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This dissertation investigates deterministic polynomial-time computation in ma-
trix groups over finite fields. Of particular interest are matrix-group problems that
resemble testing graph isomorphism. The main results are instances where the prob-
lems admit polynomial-time solutions and methods that enable such efficiency.

A permutation-group problem that generalizes graph-isomorphism testing is the
problem of finding stabilizers of sets. For an integer constant d > 0, let I'; denote
the class of finite groups all of whose nonabelian composition factors lie in S;. A
result of Luks asserts that in 'y one can find set-stabilizers in polynomial time. The
set-stabilizer problem has important generalizations in matrix groups. Let G be a
matrix group on a vector space V over a finite field. The vector-stabilizer problem
asks: given v € V, find the subgroup of G stabilizing v. The subspace-stabilizer
problem asks: given W < V, find the subgroup of G stabilizing V.

A critical foundation for group computation is the ability to perform testing

membership of an element in a group. In matrix groups, a polynomial-time method
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seems unlikely since membership-testing already subsumes the discrete-log problem,
Nevertheless, assuming a polynomial bound on the primes in |G| other than the field
characteristic, Luks has found polynomial-time solutions for testing membership and
also for finding stabilizers of vectors and subspaces in solvable groups.

The main theme of this dissertation is the generalization of the solvable-matrix-
group algorithms to algorithms for matrix groups in Ty.

Assuming the same bound on these primes, we establish polynomial-time mem-
bership-testing in a broader class than I'y: matrix groups all of whose nonabelian
composition factors have polynomially bounded orders.

Now assume a polynomial bound on the primes in |G| and the field charac-
teristic. Based on the membership-testing algorithm, we then develop a divide-and-
conquer paradigm for finding stabilizers of vectors and subspaces in polynomial time
for G € I'y. This result exploits Babai, Cameron, and Pélfy’s theorem on the polyno-
mial orders of primitive groups in I’y and Rényai’s algorithm for finding irreducible

subspaces.
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CHAPTER 1

INTRODUCTION

§1. Computational Group Theory

In the intersection of abstract algebra and computer science, computational
group theory is a research area concerning methods of computation, both theoretical
and practical, in groups. Over the last several decades, this subject has experienced
a period of vigorous development (cf. [49]).

Two computer algebra systems are particularly known for their rich libraries
in groups: GAP [24] (an open system developed by J. Neubiiser's school in Aachen,
currently updated in St Andrews) and Magma [21] (the product of J. J. Cannon’s
school in Sydney, regarded as the successor to the system Cayley [20]). Systems
such as these have indeed served as important tools for profound discoveries in group
theory, combinatorics, as well as other parts of mathematics and science (cf. [49, pp.
674-675]).

In many computational situations, groups are specified as concrete objects with
respect to the two classical representation methods, namely, by permutations and
matrices. Therefore, numerous algorithms have been designed and implemented based
on not only abstract group theory but also the unique structural properties of these
representations.

Since the seminal work of Sims [51], [52], many significant results on efficient

algorithms for permutation groups have appeared from both sides of theorists and



2

practitioners, making the area of permutation-group computation the most matured
sub-discipline (cf. [49, pp. 675-676]). Particularly remarkable is the development
of a large library of polynomial-time algorithms, inaugurated in 1980 by the work of
Furst, Hopcroft, and Luks [23] on a polynomial-time version of Sims’s algorithm (see
[5], [33], [34], and {40] for survey of results; [50] for detailed descriptions). There are
two apparent reasons for such success: A small generating set of permutations can
designate a very large group. Permutation groups offer the ubiquity of group actions
on a prescribed set, given implicitly as part of the input.

Matrices are considered to be more natural and desirable objects for group rep-
resentation. Matrix groups offer very compact representations but also pose serious
computational difficulties. One of the basic problems in this category is member-
ship-testing: determine whether or not a given element belongs to a group speci-
fied by generators. L. Babai has observed that, based on Mihailova’s result [42], the
membership-testing problem is undecidable already for groups of invertible integer
matrices of dimension four (cf. [3]). For matrix groups over finite fields, the problem
is clearly decidable. However, even for 1 x 1 matrices over finite fields, the problem
subsumes a version of the well-known discrete-log problem, whose theoretical com-
plexity status is a long-standing open question in complexity theory (see, e.g., [13,
pp. 162-165]). Applying techniques developed for permutation groups directly to
matrix groups often causes exponential blowups of the input size. Indeed, rewriting
matrix groups naively as permutation groups on the underlying vector space already
requires such a blowup.

Nevertheless, by separating some of these difficult obstacles, the intense quest

for efficient matrix-group algorithms has offered some promising results and continues
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to be very active (cf. [7}, [12], [14], [15], [16], and {39]). In fact, the subject of matrix-
group computation, both theoretical and practical, is currently considered to be the
most actively studied area in the computational group theory community (cf. [49,
pp. 677-678]}). Unlike in permutation groups, where deterministic algorithms have
performed well, randomization appears to be an indispensable tool for many existing

matrix-group algorithms.

§2. Computational Complexity in Matrix Groups

As in many subjects of the theory of computing, in computational group theory,
polynomial time has been recognized as a robust theoretical criterion of tractability
in classifying problems. Indeed, in permutation-group computation, polynomial time
has not only offered an elegant theory with considerable generality and power within
the area but also established an interface to computational complexity theory [40].
The same spirit has been carried into matrix-group computation.

The work of Babai and Szemerédi [12] first addressed the issue of computational
complexity in matrix groups. Their work answers purely complexity-theoretic ques-
tions and provides certain promising directions to algorithm designers. In particular,
their results assert that, in matrix groups over finite fields, the problems of testing
membership and deciding solvability belong to the class NP.

The work of Luks (39] first introduced polynomial-time algorithms for matrix
groups. Luks showed that the problem of deciding solvability of matrix groups over
finite fields has a polynomial-time solution. Methods that must involve membership-
testing are unlikely to have polynomial-time efficiency. Nonetheless, with a simple
limitation on the input, Luks managed to solve a number of problems, including

membership-testing, for solvable matrix groups over finite fields in polynomial time.
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In his ground-breaking work [39], in order to separate bottlenecks involving the
discrete-log problem, Luks introduced a timing parameter x(G) for a matrix group G-
the largest prime dividing |G| other than the characteristic of the ground field. With
#(G) in timing, Luks’s main results are a large library of deterministic algorithms
for solvable matrix groups over finite fields. In particular, for a given solvable matrix
group G, Luks’s algorithm solves the three basic problems of finding |G{, membership-
testing, and finding a presentation for G, in time polynomial in the input length and
u(G).

With randomization and another timing parameter, Beals and Babai extended
from solvable groups to all groups [16]. The Beals-Babai algorithm solves the afore-
mentioned three basic problems for a matrix group G over a finite field in Las Vegas
time that is polynomial in the input length, x{G), and another parameter v{G):
the smallest positive integer m such that every nonabelian composition factor of G
has a permutation representation of degree at most m. Subsequently, randomized

membership-testing has been shown to admit various classes of matrix groups (cf.

[14] and [15]).

§3. Relationship with Graph-Isomorphism Testing

A significant link between computational group theory and computational com-
plexity theory is the graph-isomorphism problem (GRAPH-ISO). The problem is of
fundamental importance in the theory of computing because of its as yet unresolved

status in the polynomial-time hierarchy, and it plays a very interesting role in the

P =7NP question [27) (see Chapter IV for technical implications; see also [35]). The

following three group-theoretic problems are known to be polynomial-time equivalent
to GRAPH-ISO (cf. [6] and [41]). Given a graph X, compute the orbits of Aut(X);




generators for Aut(X); and the order of Aut(X).
Luks has further observed a class of permutation-group problems that are at
least as hard and play similar rdles in the polynomial-time hierarchy as GRAPH-

ISO (named the Luks equivalence class by Babai in [6]): finding coset intersections,

set-stabilizers, and centralizers of elements and subgroups [38] (cf. [11]).

Based on the fundamental work of Furst, Hopcroft, and Luks [23], using an ele-
gant divide-and-conquer paradigm, sub-cases of the Luks equivalence class problems
have been shown to be solvable in polynomial time [38].

For an integer d > 0, let I'y denote the class of finite groups all of whose
nonabelian composition factors are isomorphic to subgroups of the symmetric group
of permutations Sg. Evidently, 'y includes all solvable groups. From another point
of view, for a graph X of valence at most d + 1 and an edge e of X, the subgroup of
Aut(X) that fixes e belongs to I'y [38, Proposition 3.4] (cf. [10]).

Fix an integer constant d > 0. Luks’s work {38], later strengthened by the work
of Babai, Cameron, and Pélfy [8], proves that the set-stabilizer problem is solvable
in polynomial time for permutation groups in I'y. It is then a corollary that one can
test, in polynomial time, isomorphism of graphs of bounded valence.

Based on the aforementioned work on membership-testing in solvable matrix
groups, Luks went on to investigate the polynomial-time computability of matrix-
group problems resembling the set-stabilizer problem [39]. In particular, for a given
solvable matrix group G, Luks developed a divide-and-conquer method, analogous to
his earlier work on permutation groups [38], to solve the problems of finding stabilizers
of vectors and subspaces and finding centralizers and intersections of subgroups in

time polynomial in the input length and p(G).



§4. Summary of the Results

This dissertation investigates deterministic polynomial-time computation in ma-
trix groups over finite fields. Of particular interest are matrix-group problems that
generalize the set-stabilizer problem: the problems of finding stabilizers of vectors and
subspaces. The main results are instances where these problems admit polynomial-
time solutions and methods that enable such efficiency.

Motivated by Luks’s results in permutation groups [38], we consider instances
in the class [y, the best we can hope as a reasonable target, with an assumption on
the sizes of certain primes. The main theme of this dissertation is the generalization
of Luks’s solvable matrix group algorithms to algorithms for matrix groups in I'y.

In the first part of the dissertation, we develop basic algorithms for membership-
testing. In fact, with (G) in timing, we are able to establish polynomial-time mem-
bership-testing in a broader class of matrix groups than those in I'y. In Chapter I,
we prove that, given a matrix group G such that p(G) and the maximum order of
a nonabelian composition factor of G are polynomially bounded in the input length,
the problems of testing membership, finding |G|, and finding a presentation of G can
be solved in polynomial time.

As in Luks’s method, our approach to membership-testing involves top-down
decomposition of a given group G; in particular, we construct a series of G-normal
subgroups G = Ny > N; > --- > N, = 1 specified by presentations of G/N;. This
paradigm reduces membership-testing to the problem of finding a representation of
each N; with kernel Ni;;. Our results exploit polynomial-time permutation-group
machinery for such representations.

As corollaries, we also prove that, for these matrix groups admitting polynomial-
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time membership-testing, one can find composition series and the kernels of certain
homomorphisms in polynomial time.

In the second part of the dissertation, we consider the problems of finding sta-
bilizers of vectors and subspaces. In Chapter IV, we develop a divide-and-conquer
paradigm for a matrix group G € I'y, where the primes dividing |G| and the char-
acteristic of the ground field are polynomially bounded, to solve the vector-stabilizer
and subspace-stabilizer problems in polynomial time.

As in Luks’s classical method [38], the main component of our approach involves
two levels of divide and conquer. First, for a given group G, we seek a G-invariant
subspace W or an imprimitivity system V for G in the underlying vector space V.
If such a subspace W is found, we consider the induced actions of G on W and
V/W. On the other hand, if an imprimitivity system V is found, we consider the
natural permutation representation of G on V. Using a standard algorithm for finding
block systems in permutation groups, we then construct a primitive permutation
representation of G on blocks of V. When such decomposition bottoms out, we
appeal to the celebrated result of Babai, Cameron, and Pélfy: the orders of primitive
permutation groups in 'y are polynomially bounded.

It should be emphasized that, unlike in the solvable-group case {39], for divide-
and-conquer involving nonabelian quotients, we rely on Rényai's algorithm [47] to
find irreducible subspaces. The main complexity-theoretic bottleneck in finding ir-
reducible subspaces is polynomial factorization. Presently, deterministic polynomial-
time methods are only available in finite fields with polynomially bounded character-

istics. Therefore, in our results, we assume that the field characteristic is polynomially

bounded.
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On the other hand, Las Vegas polynomial-time factorization methods are avail-
able in finite fields of any characteristics {17]. Indeed, as with factoring polynomials,
we may remove the condition on the field characteristic if we interpret our results as

Las Vegas instead of deterministic.



CHAPTER II
PRELIMINARIES

In this chapter, we review basic terminologies of group theory, finite fields, per-
mutation representations, linear representations, and polynomial-time computability.
Our general references are {28}, [29], and [36). We will also use deeper group-theoretic
results from [1], [32], and [55]. For permutation groups, we refer to [22] and [57]. For

matrix groups, we refer to [54]. A standard reference on polynomial-time computabil-

ity is [25].
§1. Generalities

Let G be a group. We write H < G and N 9 G to indicate, respectively, H
is a subgroup of G, and N is a normal subgroup of G; to emphasize strict inclusion,
we write H < G and N <« G, respectively. A normal series for G is a series 1 =
Hy<d---<d Hy = G. A subgroup H of G is subnormal in G, denoted by H << G,
if there exists a series H = H; 4--- < H, = G, if H < G, then we write H 94 G.
A G-pormal series for G is a series 1 = Ny < --- < Ny = G such that each N; 4G,
For a subset S C G, let (§) = (s | s € S) denote the subgroup of G generated
by §. For z,y € G, the conjugate of z by y is z¥ = y~'zy; for a subset X C G,
write X¥ = {z¥ | z € X}. The normal closure of X in G, denoted by (X€), is the
subgroup generated by the sets X7 for all g € G (that is, the smallest normal subgroup

of G containing X); we call X normal generators for (X€) in G. Let # < G. The
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normalizer of X in H is the subgroup Ny(X) = {h € H | X" = X}. The centralizer
of X in H is the subgroup Cpy(X) = {h€ H |2z" =z forallz € X}. If X = {z},
then we write Cy(z} = Cy(X). The center of G is the subgroup Z(G) = Cx(G).

For z,y € G, the commutator of z and y is [z,y] = z7 'y 'zy. For subsets
X,Y C G, write [X,Y] = ([z,y] | * € X andy € Y). The derived group of G
is the subgroup G’ = G = [G,G]. For integers i > 1, recursively write G =

[G¥=D,GU-D]. We say G is solvable if G™ = 1 for some integer n > 0. Now, write

L,(G) = G, and proceeding recursivély, write Li(G) = [Li—1(G), G) for integers i > 1.
We say G is nilpotent if L,(G) = 1 for some integer n > 0. The class of a nilpotent
group G is the integer m such that L,(G) > L1 (G) = 1.

Let G be a finite group. Let p be a prime. We say G is a p-group if |G| is a

power of p. We say G is an elementary abelian p-group if every nonidentity element

of G has order p.

A composition series for G is a normal series 1 = K, < --- < K; = G maximal

subject to K;<1K;_;. The composition factors of G are K /Ko, ..., K¢_1/ K, uniquely
determined by G up to isomorphism and the order in which they appear. A chief series
for G is a G-normal series 1 = C; < -+ < €} = G maximal subject to C; < G.
The chief factors of G are Cy/Cs,. .., Ce-1/Cy, also uniquely determined by G up to
isomorphism and the order in which they appear.

We say G is quasisimple if G = G, and if G/Z(G)} is nonabelian simple. We
say G is semisimple if G = &', and if G/Z(G) is isomorphic to a direct product of
nonabelian simple groups.

Let k be a finite field. The image of the integers Z in k is an integral domain

and thus isomorphic to Z/pZ = GF(p) for some prime p. We call p the characteristic
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of k, denoted by char k, and GF(p) the prime field of k.

Typically, k is encoded by an irreducible polynomial f of degree d = |k : GF(p)|
over GF(p). Under an isomorphism k & GF(p)[X]/(f), each element of k is then a
d-tuple of elements of GF(p) (i.e., a polynomial of degree at most d — 1 over GF(p)),

and addition and multiplication in k are defined by those in GF(p)[X]/(f).

§2. Permutation Representations

Let Sym(£2) denote the symmetric group of permutations on an m-element set
Q. A permutation group is a subgroup of Sym(f2). A group G acts on § if there is a
homomorphism 7 : G — Sym(Q2). We call 7 a permutation representation of G. If

is an injection, then = is faithful. We call m the degree of ; if G < Sym(2), then we

call m the degree of G.

Let G act on 2. We denote the images of a point a € 2 and a subset A C
under g € G by of and A9, respectively. The relation ~ on § defined by a ~ 3 if
a? = j for some g € G is an equivalence relation, and we call the equivalence classes
orbits. We say G acts transitively on Q if Q itself forms a single orbit. For a point
a € {2, the point-stabilizer of « is the subgroup G, = {g € G | o = a}. For a subset
A C 2, the set-stabilizer of A is the subgroup Stabg(A) = {g € G | AY = A}. If Q
possesses a group structure preserved by G, then we often write Cg(a) and Ng(A)
for G, and Stabg(A), respectively.

