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Since the notion of generative planning became one of the touchstones of arti-
ficial intelligence, surprisingly little improvement has been made in the efficiency of
generative planning algorithms. Efficient high-speed search is essential to most plan-
ning algorithms proposed to date: this can only be achieved if the search algorithms
used are based on a solid understanding of the search space. The concept of search
directionality—searching temporally or causally forward or backward—has been quite
important to designers of generative planning algorithms. Nonetheless, this concept
appears to be poorly understood.

Through a series of constructions and experiments, it is shown here that successful
planners must be capable of both forward chaining and backward chaining behavior,
and that understanding directionality issues in planning is a necessary precursor to the
construction of efficient planners.

This work begins by discussing some of the underpinnings of directionality in



planning: the physical, psychological, and computational temporal arrows that direc-
tionally orient planning problems. A previously unappreciated property of directionality
in planning is then described, namely that the direction of planning problems is not a
fundamental property of the standard formalism. Planning problems can be reversed,
allowing a planner to search in the opposite of its normal direction without a change in
planning algorithm. Next, a novel technique is described for determining the directional
behavior of existing planners, and experimental results using an implementation of this
technique are reported. This analysis of planner direction can be used to betier under-
stand the search strategy used in modern planning algorithms such as satisfiability-based
planning. Finally, some consequences and extensions of the results are given.

Together, these resuits shed new light on the construction of generative planning
algorithms using high-speed search, and thus move us closer to making generative plan-

ning practical for real problems.
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CHAPTER 1

INTRODUCTION

One of the traditional distinctions in planning is that between forward chaining
from temporally or causally earlier states to later states and backward chaining from
later to earlier states. Modern planning algerithms often exhibit both behaviors, but
almost all are biased in one direction or the other. The earliest planners [42] tended to
search forward in state space, while the next generation of planners [45] tended to use
backward means-end analysis.

It is, however, surprisingly difficult to pin down notions of forward and backward
chaining. It would be useful to understand the real differences in planning algorithms
that are motivated by this distinction. Since planning is known to be intractable in
general [14], it is difficult to distinguish efficiency of planning algorithms by worst-case
complexity arguments. It is also hard to produce indisputably *real-world problems”
under the simplified assumptions of Propositional STRIPS Planning (PROPS).

The fundamental claims presented in this work are that

1. Successful planners must at least be capable of both forward chaining and back-

ward chaining behavior.

2. Understanding directionality issues in planning is a necessary precursor to the

construction of efficient planners.

Several results are presented in support of these claims.



I. Various external and internal considerations relevant to directional chaining in

planning are surveyed, in order to understand the scope and nature of the problem.

(]

It is shown how to construct the reversal of a STRIPS problem, such that for-
ward chaining on the reversed problem corresponds to backward chaining on the

original problem (and vice versa).

3. It is shown how to construct a class of STRIPS problems that have the property
that they cannot be tractably solved by one-directional branching. These results
are used experimentally to explore the directionality of several existing planning
algorithms, by analyzing performance differences of planner implementations on
forward and backward tractable problems without reference to the underlying

planning algorithm.

This work proceeds as follows: The remainder of chapter I gives a brief back-
ground in planning, concentrating on PROPS. Chapter II discusses some of the philos-
ophy and history of directionality in STRIPS. Chapter III describes an algorithm for
transforming a STRIPS problem into an isomorphic problem such that planning in one
direction in the transformed instance corresponds to planning in the other direction in
the original instance. Chapter IV describes how to construct STRIPS problems that
are tractable in only one direction, and chapter V reports on empirical results in using
these problems to determine the directionality of existing STRIPS planners. Chapter VI
clears up some loose ends, suggests some topics for future research, and summarizes

some general conclusions one can draw from this work.



History and Background

The ability to formulate a complex multi-step plan for achieving a goal is one of
the characteristics that separates humans from even the highest animals. Chimpanzees
have been observed to form plans of a few steps [13]. However, compared to their
skills in planning, their skill in language and tool use, two other oft-cited measures of
intelligence, seem quite profound.

Given this association of intelligence with planning skill, it was natural for the
pioneers of artificial intelligence (AI) to turn to planning as an Al problem domain.
In addition, the practical advantages of computerized planning were obvious early on;
some of the first work in planning concentrated on “automatic programming” [56], in
which a computer constructs its own program given a specification of the problem to be

solved.

Planners

The notion of planning is difficult to pin down in its details, but most definitions
of planning would agree on the general outline of the problem: Given a current state
of the world (initial state), a desired state of the world (goal state), and a collection of
methods that change the world state (actions), a generative planner is a mechanism that
selects actions transforming the initial state to the goal state. Actions are described in
terms of the world states in which they can be executed (preconditions), and the world
states they can produce when executed (effects).

[t is useful to distinguish between action descriptions or types as part of a planning
problem description, and action instances that are performed during execution. In this

work, action types will often be referred to as operators and action instances as actions.



Thus, a single operator in a planning problem description may correspond te many ac-
tions in a plan produced by a planner. However, the common convention will be adopted
of referring to operators as actions in situations where the context is unambiguous.
Kambhampati [27] describes the useful distinction between classical planning and
more arcane planning methods in terms of restrictions on the world states and actions of

the planning problem. The classical planning restrictions can be summarized as follows:

l. All world states are discrete, complete, unchanging, and freely and fully observ-

able.

2. All actions are atomic, deterministically conjunctive in their preconditions, and

deterministic in their effects.

In particular, classical planning problems exclude those forms of hierarchical
planning problem in which some sort of action or domain hierarchy is given as part
of the problem description. It is generally believed that hierarchical problem decom-
position is an important part of the human planning process. In classical planning, the
hope is that hierarchical information can be extracted by the planning algorithm from
the classical description. In the meantime, there is plenty of challenge to be had in
non-hierarchical domains.

This work is concerned only with classical planning, and largely with restricted
versions of classical planning. Nonetheless, the problem is considered hard, and it is
widely hoped that progress will lead to insight into the solution of more general planning

problems.



Early Planners

The collections of papers edited by Allen, Hendler, and Tate [ 1] provides an intro-
duction to the early history of planning. Historically, research has moved from powerful
and general conceptions of planning and planners toward progressively simpler notions
(although recently there has been much research into planning in probabilistic domains).

The earliest work on planning treated it as a form of automated theorem proving:
the available action types were given as axioms, and the theorem prover was asked
to build a constructive proof that the goal state was reachable from the initial state.
Because the descriptions of states and actions were so general, largely as a result of
being expressed in such powerful formalisms, this sort of planning was intractable for
any realistically sized problem. However, atlempts to understand the computational
difficulties led to notions about the planning process that are still in widespread use,

such as means-end analysis.

Means-End Analysis

One important consideration arising from the study of human reasoning in plan-
ning has been the concept of means-end analysis. The fundamental idea behind this
concept is that human reasoning contains a strong notion of cause and effect. It is rea-
sonable to suppose that humans plan by choosing a particular goal to be achieved (the
end) and then selecting an action that achieves it (the means).

This notion has been adopted by nearly all Al planning systems as a method of
controlling plan generation. A typical planner attempts to choose goals (elements of the
goal description) and subgoals (intermediate goals arising during the planning process)

in a reasonable order, satisfying each by means of an action or action sequence.



Some researchers (e.g., McDermott [36]) have questioned whether means-end
analysis is the best approach for planner control. Nonetheless, the large amount of expe-
rience gained with this mechanism and its intuitive appeal suggest that it will continue

to be a dominant choice in planning algorithms.

Persistence

One of the principal sources of inefficiency in theorem-proving planners arises
from what McCarthy and Hayes called the frame problem [35]. The problem, which in
this work will be termed the persistence problem, is this: In a purely logical formulation
of planning one must explicitly enforce the condition that elements of the world state
will not change spontaneously (i.e., except as the result of action execution). Unfor-
tunately, enforcing persistence can require quite general axioms in a first-order formu-
lation, or many axioms in a propositional formulation. In either case, reasoning about

plans may become intractable due to this complexity.

STRIPS Planning

The advent of Fikes and Nilsson’s 1971 Stanford Research Institute Problem
Solver (STRIPS) {17] marks a major change in the view of planning problems. In the
STRIPS formalism, the frame axioms that encode persistence are made implicit in the
formalism instead of explicit.

STRIPS introduces the notion of add lists and delete lists: an action changes the
world state by setting the values of state variables true or false. Once set, these values
persist until changed by some other action. This approach to the persistence problem

allows a planner to avoid having to prove theorems about state variables unaffected by



an action: instead, the planner can automatically infer that the values of these variables
are the same before and after the action.

McDermott [36] provides a good general introduction to the state of STRIPS plan-
ning as of 1994. Short of imposing some restrictions on the formalism in which the
preconditions and effects of actions can be expressed, STRIPS planning today is not

terribly different from STRIPS planning in 1971.

Propositional STRIPS Planning

Perhaps the simplest notion of planning currently of interest to Al researchers is
Propositional STRIPS Planning (PROPS). In PROPS, world states are given by the val-
ues of a finite set of Boolean state variables (fluents). The preconditions of an operator
are given as a list of atornic formulae over the fluents, each of which must hold in order
for the action to be executed. The effects of the operator are given as a list of fluents that
will be forced true by the execution of the action (the add lisf), and a list of fluents that
will be forced false by the execution of the action (the delete list).

The remainder of this work will adopt a standardized notation similar to that of
Bylander [14] for PROPS planning problems. The principal difference between the
formalism of this work and that of Bylander is that this work introduces the notion of
legal actions and plans. Bylander follows a notion originally due to McCarthy [35]
in which an action may be executed in any world state, but has no effect unless its
preconditions are satisfied. This is convenient in some ways, but it will be important in
what follows in Chapters III and I'V to understand the conditions under which a plan is
legal.

A PROPS planner works in a domain consisting of operators whose preconditions



and effects are expressed in terms of propositional conjunctions of ground state variables
(fluents). The preconditions and effects of operators, as well as the initial and goal states

of a problem, will be represented by conjunctive formulae over the fluents:

Definition .1 (Element-wise Negation)

The element-wise negation of a set S is denoted S and defined by
S={-e|lee Stu{e|—ece S}

C

This syntactic definition of negation leads naturally to the notion of a set as a consistent

collection of atoms.

Definition 1.2 (Consistent Set)

A set S is consistent if and only if le € S . me € S. O
Thus, a consistent set of atoms can be thought of as a conjunction.

Definition 1.3 (Conjunctive Formulae)

The set of conjunctive formulae over a set S is denoled cf(S) and defined
by

cf(S) = {s € SUS|sisconsistent }

The set of conjunctive formulae with error over S is denoted cf , (S) and

defined by

cf 1(S) = cf(S) U {L)}

with the distinguished element L denoting an error condition. a



The above definitions provide a basis for the formal definition of operators.

Definition 1.4 (PROPS Operator)

A PROPS action type or operator is a tuple a = {(pre, eff}, where pre is a
conjunctive formula denoting the preconditions of a, and eff is a conjunctive
formula denoting the effects of a. (Thus the effects of a can be the empty
formula. Such no-op operators are usually not included in real domain de-

scriptions.) An action is the instantiation of an operator in a plan. g

It is conventional to specify the fluents added to or deleted from the world state by an

action.

Definition 1.5 (PROPS Additions/Deletions)

The additions add(a) of an action a collect the fluents that occur positively
in eff(a). The deletions del(a) collect the fluents whose negations occur in

eff(a). Specifically, add(a) = eff(a), and del(a) = eff(a). ]

For example, an action with eff(a) = {f, ~g} would have additions add(a) = {f, g}
and deletions del(a) = {~f, g}.
The definition of action execution then closely follows Bylander’s, but with an

explicit error state:

Definition 1.6 (PROPS Action Execution)

The state a(s) resulting from executing action a in state s is defined by

(s) (s\del(e}) Uadd{a)  pre(a) C s
(1s) =
1 otherwise



An action a is legal in a state s if and only if pre(a) C s.! a

It is not a part of the definition of action execution that the result of executing a
legal action in a consistent state is another consistent state. One would desire and expect

such a property to hold, and indeed it does.

Proposition 1.1

Let a be a legal action in a consistent state s. Then a(s) is consistent.

PROOF: By contradiction. If a{s) is inconsistent, there must be some fluent

f such that f € a(s) and ~f € a(s). There are three cases.

s does not mention f: By definition 1.6 the only way to achieve f € a(s)
and —~f € af(s) in this case is if f € eff(a) and ~f € eff(a). But
since by definition 1.4 eff(a) € cf(F), this is impossible, hence a

contradiction.

f € s: Since s is consistent, it must be that —f € s. Thus, by definition 1.6
~f € eff(a). But by definition 1.5 this implies that f € del(a), so by

definition 1.6 f & a(s). Hence a contradiction.

- f € s: Since s is consistent, it must be that f ¢ s. Thus, by definition 1.6
f € eff(a). But by definition 1.5 this implies that —f € del(a), so by

definition 1.6 =f ¢ a(s). Hence a contradiction.

0

"Note that since L is not a set, pre(e) € L can never be true: thus, once the error state has been pro-
duced, all further action execution will preserve the error state. This is a bit confusing, but the alternatives
are nolationally cumbersome.
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In this work, operators will be written using a horizontal bar, with the conjunctive
formula specifying the preconditions above the bar, and the conjunctive formula spec-
ifying the effects below. A PROPS operator that moves a block @ from a block b to a
block ¢ in a standard formulation of the infamous “blocks-world” domain might look

like
clear-a clear-c on-a-b

clear-b on-a-c —on-a-b —clear-c
This action can only be executed in a state in which block a is clear, block ¢ is clear, and
block a is on block b. After the action is executed, block b will be clear, block a will
be on block ¢, block a will be clear and not on block b, and block ¢ will no longer be
clear. An operator mentions any fluent that appears in the precondition or the effect of
the operator, regardless of sign; thus this operator mentions five different fluents.

Given the above, it is straightforward to define PROPS planning domains, plan-

ning problems, and plans.

Definition 1.7 (PROPS Domain, Problem)

A PROPS domain is a tuple (F, A), where F is a set of fluent symbols and
A is a set of operators. A problem is a tuple (D, I, G) where D is a domain
and [ and G are conjunctive formulae over the fluents F of D representing
initial and goal states respectively. A state S (commonly, the goal state G)
is partial if there is a fiuent in the domain mentioned neither positively nor

negatively in S. In this work, states are total unless otherwise specified. O

*That the blocks a, b, and c are all different blocks is implicit in the fact that this is a ground rule: if
a, b, and ¢ were variables, explicit uniqueness conditions would be needed. See pp. 15-16 below for a
discussion of Predicate STRIPS.
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Definition 1.8 (PROPS Plan)

A plan is any sequence of actions ay, ... ,a,. A plan is executed in a state

s by executing each of its actions in turn

as,...,Up)la n %0
(. an)(s) = 4 i (s))

s otherwise

A plan p is legal in a state s if and only if p(s) # L. A plan is valid in a

state s if and only if it is legal and satisfies the goal (i.e., G C p(s)). O
A plan is legal if and only if all of its actions are legal.

Proposition 1.2

A plan

=01, 0y

is legal in a state s if and only if s # L and

Vi€ {1,...,n} .q;islegalin (ay,... ,a;,)(s)

PROOF: By induction on the length n of p.

Base case:

For n = 0 the quantified condition is trivially true, and since p(s) = s, p is

legal if and only if s # L.



Inductive case:

Assume that the proposition is true for n = j. p(e;41) # L if and only
if action a;.1 is legal in state s; = (ay,...,0q;)(s). If ay,... ,q, is illegal
in s, then s; = L and thus a;4, is illegal in s; by the definition of action
execution. Butif @,... ,a; is legal in s, then s, # L and by the definition
of action execution a;4; will be legal in s; if and only if pre(a;.1) C s;.

Thus the proposition holds for n = j + 1 as well. O

Complexity of PROPS

The classic analysis of PROPS complexity is the work of Bylander [14]. He shows
that even under a variety of strong restrictions to the already restrictive PROPS. model
planning is PSPACE-complete in measures of the size of the problem description, such
as number of operators or number of fluents.

The intuition behind this result is that the length of a plan in actions can be ex-
ponential in the number of fluents in the state. The best known example of this is the
Towers of Hanoi problem [24] with n disks. This can be encoded as a PROPS planning
problem with O(n?) fluents, indicating for each pair of disks whether the first is on top
of the second, and O(n?) operators, one for each possible move of the first disk from
the second to the third. The minimum-length solution to the problem requires O(27)
actions,

To prove that PROPS planning is PSPACE hard, it is sufficient to observe that any
DTM transition can be encoded as a planning operator (for details, see Bylander [14]).
Checking the correctness of a PROPS plan can be done with just one bit per fluent;

starting with the initial state, one simply checks that the preconditions of each action
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hold, and then modifies the state according to the effects of the action. If (and only if)
the last action produces a goal state, then the plan solves the problem. Thus the PROPS
planning problem must be in PSPACE, hence it is PSPACE complete.

There are restrictions to PROPS planning that may increase its tractability. Fore-
most, it is evident that fixing a polynomial length limit on plans (i.e., asking the related
question “does there exist a plan of length O(n*) that solves this PROPS planning prob-
lem?”) brings the complexity of planning into NP. Indeed, PROPS planning can be
proven to be NP-complete under this restriction. Bylander [14] gives a few restrictions
on the form of operators that will make the problem NP-complete, although this is sur-
prisingly difficult. Ginsberg [22] shows that PROPS planning becomes NP-complete if
the requirement that all preconditions of operators be met is relaxed slightly. In gen-
eral, however, planning appears to be of high complexity—a discouraging result for Al

researchers.

Protection Conditions and Causal Links

In the classical planning domain, a fluent’s value may be thought of as caused
by the effects of a particular action. Indeed, a common tactic in formalizing classical
planning is to regard the initial conditions as effects of some dummy action that must
begin the plan, and the goal as the preconditions of some dummy action that must end the
plan. This notion is a natural expression of the notion of means-end reasoning (pp. 5-6).

Another natural outgrowth of means-end reasoning is the prorection condition or
causal link; an annotation on a plan indicating that action A’s effect causes a particular
value of a fluent f needed by action B’s preconditions. Since causality flows forward in

time, A must precede B. Since B is expecting A to produce its precondition, during the



interval between them the value of f must not be changed. If the annotation is regarded
as a protection condition, actions whose effect on f are the same as A’s will naturally
be allowed—a phenomenon sometimes referred to as shadowing. If the annotation is
regarded as a causal link, shadowing will naturally be disallowed. Both choices are

reasonable, with complex tradeoffs between them.

Predicate STRIPS Planning

Propositional STRIPS is a useful tool for algorithmic analysis and design of plan-
ning systems. In practice, it has proven to be insufficiently expressive to easily encode
realistic planning domains. Instead, a formulation known as Predicate STRIPS (PREDS)
has become the standard for STRIPS-style planning.

Except for the persistence assumption, the original STRIPS formulation strongly
resembled the axiomatic first-order logical planning methods that preceded it. Later
work indicated that the formalism could be much simplified without significantly reduc-
ing its expressive power.

