THE ROLE OF INSTRUMENTATION AND MAPPING

IN PERFORMANCE MEASUREMENT

by

SAMEER SURESH SHENDE

A DISSERTATION

Presented to the Department of Computer and Information Science
and the Graduate School of the University of Oregon
in partial fulfillment of the requirements
for the degree of
Doctor of Philosophy

August 2001

i

“The Role of Instrumentation and Mapping in Performance Measurement,” a dissertation
prepared by Sameer Suresh Shende in partial fulfillment of the requirements for the
Doctor of Philosophy degree in the Department of Computer and Information Science.

This dissertation has been approved and accepted by:

C\r\.-—-ﬂaco C . R a RN

Dr. Janice E. tuny, Co-chair of the Examining‘ﬁ%mmittee

W D W how—

Dr. Allen D. Malony, Co-chair of theﬁ&amining Committee

e {Dalon

Date !

Commitee in charge: Dr. Janice E. Cuny, Co-chair
Dr. Allen D. Malony, Co-chair
Dr. Zena Ariola
Dr. Roger Haydock
Dr. Peter Beckman

Accepted by:

Mot H=

Vice Provost and Dean of the Graduate School

© 2001 Sameer Suresh Shende

i

An Abstract of the Dissertation of
Sameer Suresh Shende for the degree of

in the Department of Computer and Information Science

to be taken
Title: THE ROLE OF INSTRUMENTATION AND MAPPING

IN PERFORMANCE MEASUREMENT

' Dr. Janice E. Cuny, Co-chair

QD Maden,

Dr. Allen D. Malony, Cﬂchair

iv

Doctor of Philosophy

August 2001

Technology for empirical performance evaluation of parallel programs is driven by

the increasing complexity of high performance computing environments and

programming methodologies. This complexity — arising from the use of high-level parallel

languages, domain-specific numerical frameworks, heterogeneous execution models and

platforms, multi-level software optimization strategies, and multiple compilation models —

widens the semantic gap between a programmer’s understanding of his/her code and it’s

runtime behavior. To keep pace, performance tools must provide for the effective

instrumentation of complex software and the correlation of runtime performance data with

user-level semantics.

To address these issues, this dissertation contributes:

* a strategy for utilizing multi-level instrumentation to improve the coverage of perfor-

mance measurement in complex, layered software;

» techniques for mapping low-level performance data to higher levels of abstraction in
order to reduce the semantic gap between user’s abstractions and runtime time behav-

ior; and

+ the concept of instrumentation-aware compilation that extends traditional compilers to
preserve the semantics of fine-grained performance instrumentation despite aggressive

program restructuring.

In each case, the dissertation provides prototype implementations and case studies of the

needed tools and frameworks.

This dissertation research aims to influence the way performance observation tools

and compilers for high performance computers are designed and implemented.

Vi

CURRICULUM VITA

NAME OF AUTHOR: Sameer Suresh Shende
PLACE OF BIRTH: Bombay, India

DATE OF BIRTH: July 19, 1970

GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED:

University of Oregon
Indian Institute of Technology, Bombay

DEGREES AWARDED:

Doctor of Philosophy in Computer and Information Science, 2001, University of
Oregon

Master of Science in Computer and Information Science. 1996, University of
Oregon

Bachelor of Technology in Electrical Engineering, 1991, Indian institute of
Technology, Bombay

AREAS OF SPECIAL INTEREST:

Instrumentation for Performance Evaluation Tools
Parallel and Distributed Processing

PROFESSIONAL EXPERIENCE:

Graduate Research Fellow, Department of Computer and Information Science,
University of Oregon, Eugene, OR, 1994-2001

Graduate Research Assistant, Advanced Computing Laboratory, Los Alamos
National Laboratory, NM, Summer 1997, 1998

Systems Analyst, Applied Technology Group, TATA Unisys Ltd., Bombay, India,
1991-1994

Project Engineer, VLSI Design Center, Department of Computer Science, Indian
Institute of Technology, Bombay, India, 1991

Vil

PUBLICATIONS:

S. Shende, A. D. Malony, “Integration and Application of the TAU Performance
System in Parallel Java Environments,” Proceedings of the Joint ACM Java
Grande - ISCOPE 2001 Conference, June 2001.

S. Shende, A. D. Malony, R. Ansell-Bell, “Instrumentation and Measurement
Strategies for Flexible and Portable Empirical Performance Evaluation,”
Proceedings of International Conference on Parallel and Distributed
Processing Techniques and Applications (PDPTA’2001), CSREA, June 2001.

H. Truong, T. Fahringer, G. Madsen, A. Malony, H. Moritsch, S. Shende, “On
Using SCALEA for Performance Analysis of Distributed and Parallel
Programs,” (to appear) Proceedings of SC 2001 Conference, November 2001.

A. Malony and S. Shende, “Performance Technology for Complex Parallel and
Distributed Systems,” Proceedings of DAPSYS 2000, in P. Kacsuk and G.
Kotsis (editors), Distributed and Parallel Systems: From Instruction
Parallelism to Cluster Computing, Kluwer, Norwell, MA, pp. 37-46. 2000.

S. Shende, and A. D. Malony, “Performance Tools for Parallel Java
Environments,” Proceedings of the Second Workshop on Java for High
Performance Computing, International Conference on Supercomputing, 2000.

K. A. Lindlan, J. Cuny, A. D. Malony, S. Shende, B. Mohr, R. Rivenburgh, C. Ras
mussen. “A Tool Framework for Static and Dynamic Analysis of Object-
Oriented Software with Templates,” Proceedings of SC2000: High
Performance Networking and Computing Conference, November 2000.

S. Vajracharya, S. Karmesin, P. Beckman, J. Crotinger, A. Malony, S. Shende, R.
Oldehoeft, S. Smith, “SMARTS: Exploiting Temporal Locality and Parallelism
through Vertical Execution,” Los Alamos National Laboratory Technical
Report LA-UR-99-16, Los Alamos, NM, 1999 (also appears in Proceedings of
1999 International Conference on Supercomputing, ACM, pp. 302-310, 1999).

viii

S. Shende, A. D. Malony, J. Cuny, K. Lindlan, P. Beckman and S. Karmesin,
“Portable Profiling and Tracing for Parallel Scientific Applications using
C++,” Proceedings of SPDT’98: ACM SIGMETRICS Symposium on Parallel
and Distributed Tools, pp. 134-145, Aug. 1998.

3. Shende, “Profiling and Tracing in Linux,” Proceedings of Extreme Linux
Workshop #2, USENIX Annual Technical Conference, 1999.

T. Sheehan, A. Malony, S. Shende, “A Runtime Monitoring Framework for the
TAU Profiling System,” in S. Matsuoka, R. Oldehoeft, and M. Tholburn
(editors), Computing in Object-Oriented Parallel Environments, Third
International Symposium ISCOPE '99, LNCS, No. 1732, Springer-Verlag,
Berlin, pp. 170-181, Dec. 1999.

S. Shende, A. Malony, and S. Hackstadt, “Dynamic Performance Callstack
Sampling: Merging TAU and DAQV,” in B. Kégstriim, J. Dongarra, E. Elmroth
and J. Wasniewski (editors) Applied Parallel Computing. Large Scale Scientific
and Industrial Problems, 4th International Workshop, PARA 98, LNCS, No.
1541, Springer-Verlag, Berlin, pp. 515-520, 1998.

K. Lindlan, A. Malony, J. Cuny, S. Shende, and P. Beckman, “An IL Converter and
Program Database for Analysis Tools,” Proceedings of SPDT '98: ACM
SIGMETRICS Symposium on Paralle] and Distributed Tools, Aug. 1998.

S. Shende, J. Cuny, L. Hansen, J. Kundu, S. McLaughry, O. Wolf, “Event and State
Based Debugging in TAU: A Prototype,” Proceedings of ACM SIGMETRICS
Symposium on Parallel and Distributed Tools, pp. 21-30, May 1996.

S. Shende, B. Krishna, “‘Simulation of Concurrent Runtime Environment of
PARAM on UNIX,” in Proceedings of High Performance Computing, SRC
1994, Computer Society of India, pp. 14-18, June 1994.

S. Shende, R. Talashikar, M. Bhandarkar, “Design and Implementation of
imagePRO/NET,” in V. Bhatkar, et. al. (editors), Supercomputing Using
Transputers, Narosa, New Delhi, pp. 89-97, 1994,

ACKNOWLEDGEMENTS

I am indeed fortunate in finding great co-advisors in Janice Cuny and Allen
Malony. I thank them for their guidance, {or teaching .me how to do research, for giving
me the freedom to explore new ideas, for providing a stimulating environment, and for
their friendship. They were the driving force behind this dissertation. 1 thank Bernd Mohr
and Zena Ariola for providing valuable insights. I thank Pete Beckman for giving this

research an important direction at a critical time and Rod Oldehoeft for encouragement.

{ thank Clara Jaramillo for helping me understand the inner workings of the
optimizing icc compiler. 1 thank my colleagues Kathleen Lindlan. Robert Ansell-Bell,

Steven Hackstadt, Timothy Sheehan, and Stephen McLaughry for their support.

I thank the following people for giving me an opportunity to apply this work to
their projects: Dennis Gannon, Larry Snyder, Chris Johnson, Roger Haydock, Mary Lou
Soffa, Thomas Fahringer, John Reynders, Julian Cummings, Steve Karmesin, William
Humphrey, Suvas Vajracharya, Stephen Smith, Steven Parker, J. Davison de St. Germain,

Wolfram Arnold, Todd Veldhuizen, Federico Bassetti, and Craig Rasmussen.

This research was sponsored by the U.S. Department of Energy, the Los Alamos

National Laboratory, and the National Science Foundation.

Finally, I thank my wife, Kirsten, and my parents, Suhas and Suresh. Kirsten's love

and encouragement helped me achieve my goals.

To my Mother.

Xi

TABLE OF CONTENTS
Chapter Page
I. INTRODUCTION et L S s T« ICR T 1
1.1 At What Level Within the Environment Should Performance
Instrumentation be Done? e 3
1.2 How Do We Relate the Performance Data Back tc Constructs
that the User Understands?ttt e erennnns 4
1.3 How Can We Implement Fine-Grained Performance Instrumentation
atthe Source Level? e 6
4 ComtributionSo i e e e e . 7
1.5 Organization of the Dissertauon7
1. RELATED WORK ... i e e e e 9
2.1 Introductiont e e 9
2.2 Post-Mortem Performance Evaluation0..... 10
2.2 Profiling .o n e viimm coeanannnrenonasiionen i Gaies s 10
222 EventTracingc.iueniuntmtennineenninnenennss 16
2.3 On-line Performance Evaluation icu.n.. 21
2.4 ConcluSionsttt e e e e e e 24
. MULTI-LEVEL INSTRUMENTATIONt 26
3.1 Imtroductioniih iiiiiin MLt o 26
3.2 Imstrumentation Levels ot e 27
3.2.1 Source-Level Instrumentationo un... 29
322 Preprocessorlevel i 32
3.2.3 Compiler-Based Instrumentation 34
3.2.4 Library Level Instrumentation 36
3.2.5 Linker Level Instrumentation ccc'useenenns 38
3.2.6 Executable Level Instrumentation 39
3.2.7 Runtime Instrumentationo vunnnnn. 41
3.2.8 Virtual Machine Level Instrumentation 43

3.3 Multi-Level Instrumentation Model 45

Xii

Chapter Page

3.4 Case Study: Integration of Source, Library and JTVM Level

Instrumentation c.iiitininen it .. 48
3.4.1 Virtual Machine Level Instrumentdtlon 50
34.2 Library-Level Instrumentation 53
3.4.3 Source-Level Instrumentation e .. 54
344 Selective Instrumentation i, 56
3.4.5 Tracing Hybrid Executions 57

35 Conclugions ..ot e e e 61
1IV. MAPPING PERFORMANCEDATA ittt 62
4.1 Introduction it 62
42 TheNeedforMapping T — 63
43 Our Approachvuuiiin e e 68
4.4 Semantic Entities, Attnbutes, and Assocmuons (SEAAY 71
4.5 Case Study: POOMA 11, PETE, and SMARTS S o e 0 a 74
45.1 PETE i i i i e e 75
4.5.2 SMARTS ... e i 79
4.5.3 Instrumentation Challenges Created by PETE and SMART‘§ .. 8l
4.54 Mapping ChallengesinPOOMA. 85
4.5.5 OurMapping Approach 87
46 CaseStudy: Uintah 00t iinnnnnnnn. 89
47 ConcluSIONSttt it et e e 95
V. INSTRUMENTATION AWARE COMPILATION 97
51 Introductionci i, S, A 97
5.2 IssuesinlInstrumentation 0. 98
5.3 Instrumentation-Aware Compilation 104
5.3.1 Prototype Implementationcooivvuiinnnannnn. 107
5.3.2 PerturbationIssues........... i, 114
533 Results ..o oo i e e e e 115
5.34 Incomplete Source-Level Information 117

5.4 Case Study: Successive Program TransformationsinZPL 122
55 Conclusions it e i e e 128

VL CONCLUSIONS .. i i i it e sttt e e 130

Xl

Chapter Page

APPENDIX: MAINTAINING SOURCE-LEVEL MAPPINGS

BIBLIOGRAPHY ' ' 141

..

X1V

LIST OF TABLES
Table Page
1. Relative advantages and disadvantages of each instrumentation level 28
2. Typesofupwardmappings S—R Ll 70

3. Mapping information for three benchmarks 119

Figure
1.

2.

10.

11.

12.
13.
14,
15,

16.

LIST OF FIGURES

Levels of program transformations cciinanano..

Routine-based profiles are insufficient in dealing with complex
transformations i e

Levels of program transformationso vttt

Tracking per-thread memory allocation in PaRP using source-level
INSITUMENtAtION it i i et e e ans

Multi-level instrumentation as implemented in the TAU performance
e (ot R T e

TAU instrumentation for Java and the mpiJava package
Source-level instrumentation in an mpiJava program
Profile display of an integrated performance view of Life application
Tracing inter-thread message communication in mpiJava................

Performance data from source, library and virtual machine levels of a
Javaapplication L e e e e e

Dynamic call tree display shows Java source, MPI, and virtual machine
BVETIES &t ittt et ettt e e e e e e e

Scientist describes some scientificmodel L Ll
Profile without mappingt i i i i e e
Profile with mappingo it i i i i i i e i eiiae s
Bridgingthe semantic 8apottt it e e

Mapping instrumentation i i e

v

Page

Figure

17.
18.
19.

20.

24,

25.
26.
21.
28.

29.

30.
31.

32

Parallel multi-dimensional array operations in POOMA.
Equivalent evaluation of array expressionsinC
Parse tree for an expression (form taken from [41])
PETE can generate code that is comparable in performance toC

. Compile-time {PETE) and run-time (SMARTS) optimizations
employedby POOMA i e

Profile generated by a vendor-supplied performance tool.

Expression templates embed the form of the expression in a

emplate NAMEttt it e it i e et

Synchronous timers cannot track the execution of POOMA array

1021 1 =111 1A AP
One-to-many mappings inPOOMAcoviiiinnnnn..
Mapping costs of individual POOMA statements
Event traces of mapped iterates show the contribution of array statements ..

Task execution needs to be explored furtherinUintah

Uintah node profile shows that task execution is a computationally

intensive activity. i i e e
Mapping reveals the relative contribution of differenttasks

Global timeline shows the distinct phases of task execution

Color-coded activity chart highlights the relative contribution of

L L 0= = LA T3 -

xvi

Page

71
78
78

79

80

82

84

85
86
88

39

91

Avil

Figure Page
33. Summarychart L 1 . - PO AU 95
34. Four versions of a program, demonstrating the effect of code restructuring

optimizations on the accuracy of a timer. Uninstrumented code is on the top;

instrumented code is on the bottom. Unoptimized code is on the left;

optimized codeisontheright. i i, 99
35. Using a timer to measure the cost of executing three statements 100
36. Unoptimized assembly code forroutine f R 101
37. Optimized assembly code forroutinef, 103
38. Traditional optimizing compiler i 104
39. Instrumentation-aware compilation model is cognizant of optimizations (05
40. Structure of a typical optimizing compiler e 107
41. Structure of an instrumentation-awarecompiler 108
42. Structure of ade-instrumentor ittt 110
43. Algorithm for fine-grained source-level perfommace instrumentation 112
44. Optimized code generated by the instrurnentation-aware compiler 116
45, Performance data from an optimized program compiled with the

instrumentation-awarecompiler i, 118
46. Source code of an MPI application o oLl 120
47. Mapping table for a small portionofthecode 121
48. ZPL’scompilationmodel i i 123

Figure

49,
50.
51.
52.
33

54,

Xviil

Page
Multi-stage instrumentation-aware compilationin ZPL 124
Source code ofaZPL program i, 125
Mapping Table from the ZPL compiler 125
Optimized C program generated by the ZPL compiler 126
Instrumented C code the ZPL application oo, 127
Performance data from the optimized ZPL program compiled by the

instrumentation-aware compiler ol 128

CHAPTER1

INTRODUCTION

Computational scientists are finding it increasingly difficult to understand the
behavior of their parallel programs. Fueled by ever increasing processor speeds and high
speed interconnection networks, advances in high performance computer architectures
have ailowed the development of increasingly complex large scale parallel systems. To
program these systems, scientists rely on multi-layered software environments with
compiler, parallel runtime system and numerical library support for high-level
programming abstractions. These environments shield the users from the intricacies of
low-level operations while improving program performance with more aggressive,
architecture-specific optimizations. While necessary to reign 1n programming
complexities though, these advanced software environments distance the user from system
performance behavior. The semantic gap between the abstractions used in programming
and the low-level behavior of the transformed code make it difficult for scientists to
observe, analyze and understand their code. This is a particular problem when, as is often
the case, acceptable levels of performance are not met. Scientists as well as software
developers, need the support of software tools to help identify the source of performance

anomalies.

o

To observe the behavior of a program, instructions must be inserted into the
program to record interesting aspects of its execution and provide insight into its
performance characteristics. The performance space of a program can be viewed along

three distinct instrumentation and measurement axes:

* How are performance measurements defined and instrumentation alternatives chosen,

» When is performance instrumentation added and/or enabled (pre-compile-time, com-

pile-time, link-time, runtime}); and
* Where in the program performance measurements are made (granularity and location);

Scientists need a fiexible way of designing performance problem solving
experiments in order to navigate through this potentially large multi-dimensional
performance space [72]. Each experiment is intended to generate performance data and
results that can bring insight to performance concerns. However, performance
experimentation must resolve a performance observation dilemma [71]: too much
instrumentation can generate too much performance data that can perturb a parallel
application and modify its behavior, while too little instrumentation may not reveal
enough detail to be useful. Prudent choices must be made at the instrumentation phase, to
generate just the right amount of instrumentation that would highlight a performance
anomaly, without unduly perturbing the application. This requires choosing appropriate
points along the instrumentation and measurement axes to compose a performance
experiment. If a tool restricts the choices in selection and control of performance
experimentation, it will be difficult to use such a tool to explore and interpret the

performance of a complex parallel application. A measure of a tool’s flexibility is in the

freedom it offers in performance experiment design by choosing points along the three
how/when/where axes of the performance space by providing advances in performance
instrumentation and mapping techniques and technology. Our work aims to provide
greater flexibility in exploring the performance space. In providing greater flexibility,
there are three issues that arise: how to get complete coverage of observable data from the
environment, how to maintain the user’s level of abstraction, and how to provide fine-

grained access to program data and constructs.

1.1_At What Level Within the Environment Shouid Performance Instrumentation be

Done?

Programs undergo many phases of transformations before execution as they move
through the source-compile-link-execute levels as shown in Figure 1. Instrumentation can
be introduced at any level. Until now, however, tools have been designed to gather
performance data at only one level. Thus, they do not afford complete observation
coverage. For example, a hybrid parallel application that uses message passing for inter-
task communication and multi-threaded parallelism within tasks cannot be fully observed

by monitoring communication events.

» We present a multi-level instrumentation framework that would allow us to gather data
appropriate to any code transformation and runtime execution level and seamlessly

move between levels as the focus of performance exploration changes.

e

[source code |

Preprocessor)

| source code |

N

compiler

[objectcode | | libraries |
! ¥
(linker)
¥

| executable i

(operating system)

' [runtime image |

(virtual machine)

Figure 1. Levels of program transformations

Targeting instrumentarion at multiple levels of program transformations requires
cooperation between multiple instrumentation interfaces. This allows us to support
multiple execution and measurement models to provide flexibility in composing a

performance experiment and to cover observable behavior more completely.

1.2 How Do We Relate the Performance Data Back to Constructs that the User

Understands?

Typically, tools present performance data in terms of entities available at the level
where it was gathered. The form of these constructs is often very different from the source

code constructs. For example, in Figure 2 we see how high-level array expressions in C++

Buffers Files Tools Edit Search Hule Halp

ATimm Exclunive Inclumive ACall BEuprs Inclusive Hame

1 maes total maec usec/call

1100.0 0.024 19,893 1 L 19993926 _startoff(} volo (Thread)

100.0 3 15,993 2 3 99969%1 schedule_privatel) void ()}
1 19,988 11 133 1817173 IterateiFostiaync) . iexecute

1 . L840 5,840 k- 0 1168089 run Expressiorkernel(orray(
i2, ViewO<{Array(2Z, double, Bricki::This_ti::HewT_t, ViewD<Arrayd2, double, Brick>::This_t\
131 :HewbEngineTag_t)> . Opdssign, ConstArrayi2, double, ConstantFunctiond, KernelTag<ViewO<A\
irray<2, double, Bricki::Th sty :Type_t, ViewO<CorstArray(2, double, ConstantFunctiond::
Thig_t)::Type_t> :;KI"MI_I‘.J

- ™

uf Expreys] arre [l
o ViewliArray(d, double, Brick?::THlu_t):iiNew t, \u-uomrr--gtz. double, Brick?::This_t\
31 L <

> gign, ConstArray(2, Viewd<{lomtArray(d, HakeRaturn(BinaryHoe(Op\
il =t - t, RefurencedArryCrestelesf(2, =Zouble, Brick)::Arcayleaf_t>

a1 Mo TR T TR e s | Fi2, double, Brick)::Arraylesf_t33, BinaryHode<OpMultiply, Scalary
- r Createleaf{2, double, Orick);:Arrayleal_t>¥¥>-:T_t gxprt'nunT\
relude “Foosa/Rrrem.h <Oofd, BlnlrandI(Opéubtrict, ReferercedArrayCreatelvaf(2, douby

. », ReforepcedArrayCreateleal(?, doyble, Brick)::ArrayLeaf_t>», Bi
Sinclude (instrose,ni r{lv'(d:ubl;). R-:‘-r-n:-m'-riuL‘n-uLuﬂz. double, B;l:k}é:ﬂruub\
#_t>* Newl_t, VipwQiConstArray(l, HakeReturn<BinarytodecOpRdd, B\
£ The gize of sach aide of the dosain, Tarence{frrayCreatelealc2, dugbh. Bricky- 'nr'rml.:gl‘.l}. Refareny
const int M s 3-10Qd4: ble, Brickr;:Arrayleaf_t)>, BinaryModetDpMnitiply, Scelarddoubly
L-Lnft?, doubly, Brick’::;Arragleaf_tid3)::T_t, LxpressionTagiMak

int + BlnaryHode< hiract, ReferencelArrayglreateleaf(2, double, Br
makrt rence(ArrayCresteleaf(2, double, Brick)::Arrsyleaf_t2¥, BinaryNoy
int arge, 4/ argueent count ble), R-P-rrn:-(nr-rqtruui.uhz, double, Brick)::Arrayleaf_t>

char = argvl} /¢ orgument list :HewE T:E'n' Knrmﬂag(\ﬂ.nﬂ(hrfnytz. couble, Brlck).: -

H S 1 ¥ MakeHpturn{BlnaryNode , DiraryHooe(OgSubtract, Refer
7/ Inttiallzo Poosa, ble, Brick); Arrpglesf_td, ReferoncedacragCreatel.eaf(2, doubl
Poomasiinitializelarge. argv): », Blraryliode<OpHultinly, Scalari{double’, Referance{ArraCryatel o

rraylesf_t)>)>::T_1, DxpressionTag(MakeReturnddinarytode(DpAdd, B\
/7 Tha arcmy wa“ll be solving for Ference<érrayCreateleal(2, dovble, Brickd::ArraylLval_t>, Refarsm
Arrog ™2 ROL HYL BIHLNY, CEH.H), DINLNY}. E(H.H): ble, Brick);:Arrayleal_t>}, BinsryHode(OpMultliply, Sclill"tdmbl\

telval(2, double, Brickd: iArragleaf_t3339::Tree_t27::Thie ty:: T,

/¢ Must. block zince we're doing some scelar code wiorial 4},

Pocas tblockRndEvaluatsi): 2,584 i 1] 2584162 run ExpresslorkKerne] <Array
o, Brick?:;:Thiu_$3::HewT_t, \ilnﬂ(hrrn!m, double, Bricky::This_t
H T 1,0 xign, ComatArrayi2, ViewOcConstArraydd, MakaReturn{Biraryhode<Dp\
J=20; RufwrenceprrayCroateloaf (2, double, Brickl:i.Grraylesf_ t?, Refere\
" 3.0 double, Brick)::drragleaf_t3d, ReferencecArrs Cr.at.l...i‘(é doubll
O
R
ArE s o
i MCH AN » 03
RN Y]
C=D+a-B
RalusDel:
Ezl1d0~RA;
Pecmat shlochfecEvaluata bz
zont 4 "DiLL1) = * £4 Dilll) 4 andl:
oot 2 “D9.9) a4 7 d N9.9) <k wrwdls i
#¢ Clatw. up Fooha and report Succose .
Poxwmaiifinalize{): I
el 02

Figure 2. Routine-based profiles are insufficient in dealing with complex transformations

[101] are transformed during compilation into low-level routines that have an
incomprehensible (“mangled”) form. In the figure, the array expression “C=E-A +2.0*
B;” circled in the source code is represented in the performance output by the large,
outlined expression in the middle of the figure. Relating this expression back to the above
statement is tedious (if not impossible), even for an expert familiar with the inner
workings of the compile time and runtime optimizations employed by the numerical

framework.

= Qur work on performance mappings allows us to relate lower-level abstractions back

to the original higher-level constructs in the presence of program transformations.

The techniques relate semantic constructs to the program data, enabling collected
performance data to be correlated with the high-level language constructs that are

meaningful to the vser.

1.3 _How Can We Implement Fine-Grained Performance Instrumentation at the Sgurce

Level?

Performance experimentation is an iterative process in which scientists often want
to refine the focus of their instrumentation and measurement to selectively highlight
different aspects of program execution. Most tools support only routine-based
instrumentation. This allows tools a degree of language independence, but it limits the
user’s ability to make fine-grained measurements at the source code level. To fully explore
the performance of a program, scientists must be able to refine the focus of
instrumentation so that they can relate performance data to semantic entities as small as
individual statements. Unfortunately, such source-based instrumentation may conflict with
the optimizations performed by the compiler. Optimizers routinely move code during
transformation, making it difficult to accurately attribute the cost of statements that are
moved out of the scope of timing focus. A compiler may also assume that an
instrumentation call modifies global variables, and thus it may fail to apply optimizations

that it would have in the absence of instrumentation.

o In this work, we develop a model of instrumentation-aware compilers that generate

optimized code that performs correct measurements.

Such a scheme requires a model for attributing costs and an algorithm that
correctly instruments the optimized code using mappings that relate post-optimized code

to source-level statements.

1.4 Contributions

To address the limitations of complete coverage, user-level abstractions, and

gianulurity of instrumentation, this dissertation contributes:
* a strategy for utilizing multi-level instrumentation to improve the coverage of perfor-
mance measurement in complex, layered software;

 techniques for mapping low-level performance data to higher levels of abstraction in

order to reduce the semantic gap between user’s abstractions and runtime behavior; and

» the concept of instrumentation-aware compilation that extends traditional compilers to
preserve the semantics of fine-grained performance instrumentation despite aggressive

program restructuring.

1.5 Organization of the Dissertation

Chapter II presents work related to this area. Chapter III presents our muiti-level

instrumentation model and a prototype implementation. It includes a case study of a

message passing application written in Java [110] that highlights the benefits of
instrumentation at the source level, at the library level, and at the virtual machine level.
Chapter IV introduces our model for mapping low-level information to user-level
abstractions. It includes two case studies that show how such a model could be effectively
applied. Chapter V describes instrumentation-aware compilation that extends traditional
compilers to preserve the meaning of instrumentation calls. A prototype compiler is
presented in detail. It includes a case study in instrumenting a high-level ZPL program
requiring two levels of compilation. We demonstrate how the instrumentation-aware
compilation model can be applied at both stages, along with multi-level instrumentation to
map the performance data to higher-level abstractions that a ZPL programmer may
understand. Finally, Chapter VI presents conclusions and directions for future research in

this area.

CHAPTER 11

RELATED WORK

2.1 Introduction

The process of improving the performance of a program is cyclic. It starts with
observing the behavior of an application in terms of its performance characteristics.
Analysis of this behavior enables performance diagnosis, that is, the development and
evaluation of a hypothesis for poor performance. The hypothesis leads to the
determination of program changes and the efficacy of those changes is evaluated again in
terms of observed performance characteristics. The ability to observe the performance of

an application is thus fundamental.

