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There are several powerful solvers for satisfiability (SAT), such as wsAT, Davis-
Putnam, and RELSAT. However, in practice, the SAT encodings often have so many
clauses that we exceed physical memory resources on attempting to solve them. This
excessive size often arises because conversion to SAT, from a more natural encoding
using quantifications over domains, requires expanding quantifiers.

This suggests that we should “lift” successful SAT solvers. That is, adapt
the solvers to use quantified clauses instead of ground clauses. However, it was
generally believed that such lifted solvers would be impractical: Partially, because
of the overhead of handling the predicates and quantifiers, and partially because
lifting would not allow essential indexing and caching schemes.

Here we show that, to the contrary, it is not only practical to handle quan-
tified clauses directly, but that lifting can give exponential savings. We do this by

identifying certain tasks that are central to the implementation of a SAT solver.



These tasks involve the extraction of information from the set of clauses (such as
finding the set of unsatisfied clauses in the case of wsSAT) and consume most of the
running time. We demonstrate that these tasks are NP-hard with respect to their
relevant size measure. Hence, they are themselves search problems, and so we call
them “subsearch problems”.

Ground SAT solvers effectively solve these subsearch problems by naive enu-
meration of the search space. In contrast, a lifted solver can solve them using
intelligent search methods. Consequently, lifting a solver will generally allow an ex-
ponential reduction in the cost of subsearch and so increase the speed of the search
engine itself.

Experimental results are given for a lifted version of wsaT. We only use very
simple backtracking for the subsearch, but we still find that cost savings in the
subsearch can more than offset the overheads from lifting. The reduction in size of
the formulas also allows us to solve problems that are too large for ground wsar.

In summary, a lifted SAT solver not only uses far less memory than a ground

solver, but it can also run faster.
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CHAPTER 1

INTRODUCTION

Propositional satisfiability (SAT) is the problem of determining whether or
not there are satisfying assignments of a set of boolean clauses and is NP-complete
[8, 22]. The NP-completeness, and the fact that it is a logical language, means
that it is possible, and fairly natural, to express many combinatorial problems in
SAT. Problems in circuit verification, scheduling, planning, and many other areas,
have all been treated as SAT problems.

Not surprisingly, there has been a lot of work on finding practical algorithms
for solving SAT. There are powerful systematic solvers based on the classical Davis-
Putnam (DP) procedure [14, 15] but incorporating new heuristics, intelligent back-
tracking, and learning mechanisms. Recent examples are POSIT|{21], NTAB [13],
SATZ [42] and RELSAT [2]. There are also non-systematic algorithms based on lo-
cal search: Some examples are the “Breakout” method of Morris [49], GSAT [66, 68]
and WSAT [67].

A major problem with using such solvers is that encoding natural problems
into SAT results in very large formulas. We will see examples in which the initial
problem is of modest size but the encoding into a SAT problem gives formulas with
many millions of clauses. With problems of such a large size it can be impractical
to use existing SAT solvers because of a lack of physical memory.

A reason for this excessive size of SAT encodings is that propositional logic



does not have quantifiers. Many problems are most naturally expressed using a
subset of first-order logic that includes quantification over elements within the
domain. For example, it is natural to want to be able to express constraints using

“quantified clauses,” such as

Vi, g k. 2 q(i g} Vor(s,k) (1.1)

However, converting to SAT (grounding) means expanding such quantifiers. The
resulting increase in size is exponential in the number of quantifiers.

This drawback suggests “lifting” successful SAT solvers: that is, adapting
the solvers to use such quantified clauses. A lifted solver should be able to use
such clauses directly, instead of having to first convert them into much larger
boolean formulas. As a question of terminology we remark that the term “lifting”
is somewhat overloaded within the search literature as a whole. Here, we use
“lifted” to mean a solver that is based on propositional methods, but that can also
handle expressions involving quantifiers.

Although such lifted solvers would solve the problem of excessive memory
usage, it was generally believed they would be too slow to be practical. One
reason for this belief is that the lifted solver has the overheads of handling the
predicates and quantifiers. Another concern was that lifting would not allow the
various indexing and caching schemes that are essential to the speed of a ground
SAT solver.

Here we give evidence that, to the contrary, it is practical to handle quantified

clauses directly. In fact we show a stronger result. We will see that lifting a solver



can lead to exponential savings (in both time and space) that are not available to
the ground SAT equivalent.! A lifted solver can not only be competitive with a
ground solver, but can even be faster (as well as using far less memory).

The core of our approach to successfully lifting a SAT solver lies in the
observation that solvers spend most of their time in the collection and maintenance
of information about sets of clauses. Relevant sets of clauses might consist of “those
containing a literal [” or “binary clauses”. The information might be quantities
such as “the number of clauses that currently contain one true literal”. In fact,
such “information collection” tasks typically dominate the runtime, but their very
mundaneness means they are often ignored in the literature (though when coding
it is crucial to implement them efficiently). We will call such tasks “subsearch
problems”.

The approach we take to lifting is to identify and isolate these subsearch

problems. Lifting a solver is converted into a two stage process:

1. Reformulate the SAT solver to access the set of clauses only by means of
subsearch problems. Essentially the search algorithm itself will be shielded

from whether the clauses themselves are ground or quantified.

2. Formulate the subsearch problems so that they can work with quantified

clauses as well as the ground (non-quantified) clauses of SAT.

Note that subsearch is used to gather information about the clauses, and this

information is then used by the search engine itself. It is important to realize that

'That such savings are possible was initially observed by Ginsberg [26]. The “subsearch” view-
point, developed in the thesis arose as a generalization of these initial wsAT-specific observations.



search and subsearch are otherwise quite distinct.

We will see that subsearch problems are NP-hard with respect to their rele-
vant size measure, and therefore are search problems themselves - hence the name
“subsearch”. Ground SAT solvers effectively solve these subsearch problems using
enumeration of the search space, that is, generate-and-test. In a lifted solver we
can solve these subsearch problems using more effective search techniques, and
so obtain savings that are potentially exponential in the size of the quantified
clauses. Based on the ideas in this thesis we implemented a lifted solver to run
unit propagation (see Section 3.5) and wsaT. We will present experimental results
(in Chapter VIII) to show that the advantages are real. We can also solve problems
that are much too large to be solved by the pre-existing ground SAT solvers.

Although the main practical motivation for this work is to avoid the large
boolean formulas encountered with SAT, we are equally motivated by exploitation
of structure. The expansion of quantifiers on converting from quantified clauses to
SAT not only causes a large increases in size but also totally obscures the problem
structure. Instead, a solver should be able to exploit the structure of the problem.
Of course, this is hard to do, but preserving the quantified structure does allow us

to make a few steps in this direction.

1.1 Overview of the Thesis

The thesis starts with two chapters providing some necessary background
on SAT and its solvers. Chapter IT reviews SAT and first-order logic with finite
sorts. [t then defines “Quantified Propositional Logic” (QPROP), and the notion of

grounding of QPROP to boolean functions. It also gives two examples of problem
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domains and their logical representations. Most important of these is the logistics
example that will be used throughout the thesis.

Chapter IIT describes standard inference methods for SAT. We cover search
methods, both local search methods such as WSAT and systematic techniques such
as Davis-Putnam.

Chapters IV-VIII describe the central theme of the thesis: that propositional
solution methods can be lifted to provide a practical and useful way to handle
quantified clauses. Chapter IV goes into more detail about our main representa-
tional language “Quantified Clausal-Normal-Form” (QCNF'), and explains why it
is likely to be useful and practical. We also define the various subsearch problems
that arise in the implementation of search algorithms. Chapter V reformulates
standard search methods in terms of these subsearch problems.

Chapter VI goes into the details of the subsearch problems themselves. We
show that even the easiest problem is NP-hard (in a sense that will be described).
This NP-hardness is the reason for the “search” in “subsearch”. The notions in
Chapters V and VI are pulled together in Chapter VII where we show why the
properties of subsearch should potentially enable search engines to run faster.

Of course, it could be that the expectations of theory are wrong, and so we
implemented a solver based on the subsearch ideas. The implemented lifted solver
is described in Chapter VIII, where we also present experimental results on its
performance, confirming that such a solver is not only feasible, but can handle
much larger problems than the ground solvers.

Chapter IX looks into using more advanced search techniques for the sub-

search.



Before making our conclusions in Chapter XII, we cover some related work

in Chapter X, and some open questions and ideas for future work in Chapter XI.



CHAPTER II

LOGICAL REPRESENTATIONS, QPROP, AND PROBLEM DOMAINS

In this chapter we consider the logical representation languages needed for
this thesis. We will assume a reasonable familiarity with propositional and first-
order logics, and so we will give just an informal and motivational review of relevant
issues, rather than a presentation of standard formal logic.

One of the points of terminology we need to cover arises from the different
meanings of the word “variable” in propositional and first order logic. Since we
will need to work with both of these logics we need to be careful to distinguish the
two meanings. Similar concerns will apply to the meaning of “quantifying over a
variable”.

After a brief review of boolean logic, we will discuss a simple portion of first
order logic that is commonly used in combinatorial and artificial intelligence (AI)
problems. This portion has finite sorts and some restrictions on functions. We will
call it “Quantified Propositional Logic” (QPROP), partly for lack of a good existing
name, and partly to bring out the fact that it is essentially just propositional
logic but with the addition of quantifiers. However, we emphasize that just the
name is new, not the concept itself: QPROP has been used many times before,
though possibly without comment and sometimes just as an intermediate language.
Indeed, Jénsson has written a “constraint satisfaction problem compiler” (cspc)

for general use in Al [34], and QPROP is essentially the same as the input to cspc.



We will refer to CSPC again in the experimental work in Chapter VIII.

As discussed in the introduction, we believe that QPROP is worthy of study
in its own right because it allows quantifications that capture a form of structure
common in real problems.

We will describe how QPROP expressions are “grounded” to obtain boolean
formulas. We finish the chapter with examples of the usage of QPROP. We give
the QPROP form of the pigeonhole problem and pigeonhole principle. More im-
portantly we review some concepts from SATPLAN, a declarative approach to
planning due to Kautz and Selman [38). In particular, we take a simplified form
of a logistics domain that has been used in the SATPLAN literature, and present
an encoding of it in QPROP. This logistics domain and encoding are important,
not because they contain anything new, but simply because they will be used as a

running example throughout the thesis, and especially for the experimental results

in Chapter VIIL

2.1 Boolean Logic

The fundamental object in boolean logic is a boolean variable. As far as
boolean logic is concerned such a variable is atomic, it has no internal structure,
merely a unique name. Logical expressions, i.e. hoolean functions, are formed
by combining variables using the connectives; negation - , conjunction A ,
disjunction V ,implication — , reverse implication «— | and logical equivalence

+— . Parsing follows standard conventions, for example,

aAbVe—cV d — ¢



is parsed as

(@ AB) V) — eV (~d)) o e

The most common case considered in work on combinatorial decision prob-
lems is that of a formula (often just called the “theory”) in conjunctive normal
form (CNF). Such a formula is a conjunction of clauses. A clause is a disjunction
of literals, and a literal is a boolean variable or its negation. A literal that is a
variable is said to be a positive literal, a literal that is a negated variable is said to
be a negative literal. The complement of a literal is defined as its negation. Usually
we shall write formulas as sets of clauses, and leave the conjunctions implicit. For

example,

rVvVyVvz

£V "y

It is also common to refer to a “formula in CNF” as a “clausal formula” or “CNF-
formula”, and say that it is in “clausal form.” Purely, for the sake of readability

we will write clauses in various logically equivalent “implicational forms” such as

T Ahw — —(y A z)

rAw — (~yV -2z)

However, such rule-like forms will not themselves be used by the solvers we con-

sider. Instead, the equivalent disjunctions of literals will always be used in practice.
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So far we have covered only the syntax of boolean logic. The semantics of
boolean logic is provided by interpretations. An interpretation is an assignment
of a truth value, TRUE or FALSE, to each of the boolean variables. Expressions are
evaluated using the standard truth tables for the connectives.

Expressions that evaluate to TRUE in all interpretations are called tautologies,
for example (a — b) «— (b +— a). Those that are FALSE in all interpretations
are called contradictions. Otherwise a formula is said to be contingent: in this
case some assignments, but not all, will cause the expression to evaluate to TRUE,
such assignments are called “satisfying assignments” or “models”. (Note that in
the literature, but not in this thesis, the term “model” is also used in the sense
that a theory is a good model, or representation of some real problem.)

For a formula in CNF a satisfying assignment will make every clause in the
list contain at least one literal that is assigned to TRUE. Deciding whether or not a

CNF formula has a satisfying assignment is usually called SAT (for satisfiability):

Definition 2.1.1

SAT is the following decision problem:
INSTANCE: A set of clauses I, that is, a boolean formula in CNF.

QUESTION: Does I' have a satisfying assignment? 0

SAT is NP-complete [8], and hence (as far as we know) requires search meth-
ods to solve. We will discuss some of the best of the search methods in Chapter II1.
For a discussion of NP-completeness see, for example, the excellent hooks by Garey
and Johnson [22] or Papadimitriou [51].

There are tractable classes of SAT problems {61], the best known being
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1. 2-5AT: all clauses have length at most 2, i.e. binary or unary.
2. Horn: all clauses contain at most 1 positive literal.

Our results will not assume such restrictions on the clauses used. It might happen
that an example is Horn or binary but, unless we note otherwise, this will not be

relevant.

2.2 Quantified Propositional Logic (QPROP

In practice, when representing a problem, we often want more than simple
boolean variables. We might also want propositions having internal structure,
quantifiers and functions. This naturally puts us into the area of first-order logic
(FOL). However, we will also want a language that allows relatively direct use of
the very effective methods developed to solve bhoolean problems. This suggests
using a language that lies between full FOL and simple boolean logic.

Hence, in this section we will review the basics of FOL and then start to
describe the subset that we wish to use. This subset will retain the important
features of having predicates and quantification. This thesis is concerned with
developing methods to handle the quantification. In fact, we shall further restrict
the subset we use in Chapter IV, although in Chapter XI (see Section 11.3) we

consider relaxing some of those restrictions.

2.2.1 First-Order Logic (FOL)

Firstly we briefly, and rather informally, review some of the essentials of

first-order logic. We assume familiarity with FOL, but are aiming to pick out the
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particular features that we shall need.

In first-order logic the role of boolean variables is replaced by predicates, the
main feature of which is that they are no longer atomic but have internal structure:
they consist of a predicate symbol followed by a fixed number of arguments. The
number of arguments is called the arity. If the arity is k£ then we say the predicate
is k-ary, the special cases of £ = 0, 1, 2 are called nullary, unary and binary
respectively.

Each argument of a predicate is a term. Terms are built out of constants,
variables and function symbols in an inductive fashion. We use uppercase letters
for constants and lowercase for variables. The number of arguments of a function
is called the arity just as for predicates. For example, f(¢, g(H)) is a term formed
from the variable ¢, constant H, binary function f and unary function g. Note
that functions can be nested arbitrarily, and hence there are an infinite number of
syntactically different terms. A variable is merely a placeholder for a term, and
ultimately will be bound to some term. A predicate or function containing no
variables is said to be ground, for example g(H).

A logical expression is formed from the same logical connectives as in the
boolean case but, (assuming we have non-nullary predicates) logical expressions
can also involve terms. Since we have an infinite number of terms, it follows
that we cannot make a statement about “all bindings of a variable” by any finite
combination of the boolean connectives. Accordingly, FOL contains quantification
over variables: universal quantification means something is TRUE for all bindings,
and existential quantification means that at least one binding of the variable causes

satisfaction of the subexpression.



The semantics of the theory is given by its interpretations. An interpretation
gives meanings to the various symbols. It consists of a universe, a mapping of
function symbols to functions in the universe, and a mapping from constants in
the logic to elements of the universe. These give a mapping from every ground
term to an element of the universe. Finally, the interpretation also contains a truth
assignment for every ground predicate. An interpretation satisfies an expression
iff the expression evaluates to TRUE under the interpretation.

If we are given a set of axioms in FOL, then a theorem is an expression that
is satisfied in any interpretation satisfying the axioms. Many different universes
might be used. For example, the standard (Peano-based) axiomatization of arith-
metic is to have a single constant '0’, a unary function symbol s for successor, and
a binary function plus for addition. We then have axioms such as ¥V z. s(z) # 0
The natural numbers correspond to the terms 0, s(0), s(s(0)},... and this is the
natural choice for the universe. However, it is well-known there are interpretations,
and associated universes, that contain more than the natural numbers. We do not
know, a priori, that variables will only be bound to natural numbers. One way
to avoid such freedom of choice of universe is to inductively define the intended
universe and make all candidate theorems conditional on the elements being within
the desired universe. This corresponds to the addition of (second-order) induction
rules to the theory. In the case of the Peano axioms these rules essentially make
the statement that we do not care about anything that is outside of the natural
numbers, and so can restrict our universe accordingly. However, such an approach
is beyond what we need to solve the combinatorial problems with which we are

concerned. Instead, it is better to restrict the universe by fiat, and a standard and
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useful way to do this is to use finite sorts.

2.2.2 Finite Sorted Logic

In combinatorial problems we will typically know our universe in advance.
This is clearly true in NP-complete problems such as graph coloring. It can also be
true in harder problems. For example, if we are encoding planning problems then
we can assume we know in advance all the objects in the domain. Accordingly, we
can restrict interpretations to some fixed and known universe. We can also restrict
the universe to be finite, so that we can describe it explicitly rather than having
to use inductive descriptions.

In practice, it is standard to use a sorted logic: instead of just one finite
domain, with quantification over that entire domain, we have multiple domains
or “sorts”. All domains or sorts have a fixed finite size. We fix the sort of each
argument of the predicates, and similarly for the arguments and “return sort” of
functions. Interpretations will implicitly be restricted to being consistent with the
sorts.

Quantification of a variable is then just quantification over the finite domain
associated with a sort. Since we have at hand all possible clements of the domain,
the quantifiers need only apply to the constants from the domain, and do not
need to also bind to functions. When quantifying a variable r over a domain

D = {dy,ds,... d,} we can write Vir : D or 3r : D and then we have

Va:D. Alz]

A Ale/d] = Aldi} A Alds) A ... A Aldy)
den

\/ Alrfd] = Ald)] v Alda] v ... v Ald,]

de )

Ju:D. Alz]

i
]



(2.1)

where A is any logical expression involving the variable x (and possibly other
variables), and where x/d means the domain variable x is bound to (substituted
with) the value d from the domain D. The big A and V or are not symbols in the
language but just shorthand for the actual expansions. Usually we drop the * D”
from the quantifiers; it will be clear from the context.

Sorted logics, with their fixed finite domains and quantification over elements
of a sort, have provided a natural way to express many Al problems. However,
although they retain much of the notation of FOL they are really very different
beasts. The restriction from FOL to finite sorts greatly reduces the expressiveness
of the language, but in return we avoid the semi-decidability of full FOL. In par-
ticular, since the universe is finite, we have a finite number of interpretations, and
everything is decidable: We could, in principle, test the truth of any statement by
enumerating all possible interpretations.

Since the domains are finite, we can further assume that functions are “con-
crete” rather than acting as “constructors” meaning that any ground function will
be interpreted by some existing domain element rather than as a new element
of the universe. In the familiar arithmetic context {or modular arithmetic if we
want finite sorts), instead of regarding s(0) as constructing a new element, it is

interpreted as the pre-existing constant, '1’.
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2.9.3 Converting «fFree” Functions to Predicates

So far, we still allow expressions such as

Vi g pli) — UK, gli)) # D) (2:2)

which contains boolean quantities such as p(j) but also functions such as g(i).
Finding an interpretation satisfying such axioms means finding values for the
booleans, but can also mean finding values for the functions. However, we areé
aiming to use boolean based methods, and so any functions not having a known
and fixed interpretation would seem to block this. Solving a problem should con-
sist only of finding truth assignments for propositions. We will say that a function
that does not have a known fixed interpretation is a ufree” function. We will we
restrict ourselves to expressions that have no free functions. Predicates with fixed
interpretations, such as the inequality in (2.2) are also allowed.

The absence of free functions is not a restriction on the expressiveness of
the language, as we can convert any expressions with functions to ones with no
functions. For example, given 2 function f(), we introduce a new predicate p (i, k)

with the intended meaning:

vk [plik) e FQ)=F] (2.3)

We then add the axioms:

Vi 3 k. pf(i, k)



Vi kike ki#ky — = (pr(s, k1) A prle, k) (2.4)

Any predicate satisfying these axioms defines a function from ¢ to k. Given any

logical expression A involving f we can remove an occurrence of f by using

AfG)] «— Yk piik) — Alk) (2.5)

where £ is a new variable. This allows conversion of all functions to predicates (a
process called “relationizing the function”}, at the cost of adding new predicates
and axioms to constrain the new predicates.

Note, that at this point we have only demanded that “free” functions be
relationized. If a function has a fixed interpretation (for example, a fixed permu-
tation of elements in a domain) then we will see that it need not cause difficulties.
We can also relationize such fixed functions, but then the new predicates are also
totally known and hence need not be constrained by equations such as (2.4). Since
fixed functions do not add new constraints they are fairly harmless.

However, even if we do allow such fixed functions there is one slight wrinkle
in that we will often want to use partial functions as well. For example, it might
be convenient to write V i. p(z,z + 1) even though 2 + 1 might not be within the
relevant domain. We allow such cases as long as the relevant quantifiers can be
unambiguously restricted so that all terms are within their needed domains. In
the case of 7 + 1 we would just exclude the largest element from the range of 3.

This is not essential but helps retain the clarity of expressions.
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2.2.4 Definition of QPROP
We can now define Quantified Propositional Logic (QPROP)

Definition 2.2.1

QPROP is the subset of FOL with:

1. Finite sorts, and hence finite quantifications over domain vari-
ables. (We implicitly also impose closure in the sense that the

finite sorts used are the only elements in the universe).

2. No free functions - any function not known exactly and fully in
advance must have been relationized. Fully fixed functions are

allowed.

|

As mentioned previously we will allow partial functions as long as the ranges
of quantifiers are (possibly implicitly) restricted so that the functions exist when-
ever they are needed.

At this point we are not restricting the theory to be clausal. However, we
will make such a restriction from Chapter IV onwards because we want to apply
boolean methods designed for CNF formulas.

For reasons of simplicity of implementation, we will eventually demand that
all functions are relationized. However, for the moment we still allow fixed func-

tions because:

1. They aid in readability.
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2. A future solver might quite reasonably have access to a fixed list of such
known functions. It could exploit them to save extra reasoning required if
they were converted to relations. Basically, we want to leave open the option

for using simple procedural attachments [34].

We emphasize that we are not inventing a new language. QPROP has often
been used before. We are merely giving it a name to bring out its strong connection
to propositional logic, and to convey our view that it is a language worthy of study
in its own right.

Before moving onto the connection of QPROP to boolean logic, we first

clarify a potential source of confusion.

2.2.5 Different Orders of Quantifiers

The quantifiers used in QPROP are quite different from those used in Quan-
tified Boolean Formulas (QBF') (see, for example, page 171 of Garey and Johnson
[22]), such as

Vp. 3r.pvVvr (2.6)

where the domains of the quantifiers are TRUE and FALSE for the values of z and y.
To see the difference more clearly think of a boolean variable as a nullary predicate.

Then the quantifications in QBF are second order quantifications over predicates:

Vap(). Jor(). p() v () (2.7)
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where the subscript denotes the order of the quantifier. Of course, QBF does not
have the undecidability of full second-order logic because we have only nullary
predicates, and do not have any functions or first-order quantification. In contrast
to the predicate quantification in QBF, the quantification in QPROP is over do-
main elements. Similarly, the “variables” in boolean logic are boolean variables

whereas those in QPROP are domain variables.

2.3 Grounding QPROP to Boolean Logic

QPROP has only quantifiers over finite domains and no free functions. It is
therefore straightforward to take a QPROP expression and convert it to a logically
equivalent boolean formula. This process is called grounding and has two distinct

stages:

1. Expand quantifiers, using (2.1), while simultaneously evaluating the fixed
functions. The result of this is that all the arguments of predicates will

reduce to constants.

2. “Linearize” the propositions. That is, define a list of boolean variables, one

for every ground proposition remaining, and replace the propositions.

The restrictions on functions in QPROP were designed so that the first step
results in a theory with no functions remaining.

Given a QPROP-formula ¢ we shall use Gr[¢)] to refer to the results of just
expanding quantifiers and evaluating function. It is a propositional logic theory:
It has propositions, i.e. atoms (ground predicates such as p(3,4)) but not quan-

tification. The final result after linearization will be called GrL[¢] and is just a



boolean formula.

The initial QPROP formula need not be clausal: grounding will just produce

a non-clausal boolean formula. As a simple example, consider a case with a single

domain D = {1,2,3}:

¢ = Vi:D. p(i) — (pli+1) A r(i))

Expanding the quantifier, and dropping the case ¢ = 3 because 7+1 is just a partial

function we get the conjunct of two expressions:

Grl¢l = [p(1) — (@(2) A r(1))] A

[P(2) — ((3) A 7(2))]

Finally, linearizing is just a relabelling of the remaining propositions, using a set
of boolean variables v;, by p(1) = vy, p(2) = vy, 7(1) = vy, p(3) = v4 and 7(2) = vs.

This gives us

GrLig] = [, — (12 A v3)] A

[ve — (va A u5)]

which is a (non-clausal) boolean formula.

Finally, suppose that



where A[iy,...,j1,..] is a disjunction of literals. Then the grounding, GrL[4],
will be a CNF formula which we can refer to as the “ground theory of ¢”. We will

say that a conjunction of such expressions is a clausal QPROP formula.

2.4 The Pigeonhole Problem (PHP)

Before looking at inference methods in the next chapter, we present examples
of QPROP formulas that can arise when encoding a domain. The aim is to increase
familiarity with QPROP and also to make sure that the language we eventually
target has a reasonable chance of being useful.

In this section we consider a well-studied problem that is often used for
illustrational purposes. Suppose that you have n pigeons and m pigeonholes with
each pigeonhole being able to hold at most one pigeon. The “pigeonhole problem”
is to find an assignment of pigeons to holes such that every pigeon gets a hole.

A natural representation is to use a unary function f with the meaning that

pigeon i will go in hole f(z), and then the only constraint is

V3. f(2) # f5) (2.9)

where 4,7 € {1,...,n}. However, as we discussed carlier, we do not want to use
such unknown functions, but instead their relational equivalents. Hence, we use a

predicate p(i, i), with i € {1,...,m}, and with the intended meaning

Vo, h. p(i,h) «— f(t)=h (2.10)

that is, pigeon ¢ is in hole . In this case we have constraints on p(z, h) that a
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pigeon is assigned to precisely one hole, and also a constraint that no two pigeons

are assigned to the same hole. In total we have

Vi 3h. p(i,h)
Vi hihge i #Fhy — = [pli, ) A plz, hy)]

Vil,iz,h. 1 Tf-"u',z — - [p(il,h) N p(ig,h)]

which we will refer to as the PHP(n,m) problem.

In fact, “PHP” often refers to the “propositional pigeonhole principle”: the
fact that the case PHP(n,n — 1) is manifestly unsatisfiable. It has mostly been of
interest because any binary resolution proof based on the ground theory obtained
from (2.11) has a size that is at least exponential in n [29] (a somewhat distressing

reflection on the power of ground resolution).

2.0 SATPLAN

As we discussed in Chapter I, one of the initial motivations for this work
arose from the satisfiability-based approach to declarative planning [37, 38, 39).
This approach, commonly referred to as SATPLAN, expresses a planning problem
as a problem in SAT. This has the advantage that we can use an “off-the-shelf”
SAT solver that does not have to contain planning specific knowledge. However,
as we shall see, it has the difficulty that the formulas involved can get too large to
be practical.

In this section, we will briefly summarize SATPLAN's pertinent features.
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We also give a detailed description of one particular problem domain, and give
a representation of it in QPROP using a standard SATPLAN technique. The
encoding presented will be used as a standard example throughout the rest of the
thesis. We shall see that even a modestly sized instance of the encoding can give

very large SAT formulas.

2.5.1 Encoding Planning Problems

SATPLAN has been directed mostly at problems representable in simple
propositional STRIPS format [20]. We have a finite world in which a finite number
of actions can be applied to change the world state. The state is described by
“fluents”, which are just propositions that can be time dependent (see standard Al
textbooks [23, 59, and others] for introductions to planning and futher references).

In STrIPS format an action has the following components:

1. Preconditions - logical expressions that must hold immediately before the

action is applied, otherwise the use of the action is illegal.
2. Effects — changes to the state as a result of the action:

(a) fluents added, i.e. Huents forced to hold immediately after the action

(b) Auents deleted, i.e. fluents forced not to hold after the action

The advantage of the STRIPS representation is that it just specifies changes in
fluents. Fluents never affected by the action need not be mentioned in the action.
We are only going to use SATPLAN as an example of the use of QPROP
and so we only need the basic idea: The problem of finding plans can be reduced

to a problem of finding satisfying assignments for a boolean formula. Usually, but



not necessarily, the final formula is in CNF, so finding a plan means solving a SAT
problem: hence the name SATPLAN. This declarative approach to planning relies

on two key components:

1. By bounding the numbers of actions in a plan we can have a finite theory,
and hence describe the space of possible plans in terms of a finite number of

propositions.

2. The allowed actions, initial, and final states, and other consistency conditions
on states, can all be translated into logical axioms. Satisfying assignments

corresponding to legal plans.

The key point is that the relevant universe is fixed and finite. For example,
in the logistics domain described in the next section, the numbers of planes, cities
and timepoints are all fixed, finite, and known in advance. It is hence natural to
use FOL with finite sorts, and so it should not be surprising that SATPLAN is also
a rich source for QPROP instances that capture structures likely to be present in
real problems.