This simplified PREDS formalism, much easier to understand and control, looks
much like PROPS, except that effects and preconditions are not restricted to conjunc-
tions of ground atomic formulae. Instead, they are conjunctions of predicate formulae,
and are implicitly universally quantified. The details differ from system to system in
generally uninteresting ways: It is sufficient to consider “flat predicates” with variables
quantified over a set of ground objects. By allowing variables to be shared between the
preconditions and effects of an action, it becomes possible to succinctly describe a class

of actions using these action schemata.
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Thus, a blocks-world planning problem might have just three action schemata:

—table(Y') —table(Z) on(X,Y) clear(X) clear(Z)
—on(X,Y) on(X, Z) clear{Y’) —clear(Z)
table(Y') —table(Z) on{X,Y) clear(X) clear(Z)

—on(X,Y) on(X, Z) —clear(Z)
—table(Y') table(Z) on(X,Y) clear(X)
—on(X,Y) on(X, Z} clear(Y")

Note that the initial state must be extended as well; in addition to a specification of the
actual blocks world problem, the type predicate table must be defined as well. Without

a closed world assumption, this will require a large number of ground initial conditions:

table(TABLE)
—table(a)
—table(h}

This is awkward, and a simple extension to PREDS that removes this requirement

is discussed under the heading of “Types” below.

Extensions to STRIPS

For convenience, as well as for increased expressive power in some cases, a num-
ber of extensions to the STRIPS formalism have been proposed and implemented. Many
of them are included as options to the PDDL [37] problem description language. Several
of the most common extensions are described here, and wili be considered in subsequent

chapters.

Closed World Assumption: 1t is often convenient to assume that any fluent that is not
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explicitly mentioned in a state description is false: this is the so-called “Closed-

World Assumption (CWA)” that is implicit in much of the planning literature.

For PROPS, this assumption is useful primarily for specifying the initial state—in
practice the set of initially true fluents is often much smaller than the set of all
fluents. (The goal state typically is épeciﬁed by a partial state description: fluents
not specified may be either true or false in the goal state.) Indeed, simple fluent
renaming permits recoding of an arbitrary PROPS problem description so that all
fluents are false in the initial state. For some systems (such as Graphplan [8]) nei-
ther the initial state nor the goal description may have explicitly false fluents. This
will in general require extra fluents to translate an arbitrary problem description
(as described on pp. 3745 of chapter III), but does not change the expressiveness

or complexity of PROPS planning [ 14].

For PREDS, the CWA is more problematic. It is usually stated in such a way that
all variables range over finite sets of ground values: this is the “Closed World”

referred to. In this situation, the CWA of the previous paragraph still holds.

Types: Under the CWA, the standard PREDS formulation has the odd property that the
closed world is implicit, rather than being explicitly described. Further, no dis-
tinction is made between arguments of the various predicates. For example, there
is no distinction between the table and any other block in the blocks world de-
scription above, except that provided by the awkward introduction of a “timeless”
predicate whose sole purpose is to define the table. A more natural formulation
of PREDS allows the explicit declaration of typed objects in the domain, and thus

permits the use of implicit type predicates.
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Conditional Effects: In realistic environments, the effect of an action differs depending
on the situation in which it is executed. Ginsberg and Smith {23] were among
the first to comment on this, giving various examples from a household robot
environment. They point out that objects which should sometimes move together
present particular problems for STRIPS planners, since an exponential number of
operators are required to correctly handle all the possible subsets of objects that
may need to move as a unit. While proper indexing allows the correct operator to
be selected in linear time (or better), the large size of the problem description is

generally viewed as making this approach intractable.

The standard solution to this problem is the conditional effect {43]: allow speci-
fied additions and deletions in an action to be conditional upon properties of the
preceding state. Conditional effects are straightforward for most planners to deal
with, and easy for planning domain engineers to understand, making this a popular

addition to STRIPS.

Domain Axioms: PREDS implementations normally require some explicit representa-
tion of world states: in PROPS, fluent values are usually stored explicitly. This
can be problematic for two reasons. First, the size of the representation can be-
come large, and thus difficult to reason with. Second, action effects can become

quite complicated in attempting to maintain this complex state information.

In the blocks world, for example, the clear fluents are normally maintained for
each block by each block move action. It is desirable, however, for this mainte-
nance to be performed by invoking the obvious rule: a block is clear if no block is
on top of it. A domain axiom can enforce exactly this condition: the clear fluents

become derivatives of the world state, rather than a part of it.



It can be a bit tricky to give a sound and useful semantics for domain axioms that
is nonetheless tractable for most planners. Indeed, domain axioms written in full

first-order logic may not be tractable.

Safety Constraints: A safety constraint is a mechanism for ensuring that a specified
condition holds in all states of a plan (this is the dont-disturb constraint of Weld
and Etzioni [58]). As the name implies, this mechanism is suitable mainly for
ensuring that a plan never includes a state with undesired consequences. Support
for safety constraints appears to be easy to add to existing planners, but the utility

of the mechanism is still somewhat unproven.

This is only a small selection of the many extensions that have been proposed
to STRIPS planning: as noted above, these extensions are considered mainly in under-
standing how the research results presented in this work might apply to modern general-

purpose planners.

Comments

As noted above, Al researchers have been working on planning for about 30 years,
and on classical planning for about 20 years. In this time, they have made surprisingly
little progress. With the possible exception of Wilkins' SIPE [59], the author is aware
of no domain-independent classical planning engine in use in a fielded application. In
limited toy domains, such as blocks world, the latest general-purpose classical plan-
ners are able to provide provably optimal solutions to problems that humans probably
could not [29]. However, humans can provide solutions to these problems reasonably
quickly when permitted to neglect optimality considerations, unlike existing automatic

mechanisms.
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Work relating the properties of planning algorithms, problem domains, and the
STRIPS formalism is essential to identifying and expanding classes of tractable clas-
sical planning problems. The recent success of Graphplan [9] in achieving dramatic
speedups on a large class of benchmark problems energized the entire Al planning com-
munity. Unfortunately, it is still poorly understood how Graphplan achieves this level
of success—it appears that this planner serves as sort of a Rorschach test for planning
researchers, who see in it exactly what they desire and expect to see.

The remainder of this work takes a different approach to improving planning per-
formance. Selecting a particular feature of STRIPS planning, namely the distinction be-
tween forward and backward chaining planners, this distinction is explored in terms of
the interaction between the formalism, planners, and problems. Some important results
are established, showing ultimately that unidirectional planners will have poor perfor-
mance on certain classes of tractable problems, and giving a method for transforming
such problems to increase their tractability for simple planners.

One can hope that a similar approach, applied to other STRIPS issues, will even-
tually lead to high-performance planners built from first principles, driven by science

rather than engineering. Only time can tell whether this hope will come to fruition.
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CHAPTER 11

THE METAPHYSICS OF DIRECTIONALITY

From the early history of Al planning, there has been an important distinction
made between forward and backward chaining planners [20]. This distinction is based
on the observation that, at least superficially, the forward fiow of time in plan execu-
tion appears to induce an asymmetry that distinguishes the direction of chaining. The
distinction is further supported by human introspection into planning, and by empiri-
cal results showing that forward and backward chaining planners, even when otherwise
superficially similar, often have dramatically different performance characteristics [5].

As a result of these intuitions about directionality, Al researchers have made some
fairly strong assumptions about the advantages of backward chaining. Perhaps typical
is Kambhampati’s comment [27] that

Compared to forward state-space refinement [planning], the backward state-

space refinement generates plan sets with a fewer number [sic} of compo-

nents because it concentrates only on those actions that are relevant to cur-

rent goals. This focus on relevant actions, in turn, leads to a lower branch-

ing factor for planners that consider the plan set components in different

branches.

Kambhampati apparently has the intuition that the number of subgoals active at a given
time will be small in real-world problems, and thus backward-chaining will produce a
narrower search tree. One can construct artificial problems in which the forward search
tree is narrow and the backward search tree large: apparently Kambhampati believes

that these are not realistic. This sort of comment is hard to evaluate: it is difficult to
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separate the facts from the hypotheses,
McDermott [36] suggests that
... working backward and forward are not done symmetrically. Planning in

the forward direction starts with a complete situation description, and after

computing the result of every action, retains a complete description. Plan-

ning in the backward direction proceeds from a goal statement that merely

constrains one aspect of the final situation. This requires solving the regres-

sion problem.

The suggestion is that the asymmetry between forward and backward planning is the
result of the asymmetry between the total initial state and the partial goal description.
The truth is somewhat deeper than that: the natural formulation of regression leads to
partial intermediate states even in the presence of a total goal state.

It seems clear that the role of time direction in planning is poorly understood. The
remainder of this chapter attempts to build a framework that will make it (somewhat)
easier to understand the role of time in planning and execution. This should facilitate the
presentation in the chapters that follow. The putative advantage of backward chaining

will then be discussed in the light of this framework.

Directionality in Planning

There are three major reasons why planning might appear to be temporally asym-
metric: the fact of temporal asymmetry in the physical world, temporal asymmetry in the
thought processes of humans, and the appearance of an apparent temporal asymmetry in
the STRIPS formalism itself. In this section, each of these factors will be considered in

turn, to determine their role in the overall picture of STRIPS temporal asymmetry.
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Time’s Arrow: Directionality and Physics

Physicists have a reasonable understanding of the role of the low of time in the
physical universe. The flow of time is often characterized in terms of statistical laws
known as the Laws of Thermodynamics, which state that certain changes in physical
systems normally proceed forward in time. In particular the Second Law of Thermody-
namics [57, pp. 562-568] states that the entropy of a physical system, a measure of its
disorder, will tend to increase over time. Observable consequences of the law of entropy
include such things as the tendency of objects to reach equilibrium temperature with
their surroundings and the inclination of liquids to run downhill.

Thus, the forward temporal direction may be defined as the direction in which
entropy tends to increase. From a planning perspective, the key question is whether
the STRIPS formalism is expressive enough to capture physical notions of entropy, and
thus to capture this temporal arrow. If STRIPS captured physical entropy, it would
mean that planning for an entropically illegal action (e.g., running water uphill) would
be impossible in the formalism, Clearly, at least as the formalism is normally used
to encode the physical world, this is not the case: one can write a “run-water-uphiil”
operator just as easily as a “run-water-downhill” one.

The science of information theory [46] also has a notion of entropy. While it is
often confused with the thermodynamic notion, it is at its core almost entirely different.
The principal tenuous connection between the two notions of entropy is a theoretical
lower bound on the amount of the energy transferred in transmitting a single bit of
information. For the purposes of this work, the key distinction here is that information-
theoretic entropy appears to carry no temporal arrow: there is no obvious notion of

information flowing in a particular time direction. Thus, it would be a mistake to char-
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acterize planning as directional because of informational entropy.

The Mind’s Eye: Directionality and Thought

The only known working example of an intetligent system is the biological brain.
How do human and animal brains handle time direction in planning? The evidence is
far from clear. The most popular view (held by, e.g., Ginsberg') is that human planners
work backward from the goals to be achieved, selecting from the range of operators
available to produce each subgoal. Proponents of this view point out what means-end
analysis is supposed to capture: in real-world problems there are usually a large number
of actions available in any given world state, and yet there are often few actions that will
achieve a specific subgoal. It is unarguable that some form of goal directed search must
be employed by humans to avoid searching through an unmanageably large number of
possible plans: humnans cannot effectively manage many plans simultaneously.

On the other hand, humans appear to be better at reasoning about the state of the
world after an action (given the state before) than at solving the regression problem.
Faced with a puzzle-mode problem, the tendency appears to try to solve it from the be-
ginning to the end. For example, trying to solve the Peg Solitaire puzzle (commercially
marketed as Hi-Q) from the goal to the initial position appears [7] to be harder for most
people than solving it from the initial to the goal state. This is surprising, since the
puzzle is in principle completely reversible. Bogomolny [10] writes that

In principle, the puzzle should be as easy (or as difficult) as its original

counterpart. However, I have discovered that to me, as far as the theory
goes, it’s much easier to visualize full [configurations] than empty ones.

'"Personal communication, 1998.
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As Leibniz noted [7], regressing a peg after “unjumping” feels intuitively different than
updating the state after “jumping”.

The fundamental problems of forward planning for humans appear to be largely
finessed by the assumptions of classical planning (p. 4). In classical planning, nothing
unexpected can happen during plan execution: world states persist perfectly and actions
always have their desired effects. Given these simplifying assumptions, humans appear
to be good forward planners, at least for real-world problems. Puzzle-mode problems
tend to be hard for humans largely for reasons unrelated to temporal direction, having
more to do with the large amount of short term state and the rapid search required for
their solution.

The question of directional bias in human-generated encodings of STRIPS do-
mains appears to be a largely unstudied one. This is due in part to the fact that few large
real-world problem domains have ever been given STRIPS encodings. Characteristics
of small or artificial problems are unlikely to generalize: the typical encoding of these
problems typically addresses the qualification problem [21] by pruning the Auents in-
volved in the problem ruthlessly. For example, neither gratuitous preconditions (which
can be trivially satisfied in any reachable world state)} nor side effects (unintended but
unavoidable effects of an action) are normally modeled in toy problems.

One might suspect humans of routinely constructing operators with certain dis-

tinctive properties, for example:

Purpose: The purpose of an operator is a single effect that is the expected reason for
insertion of the action into the plan. Humans may concentrate on the intended
effect, and thus omit effects other than the purpose (the side effects described

above) when constructing STRIPS operators.
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Undoability: An operator is undoable if there are other operators available in the do-
main that can exactly undo its effects. Humans may be wary of the execution dif-
ficulties associated with actions which cannot be undone, and thus eschew these

operators in constructing STRIPS problem descriptions.

Repeartability: An action is repeatable if, having executed the action, it is possible to re-
establish its preconditions. Humans may include operators with perceived general
utility when constructing STRIPS problem descriptions: unrepeatable operators,

which can be used only once, are the essence of specificity.

This kind of reasoning is confusing, however, since humans also tend to structure the
world itself so that it has these sorts of properties, in order to make planning tractable.
Thus, these properties are often met by the real-world operators to which the STRIPS
descriptions correspond.

In the absence of extensive study, and given the notorious unreliability of intro-
spection, it is difficult to make strong assumptions about the role of human thought in
planning. Thus, the formal results of succeeding chapters are especially important in

understanding directionality in STRIPS planning.

The Electronic Brain: Directionality and Algorithmics

There appear to be three possible sources of directional bias in STRIPS planning.
First, the STRIPS formalism itself may be easier to solve in one direction, due to the
nature of persistence. Second, particular STRIPS problem domains may be easier to
solve in one direction than the other. Finally, ptanning algorithms may choose to operate

in a particular direction.

The results of chapter IIT imply that the bias in the STRIPS formalism itself is
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illusory. Since STRIPS problems, problem domains, and even individual actions in
these domains are shown to be reversible, there cannot be any predisposition toward
either forward or backward reasoning due to the formalism,

The planning problems themselves may be biased [20]. For example, by includ-
ing many operators with far more effects than preconditions, problems will have a much
larger forward branching factor. By leaving the goal state partly unspecified, extra
branching will be introduced near the root of a backward search tree. These biases are
real, and underscore the need for planners to be bidirectional for optimal performance.
Recent research has made some progress in this area [18].

There are two general classes of STRIPS planning algorithm that typify the dis-
tinction between forward and backward planning algorithms. The first, forward state-
space search, starts with the initial state and produces successor states by applying ac-
tions whose preconditions are satisfied, in an attempt to produce the goal state. One
argument in favor of this approach is that since total states are being produced at each
step, no complicated reasoning about what actions are legal is required for efficient
pruning [3].

The second, plan-space search, is typified by “Partial-Order Causal-Link” (POCL)
planning [34]. POCL planning starts with the goal state, and attempts to insert actions
into a plan whose effects achieve the goal state, then actions to satisfy otherwise un-
satisfiable preconditions of these actions, and so forth, until the initial state satisfies all
remaining preconditions. It is this effects-to-causes means-end analysis, inserting new
actions in order to supply otherwise unavailable preconditions, that leads to a character-
ization of POCL planning as backward.

The arguments in favor of backward POCL planning arise chiefly from an appar-
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ent reduction in the size of the search space, from two causes. First, while the initial
state is almost always totally specified, it is not uncommon for only a few fluents to be
specified in the goal state. Thus, the number of actions needed to achieve the goal state
itself may be limited. Of course, since many actions will have more preconditions than
effects, a large number of fluents usually become involved in the plan after just a few
backward steps.

Second, actions are not inserted blindly into POCL plans, but only in response
to the need to achieve specific fluent values. Thus, the branching factor at each step in
the planning process is lower. It is this additional reasoning about which preconditions
require additional actions to be inserted into the plan that accounts for the slower search
rates of POCL planners. It is hoped that the reduced search space will compensate for
this slowdown. The trend away from POCL planners, however, has suggested that this
is not the case.

To summarize, while there are possible sources of bias in STRIPS planning, in
reality these biases appear to be either illusory or problematic. The one thing that does
seem certain is that any overall algorithmic advantage to planning either forward or

backward in the STRIPS formalism is uncertain and difficult to quantify.

Confounding Issues

As noted in chapter I, even with all of the popular extensions to STRIPS there
are still important concepts in planning that it fails to capture. Among these concepts
are hierarchy and abstraction. Both of these concepts confuse issues of directionality
by introducing approximations into the planning process that can “jump over” difficult

areas, It may also be that the STRIPS formalism is not an appropriate choice for general-
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purpose planning: this might have implications for directionality.

Directionality and Hierarchy

As discussed in chapter I, a hierarchical planning domain, problem, or planner is
one in which some operators are considered subordinate to others. A typical hierarchical
planner is O-Plan [16], which features a complex language for describing composite
operators and specifying the fashion in which the planner can break them down and
insert them into plans.

O-Plan operating on a non-hierarchical domain is a backward planner (as will be
shown in chapter V). Indeed, O-Plan eschews even partial-order techniques in favor of
carefully controlled simple goal regression. But the operation of O-Plan on a hierarchi-
cal domain raises some interesting questions.

In a hierarchical problem, plans for any subgoal at any given level tend to be
short: long plans are typically the result of the breakdown of many levels of hierarchical
structure. Thus, a supposedly backward planner can quickly work to the beginning of a
planning problem. It can then establish invariants that must hold in the initial state, and
use these in planning with the next-level decomposition in the hierarchy. This mode of
operation suggests forward planning: state properties are used to prune action selection
on plan suffixes.

This mode of operation, however, is different from that of a typical bidirectional
planner, which deliberately works from both ends of a problem. The hierarchical planner
is asymmetric, and its ability to reach the front of the plan quickly is an “accident” of

the hierarchy (and a computationally important one).
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Directionality and Abstraction

Several historically important planners have been built around the idea that trac-
table planning can be achieved using operator or domain abstraction. In this approach,
all but some salient features of an operator or domain are temporarily ignored, in order
to get an approximate solution to the problem. This candidate solution is then refined by
introducing greater and greater levels of detail. This approach is rarely used by modern
planning systems, perhaps because the per-node cost of search has decreased to the point
where the extra complexity of dealing with the abstractions is no longer profitable. The
ABSTRIPS system [49] is perhaps the earliest planning system to incorporate abstrac-
tion as a fundamental feature. ABSTRIPS uses simple operator abstraction to iteratively
refine a proposed plan.

The notion of abstraction has been used extensively in the context of macro op-
erators: pre-packaged subplans that are either presented as part of the domain or, more
commonly, computed at runtime. The idea behind macro operators is to avoid repeat-
edly rediscovering a plan for a hard subproblem. Macro operators fit nicely with opera-
tor abstraction: abstraction can produce abstract macro operators that may become more
detailed as they are expanded.

As in the hierarchical case, abstraction and macro operators raise interesting ques-
tions about the directionality of planners. The ABSTRIPS planner, like the STRIPS
planner, is fundamentally a forward planner. However, it is possible for ABSTRIPS to
select a single operator that, at the highest level of abstraction, comprises the entire plan.
Subsequent refinements of this abstract operator will add actions at arbitrary points in
the plan in order to make successively more preconditions true. Thus, the forward nature

of STRIPS is somewhat obscured by the ABSTRIPS abstraction.
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The Limits of STRIPS

As noted earlier (p. 4 of chapter I), the assumptions of classical planning impose
strong constraints on planning problem expressiveness, with the hope of achieving a
computationally feasible version of the planning problem. The soundness of the STRIPS
formalism is dependent on all of the assumptions of classical planning.