Let G act transitively on 2. A subset A C  is a block if, for each g € G,

either A? = A or A?NA = 0. The set of images of a block, called a system of blocks,

forms a G-invariant partition of 2. A system of blocks is trivial if it is the partition

into singletons or the partition with § itself. If a transitive group G has no nontrivial

system of blocks, then G is primitive.
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Let H be a group and K be a permutation group on a set I". Consider the
cartesian product [Jr H consisting of |['| copies of H and identify each element f
[Ir H as a function from I into . The wreath product H wr K is the split extension
of a base group [Ip H by K, where the action of K on [ H is defined by permuting T
copies of H as the elements of I' (i.e., fory € ' and k € K, we define f%(y) = f(v*™")).

§3. Linear Representations

Let & be a field and V an n-dimensional vector space over k. Let Endy(V) =
Hom,(V, V) denote the algebra of all the linear transformations of V into itself. The
units of Endx (V) form the general linear group GI(V) = GL(V, k). If S C Endi(V),
then Span(S) is the subalgebra of End,(V) spanned by S. If G < GL(V), then
k[G] = Span(G) is the linear span of G (or enveloping algebra of G).

An isomorphism between End;(V) and the algebra M(n,k) of all the n x n
matrices over k defines an isomorphism between GL(V') and the group GL(n,k) of
all the n X n invertible matrices over k. Under such an isomorphism, we regard each
element of Endy (V) as a matrix. A matrix group is a subgroup of GL(n, k), and we
regard a subgroup of GL(V) as a matrix group. If k is a finite field of order g, we
often write M{n,q) = M(n,k) and GL(n, q) = GL(n, k).

A group G acts on V if there is a homomorphism ¢ : G — GL(V). We call

¢ a linear representation of G over k (or kG-representation) and V a representation

module for ¢ (or kG-module). If ¢ is an injection, then ¢ is faithful. We call n the
degree of ¢ over k; if G < GL(V'), then we call n the degree of G over k.

Let G act on V. Since GL(V') < Sym(V'), the notations of permutation groups
apply to G. A subspace W of V is a G-subspace (or invariant under G) if W9 C W

for all g € G. If the only G-subspaces are 0 and V, then G is irreducible; otherwise,
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G is reducible. We say G is completely reducible if there are minimal G-subspaces
Wy,...,W,, r > 1, forming a direct sum V = W, @ --- @ W,; in particular, an
irreducible group is completely reducible. For a minimal G-subspace W C V, the
homogeneous G-subspace of V' determined by W is the sum of all the minimal G-
subspaces that are G-isomorphic to W.

An irreducible group G is imprimitive if there are subspaces W,...,V,,, m > 2,
forming a direct sum V = V1 @- . -@V,, such that, for each g € G, the map V; — V9 is
a permutation of the set V = {V;,...,V,,}. We call V a gystem of imprimitivity for G;
if no such system exists, G is primitive. We call V a minimal system of imprimitivity
for G if the G-action on V is a primitive permutation representation of degree m.

An element z of End,(V) is unipotent if = has its n eigenvalues all equal to 1
(ie., (z —1)" = 0). A subgroup G of GL(V) is unipotent if all the elements of G are
unipotent; if chark = p, then G is unipotent if and only if G is a p-group.

We define that an abelian subgroup A of GL(V') is uniform if, for every integer

m 2> 1, the subgroup A™ of A has no nonzero fixed vectors in V (i.e, Cy(A™) = 0)

unless A™ = 1.

84. Polynomial-Time Computability

A problem, with an input encoded by a string of length £, has a polynomial-time
solution if it is solvable by an algorithm that runs in O(£°) steps for a fixed constant
¢ > 1. A problem P, is polynomial-time reducible to a problem P,, denoted by
P, <7 Py, if the existence of a polynomial-time solution to P, implies the existence of
such a solution to P,. Problems P; and P, are polynomial-time equivalent, denoted
by P, =P P,, if P, and P, are polynomial-time reducible to each other.

The length of a subgroup series is often essential to polynomial running time
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of algorithms. By Lagrange’s theorem, a strictly increasing series of subgroups in S,
has length at most logm! = O(mlogm). In fact, according to Babai’s bound [4],
such a series has length at most 2m — 1. In GL(n, ¢), Lagrange’s theorem yields that
the length of a subgroup series is at most nlogg. For more accurate estimates on the
length of a subgroup series, we refer to [19], [48], [53], and [56].

To formalize complexity analysis, we define three parameters on groups. For a
finite group G, define £(G) to be the maximum order of a nonabelian composition
factor of G and ¥(G) to be the maximum order of a nonabelian chief factor of G. For

G < GL(n, k), define u(G) to be the largest prime dividing |G| other than char k.
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CHAPTER III
MANAGEMENT OF MATRIX GROUPS

In this chapter, we investigate the polynomial-time computability of member-
ship-testing. First, we formalize the problem of membership-testing with a general
paradigm of manageability. After summarizing basic polynomial-time tools and pre-
liminary facts on normal structure, we establish the manageability of matrix groups
having polynomial bounds on the orders of nonabelian chief factors. We then gen-
eralize our method for matrix groups having polynomial bounds on the orders of

nonabelian composition factors.
§1. Statement of the Results

In computational group theory, one of the most basic problems is membership-

testing. In matrix groups over a finite field k, it is formally defined as

Membership-test.
Instance: G < GL(n,k) and z € GL(n, k).
Question: z € G7

In this chapter, we directly generalize Luks’s membership-test algorithm from
solvable groups to all groups using another natural timing parameter x(G): the max-
imum order of a nonabelian composition factor of G. In addition to the basic tools
of [39], we also adapt a variant of [16, Lemma 5.1] in our deterministic setting.

Let & be a finite field of order g. For an input/output G < GL(n, k), we assume
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that G is specified by a generating set of matrices S. We also assume some reasonable

encoding of the field ¥ so that a polynomial in the input length throughout means a
polynomial in n, log g, and |S|, unless it is specified otherwise.

The following is the main result of this chapter.

Theorem 3.1.1. Let £ be a finite field. Given a matrix group G < GL(n, k), one
can solve the following list of problems in time polynomial in these three parameters:
the input length, the largest prime dividing |G| other than char %, and the maximum

order of a nonabelian composition factor of G.
(i) Find |G].
(ii) Given = € GL(n, k), test whether or not z € G.

(ili} Find a generator-relator presentation of G.

We list four applications in the following corollary.

Corollary 3.1.2. The list of problems in Theorem 3.1.1 continues as follows.
(iv) Find a composition series of G.

(v) Find a G-normal series
G=G,>Gy>---=G,=1

such that each G;/G;,, is a nonabelian chief factor of G or an elementary abelian

group.
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(vi) Find the kernel of a given homomorphism G — M, where M is a finite group

equipped with a polynomial-time algorithm for testing membership and finding

presentations.

(vii) Given a normal subgroup N of G, find Cg(N).

To prove Theorem 3.1.1 and Corollary 3.1.2, we also make the following addi-
tional assumption.

Let p = char k. Observe that, with some reasonable encoding of the field k (e.g.,
an irreducible polynomial f over the prime field GF(p) such that k£ & GF(p)[X]/(f)),
it is elementary to convert our setting to matrix groups over GF(p) by blowing up by

a factor of deg f. Thus, we assume that k = GF(p).

§2. Membership-Testing with Manageable Groups

In this section, we describe the overall structure of a generic membership-test
procedure we will adapt. The method we describe here was originally formalized for
solvable matrix groups in [39, §§4.1-4.2].

We begin with a brief outline. Given G < GL(n, k), the method constructs, in

a top-down fashion, a G-normal series
G=Ni>Ny>-->N, =1

specified by generator-relator presentations of G/N; and G-homomorphisms m; : N; —
M;, where N;;, = Kerm;, and M; are finite groups equipped with certain basic
polynomial-time machinery. With such a series, membership-testing can be per-

formed by a sifting process: map a candidate = for membership in N; by m; to M;;
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find an a € N; such that m;(a) = m(z); then test membership of za™! in Ny, (cf.
23]).

In order to formalize our method, we must first define algorithmic notions of
presentations (cf. (39, §4.2]).

Let F(X) denote the free group on a set X. Then, for a group G and a function
¢ : X — G, there is 2 natural extension of ¢ to a homomorphism ¢ : F(X) = G.

Let G be a group and N a normal subgroup of G. A constructive presentation
of Gmod N is Il = (X, ¢,9,R) in which X is a set, ¢ : X — G is a function,
¥ : G — F(X) is a homomorphism, and R is a subset of F(X), satisfying the

following properties.
(1) gd(¥(g))~' € N for each g € G.
(2) $71(N) = (RFX)),

For computational purposes, we assume that IT = (X, ¢,%, R) is specified by ¢(X),
R, and a procedure for determining ¥(g) for any g € G.

For g € @, write siftg(g) = gd(¥(g))~1. The following result is observed in [39,
Lemmas 4.1, 4.2].

Lemma 3.2.1. Let G be a group and N a normal subgroup of G. If I1 =

(X, 9,1, R) is a constructive presentation of G mod N, then the following hold.

(i) (X|R) is a generator-relator presentation of G/N, with mutually-inverse iso-

morphisms G/N & F(X)/(RF“™) naturally induced by ¢ and .

(ii) If G = (8), then N = ((¢(R) Ussifty(S5))%); in particular, if G = (¢(X)}, then
N = ($(R)). a
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Observe that, by (ii) above, given generators for G and a constructive presen-
tation of G mod N for N 9 G, one can construct a subset, called normal generators,
R C N such that (R®) = N (that is, N is the normal closure of R in G).

The following result, observed in [39, Lemma 4.3], provides a recipe for gluing

presentations together.

Lemma 3.2.2. Let G be a group and N and K normal subgroups of G such
that K S N. If H1 = (Xl,qﬁl,'l,bl,Rl) and H2 = (Xg,tﬁz,’l,bg,Rg) are constructive
presentations of G mod N and N mod K, respectively, then IT = (X, ¢,1, R} defined
by

(l) X = Xl U Xz,
- ¢1(z) for z € X,,
(ii} ¢(z) =
¢a2(z) for z € Xj,
(iii) ¥(g) = v (sifty, (g))¥1(g) for g € G, and
(iv) R = R, US US,, where & = {riha(d(r)~!|r € Ri} and & =
{(Ezzl)—1¢2(¢2($2)¢1(31)) I:El € Xl and To € Xz},

is a constructive presentation of G mod K. 0

In what follows, we define our notion of manageability involving finite groups
equipped with certain basic polynomial-time machinery.

A finite group M specified by some input string is manageable if there is a
polynomial-time algorithm for testing membership of a given element and finding a

constructive presentation for all the subgroups of M.

Theorem 3.2.3. The following finite groups are manageable.
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(i) Permutation groups G < Sym(2) (Sims [51}; Furst-Hopcroft-Luks [23]).
(ii) Solvable matrix groups G < GL(n, k) such that u(G), the largest prime dividing

|G| other than char &, is bounded by a fixed polynomial in the input length of
G (Luks [39]). O

Let G be a finite group and N a normal subgroup N of G. A manageable

representation for N is a homomorphism 7 : N — M for some manageable group

M, where m(N) # 1, such that 7 is equipped with an action of G on 7(N) satisfying
n(z)? = w(z?) for £ € N and g € G. Very often, 7 is defined as the restriction of a
homomorphism G —+ M on N. For computational purposes, we assume that 7 is a
procedure for determining 7 (z) for any z € N.

A manageable series of a finite group G is a G-normal series

G=N>Ny>-- >N, =1

specified by constructive presentations of G mod N; and manageable representations
7; : N; = M; for manageable groups M; such that N, = Kerm;.

The following problem is our main interest.

Manageable representation.
Input: G < GL(n, k) and a constructive presentation of G mod N for N < G.

Find: a manageable representation 7 : N — M for a manageable group M.

Suppose, for the moment, that a procedure to solve the manageable represen-
tation problem is available. Given G < GL(n, &}, we construct a manageable series

of G, in a top-down fashion, as follows.
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Let Ny = G, and start with the trivial constructive presentation of G mod N;.
As a generic step, suppose that a constructive presentation of G mod N; for N; <G is
given. Then we may assume that we have normal generators R; for N;. Here, find a
manageable representation #; : N; — M; for some manageable group M;. Then, as ;
is a G-homomorphism, obtain, in M;, generators for and a constructive presentation
of n(N;) = (mi(R:)®). All of this can be pulled back to N;/Kerm;. Now, define
Nis1 = Kerm;, and use the constructive presentations of G mod N; and N; mod Nin
to form a constructive presentation of G mod N;,,. Repeat the procedure until we
reach N; = 1.

When N, = 1 is reached, a manageable series of G is complete. Membership-
testing can be then performed by the sifting procedure through this series as described
before.

That is, to prove that a matrix group G is manageable, it suffices to design
a polynomial-time algorithm to solve the manageable representation problem for all

the subgroups of G. We entirely devote the rest of the chapter to the manageable

representation problem.

§3. Basic Polynomial-Time Tools

We review basic polynomial-time tools developed earlier in [39]. We also develop
a variant of the distilling lemma [16, Lemma 5.1].

We begin with the following elementary observation.

Lemma 3.3.1. Let G < GL(n,k) and a subset {g,...,gn} of G be a basis of
the linear span k{G]. If z € GL(n,k), then k[G]® = k[G7], and {g?, ..., gm"} forms
a basis of k[G™]. O
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The following result is observed in [39, Theorem 4.5).

Theorem 3.3.2. Given G < GL(n,k) and R C GL(n, k), where N := (RS), in

polynomial time one can find a basis B of the linear span k[N] such that BC N. D

In general, observe that an element o € GL(n, k) centralizes G < GL(n, k) if
and only if @ commutes with a basis of £[G]. In particular, Theorem 3.3.2 yields the

following corollary.

Corollary 3.3.3. Given G < GL(n, k) and R C GL(n, k), where N := (RS), in
polynomial time one can either prove that N is abelian, or find a,b € N such that

[a, b] # 1. |

Luks also found a way to strengthen Theorem 3.3.2 and Corollary 3.3.3 by
applying the following elementary observation.

For an n-dimensional vector space V' over k and a set of vectors X C V, let
Span(X) denote the subspace of V spanned by X. For G < GL(V), let X€ and X*IC]

denote the images of X under G and k[G], respectively. Then we have Span(X€¢) =
Span (X *IC),

Proposition 3.3.4 (Luks). Given G < GL(n,%), and R, Q C GL(n, k), where

N := (RS) and L := {Q"), in polynomial time one can
(i) find a basis B of the linear span k[L] such that B C L, and

(ii) prove that L is abelian, or find e,b € L such that [a,b] # 1.

Proof. Let :GL(n,k) = GL{M(n,k)) be the conjugation action of GL(n, k)

on M(n,k). Regarding Q as a set of vectors of the vector space M(n,k), we have
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k[L) = Span(Q™) = Span(Q“™)). Since NV = (}_25), a basis of k[N] as elements of N
is available by Theorem 3.3.2.

Note that, with respect to normal generators, the depth of L from G is two,
and the algorithm squares an upper bound of a dimension twice: Let m = n? =
dim; M(n, k). Since N < GL(M(n,k)) 2 GL(m,k), the linear span k[N] is a k-

vector space of dimension at most m?, that is, at most n?. O

The task of testing nilpotence and solvability is somewhat more involved. For

details, we refer to [39, §5).

Theorem 3.3.5. Given G < GL(n, k), in polynomial time one can test whether

or not G is solvable, and if so, whether or not G is nilpotent. O

Next, we state reduction theorems developed for solvable matrix groups by Luks
in [39]. For G < GL(n, k), recall that u(G) denotes the largest prime dividing |G|
other than char k. Let V'(n, k) denote the underlying n-dimensional vector space over
k.

The following result is observed in [39, §4.3).

Theorem 3.3.6. Given G < GL(n, k), a constructive presentation of G mod N
for N 9G, and a proper G-subspace W of V(n, k), in polynomial time one can either
find

(i) a manageable representation 7 : N — M for a manageable group M, or

(ii) a homomorphism ¢ : G — GL(m, k) such that m < n and ¢(N) # 1. C

The following result, implicit in {39, §4.7], is built on the manageability of

abelian matrix groups.



24

Theorem 3.3.7. Given G < GL(n, k), a constructive presentation of G mod N
for NJG, and an abelian group A < GL(n, k) such that A = Aand 1 < Cy(A) < N,

one can either find
(i) a proper G-subspace of V(n, k) or
(ii) a homomorphism ¢ : G = GL(m, k), where m < n and |¢(N)| < |N|/2,
in time polynomial in the input length and u(G). o

The following result, implicit in [39, §4.7], is built on the manageability of

nilpotent matrix groups.