In order to observe performance, additional instructions or probes are typically
inserted into a program. This process is called instrumentation. The execution of a
program is regarded as a sequence of significant events. As events execute, they activate
the probes which perform measurements (such as calculating the duration of a message
send operation). Thus, instrumentation exposes key characteristics of an execution.

Performance evaluation tools present this information in the form of performance metrics.

10

Performance bottleneck detection tools go one step further and automate the process of

idemifying the cause of poor performance.

In this chapter, we present the contributions of various projects in this field. For the
sake of classification, we divide the performance observation tools in two main categories:
post-mortem and on-line performance tools. Post-mortem tools, discussed in Section 2.2,
help the user characterize the behavior of the application by analyzing the results of an
empirical performance experiment after the application terminates. While this approach is
useful for studying the behavior of the application, it has limitations in dealing with long-
running applications. For this class of probléms, tools for on-line performance monitoring,

discussad in Section 2.3, are hetier suited.

2.2 Post-Mortem Performance Evaluation

Post-mortem performance evaluation tools for parallel programs traditionally fall

into two categories: profiling and event-tracing. We discuss each separately.

2.2.1 Profiling

Profiling tries to characterize the behavior of an application in terms of aggregate
performance metrics. Profiles are typically represented as a list of various metrics (such as
wall-clock time) that are associated with program-level semantic entities (such as routines

or statements in the program). Time is a common metric used but any monotonically

11

increasing resource function can be used. The two main approaches to profiling include

sampling-based profiling and instrumentation-based profiling {40].

2.2.1.1 Sampling-based Profiling

Sampling-based profiling periodically records the program state and, based on
measurements made on those states, estimates the overall performance. Prof [38][114] is
typical. It uses a hardware interval timer that generates a periodic interrupt after a certain
amount of time elapses. At that interrupt, the process state is sampled and recorded. Based
on the total number of samples recorded, the interval between the interrupts and the
nurnber of samples recorded when a particular code segment is executing, statistical
techniques are employed to generate an estimate of the relative distribution of a quantity
over the entire program. Since events that occur between the interrupts are not seen by the
performance tool, the accuracy of this approach depends on the length of the interval
which iypically varies from 1 to 30 milliseconds. Increasing the interval reduces the fixed
measurement overhead of profiling, but decreases its resolution. As processor speeds
continue to increase, however, sampling based on time can lead to sampling errors and
inaccuracies. An alternative, implemented in the unix profiling tool Speedshop [114] uses
sampling based on the number of elapsed instructions between two interrupts. This
removes the dependency on the clock speed. Another alternative is to use the hardware

performance monitors provided by most modern microprocessors.

Hardware performance monitors can be used both as interval markers and as
sampled data. They are implemented as on-chip registers that can transparently count
quantities, such as the number of instructions issued, cycles completed, floating point
operations performed, number of data and instruction cache misses seen. Most
microprocessors provide two or three registers (which implies that two or three counters
can be used simultaneously), a mechanism to read and reset the registers, and an interrupt
capability when a counter overflows. Tools such as Intel’s VTune [47]. SGI's SpeedShop
{114] and Compaq’s DCPI [3] use interrupt intervals based on the number of instructions
1ssued. SpeedShop allows the use of other quantities measured by the R10000+ processor
hardware performance counters [141] such as generation of an interrupt after a given
number of secondary data cache misses. It provides two preset experiment types for cach
of the counters that use prime numbers for the elapsed counts; if two profiles of the
appiication using different prime numbers are similar, then the experiment is deemed to be
valid, PCL. [14] and PAPI [18] provide uniform interfaces to access hardware performance
counters on multiple platforms. Performing measurements exclusively in hardware is non-
intrusive but the software-based instrumentation to access their data is not. A combination
of both software and hardware-based measurement schemes is intrusive, but less so than if

the measurements were made completely in software.

In sampling-based profiling, either the program counter (and thus the currently
executing routine) is sampled or the callstack is sampled. In the first case, the program
counter is translated to the currently executing block of code and the number of samples

asscciated with that block of code is incremented. This approach is used in SGI’s

13

Speedshop [114]. In the second case, the callstack is sampled, and the time for the block
of executing code is incremented. This allows the computation of both exclusive and
inclusive time. Exclusive time is the time spent executing the given routine not including
time spent on other routines that it called. Inclusive time includes the contributions from
callees computed by traversing the callstack. Based on the number of samples taken in a
given block, the time spent in the block is estimated using the sampling frequency and the

processor clock frequency.

The gprof [37] tool extends prof to show the caller-callee relationship using call
graphs instead of flat profiles. Based on the number of times a routine {parent) invokes
another routine (child), gprof estimates the contribution of a routine along a caller-callee
edge in the call-graph. It divides the time speni in a routine among its callers in proportion
to the number of times the routine was called by them. It reports this call-graph
information to one level. While this may be misleading in cases where the different
invocations of the routines perform unequal work, it highlights the importance of call-

graphs.

The Cpprof tool [40] uses call paths, or sets of stack traces (sequences of functions
that denote a thread’s calling order at a given instant of time) to present performance in
terms of call sequences between routines. This is the logical next step from gprof-based
profiles which can be considered as call paths of length 2. Call path refinement profiles is
a novel reduction technique that can report the cost of all edges that represent calling
sequences between any two entities in the call graph. It can aggregate the output of

performance queries to limit uninteresting details and answer the call path related question

14

succinctly. However, this degree of flexibility requires a significant amount of memory (as
compared to gprof) to store every unique stack trace in memory. In Hprof [132], a profiler
for the Java language, samples of stack traces are used (similar to call path profiling
approach) to construct a CPU time profile. It uses instrumentation at the virtual machine

level 10 support profiling of multi-threaded Java programs.

Compagq’s DCPI [3] tool uses continuous sampling of the operating system and
applications that execute under it. It randomizes the interval between samples to produce
an accurate report of where the program spends its time down to the individual instruction
ievel. DCPI reports, for each instruction. the frequency of its execution, the cycles per

instruction 1t spent at the head of the queue waiting to execute, and the causes for its stalls.

Although, sampling-based schemes suffer from incomplete coverage of the
application (especially for applications that have a short life-span), they have a distinct
advantage of fixed, low instrumentation overhead and consequently reduced imeasurement

perturbation in the program,

2.2.1.2 Instrumentation-Based Profiling

With instrumentation-based profiling, measurements are triggered by the execution
of instructions added to the code to track significant events in the program such as the
entry or exit of a routine, the execution of a basic block or statement, and the send or

receipt of a message communication operation. Typically, such profilers present the cost of

15

executing different routines in a program. Examples include Quantify [97], Optimize It!

[133], TAU [74], Speedshop [114].

Of particular interest is the instrumentation code itself. Tools insert
instrumentation code during different phases of compilation and execution. Quantify, a
commercial profiler from Rational Software, uses an object-rewriting technique to insert
instrumentation in a C++ or C program. It does not require any application source code
and can even instrument libraries with runtime linkages (such as dynamic linked libraries).
This instrumentation is triggered at routine transitions and performance measurements are

made ar these points.

Optimize 1t!, a profiler for the Java language, places instrumentation at the virtual
machine level [132] to generate summary statistics of performance metrics. It loads an in-
process profiling agent that registers a set of call-back routines for program and virtual
machine events. These routines are invoked by the interpreter in the virtual machine as it
executes the Java bytecode. Thus, instrumentation code is added at runtime, without any
modifications to the source code, the bytecode or the virtual machine image. Optimize It!
allows a user to choose from both sampling and instrumentation-based profiling

techniques.

Speedshop’s ideal time experiment uses Pixie [134][116] to re-write a binary
image to count basic blocks in the executable. These counts are then converted to idealized
exclusive times using a machine model. The ideal time represents the best-case
executions, and actual execution may take longer as it does not account for delays due to

cache misses and stalls.

16

The PT project from the University of Wisconsin differs from the above profilers
in an important aspect: instead of courting basic blocks at entry and exit points (thereby
recording each 1nstance, as in Pixie), it inserts instrumentation along the edges of the
program’s control flow graph (CFG)' for optimal placement of instrumentation, In their
work, they report a reduction in profiling overhead by a factor of four or imore {10]. In
shori, instead of instrumenting nodes in the control flow graph, they choose to instrument
selectively along edges, based on a heuristic that uses either performance data from a prior
run or the structure of the CFG to guide its instrumentation decisions. Like Quantify and

Pixie, QP also instruments an executable using binary re-writing techniques.

TAU [113] has the ability to instrument at multiple stages of code transformation.
It allows for routine, basic-block and statement-level timers to generate profiles as well as
event-traces. For profiling, it allows a user to choose from measurement options that range
from wailclock time, CPU time and process virtual time to hardware performance

counters [111].

2.2.2 Event Tracing

While profiling is used to get aggregate summaries of metrics in 2 compact form, it

cannot highlight the time varying aspect of the execution. To study the post-mortem

spatial and temporal aspect of performance data, event tracing, that is, the activity of

! A CFG connects basic blocks {represented as nodes) to show the flow of control among instructions in a
routine. A basic block contains sequences of instructions that have a single entry and exit point and no
branches in or out of the block.

17

capturing an event or an action that takes place in the program, is more appropriate. Event
tracing usually results in a log of the events that characterize the execution. Each event in
the log is an ordered tuple typically containing a time stamp, a location (e.g., node,
thread), an identifier that specifies the type of event (e.g., routine transition, user-defined
event, message communication, €tc.) and event-specific information. Event tracing is
cominonly employed in debugging [24][60]{109][83][841(85][86][87](88][142] and

performance analysis [34][70]1(91][99]1[731(82][139][140].

In a parallel execution, trace information generated on different processors must he
merged. This is usually based on the time-stamp which can reflect logical time [65] or
phyzical time. The logical time [61] uses locai counters for each process incremented

when-a local event takes place. The physical time uses reference lime obtained from a

common clock, usuvally a globally synchronized real-time clock [45].

Trace buffers hold the ordered and merged logs. They can be shared or private. On
shared memory multiprocessors, multiple threads can easily access a shared trace buffer
providing an implicit ordering and merging of trace records and maximizing the buffer
memory utilization. Private buffers can be used in both shared memory and distributed
memory systems. Since the buffer is private, there is no contention for it, but the trace
buffer memory is not optimally utilized due to varying rates of event generation in tasks.
In either case, the trace buffer needs to be periodically flushed to disk and this can be done
either by the local tasks or by an external trace collector task that shares the trace buffer
with the rest of the tasks. The trace buffer can be in the form of a vector or a circular buffer

(ring). In TAU [113] a private trace buffer in the form of a vector is used without a trace

18

collector task, whereas in BRISK [7], a shared circular trace buffer is used with a collector
task. There are two policies used in flushing the buffer to the disk: flush-on-full and fiush-
on-barrier. In the former, the contents of a trace buffer and flushed to stable storage when
the buffer is filled. as in TAU [81]; in the latter, all tasks flush the trace buffer to disk when
the paralle] program reaches a synchronization point, as in Split-C [39]. When the
program lerminates, trace buffers are flushed to disk as well. In Cedar’s tracing system
[71], a user can select between a statically allocated fixed size trace buffer or dynamically
allog:ated trace buffers using linked buffer blocks, and the user can choose where the trace
buffers will be stored in the Cedar’s memory hierarchy. Also, runtime trace I/O can be
selected that causes the trace collection task to run concurrently with the program task and
the trace I/O can be sent to a file or to a task on a remote computer over a network After
the events are logged, these traces often need some form of post-processing [137]. This
could take the form of merging event traces from multiple tasks, and/or conversion to

another trace format.

Instrumentation can perturb an application and modify its behavior. Event tracing
is the most invasive form of instrumentation because the volume of data generated is quite
large and thus it may perturb the application more than other forms of performance
measurement. Malony [71] showed that perturbation analysis can be done in two phases.
Firstly, given the measured costs of instrumentation, the trace event times can be adjusted
to remove these perturbations. Secondly, given instrumentation perturbations that can
reorder trace events, the event sequences need to be adjusted based on knowledge of event

dependencies, maintaining causality. Thus, both time-based and event-based perturbation

19

models are used to compensate for the perturbation. While analyzing the traces, AIMS
[139] and [104] try to re-create the execution of un-instrumented versions of message
passing programs by compensating for this intrusion. This is an important step in ensuring
that traced event orderings are preserved while removing the perturbation (e.g., ensuring

that a message is not received before the corresponding send operation).

The Pablo project [99] from the University of Illinois, Urbana Champaign, uses
event tracing to develop performance tools for both message passing and data parallel
programs. It provides a source code instrumentation interface that inserts user-specified
instrumentation in the program. Pablo de-couples the meaning of the performance data
from 1ts structure using the self defining data format (SDDF) [99] for generaling trace-
iogs. This de-coupling forms the basis for user-defined data visualization where data
reduction and display modules can be plugged together for specialized data analysis. The
user can interconnect nodes for performance data transformation, to form an acyclic data
analysis graph. Performance data flows through this graph and performance knowledge is
extracted from this data. The performance metrics are correlated with source code
locations in the application and presented alongside the source code in the SvPablo [28]
interface. SvPablo is an integrated environment that allows for instrumentation, supporting
both manual and automatic modes using parsers for Fortran dialects and C, and analysis of
performance data. The analysis graphical user interface supports a diverse collection of
data presentation modules [42] such as bargraphs, bubble charts, strip charts, contour
plots, interval plots, kiviat diagrams, 2-D and 3-D scatter plots, matrix displays, pie charts,

and polar plots [100]. The Pablo group has explored support for display technologies such

20

as sound [75] and immersive virtual environments [123] for displaying higher dimensional

data.

Another significant contribution of the Pablo project is in the area of integration of
performance tools with compilers for high-level parallel languages, such as Fortran-D [1].
Using information visible during program transformations in the compiler, it can generate
a wealth of performance data that corresponds to source code abstractions. The Cray MPP

Apprentice [96] tool for profiling also benefits from a similar integration with compilers.

All of these tools must manage the large volume of trace data. Pablo allows the
user 10 invoke a user defined event handler 10 perform on-the-fly data reduction and
supports automatic throttling of event data generation to avoid swamping. When a
threshold is reached for an event, event recording is disabled or replaced by penodic
logging. Other techniques to control the volume of performance data, include selectively
tracing routines and statements that belong to a set of profile groups specified during
program execution, as in TAU [113], and call-graph based techniques, as in QPT [64]. In
QPT, the tracing counterpart of the QP tool described earlier, weights on edges of the

control flow graph dictate whether an edge is instrumented or not [10].

‘We now shift our focus from post-mortem approaches, such as profiling and

tracing, to on-line performance evaluation approaches.

21

2.3 On-line Performance Evaluation

The motivation for runtime performance monitoring are many: it is suitable for
long-running programs or server processes that are not meant to terminate; it does not
have to contend with a huge volume of performance data as in event-tracing as
performance analysis occurs concurtently with program execution; and it highlights the
performance data for the current execution state of the application which can be related to
other system parameters (e.g., disk activity, CPU and memory utilization, load on the
system, and network contention). Examples of on-line performance evaluation tools
include the program monitor used by the Issos system [92] that performs quality-of-
service (QoS) measurements, Autopilot [102](131] for use in adaptive resource

management, and TAU [107][112] for on-line-monitoring of profile data.

The goal of performance evaluation is to diagnose a performance problem. To aid
in detecting performance bottlenecks, the Paradyn [79] project from the University of

Wisconsin automates the process of performance bottleneck detection. Paradyn searches

for performance bottlenecks using the W3 search model [43]. it tries to answer why a
program is performing poorly, where its bottleneck lies, and when it occurs. These why,
where and when questions make up the axes of a performance exploration space. As the
application executes and generates performance data, Paradyn’s performance consultant
evaluates a hierarchical set of rules to refine a performance hypothesis (e.g., is the

program CPU bound?). Paradyn inserts and deletes instrumentation code to perform

22

measurements while the application executes using a runtime-code patching interface,

DyninstAPI {43][20][44][45], for instrumentation.

Paradyn provides a hierarchical display of performance data, refined from its
predecessor, IPS-2 [80], to show the progress of the search for bottlenecks. The hierarchy
consists of a root node which represents the program and other nodes include machines,
source code, and processes. As the search progresses, nodes and edges in the tree are

expanded and pruned until a bottleneck is identified.

Paradyn-J [89][90] is an extension of Paradyn that detects bottlenecks in
interpreted, just-in-time compiled, and dynamically compiled programs. In the case of
Java, there is an interdependence between the application program and the interpreter
embedded in the virtual machine. Paradyn-J provides a reinresentational model that
captures the interaction between the two and exposes it to performance measurement
tools. In Paradyn-J, two hierarchical tree displays represent the performance
characteristics of the application and the virtual machine. This presents valuable
performance data for both the application developer as well as the virtual machine
developer, and it allows for a correlation of performance data while searching for

performance bottlenecks.

ParaMap [49][48] is a closely related project that aims to map low-level
performance data back to source-level constructs for high-level parallel languages. It
mmtroduces a noun-verb (NV) model to describe the mapping from one level of abstraction
to another. A noun is any program entity and a verb represents an action performed on a

noun. Sentences, composed of nouns and verbs, at one level of abstraction, map to

23

sentences at higher levels of abstraction. ParaMap uses three different types of mappings:
static, dynamic and a new technique based on a data structure called the set of active

sentences. Our work builds upon these mapping abstractions as described in Section 4.3.

Some tools incorporate the use of historical performance data collected from prior
executions. Paradyn, for example, can make use of such data in speeding up the search for
botilenecks [56]. This addresses a broader problem of managing performance data from
multiple experiments and allowing a user to examine the evolution of the program in terms
of its performance data. Within Pablo, historical data is used in developing models that
predict the total execution time of a parallel program as a symbolic expression using the
number of processors, problem size, and other system specific parameters [77]. This i
useful in determining how well a program will scale on a paralle]l machine. Predicting the

scalability of a program has also been addressed in extraP [106] and Cray ATExpert [59].

In contrast, P>T (Parameter based Performance Prediction Tool) [29] estimates key
perfornance parameters of a data parallel program, rather than total execution time. It uses
a combination of static and dynamic program information to estimate performance -
parameters for parallel programs such as data locality in terms of cache musses [30], load
balance in terms of work distribution, communication overhead in terms of the volume of
data transferred, network contention and bandwidth. These estimates are fed into the

Vienna Fortran compiler [143] to enable it to generate more efficient code. While Pablo

uses event tracing, P3T uses profiles.

24

Tools can also be distinguished by the intended users of their output. In Pablo, the

primary consumer of scalability data is the user, while in PT, it is the compiler, in QP/
QPT, 1t is the instrumentor, and in Paradyn, it is the performance tool’s bottleneck search

gngine.

2.4 Conclusions

In this chapter, we classify performance tools into two broad categories: ones that
present performance data after the program terminates, and ones that do this during

execution. Typically, a performance tool embeds:
* ananstrumentation model that defines how and at what stage of program transforma-
tions. are performance measurement probes inserted, activated and controlled:

+ 2 performance measurement model that defines what performance measurements are -

recorded and the form of this performance information;
* an execution model thal correlates events that are the focus of performance observation,

* acomputation model that defines the computing environment under which performance

measuremenis are made,
* adata analysis model that specifies how measured data is processed;

* a presentation model that defines the structure and form of gathered performance data

and how it is presented to the user; and

25

* an integration model that describes how diverse performance tool components are con-

figured and integrated in a cohesive form.

In the remainder of this dissertation, we focus on the instrumentation, performance
measurement, and execution models. The ability to instrument a program effectively is
critical to being able to compose a performance experiment. Instrumentation enables
performance observation. As high performance computing environments continually
evolve to more complex forms, performance tools will need to provide more effective

instrumentation alternatives.

CHAPTER I1I

MULTI-LEVEL INSTRUMENTATION

3.1 Introduction

As high performance computers grow increasingly complex, parallel programming
paradigms and environments must also develop to improve software efficiency. Tools to
quaniity and observe application performance behavior, however, have lagged behind.
Applications that use high-level parallel languages and domain-specific numerical
frameworks, heterogeneous execution models and platforms, multiple compilation models
and multi-level optimization strategies pose interesting problems for instrumentation.
Typically, tools have targeted only a single level of program analysis and transformation

(see Figure 3) for instrumentation which greatly reduces access to program information.

In this chapter, we discuss the advantages and disadvantages of each
instrumentation level. We then present a multi-level strategy that targets multiple
cooperating instrumentation interfaces using a common application programmers
interface (API) for coherent, comprehensive performance instrumentation and
measurement. Thus, tools can gather performance data appropriate to any instrumentation

level and seamlessly move between levels as the focus of performance exploration

27

changes. Finally, we present a case study that demonstrates the efficacy of a multi-level

instrumentation model by simultaneously using instrumentation at three levels.

3.2 Instrumentation Levels

| source code |

preprocessor

| source code |

<+

{ compiler)

| objectcode | | lhbraries |
: Y
(linker)
¥
[executable |

(operating system)

[runtime image |

(virtual machime)

Figure 3. Levels of program transformations

The source code of a program undergoes a set of transformations before it
executes, as shown in Figure 3. Instrumentation can be added to the program at any of
these levels, each of which imposes different constraints and opportunities for extracting
information, as shown in Table 1. As information flows through these levels, different

aspects of the program can be revealed. As we move from source code instrumentation

TABLE 1: Relative advantages and disadvantages of each instrumentation level

Level Examples Advantages Disadvantages
Source Anadne, Language portability Re-compilation required
JEWEL, Domain-specific Tedious manual task
TAU abstractions Instrumentation errors
Arbitrary points Availability of source code
Fine granularity Oplimizations
Pre- PDT, Source-to-source translation Re-compilation required
processor Sage++, Automates instrumentation Availability of source code
SUIF Static analysis constraints
Language specific
Compiler CRAY, Access to mapping tables, Re-compilation required
GNU, Icc, optimizations May not see all routines
SGI Fine granularity Presents low-level infor-
mation
Library Vampir- No need to re-compile Re-linking required
Trace Interposition, pre- Only applicable to libraries
instrumented libraries
Linker DITools, Inter-module operations Modified linker, re-linking
Mahler Runtime interposition Limited coverage (DSOs)
Executable PAT, No source code required No source-mapping tables
: Pixie, No re-compilation required Coarse granularity
QPT Language independent Symbol table required
Runtime Paradyn, No source code, re-compila- Platform/OS/compiler/
DyninstAPI tion, re-linking or re-starting file-format specific
required Coarse granularity
Instrumentation code Lacks source-mappings
can change at runtime
Virtual HProf, VM events visible Coarse granularity
machine Optimaze It! No changes to source, Not applicable to native

bytecode, or JVM required

libraries

techniques to binary instrumentation techniques, our focus shifts from a language specific
to a more platform specific instrumentation approach [108]. No one level can satisfy all

requirements for performance tools.

29

3.2.1 Source-Level Instrumentation

At this level, the programmer manually annotates his/her source code with calls to
a measurement library. This approach is used in several tools [62][60][113]. During
execution, the instrumentation code is activated to record the appropriate aspect of its
behavior. Source-level instrumentation can be placed at any point in the program and it
allows a direct association between language- and program-level semantics and
performance measurements. Since most languages provide some form of cross-language
bindings (typically in C), a common measuremen.t API can be called by different
languages with minimal changes. Hence, the same features that enable scientists 10 build
cross-language programs can be used for instrurnentation as well, enhancing tool

portability.

Some languages, however, pose unique challenges for source-level
instrumentation. Consider C++ templates. Templates provide for polymorphism at
compile-time [118] and can be instantiated into different forms during code generation
(e.g., instantiation based on types). This style of programming, commonly called generic
and generative programming [27], has led to the creation of active libraries [129] that
participate in code generation, as opposed to passive ones that just contain objects. In
C++, source instrumentation only sees templates and not their post compilation
instantiations, thus it must rely on run-time type information [113][69]. Similar problems
exist with other class-based languages and suggests that a multi-level instrumentation

approach is necessary.

30

Bl Cmfiqure || e Orver Heip |
MunSamples MaxValue MinValus NeanValue Std. Dev Event Home
I 30 1 1 1 ¢
n,e10,00 1, 195407 1 1 1 G
net 00,1 - 4.‘”3 2 225309 0 @5 By =a
net 0,02 | 6325 1 1 1 0 e errw
net00af= oo
net004l
A
] 1] i
chose

chunks of bloeck memory allocated

| Black Memory Aliccallons 'Ba Ve Oner Mode

| Racyclable Memery Allocations - o .
1 || Recyctable Memory New Block Allocations | n,e,t 0,0,1
Thread-Safe Block Memory Allocations | 90.23% schedule_run(}
| e : e T 117-38% | |RW Lock Mutex
Y00 podica el 1.96% Barrier Walt CondVar
l.t e Ortler Help 0.20% | RW CondVar Readers
| : 0.10% | Active Pile Mutex
Minvalus MNeanValue 5td. Dev Event Name 0.02% | block_memeory_thread_safe_

RW CondVar Writers
Thread-Safe Block Memory i
block_memory_thread_safe_
Compulation Mutex]
block_memory_thread_safe_ ol
D e et

T e e LTI,

1
124

e

e

Figure 4. Tracking per-thread memory allocation in PaRP using source-level
instrumentation

Source-level instrumentation has several advantages. It allows the programmer to
communicate higher-level domain-specific abstractions to the performance tool. This is
especially useful if a tool cannot automatically infer such information. For example,
Figure 4 shows the use of user-defined events to track different types of memory
allocations in a multi-threaded application, an implementation of the parallel dynamic
recursion method in PaRP [5]. The figure shows (in highlighted text) that 4835 samples of
Recyclable Memory Allocations are collected on thread I, whereas the corresponding
number for thread 3 is 6805 (highlighted by arrows). A programmer can communicate

such events by annotating the source code at appropriate locations with instrumentation

31

calls. This is easily done at the source level, but may be significantly more difficult
elsewhere. Once the program undergoes a series of transformations to generate the
executable code, specifying arbitrary points in the code for instrumentation and

understanding program semantics at those points may not be possible.

Another advantage of this level is that once an instrumentation library targets one
language, it (theoretically) provides portability across multiple compilers for that
language, as well as across multiple platforms. That is, the API is independent of details

below the compiler such as operating system dependencies and object file formats.

Unfortunately, source-level instrumentation has several limitations. It requires
access to the source code, which may not be available for some libraries. Source code
needs ‘o be re-compiled every time the instrumentation is modified. Adding
instrumentation is a tedious manual task that introduces the possibility of instrumentation
errors that produce erroneous performance data. For example, a user may overlap timers in
the source code. While syntactic errors can be caught during compilation, logical errors in
instrumentation may be more difficult to detect; overlapping timers, for example, can only
be detected at runtime [113]. Also, the presence of instrumentation 1n the source code can
inhibit the application of optimizations as well as lead to the generation of semantically
incorrect instrumentation code. These last issues are addressed in Chapter V of this

dissertation.

3.2.2 Preprocessor Level

Some of the difficulties with source-level instrumentation can be overcome at the
preprocessor level. A preprocessor implemented as a source-to-source translation tool
typically expands header files and performs macro substitutions during compilation. Such
source-to-source transformations can be used to automatically introduce instrumentation,

alleviating the burden on the programmer.

Preprocessor level instrumentation is commonly used to insert performance
measurement calls at routine entry and exit points in the source code. To do this, a tool
first needs to parse the application source code and locate the semantic constructs to be
instrumented, such as routines, loops or individual statements. To insert code, the
instrumentor also needs an interface to the parsed internal representation of the source
cede. Tools such as PDT [69] for C++, C and Fortran90, Sage++ [15] for C++ and SULF
[66][136] for C and Fortran provide an object-oriented class library to access the data
structures that represent the parsed intermediate form. Sage++ and SUIF, in addition,
provide an API for manipulating the data structures to add or prune internal nodes. The
DUCTAPE interface in PDT provides access to the list of routines, classes and templates,
and their locations in the source code. We have developed a source-to-source instrumentor
[69] using PDT that reads a C++ program, locates the routine and template entry points,
inserts instrumentation annotations in the source code and re-writes the instrumented
source code; that code is then compiled and linked with a performance measurement

library. Sage++ allows an instrumentor to un-parse the annotated internal representation

33

directly into a C++ program. SUIF produces intermediate files containing instrumentation
annotations that can be processed further to produce a binary image, or converted to a C
representation. The portability, robustness of front ends, granularity of instrumentation,
and the level of detail of program constructs that are visible through the interface is

different for all three tools.

Like the source-level instrumentation, the preprocessor-based instrumentation
requires the source code for instrumentation. While source code may not be available for
some libraries, instrumentation at this level can still be used at call-sites, or points in the
application source code where the library routines are called. Typically this is
accomplished by a preprocessor that replaces the library routine call with a call to an
instrumented version. This has been successfully used in the Pabio [99] system for Fostran
and C to target I/O calls. For languages such as C and C+4+ which have a preprocessor
within the compiler, a specialized preprocessor can be avoided. Instead, a header file can
be used to define macros that re-define the native library routines (e.g., open) with
instrumented routines (e.g., tau_open). During compilation, the compiler preprocessor
replaces calls to proprietary library routines with calls to the instrumented, wrapper
libraries which perform performance measurements and call the appropriate library
routines. This scheme does not require access to the library source code. However, it does
require a minor modification {(addition of a header file) to the application sources and
requires the instrumented version of the library to be linked with the other object files and
libraries. The main limitation of this approach is that it can only capture information about

instances of library calls at specific call sites that are re-directed. If a pre-compiled library

34

routine makes references to a wrapped routine, it is not possible to re-direct such a
reference without access to its source code and re-compiling it with the appropriate header

file.