Unfortunately, it appears that it is computationally difficult to find plans even un-
der these restrictive conditions. It is reasonable, then, to ask whether some of the clas-
sical planning constraints should be relaxed, so that formal descriptions of planning
problems are at least accurate and plans obtained for them will be useful, Historically,
work has been done on relaxing several of the requirements of classical planning: that
the world state be freely and fully observable, by allowing sensing actions [31]; that the
world state be complete and unchanging, by searching for robust plans; and that actions
be atomic, through the use of temporal logic [16]. More recently, a strong interest has
been taken in allowing world states to be incomplete and dynamic and actions nonde-
terministic, by means of Partially Observable Markov Decision Process planning [15].

Most of these attempts to relax the classical planning assumptions seem to have
made the planning problem more difficult. In addition, none of them appear to sig-
nificantly affect the issue of directionality. To the extent that the regression problem
becomes harder under relaxed assumptions, backward planning will become more diffi-
cult. For example, the Zeno planner [44] permits limited regression across actions which
contain preconditions including systems of linear inequalities: the machinery required

for this feat is decidedly nontrivial.
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Conclusion

The popular assumption in the planning literature that backward planners have an
inherent advantage in general use appears to have a rather weak foundation. Because the
STRIPS formalism is not expressive enough to capture physical laws directly, physical
notions of entropy do not introduce a temporal arrow into the formalism.

Similarly, human planning appears to be performed in different temporal direc-
tions in different situations. It does appear that in toy problems of the sort often used as
examples in Al, humans tend to reason backward: this may say more about the problems
themselves than about any general or inherent advantage of backward planning.

Finally, the computational properties of the STRIPS formalism do not appear to
be directionally biased. While real-world problems may favor backward chaining, the
author is unaware of any detailed study of this assertion. Chapter III will show that
forward and backward chaining can be made equivalent in a strong sense in the STRIPS
formalism. Most planning algorithms proposed recently are not of the POCL variety,
perhaps as a result of the limitations of this approach.

Any philosophical discussion of directionality in planning must be constrained by
the concepts and mechanisms available. A wide range of techniques have been brought
to bear on STRIPS planning, but none of them appear to strongly favor backward plan-
ning. The STRIPS encoding itself may be inadequate, although no particularly attractive
substitute has been proposed. There is no reason to believe that more expressive encod-
ings of the planning problem will make backward planning more attractive; they may
make it less so.

Directional arrows in planning are scarce, and most are confusing. Neither the

physical world, the mental world, nor the nature of the formalism provides an unam-
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biguous clue. Better understanding can be obtained only through detailed theoretical

and experimental study of the sort undertaken in the remainder of this work.
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CHAPTER 1III

STRIPS PROBLEM REVERSAL

It has been assumed (as discussed on pp. 21-22) that there is an inherent direc-
tional asymmetry in the STRIPS formalism, independent of particular problems or do-
mains, arising from the persistence of fluent values central to STRIPS. This asymmetry
is largely illusory: directional asymmetry in STRIPS planning arises either from the
specific planning problem or from a specific choice of planning algorithm, rather than
from the STRIPS formalism itself.

To show this, a simple, tractable construction is given, based on a technique for
domain compilation. For any PROPS problem P, the construction produces a problem
P, with an isomorphic set of operators and fluents, such that the set of reversals of
plans for P, is exactly isomorphic to the set of plans for P. Because of the strong
correspondence between the original and reverse domains, it is possible to treat forward
planning in P as backward planning in P, and vice-versa. This technique extends
to PREDS, and can be used to allow unidirectional planners to plan in the direction
opposite their natural direction.

Methods of transforming operators have been explored previously, for example
by Gazen and Knoblock [19] to simplify PREDS domains for use with Graphplan. The
methods of operator transformation given in this chapter, however, are distinguished
from previous work by their goal of controlling search and by their extensive nature: the

compilation schema given here rewrite every operator in a problem description.
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PROPS Actions and the Frame Axiom

As discussed previously, the principal advantage claimed for STRIPS formalisms
over their eartier predecessors requiring general-purpose theorem proving is the incorpo-
ration of persistence information into the STRIPS formalism. This relieves the planner
of the burden of making persistence-based inferences using a general purpose mecha-
nism. As a corollary, it has long been assumed that the persistence of values into the
future, but not into the past, creates causal and/or temporal asymmetry in STRIPS plan-
ning, so that backward planners, which work from the goal conditions of a planning
problem toward the initial conditions, must of necessity take a different approach than
forward planners, which work from the initial conditions toward the goals.

This assumption has arisen from the view of means-end analysis as central to
STRIPS planning. In the traditional view of means-end analysis (chapter I pp. 5-6),
one fixes an end, namely a fluent value to be achieved at a particular point in the plan,
a means, namely an earlier action that achieves it, and then ensures that intervening
actions in the plan do not interfere with the persistence of the achieved value. This
sort of reasoning was central to the operation of the original STRIPS [17] system itself
(although in the initial version of this system the non-interference of intermediate actions
with fluent persistence was assumed). More recently, the above definition can be seen
to have led directly to the notion of POCL planning.

A careful examination of PROPS actions, however, suggests that these actions are
actually almost time-symmetric: exchanging the preconditions and effects appears to be
largely locally sound. Persistence of effects thus appears as persistence of preconditions
(i.e., an action’s preconditions persist up until the action that produced them).

This observation leads to the notion of reversal of a PROPS planning problem:
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exchanging the preconditions and effects of each action, and exchanging the initial and
goal conditions, in order to obtain a probiem isomorphic to the original, but whose plans

are the reversal of plans in the original problem.

Reversibility and Deleted Preconditions

Perhaps the simplest planning algorithm is forward state-space search, in which
plans are built from the initial state by repeatedly appending actions. Note that to pro-
duce a total state as a result of an action, one must apparently know the total state
preceding the action, since otherwise one cannot know the values of fluents unaffected
by the action.

Superficially, it would seem straightforward to produce the total state preceding
an action by knowing the total state after the action (i.e., solve the regression problem
of chapter II), but two factors intervene here. First, it is common in STRIPS problem
descriptions to give a partial goal description rather than a total goal state. Second, and
more importantly, STRIPS actions can set the value of fluents not mentioned in their
preconditions, resulting in the inability of a backward planner to assume a fluent value
before an action is taken. Consider a fluent from a cooking problem that represents
whether a spoon is wet, and the action of stirring a liquid. A forward planner can infer
that the spoon should be wet after the liquid is stirred, but a backward planner cannot
determine, solely from the succeeding state and the formalism, the wetness of the spoon
in the preceding state. This action thus appears to be irreversible.'

Total state-space search thus appears (o require proceeding forward from the ini-

"This loss of information has been equated with entropy in physical systems, with the application of
an “irreversible” planning operator regarded as “increasing entropy.” See pp. 23-24 of chapter II for a
detailed discussion of this view,
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tial state.> In the next section, however, a mechanism is given for reversing these “irre-
g

versible” operators, allowing total state-space search in either direction.

Reversal Using Compilation

It is reasonable to view the process of converting one PROPS domain or problem
to another as a domain compilation process that takes actions and fluents in the source
domain and translates them to isomorphic actions and fluents in the target domain. This
section gives several examples of such compilation schema, culminating in a domain
compilation scheme Cj, that reverses a PROPS domain. This is done by transforming the
fluent space and the operators slightly, in such a way that even “irreversible” operators
may be reversed, and the initial and goal states may be interchanged (potentially produc-
ing a partially-specified initial state). Every operator in P has a corresponding operator,
its reversal in J3,. Every fluent in P corresponds to a pair of fluents in P, (whose val-
ues change in lock-step). Thus, PROPS planning algorithms that reason forward in P,
are effectively reasoning backward in P, and algorithms that reason backward in P, are

effectively reasoning forward in P.

C5: Positive-Only Preconditions

It is not uncommon in PROPS to restrict the actions in a planning domain to allow
only positive preconditions. It is well known that this does not lead to a restriction on the
expressive power of planning domains. The reason for this is simple. One can always

force each action to maintain two versions of each original fluent f: f* which is true

*Some PREDS domains do contain only reversible operators, in which all luents mentioned in effects
are also mentioned in preconditions. This appears to be particularly true in toy domains, where actions
are carefully crafted to have particular roles in plans.
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when f would be true, and f~ which is true when f would be false. Thus, each action

that adds f* in an effect must delete f~, and vice-versa.

Definition 3.1 (Signed Fluents)

The set of signed fluents corresponding to a set of fluents F is given by

FE={f*f|feF}

]

Figure | shows the compilation rules for a compilation scheme C- that converts
a planning domain with arbitrary preconditions to one with only positive preconditions:
for each possible way in which a fluent f can appear in an action in the source domain,
there exists a C, rule that shows how to render f in terms of f™ and £~ in the compiled
domain.

The compilation rules for a PROPS domain D may be extended to compilation
rules for a PROPS problem P over D in the obvious fashion, by simply transforming

the fluents in the initial and goals states according to the domain compilation rule.

Definition 3.2 (Signed Formula)

For any conjunctive formula F' (definition 1.3), the signed formula F* is

given by

P ={f*f | fe FYU{~f*.f"|~f€eF}
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This permits a precise description of problem compilation: For a PROPS problem
P={FA),IG)
the compiled problem is given by
Ca(P) = ((F*,Ca(A)), I, G*)

Note that some combinations of fiuents in the source domain have been omitted
since they can be obtained from existing combinations by persistence: for example, the

appearance of a fluent f in an action as - is indistinguishable from a planning point of

view from its appearance as -. This explicit persistence will be useful in the proofs that
f

follow.

To compile an action, one compiles each of its fluents separately. For example

a —b

b =c
would first be transformed to make the persistence of a explicit, yielding

a —b

ab-c
and then would compile according to the C, rules into

at b

at —a= bt =b- et e



4]

One further subtlety that might not be immediately apparent is that some condi-
tions are explicitly reasserted in effects that must, at this stage, already implicitly hold
in the preceding state (as a consequence of the domain structure). For example, consider
rule 3.1 in figure 1. It is apparent that f~ must not hold in any state legally preceding
an action of this type in the compiled domain, so it is redundant to delete f~ as part of
the effect. For reasons that should become clear shortly, it is nonetheless convenient to
do so.

It is, of course, necessary to prove that a compilation scheme does not change the

problem.

Definition 3.3 (Compilation Correctness)

A compilation scheme for a PROPS problem is complete if every valid plan
for the source domain, when compiled, is a valid plan for the compiled
domain. A compilation scheme is sound if every valid plan in the compiled
domain can be produced by compiling a valid plan in the source domain. A

compilation scheme is correct if it is complete and sound. 0

Thus, for a complete compilation scheme no existing plans are eliminated in the com-
piled problem, and for a sound compilation scheme no new plans are allowed in the
compiled problem. The technique used below for proving that C, is complete and sound
is somewhat unusual, but is justified by the fact that this proof structure will be used re-
peatedly.

The basic idea behind the proof of correctness for C, is to compare the goal state
and all preconditions of each action in the source problem with the corresponding for-
mulae in the compiled problem. Essentially, the proof proceeds by showing that, for

every valid plan in the source problem, each precondition and the goal state are satisfied
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in the corresponding plan in the compiled problem (completeness). For every valid plan
in the compiled problem, it is then shown that each precondition and the goal state are
satisfied in the source problem (soundness).

To achieve these proofs, it is sufficient to note that, because of the way that persis-
tence across actions is eliminated by the encoding, a precondition can only be satisfied if
(1) there is an earlier effect that establishes that precondition and (2) no action between
the establishing effect and the precondition mentions the precondition fluent. (Any flu-
ent mentioned by an action in the normalized form is part of the effect of that action.
This implies that the establishing action is unique.) Thus, it is sufficient to compare
compilation rules in the source and compiled domains in a pairwise fashion, checking

that the set of legal action pairs in each domain is exactly the same.

Proposition 3.1

4y is correct.

PrROOF: Completeness and soundness are argued separately.

Completeness:

Without loss of generality, consider any valid plan for the source problem
and some action a, in this plan which mentions a fluent f (and thus affects
f due to the normalization described above). Since a, is part of a valid plan,
its precondition on f (if any) must be satisfied. This can happen in one of

two ways.

I. f may have the same sign in the initial state as in the precondition of

a; with no action preceding a, mentioning f.



2. Otherwise, there must be some action aq preceding a, such that g
adds f with the appropriate sign and no action between ay and g,

mentions f.

Now consider the corresponding sequence of actions in the compiled prob-
lem, and in particular the compiled action @,. If a; mentioned f in its
preconditions, @, must require exactly one of f* or f~. To see that any

precondition f of a, is satisfied, consider the two previous cases:

1. The initial state I provides the precondition f of a, if and only if f

appears with the appropriate sign in [ to satisfy a;.

2. If action ag provided the precondition f of a,, then this places a re-

striction on how ag and a, can treat f.

Table 1 enumerates all the possible ways in which a, can follow ay, as-
suming that both ag and a; mention f, and no intervening action does,
The left column of table 1 indicates the rule in figure 1 which matches
ag on f, and the right column indicates the rule which matches a;. Ta-
ble 1 also shows the ways that aq can supply f* or f~ to @, with the

appropriate sign: a relation identical to that in the source domain,

f
(For example, if ¢; = - in the source domain, the mention of f in a,
f

. ! . .. It
f might be of the form —. In the compiled domain, @y = " and
~f I+ -f-
It . -
i, = At Thus, ¢, can follow ay in this instance.)
~ft

Note that the argument above also applies to any goal fluent f, so all goal

fluents will be satisfied in the compiled problem problem if they are satisfied
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TABLE 1. Possible ag, a; (@, @,) Pairs for C,

| ap{ao) ay {a;) |
3.1 3.1,3.3,35,3.6
3.2 3.2,3.4,35,3.6
33 3.2,3.4,35,3.6
34 3.1,3.3,35,36
3.5 3.1,33,35,3.6
3.6 3.2,3.4,35,3.6

in the source problem. Thus, since every precondition of every action and
every goal fluent in any valid plan will be satisfied in the compiled problem

if it is satisfied in the source problem, the compilation scheme C; is correct.

Soundness:

The soundness argument is similar to the completeness argument. Without
loss of generality, consider any valid plan for the compiled problem and
some action &, in this plan which mentions a fluent f* or f~. Since @, is
part of a valid plan, its precondition on f* or f~ (if any) must be satisfied.
By symmetry, assume without loss of generality that the precondition is f¥.

This precondition can be satisfied in one of two ways.

I. f* may occur in the initial state, with no action preceding &; mention-
ing f+.
2. Otherwise, there must be some action a, preceding @, such that g,

adds f* and no action between g and &, mentions f+.

Now consider the corresponding sequence of actions in the source problem,

and in particular the source action a,. If @, mentioned f* in its precondi-
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tions, ¢; must require f as a precondition. To see that any precondition f

of a, is satisfied, consider the two previous cases:

1. The compiled initial state / provides the precondition f* of @, if and

only if f appears positively in [ to satisfy ;.

2. If action @ provided the precondition f* of a;, then this places a
restriction on how @g and @, can treat f. Table 1 shows that the ways
that a, can follow ag in the source domain are identical, and thus aq

supplies f to a;.

Note that the argument above also applies to any goal fluent f* or f—, so
all goal fluents will be satisfied in the source problem if they are satisfied in
the compiled problem. Thus, since every precondition of every action and
every goal fluent in any valid plan will be satisfied in the source problem if
it is satisfied in the compiled problem, the compilation scheme C, is sound.

O

C4: “Don’t Care” Effects

One can define a new type of effect for PROPS-like actions: a “Don’t Care” or DC
effect. That a luent f is DC will be indicated by writing it as xf: the definition of effects
of actions may be extended to include atomic formulae of this type. Semantically, a DC
effect #f puts a fluent f in a state that allows it to satisfy either positive or negative
preconditions on f. For example, both

)
«f
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and

are valid plans. For now, the use of DC effects will be restricted to fluents mentioned in

the precondition of an action. Thus

*f
is not a valid action.

It might be supposed that the introduction of restricted DC effects increases the
expressive power of PROPS. It turns out, however, that this is not the case: A simple
extension to C produces a new compilation scheme Cj that translates a PROPS domain
with restricted DC effects to a standard PROPS domain (with positive preconditions
only, as an added bonus). Figure 2 shows the extra compilation rules for PROPS with

restricted DC effects. For a PROPS problem
P={(F, A),1G)
the compiled problem is given by
Cs(P) = ((F*,C3(A)) AN e

As before, a proof of the correctness of this compilation scheme is required. The
proof technique mirrors that for Cy; the principal difference is that the set of legal pairs

changes.

Proposition 3.2

C5 is correct,
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f+
T o
f_
— 3.8
> o (38)

FIGURE 2. Scheme Cj: Extending C to 3-Valued Logic

TABLE 2. Possible Pairs for C4

ag (dg)

a; (41)

3.1
3.2
33
34
3.5
3.6
37
3.8

3.1,3.3,35,3.6,3.7
32,3.4,35,3.6,3.8
3.2,34,35,3.6,3.8
3.1,3.3,35,3.6,3.7
3.1,3.3,3.5,3.6,3.7
3.2,34,35,36,3.8
3.1-3.8

3.1-3.8

PROOF:

The proof structure is as before. Now, however, the table of possible action

pairs contains some extra entries, as shown in table 2.

Cy: Reversal

For the moment, consider the restricted class of PROPS problems with a total

initial and goal state (both I and G mention all fluents). The compilation scheme Cy of
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o f
- - 3.9
;T e
o = 2 (3.10)
- f ~f
f o of
s -— 3.11
ny Ed 7 .11
o = il (3.12)
f -f
T (3.13)
f * f

T
— — 3.14
oy = o (3.14)

FIGURE 3. Scheme Cy: Reversal Rules

figure 3 provides a way to reverse the PROPS problem. Given a PROPS problem

P={FA4),1,G)

the reversal is given by

CR(P) = ((F: CIL(A)) :G:I)

Let p be a valid plan in the source problem, and R{p) be the reversal of p. Sim-
ilarly, let p, be a valid plan in the compiled problem, and R(p) its reversal. To see

that Cy, is correct, it is sufficient to establish that (1) for any plan g for the source prob-
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lem, R(p) is valid in the compiled problem, and that (2) for any valid plan p, for the
compiled problem, 12(py) is valid in the source problem. This can be accomplished by
once again showing that all preconditions and goal conditions in one plan are satisfied

by isomorphic actions in the other.

Proposition 3.3

Ch is correct.

ProoF: Essentially, the structure of this proof is the same as that of the
proofs of propositions 3.1 and 3.2, except that preconditions in the source

problem correspond to effects in the compiled problem, and vice versa.

Completeness:

Without loss of generality, consider any valid plan in the source problem,
and some effect upon a fluent f. There are two possibilities for how this
effect can be produced:

1. f is produced by the initial state.

2. f is produced by some action ay.
There are also two possibilities for how the effect can be used:

I. The next action a, that mentions f must either not have a precondition

that mentions f or must mention f with the correct sign.

2. If there are no further actions mentioning f, f must have the correct

sign in the goal state.