The requirement of finite fixed domains does have the drawback that the
SATPLAN approach requires specifying the maximum plan length or number of
timepoints in advance, and this is rather unnatural for planning. Other planning
systems would produce the number of timepoints or actions needed for an optimal
(shortest) plan as part of the output. Hence, SATPLAN needs a secondary search
on such parameters as the number of timepoints/actions, but this extra search is
orthogonal to the issues in this thesis.

We briefly mention some of the different ways to encode a planning problem
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(we refer the reader to the SATPLAN literature for explanations of the terms

used):

1. Total-order state-based methods (see {38, 39]). These allow removal of direct
reference to the actions by use of explanation closure: actions might be
compiled out based on an approaches to the frame problem by Schubert {62]
and Reiter [56). Rather than giving a general description we will shortly

present an example we will be using throughout the thesis.
2. Explicit actions, possibly partial order and with causal links (POCL) [4].

3. Encodings of GRAPHPLAN [5] based approaches to planning, e.g. BLACK-
BOX [36].

Note that encodings do not necessarily directly produce CNF-formulas. For
example, POCL has been encoded into a single “universal” axiom which is not
in CNF [4]. It can easily be easily be converted to CNF but we do not know if
ultimately that would be best. This axiom is one of the reasons we preferred to
first describe general QPROP rather than moving directly to a clausal form.

As mentioned in the introduction, the term “lifted” is somewhat overloaded.
In the context of SATPLAN, the term “lifting” has also been used to refer to a
form of predicate splitting [37]. For example, il only one value of p(x,y) should
hold in a solution then we can split this into py() A pe(y). This reduces the
number of boolean variables from |z||y| to || + |y|, and so has the same effect
of reducing the size of the formulas. However, at some point we cannot split any

further and also the result will still have quantifiers. Such predicate splitting is



quite distinct from the notion of lifting used in this thesis: The expressions before

and after predicate splitting might well still be be written in QPROP.

2.5.2 A Logistics Example

The simple example we use throughout the remainder of the thesis is derived
from the “rockets problem” commonly used in SATPLAN [39], but in a rocket-less
form used by Joslin and Roy [35]. The domain concerns moving objects around
between cities by loading them onto planes. In this case, the relevant domains
being finite means that we have fixed (finite) numbers of planes, packages and
cities, and a finite time to get the necessary tasks completed.

We describe the fluents, that is the positions of the planes and objects, by

means of the following predicates:

in(object,airplane,time) (2.12)
at(object,location,time) (2.13)
planeAt(airplane,location,time) (2.14)

with the intended meanings

in(Q, P,I) +— object O is in plane P at time [
at(0,C,I) +— object O isin city C at time [

planeAt(P,C,I) +— plane P isin city C at time [

The allowed actions are



1. LOAD: put an object on a plane. This takes one time unit and the plane
must be at the city both before and after the loading, that is, a minimum of

two timepoints.

2. FLY: planes take just one time unit to move between any two cities.
3. UNLOAD: time-reversed version of LOAD.

Actions are allowed to take place in parallel. The domain is encoded using
a state-based method in which actions are represented in terms of the allowed
changes of state. Such a method seems well suited to cases that can have a lot of
actions occurring in parallel.

The axioms of a theory should have no free variables. Also. typically, many of
the variables will be universally quantified. Hence, we shall start using the conven-
tion that any domain variables not explicitly quantified are implicitly universally
quantified over the relevant domain.

To simplify the encoding we use two auxiliary predicates defined by:

inSomePlane(o,i) +— 3Ja. in{o,a,i) (2.15)

atSomeCity(o,i} +«— Je. at(o,c, i) (2.16)

though we will {eventually) be using these constraints in the clausal form given in
Figure 1.

State consistency axioms, such as the restriction that planes can only be in
one place, are given in Figure 2. Finally, the actions lead to constraints on the

changes of state that are given in Figure 3. For example, the fact that loading
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inSomePlane(o,7} — Ja. in(o,a,i)
inSomePlane(o,7) +— 1in(o,a,}

atSomeCity{o,7) — Jc. at(o,c,i)
atSomeCity(o,7) +— at(o,c,1)

FIGURE 1. Logistics example: axioms defining the auxiliary predicates.

Planes are always in at least one city:
dec.  planeAt(p,c,i))
Planes are never in two cities:
a <b — - planeAt(p,a,i) V —planeAt(p,b,i)

Objects are never in two cities:

a<b — -at(oai) V -at(o,b1))
Objects are never in two planes:

a<b — -info,a,i) V - in(o,b,i)
Objects are either in a city or a plane, but not both

atSomeCity(o,7) vV  inSomePlane(o, 1)

- atSomeCity(o,2) V - inSomePlane(o, i)

FIGURE 2. Logistics Example: Axioms expressing consistency of the state.
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Objects stay in location or are loaded:
at(o,c,i) —> at(o,c,i2+ 1) V inSomePlane(o,7 + 1)
(2.27)
Only load planes at same location:
at(o,c,i) A in(o,a,i+ 1) — planeAt(a,c,1)
(2.28)
at(o,c,i} A in(o,a,i+1) — planeAt(ae,c,i+ 1)
(2.29)
Objects stay in plane or are unloaded:
in{o,a,i) — in(o,a,i+ 1) V atSomeCity(o,:+ 1)
(2.30)
Only unload planes at same location:
in(o,a,7) A at(o,c,i+ 1) — planeAt(u,c,i)
(2.31)
in(o,a,1} A at(o,c,i-+1) — planeAt(a,c,z+ 1)
(2.32)

FIGURE 3. Logistics example: axioms defining the allowed actions. These arise
from consideration of the allowed actions.
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an object onto a plane requires the plane to be at the airport for two consecutive
timepoints is expressed via (2.28) and (2.29).

Note that (2.28) has implicit quantifiers V o, ¢, 7, a. Suppose that we use the
same symbols for the domain size as for the domain itself: there are o objects, etc.
Then, on grounding this axiom will give oca(z — 1) different ground clauses. If we
have a target of dealing with a few hundred objects, a hundred cities and planes
and maybe 20 timepoints, we obtain about 40 million ground clauses from just
the one axiom. Clearly, even a simple domain and modestly sized problems can
generate very large numbers of ground clauses. On the other hand, we have just
seen that the axioms in QPROP are very small: it is very natural to want to work

with them directly.

2.6 Summary

After reviewing standard boolean logic and first-order logic, we observed that
many combinatorial problems are likely to be best represented in some interme-
diate logic. We hence defined QPROP to mean first-order logic with finite sorts
and only pre-defined totally-specified functions. Its main feature is that it allows
quantification over domain variables, yet is logically equivalent to hoolean logic,
and furthermore occurs naturally in many problems.

We described the conversion process, “grounding”, that is typically used
to convert problems in QPROP to standard propositional satisfiability problems.
Grounding has the strong disadvantage of greatly increasing the size of the theory.

Most of the thesis will be concerned with a clausal subset of QPROP. and

how lifted solvers that exploit its structure can gain advantares over ground solvers.
g B
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However, first we review algorithms used for ground solvers, in particular for the

usual ground CNF-formulas of SAT.



33

CHAPTER III

STANDARD INFERENCE METHODS IN SAT

In the previous chapter, we reviewed boolean and first order logic. We de-
fined QPROP, with the goal of merging the best boolean solution methods with
the quantifiers that seem essential to reasonable representations. We also briefly
discussed SATPLAN as an area that already naturally uses QPROP as an inter-
mediate language, although the formulas are grounded out to SAT before usage.

We now review the methods used to solve problems expressed in ground
clausal form, that is SAT. The ultimate goal is to take such methods and lift
them, that is, to make them work for QPROP, or a subset of QPROP.

There are two basic approaches towards solving problems such as SAT: model
search and proof search. In model search the focus is trying to build a satisfying
assignment: The state of the search is given by candidate assignments of values
to variables. Proof search is complementary: instead of looking for satisfying
assignments we look for extra formulas or constraints that are entailed by the
initial problem, and The current state of the search is primarily described by
the database of constraints. We discuss model search and prool search in turn,
and finish with some methods that are perhaps best described as a mix of these

methods.
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3.1 Model Search

In model search, the focus is on trying to build a satisfying assignment by
searching through the space of candidate assignments. We shall typically use “P”

to refer to the assignment currently under consideration. Assignments can be
1. Total: every variable is assigned TRUE or FALSE.

2. Partial: some variables might not be assigned a value, or equivalently can be

regarded as having been assigned the value UNVALUED.

A total assignment is a model iff it satisfies all the constraints. In the case
of SAT every clause must contain at least one literal that is assigned to TRUE.

The split of assignments into partial and total also corresponds to a split
in the two main kinds of model-search algorithm. In iterative repair algorithms
we work with total assignments that violate some constraints and iteratively try
to repair them. In backtracking, or what we might call “branch-and-propagate”
algorithms, we take a partial assignment and try to build up a satisfying total
assignment.

Most of the thesis is concerned with lifting a particular iterative repair al-
gorithm called WSAT, and hence we shall treat, it first. Also, since the focus is on
obtaining fast lifted implementations of the algorithms, we shall eventually have

to go into implementational details that would normally be ignored.

3.2 Tterative Repair

The general form of iterative repair is a simple loop:
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initialize P
while P is not an acceptable solution

identify the deficiencies in P

select and apply a small modification to P to repair some deficiencies
end while

return best P seen

Of course the generic idea has been been developed in many different ways.
We will just mention a few, rather than attempting a survey. Generally, choices
are made with a strong hill-climbing flavor, after all we do want to improve the
solutions. However, pure hill-climbing tends to get trapped in local minimal, so
many other heuristic and stochastic methods are also used. In AI one success
was MIN-CONFLICTS (45, 46]. There are also methods associated with operations
research, such as simulated annealing [40], and Tabu search [28]. There are many
other examples [54, and others]. Iterative repair algorithms have the deficiency of
being incomplete: it is possible that they will not discover a solution even if one
exists. However, they can work well on large problems for which complete search
methods are ineffective in practice.

Many iterative repair methods have typically only been used in a rather
domain-specific fashion, that is, for problems that are not used as a general-purpose
representational scheme. Instead, we are concerned with domain-independent

methods for SAT and the main iterative repair methods in this case are the GSAT

'We use the convention that “smaller is better” (coincidentally, a rather appropriate theme
for the thesis itself). Accordingly, hill-climbing is trying to go downhill.
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proc Pure Random Walk
P := random total assignment
for i :=1 to MAX-FLIPS
S := set of unsatisfied clauses
if S={ return P Found a solution
¢ := randomly selected clause from S
[ := randomly selected literal in ¢

P:=Pll:= -] Flip value of ! in P
end for
return solution-Not-Found

end

FIGURE 4. Pure random walk for SAT.

and WSAT family of algorithms. In fact we shall just concentrate on WSAT as it

has proven to be one of the most effective methods for SAT.

3.3 WsAT (WalkSAT)

WsAT, and other algorithms in the GSAT family, work with a total truth
assignment P and attempt to obtain a solution by repeatedly flipping values in
P [66, 64]. That is, they heuristically select a variable and then flip (negate) its
current value in P. Flips are made with the general intent of reducing the number

of unsatisfied clauses.

3.3.1 Pure Random Walk

As a simple introduction to the ideas of WSAT consider the pure random
walk in Figure 4. The first step is to create a random total assignment. Unless we

are extremely lucky, this will leave some clauses unsatisfied - all of their literals
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will be FALSE. We then randomly select one of these unsatisfied clauses and flip a
randomly selected literal from within that clause. This guarantees that the selected
clause will be become satisfied, that is, it will have been repaired. We repeat this
for some specified number of flips, MAX-FLIPS. The name WSAT, or WalkSAT,
arises because the selection of random clauses can be regarded as doing a random
walk on the unsatisfied clauses. This simple algorithm works surprisingly well on
25AT - it will find a solution, if one exists, in (expected) quadratic time [50]. Of
course, 25AT is tractable, and for this to work well on general intractable SAT we

need to include powerful heuristics.

3.3.2 Heuristics in WSAT

The basic practical WSAT method [67] is illustrated in Figure 5, with sup-

porting routines given in Figures 6, 7, and 8.

proc WSAT
for { := 1 to MAX-TRIES Independent tries

P := random assignment
S := set of unsatisfied clauses
for i:=1 to MAX-FLIPS
if S =@ return P
¢ := randomly selected clause from S

[ ;== SELECT-LITERAL(c, S, P) Heuristic variable selection
P:=Pll.= =l
UPDATE(S, ) Incrementally maintain S
end for
end for
return solutionNotFound

end

FIGURE 5. The WsAT algorithm. The subroutines SELECT-LITERAL(c, S, P) and
UPDATE(S, ) are defined in figures 6 and 8 respectively.
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proc SELECT-LITERAL(c, S, P)
foreachle¢ Every such { will be FALSE in P
b[l] := NUM-BREAKS-IF-FLIP({)
end foreach
Lo :={l| b[f] = 0}
if Lo # @ return random choice from Lg
with prob p: | := randomly selected literal in ¢

else [ := literal in c such that b[l] is & minimum
return |
end
(a)

proc select-literal(c,S,P)
foreach i €c
b[l] := NUM-BREAKS-IF-FLIP(!)
. mfl}] := NUM-MAKES-IF-FLIP(S, l)
end foreach
with prob p: | := randomly selected literal in ¢

else ! := literal in ¢ such that m{l] — b[l] is 2 maximum
return !
end
(b)

FIGURE 6. Two variable selection methods in WSAT. S is the current set
of unsatisfied clauses, and ¢ is one unsatisfied clause from S. p is a noise pa-
rameter supplied to the algorithm. The subroutines NUM-BREAKS-IF-FLIP(!) and
NUM-MAKES-IF-FLIP(S, [) are defined in Figure 7. (a) Version based on minimizing
the amount of damage (note that S is not used). (b) Greedier version that tries
harder to move downhill: m|[l]—b[l] is the net decrease in the number of unsatisfied
clauses if we should flip [.

Firstly, the random walk aspect is retained, that is, clauses are still selected
randomly. However, the selection of a literal to be flipped is done using hill-
climbing: that is, flips that reduce the number of unsatisfied clauses are encour-
aged.

Particular literal selection methods are given in Figure 6, with support from
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proc NUM-BREAKS-IF-FLIP(!)
count =0
foreach clause ¢ containing -1
if (number of true literals in ¢) = 1 then count := count + 1
end foreach
return count
end

(a)

proc NUM-MAKES-IF-FLIP(S, {)
count =0
foreachce §
if [ € ¢ then count := count + 1
end foreach
return count
end

(b)

FIGURE 7. Counting makes and breaks in WsAT. The input literal ! will have
been taken from an unsatisfied clause, and so both procedures assume that { is
currently FALSE in P. (a) Counting breaks: Scans for clauses in which —{ is the
only TRUE literal, and hence will break if { is flipped. (b) Counting makes: Scans
the set S of currently unsatisfied clauses looking for those that contain L.

proc update(S,!)

S=8S-{c|ceSandlec} Remove makes
S:=SU{ceC|leC and -1 was the only TRUE literal} Add breaks
end

FIGURE 8. Updating the unsatisfied clause set in WSAT in response to flipping !
to TRUE.



the routines in Figure 7. We will be concerned with what happens when a literal

is flipped, and it will be useful to think in terms of

1. “Makes”: clauses that change from satisfied to unsatisfied.

2. “Breaks”: clauses that change from unsatisfied to satisfied.

The heuristics for selection are then based on finding the numbers of makes and
breaks that would occur if we were to flip the value of some literal. The net effect

on the number of unsatisfied clauses is just the difference

(number of makes) - (number of breaks).

The most obvious heuristic, Figure 6(b}, is to select variables that tend to-
wards to maximizing this difference. The less obvious selection scheme of Fig-
ure G(a) instead tries to avoid breaking any new clauses, and so selects on the
basis of minimizing the number of breaks. In fact, from now on we shall just dis-
cuss and use the version of Figure 6{a), though extension of our work to (b), or
many other selection schemes, should be straightforward.

Of course, we have the usual hill-climbing problem of getting stuck on local
minima. One way to counteract this is for the variable selection to be noisy, and
occasionally be allowed to increase the number of unsatisfied clauses. This is the
purpose of the noise parameter p in the procedures of Figure 6. Again, we will
not be concerned with this here (see the work of McAllester et. al. [44] for more
information). A second way to counteract the problem of local minima is simply to
restart the algorithm every so often. The restarts are controlled by the outer loop

in Figure 5 over the “tries”, and the associated parameter MAX-TRIES. There are
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various issues concerned with restarts, such as selecting the best time to restart
[30, 52, and others}, but again we are not concerned with these here.

Eventually, we shall need to be concerned with the details of how these steps
are really implemented. The vital features are to use indexing schemes, incremental
methods, and caching of useful data. For example, typically, a large fraction of
the runtime is spent in the NUM-BREAKS-IF-FLIP routine of Figure 7(a), and one
way to support this is to store, for every clause, a count of how many literals
in the clause are currently TRUE. Having this count means that the “if” test in
Figure 7(a) can be done by an array lookup. Without this count, we would need to
do a scan of the clause with the associated costs of looking up the values of literals
in P. This count of TRUE-literals is updated after every fip. These methods will
be described in more detail when we lift the algorithm in Chapters V and VIIL

It is also very important for efficiency that the set of unsatisfied clauses is not
recalculated each time (though we did this for simplicity in Figure 4). Instead, it
is updated incrementally after each flip (see Figure 8). On flipping ! to TRUE there
are two cases to consider: clauses that are made and clauses that are broken. The
only clauses that can are made are those already in S and containing [: these can be
removed by simply scanning the set S. Clauses that break are those which contain
— | and for which — ! is the only true literal. The search engine must find these and
add them to the set S. Finding the broken clauses is a vital step in implementing
WwsAT and we shall revisit this issue for the lifted version in Section 5.6.

Historically, WSAT originated from the GSAT (Greedy SATisfiability) family of
algorithms. These are similar except that, instead of restricting attention to literals

from a single clause, GSAT algorithms consider all variables from all unsatisfied
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clauses. These algorithms tend to be less effective, and so we shall not consider
them further, however the similarity of their implémentation means that the ideas

in this thesis should extend to GSAT also.

3.3.3 Extensions to WSAT

The basic ideas in WSAT and GSAT have been extended to other languages
than SAT. WSAT has been used for operations research representations such as
pseudo-boolean [72] and integer programming [73]. GSAT has been applied to
non-clausal formulas [63]; we will discuss this work in Section 10.2.

There are also various extensions designed to avoid local minima. It is pos-
sible to weight clauses so as to affect the probability of them being selected [65];
we will briefly consider ways to lift this in Section 11.2.2. Another way to escape
local minima is to “fill them in” by adding new clauses {6, 74]. We shall also briefly
consider lifting this in Section 11.2.2. Otherwise, we will just use the simple WSAT

described above.

3.4 _Backtracking “Branch-and-Propagate” Methods

Iterative repair algorithms are based on the use of total assignments, because
they need to have a total assignment in order to have something to repair. In back-
tracking algorithms we are trying to build up a satisfying assignment. Starting from
the empty assignment we extend it by valuing literals, i.e. changing their values
from UNVALUED to TRUE or FALSE, with the goal of extending the assignment
until we have a model. Such algorithms have two distinct components related to

whether the extension is forced or speculative. Again we shall use P to denote the
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assignment, but now regard it as a set of literals that are assigned TRUE.

1. Propagation: Given the current assignment P we might be able to deduce
that some literal [ must hold and so we can extend P to P U {/}. Propaga-
tion uses some limited reasoning method in order to find some such cases.
Typically, only low-order polytime methods are used. Propagation can also
discover a contradiction if it finds an unsatisfied clause, or that both { and

= [ must hold.

2. Branches: Once propagation ceases, if we still have not detected a solution or
a contradiction, then the search engine makes a speculative move. It selects
a literal I not currently valued by P, and then extends P to PU {{}. It then

propagates the effects of this extension.

The advantage of propagation is that it prevents looking at partial assignments that
can easily be shown to be inextensible to a model. A backtracking search method
must control the branches taken, and the remedies to be taken on detecting a
contradiction.

In these algorithms, backtracking is just a matter of restoring some previous
state. Most of the computational effort is spent in selecting branch variables and
in doing propagation. Hence, as far as the issues in this thesis, are concerned it is
perhaps better to think of them as “branch-and-propagate” algorithms. We shall
soon look at a standard backtracking algorithm, the Davis-Putnam procedure, but
firstly we look at propagation. In particular, we shall be concerned with the details

of the simplest form of propagation: Unit propagation.
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3.5 Unit Propagation

Conceptually, unit propagation works by using P to simplify the clauses by
removing literals that are valued to FALSE. If a clause simplifies to a unit clause,
i.e. just a literal, we can add that literal to P and continue to simplify. If a clause
simplifies to an empty clause, then we have a contradiction. For example, given
the clauses =z V =y and y V z, and starting with P = {z}, then unit propagation
will derive =y and 2, terminating with P = {z, — 3, z}. We will use the symbol

= to denote propagations, that is

P = : (3.1)

will mean that z can be produced from P by unit propagation (and the relevant
axioms). Usually, unit propagation is run to completion, that is, the process is
repeated until no further literals can be found. Of course, unit propagation is
sound and so also P |= z. However, it is not complete: we can have P = z but
P #= z

In practice, unit propagation involves finding clauses in which there are no
TRUE literals, and at most one UNVALUED literal. A clause with one UNVALUED
literal, {, and the rest FALSE, means P should be extended by adding {: That is,
P should be changed so that [ is assigned to TRUE. If there are no UNVALUED
literals, then P can never be extended to a model and a contradiction is reported.

In practice, unit propagation is done incrementally. We have a procedure
UNIT-PROPAGATE(L, P) that will set a literal ! to TRUE in P and find all the

resulting unit propagations. Such a method assumes that unit propagation to



proc UNIT-PROPAGATE(!, P) Propagate effects of { given P
P:= PU {l = TRUE}
C-,; := set of clauses containing =1
foreach clause c € C; Note that — ! is false
if ¢ contains no TRUE literals by P
if ¢ contains no unvalued literals by P return Contradiction
if c contains precisely one unvalued literal I’ by P
P := UNIT-PROPAGATE(!', P)
if P = Contradiction return Coniradiction
end foreach

return P No contradiction was found
end

FIGURE 9. A simple recursive way to implement unit propagation.

completion has already been run on the theory. In this case, the only new prop-
agation that can arise is from clauses that contain — [. Hence, we should scan
such clauses, reporting any contradictions found, and adding any discovered forced
literals to P, followed by unit propagating the effects of the new literals.

A straightforward recursive method to implement this is given in Figure 9.
The recursive view is easiest to think about, but it should probably be implemented
iteratively for efficiency. We give two such methods in Figure 10. In these, any
literals discovered are stored in a container L and later extracted for propagation.
In practice, the assignments can be made immediately, and the literals also stored
for later propagation. It turns out that we need not care about the details of
the algorithms except in the way that we scan the sets C; for clauses that have

no TRUE literals and at most one UNVALUED literal. We return to this issue in

Chapter V.
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proc UNIT-PROPAGATE(!, P)
L:={l} L is a container for literals awaiting propagation
while L # @
select some I’ € L and remove it from L
P:=PU{l' = true}
Cy := set of clauses containing - '
foreach unsatisfied clause ¢ € Cy
if all literals in c are false return Contradiction
if ¢ contains exactly one unvalued literal
" := the literal in c that is not valued by P

L:=Lu{l"} Store !" for later propagation
end foreach
end while
return P
end
(a)

proc UNIT-PROPAGATE(!, P}
L:={l}
P := PU{l = true}
while L # @
select some ' € L and remove it from L
Cy = set of clauses containing - '
foreach unsatisfied clause c € Cy
if all literals in c are false return Contradiction
if c contains exactly one unvalued literal
" := the literal in ¢ that is not valued by P
P:= PU{l" = true}

L:=Lu{l"}
end foreach
end while
return P

end

(h)

FIGURE 10. Two iterative implementations of unit propagation arising from
adding the literal { to the partial assignment . (a) Eager: any propagations
discovered lead to an immediate change in P. (b) Delayed: propagations are not
enforced until all previous propagations have been completed.



3.6 The Davis-Putnam Procedure

The Davis-Putnam (DP) procedure {15, 14] is a simple backtracking algo-
rithm that uses depth-first search to control the backtracking. It is systematic and
complete: if there is a solution then it will be found, and the algorithm makes
no (obvious) repetitions of work. The top-level control is simple and is given in

Figure 11.

proc DP-Solve(C) Returns a model or else a contradiction
return DP-Solve(C, D)

end

proc DP-Solve(C, P)
l := Select-literal(C, P)

P’ := DP-Solve(C, UNIT-PROPAGATE((, P)) Solve branch with [ = TRUE
if P’ is a model return P’

P’ := DP-Solve(C, UNIT-PROPAGATE( — [, P)})  Solve branch with [ = FALSE
if P’ is a model return P’

return contradiction No model was found.
end

FIGURE 11. The Davis-Putnam procedure: Depth-first search with branching on
selected literals.

Difficulties in creating fast implementations of the Davis-Putnam proce-
dure arise from two main sources. Firstly, the algorithm is highly reliant on
UNIT-PROPAGATE(!, P): typically a large fraction of the runtime is spent in this
routine, and so it is important that the propagation is as fast as possible.

Secondly, we have to be careful in the selection of the branch variable. A
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proc SELECT-LITERAL(C, P)

foreach variable v not already valued by P Pre-selection Phase
c¢(v) := number of binary clauses in C, under P, and containing v
cy(v) := number of binary clauses in C under P, and containing —v

end foreach

restrict to the variables for which a specified function of ¢,(v) and c;(v) is largest

foreach variable v still being considered Final Selection
c:(v) := length(unit-propagate( v , P)) — length(P)
cg(v) := length(unit-propagate( - v ,P)) — length(P)

end foreach

v := variable for which a specified function of ¢,(v) and cs(v) is largest
[:= select vor -v
return |

end

FIGURE 12. Selecting the branch variable in Davis-Putnam. The length of a
partial assignment is just the number of literals that it values. By a clause being
“binary under P” we mean that it reduces to a binary clause after using the literal
values contained in P.
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good way to do this is sketched out in Figure 12 based on the approach of Crawford
et. al. (12, 13]. The idea is that we should select branch variables that do the
most to reduce the size of the search spaces in both the TRUE and FALSE branches.
To estimate the reduction in the size of a search space from enforcing a literal we
can unit-propagate that literal and see how many new literals are produced. The
more propagation that occurs the better. This explains the final selection phase
in Figure 12, however to do this for all literals would be too expensive. Instead
there is a pre-selection phase that first eliminates some variables from further
consideration.

We shall say that a clause is binary under P if simplifying it with P would
reduce it to a binary clause, that is, it currently contains no TRUE literals and
precisely two UNVALUED literals. The pre-selection phase relies on the observation
that if a literal occurs in a clause that is binary under P, then if we were to set
that literal to FALSE we would immediately get a propagation. Hence a fast (but
inaccurate) estimate of the propagations that would result from a literal can be
obtained by counting the number of binary clauses containing that literal. In a
ground implementation, this information is stored and maintained so that these

binary counts can be obtained quickly.

3.6.1 Sampling Methods

The Davis-Putnam procedure just does depth-first search, however there are
reasons why this might be a bad idea. In cases where there are many models, we
should be able to find one quickly; however, depth-first search is prone to making

an early mistake, that is selecting a branch that happens to have no models.



Since it must explore all branches completely before backtracking this can mean,
in practice, it will never recover from the mistake. There are extensive studies
of this problem [31, 1}, and there are also many algorithms available to combat
the problem, for example Iterative Sampling [41], Iterative Broadening [27}, and
Limited Discrepancy Search (LDS) [32].

However, these are all still “branch-and-propagate” and use the same mech-
anisms for moving around the tree as simple depth-first search. Hence we need
not talk about them explicitly. A lifted version of Davis-Putnam could easily be

modified to give a lifted version of an algorithm such as LDS.

3.7 Proof-Search: Resolution

The goal of proof search is not to find a model but rather to find constraints
entailed by the input axioms. The basic method is “combine-and-reduce”. We have
inference rules that are a mixture of combining existing constraints and reducing
them to simpler forms. In SAT we have simple binary boolean resolution. Clauses

can be combined pairwise by the rule
tVA -~zVB F+ AV B

where z is a literal and A and B are disjunctions of literals. I’ A and B contain

the same literal y then we should also “reduce” by using the factoring rule
yvyv<C + yvC

to merge two identical literals.
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These rules are complete for refutation: If a theory is unsatisfiable then there
is a resolution proof of the empty clause, that is, a contradiction. For efficiency,
we can also use subsumption: If the literals of ¢; are a subset of those in ¢, then
we can drop cz.

If the theory is satisfiable then resolution will not directly produce a model.
However, suppose that we resolve to completion: That is, we generate all resol-
vents until we find that the resolvent of any two clauses is subsumed by some
other existing clause. After resolving to completion then we can produce models
using just unit propagation and arbitrary branching and with no risk of having
to backtrack. To see this, suppose that we did have to backtrack. This would
mean that we must have set some literal [ from an assignment P and discovered a
contradiction, L. If I" denotes the original set of clauses then we will have found
that TAPAlE L. But then I' = (P — -} and so {P — -i) should have
been a clause in the database after completion. In this case, when we reached P,
unit propagation should have forced —1[ and we would never have had the chance
to branch on {. Resolution to completion will produce all such clauses in advance,
and hence guarantee branching can never make a mistake.