Preprocessor-level instrumentation shares many of the same disadvantages as
source-level instrumentation including the need for access to source code and re-
compilation of source code. Also, some of the problems with manual instrumentation,
such as interference with compiler optimizations are equally true for an instrumentor that

re-writes the application source code prior to compilation.

3.2.3 Compiler-Based Instrumentation

A compiler can add instrumentation calls in the object code thar it generates.
Examples of performance tools that use compiler-based instrumentation include the Cray
MPP Apprentice [96], SGI Speedshop [114], and Sun Workshop [119]. Since most
transformations take place during optimization passes in the compiler, compiler-based
instrumentation can tap into a wealth of program information. During compilation,
different code transformations, as well as mapping tables are visible. The granularity of
instrumentation that is applied at this level ranges from routines all the way down to basic
blocks, statements, expressions and instructions. It is also possible to study the effects of

code transforming optimizations at this level (see Chapter V).

A compiler can also insert instrumentation code directly into the object code

output or use clever breakpointing schemes such as the fast-breakpoints [58], replacing an

35

instruction with a branch instruction to the instrumentation code. Most compilers include
some form of performance instrumentation by providing cominand line profiling flags that
trigger instrumentation code at runtime. Sampling-based profiling instrumentation is most
commonly implemented in Fortran, C and C++ compilers [37]. The GNU compiler [36]
also provides hooks into routine entry and exit events and can invoke a pre-defined routine
at these points. When a source file is compiled with the -finstrument_functions command
line option, each routine in the source file is instrumented and at its entry and exit points. a
user-defined function is invoked with the routine address and call stack information as
arguments. The addresses can be mapped back to a routine name with the unix nm tool, or

a debugging library such as GNU’s BFD (binutils) that describes such a mapping.

There are several advantages to instrumentation at the compiler level. The
compiler has full access to source-level mapping information. It has the ability to choose
the granularity of instrumentation and can include finc-grained instrumentation. The
compiler can perform instrumentation with knowledge of source transformations,
optimizations and code generation phases. The disadvantage of instrumentation at this
level is that a compiler may not see all the routines that produce an executable image. It
sees only the set of files that are passed to it. For the same reascns inter-procedural
transformations have a limited scope at this level. If object files and libraries from
different compilers can be linked together to form an executable file, instrumentation
techniques may not cooperate or may be inefficient. This can lead to reduced
instrumentation coverage. Another disadvantage of instrumentation at this level is that it

may present some program constructs that the user cannot comprehend, thereby increasing

36

the semantic-gap between the user’s understanding of his/her code and its runtime

behavior.

3.2.4 Library Level Instrumentation

Wrapper interposition libraries provide a convenient mechanism for adding
instruinentation calls to libraries. A good example of this approach is found in the
Message Passing Interface (MPI) Profiling Interface [78]. MPI, a standard for inter-
process message communication, 1s commonly used io implement parallel SPMD
programs. As part of its definition, it includes alternative entry points for MPI routines.
The MPI Profiling Interface allows a tool developer (o interface with MPI calis in a
portable manner without modifying the application source code and without having access
Lo the proprietary source code of the library implementation. If such profiling hooks were
required for all “compliant” implementations of standardized libraries, we would have an

excellent basis for developing portable performance tools.

The MPI standard defines the native library routine with weak bindings and a name
shifted interface. A weak binding allows two different routines with the same name to co-
exist in a binary executable. If a tool re-defines the native call, it takes precedence. In this
manner, a performance tool can provide an interposition library layer that intercepts calls
to the native MPI library by defining routines with the same name (e.g., MPi_Send). These
routines wrap performance instrumentation around a call to the name-shifted native library

routine provided by the MPI profiling interface (e.g., PMPI_Send). The exposure of

37

routine arguments allows the tool developer to also track the size of messages and
message tags. The interposition library can also invoke other native library routines, for
example, to track the sender and the size of a received message within a wild-card receive
call. Several tools use the MPI profiling interface for tracing message communication

events [19]. We have used the profiling interface with TAU [74].

When a library does not provide weak bindings and name shifted interfaces for
profiling purposes, it can still be profiled at the library level. One option is to instrument
the source using a performance measurement API and provide separate instrumented
versions of the same library; we have done this with the POOMA rl library [113]. Another
option is to use a preprocessor-based scheme for generating instrumented versions of the
hibrary; we have done this with the POOMA 11 library {69]. Alternatively, a compiler-
based approach can be used; we have done this with the ZPL runtime system (Section

5.4).

Many of the options for providing pre-instrumented versions of a library require
access to the library source code. When that is not available (e.g., for proprietary system
libraries), wrapper library schemes can be used. All of these mechanisins, however,
restrict instrumentation to code in the form of libraries; they cannot be extended to the

entire application.

3.2.5 Linker Level Instrumentation

Instrumentation code can also be introduced at the runtime linker level. The linker
is the earliest stage where multiple object files, including both statically- and dynamically-
linked libraries are merged to form the executable image. Dynamically-linked libranes
delay the symbol resclution to runtime, storing un-resolved external references, which are
resolved by a dynamic linker when the application executes. The ability to do inter-

module operations at link time {117] makes interesting instrumentation schemes possible.

To introduce instrumentation at the linker level requires some modification of the
linking process. The Mahler systemn [134] modifies code at link-time and performs a
varicty of transformations such as inter-module register allocation, and scheduling of
instruction pipeline. It can also add instrumentation for counting of basic blocks and
address tracing. In contrast, DITools [105] address the dynamic linking problem. To
instrument an un-modified executable at runtime, it replaces the dynamic linker with a
system component that re-directs each un-resolved external routine reference to an
interposition library layer. The user specifies the instrumentation code with respect to
routines and spawns the executable within a special shell. The DI Runtime component
modifies the references in the executable’s linkage tables and calls the appropriate
instrumentation routines before and after the library routine, allowing for the

instrumentation of dynamic shared object routines.

The advantage of linker-level instrumentation approach is that it does not require

access to the application source code. In the case of dynamic linking, it does not modify

39

the object code either. This advantage is also a possible limitation. The only program
information that can be used is what is contained in the code modules. For dynamic
linking, instrumentation can only be applied to routines that are in dynamically linked
libraries and need runtime resolution of object references. Also, detailed knowledge of the
file formats and linkage tables is required for porting the tool to new platforms, limiting

portability.

3.2.6 Executable Level Instrumentation

Executable images can be instrumented using binary code-rewriting techniques,
often reterred to as binary editing tools [20] or executable editing tools [63]. Systems such
as Pixie [134], EEL {63], and PAT [33] include an object code instrumentor that parses an
executable and rewrites it with added instrumentation code. The Bytecode Instrumenting
Tool (BIT) [25] rewrites the Java bytecode. PAT can be used for call site profiling and
instrumentation at the routine level (e.g., for tracing routine calls [33]) as well as gathering
routine level hardware performance statistics. Pixie can count basic blocks within a
routine, EEL can instrument a routine’s control flow graph and instructions, and BIT can
be used to re-arrange procedures and re-organize data in the bytecode. In each case, the

executable file is re-written with the appropriate instrumentation inserted.

Executable level instrumentation is not a simple matter. For example, consider
Pixie. Pixie must deal with several problems. It requires access to the symbol table (which

may not be present). Because it operates at basic block boundaries, it needs to perform

40

address correction for changing the destination of program counter relative branches, and
direct and indirect jumps. Performing indirect jumps at the executable level requires a
translation table for relating addresses in the original program to addresses in the re-
written program. This transiation table is as large as the original code segment! Further,
indirect jumps, which require a runtime translation of addresses require instrumentation
code for computing the new address. Finally, Pixie needs three registers for its own use
which it must take from the program. It chooses the three registers with the least static
references and replaces them with virtual “shadow registers” in memory [134]. A
reference to the shadow registers requires an indirect translation and consequently, has a

runiimne overhead.

EEL attempts to circumvent some of these problems by providing an API for
analyzing and editing compiled programs. It allows a tool to re-order and instrument
routines, control flow graphs within routines, and individual instructions. A control flow
graph consists of basic blocks and instructions within basic blocks. Register-transfer level
instruction descriptions used in EEL hide the details of the underlying machine
architecture and simplify the process of creating portable executable editing tools. QPT2

[64] uses EEL for tracing address references.

The advantages of instrumentation at the binary level are that there is no need to
re-compile an application program and rewriting a binary file is mostly independent of the
programming language. Also, it is possible to spawn the instrumented parallel program
the same way as the original program, without any special modifications as are required

for runtime instrumentation [111].

41

A disadvantage of this approach is that compiler mapping tables that relate source-
level statements to instructions are rarely available after a compiler produces an
executable, So, a substantive portion of information is unavailable to tools that operate at
the binary executable level. This can force the performance measurements to take place at
a coarser granularity of instrumentation. Some compilers generate incorrect symbol table
information [64] (e.g., when a data table is put in the text segment with an entry that
makes it appear as a routine [63]) which can be misleading and further complicate the
operation of tools at this level. Similar to link-time instrumentation, there is a lack of

knowledge about the source program and any transformation that may have been applied.

3.2.7 Runtlime Instrumentation

An extension of executable level instrumentation, dynamic instrumentation is a
mechanism for runtime-code patching that modifies a program during execution.
DyninstAPI [20] is one such interface for runtime instrumentatior:. Although debuggers
have used runtime instrumentation techniques in the past, DyninstAPI provides an
efficient, low-overhead interface that is more suitable for performance instrumentation. A
tool that uses this API (also known as a mutator) can insert code snippets into a running
program (also known as a mutatee) without re-compiling, re-linking or even re-starting the
program. The mutator can either spawn an executable and instrument it prior to its
execution or attach to a running program. DyninstAPI inserts instrumentation code

snippets in the address space of the mutator. The code snippets can load dynamic shared

42

objects in the running application, call routines, as well as read and write application data,
allowing it to be used in developing debugging and steering applications. DyninstAPI
translaies code snippets into machine language instructions in the address space of the
mutator. It generates code to replace an instruction in the mutatee to a branch instruction
to the instrumentation code. It uses a two step approach using short sections of code called
trampolines. The replaced instruction calls a base trampoline which branches to a mini
trampoline. A mini trampoline saves the registers and executes the code snippet(s) with
appropriate arguments. Thereafter, it restores the original registers and calls the base
trampoline. The base trampoline executes a relocated instruction and returns to the
staiement after the replaced instruction in the original code as described in [20]. The
amlity o insert and remove 1nstrumentation makes it valuable for observing the
performance of long running programs over a small period of time. It also allows a tool to
insert specific instrumentation code that may only be known at runtime. DyninstAPI has
been successfully applied in Paradyn [79]. The API is portable and independent of the
target platform and language constructs. This makes it suitable for building portable
performance tools. DyninstAPI overcomes some limitations of binary editing tools that
operate on the static executable level. The main improvement is that the instrumentation
code is not required to remain fixed during execution. It can be inserted and removed
easily. Also, the instrumentation can be done on a running program instead of requiring

the user to re-execute the application.

The disadvantages of runtime instrumentation are similar to those for binary

editing. First, the compiler discards low-level mapping information that relates source-

43

level constructs such as expressions and statements to machine instructions after
compilation. This problem is common with any executable code instrumentation tool.
Second, although some instrumentation can be done on optimized code, the
instrumentation interface requires the presence of symbol table information, typically
generated by a compiler in the debugging mode after disabling optimizations. Third, the
interface needs to be aware of multiple object file formats, binary interfaces (32 bit and 04
bit), operating system idiosyncrasies, as well as compiler specific information (e.g., to
support template name de-mangling in C++ from multiple C++ compilers). To maintain
cross language, cross platforim, cross file format, cross binary interface portability is a
challenging task and requires a continuous porting effort as new computing platforms and
programming environments evolve. Again, this problem is also present with any

executable code instrumentation tool.

3.2.8 Virtual Machine Level Instrumentation

Instrumentation at the virtual machine level has become an important area of
research. A virtual machine acts as an interpreter for program bytecode. This style of
execution is commonly found in the Java programming language [4]. The compilation
model of Java differs from other languages such as C, C++ and Fortran90 that are
compiled to native executables. Instead, a Java compiler produces bytecode. The Java
Virtual Machine (JVM) interprets this bytecode to execute the Java application.

Optionally, a Just-in-Time (JIT) compiler may be employed in the JVM to convert the

44

bytecode into native binary code at runtime. A JIT compiler interprets the bytecode and
produces a native binary concurrently, switching between the two at runtime for efficiency.
Alternately, a hot-spot compiler [122] may be used in the JVM to selectively convert
compute-intensive parts of the application to native binary code. This approach requires
the TVM to perform measurements to determine what code regions are compute-intensive

and provide this feedback to the code-generato.

We use the model of compilation in Java to discuss issues for virtual machine level
instrumentation. Any interpreted language system like Java is going to cause difficulties
for the instrumentation approaches we have considered. In addition to Java’s complex
model of compilation, it has a multi-threaded model of computation, and the Java Native
Interface (JNI) allows Java applications to invoke routines from libranes writlen in
different languages such as C, C++ and Fortran. This multi-language, multi-threaded,
complex compilation and execution model necessitates integrated instrumentation
methods. To simplify the creation of performance tools, the Java language designers

provided instrumentation capabilities at the virtual machine level.

t

The Java Virtual Machine Profiler Interface (JVMPI) [132][121] 15 a portable
instrumentation interface that iets a tool to collect detailed profiling information from the
virtual machine. This interface loads an in-process profiler agent (implemented as a shared
dynamically linked library) and provides a mechanism for the agent to register events that
it wishes to track. When these events (such as method entry/exit, thread creation or

destruction, mutual exclusion, virtual machine shutdown, object specific events, memory

L8

45

and garbage collection events) take place, JVMPI notifies the profiler agent. In this

manner, an instrumentor can track Java language, application and virtual machine events.

The advantage of this instrumentation level is that tools can access the low-level,
language level and virtual machine events that the in-process agent can see. Additionaily,
this interface provides features such as thread creation and destruction, access to mutual
exclusion primitives such as monitors that allows the profiler agent to query and control
the state of the virtual machine during execution. The disadvantage of this approach is that
it can only see events within the virtual machine. The profiler does not see calls to native
system libraries such as message passing libraries, written in C, C4+ or Fortran90. This
approach may also cause unduly high overheads if it 1s not possible to selectively disable

some of the monitored events.

In the next section, we describe a representational model for inserting

instrumentation in the program using a combination of instrumentation interfaces.

3.3 Muiti-Level Instrumentation Model

In the previous section, we have seen that as a program source code is transformed
to a binary form that executes on the hardware, it presents different instrumentation
opportunities to performance tools. Instrumentation interfaces at each level provide
detailed information pertinent to that level. Each level has distinct advantages and
disadvantages for instrumentation. A performance technologist is thus faced with a set of

constraints that limit what performance measurements a tool can perform. Typically,

46

TAU Performance System
Instrumented
Source Pre- Source Object Executable Binary Rewrite

Code processor Code oyppijer Code pinker Code - Dynamic

Imstrumentation

PROFILE l @ Run Time lerary Modules @ TRACE

g = [

= Profile Function Statistics

§ | Groups Database

Profiling Event Traces
§ Data Files E ﬂ E ﬂ @ Event Tables
2 Function Hardware User-Level
Callstack Counters Timers
o= T l
ASCIL Trace :

5 . el sz (L Vampi
~

I
Figure 5. Multi-level instrumentation as implemented in the TAU performance system

monolithic performance tools instrument a program at one instrumentation level and their
proponents go to great lengths to justify how that is the most appropriate level for
instrumentation. As programming environments evolve towards hybrid modes of
operation where multiple languages, compilers, platforms and execution models are used,
these monolithic tools are less likely to be applicable. Because they were not designed to

operate on hybrid applications, they lack necessary features.

To address these limitations, we propose a model for multi-level instrumentation.
In our model, multiple instrumentation APIs are used to instrument a program targeting a

common measurement API. This measurement API provides access to the underlying

47

performance measurement model that specifies the nature of measurements that a tool can
perform. An implementation of the measurement model requires access to execution
entities which can include such things as the callstack, a database of performance
information maintained within each context, node and thread identifiers, low-overhead
timers, and hardware performance monitors. To present such diverse performance data in
consistent and meaningful ways events triggered from multiple instrumentation interfaces
must be integrated using the common measurement API and the performance model
embedded in the tools. To achieve this integration, the instrumentation interfaces need to
cooperate with each other to provide a unified view of exccution: each level and interface
mukes the information it knows available to other interfaces attempting to uncover missing
pieces of information. Semantic entities can be exclusive io one instrumentation interface
or they can be partially shared. Each interface must provide mechanisms to control the
focus of instrumentation and selectively tum instrumentation on or off. A grouping
mechanism can help organize routines into logical partitions that can be addressed
collectively for instrumentation (e.g., in turning off all J/O events). Tools also need
mechanisms for dealing with missing information that cannot be provided by other
interfaces. In some scenarios, needed inforration may not be available during execution,
and might fequire the post-mortem analysis of performance data. For example, tracking
thread identifiers for tracing messages in a mixed mode parallel program is illustrated in

the case study (See Section 3.4.5) below.

To demonstrate the efficacy of the multi-level instrumentation model, we built a

prototype that targets instrumentation at the source level [113], the preprocessor level [69],

48

the library level [74], the compiler level, the runtime level [111] and the virtual machine
level [110]. It is implemented in the TAU portable profiling and tracing toolkit [74] as
shown in Figure 5. At the source level, an instrumentation API allows for manual insertion
of instrumentation annotations in the source code. At the preprocessor-level, library
routines can be replaced with instrumented ones. A source-to-source translator
instruments C++ programs at the preprocessor-level using the Program Database Toolkit
(PDT) [69]. Compiler-based instrumentation uses the optimizing lcc compiler, as
described in Section 5.3.1. Library-level instrumentation uses an interposition wrapper.
library for tracking events for the MPI library. DyninstAPI is used for runtime
mstrumentation and TVMPL is used for virtual machine instrumentation. TAU suppoits
both profiling and tracing performance models and allows third-party tools, such as .
Vampir [82][94] to be used for visualization of performance data. To demonstrate the use

of this prototype, we present a case study.

3.4 Case Study: Integration of Source, Library and JVM Leve! Instrumentation

Scientific applications written in Java may be nnplemented using a combination of
languages such as Java, C++, C and Fortran. While this defies the pure-Java paradigm, it 1s
often necessary since needed numerical, system, and communication libraries may not be
available in Java, or their compiled, native versions offer significant performance
advantages [17]. Analyzing such hybrid multi-language programs requires a strategy that

leverages instrumentation alternatives and APIs at several levels of compilation, linking,

49

and execution. To illustrate this point, we consider the profiling and tracing of Java
programs that communicate with each other using the Message Passing Interface (MPI).
mpiJava [6] is an object-onented interface to MPI that allows a Java program to access
MPI entities such as objects, routines, and constants. While mpiJava relies on the
existence of native MPI libraries, its APl is implemented as a Java wrapper package that
uges C bindings for MPI routines. When a Java application creaies an object of the MPI
class, mpiJava loads a native dynamic shared object (libmpijava.so) in the address space of
the Java Virtual Machine (JVM). This Java package is layered atop the native MPI library
using the Java Native Intertace (JN1) [120]. There is a one-to-one mapping between Java
methads and C routines. Applications are invoked using a script file prunjava that calls the
ripirun application for distributing the program to one or more riodes. in contrast, the
reference implementation for MPJ [9], the Java Grande Forum’s MPI-like message-
passing API, will rely heavily on RMI and Jini for finding compulational resources,
creating slave processes, and handling failures; user-level communication will be
implemented efficiently, directly on top of Java sockets, not a native MPI library. The Java
execution environment with mpiJava poses several challenges to a performance tool
developer. The performance model implemented by the tool must embed the hybrid-
execution model of the system consisting of MPI contexts, and Java threads within each of
those contexts. To track events through such a system, the tools must be able to expose the
thread information to the MPI interface and the MPI context information to the Java
interface. Our prototype targets a general computation model mitially proposed by the

HPC++ consortium [46]. This model consists of shared-memory nodes and a set of

50

contexts that reside on those nodes, each providing a virtual address space shared by
multiple threads of execution. The model is general enough to apply to many high-
performance scalable parallel systems and programming paradigms. Performance
information, captured at the node/context/thread levels, can be flexibly targeted from a

number of paralle! software and system execution platforms.

Using this model, different events occur in different software components (e.g.,
routine transitions, inter-task message communication, thread scheduling, and user-
defined events) and performance data must be integrated to highlight the inter-relationship
of the:software layers. For instance, the event representing a Java thread invoking a
messaze send operation occurs in the JVM, while the actual communication send and
recetve events take place in compiled native C modules. Ideally, we want the
instrumentation inserted in the application, virtual machine, and native language libruries
1o gathier performance data for these events in a uniform and consistent manner. This
involves maintaining a common API for performance measurement as well as a common

database for multiple sources of performance data within a context of execution.

We apply instrumentation at three levels: the Java virtual machine level, the MP1

library level, and the Java source level.

3.4.1 Virtual Machine Level Instrumentation.

Instrumenting a Java program and the JVM poses several difficulties [89]

stemming from Java’s compilation and execution model in which bytecode generated by

51

JVM

TAU package

mpiJava packag

thread API NI |/ MPI Profiling
T Interface
notification TAU wrapper
JVMPI Native MPI library

profile DB

Figure 6. TAU instrumentation for Java and the mpiJava package

the Java compiler is executed by the JVM. Conveniently, Java 2 (JDK1.2+) incorporates
the Java Virtual Machine Profiler Interface (JVMPI) [132][121] which provides profiling
hooks into the virtual machine and allows an in-process profiler agent {o instrument the
Java application without any changes to the source code, bytecode, or the executable code
of the JVM. JVMPI can notify an agent of a wide range of events including method entry
and exit, memory allocation, garbage collection, and thread creation, termination and
mutual exclusion events. When the profiler agent is loaded in memory, it registers the
events of interest and the address of a callback routine to the virtual machine. When an
event takes place, the virtual machine thread that generated the event calls the appropriate
callback routine, passing event-specific information. The profiling agent can then use
JVMPI to get more detailed information regarding the state of the system and where the

event occurred.

Figure 6 shows how JVMPI is used by TAU for performance measurement within

a larger system that includes library and source-level instrumentation. Consider a single

52

context of a distributed parallel mpilava program. At start-up, the Java program loads the
mpijava and TAU packages and the JVM loads the TAU performance measurement library
as a shared object, which acts as a JVMPI profiling agent. A two-way function call
inteiface between the JVM and the profiler agent is established. The JVM notifies the in-
process profiling agent of events and if can, in turn, obtain information about and control
the hehavior of the virtual machine threads using the JVMPI thread primitives (e.g , for

mutual exclusion).

When the agent is loaded in the JVM as a shared object, an initialization routine is
invoked. It stores the identity of the virtual machine and requests the JVM to notify 1t
when a thread starts or terminates, a class is loaded in memory, a method entry or exit
takes place, or the JVM shuts down. When a class is loaded, the agent examines the list of
methods in the class and creates an association between the name of the method and its
signature, as embedded in the measurement entity, and the method identifier obtained
from the TAU Mapping API [124] (further explained in Chapter IV). When a method
entry takes place, the agent receives a method identifier from JVMPI, performs the
required measurements, and stores the results in the appropriate measurement entity.
When a thread is created, it creates a top-level routine that corresponds to the name of the

thread, so the lifetime of each user and system level thread can be tracked.

To deal with Java’s multi-threaded environment, the instrumentation framework
uses a common thread layer for operations such as getting the thread identifier, locking
and unlocking the performance database, getting the number of concurrent threads, etc.

This thread layer is then used by the multiple instrumentation layers. When a thread is

53

created, the agent registers it with its thread module and assigns an integer identifier to it.
It stores this in a thread-local data structure using the JVMPI thread API described above.
It invokes routines from this API to implement mutual exclusion to maintain consistency
of performance data. It is important for the profiling agent to use the same thread interface
s the virtual machine that executes the multi-threaded Java applications. This allows the
agenl to lock and unlock performance data in the same way as application level Java
threads do with shared global application data. Instrumentation in multiple threads must
synchronize effectively to maintain the multi-threaded performance data in a consistent
stale. The profiling agent maintains a per-thread performance data structure that is updated
when a method entry or exit takes place. which results in a low-overhead scalable data
structure since it does not require mutual exclusion with other threads. When a thread
exits, the agent stores the performance data associated with it to stable storage. When the

agent receives a FVM shutdown event, it flushes the performance data for all running

threads to the disk.

3.4.2 Library-Level Instrumentation

Instrumentation at the library level is applied using the MPI Profiling Interface to
track message communication events. This is accomplished by using a wrapper
interposition library layer between the JNI layer and the native MPI library layer as shown

1n Figure 6. All routines in the MPI are logically grouped together. For profiling, MPI

r.w,r:;Tmm”“,“:Ph“"_,nww - Te e E—
T:Ed’emacs@neutmncsmvgonedu il = ""'”" "m'ﬁ.':rrf*?‘ .._Fﬁ_‘ﬁ. Il
Buffers Files Tools Edit Search Mule Java Help

import TAU.k;
import mpi.x;

public class Life (

tatic TAU.Profile blocktimer= new TAU.Profile("Life compute local block imfo",\
*, "TAU_DEFAULT", TAU.Profile.TAU_DEFAULT);

tatic TAU.Profile updatetimerff= new TaU.Profile('l.ife main update loocp”, “", "\
TAU_DEFAULT", TAU.Profile.TAU_ DEFAULTY; |

// .. ather static data
static public void main(String [] args) throws MPIException {
MPI.Init(args) ;
Cartcomm p = MPI.COMM_WORLD.Create_cart(dims, periods, false)
/% Compute iocal “blockSizeX’, ‘blockBaseX’, ‘blockSizeY”, “blockPaseY’'. +/
o b{locktimer' .Start();
#/ Code to compute blockSizeX, blockBaseX, blockSizeY, blockBaseY

}
F=f= 11ocktimer.Stopl);

g updatetimer.Start();
for{int iter = 0 ; iter < NITER ; iter++) {
/7 Shift this block’s upper x edge into next neighbour’s lumer ghost edge
p.Sendrecv(block, blockSizeX = sY, 1, edgeXType, dstX[0], ,
block, 0, 1, edgeXTupe, srcX[0], i

e

E // other synchronization operations and locps
| dumpBuan(?

]
updatetimer.Stop();

MPI.Finalize();

Figure 7. Source-level instrumentation in an mpiJava program

routine entry and exit events are tracked. For event-tracing, inter-process communication

events are tracked along with routine entry and exit events.

3.4.3 Source-Level Instrumentation

For other programming languages that our performance system supported (C,

C++, Fortran90), standard routine entry and exit instrumentation was supplemented by the

- e g

Pl Cunfigure

tep

Ruret ong I

net000
netoo1
neton2
netogs
nect004
net005
net006
net 1,00
net 10,1
7 net102
| net103
d net1os
| net105

| net200

net201
net202
net203
nct204
§ nct205
nct208
netapo

neta03
6304
netans
net30s

|
f
| met3p2
1

net108(

net301 1"

iy
= |

=i

55

net204 |

T TIMPI_Ini) —p———————————
0] Java/utiV]ar/AttributesSName isVelid (Ljavaslang/String| -

| Java/lang/String toLowerCase (Ljava/utiViocale;)Ljava|
ava/utiv)arfAttributezSName isValid (C)Z !
javallang/String <indt> {{BITY —etif—
Java/lang/Character tolLowserCase [C)C
965600 || java/lang/String charAt {C
ava/utiv]jar/AtinbutesSName isAlpha (C)2
MPI_Sendrecv() 15
Java/utivjarAttributes read (Ljava/utiljarManilestSFas]
Javart:tiVHashMap put {Ljava/iang/Object;L|ava/lang/Ol]
Jave/utiV]jar/ManliestSFasitnpuiStraam readline ([BII).I,J $

747100
6886800
80980.0

55680.0 a/utiljar’Manifest parseName {([BOL{svalang/String

IStream)V

Ob|ect;IL jav:

i R

et s T T i
Lits main update loop - ”:l{)"ﬂ’s'ﬂﬂgil-i
1169 Imean 3
g Life <clinit> OV it
n'c'|°:n'2 Lite dumpBoard pV |
netans Lite main ({Ljava/lang/String)V |
70 __ .]n £1004 Lite compute local block Info o
“‘n &t 0.0:5 Life maln upe oop = +
netons MPI_Allreduca(} s
nci100 MPI_Atr_put) ¥
n q't 10,1 MPI_Bcastg
netl ,ﬂ._i‘ MPI_Can _create()
net103 MPI_Cant_ge1() 1
8630 """ Jnct 1D MPY_Can_shifi]) l
ol :;:: e MPI_Cartdim_ge! |
i [51 e S
cises ciose

Figure 8. Profile display of an integrated performance view of Life application

ability to specify “user-defined’” performance events associated with any code location.