TABLE 3. Possible ag, a; Pairs for Cy

| 90| a |
39(393.11,3.13,3.14
3.10 | 3.10,3.12, 3.13, 3.14
3.11 ] 3.10,3.12,3.13,3.14
3.12(39,3.11,3.13,3.14
3.13 | 39,3.11,3.13,3.14
3.14 ) 3.10,3.12,3.13,3.14

TABLE 4. Possible ag, @, Pairs for Cy,

ay | a |
3913.9,3.12,3.13
3.10 | 3.10,3.11, 3.14
3.1113.9,3.12,3.13
3.12 | 3.10,3.11, 3.14
3.1313.9-3.14
3.14 1 3.9-3.14

The interesting case is when both aq and e, exist. In this case the precon-
dition on f required by a, (if any}) is supplied by ag in the source problem.
Thus, when the problem is reversed, an effect of @, must supply the pre-
condition f for @p. Table 3 enumerates all possible ways in which ag can
precede a; if ap has an effect on f. Table 4 enumerates all possible ways
in which ay can precede a; if dy has an effect on f. Note that the relations
defined by tables 3 and 4 are the inverse of one another: thus, action ag can
supply a precondition on f for action a, in the source problem if and only if
action @, can supply the same precondition to @, in the compiled problem.

Thus the reversed plan is valid.

In the case that a precondition in the source problem is supplied by the

30



initial state, this corresponds to an effect in the goal state in the compiled
problem. Thus, since the initial state is used to satisfy the precondition f
of a; in the source problem, in the compiled problem the goal condition
f is produced by the compiled action a;. Initial conditions in the source
problem not affected by any action must also be true in the goal states: the
reversal of the initial and goal states will not change this. Thus, the goal

state is achieved in the compiled problem.

Since a valid plan in the source problem is also valid in the compiled prob-

lem, C}, is sound.

Soundness:

The completeness proof for C;, mirrors the structure of the soundness proof,
except it shows that any valid plan in the compiled problem is also a valid

plan in the source problem.

The only unique part of this proof is showing that for any compiled action
@, that can precede @ with respect to f, a, can follow ap in the source

problem. Again, tables 3 and 4 show this.

Thus, Cy is sound and complete, and therefore correct. O

Note the role that the DC effects play in Cy. Intuitively, the reason that the
rules 3.13 and 3.14 of Cp work is that, when looking backward, the decision as to
whether f should be positive or negative may be deferred until it is known which sign
of f is needed to satisfy the precondition of an action. The compilation scheme C; thus
plays a critical role, in that it allows standard PROPS planning domains to represent this

DC effect using Boolean fluent values.
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To reverse a PROPS problem P is a two-step process. First, compilation scheme
CY, is applied to produce a PROPS problem C,{ /) that may contain actions with DC
effects. Then C}j is applied to remove any DC effects, converting the description into
a problem P, = C3{Cy(P)) in standard PROPS formalism. The resulting problem has
the property that forward plans for P are backward plans for P, and vice-versa. Since
each action is treated singly and separately, and the number of fluents at most doubles,

the compilation takes at most linear time in either of these measures.

Partial Goal States and Reversal

It is not uncommon for a PROPS problem to have a goal description corresponding
to a partial, rather than total, goal state. The reversal technique is easily extended to
apply to such a problem, by making the goal state total during compilation. Essentially,
unspecified goal fluents in the source problem P will correspond to DC initial fluent

values in P,. The following definition formalizes this process.

Definition 3.4 (State Expansion)

The state expansion expand(G, F'} to fluents F' of a (partial) state G C
F consists of the fluents of G, together with DC fluents for each of the

remaining fluents in F.

expand(G, F) =GU {«f | [ € (F\G)}

The compilation of a DC fluent in a state can be given by an extension of the definition

of signed formula (definition 3.2).
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Definition 3.5 (Signed Formula)

For any conjunctive formula F possibly containing DC fluents, the signed

formula F* is given by
Fe={ft,~f7|feFYu{-f* [ |~feF}u{f* [ | +feF}

O

To reverse a PROPS problem P with partial goal states, it is necessary to expand
the goal state during reversal. Given a PROPS problem P = ((F, A),I,G) where G

may be a partial goal description, the reversal is given by
Cf(P) = ((Fa CR(A)) ,expand(G, F)? I>

Given the same semantics for DC fluents in the initial state as for DC effects, the proof
of corre%ncss for Cy, (proposition 3.3) can be seen to cover C; as well.

To produce a standard PROPS version of F, where the goal description G(P)
may be partial is again a two-step process. First, compilation scheme C; is applied,
producing a PROPS problem C, () that may contain actions with DC effects, and may
contain DC fluents in the initial conditions. Then Cy is applied (using the new definition
of signed fluent to translate DC fluents) to remove any DC effects or fluents, converting

the description into a problem /%, = C3(C,(P)) in standard PROPS formalism.

Extensions and Reversibility

As discussed earlier, a number of extensions to PROPS have been proposed. It

is important to consider which of these are compatible with the reversal technique, in



54

order to gauge its generality and applicability. PREDS and the extensions described in

chapter I (pp. 16—-19) are considered in turn:

Predicate Strips: Inspection of the reversal proof indicates that it lifts easily to the pred-
icate case: if the ground atomic conjunctive formulae of the proof are replaced by
conjunctive formulae over universally-quantified predicates, the formalism is un-
changed. Thus, one can reverse Predicate STRIPS planning domains as well as

PROPS domains.

Closed World Assumption: The presence or absence of the CWA, in either its PROPS
or PREDS formulations, does not affect the reversal mechanism, since the mech-
anism is dependent only on fluent values, not on what fluents are available. In
PREDS formulations in which the fluents are not explicit, they will have to be in-
ferred as needed during compilation: whatever mechanism the planner normally

uses for this should suffice.

Types: Any type assignment applied to the fluents of the original problem will transfer
in a straightforward fashion to the fluents of the reversed problem. Since type

predicates are timeless, they need not be compiled at all for reversal purposes.

Conditional Effects: Reversing actions with conditional effects (presumably producing
reversed actions with conditional effects) is problematic. It is possible that the
conditional portion of the action can be reversed as though it is a complete action.
However, the formalism used in the chapter is not quite sufficient for describing
this, and in any case it is not obvious that interactions between the absolute and
conditional preconditions of the action will not adversely affect the reversal. Thus,

at present the reversal question for conditional effects is still open: this is an
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important topic for future work.

Domain Axioms: Domains containing domain axioms are not reversible by compilation.
In the presence of domain axioms, forward and backward search really can be
fundamentally different: the domain axioms themselves can introduce a temporal
arrow into the problem. For example, given a sufficiently powerful formalism for
domain axioms, it is possible to specify a one-way function (see chapter IV) of a
set of fluents as a domain axiom;: this will force the problem to be tractable only
in one direction. On the other hand, given the semantics and tractability problems
associated with domain axioms, this is arguably not a significant limitation of the

reversal technique in practice.

Safety Constraints: Because safety constraints are imposed on states rather than actions,
no special mechanism is required to impose identical safety constraints in a re-

versed domain.

There is, however, one catch. The Weld and Etzioni formulation of safety con-
straints specifies that a safety constraint that is violated in the initial conditions
may remain violated [58)]. The purpose of this odd-looking proviso is to sidestep
the undecidability of mutual consistency of first-order safety constraints. Unfor-
tunately, permitting actions which maintain a safety constraint violation in the
forward direction does not have any obvious backward analogue. An alternative
would be to insist on some restricted form of safety constraints whose mutual
satisfiability is decidable. Indeed, most natural safety constraints seem to be ex-

pressible as Horn clauses.
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Overall, the reversal mechanism appears to be sufficiently general to handle inter-

esting cases. The general approach behind it may be extensible even when the specific

technique is not.

Conclusions

If it is sensible to talk about the reversal of STRIPS actions, domains, or problems,
it is probably no longer sensible to talk about the directionality of STRIPS actions,
domains, or problems. The temporal directionality provided by persistence appears to
be illusory; an action’s preconditions are time-symmetric with its effects. Any time-
asymmetric action can be replaced with an isomorphic action that is time-symmetric. At
the least, this suggests that any temporal asymmetry in STRIPS problems arises from
the problems themselves, rather than the STRIPS encoding.

The use of domain compilation to provide a simple, tractable STRIPS problem
reversal algorithm has several consequences. First, it implies that a common belief about
the nature of the STRIPS formalism, namely that persistence induces a temporal arrow in
this formalism, is mistaken. Second, it provides a way to squeeze extra performance out
of existing PREDS planning systems, by allowing them to reverse problems as needed
to deal with problem-specific directional biases. Finally, it illustrates the utility of the

domain compilation technique for providing more powerful planning operators.



CHAPTER IV

DETERMINING THE DIRECTIONALITY OF PLANNERS

When considering the directionality of planning algorithms, several questions

arise:
. How should the directionality of a planning algorithm be defined?

2. How can the directionality of a planning algorithm as defined in question (1) be

determined?
3. How does the directionality test of question (2) work out in practice?

This chapter answers question (1) by giving an intuitively acceptable formal definition
of planning direction, and addresses question (2) by giving a powerful technique for de-
termining planner direction that is provably correct even for poorly-understood STRIPS-
style planners of sufficient power. Question (3) is answered in chapter V, where a mod-
ification of the technique of this chapter is applied experimentally in order to better
understand the performance of several planners.

The focus of this chapter is on an extrinsic, or black-box,' technique for determin-
ing the directionality of a STRIPS planner. This technique operates by feeding the plan-
ner problems drawn from a class of artificial problem domains, and measuring planner
performance. This idea of constructing artificial problems to determine planner behavior

is not new [5]. However, by exploiting the properties of certain functions (cryptographic

INot to be confused with the blackbox planner discussed below.
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one-way functions), it is possible to greatly strengthen both the meaningfulness of and
the confidence in the results of this technique.

This chapter restricts itself to a study of directionality in PROPS. Since PREDS
planners are capable of operating on PROPS domains, this restriction does not lose
generality, and the extra simplicity greatly eases the construction and analysis. Further,
this approach is well suited to planners such as blackbox [29] that are fundamentally

propositional in nature,

Search Space Pianning

The first consideration is to develop a general model! of the action of planners, in
order to provide an intrinsic definition of forward and backward planning. It is impor-
tant, however, not to overgeneralize: as discussed previously (chapter II, pp. 28-30), the
issue of search direction really only applies to planners that operate by searching. Thus,
a model, such as Kambhampati's Refinement Planning [27], that encompasses arbitrary
planners, may be inappropriately broad for discussion of planning direction.

The model presented here attempts to capture the mechanism common to search-
based planners. The basic idea behind the model is the observation that search in plan-
ning is of two types: action selection and action ordering. In a typical planner these
are interleaved, and thus cannot be treated entirely separately. A search-based planner
searches in a state space consisting of partially-formulated plans, in which some actions
have been selected and some ordering decisions have been made. Because of the poten-
tial terminological confusion with POCL planning and the like, a fresh terminology has

been adopted: these partially formulated plans are referred to as approaches.
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Definition 4.1 (Approach and Development)

An approach o(P) to a planning problem P is a tuple (A4, A), where A is
a set of action instances drawn from ” and A is a partial order upon them,

The problem P will be dropped where it is not required to avoid ambiguity.

A development of an approach o is an approach ¢’ such that A(¢) C A(o")
and A(o) C A(¢'). A development is nontrivial if A(g) # A(o') or
A(o) # Afo"). ]

An approach is more general than a POCL partial plan: there is no notion that in the
definition of approach that corresponds to partial links, or indeed to any kind of goal
protection.

Developments of an approach correspond to action selection and action ordering.
Any planner that explores the space of developments starting from the empty approach

is a search space planner.

Definition 4.2 (Search Space Planner)

A search space planner performs combinatorial search in a (explicit or im-
plicit) space whose nodes are approaches. The root node is the empty ap-
proach. Each child of a node o is a legal development o’ of o. At the leaves,

A is a total order, and the ordered set of actions A is a linear plan. O

Note that not all of these leaf linear plans are necessarily legal. An important distinction,
though one not explored in this work, is between planners that traverse only legal nodes
in the search space (as state-space planners do) and those that allow arbitrary explo-
ration. Nothing in the definitions so far constrains a planner to select and order actions

in any particular way: a search space planner could in principle proceed by iterative



sampling, making repeated random walks through the search space.

Search Direction

In order to talk about search direction, it is necessary to further specify the plan-
ning algorithm. The key intuition here is that planner direction is given by the method
used for action selection. Consider a planner developing an approach by adding a new

action.

Definition 4.3 (New Actions)

For a development ¢’ of an approach o, the set of new actions A*(o,0') is

defined by A*(o,0’) = A(c') \ A(o) O

A planner searches forward when it attempts to append a new action to existing
actions in an approach, and backward when it attempts to prepend a new action to ex-
isting actions. A planner that searches only backward is a strongly backward planner,
and a planner that searches only forward is a strongly forward planner. An action added
by a directional search step may be such that no legal plan can possibly arise: this is
irrelevant. What is relevant is that the action is added because of the shape of actions
added earlier or later.

For each approach explored by a strongly forward planner, only developments of
that approach in which all new actions could plausibly be appended to existing actions

are explored.

Definition 4.4 (Strongly Forward Planner)

The esrablished conditions of a set of actions is the union of all the action
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effects (note that this may not be a consistent set).

est{A) = U eff(a)

a€A

The established conditions of an approach are the effects of all actions in
the approach, together with the initial conditions: est(o(P)) = I{(P) U
est(A(a(P))). An action satisfies the forward chaining property for an ap-
proach when it requires an established condition of that approach, or when

it has no preconditions.
fwe(o(P)) = {a € A(P) | est(c(P)) Npre(a) # OV pre(a) = B}

A development ¢’ in which all new actions satisfy the forward chaining
property

A*(o,0') C fwe(o)

is a forward search step.

A strongly forward planner is a search space planner in which a develop-

ment of an approach is constructed only if it is a forward search step. O

As an example, consider a forward state space planner (such as ASP [11]). In a forward
state space planner, the search space consists of developments of the empty approach
in which the partial order A is actually a total order on the actions A of an approach.
Each new action added to an approach during development must have ail of its initial
conditions supplied by established fluents of the approach, since it must be legal in the

state produced by the current plan prefix. Thus, a forward state space planner is indeed



62

strongly forward according to definition 4.4.

For each approach explored by a strongly backward planner, only developments of
that approach in which all new actions could plausibly be prepended to existing actions

are explored.

Definition 4.5 (Strongly Backward Planner)

The required conditions of a set of actions is the union of all the action

preconditions (note that this may not be a consistent set).

rea(4) = | J pre(a)

0nEA

The required conditions of an approach are the preconditions of all actions
in the approach, together with the goal conditions: req(c(P)) = G(P) U
req(A(c(P))). An action satisfies the backward chaining property for an
approach when it provides a required condition of that approach, or when it

has no effects (is a no-op).
bwe(o(P)) = {a € A(P) | req(o(P)) Neff(a) # OV eff(a) = 0}

A development ¢’ in which all new actions satisfy the backward chaining
property
A*(o,0') C bwe(o)

is a backward search step.

A strongly backward planner is a search space planner in which a develop-

ment of an approach is constructed only if it is a backward search step. O
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As an example, consider a POCL planner (such as UCPOP [45]). In a POCL planner,
each new action is added to a partial plan only to satisfy an open condition of the partial
plan. The action thus supplies a required fluent of the partial plan, since it satisfies

the open condition. Thus, a POCL planner is indeed strongly backward according to

definition 4.5.

Propagation

One might reasonably object that definitions 4.4 and 4.5 are somewhat restrictive.
Consider a situation in which some action a is provably part of any plan for some plan-
ning problem P. This might be for some simple reason. For example, & might be the
only action that can achieve some goal condition: in this case, it seems unreasonable to
say that an otherwise forward planner could not add a immediately. Similarly, ¢ might
be the only action executable in the initial state: it seems unreasonable to disallow an
otherwise backward planner immediately adding a to its development.

To allow for these sorts of cases, it is useful to relax the strong definitions a bit.
What is wanted is some notion of the immediate addition to an approach of actions that
are logically entailed by that approach, and can be simply proven so: a notion generally
known as propagation. Unfortunately, the notion of simple proofs of action entailment is
hard to pin down. Fortunately, it is in any case rather peripheral to the issues at hand: the
definitions of action propagation given here are sufficiently general to cover the obvious
case, and more general definitions are unlikely to affect the proofs of this chapter.

The propagation definition given here requires identifying that portion of an ap-
proach that is a linear plan and whose actions occur at the beginning of the approach:

this establishes a state from which forward propagation can proceed.



Definition 4.6 (Plan Prefix)

Given an approach o to a planning problem with initial state 1, let py(0) =

{a, ... ,an) be the longest sequence of actions such that

. aj...a, € Ao)
2. ppre(0o) is totally ordered (with ordering ay, ... ,a,) by A(o)

3. a, precedes all actions in A{o) \ {a;...a,}

Then ppr (o) is the plan prefix of o, and sy (0) = (ppre () (1) is the prefix

state of o. (m

If the prefix state sy (o (P)) of an approach o(P) is the goal state, then that approach is
a plan solving P. For a forward state space planner, all of the actions in any approach
considered will be in the plan prefix of the approach.

Next, that portion of an approach corresponding to a plan suffix must also be
identified, to establish a state for backward propagation. Unfortunately, this definition
is a bit trickier, requiring some new machinery. In order to say what state corresponds
to the beginning of the plan suffix, the notion of regression from the goal state, touched

upon in chapter II (p. 22), needs to be made explicit and formalized.

Definition 4.7 (Regression)

Given a plan p and a state s; # L, the regression regress(p, s;) of s
through p is any minimal state s; under the subset partial ordering such

that p(s,} = sq, or L if no such state exists. O

The regression regress(p, s5) is always uniquely defined. To see this, it is actually suf-

ficient to consider the reversal technique described in chapter III; the state p,(s%) is
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unique, and omitting all DC effects from it leads to the desired regression. The details

are complicated, however, so a more direct proof is given instead.

Lemma 4.1 (Regression Uniquely Defined)
For any plan p and state s; # L, regress(p, s¢) is unique.
PROOF:

By definition, when r = regress(p, sg) = L, it is unique. Suppose that
r # L. If there is a unique state s, such that p(s,) = s¢, then it is the unique

minimal state.

Otherwise, suppose that there are two states s; and s, both minimal, such
that s, # s9 and p(s,) = p(s2) = s¢. Both states must supply the necessary
initial conditions for p to produce s;. Thus their intersection s;3 = 5, " 85
must also provide the necessary initial conditions for p to produce s,. But
the intersection of two sets must be a subset of both, so s;; C 5, and 515 C
s2. Since s; # s2 at least one of s, and s; is a proper superset of s13, 50 s,

and s, cannot both be minimal, contradicting the earlier assumption. O

Given an identification of that portion of an approach that is a linear plan and whose
actions occur at the end of the approach, having a well-defined definition of regression

in hand allows identification of a state from which backward propagation can proceed.

Definition 4.8 (Plan Suffix)

Given an approach & to a planning problem with goal G, let pyr(o) =

{ay, ... ,a,) be the longest sequence of actions such that

Loay...a, € A(o)
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2. pr(o) is totally ordered (with ordering ay, ... ,a,) by A(o)

3. a, succeeds all actions in A(o) \ {a;...a,}

Then pgr{a) is the plan suffix of of o, and

Ssut(0) = regress(pur(0), G)

(definition 4.7} is the suffix state of o. a

Given these concepts, a workable form of propagation can be described. The idea
is that, if a given action is the only way to proceed forward from a prefix state of an
approach, or backward from a suffix state, then any successful development of this ap-
proach to a plan will contain this action at this point: it may as well be added directly.
Dealing with prefix states or suffix states avoids having to make complex logical infer-
ences to decide what propagation is allowed.

