed for a single job (“per job dis-
persal metric”}. Awverage dispersal is defined as the average value of a per job
dispersal metric over a jobstream (workload) for a given allocation strategy (“dis-
persal metric per jobstream™).

The following two scenarios show the problems exhibited by per job dispersal
metrics and how they are resolved by average dispersal. Per job dispersal metrics
are static, whereas the processor allocation problem in general and contention in
particular are highly dynamic. Per job dispersal metrics do not consider other

jobs, they are blind-folded so to speak:

1. To experience inter-job link contention, at least two different jobs have to
interfere. A highly dispersed job A has a high value of per job dispersal

metric. But if there is no other job to interfere with, inter-job link contention

is zero.

X

If a dispersed job B interferes with a contiguous job C, both experience
inter-job link contention but only B is likely to have a high value of per job

dispersal metric.

One approach to resolve these problems is to take a snapshot and average
the per job dispersal metrics over all jobs that are running at this point in time.
This helps in the second scenario, because although the contiguous job C doesn’t

expect contention, the job B does.

35

In our experiments, we go a step further and average over all jobs of the
jobstream, instead of taking many snapshots. This approach is more efficient and
it also helps in the first scenario: it is very likely that there was another job in
addition to job A a short time earlier or that there will be another job a short
time later (in both simulation studies and the real world, machines normally have

a high load) and contention was or will be occurring.

Impact of Allocation Compactness

The purpose of our experiments is to examine the degree to which our dis-
persal metrics correlate with inter-job link contention, and thus the ability of these
metrics to be used to guide and evaluate processor allocation algorithms. We con-
duct two sets of experiments: the first set of experiments uses per job dispersal
metrics. The second set of experiments uses average dispersal which considers the
whole jobstream. Contention measurements are produced by a message-passing
simulator. Our experiments consider both mesh and k-ary n-cube topologies of
interconnection networks, a wide range of communication patterns and synthetic

workloads.

Simulation Environment

To obtain contention measurements, the ProcSimity simulator described in
Chapter 11l was used to simulate message-passing behavior down to the level of
individual flits and message-passing buffers. Contention is ineasured by recording
the amount of time the header flit of each message is blocked in the network waiting

for a channel to become free.

Our simulation model uses wormhole switching and minimal dimension-or-
dered routing (XY routing for mesh and Lee routing for k-ary n-cube topologies).
We model] two uni-directional links between adjacent nodes and either a 16 x 32
mesh or a 8-ary 3-cube topology. To achieve a variety of spatial layouts, we employ
the following allocation strategies. For mesh topologies we use the non-contiguous
strategies Random {33], MBS [33] and Paging {33] (with different page sizes and
different indexing schemes) as well as the contiguous strategies First Fit [58], Best
Fit [58] and Frame Sliding {11]. For k-ary n-cube topologies we use the non-
contiguous strategies Random [55], MBS [55], Paging [55] and Multipartner [55] as
well as the contiguous strategies Buddy [32], Gray Code [8] and Partner [1]. The
job scheduling policy is set to FCFS. We saw no significant differences when other

job scheduling algorithms were used.

Workload

In our experiments, we use synthetic workload traces whose parameters for
jobsize, service time, and interarrival time are based on realistic workload param-
eters from the Intel Paragon at the San Diego Supercomputing Center [56]. Our
jobstreams consist of 1000 jobs. Jobsizes have an exponential distribution with
mean of 16. For the purpose of non-empty waiting queues, we choose short inter-
arrival times {Poisson distribution).

Five communication patterns are modeled: all-to-all broadcast, one-to-all
broadcast, fast Iourier transform (FFT) as well as multigrid benchmark and kernel
CG benchmark from NAS parallel benchmarks [4]. These cover many typical

communication patterns and the complexity ranges from O(j) to O(3%), j being

the jobsize. Figure 26 shows all-to-all and one-to-all communication for a job of
size 4 as well as the different communication phases of FFT for a job of size 16.
If the communication pattern has different phases, barrier synchronization is used
between the phases.

0 O=0

i B

alf-to-all one-lo-al}

FIGURE 26. Communication Patterns

Since our focus is on inter-job link contention, we consider communication
only (no computation). To study contention, we use heavy communication loads

which are designed to produce heavy contention.

Results

Per Job Dispersal

The first set of experiments uses per job dispersal metrics. Given an allocation
strategy and a communication pattern, we compute for each of the 1000 jobs of the
jobstream the correlation between dispersal metric and contention. Contention is
the average blocking time of messages of that job as measured by the simulator.

For correlation computations, we use the Pearson correlation coefficient. Re-

sults reported represent the statistical mean after 20 simulation runs with identical

parameters, and given 95% confidence level, mean results have less than 3% error.

Overall, correlations of per job dispersal metrics with inter-job link contention
were not strong. Table 1 gives results representative of the full set of experiments
which ranged over six allocation strategies and five communication patterns. Ta-
ble 1 shows the correlations for a 16 x 32 mesh topology, MBS allocation strategy
and two different communication patterns. Figure 27 shows the scatter plot for

all-to-all communication and the dispersal metric nodes_affected.

TABLE 1. Correlation {or Per Job Dispersal Metrics (MBS Strategy, 16x32 Mesh)

all-to-all | one-to-all

nodes_affected 391583 | .256183
links_affected 444805 | .225672
average_distance 407117 | .499982
distance from_center | .499775 | .279724
summed _distance 501765 | .507082
diameter 361437 | .222952

01 '

‘
g 300 ¢ E’
woi! TR
.2 g, F oo
100 }h . -

FIGURE 27. Scatter Plot of Per Job Dispersal Metric { Nodes_Affected) vs. Con-
tention (All-to-All Communication, MBS Allocation Strategy, 16x32 Mesh)

Correlation ranges from 0.22 to 0.50 and the points of the scatter graph do

not fall in a straight line. The lack of strong correlations are due to the fact that
per job dispersal metrics ignore the presence of other jobs in the system while inter-
job link contention depends precisely on interference from other jobs. Therefore,
per job dispersal of two jobs can be very different, while they experience the same
level of inter-job link contention.

To detect any possible trends, we group the datapoints with similar dispersal
values into intervals, compute the average contention for each interval and connect
these points. The resulting curve is shown in Figure 27, which seems to indicate
that in general as dispersal increases, contention also increases.

Different communication patterns and different allocation strategies result in

graphs very similar to Iig 27. The same is true for k-ary n-cube topologies.

Average Dispersal

The second set of experiments uses average dispersal (per jobstream). As
discussed earlier, they resolve the problem of per job dispersal metrics being blind
to the presence of other jobs in the system.

Table 2 gives results representative of the full set of experiments. It shows
the correlation for an 16 x 32 mesh topology and five different communication
patterns. Table 3 shows the correlations for a 8-ary 3-cube and two different com-
munication patterns. The correlations are very high, varying between 0.890 and
0.998 overall. For both topologies the dispersal metric summed_distance has the
highest correlation for all-to-all communication. For other communication patterns
in mesh topologies, the dispersal metric diameter achieves the highest correlation.
For one-to-all communication in the k-ary n-cube topology, the dispersal metric

links_affected has the highest value.

TABLE 2. Correlation for Average Dispersal (16x32 Mesh)

all-to-all | one-to-all | FFT MuitiGrid | NASCG

nodes_affected 010878 | .996691 1985869 | .986541 .992155
links_affected 927287 | .997315 .993006 | .989280 992311
average_distance 913628 | .998490 | .990213 | .991278 995726

distance_from_center | .979404 | .973173 980911 | .960587 959212
summed_distance 096203 | .925024 934681 | .895492 .890912
diameter 939838 | .996631 .995940 | .994470 .996535

TABLE 3. Correlation for Average Dispersal (8-Ary 3-Cube)

all-to-all | one-to-all

nodes_affected 859740 | .990280
links_affected 942668 | .993962
average_distance 953251 | 991443

distance_from_center | .973884 | .964315
summed_distance 981271 | .936519
diameter 971608 | .964080

Figure 28 shows the scatter plot for average diemeter and for all five commu-
nication patterns in one graph. For each communication pattern, the datapoints
are close to a straight line. This visually shows the high correlations. The slopes
of the regression lines vary for different communication patterns. All-to-all com-
munication has the biggest slope and one-to-all shows the smallest slope. Other
average dispersal metrics have similar graphs.

Figure 29 shows the scatter plot for FFT communication, for average diam-
eter and for 20 jobstreams that differ in the seeds for the probabilistic parameters.
It shows four clusters, the lowest for the contiguous strategies First Fit, Best Fit
and Frame Sliding, the second for MBS (non-contiguous), the third for Paging

(non-contiguous) and the fourth for Random (non-contiguous) allocation strategy.

61

160
"nllato-n}:" °
“one-to-all” +
[40H one "°F7I=~ll"' =
"MultiGrid"” x
120- "NasCG" o
69
1001
=
2
g 80
=1
=]
R
40
20
/+
0 T T T T
0 20 25 30 35 40

Dispersal

FIGURE 28. Scatter Plot for Five Communication Patterns (Average Dispersal
Metric Diameter, 16x32 mesh)

254 ".-5-diat”

Contention
‘

&

53

g

g
20 NPANOD+OMPXD+PERXO+ O

1] T T T T T T
30 40
Disparsal

FIGURE 29. Scatter Plot for 20 Jobstreams {Average Dispersal Metric Diameter,
16x32 Mesh, FFT Communication)

62

In this graph, the slope of the regression line for different workloads is almost
identical.

Figure 30 shows rank correlation: the example chosen is all-to-all communi-
cation pattern and the average dispersal metric links_affected. Dispersal metric,
measured contention and measured average service time rank the different alloca-
tion strategies in the same order. (First Fit, Best Fit and Frame Sliding have the
lowest values, followed by Paging and MBS, Random is last.) Since dispersal met-
rics are much easier to obtain, they have the potential to replace costly low-level

simulations as a means for evaluating allocation algorithm performance.

180 350 11000
160 "links_affected” — | 309 "contention” — | 10000 "avg_service_time" —-
9000
140 250 8000
120 20 1000
6000
100 150 5000 L
80 100 4000
60 50 g%g
oLt v gt 1 [T T | je00—-1—l T T
0 1 2 3 4 5 0 1 2 3 4 3 0 1 2 3 4 5
Allocation strategy Allocation strategy Allocation strategy

FIGURE 30. Rank Correlation for Six Allocation Strategies (Average Dispersal
Metric Links_Affected, 16x32 Mesh, All-to-All Communication)

In additional experiments, we reduce the average number of messages sent
per job. Much less contention is measured. This results in lower correlations (0.08
to 0.61) and indicates there is no strong relation between dispersal and contention
if there is only little contention. It is easy to see that dispersal metrics are stiil

discriminating among allocation strategies, even if the latter experience almost the

same low contention.

63

Discussion

Non-contiguous processor allocation strategies assign nodes thal are pos-

sibly dispersed, thus achieving vastly improved job throughput for computation

intensive workloads. For further improvement, inter-job link contention due to

communication must be minimized as well. Our contribution towards this goal is

(1) an analysis of the relationship between inter-job link contention and allocation

compactness and (2) a set of dispersal metrics that measure allocation compact-

ness. Our six dispersal metrics are nodes_affected, links_affected, average_distance,

summed_distance, distance_from_center and diameter.

o

To summarize our results:

. Maximizing allocation compactness seems to be a very promising approach

in order to minimize inter-job link contention for communication-intensive
jobs. Qur simulation experiments show that strategies that allocate more
compactly (as measured by our dispersal metrics) experience less inter-job
link contention. Correlations of average dispersal metrics (over a workload)
with contention measured by the simulator range from 0.890 to 0.998 for

a wide range of communication patterns and two network topologies {mesh

and k-ary n-cubes).

Average dispersal metrics have the potential to help evaluate non-contiguous
processor allocation strategies. Qur dispersal metrics are efficient to imple-
ment for mesh and k-ary n-cube interconnection topologies. Because they
are efficient to compute and have high correlation with contention, average
dispersal metrics can be used to evaluate allocation strategies and thus in

many cases replace costly low-level simulations.

64

3. Per job dispersal metrics have the potential to help improve non-contiguous
processor allocation strategies. Selecting the job allocation with minimal
conlention is necessary Lo improve non-contiguous allocation strategies. Be-
cause per job dispersal metrics can be efficiently computed at allocation time
and because they contribute to average dispersal, per job dispersal metrics
can be used within non-contiguous allocation strategies to help minimize

communication-based contention and thus optimize overall performance.

65

CHAPTER V

MINIMIZING COMMUNICATION-BASED NETWORK CONTENTION

Motivation

To further improve the performance of non-contiguous processor allocation
(that overcome the severe fragmentation problem), we develop a new allocation
strategy that aims at minimizing communication-based network contention. Mo-
tivated by our observations about allocation compactness (see Chapter V), our
new algorithm tries to assign to each new job a cluster of nodes that is as compact

as possible.

The MC Allocation Strategy

Our new allocation algorithm is called MC due to its mission of Minimizing
inter-job link Contention.

We first discuss MC as applied to two-dimensional meshes. On these ma-
chines, job requests are typically specified by two numbers, width w and height 4.
The MC algorithm begins by constructing several candidate clusters, one per idle
node (Z,j). A candidate cluster is centered around (7,) and contains idle nodes
arranged within shells radiating from the center node. For the purpose of defin-
ing shells, we disregard whether nodes are idle (unallocated) or busy (allocated to
other jobs).