The performance system provided an AP] to define events, and to start and stop profiling

them at specified locations. For Java, we developed a source-level API in the form of a

TAU Java package for creating user-level event timers. The user can define event timers of

a TAU. Profile class and then annotate the source code at desired places to start and stop the

timers as shown in Figure 7.

To determine the thread information, the source-level instrumentation needs the

cooperation of the virtual machine level instrumentation that sees thread creation,

termination and synchronization events. As shown in Figure 6, instrumentation at the

56

source level cooperates with the instrumentation with the virtual machine level for thread
information and with the MPI level for context information. All three instrumentation
levels target a common performance database within each context. To demonstrate how
program information from these three interfaces can be integrated within performance
views, we present performance analysis of an mpiJava benchmark application that
siinulates the game of Life. This application 1s run on four processors and Figure 7 shows
2 portion of its source cede that highlights the use of two source-level timers (“Life
compute local block info,” and “Life main update loop™). Figure 8 shows a profile display
for this application. Note how entities from the source level (“Life main update loop™) are
nuegrated with MPI library level entities (“MPI_Init", “MPI_Sendrecv”) and Java

methods { “java/lang/String charA«(I'C") {(shown by the three arrows).

3.4.4 Selective Instrumentation

The performance data from an instrumented Java application contains a significant
amount of data about the internal workings of the JVM (e.g., “java/util/jar/Attributes
read” method in Figure 8). While this may provide a wealth of useful information for the
JVM developer, it could inundate the application developer with superfluous details. To
avoid this, our multi-level instrumentation is extended to selectively disable the
measurement of certain events. Since Java classes are packaged in a hierarchical manner,
we allow the user to specify a list of classes to be excluded on the instrumentation

command line. For instance, when -XrunTAU:exclude=java/util, java/lang,sun is specified

57

on the command line, all methods of java/util/*, java/lang/* and sun/* classes are

excluded from instrumentation [110].

3.4.5 Tracing Hybrid Executions

Inter-thread message communication events in multi-threaded MPI programs pose
some challenges for tracing. MPI is unaware of threads (Java threads or otherwise) and
communicates solely on the basis of rank information. Each process that participates in
synchronization operations has a rank, but all threads within the process share the same

4 rank. ¥e can determine the sender’s thread for a send operation and the receiver's thread
for a receive operation by querying the underlying thread system through JVMPL
Unfortunately, the sender still won’t know the receiver’s thread identifier (id) and vice
versa. To accurately represent a message on a global timeline, we need to determine the
precise node and thread on both sides of the communication. To avoid adding messages to
exchange this information at runtime, ot supplementing messages with thread ids, we
decided to delay matching sends and receives to the post-mortem trace conversion phase.
Trace conversion takes place after individual traces from each thread are merged to form a
time ordered sequence of events (such as sends, receives, routine transitions, etc.). Each
event record has a timestamp, location information (node, thread) as well as event specific
data (such as message size, and tags). In our prototype, during trace conversion, each
record is examined and converted to the target trace format (such as Vampir, ALOG,

SDDF or Dump). When a send 1s encountered, we search for a corresponding receive by

-r

38

" lel—rllrngmiﬁilw

L 1P) Sendmey(| 33 43

.—‘—mu__mm

Figure 9. Tracing inter-thread message communication in mpiJava

traversing the remainder of the trace file, matching the receiver’s rank, message tag and
message length. When a match is found, the receiver’s thread id is obtained and a trace
record containing the sender and receiver’s node, thread ids, message length, and a
message tag is generated. The matching works in a similar fashion when we encounter a
receive record, except that we traverse the trace file in the opposite direction, looking for

the corresponding send event. This technique was used with selective instrumentation

=

59

« Figure 10. Performance data from source, library and virtual machine levels of 2 Java
application

described earlier, to produce Figures 9 through 11. Figure 9 shows communications as
lines from the send event to the corresponding receive. Figure 10 shows a detailed view of
the global timeline depicting entities from all three levels in one unified performance view.

Figure 11 shows a dynamic call tree display on node 1, thread 4.

The TAU Java package provides the API for these measurements, but utilizes JNI
to interface with the profiling library. The library is implemented as a dynamic shared
object that is loaded by the JVM or the Java package. It is within the profiling library that
the performance measurements are made. However, it captures performance data with

respect to nodes and threads of execution.To maintain a common performance data

G e s Ilflhl.n‘l:ullelldtu

->Lll‘e compute l.ocal block infa {1 : 8.132 ms)
Lmpl/Cartcomm Gat {1 : 5.549 ms)
& 3 Java/nat/URLClassloader FindClass (2 : 4.486 ms)
> Java/net/URLClassloader$l <init> (2 : 8,0 pa)
> Jeva/securlty/fAccessControl ler doPr.lvlleged (2 : 4,926 ms)
> Java/net/URLClassloader$l run (2 : 4.334 ms) .
)Javs/aacurit.gl‘l—"rlvllegem:tlonExcept.lon ¢inlts {1 : 20.0 pad)
> Java/securlty/PrivilegedictlonException getExceptlon {1 : 2.0 ps)
>mpl/CartParms <init> (1 : 31.0 ps)
YMPI_Cartdim_get() {1 : 11,0 ps)
.| >MPI_Cart_get() (1 : 5.0 pa)
—>Li1fe dumpBoard (1 ; 3.442 ws)
—>mpi/Comm Slza (1 : 41,0 ps)
LOMPI_Comn_slze() (1 : 8.0 pa)
I=>mpt/Comm Rank (1 : 36.0 us)
L>MPE_Comm_rank() (1 : 5.0 ps)
->mpi/Comm Send {2 : 0. B12 ms
t)qaunatntwu 1s0bject (2 : 5.0 pa)
pf/Comm send (2 : 0,471 mu)

[=>mp L/ ype
I-)-punamtgm nitd (13 0,293 me)
f L)mpl/Datatype GetVector {1 : 60.0 ps)

L>MPI_Type_vector() {1 : 18.0 ps)
sepi/Datatype Comait (1 : 24,0 ps)
Ldapi/Datatype comalt (1 : 15.0 us)
3MP]_Type_commit() (1 : 5.0 ps)
|->mpi/Datatyps Contiguous (1 : 78.0 us)
L>mpi/Datatype <init> (1 : 35.0 ps)

L)mpi/Datatype GatContl (1 : 22,0 ps)
LOMPI_Type._ cont 1guous Y (1 : 8.0 pa)
. l=>mpi/Datotype Commit {2 : 39.0 u=)
f Lmpi/Datatype comalt iz : 24 0 ps)
F LYMPI_Type_commit{) (2 : 8.0 p=)

=>mpi/Datatype Veoctor (1 : 60.0 ps
Lympi/Datatype <lnitd (1 = 27.0 pa)
Lympl/Datatype GetVector (1 : 15.0 pa)
LyMPI_Type_vector{} (1 : 5.0 pe)
(=>api/Cartcomm Shift (4 : 3.546 “ws)
> java/net/URLClassLoader FindClass (2 : 2.7 ma)
> Java/net/URLClassloadersl <init) (2 5.0 po)
) Java/securlty/AccessControl ler doPrivL.leged {2 : 2.648 wg)
) java/net/URLClassloadersl run (2 : 2,569 ms)
),javalnet.lURLClassLoader accesas0 (2 : 5.0 ps)
Evalnet.luﬂl LInlty (2 : 0.557 me)
> java/net/URL {init> (2 : 0.5494 ms)

Figure 11. Dynamic call tree display shows Java source, MPI, and virtual machine

events

repository in which performance data from multiple “streams™ comes together and

60

presents a consistent picture, we need the instrumentation at various levels to cooperate.

As shown in Figure 6, the profiling library uses JNI to interface with the JVMPI layer to

determine which JVM thread of execution is associated with Java method events and with

MPI events. In the same manner, it determines thread information for user-defined events

at the source level. For node information, the profiling agent gets process rank from the

MPI library.

61

Thus, instrumentation occurs at the Java source level, at the MPI wrapper library

level, and at the virtual machine level.

3.5 Conclusions

In this chapter, we have presented a representational mode! for multi-level
instrumentation to improve the coverage of performance measurement. A prototype of this
model is implemented in the TAU portable profiling and tracing toolkit. With the help of a
case study, we illustrate how it can be applied to observing the performance of a parallel
Java application unifying JVM versus native execution performance measurement,

mtilizing instrumentation mechanisms at the source, virtual machine, and the library levels.

CHAPTER IV

MAPPING PERFORMANCE DATA

4.1 Introduction

Programming paralle] and distributed sysiems for performance involves a range of
aruniiine issues: overlapping asynchronous inter-node communicaiion with computation
using user-level threads, accessing low-latency shared intra-node memory using
concurrent threads, exploiting data locality using latency tolerant techniques, partitioning
of data among tasks using dynamic load balancing, and generating efficient machine code
using sophisticated compilation techniques. To encapsulate such implementation details
so that computational scientists can concentrate on science, domain-specific programming
environments such as POOMA[101][26], Overture[11]{12], and Blitz++ [130], and
higher-order parallel languages such as ZPL [21], pC4++ [16], CC++ [23], HPC++ [46],
and HPF have emerged. They provide higher software layers that support richer
programming abstractions for multi-level programming models implemented on multi-

layer software architectures.

Understanding the performance characteristics of these “high-level” parallel

programs is a challenge because low-level performance data must be mapped back to the

63

higher-level domain-specific abstractions that the programmer understands. In this
chapter, we clanfy the need for mapping, present a mode! for performance data mapping,

and show the application of a prototype to complex software scenarios.

4.2 The Need for Mapping

Programming in higher-level parallel languages and domain-specific problem
solving environments shields the programmer from low-level implementation details.
However, it creates a semantic-gap between user-level abstractions and the entities

actually monitored by the performance tool.

Consider a hypothetical example: a scientist writes code to perform some
computation on a set of particles distributed across the six faces of a cube as shown in
Figure i2. The particles are generated in the routine GenerateParticles() and their
characteristics depend on which face they reside. ProcessParticle() routine takes a
particle, as its argument, and performs some computation on it. The main program iterates
over the list of all particles and calls the ProcessParticle() routine. The scientist thinks
about the problem in terms of faces of the cube and the distribution of particles over the
cube’s surface. However, a typical performance tool reports only on time spent in routines.
It might, for example, report that 2% of overall time was spent in GenerateParticles() and
98% of the time was spent in ProcessParticle(), as shown in Figure 13. This leaves the
scientist with no information about the distribution of performance with respect to cube

faces: does each face require the same amount of time or not? If the performance tool

64

described the time spent in ProcessParticle() for each face of the cube, as in Figure 14, the
scientist might be able 1.0 make more informed optimization decisions. We propose a
performance mapping model that bridges this gap between a scientist’s mental

abstractions in the problem domain, and the entities that are tracked by performance tools.

Particle* P[MAX]; /* Array of particles */
int GenerateParticles() {
/* distribute particles over all surfaces of the cube */
for (int face=0, last=0; face < 6; face++){
int particles_on_this_face = ... face ; /* particles on this face */
for (int i=last; i < particles_on_this_face; i++) {
Pfi] = ... f(face); /* properties of each particle are some function f of face */

}
iast+= particles_on_this_face; /* increment the position of the last particle */
i
}

int ProcessParticle(Particle *p){
/* perform some computation on p */

!

int main() {
GenerateParticles(); /* create a list of particles */
for (inti=0;i<N;i++)
ProcessParticle(P[i]); /* iterates over the list ¥/

}

Figure 12. Scientist describes some scientific model

This example is typical: scientific computations often have code segments that
execute repeatedly on behalf of different semantic entities (here different cube faces).
Such a behavior is commonly found in load balancing or iterative engines where some
code region performs “work” and processes data from several abstract entities.

Aggregated performance measurements for such code obscure domain-specific detail or

65

—| n,z.100.0profile_ SRR AL 2 2 1]
fle Vaue Order Moda | tolp
nect000
98.00% ProcessParticles()
2.00% || GenerateParticles()
main()
|
4
=)l 7 Bl
I clase

Figure 13. Profile without mapping

n,ct 000

Cost of processing face 6
Cost of processing face #5
Cost of processing face #1
Cost of processing face #4
GenerateParticles()

Cosi of processing face #2
Cost of processing face #3
maing)

!
|
i
|
!
£
|
]
1
1
I
i I

Figure 14. Profile with mapping

“performance knowledge” that may be vital to the scientist. The other exweme in which
performance metrics are collected with respect to each instance of the iterative code 1s also
undesirable, leading to an overload of information. In our particle simulation example, we
may have to contend with reporting performance metrics for millions of performance
entities. The scientist needs to be able to classify performance data for such repetitive code
segments in terms of meantngful abstract semantic entities. To do so, we need a
mechanism for mapping individual performance measurements at the routine invocation/

iteration level to those entities. In terms of repetitive code regions, this amounts to refining

66

User-level abstractions,
scientific models,

' 4 :
Y problem domain
4
[
’ Y
P | sourcecode | — — — — — -»-| instrumentation |
: preprocessor y — — — — — — ->| instrumentation |_..
: | source code |
: compiler)} — — — — — _ - instrumentation |—p
: [objectcode | [Tibraries [instrumentation |—a
“ (linker)
y
“ [executable |- — — - instrumentation |
‘\ (operating system)
\‘ \ [runtime image] — _ ! instrumentation |-
\ . : - -
\ (virual machine) — — -] instrumentation —#
\\ run
S
* w4 Performance Data -

Figure 15. Bridging the semantic gap

upward one-tc-many mappings, where a single code segment (where instrumentation is
possible at invocation or iteration level) maps to a set of higher level abstractions. To allow
a user to do such performarnce experimentation, a tool must provide flexible mapping

abstractions for creating correspondences between different levels of abstraction.

67

Particle PIMAX]; /* Array of particles */
int GenerateParticles() {
/* distribute particles over all surfaces of the cube */
for (int face=0, last=0; face < 6; face++) {
int particles_on_this_face = ... face ; /* particles on this face */
t = CreateTimer(face); /* information relevant to the domain */
for (int i=last; i < particles_on_this_face; i++) {
P[i] = ... f(face); /* properties of each particle are some function of face */
CreateAssociation(P{i], t); /* Mapping */
}

last+= particles_on_this_face; /* increment the position of the last particle */
]
}

int ProcessParticle(Particle *p){
/* perform some computation on p */
1 = AccessAssociation(p); /* Get timer ussociated with particle p */
Start(t); /* start timer ¥/
/* perform computation */
Stop(t); /7% stop timer */

}

int main{) {
GenerateParticles(); /* create a list of particles */
for (inti=0; i < MAX; i++)
ProcessParticle(P[i]); /* iterates over the list */

}
Figure 16. Mapping instrumentation

Figure 15 shows our approach to mapping performance data to higher-level
abstractions by creating an association between some domain-specific information and a
performance measurement entity (e.g., a timer that measures inclusive and exclusive
elapsed wall-clock time). This association is then accessed and used during the execution
of code that requires a more refined instrumentation focus. In our example, it can be done
by the code in italics in Figure 16. The performance measurement entity is a simple timer

created using the properties of face for each cube face. For instance, the timer for “face 2"

68

might be semantically identified by the string “cost of processing face #2.” Each face of
the cube has one timer. What does “cost of processing face #2”' mean in respect to
instrumentation? Although this is the performance data we are interested in, it cannot be
directly represented in the instrumentation. A more “semantically associated”
instrumentation focus is required. When each particle is processed, the appropriate face
timer is selected and used to time the computation. Now it is possible to report the time
spent processing particles on each face, as was shown in Figure 14. If the scientist decides
to modify the geometry, elongating the cube to a cuboid, for example, performance data
consistent with this user-level medification can be similarly obtained, helping him/her
decide if the effect of such a change on each face of the cube leads to performance

improvements.

4.3_Qur Approach

Our approach builds upon previous work in this area by Irvin and Miller [49]. They
proposed the noun-verb (NV) model to aid in mapping performance data from one level of
abstraction to another. A noun is any program entity and a verb represents an action
performed on a noun [48]. Sentences are composed of nouns and verbs. The model
considers how sentences at one level of abstraction map to other sentences at a different
level of abstraction. An important contribution of Irvin and Miller’s work was that it
showed how different mappings can be defined with respect to nouns, verbs, and

sentences. Mappings can be one-to-one, one-to-many, many-to-one, or many-to-many.

69

Information about mappings can be determined prior to execution (static mapping) or
during execution (dynamic mapping). Their work further proposed a novel
implementation model for dynamic mapping based on the concept of active sentences
(i.e., sentences that are currently active during execution). Active sentences at the same
level of abstraction form a set of uctive sentences (SAS). Dynamic mapping occurs by
identifying which active sentences at one level of abstraction are concurrent with actlive
sentences at another level of abstraction. These concurrently active sentences form the
SAS and their entry/exit determines the dynamic mapping. The ParaMap project
.demonstrated how the NV model and static and dynamic mapping, including the SAS

sapproach, could be implemented in a real parallel language sysiem.

To explain our extension to this work, 1t is instructive to begin by formalizing the
zoncurrent SAS mapping approach. Let S = {S|, S, ..., S} be a set of active sentences at
one (lower) level of abstraction and R = {R;, R,, ..., R[;} be another set of active sentences
at another (higher) level of abstraction. If S and R are concurrent (i.e., their sentences are
all active concurrently) (written S || R), then S maps to R (written S—R) by a

correspondence between active sentences in S and those in R. That 1s,
S — RwhenS ||R.

Since this is a dynamic mapping, we can categorize the low-to-high (upward) mapping
with respect to this correspondence, depending on the cardinality of the sets S and R as

shown in Table 2.

70

TABLE 2: Types of upward mappings S - R

R|=1 R[> 1
IS|=1 one-to-one one-to-many
S| > 1 many-to-one many-to-many

Consider the case of a one-to-many mapping where S consists of one sentence,

S = {S,}. How should the performance of S be related to the performance for R? Two

approaches are proposed in Irvin’s work:
Aggregation: T(R) ='T(S;) where S = {S;} — R (T represents execution time)
Amortization: TR)=T(Ry) =... =T(R;) = l(m *T(S;)

In aggregation, the cost of executing S; (T(S,)) is reported as the cost of executing the

uctive sentences in R as a whole (T(R)). This mapping lacks the resolution to characterize
performance for each sentence of R individually. In contrast, amortization splits the cost of

S, across all sentences of the SAS R evenly, under the assumption that each sentence is

considered to contribute equally to the performance. This assumption may not be accurate
if different sentences affect performance differently. Similar cost analysis applies to the

other mapping categories.

There are three problems that were not fully addressed in the ParaMap work. First,
the NV model offers a rich conceptual framework for describing program entities at
different levels of abstraction. However, the model should also allow for the definition of

semantic entities, both as annotations to program entities as well as independent sentences

71

(in NV terms). This would aid in supporting user-level abstractions. Second, for the one-
to-many SAS mapping formalism, it is difficult to refine the resolution and accuracy of
mapping performance costs without some means to access additional information
(attributes) that can further qualify sentence semantics (“sentence attributes™) and
mapping associations (‘mapping attributes”). In addition to helping to address the
“sentence ordering problem” [49], the notion of attributes could provide a means for
representing semantic contexts for mapping control. Finally, the SAS approach did not
handle the mapping of asynchronous sentences. These are sentences at different
abstraction levels that are logically associated with each other, but are not concurrently

dactive

4.4 Semantic Entities, Attributes, and Associations (SEAA)

As shown in the hypothetical example above (and in the case studies that follow),
we are interested in mapping low-level performance data to higher-level abstract entities
(i.e., upwards mapping), primarily in cases of one-to-many and many-to-one mapping,
and, where asynchronous execution is present. Consider applying SAS to the example
where we want to map low-level particle execution time to the high-level face abstraction.
Semantically, each face has associated to it particles at runtime, a many-to-one mapping
case. On the other hand, the ProcessParticle() routine is applied to all particles and,
transitively, 1o all faces, each a one-to-many mapping case. All mappings are dynamic

because they are determined at runtime. However, the face entity is a semantic entity that

72

is not specifically definable in the NV because it is not directly associated with some
program construct, except when particle properties are being determined. Moreover, even
if it could be defined, the notion of a face entity being “active” is unclear. If it is
considered active in the SAS sense, this occurs only in the setting up of the particles:
otherwise, it is inactive. Only by explicitly setting “face™ attributes in the particle object
can the performance mapping inquire about face activity. Otherwise, SAS would have to
assurine that all faces are active, choosing aggregation or amortization to map performance
costs, or that none are, because the faces are not concurrently active (the face and

. J’mr-e.s‘sParticle() entities are asynchronously active). 1If we assnme sequential execution.

e can imagine how SAS allows us to map performance costs of Particle() execution tc

sparticle entities, since only a one-to-one mapping is present at any time, but parallelizing

the particle processing loop begins to stress the approach if there is only one SAS.

We propose a new dynamic mapping technique, Semantic Entities, Aitributes, and
Associations (SEAA). SEAA embodies three jointly related ideas: 1) entities can be
defined based solely on semantics at any level of abstraction, 2) any entity (sentence) can
be attributed with semantic information, and 3) mapping associations (entity-to-entity) can
be directly represented. The first idea (semantic entities) allows entities to be created and
used in mapping without having explicit relation to program constructs. The second idea
(semantic attributes) provides a way to encode semantic information into entities for use
in qualifying mapping relationships. The third idea {semantic associations) provides the

link to dynamic performance cost mapping based on semantic attributes,

73

Applying SEAA to the example above, we see that an abstract face entity is
“created” in the form of a “face timer” Each particle, then, is logically attnbuted with a
tace identifier. We say “logically™ because in this example an association is directly
constructed. With the association in place, the link to the face timer can be accessed at
tuntime and used to qualify how the performance mapping should be performea (i.e..
execution time of ProcessParticle() will be accumulated for the properly associated face).
With the SEAA concept, problems of SAS concurrency, inaccurate cost accounting, and

asynchronous execution can be averted.

An association is a tuple composed of an application data object and a
performance measurement entity (PME) (e.g., a timer). We distinguish two types of

associations: embedded (internai) and external.

An embedded association extends the data structure (class/struct) of the data object
with which it is associated, and stores the address of the PME in it. In Figure 16,
AccessAssociation() can access a timer stored as a data member in the object using the
object address. This is an inexpensive operation, but it requires an ability to extend the
class structure to define a new data member, possibly affecting space constraints.
Sometimes, it is not possible to create such an association, either due to constraints on
class (e.g., due to unavailability of the source code for modification), or the
instrumentation interface may not provide such facilities (e.g., it may not be possible to
extend classes using dynamic instrumentation, as the code is already compiled). In such

cases, an external association may be used.

74

An external association, as the name suggests, creates an external look-up table
(cften implemented as a hash table) using the address of each object as its key to look up
the timer associated with it, There is a higher runtime cost associated with each lookup,
but this scheme does not modify the definition of the class/struct, and hence, is more

flexible.

In the remainder of this chapter, we present two case studies showing how
embedded and external associations can help describe the applicauion performance in
terms of domain-specific abstractions. We compare this mapping approach with traditional

schemes,

4.5 Case Study: POOMA II. PETE, and SMARTS

Parallel Object-Ornented Methods and Applications (POOMA is a C++
framework that provides a high-level interface for developing parallel and portable
computational Physics applications. It is a C++ library composed of classes that provide
domain-specific abstractions that computational physicists understand. While presenting
this easy-to-use high-level interface, POOMA encapsulates details of how data 1s
distributed across multiple processors and how efficient parallel operation, including
computational kernels for evaluation of expressions are generated and scheduled. Thus,
POOMA shields the scientist from the details of parallel programming, compile-time, and

runtime optimizations.

75

POOMA has a multi-layer software framework that makes analyzing the
performance of applications problematic due to the large semantic gap. The high-level
data-parallel statements are decomposed into low-level routines that execute on multiple
processors. If we measure the performance of these routines, we need some way of
mapping the collected data back to constructs that are compatible with the user’s
understanding of the computation. To better illustrate the gravity of this performance
instrumentation and mapping problem, we explain the workings of two POOMA
components: PETE and SMARTS in the next two subsections. After that we discuss
instrumentation i1ssues, then mapping issues. Finally, we demonstrate our mapping

approach and its output.

4.5.1 PETE

The Portable Expression Template Engine (PETE) [41] is a library that generates
custom computational kernels for efficient evaluation of expressions of container classes.
Based on the expression template technique developed by Todd Veldhuizen and David

Vandevoorde [127], POOMA uses PETE for evaluation of array expressions.

An object-oriented language, such as C++, provides abstract-data types, templates,
and overloaded-operators. By overloading the meaning of algebraic operators such as +, -,
*, and =, the programmer can specify how abstract data types can be added, subtracted,
multiplied, and assigned respectively. This allows users to develop high-level container

classes, such as multi-dimensional arrays, with an easy-to-understand syntax for creating

arithmetic (array) expressions. Thus, for example, the user can build array expressions
such as “A=B+C-2.0*D” or “A(I) = B(I) + C(I) - 2.0*D(I)” where A, B, C, and D are
muiti-dimensional arrays and [is an interval that specifies a portion of the entire array.

Figure 17 shows a simple POOMA program that consists of a set of array statements.

A naive implementation of such an array class may use binary-overloaded
operators for implementing the arithmetic operations described above, introducing
temporary variables during expression evaluation. The above expression would be

evaluated in stages as

11=2.0*D;
12=C-t1:

A=B+t2

where t1 and t2 are temporary arrays generated by the compiler. Creating and copying

multi-dimensional arrays at each stage of pair-wise evaluation of an array expression is an

expensive operation. In contrast, if the same computation is coded in C or Fortran, it

would probably resemble Figure 18, where the iteration space spans each dimension of the

array and no temporary variables are created. Expression templates allow FOOMA array

expressions to retam iheir high-level form, while being transformed by the compiler into

C++ code that is comparable to C or Fortran in efficiency [130][103].

Expression templates provide a mechanism for passing expressions as arguments
to functions [127]. In C++, an expression is parsed by the compiler and its form, or

structure, is stored as a nested template argument. Thus, the form of an expression is

Otnclude “Pooma/firraus. h'
stnclude (lostreas.h?

/¢ The size of _each side of the domaln.
const int N = 3»1024;

int

M
/7 Initialize Pooma,
H Poma:iinitializelarge, args):

// The arrey we”ll be zalving

Pooma: thlockArdEval uated)

A=1,0:

B =2.0:

€=3.0:

D=4,0:

E = 5.0:

A=B+C «D;

C=E-A+2,0=8B:

D=A-+C:

C=D+A~-8;

A=z20<D+E:

E=15*B-h:

Pooma: jbleckPndEvaluate{}:

cout << "Del. 40 = * £ D(1.1) <€ erdll
cout €< M99} = ° £ D(9,9) ¢ endl:

// Cloan up Pooma and voport success.
Fooma;tFinalize();:
raturn 02

Figure 17. Parallel multi-dimensional array operations in POOMA.

main{
int arge, // argument count
char = argvl] 7 argusent list

for
Rrray@> AN, H). BIH.N}. I:(H H), DON.HY. EYMLNY:
|| /¢ Must block since wa“re doing some scalar code {(ses [utorial 4%,

77

embedded in its type. Figure 19 shows how an expression, such as “B+C-2.0*D” can be

represented as a parse tree and written in a prefix notation, which resembles the form of

the equivalent template expression. During the template instantiation process, a compiler

generates specialized code for satisfying instantiation requirements. Expression templates

scheme takes advantage of this property of a C++ compiler that resembles a partial

evaluator [127][128].

Thus, the C++ compiler generates application-specific computation kernels during

the temiplate instantiation and specialization phase, an approach known as generative

programming [27]. Expression objects such as those shown in Figure 19, contain

78

const int N = 1024;
double A[N][N], B[N][N], C[N][N], D[N]INI];
inti, j;
/¥ initialization ...*/
/* computation */
for (i=0; 1 < N; i++)

for (j=0; j < N; j++)

AGI[j) = BIlij] + CLilij] - 2.0 * DEIG;

1* Instead of simply
A=B+C-20%*D,
if coded in POOMA */

Figure 18. Equivalent evaluation of array expressions in C

7 Form: BinaryOp<Add,
B, <BinaryOp<Subiract,
C, <BinaryOp<Multiply.
Scalar<2.0>, D>>>>

Q i
g ¢
)y

Expression: B+ C-2.0*D
Prefix notation: (+ (B (- (C (* (Z.0D))))

Figure 19. Parse tree for an expression (form taken from [41])

references to all scalars and arrays that are present in the expression. The structure of the
expression is embedded in the type of the object. A compiler that is able to inline functions
aggressively [103] can generate efficient inlined code for the assignment of the evaluator

object to the array on the left hand side of an expression. For the above expression, Figure

79

20 shows code that can be generated by a good C++ compiler. In this manner, PETE can
generate efficient C4++ code that does not copy or create temporary arrays in the evaluation

of an array expression.

f* For a one dimensional case, A=B+C-2.0*D) would look like: */
vector<double>::iterator itA = A.begmn();
vector<double>::iterator itB = B.begin();
vector<double>::iterator itC = C.begin();
vector<double>::iterator itD = D .begin();
while (itA != A.end())
[/ A=B+C-2.0*D would be transformed as : */

*itA = *itB + *itC - 2.0 * (*¥itD);

*itA++; *itB4-+; *¥itC++; *itD++;
}

Figure 20. PETE can generate code that is comparable in performance 10 C

Given PETE’s transformations, there is clearly a need to figure out a way to track
the transformations for performance mapping purposes. Unfortunately, POOMA takes the
problem one step further. Instead of executing each array statement in its entirety before
the next, POOMA delays the evaluation of array expréssions, and groups work packets
(iterates), from multiple array statements (loop jamming). These packets are then

scheduled on available threads of execution.
4.5.2 SMARTS

SMARTS [126] is a run-time system that exploits loop-level parallelism in data-

parallel statements through runtime-data dependence analysis and execution on shared

PETE

A = BaCaD: S EVALUATOR
C=E-A+2*B; [% > [l OO
@

POOMA

O] [Jee-d

l

SMARTS

| | iterate handoff

e}

é é work queue
threads/CPLls

S 9
completed
? L_ﬁ L—l'l iterates

g

Figure 21. Compile-time (PETE) and run-time (SMARTS)
optimizations employed by POOMA

memory multiprocessors with hierarchical memories. It schedules independent loop

iterations of data-parallel (POOMA array) statements to maximize cache re-use.

