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Use of inherent symmetries to speed computation has been an effective tech-
nique in many constraint satisfaction problems. Typically this involves modifying
a search algorithm to exploit the symmetry. As an alternative, we study a gen-
eral scheme wherein symmetries are used to modify the input problem itself. Thus
instead of having to reformulate each advance in search technology, we add a “sym-
metry breaking” formula that can be used as a preprocessor to existing or future
constraint solvers.

A symmetry breaking formula is a boolean formula that is satisfied by exactly
one member from each set of symmetric points in the original search space. For exam-
ple, we choose this member to be the lexicographic leader in the orbit of assignments
under the action of a permutation group on the input variables.

A main computational hurdle is that it is often intractable to generate the

entire lex leader predicate. Indeed, we prove the existence of groups for which the
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smallest lex leader predicate is of exponential size. These intractable examples suggest
consideration of Sperner families of sets whose incidence vectors form a subspace of
Z3. However we show how to construct succinct lex leader formulas for abelian groups
and groups with bounded orbit projections (and hence also the groups corresponding
to Sperner families). Our formulas exploit the polynomial time algorithmic machinery
developed to solve the lex leader problem for “good groups”, e.g., solvable groups or
more generally for groups with bounded non-cyclic composition factors.

A dual goal to efficiency of search is robustness of solutions. We desire that
the solutions produced not be “brittle”: an optimal solution is undesirable if any
unforeseen event makes it untenable {e.g. a resource suddenly becoming unavailable in
a resource allocation problem). To model this concept of fault tolerance, we introduce
the notion of dmodels: these are satisfying assignments of a boolean formula for
which any small alteration, such as a single bit flip, can be repaired by another small
alteration, yielding a nearby satisfying assignment. We study computational problems

associated with émodels and some combinatorial generalizations thereof.
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CHAPTER I

INTRODUCTION

1. Motivation

This thesis studies methods to develop efficient algorithms to solve constraint
satisfaction problems (CSPs). Specifically, it considers two distinct but related prob-

lems:
— the use of symmetry in search
— fault tolerance in CSPs.

Both problems are inspired by artificial intelligence applications, especially scheduling
and planning problems.

Use of inherent symmetry to speed computation has been an effective technique
in many constraint satisfaction problems. Typically this involves modifying the search
algorithm to exploit the symmetry present in the input. Since this forces us to tie
symmetry exploitation to the specific search algorithm, this approach would require
us to reformulate each advance in search technology. As an alternative, Crawford et.
al. [13] developed the notion of symmetry breaking formulas, a novel scheme wherein
symmetries are exploited by changing the input and not the search algorithm. A
symmetry breaking formula is an extra set of constraints that is added to the input
before the search algorithm starts. Since this is essentially a preprocessing step,

this method can be used as a front-end to existing or future constraint solvers, thus



avoiding the need to re-engineer the search algorithm itself. This method is described
briefly in Section 2 of this chapter and the technical details of the particular problem
we address are in Chapter 2.

While speed of computation is an important factor, the nature of solutions
produced is also of concern. Sometimes a solution may be brittle i.e in an optimal
solution for a scheduling problem, it might be crucial that a certain task finish by a
fixed deadline. In brittle solutions, unforeseen obstacles (e.g. a task failing to finish
by a deadline) can be catastrophic to optimality. Ginsberg et. al. [18] formalized
a notion of “robust” solutions which allow for recovery from such unforeseen events.
These robust solutions allowed for small perturbances in the optimal solution, but
also allowed quick recovery from those perturbances. We study the computational
complexity of finding these solutions, showing that it is NP-hard to find them in
general. We also exhibit instances where it is possible to find these robust solutions
in polynomial time. We study a class of combinatorial structures (stable sets) that
arise naturally in this context. We study their extremal properties, prove lower and
upper bounds on the maximal sizes of these structures and give explicit constructions.
This problem is described briefly in Section 3 of this chapter and the technical details

are in Chapter 3.

2. Search and Symmetries

Many computational problems have symmetries. For example, a scheduling
problem that attempts to schedule millions of tasks with deadlines could have many
tasks that are identical. Algorithms to exploit symmetries have been used to solve
some important open problems, famous examples being the non-existence of projec-

tive planes of order 10 [26] and the four-color theorem [2]. From a computational



perspective, exploiting symmetries has become a standard tool in solving large search
problems [25]. Since symmetries arise as permutations which preserve properties of
the input, techniques from computational group theory can be used to develop effi-
cient search algorithms.

Abstractly defined, a search problem consists of a large (usually exponentially
large) collection of possibilities, the search space, and a predicate. The task of the
search algorithm is to find a point in the search space that satisfies the predicate.
Search problems arise naturally in many areas of artificial intelligence, operations
research and mathematics.

The use of symmetries in search problems is conceptually simple. If several
points in the search-space are related by a symmetry then we never want to visit
more than one of them. With regard to taking computational advantage of the sym-
metries, past work has focused on specialized search algorithms that are guaranteed to
examine only a single member of each symmetry class [10]. Unfortunately, this makes
it difficult to combine symmetry exploitation with other work in satisfiability or con-
straint satisfaction, such as flexible backtracking schemes [17, 19] or non-systematic
approaches [32, 39]. Given the rapid progress in search techniques generally over
the past few years, tying symmetry exploitation to a specific search algorithm seems
premature.

The approach we take here is different. Rather than modifying the search algo-
rithm to use symmetries, we will use symmetries to modify (and hopefully simplify)
the problem being solved. In tic-tac-toe, for example, we can require that the first
move be in the middle, the upper left hand corner, or the upper middle (since doing

this will not change our analysis of the game in any interesting way). In general, our
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approach will be to add additional constraints, symmetry-breaking formulas, that are
satisfied by exactly one member of each set of symmetric points in the search space.
Since these constraints will be in the same language as the original problem (propo-
sitional satisfiability for purposes of this thesis) we can run the symmetry detection
and utilization algorithm as a preprocessor to any satisfiability checking algorithm.

This approach has two fundamental obstacles. The first obstacle is that there
is no known polynomial-time algorithm for detecting all the symmetries of the in-
put. This problem is equivalent to the graph isomorphism problem which asks the
following question: given two graphs, is there a bijection between the vertices which
preserves adjacencies? This problem is also not known to be NP-complete, though
there is evidence that it is probably not so [24]. Nevertheless, graph isomorphism is
rarely difficult in practice, as has been profoundly demonstrated by the efficient nauty
system [30]. Furthermore, it has been shown that, on average, graph isomorphism
is in linear time using even naive methods [3} and in polynomial time for a wide
class of graphs [28, 4]. The second obstacle is that even after detection is complete,
computing the full symmetry-breaking formula appears to be intractable.

Our goal in Chapter 2 of this thesis is to explore the second obstacle. In particu-
lar, we will be interested in permutation groups for which we can write a polynomial-
size symmetry breaking formula. We make some assumptions on the kind of symmetry
breaking formula we consider. We define an ordering of the underlying set that the
group of symmetries acts on and use that to define a lexicographic (dictionary) order
on the set of all possible solutions in the search space. We consider those symmetry
breaking formulas which are true of only lexically largest element from a set of sym-

metrical points in the search space. We call this the lez-leader formula. We show that
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for groups with a very simple structure (elementary abelian 2-groups with orbits of
size 2) naive lex-leader formulas are of exponential size. The naive lex-leader formula
uses exactly the same number of variables as there are points in the permutation
domain. This exponential size is because of a combinatorial bottleneck which we can
formulate in terms of lattices and anti-chains. This has led us to consider a class of
combinatorial objects, Sperner spaces, a generalization of Sperner families in extremal
set theory [15, 42], whose structure is responsible for this exponential lower bound.
However we show how to construct succinct lex-leader formulas for abelian
groups and groups with polynomially bounded orbit projections (and hence also the
groups corresponding to Sperner families). We can achieve polynomial-size formulas
for these groups when we are allowed to use a small number of extra variables in
addition to those which represent the permutation domain. Our formulas exploit
the polynomial-time algorithmic machinery developed to solve the lex-leader problem
for “good groups” (e.g. solvable groups or more generally for groups with bounded
non-cyclic composition factors) by Luks and Babai[6]. The choice of ordering of
the permutation domain is also significant in our ability to write polynomial-size
symmetry breakers (a situation reflected in the algorithmic setting: with arbitrary
orderings, finding lex-leaders is NP-hard even for abelian 2-groups [6]).
Polynomial-time algorithms for good groups (assuming a certain ordering of
the permutation domain) imply that there is a polynomial-size lex-leader formula
for these groups. This is a consequence of Cook's theorem [16] which guarantees,
by asserting that SAT is NP-complete, the existence of a “small” boolean formula
equivalent to every “yes” instance of a decision problem in NP (and hence also for

every problem which admits a polynomial time solution). This approach to building



a lex-leader formula is too general and too unwieldy: the formulas depend on the
algorithm used to solve the lex leader formula and they are typically larger than the
formulas we obtain. But as a consequence of the existence of efficient algorithms for

good groups [6], it might be possible to generalize our constructions to these groups.
3. Fault Tolerance

The concept of dmodels, introduced in [18] as “supermodels”, formalizes a notion
of fault tolerant satisfying assignments to boolean formulas. In this thesis, we study
the problem of identifying these dmodels and generalize this notion of fault tolerance.

The motivation for studying dmodels in the artificial intelligence/planning com-
munity was to build search algorithms finding robust solutions to problems (typically
in scheduling or planning domains). These solutions have the property that if an ex-
pected resource is suddenly unavailable, then a minimal modification to the solution
produces an equally acceptable alternative. Recently, this idea has been used in (7).

This notion of a dmodel is similar to that of the sensitivity of boolean functions,
see e.g. [8], [27). Roughly speaking, the sensitivity of a function is the average number
of input bits whose flip will change the value of the function. For a dmodel, however,
we require that if a bit flip changes the outcome of the formula, there must be some
other way to restore the original outcome. Thus, a formula with a dmodel could have
either low or high sensitivity.

More formally, a §mode! of a boolean formula F is a satisfying assignment « of
F, F(a) = 1, such that for every i, if we negate the ith bit of ¢, there is another
bit j # ¢ of @ which we can negate to get another satisfying assignment (we call
satisfying assignments models of boolean formulas). That is, if 6;{c) is the function

which negates the ith bit of a, then (Vi)(3j # i{)F(6;(di(a))) = 1. In Chapter 3,
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we study the complexity of finding dmodels for restricted classes of formulas. It was
shown in [18] that determining whether a formula has a dmodel is NP-complete.
We restrict the problem here to formulas which are instances 2-SAT, Horn SAT,
and Affine SAT (recall that in all three cases membership testing can be done in
polynomial time, see Shaefer’s dichotomy theorem [37]).

We extend the notion of a dmodel to that where a model remains a model
after an arbitrary sequence of k single breaks and single repairs. This leads us to
investigate arbitrary degrees of fault tolerant models, §*models (which are models
after any sequence of breaks and single repairs) being of particular interest. These
models lead us to study the combinatorics of stable families: these are collection of
subsets such that for each set in the family and for each break to that set there must
be a repair which yields another member of the family.

We study the extremal structure of stable families. One useful restriction is
when we force a break to have exactly one repair. We refer to such stable families as
“sparse”. Formally a sparse stable set is a family of subsets of a set [n], such that for
all X € F, Vi€ [n],j # i, §;(8:(X)) € F. Here §;{X) = XA{:}, which is exactly
equivalent to flipping the i-th bit in the incidence vector of X.

We shall that if F is sparse stable then 2"/2 < |F| < % Constructing sparse
stable sets which achieve the lower bound is easy. So far, there is a gap between the
largest sparse stable families we can construct and the upper bound. We also consider
the sizes of the largest minimal sparse stable sets (a minimal sparse stable set does
not contain a smaller sparse stable set). Using exhaustive search, we prove that there

are minimal sparse stable set of size 80"/1°.



CHAPTER II

SYMMETRY BREAKING FORMULAS

1. Definitions and Notations

Let G be a group. We write H < G when H is a subgroup of G. If H < G,

then a right transversal of H in G is a complete set of right coset representatives of

H in G. The group consisting of all permutations of a set {2 is called the symmetric
-group, denoted by Sym(f?). G is said to act on Q if there is a homomorphism ¢ :
G — Sym(f2). Let w € © and g € G, then w? is the image of w under ¢(g). Also
w® = {wI| g € G} is the orbit of G that contains w. A group is said to be transitive

if w® = Q. The point stabilizer of w is the subgroup G, = {g € G|w? = w}. The

pointwise stabilizer of A C Q is G(a) = NseaGs. When (1 is ordered as wy, wa, . . ., Wn,

then Q; = {wy,ws,...,w;} and G; = G(a,). Let A be an orbit of G on Q2. For g € G,
g2 is the restriction of g on A. The orbit constituent G* = {g®| g € G} is the
projection of G onto A. A P, group is a group G < Sym(?), where || = n such that
the size of each orbit constituent is at most n%. A group G is said to act regularly on
QifG,=1forallwe Q.

Groups are input (and output) via generators. We write G = (X)) when the
set X C G generates G. Subgroups of Sym({2) have succinct descriptions in terms of
generators : they have generating sets of size O(|2]) [14]. A very useful data structure

for permutation groups is a strong generating set(SGS), first introduced by Sims[41].



Given a chain

GC=G">G'>G*>.-.->G"=1

of subgroups of G, an SGS with respect to this chain is a set T C G such that
(T N G¥) =G, for each i. We shall use the “point stabilizer” series as our subgroup
chain, i.e., G* = G; is the subgroup of G that fixes the first ¢ points of Q. Then an
example of an SGS with respect to this chain is the set B = UL, R; where R; is a
complete right transversal of G; in G;..;. A permutation 7 is said to sift through this
chain if it can be expressed as product r,7y,_y - -7, where 7; € R;.

We refer to any standard text (e.g [21]) for basic facts about groups. For
permutation groups, we refer to [45] and [14].

A propositional variable can take on two values, true or false (we write 0 for

false, 1 for true) . Let L be a set of propositional variables. Literals are variables
in L or negations of variables in L. A clause is a disjunction of distinct literals in

L. A theory is a conjunction of clauses. A truth assignment for a set of variables

L is a function X : L — {0,1}. In the usual way, X extends by the semantics of
propositional logic to a function on the set of theories over L and by abuse of notation,

we will continue to denote the extended function by X. A truth assignment X of L

is called a model of a theory T if X(T') = 1.

The propositional satisfiability problem or SAT is the following decision prob-

lem: given a theory, decide whether it has a model. This is a canonical example of
an NP-complete problem [16].

Let T be a theory. A set of clauses C = {C},Cy,...,C;} in T is said to prune
C' = {C],C,...,C.} in T if any model of AcecC is a model of AgregeC’. A sub-

collection of clauses C' in T is said to be prunable if there exists a set of clauses
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C = {C1,Cs,...,C.} in T which prunes C’; ' is non-prunable otherwise. To avoid

trivialities, we require that if C prunes C', then C' ¢ C.

2. Lex-leader Formulas — Definitions

In this section, we formalize the notion of lex-leader formulas in the context of a
permutation group acting on a set of points (Subsection 2.1). We also discuss how lex-
leader formulas can be used to augment boolean theories so as to break symmetries

in the input as preprocessing step before search (Subsection 2.2).
2.1: Lex-Leader Formulas for Permutation Groups

Let § denote the set {1,2,...,n} and G < Sym(f2) . Let 2% denote the set
.of functions from Q to {0,1}. G acts on 2% via X + 9X for g € G, X € 2% where
(9X)(3) = X(#9). ! Under the action of G, 2% breaks up into orbits under the action
of G.

There is a natural lexicographic order in 2*: X <Y if X # Y and X (i) < Y (i)
for the least i such that X (z) # Y (¢).

Our goal is to write a formula in propositional logic that is true of only one
member from each orbit of functions, which we call a canonical member. In this
thesis, we choose the canonical member to be the lexical leader in the orbit, i.e., a
function X such that for all Y’ # X in the same orbit, ¥ < X. Formally, a lex-leader
formula for G is a boolean formula ¢;(G) defined over n variables, whose models

are lex-leaders in their orbits. Frequently, we will define ¢.(G) over a larger set of

17t is natural to write this as a “left action”, e.g., we have 992X = 91(924), whereas
expressing the image of X under g; by X9 would lead to the awkward relation
Xang — (XQZ)QI'
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variables and require that the projection of its modeis in a fixed set of n coordinates
are lex-leaders in their G-orbits. It will be clear from the context when we use these
extra variables.

For any X € 29 define X; to be the restriction of X to €, i.e., X; is an i-tuple
consisting of the first ¢ coordinates of X. We will write Fix(g, X,7) to mean the
boolean formula (9X); = X, i.e., the formula [(X(1) = X(19)] A [X(2) = X(29)] A
o A[X (i) = X(49)] (we substitute X (¢9) for (¥X)(¢)). We use X(1), X(2),...,X(n)
as variable names for formulas without any confusion with the function X evaluated
at points 1,2,...,n.

We write Geq(g, X, i) to mean the formula X (i) > X(i9). Observe that X (i) >
X(39) is just a mnemonic for the boolean expression X (#) — X (7).

We now show how to write a very naive lex-leader formula. Let ¢ € G and

X € 2%, Consider the following formula

/\ Fix(g, X,i— 1} — Geq(g, X, i) (I1.1)

1<i<n

By our definition of lexical order, any X which satisfies the Equation (II.1) has
the property that X > 9X. Thus the conjunction of all the formulas associated with

all g € G, namely,

N\ /\Fix(g, X,i — 1) - Geq(g, X, i) (11.2)
geGi=1

will be true of only the lexical leader of each orbit of functions.

We rewrite Equation I1.2 and define the lex-leader formula LL(G) as follows:
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LL(G) = \ \C(g.9) (11.3)

where C(g,1) = Fix(g, X,¢ — 1) = Geq(g, X, 1).

Equation (I1.3) could have duplicate clauses. For example, consider the case
when G = S3. Then C((1 2),1) = C((1 2 3),1) = (X(1) > X(2)) which means
that the clause X (1) > X(2) appears twice in Equation 11.3. Notice that the group
elements {1 2) and (1 2 3) both belong to the same right coset of G;. This intuition
allows us to eliminate duplicate clauses: for each i, we include clauses C(g, ¢) for each
coset representative g of G/G;. This approach can still leave us with S %' |G/Gi41|
clauses (which could be of exponential size).

The question is: can we prune LL(G) further? For example, the clause C{(1,3),1) =
(X (1) 2 X(3)) prunes the clause

C((1,2,3),2) = {{X(1) = X(2)) = X(2) = X(3)}.

While LL(G) might be of exponential size in the input (recall that permutation groups
are input via a small set of generators), one might hope to prune it to polynomial
size by removing such redundant clauses. But we shall see that this is not the case

(Theorem 3.1 (i}).
2.2: Symmetry Breaking Formulas

Let T be a theory over the n variable set L. Define =L = {-z| z € L} to be
the set of negated literals. Let L = L U —L. Since we require theories to be in

conjunctive normal form, we can write T as a set {C;| 1 < ¢ < m} where each C; is
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a disjunction of literals, represented as a set {l;j| 1 < j < ¢;,I;; € L} where ¢; = |Cj|.