Thus, in principle, resolution could be used to solve problems. However, in
practice it is rarely used for SAT. The main problem is that many clauses can be
generated, leading to memory problems, furthermore there is no guarantee that if a
clause is generated it will ever be used. (These problems also occur with controlling
resolution in general theorem proving.) In contrast, the depth-first search of the
Davis-Putnam procedure is very efficient for memory use, and at least it guarantees

that every subtree is used.
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3.8 Mixed Methods

By mixed methods, we refer to methods that mix the approaches of back-
tracking model-search and proof-search. They attempt to find models by perform-
ing some branch-and-propagate search, but also attempt to find new constraints
entailed by the initial axioms. We will consider two classes of mixed methods.
Firstly, we will look at some pre-processing techniques that are designed to im-
prove the properties of a SAT problem before it is given to a search engine such as
WSAT or the Davis-Putnam procedure (DP). Secondly, we will very briefly discuss
the addition of learning to DP-based algorithms.

Mixed algorithms tend to revolve around the generation of “No-Goods” from
a model based search. A No-Good is a partial assignment that has been discovered
to lead to a contradiction. That is, the corresponding subtree has been completely
covered (via search or reasoning) and no models were found. If a partial assign-
ment P }= L then we know that the theory entails the clause =P (remember the
assignment is just a conjunction of literals). The negation of a No-Good is hence

a clause that is entailed by the theory.

3.9 Pre-Processing and CoMPACT

The aim of pre-processing is to simplify theories before trying to solve them.
The most obvious simplification is to unit propagate all unit literals in the input,
keep track of all variables whose values are fixed by the unit literals, and then
remove all clauses that have become satisfied because of these fixed variables. For
example, () A (r — y) A (-y V w V 2) reduces to (w V z). We will call

this process COMPACT.



We will cover two other methods that seem to be most relevant to SAT;
“failed literal tests” or COMPACT-L, and “failed binary tests” or cCOMPACT-B.
The names are taken from Freeman [21]; an implementation of these methods due
to Crawford [11]. The aim in these methods is to search for short No-Goods and
add their negations to the theory, with the hope that this helps the subsequent
search phase avoid some bad decisions and so reduces the search time. The catch
is to find No-Goods that do lead to a useful gain. Similar preprocessing techniques
are also used in operations research under the label of “probing” [60].

Many other simplification methods exist, for example
1. Subsumption: Remove a clause if it is subsumed by another clause.

2. Pure literal rule: If a literal { occurs only positively then we can fix it to
TRUE without affecting the satisfiability of the theory. If there is a model
with | = FALSE then the absence of negative occurrences of I means this literal
cannot be the reason for any clause being satisfied, and hence its value can

always be flipped.

3.9.1 Failed Literals and ComMpracT-L

CoOMPACT alone just unit resolves to completion - i. e., propagates the effects
of any unit literals in the input problem. The next step up is CoMPACT-L, which
looks for literals that “fail”. That is, we search for literals ! such that { = L. In
such a case { is a No-Good and - { can be imposed on the theory, and also unit
propagated to find its effects. This removes [, possibly other variables, and typically

many clauses, from the theory, resulting in a more compact theory. Pseudo-code to



proc CoMPACT-L(C)
foreach variablev e C
if v is not already valued
R, := TEST-VALUE(v, TRUE)

if (R, =1) Found failed literal v
Ry := VALUE(v, FALSE)
if (Ry = 1) return contradiction

Both values give L

o |

el

if (TEST-VALUE(v, FALSE) = L) Found failed literal —v
VALUE(v, TRUE)
end foreach

return contradiction-Not-Found
end

FIGURE 13. Straightforward CoMPACT-L.

search for such failed literals is given in Figure 13. Figure 14 gives some supporting

functions.

If there are n variables then propagating the effect of a literal is O{n) (because

the propagation might cover many of the variables). Hence, coMPACT-L is O(n?),

though in practice it seems to be quite usable.

3.9.2 compacT-B

As an introduction to COMPACT-B [11, 21| consider the following simple
theory

n —r &
a —

bAhe — d



proc VALUE(v,d)
set variable v to (truth) value d and unit propagate
return whether this gave a contradiction

end

proc TEST-VALUE(i,v)
set variable v to (truth) value v and unit propagate
undo effects and return whether this gave a contradiction
end

FIGURE 14. Utility functions VALUE and TEST-VALUE

In this case a = d, however, the contrapositive of this propagation does not
occur, i.e. - d#= - a. Now, suppose that (3.2) were part of a larger theory,
and that there were no other reason in the theory for the propagation ~d == —a
to occur. If the search algorithm happened to branch on d first, it would miss this
propagation, and could conceivably cause extra work for itself. It would be good
in this case if we explicitly recognized that the clause —a V d is entailed and added
it to the theory. After this the propagation -d = —a cannot fail to occur.

More generally, COMPACT-B is intended to look for failed binaries [21], that

is, pairs of literals |, {; such that

L AMlg =1 buteither |, 7= =1l, or L, &= - (3.3)

In such a case the clause

—'ll A _|l2 (31}



is entailed, and will improve propagation by its presence. Hence, it is added to the
set of clauses.

This can be implemented as a simple double loop over the variables. There
are O(n?) pairs of literals to consider, so naive COMPACT-B is O(n*). CoMPACT-
B, in contrast to COMPACT-L, typically seems to be too expensive to run. It is also
interesting that COMPACT-B adds new clauses to the theory, whereas coMpPACT
and COMPACT-L only result in the binding of variables to fixed values. We will
return to this in Chapter XI (see Section 11.2). We could of course naively extend
this to considering sets of & literals and testing for failure. However, this rapidly
becomes impractical, at least without further insights into the problem.

A deeper and more general study of these issues has been given by Roussel
and Mathieu [57] where the task of making sure that such propagations do occur
as they ought to is called achievement. Detecting such cases is related to the
existence of cycles in a graph built from the constraints. It is also related to the
role that the factoring rule plays in resolution proofs. Consider (3.2) again: if we
resolve clauses together with no factoring then we can obtain a Aa — d but in
order to get the expected —a V d we must factor on the —a. This merging of —a
but not of d explains the asymmetry between the two possible propagations. All
this has been extensively studied and also extended to the first-order case [58]. We
have discussed this more advanced pre-processing method to show that it is based
on unit propagation, and hence lifting unit propagation can be useful even for this

algorithm. We will also consider COMPACT-B again in Chapter XI (Section 11.2.1).



3.10 No-Good Learning in Intelligent. Backtracking

So far the only backtracking method we have discussed is the Davis-Putnam
procedure with its simple depth-first search. That is, simple chronological back-
tracking in which discovering a contradiction only leads to reconsideration of
the most recent branch variable. For the sake of completeness we also mention
some more intelligent backtracking methods. Techniques such as backjumping
and dependency-directed backtracking are designed to pinpoint which decisions
were responsible for the latest contradiction, and backtrack to them directly (see
[1] for a review).

There are also algorithms that use truth maintenance methods to learn and
store entailed clauses as they proceed. The main problem is that if we store all the
clauses memory usage grows with linearly with runtime, and this gives us too many
clauses. There have been two main proposals to limit the memory usage: k-order
learning [16] and Relevance-Bounded Learning (RBL) (2, 3]. In k-order learning
we only store clauses of length & or less. RBL uses a much more selective criterion
that adapts to the portion of the search space currently under exploration. The
key idea comes from dynamic backtracking [24, 25], and is to limit the number of
literals in a clause that do not agree with the current partial assignment. Clauses
that have too large a disagreement with the current assignment are presumed less

likely to be of any future use and so are discarded.

3.11 _Summary

In this chapter we have reviewed some of the methods used to solve instances

of SAT. The main focus was on two state-of-the-art solution methods: WSAT and



ow have enough background to move into the

the Davis-Putnam procedure. We n

he thesis which is to apply such solution methods to problems
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expressed not in SAT, but in a lifted equivalent.
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CHAPTER IV

SUBSEARCH

In Chapter II we defined quantified propositional logic (QPROP) and argued
it is a natural language for many structured combinatorial problems. We also gave
an example of a QPROP encoding of planning problems for a simple logistics
domain. Normally such problems are grounded out to SAT. However, this involves
expansion of the quantifiers in QPROP and results in a large increase in size of
the theory. Instances of the logistics problem with just hundreds of objects could
give many millions of clauses. Solvers that only take ground clauses will (almost)
inevitably be swamped by such size, and so the sheer size of the ground theories
provides a motivation to work directly with quantified expressions. In this chapter
we lay the groundwork for lifting SAT algorithms to use QPROP representations
directly.

This chapter has two main foci. Firstly, we describe a restriction of QPROP
to a lifted form of SAT that we call “Quantified Clausal Normal Form” (QCNF):
We need to take such an “intersection” between QPROP and CNF because we will
be lifting algorithms designed to take clausal inputs.

The larger portion of this chapter is concerned with how SAT algorithms
make use of their set of input clauses. The goal is to identify what information
ground algorithms need to extract from the ground clauses, and write it in a way

that allows extension to the case of extracting information from QCNF expressions.
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We will identify various tasks, that we call “subsearch problems”, that provide the
means for a search algorithm to extract the properties it needs from the clause
database.

In the next chapter, we show that SAT search algorithms can indeed be re-
written in terms of these subsearch problems. Doing this shields the algorithms
from having to deal directly with the clauses. We will see that this shielding results
in lifting becoming a matter of using subsearch over quantified clauses, instead of
having to change the search itself to deal with quantifiers. A primary goal of this
thesis is to show that subsearch problems can be solved better in the lifted case

than in the ground case.

4.1 Quantified Clausal Normal Form {(QCNF)

Before proceeding to lifting SAT solvers, we first make a restriction on
QPROP that mimics the restriction of general boolean logic to SAT. However,
it is important to do this in a way that is motivated by real encodings of domains,
and so we will be guided by the SATPLAN example of Chapter 1T (Section 2.5).

We want to do a minimal extension to CNF that will allow us to use quan-
tifiers and in particular to handle sets of axioms such as those of the logistics
example (Section 2.5). In particular, we want expressions that are clausal in the
sense that on grounding they will directly convert to CNF. CNF just means that
all conjunctions are outside all disjunctions (which are outside all negations), and
in a finite domain universal quantifiers are just conjunctions and existentials are
just disjunctions. This suggests demanding that all conjunctions and universals

are outside all disjunctions and existentials, that is, of the form of (2.8). However,
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this is still too general.

If we look at the axioms of the logistics example, there is very little use of
existential quantifiers. Most of the blame for the size explosion from grounding lies
with multiple universal quantifiers. Hence, for most of this thesis, we will consider

clauses that have only universal quantifiers:

Definition 4.1.1

A universally quantified clause is a clause of the form

Vi, ig Afir,..., i, (4.1)
where A is a disjunction of literals built from the variables ¢,...,1,
and constants, and containing no further quantifiers. A ground clause

is just the special case, ¢ = 0, with no quantifiers or variables. O

We will often just call these quantified clauses, the “universal” being implicit
from the context. All the axioms of the examples in Chapter I (Section 2.5)
are easily put into this form by expanding just the existential quantifiers. (In
Chapter XI we will briefly look into reinstating the existential quantifiers.)

We can now define the language with which this thesis is primarily concerned:

Definition 4.1.2

If all constraints are universally quantified clauses we will call this
Quantified Clausal Normal Form (QCNF). A QCNF expression is a

conjunction (or set) of universally quantified clauses. O

We use the term “clausal” rather than “conjunctive” as it is clauses that are
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quantified, rather than conjunctions. Also, note that this does not restrict the
expressive power any more than restricting to SAT.

As discussed in Chapter II, we will allow known pre-determined functions in
the expressions, though in practice we will convert all functions to predicates. Also,
axioms do not have free variables, and in QCNF all quantifiers are universal, so in
some cases we will use the convention that all variables are implicitly universally
quantified.

On page 20, we defined Gr(C) to represent the ground formula obtained
from a QPROP expression. Suppose that C is a quantified clause. What can
we say about the relative sizes of C and Gr(C)? The number of quantifiers in
a quantified clause is not bounded. If we ignore logarithmic factors (arising from
issues in exactly how we encode the symbols) then the number of quantifiers can be
linear in the size |{C| of the quantified clause. However, on grounding a quantified
clause the number of ground clauses produced is exponential in the number of

quantifiers. That is, we can expect

|GrL(C)| = O(exp(|Cl)) (4.2)

and furthermore that there will be no (significantly) better bound.
This potentially exponential difference between the size of a quantified clause
and the size of the ground equivalent will be very important in understanding the

results in Chapter VI
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4.2 _The “Database of Clauses” Viewpoint.

We now move to the issue of how to set up algorithms that can take quantified
clauses as input. We call such algorithms “lifted” because of their jump from
boolean logic to a language with quantifiers.

The key observation we use is that many steps in SAT algorithms do little
more than scan the set of clauses, or some subset of them, for clauses satisfying a
certain property. We can think of this as a step in which the algorithm restricts
its attention to a subset of the clauses, temporarily ignoring all the others.

There are two classes of restrictions that are applied:

1. Syntactic restrictions: these do not depend on the current truth value as-

signment P.
2. Semantic restrictions: these do depend on P.

An example of a syntactic restriction is to find all clauses containing a given
literal. This restriction is very common in algorithms because they often proceed
by making (or considering) changes to literals one at a time, and every time a
literal is changed they want to find the effects of this change. It then makes sense
that the effects of the change can only originate in clauses containing the changed
literal. For example, in the Davis-Putnam procedure, when we value a literal ! we
call the unit-propagation procedure which first finds all clauses containing { and
checks whether any new information can be extracted from those clauses.

Since, by definition, such syntactic restrictions do not depend on the current
state of the solver, P, it follows that we can build all the required sets in advance.

In the ground solvers, this is usually done by a simple indexing scheme into the



entire set of clauses.

An example of a semantic restriction is the set of currently unsatisfied clauses
in WSAT: we need clauses in which all the literals are set to FALSE by the current
assignment.

Semantic restrictions are handled quite differently from syntactic restrictions
because they depend on the current state of the solver and so cannot be made
before starting the search process. For example, in its initialization step, WSAT
creates a new random assignment and scans all the clauses in the entire database
looking for those that are unsatisfied. This must also be done after every restart;
no static indexing scheme can take account of the changes in the assignment.
Also, the set of unsatisfied clauses is constantly changing and must be updated
after every flip of a variable. Again, the update is done by finding a subset of the
clauses that satisfy a certain property - in this case that the clause contains the
literal that was just flipped, and all the literals are now set to FALSE by the current
assignment.

We dub all such processes that extract sets (or information about sets) of
clauses satisfying semantic restrictions “subsearch”. The implications that such
processes are search processes is deliberate. There are two reasons for considering
them a form of search: Firstly, it is standard to refer to “searching a database”: we
can view the set of clauses as a large database and then we search for all matches
to our requirements. Secondly, and perhaps more importantly, in Chapter VI we
shall see that the task is NP-hard with respect to the size of the quantified clauses.
Hence we will indeed want to use search algorithms for this “subsearch”.

Syntactic restrictions are much simpler and will not be done by search; how-



ever they are still an important part of algorithms and so must also be lifted.

What does it mean to search the database of clauses when we have quantified
clauses? Recall that the set of ground clauses arising from a quantified clause is just
the set of possible sets of bindings for the universally quantified domain variables.
Searching for ground clauses satisfying a certain property is equivalent to searching
through sets of bindings for these variables.

For example, suppose we have the clause

Vi, j. r(5) vV p(i,5) (4.3)

Then finding a ground clause satisfying some semantic restriction is the same as
finding bindings for the variables 7, . Subsearch is a search for relevant bindings
of domain variables. In contrast, syntactic restrictions on a quantified clauses will
be done by a simple form of unification.

In the next chapter we shall cover the standard algorithms again and show
how they can be rewritten in terms of subsearch. However, first it is convenient
to formalize these ideas. We first formalize the concept of a restriction, and then

treat the cases of syntactic restrictions and semantic restrictions separately.

4.3 General Restrictions on the Database

To formalize the idea of restricting the database of clauses we proceed in a
fashion that can handle both ground and quantified clauses. For general restrictions

we will need three components:

1. Some set of clauses, C, that can contain quantified clauses. For example €
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could contain the clauses in Figure 3, or might consist of only ground clauses.

2. The current truth value assignment P for the ground predicates (propo-
sitions) in the theory. P can be a partial assignment: we might have

7(1) = TRUE, r(3) = FALSE and r(2) left unassigned (r(2) = UNVALUED).
3. A boolean restriction function f(c, P)
The restriction function f takes a ground clause ¢ and returns whether or

not the clause is accepted according to the current semantics P. A common re-

quirement is to restrict to violated {unsatisfied) clauses, in which case

fulc, P) +— Vil€c I=FALSEin P (4.4)

that is, the assignment P definitely violates the clause c.
A syntactic restriction is the special case where the function f does not
depend on P.

We use this notion of restriction function to make the following definition:

Definition 4.3.1

Given a clause set C, assignment P, and restriction function f, we
define the term S?(C, P, f) to refer to any set of (possibly quantified)

clauses such that

c€Gr(S?(C,P,f)} +— c¢e€Gr(C) A f(c, P) (4.5)

That is, S2(C, P, f) contains (perhaps implicitly) every ground clause
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from C that satisfies the condition imposed by f. We will call S9(C, P, f)

an f-restriction of C' under P. O

The superscript “Q”. is a reminder that S?(C, P, f} can contain quantified
clauses. If C is a single quantified clause then we can think of S?(C, P, f) as
specifying the minimal restriction on the bindings of the domain variables such

that f holds.

As an example, consider the case where C consists of only (4.3):
Vi, j. r(5) V pli,J)

Let P assign all instances of p(i, j} to FALSE, and all instances of r(:) to TRUE,

except r(2)} which is set to FALSE. Then
SUC,Pfy) = Vi r(2) V p(i,2) (4.6)

We now list some of the properties of an f-restriction that follow directly
from the definition. Such properties will often underlie various discussions and

algorithms, even though we will typically not refer to them explicitly.

4.3.1 Non-Uniqueness

There are certainly cases in which S?(C, P, f) can contain quantified clauses.
A trivial example would be the case that f accepts all clauses, in which case
SQ(C, P, f) = C satisfies the definition. However, Gr[C] also satisfies the defini-
tion. This means that an f-restriction is not unique. If we talk about equality of

f-restrictions we will have to limit ourself to “equality up to representation”. We
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will denote this by a subscript “G” with the meaning
C| =g Cg — GT[C[] = GT[C:Z} (47)

We could make an f-restriction unique by demanding that it produces only ground
theories, and in fact we will eventually do this for the case of semantic restrictions.
However, for syntactic restrictions we will need to keep the option of having quan-

tified clauses.

4.3.2 Idempotency

Since an f-restriction returns a set of clauses, we could f-restrict these again.

If we use the same restriction then clearly the set will not change
SUSUC, P, f), P, f) =¢ SUC,P,f) (4.8)

4.3.3 Distributivity

An f-restriction distributes across taking unions (conjunctions) of sets of

clauses
SQ(CIUCQ'.'P:f) =G SQ(ChPsf)USQ(CZsPaf) (49)

This essentially holds because the restriction is something that tests ground
clauses individually and independently. An interesting property of the algorithms
in Chapter III is that we do not need restrictions such as “there are precisely 6

unsatisfied ground clauses”, or nonmonotonic restrictions such as “accept a clause
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iff there is no other accepted clause sharing a literal with it”.

4.3.4 Commutativity

S9(S®(C,P, fi), P, f,) =¢ S°(S?C, P f), P fi) (4.10)

Again this is because the restriction tests only individual ground clauses. Both

orders of restricting simply select all the clauses that satisfy both f, and fs.

In practice, the different usages of semantic and syntactic restrictions mean
that they require two different instances of the notion of f-restriction. Algorithms
typically take a syntactic restriction and then feed the result to a semantic restric-
tion: for example, in order to detect a contradiction on setting a literal [ to FALSE,
we might want the set of clauses containing ! and having no TRUE or UNVALUED
literals.

The output of the syntactic restriction is a set of clauses on which we want
to do further work, and it will turn out that we should leave it as lifted as possible.
Since the restriction does not involve P we will see that this is feasible.

For semantic restrictions having the output in ground form is adequate (at
least for the purposes of this thesis). Furthermore, in practice, P is likely to be
much messier than the simple example above and so it is much less likely that
a simple lifted form exists. The following two sections deal with syntactic and

sermnantic restrictions separately in order to take account of these differences.
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4.4 Svntactic Restrictions: The Set R(C. 1)

By definition, syntactic restrictions are the case in which f(e, P) does not
depend on P, and so can be written as just f(c). It turns out that all we need is

the ability to restrict to clauses containing a given literal {, that is

file) +— leec (4.11)

In the ground case the f; restriction of a set of ground clauses C will also be a set

of ground clauses which we denote by RE(C, 1), defined by

ce RE(C,l) +— ceCAlec (4.12)

However, in the lifted case we want the f;-restriction to involve as little grounding
as possible because the output of the restriction will be passed to a semantic
restriction. The associated subsearch problem will be solved by exploiting the
quantifiers in the clauses.

Thus, in the context of QCNF (or QPROP) we will use the notation R(C, {)
for the fi-restriction. We will assume that [ is ground — that is, a proposition or
its negation, with no domain variables.

We require that R(C,!) satisfies

Gr(R(C,1)) = RE(Gr(C),1)) (4.13)

and also that R{C,!) remains “as lifted as practical®.

We can, and will, obtain R(C,!) via a one-way matching of the arguments
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of [ to the variables occurring in the clauses in C. For example, suppose that C
is the clause of (4.3) and we want to find R(C,r(2)). The needed set of clauses

corresponds to the binding j = 2 and hence

R(C,r(2)) = Yi r(2) Vv p(4,2)

In the case of multiple matches we take the conjunction of the matches. For

example, suppose we have the clause of (2.24):

C = VYoabi —(a<bd) V -in(o,a,i) V - info,b,2) (4.14)

and want clauses containing - in(2,3,4). We can match on the second or third
literals with different bindings. Then R(C, — in(2, 3, 4)) consists of two quantified

clauses

Vb, -(3<b) v -in(2,3,4) v —in{(2,0,4) A

Ya -(a<3)V -in(2,e,4) V =1in(2,3,4) (4.15)

In this case we can combine the clauses by changing the dummy variables and

reordering the literals:

Va. (- (3<a) A ={e<3)) V =in(2,3,4) V -in(2,a,4)

and then using the properties of the fixed predicate < to replace the conjunct with



72

the equality predicate:

Va a=3 VvV =-1in(2,3,4) V = in(2,a,4) (4.16)

In other words R(C, - in(2, 3,4)} is just

in(2,3,d) — [Va a#3 — -in(2,q,4)] (4.17)

This also illustrates the way that B(C, !) restrictions are used: If we set in(2, 3,4) =
TRUE then we require that object 2 is not in any other plane at that time.

Note that (4.15) and (4.16) both ground out to the same SAT expressions,
i.e. they give exactly the same set of ground clauses (and without first having
to remove duplicate clauses). The fact that we can equally well represent the
restriction by (4.15) or the arguably “more lifted” in (4.16) suggests that trying to
give an exact definition to R(C,!) being as “lifted as possible” is difficult. We shall
take the practical view that an implementation should strive to avoid groundings,
but need not attempt to do such combinations as above. The implementation we
present in Chapter VIII knows the values of fixed predicates, such as arithmetic
comparison operators, however, it does not do any reasoning that invelves such
combination of clauses. Such reasoning is not part of QCNF, or the lifted solver
we consider, however, it might be useful to have a solver that tried to use such
reasoning by means of calls to a theorem prover. In any case, the avoidance of
grounding is just for efficiency reasons and does not affect the correctness of the
implementations.

Since every clause in R{C, ) contains the literal [ we can also remove it from
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every clause. The following definition will be convenient:

Definition 4.4.1

R~(C,1) is defined as the set of quantified clauses such that,

c € Gr[R7(C,l)] «— (c Vv i) eGr[R(C,I) (4.18)

or equivalently
ce Gr[R7(C,1)] «— (c Vv 1) eGr[C] (4.19)

O

Note that R(C,l) =1v R (C,!l). It can be helpful to think of R~(C,!) as
the maximal set of subclauses of C' that can be written as ={ — R~(C,[).

In the example given above, we have that
R™(C, ~in(2,3,4)) = Va. [a=3 V =-in(2,q,4) (4.20)

[t is important that R~(C, = 1) is also a QCNF formula. Implementations
of algorithms will typically work by producing various R~(C,!) and then using the
fact that they are just quantified clauses in order to solve their subsearch problems.

We could also extend the definition to the case that [ is a literal with free

variables (a “lifted literal”). Regarding [ as defining a set L of ground literals, we

can define

ce R(C,L) +— (ceC)A3lL [leL Ale] (4.21)



74

Finding R(C, L) would then need unification, but we do not need such a case here,

as we do not use lifted literals.

4.5 Semantic Restrictions: The Set S(C. P, u. s)

Semantic restrictions are those for which the function f(c, P) does depend
on P. It turns out that we only need a restriction function that simply tests the

numbers of UNVALUED and TRUE literals in the clause

fus(c, P) +— (number of UNVALUED literals in ¢ is u) A

(number of TRUE literals in ¢ is s) (4.22)

For example, to restrict to unsatisfied clauses we want u = s = 0, or for clauses
that give rise to a propagation we want u = 1 and s = 0. (This will become clearer
in Chapter V.) It will also be sufficient for the f,, restriction to produce just
ground clauses, and hence we use a special definition for this case:

Definition 4.5.1

The set S(C, P,u,s), with C being a set (conjunction) of, possibly
quantified, clauses, is the set of ground clauses with the properties

that:

1. Precisely u of the literals are unvalued (assipned UNVALUED) by P.

2. Precisely s of the literals are assigned TRUE in P.

We will call this set the (u, s)-restriction of C under P.

Cl



It is important to note that S(C, P, u,s) is a conceptual tool. It is not
necessarily the case that we need to find all of it. For example, if we just want
to know whether or not a total assignment P satisfies the constraints C then we
just need to know whether there are any unsatisfied ground clauses. Since we
have a total assignment, all clauses will have © = 0 and so the clause will only be
unsatisfied if it has no TRUE literals, hence we just need the case u = s = 0. If
S(C, P,0,0) is empty then the theory is satisfied and P is a model. To prove that
it is not a model we do not need to produce the entire set S(C, P, 0,0), but merely
to produce one element of it, any unsatisfied ground clause is enough to show an
assignment is not a model.

As mentioned earlier, we will refer to the tasks of determining relevant, prop-

erties or elements of S(C, P, u, s} as subsearch problems.

4.6_Subsearch Problems

In this section, we define the various subsearch problems that we shall need.
Lifted algorithms will be written in terms of solutions to these problems and so
we will also give the relevant routines or fragments of pseudo-code to which they

correspond.

4.6.1 The Checking Problem

Definition 4.6.1

The (u, s)-checking problem is the decision problem:

INSTANCE: A set of, possibly quantified, clauses C and a (possibly
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partial) assignment P
QUESTION: Does S(C, P,u,s) # @ ? =]

Note that v and s are fixed and not part of the input.

The inequality might seem strange but we shall see in Chapter VI that check-
ing for non-emptiness is a somewhat more natural search problem. Also, we shall
see in Section 6.3 that the problem written this way is NP-complete (in a sense

that we shall describe in detail in that section).

4.6.2 The Counting Problem

Definition 4.6.2
The (u, s}-counting problem is the following problem:

INSTANCE: A set of, possibly quantified, clauses C and a (possibly

partial) assignment P

TASK: Produce a binary representation of the number of elements in

S(C, P, u,s). That is, find |S(C, P, u, s)|. m]

In pseudo-code we will refer to this by the procedure cCOUNT( S(C, P, u, s)).

We emphasize that although we will write all subsearch problems in this form,
they are not to be thought of as functions that take the entire set S(C, P, u, s) as
input and only then solve the relevant problem. Although they could be immple-
mented in such a fashion, it would be very inefficient. Instead, the problems are
meant in the sense of functions such as COuNT(S(C, P, 0,0)) that are implemented
as directly as possible. However, we will retain the form with S(C, P, u, s) to keep

a link back to Definition 4.5.1.
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4.6.3 The Iteration Problem

Definition 4.6.3
The (u, s)-iteration problem is the following problem:

INSTANCE: A set of, possibly quantified, clauses C and a (possibly

partial) assignment P.

TASK: Produce a method to iterate over all elements of S{C, P, u, s).

O

Note that we do not require all the elements to be available at once. It would
be sufficient to have some procedure NEXT() that returns a new ground clause on
each call, or a signal that no more ground clauses remain.

In pseudo-code we could refer to this by the procedure NEXT( S(C, P, u,s) ).
Alternatively, iteration could mean we have a way to implement a code fragment

such as

foreach c € S(C, P, u, s)
do something with ¢

end foreach

We could use such an iterator in order to solve the counting problem by

count =: 0

foreach c € S(C, P, u, s)
count := count + 1

end foreach

return count
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The number of clauses could easily be exponential, but since the output
of the checking problem is in binary it is possible that there are ways that are
exponentially faster than just enumerating all the individuals. For example, if P
values all literals to FALSE, and C contains no negative literals then S(C, P, u, s)
is just the entire set Gr(C) and we can calculate this number directly rather then

having to count it out.

4.6.4 The Enumeration Problem

Definition 4.6.4

The (u, s)-iteration problem is the following problem:

INSTANCE: A set of, possibly quantified, clauses C and a (possibly

partial) assignment P.

TASK: Produce the set S(C, P, u, s) itself. m]

In general, S(C, P, u, s) might be very large, but we shall actually use enu-
meration in WSAT because in that case the set typically stays at a manageable

size.

4.6.5 Two Selection Problems

In some cases we merely want to select a clause satisfying a given property,

1.e., to select an element of S(C, P, ut,s). We need two types of selection:

Definition 4.6.5

The uniform selection problem is the following problem:
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INSTANCE: A set of, possibly quantified. clauses C' and a (possibly

partial) assignment P.