Theorem 3.3.8. Given G < GL(n, k), a constructive presentation of G mod N

for N 9 G, and a class-2 nilpotent group B < GL(n,k) such that B = B and
1 < Cy{(B) < N, one can find

(i) a proper G-subspace of V(n, k),
(i) an abelian group A < B such that A = A and 1 < Cy(A) < N, or
(iii) a manageable representation 7 : N — Sym{§2), where || < n?,
in time polynomial in the input length and u(G). m

In what follows, we summarize tools for locating a nonidentity element in a
proper normal subgroup.

The following result has appeared in another version involving randomization
(cf. {7], [14], and [16]). Our version is built on Proposition 3.3.4 using the argument
of [16, Lemma 5.1].

Proposition 3.3.9. Given the following inputs:
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(i} G £ GL(n,k), R,Q C G, where N := (R®) and L := (Q") such that L < N,

and L is nonabelian, and

(ii) nonidentity elements a,b € L such that a or b belongs to a proper N-normal

subgroup of L,

in polynomial time one can find a nonidentity element ¢ in a proper N-normal sub-

group of L.

Proof. If [a,b] # 1, then [a,b] suffices for ¢ as
c=[a,b] =ab""ab = (b7")% = a"lab € (V) N (BV).

Suppose [a,b] = 1. By Proposition 3.3.4, one can test whether or not a cen-
tralizes (b"), and find d € (b") such that [a,d] # 1 in case a does not centralize
(bY).

If such d is found, then [a, d] suffices for ¢ since [a, d] € (a™) N (BV).

Suppose a centralizes {(6"). Again, by Proposition 3.3.4, test whether or not a
centralizes L = (QV). If a € Z(L), then return ¢ = a since Z(L) is a proper N-normal

subgroup of L. If a &€ Z(L), then (") < L; thus, return ¢ = &. a

Note that, if two arbitrary nonidentity elements of L are given to the algorithm
described in the above proof, a nonidentity element in L is always returned. Therefore,

Proposition 3.3.9 generalizes as

Corollary 3.3.10. Given the following inputs:

(i) G £ GL(n,k), R,Q C G, where N := (R€) and L := (Q") such that L < N,

and L is nonabelian, and
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(ii) a set of nonidentity elements X C L such that at least one element of X belongs

to a proper N-normal subgroup of L,

one can find a nonidentity element in a proper N-normal subgroup of L in time

polynomial in the input length and | X|. . 0
Also, we have the following useful result.

Corollary 3.3.11. Given G < GL(n,k) and R C G, where N := (RS) is
nonabelian containing a proper G-normal subgroup K > 1, one can find a nonidentity
element in a proper G-normal subgroup of N in time polynomial in the input length

and some known upper bound < on the index |N : K.

Proof. Let ¥ > |N: K|. Form a set of v -+ 1 distinct elements X of N. Then

two of these elements, say a and b, must belong to the same one coset of K in NV so
that a='b € K. That is, at least one of the y({~y+ 1) products of the form z~'y, where

z,y € X, belongs to K. a

In Corollary 3.3.11, we assume that an upper bound on |N : K| is known. Not
only it is critical in meeting its guaranteed timing, but also the termination of the

algorithm depends on this bound.

§4. Normal Structure

We now review basic facts about normal closures and normal series. We begin

with the following elementary result (see, e.g., (22, Lemma 4.4Cj).

Lemma 3.4.1. Let G be a finite group and L a subnormal subgroup of G. Then

every composition factor of (L) is isomorphic to some composition factor of L. 0O
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In particular, if P <9< G, and P is a p-group, then {P%) is also a p-group. If
L 94 G, and L is solvable, then (L®) is also solvable. For nonabelian simple groups,
the above lemma can be strengthened in the following familiar result. We include a

proof based on H. Wielandt’s argument (see, e.g., [46, 13.3.1]).

Lemma 3.4.2. Suppose a finite group G has a subnormal subgroup T such that
T is nonabelian simple. Then (T¢) is a direct product of G-conjugates of T', where

(7 acts transitively on the set of these conjugates.

Proof. Since T is simple, and T <4 G, for each g € G, either TNT?Y =T or 1.
Then it suffices to show {T, 79 =1 for each g € G such that TNT9 = 1.

Let ¢ € G such that TNT? =1 and X = (T,79). Then T << X as well as
T9 <41 X. Let s(X : T) denote the minimal length of a subnormal series of 7" in X.
We proceed our proof by induction on s(X : T).

Suppose s(X : T) = 1; that is, T < X. Here, we have [T,T%] < T. Suppose
[T,T9] # 1. Since T is simple, T = [T, T7], where [T, T9) < {((T*)7) < {(T#)X). That
is, T < ((T9)¥) as well as T9 < ((T9)*). Since X is the smallest group containing
T and 79, we have ((T9)*) = X. However, we know T¢ <9< X, where 79 # X, a
contradiction.

Suppose s(X : T) > 1; that is, T is not normal in X. Since T <1< X, we have
(T*) < X and thus s({TX) : T) < s(X : T). Since T is not normal in X, there is
a € T such that T 3 T°. That is, TNT* = 1. Let Y = (T, T°), then Y < (TX) and
thus s(Y : T) < s((T*} : T) < s(X : T). By induction, we have [T, T%] = 1. Observe

that, for all z,y € T, we have

1= [z,9°) = [z,y[v, al} = [=, [v, all[z, ¥ = ([y,a]")*[z, ][y, a]
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so that [z,y] € [T, 7] and thus T' < [T, T9]. Since T is nonabelian simple, 7" = T'.
From T < [T, 79}, it follows that T < ((T9)*) as well as T9 < {(T9)%) just as before,

yvielding ((T9)%) = X, a contradiction. O
The following result is then immediate (see, e.g., [46, 13.3.4]).

Lemma 3.4.3. Let G be a finite group and N a normal subgroup of G. Suppose
N has a normal subgroup T such that T is nonabelian simple. Then N is a nonabelian

minimal normal subgroup of G if and only if N = (T¢). m]
The above lemma then yields

Proposition 3.4.4. Let G be a finite group and N a normal subgroup of G. If
L is a nonabelian minimal normal subgroup of N, then {L®) is a nonabelian minimal

normal subgroup of G.

Proof. Suppose L = T; .- T, where the T; are isomorphic nonabelian simple

groups. Since T} << G, we know {T}%) is isomorphic to a direct product of G-
conjugates of T3. Now, (T}") = L so that L < (Tlc) and thus (L) < (T}%). Clearly,
(T1%) < (LC) since Ty < L. Thus, (T;€) = (LS). ]

In what follows, we derive a few elementary facts about chief and composition

factors based on the Jordan-Hélder theorem. We first begin with chief factors.

Proposition 3.4.5. Suppose a finite group G has a chief factor N/K. If L, is a
normal subgroup of N such that L; € K, then there is a proper.N-normal subgroup
L, of L, such that L,/L, is simple.
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Proof.  Since I K/K < N/K, we know L, K/K is isomorphic to a direct

product of isomorphic simple groups. There is L, < L, such that
LiKIK=L/(ILiNK)> Ly/(LiNK) = Lyf (L, K) = L,K/K,

where (L, /(L1 N K))/(La/(Ly N K)) = Ly /L, is simple, and LyK/K < N/K.

It remains to show that L, < N.

Let X = (L,"). Clearly, LK < XK. Now, X < {(LK)V) and K < ((L,K)¥)
so that XK < ((L2K)¥). Since L,K/K < N/K, we have {(L;K)¥) = L,K and thus
XK < LK. Consequently, XK = [, K.

Now, X < L, since XK/K = L,K/K <1 LiK/K. Since L, < X < L, we have
X/Ly <t L1/ Ly. Then X = Ly by the simplicity of L,/L,. ]

A naive counting argument yields

- Proposition 3.4.6. Suppose a finite group G has a nonabelian chief factor N /K.
Let Lj,...,L, be nonabelian normal subgroups of N such that [Li, Lj] = 1 for all
pairs L; # L;. If each L; £ K, then r < log |N/K]|.

Proof. Choose a pair L;, L;. Suppose L; # L;. Since [Li, Lj] = 1, we have
[LiK/K,L;K /K| = K/K. Now, N/K is a direct product of isomorphic nonabelian
simple groups so that ([;K/K)N (L;K/K) = K/K.

Conversely, if L; = L;, we have L;K/K = L;K/K.

That is, for all pairs L;, L;, we have L; = L; if and only if L;K/K = L;K/K.

Since N/K is a direct product of isomorphic nonabelian simple groups, N/K
has at most log | N/ K| distinct nontrivial normal subgroups that centralize each other.

Consequently, r < log |N/K|. a
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We now derive an elementary lemma that states that the maximum order of
the nonabelian composition (or chief) factors of a finite group G is preserved in the
subgroups and homomorphic images of G.

For a finite group G, recall that x(G) denotes the maximum order of a non-
abelian composition factor of G, and (G) denotes the maximum order of a nonabelian
chief factor of G.

Clearly, 5(G) < 7(G). The following result is a direct consequence of the
Jordan-Hélder theorem (cf. [38, Lemma 3.3]).

Proposition 3.4.7. Let G be a finite group.
(i) If H is a subgroup of G, then x(H) < «(G) and v(H) < v(G).

(ii) If G is a homomorphic image of G, then k(G) < &(G) and v(G) < 7(G).

Proof. Suppose that G has a composition series G =G> -+ > Gy = 1.
Let H; =G;NH fori=1,...,£ Then H has a normal series H = H, > ... >
H; = 1, where each factor H;/H;,, is isomorphic to a subgroup of G; /Gis+1. Thus,
k(H) < &(G).
Now, under the homomorphism ~ : G — G, form a normal series G = G; >
.- G¢ = 1, where each factor a/m is a homomorphic image of G;/G;,;. Thus,
5(G) < &(G).
The same argument yields that v(H) < v(G) and v(G) < v(G). =

§5. Small Chief Factors

In this section, we prove that matrix groups G < GL(n, k) such that x(G) and

7(G) are bounded by a fixed polynomial in the input length are manageable. We
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begin with the following result, immediate from Corollaries 3.3.10 and 3.3.11.

Proposition 3.5.1.  Given G < GL(n,k) and R C G, where N := (R®) is

nonabelian, one can either

(i) prove that N is a minimal normal subgroup of G, or

(ii) find a nonidentity element in a proper G-normal subgroup of N,

in time polynomial in the input length and v(G).

Proof. Write v = ¥(G).

Suppose |N| < «. Then list all the elements of N, and find a nonidentity element
c such that, in case N has a proper G-normal subgroup, c lies in such a subgroup. If
(c®)y = N, then we have (i), otherwise (ii).

Suppose |N| > 4. First, form a set X of v+ 1 distinct elements of N and then
the set Y of y(y + 1) products of the form z~!y, where z, € X. Now, find a,be N
such that [a,b] # 1, and add [e,b] to Y.

Here, we observe that Y contains at least one nonidentity element in a proper
G-normal subgroup of N as follows: Suppose there is a G-chief factor N/K. If N/K

is nonabelian, then at least one of the y(y + 1) products belongs to K. If N/K is

abelian, then [a, b] belongs to K. O

We are now ready to prove

Proposition 3.5.2. Matrix groups G < GL(n, k) such that x(G) and 4(G) are

bounded by a fixed polynomial in the input length are manageable.

Proof. Our goal is to find a manageable representation for a given normal sub-

group N = (R®) of G, specified by normal generators R. Recall that, since solvable
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groups are manageable, if N happens to be indeed solvable, one can complete the nor-
mal closure to find generators for V and verify its solvability (cf. Theorems 3.2.3 (ii)
and 3.3.5). Therefore, we may assume that N is nonsolvable.

The following is a polynomial-time algorithm to find a manageable representa-
tion for N = (R®), given by R, when N is nonsolvable.

Let ~: G — GL(k[N]) denote the conjugation action of G on k[N].

procedure SMALL_CHIEF
Input: G < GL(n, k) and R C G, where N := {R®) is nonsolvable.
Output: a manageable representation  : N — Sym({2), where || is

polynomially bounded, or a nilpotent group of class at most two B < N
such that B = B and 1 < Cy(B) < N.

begin
let @ := R and X denote (Q°);
while X is nonabelian containing a proper G-normal subgroup do

begin _

find 1 # a € X such that (a%) < X;

let a be a preimage of @ in G so that (a€) < X;

let Q :={a} and X denote {Q°);

end;
if X is abelian then return B := X;
else return 7 : G — Aut(X);

end.

At any point, X # 1 so that X acts nontrivially on k[N] by conjugation; that
is, Cn(X) < N.

Suppose X is found to be abelian. Then {X,X] = 1 and thus [X, X] < Z(N).
Therefore, X is nilpotent of class at most two. Here, observe that Cy(X) # 1 as
follows: if X is abelian, then 1 < X < Cy(X); if X is nonabelian, then 1 < [X, X] <
Cn(X) since [X, X] < Z(X).

If X is found to be nonabelian and a minimal normal subgroup of G, then
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return 7 as defined by the conjugation action of G on X. Here, 7(N) # 1 since X is

nonabelian. ]

§6. Small Composition Factors

From now on, we relax the condition on the chief factors. That is, we assume
that we are dealing with G < GL(n, k) such that x(G) and x(G) are polynomially
bounded. As in the previous section, our goal is to show the manageability of G,
and we will maintain the overall structure of the algorithm roughly the same. In this
section, we focus on the main difficulty of finding a nonidentity element of a proper
G-normal subgroup of a normal subgroup N = (R), given by normal generators R,
in case N is not minimal normal in G.

First, note that, if N is a minimal normal subgroup of G, then v(N) < &(G).
When v(N) < &(G), Proposition 3.5.2 asserts that all the subgroups of N are man-
ageable; in particular, membership-testing allows us to complete the normal closure
and find generators for N. The following procedure tests whether or not a nonabelian
normal subgroup N = (R®), given by R, is a minimal normal subgroup of G.

procedure TEST_.MIN_NORM
Input: G < GL(n,k) and R C G, where N := (R) is nonabelian.

Output: a nonabelian simple group T < N if N is a minimal normal subgroup
of G; otherwise, false.

begin
assuming v(N) < &(G), attempt to find generators @ for N and a non-
abelian simple group T <0 N based on Proposition 3.5.2;
if the above attempt fails to find @ or T within the assumed polynomial-
time then return false;
if the above attempt succeeds, and {T¢) = N, then return 7"
else return false;
end.



34

The algorithm returns the correct answer since NV is a minimal normal subgroup
of G if and only if (T¢) = N (cf. Lemma 3.4.3).

If N is not a minimal normal subgroup of G, then there are normal subgroups
K;, 1 € I, of G such that N/K; are G-chief factors. Our main objective now is to
locate a nonidentity element in one of these normal subgroups K;. To find such an
element, we will exploit the following important structural properties of chief factors.

Consider one of these chief factors, say N/K. If N/K happens to be abelian,
then a nonidentity commutator of elements of N lies in K.

Suppose that N/K happens to nonabelian. Then N/K = T{/K x --- x T,/K,
where the T;/K are isomorphic to a nonabelian simple group T/X. Furthermore,
the T;/K are the only minimal normal subgroups of N/K, and consequently, G acts
transitively on the set {T1/K,...,T¢/K} (cf. Lemma 3.4.2). Now, suppose that
X/K, where X # K, is a proper normal subgroup of N/K. Then, without loss of
generality, X/K = /K x ..+ x T;/K for some j < £. By the transitivity of G,
there is g € G such that X/K N X9/K has a fewer than j copies of /K, or X/K
commutes with X9/K for all g € G such that X/K # X9/K.

The following subroutine, based on the above observation, descends inside a
chief factor N/K or constructs the conjugation action of G on a set of the linear

spans of normal subgroups of N that commute one another.

procedure PERM_REP
Input: G < GL(n, k), RC G, and = € G, where N := (R€) is nonabelian, and
L := (z") is nonabelian properly contained in N.
Output: one of the following:
(A) 1 #y e L9 for some g € G such that (y") < L9;
(B) 1 # c € N such that {c®) < N;
(C) the set £ of G-conjugates of k[L], where each E € £ centralizes all
Fe& F#E, and |£] < n?logp.
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begin
let £ .= {k[L]};
for each F € £ and each s € S do

begin
if E* ¢ £ and E* does not commute with some F € £ then
begin
find [a,b] # 1, where a and b are basis elements of
E* and F, respectively;
return y := [a, b] for (A);
end;
else if E* € £ then
add E* to &;
if |€| > n%logp then
begin
collect the following in a set X: [a,b] # 1, where
a,b € L, and a basis of each E € &;
from X, find ¢ € N such that (c%) < N;
return c for (B);
end;
end;

end.

In what follows, we verify the correctness of the procedure PERM_REP.

Suppose that there are E € £ and s € S such that E* € £, and E* does not

commute with some F' € £. Here, £° = k[L9'] and F = k{L%] for some g, ¢, € G.