The group Sym(L) has a natural action on the (infinite) set of theories T over L.
We first extend the action of Sym(L) on L to the set of literals L = L U —L as follows:
if =z € =L and g € Sym(L), then (~z)? = —~(z9). This naturally defines an action on
a clause: if C = {i1,l,...,,} where l; € T then C9 = {l,15,...,18}. Now the action
on the set of theories is obvious: if T = {C1,Ca,...,Cn} then T9 = {C{,CY,...,C4}.

As discussed, Sym(L) has a natural action on the set of assignments of a theory.
If X is a truth assignment to variables in L , then g € Sym(L) maps X to 9X where
(*X)(v) = X(v9).

A permutation ¢ € Sym{L) is an automorphism (also called a symmetry) of the
theory T if T? = T. Note that since we require clauses to be disjunctions of distinct
literals, an automorphism is a well-defined structural (rather than just a logical)
equivalence of two theories. Let G = AUT(T) < Sym(L) denote the subgroup of all
automorphisms of T'. Hence, if g € AUT(T), X(T79) = (¢X)(T).

Thus, we have the immediate consequence that any symmetry of 7’ maps models

of T to models of T', and non-models of T to non-models:

Proposition 2.1. Let T be a theory over L, g € AUT(T), and X a truth
assignment of L. Then X is a model of T iff 9X is a model of T.

The group AUT(T) induces an equivalence relation on the set of truth assign-
ments of L, wherein X is equivalent to Y if Y = 9X for some ¢ € AUT(T); thus,
the equivalence classes are precisely the orbits of AUT(T’) on the set of assignments.
Note, further, that any orbit either contains only models of T or contains no models

of T'. This indicates why symmetries can be used to reduce search: we can determine
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whether T has a model by visiting each equivalence class rather than visiting each
truth assignment.

More generally, a symmetry breaking formula is chosen so that it is true of
exactly one element in each orbit of assignments to variables L in a theory T. We
illustrate this with an example: let T be the theory a VE bVGE aVbVve, aVvh It
is clear that (a b) € AUT(T). The two models of T are (1,0,0) and (0,1, 0) (where
the first, second and third coordinates are true/false values of a, b and c respectively).
As required by Proposition 2.1, this permutation maps models to models. We can
“break” this symmetry by adding the clause & — a which eliminates one of the models,
(0,1,0), leaving us with only one model from the orbit. In general, we introduce an
ordering on the set of variables, and use it to construct a lexicographic order on the
set of assignments. We will then add a formula that is true of only the lexically largest
model under this ordering, within each orbit.? Equation I.3 is an example of such a
formula.

The basic idea then is to generate a symmetry breaking formula
(e.g., #(AUT(T))) and augment the original theory with this formula (e.g., build
the theory T = T A ¢ (AUT(T))). Proposition 2.1 guarantees that T" is satisfiable
iff T is satisfiable. Moreover models of T' are also models of T, each model being the
(unique) lex-leader from its own orbit of assignments. One would expect that this
would guide the search algorithm used to find models to automatically search non-
symmetrical regions of the search space, thus improving efficiency. This observation

has been borne out experimentally as described in [13, 22].

2We note that this is surely not the only way to create symmetry-breaking formu-
las. One can break symmetries by adding any formula that is true of one member of
each equivalence class.
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The problem of finding generators for the automorphism group of T is an in-
teresting problem in its own right and one which we don't address in this thesis.
This problem is equivalent to the graph isomorphism problem (ISO) [12]. The com-
plexity of ISO is one of the outstanding problems in computer science: there are
no polynomial time algorithms known to solve ISO and it is also not known to be
NP-complete (though there is evidence that it is not NP-complete [24]). The prob-
lem of finding automorphisms of theories is dealt with in [13] which also studies the
effect of augmenting theories with lex-leader formulas on the performance of search
algorithms.

The problem that we do address is the complexity of generating “small” lex-
leader formulas when the group of symmetries is already known. In this chapter, we
prove exponential lower bounds for LL(G) even when G is restricted to groups with
orbits of size 2 (which forces G to be elementary abelian 2-group or in other words,
a vector space over GF(2)). However we also show that if we are allowed to add
a polynomial number of extra variables, we can write a polynomial size lex-leader
formula ¢, (G) for a large class of groups which also include these elementary abelian

2-groups. We summarize the main results of this chapter in the next section.

3. Statement of Results

Qur goal is to study the size of ¢.(G) and LL(G) (Equation I1.3) for various
classes of groups. Observe that our goal is not just to prove an exponential lower
bound to LL({G) - after all this formula could have numerous identical clauses and
also have numerous redundant prunable clauses. Our aim to prove lower bounds is
more ambitious - we want to prove a lower bound on the size of the minimal equivalent

formula in LL{G), i.e., the number of non-prunable clauses.
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Note that any definition of lexical order on the set of assignments presupposes an
ordering of the underlying set that G acts on. It is possible that some orderings may
lead to a lex-leader formula (as prescribed by I1.3) with no small equivalent formulae,
whereas a different ordering might lead to a more tractable lex-leader formula, though
we do not have real examples to exhibit this (see end of Section 5 for a discussion
of effect of order). Then any theorem on lex-leader formula assumes an implicit
understanding of the order of the underlying set.

Let d be a fixed constant. Recall that a P, group is a group G < Sym(f2), where
|2| = » and the size of every orbit constituent of G is at most n9.

We now summarize our results in the next theorem, whose proof is delegated

to subsequent sections.

Theorem 3.1.

(i) There exist groups G < Sym(f2) for which the number of non-prunable clauses
in LL(G) is ¢" for all possible orderings of 2, where ¢ is a constant > 1 and
n = ||. However, for these groups, there is a lex-leader formula ¢, (G}, of size

O(n®) for any ordering of €2, that uses O(n?®) additional variables.

(i1} Let G < Sym(f) be an abelian group. Then one can find an ordering of
2 in polynomial time such that there is a lex-leader formula ¢,(G) of size
O(n® loglogn logloglogn) (|| = n) defined over a polynomial (in n) number

of variables.

(ii) Let G = {X) < Sym(Q?) be a P, group. Then one can reorder § in polynomial
time such that there exists a lex-leader formula ¢, (G) of size O(d n****logn),

where |Q| = n.
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Theorem 3.1 (i) is a proved in Section 5 (Theorem 5.5 and Corollary 5.7) and
(Theorem 7.5). Part (ii) is proved in Theorem 7.19. Part (iii) is proved in Theorem 8.1
(i).

Observe that part (iii) subsumes part (ii), since abelian groups are in P;. How-
ever the bound for abelian groups obtained by (iii) is much worse than what we obtain

from (ii).

4. The Algorithmic Formula

We now consider an alternative approach to Theorem 3.1 for writing short lex-
leader formulas for abelian and Py groups and in general for a broader class of groups.
First we define the following decision question:
Lex-Leader
Input: G = (S) < Sym(f2) and X € 2% (input as an n-bit string).
Question: Is X the lex-leader in X ?
Recall that X¢ = {X| g € G} is the orbit of G that contains X.
Following [6], define the composition width of G, denoted by cw(G) to be the
smallest positive integer d such that every non-abelian composition factor of G embeds
in the symmetric group Sg. Thus for solvable groups whose composition factors are

cyclic (and hence, abelian) cw(G) = 1.

Lemma 4.1. [6, Proposition 3.7] Let G < Sym(2) where € is an ordered set
of size n. Then there is a canonical reordering of €2 relative to which the Lex-Leader
problem is solvable for every X € 2% in time O(n“(®*°) where d = ¢cw(G) and where
w(d) < 3.4 for solvable groups and < dlogd + c in general. Furthermore such an

ordering can be determined in polynomial time.
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Remark: Using techniques of Luks [5], the running time of the algorithm can be
reduced to O(nd+c).

If we define 'y to be the class of groups G with cw(G) < d then Lemma 4.1
guarantees a polynomial time algorithm for Lex-Leader. To see, how this algorithm
translates to a lex-leader formula, we appeal to Cook’s classical theorem about the

NP-completeness of SAT which we state below.

Lemma 4.2. [16, Cook] Let L be a language in NP and let the input string z be
an instance of L. Then one can write a boolean formula ¢, (z) which has a satisfying
assignment iff z € L. Furthermore, this boolean formula is of size O(p(n)*) where
p(n) is the time bound of the non-deterministic Turing machine that decides z € L

where n = |z].

The formula ¢.{x) depends on the algorithm (i.e., the Turing machine) used to
decide whether = € L and hence we call it the “algorithmic formula”.

Now define the language

L={(G,X)| GeTy, G < Sym(Q), X € 2% is a lex-leader in X}

Because of Lemma 4.1, L € P C NP, so there is a formula ¢,(G, X) which is
satisfiable iff X is a lex-leader in X€, where G is a I'y group. This formula is defined
over the variables z,, Ts, ..., T, representing the input bits of X and other variables.
Hence the restriction of satisfying assignments of ¢ (G, X) to z1,a,..., T, must be
lexical leaders in their string orbits. Thus ¢.(G, X) is indeed a lex-leader formula for
G. It is of size O(n?“(®+¢), This is a formula of polynomial size - albeit a polynomial

with a big constant exponent.
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A comparison of ¢;(G, X) and the formulas ¢;(G) in Theorem 3.1 (ii) and (iii)
is in order. ¢.{G,X) is larger than ¢.(G) and depends on the algorithm used to
solve the lex-leader problem. QOur formulas for abelian groups do not depend on the
algorithm explicitly.

Remarks:

(i) While our constructions work for abelian groups and P; groups, it would be
interesting to generalize this to I’y groups. This should be possible because there

is already a polynomial-size algorithmic formula ¢ (G, X) for these groups.

(ii) The Lex-Leader problem is not even known to be in NP for general groups
whereas we have a polynomial time algorithm for an interesting class of groups,
hence Cook's formula is of polynomial size. It might be interesting to improve
the bound O(p(n)*) for languages in P, which might mean smaller algorithmic
formulas for lex-leaders. But whatever the improvement possible, the algorith-
mic formula will have to have size (}(n?*¢) for these groups, as the algorithm in
Lemma 4.1 (with Luks’s improvement, see remark following Lemma 4.1) itself
takes this much time to solve the lex-leader problem (of course, it is possible
that a more efficient algorithm exists). Hence a fair comparison at this stage
might be between the time to solve the lex-leader problem and the size of ¢ (G).
Except in the case when G < ZF when |¢.(G)| = O(n?®) (Theorem 3.1 (i}) and
the time to solve the lex-leader problem for these groups is also O(n?), |¢.(G)|
is worse than the timing of the lex-leader formula for abelian (and P;) groups.
One possible reasoning for this anomaly might be the fact that the algorithm
works on a specific string at each stage whereas the formula ¢;(G) has to some-

how encode what happens for all possible strings. But it is still an interesting
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open question whether one can write ¢.(G) of size O(p(n)) where p(n) is the

timing of the algorithm Lemma 4.1 to solve Lex-leader for G.

5. Exponential Lower Bounds for Lex-Leader Formulas

In this section, we exhibit an exponential lower bound on the size of the “naive”
lex-leader formula, LL{G), proving Theorem 3.1 (i).
Given Q = {1,2,...,n}, G < Sym(Q), recall from Equation I.3 that the for-

mulas associated with g € G are C(g, i):
[(6X)io1 = Xia] = [X(E) 2 (°X)(3)], fori=1,...,n (I1.4)

Consider the case when n is even and G stabilizes each of the sets {2i — 1, 2i}
for 1 <i<n/f2
Then G is an elementary abelian 2-group and can be identified with a subspace

of Z7 as follows
geEGe vy eV L Z;fz where v, (i) =11iff (26 —1)Y=2i

where v,(i) is the ith coordinate of v, where 1 < i < n/2.

For g € G, observe that
X(2§ - 1) = (°X)(27 - 1) iff X(27) = (°X)(25)

Thus in particular equation (II.4) is necessarily true when ¢ = i or when i is even.
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If 7 is odd and ¢ # i then I1.4 is equivalent to

A X(2k—1)=X(2k)| = [X(©E) > X(i+1)]
k<(i-1)/2, (2k=1)7=2k
We say that C(g, 2¢ — 1) is trivial if it is a tautology, i.e., if (20 — 1)9 = 27— 1.

We remove the clauses that are trivially true from LL(G) to obtain the formula

NGO=A A Cl2i-1) (I1L.5)
geG
1<i<n/2

(2i-1)9#2i-1

Recall that, as in the definition of LL(G), there will be several identical clauses
in N(G). However we are ultimately concerned with the number of distinct non-
prunable clauses. It suffices to prove an exponential lower bound on the number of
non-prunable distinct clauses in N(G).

For g € G, 1< i< n/2, let vy; < Z% where v,;(j) = 1iff (25 — 1)9 = 25 for
1 < j <i. vy is thus the projection of v, onto the first ¢ coordinates. If C(g,2i — 1)
is non-trivial then v,(i) = 1. For v,w € Z§, v S wiff v(i) < w(i) forall 1 < i < k.

In other words, the order < is the lattice theoretic order defined by set inclusion.

Lemma 5.1. Let C(g,2¢ — 1) and C(gs,2i> — 1) be two non-trivial clauses
in N(G). Then C{g,,2i; — 1) prunes C(gs, 2¢; — 1) iff ¢; = i, and v, ; =X v,,; where

Z.=‘l'.1=’l:2.

Proof. (<=) Trivial.

(=>) Suppose i; # i2. We exhibit an X which makes C{(g;,2i; — 1) true and
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C(g2,2i2 — 1) false, contradicting the hypothesis. Define Iy = {I | v, 4, ({) = 1} and
I = {l | vg,4,(I) = 1}. Note that ¢, € I, and i, € L.
We define X as follows:

X(2k-1)=X(@2k)=0 ifkelk+#i,
X(2i—1) =0,X(2iy) =1

X(2k-1)=1X(2k)=0 ifkgl

C(g2, 213 — 1) is false under this X. We show that if ¢, # i, and I) € I, the C(g,,%;)
is true, contradicting the hypothesis.

The antecedent of C(g;,2i; — 1) for j € {1,2} is

N\ X(2k—1)=X(2k)
keL\{i;}

and the consequent of C(gj,2i; — 1) for j € {1,2} is
X(2i; — 1) > X(2i;).

If ¢, # i, the consequent of C(gy,2i; — 1) , e, X(2¢; — 1) > X(24;) is true
because either ¢} & I3, in which case X (24, — 1) = 1, X(2{;) = 0 or 4, € I, in which
case X (2i;—1) = 0, X(24;) = O since 4, € I\ {i»}. Hence in either case, C(gy, 2i; —1)
is true.

Suppose i; = 1; but I} € I,. (Note that this is equivalent to v, ; 2 v,,; where

i =1 = 1p) Then there is some { € I} \ I; such that the term X (2! — 1) = X (2i)
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appears in the antecedent of C(g;, 2i; —1). So the antecedent of C(gy, 2¢; — 1) is false.

Hence the clause C(g;, 2i; — 1) is true. m]

It is possible that a clause cannot be pruned by a single other clause but some
conjunction of clauses prunes it. For groups under consideration, we show that this

is not possible.

Lemma 5.2. Let C = {C(g,2i; — 1),C(g2,2i2 — 1),...,C(gx, 24 — 1)} be a

collection of clauses such that their conjunction

N¢C

Cec

prunes a clause C(g,2i — 1) then each C € C prunes C(g,2i — 1).

Proof. Let I = {ljv,:({) = 1} and assign X as follows. For alll € I, # ¢
let X(21 - 1) = 0,X(2) = 0 and X(20 - 1) = 0,X(2) = 1. Foralll & I let
X(2l-1) = 1,X(2l) = 0 (note: this is the same X as in the last lemma). If for
1<j <k, ifi; #1, then X makes C(g;,2i; — 1) true. Hence we must have ¢; = i for
each 1 < j < k. If ij =4 but vy, ; 2 vy, then C(gj, 2¢;—1) is true. However X makes
C{g,1) is false. Hence it must be the case that for each j, ¢; = ¢ and vy, ; < vy;. Now

Lemma 5.1 implies that C(g;, 2i; — 1) prunes C(g,2i — 1). ]

Lemma 5.2 gives a combinatorial characterization of lex-leader formulas. For
1 <i<n/2, define

Vi = {v,: € V| (2i — 1)9 = 2i}.

V; is a lattice under the partial order defined by set-theoretic inclusion i.e v < w in

the partial order iff v(l) < w(l) for all 1 <! < i. We can then prove the following:
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Lemma 5.3. A clause C(g,2i — 1) in N(G) is non-prunable iff vy; is minimal

in V.

Proof. (<) The clause C(g,2i — 1) is prunable iff there is some set of clauses
C(gi;,2i; — 1) in N(G) which prunes it. Lemma 5.2 implies that this means that
C(gi;,2i; — 1) prunes C(g,2: — 1) for each j. Lemma 5.1 now implies that i; =7 and

W = Uy, i < Ugi. Lhe reverse direction is trivial to prove. (]
J

In particular, Lemma 5.3 implies that we never need to compare V; and V; for
prunability. Lemma 5.3 provides a bijection between the non-prunable formulas in
N(G) and the minimal elements of the lattice V;.

Define min(V;} = {v € V;j Yw € V,,w 2 v = v = w}, i.e.,, min(V;) is the set of
minimal elements of V;.

We can thus conclude

Theorem 5.4. Let G = V < Z7. The number of non-prunable formulas in
N(G) is
a(V) = 3| min(V).
i=1

Henceforth, we will work with these groups in their vector space representation,
i.e., as subspaces of Z} for some n. QOur goal will be to exhibit subspaces of Z3
with exponentially large | min(V},)| - these will represent groups with an exponential
number of distinct non-prunable clauses. The proof of the following theorem exhibits

such a construction.
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Theorem 5.5. There exist subspaces V < Z2"*! for which

| min(Vans)| € Q(2°).

Proof. Let G < Sym(2) and G = V(n) < Z2™*. For § C {1,...,n} let

vs € V(n) < Z2**! be defined as follows:

r

1 ifieS
' vs(i—n)+|S| mod2 ifn+1<i<2n
vs(i) =
|S| mod2 ifi=2n+1
0 otherwise

\

Set
V(n) = {vs| SC{1,...,n}}.