TASK: Produce a ground clause ¢ that is uniformly and randomly

selected from the set S(C, P, v, s). O

In pseudo-code we refer to this by UNIFORMLY-SELECT( S(C, P,u,5) ). It

will be used in WSAT.

Definition 4.6.6

The free-selection problem is the following problem:

INSTANCE: A set of, possibly quantified, clauses C' and a (possibly

partial) assignment P.

TASK: Produce any ground clause c in the set S(C, P, u, s). The selec-
tion procedure need not satisfy any probability distribution, it is just

required to return any element. O

In pseudo-code we will refer to this by the function FREELY-SELECT with an

intended meaning the same as

function FREELY-SELECT( S(C, P, u,s))
search through the clauses in S(C, P, u, s)

if find a clause c then return ¢ return on finding first clause

else return fail

In neither of these cases is it necessary to first explicitly produce S{C, P, u, 5).
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4.6.6 “Union” Subsearch Problems

In the above, we only covered the case of subsearch over a single S(C, P, u, s)
set. In general, we could have subsearch over a union of such sets {for example
with different « and s values). In one sense this adds nothing new, for example,

we could FREELY-SELECT from a union of two sets using

proc FREELY-SELECT(S); U S,)
¢ := FREELY-SELECT(.S))
if ¢= fail return FREELY-SELECT(S)
return c

end

However, this will restrict the subsearch too much. Instead the intention is that
when possible the two sets are treated together. We shall see an example of the

use of subsearch on a union in Figure 23.

4.6.7 Comments on the Problems

The free-selection and checking problem are essentially identical because,
in practice (though not necessarily in principle), methods to solve the checking
problem will explicitly produce an element if the set is non-empty.

Also, note that we do not claim that the list is exhaustive. There might well
be other search algorithms that need subsearch problems not on this list. However,
it is sufficient for wSAT and the Davis-Putnam procedure from Chapter I11. In the
next chapter, we illustrate how they are used.

We could have written all these subsearch problems in the more general terms
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of S(C, P, ), but we kept to the (u, s)-restrictions because it is these that give rise

to interesting complexities and search problems.

4.6.8 Combining Clauses

Combining clauses is done in a trivial fashion. Write the set of all clauses C

as a conjunction of single, possibly quantified, clauses

C = ACG (4.23)

Then, directly from the definition, we have

S(ACi,Pu,s) = U S(Ci, Pu,s) (4.24)

For the checking problem we just have

S(/_\C,-,P,u,s);ﬁ@ — \/S(Ci,P,u,s);é(Z) (4.25)

and for the counting problem

couNT(S( ACi , P, s)) = Y count(S(Ci, P,u,s)) (4.26)

1

Enumeration and iteration just run over the separate clauses. Similarly, for

the selection problems:

1. Free selection: Freely pick any C; for which S{C,, P, «, s) # @, and then just

do free selection on C;
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2. Uniform selection: Pick a C; randomly, but with appropriate weightings de-
termined from all the counT(S(C;, P, 1, s)), and then call uniform selection

on that C;

We have no method to solve the subsearch problems on S(C, P, u, s), other
than to just split it as above and solve the subsearch problems for individual
clauses. Hence, we will often just take C to be a single quantified clause ¢, and

leave it as implied that subsearch results are to be combined in the obvious fashion.

4.7 Summary

In this chapter we defined the language QCNF. Most of the thesis is con-
cerned with solving problems written in QCNF. To provide a basis with which
to describe such solvers we identified a task performed by current ground solvers:
they have to scan the database of clauses for those satisfying given properties. This
was formalized in terms of restrictions of the database and in particular the set
S(C, P, u,s). We finally gave a list of tasks, called subsearch problems, associated
with S(C, P, u, s). Ways to solve these tasks will form the heart of a lifted solver.

In the next chapter we look at how search algorithms can indeed be rephrased
so that access to the relevant QCNF formula is in terms of subsearch problems.

In Chapter VI, we will return to the subsearch problems themselves and study
their computational complexity and how to rephrase them in terms of CSP-like

problems.
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CHAPTER V

REWRITING SEARCH ALGORITHMS IN TERMS OF SUBSEARCH

Qur aim in this chapter is to show that the language of restrictions and sub-
search problems from Chapter IV is useful. We will rewrite some SAT algorithms
in terms of the syntactic restrictions such as R(C,[) and the set S(C, P, u, s} with
its associated subsearch problems.

We suggest that on first reading of each algorithm it might be best to forget
about QCNF and lifting and take the set C to be a set of ground clauses. Once
it is clear that in this case the search algorithm has not been changed then lifting
the algorithm is just a matter of allowing the set C' to contain quantified clauses.
In this chapter, the lifting is done in such a way that allowing the clause database
to contain quantified clauses does not change the search algorithm itself. We will
discuss this further in Section 5.2.

We are going to see that the subsearch problems give us an “abstract ma-
chine” with which we can build lifted search engines. We expand on this in the
next section. Later in the chapter we will look at expressing WSAT, unit propaga-
tion, and the Davis-Putnam procedure in terms of subsearch problems. Hence, the
essential point of this chapter is that we can express search algorithms in terms of
subsearch problems rather than by direct access to the quantified clauses. In Chap-
ter VII, we will see that subsearch can actually done more efficiently for quantified

clauses than for their ground equivalents.
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FIGURE 15. Splitting subsearch from search. The search engine only gets access
to the set of clauses C by posing subsearch problems and having them answered

by the subsearch engine. Both engines can access the current state P.

This thesis has two major themes:

1. We can encapsulate the clauses in subsearch problems.

5.1 Splitting Subsearch and Search

2. We can solve subsearch problems more efficiently if the clauses are not ground

but are quantified.

The goal of this chapter is to demonstrate that the encapsulation is possible.

We will do this by rewriting the algorithms to conform to a structure as given in

Figure 15. The second theme will be treated in Chapter VII.

Similar splits have been useful in other areas.

One might think of the

database manager (DBM) in a database system. The DBM (c. [. subsearch engine)

controls access to the raw data structures (tables, B-trees, etc) and provides a lan-
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guage, such as SQL, that the user (c.f. search engine) can use to state problems.
In fact, there is a close analogy with the DBM given the view taken in Section 4.2.
The DBM shields the SQL programmer from the gory details of optimizing ac-
cess to tables, so that, for example, how a join is actually implemented becomes

irrelevant. In return the DBM can optimize many of the operations.

5.2 Minimal vs. Non-Minimal Lifting

Here we clarify whether or not lifting has an effect on the search algorithm
itself. Our first liftings are, by construction, designed to have no essential effect.
We will call this “minimal lifting”. It means that the course taken by the lifted
search is the same as the ground search would take. In the case of Davis-Putnam
we mean that the same set of branch variables and values would be taken; in local
search we would go through the same set of states.

The concept of “sameness” is a little trickier in the case of algorithms involv-
ing random choices - in the Davis-Putnam procedure we might break tie breaks
randomly, and in local search we have intrinsic use of stochastic steps. Such steps
involve the random selection of an element from a set, and in practice the set is
represented as specific data structure such as a list and different implementations
might end up with a different order, so even if the sets are the same in two im-
plementations, they might select different elements. We do not count this as a
real difference as it is at the same level as changing the pseudo-random number
generator, and will make no difference to the results in a stochastic sense. Even
this difference could be avoided by imposing an order on all the literals, and al-

ways ordering the sets before selection. If this were done, then in minimal lifting
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the sequences of states in the search would be exactly the same in the lifted and
non-lifted cases.

The fact that we mostly consider minimal lifting has an important ramifica-
tion: we do not really care much about the search itself. All the details of exactly
which particular flavor of GSAT or WSAT we use, or parameter settings such as
noise and so forth, are irrelevant to the issues discussed here. In minimal lifting we
only care about handling quantified clauses in a way that looks to the search as if
they were ground, but does not suffer the explosion of memory and also makes the
search moves themselves faster. It is only important to us that the steps taken by
the search engine can be done in less time and with less memory usage. It is not
important (in minimal lifting) whether or not the search engine should be doing
these steps at all.

We will use “non-minimal lifting” to mean cases when the lifting directly
affects the course of the search itself. We will return to this in Section 11.2.

In this chapter we are doing only minimal liftings: we are not changing the
algorithms at all, we are just rephrasing them in terms of subsearch. We will look
at WSAT first as it is somewhat simpler than Davis-Putnam, but first we consider

the simple task of checking whether or not an assignment is a model.

5.3 Model Checkin

As a simple example to make an easy introduction and to become familiar
with the notation, consider the task of checking whether a complete assignment
satisfies the constraints. Consider the pseudo-code from Figure 16(a). We see that

the most relevant subsearch problem in this case is the checking problem. The
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checking problem determines for each quantified clause whether or not it contains

a violated ground clause.

proc MODEL-CHECK(P)
if S(C,P,0,0) = @ return P is a model of C
¢ := FREELY-SELECT(S(C, P, 0,0))
return P js not a model, a witness to this is c

end
(a)

proc MODEL-CHECK(/P)
¢ 1= FREELY-SELECT(S(C, P,0,0))
if ¢ = fail return P is a model of C
return P is not a model, a witness to this is ¢

end
(b)

FIGURE 16. Simple lifted model check written in terms of subsearch problems
from Section 4.6. P is assumed to be a total assignment. If P is not a model then
a violated ground clause is returned. (a) Conceptual version. (b) Realistic version
where FREELY-SELECT is used to also solve the checking problem.

In the case that P is not a satisfying assignment, we also added the ability
to return a witness to this fact: we return a violated clause, obtained from the the
set S(C, P,0,0) by use of the free selection subsearch problem.

In practice, the two subsearch problems can be folded together as in Fig-
ure 16(b}): we try to FREELY-SELECT a violated clause, and if this fails we deduce
P is a model. In any case it is clear that the majority of the time will typically be
spent in the subsearch subroutines rather than the routine itself.

We should also remember, as discussed in Section 4.6, that although we
wrote selection in the form FREELY-SELECT(S(C, P,0,0)) it is not to be thought

of as a function that takes the entire set S{C, P, 0,0) as input and then selects one
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at random, but as a function FREELY-SELECT(C, P, 0,0) that is implemented as
directly as possible.

Of course, in the case of model-checking, P does not change. In contrast, in
a search engine, P will constantly be changing, and it is vital to exploit the fact
that changes are small and information can be changed incrementally. We now

discuss some points of how to do this in the lifted case.

5.4 Exploiting Incremental Changes

An essential part of implementing ground solvers such as WSAT or the Davis-
Putnam procedure is to exploit the fact that the changes made by the search
engines to the assignment P are relatively small. Exploiting incremental changes
will also be essential to the speed of lifted search engines. Typically, such incre-
mentality means responding to the change of the value of a single literal.

There are two components of such incremental maintenance: syntactic and
semantic. This split arises for the same reasons as discussed in Chapter IV. There
are changes that depend only on the literal being changed, and not the rest of
the assignment: these we will call syntactic. Other changes depend not only on
the literal being changed but also on the other variable assignments. We shall call
these semantic.

Handling the semantic case will consist of maintaining various S(C, P, u, s)
sets as P changes. This is a difficult issue that we will touch in this chapter, and

also revisit later after having discussed more about implementing subsearch itself

(Chapter VII).
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5.5 Syntactic Restrictions and Static Indexing

By the “syntactic component of incrementality” we mean the steps in search
algorithms that restrict attention to those clauses that can be affected by a change
in a given literal. For example, in unit propagation, instead of redoing complete
propagation every time a literal changes, we can look only at the clauses containing
that literal. Such use of incremental maintenance is associated with the syntactic
restrictions R(C,!).

In ground solvers, we typically take care of this by a static indexing scheme.
Before the search is started we can build, for every literal, a list of pointers to all
clauses containing that literal. Similarly, in lifted solvers, we can build the sets
of clauses R™(C,!) (see Definition 4.4.1) for every literal, in advance of the search
itself.

The key point is that since these restrictions do not depend on P they can
all be done in advance of the search. Lifting does not really have a strong effect
(either good or bad) here.

Hence, the syntactic restriction mechanisms in Section 4.4 play the same
role as the static indexing methods commonly used in ground solvers. Both are
done in advance of the search itself and do not incur any significant runtime costs
themselves. Therefore we do not need to optimize the calculation of the syntac-
tic restrictions. We can essentially assume during the search that any syntactic
restriction on the input clauses is available immediately.

It is important to keep this separate from the questions of semantic mainte-
nance. This will have to be done dynamically, possibly via subsearch in the lifted

case, and is not associated with indexing schemes even in the ground case.



90

5.6 _WsaAT

Now we return to the WSAT algorithm of Figure 5, to rewrite it, and its
associated subroutines, in terms of subsearch problems. We remark that there is
some relation between what we do here and work on converting GSAT to work with
non-clausal formulas [63). We will discuss this further in Section 10.2.

In converting an algorithm to use subsearch we have some freedom of choice
as to how much work is delegated to the subsearch engine and how much is kept
under the explicit control of the search engine itself.

In Figure 17(a) we give a version in which almost all control is passed off to the
subsearch engine. The only access to the clauses is via the checking problem (to see
whether we have solved the problem) and the uniform selection subsearch problem
to pick a random element of S(C, P,0,0). This version will be very inefficient,
if the subsearch engine solves the subsearch problems from scratch each time it
is called. Instead, an efficient implementation should solve them incrementally,
that is, it would keep track of the state P. After the search flips a variable the
subsearch engine is informed so that it has a chance to do the needed incremental
maintenance.

In wsAT, we shall be storing the set S(C, P, 0,0) explicitly.! This is feasible
because WSAT is typically extremely effective at keeping to regions of the search
space in which this set is much smaller than the entire set of clauses. In the lifted

implementation discussed in Chapter VIII, the size of S(C, P, 0,0) has not proved

1To simplify the discussions we will assume for now that only S (C,P,0,0) is stored and
maintained. In practice, more information can be, and should be, stored. See Chapter VIII, and
in particular Section 8.7, for further discussion of this issue.
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proc WSAT
for ¢t := 1 to MAX-TRIES
P := random total assignment
for i :=1 to MAX-FLIPS

if S(C,P,0,0) = @ return P Subsearch
¢ := UNIFORM-SELECT(S(C, P,0,0)) Subsearch
{ := SELECT-LITERAL(c, P)
P:=P[l:= -l
inform subsearch engine that | has flipped
end for
end for
return solutionNotFound
end
(a)
proc WSAT

for t :=1 to MAX-TRIES
P := random total assignment
S5:=S5(C,P,0,0) The enumeration subsearch problem
for i :=1 £to MAX-FLIPS
if S =0 return P
¢ := select a random element from S Not subsearch!
[ := SELECT-LITERAL(c, P)
P:=Pjl:= =]
UPDATE(S, ) Incrementally maintain §
end for
end for
return solutionNotFound
end

(b)

FIGURE 17. WSAT in terms of subsearch: We give two ways to rewrite the WSAT
of Figure 5 in terms of subsearch. {a) Passes almost all the work to the subsearch.
The subsearch engine should handle UNIFORM-SELECT in an efficient incremental
fashion. (b) The search itself takes control of the set of unsatisfied clauses, and
their incremental maintenance.
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to be a problem (however, see also the comments in Section 7.4.2).

In order to make this clearer we will also write WSAT so that the main search
routine itself explicitly stores and maintains S(C, P,0,0). This is illustrated in
Figure 17(b). Note that since the routine now explicitly stores S(C, P,0,0) the
selection of a random clause is no longer a subsearch problem.

Versions (a) and (b) of WSAT use different sets of subsearch problems. It
is quite common that a search can be written many different ways. This reflects
different decisions about the exact dividing line between search and subsearch, and
that many of the subsearch problems themselves are interrelated (as discussed in
Section 4.6). Whether the maintenance of S(C, P,0,0) is considered part of the
search, as in (b), or as part of the subsearch, as in (a), is not so important. What is
important is that something must maintain the set and so do the equivalent of the
UPDATE(S, ) of (b). Note that such freedoms do not affect the existence or utility
of the conceptual split between search and subsearch: When making an assignment
of tasks to the search or subsearch engines we do not change the structure as given

in Figure 15.

5.6.1 Incremental Maintenance of S(C, P, 0, 0)

In wsAT we will rely on the set S(C, P,0,0) being sufficiently small that it
is possible to determine it explicitly. Hence, we start by solving the enumeration
problem, and after that maintain the set incrementally using UPDATE(S, 1).

Note that the selected literal ! is currently FALSE, since it is taken from a
currently unsatisfied clause. Hence the flip will take { from FALSE to TRUE. As

discussed in Section 3.3 we have two cases to consider, clauses containing I will
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be “broken” (become unsatisfied), those containing — I will be “made” (become
satisfied).

The ground version of the update routine was given in Figure 8. The lifted,
subsearch driven, version of this routine is given in Figure 18. The idea in both

cases is the same.

5.6.1.1 Handling Makes

The only clauses that can be made are those already in .S and containing {,
hence we remove R(S,!) from S. This is not a subsearch problem but is done with

a simple scan of the set S.

5.6.1.2 Handling Breaks

The only clauses that can break are those containing — { and with only
one TRUE satisfying literal, where a “satisfying literal” is one that is TRUE and so
causes the clause to be satisfied. Since — 1 is currently TRUE then it must be the
only satisfying literal. We assume that clauses are never tautologies, and hence
the clause cannot also contain [. Hence, when ! flips, the single satisfying literal

flips and the clause breaks. Accordingly, all elements of S(R(C, = 1), P,0,1) will

proc UPDATE(S, )

S:= 8\ R(5,!) Remove clauses that are made
S:=85 U S(R(C, -~ 1),P0,1) Add clauses that break
end

FIGURE 18. Lifted updating of the unsatisfied clause set in WsSAT. This uses
subsearch problems to update the set of unsafisfied clauses in WSAT in response
to setting [ := TRUE.
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become elements of S(C, P, 0, 0) after the flip and so should be added to the set.

More formally we might write

(l=FALSE)EP A
P'=P[l:=TRUE] A
tleec A ceS(C,P0,0 —
S(C,P',0,0) = -[(S(C,P,0,0) \ R(S(C,P,0,0),1)) U

S(R(C, -~ 1), P,0,1)] (5.1)

The set of breaks can also be found by taking R(C,!), removing { from each
and finding the subset of these that have no TRUE literals, followed by taking the

disjunction with ! again. That is, the ground set of breaks can be written as

[ v S(R™(C,1), P,0,0) (5.2)

where it is understood that the disjunction is distributed over the ground clauses
obtained from the subsearch enumeration problem. In this case, even the incre-
mental steps in WSAT involve finding sets S(C, P,0,0) for an appropriate C, and
so we will often focus on ways to find S(C, P,0,0).

The order of handling the makes and breaks will not affect the correctness
of the algorithm. However, it is better to do the makes first. If we did the reverse

order we would be pointlessly checking the newly broken clauses to see if they were

malkes.



The ground implementation of WSAT directly exploits the fact that the set of
interest is S(R(C, - 1), P,0,1). In the ground case, this set is obtained by a direct
scan of all the elements of R(C, - {) and selecting those cases in which there is
just one satisfying literal. Since this task is very common (it also is used in the
heuristics for variable selection), it is worthwhile to cache information about the
number of satisfying literals in every ground clause. Hence, ground solvers store
and maintain, for every clause, a count of the number of literals in the clause that
are currently TRUE. This saves having to evaluate all the literals of a clause every
time we want to know if there is just one TRUE literal. This is a very important
savings for the ground solver, but it does not change the fact that the time to
find all the breaks will still be O({R(C, {){). In Section 7.5 we will see that, even
without storing the literal count for each clause, the lifted version can improve on

this.

5.6.2 Literal Selection in WSAT

Note that the literal selection schemes of Figure 6 make no direct reference
to the clause database, and hence they need not be changed on lifting.

Counting the clauses that will be made (NUM-MAKES-IF-FLIP of Figure 7) is
still a matter of scanning the explicitly stored set, and hence also does not refer to
the clause database. However, for completeness we rewrite it in terms of the R(C, 1)
notation. As far as subsearch goes, after the initialization the only interesting step
is the num-breaks-if-flip routine in Figure 7. We give the subsearch version of
these in Figure 19. (However, sece Section 8.7 for a way to avoid subsearch on

literal selection.).
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proc NUM-BREAKS-IF-FLIP(])
Count the clauses in which [ is the only TRUE literal
return COUNT(S(R(C, —1),P,0,1))

end
(a)

proc NUM-MAKES-IF-FLIP(S, [}

Count the clauses that will be fixed by { := TRUE
return COUNT(R(S,!))
end

(b)
FIGURE 19. Counting makes and breaks for WSAT using subsearch. (a) Counting
breaks. (b) Counting makes within the unsatisfied set. Both (a) and (b) assume
that ! is currently FALSE ({ will have been taken from a currently unsatisfied clause).
In summary, WSAT can be written in terms of subsearch by combining Fig-

ures 17, 18, 6, and 19. Although we only discussed WSAT we can expect that

GSAT would be implemented in a similar fashion.

5.7 Unit Propagation

Converting unit propagation to rely on the subsearch problems is done much
like the conversion of WsAT. In Figure 20 we give two conversions. Version (a)
uses a recursive method, and relies heavily on the subsearch. Version (b) is it-
erative, keeping control of a container of literals yet to be propagated, and with
eager assignment of any literals discovered. There are also other similar ways to
implement the propagation.

In both cases it is worth noting that the sets S(C, P, 1,0) and S(C, P,0,0)
are constantly changing because P itself is changing as we discover propagations.

The search and subsearch engine should be able to take account of this.
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5.8 Davis-Putnam Procedure

The top-level control of the Davis-Putnam procedure, given in Figure 11,

does not need to be changed because it makes no direct reference to the clauses

proc UNIT-PROPAGATE(L, P) Propagate effects of { given P
Ci:=R(C, =) Note that = [ is false
if S(C,, P,0,0) = @ return Contradiction
while S(C),P,1,0) £ @ Note that P is changing

¢ := FREE-SELECT(S(C}, P,1,0))
I' := the literal in ¢ that is not valued by P
P :=PU{l' = true} Enforces unique way for ¢ to be satisfied
P := UNIT-PROPAGATE(!', P)
if P = Contradiction return Contradiction
end while
return P No contradiction was found

end
(a)

proc UNIT-PROPAGATE(!, P)
L:={l}
while L # O
select some I' € L and remove it from L
P:=PU{l' = true}
C_.p = R(C, - l')
fCyp#0
if S(C.p, P,0,0) =@ return Coniradiction.
foreach c € S(C.r, P,1,0)
I" .= the literal in ¢ that is not valued by P

L:=Lu{l"} Store [” for later propagation
end foreach
eénd while
return P

end

(b)

FIGURE 20. Lifted unit propagation. (a) A recursive way to implement unit
propagation (c. f. Figure 9). (b) An iterative way to inplement unit propagation
(c.f. Figure 10(b)).



themselves. Instead access is only through unit propagation, which we have already
covered, and the SELECT-LITERAL procedure given in Figure 12.
The final phase of SELECT-LITERAL also only uses unit propagation and so

it only remains to lift the pre-selection phase, that is, the fragment:

foreach variable v not already valued by P Pre-selection phase
ct(v) 1= number of binary clauses in C, under P, and containing v
¢s(v) := number of binary clauses in C under P, and containing —v

end foreach

The key observation is that, when we talk about binary clauses remaining af-
ter having enforced a partial assignment P, we are referring to ground clauses that
have no TRUE literals, precisely two UNVALUED literals, and an arbitrary number
of FALSE literals. That is, we are concerned with elements of sets S(C, P, 2,0).
However, the heuristics want to know the number of binary clauses remaining that
contain a given literal {. Thus, we can first restrict onto {, and, since | will be
UNVALUED, we will have only one other UNVALUED literal in the clause. Thus, the
subsearch problem needed by the heuristics is just count( S(R™(C,I), P,1,0) )

and we can write

foreach variable v not already valued by P Pre-selection phase
e(v) := couNT(S(R™(C,v), P,1,0))
cr(v) := cOoUNT(S(R(C,—w), P, 1,0))

end foreach
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5.9 Summary

In this chapter, we converted WSAT, unit propagation, and the Davis-Putnam
procedure, to work via subsearch problems instead of via direct access to the clause
sets. The parts of the algorithms that are left in the search code are fairly simple
and will run much faster than the subsearch. It is clear? that the majority of
the runtime will be spent solving subsearch problems (we include with this all
incremental maintenance of sets such as S(C, P,0,0)). Hence, if we are to make
the algorithms run efficiently with QCNF we will need to be able to handle the
subsearch problems effectively.

In the next chapter we study the nature of the subsearch problems. In
particular we look at their computational complexity, and find that they are NP-
hard. This suggests it is appropriate to use search methods to solve the subsearch
problems. In Chapter VII we will apply a simple backtracking method to the

subsearch.

*We have also checked this by profiling the implementations. This will also become clear in
Chapter VIIL



100

CHAPTER VI

THE COMPUTATIONAL COMPLEXITY OF SUBSEARCH

In this chapter, we look at the computational complexity of subsearch prob-
lems and see that they are indeed hard problems.

Unfortunately, we have no better method to solve subsearch problems on a
set C of quantified clauses than just to treat each quantified clause separately.
Hence, we will usually talk about subsearch in the context of a single quantified
clause, ¢, and study subsearch problems on S(c, P, u, ) rather than S(C, P, u, s).

When writing a general clause we need to account for predicates having

different arities. We do this by writing the arguments of a predicate as a tuple.

We take

¢ = Vouy,... v V(L) (6.1)

where each tuple £, is built from the domain variables u,,..., v, and possibly
constants. Also, [, is a predicate symbol or its negation. For example, —p(z, 4)
becomes (—p)(f) with t =< 7,4 >.

We will review the idea of a “Constraint Satisfaction Problem” (CSP), as
we will need it extensively in our discussion of subsearch on S(c, P,0,0). We then
consider the checking problem for S{c, P,0,0), and show it can be converted to
a search problem in a CSP. We use the connection with CSPs to show that the

checking problem is NP-complete.
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We then introduce a slight extension of CSPs (called CCSPs) that we will
define in such a way that they play the same role for S(c, P,u, 5) as CSPs play for
S(c, P,0,0). This allows us to extend the NP-completeness results to S(C, P, u, s).
(CCSPs themselves are not necessary to understanding the rest of the thesis: The
definition and results are included for reasons of completeness, and because the
CSP-based methods discussed in Chapter IX might, in future work, be extended
to CCSP methods.)

Writing the subsearch problems in terms of CSPs will also be used to motivate

algorithms to solve the subsearch.

6.1 Constraint Satisfaction Problems (CSPs)

CSPs have many applications in combinatorial optimization problems, and
have been studied very extensively (see for example [70, 1]), and so we only review

the most salient features here. Firstly, their definition:

Definition 65.1.1

A constraint satisfaction problem (CSP) has the following elements:

1. A set V of n finite domain variables v, ..., v, with domains D;.
That is, the v; take values in D; by means of bindings such as

v; = d; with d; € D;.
2. A set H of constraints. Each constraint /i is a pair consisting of
(a) a tuple #{h] of variables with t C V'

(b) a set G[h] of allowed tuples of bindings of variables to values,

so-called “Goods”, for the tuple ¢
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A set of bindings, or domain variable assignments, B, for the domain
variables is said to satisfy a constraint A iff the restriction of B to the

variables in ¢[h] gives a set of bindings that is equal to some element of

G[h).

An assignment is a satisfying assignment iff it satisfies all the con-

straints. a

The arity of a constraint /i is the number of variables it restricts, that is
|t(r]|. The maximum arity over all the constraints is said to be the arity of the
CSP. A CSP with arity & will be called a k-ary CSP. A binary CSP (BCSP) is a
2-ary CSP, that is all tuples t[h} have size of at most two.

The constraint hypergraph is the hypergraph formed by taking variables as
nodes, and the constraints H as hyperedges (recall that a hyperedge can link more
than two nodes). In the case of a BCSP we have a graph rather then a more
general hypergraph. Note that the hypergraph depends only on the tuples t[h!
and not the sets G[h].

As an example, consider graph coloring. The nodes correspond to variables
v; taking values in a set D of colors. Each edge (u;,v;) in the graph gives rise to a

constraint h;; with

t[h‘iJ] = (u,;)

Glhi] = {(m=c,vy=¢)|lceD&e;e D& #¢) (6.2)

The constraint can be left as a functional definition of the set Glv;, v;] or converted

to an extensionally defined set by enumerating possibilities. Notice that, in this
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case the constraint graph is the graph itself.

Consider a k-ary CSP for fixed k. For any constraint /i the size of G[h] is
bounded by d* where d is the size of the largest domain. Since this is independent of
the number of domain variables n we can say that checking a constraint is constant
time (with respect to n). Hence, checking whether a domain variable assignment
satisfies the constraints will be polytime. That is, the satisfiability problem for a
k-ary CSP is in NP.

However, we have just seen that even BCSPs contain graph coloring which
is NP-complete. Hence BCSPs are NP-complete. Similarly k-ary CSPs contain
BCSPs and so are also NP-complete.

Many of the search methods discussed for SAT in Chapter III are also used
to solve CSPs (see [1] for a recent survey). We will mostly be concerned with
simple backtracking: that is, we try to build up a satisfying assignment for the
domain variables by checking the constraints as soon as all the variables involved
in a constraint have been assigned values. However, in Chapter IX we will also

discuss the potential implications for subsearch of some more advanced CSP search

methods.

6.2 Conversion of S{c. P.0.0) to a CSP

As discussed earlier, we are considering a single, but arbitrary, quantified
clause ¢ written in the form given in (6.1). If we are looking for the elements of
S(c, P,0,0) then we need to find bindings for the v; such that every literal of the
disjunction is FALSE under the truth value assignment P. The condition that every

literal of a disjunction is FALSE suggests that it will be clearer if we negate the
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clause. Doing so we obtain

- = 3’1)1,...,'1),1. /\ _“lla(f,,,) (63)

ik

If P 1s fixed then the set of bindings for #, that cause the literal =i, (¢,) to be TRUE
are determined entirely by P and hence are also fixed.