POOMA statements are decomposed into iterates, or work packets, as shown in

80

Figure 21, after compile-time expression template optimizations are applied in the PETE

layer. Iterates are scheduled for asynchronous execution by the SMARTS controller, onto

one or more user-level SMARTS threads. Evaluating interleaved work packets that

originate from multiple statements is often referred to as vertical execution [125]. This is

in contrast to horizontal execution where all work packets from a single statement must be

processed in a lock step fashion with, perhaps, a barrier synchronization operation

31

between statements. The *“vertical” direction here refers to the direction in which chunks
of the set of high-level data-parallel statements in a program are roughly traversed
(evaluated). The actual order of statement evaluation depends on how the dependence
graph, representing the data dependencies among the iterates, is partitioned and evaluaied.
SMARTS applies multiple operations corresponding to different statements to the same
data before it leaves the cache. Locality-aware compiler optimizations such as strip-
mining, tiling, loop fusion, and loop interchange [93][138] achieve the same effect.
However, these may not be successfully applied when inter-statement data dependencies
are complex. SMART'S operates at a library level, instead of the compiler level, and can
see beyond the compiler optimizations. Several scheduling algorithms are incorporated in
SMARTS and a companison of their relative parallel speedups is presented in [126]. The
choice of a scheduler determines the scheduling policy, its overhead, and the extent of
cache re-use. Thus, SMARTS tries to improve temporal locality and increase parallelism

of data-parallel statements.

4.5.3 Instrumentation Challenges Created by PETE and SMARTS

Both PETE and SMARTS present challenging performance instrumentation
problems. To highlight these, consider the execution of the high-level POOMA array
statements shown in Figure 17. Using an off-the-shelf vendor supplied performance tool,
we obtain a sequential profile as shown in Figure 22, which gives the percentage of

cumulative and exclusive time spent in each routine. Templates are translated into their

=l emgcs@pyroscsvoregenedy a]
Buffers Files Tools Edit Search Mule Help
Function list, in descending order by exclusive ideal time

{index] excl.secs excl.% cum.¥ cycles instructions calls function {dso\
il |= file, line) ;
[11 0.731 23.7% 23.74% 141895935 118364520 5 run__161Expres\

sionKernel __tm__136_59rray__tm__46_XCil_1_2d34BrickView__tm__17_XCilL_1_2XCblL_1_180pRssignd6\
ConstArray__tm__28_XCilL_1_2dl6ConstantfunctioniSInlineKernelTagFv.v {SimpleJacobi: Expressio\
Jil |rKernel.h, 220; compiled in UCCicARRaC4JHF.int.c)

(2] 0.487 15.8% 39 .54 84487544 113418314 1 run__484Expres\
sionKernel__tm__459_59rray__tm__46_XCil_2_2d34BrickView__tm__17_XCil_1_2XChL_1_180pAssignibn
8tonstArray . tm. _349_XCiL_1_2d336ExpressionTag__tm__314_310BinaryNode__tm__291_SOpRddledBina
ryNode__tm__145_100pSubtractb4ConstArray__tn__46_xCil_1_2d34BrickView__tm__37_XCil_1_2XCbl_ 1%
_l64ConstArray__tm__46_XCil _1_2d34BrickView _tm__17_xXCilL_1_2xXCbL_1_1114BinaryNode__tm__96_ 10\
OpMultiplylSScalar__tm__2_d6dConstArray__tm__46_XCil_1_2d34BrickView__tm__17 _XCiL_1_2XEBL_1_°
115}n1ineKerne1Tang_v (SimplaJacobi: ExpressionkKernsl.h, 220; compiled in UCCicARAaO4I4YF.inM\
t.c
[] {3] 0.390 12.6% S2.4% 75629619 80403528 1 run__427Expres\
sionKernel__tm__402_59Array__tm__46_XCil._1_2d34Brickview__tm__17 _XCilL_1_2XCbL_1_180pAssign31i\
iCenstArray. . _tm__292_xCil_1_2d273%ExpressionTag__tm_ . 257_2535inaryNode,. . tm__234_S0pARddiS8Binay
ryNode__tm__139_S5S0pAddedConstArray__tm__46_XCil_1_2d34BrickView _tm__17 XCiL_1_2XCblL _3_164Co)\
nstArray__tm__46_XCiL_1_2d34BrickView_ _tm__17_XCil_1_2XCbL_1_164ConstArray._tm__46_XCiL_1_2d\
34BrickView__tm__217_XCiL_1_2xChL_1_115]nlineKernelTagFv_v (SimpleJacobi: ExpressiornKernel.h,\

220; compiled in UCCicRARa04JHF.int.c)

[4 0.390 12.6% 64.7% 75623475 80400456 1 rur__433Fxpres\
I |sionKernel__tm__408_SSArray._tm__46_xCil_1_2d348rickView__tm, _17_XCiL_1_2xCbL_1_160pAssign3i
| |7CenstArray__tm__298_KxCiL_1_2d285ExpressionTag__tm__263_259BinaryHode__tn._240_190pSubtractlil
| |28BinaryNode__tm__139_50pAdde4ConstArray...tm_ 46, 2Cil 1 2d34BrickView__tm__17_XCiL_1_2XCbL_1\
..16dConstArray. _tm__46_XCil_1_2d34BrickView__tm__17_XCiL_1_2XCblL_1 _164ConstArray_. tm,._46_%XC1\
L1 2d34BrickView__tm__17_XCiL_1_2XCbL_21_115InlineKernelTagfv_v (Simplelacobi: ExpressionKery
nel.h, 220; compiled in UCCicrARaCAJHF .int.c)
iﬁ] 0.390 12.6% 77.4% 75608115 66213360 1 run__383Expres\
simKernel . tm__358_59Array._tm__46_%Cil_1_2d34BrickView_. tm__17_XCil _1_2XCblL_1_1380pAssign2é&\
‘ 7ConstArray._tm__248_xCil_1_2d235E=pressionTag__tm__213_209BinarybNode__tm__190_50pAddii4Bina\

rutiode__tm__96.,100pMultiplylSScalar.__tm__2_dB4ConstArray__tm__4E€_XCiL _1_2d34BrickView._ tm__3\
7_XCIL_1_2XCbl _1_164Constfirray. _tm__45_XCil_1_2d34BrickView__tm__17_XCil_1_2XCblL_1_115Inline\
{l {KernelTagFv_v (SimpleJacobi: ExpressionKernel.h, 220; compiled in UCCicRAAaQ4IHF.int.c)

| [6] 0.390 12.6% 890.0% 75601971 66210888 1 run__389Expres\
sionternel__tm__364_59Array. _tm__46_xCil_1_¢zd34BrickView__tm__17_XCil .1 _2xCbl_1 _180pfRssign2’y
JConstArray__tm__254_XCil _1_2d241ExpressionTag__tin__219_215BinaryNeode_.tm__196_100pSubtracti\
14BinaryNode__tm__956_100pMul tiplylSScalar_.tm__2_dB4ConstArray._tm__46_XCil_1_2d34BrickView_\
_tae _17_¥Cil_1 _2XCbl_1_164ConstArray_. tm .46, XCil_1.2d34BrickView__tm__17_XCil_1_2XCbL_1_115\
InlineKernelTagFv_v (SimpleJacobi: ExpressiorkKernel.h, 220; compiled in UCCicAARa04JHF,int.c\
1

7] 0.292 9.5% 99.5% 56727603 56773704 1 run__332Expres\
sicnKernel__tm__307_S9Array.__tm__46_XCil_1_2d34BrickView_._tm_.17_XCil_1_2XCblL_1_180pARssign2i\
6ConstArray__tm__197_XCilL_1_2di84ExpressionTag__tm__162_158BinaryNode__tm__139_50pAdd64Consth
Array__tm__46_XCil_1_2d34BrickView__tm__17_XCil_1_2XCbhL_1i_i64ConstArray__tm__46_XCil_1_2d34B\
rickView__tm__17_XCiL_1_2XCbL_1_115InlineKernelTagFv_v {SimpleJacobi: ExpressionKernel.h, 22\
0: compiled in UCCicAAAa04JHF.int.c)

== e f ST LT {Fundamentil)--L28-= Lh-——n——w-——:-
@Minibuffer window is not active

Figure 22. Profile generated by a vendor-supplied performance tool.

instantiated entities in forms not known to the user. None of the entities in the output relate
directly to code that the user writes. On closer inspection, we find that the routines profiled
are templates, but the names are mangled by the C++ compiler. There are two ways to deal
with this: employ a demangling tool that translates between each demangled and mangled

name, or to instrument it so that the application generates de-mangled template names. As

&3

our current focus is not on the demangling problem, but rather on the mapping issue, we

use the latter approach and apply routine-based source-level template instrumentation.

Each template instantiation can be uniquely described using runtime-type
information (RTTI) of objects [113] using C++ language features [118] that are
independent of compiler implementations and system specific constraints. With this
support, we can construct the name of an instantiated template based on the method name,
class name, and a string that represents the types of its arguments and its return type. Once
we can construct the name, we can define a semantic entity that represents the instantiated .

ttemplate class. Performing source-level instrumeritation of femplates 18 now possible and
Tresults tn a profile that shows the iemplate names as illustrated in Figure 23. This figure
.:,hnws the complete template name and includes the nstantiations in terms of types at the
{anguage level, instead of showing the names in the internal compiler name mangling

Tormat, that the user does not understand.

While the observed program entities are presented at a higher language level, it
may still not be at a high enough level of abstraction. Although, name mangling problems
are ameliorated, only the structure of the expression template is given, which can be fairly
difficult to interpret, even for someone who understands the inner workings of PETE. For
the performance data to be useful, it must be converted into a form that the user can
understand. Ideally, this would be in terms of actual source-level data-parallel POOMA
statements. Suppose the library that implements the expression templates describes the
form of the expression template to the tool environment. For instance, the form can be a

string like “Array=Array+scalar*Array.” A semantic entity can again be defined, but in

84

Buffers Files Tools Edit Search Hule Help

“iime Exclusive Inclusive uCall #Subrs Inclusive Name
| msec total msec usec/call

I TR

{100.0 0.024 19,993 1 1 19993926 _startoff() void (Thread *)
100.0 3 19,993 2 23 9996951 schedule_privatel) void {)
%?0.0 0 1 19,988 11 11 1817173 Iterate<FastAsync::execute\
void
F 29.2 5,840 5,840 5 0 1168083 run ExpressionKernsl{Array<\
2, Vleu0<0rrag<2 double, Br1ck) :This_t>::NewT_t, ViewD<{Array<z, double, Brick>::This_t\|]
NewEngineTag.t», OpAssign, ConsiArrayc2, double, ConstantFunction?, KernelTag{ViewD(A\
rrag<2. double, Brickb::This_t)::Tgpe_t, Viewd{CansthArray<?, double, ConstartFunction’: .\
This_t)::Tuype_t>::Kernel_t>
| 13.6 2,727 2,727 1 4] 2727246(Jrun ExpressionKernel{Arrag<\
?. Vlew0<ﬂrragf2 doubile, Brlck) :This_t)::NewT_t, ViewOtArray<2, doukle, Brick>::This_t\
BN NeuErg1neTag_t), Upnss1gn Constarray¢?, Viewd{ConstArray<?Z, MakeReturn{Dinaruybode{Op
'Add, BinaryNode{OpSubtract, Rererence<nrragEreatELeaF<2. double, Brick)::Arrayleaf_t>, R*
=ference{Arraylreateleaf{2, double, Brick’.:ArrayLeaf_td>, BinaryNodelOpMultiply, Scalar’
‘double’, Referencef{ArrayCreateleaf{2, double, Brick’::Arrayleaf_t>>>>::T_t, ExpressionT\
ag{MakeReturn{BinaryMode<{OpAdd, BinaryNode<OpSubtract, Reference{ArrauyCreatel.eaf{(2, doub\
le, Brick)::Arrayleaf_t>, ReferenceArraylreateleaf{2, double, Brickd::A»rayleaf_t>», Bi\
nargMode{OpMultiply, Scalar{double}, Reference{ArrayCrezteL=af{(2, double, Brick)::Arragl\
lcat td>3d::Tree_t):This tr::HewT_t, ViewO<{ConstArraylz, MakeReturn<{BinaryNodedlpAdd, B%
{inaryNode<OpSubtract, Reference!ArrayCreateleaf<2, double, Brick)::Arrayleaf_t>, Referen\
cedArrayCreatet eaf{2, double, Brick)::ArraylLeaf.t}>, BinaryNode{OpMultiply, Scalar<doubl:
e>, Reference{ArrayCreatelLeaf(2, double, Brick)::Arrauleaf_t>>>>::T_t, ExpressionTagiMak\
eReturn{Binarytiode{OpAdd, BinaruyMode<OpSubtract, Reference<ArrayCreateleaf¢2, double, Br\
icler::Arraybeaf_t>, Reference!{ArrayCreateleaf{2, double, Brick>::ArraglLeaf_t>>, BinaryNo:
de‘OpMul tiply, Scalaridouble>, Referenceifirrayfreateleaf(2, double, Prick’::Arrayleaf_ti\
& \57::Tree_t>1:1This_t>::HPwEngiﬂETag_t). KernelTag{ViewU<Arrayd2, double, Brick>-:This_t%
b 1Type_t, ViewDiConstArray’2, MakeReturn<BinaryHodeiOpAdo, BinarjNode<GpSubtract, Refer:
4 eﬁce(ﬂ*ragﬂreateLeaP(E dcuule. Brigk)::ArrayLeaf_t), ReferencecArrayCreateleaf<2, doubl\

= 2, Brick>::Arrayleaf_t»?, BinaryNode<OpMuliiply, Scalar<doublie>, Pnference=nrragtrsaceLe\
hay =72, double, Bvick)::nrragLeaf t>:>2.:T_t, Expres s:onTag<MakeneL r{BinaryNode<OpAdd, 3
3 inaryNode<JpSubtract, Refersnce<nrragtrﬂateLeaF<2, double, Brick)::Arrayleaf_t>, Referen
cadArraylreateleaf {2, double, Brick?::ArrayLeas_ t>>, BinaryNodedOpMultiply, Scalarddoubl®
7 8>, RetarencedArrayCreateleaf(?, double, Brick::Arrayleat_t>>>>::Tree_t>>: ' This_t7::Typ"

1 84 2,584 1 0 2584162 run ExpressionKernel{Array{\
2, VnewO’nrrag(Z double, Brickd: tThis_tk::NewT_t, ViewO{Array<2, double, Brick>:.This.t\
b NewEngxneTag.t) Dpnssxgn ConstArray<2, V:ewO(Ennstnrraq(Z MakeReturn<B1nargNude(Dp\
ﬁdu, anargNade(Upndd Referen-e<nrragCr@ateLea€(2 couble, Br;ck"'prragLeuF t), Refere)
nzalfrrayCreateleaf<2, double, Brick}::ArraylLeaf_ £3>. ReferencelArra CreateLeaf(E doubl\

Figure 23. Expression templates embed the form of the expression in a template
name

this case with a higher degree (specificity) of abstraction. This technique is employed with
our performance instrumentation framework in Blitz++ [113], a sequential array class
library that uses expression templates for optimization. With this approach, the time spent
in “A=1; B=2; C=3; D=4; and E=5;" statements can be effectively aggregated into one unit
of the form “Array=scalar”” While this level of abstraction is better than interpreting the
form of expression templates, it still does not allow the performance data to be assigned to

each source-level array statement when the statements are being concurrently executed.

Fle Conliguo

Functions |

)
neton: |
ngt001 i

99.81% vold Pooma::blockAndEvaluate() FI
0.14% | Int main{int, char = ¥
0.02% | bool Pooma::tinalkze(bool)

net 29,1
N[
14 89%
14.51%
14.20%
10.80%
989%
9.18%
004% | schedule_private() void
] _stariofif) veid (Thread)

run ExpressionKemelcArray«<2, ViewO<Array<Z, d
run ExprezsionKernslcArray<2 ViewD<Arrsy<2, d
run ExpressionKemelc<Array«<2, ViewO<Array <2, di
run ExpressionKemelcArray«<2, ViewO<Array <2, d
'run ExpressionKernelcArray<2, ViewO<Amay<2, di
run ExpressionKernel<Array«<2, ViewO<Array<2, di
run ExpressionKemel<Anay«<2, ViewO<Array<2, di

b |

netg0n

Intorm &inform-interm{const char *, Int
bool Peema::initialize{const Pooma::Op
CaoE-A+20"8;

Pooma::Optlons &Pooma:Optlons::Opt
A=1D;

bool Pooma:.finailze()

vold Pooma :debugl eval{int) 1
Inform &inform inform{conat char *, stc
Intorm::ID _t Intorm :oper:{inform::Conte
vold inform::setup{const char*) Inform ||
+old Inform::satOutputLeveliinform:Le| |
hoa! Pooma::initiaiize{int &, char &, be
Pooma::Scheduler_t &Pooma;:schedul|
A=B+C+D; 41
C=D+A-8B; !
E=15"B-A: |
Az20"D+E: i
void Pooma::-;:cleanup_s{)
D=A+C; 1
Pooma::Options &Pooma::Options :Opt 'y

Figure 24. Synchronous timers cannot track the execution of POOMA array

siatement

S.

4.5.4 Mapping Challenges in POOMA

Standard routine-based instrumentation of the parallel POOMA application

optimized using PETE and SMARTS) aggregates the time spent in all expression

templates that have the form “Array=scalar,” as shown in Figure 23. To gel a statement-

level profile of the POOMA application, one might try fo use conventional timers. Here.

the name of the timer could be composed of the statement text, and the cost of each

statement could be measured by surrounding it with start and stop timing routines.

However, using “synchronous” timers for tracking the execution of POOMA statements

leads to a profile, as shown in Figure 24. It shows that there are two threads of execution;

on thread O (the controller thread), 99.81% of time is spent in Pooma: :blockAndEvaluate()

26

template<class LHS, class RHS, class Op,

A=10; class EvalTag>

B=2.0; void ExpressionKernel<LHS, RHS, Op,
’ \ EvalTag>::run().

A=B+C+D; g /* iterafe execution */
C=E-A+2.0*B; q————

!

Figure 25. One-to-many mappings in POOMA

routine, and negligible time (< 1%) is spent in the execution of actual array statements. On
Jaread 7 we see a profile similar to Figure 22 that consists of template expressions.
Hlearly, there is something happening in the execution that the user does not expect. This
;again, highlights the semantic-gap between the user’s perceptions and the result of
itransformations that tools cannot track effectively. The reason for this gap here is due to

the asynchronous execution of iterates in SMARTS.

As discussed above, POOMA breaks up each array statement into iterates. All
iterates are executed by the run() method of the ExpressionKernel class template, as
shown in Figure 25. To accurately measure and correlate the cost of executing each array
statement, we need to measure the cost of creating the iterates (the synchronous
component of executing a statement on thread 0), perform measurements in the
ExpressionKernel::run() method, and map these costs to the appropriate POOMA
staternent. To make matters worse, iterate execution takes place on threads other than
thread O (controller thread), as described in Figure 21. Furthermore, iterates are executed

out-of-order and asynchronously, to maximize cache re-use.

87

4.5.5 Our Mapping Approach

Beyond the use above of semantic entities to track template instantiations and
capture statement identification, the problem of iteration mapping and asynchronous
execution requires more sophisticated and aggressive mapping support. Using our
association based approach to mapping performance data, we can create a unique
association between a (low-level) ExpressionKernel object and its corresponding (high-
level) POOMA statement. We do this using semantic attributes and semantic association.
As before, for each high-level POOMA statement (e.g., A=B+C+D;) we create a limer (a
semantic entity) with the statement string (e.g., “A=B+C+D:"") as the timer name

(semantic attribute). During the creation of each ExpressionKemel object that represents
an iterate, the timer address is stored in an STL map [118] with a key (a hash attribute}.
When the statement executes, the constructor of the ExpressionKernel object is invoked
and the map (which acts as a hash table) is searched with the same key to reveal the timer
as.sociated with the statement (i.e., a dynamic semantic association). The
ExpressionKernel class is extended to include a data member that holds the address of the
timer. In this manner, each iterate is assigned to the statement-level timer through a
process that encodes the dynamic semantic association into the iterate object. When the
run() method is invoked asynchronously during iterate evaluation, the “embedded
association” (i.e., the per-object statement timer) is accessed and timing measurements in
this method are performed with the statement-level timer. Hence, low-level cost of

executing the run() method for each statement iterate can be precisely measured and

88

5.82% e = 50;
schedule_private() veid 0
lterate<FastAsyncs::execute() void ()

_startofi() vold (Thread %)
¥
| (=3 - e et 14
| close i
- e e

Figure 26. Mapping costs of individual POOMA statements

accumulated for the statement. The performance data can then be shown in a more

meaningfu! manner, as shown in Figure 26.

Moreover, no limitations are imposed on the choice of performance measurement.
We could just as easily generate event traces, to highlight the temporal aspect of iterate
scheduiing. Figure 27 shows the scheduling of iterates on threads I, and 2, while the
Pooma: :blockAndEveluate() (controller code) awaits their completion on thread ¢ for a

thousand iterations of the array statements.

Following the SEAA approach, we can partition the performance data from one-
layer of abstraction, based on application data (iterate objects) and correlate it to another,
accurately accounting for the cost of individual statement execution, even in the presence

of asynchronous execution. Mapping performance data based on embedded associations

L=

89

provides a better view of the performance data in POOMA, one that corresponds to

source-level constructs.

=T

3

schedule_private{) vold [

Figure 27. Event traces of mapped iterates show the contribution of array statements

4.6 Case Study: Uintah

Admittedly, POOMA represents a complex programming system, but that does not
mean that the nature of mapping problems it presents are uncommon. Uintah [35]) is a
component-based framework for modeling and simulation of the interactions between
hydrocarbon fires and high-energy explosive materials and propellants. Similar to
POOMA'’s programming objective, Uintah encapsulates the complexities of parallelism,
but uses the DOE Common Component Architecture (CCA) [57] as the programming

approach and the SCIRun framework [54] for interactive steering and visualization.

wr

File Configure

| Fie value Mode

Functions

moan T

n,ect 000
net 100
nect200
n,et13,00
nc,1400
nc,1 500
n,c,t 6,00
n,c,t 7,00

Task executiol

84.26% (TR mean

79.91%
81.36%
81.91%

86.63%

81.59%

89.58%
84.00%
89.11%

n,ct000
nct100
n,ct200
n,c1 3,00
n,c,t 4,00
nct500
n,ec16,00
nct7.00

I

n,c,1000

Task executlon [MPIScheduler::execute()]
MP1_Waitall()

MPIScheduler::gatherParticles
MPI_Finalize()

MPI_Probe(}

MPI_Type _indexed()

main() void (int, char **}

Initlal Send Recv [MPIScheduler::execute()]
MPIScheduler::scatterParticles
MPI_Testsome()

MPI_Isend()

Recv Dependency [MPIScheduler::execute())
MPI_Allreduce()

Topological Sort [MPIScheduler::execute()]

B N TR T T,
)

e e e | AR e

close

L e e e e e

D e T T

Figure 28. Task execution needs to be explored further in Uintah

Uintah is a domain-specific interactive scientific Problem Solving Environment (PSE) that
targets tera-scale high performance computing. In [35], the authors describe a typical
simulation using the PSE: a cylinder containing combustible, high-energy materials is
suspended above a flame. As the simulation progresses, the high-energy material
explodes, the cylinder deforms and cracks as the pressure builds up, and the material

finally detonates. To simulate such a system, a computational fluid dynamics (CFD)

91

itime miec total mmec fcall faubrs ugec/call pame
9.3 1:29.710 1:35,091 225 28 422625
6.8 1,202 7,202 49 0 146993
4.7 3,735 5,026 14 294 359036
1.2 1, 287 1,287 98 g 13141 §
1.0 1,012 1,012 1 Q 1012782 H
0.7 714 719 99 [1:]
0.5 564 564 598.5 0 43 |
100.0 472 1:46,46% 1 19 106469384
03 3150 52 11 38 2
L.2 297 1,302 15 2688.5 8689
54,5 195 1:44,924 15 1189 6994941
01 15 151 498.75 30
"y 149 149 15 0 939
0.1 133 133 131,25 Q 102 1
L) 106 7,197 2165 34111 |
c.1 102 102 65,75 1190 3
h B6 86 498,75 173 HPI Jxeevil”
B2 L] 248 211 2455.2 1186 Eend Depandenay "{MPISchicdnlar!: ezecizel)}
- EC 60 1 63410 ‘!PI_-','Inir._'.')"
.0 25 4% 73,8 73 679 Feat Scme
-0 9 11 15 738
2.0 6 & 1197 6
0.7 4 723 29 % 7312 Pé
0.0 3 3 1795,5 2
2.0 2 2 030,75 z
.0 2 2 1000.5 i Z
0 1 M 15 126
.G 1 1 498,75 3 H fpa_siza()
.0 i i 98 16
F] 1 1 354 4 Task QGraph Output [MPIScheduler::azscutef]]
i L0 1 1 33.25 4
0.6 0.284 0.284 30 o El Llar &
l o8 9244 1244 3 0 22 JELGac counc()
5 e .22 3 . Yecgtal |
EC.0 0,0778 L0778 L5 [5 ’;Ev_aﬁfz‘.z- atcechi)
0.0 568 1 0 7 “Conmn wizaf} |
¢c 519 1 1] 2

K
L e . T — '.__d“. _— ._,_....._..._J
* Figure 29. Uintah node profile shaws that task execution is a computationally intensive

activity,

compenent, simulating hydrocarbon combustion, is coupled with a material point method
(MPM) component, to study the mechanics of solid deformation and energy transport

within the cylinder.

To evaluate the performance of a Uintah application, we selectively instrument at
the source level and the message passing library level. This two-level instrumentation, is
explained in the previous chapter. It enables us to see the details of message
communication as well as application level routines. Figure 28 shows a high-level profile
of the execution of different tasks within the parallel scheduler. We see that Task execution
takes up a significant chunk of the overall execution time. It takes up 79.91% of exclusive

time on node 0 and Figure 29 shows that it takes 89.3% of inclusive time averaged over all

fET TR |

Eile Configure Help ||| Eite vaive Mode

f==

Functions SeriaIMPM::compulelnlomalForce; :

1894%[— mean

mean I TOMEE

16.65% n,c,t 000
n,c,t 0,00 biges | e 18.37% n,c,t 1,00
net1,00 [i : 1l 18.46% n,ct200
ne,t2,00) j 2024% nc,t 3,00
nect300 17.48% n,c,t 400
net4,00 B - 19.64% n,c,t 5,00
n,et 50,0 s [19.42% n,c,t 6,00
nc,t 6,00 k. i 2128% [n,c,t 7,00
n,c,t 7,00

Mode

n,.c,t 000

SerialMPM:.interpolateParticiesToGrid [MPIScheduler:.execute()]
SerialMPM::interpolateToParticlesAndUpdate [MPISchaduler::execute(}]
SerialMPM::.computelnternalForce [MPIScheduler::execute()]
SerialMPM::computeStressTensor [MPIScheduler:.execute(}]
MP]_Waitall()

SerialMPM::computeinternalHeatRate [MPIScheduler::execule()j
MPIScheduler::gatherParticles

MP!_Finalize()

MPI_Probe()

MPI_Type_Indexed()

main() vold (int, char **)

Initial Send Recv [MPIScheduler::execute()]

Figure 30. Mapping reveals the relative contribution of different tasks

nodes. While more detailed instrumentation can show us each instance of task execution,
it does not highlight the nature of tasks that execute (i.e., the task semantics: “what does
the task do?”’). The computation on the individual particles generates work packets. Each
work packet belongs to a task, and each task does something that the computational
scientist understands (such as interpolating particles to a grid in the serial multi-point

method). Tasks can be given a name (e.g., SerialMPM: :interpolate ParticlesToGrid) and

93

55 EMPI
3 7] WIAU_USER
s R5erialMPM-actusllylnitisliza

these names correspond to domain-specific abstractions that are not directly represented in

the execution.