There are 2"~ ! elements in Va,4,. We claim that all of them are minimal
in Vany1. To see this, let vg,wg € Vo,uyy with vg < wg. Clearly, S C &, i.e.,
there exists a 7, 1 < j < n, such that vs(j) = 0,ws(j) = 1. Note that since
vs,Ws' € Vana1, |S| = 1(mod2) and |S'| = 1(mod2). Observe that, by definition,
vs(j +n) = vs(j) + |S| mod 2 = 1 and we(j + n) = ws(j) + |5’ mod 2 = 0, so

vs(j +n) > we(j +n). Hence vg £ we : a contradiction. O

If we change the order of coordinates, then the size of min(V2,.4.,) may change.
However it is easy to prove that for the vector space in V(n) in Theorem 5.5, for

all reordering of coordinates, |min(Vas41)| € Q(2"). But recall that our goal in
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Theorem 3.1 (i} was to prove an exponential lower bound for all reorderings of Q2
where G < Sym(§2). There are reorderings of 2 which do not keep the points in the
same orbit together. We now prove that for the groups under consideration, the size
of N(G) depends only on the ordering of orbits and not the ordering of the points.
Given any ordering P = {w;,ws,...,w,} of 2, a canonical reordering is an
order P, such that the points of each orbit are together and which preserves the
orbit ordering of P, i.e., if a point ¢ appears before j in P (where ¢ and j are in
different orbits), the orbit containing i appears before the orbit containing 7 in Py.
The ordering within each orbit is also important in Py: if w;, w; are in the same orbit

and w; appears before w; in P, then w; also appears before w; in P;.

Lemma 5.6. Let P be any ordering of Q. Then each non-trivial clause of LL(G)

in this order is logically equivalent to a non-trivial clause in N(G) under Py.

Proof. Observe that a clause C(g,7) in LL(G) under ordering P is

LA X(w;) = X(wf)] = [X(w;) 2 X ()] (IL.6)
j<i

If the clause C(g,%) is non-trivial then w; # w! and w! € {w;,wo,...wi_1}.
Clearly we can replace an equality appearing once in the antecedent in Equation I1.6
by two equalities {but remain logically equivalent) as follows: we replace the expres-
sion X (j) = X (59) with the expression X(j) = X (59) A X(j9) = X(j). Observe that

the resulting clause is exactly the clause C(g,%) in LL(G) under the order Py. O

Similarly we can show that any non-trivial clause under the ordering Py, also
appears as a logically equivalent clause in the ordering P. This means that only

the ordering of coordinates in the vector space representation can possibly affect the
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size of LL(G). Thus we have a proof of the following corollary which now proves

Theorem 3.1 (i).

Corollary 5.7. There exist groups G < Sym(£2) such that the number of non-
prunable clauses of LL(G) is Q(2"/?) (where |Q| = n) for all possible orderings of .

While the construction in Theorem 5.5 is such that N(G) remains exponentially
large for all orderings of coordinates {because |Va,41| remains exponentially large for
all orders), it would be interesting to see whether there are subspaces V < ZF, where
(V) (or |min(V,)|) changes drastically when the order of coordinates is changed.
Unfortunately, we do not know of examples where we can exhibit such sensitivity to
the order. Experimental results strongly indicate that reordering will have at best
modest (polynomial) effect on the number of minimal elements in each lattice V;. But
we cannot prove this. We formalize this open problem below.

Let n(V, w) denote the value of (V') when the coordinate set [n] = {1,2,...,n}
is ordered as w. There are n! possible orderings, each corresponding to a permutation

7 € Sym([n}). We make the following conjecture.

Conjecture 5.8. There exists a constant ¢ such that for all V < ZZ,

max{n(V, 7)| 7 € Sym([n]}}
min{n(V,x)| 7 € Sym([n])}

We cannot even prove this when we change an ordering 7 by swapping a pair of

coordinates. Let S C Sym([n]) be the set of (7) transpositions from Sym([n]). Then
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we cannot even prove that for all V < Z7 and all orderings =,

min{n(V,#7)jr € S} =

The above problem is open even if S contains a single transposition ((n — 1 n),
say). We can however prove the following result which provides a general proof that

for every ordering of coordinates |Van41| = £2(2") in Theorem 5.5.

Lemma 5.9. Let V < ZF be a subspace of dimension m such that | min{(V},)| =
2™-1 for some ordering m of coordinates. Then for all possible re-orderings of coordi-

nates, | min(V,,)| > 2™~2.

Proof.  First note that |min(V,)] = 2™~! means that all vectors in V, are
minimal. Let =’ be another ordering of coordinates such that n™ = r, i.e., it maps

the n-th coordinate in 7 to the coordinate r. Let

S(r,n) = {v € V| v(r) = v(n) =1}

be the set of vectors in the order o' with 1’s in coordinate r and n. It is easy to prove
that |S(r,n)| = (1/2)2™~!. We claim that each v € S(r,n) is minimal in V; in the
order . Suppose not: then there is some vector w € V;, with w(n) = 1 such that
w < v. We claim that w(r} = 0. If not, then v would not be minimal in V;, in the
original order m. Now observe that w < v implies that w +v < v and (w 4+ v)(r) = 1
so that again v cannot be minimal in V;, in the order 7. So v has to minimal in

Va. 0O

It is conceivable (but is an open question} that for some groups G < Sym((Q?)
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the number of non-prunable elements in LL{G) will be sensitive to the ordering of
Q. This is illustrated very nicely by the Lex-Leader problem defined in Section 4.
While this problem is solvable in polynomial time for ['; groups when we assume an
ordering of the permutation domain, it is NP-hard (and not known to be in NP) for
for elementary abelian 2-groups for some orderings of the permutation domain. This
result is Proposition 3.1 {which we quote below) from {6] which paper also proved the
result in Lemma 4.1 as a “striking counterpoint” to how the order of the permutation

domain affects the computational complexity of the lex-leader problem.

Lemma 5.10. [6, Proposition 3.1] The problem of finding the lexicographic
leader in the G-orbit of X € 2% for G < Sym(2) is NP-hard even if G is restricted to

be an elementary abelian 2-group.

Lemma 5.10 says that some orders are “bad” and Lemma 4.1 says that some
orders are “good” and that those good orders can be found efficiently. Thus we have

the following corollary:

Corollary 5.11. Unless NP = co-NP, there is no polynomial time algorithm that

computes a lex-leader formula ¢.(G) for an arbitrary group G < Sym(f2).

Proof. If such an algorithm existed, it would provide a reduction from the
problem in Lemma. 5.10 to SAT, hence forcing an NP-hard problem in co-NP to lie
in NP, which forces NP = co-NP. O

Corollary 5.11 is not a deterrent to finding one can generate efficient lex-leader
formulas for special classes of groups. In fact, Theorem 3.1 (ii) and (iii) show how to

construct such formulas for two interesting classes of groups.
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In summary, intractable examples are thus those vector spaces where an expo-
nential number of vectors in one of the lattices for a coordinate are minimal. So if
the vector space was such that all vectors were incomparable (in the inclusion order)
then clearly it will be one of the intractable examples. This generalization leads to

the concept of Sperner spaces introduced in the next section.

6. Sperner Subspaces

Sperner subspaces are subspaces V = {v1,...vam} of Z} where for all non-
zero vectors v,w € V , v < w — v = w. Sperner subspaces can be easily seen as
a generalization of Sperner families in an algebraic setting. Recall that a Sperner
family [42] is a collection F of subsets of a finite set X such that for all A, B € F,
A C B = A = B. Sperner subspaces are Sperner families closed under symmetric
differences:

VA BeF,A#B—- ALABe F

where AAB = (A\ B)U (B \ A).

To see that the two definitions of Sperner spaces are equivalent, interpret the
sets in the second definition as incidence vectors. Symmetric difference of sets then
corresponds to addition in GF(2).

Sperner families under varieties of restrictions is a well-researched area in ex-
tremal set theory, see (1, 15, 44]. A combinatorial structure equivalent to Sperner
spaces is explored in Mikl6s[31]. These structures first arose in a paper by Katona
and Srivastava [23] in the context of statistical designs. In his paper, Miklds considers
the extremal properties of subspaces of Z7 where any two non-zero vectors have a

non-empty intersection as sets. It is easy to see that this is exactly equivalent to the
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“Sperner space” condition. In fact, our NP-hardness proof of Theorem 6.7 relies on
this version of the Sperner condition.

In the rest of this section, we show that exponentially large Sperner spaces
exist via a probabilistic argument (Subsection 6.1). We show explicit constructions of
Sperner spaces (Subsection 6.3) and prove an upper bound to the maximum dimension
of a Sperner space (Subsection 6.2). We also study the properties of cosets of a
vector space which are Sperner (Subsection 6.4). Since Sperner spaces turn up as
the intractable instances for the approach outlined in Section 2, checking whether
a vector space (input as a set of basis vectors) is Sperner is important. We show
that this problem is NP-hard (Subsection 6.5). We also consider the average case:
for a random subspace V of Z7, we estimate the number of minimal elements in V,

(Subsection 6.6).
6.1: Exponentially Large Sperner Spaces

We now give a probabilistic proof that exponentially large Sperner subspaces of
Z} exist, a result which we obtained independent of Miklés’s identical result.
Theorem 6.1. [Babai, Luks, Roy] For n > 5, there exists a Sperner subspace

of dimension n log(2//3).

Proof. We define a probability space over Z7. Choose a random set B =

{g1...9m} of m linearly independent vectors where 1 < m < n and

_ 1 ifj=1
g7} =
0 f1<j<mandj#i
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For coordinates m+1 < § < n, g;(7) is 0 or 1 equiprobably and independently.
Let V be the span of B. V is thus uniformly distributed over 2™("~™) vector spaces
of dimension m.

Any v € V is uniquely expressible in the form gs = 3, c g; where § C {1...m}.

Observe that if v = g5, w = gs» and v < w, then § C §'. Hence
Pr(Ju,v € V,u <v) =Pr(35,5,5 C &', 95 < gs)

We claim that for S C {1...m}, gs is uniformly distributed over Z; ™. To see
this, we prove that for each coordinate m + 1 < j < n, gs{j) is 0 or 1 equiprobably.
For each such j, define I; = [{i| g:(5) = 1,7 € S}|. Now gs(j) =1 iff J; = 1 mod 2.
Now

9151-1
Pr(l; =1mod 2) =

W == ]./2.

Hence gs is uniformly distributed over Z7™™.

For S ¢ §' C {1...m},Pr(gs < g5) = (3/4)"~™. Observe that
! N = m m=k __ qm
.55 sH=3 (7)ot =am
k=0
We can then conclude that

Pr(u,ve Vu<v) < Z Pr(gs < gs')
5.5",5cs

26 <20

5,5',5C5! s,58,5Cs!
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Thus,

Pr(Ju,v € V,u <v) < 3™ (%)

Hence if 3™ (3)"™™ =1, ie., when 2™ = (2/V3)", Pr(Iu,v € V,u < v} <1
which means there is some vector space V' of dimension m which is Sperner. Thus

there is a Sperner space of dimension nlog(2/+/3). O

6.2: Upper Bound on Sperner Dimension

We now prove an upper bound on the dimension of Sperner subspaces.

Theorem 6.2. Let V < ZJ for n > 3, be a Sperner subspace of dimension m.

Then m < %,

Proof. Let V be an m-dimensional Sperner subspace of Z} where m > £
Let B = {g1..- 9|V, 9:(?) = 1,V5,1 < j < m,j#i— gi(j) = 0} be a basis in
canonical form for V. ? Then any v € V is some gs where S € {1...m}. For any gs

let g5 be the projection of gs onto the last n — m coordinates, (gs(m +1),..., gs(n}).
Lemma 6.3. Vi, j,gi=g; = 1t=].

Proof. Suppose that for some ¢ # 7, 1 < i, <m, § = §;. Then Vk k ¢
{i,3},(g: + g;} < (g: + g; + gx) violating the Sperner condition. Note that such a &k

exists because m > 2 since m > 2 > 2asn > 3. O

3The order of coordinates is not significant in these discussions. So WLOG we can
assume that the first m coordinates are the “canonical” coordinates
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Now consider B = {@1,82,---,0m| g € B}. From the above lemma, |B| = m.
Let W be the linear span of B. Clearly W < Z5™™. Let dim(W) be the dimension
of W.

Lemma 6.4. dim(W)>m —1.

Proof. Suppose that dim(W) < m — 1. Then B is a dependent set of vectors.
Hence there exist $ C {1...m} and j € {1...m} — S such that |[S| < m -1 and
gs = g;. Note that |SU {j}| £ m — 1 < m. Hence there exists a k¢ Su{j}. Note
that using arguments similar to the previous lemma, we have gsu(j) <= gsu(i} + 9k

which violates the Sperner condition. O

However dim(W) < n —m since W < Z7™™. This means that m —1 <n —m,

i.e., m < (n+ 1)/2 which contradicts our hypothesis. m|
6.3: Explicit Constructions

We now give an explicit construction for Sperner subspaces of dimension /7.
A better explicit construction, of dimension n** is given in [31].
For each n > 1 and 1 < m < n, define T(m,n) to be true iff there is a Sperner

subspace of dimension m in Z3'.
Proposition 6.5. T(m,n) = T(m+1,m+n-+1)

Proof. Let B ={g1...9m|¥g: gi(i) = 1L,V5,1<j<m,j#i—g(j) = 0} be

a basis in row-reduced echelon form.
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We construct a basis Bpy1 = {h1...hn41} for a vector space V of dimension

m+ 1 in Z3**** as follows:

) 0if 2<j<n+1
h(j) =
1if j=1 or n+2<j<n+m+1

The remaining vectors {h;| i > 2} are defined as follows:

gi(j—1)if 2<5j<n+1
hi(f) =< 1if j=n+i

0 otherwise

B;n41 is a set of m + 1 linearly independent vectors - the vectors are actually in

canonical form. Let V,,,;; denote the linear span of the vectors in By, ;.
Claim 6.6. Vi < Z3*™*! is Sperner.

Proof. Any vector v € V,,,4; is of the form hg where S C {1...m+1}. If
S = {a} where 2 € {1...m} we write h, as a shorthand for hg,.

If Viny1 is not Sperner, then there exists S € §' C {1...m + 1} with hs < hg.
Now if S # {1}, then hs £ hg since hg[2...n+1] = g4 and hsf2...n+ 1] = gp
where A = {i|i+1 € S} and B = {i|i+1 € §'}, since hy(j) =0forall2<j<n+1
and g4 £ gp. Thus we need only consider the case S = {1} and §' C {1...m + 1}
where 1 € S'. Consider hsn(;). Forsome j,n+2<j<n+m+1, henyy(j) = 1.
Therefore hy £ hg since hy(j) = 1 and hg/(j) = 0. )

Thus if T(m, n) is true, so is T(m+ 1,n + m + 1). O
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Observe that T'(2,3) is true: the linear span of {(1,0,1),(0,1,1)} is a Sperner
space. Starting from T'(2, 3) we can thus construct an infinite family of Sperner spaces

by applying the extension shown above. Thus we will have T'(m, s) true where

m
s=3+Zi€ B(m?).

i=3

Thus we can explicitly construct an infinite family of Sperner spaces of dimen-

sion ©(/n) in 2.

6.4: Sperner Cosets

Recall that in the proof of Theorem 5.5, we constructed a vector space V <
Zg““ such that Vo,41 was a Sperner family. Vo,4; is also a coset W + z in V, where
W = {v e V|v(2n+1) = 0} and = is any vector in V with z(2n +1) = 1.

We thus define a Sperner coset to be coset in Z7 (i.e., it is W + x for some
W < Z% and = € Z}) which is a Sperner family.

The proof of Theorem 5.5 gives an explicit construction of Sperner cosets of
dimension n/2 — O(1) in Z3.

The following argument shows that Sperner cosets can have dimension at most
n/2. Let W +z be a Sperner coset, where W < Z! is a subspace of dimension m and
z € Z3. Observe that without loss of generality, we may assume that for all w € W,
w(n) =0and B = {g1,92,...,9m} is a basis for W in row-reduced echelon form in the
first m coordinates. Furthermore, we may also assume that z(n) = 1 and z(i) = 0 for
all 1 € i € m (otherwise, subtract the necessary basis vectors from z to satisfy this
condition and denote the resulting vector as ). Let §; denote the projection of the

basis vector g; onto the last n — m coordinates. We claim that B = {1,82,---,Gm}
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are independent vectors in Z3~™. If not, there is some subset S C {1,2...m} and a
vector gis = ) ;cq §i in Z3 ™ such that gs(i) = 0 for all m+1 < @ < n. Observe that
z < gs + x, which violates the Sperner condition. Hence B is independent, which
implies that m < n/2.

Sperner cosets are more natural examples of “bad groups” for symmetry break-

ing as they are much less restrictive than Sperner spaces.
6.5: Identification of Sperner Spaces

We consider the complexity of the question: given a subspace V of Z in the
form of a basis, is it a Sperner space? We prove below that the complement of the
question (defined below) in NP-hard.

Let V < Z% be a vector space over Z,. For v € V, define the support of v as
supp(v) = {i{|1 < ¢ < n,v(i) = 1}. We say that the non-zero vectors v,w € V are
disjoint if supp(v) Nsupp(w) = @. We observe that a Sperner space is a subspace V' <
Z3 where supports of any pair of non-zero v,w € V have a non-trivial intersection (if
the intersection was empty, observe that v < v - w, violating the Sperner condition).

We define the following problem:

DISJOINT VECTORS (DV)

Instance: A set of linearly independent vectors S C Z%

Question: Does there exist two disjoint vectors v, w in the vector space V = (S) 7

DV is in NP: a non-deterministic Turing machine guesses v, w and checks (in
polynomial time} that supp(v) N supp(w) = @. It also checks that v, w € V: this can

be done in polynomial time using standard linear algebra (e.g. Gaussian elimination).
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Theorem 6.7. DISJOINT VECTORS is NP-hard.

Proof. We show a reduction from the following problem:

Exact 3-Cover(X-3C)

Instance(X, M): A set X and a collection M of 3-element subsets of X.
Question: Does there exist a collection of (disjoint) subsets of M such that their
union is X7

Let X = {z1,22...2,} and M = {my, m2...m,}, i.e,, s = |X|,t = |M|.

From an instance of X-3C as above, we construct an instance of DV as follows:
we construct a vector space of dimension r = s+ 2t + 2 in Z7 where n = r + s% +
4t? + 35 + 4t - 3st € O(r?) which has disjoint vectors iff the instance (X, M) of X3C
is a yes instance. We exhibit this vector space by constructing a basis of r vectors.

The basis is K = Kx U K U Kj; U {a, b} where Kx = {v,vs,...v,}, Ky =
{wy, ws...w} and Ky = {i1,02... @}, where Kx, Ky, K, {a,b} are all disjoint
sets.

Informally, we will interpret v; € Kx as a representative of the element z; € X
and w; as (a representative of) the set m; in M. The vectors @; will be “dual” vectors
to w; in a natural way. The vectors a, b are special vectors whose purpose will become
clear later.

The vectors in K are in row-reduced echelon form in the first r coordinates. Let
V = (K). Any v € V is of the form gs where S C K. If there are vectors gs, g5 € V
such that supp(gs) Nsupp(gs) = O then clearly SNS' = 9.