This looks like the question of whether there is a solution to a set of con-
straints. We will show that this view is correct by mapping the problem to an
associated CSP. We will call this CSP the “sub-CSP” of ¢ to emphasize that it is
associated with the subsearch.

The set of variables of the sub-CSP are taken to be the same as the universally
quantified domain variables {v;,...,v,} of the clause c. Each literal I,(¢,) in ¢

becomnes a constraint A, in the sub-CSP with

t[h'a] = 1,

Glhe) = {t« =d.|lu{d.) = FALSE under P } (6.4)

That is, the variables in the constraint h, are just the arguments of the literal {,,
and the allowed sets of values for these variables are defined to be exactly those for
which the literal [,(2,) is assigned to FALSE by the (possibly partial) assignment
P.

It is important not to confuse the above assignment of values to the domain
variables, with the assignment P of truth values for the predicates.

A value assignment. to the domain variables the satisfies all the constraints

of the sub-CSP iff it assigns all the negated literals in (6.3) to FALSE. In this case,



it is an element of S(c, P, 0, 0).

Theorem 6.2.1

A set of domain variable assignments satisfies the sub-CSP from c iff

it. corresponds to an element (ground clause) in S(c, P, 0, 0). |

Proof: By construction. The domain variables satisfy a constraint iff the associ-
ated literal is assigned to FALSE under P. An assignment hence satisfies all the
constraints iff it causes every literal of the clause to be set to FALSE, i.e., iff it

corresponds to an element of S{c, P,0,0).00

Corollary 6.2.2

The sub-CSP of a quantified clause c is satisfiable iff S(c, P,0,0) # @.

O

Proof: Immediate. O

It is crucial to note that this CSP is related to the subsearch and not the
search itself (which, after all, is over QCNF not a CSP). The two search spaces,
and requirements and meanings of the searches are quite distinct.

Also, note that the constraint graph of the sub-CSP depends on the syntactic

structure of the clause, but not on P. In Chapter IX, we will suggest ways to exploit

this observation.

As an example, consider the clause

Vi g, k,m. p(i, ) — r(j,k,m) (6.5)
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The associated CSP-graph is shown in Figure 21{a). Similarly if we had

Vi gk q) A p(i3) — r(4,k,4) (6.6)

we get Figure 21(b). The nullary predicate does not involve any nodes and so is just
represented in the diagrams as a “self loop”. (Strictly speaking, we no longer have a
graph, but this does not matter as we the diagram is only for illustrational purposes
and not formal reasoning.) Of course, a nullary predicate is either satisfied, in
which case we can ignore it, or not satisfied in which case the problem is manifestly

unsatisfiable.

O .

a0 (i)

(b)

FIGURE 21. Constraint graphs of sub-CSPs from two simple clauses. (a) From
(6.5). The predicate r(j, k, m) becomes a hyperedge connecting the j, k and m
nodes of the CSP. (b) From (6.6), the nullary predicate ¢() becomes a constraint
not attached to any nodes.
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6.3 Complexity of the Checking Problem for S{C. P.0.0)

We have just seen that the question of whether a single quantified clause
contains an unsatisfied ground clause can be converted to the question of whether
an associated CSP, the sub-CSP, has a satisfying assignment. The conversion of a
quantified clause to the sub-CSP is very direct, the syntactic structure of the clause
converts directly to the constraint graph of the sub-CSP. The partial assignment
P directly gives the constraints themselves. A model of the CSP maps directly to
an element of S(c, P,0,0).

Intuitively it seems clear that the sub-CSPs that are produced are not special
CSPs but are fairly general, and since the CSP satisfaction problem is NP-complete
it should not be surprising that finding an element of S(c, P, 0,0) will also be NP-
complete. However, before proceeding, we first need to specify the size measure

that we are using.

Definition 6.3.1

The size measure for the complexity results on subsearch is the space

needed to specify the problem S(C, P, u, s) using QCNF. m]

It is crucial to note that this is quite different from the size measure that we would
use for the corresponding ground theory. The number of quantifiers in C can
increase linearly with C. But the size of the ground theory is exponential in the

number of quantifiers. Hence the size of Gr[C] can be exponentially larger than

the size of C.

We now have
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Theorem 6.3.2

Determining whether there are any elements in S(C, P,0,0) is NP-

complete. That is, the checking problem is NP-complete. u

Proof: it is straightforward to see that the problem is in NP. If the answer
to the checking problem is “yes” then the witness to this is an unsatisfied ground
clause in C. Assuming that C = A;c; then we can non-deterministically guess the
appropriate clause c¢;, and the appropriate set of domain variable bindings in ¢;
in order to give a ground clause. The resulting ground clause is certainly smaller
than C itself, and hence checking that it is unsatisfied is polytime in the size of
the problem.

To see that the problem is NP-hard we reduce an arbitrary BCSP to the case
of a theory with a single clause ¢ and specially constructed assignment P. The
c and P that we construct will have the property that the associated sub-CSP is
Jjust the original BCSP.

For each constraint h, of the BCSP we create a binary predicate p, taking

as arguments t[h,] i.e. the variables associated with the constraint. We take c to

be

c = Yu,...,v,. \/p,,(f.,,) {(6.7)

For the sub-CSP from ¢ to be the original BCSP we need to define P so as to

satisfy

Glhe]| = {ts =da]l(d,) = FALSE under P } (6.8)
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Hence, we take P to be the total assignment such that p,{d,) is FALSE if d,, € G|ha]
and is TRUE otherwise.

Then, by construction, there will be set of bindings for the v, giving an
unsatisfied ground clause iff every p,(¢;) is bound to FALSE by P, and hence iff
the binding corresponds to a satisfying assignment of the BCSP. Thus, finding an
element of S(C, P,0,0) is equivalent to finding a solution of the arbitrary BCSP
and therefore is NP-hard. O

In fact we can make quite strong restrictions on the clause ¢ and still stay

NP-complete:

1. Binary predicates with all domains of size 3 is NP-complete by reduction

from the BCSP corresponding to 3-coloring of a graph.

2. All domains of size 2, and with predicates limited to arity 3 is NP-complete

due to an earlier proof of NP-completeness by reduction from 3SAT [26].

In the model checking considered in Figure 16(b) we could paraphrase the
code as “we searched for a broken clause but failed and so P was a model”. This

is very suggestive of co-NP, and indeed we have:

Corollary 6.3.3

Determining whether S(C, P,0,0) = @ is co-NP-complete. a

Proof: By definition, as it is just the complement of the checking problem.O

Finding a ground clause from the set C' is just the free selection problem,

hence, in summary:

1. FREELY-SELECT(S(C, P, u, s)), and the checking problem are NP-complete.
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2. Testing S(C, P,0,0) = @ is co-NP-complete.

6.3.1 Comparison with Complexities for SAT

At first sight these results might seem very counterintuitive, after all we
“know” that showing S(C, P,0,0) = @ just means showing that P satisfies the
constraints C, and this is “clearly polytime”.

The resolution of this paradox lies in our previous comments about the dif-
ferent size measures being used. The hardness of the sub-CSP is in terms of the
number of its variables, but these variables are the quantified domain variables of
C. Hence the expected exponential behavior is in terms of the number of quanti-
fiers in €' and not in terms of the number of ground literals.

Of course the disparity can be even more dramatic in some cases. As an
extreme example consider the case of a quantified clause in which all the literals
are positive, and take the assignment P to set all positive ground literals to TRUE.
Then checking that the quantified clause is satisfied is just a matter of checking
that all the literals in it are indeed positive, and hence polytime in the size of the
quantified clause. In the ground case we would have to check every ground clause
separately, but the size can increase exponentially on grounding, and hence even
in this simple case checking the ground theory is not polytime.

Also, in practice, when we are given a sequence of search problems, the
size parameter for the sequence will be the domain sizes, and the clause set C
will otherwise remain constant. For example, in the logistics problem given in
Chapter II the axioms are fixed, instead the nummbers of planes and cities, ete, just

affect the sizes of the domains. If the number of domain variables is n and the
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maximum domain size is d then the search space for the sub-CSP is O(d"). If the
axioms are fixed then n is fixed, and in this case we have just a polynomial in the
domain sizes. Hence, solving the CSP is polytime with respect to the domain sizes.
That is, if the axioms are fixed grounding the theory only has a polynomial effect
on the size, and can be ignored for the purposes of NP measures of complexity.
Given the perhaps rather formal nature of this result one might wonder why
it matters. As explained so nicely in Garey and Johnson’s book [22] the practical
impact of a complexity result is to suggest the types of algorithms that might
be most effective, and change expectations about what is feasible. The same is
true in our case: Since subsearch is NP-complete, we shall be approaching it using
algorithms designed for such problems rather than expecting to find a fast general
solution. Indeed, given the effort we have spent translating subsearch to search in
a sub-CSP, it should not be too surprising that we will be concentrating on the

application of CSP-search methods to the subsearch.

6.4 Other Subsearch Problems for S(C. P, 0.0)

So far we have covered the free-selection and checking problems. What about,
the others? The counting problem is harder yet. The mapping from S(e, P, 0,0) to
a CSP was one-to-one, and so counting the size of S(c, P,0,0) means counting the
models of a CSP. However, one case of such a CSP is 3SAT: just take all predicates
to be arity 3, all domains to have size 2, and adjust the assignment P so that each
predicate converts to a clause. It follows that the counting problem is at least as
hard as counting the models of a 3SAT theory, which is #P-complete [22].

The enumeration and iteration problems can be potentially exponential time
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for the simple reason that there are CSPs which have an exponential number of
solutions. Storing S{c, P, 0,0) might require exponential space but for the iteration
problem we do not need to store all the elements and so it will only require linear
space.

Finally, we have the uniform selection problem. This requires us to randomly
select a model from the sub-CSIP and according to a uniform distribution. The
obvious method is to first count the number of models, randomly chose a number
up to this limit, and then use iteration until we reach that number. Clearly this
is potentially exponential time. In some systems, there are methods based on
Markov chains that allow us to do somewhat better than this naive iteration, but

they require accepting approximations [33].

6.5 General S(c, P u.s) and Counting-CSPs

So far we have looked at just the case of S{¢, P, 0,0), and converted to a CSP.
This CSP viewpoint is helpful: The complexity of subsearch became manifest. We
will also see that CSP search methods are useful for solving the subsearch problems.
Hence, we would like to treat the general S(C, P, u, s) problems in a similar fashion.

In the case of S(c, P, 0,0), we only needed to know whether a literal in ¢ was
FALSE, and this corresponded exactly with whether a constraint in the sub-CSP
was satisfied. For general u,s we need to handle the three truth values TRUE, FALSE
and UNVALUED and so for each truth value we will introduce corresponding types

of constraints. In order to formalize this we make the following slight extension of

CSP ideas:
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Definition 6.5.1

A counting constraint satisfaction problem (CCSP) has the following

elements:

1. a set V of finite domain variables vy,. .., v, with domains D; and

v; € Dy
2. a set M of types of constraints
3. a set H of constraints. Each constraint h consists of

(a) a tuple t[A] of variables (exactly as for a CSP)

(b) for each m € M a set G{h, m] of allowed tuples of values for
the tuple t[A} in the type m. We demand that for every h
the sets associated with all the different values of m form a
partition of the set of all bindings for t[h]. That is, every set
of possible bindings for the tuple #[5] is a member of precisely
one set. G[h,m], in which case we say that the binding is of

type m.

4. A set of range restrictions R,,: one for each constraint type. A
range restriction is just a sub-interval of [0, ..., |H|]. In some cases
the intervals will be tight, [V,,, N,,} and then we call them count-
restrictions, Ny,. Conversely, if a range restriction R,, is the entire

interval [0, ..., |H]] then we will say that type m is unrestricted.

An assignment B is said to satisfy a constraint & with type m iff the

restriction of B to the variables in t[h] gives a set of bindings contained

in G[h, m]
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An assignment is a satisfying assignment iff for every element m of M

the number of constraints satisfied with type m is within the range

R, £

(In constraint programming we can do something somewhat similar by reify-
ing constraints. Reifying a constraint means creating a new boolean variable that
says whether or not the constraint is satisfied. We can then place constraints on
these new reifying variables, and obtain effects similar to the range restrictions in
the CCSP.)

The standard CSP corresponds to the case of just two constraint types:
“good” and “bad”, with the count restriction Ny, = 0. Since every edge has
precisely one type this just means that every edge has to be “good”. In fact, any
case with || > 2 but in which the counts are restricted to zero for all but one of
the types is just a standard CSP again.

| To verify that an assignment satisfies the CCSP we can classify the type of
every constraint, and count the number of each type, and check these numbers
against the restrictions. All this can be done in time polynomial in the size of the
problem. However, we have just seen that CCSPs contains CSPs as a special case.
Hence, satisfiability of a CCSP is also NP-complete.

Note that the tuple for each constraint is independent of types, and so the
notion of constraint graph is not affected by the constraint types. Instead, each
edge has a number of possible types, and we have overall requirements on numbers
of edges in each type. In Chapter IX, we shall discuss some CSP methods that
exploit the structure of the constraint graph, and so we hope that many CSP

methods can be extended to CCSPs.
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6.6 Conversion of S{c. P u.s) to a CCSP

We will convert the subsearch problems for S(e, P, u, 5) to a CCSP with three

types S, U, and F corresponding to TRUE (satisfying), UNVALUED, and FALSE

respectively.

Definition 6.6.1

A (u,5)-CCSP is the special case of a CCSP with types M = {F,U, 5}
and the restrictions that Ny = u, and Ng = s, but Ny is unrestricted.

O

In the case u = s = 0 every edge must be satisfied with type F, and we just
have a standard CSP. We can now directly generalize the mapping used for the
case of S(c, P,0,0). Take the set of variables of the sub-CSP to be the same as the
universally quantified domain variables {vy,...,v,} of the clause ¢. Each negated
literal — [,(t;) in the conjunction in (6.3) becomes a constraint h, in the CCSP

as follows:

tlhe] = t.
Glha,S] = {ta =d.|lu{d,) = TRUE under P }
Glha, U] = {ta=d,|l:(ds) = UNVALUED under P }

Glha, F] = {ta=d,|l.(d,) = FALSE under P } (6.9)

Since every atom is set to precisely one of TRUE, UNVALUED, or FALSE it follows

that the sets G[h,, S], G[h, U], and Glh,, F] do form a partition of the possible

bindings for the tuple ¢,.
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We then have:

Theorem 6.6.2

A set of domain variable assignments satisfies the (u,s)-CCSP iff it

corresponds to an element (ground clause) in S{c, P, u, s). a

Proof: By construction. The numbers of U and S types are constrained in exactly

the same way as the numbers of UNVALUED and TRUE literals in the clause. O

Corollary 6.6.3

The (u, 5)-CCSP for a clause ¢ is satisfiable iff S{c, P, u, s) # @. 0O

Proof: Immediate. O

6.6.1 Why Have Ranges in the CCSP?

The reason for allowing ranges in the definition of a CCSP is that we can
also use the union-subsearch problems of page 80.

For example, in unit propagation we wanted to find elements of S(c, P,0, 3)U
S(c, P,1,0) which corresponds precisely to the range restriction Ry = [0, 1] with
the count restriction Ng = 0.

The case of ranges of the form [0,..., N"%*] might be particularly useful,
especially as pruning in a backtracking search of the CCSP will then be straight-
forward. The usage of subsearch in unit propagation is a prime example of this:

see Section 7.2.

We can also indicate such cases by just replacing the numbers u or s with
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appropriate ranges. Thus, we can talk of
S(c, P,[0,1],0) = S(c,P,0,0)U S(c, P, 1,0) (6.10)

and the corresponding ([0, 1], 0)-CCSP.

6.7 Complexity of the Checking Problem for S{C. P. w. s)

We need just one complexity result for CCSPs. We present it for the case of

just the types {F,U, S}, but it also extends to more general CCSPs.

Definition 6.7.1
Satisfiability of a (u, 5)-CCSP
INSTANCE: An instance of a (u, s)-CCSP

QUESTION: Is there an assignment satisfying the restrictions on the

U and S types? m|
Note that the count-restrictions are not part of the input.

Theorem 6.7.2

Satisfiability of (u, s)-CCSP is NP-complete. O

Proof: Checking a solution in a CCSP is polytime, the particular range
restrictions used do not affect this, and so the problem is in NP.

To show that it is NP hard, we will reduce from a CSP. The idea is to
take the CSP and add extra predicates to absorb the u and s counts. Thus,

take the CSP together with u + s new constraints: take « of these to have
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Glhnew S) = Glhnew, F] = @, and s to have Ghnew, U] = Glhyey, F] = @. Then in
any assignment these new constraints always give precisely « constraints of type U
and s of type S. In this case an assignment is a solution of the entire (u, s)-CCSP
iff the assignment restricted to the original constraints is a (0, 0)-CCSP solution.
But a (0,0)-CCSP is just a CSP: the original CSP, and hence NP-hard. O

Note that it is necessary to prove the above result and not just rely on
the NP-completeness of CCSPs, because it could have been the case that the
special case used for counts caused us to lose the completeness. The essence of this
problem is simply that all but one of the types have fixed count-restrictions, and
NP-completeness can also be shown in this general case.

We now easily have

Theorem 6.7.3

Determining whether there are any elements in S(C, P, u,s) is NP-

complete. That is, the checking problem is NP-complete. 0

Proof: Clearly in NP. To show it is NP-hard just reduce from satisfiability of a
(,5)-CCSP in exactly the same way as we reduced from a CSP for the case of

Theorem 6.3.2 O

Also, of course:

Corollary 6.7.4

Determining whether S(C, P,u,s) = @ is co-NP-complete. O

The complexity results were initially proved directly in QCNF itself by Gins-

berg [26] by a reduction from 3SAT. However, the main aim lere is not so much
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to prove the complexity resuits, which are not surprising given the initial trans-
lation of the checking problem for S(c, P,0,0) to a CSP, but rather to set up the
formalization in terms of CSPs and CCSPs.

The goal is that formalizing a CSP-like search problem of the type needed
for subsearch on S(C, P, u, s), but not referring to the quantified clauses, will make
it easier to reason about the (sub)-search processes. Also, we suspect many CSP
search methods will transfer to CCSPs and we can then also transfer them to
subsearch. Using some kind of CCSP as an intermediate step might ultimately
help in clarifying ideas for subsearch. That complexity results can also be obtained

directly from the CCSP is a bonus.

6.8 Summary

In this chapter we translated the checking and free selection subsearch prob-
lems for S(C, P,0,0) into search problems in a CSP. We defined a CSP-like class of
problems called counting-CSPs (CCSPs), and then were able to translate subsearch
problems for S(C, P, u, s) into search problems in a CCSP.

We also saw that the subsearch problems are NP-hard with respect to the size
of the quantified clauses, and hence worthy of being called search problems. This
hardness is quite distinct from the harduess of the equivalent ground SAT theories.
Indeed, the obvious algorithms to solve the subsearch are polynomial with respect
to the size of the ground theory. Instead, the hardness originates in the fact that
the lifted theory might be exponentially smaller than the ground theory. However,
the point is that subsearch problems are NP-hard in a meaningful sense and so

should be solved using the best search methods.
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CHAPTER VII

INTELLIGENT SUBSEARCH SPEEDS SEARCH

So far our motivation has been to show that search algorithms can be rephrased
in terms of subsearch problems. In Chapter VI we saw that subsearch problems
were indeed search problems, and could even be phrased in terms of search in a
CSP (or CSP-like) formulation.

However, if these were merely formal tricks then subsearch would not be
very interesting. In this chapter we shall exploit the formalization in terms of
subsearch. We will see that existing algorithms that take the ground equivalents
of QCNF-formulas, instead of the quantified clauses themselves, are effectively
using generate-and-test for the subsearch. In general, we can expect to be able to
do better than generate-and-test. This is equally true for the case of subsearch.
We will see how using even the simplest intelligent search algorithms can lower the
cost of subsearch. Lowering the cost of subsearch means that the search algorithms
will run faster: they will follow the same sequence of states, but the “per-node”
times will be reduced.

In considering the algorithms to be used for subsearch we note that we typ-
ically will need the subsearch problems to be answered with certainty, that is, the
subsearch will need systematic and complete methods. Hence, in this chapter and
for the implementation described in the next chapter, we consider the simplest

backtracking method. That is, we use depth-first-search and check for potential
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failure after every branch. In Chapter IX we will return to look at more advanced

techniques.

It it vital to keep the search and subsearch conceptually quite distinct:

1. Search looks for truth assignments to the propositions in the theory, with

the goal of satisfying all the quantified clauses.

2. Subsearch looks for assignments to domain variables in a quantified clause,

with the goal of finding ground clauses that are needed by the search engine.

We first look at the simple case of S(C, P, 0,0) and the checking problem. We
then look at more general S(C, P,u,s). After looking at questions of “syntactic
incrementality”, we ask the question of how much gain we might expect from
intelligent subsearch. We then return to the important questions of how subsearch

interacts with incrementality.

7.1 Pruning the Subsearch for S{C, P.0.0)

We first use simple model-checking as a starting example. We are given a
set of clauses, and a total assignment P and just have to check whether there are
any unsatisfied clauses. In Section 5.3, in particular in Figure 16, we saw that
model checking is just checking that S(C,P,0,0) is empty. But, by Corollary 6.3.3
we know that this is a co-NP problem, and hence we will need a complete search-
based method to do this checking.

Consider a simple example with only one clause:

Vu,...,vg. =r() V Alpa, vy (7.1)
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where A is any disjunction involving the predicates of the theory with domain vari-
ables v;, and suppose that P binds r() to false. We immediately know that all the
ground clauses are satisfied, because r() will be a TRUE literal in every one of them.
In this case, we can entirely prune the subsearch over the variables vy,...,vg. In
contrast, if the clause were first ground and presented to a ground solver it would
have no choice but to look at all the ground clauses separately, because it has no

way to know what they contain in advance.!

But the number of ground clauses
is exponential in the number of quantifiers Q). So, in this (admittedly extreme)
example, an exponential amount of work in the ground case has been reduced to

a constant amount of work in the lifted case.

Consider a slightly more complex example:

You,...,vg. =r(v) V Alpa, vl (7.2)

with 7(2) set to TRUE and r assigned FALSE otherwise.

If we bind v; = 1 then the subsearch should immediately discover that the
clause is satisfied independent of the other bindings. In this case it will prune
further search with that binding, then backtrack and set v; = 2. At this point
the subsearch will have to search through bindings for the variables v,,. .., vg,
however, after doing so, it would soon discover that no other bindings for v, are
relevant. In terms of the sub-CSP, we know that no model can have v, = 1 because

it violates the unary constraint arising from r(v) and so we should immediately

! That savings of this kind are possible was initially observed by Ginsberg [26]. The subsearch
framework arose as a way to generalize these initial WsAT-specific observations.
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backtrack and try another binding for ;. Again, the ground solver looks at all the
ground clauses, that is all the bindings of all the domain variables. At the least,
we have reduced the work by a factor of the size of the domain of »,.

In terms of the associated sub-CSPs, in these cases, we would have nullary
and unary constraints on the finite-domain variable v;, and any reasonable CSP
algorithm would first enforce these constraints before proceeding to the other vari-
ables.

Hence, using even simple backtracking for the subsearch can lead to expo-
nential reductions compared to the ground solvers.

More generally, we are trying to build a binding of the variables such that all
literals are FALSE. We just want the subsearch to check that a literal passes this
test as soon as we have bound enough variables that we can determine its value.

Normally when doing backtracking we would use a dynamic variable ordering,
that is, the choice of the next variable to try binding would depend on the previous
branch variables. For example in the Davis-Putnam procedure the result of the
literal selection depends on the current state of the search. In trees that are deep
this is an important way to reduce the search time: we want to select variables that
have maximum propagation in order to reduce the number of variables remaining,

However, in our case the search tree is more likely to be shallow and bushy,
that is, we have relatively few variables but each variable has many potential val-
ues. For example, in the logistics axioms we have at most four variables, but the
variables are objects, planes, etc, and so might number in the hundreds. Further-
more, we are not doing propagation within the subsearch. This suggests that using

a dynamic variable ordering is not likely to be worth the effort (at least not in our
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first implementation). In any case we shall restrict ourselves to a static ordering
of the variables.

If we have a static variable ordering then the search process can conveniently
be represented as a set of nested for loops. To be concrete consider the simple

example

Vi i -r(i) Vv op(,g) (7.3)

Operationally the ground solver would evaluate S(C, P,0,0) as shown in a way
that is essentially equivalent to Figure 22(a). That is, it would take all the ground
clauses that are generated and only then test them. We are equating a ground
clause with a particular quantified clause and the set of domain variable bindings
that generate it. A ground solver is doing the equivalent of generate-and-test.
Generate-and-test is usually a bad way to do search, so it is not to surprising that
it is relatively easy to do better.

Anyone writing the explicit for loops would be very likely to realize that there
are many repeated and pointless tests of r(7} and hoist this test out of the inner
loop to obtain Figure 22(b). This simple hoisting of tests out off loops corresponds
to the basic idea of backtracking, that is, to test constraints as soon as possible,
and hence try to fail as soon as possible. In Section 6.1, we briefly discussed simple
backtracking search to solve a CSP, and of course we are doing exactly the same
process here. (Sub)search through bindings of domain variables of the quantified

clause is directly matchable with searching the sub-CSP.
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S=0
foreach :
foreach j At this point the clause is fully ground
if —r(j)
if p(i,7)
insert < i,j > into S

(a)

S:=0
foreach 7
if - r(y) Tests a literal before the clause is fully ground
foreach i
if p(i, §)
insert <1i,j > into S

(b)

FIGURE 22. Code to search for violated clauses for the example of (7.3). A
ground clause is equated with a tuple domain variable bindings. S(C, P,0,0) is
enumerated by means of simple nested sequence of loops and tests. {a) Naive
form: Equivalent to what the ground theory would do. (b) Code after simple
optimization by re-ordering the loops and then hoisting the test. Every time that
the test on — r(j) fails we save scanning the entire domain of 1.
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7.2 General Subsearch Pruning: S{C. P, u. s)

Backtracking search for S(C, P, u, s) is also straightforward. We bind domain
variables and keep track of literals that become ground and so have a value in P.
We then keep count of the numbers of UNVALUED and TRUE literals according to
the current bindings of the domain variables. We prune the subsearch whenever
we have more than u UNVALUED literals or more than s TRUE literals.

'The standard example, discussed in Section 5.7, is to find S(C, P, 1,0) when
doing unit propagation. Actually, in this case we also want to simultaneously
find S(C, P, 0,0) because if this has any elements we have a contradiction and the
search engine will need to account for this.

Hence, rather than use the versions of unit propagation in Figure 20, we
rewrite them so as to make it clearer that we can do a simultaneous subsearch on
both S(C, P,1,0) and S(C, P,0,0) (for appropriate C). The new versions are given
in Figure 23. Note they use the “union” form of the subsearch problems discussed
in Section 4.6.6 (see also Section 6.6.1). The combined subsearch is more efficient,
because we do not have to scan the same set of clauses (C_; or C.r) twice.

Hence, for unit propagation we really need to find S(C, P,u,0) with any
u < 1. Alternatively, we might think of this as subsearch for S(C, P, [0,1],0) where
[0, 1] denotes that either of these values is of interest (see also Section 6.6.1). In

doing the associated subsearch, this gives the following pruning conditions:
1. If we find a literal set to TRUE, we can prune the subsearch.

2. Since we want u < 1, we just prune a branch on the subsearch if we have

found two UNVALUED literals on that branch.
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proc UNIT-PROPAGATE(!, P)

C—.g = R(C, - l)
¢ := FREELY-SELECT(S(C, P,0,0) U S(C.;, P,1,0))
if ¢ = fail return P Propagation has completed

if c is a contradiction return Contradiction
[' :== the literal in ¢ that is not valued by P

P:=PU{l = true} Enforces unique way for ¢ to be satisfied
return P := UNIT-PROPAGATE(!', P)
end
(a)

proc UNIT-PROPAGATE(!, P)
L:={l}
while L # @
select some I’ € L and remove it from L
P :=PuU{l' = true}
C.,[r = R(C, = t')
if C-!l" '-I'é %)
foreach c € [S(Cy, P,0,0) US(C.y, P,1,0)]
if c is a contradiction return Contradiction
I" := the literal in c that is not valued by P

L:=Lu{l"} Store {" for later propagation
end foreach
end vhile
return P

end

(b)

FIGURE 23. Another version of lifted unit propagation in terms of subsearch
problems. These methods are very similar to Figure 20, but here we combine
the subsearch on the relevant sets S(C-y, P,1,0) and S(C., P,0,0). (a) Recursive
method. (b) Iterative method.
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If we reach a leaf of the subsearch then we have found a ground clause with
no TRUE literals, and © =0 V u =1 UNVALUED literals. Supposing the subsearch
is being used by UNIT-PROPAGATE of Figure 23 then the two cases require different
actions.

In the case of zero UNVALUED literals we have found a clause with only FALSE
literals, that is a contradiction. This should be reported to the search engine. Also
any further subsearch is pointless (because the search engine will just backtrack
anyway) and so the subsearch can be terminated.

In the case of one UNVALUED literal we have discovered a chance to propa-
gate. The literal that is UNVALUED should be reported to the search engine. In
Figure 23(a), we enforce this literal in P, and then the recursive call restarts the
subsearch. This restart of the subsearch is not very efficient. Instead it might be
better to try to continue a subsearch once initiated. Hence, in Figure 23(b) if a
literal is discovered, it is just stored for later propagation and the subsearch (the

foreach loop) is continued.