Definition: For a given center node (7,7) and a request size w x h, shelly is

66

the contiguous w x h rectangle centered around node (z, j), i.e. the w x h rectangle
whose lower-left corner is the node (i — [%51],5 — [2L]). Shell;4,, s > 0 are
successive rectangular rings of nodes. More precisely, shell,y, contains the nodes
that are at distance 1 from at least one node in shell,, but not contained in any
shelly, 0 < k < 5, where distance is defined as maz(Az, Ay).

To construct a candidate cluster, idle nodes are selected from successive
shells, beginning with shell, until enough (i.e. w+h) idle nodes have been selected
to satisfy the request. The order in which idle nodes within each shell are selected
is designed to find a rectangle of dimension w x A if it exists or to find a compact
and as square as possible cluster otherwise. Thus, idle nodes on the shorter sides
of the ring are selected first, idle nodes on the longer side second, and corner nodes
last.

To evaluate a candidate cluster, we define cost in the following way.

Definition: The cost of a node is equal to the value of that node’s shell
number. The cost of a candidate cluster is the sum of the costs of the nodes in
that cluster.

Since a w X h request can be equivalently satisfied by a w x hor a h x w
allocation, MC considers both orientations and evaluates two candidate clusters
for each idle node. In the end, the candidate clusters with minimal total cost
from both orientations are compared. Pseudocode for the algorithm is given in
Figure 31.

We illustrate the algorithm given the situation in Figure 32 and a job request
of 1 x 3. Each of the idle nodes (4 in our case) does a shell-like scan to find a

compact cluster of 3 nodes with itself as the center. Figure 32 shows the shells for

67

mc_allocate(w, h){
if number_idle < w * h then return fail
for both orientations w x h and h x w
for each idle node (i, j)
cluster = empty list; tcost = 0
add idle nodes to cluster that are in
w x h rectangle around (i, j) /% shell_0 */
for sach shell s >= 1
stop if |cluster| = w * h
if node idle then add to cluster; tcost += s
select cluster with minimal tcost
compare best cluster from both orientations
allocate those nodes, update number_idle and busy array

1

FIGURE 31. MC Pseudocode

. O unallocated node

T

- O—0—0—0

. . node allocated

| —0—0—0

*—©@ @
L shell |)
P *—0 0 ©
shell 2
yix] 2 3 4 5 1

FIGURE 32. Shells Around B, Request of 1 x 3

68

idle node B. Shelly is the 1 x 3 block (the exact job request size and shape) around
node B. However, only two nodes are idle in shellp, thus MC keeps searching
through bigger shells until we have found enough idle nodes. Shell; extends shelly
by one ring of nodes, and so on. In the end, the candidate cluster centered around
node B includes the idle nodes A, B and C for a total cost of 1. Similarly, the
candidate clusters centered around nodes A, C and D have total cost of 2, 3 and
5, respectively. The cluster centered around node B has minimal cost and will be
allocated.

MC is distinguished from previous fragmentation-free straiegies by several
characteristics: it finds compact clusters, it considers single nodes instead of blocks,
and it is inherently parallelizable. We elaborate on each of these features below.

Property: MC finds compact clusters thereby minimizing inter-job link con-
tention. If a contiguous allocation of requested size exists, MC finds it. Otherwise,
MC vields a compact allocation, never leaving idle nodes unselected on commu-
nication paths between selected nodes. This is a result of the shell-like scanning
scheme centered around each idle node and of the definition of cost. Figure 33
shows how previous strategies (MBS, M2DB and AS&MB) assign a 2 x 4 request.
The allocation by MC (indicated by shells in Figure 33) causes significantly less
inter-job link contention and the new job does not interfere with jobs B or C.

Property: MC builds clusters out of individual nodes and thus circumvents
restrictions imposed by previous block-based approaches. These block-based al-
gorithms allocate in a “conservative” manner: larger blocks or subrequests are
not broken down further if the job can be allocated without doing so. There are

two problems with such schemes: First, acting conservatively does not help the

649

O utallocated before request
X choice made <
by block-based strategies

message-passing contention

node allocated to job B

O node allocated to job C
yix 0 I 2 3 4 s 6 7

FIGURE 33. Block-Based Strategies, Request of 2 x 4

allocation of future jobs if either the preserved block will be split up anyway or if
the preserved block will not be used anyway. The first situation arises if the next
job needs smaller blocks. The second situation arises if the next job has to wait
until enough idle nodes are available (yielding a new situation) or if no next job
arrived yet. More important, acting conservatively often results in less compact
allocations. Given the situation in Figure 34, a request of 3 x 2, MC yields a better

solution than MBS and M2DB: it considers single nodes and constructs a compact

cluster from scratch.

X choice made i
by block-based strategies

- ’ O unailocated before request

message-passing contention

. node allocated to job A

O node allocated to job B

FIGURE 34. Allocation of a 3 x2 Request by Block-Based Strategies and Resulting
Inter-Job Link Contention

70

Property: MC is inherently parallelizable. Each idle node can independently
find and evaluate the candidate cluster of which it is the center. To allocate a new
job, a distinguished system node sends the busy array, a bitvector representing the
status of each node, to each idle node and—after collecting the total cost (and node
selections) of the candidate clusters—allocates the job to the best candidate cluster.
Thus, we employ just the idle nodes and need only limited communication in the
form of a scatter-gather pattern. Because interarrival times of jobs are typically on
the order of minutes and runtimes of jobs are on the order of hours, the additional
resource usage of a parallel implementation of MC would be negligible.

Further characteristics of MC are: it takes the aspect ratio of requests into
account because shellp has the requested shape. Moreover, MC easily extends to
higher dimensional meshes and toroidal topologies; extension of the definition of

shells and the shell-like scan are straightforward.

Performance Evaluation

We conducted experiments to compare MC to previous non-contiguous al-
location strategies. We again use ProcSimity to model a mesh architecture with
wormhole switching, minimal dimension-ordered routing, and two uni-directional
links between adjacent nodes. The detailed message-passing behavior is simulated
down to the level of individual flits and message-passing buffers. In the results
reported, we model a 16 x 22 mesh and FCFS scheduling. We compare the perfor-
mance of MC with three non-contiguous allocation algorithms: MBS [35], Paging
(35], and AS&MB [52]. These algorithms have been shown to have the best per-

formance among all non-contiguous strategies to date. We measure two high-level

performance metrics, response time and service time, and two contention-related
metrics, blocking time and nodes_affected. Blocking time records the amount of
time the header flit of each message is blocked in the network waiting for a channel
to become free; nodes_affected as defined in Chapter IV was chosen to measure the
degree of a job’s dispersal since it was easy to compute and its correlation to link
contention was very close to +1.

To allow for both easy comparison with previous experiments [33, 52] and
for a realistic evaluation of MC, our performance evaluation includes the use of
three different workloads: one synthetic workload and two trace-derived workloads.
Workload I is a synthetic workload, a stream of 1000 jobs whose sizes are expo-
nentially distributed. Workload II and III, described in detail below, are both
trace-derived workloads, a stream of 6087 real production jobs recorded over a
three month period from October 1 to December 31, 1996, {rom the Intel Paragon
at the San Diego Supercomputer Center. The traced job stream is taken only
from the 352 node NQS partition [56] of the machine, through which all batch
jobs were scheduled. The trace had the following statistical characteristics: the
mean interarrival times was 1301 seconds, with a coefficient of variance of 3.7; the
average job size was 14.5 nodes, with a coefficient of variance of 1.5, and with the
distribution heavily favoring sizes that are powers of two.

Our trace-derived workload uses the empirical arrival times and job sizes. To
challenge allocation strategies, we multiply job arrival times by constant factors
c to create system utilizalions in the range of about 10% to about 90%. When
¢ < 1, simulated interarrival times decrease, resulting in increased system load.

Since our focus is on inter-job link contention, we model a heavy comniunication

load and no computation. Each job does ali-to-all communication, i.e. each node
sends a message to all other nodes of the same job. In workload II, number of
messages sent and jobsize are correlated since each job does exactly one iteration
of the all-to-all communication. In workload I and III the number of messages
sent is uncorrelated to the jobsize. We use an exponential distribution and set
the mean such that a job of average size completes one iteration of an all-to-all
communication.

As shown n Figure 35a, average response time of jobs is much lower if MC
is used instead of MBS, Paging or AS&MB. The maximum reduction in average
response time is 86.25% for workload I, 81.35% for workload II (at interarrival time

900) and 97.06% for workload III.

a) Average responsa time b} Average dispersal
3e+06 8
MBS —— 7 I T
o :
23+06 L ASKEME <ccas C
MC .
4
16406 |- =
2
1
0 bl 1 1 1 0
1250 1000 750 500 250 1250 1000 750 500 250

Interarrivat time (workload II) Intaramival time {workload il)

FIGURE 35. Average Response Time and Average Dispersal

Figures 35 and 36 help to explain the outstanding performance of MC: up to
a certain interarrival time (800 in case of workload II), MC succeeds at allocating
iobs very compactly (as measured by dispersal in Figure 35b) and thus at keeping
contention low (Figure 36a). If messages contend less, jobs can leave the system
earlier (Figure 36b). This in turn decreases the waiting time of future jobs or it

makes it easier to allocate future jobs compactly.

a) Average contention

A LR LR

o= MBS === T T

0
1250 1000 750 500 250
Interarrival time (workload I1)

6000
5000
4000
3000

2000

b} Average service lime

/MBS ——

. Paging -------
 ASEMB e
MC ;

1250 1000 750 5S00 250
Interartival time (workioad N)

FIGURE 36. Average Contention and Average Service Time

73

The sharp increase in Figure 36b is critical: Although utilization of the

system increases from about 85% to about 90%, average service time doubles thus

hurting throughput severely. Clearly, the system should not be operated at such

high loads, regardless of allocation strategy. However, using MC the system can

sustain higher loads before this sharp increase occurs. Below this load (interarrival

time of 800 in case of workload II) MC achieves better dispersal and contention

values and thus outperforms MBS, Paging and AS&MB.

Conclusions

Taking on the challenge of reducing inter-job link contention in fragmentation-

free processor allocation, we designed and tested a new allocation strategy called

MC. To summarize our results:

1. MC is a simple, elegant and efficient strategy. Each idle node builds a cluster

o

aspect ratio of the request into account.

only limited communication in the form of a scatter-gather pattern.

with itself as the center, using a shell-like scanning scheme and taking the

MC is inherently parallelizable, employing just the idle nodes and needing

74

3. MC finds a contiguous rectangle of requested size if one exists or finds a
compact cluster otherwise. Compact allocations help minimizing inter-job

link contention, in agreement with the results of our analysis (see Chapter

IV).

4. MC outperforms previous allocation strategies, reducing average response
time up to 97% (when communication costs dominate runtimes) and being
capable of sustaining higher system loads. These performance results are
based on message-passing simulations using workload traces from the San

Diego Supercomputing Center.

5

CHAPTER VI

ANALYZING I/O-BASED NETWORK CONTENTION

Motivation

In this chapter, we analyze traffic hotspots due to data transfer between
compute nodes and I/O nodes. Our goal is to study the effects of spatial layout of
jobs on 1/0-based network contention and parallel I/O performance. This study is
motivated by earlier I/O measurements on a TFLOPS machine with up to nine I/0O
nodes and several hundred processor nodes at Intel [22, 24]. These experiments
showed that certain placements of compute nodes and 1/0 nodes saturated the
bandwidth of some network links, resulting in serious parallel 1/O performance
degradation [23].

In order to understand the phenomena observed, we conduct a careful anal-
ysis involving both dynamic simulation and analytic modeling. We evaluate the
parallel I/O performance sensitivity to number of 1/0 nodes, number of com-
pute nodes, throughput rate per network link, throughput rate per 1/O node,
spatial layout of allocated compute nodes, and read or write traffic. We assume
a TFLOPS-like architecture with a mesh-based topology, XY-wormhole-routing,
and the I/O nodes configured on one side of the mesh.

Our study yields surprisingly strong results regarding (1) the limitations on
parallel I/O performance due to network contention, and (2) the possible gains in

parallel I/O performance that can be achieved by tuning the spatial layout of jobs.

76

By controlling both the shape of the compute nodes allocated to jobs and their
location relative to the I/O nodes, we can significantly reduce network contention
and thus improve parallel 1/O performance.

Figure 37 illustrates how the spatial layout of jobs affects parallel I/O per-
formance. In this simple example, one job runs on two compute nodes and writes
data to two I/O nodes as shown in Figure 37a. Assuming that throughput rate
per I/O node equals throughput rate per network link, it turns out that overall
parallel I/O performance for layout 1 {shown in Figure 37b) is only one half that
of layout 2 (shown in Figure 37¢). This difference in parallel [/O performance is

due to network contention incurred by data in transit to the I/O nodes.