Then there are a € L% and b € L% such that [a,b] # 1. Clearly, [a,b] € L% n L%,

where L9 # L9, so that [ N L% < L% . Hence, we establish Qutput (A).

Suppose that, during the for loop, |£| reaches or exceeds n?logp. Then N/K

is abelian, or there is £ € £, where E = k[L?] for some g € G, such that LY < K

{cf. Proposition 3.4.6). Let X be a set of elements of N consisting of a commutator

[e,b] # 1, where a,b € L, and a basis of each E € £. Then at least one element of X

must belong to K'; hence, we establish Output (B).

If PERM_REP fails to return Outputs (A) and (B), then its outcome is Qutput
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(C). Therefore, PERM_REP returns the correct outputs in all three cases.
To descend further in N/K when PERM_REP outputs (C), we will make use
of a point-stabilizer of G under the permutation representation found in (C). We will

rely on the following well-known lemma to find such a point-stabilizer (see, e.g., {22,

Theorem 3.6A)).

Lemma 3.6.1 (Schreier). Let G be a group and H a subgroup of G. If S is a
generating set for GG, and R is a complete set of right coset representatives of H in
G, then the set T = {rysry"1|r, 72 € R,s € S, and 715727 € H} generates H. The
set T is called Schreier generators for H. |

With the procedure PERM_REP and Lemma 3.6.1, we are now ready to prove

the following.

Proposition 3.6.2. Given G < GL{n,k) and R C G, where N := (RS) is

nonabelian, one can either
(i) prove that NV is a minimal normal subgroup of G, or

(ii) find a nonidentity element in a proper G-normal subgroup of N,
in time polynomial in the input length and &(G).

Proof. Let £ denote the maximum length of a composition series of a subgroup
of GL(n,k). Here, recall that £ is polynomially bounded (cf. Chapter II, §4). As
usual, we use S to denote the given generating set for G < IGL('n., k). We first outline
our main algorithm and then formalize it in the procedure PROPER_NORM.

Step 1. First, recall again that solvability of NV can be tested (cf. the proof of

Theorem 3.5.2). If N is solvable, then it suffices to return a nontrivial commutator
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of two elements of N since all the G-chief factors of V are abelian.

Step 2. Suppose that N is nonsolvable, containing a proper G-normal subgroup,
and there is a G-chief factor N/K. In Step 2, we construct a sequence of N-normal
subgroups

N=L11L21~-"Lr1

where r < £, each L;y, < L;* for some g; € G, and each L = L; is represented by an
element z such that L = (z"). Step 2 is a loop, consisting of four sub-steps (a)-(d),
that iterates at most ¢? times and forces L to step down the above sequence at most
£ times. |

Step 2 (a). If L is found to be abelian or a minimal normal subgroup of N, the
loop halts and returns (L€) (cf. Proposition 3.4.4).

Step 2 (b). Suppose that L is nonabelian. Step 2 (b) calls the procedure
PERM_REP as a subroutine. If PERM_REP returns an element y for Output (A),
then we let = := y and descend the sequence with a new L := (zV). If PERM_REP
returns an element ¢ for Qutput (B), then we halt the loop and return ¢ € N such
that (c®) < N.

Steps 2 (c), (d). Now, suppose that PERM_REP returns Output (C). Let £ =
k[L]). Here, G acts on the set £ of polynomially-bounded size. Thus, we may assume
that we have Schreier generators U for the point-stabilizer Gg. Since N normalizes
L, we know N stabilizes E = k[L] so that N < Gg. Thus, L = (z") < (z%¢).

Steps 2 (c) and (d) consider the following two cases, respectively.
(1) Thereis 1 # g € Gg such that L # L9.

(2) Gg normalizes L.
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When Case (1) holds, Step 2 (c) works as follows. As Gg = (U), thereisu € U
such that L # L*. Recall that k[L*] = k[L] is noncommutative (otherwise, L would
be abelian). Hence, there are basis elements a of k[L] and b of k[L¥], where a € L
and b € L*, such that [e,b] # 1. Since [a,b] € LN L* < L, we step down the tower.

When Case (2) holds, Step 2 (d) works as follows. We consider the case when
L £ K. Here, we have L¢s = L so that L = (V) < (z€%) < (LSF) = L and thus
L = (z") = (zC®). Therefore, distinct elements of L can be now listed so that we
can find a € L such that (a") < L (cf. Corollary 3.3.10, Proposition 3.4.5).

Every time L steps down the tower, we first assume Case (1) and repeat Step
2 (c) for £ times. After these £ iterations, if L is not found to be a minimal normal
subgroup of N, then Case (2) must hold. If L £ K, then Step 2 (d) finds a proper
N-normal subgroup of L, and we step down the tower.

Finally, when the loop reaches L = L,, then we conclude that either L is a
minimal normal subgroup of N, or L < K.

The following procedure PROPER_NORM formalizes our method.

procedure PROPER_NORM

Input: G < GL(n,k) and R C G, where N := (RC) is nonabelian.

Output: a nonidentity element in a proper G-normal subgroup of N, or “N is a
minimal normal subgroup of G”.

begin
Step 1. (* Halt if NV is solvable or a minimal normal subgroup of G. %)
if N is solvable then
find a,b € N such that [a,b] # 1 and return d := [a, b);
if TEST_MIN_.NORM(G, R) then
return “/N is a minimal normal subgroup of G”; -
Step 2. (+ Form a sequence N = Ly,...,L,, where r < £. )
find @ € N such that (a") < N;
let z := a and L denote (z%);
let i:=1 and j:=1;



while i < £ do
begin
let found := false;
(a). if L is abelian then return d := z;
if TEST MIN_.NORM(G, {z}) then return d := z;
(b). PERM_REP(G, R, z);
if PERM_REP returns y for (A) then
let found := true, = ;= y, and L denote (z);
else if PERM_REP returns c for (B) then return d := ¢;
else
begin
let E denote k[L];
under the G-action on £ by conjugation, obtain
Schreier generators U for the point-stabilizer Gg;

(c}. (* When LE= 5 L, we find 1 # c € [L, L*] < L for some u € U.

if j < £ then
begin
let Y :=0;
for each v € U do
add [a,b] # 1, where a € L and
bel*, toY;
from Y, find ¢ € L such that (cV) < L
(and (V) < L when LC® # L);
let z := ¢ and L denote {z");

let j:=741;
end;
(d). (* When j = £, we have L% = L and thus (z") = (z€F). *)
else
begin
as L6s = [, find a € L such that
(@) < L (and (a¥) < Lif L £ K);
let £ :=a and L denote {z);
let found := true;
end;
end,;
if found then let i ;== i+ 1 and j :=1;
end;
return d := z;

end.

39

*)

a

We are finally ready to prove Theorem 3.1.1. As we have already discussed in
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82, in order to prove Theorem 3.1.1, it suffices to establish manageability.

Proposition 3.6.3. Matrix groups G < GL(n, &) such that p{G) and x(G) are

bounded by a fixed polynomial in the input length are manageable.

Proof. Recall again that, given a normal subgroup N = (R®) of G, specified by
normal generators R, one can test solvability of N (cf. the proof of Theorem 3.5.2).
Therefore, we may assume that N is nonsolvable.

The following is a polynomial-time algorithm to find a manageable representa-
tion for N = (RC), given by R, when N is nonsolvable.

Let ~ : G — GL(K[N]) denote the conjugation action of G on k[N].

procedure SMALL.COMP
Input: G < GL(n,k) and R C G, where N := {R€) is nonsolvable.
Output: a manageable representation # : N — Sym(f2), where || is

polynomially bounded, or a nilpotent group of class at most two B < N
such that B¢ = B and 1 < Cy(B) < N.

begin
let @ := R and X denote {(Q%);
while X is nonabelian containing a proper G-normal subgroup do
begin
let @ := PROP_]_ER.NORM(@, Q) (ie,ind1#aeX
such that {(a%) < X);
let a be a preimage of @ in G so that {a®) < X;
let @ := {a} and X denote {Q°);
end;
if X is abelian then return B := X;
else
begin
let T := TEST_MIN_.NORM(G, Q@
collect the G-conjugates of each
return 7 : G — Sym(7);
end;

); :
€T inaset T,

end.
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The argument in the proof of Proposition 3.5.2 shows that B is nilpotent of

class at most two such that B = B and 1 < Cy(B) < N. O

§7. Finding Composition Series and Kernels

In this section, we prove Corollary 3.1.2. We continue to assume the basic
hypothesis of the preceding section. Assume also that, for G < GL(n, k) and a normal
subgroup N of G, an element Ng of the quotient group G/N is a pair comprised of
generators for N and a right coset representative g.

We first describe an algorithm to find composition series for a manageable G <
GL(n, k). The following result is based on Proposition 3.3.9 and essentially solves our

problem.

Lemma 3.7.1. Given the following inputs:
(i) G £ GL(n,k), a normal subgroup N of G such that G/N is nonabelian, and

(ii) a,b € G, where a,b € N, such that Na or Nb belongs to a proper normal
subgroup of G/N,

one can find ¢ € G, where ¢ ¢ N, such that Nc belongs to a proper normal subgroup

of G/N in time polynomial in the input length, 4(G), and <(G).

Proof. If [Na,Nb) # N, then (e, b] suffices for c as
Nc = [Na, Nb| € ((Na)®™)y n ((Nb)S/Y.

Suppose [Na,Nb) = N. Test whether or not Na centralizes ((Nb)S/V) =



42

(N(b®)}/N, and find d € N(b) such that [Na, Nd] # N in case Na does not cen-
tralize ((NB)G/V).

If such d is found, then [a,d] suffices for ¢ since [Na,Nd] € {(Na)°/M) n
((NB)S/N),

Suppose Na centralizes {((Nb)¢/M). Test whether or not Na € Z(G/N). If
Na € Z(G/N), then return ¢ = a since Z(G/N) is a proper normal subgroup of
G/N. If Na € Z(G/N), then ((Nb)S/N) < G/N; thus, return c = b. 0

The following result, based on Proposition 3.5.1, refines a subnormal series, and

therefore, proves Corollary 3.1.2 (iv).

Proposition 3.7.2. Given G < GL(n,k) and a normal subgroup N of G, one

can either

(i) prove that G/N is simple, or

(ii) find a normal subgroup K of G such that N 1 K < G,
in time polynomial in the input length, u(G), and &(G).

Proof.  Suppose G/N is abelian. Choose ¢ € G such that ¢ ¢ N. The
hypothesis on (G) enables us to determine the order of the element Ng € G/N. By
forming suitable prime powers e, find an element {Ng)® of a prime order.

Suppose G/N is nonabelian. Based on Lemma 3.7.1, use the method of Propo-
sition 3.5.1 on the factor group G/N. That is, if G/N is not simple, list at least
k(G) distinct right coset representatives of N in G, and find an eiement g € G, where

g & N, such that Ng belongs to a proper normal subgroup of G/N. 0o
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Next, we prove Corollary 3.1.2 (v). In what follows, p is an arbitrary prime,

unrelated to char k. First, we observe the following.

Lemma 3.7.3. Suppose a finite group G has an abelian normal p-subgroup A.

If @ is an element of A of order p, then (a®) is an elementary abelian p-group.

Proof. Denote ©2;{A) the subgroup of A generated by all the elements of A of

order p. Note that £2;(A) is characteristic in A4; therefore, Q;(A) is normal in G.
Since A is abelian, every element of Q;(A) has order at most p. That is, £, (4)
is elementary abelian. Since a € Q,(4), we have (a®) < Q,(A). Therefore, (a%) is

elementary abelian. (]

The following result proves Corollary 3.1.2 (v} (see [34, §4] for a related result

in permutation groups).
Proposition 3.7.4. Given G < GL(n, k) and normal subgroups N and K of G

such that K < N, one can

(1) prove that N/K is a nonabelian chief factor of G,
(ii) prove that N/K is elementary abelian, or

(iii) find a normal subgroup L of G such that K < L < N,

in time polynomial in the input length, u(G), and &(G).

Proof. First, we find a composition series for N/K. Then we have a simple
group T/K d< N/K. Form ((T/K)¢/¥) = (T€)/K and write M = (TC).

If T/K is nonabelian, then M/K is a nonabelian minimal normal subgroup of
G/K.If M/K = N/K, then we establish (i}. Otherwise, we have M/K < N/K and

return M as L for (iii).
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Suppose that T/K is a cyclic group of order p. Then M/K is a p-group. In the
derived series of M/K, find the nontrivial abelian subgroup A/K. Find an element
Ka € A/K of order p. Form {(Ka)®/%) = (K(a)¢)/K and write L = K (a)®. Then
L/K is elementary abelian. If L/K = N/K, then we establish (ii). Otherwise, we
have L/K < N/K and return L for (iii). 0

As in the solvable case [39, §4.6], one can also find the kernel of a homomorphism
into a manageable group in the desired timing. For G < GL(n, k), generated by 3,
suppose that we are given a homomorphism ¢ : G — M specified by ¢(S) for some
manageable group M. Then obtain a constructive presentation of ¢(G) and thus
G mod Ker ¢. Form normal generators for Ker ¢, and finally complete the normal
closure to find generators for Ker ¢. Therefore, Corollary 3.1.2 (\-ri) holds.

Now, observe that, for G < GL(n,k) and a normal subgroup N of G, the
centralizer C¢(N) is the kernel of the conjugacy action of G on the linear span k[N].
Thus, one can find the centralizer of a normal subgroup, and in particular, the center

Z{G), in the desired timing.



CHAPTER IV
DIVIDE AND CONQUER. IN MATRIX GROUPS

In this chapter, we investigate the polynomial-time computability of the prob-
lems of finding stabilizers of vectors and subspaces. The main result is a theorem
(stated as Theorem 4.1.4) that provides a divide-and-conquer paradigm with respect
to cosets and invariant subspaces in I'y.

We first describe algorithms for the vector-stabilizer and subspace-stabilizer
problems in 'y based on the result of Theorem 4.1.4. The rest of the chapter is

devoted to the proof of Theorem 4.1.4.
§1. Statement of the Results

A familiar permutation group problem known for generalizing the graph-iso-
morphism problem (GRAPH-ISO) is the set-stabilizer problem (SET-STAB): given
a permutation group G < Sym(S2) and a subset A C (2, find the subgroup {g € G |
A = A}

Let k be a finite field and V an n-dimensional vector space over k. In this

chapter, we consider matrix group problems resembling SET-STAB.

Vector-stabilizer (VEC-STAB).

Input: a matrix group G < GL(V) and a vector v € V.
Find: Cg(v) ={g € G| v? =v}.

Subspace-stabilizer (SUBSP-STAB).
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Input: a matrix group G < GL(V') and a subspace W C V.
Find: Ne(W)={ge G| W*=W}.

Recall that <” denotes “is polynomial-time reducible to” as discussed in Chap-

ter II. The following relationship is known [40, §10].
GRAPH-ISO <? SET-STAB <? VEC-STAB <? SUBSP-STAB.

It is generally considered that GRAPH-ISO and even SET-STAB are not par-
ticularly hard in practice. Nevertheless, none of these problems have proven to be
solvable in polynomial time. On the other hand, as with GRAPH-ISO [27], certain
evidence suggests that the equivalent decision version of SET-STAB is unlikely to be
NP-complete: if it were NP-complete, the polynomial-time hierarchy would collapse
to X5 =113 [11].

Polynomial-time solutions have been found for certain restricted classes of in-
puts. In particular, the following class of groups has played an important role in the

theory of polynomial-time computability in permutation groups.

Definition. For an integer d > 0, let 'y denote the class of finite groups all of

whose nonabelian composition factors are isomorphic to subgroups of S;.
The following theorem is the celebrated result of [8].

Theorem 4.1.1 (Babai-Cameron-Palfy).  For an integer d > 0, there is a
function c(d) satisfying the following: if G is a primitive permuta.t;ion group of degree

m such that G € Ty, then |G| < m*9), (;
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The function ¢(d) was further studied in [9] and {44] (cf. [37]). See also [26] for
related work in ['y.

Fix an constant d > 0. Luks has shown earlier in [38] that one can solve SET-
STAB in I'q in polynomial time. In fact, it was in Luks’s complexity analysis [38] when
I'q originally arose and motivated deeper investigations resulting in Theorem 4.1.1.
Luks went on to show that one can solve VEC-STAB and SUBSP-STAB in solvable
matrix groups G < GL(V) in time polynomial in the input length and the largest
prime dividing |G| other than char .

The following is our main result.

Theorem 4.1.2.  Fix an integer constant d > 0. Given G < GL(V) such
that G € I'y, one can solve the following problems in time polynomial in these three

parameters: the input length, the largest prime dividing |G|, and char k.
(i) Given v € V, find Cg(v) (VEC-STAB).

(i) Given W C V, find Ng(W) (SUBSP-STAB).

We list two applications of Theorem 4.1.2 in the foliowing corollary.
Corollary 4.1.3. The list of problems in Theorem 4.1.2 continues as follows.
(i) Given z € GL(V), find Cg(z); further, given X < GL(V), find Cg{X).
(ii) Given H < GL(V) such that H € Ty, find G N H.