Informally, we want to achieve the following: if S, S’ are 2 opposing sets such
that gs and gss are disjoint, then (i} a € S,b € S’ (ii) every v; sides with a in S,

i.e., Kx C 8 (iii) for each v; € S, at least one w; sides with b in S’ where w; is a
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representative of the set m; where z; € m; and (iv) all the w;'s that side with b have
to be disjoint. Note that if we have two opposing sets as above, we automatically can
construct a cover for X.

We now proceed to specify the remaining set of n -~ r coordinates. We do this in
steps, each step specifying a block of coordinates that corresponds to a specific gadget
serving a particular purpose. 4 Coordinates that are left unspecified for vectors in

the following description are set to 0.

Block 1: ( v; cannot oppose v;)

We specify the s° coordinates o +1...a + s? where a = .

Fix a bijection from f from X x X to @ +1...a+ s%. For each p = (z;,z;) €
X x X, define u(f(p)) = v;(f(p)) = L.

Block 2: ( w; cannot oppose w;)

We specify the t? coordinates o -+ 1...a + 2, where o =1 + 5%

Fix a bijection f: M x M — a+1...a+1t% Foreach p = (m;,m;} € M x M,
define wi(f(p)) = w;(f(p)) = 1.

Block 3: ( w; cannot oppose @;)

We specify the 2 coordinates from a + 1...a + t2, where a = r + 5% + 2.

Fix a bijection f: M x M — a+1...a+1t* Foreach p=(m;,m;) € M x M,
define @;(f (p)) = w;(f(p)) = 1.

Block 4: ( v; cannot oppose a)
We specify the s coordinates from @ +1...a + s, where @ = r + % + 2{2.

For each 1 < % < s set vi{a + i) = a{a + i).

4As will be apparent certain blocks will be redundant, their purpose being fulfilled
by other blocks. But for reasons of clarity we leave them in.
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Block 5: ( w; cannot oppose b )
We now specify the ¢ coordinates a + 1...a +t, where @ = r + s% + 2t2 + 5.

For each 1 €1 <t, set wi(a+i) =bla+1i) =1.

Block 6: ( w; cannot oppose a)
We specify the ¢ coordinates a +1...c+t where a =7+ 52 + 2t + s+ ¢.

For each 1 <i < tset W;(a+i)=ala+i)=1

Block 7: ( w; cannot oppose v;)
We specify the st coordinates o+ 1...a + st, where a = 7 + 5% + 2t? + 5 + 2.
Fix a bijection f from X x M to [a+1...a+st]. Foreachp = (z;,m;) € X xM

set

vi(f(p)) = w:(f(p)) = 1.

Block 8: ( If ; is opposite w; then both a and b have to be used)
We now specify the set of 2t coordinates ¢ + 1...e + 2¢, where a =7 + 8% +
2t% + 5+ 2t + st.

Set

bla+1i) =wila+i) =wla+i)=1

a{a + 2i) = wi(a + 2i) = wi(a+2i) =1

Block 9: ( v; cannot oppose w; without help of a)
We specify the st coordinates @ + 1..a + st where @ = 7+ 5% + 2t + s + 4t + st.

Fix a bijection f from X x M to [a+1...a+ st].
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For each p = (z;,m;) € X x M set

vi(f(p)) = w;j(f(p)) = a(f(p)) = 1.

Block 10: ( v; cannot oppose w; without the help of @;)
We specify the st coordinates a+ 1.+ st where o = 7+ 5% + 2t2 + s + 4t + 2st.
Fix a bijection f from X x M to [a+1...a+st]. Foreach p = (z;,m;) € X x M

set

vi(f(p)) = wi{f(p)) = @;(f(p)) = L.

Block 11: ( All v; have to be used if a and b are used)
We specify the s coordinates a+1...a+s where @ = r+ 5% + 2% + s+ 4¢ + 3st.

Foreach 1 <i < sset wy{a+1i) =ala+i) =bla+i) =1.

Block 12: ( All w;’s used have to be disjoint)
We specify the t2 coordinates a+1. .. a+2t2 where a = r+s?4-2t2+2s+4t+3st.
Fix a bijection f from M x M to a+1...a+t* For each pair p = (m;,m;} €
M x M such that i # j and m; Nm; # 0, set

Block 13: ( For each v; used there has to be at least one (actually an odd number of)
w; opposite it where z; € w; if b is already opposite v;) We specify the s coordinates
a+1...a+s where a = r + 52 + 3t? + 25 + 4t + 3st.

For each z; € X set v;{(a + i) = b(a + i) = 1. Also set w;{a + i) = 1 for all

1<j<tandx; €m;.
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Block 14 ( If @; is opposite wy, , then either w; or @, has to be used)
We specify the t2 coordinates a+1...a+t* where @ = 7+ 52+ 3t +3s+4t+3st.
Fix a bijection f from M x M to a +1...a +t*. For each pair p = (m;, m;)

such that i # 7 set

wi(f(p)) = w;(f(p)) = @;(f(p}) = ®:(f ().

Lemma 6.8. Let gs and gs- be disjoint. Then eithera € S,b€ S ora € ',
be S.

Proof. We need only consider the following cases:
Case 1:
Assume that v; € §. Clearly no other v; can belong to S’ (by Block 1). Also
({e}U Kar)NS' = 0 by blocks 4 and 6. So if y € S then y is either some w; or y = b.

Suppose y = b. Then by block 11, a has to be used. Now a cannot be in S’ (by
block 4) soa € S. So we havea € S,b € 5.

Suppose instead that y = w;. Now by block 9, a has to be used. By block 4, a
has to go in §. If v; € S and w; € S’ then by block 10, @; has to be used. Since w;
cannot oppose a (block 6) it cannot be in §'. So @; € S, i.e., it opposes w;. But this
it cannot do so without the use of b via block 8. But & cannot go into S because of

block 5. Sobe §'. Thusa€ S,be §'.

Case 2:
Assume that w; € S. Then y € §' is either a or v; € Kx or some ;. If y = v; we are

back to case 1. If y = a then because of block 9 there is some v; € §’ (v; € S because
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of block 4) and again we are back to case 1. If y = @; then by block 14, either w; € S
or w; € S’ (both could happen). In which case, we have either w; € 5,@; € S’ or

w; € S,1; € S and by block 8, a,b have to be used.

Case 3:
Assume w; € S. Then there is some y € S’ which is either some w; or b. If y = &
then by block 8, w; € S'. Then since w; € §',; € S, by block 14, a has to be used

opposite b. If instead y = w; then by block 14 and block 8, a and b have to be used.

Case 4:
Assume a € S. Then y € §' is either some w; or b. If y = b we are done. Suppose

y = w;. By block 8, @; € S. Then by block 8 again, b € S'.

Case 5:

Assume that b € S. Then y € S’ is either some v; or some @y, or a. If y = a we are
done. If y = vj, then by block 11, @ € §'. Suppose instead that y = w0y, then by
block 8, wy € S. Since wy € S, € &', by block 8, a € §'.

O

Suppose we have 2 disjoint vectors gg, gs. WLOG a € S and b € §’. Observe
that because of block 11, Kx C 5. For each v; € S at least one w; where z € m;

has to be in S’ (block 13). For each such w; € S’ we must have @; € S (block 10).
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Now observe that all the w;’s in S’ must be disjoint because of block 12. Thus the
m; corresponding to the w;'s used constitute a perfect cover.

Suppose that the instance (X, M) of X3C was a yes instance. Let M’ C M
constitute a perfect cover for X. Observe then that the vectors gs and gs are disjoint
where § = KxU{a}U{w;|m; € M'} and §' = {b}U{w;| m; € M'}. Thus the instance

of DV is also a yes instance. O

6.6: The Average Case

The probabilistic proof of Theorem 6.1 actually shows that Sperner spaces are
plentiful, i.e., a random subspace of V < Z7 of dimension m = nlog72; is Sperner
with high probability. This automatically implies that for a random subspace V of this
dimension V, will also be a Sperner coset with high probability. In this subsection,
we consider the average case: given a random vector space V', what is the expected
number of minimal elements in V,;? This will give us an idea of how frequent the
“bad” groups arise. If they are very rare, then in practice, it may be possible to write
small lex-leader formulas for these groups, despite the intractable examples.

Let B={g1...9m} C Z} where 1 < m < n/2, be a set of random vectors with
a canonical projection in the first m coordinates. That is

9i(4) = b=
0 fl<j#i<m
and for m+1 < j <, ¢;(j) = 0 or 1 equiprobably and independently. Let V < 23
denote the linear span of B. Any vector v € V is of the form gg forsome S C {1...m}.

We want to compute the expected number of minimal elements in the lattice
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of vectors in V with a 1 in the last (i.e., n th) coordinate i.e. in the set V, = {v €
Viv(n) =1}

For S C {1...m}, Pr(gs(n) = 1) = 1/2. Assume henceforth that gs(n) = 1
(we will eventually correct for the conditional probability). Let zg = {i| m+1<i <
n — 1, gs(i) = 0}. Clearly zg is uniformly distributed over Z7~™"!. For i € S, define

g; for i € S to be the projection of g; onto the coordinates in zs. Let ¢t = |z5| and
P(8) = {g|ic S} C Zt.

We first make the following claim:
Claim 6.9. JweV,w<gsiff 3z V,z(n) =1,2 < gs.

Proof. (=) Suppose w(n) = 1, then we are done as z = w. Suppose w(n) = 0.
Consider w + gs. Since for all 1 < i < n, w(i) < gs(i), w(i) + gs(5) < gs(i) + g5(?) <
gs(?). Hence w + gs < gs since w < gs. Also (w + gs)(n) = 1 since gs(n) = 1 and

w(n) = 0. The reverse direction is trivial. 0

The above claim implies that to check whether a particular vector v € V with
v{n) = 1 has another vector w € V with w < v and w(n) = 1, we can effectively

ignore the condition w(n) = L.

Claim 6.10. 3w € V,w < gs iff (P(S)) < ZJ has dimension strictly less than
|S] - 1..

Proof. (=) Let w = g4 where A C S and w < gs. Note that P(5) cannot

have dimension || since 3 cpsv="0. If P(8) has dimension |S| — 1, {@i € A} is
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a set of linearly independent vectors. Hence §4 # 0°. This means that there is some
coordinate j in zs such that g4(7) = 1 and gs(7) = 0 which implies that w £ gs, a

contradiction. The proof in the other direction is trivial. O

The set P(S) consists of k = |S| vectors &, d;..., 0 uniformly chosen from
Z% such that their sum is the zero vector 0°. Once §, ... gk, are chosen, then g is

automatically determined (. §r = 1oy Gi)-

Claim 6.11. 3w e V,w < g5 iff {§, ... gk-1} is linearly dependent.

Proof. (<) Follows from Claim 6.10.
(=) Let w = g4 where A C 5. Consider the two cases:
Case 1: If A C {1,2,...,k — 1} then {§| i € A} is linearly dependent. Hence the
super-set {gi, o, ..., de—1} is linearly dependent.

Case 2: Now suppose k € A. Since w < g4, §a = 0* so

> gi +gx = 0"
i€AN{1,2,..k~1}
. -1. . k-1 -
But 9 = Z?:ll Gi. So ZfEAﬂ{l,Z,...,k-l} g: + zi:ll gi = 0. Recall that A 2
{1,2,...,k} so the last sum is a non-trivial linear combination of vectors

{81, 92, .- -, Gx-1} which means that these vectors are linearly dependent. 0

Let B(t,s) be the probability that these s random vectors in Z; are linearly
independent. Thus gs is not minimal with probability 8(t, £ — 1). Then the expected

number g of minimal elements in V,, is

= zScu,z,...m} Pr(gs(n) = 1) Pr{gs is minimal )
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= %E’k’;l (’;:) ?;Om—l (H_T_l) 2n—+r 6(t1 k- 1) (117)

as there are () possible S and 2"~™~! choices for 25 for each S.
We now compute 8(t,s). It is easy to see (see [11]) that s vectors chosen

uniformly from Z} are linearly independent with probability

_(2t=1){2t-2)..(2t—22-1)
- 2t

=T —1/2+)

We now find a non-trivial lower bound for the expected value pu.

We first derive an lower bound for 8(t, s).

Lemma 6.12. Foralls>0and >0,

Blts) 21~

Proof. (By induction) First notice that

Bt 1) = (1- ) > 1 - (2/2).

Assume that (t,i) > 1—2/2" forall 1 <i <k <t. Then

2k
Zk 2k R B ok o 0 A
> (1- ﬁ)(l - E) since S(t, k) > (1 — g) by the induction hypothesis
k
_ (1 _ 2_)2
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2k+1 4k
= l-Zr+y
2k+1
> -5

Hence 1 — A(t,s) < & (observe that when s >t or when s = ¢ = 0, the lemma

is trivially satisfied). ]

Substituting the lower bound for §(t,k — 1) into the expression for u, we get,

)3 T ) e (-5
. P t 2n—m—1 2t
n-m-=1

m n—m-1 1 k=1

k) 2. ( t ) gt (1‘ 7) -0q)

This implies:

1 3 n—m
w om=1 __ _qm | _ _ .
p=>2 3 3 (4) 0(1)

Experimental results show that the lower bound is indeed very accurate. We

make the following claim:

Claim 6.13. Let V < Z7 be a random vector space of dimension m <
nlog(4/3) ~ .41n with a canonical projection in the first m coordinates, then the
average size of min(V},) is at least (1 — 0(1))2™"!, i.e., almost all the elements in the

V, are minimal.

Remark: It is also possible to find an upper bound to u by finding an upper bound

to B(t,k — 1). Numerical values indicate that these bounds are very close.
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7. Polynomial Size Lex-Leader Formulas for Abelian Groups

Our main goal in this section is to exhibit polynomial size lex-leader formulas
¢1(G) for G abelian (Subsection 7.4).

Recall from Section 2 that the lex-leader formula LL(G) for arbitrary G <

Sym([n]} is

where

Pivot(i) = /\ { /\ X(7) = X(5%) } - X (i) 2 X(#)

geG \j<i-1

We tackle abelian groups in stages. Since subspaces of Z7 were the pathological
examples for LL(G), we first show a polynomial size ¢.(G) for these groups (Sub-
section 7.1). We then consider the case when the orbit constituents of abelian G are
cyclic (Subsection 7.2). Then we consider the general situation (in Subsection 7.4).
In all cases, we build ¢.(G) from LL(G) and obtain a small formula by introducing
a polynomial number of new variables.

In the abelian situation, an essential ingredient in our construction is the ability
of finding short boolean formulas which are satisfiable iff a system of equations is not
solvable over the ring of integers Z,, (not surprisingly, this ring is actually a field
Z, when we consider abelian groups which are subspaces of er:)' We show how to

construct such short formulas in Subsection 7.3.
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7.1: Lex-Leader Formulas for Subspaces of Z

We begin with some preliminary results. Let x = (z1,2>...,2,) and € =
(€1,€2,...,€,) be 2 n-bit vectors from GF(2)". Also, let b € GF(2). Let E(=

E(x,¢,b)} denote the equation ., €z; = b.

Lemma 7.1. There exists a boolean formula ¢ of size @(n) defined over 3n
boolean variables (¢;, z;,b and n — 1 additional variables) which is satisfiable iff £ is

solvable.

Proof. Observe that F is solvable iff the equations uy = €71, p; = pi-1+¢€;z; for
2<i<n-1andb=pu,_+€,T, are simultaneously solvable where y;,1 <i<n-1

are new variables. This system is solvable iff the boolean formula

(me @Az N (e (pa® (e A z)) A (a1 @ (6 A 30)))

2<i<n—1

is satisfiable (@ refers to the exclusive-or operator). O

Given a system of equations, we can now apply the construction in Lemma 7.1

to each equation.

Lemma 7.2. Let Az = b be a system of equations over GF(2) where A is an
m % n matrix. Then there is a boolean formula ¢(A, b), which is satisfiable iff Az = b
is solvable. Furthermore, ¢(A,b) is of size ©(mn) and is defined over the m(2n + 1)

variables A(, §), b;, z; and m(n — 1) additional variables,

Remark: Observe that finding a solution to an n x n-system of equations is in poly-

nomial time (via Gaussian elimination). This algorithm runs in time O(n®). Cook’s
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theorem [16] now guarantees the existence of a boolean formula which encodes the
computation path of this algorithm. Clearly such a formula would be asymptotically
larger than the formula obtained by Lemma 7.2 (which is O(n?)).

Let Az = b be a system of equations over GF(2), where A is an m X n matrix.

Lemma 7.3. There exists a system of equations Cz = d over GF(2), where C

is an (n + 1} X m matrix, which is solvable iff Az = b is not solvable.

Proof. Consider the vector space spanned by the rows for A together with
b, i.e., the row space R of the matrix [4 b]. The system of equations Az = b is
not solvable iff the vector [0 0 ---1] is in the linear span of the vectors in R (which

corresponds to a system of equations Cz = d). O
Now Lemma 7.2 and Lemma 7.3 imply the following:

Lemma 7.4. Let Az = b be a system of equations over GF(2) (where A is an
m x n matrix). Then there is a boolean formula of size ¢(A, b), of size ©(mn) defined
over variables A(i, 7), z;, b; and (n+1)(m —1) additional variables, which is satisfiable

iff Az = b is not solvable.

Let G < Sym(?) be as described in Section 5, ie., G= W < Z;"'z be a group
acting on n points [n] = {1,2,...,n} where the orbits of G are the sets {2i — 1, 2{}
for each 1 < ¢ < n/2 (after suitable reordering of Q2 if necessary). Obviously g € G =
w € W where w; = 1 iff (2 — 1)9 = 2. '
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Recall from Equation II.5 that the lex-leader formula for G is

NG =N A\  Fix(g,X,2 - 2) > Geq(g, X, 2i — 1)
e
1<ig<n/2

(2i—1)9#2i—1

Observe that in the last expression, we have

Fix(g, X, 2i —2) = ( A x@i-1= X(2J'))

j<i(2f—i)9#£2j

and since (27 — 1)9 # 2i — 1, we also have
Geq(g, X, 2 — 1) = X (2i — 1) > X(2i).

Define a;, = 1 iff X(2k — 1) = X(2k). We rewrite N(G) so that the variables
are w; where w € W and write N(W) instead of N(G).