256,MB
ION CNI1 ION T ION e—@ Lo
‘% 256 MB

“256 MB

ION ..’ CN2 ION .. @ L
;M /T T T e "
170 traffic graph layout | (orthogonal) layout 2 (parallel)
for wrile transfer time = 16 5 transfer time =8 s
(@ (b) (©)

FIGURE 37. Simple Example Showing That Spatial Layout Affects I/O Through-
put
Let us assume that each compute node (CN) sends 256 MB of data to each

I/0 node (ION), and that both throughput rate per 1/0 node and throughput rate

per network link per direction is 64 MB/s. The approximate time it takes each

I/O node to write its 512 MB of data to disk is (,f‘llff;i = § seconds. However, if

the job is allocated as shown in Figure 37b, data from all four sender-receiver pairs

(1 GB) has to traverse the link that is located between CN1 and the lower 1/0

node in west-bound direction. This takes #ﬁh = 16 seconds. Thus, the network

limits the overall parallel I/O performance to ‘22 = 64 MB/s. In contrast, if the

job is allocated as shown in Figure 37c, every network link carries at most 512

MB of data per direction. Now, the network can accomplish the data transfer in

;jﬁgi = 8 seconds. This matches the time it takes the 1/O nodes to write the

data to disk, yielding overall parallel 1/O performance of l-g—B = 128 MB/s, which
is twice as big as the overall parallel 1/0 performance of the other layout.

We see the same effect on larger systems, even if f - the ratio of throughput
rate per network link and throughput rate per I/O node - is greater than one.
Figure 38 shows simulation results for f = 6 and one job that runs on 400 compute
nodes and writes data to the I/O nodes. When varying the number of I/0 nodes
from 2 to 32, parallel I/O performance would ideally grow linearly with the number
of 1/O nodes. However, Figure 38 shows two things: parallel 1/0 performance
levels off (due to network contention), and spatial layout of jobs makes a significant
difference. 1200 MB/s of parallel I/O performance can be achieved with layout 2,

compared to only about 600 MB/s with layout 1.

Analvtic Modelin

Two characteristics define a job’s spatial layout: the “shape” of the allocated
compute nodes and their location within the mesh topology. The approaches used
by current commercial allocation software fall into two categories: block-based
allocation schemes [53] or linear allocation [41, 45]. The five spatial layouts that
we consider in this study are generalizations of these known allocation schemes.

They are block corner, block center, orthogonal, parallel, and diagonal (see Figure

39).

78

J2x32 mash, 1=6, 400 compule nodes, YO nodes vertical on side
2200 T T T T

ideal /O throughput —e—
2000 - realizable 110 throughput {layout 1} -
realizable 1O throughput (layoul 2} -0--

L 1

1800

1600 [

1400 |

1200 -

1000 ~

YO throughput {MBV/s)

800

600

400 -

200 +

15 20 25 a0 a5
Number of VD nodes

FIGURE 38. Parallel I/O Throughput Degradation

We look at several performance metrics. Maz_contention measures the max-
imum number of [/Q traffic sender-receiver pairs that contend for the same network
link. We look at throughput for the I/O nodes alone, throughput for the network
alone in the presence of contention, and the realizable I/0 throughput rate which is
the minimum of I/O node and network throughput. Our analytic model assumes

no blocking overhead.

Graph Theoretic Model

To understand the nature of network contention arising {rom parallel 1/0
traffic and its effect on parallel I/O performance, we refine the graph theoretic
model described in Chapter 11l Lo analyze the effects of spatial layout of jobs on

network contention and parallel I/O performance.

79

@®®O0O0000
@ABB®O0O0000
@OO®
B BB
B BB
B BB

5 classes of layouts:

000000
000000
000000
000000
IGIGIOIGIGIRICIGIE)
DOO0000000
1010010101010 0]e.

FIGURE 39. Iive Classes of Spatial Layout of One Job of Size 9

A block corner

B
w
(0)
o)
(D)
C orthogonal (10 VO nodes) @

18l {to /O nodes)

REARRRERE®

E diagonal ¢(not shown)

All symbols and terms are summarized in Table 4.

TABLE 4. Notation and Definitions

m number of I/O nodes

n number of compute nodes exchanging data

k length of one side of the quadratic mesh of compute
nodes of the machine

By effective throughput rate per 1/0 node

By effective throughput rate per network link

f quotient of B; and By

link_contention number of distinct sender-receiver pairs using that link

hotspot link with maximal link_contention

mazx.contention value of link_contention at hotspot

Bron I/O node throughput, I/O throughput of all I/O nodes

Bpner network throughput, throughput of the network
considering the limiting hotspot link

realizable throughput | min(Bon, BNET)

Definition: The system architecture graph consists of m I/O processors located
vertically on the west side of a £ x & mesh of compute processors.
A given parallel application requires n compute nodes to be assigned to pro-

cessors of the mesh. As described in Chapter 11, we assume the [/O requirements

80

of a job to be that of personalized broadcast, from all m /0 nodes to all n compute
nodes (allocated to the job) in the case of read, and from all n compute nodes to
all m I/O nodes in the case of write.

Definition: The /0 traffic graph Knn is a complete bipartite graph with
one set of vertices representing I/O nodes and the other set representing compute
nodes. Edges are directed from the set of I/O nodes to the set of compute nodes
in the case of a read traffic graph.

We embed the graph K., , into our architecture graph subject to the following

constraints:

1. the m I/O nodes of the 1/O traffic graph are mapped to the m 1/O processors

in the architecture graph;

o

the n compute nodes of the I/0 traffic graph are mapped to some subset of
the compute processors in the mesh; we will consider five possible mappings
that correspond to the five spatial layout schemes described above (block

corner, block center, parallel, diagonal, orthogonal).

3. each edge from I/O node i to compute node j in the I/O traffic graph is
mapped to the path from 1/O processor a(i) to compute processor a{j) ac-

cording to the XY-routing scheme of the mesh.

Definition: The link contention of a link { is the number of edges of the 1/O
traffic graph whose corresponding paths include { when we embed the 1/O traffic
graph into the mesh network as described above. Conceptually, link contention is
the number of distinct sender-receiver pairs sharing that network link.

Definition: A link with maximal link contention is a hotspot and the value of

81

this maximum contention is denoted by maz_contention.

Referring back to the example of Figure 37, the four sender-receiver pairs
are mapped to different, but overlapping, paths in the network. This results in
maxcontention of 4 [or layout 1 and maz_contention of 2 for layout 2,

Definition: The /O node throughput rate is the rate at which all I/O nodes
combined can read data from or write data to disks. The interconnection network
between nodes is ignored. The I/O node throughput rate is the aggregate of all
throughput rates per /O node, By. Thus,

BION =m*Bo

Definition: The network throughput rate is defined as the aggregate data
transfer rate through the interconnection network and is equal to the total amount
of data to be transfered divided by the time incurred by the bottleneck link to
transfer all the data of its maz_contention sender-receiver pairs. Assuming that

each message carries D bytes of data, the total amount of data to be transfered is

m*n* [, and the time incurred by the bottleneck link is ’"“"’""“é';'"“""'D. Thus,

the network throughput rate is

m#*n* B

Byer = -
maz_contention

Definition: The realizable I/O throughput rate is the rate at which 1/0 data

can be transfered between compute nodes and disks. It is equal to the lesser of the

82

I/0 node throughput rate and the network throughput rate.

realizable /O throughput = min(Bjon, BveT)

Best and Worst Case Network Contention and Network Throughput

In this section we develop formulas for the theoretical highest (worst) and
lowest (best) levels of maz_contention possible in our system. These values can
be used to determine the theoretical worst and best network throughput rates.
For the following theorems recall that we assume mesh architectures, XY-routing,

complete bipartite 1/O traffic graphs and I/O nodes configured on one side of the

mesh.
Theorem 1: The worst and best case values for maz_confention are m * n
M= .1

and 2, respectively.

Proof: Given XY-routing, the level of contention on any given link can be

computed by straightforward formulas. For example, the link contention on any
west-bound channel from (z + 1,y) to (z,y) is given by the number of senders
(u,v) with u > = and v = y times the number of receivers (s,t) with s < z.

Recall the definitions for maz.contention and link_conteniion. Given m *
n sender-receiver pairs, in the worst case all of them share one link. Thus,
maz_contention < m * n. This worst case value of m * n is achievable, for ex-
ample when the compute nodes lie orthogonally in relation to the 1/0 nodes as
shown in Figure 40a. In this spatial layout, all m * n sender-receiver pairs contend
for the horizontal hotspot link.

We prove that the best case value {or maz_contention is ™2 by (1) prov-

33

G 000000008008 0ES 0000000000000 000O0
0000000000000 0O0CO O@00CO0000000000000
O[c0O000O000000O0000 O®O000000000000000
0jl000000OC00000000C O@00C000D0000000000
0lo000000CQ0O00000000 O@OCO00000000000O0
Oloc00000O00000O0000C Oe00OO00CO0O000000000
Olo000000O00000COO00 Q8000000000000 000
el{eNeleNo N NN NeNoNoRoRNoN o Ne @oooooooooooooooo
OjJoC000O000000000O0 #000000000000000
Olo000OO0OO0OOOOO00O O0OO0000000000OD0
0lo0000000O0000000 O@ODOO00ODO0OO0OO000O
Olcc0000000C0000000 O®OO0CO0O00000O0000
OlocC00DPODO00OO0O0OO ©le0OD00OD00O0000000OO0
0[c000C000000000000 ©O@00000000000000O0
Olc00000CO000OCOOO0O0D O®OOOOOOODOO000000
0lo0D00O0O00O000D0000 ©leODOOOOOOO0OOO00O0D

(a) W hotspot for write traffic {b)

FIGURE 40. Two Spatial Layouts That Achieve the Worst Case and the Best
Case Value for Maz_Contention

ing that for all possible layouts, link_conienlion on a particular link, the mid-

dle I/O link, cannot be less than ™%, and (2) showing a layout that achieves

m=n

max_contention = et Since max_conlention is the maximal link_contention over

all links, including the middle 1/O link, maz_contention > ==,

Link_contention in either the south-bound or north-bound direction of the
link in the middle of the 1/O nodes cannot be less than 2=, The link contention
in south-bound direction from node (z,y+1) to node {z,y) is given by the number
of senders (u,v) with v > y times the number of receivers (s,¢) with ¢t < y and
s = z. The south-bound direction of the link in the middle of the I/O nodes has %
receivers, independent of the spatial layout of the job, and 7 senders, 0 < ¢ < n, if 1
compute nodes are allocated in rows above the middle of the 1/O nodes. Similarly,
the north-bound direction of the link in the middleof the I/O nodes has 2 receivers,
independent of the spatial layout of the job, and n — 7 senders, 0 €< ¢ < n. As
shown in Figure 41, the maximum of § * 7 and § * (n ~), 0 < ¢ < n, cannol be

less than ™. Thus, the link_contention on the vertical link in the middle of the

84

I/O nodes limits maz._contention > ==,

link contention

\ link contention on
n*m/2 Ny Py south-bound channel
A 2 in middle of /O nodes

s 720 link contention on
N . north-bound channel
'- ‘N . in middle of I/Q nodes
min= By
n*m/4
= = link contention

considering
both directions

0 n
i = compute nodes allocated above middle of /O nodes

FIGURE 41. Lowest Value for Link_Contention on Middle I/O Link

The best case value of % is achievable, for example when the compute
nodes lie parallel in relation to the 1/O nodes as shown in Figure 40b. In this
spatial layout, the link in the middle of the I/O nodes is the hotspot and i = 2.

Theorem 2: The worst and best case values for network throughput rate are
By and 4 % By, respectively.

Proof: These formulae are derived directly by substituting the worst and best
case values for maz_contention in the definition of network throughput rate.

The above two theorems confirm that when a complete bi-partite 1/0 traffic
graph is mapped to a mesh architecture with I/0 nodes on one side, the network
contention occurring on the bottleneck link enforces an upper bound on the network

throughput rate. Furthermore, the network throughput rates are independent of

the number of 1/0O nodes.

85

The Limitations of Adding I/O Nodes

The next theorem describes the limitations of adding I/0 nodes to the system
configuration. Recall that f = %.

Theorem 3: In the best case, at most 4f I/O nodes can be used to increase
realizable I/O throughput. In the worst case, at most f I/0 nodes can be used to
increase realizable I/O throughput.

Proof: Theorem 2 tells us that in the best case, Bygr = 4 * B;. Thus,
m>4f = mx*x By > 4+ B = Bioy > Byer. Thus, when m, the number of
I/O nodes, is greater than 4f, realizable I/O throughput is limited to the network
throughput rate which is independent of the number of I/0O nodes.

Similarly, Theorem 2 tells us that in the worst case, Bygr = B;. Thus,
m > f = mx* By > B = Biony > Bygr. Thus, when m the number of 1/0
nodes is greater than f, realizable I/O throughput is always limited to the network
throughput rate which is independent of the number of /0 nodes.

Below these cutoff points (m > 4f or m > f, respectively), realizable I/0
throughput depends on Bjgny = m * By which grows with m.

For a mesh architecture with 1/O nodes on one side, this theorem gives a
much tighter upper bound on the number of I/0 nodes than Feitelson et. al. [20],
who did not take network contention into account and thus gave an upper bound
oflm<n=*f,

We next analyze the network contention levels and network throughput rates

achieved by our five spatial layout schemes which lie between the theoretical best

and worst cases extremes.

86

Impact of Spatial Layout

Our stalic analysis shows that nelwork contention levels and realizable 1/0O
throughput are sensitive to the spatial layout of the compute nodes, differing by a
factor of four from the best spatial layout to the worst.

Figure 42 shows the hotspot link for each of the five spatial layout schemes
for both read and write I/O traffic. Table 5 gives formulas and ranking orders for
maz_contention on the bottleneck link for the case where m = n = k, i.e. number
of compute nodes equals number of I/O nodes equals one side of the mesh. In
general, ranking of spatial layout schemes, from best to worst, matches that shown
in Table 5 for read and for write, respectively, across all possible values for m,n,
and k. Table 6 gives formulas for network throughput. If the [/O nodes are placed
vertically, write traffic is more critical. Parallel and diagonal layouts perform best,
followed by block center, block corner and orthogonal. Although diagonal layouts
perform well for 1/O-intensive jobs, they are highly dispersed and thus perform

poorly for communication-intensive workloads, as discussed in Chapter IV.