Critical to Theorem 4.1.2 is the following divide-and-conquer paradigm that is

built on [39, Theorem 6.1] for Ty.
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Theorem 4.1.4.  Fix an integer constant d > 0. Given G < GL(V) such
that G € T'y, one can perform one of the following in time polynomial in these three

parameters: the input length, the largest prime dividing |G|, and char k.

(i) Prove that G is nonabelian simple.
(ii) Find an abelian subgroup A of G such that |G : A| < 24n.
(iii) Find a proper G-subspace W C V.

(iv) Find a subgroup H of G and a set of H-subspaces {V1,...,V;,}, m > 2, such
that

(@) V=Vi® @ Vm,
(b) dim, V;=n/mfori=1,...,m, and

(c} |G : H| = O(m") for a constant ¢; > 0.

To prove Theorem 4.1.4 in the sections to follow, we begin with preliminary
results concerning basic representation theory, abelian groups and class-2 nilpotent
groups, semisimple groups, and matrix groups in 'y, We then develop divide-and-
conguer tools involving abelian quotients. Most of these algorithms are adapted from
the solvable-group machinery of [39]. With the same spirit, we develop another tool
involving nonabelian quotients. In the last section, we put all of these pieces together

to complete the proof of Theorem 4.1.4.

§2. Vector-Stabilizers and Subspace-Stabilizers

In this section, we prove Theorem 4.1.2 and Corollary 4.1.3 based on Theo-

rem 4.1.4. We will prove Theorem 4.1.4 in the sections to follow. The method of our
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proof in this section is almost identical to Luks’s in {39, §§6.2-6.4]. We present the
complete proof, including the part that was omitted in [39], since it is crucial to our
main result.

Throughout this section, let k be a finite field and V an n-dimensional vector
space over k. Fix an integer constant d > 0. For a given input G < GL(V), assume
that G € I'4, and 4(G) and chark are polynomially bounded in the input length.

In general, the divide-and-conquer paradigm of Theorem 4.1.4 applies to prob-

lems that have the following characteristics.
(1) One can solve the problem in polynomial time for abelian groups.

(2) Given a proper G-subspace W C V/, one can solve the problem in a polynomial
number of steps together with recursive calls to induced problems on W and

V/W.

Note that, for nonabelian simple groups, we may apply brute-force methods.

In what follows, we consider two applications of this paradigm: VEC-STAB and
SUBSP-STAB.

First, we solve VEC-STAB. To accommodate recursion involving cosets, we
consider the following generalization.

For G £ GL(V), a function f : G — V is a crossed homomorphism (or deriva-
tion) if f(zy) = f(z)¥ + f(y) for all z,y € G.

Crossed-homomorphism fiber.
Input: G < GL(V'), a crossed homomorphism f: G -V, and v € V.
Find: {z € G| f(z) = v}.
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Observe that the solution to f(x) = v is either @ or a right coset of the subgroup
{z€G|f(z) =0}

Let v € V and f(z) = v* — v. Then Cg(v) is the solution to f(z) = 0. More
generally, for another given w € V, the solution to f(z) = w — v solves the following

problem.

Vector-transporter.

Input: G < GL(V) and v,w € V.

Find: Transg(v,w) = {g € G| v = w}.

Proof of Theorem 4.1.2 (i). We describe an algorithm to solve the crossed-

homomorphism fiber problem. If G is nonabelian simple, then it is trivial. Therefore,
we consider the remaining two cases.

Case 1. Suppose that G is abelian, where G = ().

First, form a G-subspace U = Span(f(G)) = Span(f(S5))€. Here, let f(g,),...,
f(gm), where each g; € G, denote a basis of U.

If v ¢ U, then return 0.

Suppose that v € U. Observe that, since G is abelian, if there is g € G such
that f(g) = v, then f(z)? = f(z) +v* —vforallz € G. Let : G — GL(U)
be the restriction of G on U. Here, form a linear transformation ¢ of U defined by
f(g:)t = f(g) + v% — v for the basis f(g1),...,f(gm). If t € G, then a constructive
membership test finds an element & € G such that f(z)* = f (z) + v® — v for all
z € G. If C = Cg(U), the kernel of " : G — GL(U), and a is a preimage of &, then
Ca={ge G| f(z)? = f(z)+v*—vforall z € G}.

Now, observe that for y € C, we have f(ya) = v if and only if f(y) = v — f(a).

Here, f(y1y2) = f(y1)+f(y2) for all yy, y2 € C; thus, f|¢c : C — U is a homomorphism.
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The equation f(y) = v — f(a) can be solved via membership-testing, and {y € C |
f(y) = 0} is the kernel of flc.

Case 2. Suppose that we have a proper G-subspace W C V.

Let ~: V — V/W be the homomorphism defined by v+~ W + v for v € V and
"1 G — GL(V) the linear representation defined by ¥ — % for v € V and g € G.
Let f: G = V be the crossed homomorphism defined by f () = f(z) for z € G.

Solving for {Z € G | f(Z) = #}, we obtain a coset Hya, where Hy = {Z € G |
f(z) =0} and & € G such that f(@) = 9. Let Hy denote a preimage of Hy. Find the
kernel N of the action ™ : G — GL(V). If H = (Hy, N), and a is a preimage of &,
then Ha = {z € G | f(z) = 1}.

Observe that, in general, f(zy) = v if and only if f(z) = (v — f(y))¥" for
z,2y€EGandveV.

Since f(§) = 0 for all y € H, it follows that f(H) C W. Let " : G — GL(W)
be the restriction of G on W and f : H — W the crossed homomorphism defined by
f(@) = f(y) fory € H.

Now, solving for {§ € H | f(§) = (v — f(a@))*™"}, we first obtain a coset Ky,
where Ky = {9 € H | f(§) =0} and b € & such that f(B) = (v — f(a))*", and then
acoset Kb={ye H| f(y) = (v— f(a))*'}.

The solution to f(z} = v is Kba. O
For SUBSP-STAB, we consider the following generalization.

Subspace-transporter.
Input: ¢ < GL{V) and subspaces W;, W, C V.
Find: TI'a.IlSG(W1, Wg) = {g €EG | ng = Wg}
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Here, observe that Transq(W;, W) is either empty or a right coset of Ng(Wh).

The following proof involves reductions to the vector transporter problem.

Proof of Theorem 4.1.2 (ii). We describe an algorithm ‘to solve the subspace
transporter problem. As before, we consider two cases.

Case 1. Suppose that G is abelian.

Observe that, since G is abelian, for any = € G, we have Transg(Wy, W) =
Transg{W)*, Wo®).

Form U = Span(W;€). Also, find ¢i,...,¢m € G such that I/ = W +...
W™, where each W% & W, +. - -+ W%~ Clearly, U is G-invariant; therefore, we
may assume that U = V. Here, observe that, if dim; Wy = 1, then Wi + .. . - W, 9
is necessarily a direct sum.

First, suppose that W1? + .. 4+ W% is not a direct sum; that is, there is W;%
such that 0 # W% N (W19 +- - -+ W %-1) € W%, Without loss of generality, assume
that g; =1. Let X = Win(W,# +...+ Wy%-1) and Y = Won (W + - - - 4 Wo%-1).
Then Ng(W1) < Ng(X) and Transg(Wi, W) C Transg(X,Y). Suppose that X is
G-invariant. If there is g € G such that W)? = W,, then X = Y. Therefore, we
recursively find Transg(W)/X, W2/X) under the action G — GL(V/X). Suppose
otherwise; that is, Ng(X) < G. First, we recursively solve for Transg(X,Y). If the
solution is empty, then Transg(W;, Wa) = 0; otherwise, we have H = Ng(X) and a €
G such that Ha = Transg(X,Y). Here, X is clearly H-invariant, and X = Yo'
W.*"". Since Transg(W), Wa) C Ha, it suffices to find Transg(W,/X, W,* ' /X)
under the action H — GL(V/X). '

Now, suppose that V = W 9@ .-@W,". If there is g € G such that W,9 = W,,

then we also have V = Wy @ --- @ Wy, Fori=1,...,m, find ¢; € End(V) such
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that e; is the projection from V onto W1% and f; € Endi(V) such that f; is the
projection from V' onto W)%. Choose t € G. Observe that Wi* = W if and only if
e' = fifori=1,...,m. Tosee this, let v € V such that v = w; +- - -+, where each
w; € W%, If Wy' = W,, then, for each e;, we have v%t = w;t = vifi, Conversely, if
e = fifori=1,...,m, then, for each w; € W%, we have wi* = w;%t = w;'" € W,%.
That is, under the G-action on End,(V) by conjugation, it suffices to find the vector
transporters ¢t € G such that ;' = f; fori=1,...,m.

Case 2. Suppose that we have a proper G-subspace W C V.

First, note that Transg (W), Ws) C Transg(Wi;NW, WoNW). Recursively, solve
for Transg(W) N W, W, N W) under the the restriction G — GL(W). If the solution
is empty, then Transq(W,, W) = §; otherwise, we have H = Ng(W,nW)anda € G
such that Ha = Transec(WNW, WoNW). Then it suffices to find Transy (W, Wz“_l).

Now, solve recursively for Transy((W + W1)/W, (W + Wo*"'}/W) under the
action H — GL(V/W). If the solution is empty, then Transy(W;, W,* ') = @;
otherwise, we have K = Ny ((W +W;}/W) and b € H such that Kb = Transy (W +
W1)/W, (W +W,*"")/W). Then all we need is the solution for Trans w(Wy, Wt ™7,

Write Wy = Wy® ¥, Suppose that there is g € K such that W,9 = W,. Form
X=W+W, =W+WoandY = WiNW = WynW. Here, we have X/Y =
W/YeW /Y = W/Y +W,/Y. Find ¢; € End,(X/Y) such that e, is the projection
from X/Y onto W1/Y and e € Endi(X/Y) such that e, is the projection frorﬂ XY
onto Wp/Y. Let " : K — GL(X/Y) denote the induced action of K on X/Y. Choose
t € K. Then observe that Wy* = W, if and only if e;f = e5. To see this, suppose
first that £'e,f = ep. Then (W1/Y) = (X/Y)F = (X/Y)o = (X/Y)® = W,/Y.

Conversely, fix Y +z = (Y 4w, )+ (Y +wyp), where wy € W, and wy € Wy, and suppose
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that Wi = Wo. Then (¥ +2)747 = (¥ +257")F = (¥ ™)+ (¥ + ! )1 =
(Y +wot Y =Y +wp = (Y + ).

Therefore, under the K-action on Endy(X/Y') by conjugation, it suffices to find

the vector transporter Transy(e;, eg). a
Corollary 4.1.3 is immediate from elementary observations.

Proof of Corollary 4.1.3. Given z € GL(V'), the centralizer C¢(z) is the vector-
stabilizer of x € End; (V') under the action of G on End;(V) by conjugation.

Given H < GL(V), under the natural action of G X H on V@&V, the centralizer
of the linear transformation (v, w) = (w,v) for all v,w € V is the subgroup {(z, z) |

z €GN H}. O

§3. Complete Reducibility and Tensor Products

Throughout this section, let & be a finite field and V an n-dimensional vector
space over k. We note, however, that Theorem 4.3.1 and Lemma 4.3.2 in fact hold
on any ground field.

We begin with a classical theorem of A. H. Clifford (see, e.g., {54, Theorems
16.1, 16.2]).

Theorem 4.3.1 (Clifford). Let G be an irreducible subgroup of GL(V) and N

a normal subgroup of G.

(i} If W is a minimal N-subspace of V, there are 1 = ¢y,..., g, € G, where r | n,

such that V decomposes as a direct sum

V=Wag- . &Wr
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In particular, N is completely reducible, and the irreducible components N|W#

are isomorphic linear groups of degree n/r.

(ii) If Uh,..., Uy are the distinct homogeneous N-subspaces of V determined by the

minimal N-subspaces W, ... W9 of (i), then V decomposes as a direct sum

V=U® - &U,

where each Uj is the direct sum of all the N-isomorphic W¢%. If h > 2, then

{th,...,Us} forms a system of imprimitivity for G. O

In (i) above, suppose that a map ¢; : W — W9 is an N-isomorphism; that is,
the irreducible components N|W and N|W¥ are equivalent: if w € W, then ¢;(w®) =
¢i(w)* for all £ € N. If all the W% are pairwise N-isomorphic (in particular, when
G is primitive), then all the irreducible components N|W?9 are pairwise equivalent,
and N acts faithfully on each W%. The next observation follows immediately from

Theorem 4.3.1 (cf. [54, Lemma 16.4]).

Lemma 4.3.2. Let G = NM be an irreducible subgroup of GL(V), where
N and M are normal subgroups of G centralizing each other. Let W be a minimal
N-subspace of V. If L = g,...,9, € M such that V = W @ ... ® W9, then the

W9 are pairwise N-isomorphic. ]

Let G be an irreducible subgroup of GL{V) and K = End.g(V). By Schur's
lemma, K is a finite extension of k. Then the action of K on V makes V into a K-
space as we define the multiplication of a € K on v € V as av = v®. Furthermore, the

K-space structure extends the k-space structure and is preserved by G. That is, for
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g€ G,a€ K, and v eV, we have a(v?) = v9* = v = (av)? so that G C Endy (V)
and thus G < GL(V, K).
The following result is implicit in [1, 27.14]. We present a constructive proof

since it will be used in Proposition 4.8.2.

Theorem 4.3.3. Let G = NM be an irreducible subgroup of GL(V), where
N and M are normal subgroups of G centralizing each other. Let W) be a minimal
N-subspace of V and U = Homyy (W, V). Then there is a finite extension K of k,
where K = Endgy(W,), such that the following hold.

(i) V is a KG-module, W, is a K N-module, and U is a KM-module, with an

isomorphism V =2 W), ®x U as K-spaces.

(i) f G = N x M, then 7 : N x M — GL(V, K) defined by w(z,y) : v = v* for
v € V is a faithful K-representation equivalent to the tensor product of faithful

K -representations of N on W; and M on U.

Proof. By Clifford’s theorem, V = W, & --&W,, r | n, where each W; = W,¥
for some g; € M, and the irreducible components N|W; are equivalent. That is, the W;
are kN-isomorphic so that V acts on each W; faithfully. There are kN-isomorphisms
b; : Wy — W; such that b; = ¢;|W;. Composing each b; with the inclusion W; C V,
we may regard b; € U. Choose by = g; = 1, and denote B = {b,,...,b,}.

Schur’s lemma yields that K = Endyy{W)) is a finite extension of k. Let each
K; = ¢,"'K,g;. Form a field K C Endyn(V) consisting all the elements of the form,

with respect to V=W, ®--- & W,,
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0 g layg,

for a; € K. Here, a|W; = g;"'a;g;. Then we have a scalar multiplication of K on
each W;, extending that of k, defined by aw; = w;® = w;% '9% for w; € W;, making

each W; into a K-space. Observe that, for w, € W}, we have
5 n . Aag:—=1 X A a .
(awl)b' = w0 = M = gy Gl 1) — wy % = e = a(wi").

That is, each b; is also a K N-isomorphism; hence, b; € Homy x(W;, W;). There is
also a K-space structure on V, extending that on k, defined by av = v* for v € V,

where

a(n® +- - +u.) = a(n,®) + - - - + a{v,b)

for vy,...,v, € W,.
Elementary facts yield that U = Homgn(W1,V) = Hompn (W, @I, W;) =
=y Hompn (We, W) = @1, Endpn(W;) & K™ regarded as a k-space. Since W,
is also a Kj-space, the scalar maps K; C Endg,n(W;), where Endg, v(W)) is a
k-subspace of Endin(W,) = K\, so that Endg,n(W;) = K,. Therefore, we have
Homgn (W1, V) = @, Endgy(W;) = @i, Endg n(W;) = K™ as a K-space. As
Homy n (W3, V) is a k-subspace of U, it follows that U = Homy n (W3, V) so that U is
also a K-space. In this K-space U, note that a € K defines the scalar map W; — V

by w, — aw, = w,® for w; € W,. That is, the scalar multiplication of X on U is

regarded as au = g u € Homyny (W3, V) for u € U.
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Observe that the K-space U = Homyy (W1, W1)@®- - -@Homy n (W, W,), where
each Homy y (Wi, W;) is a K-space spanned by b;. That is, B is a K-basis for U.

Let ¢ : N — GL(W, K) be a K-representation defined by ¢(z) : w, — w,®
for wy € W,. Clearly, ¢ is irreducible. Recall that, since G = NM, where N and
M centralize each other, N acts faithfully on each minimal N-subspace (cf. Lemma
4.3.2). Thus, ¢ is faithful.