Forward propagation, therefore, will be defined as adding the sole action to an

approach that is legal in the prefix state.

Definition 4.9 (Forward Propagation Step)

Given an approach o, let A, (o) be the set of actions legal in spn.(0):

Ape(o(P)) = {a € A(P) | a(sp{o(P))) # L}

When Ap(0) = @, the approach has failed. When A,.(c) = {a}, a for-
ward propagation step can be taken in ¢. A forward propagation step is a
development o’ of g. The action set A(a'} is A(o) U Ape (o), and the partial

order A(g”) is the union of A(c) with ordering constraints that append a to
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the actions of py(o), and make it precede the other actions in o'. O

Several issues arise here. The definition is constructed so that forward propagation steps
can be usefully iterated: a forward propagated action becomes part of the plan prefix,
permitting new propagations. Forward propagation does not affect the soundness of
search space planning: the action and ordering constraints added to an approach by a
forward propagation step will not affect the legality of plans resulting from the approach.
Forward propagation also does not affect the completeness of search space planning:
since the forward propagated actions are the only legal actions that can occur at the
prefix state of the approach, they can be added to the approach at the prefix state without
changing what legal plans will ultimately be produced from it.

A backward propagation step is similar to the forward one: it adds an action to the

head of the plan suffix.

Definition 4.10 (Backward Propagation Step)

Given an approach o, let Ay(o) be the set of actions that s (o) can be

regressed through:

Awi(o(P)) = {a € A(P) | regress(a, sqr(c(P))} # L}

When Aq,(c) = 0, the approach has failed. When Ag¢(o) = {a}, a back-
ward propagation step can be taken in g. A backward propagation step is a
development ¢’ of o. The action set A(c’) is A(o) U Ay(o), and the partial
order A(g’) is the union of A(g) with ordering constraints that prepend a

to the actions of (o), and make it succeed the other actions in o’. O

As with forward propagation, backward propagation steps are iterable, sound, and com-
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plete, and for the same reasons.

Propagating Planners

Having given definitions of forward and backward propagation, it is time to re-
turn to the original question: How can the restrictions of strong forward and backward
planning be weakened to allow propagation? The answer is now evident: simply allow

opposite-directional propagation steps.

Definition 4.11 (Forward Planner)

A forward planner is a search space planner in which a development of an
approach is constructed only if it is a forward search step (definition 4.4) or

a backward propagation step (definition 4.10). D

Definition 4.12 (Backward Planner)

A backward planner is a search space planner in which a development of an
approach is constructed only if it is a backward search step (definition 4.5)

or a forward propagation step (definition 4.9). 0

This addresses the objection that the definitions may be too restrictive: general forward

and backward planners will be treated in the remainder of this chapter.

One-Way Functions

A detailed treatment of cryptography is outside the scope of this work. For a fuller
view of its principles and techniques, consult an introductory text such as Schneier’s [51]
or Stinson’s [55]. This work is concerned only with a certain class of cryptographic

algorithms, for which the following definition captures the essential properties:
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Definition 4.13 (One-Way Function)

A cryptographic hash function or one-way function H is a binary function
from m input bits to n output bits, with the property that it is tractable to
compute but intractable to invert. Specifically, computing an output given
an input (y = H{z)) is in P, while computing an input given an output

(x = H Y(y))is notin P. D

Under some fairly simple assumptions, one can prove that one-way functions must exist
if (and only if) P # NP [4].2

It is believed by many researchers that computing inverses for one-way functions
in common use in cryptography, such as MD5 [51], is NP-hard. In any case, the ability
to efficiently compute these inverses would have such important practical consequences

that the following assumption may be safely employed.

Assumption 4.1 (One-Way Function Inversion)

A family of one-way functions H : 2" — 2" is constructible, and has the
property that H can be computed in time O(n), but H~! can be computed

only in time w(2"). O

Boolean Circuits

The notion of a Boolean circuit is crucial to expressing one-way functions in a

form useful for planning.

*Note that the definition given here does not require a one-way tunction to be one-to-one. Again, see
Balcdzar, Diaz, and Gabarrd [4] for details.
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Definition 4.14 (Boolean Circuit)

A Boolean circuit is *a directed acyclic graph (DAG) whose vertices are
labeled with the names of Boolean functions (logic gates) or variables (in-
puts [and outputs])” [50]. For our purposes, a Boolean circuit is a DAG
C = (V,E). The vertices V' are gates and are labeled according to their
function, as defined below. The edges E are lines, each of which connects

an output to an input.

The function of a logic gate is defined by a map, or truth table, giving for
each legal combination of Boolean inputs of the gate (value of in-edges
of the vertex), the Boolean outputs of the gate (values of out-edges of the
vertex). The edges of a Boolean circuit graph are called lines and are labeled

with signals.

The truth table of a logic gate v is a map T, from each element of the
set of conjunctive formulae (definition §.3) over the input signals of v to a

conjunctive formula over the output signals of v. a

For example, the truth table of a Boolean AND gate v with input signals 7y and i, and
output g is
r - =
{—~¢} inputs(v) = {=iy, =)}
T = {—q}  inputs{v} = {—2,7}
{~q}  inputs(v) = {in, ~2:}

L {a} inputs(v) = {ug,7%,}
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For any class of functions F in P, there is a uniform® class of Boolean circuits
that compute the functions in F. Of particular interest is that for any one-way function
H there is a one-way Boolean circuit that computes H.

In this work, the definition of logic gate will actually be extended a bit. Rather
than limit a gate to have a given output for a given input, the extended definition will
allow a gate to nondeterministically select from a number of outputs for a given input.
This modification turns out to be convenient for the purposes of completing the analogy

between a gate and a set of actions in a plan.

Definition 4.15 (Nondeterministic Boolean Circuit)

A Nondeterministic Boolean Circuit (NBC) is a Boolean circuit, except that
the truth table T, of an NBC gate v is a map from each possible input to a
set of possible outputs. Evaluation of a gate involves nondeterministically

selecting an element of that set as the output of the gate. 0

So, for example, an NBC gate v with input 2 and output ¢ might have the truth table

0 inputs(v) = {-i}
{{a} {—q}}  inputs(v) = {i}

y

Such a gate can evaluate successfully only if its input is true, in which case its output
may be either true or false.

The advantage of working with NBCs is that there is a straightforward corre-
spondence between NBCs and planning problems. This correspondence will be heavily

exploited in understanding the constructions of this chapter.

"Intuitively, uniformity captures the notion that a circuit of a particular size is easily describable. For
a more detailed explanation, see Savage [50]. All circuit classes used in this chapter are uniform.



72

NBC Planning Problems

NBC Planning Problems (NBCPPs) are a particular class of planning problems
associated with a given NBC, such that evaluating the NBC and solving a planning
problem in the class are isomorphic tasks. The basic idea behind the NBCPP construc-
tion is to use a set of actions for each gate that represent its possible evaluations. Exactly
one action from this set must be chosen, at the appropriate point, in building a legal plan
for the problem: the action chosen corresponds to the evaluation of the gate. Thus, the

entire plan consists of a topologically ordered sequence of gate evaluations.

Definition 4.16 (NBCPP)

For any nondeterministic Boolean circuit C' = (V, E), with the gates la-
beled in a given topological sort order V' = (u, ..., v,), the nondetermistic

Boolean circuit planning problem ({F, A) , I, G) is constructed as follows.

Let in(C) be the set of inputs of C. Let out(C) be the set of outputs of C.

Define the fluents of the problem by

F = (in(C)Uout(C))* U {do, . ..don.}

(Recall that definition 3.1 gives the meaning of 5*.) Define the initial state
of the problem by I = in®(C) U {do, }, and the goal state of the problem by
G = out*(C) U {do,+}.

Actions of the problem will be defined by the truth table of its gates, as fol-

lows. Given conjunctive formulae o and 3, let the action a,,4 that requires



NBC.

« and produces [ in vertex v; be defined by

a® do,
B¢ —do; doiy,

Qing =

Then given a gate v; with truth table T,,,, and an input & € dom(T,,), the

set of actions A, (v;) associated with input « is

Aa(v;) = {aiap | B € Ti(@)}

The set of actions A for the entire domain is the set of actions for all inputs

of all gates.

A= U Aglw)

v;€V, agdom(Ty,)

O
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The key fact is that solving a NBCPP corresponds to evaluating the corresponding

Lemma 4.2 (NBC Evaluation Planning)

Given a NBC C and a corresponding NBCPP P(C), a plan p (with |p| =
|V (C)]) solving P(C) exists if and only if C computes the given outputs

from the given inputs.

PROOQF: By dual implication.

Circuit solution = plan existence:

Consider the input values o and output values / at any gate v; € C, and

the corresponding set of actions A, (v;) (definition 4.16). By construction,



there must be an action a;,g € A, (v;) of the form

o’ do;
B¢ —do; doyy

Call this action a(v;). Thus, a plan can be constructed as follows: Begin
with the empty plan py. Now, for each vertex v; of C' in turn, append action
a({v;) to p;_; to obtain p;. Since the vertices occur in topological sort order,
each of the inputs of each vertex v; must be drawn only from the outputs
of earlier vertices vy, vs, ... , ¥;—1, and therefore the input fluent values o of
@iqp are fixed. Further, the precondition do; will be satisfied, either by the
effect of the previous action for v;_; or by the initial state. Thus, the action
with output 8 can be chosen. The plan will end with an action for v,, at

which time the goal conditions will be satisfied, so p is valid, and |p| = |V/].

Plan existence = circuit solution:

Consider the preconditions and effects of any action a.,g in p. By definition,
a corresponding gate v; is in C, and given input @ can produce output §.
Thus, the circuit can be evaluated as follows: The last action a, = @pqg of p
must produce only goal conditions, and must correspond to the appropriate
evaluation of gate v, of C. Set the inputs and outputs of v, according to
a and 3. Now, consider each action a;,y producing an input precondition
of a,,. Each must correspond to a gate v; whose output is an input of wv,,.
Set the inputs of v; to «, and its outputs to §. Continue until all values of
all gates of C have been set. This must happen, since the fluents of P have

been uniquely labeled according to the signals of C. Thus, the evaluation

74
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of C' is correct. O

For deterministic Boolean circuits, the plan for a given NBCPP will be unique. For
nondeterministic ones, there may be multiple possible evaluations of the circuit: each

will correspond to a unique plan.

NBCPPs and Reversal

It is interesting and useful to consider how the reversal of planning problems dis-
cussed in the previous chapter interacts with the NBCPP construction. To do this it
is heipful to consider a construction whose plans are the reversal of circuit evaluations.
Note that the reversal technique of chapter It could be used to obtain such a construction
from the forward version. Unfortunately, the actions of definition 4.16, when reversed,
contain DC effects that must be compiled out using C,. While this is possible, it ob-
scures the symmetry of the forward and backward problems, and leads to larger (and
thus more difficult) problems. The construction given here avoids this, creating back-

ward planning problems which are similar to the forward problems of definition 4.16.

Definition 4.17 (Reverse NBCPP)

The reverse NBCPP associated with a circuit C is constructed by reversing
the initial and goal states of the NBCPP for C, and the input and output
fluents of the actions. Given definition 4.16, define instead the initial state
of the problem by J = out*(C)U{do,.+ }, and the goal state of the problem
by G = in*(C) U {do, }.
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Given conjunctive formulae a and §3, let the action @;,g be defined by

ﬁs dot-l-l

o ~doyy, do;

a'iaﬁ =

Then given a gate v; with truth table T, and an input o € dom(7},), the

set of actions A, (v;) associated with input & is

P

Au('ui) = {aiuﬁ | ﬁ € E}. (CE)}

Then the set of actions A for the entire domain is the set of actions for all

inputs of all gates.

A= U Aa(‘ui)

5; €V, a€dom(Ty;)

o

The important thing about definition 4.17 is that the reversal of a plan for P(C)

is isomorphic to an evaluation of C.

Lemma 4.3 (Reverse NBC Evaluation Planning)

Given an NBC C and a corresponding reverse NBCPP P, {C), a plan p,
(with |pg| = |C]) solving Py (C) exists if and only if C computes the given

outputs from the given inputs.

PROOF: By dual implication.

Circuit solution = plan existence:

Consider the input values « and output values f at any gate v, € C, and the

corresponding set of actions A, (definition 4.17). By construction, there



must be an action d;ag € fia('u,-) (and therefore in A) of the form

B doiy

o’ —do;yy do;

Thus, a plan can be constructed as follows: Begin with the empty plan py.
Now, for each vertex v; of C'in turn, prepend action d, (v;) to p;_, to obtain
p;. Since each of the inputs of each vertex v; must be drawn only from
earlier vertices v, v»,...,w;_, an action b that satisfies the precondition
B* of a;.p as required will occur earlier in the final plan, and since fluents
are uniquely labeled by signals, no action between b and @ will delete this
precondition. The do; conditions will be satisfied as well, by the way that

the actions are ordered. Thus py is valid and |py| = |V|.

Plan existence = circuit solution:

Consider the preconditions and effects of any action a;.p in pp. By defini-
tion, a corresponding gate »; is in C, and given input o produces output f.
Thus, the circuit can be evaluated as follows: The first action a; = a,,g of
p must require a fluent of the initial state, and must correspond to an output
gate v, of C. Set the inputs and outputs of v, according to o and 3. Now,
consider each action a consuming an effect of ;. Each must correspond to
a gate v; whose output is an input of v,. Set the inputs of each v; according
to the corresponding a. Continue until all values of all gates of C' have been
set. This must happen, since the fluents of P have been uniquely labeled

according to the signals of C. Thus, the evaluation of C' is correct. O
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A Planner Directionality Test

Given all of the machinery introduced above, classes of forward and backward
PROPS planning problems can be constructed. These classes will have the property
that a forward planner (according to the definitions given above) will find the forward
problems easy but the backward problems intractable. Similarly, a backward planner
will find the backward problems easy and the forward problems intractable. After de-
scribing the construction of these directional problems, a proof of the correctness of the
construction is outlined. Finally, the features and limitations of the implementation used

in this work are discussed,

Construction

The basic idea of the construction is to take a one-way Boolean circuit and trans-
form it into a planning problem using the construction of definition 4.16. A planner
that tries to start from the wrong end of the planning problem will thus be attempting
to compute an input to the one-way function from an output: by assumption 4.1, this
is intractable. A planner that works from the correct end, on the other hand, will be
computing an output of the one-way function from an input: this should be easy.

The Boolean circuit, and thus the planning problem, can be oriented so that the
input to the one-way function corresponds to an unspecified initial state, and the output
corresponds to an unspecified goal state, producing a forward problem. Alternatively,
in a backward problem the input to the one-way function corresponds to an unspecified
goal state, and the output to an unspecified initial state. (Unspecified initial states, as
well as unspecified goal states, can be produced from total states in a simple fashion, as

exhibited below.) Figure 4 illustrates this concept: the arrow indicates the easy direction
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/9\ —
Initial Conditions H Goal State

(a) Forward

’%\
Initial Conditions H L= Goal State

(b) Backward

FIGURE 4. One-Way Function Planning Problems

for the one-way function.

Bit Commitment

A subtle problem arises at this point. Consider the behavior of a backward search
space planner searching depth-first to produce a plan for a forward one-way function
planning problem. By the argument above, this planner should find this problem infea-

sible. The planner, however, may proceed as follows:
{. Select an open goal bit, and a value for that bit.

2. Chain backward through the problem using any matching operator, until selecting
an action that can be first in the resulting plan. The planner can easily check
this condition, by verifying that all the preconditions of the chosen operator are

satisfied in the initial state.

3. If chaining cannot proceed, discard the actions selected for this goal bit, and start
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at step 2 with the other value for the open goal bit.
4. Include the chosen action as the first action in a partial plan.
5. Forward-propagate the chosen action to completion.
6. Repeat steps 1—S5 until all goal bits are chosen.

Since the depth of the planning problem is polynomial, and the size of the resulting plan
is polynomial, this is a polynomial-time algorithm for solving this problem.

This catch arises because it is emphatically not an intractable problem to find an
input to a one-way function that produces a given output bit, and because the definition
of backward planner allows such a planner to work its way to the front starting from
this bit. The offhand solution is to modify the definition of backward planner: this is
unacceptable, however, since many backward planners actually search in this fashion—
this behavior was discovered by examination of execution traces of UCPOP.

In order to take advantage of one-way problems to detect planner directionality, it
will apparently be necessary to force a wrong-directional planner to commit to all of the
output bits of the one-way function before proceeding any further. Figure 5 illustrates
this concept.

A construction that explicitly achieves this commitment property can be seen to be
impossible. Consider the operator or operators that actually assign values to the output
fluents of the one-way function. If some operator sets only some of the fluents, a planner
can proceed as above by working its way to that operator. If each operator sets all of
the fluent values simultaneously, either there is an exponential number of operators or
the problem is intractable for any planner, since it requires predicting the input that will

produce a given output from the one-way function.
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FIGURE 5. One-Way Planning Problem with Bit Commitment

All is not lost, however: it is possible to construct the problem in such a way that
any search tree that commits to an output bit has implicitly committed to all output bits:
that is, there is no extension of an approach that sets an output bit to a plan in which the

other output bits take on any but a single value.

Bit Commitment Network

The bit commitment network used to correct the above problem is probably best
described in terms of the correspondence between the circuit and PROPS representa-
tions. Only the forward version (i.e., the version that follows a forward one-way func-
tion and forces a backward planner to commit) will be described here: the backward
version is simply the reversal of the forward one.

The fundamental gate and corresponding set of operators used in this network is
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TABLE 5. Truth Table for Left Projection Gate

[
- [
-~ |0o

LR L-R LR -L-R
Q Q —Q -Q

FIGURE 6. Operators for Left Projection Gate

the left projection gate, whose output is the same as its left input—the right input is
ignored. The truth table for a left projection gate with inputs L and R and output Q
is given by table 5, and leads by the construction of definition 4.16 to the operators of
figure 6. Graphically, in what follows, the operators will be represented as in figure 7.
The basic idea behind the construction is that a backward search space planner,
in selecting a particular left projection gate operator to match a given output 7, must
commit to a particular value of both L and R. Thus, given a commitment (o a single flu-
ent value, a commitment to two fluent values can be obtained. Layers of left projection

gates can be assembled to continue this effect: after n layers, commitment to n + 1 bits

L Q

/ X
R
FIGURE 7. Schematic for Left Projection Gate
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L/l -~ X B/L

FIGURE 8. Gate and Fluent Labeling by Bit/Layer

will be achieved. Each left projection gate by is labeled by the bit it commits to and its
layer within the network. The fluents are named by the gate producing them. Figure 8
shows the labeling of gates, inputs, and outputs, in the form ‘bit/layer of graph’. The
structure of figure 9 uses this labeling, and provides a commitment to 4 bits. The fluents
on the left hand side of figure 9 will be referred to as the inputs to the bit commitment
network, and the single fluent on the right hand side as the output from the network.
(Thus, for a reversed network, the inputs would be on the right and the output on the
left.) This convention is arbitrary, but is motivated by the notion that the outputs of the
one-way function are the inputs to the commitment network.

The reverse bit commitment network planning problem is constructed in exactly
the same fashion as the forward one, but using the reverse NBCPP construction of

lemma 4.3 that produces bit commitment when planning in the opposite direction.

Final Construction

The final construction of the forward tractable search problems proceeds by con-
catenating three components: a circuit for producing a nondeterministic value, a circuit
for a one-way function, and the bit-commitment network of the previous section. The
result is a one-way Boolean circuit that can be translated to a one-way planning problem

via definition 4.16.
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x|——= —
— % __E}
Initial—=>| X ] Z_ | Commitment [—=> Goal
X — H —
x|—=> —

FIGURE 10. Forward One-Way Planning Problem

The nondeterministic value circuit consists of a gate that, for each input, may
produce either a true or a false value. Note that this is the truth table of a previous

example (p. 71).