Simulations
Simulation Model

In order to further quantify the effects of spatial layout on parallel 1/O per-
formance, we simulated the realizable I/O throughput rate under different spatial
layout schemes. We also varied architectural parameters in order to study the
scalability of parallel I/O performance as a function of the number of I/0 nodes,
the number of compute nodes, and f, the ratio of throughput rate per link to

throughput rate per /0 node.

"8 OB00000000Q0000
288 OR00000000000C0
S0 B0000000000O00
BEE 000000000000
000000000000
[+ Y e NeNoNeNeNeNaNoRo N RoRo N NaNe
0000000 ODODOCOOQOO
00000000 CG
0O00DOOCOCO0CO
000000 COOO
000000 0CCOCO
(o N oo NeNaNoNoNeReRaNeNel
000000 OOODO0ODROCO
[eNoReNoNeNoNoNoNoNeNoNeoNe)
0000000000000
GO0000000000O00
block corner
[RN NN R RRNNNNN]

00
o0
Qo0
o0
]

00000000000 OOO

jrHeReRsNoNoRsNoloNoRoNoRoRoNoN o]
000000 0QCO0O0000000
Q0000000000000 0D0
COQOOOOOOODO0OO0D0D
000000000 D0O0D00
0000000000 COODQ0O
0000000000 RCOOO000
O000000000COOCOC0O
orthogonal

0000000 EO0000000 000O0OOEPooCcPOOOLO

0000

o]
Q0
00
Q0

Q000000000

0000000

000000000
block cemer

000000000000
000000000000
®eC00C00Q0Q0000C0CD
0000000000000 00Q
0000000000 C0O0OO00
a00C00000000CO00O0D0
Q00000000 CCO0O0O0

00000000 O0COOOO0

0000000000000 0
*0000CC0O0O000C0CCO0
*e0000C00O00Q000CCCO
®#000000000000C0C0QQ
0000000000000 00Q
*000000C0CO00Q0C0O00O
®*000000QC0O0C0O00Q0Q0O0O0O

(=]
oC
(e R e}
(=R}
ocQ
o0
jele]
Q0
(o3 e]
o0

o000 000000

e00Q0DOCOCOD0O0O0O0O0
parallel

87

R hotspot for read traffic

W hotspot for write traffic

000000 OCEHCO0OC0O0O

[eXeReReNoRoNoNoNe]
O00QC0O00C0O0OO0
Q0000000
o000 OOOO
00000000
$0000000
C®8000000
Q08000000
QOe®O0O000O0OO0
[sReRel NeloReReRel
QOO0OO®0O0O0O0
QO0O0OO0OO8O0O0CO
O0D0O0OO@CO
CO0O000QO0O0O®O
000000 QCO0O0O0D00C0e
C000QCO0O0OOOOO0O0QO0
diagonal

o0o
000
[sQoRe)
(o]
(o]
Q0
[a e]
o

COoQO000000COCHS

[»Xs]
e0
oe
[=Ns]
[= =]
00
00
[=]e)
00
[els]
= =]
Q0
[a R}
=]

00000000000

o]
o
o]
o
(o]
o]
Q
[o]
o]

o
0
o]
Q
o
Q

#0000 0O0Q0CCQO00C0O000

FIGURE 42. Location of Hotspots

TABLE 5. Maz_Contention and Spatial Layout (k = n = m)

write read
Layout maz_contention | ranking || maz _contention | ranking
diagonal HEE | n 1
parallel = |5 1 213 4
block center || BE¥= 2 5L";ﬂl 2
block corner || n(n — /n) 3 Vva(n —/n) 3
orthogonal | n* 4 n 1

38

TABLE 6. Network Throughput and Spatial Layout (k = n = m)

write read
Layout network throughput | ranking || network throughput | ranking
diagonal B x4 By *n
parallel B +4 B x4

block center || By * 2 /n/(/n — 1)

B+ 2+ n/(y/n 1)

block corner || By * /n/(y/n — 1)

Bi+n/(vn - 1)

orthogonal B

e ol DI | —

| QI D]] =

B;*n

o

More precisely, in these experiments the simulator models the following:

. mesh architecture of size k x k, & = 16 and 32; these are sizes typical of

the Intel Paragon and TFLOPS, respectively.

m [/O nodes located in a vertical column on the west border of the mesh,

2<m<gk;
packet level XY-wormhole-routing with one virtual channel;

sustainable throughput rates per 1/0 node of By and sustainable throughputs

rates per network link of B, 1 < f = g{; < 20;

n compute nodes, 2 < n < k?, whose [/O traffic pattern involves exchange
of data with every 1/0O node; thus, each job sends data on m * n different

sender-receiver pairs; both read- and write-dominant 1/O traffic is modeled;

five spatial layout patterns as described above: block corner, block center,

parallel, orthogonal, and diagonal (see Figure 39).

The [/0 node throughput rateis the rate at which all I/O nodes combined can read

data from or write data to disks. The interconnection network between nodes is

89

ignored. The 1/O node throughput rate is the aggregate of all throughput rates
per 1/0 node, By, and equals m * By.

The network throughput rate is the aggregate data transfer rate through the
interconnection network and is measured by the simulator which models packet

level, wormhole, XY-routing.

Impact of Spatial Layout

We run extensive simulation experiments to analyze parallel I/O performance
as a function of number of compute nodes, number of I/O nodes, f (the ratio of
throughput per network link to throughput per I/0 node), and spatial layout. Fig-
ures 43 and 44 show representative graphs for machines having a 32 x 32 compute
mesh and a 16 x 16 compute mesh, respectively, for the case By &~ 64 MB/sec
per 1/O node and B; ~ 380 MB/sec per network link. These examples were se-
lected because the parameters correspond to those of the actual TFLOPS machine.
However, our results were consistent across the full range of simulation parameters.

Throughput rates are plotted as functions of jobsize (number of compute
nodes n) and number of I/O nodes (m). In Figure 43, the number of compute
nodes allocated ranges from 4 to 1024 and the numbers of /0 nodes ranges from
8 to 32. Each of the five graphs represents one of the five spatial layout patterns. In
all graphs, the white surface shows the I/O node throughput rate and the shaded
surface shows the network throughput rate. The realizable [/O throughput rate is
the minimum of the 1/0 node throughput rate and the network throughput rate,

depending on whether the I/O nodes or the network are the limiting factor in

handling the I/O traffic.

O bandweiih
AR EREREE
e i

Ll
IS RN EEREE

90

[Tbmandn L
SNEEREEN

FIGURE 43. 1/O Throughput (32 x 32 Mesh, Write Traffic, f = 6)

91

= 6)

ughput (16 x 16 Mesh, Write Traffic, f

FIGURE 44. I/0O Thro

92

The key observations to be made from these graphs and Figure 38 are the

following;:

1. If one looks at throughput versus the number of I/O nodes, it is clear that at
some point, adding /0 nodes is useless since the network limits the realizable

I/O throughput (i.e., the shaded surface falls below the white surface).

2. The choice of spatial layout affects the degree to which the network limits
realizable I/O throughput, and thus affects the cutoff point. For write traffic,
the best spatial layout pattern is diagonal or parallel, followed by block
center, block corner, and orthogonal. The ranking of spatial layouts for
both simulations and analytic modeling from best to worst is consistent over
all parameter ranges for m, n, k, and f. The ranking order for read I/O
traffic is different than the ranking for write traffic, but is also consistent
over all parameter ranges for m, n, k, and f. (The different rankings for

read and write traffic are due to XY-routing.)

The impact of this phenomenon is brought home by looking at the specifics
of the TFLOPS machine mentioned earlier. Garg et. al. [24] measured [/O
throughput of the TFLOPS ASCI/Red where up to 9 I/O nodes were configured
into one PTS file system, i.e. every compute node exchanged data with every 1/0
node. For a big job that utilized most of the machine, realizable I/0 throughput
scaled with the number of I/0 nodes, and nine 1/0 nodes achieved over 0.5 GB/s
throughput. Is it therefore safe to conclude that doubling the number of I/0
nodes from 9 to 18 will double the I/O throughput to 1 GB/s? Our work indicate

that it depends on the spatial layout scheme whether 18 1/0Q nodes can be used

93

productively and thus whether an 1/O throughput of one GB/s is achievable (see
Figure 38).

We summarize our results in Figure 45 which shows throughput as a function
of the number of 1/O nodes. In this figure, the diagonal line gives the I/O node
throughput rate (ignoring the limitations of the network). The two horizontal lines
show the theoretical best and worst case values of network throughput, 4 * B, and

By, respectively. The other five lines show the network throughput rate for the five

spatial layouts.

J2x32 mash, 1=6, 400 compute nedes, VO nodes vertical on side

L] 1) 1 1
/0 node throu hput -e—
2000 theoretical max «+-- .
network lhroughﬁut {layout diagonal) -»---
network throughput (lanut parallal) -
1800 | network throughput {fayout block center) -B-- |
network throughput (layout block comner) =+---
network throughput (layout orthogonal) -
theoretical min -o---
1600 .
B Rt D S R T TRy
3 1400 .
=
H
£ 1200 -
f=1
=3
g
=
o 1000 |- e
800 | .
600 | -
400 - -
1 1 1 1 1

10 15 25 30

20
Number of /O nodes

FIGURE 45. 1/O Throughput and Spatial Layout (32 x 32 Mesh)

Irom this graph, we see that depending on the choice of spatial layout scheme,
we can achieve network throughput rates more or less close to the theoretical best

case. We can also see that given, a spatial layout scheme, the point where the line

94

for I/O node throughput intersects that for network throughput is the point at

which addition of I/O nodes has no further effect.

Conclusions

This chapter focuses on analyzing traffic hotspots due to data transfer be-
tween compute nodes and I/O nodes. We assume mesh architectures, XY-routing,
complete bipartite I/O traffic graphs and I/O nodes configured on one side of
the mesh. Our analytic modeling together with extensive simulations lead us to

conclude the following:

1. Network contention can limit parallel 1/0 performance. On a 2D mesh with
I/O nodes on one side, realizable I/O throughput is - in the best case -
limited to 4 times the effective throughput per network link, B;. Thus,
adding I/O nodes (of effective throughput rate By) does not pay beyond
4 + B/ By. This is a much tighter upper bound on the number of [/O nodes

than n % B/ By {20] which did not take network contention into account.

2. Spatial layoul of jobs in relation to the 1/O nodes affects network contention
and thus parallel 1/O performance. If the I/O nodes are on one side of the
mesh, tuning the spatial layout of jobs makes a difference of up to a factor
of 4. If network throughput is the bottleneck, spatial layout must be taken
into account. Processor allocation strategies that are sensitive to parallel

[/0O traffic should be able to improve parallel I/O performance significantly.

3. Depending on the layout of the I/O nodes in the mesh, one direction of

parallel [/O traffic performs much worse than the other direction. If the 1/O

95

nodes are placed vertically, write traffic (to the I/O nodes) is the bottleneck.
If they are placed horizontally, read traffic is the bottleneck. These effects

are a resull of XY-routing.

CHAPTER VII

MINIMIZING I/O-BASED NETWORK CONTENTION

Motivation

In this chapter, we present several new processor allocation strategies that
minimize I/O-based network contention, thereby improving I/O throughput and
overall system performance. First, we present a strategy called PLAS that is
optimized exclusively for parallel I/O-traffic. Qur approach in tackling the traffic
hotspot problem (that we analyzed in Chapter VI) is to concentrate on minimizing
contention on the “middle” 1/O link and to strive for balance when allocating jobs
to compute nodes.

Because many scientific jobs have both I/O and communication needs, we
then devise a strategy, MC Elongated, that is optimized for both parallel I/0 and
intra-job communication. Our approach is to minimize contention by striving for
both balance and allocation compactness.

We test the performance of our new allocation strategies with simulations
driven by synthetic workloads and by real workload traces. We report on overall
performance and its sensitivity to system load and to different ratios of 1/O traffic
vs. communication traffic.

Our results show that with respect to system throughput and job response
time, our new strategies consistently outperform known allocation strategies that

are in use on commercial and research machines. Average response times of jobs

improved by up to a factor of 4.5.

Paralle] 1/0O-Sensitive Allocation Strategies

Whereas previous non-contiguous allocation strategies have essentially ig-
nored 1/0-based network contention, our new strategies are sensitive to the impact,

of spatial layout on parallel I/O throughput.

Balance Factor

Recall from Chapter VI that link contention of link { is the number of distinct
sender-receiver pairs sharing network link {. A link with maximal link contention
is called the hotspot and its value of link contention is called maz_contention.

Under the assumption of 1/O write traffic and I/0 nodes placed vertically on
one side of the mesh, we showed that achieving the lowest value for maz_contention
requires that exactly one half of all allocated compute nodes are in rows above the
middle I/O link. This spatial layout is balanced with respect to the middle 1/0
link.

The effect of “unbalanced” spatial layout on network contention is shown in
Figure 46. In contrast to the balanced layout on the left, the layout on the right has
4 compute nodes allocated in the upper half and only 2 compute nodes allocated
in the lower half of the system. Thus, assuming all compute nodes send data to all
[/O nodes, the number of sender-receiver pairs using the middle I/0 link is 2 * 2
upwards and 4 * 2 downwards in the unbalanced, instead of 3 2 upwards and 3 %2
downwards in the balanced case. Each direction has its own physical channel. For

the layout on the right, the [/O traffic distribution is more uneven.