Let ¢ : M — GL(U, K) be a K-representation defined by ¥(y) : v — uy
for v € U. Indeed, 9 is well-defined since the composition uy € Homgy (W, V)
= U = Homgn(W1,V) as (au)*® = (au)y = eyuy = a(uy) = a(u¥¥). To confirm

1 is faithful, choose ¥y € M, and suppose b;y = b; for all b; € B. Let w; € W;. Then

b b

there is wy; € W) such that w; = w%. That is, w; = un % = w % = w?. Therefore, y

fixes every vector in W; and thus every v € V.
Observe that, for v € U and wy, € W;, we have w,** = w,*® since we already
proved that (awy )b = a{w,)% for each b; € B. Then, fory € M andv =0, +--- +

v, € V, where each v; € W, we have

(@ = (a®)+--- +a(u )
= (@) 4+ (o))
= %) gL g alern)
= g O¥e gy (brvle
= a(v" 4. +ylY)

= afvY).

That is, M preserves the K-structure on V.
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A routine check yields that (av)® = a(v?) for v € V and g € G, therefore, G

preserves the K-space structure of V.

Let {v,...,v,} be a K-basis for W;. Then

{'ulb‘,...,'v,,"‘,...,vlb',...,'v,t"’}
is a K-basis for V. Here, the map 'v,-"" — v; ® b; induces a K-isomorphism @ : V —
Wi @k U. Therefore, (i) holds.

Now, suppose G = N x M. Consider the K-representation 7 : N x M —
GL(V, K) defined by n(z,y) : v = v*¥ for v € V. Clearly, 7 is faithful since »™&¥) =
v¥=yforallveVifandonlyifz=y=1.

A routine check yields that, for = € N and y € M, we have §(v;?E%*") =
O(v;t) = v;#) @ b}

Finally, let 7: N x M — GL(W; ®x U) be the tensor product representation
of ¢ and 1 defined by 7(z,¥) : v; ® b; = v;°@ @ b*™. To confirm = and 7 are
equivalent, we shall show that # is a KG-isomorphism; that is, it suffices to show

that (v™=¥) = 8(v)"®¥) for all v € V. Indeed,
9((vjb.-)vr(z‘y)) = g(.uij.-y) = ,qub(a:) ® bYW = g(vjb.)f(n:‘y),

so the proof of (ii) is complete. 0

In the next proposition, we summarize some of the useful facts arising from the

above proof of Theorem 4.3.3.

Proposition 4.3.4. Let G = NM be a subgroup of GL(V'), where N and M are
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normal subgroups of G centralizing each other. If NV is noncyclic, then the following
hold.

(i) M is reducible.

(i) Suppose that G is irreducible. If W) is a minimal N-subspace of V, then there

is a proper M-subspace V; C V such that

nd1

dim Vi = 5

<,

where d, is the degree of the finite extension Endyy (W) over k.

Proof. We will prove (i} first. Suppose conversely that M is irreducible. By
Schur’s lemma, we know Endgs (V) is a finite field containing N, a contradiction.

Next, we will prove (ii). Suppose that G is irreducible. Let W, be 2 minimal N-
subspace of V and U = Homyy (W), V). By Theorem 4.3.3, there is a finite extension
K of k, where K = End,x(W;), such that V is a KG-module, W is a K N-module,
and U is a K M-module, with an isomorphism V & W, ®, U as K-spaces.

Let 0 £ v, € Wy and {by,...,b.} a K-basis of U. Then the K-subspace V; of
V spanned by {v;%,... v} is isomorphic to U and invariant under M.

Since V = W), ®y U, where dimy U = dimg Vi, it follows that dimg, V =
dimy W, dimg U = dimg Wi dimg V. Let dy = |K : k). Then it immediately follows
that nd; = dim, W, dim;. V4.

It remains to show that dimy V) < n. Suppose conversely that dim; V; = n.
Since dimg U = dim, V] = n = dim, V, it follows that dimy U/ = dimg V. We also

know that dimy V = dimy W dimg U; therefore, dimy W, = 1. Here, recall that a
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K-representation ¢ : N — GL(W;, K) defined by ¢(z) : wy, — w,® for w; € Wy is

faithful (cf. Lemma 4.3.2). Since N is noncyclic, we have a contradiction. O

§4. Abelian Groups and Class-2 Nilpotent Groups

We review several important facts used earlier for solvable-group algorithms
in [39}. Since most of these facts were not formalized in [39], we present them with
their complete proofs.

Throughout this section, let & be a finite field and V an n-dimensional vector
space over k. In this section, p is an arbitrary prime, unrelated to char k, unless it is
specified otherwise.

For an abelian group A and an integer m > 1, write A™ = {a™ | a € A}.
Recall that an abelian subgroup A < GL(V) is uniform if, for every integer m > 1,
the subgroup A™ of A has no nonzero fixed vectors in V (i.e, Cy(A™) = 0) unless

A™=1.

Proposition 4.4.1. If A is a uniform abelian subgroup of GL(V), then chark

does not divide |A|.

Proof. Suppose chark = p # 0, and p divides the order of A, say |A| = pr for
some integer 7 > 1. Then the subgroup A" is a nontrivial p-group and thus unipotent.

That is, A" fixes a nonzero vector in V, a contradiction. m]

Recall that, if K is a field, the diagonal group D(n, K) is the subgroup of

GL(n, I(} consisting all the elements of the form
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€ GL(n, K},

where w; € K.

For an extension K of k, write VX = K @, V. Under the natural embed-
ding GL(V, k) — GL(VX,K), we may identify any G < GL(V, k) as a subgroup of
GL(VE | K) (see, e.g., [1, §25]).

Proposition 4.4.2. Let A be a uniform abelian subgroup of GL(V, k). Then the
following hold.

(i) A is completely reducible.

(ii) There are an extension K of k and ¢t € GL{V*, K) such that A* is isomorphic

to a subgroup of D(n, K).

Proof. The assertion (i) is an immediate consequence of a classical theorem of
H. Maschke (see, e.g., [1, 12.9]).

Recall that, for G < GL(n, k), the elements of G are diagonalizable over some
extension fields of & if and only if char k does not divide the order of G (see, e.g., [54,
Lemma 17.4]). In fact, if G is abelian, and if char k& does not divide the order of G,
there are an extension K of & and ¢ € GL{n, K') such that G* < D(n, K) (see, e.g.,
[54, Lemma 17.1]). O

The following observation is elementary.
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Lemma 4.4.3. Let A be a uniform abelian subgroup of GL(V). Let W be an
A-subspace of V' such that the restriction A|W is cyclic. If an element ay € A fixes a

nonzero vector wg € W, then ag fixes all w € W.

Proof. Suppose A|W is a cyclic group of order v. Then we have one element
a € A such that, for each z € A, there is an integer ,0 < a < v, satisfying w* = w*
onallwe W,

Suppose w™ = w** on all w € W for some o, 0 < g < v. Then wp® =

a™o

we®® = wy. For each T € A, we have wp®™® = w® )™ = wy(8")" = ¢, where
0 < a < v. That is, the subgroup A*® fixes a nonzero vector. By the uniformity of

A, it follows that A% = 1. In particular, w® =w*® = won all w € W. 0

The following result is implicit in [39, Lemma 4.6]. Our proof appeals to the

above lemma.

Lemma 4.4.4. Let A be a uniform abelian subgroup of GL(V). If W,...,V,,
are the distinct maximal A-subspaces of V' such that the restrictions A|V; are cyclic,

then V decomposes as a direct sum V=V @ .-- @ V,,.

Proof. If A is cyclic, then the assertion is trivial. Thus, suppose that A is
noncyclic; that is, m > 2. Since A is completely reducible, there are minimal A-
subspaces Wy,..., W, forming a direct sum V = W, & --- & W,.. Here, since A is
irreducible on each W, it follows that each A|W; is cyclic. Therefore, it suffices to
show that Vi + .-+ V,, is a direct sum.

Fori=1,...,m, let K; be the kernel of the restriction A — GL(V;) and U; =

Cv(K;). Here, each U; is A-invariant; that is, we have the restriction ¢; : A — GL(U}).
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Since each K; < Ker¢; < A, and A/K; is cyclic, it follows that each A/Ker ¢; is also
cyclic. Clearly, each V; C U;; therefore, V; = U; by the maximality of V;.

Suppose that Vi + ---+ V|;; is not a direct sum. Then there is v € V such that
v=v+ '+ v, =w + -+ Wy, where the pairs v;, w; € V}, and at least two of
these pairs satisfy v; # w;. That is, there is a sum v = u; + - - - + u,, = 0, where each
u; € Vi, and at least two of the summands are nonzeros. Assume further that the
number of nonzero summands in ¢ is minimum amongst all such sums. Without loss
of generality, assume that u;, and u, are nonzeros.

Here, we claim that there is a € K, such that u,® # u;. To see this, suppose
otherwise. Then, from Lemma 4.4.3, it follows that K; fixes all the vectors in V.
That is, V2 C Cy(K;) = W4, a contradiction.

By the above claim, the number of nonzero summands in the sum u — u® is less

than those in u, contradicting our choice of v. Thus, Vi +---+V,, = V| &---@V,,. O
We quote the following result from [39, Lemma 4.7].

Lemma 4.4.5. If N is a class-2 nilpotent subgroup of GL({V') such that Z(N)

is cyclic and uniform, then |N : Z(N)| < n? ]

The following result was used in proving [39, Theorem 6.1]. We include a proof

since it did not appear in [39).

Lemma 4.4.6. Let G < GL(V) and A a normal subgroup of G. If A4 is cyclic

and uniform, then |G : Cg(A)| < n.

Proof. Let k denote the algebraic closure of k and U = V*. Consider G as a

subgroup of GL(U, k).
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Suppose A = (a). Clearly, a is diagonalizable so that the roots of the minimal
polynomial of a are all distinct. Let Ay,..., A, be the distinct eigenvalues of a and
each U, denote the eigenspace for A;. That is, each Uy, = {u € U | u® = \u}.
Since the roots of the minimal polynomial of a are all distinct, it follows that U =
Uy @@ Us,.

We shall show that G acts on the set of these subspaces {U,,,...,Us,}.

Let g € G. Clearly, a and a¥ share the same minimal polynomial and thus the
same eigenvalues. Since A is cyclic and normal in G, there is an integer o > 0 such
that a9 = a®. Choose U,,. Then, for u € Uy, we have «*° = A\;*u. That is, \;* is an
eigenvalue for a* and thus A;® = A; for some 7,1 < j < m. In fact, G acts on the set
{A,..., A} defined by A = A, on each A;.

It is then easy to verify that the G-action on the set of eigenvalues extends to
the set of the eigenspaces. In particular, if MY = A;, then (U),)8 = U, as follows.
Indeed, suppose u € Uy, then u® = 4* = A\®u = A;u. Since u9' € Uy,, we have
Ux, € (Uy;)?. Conversely, suppose z\,--"_l = A, where a#™' = &P, for some integer
B > 0. Suppose v € U,,, then v’ = AP = ).,-9-11; = Ajv. Since v? € U,,, we have
Uy, C (Ux,)*" and thus (Ux;)? € Uy,. Therefore, we have (Uy,)? = U,,.

Let Gy = Ne(Uy,) = {g € G | (Ux,)? = Uy, }. Clearly, |G : Gi| < m < n. Then
it suffices to show that G; < Cg(A).

Let b € Gy and 0 # u € U,,. Since the action of a on Uy, is defined by the scalar
multiplication by A;, and b stabilizes the subspace Uy, we have u!* = u. Clearly,
[a,b] € A so that [a,b] = a” for some integer > 0. Since A is uniform, and a" fixes a

nonzero vector u, it follows that a” = 1. That is, [2,b] = 1 and thus G, < Cg(A4). O

Recall that the exponent of a finite group G, denoted by exp(G), is the least
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common multiple of the orders of the elements of G. Clearly, if P is a p-group, then
exp(P) is the maximum order of an element of P. It is easy to see that the same
assertion also holds for nilpotent groups.

If £ is an elementary abelian p-group of order p’ for some ¢ > 1, then p =
exp(E), and £ is the rank of F.

The following result is well-known and has appeared in numerous versions (cf.
[32, Satz I11.13.7], [54, Theorem 19.2]). The method of our proof involves an algorithm

that will be used in Proposition 4.7.4.

Proposition 4.4.7. If N is a finite class-2 nilpotent group such that Z(N) is

cyclic, then there are ay,by,...,a¢ by € N such that the following hold.
(i) [a,-,aj] = [a,-,bj] = [bi,bj] =1fori -',é], i= 1,... ,f, j = 1,...,3.
(ii) {a;,b;] is an element of order v; > 1 for i = 1,...,¢, where v; | y;_; for i =

92,... L

(iii)) N = Z(N){ag){be) - - - {a1){b1), and every z € N can be written uniquely in the
form

T = za,%tbht . . ca; % b1,
where 2 € Z(N),0< ;< vy, and 0< B; <y fori=1,...,¢.

(iv) If N/Z(N) is an elementary abelian p-group, then v, = --- = v, = p, and N' is

the subgroup of Z(N) of order p.

Proof. Since N is class-2 nilpotent, we know that N/Z(N) is abelian. Then
observe that commutators in N behave like a bilinear form; that is, if a,b,c € N, then

[a, bc) = [a, b][a, c] = [a, c]la, b] = [e, cb] and [ab, ¢] = [a, c](b, ¢] = [b, ¢][a, ] = [ba, c].
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Write Z = Z(N). Fora € N and H < N, write [a, H] = {[a,2] | z € H}.
Clearly, [a, H] is a subgroup of Z so that [a, H] is cyclic.

It is easy to see that Za is an element of N/Z of order v if and only if [a, V]
has order v. Indeed, for any positive integer a, we have (Za)* = Z if and only if
[e®,z) =[a,z]*=1forallz € N.

Let Za; be an element of N/Z having the maximum order, say v;. Then there

is by € N such that [a,, b1] generates [a;, N]. Let N, denote the centralizer of the two
elements a; and b; in N,

In what follows, we shall show N = Ny{a;) ().

Let ¢, : N — [a;, N] be a homomorphism defined by ¢1(z) = [a, ] for z € N.
Observe that Ker ¢, = Cn(a1) so that N/Cn(a;) = [a,, N]. Clearly, b; ¢ Cn{ay).
For any positive integer 8, we have (Cn(a;)b1)? = Cn(a;) if and only if [a;,b/%] =
[@1,81)% = 1. Hence, N/Cn(a1) = {Cn(a1)b1) and thus N = Cy(a1){b1).

Clearly, [b1,Cn{(a;)] < [b1, N], whose order is at most 1. Since [ay,b] =
[b1,a1]7 and [by,a1]) € {b1,Cn(ar)), it follows that [a;, N] = ([a1, b)) = ([br,a1]) <
[b1, Cn(a1)] < [b1, N} and thus [a;, N] = [b,Cn(a1)] = [b1, N]. That is, Zb, is an
element of N/Z having the same order v,.

Let ¢; : Cn(ai) — [b1,Cn(a1)] defined by ¢2(y) = [by,y] for y € Cn(ar).
Clearly, Ker¢o = N, and Cy(a;)/Ny = [b1,Cn(a1)]. It then follows that Cy(a,) =
Ni(a1), where |Cn(a:1) : Ni| = vy; thus, we have N = Ny{a;){b;), where |N : Ny| =
112

If Z < Ny, then N, similarly decomposes as Ny = Np(as){bs), where Za, and
Zb, are elements of N;/Z having the same maximum order, say v,, and N, is the

centralizer of a; and b, in N;.
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We repeat the factorization until Z = N; for some ; that is, until we reach
N = Z{a;}{b;) - - - (a1){b1). Since v; = exp(N;_1/2Z) for i = 2,...,¢, it follows that
vi |y fori=2,... L

Suppose N/Z is an elementary abelian p-group. Clearly, 1, = - = v, = p.
Since each [a;, ;] is an element of order p, it follows that each [a;, b;] generates the
unique subgroup Z; of Z of order p. It is then easy to see that, for all z,y € N, we

have [z,y] € Zy. Therefore, N' = Z,. O

§5. Semisimple Groups

In this section, we review properties of a certain central extension of a direct
product of nonabelian simple groups.

Let G be a finite group. Recall that we say G is quasisimple if G = G', and if
G/Z(QG) is nonabelian simple; more generally, we say G is semisimple if G = G, and
if G/Z(G) is isomorphic to a direct product of nonabelian simple groups.

The following elementary fact summarizes how semisimple groups arise in our

setting (cf. {55, II, 6.6.5)).
Proposition 4.5.1. If G is a finite group such that G/Z(G) = G, /Z(G) x - -+ X
G+/Z(G), where each G;/Z(G) is nonabelian simple, then the following hold.