7.3 Syntactic Incrementality

In Section 5.5 we discussed what we called “syntactic incrementality”, mean-
ing the part of the vital incremental work in solvers that is concerned merely with
the syntactic restrictions R(C,!) (the projection onto the clauses containing [).

There are many places where we want to call a subsearch on a set of clauses
that is not the total set of input clauses but a syntactic restriction. We already saw
a case of this in unit propagation: in order to respond to a literal / changing, we

want to do subsearch on S(R(C,1),u,0). Fortunately, as discussed in Section 5.5,
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this is not a problem because the R(C, [} sets can all be computed in advance. Also,
as discussed in Section 4.4, they are just sets of quantified clauses themselves.
This also explains why we still usually discuss subsearch on a set C without
necessarily referring to the fact that the relevant search might be done incremen-
tally. If we make a point about subsearch with a set C then it could have been
that the set arose as an R~(C, ) in an incremental portion of the search.
For example, if we had a set C, then it might have arisen from a change in

a switch predicate s()} in the clause - s() v C:

R (-s() vC ~s()) = C (7.4)

Hence, the set of clauses that can arise from using syntactic incrementality is
essentially the same as QCNF itself, and so when discussing subsearch efficiency
in general we might as well ignore whether the C is an input clause, or something
arising from an R~(C,{) calculation.

It is important to note that the mere fact of doing incremental maintenance

of this form does not replace intelligent subsearch.

7.3.1 Practical Usage of Syntactic Incrementality

In practice, the incrementality will be applied to predicates with arguments,
and this will cause some of the variables to be fixed. For example, suppose we

have a clause

¢ = Vihk 2s(k) V or(k) Vopi, ) (7.5)
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and we wanted to find the effects of flipping s(/&') from FALSE to TRUE. We need

to find unsatisfied clauses among those obtained from - s(K). That is,

R (c, ~s8(K)) = V5. —r(5,K) Vv p(1,7) (7.6)

One can also think of this in terms of rewriting the relevant portion of ¢ as

s(K) — Vi =r(3,K) Vv pi, ) (7.7)

making it clearer that if s(K) is suddenly turned on then we need to search the
consequent for unsatisfied clauses.

The point here is that, in practice, we do allow { in R~(C,!) to be a literal
with free variables and then build 2~ (C,!) with these free variables. When the
subsearch engine is given a ground literal [, we just make the appropriate bindings
in R=(C,1), obtaining a standard quantified clause with no free variables. We
also index the sub-clauses on predicate symbols, and then use the binding for the
arguments: e.g., for R(C, 5(2)} we would look up (7.6) and bind K to 2.

The equivalent step in the ground case is build up static indexing from every
ground literal to lists of ground clauses, i. e., the equivalent of binding the variables

in the lookup of the correct list of clauses.

7.4 Expected Costs and Gains of Subsearch

So far we have seen some special cases in which backtracking subsearch can
potentially give big gains over the generate-and-test style of subsearch inherent in

a ground solver. But what kinds of gains might we expect in practice?
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Firstly, we consider some cases when improving subsearch is not likely to
lead to gains. The obvious case where subsearch pruning cannot be helpful is
when there are no quantified clauses available. An extreme example is Random
3SAT, which by construction does not have any structure that a quantified clause
could capture.

Also, intelligent subsearch is only likely to work if we have a large number
of relevant clauses. Since most of the work in solvers is incremental we need to
consider the typical size of [Gr(R(C,1))|. If this is small then we cannot expect
to gain much advantage from an intelligent subsearch: for very small problems it
can well be the case that the generate-and-test style of a ground solver is actually
the best way. Again an extreme example here is Random 3SAT. Such theories are
typically studied in regions where the number of clauses per variable is 4-5. Hence,
the average number of occurrences of any given literal is only about 8-10, that is
GL(R(C,])) = 9 and it is hard to get much gain if the search space size is that
small. Of course, in Random 3SAT we have no lifted clauses.

Another view of the advantages of backtracking subsearch is that it exploits
common structure between sets of clauses. Pruning the subsearch before binding
all the variables corresponds to finding a pattern of literals, that occurs in many
ground clauses, but for which the pattern itself is sufficient to rule out the clause.
For example, all the ground clauses of (7.1) have r() in common but this shared
(trivial) structure can be enough to eliminate them en masse.

In Random 3SAT, there is little chance that the clauses in R(C,!) will have
any literals in common, and hence will not have any shared structure that could

be exploited.
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Ideally, an implementation would recognize such cases where intelligent sub-
search will give no gains and switch to a ground style in order to avoid the overhead
associated with lifting.

Now return to truly lifted cases in which even R(C,!) can be large. For
example, in the logistics case the R(C,!) will often still involve quantification over
cities, planes, etc., and so could correspond to many ground clauses.

The first point to notice is that if we consider only worst-case behavior then
we might not see much of a gain. For example, with S(C, P,0,0) it could be that
P satisfies all, or almost all, of the ground clauses but the TRUE literals are usually
not discovered by the backtracking subsearch until it has bound all the variables.
In this case we will end up enumerating all the clauses, and so do no better than
a ground solver. (However, in Chapter IX we discuss some methods for subsearch
that just rely on the syntactic structure and in some cases could heat the ground
methods independently of P.)

This is a common facet of solving NP-complete problems. We can rarely
say anything very interesting about the worst-case behavior of a search engine.
However, the expected performance on instances taken from a realistic distribution
can be much better than the worst case.

For concreteness, we will just talk in terms of the checking problem on
S(C, P,0,0). If the assignments of the values were random we could expect pruning
to occur half the time we test a literal. If the clause is long then we will have many
literals to test and it becomes likely that at least one of them will be TRUE and
we can prune, Every time this happens we avoid the remaining subsearch problem

and this could well be exponential in the size of the problem. We could probably
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make an estimate of what the expected cost of subsearch for various classes of
quantified clauses, but we do not pursue this for the simple reason that in practice
P is not likely to be random. In practice, we are more concerned with the case in

which P has “imbalanced” predicates.

7.4.1 Imbalanced Predicates
In practice we expect:
1. Literals in the clauses to be biased towards being negative.
2. The assignment P to be biased towards setting propositions to FALSE.

for reasons we will describe shortly.

The combination of these biases means that a literal from a clause is biased
towards being TRUE. Typical subsearch problems require that there are no TRUE
literals in the clause. It follows that we can expect to get more pruning in the
subsearch than random choice would suggest.

The reason for expecting most of the literals to be set FALSE is firstly simple
experience with such problems. The origin probably lies at least partially in the
way that SAT represents problems. We often want to represent a quantity that
is a function, or at least close to being a function. For example, in the logistics
domain we have predicates encoding the positions of planes, but the position of a
plane is a function (the plane cannot be in two places at once) and so the predicate
planeAt(p,c,i) must be mostly FALSE whenever we are near to a solution of the

problem.
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A similar tendency towards relations being FALSE is also exploited by the
closed-world assumption [55] in which it is convenient to assume that we just
represent the TRUE predicates because we expect them to be far fewer in number
that the FALSE ones. Similarly, in relational databases we store the relations that
hold true, and expect them to be far fewer than the total number of possible
relations.

If some predicate happened to have an imbalance towards TRUE then it
seems likely that we would just negate the definition. In other words if there
is an imbalance it often seems natural to represent the problem in such a way that
FALSE is the default, and we use TRUE for the exceptions.

'The second point is that the axioms themselves tend to be imbalanced, with
a bias towards negative literals (e. g., inspect the axioms for the logistics domain).
Part of the reason for this is probably that we often want to write down rules
about conditions that apply in a specific context, that is a conditional statement
about the domain. We can expect to often have quantified clauses of the form (or

close to the form)

/\a,(t,) —} ac(t(;) (78)

If at least some of the atoms a,(f;) are biased towards being FALSE then we can
expect to obtain pruning in the subsearch on such a clause.

Potentially, in cases when the imbalance is sufficiently strong, we might even
hope that the cost of subsearch could become polynomial in the number of quan-

tifiers, rather than the exponential behavior we would otherwise expect.



In contrast, the ground solvers are stuck with generate-and-test and its ex-

ponential cost, and have no way to exploit this imbalance.

7.4.2 Weighted Initialization in WsAT

So far we have just taken a passive approach to imbalanced predicates: If
it happens, then we will exploit it. There is one case in which we need to take a
more active approach and positively encourage an imbalance.

In the initialization stage of WSAT, as given in Figure 3.3 or Figure 5.6, we
have to explicitly enumerate all the elements of S(C, P,0,0). If the atoms are
equally likely to be TRUE or FALSE then clauses with £ literals will have a 1/2F
chance of being unsatisfied. If there are many relatively short clauses then the set
S(C, P,0,0) could easily become too large to manage. Also, the search engine will
spend a lot of resources in an initial hill-climbing phase where it is just trying to
move into a reasonable part of the search space.

We can expect that initialization with a bias towards FALSE will greatly
reduce the size of S(C, P, 0, 0) for the same reason we expected pruning in realistic
situations: Most atoms will be set to FALSE but will occur negatively in quantified
clauses.

This issue of wanting to start with an assignment that shares some statistical
properties with real solutions is independent of whether we are lifting or not.

Even if we did not do weighted initialization we could still lift. One obvious
way is for UNIFORM-SELECT to first count the elements, and then scan the clauses
again with a suitably (randomly) chosen stopping point. In such a case, it would

probably be better to give up on totally uniform selection of an element and just try
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to approximate this via some sort of sampling scheme (33). Doing approximately
random selection until the size of S(C, P, 0, 0) drops to a reasonable level, and then
doing explicit enumeration would be a possible approach.

Thus, even if we did not bias the initial state we would probably be able to
lift. However, it is more more natural to bias the initial state. The usual preference
for a random assignments is probably just a legacy from testing WSAT on Random
3SAT where, by construction, there is no bias towards either FALSE or TRUE.

Consider the pigeonhole problem described in Section 2.4. In particular, take
the case of n pigeons and n holes. This is obviously a very easy problem and WSAT
can go almost directly to a solution. However, if the initial state is not biased,
then it can spend a long time making obvious removals of pigeons from holes.
With a random assignment we start with about half the n? predicates p(i, h) set
to TRUE, but in a solution only n can be true, and we can only flip one predicate
at a time. Thus, the hill-climbing phase must take time O(n?). However, if we
weight the state so that O(n) start as TRUE then finding a solution is O(n) flips.
As an example, we might just start with all atoms set to FALSE. Then WSAT will
not make any mistakes when assigning pigeons and will take just n flips to find a
solution.

In harder problems the time spent on initial hill-climbing is likely to be a
small fraction of the total solution time and so such cffects are less likely to be

noticed.
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7.4.3 Weighting for a Plane

To be concrete about the effects of weighting the initial assignment we return

to the logistics example. Consider (2.22) again:

Vpa,bi -(a<b) V -planeAt(p,e,i) V - planeAt(p,b,q) (7.9)

which says that the plane cannot be in two cities at the same time. In fact, this
and (2.23) and {2.24) all have the same structure. They assert a property of the

second argument of an arity three predicate and differ only in the predicate used.

So let us consider the more general case

Vou,vg,vs,00. 0 (us <wg) Vo= plog, v, v) V = plvy, v4, v2)

(7.10)

We will use symbols N; for domain sizes: |u;| = N,, and we have N; = N, as v,
and vy correspond to the same domain.

Also note that planeAt encodes a function - the location of the plane, and
hence in any solution will be FALSE for most value of the arguments. The same is
true for at(o, ¢,¢) and in{e, p, 1) and so we expect p also to be usually FALSE.

We will study the cost of enumerating S{C, P,0,0) using various forms of
pseudo-code given in Figure 24.

The most naive enumeration would nse the code of Figure 24(a). However,
if we were dealing with a ground solver then in the grounding process we would

always evaluate - (v3 < v4) and over half the ground clauses would be satisfied
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foreach v Plane or object
foreach v Time point
foreach v; City
foreach vy City

if (v < wy)

if p(vr,vs, v2)
ﬁ }U(UI:U4;U2)
insert < vy, vs,v3,vq > into S(C, P,0,0)

(a)

foreach u;
foreach v,
if (v3 < vy) Evaluated away on grounding
foreach v,
foreach 1
if P(Ula V3, Uz)
if P(Uls U4, U2)
insert < wy,uvq,us,u4 > into S(C, P,0,0)

(b)

foreach v
foreach v,
foreach v;
if p(vi,va, v2) Test is aided by weighting
foreach w,
if ('U3 < 'U4)
if p(vi,vs,v2)
insert < wy,vs,v3,v4 > into S(C, P,0,0)

{c)

FIGURE 24. WSAT initialization with a simple clause. Pseudocode, equivalent
to simple subsearch, to find S(C, P,0,0) for (7.10). (a} Most naive form. (b)
Equivalent of the ground theory: Reduces cost by about half. (c) Version to
exploit more pruning in the case that p is almost always false: This can reduce
cost by a factor of |v,|.
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and removed. Hence, the code of Figure 24(b) is a fair reflection of what a ground
solver would effectively be doing.

Now, suppose that the initial assignment is controlled by a weight w: With
probability w an atom is set to TRUE, otherwise it is set to FALSE.

In Figure 24(b) we always have to do all of each of the two outer loops, and
(about) half the time we will also incur the cost of the inner loops. That is, we
have a complexity of Ny - N - (% + % - Ny - Ny) or O(%NlNng). The result is
independent of the weight, and this is just a reflection of the general inability of
the ground solver to exploit the imbalanced assignment.

An alternative way to hoist the tests of literals out of the loops is given
in Figure 24(c). In the language of backtracking search this, just corresponds
to taking the static order of the branch variables to be juy, vg, vs, v4] rather than
[va, v4, v1, va] (this is related to general issues in controlling recursive inference [69]).

With Figure 24(c), the test of p(vy,vs,v;) is only expected to succeed a
fraction w of the time, and so the expected complexity is Ny NaN3((1 — w) 4+ wN,).
The worst case complexity is still N, N, N3N, because the randomized assignment
might happen to set all the atoms to TRUE despite the weighting (assuming w # 0).

The usual random assignment is just the case w = 0.5, and then the expected
runtime for Figure 24(c) is O(3N,N,N?) which is the same as we expected from
the ground solver. However, this does suggest that if we want to reduce the cost
we should take w to scale as 1/N;. This is, in fact quite reasonable: in the
planeAt case, it just means that for a given plane and time-point we would expect
O(1) values of the city to give TRUE, which matches the properties we expect

of a solution. Note that we prefer not to set w = 0 because it gives unrealistic
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configurations (the plane starts out nowhere), and in any case it does not improve
the complexity any further. With w scaling as 1/N, the cost of subsearch drops
by a factor of Ny to O(N,NaNNy).

In summary, without weighting we get some savings from pruning (in this
case a factor of %) though the ground solver does just as well because of the
occurrence of the fixed known predicate. With a good weighting we reduce the
cost by a factor of Ny, and of course Ny can be substantially larger than 2.

Here, we found a good weighting scheme by hand. It would be good to
automate this selection of weights as far as possible. However, this is a separate

issue and will not be pursued in this thesis.

7.5 Semantic Incrementalitv

In Section 5.6.1, we mentioned that a ground WSAT solver stores and main-
tains, for every ground clause, the number of literals in the clause that are currently
TRUE. This is used in order to find S(R(C,1),0, 1), which is used for the heuristics
and updating within WsAT.

Storing this number saves having to scan the ground clause each time we
want to know the number of TRUE literals. This is a substantial savings and helps
make ground WSAT run quickly. However, it does not change the fact that the
ground solver has to scan [R(C,!)| clauses: That is, it is still linear in the sizes
of the relevant ground sets, and hence potentially exponential in the size of the
quantified clauses.

Hence, even with the usual storage of a count for each ground clause, the

ground solver does not obtain any of the advantages of subsearch pruning.
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It might well be possible that a more complicated indexing scheme for the
all ground clauses would be able to achieve some of the same advantages of the
subsearch pruning. However, the indexing scheme would have to be dynamic, to
account for the changes in value assignments. It would also probably require yet
more memory rather than solve the memory problems. Hence we do not pursue
such a scheme (though it might well be reasonable for theories that are small
enough to fit in memory).

Furthermore, one point of the thesis has been that storing every ground
clause takes too much memory. So, the philosophy we take here is that storage
requirements should be at worst linear in number of atoms, and not in the number
of ground clauses. That is, we can store P or anything linear in |P|, but not
anything that might be as large as O(Gr[C]).

Instead, in this thesis we do a “partially incremental” naintenance and just
rebuild the changes to the needed sets on demand.

In the case of wsaAT, by (5.2), we will need to find S(R~(C,1), P, 0,0) when-
ever we flip [ to FALSE. We will do this using exactly the same mechanisms of
backtracking subsearch that we already discussed for S{C, P,0,0).

Another potential approach [26] is to store a count for every clause, but to do
so in a fashion that exploits regularity in the problem in order to be able to store
the counts in a lot less space than |Gr[C]|. In this case finding the sets S(C, P, 0, s)
can be done in a way similar to the ground case, but without the cost in memory

usage. We do not pursue this approach here.
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7.6 Subsumption

Subsumption is one issue in which a lifted solver does seem to suffer in
comparison to the ground solver.

Normally, when simplifying a ground problem we will run some form of sub-
sumption checking. At the very least, if the theory contains a unit literal ! and
another clause contains that literal then the clause will be removed because it will
always be satisfied (we discussed this in Section 3.9).

However, if we have lifted clauses then we cannot so easily remove any ground
clauses that might have been subsumed. For example, in the SATPLAN encodings
we will have unit literals specifying the initial and final states of the planning
problem. Presumably, these states will be consistent and so the axioms specifying
consistency of the state will become redundant. In the ground case they would be
removed. In the lifted case it is only some portions of the clause that might be
removed.

The lifted solver could potentially suffer from this. In extreme cases, a large
fraction of the ground clauses might be subsumed, but we cannot do the associated
removal of clauses from within the quantified clause: We have to retain the whole
quantified clause.

The lifted implementation in Chapter VIII does have this potential drawback,
but, as we shall see, it still does well. Part of the reason for this might be that
the clauses that would be subsumed are associated with the end points of the
planning problem. Once we have finished initialization, all search and subsearch
proceeds incrementally in response to changes. But since everything is fixed at the

endpoints the redundant clauses will never be referred to, and need not contribute
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significantly to runtime costs.
the removal of duplicate clauses. Suppose

Another version of subsumption is

we had (2.11) in the form

Vi dp b (1= i) v mplinh) Vo7 plia, h) (7.11)

then in creating the R” (¢, ~pl,H }) used in incremental maintenance We would

get two matches for the two separate OCCUrTences of p:

V?:-z. "‘(I-‘—'IQ) Y ﬁ’[J('!‘.g.,I'I)

V‘I\ "‘(’117—'!) v "‘p('bl.,H)

However, the two sets ar¢ identical and it would be inefficient to use both. This

reflection of the fact that grou

r we would remove these with pre-

nding (7.11) produces two copies of every

is just a
processing.

clause. In a ground solve
ten S0

In the lifted case we shall assume that the axioms themselves are writ
as to remove the need for subsumption, or removal of duplicates. For example, we

would write

Y il,'i.g, h. = ('Ll < 12) AV p('il, h,) AV p(?..g, h.) (712)

ed as just part of the problem of encoding a domain. In any

This can be regard

is not done the repetit by the solver,

case even if it ion just causes sOme extra work

but does not prevent it from working.
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7.7 Summary

Even a very simple form of lifted subsearch — simple depth-first search that
just checks for chances to backtrack whenever a variable is bound - can show
significant gains over a ground solver. The essential reason is that a ground solver
is effectively doing generate-and-test, and this is relatively easy to beat.

Of course, there are also potential losses: there is extra overhead for handling
predicates rather than boolean variables. We lose the ability to store information
with each clause separately. Instead we will often have to regenerate information:
on the clauses as needed. We also lose some chances for simplification.

To settle which of these wins in practice there is but one choice — implement

it! Hence, we will now discuss the results from such an implementation.
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CHAPTER. VIII

RESULTS FROM IMPLEMENTING A LIFTED SOLVER

We have seen that allowing universally quantified clauses (QCNF-formulas)
is potentially very useful. We can use the same algorithms as we used for SAT, but
will be able to use intelligent search for the NP-hard subsearch problems, rather
than the generate-and-test used by ground solvers. There is also the obvicus
potential advantage that the QCNF formulas needed are much smaller than their
ground equivalents, and so memory resources are less likely to limit the problems
we can even begin to solve.

However, using QCNF rather than SAT is likely to have various overheads.
Working with predicates, of varying arities, requires mundane but time-consuming
tasks such as looking up arities and binding arguments. The simple task of finding
what value is assigned to a ground atom such as r(3,4) can require significantly
more time than looking up the value of the equivalent boolean variable in the
ground theory.

It could be that the theoretical advantages would just be swamped by the
practical difficulties of working with predicates and quantified clauses rather than
boolean variables and simple ground clauses. We have also seen in Section 7.5
that we might have to sacrifice some of the data-caching that is used in the ground
solvers and instead replace it with subsearch.

To investigate these issues we implemented a lifted solver. In this chapter we



146

describe the solver, and present some experimental results for its performance on
the logistics domain.

We find that lifting does indeed induce an overhead, but that the overhead
is nof so large as to render lifting impractical. On the contrary, we find that the
scaling of the lifted solver can be better than that of the ground solver. The lifted
solver also manages to solve problems that the ground solver cannot handle at all
because the latter runs out of physical (and even virtual) memory. We limit the

scope of the experimental study because:

1. We only want to do “proof-of-concept” of use of QCNF. Exploring all the

consequences for SATPLAN, etc., would take us too far off-track.

2. We hope to show in the remaining chapters that the implementation of sub-
search could still be improved and so extensive experimental investigation

would be premature at this stage (and is left to future work).

8.1 Implementation of a Simple QCNF Solver

The lifted solver we use is a result of a fairly direct implementation, in C++,
of the ideas in Chapters V and VII. The solver is capable of doing unit propagation
to completion and then running WsAT.

We followed an object-oriented approach, based on the overall idea of sepa-
rating and encapsulating the search and subsearch, as portrayed in Figure 15. The
overall architecture is given in Figure 25. We have a search engine controlling the
current state P and talking to constraints that manage clauses and their associated

subsearch. The search and subsearch are in entirely different spaces and can use
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entirely different methods.

The input language is QCNF with no functions, that is, even the fixed func-
tions have to be changed to relations, as described in Section 2.2. Although the
language used by the solver is QCNF, (that is, universaily quantified clauses) we
do allow a single existential quantifier in the input. This is just for convenience in
dealing with axioms such as those of Figure 1. Internally, the parser just converts
the existential to an appropriate disjunction. The search and subsearch engines
themselves do not use the existential. For convenience, the values of some fixed
predicates such as equality and “less than” are predefined within the solver, and
do not need to be defined within the input. (However, the solver does not do any

reasoning about such fixed predicate: That is, it does not do any reasoning of the

SEARCH CONSTRAINT N c

[sveseanc] | [Acon |

[H(C.pz)

CONSTRAINT [
[

SUBSEARCH el .

STOREFOR P

[
CONSTRAINT

SUBSEARCH

FIGURE 25. Software architecture of the implemented lifted solver. Each quanti-
fied clause becomes an object that does subsearch over the clause, or a precomputed
syntactic restriction, in response to requests from the controlling search engine.
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form used to convert (4.15) into (4.16).)

After parsing the input clauses, the solver instantiates an object for each
quantified clause.

The class holding a quantified clause ¢ stores the clause and also builds,
and indexes, the quantified R™(c,{) and R~ (c, —{) for every literal  appearing in
c. These are used in order to handle incremental changes (see the discussion in
Section 5.5). The equivalent step in a ground solver is the indexing of the set of
clauses so that we can directly access all clauses containing a given literal. The
only difference in the lifted case is that since the clauses themselves are so small
we can make copies and use bindings of variables (Section 7.3) instead of having
to index all the ground literals.

After the clauses and sub-clauses are built they are prepared for subsearch.
This consists of organizing the literals into a structure allowing us to (sub)search
over them using simple backtracking search. Basically we build the equivalent of
a set of nested “for loops” (though using recursion instead of actual nesting). The
literals are then hoisted out of the inner loops, and placed so that they will be
tested as soon as they are ground.

The variable assignment P is stored in ground form with a byte for storing
the value of each atom. Storage is accessed as a multi-dimensional array and hence

is slower than the one-dimensional array that would be used in a ground solver.

8.1.1 Implementing WSsAT

In wsAT, we will be storing (at least) the set of unsatisfied clauses, $(C, P, 0,0},

explicitly. We will store these with the quantified clauses from which they arise,
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and this is the reason that we use an object for each quantified clause. In fact,
rather than store the ground clauses explicitly we just keep a set of lists of bindings
(c.f. Figure 24).

The main search algorithm needs to know the size of S(C, P,0,0) so that,
in the random walk step, it can do a uniform selection over all the S{C, P,0,0)
from all the constraints. If a ground clause is selected for fixing then the literals
from the clause need to be passed back to the main search routine so that their
heuristics can be evaluated. A major fraction of the effort expended within the

object goes into evaluating the breaks that result from flipping a literal.

8.1.2 Implementing Unit Propagation

Unit propagation is done by a fairly direct implementation of Figure 23(b).

The method is stateless: it does not need to cache any information between calls.

8.1.3 Subsearch Variable Ordering

We mentioned that the subsearch is done by building data structures that
enable us to simulate a set of nested for loops with appropriate pruning conditions,
and actions on reaching the innermost statements (see, for example, Figure 24).

This means that we are doing backtracking search with a static variable order.
The order used can sometimes make a difference to the subscarch. For example,
in the WSAT initialization in Figure 24, the different procedures correspond to
different orderings of the variables. However, picking a good order can be done for
the domain as a whole rather than needing to be done for every problem instance

separately. Hence, currently the solver just uses the order of variables as given in
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the input clause. The responsibility to pick a good order is given to the system or
person that produces the domain axioms. Of course, in the ground case we do not
have even this option. Eventually the subsearch should be able to select its own
ordering, perhaps using existing methods to select a static ordering [69]. This could
be done by some probabilistic analysis of the clauses and expected assignments for
the literals. However, the goal here is just to discover the overheads associated
with lifting rather than do the best subsearch we can imagine. The implementation
here is just a start on a potentially long (even open-ended) process of optimizing
subsearch. We did enough to have preliminary but real results for the trade-off

between the various costs and gains of subsearch.

8.2 The Test Domain: Logistics

The test domain we use is, of course, the logistics domain with the encoding
given in Section 2.5. However, recall that existentials are not allowed and so, for

example

Jc¢. planeAt(p,c,i)) (8.1)

is used in the form

planeAt(p,Cy,i) V planeAt(p, Cy,i) V ... (8.2)

where the C; are constants for the cities. Also, all functions or partial functions

need to be converted to relations and so, for example,

{at(o,c,i) A in(o,ae,i+ 1)) — planeAt(a,c,i)



would be entered as

incTime(4,j) — [(at(o,c,i) A in(o,a,j}) —+ planeAt(a,c,1)]

where

incTime(z,7) «— j=1+1 (8.4)

8.2.1 The Test Instances

One of our main underlying concerns has been that as the problems increase
in size the ground solvers will no longer be able to cope. Hence, we are concerned
with the scaling properties of the solvers as well as their performance on some
fixed problem instance. Accordingly, we present results for a sequence of problem
instances characterized by a size N. A problem instance, a planning problem, of

size N from the logistics domain is created with
1. N planes.
2. 2N + 1 objects.
3. 2N + 2 cities: A distinguished “hub” and 2N + 1 “satellites”.
4. 8 timepoints.

5. Initial state: Exactly one object per satellite city, and all the planes at the

hub city.
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6. Final state: one object per satellite, but a permutation of the initial assign-
ment. (The permutation moves every object, but is otherwise random.) The

planes do not need to return to the hub.

We need to move 2N + 1 objects with N planes but the objects start and
finish in different places, hence it follows that at least one plane must make three
LOAD-FLY-UNLOAD sequences. With 9 timepoints there is always a plan (a

satisfying assignment), but with 8 timepoints the problems are unsatisfiable.

8.3 Experimental Methods

The test instances are specified by the sizes of the domains, the axioms are
given as quantified clauses, and the initial and final states as a set of forced literals.
This information can be given directly to the lifted solver. The lifted solver runs
unit propagation to completion itself before starting wsaAT.

For the experiments with ground wWSAT we must of course first convert the
problem instance to a ground SAT problem. To do this, the instances are produced
in a QCNF subset of the language used by cspc [34]. Running cSPC produces an
initial ground CNF, which is then fed through an implementation of compAcT!,
in order to unit propagate to completion and remove all boolean variables that

have a fixed value.

In this case, after unit propagation, and with 8 timepoints the resulting

theory has

# variables = 19+ 65N + 40N? = 40N?

'Due to James Crawford. Available from http://www.cirl.uoregon.edu/ in the NTAB
package.
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TABLE 1. Examples of sizes of the logistics test instances as a function of the
number of objects N. We give the number of variables, the numbers of clauses,
and the total numbers of literals in the sizes of the ground theories, after unit
propagation and simplification. N = 300 is included as it is at the limit of what
the current lifted implementation can handle with 256MB of memory.

N variables clauses literals

10 4,669 112,357 296170

20 17,319 809,972 2128450
30 37,969 2,638,887 6924930
70 200,569 32,187,547 84,312,850
300 | 3,619,519 | 2,474,734,992 | 6,474,809,490

# clauses = 42 + 166.5N + 196.5N2 4+ 91N® ~ 91N?

# literals = 90 + 398N + 541N? + 238N ~ 238N°

In Table 1, we show some examples of sizes of the ground theory. In all cases
the number of variables scales as O(N?) because we have arity three predicates,
and arguments have domain size O(N) except for the timepoint arguments which
have fixed domain size. The number of clauses, and literals, scales as O(N?).