What the scientist wants to see is the partition of the overall task execution time
among different tasks. The similarities to the POOMA mapping problem are apparent.
The number of tasks is finite and is typically less than twenty. However, there are several
million particles (or work packets) that are distributed across processors and executed. To
relate the performance of each particle based on the task to which it belongs, defines the

performance mapping problem.

59508888 —

Partici
I SerinlMPM:actunl 7 Initinlize

@@@@@@@@%ﬁﬁ??

Sarial MPM =i tagrate Temperatura aie

5333838
55393353 |

Figure 32, Color-coded activity chart highlights the relative contribution of
different tasks

Using our SEAA modei of mapping, we form an association, during initialization.
between a timer for each task (the task semantic entity) and the task name (its semantic
attribute). While processing each work packet in the scheduler, a method te query the task
name is invoked and the address of the static character string is returned. Using this
address, we do an external map lookup (implemented as a hash-table) and retrieve the
address of the timer object (1.€., a runtime semantic association). Next, this timer is started

and stopped around the code segment that executes an individual task.

Figure 30 shows the results o1 this work packet-task mapping performance
analysis in Uintah. Again we see the benefit of the SEAA approach in presenting

performance data with respect to high-level semantics.

When event-traces are generated, it lets us track the distinct phases of computation.

Figure 31 shows a global timeline where each task is color-coded. That is, although we are

95

MP]
Serial MPM::InterpolateParticlesToGrid
<orinl MPM;:compute IntemalForce

Serinl MPM::interpolataToParticlesAndUpdate
_USER

Serinl MPM::computeStressTensor

Serial MPM::compute Intemal Heat Rate

Serinl MPM: actually Initialize

erial MPM::salveHaatEquations

Figure 33. Summary chart

looking at individual work packets being executed, the mapping allows us to “see” their
performance data al a high-level. The activity and summary charts for a 32 processor run

of the program are shown in Figure 32 and Figure 33 respectively.

4.7 Conclusions

In the above case studies, we have tried to illustrate the application of the SEAA
mapping approach to applications where high-level operations are decomposed into low-
level work units that are separately executed and (asynchronously) scheduled. We have
shown how upward one-to-many mappings involve attributing the cost of one low-level
statement to one or more higher-level entities and can be addressed by SEAA. Previous
work in this area has focussed on aggregating the cost of multiple instances of the mapped
statement to higher-level statements/entities. Our work is able to look at each instance,

isolating the per-instance cost and correlate the measurements performed at each instance

96

to its associated higher level form. This allows a more accurate attribution of measured

low-level costs.

In each of the above cases, we are faced with the problem of resolving one-to-
many mappings for an iterative computation. Traditional approaches of aggregation or
amortization over all iterations do not provide the level of.detail or accuracy that we
desire. So, we measure each iteration, or invocation of the low-level routine and correlate
its cost to higher-level absiractions using application data in conjunction with static

semantic entities (routine, statement execution).

Although not the explicit focus of this chapter, in order to perform these
expieriments we used instrumentation at multiple levels. In POOMA, source-level
instrumentation for mapping is combined with preprocessor level instrumentation using an
instrumentor based on PDT [69] and instrumentation at the library level (SMARTS).
Together these levels cooperate with each other and target a common performance
measurement API. In contrast, in Uintah, we used instrumentation at the source Jevel for
mapping together with instrumentation at the MPI wrapper interposition library level for
composing the performance experiments. Thus, a multi-level instrumentation strategy

helps generate performance data in these mapping scenarios.

97

CHAPTER V

INSTRUMENTATION AWARE COMPILATION

5.1 Introduction

Instrumentation at the source level of a program can focus on the statement,
expression, and basic-block levels. allowing language-leve! semantics to be associated
with performance measurements [111]. Typically this is done by inserting calls to a
measurement library at appropriate locations. However, because compilers do not
distinguish between measurement rouunes from application routines. the instrumenration

and code restructuring transformations performed by many optimizing compilers may

mutually interfere:

The tacit assumption underlying source code instrumentation is that the
organization and structure of the compiler-generated code are similar to
that in the source code. When this assumption is false, instrumentation may
either inhibit or change the normal optimizations or it may measure

something other than what might be expected when examining the source
code.

- Daniel A. Reed [98] pg. 487

This has been an open problem for source-level instrumentation.

98

In the next section, we describe the issues in more detail. We then introduce the
concept of instrumentation-aware compilation that addresses the problem, allowing for
accurate source-level instrurnentation despite aggressive optimizations. We finish this
chapter by discussing our prototype of an instrumentation-aware compiler and its use with

ooth C and ZPL application code.

5.2 Issues in Instrumentation

Hypothesis: There exists instrumentation that can inhibit compiler optimizations

Timing instrumentation is often introduced as start timer and stop timer calls
placed around a section of code, as shown in Figure 34. Figure 34 (a) shows the original
source code for a simple application without instrumentation and Figure 34 {c) shows the
same code with instrumentation for a timer inserted arcund a single statement. Consider
what happens as a result of optimization. Figure 34 (b) shows the un-instrumented code
after optimization. Loop invariant code motion [2] has been applied to move the
subexpression (y+z) out of the loop as shown by the arrow. In the case of the instrumented
code of Figure 34 (c), however, x and y are global variables and the compiler
conservatively assumes that their values could be changed in the stop and start routines.

As shown in Figure 34 (d), it does not perform the optimization.

This example demonstrates that the presence of instrumentation can inhibit

optimizations even for simple cases. What implications does this have for performance

void start(void); extemn int foo(void);
void stop(void); extern int y; extern int z;
extern int y,z; int foo(void){
int foo(} auto int i, X, temp;
{

inti, X; i=0;

temp = (y+z);
for(; i<500; i4+=1) -

99

for (i=0; i < 500; i++) g { loo
[/* the blo loo X =temp + i; P
X = y¥Z+Hi; P) -——
} -— return x;
return x; }
}
(a) Unoptimized code without (b) Optimized code without
instrumentation instrumentation
void start(void); extern void start(void);
void stop(void); extern void stop(void):
extern int y,z; extern int y,z;
int foo() extern int foo(void);
{ int foo(void) {
int, X; auto int i; auto int x;
i=0;
for {i=0; i < 500; i++) for(; i < 500; i+=1)
{ /* the block */ {
start(); start();
X = y+z+i; x = ((y+z)H);
stop(); stop();
} }
return x; retum X;
} }
(c) Unoptimized code with (d) Optimized code with instrumentation
instrumentation

Figure 34. Four versions of a program, demonstrating the effect of code restructuring

optimizations on the accuracy of a timer. Uninstrumented code is on the top; instru-

mented code is on the boftom. Unoptimized colde is on the left; optimized code is on
the right.

I'To generate this figure, we used a commercial optimizing C++ compiler to generate the equivalent C
code by lowering the intermediate representation of the program after optimization. The compiler gen-
erated symbols in the code were translated to a more readable, equivalent form by hand.

100

1: #include <stdio.h>
2. #include <Profile/Profiler.h>
3:
4: intx,y;
5: int f(int a, int b, int ¢, int d)
6: |
7: intw,z;
8: TAU_PROFILE_TIMER(ft, “Contribution of x,y and z”, “[f(}]",
TAU_DEFAULT)
9:
10: TAU_PROFILE_START(ft);
11: x=a+a*(b-c)
12: y=(b-c)*d,
13: Z=X+Y;
14: TAU_PROFILE_STOP(ft);
15 w = 5*%z+6;
16:
T return w;
18: }
19:

Figure 35. Using a timer to measure the cost of executing three statements

measurement? Clearly, making measurements of unoptimized code can lead to distorted

views of performance with respect to its optimized form.
Hypothesis: There exist optimizations that can lead to incorrect measurements

Consider the program in Figure 35, which again uses a simple timer positioning
start and stop methods around a group of statements. The timer, ff (declared at line 8),
measures the cost of executing the statements at lines 11-13. In contrast with the previous
example, the variables a, b, ¢. and d used in the measured code are not global and, hence,
the timer calls will not interfere with optimization. Figure 36 shows the unoptimized

assembly code for the routine f(generated for the Sparc processor). In starting routine f

12:
13:
14:
15:
16:
17:

18

19:
20:
ALK
22:
23:
24
25:
26:
27:
28:
29:
30:

— oY R W

.section “.data”
.size .34
.align 4

3

.word 0x0
.global f
.section “.text”
.align 4

.proc 4

s

save %sp,-96,%sp

st %i10,[%fp+68]

st 9011,[%fp+72]

st %i12,[%fp+76]

st %013,[%p+80]

set .3,%00

mov %00,%00

set .L4,%o01

mov %ol,%o0l

set .L.5,%0?2

mov %02,%02

set Oxffffftff, %03

mov %03,%03

call tau_profile_c_timer; nop
set .3,%I7

Id [%]7],%00
mov %00,%00
call tau_start_timer; nop
set x,%I7

1d [%fp+68],%16

Timer on

31:
32:
33:
34.
35:
36:
37
38:
39:
40:
41:
42:
43:
44
45:
46:
47:
48:
49:
50:
51:
52.
53:
54:
55:
56:
57:
58:
59:
60:

101

Id [%fp+68],%15
Id [%fp+72),%14
Id [%fp+76],%13
sub %14,%I13,%14
smul %14,%15,%15
add %16,%15.%16
st %16,[%17]

set y,%17

Id [%fp+72],%16
id [%fp+76],%I15
sub %16.%!15,%16
Id [%fp+80],%I15
smul %I15,%16,%16
st %16,[%I17]

set x,%I7

Id [%17),%I17

set y, %16

Id [%16),%16

add 9%17,%16,%i4 Timer off
set .3,%I17

Id [%17],%00

mov %00,%00

call tau_stop_timer; nop
L2

smul %i4,5,%I17

add %l17,6,%i5

mov %i5,%i0

ret; restore

type f.#function

size f,.-f

Figure 36. Unoptimized assembly code for routine f

(line 10), the stack pointer is saved (line 11) and the four arguments (a, b, c, d) are stored

at appropriate locations using the address of the frame pointer (lines 12-15). Next, the

output registers o/ through o3 are set up for the call to the timer registration routine (lines

16-23), the timer is created (line 24), and it is started (lines 25-28). After the timer is

started, x is calculated (lines 29, 34-37) by evaluating the subexpression (b-c) (line 34),

102

multiplying the result by a (line 35), adding « to that (line 36), and storing the final value
in x (line 37). Similarly, y is calculated (lines 38-47) by loading b and c (lines 39-40),
evaluating (b-c) (line 41), multiplying it by d (lines 42-43), and storing the result in y (line
44). After x, and y are calculated, z is computed by adding x and y (line 49). This is
followed by stopping the timer (lines 50-53). After the timer is stopped. w is computed
(lines 54-56) by multiplying z with 5 (line 55) and adding 6 to z (line 56), before returning
from the routine (lines 57-58) as was the case in our previous example (Figure 34), the
unoptimized code measures exactly what the user would expect his/her instrumentation to

.measure, in this case, the assignment to x, y, and z but not the assignment to w.

y When the same program is optimized, however, the code transformations lead to a
wviolation of the user’s measurement expectations. Consider the optimized code n Figure
-37. There are two problems. In the first case, the compiler performs common
subexpression elimination, computing (b-c) in line 18 and using it in lines 20 and 40. This
means that the computation of (b-c) and its use in computing a*(b-c) at line 20 both occur
before the timer is created in lines 21-29; or started in lines 30-33. The result is that the
timer does not measure the cost of computing a*(b-c)! In the second case, {z*5) is
computed n line 47 before stopping the timer (lines 48-51). Again the optimization is
legal since the value of z cannot be affected by the stop timer cali. The consequence is that
the cost of (z*5) is incorrectly attributed to the timer. Thus, the cost of a*(b-c) is not
counted when it should be and the cost of (z*5) is counted when it shouldn’t be. This is

clearly inconsistent with the user’s intentions.

103

1: .section “.data” 29: call tau_profile_c_timer; nop

2. size .34 30: set.3,%i5 T

3: .align4 31: Id [%i5],%00 tmer on
4. .3: 3Z: mov %00,%00

5: .word 0x0 33: call tau_start_timer; nop

6: .global f 34: set x,%i5

7: .section “.text” 35: Id [%fp+68],%i4

8: .align4 36: add %i4,%l1.%i4

9: .procd 37 st %id,[%i15) (b-c)*d
10: f 38: sety,%i5

11: save %sp,-112,%sp 39: 1d [%fp+80),%i4

12: st %i0,[%fp+68] 40: smul %i4,%10,%id

13 st %il,|%fp+72] 41: st %id,[%i5]

14: st %i2,[%fp+76] (b-c) 42: set x,%i5

15: st %i3,[%fp+80] 43: 1d [%i5],%i5

16: 1d [%fp+72],%i5 44: sety,%i4 (z*5)
17: 1d [%fp+76],%i14 a*(b-c) 45: 1d [%id]),%i4

18: sub %i15,%i4.%10 46: add %i5,%i4,%10

19: Id [%fp+68],%i5 47 smul %I10,5,%10 Timer off
20: smul %I10,%i5,%I11 48: set.3,%i5

21: set.3,%00 49: 1d [%i15],%00

22: mov %00,%00 50: mov %00,%00

23. set .l4,%o0l ' 51: call tau_stop_timer; nop 6+2*5)
24: mov %ol,%ol 52: L2

25: set.L5,%o02 53: add %10,6,%i0 e
26: mov %02,%02 54: ret; restore

27: set Oxffffffff, %03 55: .type f#function

28: mov %03,%03 56: .sizef,.-f

Figure 37. Optimized assembly code for routine f

Thus, we have demonstrated the two key problems in source-level instrumentation
in the presence of optimization: performance instrumentation may inhibit the application
of optimizations, and optimizations may not preserve the semantics of the
instrumentation. Existing tools typically avoid these problems by allowing

instrumentation only at the routine level. We next propose a mechanism that would allow

104

(input)
Y

optimizing compiler

(optimized output)

Figure 38. Traditional optimizing compiler

accurate instrumentation down to the granularity of source-level statements despite

aggressive optimizarions.

5.3 Instrumentation-Aware Compilation

An instrumentation-aware compiler preserves the semantics of instrumentation in
the presence of optimizations. Figure 38 shows the model of a simple optimizing
compiler. Figure 39 shows the extensions needed for an instrumentation-aware compiler.
In that figure, the source code annotated with instrumentation is first fed into a de-
instrumentor that strips the annotations and extracts an instrumentation specification. The
de-instrumented program is fed into the compiler. Since all instrumentation has been
removed, it can not affect optimization. During compilation, the de-instrumented code is
also analyzed to produce mapping tables that are updated to reflect code transformations.
The mapping information relates the output of the optimizer to the de-instrumented input.
It is fed. along with the optimized output and the extracted instrumentation specification to

the instrumentor which re-introduces the required instrumentation, attributing the costs of

105

(annotated input)

Y

de-instrumentor instrumentation
+ specification

N
de-instrumented
input
optimizer
mappin
ables
. ~
(optimized output)
— instrumentor -y

Gnstrumented output)

Figure 39. Instrumentation-aware compilation model is cognizant of optimizations

source statements to individual instructions appropriately. The output of the instrumentor
is then sent to the back end which generates object code for the target platform. The result
of these transformations is that the instrumentation-aware compiler can now generate
optimized object code that has better placement of instrumentation annotations for

performance measurement.

106

The maintenance of mapping information during compilation is key. An
optimizing compiler has three distinct phases: parsing, optimization, and code generation
as shown in Figure 40. A front end parses the source code to build an internal
representation of the code. This code list may be in the form of an abstract syntax tree or a
forest of directed acyclic graphs. During parsing, as tokens are processed, valuable source
information flows through the front end. To build mappings, the first step is to extract
source-level information from the parsing phase and store it in the internal representation.
The internal codelists are fed to the optimizer. Typically, optimizers prefer input in the
form of a flow graph. A flow graph describes the flow of control and data in the program.
So, the code lists need o be transformed before the optimizer can perform a sequence of
code transformations. The key to building source-level mappings is to preserve the source
information during these transformation phases. Appendix I shows examples of ditferent
optimizations and how a compiler can maintain correspondences between unoptimized
code and optimized code during each transformation phase. During transformation,
instructions in the original code list are re-ordered, copied, and deleted. It is important for
routines that modify the code list to also keep track of source-level information to prevent
any loss of mappings. The mapping correlates individual instructions in the optimized
output to the original source-level statements. For further detail, we describe a prototype

implementation of an instrumentation-aware compiler for the C language.

107

(source code)
M

front end

Y

(code list)
Y

optimizer

(optimized code list)

S

optimizing
compiler

(object code)

Figure 40. Structure of a typical optimizing compiler

5.3.1 Prototype Implementation

Our prototype of an instrumentation-aware compiler supports performance
instrumentation in the form of timer registration, start and stop calls. We started with the
source code of the compiler used in the FULLDOC [50] project at the University of
Pittsburgh. That compiler extended the publicly available and portable lcc [31] C compiler
to include optimizations and support for debugging. It performs statement and loop level

optimizations such as constant propagation, loop invariant code motion, dead code

108

~ A
source code
L J _1

front end = de-instrumentor

P * instrumentation
(code list) @urce code, symbolh requests

optimizer
mapping
instrumentor

+ tables

(optimized code Iist)_,
back end - ___.._(annotated code list)

T =R T ek 1
— ~ instrumentation-aware compiler

linker 4_(libraries)
S
(executable)
A

Figure 41. Structure of an instrumentation-aware compiler

elimination, partial redundancy elimination, register allocation, and folding. In addition,
the compiler maintains mappings [52] that relate source code locations to corresponding
locations in the optimized code through muitiple phases of code transformations. This
enhanced compiler was used to implement a comparison checker (COP) [51] that
compares the computed values of executions of optimized and unoptimized codes; when

these differ, it can point out the source location where values differed and which

109

optimizations were responsible for the differences. This technique is used to debug and
validate an optimizer. It was also used to build a full reporting debugger (FULLDOC) that
can stop a program between any two source statements and report values of all variables in

the optimized program using a combination of static and dynamic information.

While the enhanced optimizing Icc compiler had mappings and optimizations, it
was geared towards setting breakpoints between any two statements in the source code
and recreating the values of variables at those points. For performance instrumentation, we
needed to track the contribution of statements between a pair of start and stop
insirurentation calls in the source code, but we were not interested in exploring the state
of the program by querying the values of the variables. The information we needed for
fine-grained performance instrumentation was not available in the compiler, so we made a

number of straightforward extensions to the compiler.

Figure 41 shows the structure of our prototype instrumentation-aware compiler.
The following describes each of the added components needed to build our

instrumentation-aware compiler as indicated by the shaded rectangles in Figure 41.

5.3.1.1 De-instrumentor

As shown in Figure 42, the de-instrumentor removes all instrumentation from the
code, building the de-instrumented source code, the instrumentation specification, and the
symbol mappings. We implement it as a source-to-source translator that recognizes

instrumentation annotations by their JAU_ prefix. As an example, typical timer

110

(source code)

I"—""__'*_I—___'I

: front end

: Y

| . -
| (routme lnforrnauov
[

|

|

|

|

de-instrumentor

-

instrumentation
removal
gk Nl
-~ \
'/ de-instrumented instrumentation instrumentation
t source code specification symbols
“\._ ~ vy

Figure 42.© Structure of a de-instrumentor

deciarations and timer start and stop calls were shown in Figure 35. Note that they are
created inside a routine. Thus, the same timer symbol (f in Figure 35) may be used in
different routines with different scope. The instrumentation specification produced by our
de-instrumentor, records both location and scope. Each location is a tuple comprised of the
source file name, the row (or y co-ordinate) and the column number (or X co-ordinate) in
the source file. The properties of timers (the group to which they belong, name, symbol
and their scope) are stored separately in an instrumentation symbols file which is compiled
along with the de-instrumented source file. Entities in the symbols file are static variables
with global scope. They are used as arguments for timer declarations and thus do not

interfere with any optimizations in the compiler. The de-instrumentor replaces each

111

instrumentation annotation with a blank line, retaining the original line numbering scheme

of the annotated scurce code.

The de-instrumentor for our prototype implementation consists of a compiler front
end phase that passes through the source to produce routine location information (routine
name and extent of routine 1n terms of location of its starting and ending position). It was
convenient to use the front end from the optimizing compiler for this to maintain
compatibility in routine naming schemes. The routine information, along with the original
source code is fed to the instrumentation removal phase. In this phase, instrumentation
constructs are recognized and separated from the source code. This is achieved with a
simpie token parser based on lex and yacc umix tools. Instrumentation annotations are then
cornbined with routine information to construct timer names with globai scope; this 1s
done by appending the local name to its routine name (e.g., in our case, a timer ft in
routine fis called f_ft in the global scope). This design permits the presence of multiple

timers within a routine as well as in different routines in the compilation unit.

5.3.1.2 Instrumentor

In our implementation, the instrumentor handles three timer instrumentation calls:
register, start and stop timer. It annotates the code list with appropriate calls and passes it

to the code generating back end.

Start and stop timer annotations around a section of code are interpreted by the

instrumentor to mean that all optimized instructions with source correspondences in the

112

Instrument:
for each timer t
for each source range r of
state = INACTIVE; previous = null;
for each instruction i
if i belongs to r then
if state is INACTIVE then
allocate instrumentation to start { before executing 1
previous = 1; state = ACTIVE,

end if
if state is ACTIVE then
previous =1;
end if
end if

if i does not belong to r then
if state is ACTIVE then
allocate instrumentation o stop t after executing previous
previous = nuli; state = INACTIVE;
end if
end if
end for
end {or
end for

Figure 43. Algorithm for fine-grained source-level perfommace instrumentation

delimited region of code are to be instrumented. This interpretation is tool-specific and
may vary for different kinds of instrumentation. The algorithm we use here is shown in
Figure 43. The accuracy of instrumentation produced by this algorithm depends on the
presence of complete source-level mapping information for each instruction. (We did not

have complete information as discussed in Section 5.3.4.)

113

53.1.3 Back end

The back end converts the instructions to assembly code which is passed to the
assembler. The back end is responsible for interpreting the instrumentation annotations in
the code list, according to our prototype implementation. Eﬁch instruction in the code hist
has an ordered list of timers associated with it. The properties of each timer include its
qualified name, operation (start or stop) and location (before or after the instruction
executes). The back end examines this list and generates instrumentation accordingly. To
instrument the application, we used the fast breakpoint scheme proposed by Peter Kessler
138]. This scheme allows us to implement low-overhead breakpoints for performance

inustrunentation. The prototype implements fast breakpoints for the Sparc processor,

which ncludes register windows [1135].

To plant a fast breakpoint before an instruction that calls a measurement library
routine, the scheme replaces the instruction with a branch instruction to the breakpoint. At
the breakpoint, state registers are saved and the measurement routine is called. After it
executes, registers are restored and the replaced instruction is executed and normal
execution resumes, as described in [38]. Although storing the execution state normally
includes saving the floating point registers, saving them would involve allocation of space
which is expensive. To avoid this, we exploit the fact that our measurement routines do not

perform floating point operations and consequently we do not save and restore them.

This scheme is light weight as compared to unix level breakpoints that involve the

use of a signal (SIGTRAP) and have an overhead of the order of milliseconds. Using cur

114

prototype, the overhead of a pair of TAU start and stop calls is just 2.16 microseconds.
(This cost was determined by amortizing over ten million calls to a profiled routine and
includes both the TAU overhead for profiling as well as the fast breakpoint overhead as
observed on a Sun UltraSPARC-IIi processor running at 440 MHz under the Solaris 8

operating system.)

5.3.2 Perturbation Issues

Instrumentation can perturb the performance of an application. No matter how low
the instrumentation overhead, the presence of instrumentation can change the
computation, creating a probe-effect [32]. Because of the small relative difference between
the execution time of a code segment and the instrumentation overhead needed to measure
it, the fine-grained instrumentation that we support can in fact have greater impact on the
perturbation than previous routine-based instrumentation. The pressure on tools to
generate fine-grained instrumentation conflicts with the pressure to reduce the overhead of
instrumentation, forcing trade-offs. Our approach allows the user to selectively request
fine-grained instrumentation which will have a lower overhead than instrumenting all
statements. We also provide access to the low-overhead free running timers and hardware
performance counters found on most microprocessors, further minimizing measurement
overhead. Such a hybrid instrumentation approach, using both non-intrusive hardware
measurement options and intrusive software-based instrumentation allows us to balance

the measurement overhead. However, it is beyond the scope of this work to eliminate or

115

compensate for this overhead for parallel programs, that is best addressed by other
research in this area. Previous work, for example, has produced techniques for
perturbation compensation in order to minimize the distortion of performance data
[71][72]. Although, we do not directly implement. a perturbation compensation scheme in
our work, we believe the interface with the compiler will help to identify points where
there may be significant perturbation effects. This will be important for future perturbation

control techniques.
5.3.3 Results

The instrumentation-aware compiler prototype generates accurate, fine-grained

measurements in the presence of aggressive optimizations. Figure 44 shows, for exampie,

the code produced for the staterments computing the coniribution of x, y and z from the
code previously seen in Figure 35. Instrumentation calls were inserted to time the entire
routine as well as statement-level timers (in this case to evaluate the contribution of
evaluation of x, y and z). Note that after entering routin;a f(line 5), the control branches to
a fast breakpoint (FBI_f at line 36) where the registers are saved (line 38) and two timers
are created (lines 40-60) — one for the routine f and another for the timer f (called f_ft here
as its scope is within routine f). The computation of (b-c) occurs at the breakpoint FB2_0
(line 75) after the timer ft is started (line 73). Dashed arrows in the figure show the path of
execution. The flow returns to the routine (line 15) and x is computed (lines 17-22) by

multiplying (b-c) to a (line 20) and adding the result to a (line 21). Next, y is computed

[

-
-

13 R 1D b b g
St de Sy

3

t

o B
X o

30
3L
32
33
34:
35
36:
37
38:
39:
40:
41:
42:
43:

45:
46:
47:
48:

Rl R Ry

B et e bt b et ma e
el Al

: o

.global { 49:
Section “.text” 50
.align 4 3
.proc 4 52
f: 53:
ba,a FBI_f 54:
FB2_f: 55:
st %i0, [%fp+68] 56:
sk %il,[Zefp+72] 57
st %i2,[%fp+T76) 58:

st %i3,(%{p+80)

\

sel x,%tS
K [Ffp+68],%id

d [%fp+68],%I17
smul %10,%17,%17 / —npak 68:
x=a+a*(b-c) \

add %14.%17.V (b-c) | o
st %id, [%i5] =(b-c)*d 70:
sel v, %15 Y () 1 7i:
1d 1% p+80), %id 1 72
smul %14, %10, %14 | FER
st Gpid,[%i5] |7
seix,%i3 branch FB2_3 A
Id [%i5], %15 - 76:
1d [%id), %id - 78:
o FBzi/FB 1.3 -~ 79:

FB1_3: - S#gz S 8
smul %10,5,%i5 w=3%2+6 \ 8k
- | B2

add %i5,6,%i0

nop; ba,a FB3_f 83:
FBI_f: \ g4.
nop ' gs:
save %sp,-96,%sp 86:
set tautimer_f, %00 87:
mov %00, %ol 88:
set tautimer_f_al, "ol £9:
mov %ol, %ol 90:
set tautimer_f_a2, %02 91:
mov %02, %02 92:
set tantimer_f_a3, %10 03:
Id [%]10], %03 94:
mov %03, %03

call tau_profile_c_timer;

59:
FB1_0 =

Id [%fp+72].%i5 . :
1¢ [%fp+76],%id \ 61.
ba,a FB2_ 62:
FBI 0 a*(b-c) 63:
\ 64:

/ \ e
s 66:

+a*(b-c) =

116

nop
sei f_ft, %ol

mov %00, %ol
setf_ft_al, %ol

mov %ol, %ol

set f_ft_a2, %o2

mov %02, %o

set f_ft_a3, %10

Id [%l0], 9203

mov %ol, %03

call tau_profile_v_timer,
nop

set tautimer_f, %1

]
|
1d[%I11], %00 |

mov %00, %ol *
call tau_stari_timer; nop
restore; Fast Breakpoint

save %sp,-104,%sp
ba,a FBZ__‘['/
FB2_0:

save bsp,-96,%sp

setf_ft, %1 start()

Id[%I11), Fecl (b-C)

mov So00), %ol

call tau_start_timge! nop

restore; branch FB1 0
sub %is3.%id, %10

ba,a FB1_0 =X+y
FB2_3:

add %i5,%i4, kloA"topO

save osp,-96,%sp

set f_ft, %1

1d[%11], %00 branch FB1_3

mov %00, %ol

call tau_stop_timér; nop
reslore;

ba,a FBI_3

FB3_T:

nop

save %sp,-96,%sp

el tantimer_f, Zol1
1d[%=11], %ol

mov %00, %00

cal! tau_stop_timer; nop
reslore;

ret; restore

Figure 44. Optimized code generaled by the instrumentation-aware compiler

117

(lines 28-29) by re-using (b-c) and multiplying it with d (line 25). To compute z, x and y
are loaded (lines 27-30) and the flow branches to the fast breakpoint FB2_3 (line 31)
where ¢ is computed as (x-+y) (line 78) before stopping the timer Ji (line 83) and returning
to the routine at label FBI_3. This is followed by computing w (lines 33-34) by
multiplying z with 5 (line 33) and adding the result to 6 (line 34). So, the timing of ft
inciudes the computation of x, v, and z and excludes the computation of w as the

instrumentation specifies; the time for computing (b-c) is included in the measurement.