(i) Gi',...,G¢ are quasisimple, and G is a central product of Gy',...,G,, and

Z(G).

ii) G’ is semisimple; in particular, G’ is a central product of G{',..., G/ .
p

Proof. Since each G;/Z(G) is nonabelian simple, we know each Z(G;) = Z(G).
Write Z = Z(G), and choose a factor G;.
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Elementary facts yield that G;/Z = [G:/Z,G:/Z] = ([G:,Gi|Z)/Z so that G; =
[Gi, Gi]Z (see, e.g., [55, I, Theorem 4.1.5)). Since G; = G{'Z, we know G;/G;@
is abelian so that Gi' = G;®. We also know that G//Z(G/) & G;/Z,; thus, Gy’ is
quasisimple.

If £ > 1, choose another factor G; # G;. Clearly, [G;,G,) < Z. From the three

subgroup lemma, it follows that
1=[[G;, G, Gi] = [[G:, Gi], Gj] = [[G+, Gi] 2, G, = [G:, Gj.

Therefore, (i) holds.

Recall that a central product of semisimple groups is semisimple (see, e.g., [55,
II, Theorem 6.6.4]). Let H = G,'---G,. Then H is semisimple. Since G = HZ,
where H = H’, we conclude G' = H. Therefore, (ii) holds. a

"The following lemma has appeared as {8, Proposition 2.7] (see [38, Lemma 3.8]
for a related result in permutation groups). We include a proof since it will be an

indispensable tool later.

Lemma 4.5.2. Let G be a finite group such that G/Z(G) is isomorphic to a
direct product of £ nonabelian simple groups, one of which is G1/Z(G). If G has
a faithful irreducible linear representation of degree n over a finite field, where the

restriction to Gy has a constituent of degree n;, then n > 241n,.

Proof. We prove by induction on £.

For ¢ = 1, the assertion is clearly true.

For £ > 1, write G/Z = N/Z x M/Z, where M/Z is nonabelian simple, and
G1 £ N. By Proposition 4.5.1, we know {N, M| = 1.
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Let V' be an n-dimensional vector space over a finite field, and regard G as an
irreducible linear group acting on V. Since G = NM and [N, M] = 1, Clifford’s
theorem and Lemma 4.3.2 yield that V decomposes as a direct sum of minimal N-
spaces V = W, @ - - ® Wy m, where the irreducible action of N on each W; is faithful
and has degree m. Then, by induction, m > 2¢-2n,.

Let D = Endy(V) and E = Endy(W;) for some W;. By Schur’s lemma, E is
a finite division algebra and thus a field, and D = M(n/m, E), where E = Z(D).
Let ¢ € Cg(N). Clearly, for v € V and a € N, we have v* = v that is, c is
an N-homomorphism. Therefore, Cg(N) C Endn(V) 2 M(n/m, E) so that M <
Cg(N) £ GL(n/m, E). Since M is noncyclic, it follows that n/m > 2 and thus

n > 2m > 24 1n,. O

We now review an elementary fact concerning the automorphism groups of
semisimple groups.

An automorphism ¢ of a group G is central if the induced action of ¢ on G/Z(G)

is the identity; that is, Z(G)g® = Z(G)g for each g € G. Observe that the central
automorphisms of G leave every element of G’ fixed (see [31] for related work).

The following result is then immediate (see [45, Lemma 2.1 for a related result).

Proposition 4.5.3. If G is a group such that G = G', then Aut(G) is isomorphic
to a subgroup of Aut(G/Z(G)).

Proof. There is a natural homomorphism ¢ : Aut(G) = Aut(G/Z(G)) defined
by (Z(G)g)*") = Z(G)g° for g € G and ¢ € Aut(G). Here, Ker¢ consists of
the central automorphisms of G. Since the central automorphisms of G leave every

element of G' = G fixed, it follows that Ker¢ = 1. m]
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§6. Matrix Groups in the Class Ty

Throughout this section, let & be a finite field and V' an n-dimensional vector
space over k.

We need the following simple estimate derived from the upper bound on the
orders of primitive permutation groups by Wielandt {58] and Praeger and Saxl [43]
(cf. [8, Lemma 2.2}; see also [22, Theorem 5.84)).

Lemma 4.6.1. Let G be a permutation group of degree m. If no composition

factor of G is isomorphic to an alternating group of degree greater than d, where

d > 6, then |G| < d™L. O

For an integer d > 0, recall that I'y denotes the class of finite groups all of whose
nonabelian composition factors are isomorphic to subgroups of Sj.

The following result plays one of the crucial réles in performing divide-and-
conquer via nonabelian quotients. The method of our proof is closely related to the

techniques used in proving (8, Theorem 3.2] and [38, Proposition 3.9).

Proposition 4.6.2. .Fix an integer constant d > 0, and let G be an irreducible
subgroup of GL(V) such that G € T';. Suppose G has a cyclic normal subgroup
A > 1, and G/A has a nonabelian minimal normal subgroup N/A. Let H = N'.
Then Cg(H) is reducible, and there are positive constants ¢; and ¢, such that at

least one of the following holds.

(i) V=WV& - &V, such that V = {V;,...,V,,} forms a system of imprimitivity
for G, where the transitive permutation representation of G on V is primitive

and has the kernel L such that H < L and |G : L| < m9.
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(ii) |G : Ce(H)| = O(t**), where t is the dimension of a minimal H-subspace W, of

V over the finite extension K; = Endy(W)) of k such that ¢ > 2 and ¢ | n.

Proof. We first prove that A = Z(N). Clearly, A < Cny(A) < N. Since
N/A is a minimal normal subgroup of G/A, either A = Cn{A) or Cn(4) = N.
Suppose A = Cn(A). Then N/A = N/Cy(A) is isomorphic to a subgroup of Aut(A).
However, we know that Aut(A) is abelian, a contradiction. Hence, Cy(A) = N. That
is, A < Z(N) < N and thus A = Z(N).

Since N/Z(N) is a direct product of nonabelian simple groups, we know that
H = N'is semisimple by Proposition 4.5.1. In fact, since N/Z(N) = HZ(N)}/Z(N) &
H/(H N Z(N)), we also know that Z(H) = HN Z(N) so that N/Z(N) = H/Z(H).

Since H is noncyclic, Cg(H) is reducible by Proposition 4.3.4 (i).

Let W; be a minimal H-subspace of V. Then Clifford’s theorem yields that
V=W & - -&W, r|n, where each W; = W for some g; € G. Let U/1,...,U; be
the distinct homogeneous H-subspaces of V' determined by W;,... W,.

Suppose h > 2. The set U = {Uy,...,U,} forms a system of imprimitivity.
Under the transitive permutation representation of G on U, let V = {V;,...,V,,} be
a minimal system of imprimitivity for G, where the V; are direct sums of the U;, so
that G acts primitively on V. Let L be the kernel of the G-action on V, then G/L
is a primitive permutation group of degree m. By Theorem 4.1.1, there is a constant
¢ > 0 such that |G : L] < m®. Thus, (i) holds.

Suppose i = 1. First, observe that the irreducible components H{W; are equiva-
lent so that H acts faithfully on each W;. Schur’s lemma yields that K, = End;.z{W;)
is a finite extension of &. Then a K, -representation ¢ : A/ — GLth, K,) defined by

¢(z) : wy = wy* for wy € Wi is irreducible and faithful. Let ¢ = |W; : K, |; that is, ¢
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is the degree of the faithful irreducible representation ¢.

Now, write Z = Z(H) and H/Z = H,/Z x --- x Hy/Z, where each H;/Z is
isomorphic to a nonabelian simple group T.

Since H is noncyclic, we know ¢ > 2. Let ¢, be the degree of the restriction of ¢
on Hy. Then it follows from Lemma 4.5.2 that ¢ > 2!, and thus £ < log(t/t;}+1 <
logt+ 1.

Let G act on H by conjugation. Then G/Cg(H) is isomorphic to a subgroup
of Aut(H). Since H is semisimple, Aut(H) is isomorphic to a subgroup of Aut(H/Z)
by Proposition 4.5.3. Therefore, G/Cg(H) is faithfully represented in Aut(H/Z).

Recall that, since T is nonabelian simple, Aut(T*) & Aut(T) wr S¢ (see, e.g.,
[22, Exercise 4.3.9]). Evidently, |T| < d! and thus |Aut(T)| < (d!)'°%4) (in fact, the
confirmation of the Schreier conjecture by the Classification of Finite Simple Groups
asserts that the outer automorphism group Out(T) = Aut(T)/T is solvable, where
[Out(T)| < |T, so that |Aut(T)| < |T|? (see, e.g., (18], [44])). Using c; = (d!)ios@)
for an upper bound on |Aut(T)|, we have |Aut(T) wr S¢| < c5¢e!.

Each element of Aut(H/Z) induces a permutation on {H,/Z,..., H;/Z}. Now,
write Gy = G/Cg(H) so that Gy < Aut{H/Z), and let Ly be the normal subgroup
of Gy leaving each H;/Z invariant. Then Ly is a subgroup of Aut(H,/Z) x +-- x
Aut(H,/Z) = Aut(T)¢, and Gy/Lg is a subgroup of S.

Let ¢4 = max{d,6}. Since no composition factor of Gy/Ly is isomorphic to
an alternating group of degree greater than ¢4, it follows from Lemma 4.6.1 that

|Go/ Lo} < €4t~ s0 that |G/Ca(H)| = |Lo||Go/ Lo| < cacs®!. Write 5 = c3c4, then

|G/Cq(H)| < 5t < ¢5'BH! = ¢ytlo8%s,
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Thus, (ii) holds. 0o

§7. Divide and Conquer: via Abelian Quotients

We first develop divide-and-conquer tools for abelian quotients. Most of the
algorithms in this section were developed earlier for solvable groups in [39}. Since
these results were not formalized in [39}, we present them with their complete proofs
for the class I'y.

Throughout this section, let k& be a finite field and V' an n-dimensional vector
space over k. As before, p is an arbitrary prime, unrelated to char &, unless it is
specified otherwise. Fix an integer constant d > 0. For a given input G < GL(V),

assume that G € I'y, and p(G) is polynomially bounded in the input length.

Proposition 4.7.1.  Given ¢ < GL(V) and a non-uniform abelian normal

subgroup A of G, in polynomial time one can find a proper G-subspace W C V.

Proof. Since A is not uniform, there is an integer r > 1 such that A™ # 1,

where A" fixes a nonzero vector in V. Clearly, A" is normal in G. Then Cy(A") is a

proper G-subspace of V. 0
We quote the following result from {39, Lemma 4.6} (cf. Lemma 4.4.4).

Lemma 4.7.2. Given a uniform abelian subgroup A of GL(V), in polynomial
time one can find the set of the maximal A-subspaces {W,...,V;,} of V such that the

restrictions A|V; are cyclic. These subspaces form a direct sum V = Vi@ --@V,,. O

The following result is a consequence of Theorem 4.1.1.
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Proposition 4.7.3. Given G < GI{(V) and a uniform abelian normal subgroup

A of G such that A is noncyclic, in polynomial time one can find

(i) a proper G-subspace W C V or

(ii) a decomposition V =V, @ - - @ Vi, forming a minimal system of imprimitivity
V = {W,...,Vu} for G, and the kernel L of the permutation representation of

G on V such that |G : L| < m® for a constant ¢; > 0.

Proof. Since A is uniform, we can find the maximal A-subspaces U, ..., U,,
s 2 2, of V such that the restrictions A|U; are cyclic. Then V=U,&---@U,. If
g € G, it is easy to see that each U7 is also a maximal A-subspace of V such that
A|U{ is cyclic. That is, for each g € G, the map U; — U;? is a permutation of the
set U = {Uy,...,U,}.

If the G-action on U is intransitive, then a nontrivial orbit of I yields a proper
G-subspace of V.

Suppose the G-action on I is transitive. A standard procedure to find a minimal
block system in permutation groups yields a minimal system of imprimitivity V =
{Vi,...,Vn} for G, where the V; are direct sums of U;, so that G acts primitively on
V (see, e.g., [2]). Find the kernel L of the G-action on V, then G/L is a primitive
permutation group of degree m. By Theorem 4.1.1, there is a constant ¢; > 0 such

that |G : L| < me. a

The proof of [39, Theorem 6.1] also appeals to the following result. We include

a proof since it did not appear in [39].

Proposition 4.7.4. Given G < GL(V) and a class-2 nilpotent normal subgroup

N of G such that Z(N) is cyclic and uniform, where N/Z(N) is an elementary abelian
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p-group centralized by G of rank 2£ for £ > 1, in polynomial time one can perform

one of the following.

(i) Find a decomposition V = Vi &- - -@V,, such that {V4,..., V;,} forms a minimal

system of imprimitivity for G, where

(a) m=ptifp#2,
(b)y m=2Aifp=2and £> 2, or

(c) m=2ifp=2and {=1.

(ii) In the event (i)(c) fails when p = 2 and £ = 1, find a quaternion group Q of
order 8 such that N' <@ < N.

Proof Write Z = Z(N). By Proposition 4.4.7, we can find a1, b;,...,a., b, € N
such that N = Z{ag){be) - - - {@1) (b1}, where [a;, a;] = [a:,b;] = [b;, b;] = 1 for all pairs
i # j, and every [a;, b;] is an element of N of order p. Note that Za,, Zb,,. .., Za,, Zb,

form a basis of N/Z.

As we find each pair a; and b;, we also enforce the following two additional

conditions.
(1) |b| divides |a;?| fori=1,...,L
(2) [al,bl] == [ag, be] = 2p for some Zy € Z.

If a pair a; and b; fail to meet (1) and (2), we modify the pair so that they will meet
these conditions as follows.
We fix an element 1 # z; € N' throughout. Write a = a; and b = b; to simplify

the notation. We may assume that |a?}, > |b*|,. Find § = (|a?|,]b?|) and positive
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integers 6, and d, such that |a”| = 84, and |6°| = 4. Since p does not divide &, it
follows that [a,b%] = [a,b] # 1. Replace b with b% so that |b?| divides 6. Now, if
[a, 8] # 2o, then we find a positive integer § such that {a,b]? = [a,b?] = z,. Clearly,
57| divides J0?| so that |6P?| divides 6. Replace b with b, then [b?| divides 6 so that
|67| divides |a?|.

Case 1. Suppose that p # 2.

In what follows, we construct an elementary abelian p-group E of rank £ + 1
such that £ < N and E'<G. To do this, we will find £ distinct elements ey, ...,e, & Z
of order p as follows.

Choose i, and write a = a; and b = b;. Since a?,b” € Z, where Z is cyclic, and
|57} divides {aP|, it follows that (6") < {a?). Then we can find an integer € > 0 such

that a”*b” = 1. Observe that, in general, if z,y € N, then
(z°y?)" = z°7yP [z, y]aﬂ(z)

for all integers a, B, and v (see, e.g., (32, Hilfssatz II11.1.3]). Since p > 2, and [a, }]
has order p, it follows that (a°b)? = a?b* = 1. Clearly, b € Z. Now, if a®b € Z, then
Zb € {Za), a contradiction. Therefore, a®b ¢ Z. So we let ¢; = a®bh.

Let E = (ey,...,e¢ ). Then E is an elementary abelian p-group of rank £+ 1
contained in N.

It remains to show that E is normal in G. Let g € G and 1 # z € E. Since
G centralizes N/Z, it follows that 9 = zz for some z € Z. Suppose z # 1. Since z
is an element of order p, the order of z? is clearly p. Then z has order p. Since Z
is cyclic, (2p) is the unique subgroup N’ of Z of order p so that (z) = N’. That is,
z& N' < E and thus zz € E.
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Since Z contains p-elements, the order of Z is pr for some positive integer r.
Since Z is cyclic, Z" is a cyclic group of order p so that N’ = Z". Since Z is uniform,
and Z7 # 1, it is straight from the definition that N’ fixes no nonzero vectors in V.

For m = 1,2,..., observe that (N')™ = 1 if p divides m and (N')™ = N’
otherwise. Choose m > 1. Since (N')™ < E™, it follows that, if p does not divide m,
then E™ fixes no nonzero vectors in V. If p divides m, then it is clear that E™ = 1.
Therefore, F is uniform.

Find the maximal E-subspaces Wi,...,V;; of V such that the restrictions E|V;
are cyclic. Then V =V, ®---® V. Foreach g € G, the map V; — V% is a
permutation of the set V = {V;,...,V,}.

Now, N’ acts nontrivially on each V;. Choose V;. Then there is an element
eo € E of order p such that, for each £ € E, there is an integer A, 0 < A\ < p,
satisfying v* = v onallve V;. In particular, there is an integer Ap, 0 < Ay < p,
such that v*® = v®™ on all v € V;. Since zp is also an element of order p, we may
assume that zp = ep. Then there are integers A;,..., A;, where 0 < A; < p for each
A;, such that v% = v on all v € V;. With these integers Ay,..., A, we label
Viarag = Vi

In fact, these integers A,,..., A, uniquely label each V;. To see this, suppose
that there are subspaces V[3,,.. ) and V(,\l-‘_,_',\t:), where 0 < A; <pand 0 < A/ < p
for i = 1...,¢ Without loss of generality, suppose that A; > X,". We claim that
Vi NV, sy = 0. To confirm our claim, suppose otherwise; that is, there is

0 # v € Viy,a M Viay,a- Then 5" = vp™! = Uo“'h'- Let ¢ = Ay — A/'. Then

vt = vp, where 0 < ¢ < p. That is, {2¢*) = N’ fixes vg, a contradiction. Therefore,

m < pt.
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Now, N acts transitively on V. To see this, let v € Viar,..a,) and choose e; =

a:fib;. Since v% = v™™ it follows that

M8 = oS o pafibisiza — geiaizo _ paizetit!