The lifted and ground cases are equivalent in that after unit propagation we
are left with precisely the same set of UNVALUED variables. In fact, a large amount
of time can be consumed in preparing the ground theories. A particular problem is
running COMPACT: this tends to exhaust the RAM and then takes a long time to
finish because of swapping to disk. The time taken to prepare the ground instances
is not included in times for the ground solver (though it can be substantial), hence
we are favoring the ground solver in this respect.

The problem of running out of RAM for ground WSAT is so severe that it

limited us to N < 40 for the ground experiments.
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The quantified clauses are small and so the memory usage of the lifted
solver is driven primarily by the number of variables and various internal index-
ing schemes. N = 300 is about the maximum that we can handle in the current
implementation with 256MB of RAM. (Of course, the mere fact that we can run
WSAT does not mean that we will have a significant chance of finding a solution.)
For the lifted solver we usually just give performance data up to N = 70.

WSAT is usually associated with a high variation in number of flips needed
to find a solution, but the fliprates themselves are much more consistent. The
instances themselves have a very uniform structure, also the variation in times
between different runs on the same instance are small. Hence, it was quite adequate
to just take one instance and one run at each data point. For example, fliprates
are measured using a run of 10° flips, and then the variation of fliprate between
runs is less than 1%. Also, when lifted and ground selvers are compared the same
instances are used for each.

Satisfiable instances are solved quickly and so too much of the fraction of
the runtime will be spent in the initial phase where the number of unsatisfiable
clauses is relatively large. Hence, in order to get a better estimate of the speed
that would be obtained in longer runs we used unsatisfiable instances. Remember
that we only want to compare the speeds of the lifted and ground solvers, and do
not care whether or not they actually succeed. Similarly, parameter settings for
the noise are irrelevant (though we used p=0.2).

The primary experiments were run on a 400MHz Pentium 11 with 256MB of
RAM, 512kB of cache, and running Linux. Code was compiled with Gnu gec or

g++ using full optimization.
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8.4 Two Implementations of WsaT: WsAT(U) and WsaT{UB)

We have already discussed the ground wsaT algorithm at length in Sec-
tion 3.3. We will be using two different ways to implement this algorithm. We
label them WsAT(U) and WsaT(UB).

WsAT(U) based on an existing ground implementation due to Andrew Baker.
It stores only the Unsatisfied clauses. The algorithm for creating and maintaining
this set of clauses was described in previous chapters.

The ground WSAT(UB) is the 1996 (version 21) ground AT&T “walksat”
as implemented by Cohen, Kautz and Selman®. It is distinguished by storing not
only the Unsatisfied clauses, but also information about the number of Breaks
associated with each atom. We will describe this in more detail in Section 8.7. For
ground WsaT(U) we took the original walksat (WsAT(UB)) and just removed
the storage and maintenance of the extra information about the breaks. This was
done for uniformity of coding, and also because the AT&T version is more efficient
with respect to space usage; for example, it uses arrays rather than the linked lists
of Baker’s original (un-optimized) implementation.

The lifted solvers are direct minimal lifted versions of each of these ground
versions. Since, we did a minimal lifting, both the ground and lifted solvers will
search in exactly the same fashion. In fact, we explicitly checked that their perfor-
mances - in terms of flips needed to solve a satisfiable instance — were identical.

Firstly we look at results for the simpler version: WsAT{U).

< Available from http://www.resaarch.att.com/kautz/blackbox/
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8.5 Wsat(U) Initialization Results

On initialization, the ground solver has to check every clause to see whether
or not it is satisfied. However the number of clauses is O(N3), hence we expect
initialization times for ground WSAT to scale as N3,

What about the lifted WsAT(U) solver?

In Section 7.4.3, we discussed some of the axioms expressing consistency of
the state. In the language in that section, the set of instances we use N;, Nj, and
Ny are all O(N), whereas N; is a constant. Axioms such as (2.22) will produce
O(N?). This means that the ground solver (which basically does Figure 24(b))
will also be O(N?®). However, the lifted version (see Figure 24(c)) has complexity
“O(N?)+wO(N?).” In our experiments we took w = 0.01 and this is small enough
that the cubic term has little effect in the range of V values that we use. Hence,
the effective scaling is reduced to O{/N?). Other axioms such as those of Figure 3
undergo a similar reduction of complexity due to the backtracking subsearch in
the lifted solver.

The experimental results on times taken by the ground and lifted solvers to
enumerate and store all the unsatisfied clauses are given in lines (a) and (b) of
Figure 26. The expected scaling behaviors are indeed observed at larger values
of N. The behavior at small values of N is different, but this should not be too
surprising as there might be many sub-leading terms.

In order to get an idea of just the overhead, and not the gains, associated
with the lifting we also disabled the subsearch pruning in the lifted version. In this
“non-pruning” version, the subsearch is arranged to mimic the ground solver. The

results for this non-pruning version are shown in Figure 26(c). As expected, the
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FIGURE 26. Experimental initialization times for WsaT(U), on the logistics
instances with N planes. (a) Ground WsaT(U). (b) Lifted WsAT(U), using simple
backtracking for the subsearch. (c) Lifted WsAT(U) but with pruning in the
subsearch disabled so that it mimics the ground solver. Note that both axes have
logarithmic scales: Lines (a) and (c) scale roughly as N*, whereas (b) scales as N2.
scaling behavior has returned to O(N?). At N = 40 (the largest size accessible to
the ground solver) this non-pruning lifted version is running about 3 times slower.

Hence, in this case, it seems that the overhead of lifting roughly corresponds
to a factor of about 3. This could easily be explained by extra costs such as looking
up the value of an atom such as planeAt(2,3,5) which requires access to a multi-
dimensional array (or equivalent) rather than just looking up a boolean variable
in a one-dimensional array. However, we emphasize that when subsearch pruning
is enabled we more than recover this loss: from Figure 26 we see that the lifted
version with backtracking subsearch is a clear winner.

In practice, the time spent on initialization will usually be a small fraction of

the total runtime, and so we now move on to look at how the lifted solver performs
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when making repairs (flips).

8.6 WsaT{U) Flip Rates
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FIGURE 27. Experimental performance of ground and lifted WsAT(U) solvers
on the Pentium IT 400MHz machine. Performance is measured in terms of flips
per second. The ground line terminates at N = 40 because beyond that point the
available memory (256MB} is exhausted.

Figure 27 gives the experimentally observed fliprates for the ground and lifted
versions of WSAT(U). To understand these results we need to consider the scaling
of the time needed per flip. In WSAT, after having selected the clause to repair,
and before making the flip itself, we have to select a literal from within the clause.
This requires calculating a heuristic for each such candidate literal.

In WsAT(U) we have to calculate the number of breaks that would occur

on flipping that literal and on inspecting the relevant sets of lifted clauses we find
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that the cost of evaluating the heuristic for a candidate be expected to be O(NV) for
both the ground and lifted solvers. (The nature of the relevant restricted clauses
is such that the lifted solver has no opportunity for pruning with the particular
axioms used.)

However, the logistics test instances contain clauses whose length is propor-
tional to IV, e.g. (2.21) says that every plane must be somewhere and so is a
disjunction over the 2/V + 2 cities. Since we have O(N) candidates and O(N) work
to evaluate each candidate, we can expect O(N?) time per flip.

Figure 28, gives scaling of time per flip for ground and lifted versions of
WsAT(U). We see that a quédra.tic function of NV is indeed a reasonable fit. The
scaling is not quite quadratic due to small effects from the physical cache; we will
return to this point in Section 8.9.

Finally, Figure 29 gives the ratio of fliprates of the ground and lifted solvers
as a function of size. At small sizes the lifted solver does badly, but gets better as
the sizes increase. The curve suggests that even if we could run the ground solver

on very large problems it would only be about twice as fast.

8.7 Pre-Calculating the Break Counts: WsaAT(UB)

As mentioned earlier, the original AT&T implementation of WSAT stores not
only the set of currently unsatisfied clauses, but also information about the num-
bers of breaks associated with an atom. Specifically, it keeps a “Breakstore”, that
is, for every atom in the theory it stores the number of clauses that would change
from satisfied to unsatisfied if the current value of that atom were to be reversed.

Consider an atom a in the theory and suppose that the current assignment P is
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FIGURE 28. Experimental times per flip for the ground and lifted WsaT(U)
solvers. The quadratic lines are [(N) = 0.058N? + 9.85N + 45.9 and g(N) =
0.17N?% — 0.21N +1.17, and are best fits to the data.
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FIGURE 29. Ratio of fliprates for the ground to lifted WsaT(U) solvers.

such that | = TRUE where [ = @ or | = -a. Then, by definition, the entry in the
breakstore associated with ¢ must always be the number of clauses in which { is
the only satisfying literal. We shall denote the relevant entry in the break store as
BREAKSTORE[!]. In the ground case it really is stored as an array; in the lifted
case it requires a multi-dimensional array to handle the arguments of the literal
(we use the same storage system as for the values of the literals).

Clearly, such a breakstore can lead to savings because now instead of having
to evaluate the heuristic for each candidate flip, we can just look up the value in
the breakstore. However, instead of just having to initialize and maintain the set
of unsatisfied clauses we now also have to initialize and maintain the breakstore.
The way that we do this is a straightforward conversion to subsearch language of

the existing ground WsAT(UB) code.
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We first deal with the somewhat simpler case of initialization.

8.7.1 Initializing the Breakstore

As just mentioned the entry in the breakstore associated with an atom a must
always be the number of clauses in which the associated, currently true literal, I, is
the only satisfying literal. That is, we need to find for every currently true literal
! the size of S(R(C,!), P,0,1), that is, to evaluate |S(R™(C,!),0,0)|. However,
rather than doing this for each literal in turn it is better to instead enumerate the
set of all clauses with zero or one satisfying literals: S(C, P,0,[0,1]), using the
notation of Section 6.6.1. On finding such a clause we have two possible actions

depending on s the number of satisfying literals:

§=0 The clause is unsatisfied and so should be added to the store of unsatisfied

clauses (exactly as in WsAT(U) and as discussed extensively in previous

chapters).

s=1 The clause has a single satisfying literal, call it [, and increment the relevant

entry in the breakstore: that is, do BREAKSTORE[{]++.

The subsearch for the elements of S(C, P, 0, [0, 1]) can be lifted in the obvious
fashion: we search over all clauses pruning whenever we find a clause with two
satisfying literals. In fact, in the lifted case we can have literals that are fixed true
but are not removed from the clauses. Such fixed literals can never be flipped by
WSAT and so we can also prune the subsearch on finding just one such literal. We

do not need to store or maintain values in the breakstore for such fixed literals.
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Note that the required subsearch is very similar to that for propagation,
and in fact the implementation re-used a lot of the propagation code. Such a
commonality in the implementations of otherwise very different algorithms is not

only a pleasing feature of the subsearch viewpoint, but also practically useful.

8.7.2 Maintaining the Breakstore

After we have flipped an atom then the number of true literals in clauses
containing that atom will change and so we have to we make appropriate changes
to the breakstore. Suppose that we are setting [ = TRUE, then there are two cases.

Case 1: Clauses containing !

In these clauses the number of satisfying literals will increase by one. We pro-
ceed by enumerating S(R™(C,{), P,0,[0,1]). The relevant action to take depends

on the number, s, of satisfying literals besides [ itself.

s=0 This corresponds to clauses that became satisfied and so need to be removed
from the store of unsatisfied clauses (exactly as in WsAT(U)). However, in
this case ! also becomes the only satisfying literal and so we also need to do

BREAKSTORE[!]++ for each such clause.

s=1 These clauses used to have a single satisfying literal, call it {. However,
now that ! is also true we have two satisfying literals and so the clause
should no longer contribute to the breakstore for I’. That is, we need to do

BREAKSTORE[l'|——.

Case 2: Clauses containing —{

In these clauses the number of satisfying literals will decrease by one. We pro-
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ceed by enumerating S(R™(C,~l), P,0, [0, 1]}. Again, the relevant action depends

on the number, s, of satisfying literals:

s=0 These clauses will become unsatisfied — they are exactly the clauses that
would be discovered in the subsearch for breaks in WsaT(U). They need
to be added to the store of unsatisfied clauses. Also, { used to be their
only satisfying literal and so we need to do BREAKSTORE[!]-— for each such

clause.

s=1 Suppose the satisfying literal is ', then both { and I’ used to be satisfying
literals but now !’ will be alone. Accordingly we need to increment its count,

in the breakstore: BREAKSTORE[!']++

In both of these maintenance cases the lifted subsearch can be implemented
in a similar fashion to the case of initialization: we prune the subsearch on reaching
two satisfying literals, or a single satisfying fixed literal.

The standard “walksat” ground code uses indexing schemes to find the rele-
vant sets R~(C,!1) and R™(C, -l), and a stored value of the number of true literals
in each clause to restrict attention to the relevant values of s.

Note that for us to be able to prune the subsearch in WsAT(UB) we generally
need to find two satisfying literals. In contrast, in WsAT(U) we can prune on
reaching just one satisfying literal. This means that the WsaT(U) method has at

least a potential of getting better gains from intelligent subsearch.
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8.8 Experimental Fliprates for WsaT(UB)

We now return to the particular case of the logistics axioms, and look first
at the times needed per flip (or flips per second).

In the logistics axioms there are clauses of length O(/N) and if one of these
were selected for fixing then we will have O(NV) candidates. In the case of WsaT(U)
we could expend O(XN) time on each of these candidates for a total of O(N?). In the
case of WSAT(UB) the cost of evaluating the heuristic is now just O(1) because we
can just look up the value in the break store (this is the reason that the breakstore
was used in the ground version from AT&T). This gives a total of O(N).

However, we also need to consider the cost of updating data structures after
making a flip. Potentially the -weaker pruning in the subsearch needed to maintain
the breakstore in WsAT(UB) could make it worse than WsaT(U). However, as
we have already discussed, the logistics axioms are such that when combined with
incremental maintenance there are no opportunities for pruning. In fact the worst
case that we have is O(/V). Hence, we expect that the time per flip will be linear
in N for WSAT(UB) in contrast to the quadratic time expected for Wsar(U).
Accordingly, WsaT(UB) can be expected to have a much higher fliprate on the
larger instances.

Note that if the search does not encounter many long clauses then Wsat(U)
is indeed a reasonable implementation of WSAT: The gains from having the break-
store might be more than offset by the extra cost of having to maintain it. In fact,
on random 3SAT instances, we found that the fliprate of ground Wsar(U) could
be over twice that of the original ground Wsar{UB).

Figure 30 gives the experimentally observed fliprates for the ground and
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lifted versions of WsaT(UB) and also repeats the results obtained for WsaT(U)
so as to allow an easier comparison. As expected the WsAT(UB) versions beats
the WSAT(U) versions (except that the ground version does well on the small-
est instances). Figure 31 shows the relative performance of lifted and ground
WsAT(UB) solvers. Again, lifting gives an overhead of a factor of about two on
the largest theories.

We emphasize that a strong advantage of the lifted solver is that loading
and running lifted propagation to completion takes seconds. In contrast, writing
out the large ground theories and running them through COMPACT can take many
minutes even in the cases that the theory is small enough for this to be possible.
The lifted solver can handle, and solve, theories with many millions of clauses
whereas the ground solver cannot even load such instances. In fact, we were able
to load and solve an instance at N = 300 with 10 timepoints, corresponding to
about 5 million variable and 2.5 billion clauses. However, at this size performance
had dropped to about 240 flips/sec, and so solving took almost 10 hours despite

the planning problem being very simple.

8.9 Effects of Machine Cache on Scalings

In the previous section we argued that the time-per-flip for WsaT(UB)
should be linear in V. In Figure 32 we give the experimentally observed times
for the lifted and ground versions of WsaT(UB). Although close to a linear func-
tion there is clearly a discrepancy. Suspecting that this was an effect of the cache
we repeated the experiments on a different machine: An Intel Celeron running

at 374MHz and with 128k cache. This second machine had the helpful facility
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FIGURE 30. Experimental performance of ground and lifted WsSAT(UB) solvers.

As usual, the ground lines terminate at N = 40 because beyond that point the
available memory (256MB) is exhausted.
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FIGURE 31. Ratio of fliprates for the ground to lifted WsaT(UB) solvers.

(supplied by the BIOS) to disable the cache. We use the same executables, but
the Celeron machine had only 64MB of RAM and so experiments could only be
performed up to N = 25.

The times per flip, running without cache, are given in Figure 33. Naturally
the lack of cache slows down the solvers, however we also obtain a much closer
fit to the expected linear time scaling for each solver. The observed variation of
the ratio of fliprate for ground to lifted is a consequence of the ratio of such linear
scalings. The constant terms in the linear fits are much worse for the lifted solver
than for the ground solver. Hence, at small N, the ratio is high, however, as N
increases it drops towards the value given by the leading, O(N), terms. In this
case the asymptotic value for the ratio is 10.2/4.82 = 2.12, consistent with the

behavior found in Figure 31.
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FIGURE 32. Experimental times per flip for the ground and lifted WsAT(UB)
solvers. The lines [((N) = 7.21N + 1.59, and ¢(N) = 3.46N — 17.6 and are best
linear fits to the data.
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FIGURE 33. .

80

Experimental times per flip, for WsAT(UB), with physical cache disabled. The
lines {(N} = 10.2N + 38.2, and g(N) = 4.82N — 8.58, and are best linear fits to

the data.
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Finally, in Figure 34, we give the ratio of ground to lifted Hiprates, both with
and without cache (on the Celeron machine). We see that the ratio is slightly
more favorable, at larger sizes, to the lifted solver when cache is enabled. This
seems reasonable as the lifted solver is using less memory and so can be expected
to have a better cache miss rate once the ground solver has grown enough to use

a substantial fraction of the RAM.
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FIGURE 34. Ratio of fliprates for the ground to lifted WsaAT(UB) solvers with
and without cache.

8.10 Experimental Initialization Times for WsAT(UB)

So far we only gave experimental results for WsaT(UB) in cases in which it
had no opportunity to prune. Unfortunately, the logistics domain axioms do not

allow the lifted WsAT(UB) to obtain any pruning even during initialization. This

is in contrast to the case of WsAT(U) (see Figure 26} and is just a reflection of
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the somewhat weaker pruning rules in WsaT(UB).

To see a case in which pruning occurs even for WSAT(UB) we consider a

new axiom

i+l<k Ac#d —
at(o,¢,i) A planeAt(ae,c,i) A
at(o,c, k) A planeAt(a,d, k)

— in{o,a,7+ 1) (8.5)

which just says that if there is a plane going the same way as the object then we
must immediately load the object onto that plane. It will also prevent two planes
pointlessly duplicating routes. The axiom expands to O(N*) clauses and so the
ground solvers can be expected to also have initialization costs that are O(N*).
If the subsearch values the variables ¢, k, a, ¢ and o (but not d) then the
literals at(o, c, 1), at(o, ¢, k) and in(o, a,i+1) will be valued. Since the first two of
these are very likely to be set FALSE by the initial weighting it follows that there
is a reasonable chance that the subsearch will be able to prune at this point and
not have to also value d. We can expect lifted WSAT(UB) to initialize in time
roughly O(N?). In WsaT(U) we can do even better. After valuing just i, k, a and
c then planeAt(a, c,i) can be evaluated, and has a good chance of being found to
be FALSE causing pruning and an expected cost that scales as O(N?).
Experiments are difficult because the ground theories rapidly become very
large. accordingly we reduced the problem sizes by producing theories containing

only this axiom. Since we are only initializing, and not doing flips, this does not
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FIGURE 35. Experimental initialization times for WSAT on a large axiom (8.5).

(a) Ground WsAT(UB). (b) Lifted WsAT(UB). (c) Lifted WSAT(U) Note that

both axes have logarithmic scales: Line (a) scales as N4, (b) scales as N¥, and (c)

as N2,

affect wsAT. Even with 256MB the ground solvers can still only reach N = 12.3
Figure 35 gives the experimental initialization times and confirms that they

behave much as expected. In particular doing lifting either of the solvers pives

substantial savings.

8.11 Summary

We have seen evidence that the overhead from lifting is a constant factor of
about 2 or 3. However, the ability of the lifted solver to prune in the subsearch

can more than compensate. In one sense the simple ability of the lifted solver to

30f course, the desire to handle such large axioms, in systems such as SATPLAN, provided
much of the initial motivation for this thesis.
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handle much larger theories is confirmation in itself of the utility of lifting. Even if
the lifted solver had no gains from subsearch it would still be useful due to its its
ability to handle much larger theories. Often theories become significantly smaller
on processing using COMPACT or COMPACT-L. So even 2 lifted solver that just did
such pre-processing at the lifted level, and then ground out the resulting theory

would still have utility.
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CHAPTER IX

ADVANCED SUBSEARCH IN QCNF

So far we have only considered using simple backtracking for the subsearch,

and found that even this simple method can show gains over the ground case.

However, subsearch is just search in a CSP (or CCSP) and there are certainly far

more effective search methods in CSPs. The topic of search in CSPs has been very

extensively studied [1, 70, and many others]. A very partial list of approaches that

one might consider includes:

1.

Various levels of pre-processing such as node and arc consistency.

Dynamic variable ordering: when searching we generally allow the order of

the branch variables to vary according to the current state of the subsearch.

Forwarding checking (FC): after having taken a branch, we check whether
there is some reason that the subsearch can be terminated. That is, we use

some form of propagation within the subsearch.

Many kinds of intelligent backtracking with backjumping or learning. For
example, we might use Dynamic Backtracking [25] or one of its extensions

such as Relevance Bounded Learning [2].

Exploitation of the graph structure: see Section 9.5.

Clearly, a lot of work would be needed to determine which of these work best

for subsearch. We would also need to extend the methods to handle CCSPs as
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far as possible. This is left to future work. Instead, here we shall focus on just
a few ways that we might substantially reduce the cost of subsearch in the sub-
CSPs. Firstly, we will distinguish between what we call semantic and syntactic

approaches to solving the CSPs.

9.1 Semantic and Svntactic Methods

Here, the terminology follows our standard usage

1. Syntactic Methods: these do not refer to or need the current truth value

assignment P.
2. Semantic Methods: properties of the current assignment P are exploited.

As defined in Section 6.2 and in particular (6.4), the constraint graph from the
clause is syntactic, but the constraints associated with the edges are semantic.
Thus, we can distinguish between semantic methods directed at exploiting
particular features of the constraints, and syntactic methods that exploit the struc-
ture of the constraint graph. In reality there is likely to be a lot of overlap. We will
only briefly look at the semantic methods: this chapter will mostly concentrate on

the syntactic case.

9.1.1 Semantic Methods

In SAT, if we restrict the clauses to be binary or Horn (at most one positive
literal) then the theory is tractable (for a listing of such cases see [61]). Similarly in
CSPs, restrictions can be placed on the constraint sets so that the theory becomes

tractable. A well-studied case is that of “0/1/all constraints” in binary CSPs [9].
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However, the constraints are controlled by P and hence under the control of
the search, not the subsearch. Hence, it seems unlikely that only such tractable
cases will occur. For example, WSAT might potentially hit any state, hence we
cannot generally expect that there will be any limit on the nature of the constraints
that arise.

Although the nature of the constraints seems unlikely to improve the worst-
case behavior, it is quite possible that average-case behavior will be a lot better
due to imbalanced predicates. As discussed in Section 7.4.1, it seems likely that
literals within the clauses will tend towards being negative, and atoms will tend
towards being FALSE. In terms of the constraints of the sub-CSP, this means that
relatively few values for the domain variables will be allowed: the constraints will
tend to be tight.

Whether or not the constraints will be tight enough for their expected com-
plexity to be a lot better than the worst-case is a matter for implementation and
experiment and will be left to future work.

Note that incrementality in this context will correspond to maintaining in-
formation about the sub-CSP as the assignment P changes, and hence as the
constraints themselves change. Doing this efficiently is the topic of dynamic CSPs

[18, 71}. It is an open question whether such dynamic CSP methods will prove

useful for the subsearch.

9.1.2 Syntactic Methods

Instead of looking at the constraints themselves it is perhaps easier to just try

to exploit the nature of the constraint graph to reduce the cost of subsearch. The
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graph is independent of the assignment P. Hence, the remainder of this chapter
will give a few examples and some discussion of how the graph structure of a
constraint might be exploited.

It is worth bearing in mind that, although a particular clause ¢ might not
have a structure we can exploit, it could well be that some syntactic restriction
R~(C,1) can be exploited. The effect of such a restriction on the graph is to remove

some nodes and collapse some edges.

9.2 Factored Clauses

Consider the clause

c = Vi, p(r) v r(y) (9.1)

with 2,7 € D and |D| = n. This factors into

c=c V ¢

with

a =V p(a)

c=Yj r(y)

The graph of the sub-CSP is given in Figure 36. Although this seems an unlikely
constraint in itself, it might well arise from some syntactic restriction.

Suppose that we want to solve the checking problem for S(c, P,0,0). The
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OO
p{i) r(j)

FIGURE 36. Example of a disconnected sub-CSP graph. The structure of the
sub-CSP for the “factorizable” constraint of (9.1)

ground solver takes O(n?) as there are this many ground clauses. With simple
backtracking we might still, in the worst case, take O(n?). However, we can do
better by exploiting the factored form ¢, V c;.

Define a cross-product ® on sets of clauses by

518 = {(d V dy) | dy €S and dy € 5} (9.2)

then
S(c,P,0,0) = S(¢,P,0,0)® S(cy, P,0,0) (9.3)

Now
SIS #0 +— S #FOANS5#0 (9.4)

So, of course, the checking problem becomes the sum of the checking problems on
each subproblem, and hence O(n) in the worst case. This beats both the ground
and backtracking subsearch engines.

(‘The arguments here are also very suggestive of the motives behind dynamic

backtracking [25], and the polynomial factorizability discussed by McAllester [43].)
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Other subsearch problems can also exploit the factorization:
1. Counting: take the product of the sizes.
2. Iteration: a double loop of the iterator for each set.
3. Enumeration: just store the separate S{c;, P, 0,0) to save space.
4. Selection: just select on each sub-clause separately.
If we have general u and s then we need CCSPs. We can split the allowed u

and s between the two otherwise independent CCSPs.

S{cy V ¢, Pu,s) = DEHE“ S(er, P, s") ® S(ep, Pyu—u',s— )

0<s'<s

(9.5)

For example

S(C] v Cg,P,l,O) = S(C[,P,0,0) ® S(Cg,P,l,O)U

S(c1, P,1,0) ® S(cy, P,0,0) (9.6)
Compare these with (4.24) for conjunctions of clauses.

9.3 Disjoint Sets Example

Consider the clause

e = Vi jh —ux(ih)y v —ylhh) (9.7)
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with domains 4,7 € {1,...,n} and h € {1,...,d}. The graph for the sub-CSP is
given in Figure 37.
i h j

o———0 — 0
X(i,h) Y(ih)

FIGURE 37. Example of a linear sub-CSP graph. Structure of the sub-CSP for
the “disjoint” constraint of (9.7)

We can call this a “disjoint constraint” because if we define the sets

X = {h]|3i 2@, h)

Y = {h|3.7 y(jah‘)}

then sets X and Y are constrained to be disjoint.

There are O{n?d) ground clauses, and this is the best we can expect from a
ground solver.

A standard way to pre-process CSP problems is to enforce node consistency:
that is, to make sure that we remove values from domains at nodes if they are
inconsistent with their immediate neighbors. Doing this for node & means removing
values of h that do not have a possible 7 value, and also if there is no possible 7
value. In this case the linear nature of the graph, and the associated lack of a
constraint between 2 and j means that if there is a node-consistent assignment. for

i then there is a totally consistent assignment.
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In terms of the clause we are effectively re-writing it as

c = Yh = [3 i. ’I‘('L,h) V= [3 - y(j,h')-, (98)

and the checking problem is just a matter of checking whether each set is nonempty
for every h. Node-consistency is sufficient to solve the checking problem. This takes
time O(dn) even in the worst case, which improves on the ground solver.

If we want to enumerate all solutions to the CSP, we can handle each value

of h separately. With h = H we have the clause,

¢ = Vi,j. -z(i, H) v —y(y, H) (9.9)

which is effectively the same as (9.1) in the previous section, and can be solved in
time O(n). Thus we can expect a general reduction from O(nd) to O{nd) due to
the linear nature of the graph.

Now consider simple backtracking for the checking problem. If we branch on
variables in the order i, j, h we will also take time O(n?d) in the worst case. We
can improve on this using the more natural order ¢, &, 7 and exploiting the fact
that once we have reached j the value of 7 is irrelevant. This could be achieved
by dependency maintenance techniques [1). The difference of the complexities is
just a reflection of the fact that in the order ¢, j, i the induced width (see [1, and
others] for definitions and general discussion) of the graph is two, whereas with
the order i, h, 7 the induced width drops to one. We shall return to this issue in
Section 9.5.

An alternative view is that we should effectively define a new predicate A(h)
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Ah) «—— 3i. X(4,h) (9.10)

A(h) just remembers whether there was a successful value for ¢ but doesn’t need

to remember the value itself. Then we can just check

Vhj A(h) — =Y(hk) (9.11)

We can compute the new predicate A(h) in time O(nd) and then the final checking
is again O(nd). This is at the cost of O(d) extra space usage.

A learning mechanism in the subsearch could well derive such A{h) and such
learning can be encoded in the axioms themselves by means of introducing new
predicates. It is intriguing that issues in solving the subsearch might be used to

suggest changes to the representation itself.

9.4 No-Circles Example

So far we have just given simple examples of reduction in cost arising from
exploitation of the graph structure. In this example we want to compare subsearch
with what we might do if were given the freedom to directly implement the effects
of an axiom with special-purpose code.