) inputs(v) = {~i}
{{¢} {~q}}  inputs(v) = {i}

I, =

This is the motivation for using NBCs instead of Boolean circuits: this sort of gate can
be naturally represented as a set of actions within the planning framework.

The forward tractable one-way planning problem construction is given by fig-
ure 10. A forward search space planner may select values for the inputs to the one-way
problem by picKing either action for the nondeterministic value gates, forward propagat-
ing these inputs through the one-way function, and finally forward propagating the one-
way outputs through the bit commitment network. A backward search space planner, on
the other hand, in working backward through the bit commitment network, will implic-
itly commiit to a particular output value of the one-way function, and thus commit itself
to solving an intractable problem. (Note that the planner cannot forward-propagate: this
would be allowed by definition 4.9 except that the nondeterministic value gates inhibit
this propagation.)

The reverse tractable problem is exactly the forward tractable problem, except
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FIGURE 11. Backward One-Way Planning Problem

constructed using the reverse NBCPP construction of definition 4.17. Figure 11 shows
the conceptual design of this problem. Note that this figure illustrates the nondetermin-
istic consequences of the reversal: the nondeterministic value gates will translate into

deterministic actions, whereas the bit commitment gates will now be nondeterministic

in their outputs.

Correctness

To see that the planning problems as constructed will correctly detect the direction

of a sufficiently powerful search space planner, it is sufficient to show that

1. Given a commitment to its input bits, the one-way function portion of the problem

is tractable in the easy direction.

2. Given a commitment to its output bits, the one-way function portion of the prob-

lem is intractable in the hard direction.

3. The bit commitment network portion of the problem will commit to the output

bits of the one-way function.
4. The bit commitment network is tractable in the easy direction.

It is difficult to prove (1) for arbitrary search space planners, since deliberately bad

planners are capable of getting Jost on any problem where there are choices. However,
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blindly fixing the inputs to the one-way portion of the problem and then merely propa-
gating repeatedly will yield the outputs. It seems that any reasonable planner should be

able to at least emulate this strategy.

Lemma 4.4 (One-Way Evaluation Easy)

A search space planner working in the easy direction and not committed to
a given output can discover a plan for a n bit one-way planning problem P

in time asymptotically less than Q(n*).
PROOF: By construction.

Consider the situation after a planner working in the easy direction has cho-
sen an arbitrary input to the one-way circuit. Since the circuit is determin-
istic, this means that the operators to choose for the next layer of gates in
the one-way circuit are uniquely determined. But by the definition of direc-
tional propagation (definitions 4.9 and 4.10) this means that a propagating
planner can proceed to the output with no backtracking. Since the problem

is polysize, a non-backtracking solution will be obtained in polytime. O
To prove (2}, it is sufficient to appeal to assumption 4.1.

Lemma 4.5 (One-Way Inversion Hard)

No search space planner committed to a given output can discover a plan
for a n bit one-way planning problem P in time asymptotically less than

o(2").
PROOF: By contradiction.

Given a commitment to a given set of n output bits, assume that a search

space planner can find a plan p for P in time asymptotically less than O(n*).
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By the construction of P and lemma 4.2 or 4.3, the input bits for the one-
way circuit C' generating P can be read from p in time O(n). Thus, the
input to the one-way function H generating C such that H on this input
produces the given output has been determined in polynomial time. But

this contradicts assumption 4. 1. m|

To prove (3), it is sufficient to show that the bit commitment network works in the

fashion described informally previously (pp. 81-83).

Lemma 4.6 (Bit Commitment Network Commits)

Consider a search space planner (definition 4.2) P working from the output
to the inputs of a n-bit commitment network. If P is currently considering
an approach o that contains an operator that fixes the value of some input
bit ¢ = B;, then there exists By ... B, such that any development of o

into a legal plan will have

Yie {0,...,n—1} .inputbiti = B;

PROOF: By induction on the number n of bits of the bit commitment net-

work.

Base case:

When n = 1, there is only one input bit, and no network. This sole bit is

clearly fixed by the planner.

When n = 2, there appear to be two cases: the planner has fixed input bit 0,

or the planner has fixed input bit I. However, in either case the planner must
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have done so by selecting an operator to implement the sole left projection

gate in the network: this selection must have committed to both input bits,

Inductive case:

Assume that the lemma is true for an n bit commitment network. Then,
upon reaching any input0/n—1...n —1/n — 1tolayer n — 1, the planner
will have committed to all of these inputs. A search space planner search-
ing from output to inputs must, by definitions 4.12 and 4.11, select operators
for layer n based on using the output of each gate i/n to satisfy the input
of layer n — 1. By the inductive hypothesis, this means that layer n is com-
mitted to exactly the same values for bits 0..n — 1 as layer n — 1. Further,
once some operator for gate i/n has been selected in layer n, the value of
fiuent n/n is committed to by this selection: any legal plan developed from
an approach containing this operator must have selected operators for the
other gates in layer n consistent with the value of fluent n/n. Thus, upon
reaching any input 0/n...n/n to layer n, the planner will have committed
to all of these inputs, implying that the lemma is true for a n + 1 bit com-

mitment network. o

Finally, as with (1), (4) is difficult to prove for arbitrarily bad planners. Essentially
the same sort of propagation argument as lemma 4.4 holds, however: given a fixed input,
simple directional propagation (definitions 4.12 and 4.11) suffices to plan through the

network.
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Conclusions

The beginning of this chapter posed three questions. Two of them have been
answered. A reasonable formal account of the behavior a large class of planning algo-
rithms has been given using the notion of a search space planner (definition 4.2), and a
reasonable definition of directionality for search space planners has been provided (def-
initions 4.11 and 4.12). Directional classes of planning problems have been described,
such that the performance of a directional planner of sufficient power will necessarily
scale differently on the problems in the forward and backward classes. A proof has been
sketched of the correctness of this result.

To answer the third question, a variant of the directional problem classes described
here has been implemented, and the performance of a variety of existing planners has
been measured. Chapter V describes the implementation, and the results of these exper-

iments.
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CHAPTER V

MEASURING PLANNER DIRECTION

In chapter IV, a construction was given for classes of forward and backward one-
way planning problems. A forward one-way planning problem is easy for a forward
search space planner and intractable for a backward search space planner; a backward
one-way planning problem is easy for a backward search space planner and intractable
for a forward search space planner.

In this chapter, a specific class of directional one-way planning problems is de-
scribed, based upon a novel hash function. Next, the directionality of a variety of plan-
ners is evaluated using these problems, both to verify the technique, and to better under-

stand the behavior of the planners themselves.

Implementation

The construction given in chapter 1V (pp. 83-86) for one-way planning problems
is quite specific, excepting its failure to prescribe a particular one-way function to use
as the core of the problem. Ideally, a one-way function believed to be cryptographically
sound, such as MDS5, should be used in determining planner directionality. A crypto-
graphic quality one-way function is required by the proofs in chapter IV that depend on
assumption 4.1.

Unfortunately, cryptographically sound one-way functions tend to have large cir-
cuits. The corresponding planning problem would require tens or hundreds of thousands

of operators, far more than current planners can deal with efficiently. Further, these
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cryptographically sound one-way functions tend to have deep circuits: this would lead
to corresponding planning problems requiring long solutions, and experience indicates
that such deep planning problems are especially difficult for existing planners. Finally,
and most importantly, the only empirical way to estimate the asymptotic running time of
the planner, and thus determine the direction, is to give the planner a class of problems
of increasing size. Most existing cryptographic hash functions are of fixed size.

For all these reasons, a new scalable cryptographic hash function of modest size

and fixed shallow depth was designed for experimentation with current planners.

Definition 5.1 (Hash Function H,,)

Let x and y be n-bit vectors, with n even. Let x, denote the high-order
n/2 bits of x, x,, denote the low-order n/2 bits, and similarly for y, and y,.
Finally, let A and B each be a random function (or lookup table) from n/2

bits to n/2 bits. The function M, (x) = y is defined by

Yu=Xy P A(xl.)

Yo=X.D B(xn)

where @ is the exclusive-or operation (addition in GF(2)). o

Figure 12 illustrates this function.

H, solves the problems discussed above. Expressed as a planning problem, it
requires O(2") operators, but with a sufficiently small constant factor to be viable for
reasonably large values of n. Its depth is constant with respect to n, which is extremely
important. It is trivial to evaluate: the resulting planning problem, as shown below, is

simple to solve in the easy direction.
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FIGURE 12. One-Way Function H,,

Of course, all of this comes at a price. First, far from being intractable to invert,
there is good reason to believe that a human mathematician could construct a closed-
form #,, ! evaluable in polytime—certainly search techniques tuned to the problem can
invert H,, for a given output y in approximately linear time. The function was con-
structed, however, using well-known techniques from elementary cryptography (diffu-
sion and confusion); the authors’ colleagues were unable to construct inverses offhand.
Further, general-purpose planners are not good at this sort of thing: experimental tests
with both the forward and backward problems show that the planners studied in this
chapter do not find the inversion of H,, tractable.

The second problem with H,, is that the exponential growth in the number of op-
erators makes the problem asymptotically intractable even in the easy direction. Again,
experiments show that the planners studied in this section index operators well enough
for this not to be too large a problem. However, future work should address the con-
struction of better one-way functions; the exislence of better planners would also solve
the problem, by allowing the use of standard cryptographic hash functions.

At any rate, it is straightforward to transform #,, into a planning problem. The
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functions 4 and B are each implemented by 2*/? operators with a domain element as
the preconditions and a random output as the effect. Only 4n operators are needed
to implement the xor operations; 4 for the truth table for each xor, according to the

construction of definition 4.16.

Experiments

Having derived a directional test for planners, and shown that it is workable in
principle, all that remains is to apply it in practice: to actually feed the forward and
backward version of the one way planning problem constructed in the previous section
to planners. In this section, the directionality test will be applied to planners of the
previous generation whose directionality is well understood, and also to recent planners
that are not yet fully understood. In the process, some insight will be given into the

performance of several modern planners.

Methodology

The hash function, commitment network, and associated machinery described
previously have been implemented using a testbed composed mainly of M4 macros.
M4 [30] is a powerful general purpose macro processor. The macro processor approach
lends itself to implementation of the core primitives independent of the target syntax.
A collection of M4 definitions is constructed for each new target planning language,
describing that language’s syntax for fluents, operators, and initial and goal states. A
planner-indendent collection of M4 support routines provides syntax for conveniently

describing problems.

As noted previously (p. 75), both forward and backward versions of a problem are



specified independently. This was deemed necessary to provide sufficient control over
the implementation. The alternative, to automatically reverse a forward description,
would require compiling the forward version to positive-only preconditions for com-
parability. This would make the problem descriptions larger, and their behavior more
difficult to understand.

Implementation of the hash function H, requires the generation of the random
functions A and and B used in its specification (definition 5.1). The lack of a pseudo-
random number generator in M4, plus the difficulty of expressing the sort of bit arith-
metic necessary to generate and check the functions as M4 macros, made M4 an un-
likely candidate for this portion of the task. Instead, random matrices are generated by a
Java applet, that also selects (by enumeration of all possible inputs) an input/output pair
(z,y) that is one-fo-one: H,, is deterministic and 3z’ # = . H,(z') = y. In the process
of selecting this pair, the Java applet collects statistics that show (although no formal
statistical analysis has been performed) that H,, remains reasonably collision-resistant
as IV grows: almost all outputs are produced by either 0, 1, or 2 inputs even for large N.
The outputs of the applet consist of the collision statistics, a SAT formula version of the
hash function used in testing its cryptographic strength, and a collection of M4 macros
implementing the hash function for the testbed. This last is saved for reproducibility of
results across experimental runs.

The structure of the testbed is illustrated in figure 13. In this diagram, solid boxes
represent executable code: the source language is in parentheses. The dashed boxes
represent data. The program/data distinction is somewhat arbitrary for a macro proces-
sor: in this diagram M4 is represented explicitly, and its inputs are shown as data. The

dashed arrows represent invocation; downward dashed arrows with no source indicate
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human invocation. Solid arrows represent data flow. The testbed code is available for
anonymous FTP [33]; it may well be useful in conducting other planning experiments,
as well as providing a way to replicate and extend the results reported here.

All experiments were performed on a 450 MHz Intel Pentium IT based machine
with 256 MB of memory, under the Red Hat Linux operating system version 5.2 (Linux
kernel version 2.0.36). Planners written in the C programming language were compiled
with GCC version 2.7.2.3 at the highest optimization level, while planners written in the
LISP programming language were compiled and executed using Allegro Common Lisp
(ACL) Linux version 5.0, with speed and safety settings recommended by the planner
authors. Times reported were CPU seconds in some cases and real-time seconds in oth-
ers. Differences between these quantities appeared to be negligible in all experiments;
as expected, the planners appeared to be completely CPU-bound.

The general philosophy behind the experiments was to attempt to obtain both a
platform-independent measure of planner performance (some sort of node count) and a
platfoerm-dependent one (time). This was not feasible in all cases: in those cases where
it was, there was good agreement between these measures, as seen below. The graphs in
the next few sections show forward and backward planner performance on a log-linear
scale, where the log scale is base 2. This is appropriate, since the number of operators
in the planning problem roughly doubles for each increase of 2 bits in N. A linear graph
would be expected for a successful planner under these conditions.

Five different experimental instances were generated for each bit size in each di-
rection, and used uniformly across planners. None of these instances appears to be
particularly anomalous, and good agreement was obtained between runs in all cases.

This methodology is perhaps a bit questionable for N = 2: there are only 16 possi-
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ble H, functions in this case, and no effort was made to ensure the distinctness of the

randomly chosen candidates. However, this has not proven to be a problem in practice.

Directionality of ASP

ASP [11] provides a nice introduction to the experimental results of this section,
since its behavior is so straightforward. ASP plans using forward state space search
guided by a goal distance heuristic. It is not complete: it may report failure on soluble
problems if the heuristic is too difficult to calculate using available resources. In spite of
its simple structure, ASP has been shown to be competitive with other modern planners
such as blackbox and Graphplan on standard benchmark problems.

ASP proceeds in two stages: a planner generator stage generates a custom C search
engine from the problem description, and this search engine is compiled and executed
in a second stage to solve the planning problem.

Figure 14 shows the total time to solution (generation, compilation, and execution)
for the forward problems. Note that ASP fails early on the N = 10 problems, due to
its incompleteness. There is most likely a simple change to the resource allocation in
the planning that would allow ASP to solve larger problems, but it was not evident after
superficial study. Figure 15 shows just the execution time for the search engine, while
figure 16 shows roughly the number of nodes searched in execution (actually the number
of hash-table hits for A* search).

Only forward times are shown: ASP is unable to solve the backward problem even
for the N = 2 case! As a verification of the correctness of the problem description, all
irrelevant actions in the backward N = 2 problem were deleted: ASP then found the

expected plan in time comparable to the forward case. Thus the detector gives a clearcut
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determination of forward planning for ASP: this serves as a nice empirical validation of

the experimental technique.

Directionality of O-Plan

O-Plan is entirely a goal-regression planner, without even partial-order features;
such a planner should perform well only on the backward problems. The results of
figures 17 and 18 show that this is indeed the case. The times shown are wall-clock
times for the entire planning process.

Note that O-Plan can solve only the N = 2 instance of the forward problem, while
it is able to successfully negotiate the backward problem of size N = 10. In addition,
note that the perfermance on the backward problem appears to be scaling linearly with

increasing V. (The times reported for N = 2 are spuriously large, due to the 1-second
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granularity of the timer employed.)

The results reported here are for an older, slightly weakened version of the prob-
lem: O-Plan was unable to tractably plan in either direction when constraints were
placed on the order of most actions (definition 4.16). In the actual implementation, only
the nondeterministic input gate actions were ordered. Thus, while the results are plausi-
ble, they must be taken with a grain of salt at this point. It is intriguing that O-Plan and
UCPOQP, both previous-generation backward planners, have such difficulty with these
apparently simple problems.

These experiments were conducted using a 3.1+ version of O-Plan based on the
release of May 15, 1997, but with new code from 1998. Some minor modifications were
necessary to make O-Plan run under Linux ACL, but these modifications, when executed
on a Sun SPARCstation running SunOS 4.1.4, did not appear to in any way affect O-
Plan’s performance. To the best of the author’s understanding, all of these modifications
have been folded back into the release tree. The author thanks Jeff Dalton of AIAI in
Edinburgh for his extensive help and hand-holding in getting this planner integrated into
the system, and Brian Drabble, currently at CIRL but formerly at AIAI for his role in

patiently answering numerous questions and providing the necessary contacts.

Directionality of UCPOP

The results of the directionality test applied to UCPOP are much less satisfying
than the O-Plan results. As argued previously (p. 63) a partial order planner such as
UCPOP, that adds actions to satisfy goal conditions and then regresses them, should
plan tractably backward. Unfortunately, a key feature of UCPOP’s specific planning

algorithm interacts with the construction of the problem to cripple UCPOP’s backward
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performance. As a result, UCPOP actually performs slightly better in the forward than
in the backward direction, although the difference is not believed to be significant: at any
rate, UCPOP cannot solve the N = 6 case, containing 114 operators, in either direction.

This is disappointing, since a great deal of effort has been devoted to producing a
detection problem UCPOP can handle. That attempt has now been largely abandoned,
after understanding a crucial property of UCPOP’s action selection mechanism. Imagine
that there are two outstanding goals at a given point in partial plan construction, f and
g, and two actions are available: action a that has effect {f g}, and action b that has
effect { f —g}. Thus, action a will satisfy both goals. Since the plan under construction
is partially ordered, it is possible that b could be part of a successful plan, but this wil}
require that some action ¢ subsequent to & achieve g. Unfortunately, UCPOP does not
prefer a to b during search; further, it performs no check that any such ¢ exists prior to
inserting b into a partial plan. As a result, there is no way to force UCPOP to compute
H, efficiently. O-Plan solves this problem by preferring « to 6,' which explains its
ability to obtain good results.

Figures 19 and 20 show the only cases UCPOP appears to be capable of solving—
increasing the time and search limits by an order of magnitude did not allow any N = 6
instances to be solved. The bottom line here is that, as explained previously (p. 86,
p. 89), the fact that simple propagation from an arbitrarily selected state will quickly
produce a plan does not mean that arbitrary search space planners can do so. UCPOP is
one that cannot.

These experiments were conducted using UCPOP version 4.1, with parameters

set to the defaults as shipped. The node counts represent the “plans explored” statistic

'Briun Drabble, personal communication, 1998,
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reported by UCPOP. Exploratory experiments not reported here suggest that two other
poputar UCPOP flaw repair strategies, LCFR {26] and ZLIFO [52] (for a comparison of
these strategies, see [47]), do not significantly change this result: neither addresses the
question of action selection heuristics for filling open conditions. As UCPOP is flexible
and modular, it would in principle be possible in principle to encode a custom fiaw
repair strategy that will select the desired open conditions; however, this would require
some effort and would not in any case address the directionality of standard UCPOP

configurations.

Directionality of Graphplan

Graphplan provides an interesting first test of the directional detector technique on
a planner whose directional behavior is not completely understood. Graphplan is typi-
cally described by its creators as a forward planner, but its actual search mechanism is
simple goal regression. The regression, however, is through a graph of actions and states
that has been built up in a previous forward pass. This forward pass eliminates some
states and actions that are impossible from the graph at graph creation time, yielding a
graph consisting of polynomially-sized layers that heavily prunes the backward search
space.