This allows us to simplify Fix(g, X, 2i — 2) as follows (we write w for g):

Fix(9,X,21 = 2) = [Augi/aunms ]
= Arcija [(1 — ax)wy = 0 mod 2]

Similarly we simplify Geq(g, X, 2¢i — 1) as follows:

Geq(g, X,2i — 1) = [wieg2 =0 V (X (i +2) = X(i +1))].
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N(W) = A;even /\wew Fix(g, X, 2i — 2) — Geq(g, X,2i ~ 1)

/\i even[_'awew (/\kgi/z(l —ap)wy =0 A Wiea)y2 = 1) \%
(X (i +2) = X (i + 1))] (substituting the expressions for Fix and Geq)

We can simplify the last expression to

NWw) = A [®W, X)) Vv (X(i+2) = X(i+1))] (11.8)

i even

where

(W, X, i) = ~Juew ( /\ (1—=ap)wr =0 A wipgyp = 1) :

k<if2
Let {by,b2,...b.} be a set of basis vectors of W. Then any w € W can be
expressed as a linear combination w = }_ ¢;b;.
Hence ®(W, X, i) can be rewritten as the following expression: (observe that

this is not a strict boolean formula any more)

—Jyefo,1)n (w = ZC{(),‘) A ( /\ (1-apywe=0A Wiitz)/2 = 1) .

k<if2

The above expression is equivalent to the non-solvability (because of the negated
existential quantifier in the expression} of a system of equations Az = b over GF(2)
where A is a (2n+1) x 2n matrix and z is a 2n x 1 vector of unknowns (the unknowns
are w;, ¢;). Note also that the system of equations is almost homogeneous - all but
one coordinate of b is 0. Hence we want a boolean formula which is satisfiable iff

Az = b is not solvable. Lemma 7.4 shows how to construct such a boolean formula
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@ = ¢(A, b) of size O(n?) defined over A(i, 5),b; and O(n?) additional variables (n — 1
additional variables per equation).
Hence

NW)= N\ [¢V (X(i+2)—X(i+1)].

i even

This implies that N(W) has size O(n®) and is defined over O(n®) additional
variables (O(n?) for each even i). We define ¢.(G) = ¢ (W) = N(W). Thus we have

a proof of the following theorem:

Theorem 7.5. Let G < Sym(f2) be a group with orbits of size < 2. Then for all
orderings of €2 there is a lex-leader formula ¢;(G) of size O(n3) defined over O(n?)

variables.

While LL(G) for some groups of this class was of exponential size for any or-
dering of 2, ¢.(G) is of polynomial size: however, as a penalty, we had to use up to
O(n?) extra variables in addition to X{1), X(2),...,X(n).

We now show how to construct a lex-leader formula ¢;(G) when we use only
O(n) extra variables, however, the size of ¢.(G) in this case is O(n*). We achieve
this reduction primarily by reducing the number of variables used in Lemma 7.1.

Let 1,2 ...z, be boolean variables. Define E[n] = E(z,zs,...,%.) (O[n]) to
be true iff an even (resp. odd) number of the variables z;, z,, ..., z, are set to 1. The

following fact is well-known.

Lemma 7.6. There is a boolean formula of n variables, of size ©(n?), that is

satisfiable iff E[n| (or O[n]) is true.

Proof. Without loss of generality, assume that n is a power of 2. Otherwise

pad the variable set with new variables set to 0. Proof is by induction on n. Since
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we are only looking for polynomial length formulas (asymptotically polynomial) the

base cases are trivial. Observe that

Eln] = [O(z1,%2, ... Tns2) A O(Tn241,- - - Ta)]

VI[E(z1,T2,...Tnp) A E(Tnjr, .. - T0)]

Similarly,

Oln] = [O(z1,22,.. Zns2) N E(Tnp241,. .- Ta)]

V[E(Z1,Z2, - .. Tns2) A OTnjz41, - .- Zq)]

The inductive hypothesis guarantees the existence of a boolean formula of size ©(n?)
for each of the 4 expressions on the right hand side of the above equation (note that
the boolean formula for O[n] is not simply a negation of the formula for E{n}). This

works out to be a ©(n?) formula for E[n] and O[n]. a

Now this means that in Lemma 7.2, we can get formula of size man? with no
new variables being needed. This also means that in Lemma 7.4, we can write a
boolean formula ¢(A, b) of size ©(nm?) that expresses the non-solvability of Az = b.
We use this construction to replace ¢(W, X, i) by a boolean formula of size O(n?®) in
Equation I1.8. This means that N(W) will have size O(n*). The only variables that

are added are ax, 1 <k <n/2 and ¢;,1 <i <7 (clearly r < n).

Corollary 7.7. Let G < Sym(£2) be a group with orbits of size < 2. Then for
all orderings of 2, there is a lex-leader formula ¢} (G) of size O(n') defined over O(n)

variables.
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It is worthwhile noting that Lemma 7.6 gives the smallest possible formula for
E[n]. It is proved in [9] (page 787, 797) that any formula for parity that uses the

connectives A, V and - has to have size £2(n?).
7.2: Abelian Groups with Cyclic Orbit Projections

Let G = {51, S2,- .., 8) < Sym(Q2) (where @ = {1,2,...n}) be an abelian group
whose orbits are (after reordering § if needed) A; = {n;_y + 1,71 + 2,...,n;} for
1 <i<r, where ng = 1,n, = n. Let m; = |A;], so n = Y, m;. We assume that the
orbit constituents are cyclic groups, i.e., G2 = Z,.. Any g € G can be written as
an r-tuple (g(1), g(2),...,9(r)) where g(i) is the projection of g into the i-th orbit.
If necessary, we reorder the points in each orbit so that we have the isomorphism
j € Zpm, & = € G where I* = [+ j (I is the first point in the orbit). For an
assignment X, let the variable e(X, ) be true iff X is invariant (i.e., all 0's or 1s) on
orbit A;.

Let us focus on Pivot(l) where ! is the first point in each orbit and rewrite it
(after introducing new variables) to a formula of polynomial size. The arguments are
exactly the same for Pivot(7) when 7 is any point in .

Let ! be the first point in orbit ¢t 4- 1 for some 0 <t <r —1,1i.e,{=n;_; + 1.

Recall the formula Fix(g, X,¢) (defined in Section 2) which is satisfiable iff

X(j) = X(49) for all j < i. It is easy to see that Fix(g, X,{ - 1) is

Al(g) = 0) V e(X, ).

i<t

Since abelian groups act regularly on their orbits (see Dixon{14}), any group element

either moves all points of the orbit (in which case X has to be invariant on the orbit)
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or it fixes all points (in which case the value of X on that orbit is irrelevant). Observe

that we can simplify the above formula to the system of arithmetic equations:
(1-e(X,7)) g(i) = 0modm; fori=1,2,... ¢

Also recall the formula Geq(g, X, i) from Section 2 which is satisfiable iff X (i) >
X (i%). Because of the regularity of G on the (f + 1)-th orbit, either g(t+ 1) =0 (i.e.,
it fixes all points in the orbit) in which case {9 =l and so X(I) = X({%) or g(t+1) = j
whence ¢ =1+ j,s0 X{I) =2 X(I + 7).

Hence Geq(g, X,!) is:

(gt+0)=0v \/  [{et+1) =4} A{X(+5) = XD}
1Sismiyi-1
Recall that Pivot(!) is the following formula:
N\ [Fix(g, X, 1~ 1) — Geq(g, X, )]
geG

Remark:

(i} We need to add clauses to Pivot(l) which express encode that the variable e(X, i)
is true iff X is invariant on A;. This can easily be done for each e(X, 1) by using
at most n new variables X (i, ) which is satisfiable iff X(i) = X (7). Thus we

add the following clauses to Pivot(l):

A A Xeu+15) 0 (X +1) = X(5)]

1SSt ni 4255 <
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/\ [e(X, D) Ao ir2gion; X(nio1 + l,j)]

1<i<n
Recall that n;_, + 1 (resp. n;) is the first (resp. last) point of orbit A;.
(ii} The variables of Pivot(l) are X (¢) where 1 <i<nand X(i,j) for1 <i,7 <n.

(iii) Strictly speaking g(t+1) = j is not a boolean expression (since neither g(t+1), j
are boolean variables). However, we can easily make it a boolean variable by
having a new variable g;41,; which is 1 iff g(¢t + 1) = j. Observe that there
are O(n?) such variables g.41 ;. But for ease of presentation, we decide not to

rewrite the equalities.

Pivot(l) = A,e —Fix(g, X,1-1) v Geq(g, X,!)
= -3, Fix(g,X,0—1) A -Geq(g, X, 1)
= ~3ec {Aice9()) =0 V e(X,0))} A (gt +1) # 0) A
Micigmm-1(8E+1) # 3V (XG+1) A ~X(D)))

= =356 Vigjemen—1 E(@: 0, +1) A X([G+1) A =X (1)

Here £(g,,t + 1) is a system of ¢ + 1 equations (recall that we could write the

formula Fix(g, X,! — 1) as a set of equations):

N (1—e(X,i) g(i) = 0 mod m,

1<igt
g(t +1) = j mod myy;

Note that each ¢ € G is a word in the generators S = {sy,82,...,5:}, i€,

g= 215a5k SaTo Where z, € Z and g{i) = 3 2,8,(i) mod m;.
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Thus each £(g, j,t + 1) is equivalent to the following system of equations:

S (1—e(X,i)) 8a(i) 2, =0 mod my, 1<i<t

a=1

b1 Sa(t+1) Ta =7 mod M4

where the unknowns are z,, 1 < a < k.
We need a boolean formula which is satisfiabie iff £(g, j,¢ + 1) is not solvable.

In other words, if £ defined as the following system of equations:

Z: A(i,j)zj=bimod m;,1 <i<t+1.
1<i<k
then we need a boolean formula which expresses the non-solvability of this system.
Each equation 3, ¢, A(7, j)z; = b; mod m; is solvable iff Li<ick Al 7)z5 =
b; mod p% is solvable for each prime p such that p% | m; and p**! { m;. Thus by
the Chinese remainder theorem, £ is solvable iff each of the systems of equations
(3 219'5;: A(i,j)z; = bymod p%,1 < ¢ < t+ 1 is solvable for each prime p | m;
for some 1 < ¢ < ¢+ 1. Note that £, might contain fewer than ¢t 4+ 1 equations,
since it might be the case that e; = 0 for some i and so we can remove the trivial
equation )<<t A(¢,7)7; = b mod 1 from £,. Observe that the number of systems
&p is O(n/logn) (by the Prime Number Theorem, [40, ch 10]) since for some i, p|m;
and m; < n.
We can rewrite £, as a system of equations, where each equation is defined
modulo p¢ where e = max{e;| 1 < i <t+1}. To do this we multiply both sides of

each equation ), ... A(¢,7)z; = b; mod p% (where we now can assume that e; # 0)
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by p¢~¢ to get the equation:

> PEA(G, f)z; = p*bi mod p*

1<i<k

We get a new system of equations £, defined over Z, which is solvable iff £, is
solvable.

We can write each £, as a system of the form A,z = b, where Aisann x n
matrix (observe that the number of generators, k, is less than n and we can pad £,
with equations where coefficients are all 0). Thus we need a “short” boolean formula
¢, = ¢(Ap, b,) which is satisfiable iff £, is not solvable, in effect, we need an analogue
of Lemma 7.4 when the equations are defined over a ring of integers Z,..

It is proved in Theorem 7.18 that we can write a boolean formula Ep of size
O(n? log p® loglog p® logloglog p®) which is satisfiable iff A,z = b, is not solvable.

Hence

Pivot(l) = /\15j5m.+,—1 —3gee [E(g, 5t +1) A XG+D A - X(1D)
Migsemn-t [~ 3pec E(@ 3,6+ D] V (XG +1) = X(©)
= Migicmaict (Vo B) ¥ (XG+0) = X))

There are mr; — 1 = O(n) values for j. Observe that p* = O(n) and both
logp = O(logn) and e = O(logn). Hence the total size of Pivot(l) is
O(n* loglogn logloglogn) (as we observed before there are at most O(n/logn) prime
factors we have to consider). An identical asymptotic bound for Pivot{l) when ! is not

the first point of the orbit can be proved in a similar fashion. Thus we have proved:

Lemma 7.8. Let G < Sym(f2) be an abelian group with cyclic projections in
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each orbit. Then one can find a reordering of €2 in polynomial time so that there is
a lex-leader formula of size O(n® loglogn logloglogn) (where |Q] = n) defined over

a polynomial (in n) number of variables.

7.3: Non-solvability over Z,,
Qur main reference for this subsection is [33). The following theorem is classical.

Theorem 7.9. [Smith Normal Form, [33), pg 26] Let A be an n x n matrix
over Z,,. Then there exist invertible matrices I/ and V over Z,, such that UAV = D

where D is a diagonal matrix of the form

diag(s,, sa,...,$r,0,0,...,0)

where r >0 and 5; #0forall1 <i<r

In [33], this theorem is actually stated for a principal ideal domain (such as Z).
But if a matrix A over Z can be diagonalized by invertible matrices U/ and V' over Z,
then A = A mod m can be diagonalized by 7 and V. It is easy to see that 7 and V
are also invertible: this is a simple consequence of the fact that a matrix is invertible
over Z (actually over any commutative ring R with identity) iff its determinant is a
unit in Z (or the ring R), i.e., is +1 or —1. Hence the determinant is a unit in Z,, as
well.

We first make a simple observation.
Lemma 7.10. The linear congruence az = b has a solution in Z,, iff (a,m} | b.

Proof. (=) Suppose the equation ez = b has a solution in Z,,, then there is
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an integer ¢ > 0 such that ax = b + gm. Since (a,m) | a and (a,m) | m, it must be
the case that (a,m) | b.

(<) Suppose (a,m) | b. Set ay = a/f(a,m),b, = b/(a,m),m; = m/(b,m).
The congruence g,z = b, has the solution z = a;'b, in Z,,, (since (a,m;) = 1,
it is invertible in Z ). It is easy to see that a7'b; + ¢'m; mod m is a solution of

az = b mod m. O

In the following discussion, let A,b be n x n, n X 1 matrices over Z,,. The

following theorem is classical, we give an alternate algorithmic proof.

Theorem 7.11. The system of equations £ : Az = b over Z,, has a solution iff
the Z,,-module spanned by the row vectors of [A b] does not contain a vector of the

form {0,0,...,0,a) € Z%*! where a # 0.

Proof. (=) If £ has a solution, then clearly none of the above vectors can be
in the row space of [A b}.

(<«=) Suppose £ does not have a solution. Let U,V be invertible matrices such
that UAV = D is in Smith Normal Form (as stated in Theorem 7.9). Let V-2 =y
and Ub = d. Then Ax = b has a solution iff UAVV 1z = UB has a solution, i.e., the
system Dy = d has a solution. If the matrix [D d] has a row of the form (0,0,...,0, a)
where a # 0 then we are done as {U A d} must then also contain the row (0,0,...,0,a).
So suppose that [D d] does not have such a row. The system of equations Dy = d
has a solution iff s;5; = d;,1 < i < r has a solution in Z,,, i.e., iff (s;,n) | d; for each
1 <1< 1 {Lemma 7.10). Thus if £ does not have a solution, there is some 7 such that
(s;,n) {1 d;. In particular, this means that (s;,n) # 1 and s; # d;. Thus there is some

row of the adjoint matrix [UA d] of the form (¢;s;, co8;, ..., Cn8i,d;) where ¢; € Zp,,.
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Since (s;,n} # 1, there is a ¢; € Z,, such that s;¢; = 0. Multiplying this row by ¢; we
get (0,0,...,0,d;t;) (observe that d;t; # 0). m|

Corollary 7.12. The system of equations £ : Az = b over Z,, has a solution iff

none of the vectors

{(0,0,...,0,m/p) € ZZ*'| where p | m,p prime }

are in the Z,, module spanned by the row vectors of [A d].

Proof. (=) If £ has a solution, then clearly none of the above vectors can be
in the row space of [4 b].

(<«=) Suppose £ does not have a solution. Then from Theorem 7.11 we know
that there is a vector (0,0,...,0,a) € Z**! where a # 0 which is in the row space of
[A b]. Let us suppose that some prime power p’ divides o where p{m. Then p has an
inverse p~! in Z,,;, we multiply the entire row by this inverse to remove the p-factor
from «. Thus we may assume that we have a row of the form (0,0,...,3) where
B=1II, <i<k p;! where p;,1 < i <k are all the prime divisors of m. Now multiplying
by appropriate prime powers we can change S to m/p for some prime divisor of m.

This means that the vector (0,0,...,0,m/p) is in the linear span of [A4 b]. a

We thus have the following useful corollary which expresses non-solvability in
terms of solvability (recall we proved a similar theorem in the vector space situation,

Lemma 7.3).

Corollary 7.13. Let £: Az = b be a n x n-system of equations over Z,.. Then
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there is a (n + 1) x n-system of equations Cz = d over Z,- which is solvable iff £ is

not solvable.

Proof. Corollary 7.12 says that £ is not solvable iff the vector (0,0,...,0,p*1)
is in the row space of [A b]. This can be expressed as a system of equations Cz = d

module p* where C is a (n + 1) X n matrix. a

Thus the non-solvability of a system of equations over Z,e is equivalent to the
solvability of another system of equations over Z..

We now prove an analogue of Lemma 7.2 and Lemma 7.1 for equations defined
over Zpe.

Let m = p° in the following discussion. We need some additional results about
computation in Z,, specifically about boolean circuits computing additions and mul-
tiplications.

Recall that a boolean circuit C is a directed acyclic graph (DAG) whose vertices
are labelled with the names of Boolean connectives A, V, = (the logic gates) or
variables (inputs). Each boolean circuit computes a boolean function f : {0,1}" —
{0,1}" that is a mapping from the values of its m input variables to the values of its
n outputs. The size of a circuit s(C) is the number of logic gates. We also assume
that the fan-in of a circuit (the in-degree of any vertex) is at most 2. To take care of
trivialities, we make the assumptions that s(C) = Q(m) and m = ©(n).

The following lemma is easy to prove:

Lemma 7.14. Let C be a circuit computing a boolean function f(z;,zs,...2n) =
(¥1,92,.-.,Ya). Then there is a boolean F(C) formula of size O(s(C)) defined over

T1, T2y - Lmy Y1, Y2, - - - Y and a linear (in s(C)) number of extra variables whose mod-
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els are such that the value of (y1,v2,...ym) is f(o, a3, ..., o) where o; is the value

of z; in the model.

Proof. We label the edges of the circuit in stages. Initially the edges from
input variables and the edges to the output variables get the corresponding variable
label. If an output variable is directly connected to an input variable, we deal with
this edge separately. For each gate v in C, let z,y be the labels of the inputs and let
z be the output label (each outgoing edge gets the label z). A clause in F(C) will be
zoy =z where ois V or A depending on the gate. Observe that each output edge
of the gate will get the label z. If the gate is a NOT(—)-gate then we add a clause
z = —z where z is output label and z is the input label. For each edge (z;, y;) where
z; is an input variable of C and y; is an output variable, we add the clause z; = y;.

Thus the size of the formula is O(s(C) + m + n) = O(s(C)) . 0
We need the following lemma which we quote from [36] (chapter 2):

Lemma 7.15.

1. The addition function fa(.,(li)d : {0, 1}*" — {0,1}"**! for n-bit binary numbers can

be computed by a circuit C with s(C) = O(n).

2. The binary multiplication function fx(;:let : {0,1}?® — {0,1}*" for n-bit binary
numbers can be computed by a circuit C with s(C') = O(n logn loglogn). (Also
see [38])

3. The reciprocal function f:ecip : {0,1}" — {0,1}"*2 for n-bit binary numbers

can be computed by a circuit of size O(n logn loglogn).
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Observe that as a consequence of Lemma 7.15, all computation in Z, can be
done by circuits of size O(log p® loglog p® logloglog p©) (including division which is a
reciprocal followed by a multiplication).