98

ION ION

2 2

3*2’N3*2 2*21‘\L4*2

0 0

yi% 0 t 2 ¥ix 0 1 2

FIGURE 46. Effect of Balanced and Unbalanced Spatial Layout on Network Con-

tention

This motivates us to search for a metric that captures the degree of balance
in a given allocation, as a way to minimize maz.contention. In addition, we want
the metric to be efficient to compute. Qur metric balance factor is defined in the
following way:

Definition: Given a job A and its allocation to a set of compute nodes N,
above_middle of A equals the subset of N which reside in rows above the middle
1/0 link. The middle I/0 link is the link between 1/0 node 2:—1 and Z. Similarly,
below_middle of A equals the subset of N which reside in rows below the middle
1/O link. The per job balance factor of A is defined as the difference between
above_middle of A and below_middle of A.

Definition: Given a snapshotl of the mesh at time ¢, there may be j, jobs
currently allocated. The system balance factor at time t is defined as the sum of
the per job balance factors of all j; jobs. It is equivalent to 3 above_middie —
Y- below niddle considering all jobs currently allocated.

Definition: Given a workload and an allocalion strategy, average balance fac-

tor is defined as the average of the absolute values of the system balance factor

99

taken at times jobs are being allocated or deallocated.

Definition: A per job balance factor or a system balance factor is perfect if
its value is 0, 1 or -1. An average balance factor is perfect if its value is 0.

Figure 47 shows an example of five jobs. Job A has size 2, and it is assigned
one node above and one node below the middle I/O link. Thus, its balance factor
is 0. Of the other jobs, jobs D and E have odd sizes and their balance factors
are +1 and -1, respectively. The balance factor of the current snapshot is zero: 13
allocated compute nodes reside in rows above the middle I/O link and 13 allocated
compute nodes reside in rows below the middle I/O link.

ION bf per job
(I]]I) node aliccated o job A O

O node allocated 1o job B O

S nodeattocated ojobc 0

middle
1/0 link
1 . node allocated o job I +1
@ node allocated to jobE -1
o -
balance factor of current snapshet 0
yin 0 I 2 3 4 5 6 7

average balance factor over last 5 snapshots 1/5

FIGURE 47. Balance Factors in a Snapshot of Five Allocated Jobs

In an emply system, the balance factor of the snapshot is zero. As the five
jobs arrived, the balance factors of the snapshots were the following: 0 after job
A was allocated, 0 after job B was allocated, 0 after job C was allocated, +1 after
job D was allocated and 0 after job E was allocated. The average balance factor
over these 5 arrival events is 1/5. This is the best possible considering that we
have two jobs of odd size.

Corollary to Theorem VI.1: Given a set of jobs that are in the system at the

100

same time, an allocation that achieves minimal maz_contention under complete
bipartite I/O write traffic has perfect system balance factor.

This follows directly from the definition of balance factor and from the proof
of Theorem 1 in Chapter VI. Thus, perfect balance is a necessary condition for
minimal maz.contention.

Allocation algorithms that are designed to strive for perfect balance are able
to quickly eliminate the worst possible spatial layouts with respect to maz_conten-
tion. This can best be explained with an example. Given a 4 x 4 compute mesh
with 4 I/O nodes on one side, Figure 48 shows how allocating a job of size 4 in
an empty system affects link_contention. In this matrix M, the entries in row /;
represent possible link_contention values on the link [;. A single entry in this matrix
specifies the link_contention on link I; for the specified value of senders.above, the
number of compute nodes allocated above link /;, according to the spatial layout,
Thus, any specific allocation of 4 compute nodes corresponds to the selection of
one entry from each column under the constraint that senders_above of {;;; has to
be at least as big as senders_above of {;. Striving for perfect balance on the middle
1/0 link, we allocate our job of size 4 such that senders_above of the middle I/O
link (I2) is 2 by choosing column 2 in row {;. This choice eliminates columns 3 and
4 in rows [, and [z, and columns 0 and 1 in rows {; and {3 (see Figure 48) . Thus, we
eliminated spatial layouts that could have caused the worst link_contention values
of 6, 8, 9, and 12. Figure 50 shows a bigger example, generated by the code in
Figure 49. A perfectly balanced allocation selects column 7 in row lg, thereby

eliminating allocations with the highest levels of fink_contention.

101

senders_above
0 | 2 3 4 1O

1, 8 6| 4 (6 8 I,
14 12 9 6 3 4 14
matrix M mesh

FIGURE 48. Link_Contention When Allocating a Job of Size 4 in an Empty 4 x 4
Compute Mesh

for (link = 1; link < sidelength; link++) {
receivers_above = link - (sidelength-num_ion) / 2;
receivers_above = max(receivers_above, 0):
receivers_above = min(receivers_above, num_ion};
for (senders_above = 0; senders_above <= jobsize; senders_above++) {
link_contention = max(senders_above*(num_ion-receivers_above),
(jobsize-senders_above)*receivers_abova);

FIGURE 49. Algorithm to Compute the Matrix of Figure 48 and Figure 50

102

Sidelength of the mesh: 16
Number I/0 nodes : 16
Size of the job(s) 1 14
14 15 30 45 60 75 90 105 120 135 150 165 180 195 210 min= 14
28 26 28 42 E6 70 B4 98 112 126 140 154 168 182 196 min= 26
42 39 36 38 52 65 78 91 104 117 130 143 156 169 182 min= 36
56 52 48 44 48 60 72 B4 96 108 120 132 144 1566 168 min= 44
70 65 60 BB BQ 5B 66 77 B8 99 110 121 132 143 154 min= 50
B4 78 T2 66 60 54 60 70 B0 90 100 110 120 130 140 min= 64
98 91 84 77 TO 63 656 63 T2 81 950 99 108 117 126 min= 56
112 104 96 B8 80 72 64 56 64 T2 80 B8 96 104 112 min= 56
126 117 108 99 90 81 72 63 56 63 70 77 B4 91 98 min= 56
i40 130 120 110 100 90 80 70 60 bE4 60 66 72 78 84 min= 54
154 143 132 121 110 99 88 77 66 55 BO 55 60 656 70 min= 50
168 156 144 132 120 108 96 84 72 60 48 44 48 52 56 min= 44
182 169 166 143 130 117 104 91 78 65 52 39 36 39 22 min= 36
196 182 168 154 140 126 112 98 84 70 56 42 28 26 28 min= 26
210 195 180 165 150 135 120 105 90 75 60 45 30 15 14 min= 14

FIGURE 50. Link_Contention When Allocating a Job of Size 14 in an Empty
16 x 16 Compute Mesh

PLAS

PLAS - Parallel Layout Allocation Strategy - is a heuristic that aims at
perfect balance in order to minimize contention due to I/O trafic. When it is
asked to allocate a new job, it scans for idle compute nodes in a predefined scanning
order (see Figure 51), always starting from the same “middle” point. Applying the
results from Chapter VI that show that placement of compute nodes parallel to
the 1/O nodes yields best overall performance, we designed PLAS to scan parallel
to the I/O nodes, one column after another. In each column, PLAS scans “middle-
out”. In the example of Figure 51, a job requesting six compute nodes would get
the compute nodes labeled 1 through 6 if these are currently idle. Until it has
found enough idle nodes to fulfill the request, PLAS keeps on searching according

to the scanning order. The spatial layouts in Figure 47 were produced by PLAS.

103

Pseudocode is shown in Figure 52.

ION

FIGURE 51. Scanning Order of PLAS (Parallel Layout Allocation Strategy)

plas_allocate{jobsize)}{
initialize column=1, middle=k/2, offset=0 and sign=+1
while (jobsize > 0) {
node_x = column; node_y = middle + sign * offset
if node idle then allocate node; jobsize--
else {
flip sign
every second time increase offset
every k times increase column and reset offset

FIGURE 52. Pseudocode of PLAS

The characteristics of PLAS are the following:
Property: Starting with an empty system and allowing no job departures,
PLAS achieves perfect per job balance factors and perfect system balance factors.

Proof: The scanning order makes sure that nodes to be assigned are taken in

alternation, one from above and one from below the middle I/O link. Thus both

the per job and system balance factors are always 0 if the total number of nodes

104

allocated is even or +1 if the total number of nodes allocated is odd. Because in
the scanning order, the next job picks up where the previous job stopped, an even
job does not change the system balance factor, whereas an odd job changes the
system balance factor from 0 to +! or from +1 to 0.

In the general case, job departures are allowed. This can lead to system
balance factors and per job balance factors that are not perfect. For example, if
several jobs with per job balance factor of +1 leave, the system balance factor will
not be perfect anymore. If an arriving job fills several of these holes, its per job
balance factor will not be perfect either. Theoretically, both per job balance factor
and system balance factor can only be bounded by half the size of the compute
mesh, the worst possible case.

However, in our simulations (see below) we saw that PLAS quickly converges
back to perfect system balance. Arriving jobs fill the holes because PLAS always
scans in the same order, starting from the same point. When all holes are filled,

the system is balanced again.

Performance Evaluation

We conducted extensive simulation experiments to compare PLAS to previ-
ous non-contiguous allocation strategies under heavy I/0 traffic. As before, we use
our ProcSimity simulator [57]. We model wormhole switching, minimal dimension-
ordered XY routing and mesh topologies with two uni-directional links between
adjacent nodes. However, this time we assume a configuration with 1/O nodes on

one side of the mesh, and we model each job as 1/0 intensive (complete bipartite

[/O write traffic).

105

We compare PLAS to three previous non-contiguous allocation strategies
described in Chapter III, two of which are in use on commercial and research

machines. These strategies were not designed to be sensitive to parallel 1/0 traffic.

1. MBS [35] is a block-based strategy that typically allocates several blocks of
sizes 2' x 2'. MBS is similar to the M2DB strategy[53] which has been used

at the San Diego Supercomputing Center.

5\3

Paging [35] scans for idle compute nodes in row-major order, and thus typ-
ically allocates several rows of compute nodes. Paging was shown to have
very good performance for computation or communication-intensive work-

loads [35] and it has been used at NASA Ames Research Center.

3. Under Random, a request for n compute nodes is satisfied with n randomly

selected compute nodes.

Our experiments are designed to test whether I/O sensitive sirategies out-
perform previous strategies that do not take I/0-based network contention into
account. To allow for both a realistic evaluation and for easy comparison with
previous experiments, our performance evaluation again includes the use of a syn-
thetic workload and a real workload trace. As summarized in Table 7, Workload
I is a synthetic workload, a stream of 1000 jobs whose sizes and interarrival times
are exponentially distributed. Workload II is a trace-derived workload. a stream
of 6087 real production jobs recorded over a three months period from Qctober 1
to December 31, 1996, from the Intel Paragon at the San Diego Supercomputer
Center. The traced job stream is taken only from the 352 node NQS partition [56]

of the machine, through which all batch jobs were scheduled. The traces had the

106

TABLE 7. Characterization of the Synthetic Workload and the Real Workload
Trace

jobsize | interarrival time | number of jobs
I: synthetic exponential | exponential 1000

mean = 4 4 | mean varies
II: real (SDSC) | mean = 14.5 | mean varies 6087

cv. =1.3 cv. =3.7

statistical characteristics shown in Table 7.

To challenge these allocation strategies, we multiply job arrival times by
constant factors c. As c decreases, simulated interarrival times decrease, resulting
in increased system load. As c increases, simulated interarrival times increase and
system load decreases. The simulated interarrival time is chosen such that average
system utilization ranges from about 10% to about 90%.

Since our focus is on traffic hotspots due to parallel I/O traffic, we first model
a heavy I/0 load, no computation and no communication. For both Workload I and
Workload II, job service time depends on the amount of I/O traffic generated and
the amount of network contention encountered. Each job transfers data according
to a complete bipartite I/O pattern, i.e. each compute node allocated to the job
sends a personalized message to every I/O node. The number of messages sent
is correlated to jobsize because we have each job execute the same number of
iterations of the complete bipartite 1/O pattern before il leaves the system.

In the results reported, we model a mesh of 16 x 22 compute nodes, matching
the batch partition of the Intel Paragon at SDSC. We assume a configuration where
16 1/0 nodes are located vertically on the west side of the compute nodes. We
assume that compute nodes write to 1/0 nodes (i.e. write traffic only) since the

analysis in Chapter VI showed that the hotspots due to write traffic are much more

107

severe than the hotspots due to read traffic if I/O nodes are placed vertically.
We simulate the detailed message-passing behavior at the level of packets.
For our first experiment, we measure the following performance metrics: average

response time, average service time, average max._contention and average balance

factor.

Simulation Results

Figure 53 and Figure 54 show average response times for both Workload I and
Workload II, respectively. For the SDSC workload, PLAS results in up to a factor
of 2.2 speedup in average response time comparec-l to previous non-contiguous allo-
cation strategies that were not parallel I/O sensitive. For the synthetic workload,
PLAS results in up to a factor of 4.5 speedup in average response time. Clearly,
tuning the spatial layout of compute nodes resulted in impressive performance
gains. We are pleased that PLAS outperforms Random, which is expected to per-
form well because it distributes 1/0 traffic in a balanced manner. (However, we

do know that Random is a bad choice for communication-intensive workloads.)