The size of the plan graph in nodes (not to be confused with the search nodes
of figure 23) as a function of N is given by figure 21. The forward and backward
graph sizes appear to grow slightly sub-exponentially, as seen by the slightly sub-linear
growth in the figure. The graphs should be polynomial in size, since the length of
solution is polynomial. This polynomial will be high-order, however: since the length

of the solution and the size of each layer are each O(n?), the graph will be of size
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O(n*) in general. The figure suggests that the forward graph may grow slightly faster
than the backward graph with increasing V. This is to be expected, as the forward plan
graph tries to capture increasingly large one-way functions, whereas the backward graph
cannot capture much information about the one-way portion of the problem.

The overall performance graphs of figures 22 and 23 reflect that, as a search space
planner (definition 4.2), Graphplan is bidirectional. The time performance shown in
figure 22 reflects largely the cost of the graph construction. The plan graph is crucial
in allowing efficient backward search on the forward problems. However, the graph
construction itself begins to be a significant percentage of the total cost on the forward
problems. Note that the search cost in nodes for the forward problems, shown in fig-
ure 23, becomes highly variable as NV increases, most likely indicating the degree to

which the plan graph construction is able to help search on a particular hash function.
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Nonetheless, the overall time cost, including the cost of graph construction, increases in
an orderly and nearly linear fashion. The backward problems are solved in a straight-
forward fashion, resulting in a low search cost that is dominated by the cost of graph
construction.

These results illustrate some of the reasons why Graphplan was so inspiring to
the research community when it was introduced. Its ability to adapt to different sorts of
problems and its ability to handle large problems placed it far beyond any other fully
general-purpose planner.

All experiments were conducted on the latest version of Graphplan (graph-
plan.c dated June 11, 1997) obtained by FTP from the Graphplan home page [8],
using the defaults for all parameters except some of the memory sizes, which were

increased (o allow the larger experiments to be conducted. Minor modifications, not ob-
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FIGURE 23. Graphplan Directional Performance: Search Nodes

served to affect performance, were made to allow imposing a search limit and to improve

error reporting.

Directionality of Blackbox

The blackbox planner is the result of combining two fundamental successful
ideas from recent planning research: the Graphplan approach described above, in which
a graph is constructed to reduce the planning search space, and the “planning as satisfi-
ability” approach of Kautz and Selman, as represented by their SATPLAN planner [28].
In this approach, a planning problem is transformed into a Boolean formula, and fast
modern satisfiability engines are used to find a satisfying assignment for this formula.
In blackbox, Kautz and Selman have found a way to use the plan graph to construct

small, simple Boolean formulae, permitting quick discovery of a satisfying assignment.



Although some recent progress has been made in understanding search in satis-
fiability-based planners [48], it is still a matter of some conjecture how blackbox
achieves its high levels of performance, and on what sorts of problems it will be ef-
fective. An understanding of the directional properties of the blackbox planning al-
gorithm is therefore difficult to derive through understanding its inner workings. The
detection technique described here, being an extrinsic test, is thus especially useful in
answering these questions.

While it operates like Graphplan through the graph construction phase, black-
box offers a choice of solvers to proceed from this point. One possibility is for black-
box to emulate Graphplan to achieve a solution. More typically, blackbox can be
asked to produce a satisfiability problem from the graph, and solve this problem using a
variety of built-in solvers. This work focuses on two of these: the WSAT nonsystematic
SAT engine, and Bayardo and Schrag’s relsat [6] systematic SAT engine. While Kautz
and Selman report good results with the a rapid-restart approach based on Anbulagan
and Li’s SATZ [2] engine, it was found to be highly inefficient in preliminary trials of
both the forward and backward detector problems, and is not further considered here.

All measurements were made on blackbox version 3.2 using default settings,
except for some of the memory sizes and time limits, that were increased to allow the
larger experiments to run. All problems were given using PDDL encodings. Prelimi-
nary versions of these experiments were performed with blackbox version 1.0 in the
Graphplan input format. Except for a slight improvement in speed, better robustness,

and better error reporting, the newer version appears to be similar.
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Blackbox Emulating Graphplan

The ability of blackbox to emulate Graphplan while running on problems en-
coded in a different input language provided a nice check on the experimental method-
ology. The graph sizes and search node counts were identical with those of Graphplan
as depicted in figures 21 and 23, and the execution times, shown in figure 24, were not
significantly different. This provided reassurance both that blackbox faithfully im-
plemented the Graphplan graph generation and that the problem encodings produced

for these planners were functionally identical.

Blackbox Using WSAT

The execution times for blackbox with the WSAT solver, shown in figure 25,

are disappointing. Essentially, these problems appear unsolvable by blackbox using
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WSAT. Perhaps tuning of the many parameters of WSAT would improve performance.
However, experience with simpler problems® suggests that WSAT may be generally

unsuitable for solving planning problems requiring large plans.

Blackbox Using Relsat

The relsat solver [6] is currently far and away the best systematic SAT solver
available, and is competitive with WSAT on most structured problems. The execution
times for blackbox with relsat, shown in figure 26, reflect its superiority on these
instances. Over the measured range of problem sizes, performance of relsat as a search

engine was quite acceptable, although the simple backward search used in Graphplan

2Andrew Parkes, using tools the author helped develop to explore the behavior of WSAT on SAT
encodings of logistics planning problems, has observed that WSAT tends to get stuck in local minima on
planning problems requiring long plans.
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appears to be superior. Note that the graphs show problems only up to N = 8. Beyond
this size, problem encodings were too large to fit in physical memory (approximately
200MB), causing unacceptable swapping during search,

In separating out the component of solution cost due to search, it is apparent that,
if anything, the forward problems are easier for the relsat implementation. The search
time, shown in figure 27, is small, though roughly exponential. The search cost in nodes,
shown in figure 28, is similar. Here, nodes searched is represented by the “variables

valued” statistic of relsat.

Paralle! Plans

The performance of Graphplan and the blackbox variants on the detector prob-

lems is slightly disappointing. These planners generally are quite good at solving prob-
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lems significantly larger than the detector problems. Paradoxically, an important con-
straint in the performance of these planners on these problems is the condition that
actions occur in sequential order. Planners that can construct parallel plans, in which
non-interacting actions may occur simultaneously, can search to greater depth in a given
time, and can construct temporally shorter plans.

The constraints that sequentialize actions in NBCPPs are the do; preconditions
of definitions 4.16 and 4.17. These constraints also prevent a given gate from being
evaluated more than once, though, and thus cannot be simply discarded. Instead, they
can be replaced by constraints that delete the inputs of a gate once the gate has been

evaluated. The following definitions capture this notion.

Definition 5.2 (Negative-Signed Formula)

For any conjunctive formula F' (definition 1.3), the negative-signed formula

F¥ is given by

F={-f*f"|feFlu{ft,~f |~feF}

Definition 5.3 (Paralle]l NBCPP)

For any Boolean circuit C = (V| E), the parallel NBC planning problem
((F,A),I,G) is constructed as follows: Define the fluents of the problem
by F' = V*(C). Define the initial state of the problem by J = in*(C), and

the goal state of the problem by G = out*(C).

Given conjunctive formulae o and 3, let the action a,g4 that requires o and



produces 3 be defined by

as

ﬁs a.";

Then given a gate v with truth table T}, and an input & € dom(T,,), the set

Qag =

of actions A, (v) associated with input «v is

Aa(v) = {aag | § € Tu(a)}

Then the set of actions A for the entire domain is just the set of actions for

all inputs of all gates.

A= U Aav)

veV, aedom{Ty}

Definition 5.4 (Paralle]l Reverse NBCPP)

The parallel reverse NBC planning problem associated with a circuit C is
constructed by reversing the initial and goal states and the actions of the
parallel NBCPP for C. Given definition 5.3, define instead the initial state
of the problem by I = out®*(C) (see definition 3.2), and the goal state of the

problem by G = in®(C).

Given conjunctive formulae « and 3, let the action a,4 be defined by

[j L

o’ ﬁ?

apg =

Then given a gate v with truth table T;,, and an input « € dom(T,,), the set
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of actions A,(v) associated with input o is

Aa(v) = {aap | B € To(a)}

Then the set of actions A for the entire domain is just the set of actions for

all inputs of all gates.

A= U A

pel, aedom(T,)
O

The proof of correctness is similar to lemma 4.2. Only the proof for the forward

problem of definition 5.3 will be given here: the proof for definition 5.4 is similar.

Lemma 5.1 (NBC Evaluation Parallel Planning)

Given a NBC C and the corresponding paraliel NBCPP P(C), a plan p
solving P(C) exists if and only if C' computes the given outputs from the
given inputs. Further, if any p exists, there exists a p such that |p| = |C]

(the length of the plan is the same as the number of gates in the circuit).

PROOF: By dual implication.

Circuit solution = plan existence:

Consider the input values o and output values 3 at any gate v € C, and the
corresponding set of actions A,(v) (definition 4.16). By construction, there
must be an action a,g € A,(v) (and therefore « € A) with preconditions

a* and effects 4° U a®. Thus, a plan can be constructed as follows: Take



[17

any topological sort vy, vs, ... , v, of the vertices of C, and begin with the
empty plan pg. Now, for each vertex »; of C in turn, append action a(v;) to
pi—1 to obtain p;. Since each of the inputs of each vertex »; must be drawn
only from the outputs of earlier vertices vy, t,... , v;—3, the input fluent
values o of a,g(v;) are fixed. Thus, the action with output 5 can be chosen.
Finally, by our earlier observation, the plan will produce the required goal

state fluents, so p is valid, and |p| = |V|.

Plan existence == circuit solution:

Consider the preconditions and effects of any action a.g(v) in p. By defini-
tion, a corresponding gate v is in C, and given input & can produce output 5.
Thus, the circuit can be evaluated as follows: The last action a,, = a,z(v)
of p must produce only goal conditions, and must correspond to the appro-
priate evaluation of gate v, of C'. Set the inputs and outputs of v, according
to o and 3. Now, consider each action a5 producing a precondition of a,,.
Each must correspond to a gate v whose output is an input of u,. Set the
inputs of v to ¢, and its outputs to 4. Continue until all values of all gates
of C have been set. This must happen, since the fluents of P have been
uniquely labeled according to the signals of C'. Thus, the evaluation of C is

correct. (]

Note that there may exist many plans corresponding to a given circuit evaluation, corre-
sponding to different topological sorts of the circuit,
These parallel planning problems have been implemented for the planning sys-

tems described previously: the results are quite consistent with those of the previous
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FIGURE 29. Parallel Graphplan Directional Performance: Graph Nodes

section, but the ability to experiment with larger problem sizes provides a nice confir-

mation of the data,

Graphplan

The expected polynomial for the graph size is now O(n?), since the expected
length of a plan is now O(n). Indeed, the sub-linearity of figure 29 is more pronounced
than in the sequential case. Overall, the graphs are similar in character to the sequential
case. In figure 30, and especially in figure 31, the variability on the forward problems
increases rapidly with increasing N. Finally, note the impressive size of the problems
solved: when N = 14, these problems have 706 operators.

The performance of blackbox emulating Graphplan is nearly identical, and is

not shown here.
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Blackbox Using WSAT

The parallel problems enable evaluation of blackbox with the WSAT solver, by
reducing the encodings to manageable size. The running times, shown in figure 32, are
interesting: they are similar in character to the Graphplan results, but with somewhat
worse absolute performance. In particular, solving the larger forward detector problems
with WSAT appears to result both in longer run times and in higher variance in the
runtime. While the latter resuit was expected, the former is surprising, inasmuch as
satisfiability-based solvers such SATPLAN and Medic using WSAT have been reported
to be competitive with Graphplan on a variety of problems.

Figure 33 shows the time consumed by WSAT for the solved instances. Figure 34
shows the WSAT flip count, effectively the number of search nodes to WSAT solution,

While the forward and backward plots are similar, and the variances in both directions
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FIGURE 33. Parallel Blackbox/WSAT Directional Performance: WSAT Time

are high, there is still a noticeable backward bias to the search. The author speculates
that this may be the result of bias in the satisfiability encoding used by blackbox.
This encoding was inspired partly by a study of Graphplan, and might perhaps be ex-
pected to be reverse biased. It is also possible that the underlying axioms used in the
encoding are directionally biased, although this would be more surprising. In any case
blackbox/WSAT appears t.o behave as a bidirectional planner with a slight backward

bias.

Blackbox Using Relsat

The execution times for blackbox with relsat on the parallel problems, shown in
figure 35, are quite impressive. By comparison with the WSAT times of figure 32, these

times are again similar in character: the times are much shorter, however, and show little
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variance.

The search time, shown in figure 36, is extremely small, though roughly expo-
nential once it grows large enough to measure. The behavior in nodes searched, shown
in figure 37, is interesting. Here, nodes searched is represented by the “variables val-
ued” statistic of relsat: in all of the forward N = 8,10, 12 cases tried, all variables of

the problem were valued once. This indicates the ease with which relsat solves these

problems.

Overall Results

The experimental results of this chapter can be summarized as follows:

I. ASP is a forward planner. This is not a surprising conclusion, but does provide a

validation of the methodology.
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2. O-Plan appears to be a backward planner.

3. UCPOP is too inefficient to allow conclusions to be drawn about its directionality

using this methodology.
4. Graphplan is a bidirectional planner.

5. Blackbox has directional characteristics similar to those of Graphplan, although

the SAT solvers themselves vary slightly in both performance and directionality.
Chapter IV began with three questions:
1. How should the directionality of a planning algorithm be defined?

2. How can the directionality of a planning algorithm as defined in question (1) be

deternined?
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3. How does the directionality test of question (2) work out in practice?

The answer to question (1) was given by a reasonable formal definition of search based
planning. The answer to question (2) was given by a theoretically sound extrinsic tech-
nique for determining planner directionality. In this chapter, the answer to question (3)
was given by a series of planner directionality experiments, permitting some insight into

the operation of poorly understood modern planners.



126

CHAPTER VI

DIRECTIONS IN PLANNING

The necessary ingredient in achieving the results of Chapters III-V is the discov-
ery of a reencoding of a problem as a PROPS problem. In chapter III, a reversed problem
is compiled from a somewhat richer language into a PROPS problem. In chapter IV, a
one-way hash function is encoded as a PROPS problem.

In this chapter, some issues related to these reencodings are discussed, with ref-
erence to their bearing on planning directionality. This leads naturally to a discussion
of the expressive power of STRIPS, and its bearing on directionality. The chapter con-
cludes with a discussion of the impact of this work on existing planning algorithms, and

some general conclusions.

“Don’t Know” and “"Den’t Care” in PROPS Actions

The compilation schemes given in chapter III are sufficient for the purposes of the
reversal algorithm. However, the notion of DC effect presented there (pp. 45—46) can be
generalized in a natural fashion. The resulting language is perhaps more satisfying from
an intellectual point of view; its extra expressiveness is of a sort that may prove to be

more useful than standard PROPS for encoding real world problems.
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Unrestricted DC Effects

In chapter III, the notion of a “Don’t Care” or DC effect was described, in the
context of a compilation scheme Cj taking a PROPS variant containing DC effects to an
isomorphic problem in standard PROPS. A DC effect is an effect that can satisfy either
positive or negative preconditions of an action: a sort of wild-card effect.

DC effects were implemented in the compilation scheme Cj as a pair of effects
setting both the positively and negatively signed fluents while reencoding the problem
into one with only positive preconditions. The DC effects were restricted to occur in
actions only for fluents that were mentioned as a precondition of the action.

The reason for the restriction, not discussed in chapter III, is that this is all that
is necessary for the reversal. In the reversal rules (figure 3), a DC effect appears in a
reversed problem only where a fluent was mentioned in the effects of an action in the
original problem. Thus, the only reason to generalize to unrestricted DC effects is to
permit explicit DC effects in problem encodings. As will be seen shortly, this approach

has its own features and pitfalls.

DC Effects and the Initial State

It would seem natural that explicit DC effects be allowed in the initial state of
problem descriptions. The discussion of the reversal of problems with partial goal states
(chapter I, pp. 52-53) explicitly describes how to compile out DC effects in the initial
conditions through a simple extension to Cj, since this is necessary to handle the initial
states obtained by reversing problems with partial goal states using C,.

Allowing DC effects to be explicitly given in the initial conditions when encoding

problems in PROPS has several advantages. For one thing, the initial state is often
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treated in the literature as the effect of an initial action, for the purpose of simplifying
proofs: if DC action effects are permitted, then DC initial conditions should be as well.

More importantly, explicit DC initial conditions would allow easy expression of
the notion that, for a particular problem, actions in the domain should be unrestricted
by some of the initial conditions. This is a notion that is sometimes useful in real-world
problems.

Consider, for example, a problem domain that has some actions that are executable
only on even days, and some that are executable only on odd days. One obvious PROPS
encoding D, has two fluents, odd-day and even-day, one of which would normally be set
in the initial conditions. Another obvious encoding D, involves only an odd-day fluent,
that is set either true or false initially. Neither of these domain encodings, however,
make it convenient to pose the planning problem “find a plan for this problem, for any
particular day.” If both fluents are set true in the initial state of the problem using the D,
encoding, odd-day and even-day actions may be mixed in the resulting plan. Things are
even worse for the D, encoding: there is no obvious way to express the problem at all.

In the D; encoding, an action can be added to the domain that can only be executed
once and has the effect of making the day either odd or even. This is uncomfortable,
both because it seems inelegant to modify the domain in order to handle a particular
problem, and because many planners fail to scale well as additional actions are added
to domains. In the [J; encoding, it appears that the best that can be done is to pose
two planning problems, one in which the actions for odd days are enabled, and one in
which the actions for even days are. Unfortunately, if there are many such fluents to be
considered, this leads to a combinatorial explosion.

Fortunately, a problem encoding based on Dy, with an initial DC value for the flu-
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ent odd-day, allows the desired problem to be posed directly. Because of the treatment
of DC values described in chapter III, a plan for this problem may contain odd-day ac-
tions, or ~odd-day actions, but never both. This notion is intuitively reasonable, simple
to implement (through compilation using Cs), and still permits problem reversal using
Cr.

Note that DC initial conditions and actions with DC effects are different than the
anomalous actions due to ambiguity in the situational calculus described by Manna and
Waldinger [32]. They note that plans expressed in a standard formulation of the situation
calculus permit actions which are not executable in the real world.

For example, consider {a problem in which] a monkey is presented with

two boxes and is informed that one box contains a banana and the other a

bomb, but is not told which. His goal is to get the banana, but if he goes
anywhere near the bomb it will explode. As stated, the problem should have

no solution.

Manna and Waldinger go on to point out that theorem proving in the standard situational
calculus yields a plan in which the monkey takes an action roughly equivalent to “go to
the box such that it would get the banana if it went there.”

This sort of non-executable action seems to indicate a problem with the standard
situational calculus (for which Manna and Waldinger suggest a solution). However,
DC initial conditions and effects are of a different nature: they are still deterministic
and require known preconditions. Indeed, since DC initial conditions and effects are
expressible in PROPS, they add no real (i.e. logical) power to planning. Thus, the sort

of problem described by Manna and Waldinger never arises in this context.
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Explicit DC Action Effects

Having admitted the notion of explicit DC values in the initial state, the next
logical question is whether to permit explicit DC values in operator effects (that is, DC
effects given directly in the problem encoding, rather than as a result of reversal as in

chapter III). Three questions that must be addressed are:
1. How would explicit DC effect semantics be useful in real-world encodings?

2. How would explicit DC effect semantics be implemented using traditional plan-

ners?
3. Are domains or problems containing explicit DC effects reversible?