Let x = (21,22 ...,%,) and € = (e, €2, - . ., €,) be 2 n-bit vectors from Z%*. Also,

let b € Z,,. Let E (= E(x,¢,b)) denote the equation > ;_, €;z; = b over Z,.

Lemma 7.16. There exists a boolean formula ¢ of size

O(n logm loglogm logloglogm)

defined over O(n logm loglogm logloglogm) variables which is satisfiable iff E is

solvable.

Proof. E is solvable iff the following system of equations is solvable:

pi=€6r;,1<1<n
M = i,
Yi=%1+p225i<n—1

b= Y1+ ttn

For each equation above, let the rhs represent a function computed by a circuit C
(this circuit does computation modulo m) and assume 1, %, . - - Y[iog m] are the output
bits for C. Let the variable on the lhs be x, represented by bits xy,zs,..., Tfegm)-
Then we write a formula F(C) A A;(z:; = ¥i) equivalent to this particular equation
where F(C) is as described in Lemma 7.14. The conjunction of formulas for each

equation is our desired ¢. Correctness and size estimates are easy to prove. 0O
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The next lemma now follows.

Lemma 7.17. Let Arx = b be a system of equations over Z,e where A is an

n x n matrix. Then there is a boolean formula ¢(A4, b) of size

O{n? log p° log log p® log log log p°)

defined over O(n? log p® log log p° log log log p®) variables which is satisfiable iff Az =

b is solvable.
We can now write a boolean formula expressing non-solvability over Z,,.

Theorem 7.18. Let £ : Az = b be a system of equations over Z,c, Aisanxn

matrix. There exists a boolean formula $(A, b) of size

O(n? log p° loglog p° logloglog p°)

defined over O(n® log p® loglog p® log loglog p®) variables which is satisfiable iff £ is

not solvable.

Proof. Corollary 7.13 reduces non-solvability of £ to solvability of another
system Cz = d modulo p°. Hence £ is solvable iff (A, b) = ¢(C, d) is satisfiable. The

bound now follows. O

7.4: Abelian Groups: General Case

In the general case, the projection of abelian G < Sym(f) in each orbit is

isomorphic to Z,, & Z,, @ ... Z,,. In this subsection, we consider this general case.
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Assume (as before) that G = (s, s2,...,8) < Sym(Q) (where @ = {1,2,...n})
and the orbits are (after reordering Q if needed) A; = {n;_y + 1,7, + 2,...,n;} for
1 < i<r, where ng = 1,n, = n. Let m; = |A;f, so n =Y ; m;. We also assume that
GY=2.,,®2,,®...2,, sothat l_[;; 7;; = my. Here f; is the number of direct
summands in G4i.

Any g € G can be written as an Y., fi-tuple

(9(1,1),9(1,2),...,9(1, f1),9(2,1),..., 9(2, f2), .-, 9(r, 1), ..., 9(7, f))

where g(i, j) is the projection of g into the j-th direct summand of G4,

Since G is regular on A;, we can identify elements from G®¢ with integers from
{0,1,...,m;—1}, i.e., we identify the group element = which maps {* to {+j with the
integer j in {0,1,...,m; — 1}. Thus every element of G® corresponds to an integer
from {0,1,...,m; — 1} and because G*i is also a direct product, each such integer j
corresponds to a unique f;-tuple (7(1),7(2),...,J(fi}), where each coordinate j(k) is
in the ring Z,,, .

The arguments that write Pivot(!) in terms of a system of equations £(g, j,t+1)
do not depend on the structure of the orbit constituents of G, where [ is the first point

of orbit ¢ + 1. So as before:

Pivot(l) = A,e¢ —Fix(g, X,1-1) V Geq(g, X, 1)
= _'BQGG FIX(Q,X,!—l) A _'GEQ(Q,X,I)

= —Je6 Vicjem-1€(@: 01 +1) A XGE+D) A ~X(D)
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where £(g,7,t + 1) is a system of ¢ + 1 equations:

(1—e(X,7)g(t,7) =0modrjfor1<j<f;, 1<i<t

g{t+1,1) =j() modryy; forl1 <i< fin

Each g € G is a word in the generators S = {sy, 82,...,5¢},1.e,9= 2195& S5aTa
where z, € Z and g¢(i,7) = 3, TaSali, j) mod 73 ;.

Thus the system of equations £(g, j,t + 1) breaks down into a system of equa-
tions, each equation modulo r; ; where 1 < j < f;,1 < i < ¢4 1. As before, we can
write a formula which is satisfiable iff £(g,7,t + 1) is not solvable. The rest of the

arguments are similar. Thus we can improve Lemma 7.8 to the following theorem:

Theorem 7.19. Let G < Sym(Q?) be an abelian group. Then there is a canonical
ordering of  such that there is a lex-leader formula of size O(n® loglog n logloglog n)
(IR} = n) defined over a polynomial (in n) number of variables. Furthermore, such

an ordering can be found in polynomial time.

8. Lex-Leader Formulas for P; Groups

Let G = (R) < Sym(Q) be a permutation group on n points = {1,2,...,n}
where the orbits of  are Ay, Ay, ... A, where Ay = {1,2,...4,} and A; = {4, +
1,4;01 + 2,...,4;} (we reorder Q if necessary to ensure this). Also assume that the
size of the projection |G| < nd(= v ( say)), so that G is a P4 group.

We assume that the set R is a special set of strong generators of G - these are
the coset representatives R; of G; in G;_; where G; is the pointwise stabilizer of the
first ¢ points. That is R = U'-}'R; and R; has size < § where § is the size of the

largest orbit of G in Q. Note that |R| € O(n?).
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We also assume that we have at hand a small set U of generators of G where
[U| = O(log|G}) = O(log(y™)) = O(mlog7).

Let X € 2% and let X la, denote the projection of X into A;. The permutation
g fixes a string X |4, if X(§) = X(59) for all § € A,.

For X € 2", let G¥ = {g € G| g fixes X |a,, X {ag--., X |a}-

Let C(X) denote the chain of subgroups

G>Gf>Gy--->2GX>(GEn@Gy)

>(GrNGy) -2 (GENGay=1) (11.9)

Let S; for 1 < i < m(T;forl < i< n-—1) be acomplete set of coset
representatives of GX in G¥ , for 1 <i<m (GXNG;inGENGi_ forl €i<n—1,
resp) where Gg = G. Each S; (T;) has size at most ¥ (¢ resp).

We now define the individual pieces of the lex-leader formula which we paste
together to build a lex-leader formula. These formulas and their sizes are summarized

in the next table.

Perm(w) {=(i,7)| 1 < 4,7, < n} represents a permutation | O{n®)
Equal(y, z) T=y O(n?)
Product(z,y,z) | z2=zy 0O(n®)
Member{L,7) |7 €L O(|L| n®)

Table 1: Boolean Formulas for Permutation Groups

Perm({m(i,j) | 1 < i,7 < n}) is a boolean formula of size O(n?) whose satisfying
assignments correspond to permutations in Sym(Q2). To simplify notation, we write

the permutation 7 as a shorthand for the set of variables {x(¢,5) | 1 <4,j < n}.



71
Let zy,Z2,...,%Z, be n boolean variables. Let Ey(zy,%,...,Z,) be true ex-
actly when only one of the n variables is set true. We write a boolean formula

$1(T1, %2, - -, Tuy i1, 2, - - - , in) Of size O(n?) which is satisfiable iff £y (zy,70,...,2,)

is true. The formula is:

V =
1<i<n
M=

B = i1 DL

Hi-1 N Tj = B
Perm(w) is a formula of size O(n?) and is the conjunction of the following lines:

/\ ¢(w(i,1),7(3,2),...,7(i,n), p(i, 1), ui,2), ..., u(i,n))

1<i<n

N\ o1, 3),7(2,5), . w0, 5), 7(1,0), 7(2,5), - (0, )

1<jEn

Define Equal(y, =) to be the formula A; A;(z(¢, j) = y(3, 7))

We also define Product(z, y, z) which is satisfiable iff z =z 3

A\ 5.d) Ay k) - 26, 5).

ik

Let Member(L, ) be a boolean formula which is satisfiable when = € L. Let

|L| =1 and let L = {m.72,...,m}, then the desired formula is:

V Equal(7, 7;).

1<i<l



72

Sift(x, X, SUT) is satisfiable iff = sifts through the chain of coset representatives
S =US; and T = UT; in C(X),
The formula for sift(x, X, S, T) is:

Azcicman—1 Ti = Product(m;_y, &)
Member(S;, m)

N2cicm Member(S;, e;)
Amsrgicmin-1 Member(Ti_m, e;)

/\15:‘5m+n-1 Perm(e;)

Equal(vr, 7rm+n—1)

The size of sift is O(myn? + mn® + én?).

We can similarly define a formula sift-chain(w, R) of size O(n*) which is satisfi-
able if the permutation 7 sifts through the strong generators R.

Now we write a formula STGEN{R, S, T, X) which expresses the fact that the

set of generators S U T are strong generators for G.

Azesur sift-chain(z, R)

Auev Ayesur Product(y,u, z) A sift(z, X, S, T)

The first line ensures that (SUT) < G. The second line ensures that G < (SUT)
(observe that we took elements from U for sift in this line, because U is of potentially
smaller size than R).

Clearly the size of the last line will dominate the size of STGEN. STGEN is of
size O((ym+dn)(mlog ) X (size of sift)) = O((ym~+dn){(mlogv)(myn?+mnd+én?)).

We define a formula StringLeader(X, A, s) which expresses the fact that
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X > (°X). We make the assumption that s stabilizes A. For i, € A, let X;; be 1
iff X (i) = X(j). StringLeader is the following formula of size O(n?).

NijeaXij & (X)) = X)) A
Aica [Aj,k<i(Xj.k vV =s(F, k))] = [8(6,8) =1V Viea {s(i,) A (X() = X(i))}]

It is easy to write a formula LL(X, A, S) which expresses the fact that Vs €

S,X(A) > X(A)*. We assume that A is stabilized by the set of permutations S.
This formula of size O(|S|n?) is

[\ StringLeader(X, A, s)
€S

We can now write a formula LLG(X, G) which expresses the fact that X > X9
forallge G:

STGEN(R, 5,T,X) A Aygicm LL(X, A;, S:)

Hence the total length of the formula is O((ym + dn)(mlog~y)(myn? + mn® +
ond) + ymn?).

Theorem 8.1.

(i) Let G < Sym(f2) be a P, group where d > 1. Then there is a canonical ordering
of Q such that there exists a lex-leader formula for G of size O(dn%*¥*% logn),

where || = n. Furthermore, such an ordering can be found in polynomial time.

(ii) Let G < Sym(2) be a group whose largest orbit has size c (a fixed constant).
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Then there is a canonical reordering of €2 such that there is a lex-leader formula

for G of size O(n®). Such a reordering can also be found in polynomial time.

Remark: The test for “strong generators” that we encode in the lex-leader formula is
expensive, contributing a factor of O(n*?) to the size. It is conceivable that through
cheaper tests for strong generators, e.g., Sims’s “verify” test (see [20]), the factor can
be reduced to O(n?).

It is no surprise that solving the “bounded orbit” case in such generality in part
(ii) of the above theorem gives us much worse results than Theorem 7.5: where we
got a formula of size O(n®) and now we get a formula of size O(n®). Another point
to note: we need only consider Py groups where d > 1 otherwise the entire group
is polynomially bounded and an exhaustive enumeration would give all the group

elements. Any lex-leader formula (for example LL(G)) would work in that situation.
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CHAPTER III

FAULT TOLERANCE IN BOOLEAN SATISFIABILITY

1. Definitions and Notations

The intended objects of study are strings over {0, 1} of some specified length n.
The basic operations on these strings are bit flips (negations): changing a specified bit
from a one to a zero or the reverse. However, for the purposes of this paper we have
found it convenient to denote these objects as sets. A string a of length n represents
a subset X of {1,2,...,n} as its incidence vector (or characteristic sequence): the
ith bit of « (denoted by «(i)) is 1 iff i € X. In this context, flipping a bit of o
means taking the symmetric difference of X with a singleton set, XA{¢}. In this
manner we are able to describe a series of bit flips themselves as a set, simplifying
the descriptions of our proofs.

Let [n] refer to a set of n elements {1,2...,n} and let 2" refer to its power
set. Let ([2]) ((g‘,{)) denote the family of k-element (< k element) subsets of [n]. For
S C [n], we define the operator ds : olnl —y 2l a5 follows: 0s(X) = XAS. When
S = {i} or § = {1,5}, we write &; (resp. d;;) instead of &y (resp. dy; ;). Note that
0;(8:(X)) (= 6:(0;(X))) and if 6;;(X) =Y then §;(Y) = X.

Given a family of subsets F of [n] let F) (F<i) denote the number of sets in F
with k elements (< & elements).

Let ¢ be a boolean formula of n variables [n]. An assignment X : [n] — {0,1}
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is called a model if X makes ¢ true. We shall, as discussed, also interpret X as
an incidence vector of a subset in 2[*l. In all our discussions on boolean formulas,
we make the assumption that every variable appears in both positive and negative

literals.

Definition. A model X of ¢ is called a (r, s)-model if VR € (@), there exists
Se (L"l), such that R N S = &, and dpus(X) is a model of ¢. We view r and s as

fixed constants unless otherwise mentioned.

In other words, X is a §(r, s)-model iff for every bit flip (called a “break”) of up
to r coordinates in the incidence vector of X, either no repair is needed (i.e. dp(X)
is a model) or there is a disjoint set of up to s bits that can be flipped to get a model
of ¢.

In this paper we shall be primarily concerned with (1, 1)-models, which we
shall simply call dmodels. Define ®(r, s) to be the set of boolean formulas which have
§(r, s)-models.

We can define degrees of fault tolerance by requiring that dmodels are themselves
repairable under further breaks. This allows us to view dmodels as a generalized
notion of models of boolean formulas.

Let ¢ be a boolean formula. Then 8%(r, s)-models are just models of ¢:

8%(r,s) = {X| X is a model of ¢}
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and we define 6*(r, s)-models inductively:

8 (r,s) = {X € 8*(r,5)| VR e (T)),35 € (),
RN S =02 and dpys(X) € 68*(r,5)}

We define ®*(a,d) to be the family of boolean formulas which have a §*(a, b)-

model. We define ®*(r,s) = o0 ®'(r,5) and we denote the corresponding models
8*(r,s) = [);6*(r,s), 6*'models when r = s = 1. These are models of a boolean
formula that remain models under any sequence of breaks and repairs.

Observe that if ¢ has a 6*model then there is a family M of models of ¢ such
that for each model in M, every break is repairable in such a way that the repaired
string is in M. In other words, M consists of §*models related by breaks and repairs.
We shall call M a weak stable set of models. It is clear that ¢ € ®* iff it has a stable

set of models.

Define the Hamming distance d(z, y) between two n-bit vectors to be the num-

ber of coordinates where they differ. Observe that our definition of 4*models allows
models in a weak stable set to be at (Hamming) distance 1 from each other. We shall
call stable families which do not have any two vectors at distance one from each other

stable families (see Section 4 for formal definitions).

In Section 2 and Section 3, we look at the computational complexity of finding

0(r, s)-models. In Sections 4, 5, 6, we study the structure of stable families.

2. Complexity of Finding éModels

We now study the computational complexity of finding dmodels for general

boolean formulas.
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Consider the following decision question:

Problem: &(r, s)

INSTANCE: Boolean formula ¢.
QUESTION: Does F' have a (r, s) émodel 7
The notion of dmodels was defined in [18], where ®(r, s) was also proved NP-

complete. We include the proof below.
Theorem 2.1. [18] &(r, s) is NP-complete

Proof. Reduction from SAT. Let ¢ be an instance of SAT, where ¢ is a boolean
formula over n variables [n]. Construct the formula ¢’ = ¢ V (n 4 1) where (n + 1)
is a new variable. We claim that ¢ is satisfiable iff ¢’ has a é(r, s)-model. Suppose
¢ is satisfiable: let X be a model. Extend X to a model X' of ¢’ by setting variable
(n+1) to 0. We claim X' is a d(r, s)-model. Let us break any set of up to r bits in
X'. If that break set includes the (n + 1)-th coordinate, we do not need any repairs.
If it doesn’t, we can repair by flipping X'(n + 1): hence X' is a §(r, s)-model. Now
suppose that ¢' has a é(r, s)-model X’. Then ¢' must have a model with X (n+1) = 0:
if X’ has X'(n 4 1) = 0 then that is the desired model, otherwise flip X(n + 1), we
are guaranteed a repair to another model now with X (n + 1) = 0. The restriction of
that model to [n] gives us a model for ¢. Hence ®(r, 5) is NP-hard.

Observe that ®(r, s) is in NP : a NDTM needs to guess an assignment and check
that it is indeed a 6(r, s)-model. Since r and s are fixed, there are O(n") possible break
sets and O(n®) possible repair sets, thus checking whether the guessed assignment is

a 6(r, s)-model is in polynomial time. m|

We can also identify ®*(1, 1) with the natural decision question: given a boolean



79

formula, does it belong to the family ®(1,1)? Since an NDTM can guess a stable
set of models (which could be of exponential size) and check that it is indeed a stable

set of models, we have the following;
Lemma 2.2. ®*(1,1) € NEXP.

If the stable set had a polynomial description, then the NDTM would just use
polynomial space. We wonder whether $*(1,1) is complete for NEXP. We can prove

the following (weaker) result:
Theorem 2.3. ®*(1,1) is NP-hard.

Proof. We use the same reduction as in Theorem 2.1. Given an instance of
SAT, a boolean formula ¢ over n variables [n], we construct ¢' = ¢ V (n + 1) with
n + 1 being a new variable. Suppose ¢ has a model X. We construct a stable set of
models M of ¢'. If Y C [n+ 1], let ¥, be the projection of the incidence vector of Y’

into the first n coordinates [n].

M=AYCn+1)|dX,Y,)=1if Y(n+1) =1}

It is trivial to see that M is indeed a stable set. Also observe that if ¢’ had a

d*model, then it has a model X with X(n+1) =0. Then X, isamodelof F. O

As §*models are automatically 6*models, for all & > 0, the proof of theorem 2.3

shows that ®*(1,1) is NP hard. Hence we have the following:

Corollary 2.4. ®*(1,1) is NP-complete.
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Proof. We just need to show that ®*(1,1) is in NP. This is because an NDTM
can guess an assignment X and check that it is a §%(1, 1)-model. To check whether
X is a 6%(1,1)-model, it suffices to consider all possible n* break sets, and check that
a repair exists for each break applied in sequence from the break set. Since & is fixed,

this can be done in polynomial time. (]

3. Finding dModels for Restricted Boolean Formulas

While the general problem of finding whether an input boolean formula has a
dmodel is NP-complete, this question might have efficient answers for restricted classes
of satisfiability. We consider the three polynomial-time instances (from Shaefer’s
dichotomy theorem [37]) of SAT which have polynomial-time satisfiability checkers:
2-SAT, Horn-SAT and Affine SAT. We observe an interesting phenomenon: these
restricted classes have different complexity of testing fault tolerance. For example,
2-SAT and Affine SAT have polynomial time tests for the existence of dmodels (see
Subsection 3.1 and 3.3) whereas the same problem is NP-complete for Horn SAT
(Subsection 3.2). In Subsection 3.4, we give a summary of the complexity status of

finding dmodels and 4*models for general and restricted boolean formulas.
3.1: Finding dmodels for 2-SAT

We now prove that finding dmodels for 2-SAT formulas is in polynomial time.
2-SAT formulas are in conjunctive normal form with 2 literals per clause. Recall that
one can find models for 2-SAT formulas in polynomial time (see, e.g. {34]).