108

25000
paging
aging -
random ~+--
PLAS ~o—
20000 [-
[+
E
S 15000 | E
(%)
[3
2
w
£
2
g
§ 10000 -
L
5000 4
0 i L 1 1
2500 2000 1500 1000 500

Average interarrival tima

FIGURE 53. Average Response Time (SDSC Workload of 6087 I/O-Intensive
Jobs)

9 traffic
40000

tandom -o—
MBS -+=

w500 "4 2
30000

25000

20000

avg_response_lime

15000
1 panBreT epar et]

1200 1000 800 600 400 200
Average interarrival time

FIGURE 54. Average Response Time (Synthetic Workload of 1000 1/O-Intensive
Jobs)

109

We attribute PLAS’s superior performance to its ability to balance the sys-
tem. Figure 55 shows average balance factor for different allocation strategies over
our synthetic workload of 1000 jobs. Our simulations show that PLAS dramatically

outperforms the other allocation strategies in achieving balance.

9 traffic
80 L) L] L) T Li
1 SO a, random -e—
MIBS -
aging -8--
70 | "._" pP e]
: MC &
60 | a .
€
= 50 & : 4
o N e
=I Lttt e o]
2 T
3 40 |- .
g
g 30f B 1
™ e R ~ x
e "o
20 |- Ay o, .
“\““L,_ +
ot - N
o o
o X X = = & 8 =4 [l
1200 1000 800 600 400 200

Average inleramival ime
FIGURE 55. Average Balance Factor (Synthetic Workload of 1000 I/O-Intensive
Jobs)

Recall that the corollary above indicates that the absolute value of system
balance factor must be as close to 0 as possible to achieve minimal max_contention.
Our simulations show the average balance factor of PLAS to be strikingly closer
to perfect than those of paging, over a range of system loads (average interarrival
times {rom 1600 to 200, resulting in system utilizations between 6% and 85%).
The average balance factor of PLAS ranged from 0.44 to 0.90 with an average
of 0.64 (increasing as the system load increased), whereas the average balance

factor of Paging ranged from from 28.02 to 80.63 with an average of 52.73 (mainly

110

decreasing as the system load increased). Our simulations also show that striving

for perfect balance pays off in max_contention (see Figure 56) and service time (see

Figure 57).

9 traflic
1400 T
random -o—
MiBS cban
pat 2]
PLAS
1200 o
1000 b
=
8
=
&
=
S eoo]
]
EI
=]
=
L]
600 E
400 .
2m [1 1 1 [
1200 1000 400 200

800 600
Average Interarrival time

FIGURE 56. Average Maz_Contention (Synthetic Workload of 1000 I/O-Intensive
Jobs)

Table 8 shows the values of average balance factor and maz._contention for the
synthetic workload and average interarrival time of 500. The correlation between

average balance factor and maz_contention is very strong, the Pearson correlation

coefficient is 0.988319.

111

9 traflic

16000 ¢

random ——
MBS -+-

PPEAE X]

14000 |-

avg_service_time

4000 -

H L 1 L 1

1200 1000 800 600 400 200
Average interarrval time

FIGURE 57. Average Service Time (Synthetic Workload of 1000 1/0-Intensive
Jobs)

TABLE 8. Balance Factor vs. Maz_Contention

strategy avg. balance factor | max_contention |
Paging 32.142500 1336.475000
MBS 19.717500 1224.895000
MC 15.430000 1199.340000
MC Elongated 7.005000 1152.980000
Random 4.425000 1140.740000
PLAS 0.687500 1124.877500

112

Parallel 1/0Q- and Communication-Sensitive Allocation

PLAS, our new strategy described above, alleviates hotspots and thus achieves
performance improvements for I/O-intensive workloads. How does PLAS perform
on communication-intensive workloads?

Figure 66 shows that on communication-intensive workloads, PLAS does not
perform that well in comparison to MC, which is optimized for communication-
intensive workloads. Figure 58 gives an explanation of the shortcoming of PLAS.
Given the situation in Figure 58a in which the black job is to be allocated nodes,
PLAS fills the holes in column 1 and achieves perfect system balance factor, but
the allocation is not compact (see Figure 58b). When the compute nodes of the
job communicate instead of doing I/O, this spatial layout results in high inter-job

link contention.

113

N
k|
|
1’.‘.#'
0
yix O I 2 3 4 5] 7
ION
3 @ node allocated to job A
node allocated to job B
=
(b) O unallocated before request
: . choice made <o
message-passing contention
due io black job
a
¥ 0 I 2 1 1 L & 7
N
3
2
()
0

| 2 3 4 5 6 7

FIGURE 58. Inter-Job Link Contention of PLAS vs. MC Elongated: Original
Situation (a), Spatial Layout According to PLAS (b), Spatial Layout According
to MC Elongated (c)

114

Conversely, how does MC, the strategy tuned exclusively for communication
traffic (see Chapter V), do on I/O-intensive workloads? Figure 61 shows that on
1/0-intensive workloads, MC does not perform that well in comparison to PLAS
and Random. The shortcoming of MC is that its allocations are not necessarily
balanced, as we saw in Figure 55.

These observations motivated us to design a strategy that considers both I/O

traffic and intra-job communication traffic.

MC Elongated

MC Elongated is a new processor allocation strategy that is optimized for
both parallel I/O- and communication-intensive workloads. MC Elongated strives
for allocation compactness and balance at the same time.

MC Elongated is a modification of MC (see Chapter V). As in MC, each idle
compute node executes a shell-like scan to find and evaluate a candidate cluster
made up of idle nodes in its neighborhood. MC Elongated uses the same cost
metric as MC.

In contrast to MC, MC Elongated tries to fill whole columns in order to
achieve an allocation with parallel shape and good balance. Comparing the pseu-
docode of MC Elongated (see Figure 59) to the pseudocode of MC (see Figure 31
in Chapter V) reveals one big difference: Shellp, the nodes that can be added to
the candidate cluster for a cost of 0, contains |{jobsize/k] columns, where & is
the height of the compute mesh. Since the candidate cluster with minimal total
cost is chosen, this ensures that in most cases a contiguous block of |jobsize/k]

columns gets allocated. Figure 58c showed an example with & = jobsize = 4. This

property results in compact allocations with perfect job balance factor if such a
spatial layout is available and if jobsize is divisible by £.
me_allocate(jobsize){
if number_idle < jobsize then return fail
for each idle nede (i, j)
cluster = empty list; tcost = 0O
add idle nodes to cluster that are in
jobsize/k x k rectangle around (i, j) /* shell 0 */
for each shell s >= 1
stop if lcluster| = jobsize
if node idle then add to cluster; tcost += s

select cluster with minimal tcost
allocate those nodes, update number_idle and busy array

}

FIGURE 59. Pseudocode of MC Elongated for & x & Mesh

If shelly does not contain enough idle nodes, recall from Chapter V that
to construct a candidate cluster, idle nodes are selected from successive shells,
beginning with shelly, until enough idle nodes have been found to satisfy the
request. In the original MC algorithm, the order in which idle nodes are selected
within each shell (shorter sides first, longer sides second, corners last) was tuned
for optimal degree of compactness. However, in MC Elongated each shell adds one
more column to the left and one more column to the right; within each column the
scanning order is “middle out” {as in PLAS) such that balanced allocations are
achieved.!

MC Elongated has the following characteristics:

'In the results reported, MC Elongated did not use this new order yet; it used the old order
according to the MC algorithm instead. This explains the balance factors in Figure 71. If we
do use the new order, we expect even better results regarding balance and performance under
[/O-intensive workloads.

116

Property: Like MC, MC Elongated never leaves idle nodes unselected on
communication paths between selected nodes.

This is due to the shell-like scanning scheme and the definition of cost. This
characteristic leads to compact allocations, lower inter-job link contention and
good performance under communication-intensive workloads.

Property: Like MC, MC Elongated is neither conservative nor block-based.

This is in contrast to PLAS, Figure 58b showed that PLAS is conservative
in that it first fills the holes before it utilizes columns further to the right. As
explained in Chapter V, both conservative and block-based approaches are “eager”
and pick up small leftovers before touching bigger idle spaces, in anticipation of
saving the bigger space for a bigger job that may be coming later. As explained
before, this conservative attitude almost always results in less compact allocations.
and in many situations, it does not even help the allocation of future jobs. The
conservative approach has no advantage if either the preserved block will be split
up anyways by a later job that is not that big or if the preserved block will not be
used anyways because either no big job arrives before other jobs leave or the next
big job is too big for the preserved block anyways. The approach of MC Elongated
is more along the line of cape diem, seize the day.

However, while MC always allocates a contiguous cluster if one exists, MC
Elongated sacrifices this property in order to achieve better balance. Figure 60
shows an example where MC would allocate a contiguous cluster (achieving the
highest possible degree of compactness), whereas MC Elongated allocates a cluster
that is less compact, possibly causing inter-job link contention.

Property: Like PLAS, starting with an empty system and allowing no job

117

ION _ ION

D—(
D—(

= =

FIGURE 60. How MC Elongated (Left) and MC (Right) Allocate a Job of Size 8

departures, MC Elongated achieves perfect per job balance factors and perfect
system balance factors.

However, since MC Elongated concentrates on compact allocations instead
of on filling holes, MC Elongated does not re-balance the system as quickly as MC,

in general situations including job departures.

Performance Evaluation

We conducted experiments to compare MC Elongated to the other non-
contiguous allocation algorithms. We varied the percentage of 1/O traffic vs.
communication traffic from 100% I/O traffic to 0% I/O traffic in increments of
20% (and 25%). As always, we are interested in average response time, especially
average service time. Figure 61 through Figure 66 show average service time for
the synthetic workload under different ratios of I/O traffic vs. communication

traffic. Similarly, Figure 67 through IMigure 70 show average service time for the

SDSC workload.

avg_service_time

avg_service_lime

14000

12000

10000

g

6000

4000

2000

9 Irafile

G elongated -

1 1 1 L] L 1 1

11000

1400 1200 1000 800 600 400 200]

Average inlerarrival time

FIGURE 61. 100% I/0 Traffic (Synthetic Workload)

38 traffic

10000

5000

8000

7000

6000

5000

4000

3000

2000

1000

L 1 1 1 1 1 1

700 600 500 400 300 200 100 0

Average interarrival lime

FIGURE 62. 80% 1/O Traffic (Synthetic Workload)

118

avg_sesvice_lime

avg_service_time

119

a7 trafflc

8000 (v

7000

6000

5000

4000

3000

2000

_ ,_ﬁ_-.'..'.'-"- XMC -
o -?"__Mc‘eiungaied e

700 600 500 400 300 200 100 0
Average Interamival time

FIGURE 63. 60% I/O Traffic (Synthetic Workload)

36 traffic
5000 T T i L] T T L] L] _‘I,
B e 1., -
S -
4500 aging -E--
pPEAg x-
—— "'_-' MC &
4000 Maslongad = - _
3500 -
3000 -
2500 -
2000 -
1500 -1
1000 -
500 L [] 1 1 L 1 1 L
500 450 400 350 300 250 200 150 100 50 [+}

Average interamival time

FIGURE 64. 40% 1/0 Traffic (Synthetic Workload)

avg_service_time

avg_sarvica_lime

35 traffic
2600 T T T T T
random ——
2400 | T — paME,S T
g BT Pfﬂg .
o B &= |
2200 - MC elongated - -
2000 amemd i
a=" L)
1800 S Tk 4
/ N
.-R g
1600 -
1400 | o .
1200 b
1000 E
800 b
600 4 1
3
4m 1 1 L 1 1
300 250 200 150 100 50 0
Avarage Interarrival lime
FIGURE 65. 20% I/0O Traffic (Synthetic Workload)
34 traffic
800 T]] Ll 1
random —e—
700 | MC -+ -
MC slongated -»- -
ST —
amdrt
."'---*
600 | b
Al .pa
500 | g e R R

400 R e e Tl
o L A_,..-ﬂ'
- A
—
R -

o S o]

ae

-A".
-
N ‘-.b-#"-“_..A-—Gr&
200""""‘?" - ! 3 L 1 1
100 8O 60 40 20 0

Average Interarrival time

FIGURE 66. 0% 1/0 Traffic (Synthetic Workload)

120

avg_sarvice_time

avy_service_time

9 traffic
14000 T T] L] 1 1 L []
random -¢-m
MBS -+
ppag Y
12000 o MC e
_-MC elongated -» -
.-Er-
el *
.--ﬂ .-"
10000 -

8000

6000

4000

2000 L L L 1 1 1 L L
2600 2400 2200 2000 1800 1600 1400 1200 1000
Average interamival time
FIGURE 67. 100% I/O Traffic (SDSC Workload)
313 traffic
9000 1 L] T L) T T ¥ L
random ——
MFS +n
a n .ul.
8000 }- pPEAg"'x J
MC & -
MC elongated -» -
- ﬂ'..
7000 | -

6000

5000

4000

3000

2600 2400 2200 2000 1800 1600 1400 1200 1000
Average intararmival time

FIGURE 68. 75% 1/0 Traffic (SDSC Workload)

121

avg_service_time

avg_service_lime

32 trafiic
4500 1 T T T T T T T
random -e—
MBS -4--
a =]
4000 - ng Raniate
T MC e
MC elongated - -
-
3500 4
.o
.8
e
3000 [g .
b
2500

2000

1500

1000 1 1 1 [1 1 L 3
2600 2400 2200 2000 1800 1600 1400 1200 1000
Average Interarrival lime
FIGURE 69. 50% 1/0O Traffic (SDSC Workload)
34 trallic
1100 T T L) 1 + ¥ L T
random -~
MiBS i
paging ‘8-
PEAS :
MC -
MC elongated - |
1 @ree
geeeereE®T
el
%
L3
600 - e - x i) .
cipmemin W
500---________‘-__________*____-_____*_ o "':4~
:""' .““
400 | PV .
e
pemer DA
300 ---—--f---:-:-: ---- fmmmencereounnmnyas t":;f:TJZTZ'Z.Z':7-'::-"" o 7]
200 L i 1 1 L 1 1 L
130 120 110 100 90 Bo 70 60 S0

Average interarrival liime

FIGURE 70. 0% 1/O Traffic (SDSC Workload)

123

Table 9 summarizes average service time and ranking for the synthetic work-
load. Interarrival times are chosen such that system utilization is between 60%
and 70%. While MC Elongated is not as good as PLAS for 100% 1/0 traffic or
as good as MC at 0% I/O traffic, MC Elongated achieves the best average service
time for 40% I/0 traffic and 20% I/O traffic.