That is, (Via,,..00)% = Viar, bl (mod p)..a)- Lherefore, m = pf,

In fact, N acts primitively on V. Indeed, a; preserves a partition of the sub-
spaces V., .00) | -+ | Vu....e;p-1), Whereas a; preserves another partition Vi, _.0.) |
“++ | Viu,...e,p—1,+); therefore, the only nontrivial partition preserved by N is V itself.
Since N < @, the G-action on V is also primitive.

Case 2. Suppose that p=2and £ > 2.

We will construct an elementary abelian 2-group E of rank |£/2] + 1 such that
E < Nand E<QG. Asin Case 1, we will find [£/2] distinct elements ey, ..., ej¢2 € 2
of order 2 as follows.

As before, choose %, and write @ = @; and b = b;. We can find an integer ¢ > 0
such that a*b* = 1. Then a routine check yields that (ab)* = 1 so that ab has order
2 or 4. Let d; = a®b.

Since zp is the unique element of Z of order 2, it follows that d;> = 1 or zg;
thus, (did;)®> =d’d? =1fori#j,i=1,...,6,j=1...,¢ Now, let e; = d,ds, &7 =
dady, . .., and e|¢j9) = dg-2de— if £ is 0odd, or ejgp) = dp_1dy if £ is even.

Let £ = {ey,..., el¢j2)» Z0)- Then E is an elementary abelian 2-group as desired.
By the same argument used in Case 1, F is normal in G. Furthermore, the maximal
subspaces V1, ..., Vi, such that the restrictions E|V; are cyclic yield a minimal system
of imprimitivity {V4,...,V,,} for G, where m = 21¢/2],

Case 3. Suppose that p=2and £ =1.
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Write @ = @, and b = b,. As before, we can find an integer £ > 0 such that
a*b?* = 1. Let d = ab. Then |d] is 2 or 4. Also, note that [a,d] = zp. In what follows,
we construct an elementary abelian 2-group £ of rank 2 such that £ < N and E<« G
or find a quaternion group @ of order 8 such that N' < Q < N.

Suppose that |d| = 2. Then let e = d and E = (e, zy).

Suppose that |d| = 4. Since [a,b] = z, it follows that [a, 5]l = 1 so that |a| is
even. Find an odd integer 7 such that |a| = |a|,7.

If la]; = 2, then let e = a” and E = (e, zp).

Suppose that |aj; > 8. That is, |a|, = 2" for some 7 > 3. Let z; = @ ™. Then
2y is an element of Z of order 4, where z;? = z. Clearly, (21d)? = 2,%d? = 2?2 = 1.
Since z € Z while d € Z, it follows that z;d  Z. Thus, let e = z;d and E = (e, z).

Except for the case |d| = 4 and |a|, = 4, we have an elementary abelian 2-group
E as desired. The maximal subspaces V; and V5 such that the restrictions E|V; are
cyclic form a minimal system of imprimitivity {V;, V,} for G.

Finally, suppose that |d| = 4 and |e|; = 4. Let £ = a” and y = d. Clearly, z
and y both have order 4, and [z,y) = 2. Then a routine check yields that {(z,y) is a

quaternion group of order 8. |

The following result is a slight generalization of {39, Theorem 6.1]. We include

a complete proof since it did not appear in [39].

Proposition 4.7.5. Given G < GL(V) and normal subgroups N and 4 of G
such that A is cyclic and uniform, N centralizes A, and N/A is.elementary abelian,

in polynomial time one can perform one of the following.

(i) Prove that |G : A| < 24n.
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(ii) Find an abelian normal subgroup B of G such that A < B.

(iii} Find a normal subgroup M of G, where A < M, such that M/A is a nonabelian

minimal normal subgroup of G/A.

(iv) Find a normal subgroup H of G and a decomposition V = Vi & --- @ V,,,
forming a minimal system of imprimitivity ¥V = {W,..., Vmn} for H such that
|G : H| < m* for a constant ¢; > 0, and find the kernel L of the permutation

representation of H on V such that |H : L| < m* for a constant ¢; > 0.

Proof. We describe a polynomial-time algorithm in three steps. Throughout,
we write Z = Z(N).

Step 1. Suppose that N/A is an elementary abelian p-group.

If N is abelian, return N as B for (ii). Suppose otherwise; that is, IV is class-2
nilpotent. If A < Z, then return Z as B for (ii). Otherwise, A = Z.

By Lemma 4.4.5, we know that |V : Z| < n?. Here, the conjugation action of
G on N/Z induces a linear representation ¢ over a finite field of order p. In fact,
since |N/Z| < n®, we may assume that ¢ is irreducible. Suppose that the rank of
N/Z is 2 for £ > 1. Find H = Ker ¢. From the work of Babai-Cameron-Pdlfy (8,
Corollary 3.3, there is a constant ¢; > 0 such that |G : H| < p(20),

Now, we appeal to Proposition 4.7.4 and obtain one of the following.

(1) A decompositionV =V, @&+ -@V,, such that V = {Vi,...,V} forms a minimal
system of imprimitivity for H, where m = p® if p # 2, m = 2142 if p = 2 and

£>2,orm=2ifp=2and {=1.

(2} A quaternion group @ of order 8 such that N' < Q < N.



82

Step 2. Suppose that we obtain (1).

By Proposition 4.7.4, there is a constant ¢; > 0 such that |G : H| < m®;
furthermore, the permutation representation of H on V is primitive. Find its kernel
L. Then, by Theorem 4.1.1, there is a constant c; > 0 such that |H : L] < m®.
Therefore, we have (iv).

Step 3. Suppose that we obtain (2). Let @ = Q.

Before we proceed, we need to prove that @ <G and |G : Cg(N)| < 24n.

First, we prove that @ is normal in G. Recall that N' = (2;), where z; is the
unique element of order 2 in Z and centralized by G. Also, recall that Q@ = (z, ),
where £ and y are elements of ¢ of order 4 such that [z,y] = 2, and 2% = 3? = z,.
That is, N = Z(z)(y). Let g € G. Since 7 € N, we have =7 = zz*y® for some z € Z,
a=0orl, and f§ =0or 1. Sincez & Z, we cannot have o = 0 and 8 = 0. In the
three other cases, we have (z9)? = z = 2 and thus z = 2, or 1. Therefore, 29 € Q.
By the same argument, y¥ € @ and thus @ 4 G.

Since |[Aut(Q)| = 24, it follows that |G : Ce(Q)] < 24. Then it is easy to see
that |G : Cg(N)| < 24n as follows. Since N = ZQ, we have Cg(N) = Ce(Z)NCe(Q)

and thus

Ce(@)/Ca(N) = (Ce(2)Ce(Q))/Ce(2) < G/Cs(2).

Since Z is cyclic and uniform, by Proposition 4.4.6, we have |G : Cg(Z)| < n.
Therefore, |G : Cg(N)| = |G : Ca(Q)||Ce(Q) : Ca(N)| < 24n.

Find Cg(N). If A= Cg(N), then we have (i).

Suppose that A < Cg(N). Find a normal subgroup M of G, where A < M <
Cg(N), such that M/A is an elementary abelian group or a nonabelian minimal

normal subgroup of G/A.
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If M/A is nonabelian, then return M for (iii).

Suppose that M/A is elementary abelian. Clearly, M centralizes A. Regarding
M as N, we perform Step 1. If we obtain (1), then we have (iv).

Suppose that we obtain (2), say, @, such that M’ < Q, < M.

Observe that Z = Z(N) = Z(M) = A, where N and M centralize each other.
That is, NOM = Z and thus (N/Z) N (M/Z) = Z/Z. Now, N/Z and M/Z
are both elementary abelian 2-groups of rank 2 so that (NM)/Z is an elementary
abelian 2-group of rank 4. The conjugation action of G on (NM)/Z induces a linear
representation v of degree 4 over a finite field of order 2. Find H = Kery. Then
|G H| < |GL(4,2)| < 24

Since @ and Q) centralize each other, Gy # Q2. Then we can find d, € @, \ @;
and d; € 2\ Q. Here, d; and d, both must have order 4. Also, note that d,d, A
(otherwise, it would mean that Zd; = (Zd,)™?, a contradiction). Let e = did,. Since
e? = (did)? = di’dy® = 2020 = 1, we have |e| = 2. Let E = (e, 2). Then E is an
elementary abelian 2-group of rank 2 such that £ < NM and E <« H. The maximal
subspaces V] and V; such that the restrictions E|V; are cyclic form a minimal system
of imprimitivity V = {V},V,} for H. If L is the kernel of the H-action on V, then
|H : L| = 2. Thus, we have (iv). O

§8. Divide and Conquer: via Nonabelian Quotients

We now consider algorithms for divide-and-conquer via nonabelian quotients.
Throughout this section, let & be a finite field and V an n-dimensional vector

space over k.

Our algorithm will appeal to the following result [47, §5.2).
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Theorem 4.8.1 (Rényai). Given a set S C Endi(V), one can find a proper
subspace W C V such that W* C W for all s € S, or prove that no such W exists,

in time polynomial in the input length and char k. a

In particular, given G < GL(V) such that chark is polynomially bounded, one
can find a minimal G-subspace W C V in polynomial time.

Now, suppose that we are given an irreducible subgroup G < GL(V) and a
minimal invariant subspace W of V for a normal subgroup H of G. Then, based on
Clifford’s theorem {Theorem 4.3.1), the following simple procedure finds a direct sum

of H-isomorphic minimal H-subspaces or a system of imprimitivity for G (cf. [30,

§2.1)).

procedure CLIFFORD

Input: an irreducible group G < GL{V) and a minimal H-subspace W, of V for
a normal subgroup H of G.

Output: a direct sum of H-isomorphic minimal H-subspaces of V or a system of
imprimitivity for G.

begin
decompose V =W, @ - - - & W,,, where each W; = W% for some g; € G;
let U := {Wy,..., W}
repeat
if there are U € U and s € S such that U® € U then
begin
find the minimum collection of subspaces U;,...,U; € U such
tha U CclUid---aUj
replace U;,...,U; e U with U; & --- @ Uj;
end
until G permutes the members of U,
if [U/| = 1 then return H-isomorphic H-subspaces Wy,..., W,;
else return a system of imprimitivity U for G;
end.

Fix an integer constant d > 0. From now on, for a given input G < GL(V),
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assume that G € I'y, and pu(G) and chark are polynomially bounded in the input
length.

The following result is built on Theorem 4.3.3, Proposition 4.3.4, Theorem 4.8.1,
and the procedure CLIFFORD.

Proposition 4.8.2. Given G < GL(V) and normal subgroups N and A of G
such that A is cyclic,1 < A < N, and N/A is a nonabelian minimal normal subgroup

of G/A, in polynomial time one can perform one of the following.
(i) Find a proper G-subspace W C V.

(ii) Find a decomposition V =V, @-- - & V,,, forming a minimal system of imprim-
itivity V = {W,...,Vin} for G, and the kernel L of the permutation represen-

tation of G on V such that |G : L| < m® for a constant ¢; > 0.

(iii) Find H = N', Ce(H) such that |G : Ce(H)| = O(t**), where t > 2 and ¢ | n,
and ¢; is a constant > 0, and minimal Cg{H)-subspaces M, ..., M. of V of the

same dimension such that V = M; & --- & M., where e > ¢.

Proof. By Theorem 4.8.1, we may assume that G is irreducible. We describe
a polynomial-time algorithm to perform (ii} or (iii). Recall that G is specified by a
generating set S.

First, we find H = N' and a minimal H-subspace W; of V. Then we call the
procedure CLIFFORD to find a direct sum of H-isomorphic minimal H-subspaces or
a system of imprimitivity for G (cf. [30, §2.1}).

Suppose the procedure CLIFFORD returns a system of imprimitivity U =

{U1,...,Us}. A standard procedure to find minimal block systems in permutation
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groups yields a minimal system of imprimitivity V = {W,...,V,,} for G, where the
V; are direct sums of U;, so that G acts primitively on V (see, e.g., [2]). Thus, (ii)
holds.

Suppose the procedure CLIFFORD returns V = W1 &- - -@W,., where the W; are
H-isomorphic minimal H-subspaces. Then the action of H on each W; is irreducible
and faithful.

Find Cg(H), and let D = Cg(H)H. Find a minimal D-subspace V; of V. We
may assume Vp contains W;. Let ~: D — GL(V}) denote the restriction of D on Vj.
Then D = Ce(H) H is an irreducible subgroup of GL(Vp).

Theorem 4.3.3 yields that, if Uy = Homyg(W1, Vp), there is a finite extension
K of k, where K = K; = Endgy(W;), such that Vj is a KD-module, W; is a
K H-module, and Up is a KCg{H)-module, with an isomorphism Vy = W, @ Up as
K -spaces.

Now, let gy = 1, and find g¢5,...,9; € Cg(H) such that Vo =W, o W12 - - &
W1%. Form kH-isomorphisms b; : Wi — W, % such that b; = g;|W).

Observe that K; = Endgy(W;) is the centralizer of the linear span of the
restriction H|W; over &k in End,(W;). Thus, one can find a k-basis of K;. Find
a k-basis of the field K C Endyy(Vy), K = K, consisting of all the elements of the

form, with respect to Vo =W, e Wi & ... & W%,

(/5] 0
g2 ta1gs

0 g5 Laygs

for a; € K.
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Next, we will find a proper C(H)-subspace M, of Vj by following the proof of
Proposition 4.3.4 (ii). Now, as we have seen in the proof of Theorem 4.3.3, the set
{b1,...,b,} forms a K-basis of Uy = Hom; i (W;, ;). Choose 0 # v, € Wy, and form
a K-subspace M spanned by {vl”‘, cee, 'ulb'}. Here, observe that M; is K-isomorphic
to Up and invariant under Cg(H). Clearly, M, is also a k-subspace of V. From the
k-basis of K and the K basis of My, one can find a k-basis of M,.

Find a minimal Cg(H)-subspace M; in M. By Clifford’s theorem, one can
find minimal Cg(H)-subspaces My, ..., M, of the same dimension dim; M; such that
V=Mé& &M,

Let ¢t = dimg, W). In Proposition 4.6.2, we have shown that |G : Ce(H)| =
O(t**) for a constant ¢; > 0. Therefore, it remains to show that e > ¢.

Since Vp & W) @k Uy as K-spaces, we have dimy Vy = dimy Wi dimy Up. That
is, dimy Vg = dimg W1 dimg Uy, Here, recall that ¢t = dimg, W) = dimg Wy; thus,
dimg ¥y = tdimg Up. By Clifford’s theorem, there is an integer ry > 1 such that
dim; V = rodimg Vp. Therefore, n = rotdim; Up. Since dimg M; < dimi My =

dimy, Uy, it follows that

n > n
8=
dim; M; — dim, Uy

= Tgt.

Therefore, e > t. O

§9. Divide and Conquer: Pasting Together

We are finally ready to complete the proof of Theorem 4.1.4.
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Proof of Theorem 4.1.4. We describe a polynomial-time algorithm in three

steps.

Step 1. If G is nonabelian simple, then we have (i). If G is abelian, then we im-
mediately establish (ii). Otherwise, find a nonabelian minimal normal subgroup N of
G or an abelian normal subgroup A of G. If we have N, then we use Proposition 4.8.2
for (iii) or (iv).

Step 2. Suppose that we have an abelian normal subgroup A of G. If A is
non-uniform, then we use Proposition 4.7.1 for (iii). If A is noncyclic and uniform,
then we use Proposition 4.7.3 for (iii) or (iv).

Step 3. Suppose that A is cyclic and uniform. Find Cg(A). If A = Cg(A),
then Proposition 4.4.6 yields that |G : A| < n so that we return A to establish (ii).
If A < Cg(A), then find a normal subgroup N of G, where A < N < Cg(A), such
that N/A is a nonabelian minimal normal subgroup of G/A or an elementary abelian
group. If N/A is nonabelian, then we again use Proposition 4.8.2 for (iii) or (iv). If
N/A is elementary abelian, then we appeal to Proposition 4.7.5 to establish (ii) or

(iv) or obtain one of the following.
(1) An abelian normal subgroup B of G such that A < B.

(2) A normal subgroup M of G such that M/A is a nonabelian minimal normal

subgroup of G/A.

If we obtain (1), then we regard B as A and recursively perform Step 2 and, if
necessary, Step 3. If we obtain (2), then we regard M as N and use Proposition 4.8.2

for (iii) or (iv). O
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