Let ¢ be an instance of 2-SAT. Following the notation in [34], we define the graph

G(¢) as follows: the vertices of the graph are the literals of ¢ and for each clause
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a — B (where ,f are literals) we add two directed edges (a,8) and (-8, —a).
Thus the edges of G(¢) capture the implications of ¢. The following lemma is easy

to prove (see [34]).

Lemma 3.1. [34] ¢ is unsatisfiable iff there is a variable = such that there is a

path from z to -z and a path from -z to = in G(¢).

We will assume that each clause of G(¢) is a disjunction of distinct literals,
which means that G(¢) has no isolated vertices.

If ¢ has a dmodel, then G(¢) has a further restriction.

Lemma 3.2. If ¢ has a dmodel, then there is no path from u to —u, where u is

a literal in ¢.

Proof. Clearly if such a path existed, the value of u in any model of ¢ has to
be set to false. Such a model can never be a dmodel, since a break to the value of «

does not have a repair. 0

Define a simple path in G(¢) to be an ordered sequence P = (uy,up,...,un)
where uy, us, ..., U, are all distinct vertices. The length of P, denoted by I(P), is
m — 1. By Lemma 3.2, we know that if ¢ has a dmodel, then a simple path cannot
include a variable and its negation. If X is a 0-1 assignment to the variables of ¢ let
X{(u) denote the value of the literal « under X. One can easily show the following

properties of G(¢).

Lemma 3.3. Let ¢ have a émodel X. Then

1. If P is a simple path in G(¢), then {(P) < 3.
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2. Let P = (u, up,u3, uq) be a simple path in G(¢) of length 3. Then X(v,) =
X(uz) =0 and X(u3) = X(uq) = 1.

3. Let P = (uy, ua, u3) be a simple path in G(¢) of length 2. Then X (u;) = 0 and

4. Let P = (uy,us,...,Un+1 = 1) be a simple cycle in G(¢) of length m. Then

m < 2.

5. If (u,v) and (u,w) are edges in G(¢), then X(u}, X{(v), X (w) cannot all be set

to false.

6. If (v,u} and (w,u) are edges in G(¢), then X(u), X (v), X (w) cannot all be set

to true.

Proof. We prove (i) — the others easily follow from similar arguments. Suppose
[(P) > 4. Then there is a simple path P’ = (uy, up, ua, u4, us) where {(P') = 4 (take
the initial 5 vertices of P). Let X be a §-model of ¢. Let F = {u;| X(u;) = 0} and
T = {uy,u2...us} \ F. It is easy to see that F' has to be the initial segment of P,
and T has to be the remaining suffix. We claim that |F| < 2. Suppose not: then
X(w) = X(u2) = X(u3) = 0. If we now break u;, we will need 2 repairs, hence X

cannot be a dmodel. Similarly |T| < 2. However |F|+ |T| = 5, a contradiction. O

Let X be a partial assignment of the variables in ¢. We now show an algorithm
that takes X and makes forced choices (but only with regard to vertices that take

part in cycles) and checks to see whether X can be extended to a dmodel.
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Extend(¢, X)

1. For each cycle (uy,ua), (uz,2;) in G(¢), such that exactly one of X(u,) and
X (us) is defined, set X (u;) = X (uz). If there is a conflict, because of a vertex
taking part in more than 1 cycle, then abort. Let X' be the new (partial)

assignment.

2. For each edge (u3,u2) in G(¢) such that both X(u;) and X{us) are defined,

check to see whether the implication u; — u; is satisfied by X. If not, abort.

3. For each triple of assigned vertices u, v, w, such that X(u) = X(v) = X(w) =0,

check if (u,v), (u, w) are edges in G(¢). If so, abort.

4. For each triple of assigned vertices u,v,w, if X(u) = X(v) = X(w) = 1, check

if (v, u), (w,u) are edges in G(¢). If so, abort.
5. Return X'.

It is not difficult to see that if X can be extended to a émodel for ¢, then
Extend(X, ¢) returns X’ which can also be extended to a dmodel.
Now we are ready to describe our algorithm dModel{¢) to find dmodels for

2-SAT theories where the input instance is the 2-SAT formula ¢.

éModel (¢)

1. Construct G(¢). Set initial partial assignment X = @.

2. Check to see whether there is any vertex u such that there is a directed path

from u to - u. If so, abort.
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. Check to see whether there is any simple path of length 5. If so, abort.

. For every simple path of length 3 and every simple path of length 2, construct
a partial assignment X as prescribed by Lemma 3.3. If there is a conflict in

assigning a value to a vertex, abort.

. Run Extend(¢, X) which either aborts or returns a (possibly new) partial as-

signment X'.

. For each isolated cycle (u,v), (v,u) (where both u,v have both in-degree and
out-degree 1) such that both X'(u) and X'(v) are undefined, set both X’(u) =
X'(v)=1.

. Let U be the set of literals left unassigned by X’. Construct a 2-SAT formula

B as follows:

(a) Initially set S to the trivial (empty) formula.

(b) for each pair of unassigned literals v € U and v € U such that there is a
vertex w in G(¢) with X’'(w) =0, and (w, u) and (w, v) are edges in G(¢),
set B=0 A (u V).

(c) for each pair of unassigned literals « € U and v € U such that there is a
vertex w in G(¢) with X'(w) = 1, and (u,w) and (v, w) are edges in G(¢),
set A=F A (~uV -v).

(d) For each pair of literals u and v € U such that there is a vertex w in G(¢)
with X'(w) = X'(u) = 0, and X(v) unassigned with (w,u) and (w,v) as
edges in G(¢), set B =0 A (v).
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(e) For each pair of literals » and v € U such that there is a vertex w in G(¢)
with X'(w) = X'(u) = 1, and X (v) unassigned with (u,w) and (v, w) as
edges in G(¢), set =5 A (—v).

If 3 is unsatisfiable, then abort else find a model for # and combine with X' to

get an assignment M.

It is easy to see that if dModel(¢) does not abort, the returned assignment A/
is a dmodel.

Each step in dmodel{¢) is easily seen to be in polynomial time. Hence

Theorem 3.4. In polynomial time, one can determine if a 2-SAT theory has a

dmodel and find one if it exists.
In fact, it is easy to see that each step can be done in NL.
Theorem 3.5. ®(1,1) N 2-SAT € NL.

Surprisingly, the situation completely alters when we consider ¢(1, b)-models for

b>1.

Theorem 3.6. Finding whether a 2-SAT theory has a 4(1,b)-model is NP-

complete for b > 1.

Proof.  Clearly ®(1,b) N 2-SAT € NP. We prove NP-completeness via a
reduction from (b+1)-SAT. Let T = C; A Cs... A Cy,; be an instance of (b+1)-SAT

where each clause C; is a disjunction of b+ 1 literals: [;(1) V [;(2)... vV ;(b+1). We



86

construct an instance T of ®(1,b) N 2-SAT as follows:

T'= A FG)

1<i<m

where F (i) is a 2-SAT theory defined for each clause C; as follows:

F@i) = N\ (a=L))

125 < (b+1)

N GG = a1, )

1<5i<(b+1)

A N @GR =ai+1,k)

1<5<b-11<k<(b+1)

where we have introduced 1+ b(b+ 1) new variables ¢; and a;(j,k) for 1 < j < 5,1 <
k < (b+1) to define the gadget F (7). The gadget F(i) is best represented pictorially

as follows:

Figure 1: Gadget for 2-SAT
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Let T have a model X. Extend that to a model of 7' by setting ¢; = 0 for all
1<i<mandajk)=1foralll1 <i<m,1<j<bl<k<(b+1). Weclaim
that this is a (1, b)-model of T'. Flip any variable v. Now we do a case analysis of

how many repairs are needed:

— [v = ¢] Since I;{1) Vv §;(2)... vV Li(b+1) =1 (since X is a model, there is at
least one true literal in {[;(1),%;{2),...,4(b+ 1)}) so we need to flip at most b

literals in {l;(1),...,L(b+ 1)}. Observe that no more repairs are necessary.

— [v = a;(4,k)] Need to flip a;(t, k) where 1 < ¢ < j and we might need to flip
the variable corresponding to I;(k) if l;(k) was set to true by X. This repair
does not affect the truth value of other clauses of T'. Hence we flip at most

j=<b—-=141=b variables.
— [v = L(j)] No repairs are necessary.

Now suppose T" has a 4(1,b)-model. Note that in such a model ¢; = 0 for all ¢
(otherwise we will need more than b repairs when we flip the value of a;(1,1)). Now
all literals {1;(1),%:(2), ..., L:(b+1)} cannot be set to 0, since a break to ¢; would again
necessitate b+ 1 repairs. Hence at least one of the literals in {/;(1),£;(2),...,L(b+1)}
is set to 1. In other words, the clause C; in T is satisfied. Since ¢; = 0 for all ¢, T

must have a model. O
We can also show that finding d*models for 2-SAT is in polynomial time.
Theorem 3.7. ®*(1,1) N 2-SAT € P.

Proof. Let ¢ be the input 2-SAT formula over n variables [n]. We construct

the graph G(¢) as described before.
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Since a é*model is by definition also a dmodel, we must have the same path
restrictions set forth by Lemma 3.3 and Lemma 3.2. However, if ¢ has a é*model
then we can show that any simple path in G(#) can have length at most 1. Suppose
not: let (u,v,w) be a simple path of length 2. Let X be a é*model of ¢. Because
of Lemma 3.3, we know that X(u)} = 0, X{(w) = 1 and this has to be the case for
all 8*models, which means that a break to X (u) cannot be repaired to get another
6"model. Hence the length of a simple path in G{¢) can have length at most 1. Note
G(¢) may have cycles (u,v), (v,u), however in that situation {x,v} must form one
connected component. We can assign either 0 or 1 to both u, v and remove them from
consideration. So wlog, assume that G(¢) has no cycles. In that case, the simple path
length restriction means that G(¢) is a bipartite graph.

Let G(¢) = RU B where R, B are disjoint vertex sets and all edges in G{(¢)
are between vertices in R and vertices in B. Let R be the vertices with in-degree 0
and B be the vertices with out-degree 0. Observe that a vertex cannot have positive
in-degree and positive out-degree. Note that if (u,v) is an edge in G(¢), then the
out-degree of —u is 0: otherwise, there would be a path of length 2 or a cycle, both
of which we have excluded.

Hence if u € R iff ~u € B. We also observe that there are no isolated points
in G(¢) since every clause is a disjunction of distinct literals. This a complete graph
theoretic characterization of the structure of G(¢) when ¢ has a 6*model.

Now let X be an assignment that sets every literal in R false (0} and (that
automatically sets) every literal in B true (recall our assumption from Section 1 that

every variable appears in both positive and negative literals in a boolean formula).

Claim 3.8. X is a é*model.
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Proof. We exhibit a stable set C of models of ¢ and that contains X. Let
Ys (Yr) denote the restriction of any assignment Y onto the literals in B (R), i.e.,

Yg ={Y(u)| v € B}. Let

C = {Y'| Y contains at most one literal set false }.

Note that if B contains at most one false literal under Y, then Y3 contains at
most one true literal.

We now show that C is a stable set. Suppose Y € C is such that Yp (Y35)
contains only false (true) literals. Let us break the value of a variable v: then there is
a new false literal ~u in B and a new true literal  in R. Since there is no directed
edge (u, ~u) € G(¢), this break does not need a repair, the new assignment being
already a member of C. Now suppose that Y € C induces one true literal u in R (and
hence induces the false literal —u in B). Now let us break the value of a variable:
if the variable corresponded to the literal u, then no repairs are needed, because the
new assignment will induce only true (false) literals in B (R). If not, then this break
induces a second new true literal v in R and the new assignment is not in C (since it
has two literals u, v in R set true). We claim that flipping the variable corresponding
to literal u is a repair: setting u to false still satisfies all implications (u,w) where
w € B: observe that —u is now set to true and there is no edge (u, ~u) in G(¢).

Clearly the repaired assignment satisfies the requirements for membership in . O

Since G(¢} can be constructed in polynomial time and one can check whether
it satisfies all the conditions needed for ¢ to have a §*model in polynomial time, we

have a polynomial-time algorithm for ®*(1, 1) N 2-SAT. o
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3.2: Finding émodels for Horn-SAT

An instance of Horn-SAT is a boolean formula in CNF where each clause con-
tains at most 1 positive literal. As in 2-SAT, there is a polynomial time algorithm
to find a model of a Horn formula (see, e.g., [34]). However, unlike the situation in

2-SAT, finding émodels for Horn formulas is NP complete.
Theorem 3.9. ®(1,1) N Horn-SAT is NP-complete.

Proof. ®(1,1) N Horn-SAT is clearly in NP. To prove that it is NP-hard, we

reduce from 3-SAT. Let T =C; A Cy--+- A C,, be an instance of 3-SAT. We assume
without loss of generality, that there are no pure literals in T.

For ease of description, we first apply an intermediate transformation to T by
replacing any positive literal (say z) in C; by a new negative literal ( ~a;). But then
we add clauses to T to signify that —a, © z = (({(—a;) V 2} A (a; V z)). Thus we

obtain

T'= N\ Ci N~ 1)

1<i<m x
where z refers to a variable (positive literal) in T and C] refers to the pure Horn
clause (no positive literal) by replacing all the positive literals in C; as described
above. Note that since we assume that there are no pure literals in T, we add clauses
((—az) ¢ z) for all variables £ that appear in T. Observe that T’ is almost Horn,
the bad clauses are only the clauses of the form (a, V z).

Clearly 7" has a model iff T has a model. Now we produce an instance of
®(1,1)N Horn-SAT from T'. We first introduce two global new variables A, B. For

each clause C} = —~v;(1) vV —v:(2) V = v;(3) of T' (note that v;(1), »;(2), 2;(3} are
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pure variables, not literals) define the clause

C{ = (e Vv ~y(l) vV —u(2) v -y(3))
A (= A) A (A= B)

A (1) = vi(1)) A (1:(2) = i(2)) A (u(3) = vi(3))

where ¢;, v{(1),v{(2),v(3) are newly introduced variables for each clause C. Note
that C” is Horn. For the pair of clauses that represent ( —a, <> z) we construct the

clause-gadget
D(z)=(hy = a;) ANaz = t) A (hy = 2) A (2= ¢;)

where h; and ¢, are new variables introduced for each variable z in the original theory

T. Note that each clause in D(z) is Horn . Our instance of ®(1,1)NHorn-SAT is

™= A ¢! \Dl=)

1<i<m

Observe that each v!(j) where 1 < 7 < 3 is at the end of a chain of implications
of length 2 ( hy) = () = vl(5))-

Suppose T' had a model X'. Extend that to a model X” of T" by setting ¢; =0
foralli € {1,...,m}, A=1,B =1and vj(j) =1forall 1 <i< m and for all
1 < j €3 and setting h, = 0,t, = 1 for all variables z.

We now show that X” is a dmodel. Suppose some variable which appears in

T' is flipped, then no repairs are needed. If A is flipped, we don't need repairs since
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¢; = 0foralliand B =1. If B is flipped, we need to repair A. If h, or ¢, are
flipped, we need one repair: either z or a; (because of T", both of them cannot
belor0as{z V a) A{-zV —ag)) Ifcisflipped, we do not need to repair
A or B. But we do need to repair either v}(1),v{(2) or v{(3) to make the clause
- V mvi(1) V —ul(2) v - vi(3) true. To be able to set one of these to 0O (all are
1) we require that one of v;(1),v;(2),v;(3) to be set to 0, which is guaranteed by the
hypothesis that X’ is a model of T". If v}(j) is flipped, at most one repair (vi(7)} is
required. Hence X" is a dmodel.

Now suppose T" has a dmodel X”. We claim that the restriction of X" to the
variables of T" is a model of T". Observe that in X", it must be the case that v{(j) =1
for all 4, j: because each v{(j) is at the end of chain of implications of length 2 in a
2-SAT sub-formula of T" (see Lemma 3.3) and similarly h, = 0,¢; = 1. Also, A =1:
suppose not, this implies that ¢; = 0 for all i. If ¢; is now flipped, we need to repair
at least one of the literals v{(7) appearing in C} and repair A. So 2 repairs will be
needed. Hence A = 1. Since h; = 0,1, = 1, both a; and z cannot be set to the
same value. Hence a;, < 7 is true. We now need to show that restriction of X"
to the variables of 7" makes C! = - v;(1) V —v;(2) V —4[3] true. If ¢; is flipped,
one needs to repair with one of v{(1}, v{(2),v{(3). But this is possible only if one of

v;(1), v;(2), v;(3) is set to 0 which means that C] is indeed satisfied by X". O

Using a similar construction, one can prove that ®(1,b)n Horn-SAT is NP-

complete when b is a fixed integer.
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3.3: Finding dmodels for Affine-SAT

Another class of boolean formulas that have polynomial time satisfiability check-
ers is Affine-SAT: these are formulas which are a conjunction of clauses, where each
clause is an exclusive-or (denoted by @) of distinct literals. One can find a satisfying
assignment for a formula in affine form by a variant of Gaussian elimination. We now

prove that finding édmodels for affine formulas is also in polynomial time.
Theorem 3.10. ®(1,1) N Affine-SAT € P.

Proof. Let ¢ =C) A Cy... A C,, be a boolean formula in affine form over the
set of variables X = {z,,%3,...,2Z,}.

For each variable z, define I(z) = {i| 1 < i < m,z appears in C;}. For
i € I(x), let Ny(z) = {y € X| y appears in C;,y # z} denote the set of variables
that appear with = in clause C;. For 1 <i<mand Y C X, let Y N C; denote the
set of variables in Y that appear in clause C;. With a slight abuse of notation, let

I(Y) = U,y {(y) denote the set of clauses where any variable in Y appears.

Lemma 3.11. ¢ has a dmodel iff ¢ is satisfiable and for all z € X, there exists

y = y(z) € X, such that y € (;¢(,y Ni(2) and z € (g, Niy)-
Proof. It is easy to see that {z,y(z)} are a break-repair pair. 0O

Since the conditions in Lemma 3.11 are easily checkable in polynomial time, we

have a polynomial time algorithm for ®(1,1) N Affine-SAT. 0O
We can in fact, prove the following stronger theorem:

Theorem 3.12. ®(r, s) N Affine-SAT € P.
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Proof. For each of the possible O(n") break sets, there are O(n®) repair sets

possible. The following lemma characterizes when a set S can be a repair set.