The assembly file, as shown in Figure 44 is then converted to binary code by the
assembler. When the binary file is linked with measurement libraries and executed, it
generates performance data as shown in Figure 45, showing the time spent in the timer ft

(*Contribution of x, yand z [f{)]").

5.3.4 Incomplete Source-Level Information

In order to accurately measure all code, an instrumentation-aware compiler needs
complete mappings from all generated instructions to the source level. Because such
complete mappings were not needed for debugging, they were not available from the
FULLDOC compiler. Specifically, we needed additional information on arguments 10
routines, jump instructions, routine invocations, and compiler generated variables. We
were able to get some of this information by examining the generated instructions that did
not map to the source level. If such an instruction were the definition of a variable (def

point) created by the compiler, for example, the variable was probably a temporary that

wr

118

Pt Contribution of x,y and 2 [1()]
/ 250% [|mean
mean (R]
| 2.50% n,c,t00,0
1000 (] r o
¥ |
¥
Ele Veua Ouer Mode o = .
ne10,00
82 50% main Contribution of x,y and z [1()]
1500%) |f t
2.50% | Contribution of x,y and z [1()) main
-others—
= not,
Ba QOrver
‘;l;-_--. ---;;;;---.t;-tll maec B #call “";:ubn usec/call na;:‘-“-. ISR R SRS S
w0 oo 004 O 2 4 P)
115 @ 006 o 007 2 2 a B
" o3 o 001 aon H] 0 tertribution of x.y and & [£()]

-d b T L s e E

o
i
|

i
=

Figure 45. Performance data from an optimized program compiled with the
instrumentation-aware compiler

was used elsewhere. In such a case, we employed the compiler’s def-use analysis to

compute the set of instructions that use the temporary such that there is a path in the

contro] flow graph from the define point to the use that does not re-define the variable [2].

We then recursively computed the source location of all instructions in that set to form the

mapping. To include the mapping of routine invocations and their arguments, we extended

the parser to record the needed routine and argument information in the instruction data

structure and ensured that all compiler routines subsequently copy the contents of this data

structure as well. With these techniques, we were able to improve the coverage of our

mappings.

119

TABLE 3: Mapping information for three benchmarks

SIMPLE NAS 2318 ZPL Jacobi
Total optimized instructions in codelist 4637 3924 11074

Instructions missing source mappings 1170 (25.2%) 837(21.3%) 1778 (16%)
JUMP instructions 519 (6.8%) 383 (9.7%) 619 (5.5%)
Instructions with source mappings 3467 (74.8%) 3087 (78.7%) 9296 (84%)

To determine the extent of missing source-level mappings, we took three
benchmarks: the NAS Parallel Benchmark 2.3 IS suite from NASA [8], the MPI version of
the SIMPLE hydrodynamics benchmark from LLNL [67], and the Jacobi ZPL program
from University of Washington [68][21]. We ran each of these programs through our
prototype and calculated the number of optimized instructions in the codelist that were
missing source-level mappings. Table 3 shows that the percentage of instructions that did
not have source-level mappings ranged from 25.2% for the SIMPLE benchmark to 16%
for the ZPL Jacobi benchmark. It also shows the contribution of TUMP instructions to this
missing information. Thus, these benchmarks show that 74% to 84% of optimized
instructions in these specific benchmarks had source-level mappings associated with them.
We believe that this missing information is available from the optimizer and we are

continuing our implementation efforts to produce it.

It for a particular implementation complete mappings are not available, however, it
is possible for the instrumentor to initiate a dialogue with the user to help bridge the gap. It
can show the source code in the vicinity of the instrumentation request location, (Figure 46

shows a portion of source code for the SIMPLE Benchmark) and show the available

120

404 if (irecv) |

405 MPI_Irecv(recvbuff,2, MPI_DOUBLE,sr¢,lag. MPI_COMM_WORLD,
&recv_request);

406 |}

407 if (isend) {

408 sendbuff[0] = r[xlo+xdeltax][ylo+xdeltay];

409 sendbuff{1] = z[xlo+xdeltax][ylo+xdeltay];

410 MPI_Isend(sendbuff,2, MPI_DOUBLE dst.iag, MPI_COMM_WORLD,
&send_request);

411 i

Figure 46. Source code of an MPI application

the user to specify the location in the optimized code list where an instrumentation call

¢ should be inserted While this approach goes against the goal of transparency of
instrumentation, it may be very useful to the sophisticated user during the performance
experimentation process. The instrumentor might also want to initiaie a dialogue with the
user in the case where it determines that the instrumentation request is not feasible. For
example, in a message vectorization optimization, several small message communication
requests are replaced by one message communication that appends several small buffers in
a vector and performs the communication request. If the user places fine-grained
instrumentation around one such message synchronization operation, and the
instrumentation in the optimized code can only account for the time for the aggregated
message operation, the instrumentor may classify the instrumentation request as infeasible
and communicate this to the user. The other alternative in this case may be to partition the
observed latency and/or bandwidth for the large message in terms of smaller messages, but

this could lead to erroneous results. Thus, there are some cases, when the instrumentor

FUNCTION: reflect_boundary
LABEL 392:
OPT: $611=1 SRC:{ek-simple.c.tau.c, x=1, y=400}
OPT: $610=myindex-numcols SRC:{ek-simple.c.tau.c, x=1, y=401}
LABEL 393:
LABEL 385:
OPT: $613 ==0L411 SRC:{ek-simple.c.tau.c, x=8, y=404)
OPT:. ARG recvbuff SRC:{ek-simple.c.tau.c, x=6, y=405}

OPT: ARG 2 SRC:{ek-simple.c.tau.c, x=6, y=405}
OPT: ARG 11 SRC:{ek-simple.c.tau.c, x=6, y=405}
OPT: ARG $612 SRC:{ek-simple.c.tau.c, x=6, y=405}
OPT: ARG $614 SRC:{ek-simple.c.tau.c, x=6, y=405}
QOPT: ARG 91 SRC:{ek-simple.c.tau.c, x=6, y=405}

OPT: ARG recv_request SRC:{ek-simple.c.tau.c, x=06, y=405]
OPT: CALL MPI_Irecv SRC:{ek-simple.c.tau.c, x=15, y=405}
LABEL 411:
LABEL 394:
OPT: $611 ==0L1412 SRC:{ek-simple.c.tau.c, x=8, y=407}
OPT: $609=ylo+xdeltay<<3 SRC:{ek-simple.c.tau.c, x=6, y=409} SR(:{eck-sim-
ple.c.tau.c, x=6, y=408)
OPT: $608=192*xlo+xdeltax SRC:{ek-simpie.c.tau.c, x=6, y=409} SRC:{ek-sim-
ple.c.tau.c, x=6, y=408}
OPT: sendbuff=r|$608][$609] SRC:{ek-simple.c.tau.c, x=6, y=408}
OPT: sendbuff[8]=z[$608][{$609] SRC:{ek-simple.c.tau.c, x=6, y=409}
OPT: ARG sendbuff SRC:{ek-simple.c.tau.c, x=6, y=410}

OPT: ARG 2 SRC:{ek-simple.c.tau.c, x=6, y=410}
OPT: ARG 11 SRC:{ek-simple.c.tau.c, x=6, y=410}
OPT: ARG $610 SRC:{ek-simple.c.tau.c, x=6, y=410}
OPT: ARG $614 SRC:{ek-simple.c.tau.c, x=6, y=410}
OPT: ARG 91 SRC:{ek-simple.c.tau.c, x=6, y=410}

OPT: ARG send_request SRC:{ek-simple.c.tau.c, x=6, y=410}
OPT: CALL MPI_Isend SRC:{ek-simple.c.tau.c, x=15, y=410}

Figure 47. Mapping table for a small portion of the code

121

may choose to deny the instrumentation request and report the reasons for doing this to the

user.

The notion of cooperation, in the form of a dialogue, between the compiler and the

user is not new. It has been used in vector compilers [138] and Parallelizing compilers [66]

122

where a compiler reports on parts of the program that cannot be effectively vectorized or
transformed into concurrent code segments and the reasons why it cannot do so. This

helps the user restructure the code and achieve better performance.

3.4 Case Study: Successive Program Transformations in ZPL

Some high level languages such as ZPL or HPF are typically compiled in multiple
stages using successive optimizing transformations. A program written in ZPL, for
example, is converted by the ZPL optimizing compiler to a C program, which is then
compiled and further optimized by the C compiler. From there, ZPI. programs are linked
with the runtime system libraries to produce a parallel executable 1mage, as shown in
Figure 48. Instrumentation-aware compilation will need to be applied in both compilers as
shown in Figure 49. For this case study, we did not implement a full version of the
instrumentation-aware ZPL compiler and are thus limited to instrumenting each statement
in ZPL (that is, we do not have a de-instrumentor/instrumentor that would allow selective
measurements). The first transformation from ZPL to C produces mapping tables that
relate the optimized C code to the ZPL source code. Those mappings were originally
generated for the ZEE debugger [76). Figure 50 shows the code for the ZPL Jacobi
benchmark. Figure 51 shows the mapping that relates the ZPL source lines (in column 1)
to corresponding C computation (in column 3); columns 2 (pre) and 4 (post) show the
extent of loops involved in the computation of the ZPL statement. We then instrumented

the C code, as shown in Figure 52, manually, using only the information generated by the

123

(ZPL program)
3

ZPL compiler

v
thlmized C code)
v

Optimizing compiler
optimized binary
code

B
linker

v

optimized
executable image

Figure 48. ZPL’s compilation model

runtime system
libraries (MPI)

ZPL. compiler for mapping. The hand instrumentation phase generates an instrumented C
program as shown 1n Figure 53. We generate optimized code for it by compiling it with
our prototype C compiler. Thus, the original ZPL. code undergoes two stages of
optimizations — one by the ZPL compiler and the other by the C compiler before

gerierating the instrumented code.

This process provided good coverage for the source code, but ZPL uses a complex

runtime layer for achieving portability, using both a portable layer, [IronMan [22] that

_C ZPL program

ZPL compiler

Y

map

ab
<0ptimized C cody

pin

-—p= C instrumentor - |[-———
. + ‘-‘\
(mstrumcnted C code)

de-instrumentor

Y

de-instrumented
code

Y

optimizer

(optimized 0utput)

I |

instrumentation }
specification j

Cthnes

.——.}

instrumentor, back end

Cinstrurnented object)

Y

C MPI li;raryj

wrapper library

Y

linker wrapped MPI
* library

C executable image)

Figure 49. Multi-stage instrumentation-aware compilation in ZPL

17 procedure Jacobi(),

18 begin

19 [R] A :=0.0; -- Initialization
20 [north of R] A :=0.0;

21 [eastof R] A:=0.0;

22 [westof R] A :=0.0;

23 [southof R] A:=1.0;

24

25 [R] repeat -- Body

26 Temp = (A@north+A @east+A @west+A @south)/4.0;
27 err ;= max<< fabs(A-Temp);

28 A :=Temp;

29 unti] err < delta;

30

31 [R] writeln(A);

32 end:

Figure 50. Source code of a ZPL program

ZPL C-pre C C-post

17
18
19
20
21
22
23
24
25
26
27

28

-1 -1 -l

70 67 74
91 88 95
112 109 116
133 130 137
154 151 158
-1 -1 -1
171 -1 -1
252 249 256
257 -1 -1
287 284 291
-1 -1 -1

Figure 51. Mapping Table from the ZPL compiler

targeis different modes of inter-process communication, and the MPI library. To measure

time spent in the runtime system, we used the multi-level instrumentation strategy

presented in Chapter III. To target the contribution of IronMan, we again use the

126

108 {

109 /* begin MLOOP **%*]ine 21 of jacobi.z */

110 for (_i0 =_REG_MYLO(_R_east_of R,0); _i0 <=
_REG_MYHI(_R_east_of_R,0); _i0 += _REG_STRIDE(_R_east_of_R,0)) {

111 for (_il = _REG_MYLO(_R_east_of_R,1); _il <=
_REG_MYHI(_R_east_of _R,1); _il += _REG_STRIDE(_R_east_of R,1)) {

112 (*((double *)_F_ACCESS_2D(A,_i0,_i1))) = 0.0;

113 }

114 }

115}

116 /* end MLOOQOP */

Figure 52. Optimized C program generated by the ZPL compiler

instrumentation-aware compiler; this time to instrument IronMan routines. 1o target the
* contributions from MPI, we use the MPI Profiling interface, and generate a wrapper

interpesition library to target its instrumentation.

This multi-level instrumentation framework targets one common measurement

- API, and streams of performance data flow into one common performance data repository
to present a seamlessly integrated picture. The interfaces cooperate with each other: MPI
wrapper library knows information about the rank of the MPI process and the compiler-
based instrumentation interface uses this information to store data in appropriate files after
the top level routine exits from the program. Figure 54 shows a profile of the optimized
ZPL program. Note that ZPL program statements, such as “fR] A:=0;" and “err :=
max<<fabs(A-Temp)’ are integrated in the profile with the ZPL runtime system entities,

such as “_SetupRegionWithDirections,” and MPI level entities, such as “MPI_Recv()”.

This ZPL case study shows us how to apply multi-level instrumentation for wider

coverage, and how to integrate multiple cooperating instrumentation interfaces. It also

127

tinclude “jacobi_usr.h”

void Jacobi() {

TAU_PROFILE_TIMER(t19, “[R] A:=00;",“*“ | TAU_USER);
TAU_PROFILE_TIMER(120, “[north of R] A:=0.0;",““, TAU_USER);
TAU_PROFILE_TIMER(t21, “[east of R] A:=0.0;",““, TAU_USER);
TAU_PROFILE_TIMER (t22, “[west of R} A:=0.0;",“*“, TAU_USER);
TAU_PROFILE_TIMER(t23, “[south of R] A:=1.0;",““, TAU_USER);
TAU_PROFILE_TIMER(t25, “[R] repeat”, * “, TAU_USER);,
TAU_PROFILE_TIMER(t26, “Temp := (_A@north+A@east+A@west+A@south)/
L0, ¢ TAU_USER);

TAU_PROFILE_TIMER(t27, “err := max<< fabs(A-Temp);”, “ *, TAU_USER);
TAU_PROFILE_TIMER(128, “A := Temp;”, “ “, TAU_USER);
TAU_PROFILE_TIMER(i31, “[R] writeln(A);”, *“ * , TAU_USER);

{ /* begin MLOOP *** line 21 of jacobi.z */
: for(_i0= __REG__MYLO(__R_east_of__R,O); _i0 <= _REG__MYHI(_R_east_of_R,O):
10 = ~REG_STRIDE(_R_east_of_R,0)) {
for (_il = —REG_MYLO(_R_east_of_R,1); il <=

REG_MYHI(_R_east_of_R,1); _il += -REG_STRIDE(_R _east_of_R,1)) {

TAU_PROFILE_START(t21);

(*((double *)_F_ACCESS_2D(A,_i0,_i1))) = 0.0;

TAU_PROFILE_STOP(t21);

} }

} #* end MLOOP */

Figure 53. Instrumented C code the ZPL application

shows the viability of applying our instrumentation model to multiple stages of
optimizations from two different compilers, cascaded to form an optimized executable

with both fine-grained statement and coarse-grained routine level instrumentation,

128

B Configure Heip Ple VYalus Omder Mote 3 Help
nct 1,00
47.74% em— [R] repeat J
mean I
L L5l A:=00; -
n,ct0,00 ' . |
nct100 6.94% [| e := max<< fabs(A~Temp); !
nel1200 Ternp = (A@north+A@ east+A@w .
nct 300 B!
v
5 writeln(A); !
0.19% | _SetupRegionWithDirectlons
Ha VYale W o Mote Init iy X Heip 2’15% !?:?ino_inﬁln g o.o; Wi
n,c,t 0,00
22.56% MPI_Recv() clese
17.07%| |MPI_Barrier{) — o o T
l MPI_Wait{) : ep_!ﬁ_?_ -m i+ TAGwestri] s ||
repeat | ‘Ble Velue Mods Help
MPI_InitD .
Jacobl Temp := (A@north+/
2.05% || err := max<< fabs{A-Temp); £.51% [mean
2.00% ll Temp := (A@north+A@east+A@west+s
180%[| A = Temp; 2.00% n,c.10,0,0
A :=00; 6.52% net1,00
0.19% | MPI_Finalize() ‘li| ©84% nect200
“0.15% ([A] writeln(A}; Nl 7O7% nct300 i
0.05% | SetupReglonWithDirections i 7
5T B T Ry T e e] || | e e R T T T |
: _' .. closs m I1

Figure 54. Performance data froni the optimized ZPL program compiled by the
instrumentation-aware compiler

5.5 Conclusions

Performance tools that limit the choices of instrumentation consequently limit
performance exploration. Typically, compilers don’t support fine-grained instrumentation
because 1t can interfere with optimizations. In this work, we developed a model for
instrumenting a program in the presence of compiler transformations, allowing users to

explore the performance characteristics of their code with much finer resolution. Rapidly

129

evolving programming environments that use diverse language, execution model,
compiler, and runtime system technologies [13] often make it difficult to perform even
simple performance experiments. We have illustrated here that it is possible to map data
from multiple levels of instrumentation back to the source level, in order to present a

coherent, and unified view of an execution.

130

CHAPTER VI

CONCLUSIONS

Empirical performance evaluation is a process to characterize, understand and
improve a program’s performance based on the performance observation of real systems.
Instrumentation 1s the heart of performance observatiun as it determines when, where, and
how performance measurement can be performed. In this dissertation, we address three of
the most egregious limitations of instrumentation and measurement in cxisting
performance evaluation tools: limited execution coverage, lack of abstraction of low-level

data, and the granularity of observation.

Existing performance tools typically focus on just one level of program
representation, introducing instrumentation at a single stage of program transformation,
from source to compilation to execution, resulting in gaps in coverage. The limited
vbservation scope becomes a serious problem in complex environments where a
combination of languages, compilation models, multi-level software optimization

strategies, and runtime systems is used. We present

* a framework for multi-level instrumentation that supports multiple cooperating instru-

mentation interfaces for performance observation.

131

Such a multi-level strategy is ultimately more powerful than instrumentation strategies
based on single levels of program focus. We describe a performance observation
framework that simultaneously supports instrumentation at the source, preprocessor,
compiler, library, runtime, and virtual machine level. We show the efficacy of the multi-
level instrumentation approach through demonstrations of the framework in case studies
where sophisticated, integrated performance views are produced. These results indicate
that performance observation coverage can be improved when limitations of one
instrumentation level can be overcome through knowledge sharing and support across

levels.

With better coverage comes an increased need to interpret performance data.
While a tool may generate a plethora of low-level performance data. that data does not
help the user understand the program’s performance at his/her conceptual level, unless it is
somehow converted into meaningful performance knowledge. Measurement data must be

related back to the abstractions understood by the programmer. We introduce

* a performance mapping technique called Semantic Entities, Attributes, and Associa-
tions (SEAA} that allows us to bridge the semantic gap between the programmer’s con-

ceptualizations and performance data.

SEAA advances dynamic mapping work in several ways. First, it allows semantic entities
to be created and used in mapping without having explicit relation to program constructs.
Second, it provides a way to encode semantic information into entities for use in

qualifying mapping relationships. Third, it provides the link to dynamic performance cost

mapping based on semantic attributes. Our performance observation framework includes a

132

a prototype of the SEAA performance mapping concept and we show its application to

two case studies,

Flexibility of instrumentation allows for examining the performance of a program
to an arbitrary level of detail. Fine-grained instrumentation at the source level, however,
interacts with compiler optimizations: instrumentation may inhibit compiler
optimizations, and optimizations may corrupt measurement code. We show how to avoid

this by

* extending traditional compilers to instrumentation-aware compilers that can preserve
tha semantics of fine-grained performance instrumentation despite aggressive program

restiucturing.

We also show, with the help of a prototype implementation, how the instrumentation-
aware compilation model can be applied to the compilation of high-level parallel
languages that require more than one compilation (and consequently optimization) phase,
With the help of a case study for ZPL compilation, we demonstrate how low-level
performance data can be mapped to higher-level ZPL statements using a multi-level

instrumentation strategy.

‘The models and techniques presented in this dissertation, lay the ground work for
building an extensible, empirical performance evaluation infrastructure. Such an
infrastructure would allow the configuration of diverse performance observation tools
within a framework. It would support fine-grained instrumentation of source code despite

aggressive optimizations, and it would support multi-level instrumentation, and the

133

mapping of low-level performance data to high-level abstractions. It would provide
unprecedented flexibility i empirical performance observation tc fully explore a

program’s performance space.

134

APPENDIX

MAINTAINING SOURCE-LEVEL MAPPINGS

In Chapter V, we describe how source-level mappings are used by the instrumentor
of an instrumentation-aware compiler to track the contribution of different fragments of
code. Mappings embed a cost model for associating the cost of executing instructions with
source-level entities. Here, with the help of examples, we describe how we can correlate
execution costs and create mappings during statement level optimizations. We study a
variety of optimizations and show how to maintain correspondences between optimized
code and source-level information. Maintaining such correspondences is not new. It has
been studied extensively in the context of debugging optirized code [53] where mappings
relate statement instances between optimized and unoptimized code. Since a set of
transformations may be applied successively on a group of statements, it is important to

maintain the source-level mappings at each stage.

Terminology

In the examples that follow, we represent the unoptimized code on the left and

optimized code on the right. Unoptimized code statements are numbered successively as

135

U\, Us, etc. and optimized code statements are numbered O, O,, etc. S(X) represents a

set of source locations of a statement X. Each source location is a tuple of the form
<iilename, x, y> that represents the location of the row (y) and column (x) number in the
source file. We show below how we can maintain the set of source locations for an

optimized instruction for commonly applied optimizations. We use optimizations as

described 1n [135].

1. Elimination of Global Common Subexpression: duplicate expressions are eliminated

so that the expression is computed once [135].

Ul: x = a+b; Ol: u=a+b;
U2: y = a+b; O2: x=u;
O3 y=u

S(0y) =S(Up) v S(U,)
5(0,) =5(Uy)
S(03) = 5(Ua)
2. Copy Propagation: replace the copy of a vartable with the original variable [2]{135].
Ul: x =a; Ol:x=a;
U2:y=x+5; O2:y=3+35;
S0 =S(Uy)
S(0,) = 8(Uy)
3. Dead Code Elimination: remove statements that define values for variables that are not
used [135].

Ul: x=a;

136

Since there is no optimized code (O,), assigning source locations does not apply

here.

4. Constant Folding: replace mathematical expressions invoiving constants with their

equivalent values [135].

Ul:x=3+5;

5(0,) =5(U))

Ol: x=8;

5. Loop Circulation: interchange more ihan iwo perfectly nested loops [135].

Ul: for (i=0; i<N;i++)

1]2:

U3

Ud:

for (j=0; J <M j++)
for (k=0; k < P; k++)

ALk =c;

S(O) =5(U3)

S(05) = S(Us,)

S(03)=3(U))

S(04) =S(Uy)

O1: for (k=0; k < P; k++)

02:

03:

04

for (j=0; j < M; j++)
for (i=0; 1 < N; 14++)

ARGk} = ¢

6. Loop Invariant Code Motion: remove statements from within loops where computed

values do not change within the loop [135].

Ul: for (i=0; i<N;i++)

U2:

U3:

U4:

Us:

{
Xx=c:
bli]=a+i+3;

}

Ol:

02:

03:

04

0s5:

X=¢;

for(i=0;i <N;i++)
{

bli]=a+i+3;

}

S(01) =S(U3)
S(0,) =S(Uy)

S(04) = S(Uy)

7. Loop Fusion: combine loops with the same headers [135].

Ul: for (i=0; i<N;i++)
U2: {

U3:

(%]

afi] =i+2;
U4: |

US: for (i=0;i <N, i++)
Us: {

U7: blij=3+%i+2;
Us:

S(0p) = S(Up) v S(Us)
S(03) = S(Uy)

S(04) = S(U7)

Ol

02z

: for(i=0;i<N;i+¥)

{

03:

04

05:

afil=i+2;

bli]=3*i+2;

8. Loop Unrolling: duplicate the body of a loop [135]

Ul: for (i=0; i<100; i++)
U2: {
U3: a[ij=i+54;

U4: }

S(0)) =S(U3)

Ol:

02:

03:

{

04:

05:

a[0] = 54,

for i=1;i< 100; i++)

afil =i+ 54;

}

137

138
5(0y) = S(Uy)
S(04) =S(Uy)

This example illustrates how we can handle a one-to-many mapping where one

statement of an unoptimized program maps tc more than one statement in the optimized

code.

9. Strip Mining: modify loop to utilize hierarchical memory or vector architecture to

reduce cache misses [138][135].

Ul: for (i=0: i<N;i++) Ol: for(j=0;)<N;j=j+SZ)
U2: { 02: for (i =j, 1 < MIN(N, J+5Z-1); i++)
U3: afi]=i*3; 03 |
U4: blil=afi]+5; O4: afi]=i*3:
Us: } 05: bh]=ali] +5;
06:)

S0 =5(U))
S(Oy) =5(Up)
5(0g) = S(Uy)
5(0s) = S(Uy)

10. Loop Unswitching: modify a loop that contains an if statement to an if statement that
contains a loop [135].
U1: for (i=0; i<N;i++) O1: if (k> 24)
U2: { 02: {

U3: if (k>24) 03: for(i=0;i<N;i+)

U4: |

Us: afi]=2*i+3;
ué6: }

U7: else

U8: {

U9: afi]=2*%1-4;
Ul10: }

Ull:}

$(0;) = S(Us)
8(0g) = S(Uy)
5(05) = S(Us)
3(012) = S(Ug)
$(03) = 5(Uy)

S(Oq9) =S(UD)

04: |

05: afi]=2*1+3;
06:)

07: }

08: else

09: {

O10: for(i=0;i<N;i++)
Ol11: {

012: alil =2%-4;

013: }

139

11. Bumping: modify the loop iterations by bumping the index by a preset value [135].

UL: for (i=-2; i< 98; 1++)
U2: |

U3: afil=i+54;

U4: }

SO =S(Uyp

O1: for (i=0;1< 100; i++)
02: |
03: alij]=i+54-2:

04: }

[4]

131

(4]

6]

[7]

141

BIBLIOGRAPHY

V.S. Adve, J. Mellor-Crummey, M. Anderson, K. Kennedy, J. C. Wang, and D. A,
Reed, “Integrating Compilation and Performance Analysis for Data-Parailel Pro-
grams,” Proceedings of the Workshop on Debugging and Performance Tuning for
Paralle] Computing Systems, IEEE Computer Society Press, (M. L. Simmons, A. H.
Hayes, D. A. Reed, and J. Brown, Eds.), Janvary 1996.

A. Aho, R. Sethi, and J. Ullman, Compilers: Principles, Techniques, and Tools,
Addison-Wesley, 1985.

J. M. Anderson, L. M. Berg, J. Dean, S. Ghemawat, M. R. Henzingei, S. A. Leung,
R. L. Sites, M. T. Vandevoorde, C. A. Waldspurger, and W. E. Weihl, “Continuous
Profiling: Where Have All the Cycles Gone?,” Proceedings 16th ACM Symposium
on Operating Systems Principles, October 5-8, 1997, St. Malo, France

K. Amold, and J. Gosling, The Java Programming Language, Addison-Wesley,
1996.

W. Arnold and R. Haydock, “A Parallel Object-Oriented Implementation of the
Dynamic Recursion Method,” Proceedings ISCOPE *98 Conference, LNCS Series,
Springer-Verlag, 1998.

D. Bailey, E. Barszcz, L. Dagum, and H. Simon, “NAS parallel benchmark resuits,”
Technical Report RNR-93016, NASA Ames Res. Center, Moffet Field, 1993.

M. Baker, B. Carpenter, G. Fox, S. Ko, and S. Lim, “mpiJava: An Object-Oriented
Java Interface to MPI,” Proceedings of International Workshop on Java for Parallel
and Distributed Computing, IPPS/SPDP 1999, April 1999,

[8]

[°]

[i0]

[1i]

{12)

{13]

[14]

[15]

[16]

142

M. Baker and B. Carpenter, “Thoughts on the structure of an MPJ reference imple-

mentation,” URL:http://www.npac.syr.edu/projects/pcre/HPJava/ mpiJava.html.

A. Bakic, M. Mutka, and D. Rover, “BRISK: A Portable and Flexible Distnbuted
Instrumentation System,” Proceedings of the SIGMETRICS Symposium on Paraliel
and Distributed Tools, pp. 148, ACM, Aug 1998.

T. Ball and J. Larus, “Optimally Profiling and Tracing Programs,” ACM Transac-
tions on Programming Languages and Systems, 16(4) pp. 1319-1360, July 1994.

E Bassetti, K. Davis, and D. Quinlan, “A Comparison of Performance-Enhancing
Strategies for Parallel Numerical Object-Oriented Frameworks,” Proceedings
ISCOPE ’97 Conference, LNCS Vol. 1343, Springer-Verlag, December 1997.