We take a constraint that we might reasonably add to the logistics system:

we demand that objects are not moved in circles. That is, il an object is at a
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i i< ] j<k k

-at{o,c.j)
at{o,c,k)

at{o,c,i)
0 C
(a)

[ i<d J J<k k
& ° &
at{O,C,i) at{O,C,k)

(b)

FIGURE 38. (a) Structure of the sub-CSP for the nocircles constraint ¢ of
(9.12). (b) Structure after binding 0 = O, ¢ = C and j = J corresponding to
R~ (c,—at(0,C, J))

location at two time-points then it is there at all intermediate times as well:

c=i<jnji<k —

at(o,c,1) A at(o,c,k) — at(o,c, ;)] (9.12)

The corresponding constraint hypergraph is given in Figure 38(a).
We will consider just one optimization we would like to achieve. Suppose

that we are doing backtracking search (not subsearch) and that the search engine



changes the value of at(O, C, J) in P from UNVALUED to FALSE {where O, C, J are
constants).

We need to look for propagations and contradictions arising from the change.
Suppose we find that at(0, C, I} = TRUE for some [ < J, that is, the city C has
already been visited by object O. In this case the search engine will want to ensure
that O does not return to C' at any time after J. That is, for all k¥ > J we set,
at(0, C, k) = FALSE, or report a contradiction if we find any such & for which it is
already set to TRUE.

Suppose that the search engine did this and did not find a contradiction.
If we were hand-coding this constraint we would know it would be pointless to
continue to look for a different I' < J. Even if the city had been visited twice
before J we will learn nothing new. We would optimize the subsearch and stop at
the first I with at(QO,C, ) = TRUE.

Is it possible for a general purpose subsearch method to capture such a seem-
ingly special-purpose hand-crafted optimization?

On setting at(O, C,I) = TRUE, the usual incrementality means we will be

concerned with subsearch on R~(¢, —at(O, C, J)) which is just

Vi,k. =(i<J)V =~(J<k) Vv -at(o,ci) vV —at(ock)

(9.13)

The structure of this clause is given in Figure 38(b).
In pure subsearch terms, the linear structure, similar to the previous exam-

ples, suggest that we find all the solutions to ¢ and k separately and then take the
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cross-product. This would be appropriate if we were doing WSAT and wanted all
unsatisfied clauses. However, if we are doing unit propagation then it would give
us too much information. Consider, Figure 23(b) again. When we extract ground
clauses from [S{(C.y, P,0,0)US(C_y, P,1,0)] we only use the UNVALUED literal. If
we get two different ground clauses but with the same UNVALUED literal then we

will be repeating work.

proc UNIT-PROPAGATE(!, P)
L= {i}
while L #
select some ' € L and remove it from L
P:=Pu{l = true}
C.r:=R(C, =1
ifCy #0
L' = GET-ALL-LITERALS-IF( S(Cp, P,1,0), S(C-p,P,0,0) = Q)
if L' = failure return Contradiction
L:=Lul store the literals in L' for later propagation
end while
return P
end

FIGURE 39. Final version of unit propagation for literal {. This method is sim-

ilar to Figure 23(b), but uses a minimal extraction of information from the sets
S(C, P,1,0) and S(C., P,0,0).

Instead we rewrite the unit propagation as in Figure 39 using a rather spe-

cialized subsearch problem.

Definition 9.4.1
“Conditional-false-stripped” subsearch

INSTANCE: A (u,s)-restriction S; and a conditional cond(S,) on a

second set Sy



TASK: If the conditional fails then return failure. Otherwise take the
clauses from S, and remove the FALSE literals in each, calling the results
subclauses. Then remove duplicate subclauses, and return the resulting
set of subclause. Hence, we are returning a set of clauses in which ail

literals are either TRUE or UNVALUED.

PSEUDO-CODE: GET-ALL-SUBCLAUSES-IF(S, cond(S,)) 0

Here we use the notation GET-ALL-LITERALS-IF for the special case of GET-
ALL-SUBCLAUSES-IF with S; = S(C, P, 1,0), that is, when the subclauses will be
just literals, and so we return either failure or a set of literals that are all currently
UNVALUED.

The advantage of this approach is that once the subsearch returns a subclause
it can prune subsearch that could only lead to returning the same subclause again.
The conditional is just so that we can terminate the subsearch immediately if we
detect a contradiction.

In the no-circles example we use such subsearch with S,(C, P,1,0) and C

given by (9.13). But now note that (9.13) splits

Vi -(i<J)Vv -at{oc1)] V

Wk ~(J<k)Vv —atlock) (9.14)

and so we can use (9.6). For the first term in (9.G) the subsearch needs to check

that

S([Vi. =~(i<J)V =at(oci)], P, 0, 0) (9.15)
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is non-empty and then should evaluate

S(Vk. = (J<k) Vv -at(o,ck)l, P, 1, 0) (9.16)

The point is that subsearch no longer needs to do more than check whether the
first set is empty, and so can stop on finding the first element. This is the subsearch
equivalent of the special optimization we just described. However, it is now a result
of the general-purpose language of subsearch.

Of course, it remains for future work to implement a subsearch engine that
would achieve such optimizations automatically. It will be especially interesting
to see to what extent domain-independent intelligent search mechanisms applied
to the subsearch can take over from domain-specific approaches to optimizing the

implementation of constraints.

9.5 Exploiting Graph Structure

If the induced width of the graph is k (that is, it is a partial k-tree) then there
are algorithms that are exponential only in & rather than the number of nodes of
the graph [19] (though it seems likely that such algorithms also have a space usage
that is exponential in & {1]). For example, trees can be solved in linear time.

This suggests using the cycle-cutset method [17] to solve CSPs. The aim is
to just branch on a set of “cutset” nodes. These nodes are chosen so that removing
them from the graph gives a tree (or more generally a k-tree) which can then be
solved directly rather than via search. For this to be effective we want to find a

small, and preferably optimal, set of nodes. Unfortunately, finding the smallest
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cutset is in itself NP-complete and so generally disfavors this approach.

However, in the case of subsearch the relevant size is the number of universally
quantified domain variables which is likely to be a lot smaller than the total number
of atoms in the problem. Also, in the case of subsearch the same clauses will be
used many times with different states P, hence the effort spent to analyze the
syntactic structure of the clause (that is, its graph) can be amortized over many
uses of the same graph. In this sense sub-CSPs are an unusual case: normally
we would expect the CSP graphs to change from instance to instance. It is also
worth noting that in many cases the structure of a clause is independent of the
domain sizes and hence of the size of the problem instance. For example, in the
no-circles example that we just discussed it might be difficult to find the optimal
way to handle the clauses, however we only need to do it once. It would also be
possible to run tests with small problem instances to find the best ways to handle
constraints and use the methods learned in order to handle the largest instances.
For all these reasons it seems quite possible that analyzing the graph structure to
optimize the way that a clause is handled will have very low amortized cost.

Finally, we remark that we have mostly ignored probabilistic issues concerned
with the imbalance of predicates (sece Section 9.1.1); however such semantic issues
should be allowed to influence the way that the structure is exploited. Whether or
not the constraints on an edge are almost always very tight or instead very loose

will affect how it should be treated.
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9.6 Summary

There are good reasons to believe that application of advanced search tech-
niques to the subsearch would be beneficial. It could even be that the application
of domain-independent techniques to the subsearch (not the search} will lead to
optimizations that mimic what we would normally consider to be domain-specific
implementation methods for specific constraints.

A subsearch system should be able to recognize various classes of graphs
for the sub-CSP and make appropriate choices for the subsearch algorithm. The
cost of such choices can be amortized between uses of the subsearch within an
instance, and possibly even between problem instances as the problem instance
just affects the size of the domain and not the structure of the graph. Note that
such methods would not be conceivable in the ground approach because we have
lost the structure that is a property of the general encoding and hence is repeated
in different problem instances.

One difficulty with these ideas is that maybe we just never get to use clauses
that are sufficiently complex for subsearch to show large gains. It seems unlikely
when coding a domain that a human would write very large constraints. On the
other hand, large clauses might well be generated automatically in some cases:
perhaps, from conversion of non-clausal formulas, or perhaps from some learning

process {see Section 11.2).
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CHAPTER X

RELATED WORIK

We are aware of just two related approaches: global constraints, and an

extension of GSAT to work with non-clausal boolean formulas [63).

10.1 Global Constraints

As can be guessed from its name, a global constraint is a constraint that
involves all (or at least many) of the variables and takes a global view, rather than
involving just a small number of variables in the problem and some local property.
Such constraints are often used in constraint programming (CP) and constraint
satisfaction problems in general.

Clearly, quantified clauses will often qualily as global constraints. For exam-
ple, in the logistics domain, many of the axioms will involve all timepoints and
objects and so involve a large fraction of the atoms.

A standard example of a global constraint is the ALL-DIFFERENT constraint.
This takes a set of finite domain variables X; and ensures that they are given

different values. That is, is has the meaning

ALL-DIFFERENT{{X;}) +—+ Vi, 5. N;# X, (10.1)

In the area of scheduling a useful constraint is the following. For every

interval {pair of timepoints) in the domain the cumulative resource usage of all the
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tasks constrained to be done in that interval must not exceed the total resource

availability in that interval. Roughly speaking we have

V iy, ta. (Z usage(z) x within(z,tl,tg}) < available(t;, t,) (10.2)
i
where within(i, ¢;,£;) is 1 if the task ¢ has to be done in the interval and 0 other-
wise, usage(4) is the resource usage of task 7, and the bound is obtained from the
resources available within the interval. This is a global constraint for two reasons.
It involves a universal quantification over pairs of timepoints. Also, the interval
might be the large enough so that every task is within the interval, and hence it
requires a global sum of all the resource usages.
We see that global constraints are also typically composites of simpler prim-
itive constraints. For example, we really did not need ALL-DIFFERENT but could
have just used the equivalent set of inequalities. Two reasons to use such COMpPOos-

ites are:

1. Better implementation. It may be more efficient to implement the composite

as a whole, rather than with its components treated separately.

2. More powerful inference (propagation). It might allow propagations that
would otherwise not occur (and would have to be discovered by search in-

stead, and with a higher cost).

For example, ALL-DIFFERENT is composed of O(n?)} primitive separate con-
straints, however it can be implemented to run in O(nlogn) time 53] (since we

can check for duplicates in a set by sorting them first).



193

The resource constraint for scheduling is a redundant constraint in the sense
that it is not logically necessary. To check that a schedule is legal we do not necd
to check usages over all intervals but only at individual timepoints. It is not an
axiom but rather a theorem derived {rom the axioms. It is used because it allows us
to find propagations that we would otherwise not obtain divectly from the axioms
alone.

Formulas in QCNF can clearly be regarded as global constraints in the sense
that they are a composite of all the equivalent ground clauses. Indeed our main
point has been that a composite, the quantified clanse, can be implemented (using
subsearch) to run more efficiently than we can achieve by treating its components,
the ground clauses, separately.

Thus, we can regard this work as falling within the general topic of global
constraints. However, work on global constraints is usually focnsed on a single
constraint, whereas the work here is much more general and counsiders a whole
language: QCNF. Hence the immediate differences from general usage of global

constraints are

1. QCNF is more general in the sense that we antomatically handle more con-

straints without special purpose coding,

[~

Subsearch and its associated complexity results: the fact that inplementing
a quantified clanse as a constraint is NP-complete, and requires search. 1s

Iew,

The generality of QCNF is a definite advaintage. However, as usnal, we can expect

that a general method will also lave cases in which it loses to a special purpose
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encoding of a single global constraint.

One can make the conjecture that many of the specialized optimizations
achieved when hand-coding global constraints might be achievable by using domain-
independent search methods for the relevant subsearch. In practice, it is hard to
believe! (but not impossible) that using domain-independent methods for sub-
search will be able to reproduce all the considerable effort and ingenuity that has
gone into implementing even such a simple constraint as the ALL-DIFFERENT con-
straint [53]. However, it may reproduce enough, and do so automatically, to be
useful.

We have also not discussed the issue of proof-based methods, such as resolu-
tion, except in the general discussion of inference in SAT in Chapter IIT. The focus
of this thesis has been entirely on model-search methods such as wsaT. However,
QCNF is a subset of first order logic and so we can resolve together clauses, and do
proof-based reasoning. This opportunity for reasoning does not seem to be prac-
tical for the global constraints in general. It would correspond to taking global
constraints such as ALL-DIFFERENT and attempting to combine them to produce
new constraints. Usage of global constraints, and CP itself, focuses on model-based
search methods, and their extension to proof-based search would seem problematic.
In contrast, in Section 11.2 we give some reasons to believe that using proof-based
reasoning when using languages such as QCNF could lead to big advantages.

Finally, we note a drawback of the QCNF approach is that it only obtains
gains when the primitive constraints can be collected together into a single quan-

tified clause. We have not given methods that can handle collections of quantified

YOf course, opinions differ substantially on this point!
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clauses better than handling them all separately.

10.2 Sebastiani’s Approach_to Non-Clausal Formulas

Sebastiani has presented an interesting extension of GSAT to work with non-
clausal boolean formulas [63]. The work was motivated by the observation that
conversion of an arbitrary formula to clausal form can result in a large, and even
exponential, increase in size. _ . ks

For example, consider
(x Ay v A (10.3)

where A itself is a boolean formula. We convert to CNF by “multiplying out”. We

first get
(0 v A)y A (y v A) (10.4)

and then the formula A might in turn need to be expanded, so that eventually we
can get exponential size increase because we have doubled the space needed by A by
causing it to be repeated. Of course, the general idea of keeping formulas as small
as possible was also an initial motivation for QCNF: conversion of a quantified
clause to ground form can give an exponential increase in size. Sebastiani also
implemented GSAT in terms of abstractions, sucl as procedures that return the
effective number of unsatisfied clauses.

We differ on the following counts:

1. We handle quantifiers. Sebastiani was limited to boolean connectives. In
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practice, it seems that quantifiers are more of a problem than non-clausal
forms. After all, it is possible to convert to clausal form by introducing
new predicates. In the example above, if we define the new variable z by
z =1x A y the size explosion can be avoided. (Such extra variables are
not decision variables, but are dependent, and so the size of the search space
is not necessarily increased). In practice, conversion to clausal form does
not seem to cause difficulties (or they are avoidable), whereas conversion to

ground form can easily make the problem too large to run on the machine.

2. Solving the relevant abstraction, subsearch, is recognized as being NP-hard
and to be solved best by search. That is, the main difference is the recognition

of the subsearch problems, and their solution via search methods.

At a deeper level it seems that use of quantified clauses captures more of
the structure in a problem than the use of non-clausal formulas, and hence we can
obtain more gains by exploiting such structure.

However, we did start by discussing QPROP rather than the special case
QCNF and QPROP can contain non-clausal structures mixed in with quantifiers.
It is conceivable that a combination of subsearch on quantifiers with Sebastiani’s

approach to non-clausality could prove useful.
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CHAPTER XI

OPEN QUESTIONS AND FUTURE WORK

The concept of being able to run propositional algorithms such as Davis-
Putnam and WSAT on quantified expressions via subsearch is new, and hence we
have been able to do little more than sketch the basics. Many interesting questions
and possibilities for future work arise.

There are likely to be many issues arising when trying to implement improve-
ments to the subsearch, in particular in trying to implement the exploitation of
sub-CSP structure as discussed in Chapter 1X. Maybe, we could also use a CSP
engine such as MULTI-TAC [47] that could take the many calls to the subsearch
engines as learning examples, and so produce specialized methods to solve the

sub-CSPs. However, here we just discuss a few of the issues arising.

11.1 Implications for Problem Encodings

In SATPLAN, alot of effort has gone into manipulating the problem encoding
so that the ground CNF-formulas produced are small [37]. If a lifted solver is
available then it is no longer at all clear that the size of the ground CNF is a good
criterion for selecting encodings. It is conceivable that there are encodings that are
very large if ground, but for which the structure of the axioms happens to make
the subsearch and search run very well.

An obvious example here is to explore the addition of “redundant constraints”
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to the set of axioms: such constraints not being logically necessary, but designed
to help the search engine (COMPACT-B is designed precisely to find some such
constraints automatically). Such constraints can easily involve many quantifiers
- being designed to help the solver in some special situation — but would tend
to swamp a ground solver (unless the redundant constraints were themselves also
carefully selected for size). However, a lifted solver could well be able to exploit

them effectively.

11.2 Non-Minimal Lifting

Using quantified clauses instead of SAT preserves a lot of structure naturally
present in problems. So far we have only exploited this in the subsearch. However,
the search itself should also be able to exploit such structure. In such a case the
search will itself be changed by the lifting. We will look at some ideas for non-
minimal lifting of the backtracking propagation based methods, and also make

some brief comments about possible non-minimal lifting in local search.

11.2.1 Lifted Backtracking

In Section 3.9.2 we considered the pre-processing method comMpPACT-B, with

the standard example

—a Vv
—a Ve

bV eV {11.1)
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Here, simple resolution shows that — a V d is entailed, and the idea was to add
it to the theory because it improved the propagation {which we represented by
“="). CoMPACT-B discovers such entailed clauses by speculative assignments
to pairs of literals. In this example, it would try d = FALSE, find that - d #= - a
but that = d A @ => L, and hence conclude that the clause is worth adding to
the theory.

What happens when we try to lift this reasoning?

We could certainly do a minimal lifting of comMPACT-B. We would do all
branching in terms of ground literals and just use the lifted form of unit propagation
in order to derive the needed contradictions. However, this has the problem that
we only ever find ground clauses. This does not seem right: instead, we should
surely be learning quantified clauses. Consider the simple case where we just have

multiple copies of the same example:

Vi —afi) v b(7)
Vi. —-a(i) A" C(i)
Vi =b(i) v =c@@) Vv d(3) (11.2)

If we did a minimal lifting we might branch on d(1) and discover the entailed
clause — a(l) v d(1). However, the original problem was symmetric between
all the elements of the domain of i. One can often regard the quantified forms as
making such symmetries manifest, rather than hidden as they are in the ground
formulations (see also the work by Joslin and Roy [35]). Such symmetries suggest

that if we learn one ground clause then there is some chance that it could be
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generalized to a lifted clause. In this case, a non-minimally lifted comracT-B
should be able to directly deduce that ¥i. - a(i) v d(¢) is entailed.

An example very similar to this this actually occurs in the logistics axioms
as given in Chapter II. It is clear from the axioms that moving an object means
that it must be on a plane for at least two consecutive timepoints. If it is in a city
at time 7 then at times 7 + 1 and 7 4 2 it cannot be in any other city. However,
unit propagation does not capture this information, and to fix this we should add
an extra lifted clause that is entailed by the axioms.

Suppose that we could indeed lift learning mechanisms so as to learn lifted

clauses. This could have enormous advantages:

1. We can save a lot of work: in the example above we would hope to learn the

lifted clause in constant time.

2. The lifted learning can jump ahead in the sense that we might learn clauses
that will allow us to prune parts of the search space before reaching them.
The lifted clause will contain many other clauses besides the ground clauses

used to create it.

3. Learning lifted clauses rather than a set of ground clauses means we can use

subsearch on them.

4. Often the clauses learned are properties of the domain rather than of the
instance. In this case, the learned clauses might also carry over from one
instance to the next. There is the potential to avoid learning everything

from scratch on each new instance. In particular, we might learn new clauses
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on small instances where extensive complete searches are possible, and then

apply them to larger more challenging instances.

5. The entailed clauses could also be useful for theory validation: the user could
inspect them to check that they are consistent with the intended interpreta-

tion 7).

Ginsberg has suggested a mechanism to do such lifted learning [26]. It is to lift
the dependency maintenance techniques used within algorithms such as Relevance
Bounded Learning (RBL) [3]. It is well-known that backtracking searches are
equivalent to resolution proofs: given a search tree we can convert it to a resolution
proof in polytime [48, and others]. Hence, the dependency maintenance techniques
can also be thought of in terms of resolution proofs. In a ground solver all such
resolution is ground resolution. However, when using QCNF we have the option
of keeping the resolution lifted. Thus, in the example, when the solver derives
= a(l) Vv d(1) it would be tracing the steps with lifted resolution between the
clauses. In this case lifted resolution between the clauses immediately yields the
desired generalization of the ground clause.

We could, of course, have just tried lifted resolution between the clauses, but
such resolution suffers from producing lots of clauses that are not used. Instead,
using a backtracking search to guide the lifted resolution has a chance to ensure
that the resolution is a lot more focused onto clauses that are really useful.

If such methods are applied to algorithms such as RBL, then we will poten-
tially end up learning lifted clauses containing inany literals. Part of the motivation
for Chapter IX was to start to set up mechanisms that will be able to automatically

exploit the subsearch needed with such clauses.
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Finally, we recall that quantified clauses could be regarded as global con-
straints, one potential advantage of QCNF over the globals as used in constraint
programming is that QCNF constraints can be combined to produce new con-
straints (with the potential advantages we just discussed). This would be hard to
do in constraint programming in general: the language of constraints is much freer,
and it is much harder to reason about them, rather than just using the propagation

that they produce.

11.2.2 Lifted Learning for Local Search

We briefly consider two extensions to GSAT/WSAT algorithms that are used
to combat the problem of getting trapped in a local minimum. Both are concerned
with changing the cost surface so that the minimum gets filled in and the search

will move on.

11.2.2.1 Adding-New-Clauses

We can add new entailed clauses that have the effect of filling in the minimum
in which we are trapped [6, 74]. If such clauses were lifted then the effect would be
to not only fill in the local minimum, but also to fill in other equivalent minima.
This could be an advantage because then we would be filling in many minima
simultaneously. However, the extra overhead from the lifted clauses could also

slow down the search, and it is not clear whether there would be a net gain.
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11.2.2.2 Clause Weights

If a clause is constantly being broken then it can be a good idea to adjust
the search so that more emphasis is placed on fixing it. This is done in WSAT by
weighting each clauses and adjusting the clause selection scheme accordingly [65].

If lifting, we cannot (excluding sparse storage mechanisms) store a weight
for each ground clause. Instead we could just weight the quantified clauses. With
such a mechanism ground clauses might end up receiving a high weight despite
themselves never having been broken; the high weight having arisen from some
other grounding of the quantified clause. It is conceivable that such weighting
could be good, because in the case that the search should happen to move into the
region where the ground clause is now broken then the weighting scheme needed
to help us escape will already be in place. Experiments in this area would be
interesting.

In both of the above areas, we again have the potential for inter-instance
learning: clauses or weights might have a more general lesson than the particular
instance being used. Again a ground solver without access to the lifted structure
has no chance to do such inter-instance learning.

There are also interesting questions here as to whether the local minima met
by a real search have enough common structure that clauses or weights to help

escape one mimimum will have much chance of helping some future minimum.

11.2.3 Subsearch Directed Search

We have seen that subsearch is a major component of search. Hence, it makes

sense that the search engine might gain some advantages by modifying its decisions
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to take account of the costs of subsearch. The search might want to avoid regions
in the search space in which the subsearch becomes more costly: perhaps there
are cases in which we can decide to search more nodes, but then search them so
much faster that it is a net gain. If nothing else, then such considerations might
be used as a tie-breaker between choices that are equal as far as the search itself
is concerned.

Alternatively, the search now has access to the lifted structures and so might
be able to exploit these in ways that are more effective or cheaper than the usual
CSP heuristics such as “most-constraining first”. Perhaps the lifted structure of
the clauses can be used to help pick the next branch variable in the Davis-Putnam

procedure.

11.3 Breaking out_of QCNF

There are many conceivable directions in which we might go in extending

QCNF. Some directions are obvious:
1. Extend to various operations research representations:

(a) 0/1 variables with linear inequalities

(b) general FD domain variables (or finite domain variables in the sense of

CSPs)

In such representations it is also reasonable to have global constraints that

are naturally written with universal quantifiers.

2. Non-clausal form with quantifiers.
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However, we will only look at one desirable extension which is to reinstate
the existential quantifiers. After all, part of the motivation for using QPROP was
that expanding quantifiers loses structure that we should be exploiting, and so

always expanding existentials is surely obscuring some structure.

11.3.1 General QCNF and the Polynomial Hierarchy

Suppose we define “k-Alternating-QCNF” as clauses of the form

c = VU][,...H‘UQ],...V’U;H,... 3'!)4], ...... Q’Ukl,... Vla(ta) (113)

a

where () is 3 if k is even and V if &k is odd. That is, we have % alternations between
existentials and universals. The case k = 1 is just QCNF as defined in Chapter IV.
The case & = 2 still has the property of grounding directly to CNF, see (2.8).

If we now follow the same reasoning used in Section 6.2, then checking
whether ¢ is broken by the current assignment P becomes a matter of finding

a solution to the negated clause

El'u“,... V’UQ],... 3U31,...V’U4], ...... _1Q'Uk1,... /\_"'u(ta) (114)

[

If we read each negated literal —=/,(z.) at fixed truth value assignment P as a
relation on a subset of the variables v;; then we have the same form as the problems
B, described in section 7.2 of Garey and Johnson [22].

Thus, the checking (subsearch) problem, that is, showing ¢ is not satisfied,
for such k-alternating problems are in the classes £} of the polynomial hierarchy.

The case k =1 is just TF = NP.
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Note that even for the case k = 2, the checking problem is &f = NpNP
To show that a set of bindings for the universally quantified variables gives an
unsatisfied clause, we have to show that no binding for the existentially quantified
variables gives a satisfying literal.

Maybe such formulas have applications in game-like problems with the alter-
nations correspond to alternating moves by the players. However, in SATPLAN,
or similar systems, alternations do not seem to arise very often or be very deep.

Hence, we will look at much simpler extension that is more directly usable.

11.3.2 An A*E Extension of QCNF

Instead of trying to handle arbitrary numbers of existentials and ending up
in the rarefied heights of the polynomial hierarchy we will only consider a minimal
usage of existentials. If we look at the logistics axioms of Chapter II, we observe
that there an no formulas with more than one existential. Hence a pood start to

using existentials would be to limit ourselves to expressions of the form

V'Li, EJ A['Lla!.’]

(11.5)

where A is a disjunction of literals with no further quantifiers. Even such clauses

would be a useful extension to QCNF. For example, clauses such as

Vi p(z) — 3. 7(r,7) (11.6)
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often arise from relationalizing some function or partial function. In this case, the

“sub-CSP” is

p(4) A

Y j. —r(4, 5) (11.7)

To find a satisfying assignment then means even with a fixed ¢ we have to consider
all 7 values. In this case using a sparse representation of P will probably be useful
here because such a representation more naturally supports jumping directly to

the relevant 7 values.

11.3.2.1 Relation to Simple Symmetries

One reason for wanting to allow explicit existentials is that they might al-
low better exploitation of symmetries. Quantifiers in QCNF naturally make some
permutation symmetries manifest, and this is potentially useful as having to redis-
cover them is expensive. We can conjecture that an existential is often an indicator
of potential symmetry that we should be exploiting; e.g. if you have 34 then the
possibility of a symmetry over elements of the domain of & should be considered.
As an example consider the pigeon-hole problem (PHP) described in Section 2.4.

From (2.11) we have

Vi, 3h pli,h) (11.8)

which seems associated with the symmetry between the holes. The PHP is hard

to solve if written in propositional form [29], but when we exploit the symmetry it
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becomes polytime [10].

Hence, existentials could well be used as by the solver to keep an eye out for
symmetries in the quantified variables. However, exploiting symmetries within the
context of a lifted SAT solver is generally an open question (though some previous

work exists {35]).
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CHAPTER XII

CONCLUSION

12.1 Contributions

We have considered “lifting” of propostional solvers, that is, converting them
to work with quantified clauses rather than just the equivalent ground expressions.
We found that such lifted solvers are not only possible with reasonable overheads,
but also have distinct theoretical and practical advantages over the ground solvers.

Our primary technical contribution was to show that many apparently dif-
ferent tasks such as unit-propagation in the Davis-Putnam procedure and finding
sets of unsatisfied clauses as wWsAT actually have a lot in common. The common
property is that they require extracting relevant information and clauses from the
set of input clauses. We showed that such extraction is NP-hard in general (Chap-
ter VI), and this fact, combined with the natural view of extracting the clauses as
a form of database search, motivated us to label this process as subsearch.

We identified a number of different subsearch processes (Chapter IV), and
showed {Chapter V) how they are used within standard algorithms. This allowed
us to extend such algorithms to work with quantified clauses.

We showed that the standard way to deal with such quantified clauses,
namely to ground them out first, corresponds to doing the subsearch using a
method that is essentially generate-and-test. Using better search algorithms for

the subsearch was shown, both theoretically (Chapter VII) and experimentally
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(Chapter VIII), to enable the algorithms to run faster, and with considerably less
memory usage. The difference in performance was sufficiently large that we could
run problems inaccessible to usual ground solvers. The practical impact of this
should be much greater freedom in encoding problems in areas such as SATPLAN.

We reformulated the subsearch problems on quantified clauses as search prob-
lems in an associated CSP (or CSP-like problem), that we called the sub-CSP (see
Chapter VI). In Chapter IX, we also discussed various ways in which more ad-
vanced search techniques applied to the sub-CSP of a quantified clause have the
potential to obtain some of the benefits that would normally require hand-coding
of the corresponding global constraint.

We illuminated the natural overlaps and differences between quantified clauses
and the concept of global constraints as used in constraint programming and con-
straint satisfaction. A potential advantage of quantified clauses is that they permit
proof-based reasoning, and we discussed some potential advantages and methods
for this in Section 11.2.1. It is possible to combine clauses by resolution, whereas

global constraints in general do not have such a reasoning mechanism available.

12.2 Closing Comment

Quantifiers capture a structure that is present in many problems. Throwing
away such structure away by conversion to SAT causes many difficulties. Instead
we have seen that satisfiability algorithms can successfully exploit such structure.
Many questions remain open, and there are many prospects for interesting future
work in this area. Of particular interest is the possibility of lifting various learning

schemes such as COMPACT-B and relevance-bounded learning.
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