In considering question (1), it is difficult to think of situations in which an effect of
an action should be to make a fluent “true or false, whichever is needed.” As explained
above, this does not include the sort of nondeterminism that allows actions such as
“dump the water into the hole with the fire, even though I'm not sure which hole that
is,” as this sort of action is not expressible in PROPS even using DC effects. Generally,
an action effect is encoded into a domain description either because the effect is useful,
or because it is unavoidable (a side-effect). In either case, the effect is almost invariably
specific, either setting or clearing a fluent. Thus, there is little motivation to introduce
explicit DC action effects into domain encodings.

As to question (2), it is easy to see how to extend compilation scheme Cj to handle

unrestricted explicit DC action effects: the compilation scheme C.; for unrestricted DC
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FIGURE 38. Reversal Rules for Restricted DC Effects

effects consists of all the rules of C5 plus the compilation rule

T

Finally, the answer to question (3) points up a real problem with unrestricted DC
effects. The reversal rules of figure 3 are written as unidirectional rules, (o simplify the
presentation. It is notable that the first four rules are manifestly symmetric: they can
be read from right to left, with rules 3.9 and 3.10 remaining the same, and rules 3.11
and 3.12 interchanged. Rules 3.13 and 3.14 are more problematic, but an inspection of
the proof of correctness of Cy shows that these rules may be read from right to left as
well, giving two new rules shown in figure 38.

The rules of figure 38 cover the case of reversal of explicit restricted DC effects,
but the unrestricted case is more problematic. The obvious approach is by analogy with

rule 6.15: Delete the fluent f from this rule, yielding the rule
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Unfortunately, this rule can be easily seen to be incomplete, by considering a problem

with initial state { f}, goal state {—f}, and sole operator

*f

The single-action plan is then legal in the forward domain, but its reversal is illegal in
the reversed domain. (One might suspect trouble in any case, since reading this rule

right-to-left yields the rule

which is obviously nonsensical.)

An operator containing an unrestricted DC effect can be reversed, but the author is
currently unaware of a better procedure for doing so than simply removing unrestricted
DC effects before reversal by compiling them out using C.3. Thus, the reversal of a plan-
ning problem P containing unrestricted DC effects is given by P, = C3(C,(C.3(P))).
This seems inelegant, to say the least.

All in all, it appears that explicit unrestricted DC action effects are both of mar-
ginal utility and unpleasant to deal with, and should probably be avoided in problem
encodings. The case against restricied DC effects is less clear, and will be considered

again below.

“Don’t Know™ Effects

A “Don’t Know” or DK effect is the complement of the DC effect discussed pre-
viously. Instead of representing a non-deterministic value that satisfies both true and

false preconditions on a fluent, a DK effect represents an unknown value that satisfies
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FIGURE 39. Scheme Cy: Extending C; to 4-Valued Logic

neither true nor false preconditions on a fluent. Thus, the only actions that can follow a
DK effect on a fluent f are those that have no preconditions involving f. DK effect on
f will be represented as 7f. The extension of the Cy compilation rules to a four-valued
logic that handles DK effects ?f is straightforward, and is given in figure 39.

DK effects are especially useful as components of the initial state. A fluent f that
in the initial state has both —f% and —f~ represents a piece of unknown information
about the initial state: a plan cannot execute actions conditional on f until it has set f
either true or false (and thus set either f* or f~). Note that DK values cannot usefully
appear in the goal state unless DK action effects are present: there is no way for a
combination of non-DK-effect operators to achieve a DK effect on a fluent.

DK action effects are also useful, in expressing effects representing loss 6f know!-
edge about a fluent’s state. Thus, if a fluent f represents whether a coin is showing
heads or tails, an effect ?f might correspond to flipping the coin. This is a qualita-
tive approximation to real loss of knowledge: a STRIPS planner cannot conclude, for

example, that a robust plan that contains separate actions for heads and tails flips will
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succeed. Indeed, STRIPS is not expressive enough to describe this notion in any case.
But a STRIPS planner using the DK effect representation can conclude that a plan that
follows the coin flip by setting the coin to a known state will succeed. Introspectively,
this seems acceptable, and it is again safe: plans containing actions with DK effects are
executable.

The reversal of actions containing unrestricted DK effects, like unrestricted DC
effects, is problematic. Again, compiling out the DK effects before reversal works; it is
still ugly. All in all, as with DC effects, explicit DK initial conditions seem lo be clearly
desirable, explicit restricted DK action effects tolerable, and explicit unrestricted DK

action effects problematic.

DC and DK Conditions

Given the treatment of explicit DC and DK operator effects, and explicit DC and
DK values in the initial state, the next obvious question is the use of explicit DC and DK
values in operator conditions, and in the goal state. The first question is a simple one:
What meaning should be assigned to the symbols «f and ?f in operator conditions and
goal conditions?

The obvious choice is to make them explicit tests for DC and DK effects. Thus,
an action precondition *f could only be satisfied by an *f effect, and similarly for ?f.
This can be easily implemented in the compilation, by simply compiling DC and DK
conditions to the same fluent combinations as the corresponding effects. There are,
however, several objections to this choice of semantics. First, this semantics is not
obviously useful in encoding real-world domains. Second, the representation of explicit

DK conditions induces negative preconditions in the compiled domain (although this is



135

not a major problem). Finally, reversal becomes more complicated and difficult than
ever: it appears that compiling out the conditions before reversal is the only hope of
reversing a domain with these conditions.

A more attractive semantics is suggested by inspection of the reversal rules of fig-
ures 3 and 38. Note that the DC effects in rules 6.15 and 6.16 correspond to completely
absent preconditions. Perhaps the right way to proceed is to assign a condition *f the
meaning “no condition at all on f,” and thus substituting blank conditions in the various
compilation rules with %f conditions.

By making this substitution in the various compilation schemes discussed previ-

ously, such as Cs, C, and C,, several advantages are realized.

1. Notationally, things become much clearer; every fluent mentioned in an action is

mentioned in both the preconditions and the effects.

2. The semantics make intuitive sense: just as a DC action effect *f means that
subsequent actions “Don’t Care™ about the value of f, a DC action condition *f

means that the action “Doesn’t Care™ about the value of f provided by previous

actions.

3. The semantics of DC goal conditions are as expected: the expansion of a partial
goal state to a total goal state using the expand operator of definition 3.4 does not

change its correctness. (Indeed, the expansion is deleted by compilation.)

The reversal rules can finally be summarized in the natural fashion: to reverse an op-
erator, switch its preconditions and effects, where the preconditions and effects have
been normalized to the appropriate form. Without the normalization, as was noted in

chapter III (pp. 35-37), this technique is almost but not quite correct.
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What meaning, then, should be assigned to restricted explicit DK preconditions?
Arguably, the right semantics is given by compiling 7f in preconditions to f* f~. This

has the same attractive properties as the DC case above.

1. The semantics make intuitive sense: a DK precondition ?f cannot be satisfied if

the fluent f is known to be true (and thus —f ™) or false (and thus —f ).

2. DK conditions naturally translate nicely: a DK condition must be satisfied by a

DC effect. This gives a satisfying meaning to DK goal conditions.

3. The reversal rules involving DK effects are as expected. Reversal of actions in-
volving restricted DK effects is by swapping the effects and preconditions. Re-

versal of the initial and goal conditions of a problem is by interchange.

This last item requires a proof. At this point, it is sensible to summarize the extended
reversal rules, given by the compilation scheme C,, of figure 40, and to sketch a proof

of correctness for Co,,.

Proposition 6.1

C., 15 correct,
PROOF:

Essentially, the structure of this proof is the same as that of the proof of
proposition 3.1, except that the tables need be extended to handle the new
reversal rules. Tables 6 and 7 show the legal pairs for the source and com-

piled problems.
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(6.26)

(6.27)

(6.28)

{6.29)

(6.30)

(6.31)

FIGURE 40. Scheme C4,,: Full Reversal Rules

TABLE 6. Possible ag, a; Pairs for Cr.r

o

a; |

6.20
6.21
6.22
6.23
6.24
6.25
6.26
6.27
6.28
6.29
6.30
6.31

6.20, 6.22, 6.24, 6.25, 6.26, 6.30
6.21, 6.23, 6.24,6.25,6.27, 6.31
6.21, 6.23, 6.24, 6.25, 6.27, 631

6.20, 6.22, 6.24, 6.25, 6.26, 6.30
6.20, 6.22, 6.24, 6.25, 6.26, 6.30
6.21, 6.23, 6.24, 6.25, 6.27, 6.31
6.20-6.31
6.20-6.31
6.20, 6.22, 6.24, 6.25, 6.26, 6.30
6.21,6.23,6.24,6.25,6.27,6.31
6.24, 6.25
6.24, 6.25
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FIGURE 41. Bidirectional Planning Problem

Thus, the notion of restricted DC and DK effects and conditions, properly imple-

mented, provides an expressive, easily implemented, and reversible planning language.

Composing One-Way Planning Problems

In chapter IV, a construction was given for a directional planning problem (fig-
ures [0 and 11), The purpose there was to decide the directionality of existing planners.
There are other interesting implications of the existence of directional planning prob-
lems, as a result of the fact that one-way problems can be concatenated by concatenating
their circuits. |

Consider the planning problem of figure 41. In this diagram, the boxes with ar-
rows represent one-way planning problems of the type described in chapter [V. The
interesting thing about this problem is that neither a forward search space planner nor a
backward search space planner can solve it efficiently: to do so, the planner would have
to traverse half the problem in the wrong direction.

Bidirectional planning is required to solve the problem of figure 41. The solution,
once obtained, will be a polynomial-length plan. A bidirectional planner can solve the
problem in polynomial time. Together, these facts suggest that a bidirectional search
space planner is strictly more powerful, in principle, than a unidirectional one.

In practice, the situation is less clear. As discussed in chapter II, humans might
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FIGURE 42. Island Planning Problem

always encode planning problems in a unidirectional fashion, presumably by breaking
them up into unidirectional pieces. It is hard to see how this is possible in most cases,
however: the author suspects that large planning problems often have a bidirectional
quality. Certainly problems in many simple domains, such as the Blocks World, Rubik’s
Cube, or the Towers of Hanoi, are manifestly reversible, but difficult to solve. (This does
not mean that bidirectional planning will help in these domains, since the problems may
be intractable no matter how they are tackled. This is surely true for the optimal Blocks
World, where important intractability results have been proven [25, 53].)

One can append one-way planning problem circuits in the opposite direction, as
shown in figure 42, creating a problem that is not tractable for either a forward or a
backward search space planner. Note, however, that a correct nondeterministic guess of
the necessary intermediate state can break the planning problem into two halves, each
of which is tractable for a directional planner.

Ginsberg [21, p. 297] refers to this intermediate state as an “island”, and argues
that automatic discovery of islands is the correct way to perform hierarchical planning.
Indeed, the problem of figure 42 has been shown to be intractable only for search-space
planners: it may well be that some other kind of planner could solve this problem easily
(although the author would find this surprising). One can create problems with arbi-

trarily many such islands: it is daunting to imagine that hard real world problems could

have this sort of structure.
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Tractability of Circuit-Based Planning

In chapter IV, much use was made of the fact that Nondeterministic Boolean Cir-
cuits (NBCs) have a natural representation in planning operators, and that planning prob-
lems can thus be constructed whose solution corresponds 10 NBC evaluation. The circuit
classes considered in that chapter are all uniform {501 fora given Boolean function, a
circuit computing that function on n inputs can be constructed in time polynomial in 7t
by a deterministic Turing machine.

Interestingly, the restriction to uniform circuits for planning problems appears 10
be arbitrary. Ina non-uniform class of Boolean circuits, the circuit for each input size
may be constructed in an arbitrary fashion. As a result, non-uniform Boolean circuits
can recognize languages that are not recognizable by 2 Turing machine [50]. However,
restricting non-uniform circuits to be of size polynomial in the size of their inputs allows
themn to recognize languages in the class P/ poly. This is a larger class of languages than
P (although presumably smaller than N P: if NP C P/poly, the polynomial hierarchy
collapses to the second level [12, 531).

A given Boolean circuit can be transformed into a planning problem in polyno-
mial time by the construction of definition 4,16, producing 2 planning problem of size
polynomial in the size of the circuit. Thus, it is reasonable to define classes of non-
uniform planning problems, whose time to solution is polynomial only when a2 polyno-
mial amount of advice.

How is all of this relevant? It places a lower bound on the complexity of PROPS
planning. Fora polynomially-sized domain, even the restriction that an action be used
at most once leaves planning in a complexity class believed to be harder than P. This

Jjower bound can be improved by noting that definition 4.16 and lemma 4.2 apply not just
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to ordinary Boolean gates, but to NBC gates. An interesting reformulation of an NBC
gate is given by adding auxiliary inputs to the gate, such that the auxiliary inputs together
with the normal inputs make the gate deterministic. It is thus clear that, given the correct
nondeterministic guess for the auxiliary inputs of all gates in an NBC, the Boolean
circuit can be evaluated in polytime. Just as non-uniform Boolean circuits can recognize
languages in P/poly, it can be shown (though it is not proven here: see Balcizar, Diaz,
and Gabarrd [4, exercise 19, p.127] for an introduction) that circuits with gates of this
form can recognize languages in NP/poly, where P/poly C NP/poly. Thus, the
translation of NBC evaluation to planning implies that the complexity of planning can

be larger than one might expect even in simple cases.

Summary: Expressiveness and Directionality of STRIPS

In this chapter, three different extensions of previous work have been considered.
All three appear to point to similar conclusions. PROPS planning appears to be espe-
cially expressive. The ability to express DC and DK conditions and effects using C
shows that PROPS is able to express somewhat sophisticated concepts such as hidden
knowledge and nondeterminism. The translation of NBC evaluation into PROPS plan-
ning also points up this expressiveness, as well as illustrating its concomitant danger:
the implied intractability of even restricted forms of PROPS on general problems. The
composition of one-way functions illustrates this danger as well, by showing that simple
problem structures may have profound effects on directionality.

The reversibility of Ch,,, the reverse construction of NBCPPs, and the symmetric
composition of operators to produce bidirectional and island planning problems all argue

that the complexity of STRIPS does not arise merely from the persistence of STRIPS
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Auents. Apparently, bidirectional planning is also hard. It appears that a mere choice of
planning direction is not sufficient to solve the STRIPS tractability problem in general.
Either a more tractable formalism or a better understanding of real world problems will

be needed to make STRIPS planning tractable.

Review

At the beginning of chapter I, some fundamental claims were made about direc-

tionality in planning.

I. Successful planners must at least be capable of both forward chaining and back-

ward chaining behavior.

2, Understanding directionality issues in planning is a necessary precursor to the

construction of efficient planners.

This section summarizes the material of previous chapters, highlights the underlying
themes of the work, discusses future work and its impact upon the claims above, and
draws some conclusions about the role of search direction in planning.

As discussed in chapter I, there has been much speculation as to the relative merits
of forward and backward search in planning. The work reported here replaces some
of this speculation with concrete results. The discussion of chapter II examines the
relationship between planning algorithms, planning problems, and STRIPS encodings.
Chapters Il and IV put these principles into practice, by illustrating important properties
of directional domains.

The construction of chapter III for reversing a domain is an interesting one: among
other things, it shows that directionality is a property of planning problem encodings,

not a property of STRIPS itself. The construction aiso shows that directionality is not
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a property arising from the shape of particular operators (since all the operators can be
reversed) but from the shape of planning problems as a whole.

The construction of chapter IV expands on this theme, by showing that particular
planning problem encodings have the property that they can be tractably solved only in
one direction. Interestingly, it is again global properties of the problem, rather than any
special characteristics of the operators themselves, that induce this directional asymme-
try. Indeed, the construction is built on the encoding of NBCs as planning problems, a
construction that by its nature consists of simple operators.

Chapter V builds on this construction, implementing it in a general way and ex-
ploring the directionality of a variety of planners. One interesting result from these
experiments is that the latest generation of planners, including Graphplan, SATplan,
and blackbox, are largely nondirectional. The jury is still out as to whether direc-
tional planners can equal the performance of nondirectional ones on most encodings of
real world problems (after all, ASP, a forward planner, performs well both on real world
problems and on artificial forward one-way problems). However, these experiments pro-
vide a good example of problem domains in which directional planners exhibit vastly
inferior performance, and the experiments provide no evidence that nondirectionality
hurts the performance of planners.

In chapter VI, the themes of the preceding chapters are amplified by an examina-
tion of some extensions of the work. An extension of the reversal schema of chapter II1
exhibits a proper superset of standard PROPS that is both expressive and reversible. A
discussion of the composition of the one-way problems of chapter IV highlights the
ways in which global properties of problems contribute to interesting constraints on

search direction. Finally, a discussion of the computation complexity of NBC plan-
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ning points up the expressiveness and consequent potential intractability of even simple

PROPS problems.

Future Work
Several immediate extensions of this work seem promising.

1. The PROPS planning language of Chapters Il and VI should be implemented as
a preprocessor for existing planners, and its expressiveness and tractability evalu-

ated against encodings of real world problems.

2. As planners become more powerful, the hash function H,, of chapter V should be
replaced in the detector by a one-way function considered secure by the general
cryptographic community. Recent work in cryptography for “smart cards” and
similar tiny computing environments should be helpful here, by providing strong

one-way functions that are evaluable with minimal computational resources.

3. The results of Chapters ITI-VI should be applied to the construction of planning
algorithms using high-speed bidirectional or nondirectional search. It is likely that
nondirectional state space search, if properly conceived and implemented, can be

the basis of an efficient planning algorithm.

The results of this work also suggest that more attention should be paid to the
construction of planning domain description languages. What is needed are languages
that are more tractable than STRIPS, but still expressive enough to describe real-world
problems. While the intractability of STRIPS has long been understood, it nonetheless
seems that much of the work on planning has been designed to increase ils expres-

siveness, usually at the expense of tractability. The constructions of previous chapters
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indicate that this sacrifice may not be necessary: many interesting real-world concepts
can be expressed indirectly using the simple PROPS formalism.

Resource-bounded scheduling and enterprise planning are less expressive for-
malisms that appear to be more tractable than STRIPS, while still being able to encode
large classes of real planning problems. It is unclear whether formalisms intermediate
in expressive power and tractability between scheduling and STRIPS can be developed,
but it definitely seems worth further exploration. Given such a formalism, the compila-
tion of STRIPS to it would be one of the first challenges. This work suggests that the
desired formalism need not have an implicit notion of persistence: this directionality

result may be useful in its development.

Conclusions

A poor choice of direction can doom a STRIPS planner on particular problems;
nonetheless, neither bidirectionality nor the ability to choose an appropriate direction
makes planning easy. Rather than argue the advantages of backward planning (as the
advocates of POCL planning have) or forward planning (as the advocates of languages
even more expressive and potentially intractable than STRIPS have), this work pro-
vides a strong argument that the concentration of effort should be on finding planning
languages and algorithms that are bidirectional, and which make real world problems

tractable,



TABLE 7. Possible ag, a; Pairs for Cv.,

dy

6.20, 6.23, 6.24, 6.26, 6.27, 6.28
6.21, 6.22, 6.25, 6.26, 6.27, 6.29
6.20, 6.23, 6.24, 6.26, 6.27, 6.28
6.21, 6.22, 6.25, 6.26, 6.27, 6.29
6.20-6.31
6.20-6.31
6.20, 6.23, 6.24, 6.26, 6.27, 6.28
6.21, 6.22, 6.25, 6.26, 6.27, 6.29
6.26, 6.27
6.26, 6.27
6.20, 6.23, 6.24, 6.26, 6.27, 6.28
6.21, 6.22, 6.25, 6.26, 6.27, 6.29
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