F. Bassetti, D. Brown, K. Davis, W. Henshaw, and D. Quinlan, “OVERTURE: An
Object-oriented Framework for High Performance Scientific Computing,” Proceed-
ings of SC *98: High Performance Networking and Computing. IEEE Computer
Society, 1998.

P. Beckman and D. Gannon, “Tulip: A Portable Run-Time System for Object Paral-
lel Systems,” Proceedings of the 10th International Paralle! Processing Symposium,
August 1996.

R. Berrendorf and H. Ziegler, “PCL - The Performance Counter Library: A Com-
mon Interface to Access Hardware Performance Counters on Microprocessors,”
Technical Report FZJ-ZAM-IB-9816, Forschungszentrum Jiilich, GmbH, Germany,
October 1998.

F. Bodin, P. Beckman, D. Gannon, J. Gotwals, S. Narayana, S. Srinivas, and B, Win-
nicka, “Sage++: an Object-oriented Toolkit and Class Library for Building Fortran
and C++ Restructuring Tools,” In Proceedings of Second Annual Object-Oriented
Numerics Conference, 1994.

F. Bodin, P. Beckman, D. Gannon, S. Yang, S. Kesavan, A. Malony, and B. Mohr,
“Implementing a Paralle] C++ Runtime System for Scalable Parallel Systems,” In
Proceedings of Supercomputing’93, pp. 588-597, November 1993.

(7]

[18]

{19]

[20]

121

[23]

[24]

[25]

143

R. Boisvert, J. Moreira, M. Philippsen, and R. Pozo, “Java and Numerical Comput-
ing,” Computing in Science and Engineering, 3(2) pp. 18-24, 2001.

S. Browne, J. Dongarra, N. Gamner, G. Ho, and P. Mucci, “A Portable Programming
Interface for Performance Evaluation on Modern Processors,” The International
Journal of High Performance Computing Applications, 14:3, pp. 189-204, 2000.

S. Browne, J. Dongarra, and K. London, “Review of Performance Analysis Tools for
MPI Parallel Programs,” URL:http://www.cs.utk.edu/~browne/perftools-review/.

B. Buck and J. Hollingsworth, “An API for Runtime Code Patching,” Journal of
High Performance Computing Applications, 14(4):317-329, Winter 2000.

B. Chamberlain, S. Choi, E. Lewis, C. Lin, L. Snyder, W. Weathersby, “Factor-foin:
A Unique Approach to Compiling Array Languages for Parallel Machines,” Work-
shop on Languages and Compilers for Parallel Computing, Aug. 1996.

B. Chamberlain, S. Chot, L. Snyder, “A Compiler Abstraction for Machine Indepen-
dent Parallel Communication Generation,” Proceedings of Workshop on Languages
and Compilers for Parallel Computing, Aug. 1997.

K. Chandy and C. Kesselman, “CC++: A Declarative Concurrent Object-Oriented
Programming Notation,” In G. Agha, P. Wegner, A. Yonezawa, (editors), Research
Directions in Concurrent Object Oriented Programming, MIT press, 1993.

C. Clémengon, J. Fritscher, M. Meehan, and Roland Riihl, “An Implementation of
Race Detection and Deterministic Replay with MPL,” Technical Report CSCS TR-
95-01, Centro Svizzero di Calcolo Scientifico, Switzerland, 1995.

B. Cooper, H. Lee, and B. Zom, “ProfBuilder: A Package for Rapidly Building Java
Execution Profilers,” University of Colorado, Boulder, Technical Report CU-CS-
853-98, April 1998.

[26]

[27]

[28]

(30

[31]

[32}

[33]

[34]

144

J. Cummings, J. Crotinger, S. Haney, W. Humphrey, S. Karmesin, J. Reynders, S.
Smith, T. Williams, “Rapid Application Development and Enhanced Code Interop-
erability using the POOMA Framework,” Proceedings of O0’98: SEAM Workshop
on Object-Oriented Methods and Code Inter-operability in Scientific and Engineer-
ing Computing, 1998.

K. Czarnecki, U. Eisenecker, R. Gliick, D. Vandevoorde, T. Veldhuizen, “Generative
Programming and Active Libraries,” in Proceedings of the 1998 Dagstuhl-Seminar
nn Generic Programming, LNCS, Springer-Verlag, 1998.

L. DeRose, Y. Zhang, and D. Reed, “SvPablo: A Multi-Language Performance
Analysis System.” in Proceedings of 10th International Conference on Computer

Performance Evaluation - Modelling Techniques and Tools - Performance Tools 798,
pp. 352-355, Sept. 1998.

1. Fahringer and H. Zima, “A Static Parameter based Performance Prediction Tool
{or Parallel Programs,” Proceedings of the 7 th ACM International Conference on
Supercomputing, July 1993,

T Fahringer, “Estimating Cache Performance for Sequential and Data Parallel Pro-
grams,” Proceedings of HPCN’97, LNCS, Springer-Verlag, April 1997.

C. Fraser, and D. Hanson, “A Retargetable C Compiler: Design and Implementa-
tion,” Benjamin/Cummings Publishing Company, Redwood City, CA, 1995.

J. Gait, “A Probe Effect in Concurrent Programs,” Software Practice and Experi-
ence, 16(3), March 1986.

J. Galarowicz, B. Mohr, “Analyzing Message Passing Programs on the CRAY T3E
with PAT and VAMPIR,” Technical Report TR IB-9809, ZAM Forschungszentrum
Juelich, Germany, May 1998.

G. Geist, M. Heath, B. Peyton, and P. Worley. “A Users’ Guide to PICL; A portable
instrumented communication library,” Technical Report ORNL/TM-11616, Oak
Ridge National Laboratory, Oak Ridge, TN, Sept. 1990.

[35]

[36]

(37]

[38]
139]
140]

(41]

[42]
[43]

[44]

145

J. Germain, J. McCorquodale, S. Parker,C. Johnson, “Uintah: A Massively Parallel
Problem Solving Environment,” Proceedings HPDC’0C: Ninth IEEE International
Symposium ot High Performance and Distributed Computing, August 2000.

GNU Project, “Using and Porting the GNU Compiler Collection (GCC): Invoking
GCC,” URL:http:/fecc.gnu.org/onlinedocs/ecc_3.html 2001.

S. Graham, P. Kessler, and M. McKusick, “gprof: a Call Graph Execution Profiler,”
SIGPLLAN ‘82 Symposium on Compiler Construction, SIGPLAN Notices, 17(6),
June 1982,

S. Graham, P. Kessler, and M. McKusik, “An Execution Profiler for Modular Pro-
grams,” Software Practice and Experience, 13, pp. 671-685, 1983.

B. Haake, K. E. Schauser, C. J. Scheiman, “Profiling a Parallel Language Based on
Fine-Grained Communication,” Proceedings of Supercomputing 96, 1996.

R. Hall, *“Call Path Refinement Profiles,” JEEE Transactions on Software Engineer-
ing, 21(6), June 1995.

S. Haney, J. Crotinger, S. Karmesin, S. Smith, “Easy Expression Templates Using
PETE, the Portable Expression Template Engine,” Los Alamos National Laboratory
Technical Report LA-UR-99-777, Los Alamos, NM, 1999.

M. Heath and J. Etheridge. “Visualizing the Performance of Parallel Programs”,
IEEE Software, 8(5), 1991.

J. Hollingsworth, “Finding Bottlenecks in Large Scale Parallel Programs,” Ph.D.
Thesis, University of Wisconsin, Madison, 1994,

J. Hollingsworth, and B. Buck, “Dyninst API Programmer’s Guide,” Computer Sci-
ence Department, University of Maryland. URL:http://www.cs.umd.edw/projects/
dyninstAPI 2001,

[45]

[46]

47

[48]

i[49]

4501

[51]

[52]

(53]

146

J. Hollingsworth, and B. Miller, “Instrumentation and Measurement,” in 1. Foster,
and C. Kesselman (editors), The Grid: Blueprint for a New Computing Infrastruc-
ture, Morgan Kaufmann Publishers Inc, San Francisco, 1999, pp. 339-365.

HPC++ Working Group, “HPC++ White Papers”, Technical Report TR 95633, Cen-
ter for Research on Parallel Computation, 1995.

Intel Corporation, “Intel VTune™ Performance Analyzer,” URL: http.//devel-
oper.intel comy/software/products/vtune/, 2001.

R. B. Irvin, and B. P. Miller, “Mapping Performance Data for High-Level and Data
Views of Parallel Program Performance,” Proceedings of International Conference
on Supercomputing, May 1996.

R. B. Irvin, “Performance Measurement Tools for High-L.evei Parailel Programming
Languages,” Ph.D. Thesis, University of Wisconsin, Madison, 1995,

C. Jaramillo, R. Gupta, and M.L. Soffa, “FULLDOC: A Full Reporting Debugger
for Optimized Code,” in Proceedings of 7th International Static Analysis Sympo-
sium, LNCS 1824, Springer-Verlag, pp. 240-259, June/July 2000.

C. Jaramillo, R. Gupta, and M.L. Soffa, “Comparison Checking: An Approach to
Avoid Debugging of Optimized Code,” ACM SIGSOFT Symposium on Founda-
tions of Software Engineering and European Sofiware Engineering Conference,
LNCS 1687, Springer Verlag, pp. 268-284, Sept. 1999.

C. Jaramillo, R. Gupta, and ML.L. Soffa, “Capturing the Effects of Code Improving
Transformations,” in Proceedings of International Conference on Parallel Architec-
tures and Compilation Techniques, pp. 118-123, Oct. 1998.

C. Jaramillo, “Source Level Debugging Techniques and Tools for Optimized Code,”
Ph.D. Dissertation, University of Pittshurgh, 2000.

[54]

[55]

[56]

£57]

11581

(591

[60]

[61j

[62]

147

C. JIohnson, S. Parker, and D. Weinstein, “Large-Scale Computational Science
Applications Using the SCIRun Problem Solving Environment,” Proceedings of
Supercomputer 2000.

G. Judd, “Design Issues for Efficient Implementation of MPI in Java,” Proceedings
of ACM JavaGrande Conference, pp. 37-46, 1999.

K. Karavanic, “Experiment Management Support for Parallel Peirformance Tuning,”
Ph.D. Thesis, University of Wisconsin, Madison, Dec. 1999,

K. Keahey, P. Beckman, and J. Ahrens, “Component Architecture for HighPerfor-
mance Applications,” Proceedings of the First NASA Workshop on Performance-
Engineered Information Systems, September, 1998.

P. Kessler, “Fast breakpoints: Design and implementation,” Proceedings of the ACM
SIGPLAN ’90 Conference on Programming Language Design and Implementation,
Appeared as SIGPLAN Notices 25(6), pp. 78-84, June 1990.

J. Kohn, and W. Wiliams, “ATExpert.” Journal of Parallel and Distributed Compui-
ing, 18, pp. 205-222, 1993.

J. Kundu, “Integrating Event- and State-based approaches to the Debugging of Par-
allel Programs,” Ph.D. Thesis, University of Massachusetts, Amherst, 1996.

L. Lamport, “Time, Clocks and the Ordering of Events in a Distributed System,”
Communications of the ACM, 21, pp. 558-565, July 1978.

F. Lange, R. Kroeger, M. Gergeleit, “JEWEL: Design and Implementation of a Dis-
tributed Measurement System,” IEEE Transactions on Parallel and Distributed Sys-
tems, 3(6), pp. 657-671, November 1992,

[63]

[64]

[65]

{66]

1671

168]

[69]

(70}

[71]

[72]

148

J. Larus, and E. Schnarr, “EEL: Machine-Independent Executable Editing,” Pro-
ceedings of ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), June 1995

J. Larus, T. Ball, “Rewriting Executable Files to Measure Program Behavior,” Soft-
ware Practice and Experience, 24(2) pp. 197-218. February 1994.

T. LeBlanc, and J. Mellor-Crummey, “Debugging Parallel Programs with Instant
Replay,” IEEE Transactions on Computers, Vol. C-36(4), pp. 471-482, April 1987.

S. Liao, “SUIF Explorer: an Interactive and Interprocedural Parallelizer,” Ph.D.
Thesis, Stanford University Technical Report CSL-TR-00-807, August 2000.

C. Lin and L. Snyder, “A portable implementation of SIMPLE,” International Joyr-
nal of Parallel Programming, 20(5), pp. 363-401, 1991

C. Lin and L. Snyder, “ZPL: An Array Sublanguage,” in U. Banerjee, D. Gelernter,
A. Nicolau and D. Padua, editors, Languages and Compilers for Parallel Comput-
ing, pp. 96-114, 1993,

K. A. Lindlan, J. Cuny, A. D. Malony, S. Shende, B. Mohr, R. Rivenburgh, C. Ras-
mussen. “A Tool Framework for Static and Dynamic Analysis of Object-Oriented
Software with Templates.” Proceedings of SC2000: High Performance Networking
and Computing Conference, November 2000.

T. Madhyastha, and D. Reed, “Data Sonification: Do You See What I Hear?” IEEE
Software, 12(2) pp. 45-56, March 1995.

A. Malony, “Program Tracing in Cedar,” University of Illinois at Urbana-Cham-
paign, Center for Supercomputing Research and Development, Technical Report
CS-660, 1987.

A. Malony, “Performance Observability,” Ph.D. Thesis, University of Illinois,
Urbana Champaign, 1990 (Also Available as CSRD Report No. 1034 UILU-ENG-
90-8030) Sept. 1990.

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

149

A. Malony, “Tools for Parallel Computing: A Performance Evaluation Perspective,”
in J. Bazewicz et al. (Editors), Handbook on Parallel and Distributed Processing,
Springer Verlag, pp. 342-363, 2000.

A. Malony, B. Mohr, P. Beckman, D. Gannon, S. Yang, F. Bodin, “Performance
Analysis of pC++: A Portable Data-Parallel Programming System for Scalable Par-

allel Computers,” Proceedings of the 8th International Parallel Processing Symbo-
sium (IPPS), pp. 75-85, April 1994.

A. Malony and S. Shende, “Performance Technology for Complex Parallel and Dis-
tributed Systems,” in P. Kacsuk and G. Kotsis (editors), Distributed and Parallel
Systems: From Instruction Parallelism to Cluster Computing, Kluwer, Norwell,
MA, pp. 37-46, 2000. ;

S. McLaughry, “Debugging Optimized Paralle] Programs,” Directed Research
Project Report, Department of Computer and Information Science, University of
Oregon, 1997. URL: http://www.cs.uoregon.edu/research/paracomp/publ.

C. Mendes, “Performance Scalability Prediction on Multicomputers,” Ph.D. Disser-
tation. University of Illinois at Urbana-Champaign, 1997.

Message Passing Interface Forum, “MPI: A Message Passing Interface Standard,”
International Journal of Supercomputer Applications (Special Issue on MPI), 8(3/
4), 1994, URL:http;//www.mcs.anl.gov.

B. Miller, M. Callaghan, J. Cargille, J. Hollingsworth, R. Irvin, K. Karavanic, K.
Kunchithapadam, and T. Newhall, “The Paradyn Parallel Performance Measurement
Tools”, IEEE Computer 28(11), Special issue on Performance Evaluation Tools for
Parallel and Distributed Computer Systems, Nov. 1995.

B. Miller, M. Clark, J. Hollingsworth, S. Kierstead, S. Lim, and T. Torzewski “IPS-
2: The Second Generation of a Parallel Program Measurement System,” IEEE
Transactions on Parallel and Distributed Systems, 1(2) pp. 206 - 217. April 1990.

[81]

[82]

[83]

(841

[85]

[86}

[87]

[88]

[89]

[90]

150

B. Mohr, A. Malony, and J. Cuny, “TAU,” in G.V. Wilson and P. Lu (editors), Paral-
lel Programming using C++, MIT Press, 1996.

W. Nagel, A. Arnold, M. Weber, H. C. Hoppe, and K. Solchenbach, *VAMPIR:
Visualization and Analysis of MPI Resources,” Supercomputer, 12(1) pp. 69-80,
1996.

R. Netzer, “Trace Size vs. Parallelism in Trace-and-Replay Debugging of Shared-
Memory Programs,” Languages and Compilers for Parallel Computing, LNCS,
Springer-Verlag, 1993.

R. Netzer, “Race Condition Detection for Debugging Shared-Memory Parallel Pro-
grams,” Ph.D. Thesis, University of Wisconsin, Madison, 1991.

R. Netzer, “Optimal Tracing and Replay for Debugging Shared-Memory Parallel
Programs,” in Proceedings of ACM/ONR Workshop on Parallel and Distributed
Debugging, May 1993.

R. Netzer, “Optimal Tracing and Replay for Debugging Message-Passing Parallel
Programs,” The Journal of Supercomputing, 8(4) 371-388. 1994.

R. Netzer, S. Subramanian, J. Xu, “Critical-Path-Based Message Logging for Incre-
mental Replay of Message-Passing Programs,” Proceedings of Intemational Confer-
ence on Distributed Computing Systems, Poland, June 1994.

R. Netzer, J. Xu, “Adaptive Message Logging for Incremental Program Replay,”
IEEE Parallel and Distributed Technology, Nov. 1993.

T. Newhall, “Performance Measurement of Interpreted, Just-in-Time compiled, and
Dynamically Compiled Executions,” Ph.D. Dissertation, University of Wisconsin,
Madison, Aug. 1999.

T. Newhall and B. Miller, “Performance Measurement of Interpreted Programs,”
Proceedings of Europar’98, 1998.

[91]

[92]

{93]

{94]

193]

'Y

[96]

[97]

[98]

[99]

151

Oak Ridge National Laboratory, “Portable Instrumented Communication Library,”
1998 URL:http://www.epm.oml.gov/picl.

D. Ogle, K. Schwan, and R. Snodgras, “Application-Dependent Dynamic Monitor-
ing of Distributed and Parallel Systems,” IEEE Transactions on Parallel and Dis-
tributed Systems, 4(7), pp. 762-778, July 1993,

D. Padua and M. Wolfe, “Advanced Compiler Optimizations for Supercomputers,”
Communications of the ACM, 29(12) pp. 1184-1201, Dec. 1986.

Pallas GmbH, “Pallas Products: Vampir,” URL:http://www.pallas.com/pages/vam-
pir.htm 2001.

Fallas GmbH, “Pallas - High Performance Computing - Products: VampirTrace,”

JJRL:htto://www.pallas.com/pages/vampirt.htm 2001.

D. Pase, “MPP Apprentice: A Non-Event Trace Performance Tool for the Cray
T3D,” Proceedings of Workshop on Debugging and Performance Tuning for Parallel
Computing Systems, Oct. 1994,

Rational Software, “Rational Purify, Rational Quantify, Rational PureCoverage,”

URL:http://www.rational.com/products/pgc/index.jsp.

D. Reed, “Performance Instrumentation Techniques for Parallel Systems,” In L.
Donatiello and R. Nelson (editors), Models and Techniques for Performance Evalu-
ation of Computer and Communications Systems, Springer-Verlag Lecture Notes in
Computer Science, pp. 463-490,1993.

D. Reed, R. Aydt, R. Noe, P. Roth, K. Shields, B. Schwarta, and L. Tavera, “An
overview of the Pablo performance analysis environment,” in Proceedings of the
Scalable Parallel Libraries Conference, pp. 104-113, Oct 1994,

[100] D. Reed, and R. Ribler, “Performance Analysis and Visualization,” in 1. Foster, and

C. Kesselman (editors), The Grid: Blueprint for a New Computing Infrastructure,
Morgan Kaufmann Publishers Inc, San Francisco, pp. 367-393, 1999,

(101] J. Reynders, P. Hinker, S. Atlas, S. Banerjee, W. Humphrey, S. Karmesin, K.
Keahey, M. Srikant, and M. Tholburn, “Pooma: A Framework for Scientific Simula-
tion on Parallel Architectures,” in G.V. Wilson and P. Lu {(editors), Parallel Pro-
gramming using C++, pp. 553-594, MIT Press, 1996.

{102] R. Ribler, J. Vetter, H. Simitci, and D. Reed, “Autopilot: Adaptive Control of Dis-
tributed Applications,” Proceedings of the 7th IEEE Symposium on High-Perfor-
mance Distributed Computing, July 1998.

{103] A. Robison, “C++ gets faster for scientific computing,” Computers in Physics, 10({5)
pp. 458-462, Sept./Oct. 1996.

[104] S. Sarukkai and A. Malony. “Perturbation Analysis of High Level Instrumentation
for SPMD Programs,” SIGPLAN Notices, 28(7), 1993.

[105] A. Serra, N. Navarro, “Extending the Execution Environment with DITools,” Uni-
versitat Politécnica de Catalunya Technical Report UPC-DAC-1999-26, 1999.

[106] K. Shanmugam, “Performance Extrapolation of Parallel Programs,” Master’s The-
sis. Department of Computer and Information Science, University of Oregon, June
1994,

{107] T. Sheehan, A. Malony, S. Shende, “A Runtime Monitoring Framework for the TAU
Profiling System,” in S. Matsuoka, R. Oldehoeft, and M. Tholburn (editors), Com-
puting in Object-Oriented Parallel Environments, Third International Sympcsium
ISCOPE’99, Lecture Notes in Computer Science, No. 1732, Springer-Verlag. pp.
170-181, Dec. 1999.

[108] S. Shende, “Profiling and Tracing in Linux,” Proceedings of Extreme Linux Work-
shop #2, USENIX Annual Technical Conference, June 1999.

[109] S. Shende, J. Cuny, L. Hansen, J. Kundu, S. McLaughry, O. Wolf, “Event and State
Based Debugging in TAU: A Prototype,” Proceedings of the 1996 ACM SIGMET-
RICS Symposium on Parallel and Distributed Tools, May 1996, pp. 21-30.

153

[110] S. Shende and A. D. Malony, “Integration and Application of the TAU Performance
System in Parallel Java Environments,” Proceedings of the Joint ACM Java Grande -
ISCOPE 2001 Conference, pp. 87-96, June 2001.

[11i] S. Shende, A. D. Malony, and R. Ansell-Bell, “Instrumentation and Measurement
Strategies for Flexible and Portable Empirical Performance Evaluation,” Proceed-
ings International Conference on Parallel and Distributed Processing Techniques
and Applications (PDPTA’2001), CSREA, June 2001.

[112] S. Shende, A. Malony, and S. Hackstadt, “Dynamic Performance Callstack Sam-
pling: Merging TAU and DAQV,” in B. Kagstrém, J. Dongarra, E. Elmroth and J.
Wasniewski (editors) Applied Parallel Computing. Large Scale Scientific and Indus-
trial Problems, 4th International Workshop, PARA’98, Lecture Notes in Computer
Science, No. 1541, Springer-Verlag, 1998.

11131 8. Shende, A. D. Malony, J. Cuny, K. Lindlan, P. Beckman, S. Karmesin, “Portable
Profiling and Tracing tor Parallel Scientific Applications using C++”, Proceedings
of the SIGMETRICS Symposium on Parallel and Distributed Tools, pp. 134-145,
ACM, Aug 1998.

i114):Silicon Graphics, Inc., “Speed Shop User’s Guide,” URL:http://techpubs.sgi.com.

[115] SPARC International Inc., D. Weaver, and T. Germond (Editors), “The SPARC
Architecture Manual,” Version 9, Prentice Hall, Englewood Cliffs, NJ, 2000.

[116] A. Srivastava, A, Eustace, “ATOM: A System for Building Customized Program
Analysis Tools,” Proceedings of the SIGPLAN’94 Conference on Programming
Language Design and Implementation (PLDI), pp. 196-205, June 1994,

[117] A. Srivastava, D. Wall, “A Practical System for Intermodule Code Optimization and
Link-time,” Journal of Programming Languages, 1{1) pp. 1-18, March 1993.

[L18] B. Stroustrup, The C++ Programming Language, Third Edition, Addison-Wesley,
Reading, Massachusetts, June 1997.

154

[119] Sun Microsystems, “Forte Tools,” URL:http://www.sun.com/forte/.

[120] Sun Microsystems, “Java Native Interface,” URL:http://java.sun.com/j2se/l.3/docs/
guide/jni/,

[121] Sun Microsystems, *“Java Virtual Machine Profiler Interface (JVMPI),” URL: http:/
java.sun.com/products/jdk/1.3/docs/guide/jvmpi/jvmpi.html.

[122] Sun Microsystems Inc. " The JAVA HotSpot Performance Engine Architecture,”

Sun Microsystems White Paper, April 1999. URL:http://java.sun.com/products/
hotspot/whitepaper.html.

[123] V. Taylor, M. Huang, T. Canfield, R. Stevens, S. Lamm, and D. Reed, “Performance
Monitoring of Interactive, Immersive Virtual Environments for Finite Element Sim-
ulations,” Journal of Supercompting Applications and High-Performance Comput-
ing, 10(2/3) pp. 145-156 (Summer/Fall 1996, special issue I-WAY: Wide Area
Supercomputer Applications), 1996.

[124] University of Oregon, “TAU User’s Guide” URL: http://www.cs.uoregon.edw/
research/paracomp/taw/ 2001.

[125] S. Vajracharya, “Runtime Loop Optimizations for Locality and Parallelism,” Ph.D.
Thesis, University of Colorado, Boulder, 1997.

[126] S. Vajracharya, S. Karmesin, P. Beckman, J. Crotinger, A. Malony, S. Shende, R.
Oldehoeft, S. Smith, “SMARTS: Exploiting Temporal Locality and Parallelism
through Vertical Execution,” Los Alamos National Laboratory Technical Report
LA-UR-99-16, Los Alamos, NM, 1999 (also appears in Proceedings of 1999 Inter-
national Conference on Supercomputing, ACM, pp.302-310,1999).

[127] T. Veldhuizen, “Expression Templates,” C++ Report, 7(5) pp. 26-31, June 1995,

[128] T. Veldhuizen, “Using C++ Template Metaprograms,” C++ Report, 7(4) pp. 36-43,
May 1995.

155

[129] T. Veldhuizen, and D. Gannon, “Active Libraries: Rethinking the roles of compilers
and libraries,” Proceedings of 00’98: SIAM Workshop on Object-Oriented Meth-
ods and Code Inter-operability in Scientific and Engineering Computing, 1998.

[130] T. Veldhuizen and M. E. Jernigan, “Will C++ be faster than Fortran,” Proceedings
ISCOPE 97, LNCS Vol. 1343, Springer, pp. 49-56, December 1997.

[131]]. Vetter, and D. Reed, “Real-time Performance Monitoring, Adaptive Control, and
Interactive Steering of Computational Grids,” The International Journal of High
Performance Computing Applications, 14(4), pp. 357-366, Winter 2000.

[132] D. Viswanathan and S. Liang, “Java Virtual Machine Profiler Interface,” IBM Sys-
tems Journal, 39(1) pp.82-95, 2000.

[133] VMGEAR, “VMGEAR - Tools for Java Performance: Optimize 1t,” URL:http://
www.vmgear.com/.

[134] D. Wall, “Systems for late code modification,” in R. Giegerich and S. Graham (edi-
tors), Code Generation — Concepts, Tools, Techniques, pp. 275-293, Springer-Ver-
lag, 1992.

[135] D. Whitfield, and M. Soffa, “An Approach for Exploring Code Improving Transfor-
mations,” ACM Transactions on Programming Languages, 19(6) pp. 1053-1084,
Nov. 1997.

[136] R. Wilson, R. French, C. Wilson. S. Amarasinghe, J. Anderson, S. Tjiang, S. Liao,
C. Tseng, M. Hall, M. Lam, and J. Hennessy, “SUIF: An Infrastructure for Research
on Parallelising and Optimizing Compilers,” ACM SIGPLAN Notices, 29{12) pp.
31-37, Dec. 1994.

[137] F. Wolf, and B. Mohr, “EARL - A Programmable and Extensible Toolkit for Analyz-
ing Event Traces of Message Passing Programs,” Technical Report FZJ-ZAM-IB-
9803, Forschungszentrum Jiilich GmbH, Germany, April 1998.

156

[138] M. Wolfe, “High Performance Compilers for Parallel Computing,” Addison-Wesley,
Redwood City, CA, 1996.

[139] J. Yan, “Performance Tuning with AIMS—An Automated Instrumentation and Mon-
itoring System for Multicomputers,” Proceedings of the 27th Hawaii International
Conference on System Sciences, Jan. 1994,

[140] C. Yan, and S. R. Sarukkai “Analyzing Paralle] Program Performance Using Nor-
malized Performance Indices and Trace Transformation Techniques”, Paralle! Com-
puting, 22(9), pp 1215-1237, November 1996.

[141]) M. Zagha, B. Larson, S. Tumner, and M. Itzkowitz, “Performance Analysis Using the
MIPS R10000 Performance Counters,” Proceedings Supercomputing '96, IEEE
Computer Society, November 1996.

[142] F. Zambonelli, R. B. Netzer, “An Efficient Logging Algorithm for Incremental
Replay of Message-Passing Applications,” in Proceedings of the 13th International
Parallel Processing Symposium and 10th Symposium on Parallel and Distributed
Processing (IPPS/SPDP), 1999.

[143] H. Zima, P. Brezany, B. Chapman, P. Mehrotra, A. Schwald, “Vienna Fortran — A
Language Specification, Version 1.1,” Technical Report Series ACPC/TR 92-4, Aus-
trian Center for Parallel Computation, University of Vienna, Austria, 1992.

	DIS_B1
	DIS_B2
	DIS_B3