TABLE 9. Average Service Time (serv. t) and Ranking (r) for Different Ratios of
I/O Traffic vs. Communication Traffic (Interarrival Times Are Chosen such that
System Utilization Is Between 60% and 70%)

traffic ratio 100% 1/0 80% I/O 60% 1/0 40% 1/0 20% 1/0 0% 1/0
interarrival t. 500 400 350 250 125 20
serv. L | r|serv. bt | r|serv.t | r|serv.t | r | serv. t | ri{serv. t | r
MC Elongated 8520 [3 | 66036 [2 | 40487 [2] 2784.0 [1 | 1405.0 | 1 3953 | 2
PLAS 8140 | 1 | 63846} 1| 49295 | 1 | 284791 2| 14709 | 2 501.9 | 3
MC 9076 | 4 | 7265.1 | 4 | 5481.7| 3 | 3258.8 | 3 | 1603.4 | 3 366.0 | 1
Random 8488 | 2| 7046.6 | 3 | 5563.9 | 4 | 33349 | 4 | 1810.0 | 4 7389 | 6
MBS 9939 | 5 { 80723 | 5| 6004.2 | 5 | 3890.3 | 5| 2085.2 | 5 651415
Paging 12096 | 6 | 9653.6 | 6 | 6911.8 | 6 | 4341.1 | 6 | 2225.7 | 6 51451 4

The success of MC Elongated is due to its ability to achieve both compactness
and balance. Figure 71 shows that the average balance factor of MC Elongated
is much better (lower) than that of MC. Figure 72 shows that dispersal of MC
Elongated is much better (lower) than that of PLAS. (While the service time
graphs can be quite different for different traffic ratios, the dispersal and balance
graphs look almost the same for all traffic ratios i{ inferarrival times are chosen

such that utilization levels are similar.)

(General Observations

Sifting through hundreds of graphs, we made three important observations.

First, varying system load has quite the opposite effect on balance and I/0O inten-

avg_bal_middle_U/Q_link

avg_dispersal_metric

124

9 traftic
BO] T 1 L) T
= IR a fandom —-e—
MBS —+-
T, aging -O--
70 | PoiAd 5 4
MC = -
MC elongated -=
60 |- |, i
50 |- _ .
............. e
AN B
R
40 - -
30 - % 5 i
A——a————----‘--—-v--_....-,__“ ~ 3
Fem ™ a
20 A *au. -
S‘ “. "l-_ it
wfb o N e -
i e e x ey
e M v ——— .
ol oy = . R (OIS 5
1200 1000 800 600 400 200
Average inleramival time
FIGURE 71. Average Balance Factor
9 traftic
200 v T T T T
o N N ranﬁgrg -
o R o
WLl paging -0--]
P o
MC =~
160 | MC elongated -» - -
140 |- J
120 J
00 - -
——
8o | T
_-"--'*r- <
o e X 1
--------- M)
------------ Lo [- S -8 il
go T Rt - T 4
JUUDRTRUUOIHPRIOE - Rt T
Geeee) » T
: -
20 i e * 7
0 L 1 L 1 1
1200 1000 800 600 400 200

Average interarrival lime

FIGURE 72. Average Dispersal Metric

125

sive workloads than it has on compactness and communication-intensive workloads.
As the system load increases (interarrival time decreases, utilization increases), the
average balance factor of Paging, MBS and MC decreases (see Figure 71). The
fuller the system the more likely we get good balance for free. If the system is
full, it is automatically balanced. This is also the reason why at high loads, rela-
tive improvements in service time decreases (see Figure 61). In other words: For
1/0-intensive workloads, spatial layout (balance) is more important at lower loads.

However, as system load increases, dispersal increases (see Figure 72). It
becomes harder to find compact allocations. Regarding service time (see Fig-
ure 66), it is interesting to note that dispersal gets more important as system load
increases. Random and MBS have high dispersal. At low loads they gel away
with it since often there are no other jobs present to interfere with. However, as
the load increases, their service time decreases much faster than that of the other
strategies. In other words: for communication-intensive workloads, compactness
is more important at higher loads.

Second, I/O traffic dominates over communication traffic with respect to
network contention, service time and response time. Even at a traffic ratio of only
20% 1/0 traffic, the performance graphs (shapes, dependence on system load as
described above) are more similar to those at a 100% 1/0 ratio than to those at a
0% 1/0 ratio.

Third, the increase in service time should not be underestimated. In all the
strategies and experiments, we assumed unrestricted admission, i.e. a job is always
allocated no matter how full the system or how good or bad the spatial layout

determined by the allocation algorithm. This has the advantage of not wasting

126

compute power, by leaving compute nodes idle. However, as all the service time
graphs show for all allocation strategies, the faster jobs arrive and the fuller we pack
the system, the higher is the average service time of jobs due to communication
interference and 1/0 hotspots. Besides applying a good allocation strategy that
minimizes network contention, there probably is a point where it does not pay to
pack yet another job into the system, because all the jobs gel slowed down. It may
be of advantage for all the jobs to restrict admission in order to avoid this increase

in service time. This is an area of future work (see Chapter VIII).

127

CHAPTER VIII

CONCLUSIONS

As communication and [/O traffic increases on the interconnection network of
high-performance parallel computers, nelwork contention becomes a critical prob-
lem, drastically reducing effective data throughput. Minimizing network conten-
tion is crucial in order to achieve fast job response times and high system through-
put.

While network contention can be aflected by the resource management issue
of processor allocation, previous processor allocation strategies have essentially
ignored the I/O and communication demands of parallel applications and the re-
sulting network contention. In this thesis, we have conducted a systematic analysis
of the effects that the processor allocation strategy, through its decisions on the
spatial layout of jobs, has on network contention; and we have designed and tested
new processor allocation strategies that minimize network contention by being
sensitive to communication and parallel 1/0.

Our new parallel 1/0- and communication-sensitive allocation strategies as-
sign a set of compute nodes to each scheduled job such that (1) communication
iraffic of different jobs interfere as little as possible and (2) parallel 1/0 traffic is

distributed as evenly as possible.

128

Summary

In Chapter 1V, we focused on inter-job link contention due to communication
between possibly dispersed compute nodes. We investigated the impact of spatial
layout of jobs on inter-job link contention. We defined several dispersal metrics
that measure the spatial layout of a given job's allocation in order to capture
the degree of compactness of that allocation. Through dynamic simulation, we
analyzed the relationship between spatial layout, network contention, and system
throughput. Results motivated the need for allocation compaciness in order to
minimize communication-based network contention.

In Chapter V, we applied what we have learned to the design of MC, a new
processor allocation strategy that is communication-sensitive. By allocating jobs as
compactly as possible, MC was successful in minimizing inter-job link contention.
Qur performance evaluation shows improvements in average response time of up
to a factor of 4.9 for communication-intensive jobs.

In Chapter VI, we focussed on traffic hotspots due to data transfer between
compute nodes and [/O nodes. We analyzed the impact of spatial layout of jobs
on traffic hotspots. Through graph theoretic analysis and dynamic simulation, we
analyzed the relationship between spatial layout, traffic hotspots, and realizable
I/O throughput. We proved theorems on the limitation of realizable /O through-
put due to network contention and on an upper bound on the number of I/0 nodes
that can be added to the system before the network saturates. Results motivated
the need for careful spatial layout (shape and localion) of compute nodes in order
to minimize parallel 1/O-based network contention.

In Chapter VII, we defined a new metric called balance factor and presented

PLAS, a new parallel 1/O-sensitive allocation algorithm. PLAS alleviates traf-
fic hotspots by concentrating on minimizing contention on the middle 1/O link
and by striving for balanced allocations. PLAS improved the response times
of 1/0-intensive jobs by up to a factor of 4.5. Finally, we designed MC Elon-
gated, a new allocation algorithm that is both parallel I/O and communication-
sensitive. MC Elongated strives for balance and allocation compactness at the
same time. MC Elongated improved the performance under workloads that are

both communication-intensive and parallel 1/O-intensive by up to a factor of 2.9.

Contributions

We took processor allocation strategies one step beyond the existing state
of the art. Non-contiguous allocation strategies had focussed on the computa-
tion demands of parallel applications and had solved the fragmentation problem.
However, previous research had essentially ignored the //0 and communication
demands of parallel applications and the resulting network contention.

The primary contributions of this work are the following. We summarize

each contribution in greater detail below.

1. Analysis of the effects of spatial layout of jobs on network contention and

implications on performance.
2. New concepls: compactness for communication, balance for [/0.

3. New metrics that are practical to use for performance evaluation and to guide

allocation decisions.

4. New algorithms that are successful in minimizing network contention and

130

thus in improving performance.

First we give more details regarding communication-based network contention:

Q]

. We gained a deeper understanding of inter-job link contention, continuing

the work of Min and Mutka [40] and Enbody [9]. While they recognized
that network contention is a dynamic phenomenon and thus very complex,
we were the first to develop quantitative metrics to measure the degree of

inter-job link contention.

Previous work has shown that (1) allocating jobs contiguously-only is an
overly restrictive allocation constraint, wasting idle compute nodes, (2) al-
locating jobs non-contiguous-randomly fails to minimize network contention
and (3) allocating jobs non-contiguously, but contiguous within blocks, is a
hybrid strategy that performs better than any of the pure alternatives. Yet,

none of these strategies adequately addressed the complex issue of network

contention due communication.

To address this shortcoming, we introduced the notion of compactness and
the opposite notion, dispersal. Compactness and dispersal are needed to
evaluate the extent to which non-contiguous allocations interfere with the
communication of other jobs. Before our work, there was no precise notion

of how to measure this.

We developed metrics to evaluate compactness. Our metrics - nodes_affected,
links_affected, as well as distances and diameter - have high correlation with
inter-job link contention. They are easily computed at allocation time and

thus can be used within allocation algorithms; they are also easy and effi-

131

cient to compute at allocation time and thus can be used for performance

evaluation.

4. We designed the MC strategy that strives for compactness. MC is very suc-
cessful, achieving very compact allocations and thus reducing service time
and improving average response time. We gained an understanding of the
limitations of block-based or conservative approaches to non-contiguous allo-
cation. They reap limited benefits because often the blocks do not get used
or do not get re-combined. In the end the system ends up quite fragmented
anyways. Paging based approaches are simpler and perform just as well.
These are the foundation for MC, PLAS, and MC Elongated. As we saw

they are also beneficial for 1/0.
Next we give more details regarding [/O-based network contention:

1. We analyzed the limits of parallel I/O performance on mesh topologies with
I/O nodes on one side. Network bandwidth per link is critically important.
Even with an optimal spatial layout of jobs, the overall parailel I/O perfor-
mance is limited to four times the network bandwidth per link under heavy

(complete bipartite) 1/0O traffic.

2. Weintroduced the notion of balance with respect to a job’s allocated compute
nodes. This notion is needed to evaluate the extent to which spatial layout

of jobs contributes to uneven distribution of 1/0O traffic.

3. We developed metrics to evaluate hotspots (maz_contention) and balance

(balance factor).

132

4. We designed the PLAS strategy that strives for balance. We designed the

MC Elongated strategy that strives for both balance and compactness.

The results of this research showed that spatial layout has a much greater
effect on network contention than previously believed. We showed that communica-
tion-sensitive and [/O-sensitive processor allocation algorithms can be designed
which minimize the degree of network contention, and thus significantly improve
overall performance. The results of this work have the potential to influence policies
and decisions made within all dimensions of a high-performance system: from
application program design to architectural configuration decisions to operating
system libraries and resource management policies. Our work makes a contribution

towards efficient resource management of teraflops-scale computing systems.

Future Work

Two main areas for further research are scheduling and architecture. In the
area of scheduling and allocation, it would be interesting to extend this research
(1) to other network topologies, such as multi-dimensional meshes, tori and hy-
percubes; (2) to heterogeneous traffic where different jobs have different ratios of
/O traffic vs. communication traffic; and (3) to different workloads, e.g. work-
loads with a correlation of 0 between jobsize and number of 1/0 or communication
messages sent.,

One idea worth exploring is the design of heterogeneous allocation strategies
that place I/O-intensive jobs differently than communication-intensive jobs. For
example, it might be beneficial to allocate 1/O-intensive jobs starting from the

side where the [/O nodes are and using a strategy like PLAS, while allocating

133

communication-intensive jobs starting from the opposite side and using a strategy
like MC.

Further attention needs to be given to job scheduling, the decision of which
job to allocate next and whether to allocate it now. If admitting an additional
job slows other jobs down (e.g. due to network saturation), limited admission
may be beneficial. The admission decision could be based on how compact or
balanced the proposed allocation would be. Alternatively, the total number of
nodes allocated to say I/O-intensive jobs can be limited. It would be worthwhile
to study strategies that try to achieve a good mix of currently allocated jobs
with regards to their demands on the network. If admission is limited, it would
be interesting to investigate “backfilling” otherwise idle compute nodes with jobs
that do not do I/0, for example.

Finally, research problems arise in the area of architecture. It would be
interesting to investigate the effect of other I/0 node placement schemes such as
those reported in [2, 34]. How should a parallel system be configured such that
the network does not become the bottleneck?

This dissertation takes a concrete step at resolving several issues related to
communication-based and I/0O-based network contention and opens the door to a
wealth of new challenging problems in the area of resource management for high-

performance parallel systems.

134

BIBLIOGRAPHY

[1] A. Al-Dhelaan and B. Bose. A new strategy for processor allocation in an
nCUBE multiprocessor. In Proceedings of the International Phoenix
Conference on Computers and Communication, pages 114-118, March 1989.

[2] M. Bae and B. Bose. Resource placement in torus-based networks. [EEE
Transactions on Computers, 46(10):1083-1092, October 1997.

[3] Rajive Bagrodia, Andrew Chien, Yarson Hsu, and Daniel Reed. Input/output:
Instrumentation, characterization, modeling and management policy.
Technical Report CCSF-41, Scalable I/0 Initiative, Caltech Concurrent
Supercomputing Facilities, Caltech, 1994.

[4] David H. Bailey, Eric Barszcz, Leonardo Dagum, and Horst D. Simon. NAS
parallel benchmark results. [EEE Parallel and Distributed Technology,
1(1):43-51, February 1993.

[5] Sandra Johnson Baylor, Caroline Benveniste, and Yarsun Hsu. Performance
evaluation of a massively parallel I/O subsystem. In Ravi Jain, John
Werth, and James C. Browne, editors, Input/Output in Parallel and
Distributed Computer Systems, volume 362 of The Kluwer International
Series in Engineering and Computer Science, chapter 13, pages 293-311.
Kluwer Academic Publishers, 1996.

(6] S. H. Bokhari and D. M. Nicol. Balancing contention and synchronization on
the Intel Paragon. Technical Report 96-54, ICASE, 1996.

[7] B. Bose, B. Broeg, Y. Kwon, and Y. Ashir. Lee distance and topological
properties of k-ary n-cubes. Technical Report 93-60-11, Oregon State
University, 1993.

[8] M. Chen and K. G. Shin. Processor allocation in an nCUBE multiprocessor

using Gray codes. I[EEE Transactions on Computers, C-36(12):1396-1407,
December 1987.

[9] Suresh Chittor and Richard Enbody. Performance evaluation of
mesh-connected wormhole-routed networks for interprocessor

communication in multicomputers. In Proceedings of Supercomputing '90,
pages 647-656, 1990.

135

(10} Y. Cho, M. Winslett, M. Subramaniam, Y. Chen, S. Kuo, and K. E,
Seamons. Exploiting local data in parallel array /O on a practical network
of workstations. In Proceedings of the 5th Workshop on I/O in Parallel and
Distributed Systems, SC '97, pages 1-13, 1997.

[11] P. Chuang and N. Tzeng. An efficient submesh allocation strategy for mesh
computer systems. In Proceedings of the International Conference on
Distributed Computer Systems, pages 256-263, 1991.

12] R. Covington, S. Dwarkadas, J. Jump, J. Sinclair, and S. Madala. The
g
efficient simulation of parallel computer system. International Journal in
Computer Simulations, 1:31-58, 1991.

[13] Phyllis E. Crandall, Ruth A. Aydt, Andrew A. Chien, and Daniel A. Reed.
Input/output characteristics of scalable parallel applications. In Proceedings
of Supercomputing 95, San Diego, CA, December 1995. IEEE Computer
Society Press.

[14] J. Ding and L. N. Bhuyan. An adaptive submesh allocation sirategy for
two-dimensional mesh-connected systems. In Proceedings of International
Conference on Parallel Processing, pages 193-200, 1993.

[15] Andreas Eberhart. The WARP simulator for wormhole-routed 2D mesh
networks. Technical report, Portland State University, 1994.

[16} Andreas Eberhart and Jingke Li. Contention-free communication scheduling
on 2D meshes. In Proceedings International Conference on Parallel
Processing, 1996.

[17] B. Everitt. Cluster analysis. Halsted Press, 1993.

{18] D. Feitelson and L. Rudolph. Metrics and benchmarking for parallel job
scheduling. In Proceedings of the jth Workshop on Job Scheduling
Strategies for Parellel Processing, IPPS 98, 1998.

[19] D. G. Feitelson. A survey of scheduling in multiprogrammed parallel systems.
Technical Report RC 19790 (87657), IBM Research Division, T.J. Watson
Research Center, Yorktown Heights, NY 10598, October 1994.

[20] Dror G. Feitelson, Peter F. Corbett, Sandra Johnson Baylor, and Yarson Hsu.
Parallel I/O subsystems in massively parallel supercomputers. [EEE
Parallel and Distributed Technology, 3(3):33-47, Fall 1995.

[21] M. L. Fulgham and L. Snyder. Performance of Chaos and oblivious routers

under non-uniform traffic. Technical report, University of Washington,
1993.

136

[22] Sharad Garg. Parallel I/O architecture of the first ASCI TFLOPS machine.
In Proceedings of Intel Supercomputer Users Group, 1997,

[23] Sharad Garg. 1/O measurements on Intel TFLOPS with 18 1/O nodes and
400 compute nodes. Personal communication, 1998.

[24] Sharad Garg, Robert Godley, Richard Griffiths, Andrew Pfiffer, Terry
Prickett, David Robboy, Stan Smith, T. Mack Stallcup, and Stephen
Zeisset. Achieving large scale parallelism through operating system resource
management on the Intel TFLOPS supercomputer. Intel Technology
Journal, 1st quarter 1998.

[25] H.-U. Heiss. Processor management in two-dimensional grid-architectures.
Technical Report 20/92, Universitat Karlsruhe, 1992.

[26] R. Jain, K. Somalwar, J. Werth, and J. C. Browne. Heuristics for scheduling
I1/O operations. IEEE Transaclions on Parallel and Distributed Systems,
8(3):310-320, March 1997.

[27) C. Koelbel, D. Loveman, R. Schreiber, G. Steele, and M. Zosel. High
Performance Fortran Handbook. MIT Press, 1994.

[28] David Kotz. Disk-directed I/O for MIMD multiprocessors. In Proceedings of
the 1994 Symposium on Operating Systems Design and Implementation,
pages 61-74. USENIX Association, November 1994, Updated as Dartmouth
TR PCS-TR94-226 on November 8, 1994.

[29] David Kotz and Nils Nieuwejaar. Dynamic file-access characteristics of a
production parallel scientific workload. In Proceedings of Supercomputing

‘94, pages 640-649, Washington, DC, November 1994. IEEE Computer
Society Press.

[30] P. Krueger, T. Lai, and V. A. Dixit-Radiya. Job scheduling is more
important than processor allocation for hypercube computers. IEEE
Transactions on Parallel and Distributed Systems, 5(5):488-497, May 1994,

[31] V. Kumar, A. Grama, A. Gupta, and G. Karypis. Introduction to Parallel
Computing. Benjamin Cummings Publishing Company, Inc., 1994.

{32] K. Li and K.-H. Cheng. A two-dimensional buddy system for dynamic
resource allocation in a partitionable mesh connected system. Journal of
Parallel and Distributed Compuling, 12:79-83, 1991.

137

[33] W. Liu, V. Lo, K. Windisch, and B. Nitzberg. Non-contiguous processor
allocation algorithms for distributed memory multicomputers. In
Proceedings of Supercomputing ’94, pages 227-236, 1994. Best student
paper award, also in JEEE Transactions on Parallel and Distribuied
Systems, July 1997.

[34] Marilynn Livingston and Quentin Stout. Distributing resources in hypercube
computers. In Proceedings of the 3rd Conference on Hypercube Concurrent
Computers and Applications, 1988.

[35) V. M. Lo, K. Windisch, W. Liu, and B. Nitzberg. Non-contiguous processor
allocation algorithms for mesh-connected multicomputers. /EEE
Transactions on Parallel and Distributed Systems, 8(7):712-726, July 1997.

[36] Virginia Lo, Jens Mache, and Kurt Windisch. A comparative study of real
workload traces and synthetic workload models for parallel job scheduling.
In Proceedings of the {th Workshop on Job Scheduling Strategies for
Parallel Processing, IPPS 98, 1998.

[37] Jens Mache and Virginia Lo. The effects of dispersal on message-passing
contention in processor allocation strategies. In Proceedings of the 3rd Joint
Conference on Information Sciences, Volume 3, Sessions on Parallel and
Distributed Processing, 1997.

[38] Jens Mache, Virginia Lo, and Kurt Windisch. Minimizing message-passing
contention in {ragmentation-free processor allocation. In Proceedings of the
10th International Conference on Parallel and Disiributed Computing
Systems, 1997.

[39] Ethan L. Miller and Randy H. Katz. Input/output behavior of supercomputer
applications. In Proceedings of Supercomputing 91, pages 567-576,
Albuquerque, NM, November 1991. IEEE Computer Society Press.

[40] D. Min and M. W. Mutka. A multipath contention model for analyzing job
interaction in 2-D mesh multicomputers. In Proceedings of the 8th
International Parallel Processing Symposium, pages 744-751, April 1994,

[41] Bernd Mohr. Processor allocation on Cray T3E. Personal communication,
1998.

[42] S. Q. Moore and L. M. Ni. The effects of network contention on processor
allocation strategies. Technical Report MSU-CPS-ACS-106, Michigan State
University, 1995.

138

[43] Csaba A. Moritz and Matthew I. Frank. LoGPC: Modeling network
contention in message-passing programs. In Proceedings of Sigmetrics, 1998.

[44] L. M. Ni and P. K. McKinley. A survey of wormhole routing techniques in
direct networks. /EEE Transactions on Computers, pages 62-76, February
1993.

[45] Bill Nitzberg. Processor allocation on Intel Paragon. Personal
communication, 1998.

[46] William J. Nitzberg. Collective Parallel 1/0. PhD thesis, Department of
Computer and Information Science, University of Oregon, December 1995.

[47] Barbara K. Pasquale and George C. Polyzos. Dynamic I/0 characterization
of I/O intensive scientific applications. In Proceedings of Supercomputing
'94, pages 660-669, Washington, DC, November 1994. IEEE Computer

Society Press.

(48] James C. T. Pool and Paul Messina. Scalable I/0 initiative.
http://www.cacr.caltech.edu/SIO/.

[49] Apratim Purakayastha, Carla Schlatter Ellis, David Kotz, Nils Nieuwejaar,
and Michael Best. Characterizing parallel file-access patterns on a
large-scale multiprocessor. In Proceedings of the Ninth International

Parallel Processing Symposium, pages 165-172. IEEE Computer Society
Press, April 1995.

[50] M. Rosenkrantz, D. Schneider, R. Leibensperger, M. Shore, and J. Zollweg,.
Requirements of the cornell theory center for resource management and
process scheduling. In Proceedings of the ist Workshop on Job Scheduling
Strategies for Parallel Processing, IPPS ’95, 1995.

[51] J. Subhlok, T. Gross, and T. Suzuoka. Impacts of job mix on optimizations
for space sharing schedulers. In Proceedings of Supercomputing ’96, 1996.

{52] K. Suzaki, H. Tanuma, S. Hirano, Y. Ichisugi, C. Connelly, and M. Tukamoto.
Multi-tasking method on parallel computers which combines a contiguous
and a non-contiguous processor partitioning algorithm. In Lecture Notes in
Computer Science 1184, pages 641-650, 1996.

[53) M. Wan, R. Moore, G. Kremenek, and K. Steube. A batch scheduler for the
Intel Paragon MPP system with a non-contiguous node allocation
algorithm. In Proceedings of the 2nd Workshop on Job Scheduling Strateqies
for Parallel Processing, IPPS 96, 1996.

139

[64] Mu-Cheng Wang, Howard Jay Siegel, Mark A. Nichols, and Seth Abraham.
Using a multipath network for reducing the effects of hot spots. IEEE
Transactions on Parallel and Distributed Systems, 6(3):252-268, March
1995.

[55] K. Windisch, V. Lo, and B. Bose. Contiguous and non-contiguous processor
allocation algorithms for k-ary n-cubes. In Proceedings of the International
Conference on Parallel Processing, 1995.

[56] K. Windisch, V. Lo, D. Feitelson, B. Nitzberg, and R. Moore. A comparison
of workload traces from two production parallel machines. In Proceedings of

the Sizth Symposium on the Frontiers of Massively Parallel Compuiation,
1996.

[57] K. Windisch, J. V. Miller, and V. Lo. ProcSimity: an experimental tool for
processor allocation and scheduling in highly parallel systems. In
Proceedings of the Fifth Symposium on the Frontiers of Massively Parallel
Computalion, pages 414-421, 1995.

[58] Y. Zhu. Efficient processor allocation strategies for mesh-connected parallel
computers. Journal of Parallel and Distributed Compuling, 16:328-337,
1992.

	DIS_G1
	DIS_G2