Lemma 3.13. Let R € (éf )). Then the break dr(X) is repaired by é5 for
Se(Z,),S N R=0inaé(r,s)-model M iff the following hold:

(i) for each i € I(R), if |[R N Cj| is odd, then [S§ N Cj is odd.
(i) for each i & I(R), |S N Cj| is even.
Since r and s are fixed constants, the conditions in Lemma 3.13 can be checked

in polynomial time.

Hence ®(r, s)N Affine-SAT is in polynomial time. (]

Observe that Lemma 3.11 implies that any dmodel of an Affine-SAT formula is
automatically a §*model, since the necessary and sufficient conditions are about the
formula and not the dmodel. Thus an Affine-SAT formula has a dmodel iff it has a

d*model, hence ®*(1,1) N Affine-SAT is also in polynomial time.
3.4: Complexity status: a summary

The principal results of Sections 2 and 3 are summarized in the Table 2.

SAT ®(1,1) ®(1,2) o*(1,1)
general | NP-complete | NP-complete | NP-complete NEXP, NP-hard
2-SAT P P NP-complete P
Horn-SAT P NP-complete | NP-complete open
Affine-SAT P P P =

Table 2: Complexity of Finding émodels
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The complexity of ®(r,s) where r and s are part of the input as opposed to
being fixed constants remains an interesting open question. It is not hard to see that
®(r,s) is in Tf: it is not known whether it is complete for that class. The status of
this problem for restricted cases such as 2-SAT is similarly open. Another interesting
question is whether we can improve on ©*(1,1) € NEXP (e.g., to PSPACE or even
NP). This improvement seems to rely on finding suitable small certificates for stable
sets. We take a first step in this direction in Subsections 5.1 and 5.2.

Finally, a practical modification of dmodels involves weakening the condition to
allow only a high percentage of the breaks to be repaired. We wonder how this would

affect the complexity issues.

4. Stable Sets: Definitions and Notations

If a boolean formula ¢ has a §*-model then it contains a stable set of models M
with the property that for all X € M and for all breaks i € [n], either ;(X) € M or
there is some j # ¢ € [n] such that &;;(X) € M. Observe that this definition allows
models in M to be at Hamming distance one from each other.

Since we are treating assignments (and models) as sets, we decide to study the
concept of stability as a property of families of sets, independent of any reference to
a boolean formula. Let F C 2[*) be a family of sets. We say that F is stable if for all
X € F and for all 1 < i < n, there exists a 1 < j < n, j # ¢, such that §;;(X) € F.
Note that in a weak stable family there may be 2 sets at distance 1 from each other: in
general stable families, we disallow this. All the theorems that we prove can be proved
(with minor modifications) for weak stable families, but the combinatorics is a little
cleaner when we consider stable families and hence in the subsequent sections, these

are the objects we consider. Our goal will be to elucidate the combinatorial structure
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of stable families under suitable restrictions. In particular, we will be interested in
the sizes of minimal and maximal structures and explicit constructions.

The first restriction is that each break to an element in F has exactly one repair.
We shall call these families sparse stable families. Formally, 7 C 2"l s sparse stable
if for all X € F, for all breaks i € [n], there exists a unique j € [n], 7 # ¢ such that
8;;(X) € F. We shall refer to this unique repair j as r¥; when X is obvious from the
context, we drop it from the notation and write r; for ri*.

To prove lower bounds on the sizes of stable families, we need to introduce a
notion of partial stability. While this is an interesting concept in its own right, in
this thesis we primarily use it as a tool to make our inductive proofs go through.

First we need some definitions. Let F C 2/"l and let X € F. For each i € [n],
define ¥ (i) = {j| 6;;(X) € F, j # i}. When X is clear from the concept, we drop
it from the notation and simply write r(i). Define R(X) = {i € [n]} r¥X(i) # 0}
and R.(X) = {i € [n]| |[**(¢)| = 1}. A coordinate i € R,{X) has a unique repair
§ € rX(i); we refer to that repair as r¥ (or, simply as r; when X is obvious from the
context).

A family F c 2I7) is k-stable if each X € F satisfies the following properties:
(i) For each i € [n], 6;(X) & F.
(it) [R(X)] 2 k.

Remark: Observe that definition of R(X) implies that the repair bit j is also in R(X)
where j € r(i). Condition (i) implies that no two sets in a k-stable family can be at
distance 1 from each other. Condition (ii) implies that a k-stable family is I-stable

foralll <&k
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We similarly define k-sparse stable families: a family F c 2" is k-sparse stable

if each X € F satisfies the following properties:
(i) For all 4,5 € R,(X) such that ¢ # j, r; # rj, i.e., repairs are distinct.
(i) For each i € in], 6:;(X) & F.

(iii) |Ru(X) > k.
Remark:

(1) The definition of k-sparse stable has very subtle differences from that of k-stable
families. Note that unlike in the definition of k-stable families, the repair r; is
not necessarily in R,(X): if it is not in R,(X), then it will have multiple repairs

(it already has one repair, namely 7).

(2) Y = 6;,(X) € F, where ¢ € R,(X) then we claim that r; € R,(Y). This is
because a break to coordinate r; in Y is uniquely repaired by flipping coordinate
i: if it had another repair j # ¢, then a break to z in X could also be repaired

by flipping that j, contradicting the fact that r; was the unique such repair in
X.

A dense k-sparse stable family is one whose members satisfy all of the conditions

of a k-sparse stable family except possibly (i), i.e., there might be a coordinate that

is the unique repair of more than one coordinate for a member of the family.

5. Extremal Properties of Stable Sets

We now study the combinatorics of stable sets. We first consider sparse stable
sets in Subsection 5.1: we prove lower and upper bounds for the size of a sparse stable

set. Then we consider general stable sets in Subsection 5.2.
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5.1: Sparse Stable Sets

In the following discussion, let F C 2I") be sparse stable and X € F. X defines
a relation on [n] as follows: ¢ - g if j = ;. It is obvious that j = r; iff { = ;. This
implies that Z is an equivalence relation on [n] with each equivalence class having
size 2. Lemma 5.1 records the fact that & is an equivalence relation and since each

equivalence class is of size 2, we see that n has to be even.

Lemma 5.1. If Y = §;;(X) and Z = 6,y(X) where X,Y, Z are distinct sets in

the sparse stable family F C 20, then n is even and {i,j} N {k,1} = @.

Remark: Note that it is important to include X in the definition of the relation é,
different X's might give rise to different relations. In fact, presence of different equiv-
alence relations within the same F gives rise to structures with interesting properties,
see for example Figure 2.

If we have three distinct sets X,Y,Z with Y = 4;;(X), Z = é:4(X), then the
incidence vectors of XY and Z form an equilateral triangle with sides of length 2,
the metric being the Hamming distance between the incidence vectors. We shall refer
to this as a 2-triangle. As a consequence of Lemma 5.1 a sparse stable family is
2-triangle free, a fact which we exploit to prove upper bounds, see Theorem 5.10 and
Theorem 5.11.

Given a sparse stable family F we can define the (undirected) graph G = G(F)
as follows: the vertices of G are the elements of F and the edges are {u,v} where
v = §;;(u) for some i # j € [n].

We say that F is connected if the graph G(F) is connected.
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Lemma 5.2. Let F be a sparse stable set. Then F is minimal (i.e., does not

contain a proper subset which is also sparse stable) iff F is connected.

Proof. Let H be a connected component of G(F). Let u € H. By definition,
for each ¢ € [n], u in H is connected to v where v = §;;(X) for some unique j € [n].

Hence H is stable. It is clearly sparse. Thus F is minimal iff H = F. 0O

We now derive a lower bound on the size of a minimal sparse stable set.

We first prove the following:

Theorem 5.3. If F C 2" is a non-empty k-sparse stable family, then |F| >
olk/2]

Proof. By induction on k. For k = 0, 1,2, the inductive hypothesis is easily
seen to be true. Then assume that it is true for all 2 < &k < [. We prove it true for
k=1l

Let F be l-sparse stable. Choose an zy such that there is some set § € F
such that z¢ € S and some T' € F such that zg € T. There must be such an
zg since I > 1 so we can choose any i € R,(X) for some X € F as our xy. Let
Fro={Xe€F|meX}and F;, ={X € F |z ¢gX)}.

Observe that both F,, and JF, are (I —2)-sparse stable (since z, can be a repair
of at most one i € R, (X) for each set X in either F,, or 7, and it itself can be in

R,(X) for some X). By the induction hypothesis, this means that |F,,| = 221 and

Since Foy, N Fog = 2, |F| 2 2 x 271 = 21+ = olt/21, O

Remark: Obviously when F C 2™, the largest k could be in the above theorem is n.

Thus we have a proof of the following theorem.
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Theorem 5.4. If F C 2i* is sparse stable, then |F| > 2"/2,

It is easy to see that the lower bound is tight: let B denote the family of subsets

of [n] (where n is even) whose incidence vectors satisfy the following boolean formula

B= N (z2-1=12) (I1L.10)

1<i<n/2

where z; refers to the jth bit of the incidence vector. It is easy to see that B is a
sparse stable set (since it is connected) of size 2*/2 and that it is minimal.

If F is sparse stable, very often we will make the assumption that @ € F - we
can relabel 0's and 1'’s in a member of F appropriately.

Let 7. = {A € F| |A| =k}

We investigate the structure of G(F) below.

Lemma 5.5. If F is minimal and @ € F then
1. 7. = @ for all odd k.

2. If F; is the highest non-empty level (i.e., [Fi| > 0 and F; = @ for all i > k),
then k > n/2.

Proof. (i) Observe that |X| + |d;;(X)| = 0(mod2). This means that X and
8;;(X) have the same parity. If u = @ € F, any set v reachable by breaks and repairs
has to have even parity. Since F is minimal, it is connected (via Lemma 5.2) so every
set is reachable from u. Thus F cannot have any sets with odd parity.

(ii) Suppose k < n/2. Let F; be the highest non-empty level and let u € F;.

Let S = {i € [n]| u(i) = 1} € (). Let S’ = Usesr:. Since F is sparse stable, || = k.
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Since |S| =k, |S'U S| € 2k < n. This means that for some index j € [n] \ (SU S")
which is repaired in u by some & also in [n]\ (SU S’). Observe that u(j) = u(k) =0,
50 d;x(u) € Firy2 which contradicts the hypothesis that ;. was the largest non-empty

level. O

The idea behind Lemma 5.5 (ii) is that if there are more 0’s than 1's in the
incidence vector, there must be two 0’s which form a break-repair pair.

Let u € Fj, define the parents of u to be the set P(u) = {v € Fro| v =
d;;(v) for some ¢ and j} and the children of u« to be the set C(u) = {v € Fiyo| v =
d;;(u) for some ¢ and j}. We prove the following estimates on the sizes of C(u) and

P(u).

Lemma 5.6. Let u € Fy, where 2 < k < n/2 is even. Then |P(u)| < k/2 and
|C(u)| = (n - 2k)/2.

Proof. Let S = {i € [n]| u(i) = 1} € (). Consider the equivalence rela-
tion defined on [n] via i = j if ¢ = r; {(which also implies j = ;). Clearly S can
properly contain at most k/2 equivalence classes. Each such equivalence class {z, j}
corresponds to an element in v = d;;(u) € P(u). Thus |P(u)| < k/2.

For z € Fy, there exists at least n — 2k indices with 0's (using similar arguments
as in Lemma 5.5) which must properly contain equivalence classes under é, each
equivalence class {¢,7} (of size 2) corresponding to an element y = §;;(u) € Fyya.

There are at least (n — 2k)/2 such equivalence classes. Hence [C(u)| > (n—2k)/2. O

Lemma 5.7. Let F be minimal sparse, @ € F and 2 < k < n/2. Then

1Fies2| 2 |Fil(n — 2K)/ (K + 2).



102

Proof. Count the set C = {(z,y)| * € Fi, ¥ € Fr42, T € P(y)} in two different
ways. Counting the first coordinate first and using the fact that |C(z)| > (n — 2k)/2
(Lemma 5.6) we have |C| > |Fi|(n — 2k)/2. Similarly, we get |C| < [Fiqo|(k +2)/2

from Lemma 5.6. This gives us the desired result. O

If F is minimal sparse with @ € F, then we know that || = n/2. Hence by

Lemma 5.5, (assume for simplicity that 4 | n)

i<n/2
=l > Y A
i=0, 1 even
n n(n-4) n(n—4)(n—8)
> —_4 — —
2 494995 Y3733 32
n/4 k-l n—4g i 1 (n )
> S-S LT C-»
k=0 i=0 21+2 k=0 k' i=0
ﬂ./‘l k k=1 l’l/4 n
2
-S> ETG-) -2 =(})
k=0 k! i=0 (4 ) k=0 k

— (1 + 2)1‘1/4 — 3n/4
Let Ni(X) (N<i(X)) denote the number of sets in F at Hamming distance
exactly equal to ¢ (resp. < 1) from X. We have thus proved:
Theorem 5.8. If F C 2" is sparse stable and X € F, then [N¢n/2(X)| 2 3n/4,

Theorem 5.8 implies that there are 3"/4 sets at distance < n/2 from any set in
F. We know from Theorem 5.4 that |F| > 2%/2 = 4%/, This leads us to conjecture

that 3*/* is probably not a tight lower bound.

Conjecture 5.9. |Ngpja(X)| = 2/%71 for all X € F where F C 2" is a sparse

stable family.
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Observe that this would give us an alternate evidence of the asymptotic lower
bound of the size of minimal sparse stable sets. The reason why Theorem 5.8 does
not give us the best possible result is that it counts the number of sets in each level
Fi which have parents in Fp_, for 2 < k < n/2. It might be the case that for some &,
the level F; contains sets which have no parents in F_,, i.e., they are only connected
to vertices in Fj, and Fip42 in G(F). An estimate of the number of such sets would
enable us to improve the lower bound of 37/4,

We now turn to the problem of estimating the largest size of sparse stable
families. Since we know that sparse stable families are 2-triangle free, we derive an
upper bound on 2-triangle free families. This proof is taken from [29].

In the following discussion, let d(z,y) denote the Hamming distance between

the n-bit vectors z and y.

Theorem 5.10. If £ C 2[*! is 2-triangle free, then |F| < 2.

n

Proof. Let C = {(z,y)|lxr € F,y € [n],d(z,y) = 1}. We count |C| in two
ways: counting via first coordinate we get |C| = |F|n. Let y C [n]. Observe that
[M1(¥}| < 2 where Ny(y) = {z € F|d(z,y) = 1}: if there were three sets in N;(y)
then they would form a 2-triangle in F. Thus |F|n < 2" x 2, since there are 27

choices of y. This gives us the desired bound. 0

2n+)

Corollary 5.11. If F C 2[*l is sparse stable, then |F| < 2.

Proof. A slight modification of the proof of Theorem 5.10 gives us our desired
bound. Let £ = {y | d(z,y) = 1 for some = € F} denote the set of vectors at distance

1 from any vector in F. Observe that because we assume that every break requires
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a repair (see definition in Section 4), £ N F = @. That is, there cannot be two sets
in F at distance 1 from each other. Counting the family C defined in Theorem 5.10
gives us: |C| < |€| x 2 and |C| = |F| x n, which implies that |£| > |F| x n/2. So we

have

|F|+ €]

IA

2“

ie., |F|+ |F] X '_2‘. < on
2n+l
n<2

which implies that |F|

IA

a

When F is minimal sparse stable, we can improve Corollary 5.11 by a constant

factor,
Corollary 5.12. If F C 2" is a minimal sparse stable family, then [F] < Z.

Proof. Without loss of generality we can assume that § € F. Since F is
connected (by Lemma 5.2}, F C E[n] where E[n] is the family of subsets of [n] with
even parity. O[n] is the family of odd-parity subsets. This means that £ defined in
Corollary 5.11 is a subset of O[n]. Hence || < 2"~'. But since [£| > |F| x §, we get

the desired bound. )

The best construction of large sparse stable sets we can give is of size 2" /n?
which we describe below. Constructions of large sparse sets (not necessarily stable)
are considerably easier: an easy probabilistic construction shows that there are sparse

families of size 2" /nl*® [29].
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We now describe a construction of sparse stable sets of size 2" /n?. We slightly
modify the notation of Equation III.10 to define the following family of boolean

functions. Let S C [n/2]. Define

Bs = /\(mzi.—l # 1‘2.') /\(1‘2:'-1 = Izi)-

ies igs

So By = B of Equation II1.10. It is clear that each Bg defines a sparse stable
set: we shall refer to an element of this sparse stable set as some =z € Bs to mean that
z satisfies Bg. The following lemma allows us to build large (non-minimal) sparse

stable sets.

Lemma 5.13. If S,T C [n/2] such that d(S,T) > 3 then Bs V Br defines a

sparse stable set.

Proof. We prove that if z € Bs and y € Br, then d(z,y) > 3, which implies
that Bs V By is 2-triangle free. Let D = SAT thus |D| > 3. Observe that any vector
that satisfies £p;_; = x,; is at least distance 1 away from any vector that satisfies
Toi_1 7 Tz; where ¢ € D). Hence Bs V Br is 2-triangle free. Obviously Bs Vv Br is

stable. ]

Thus if F is a family of subsets of [n/2] such that S,T € F, S # T = d(S5,T) >

3, then \/ 4. - Bs will define a sparse stable set. We quote the following classic result.

Theorem 5.14. [Gilbert-Varshamov Inequality [43, 35]] There exists a family
F C 2" gatisfying the condition 5,7 € F, S # T = d(S,T) > 3 such that |F| >

v where Va(n) = [(5)1 = (§) + () + (3).
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Using a family of size Q(%{:) guaranteed by Theorem 5.14 as our “index” set,

we get that many disjoint balls each of size 2"/2 with a 2-triangle free union.
Corollary 5.15. There exist (non-minimal) sparse stable sets of size (2" /n?).

We suspect that minimal sparse stable sets cannot achieve this bound. A bound

on the largest known one is as follows:

Theorem 5.16. There exists a minimal sparse subset of 2! of size 807/1° ~

1.547.

The proof follows from the existence of a minimal sparse stable set of 80 subsets
for n = 10 (see Section 6 for an enumeration of this set). We can use this to construct
a minimal sparse set of size 80"/1° by taking direct products. We do not have succinct
description of this set: for example, a short boolean formula whose models correspond
to the members of this set. The smallest example where break-repair pairings change
within the same sparse family is a minimal sparse stable set of size 10 consisting of
subsets of [6]. We also include this example as Figure 2 in Section 6. In that section,
we also include a diagram (Figure 3) of a sparse sub-family of 28! of size 32 which

shares many of the structural features of the example of size 80 for n = 10.
5.2: Stable Sets

In this section, we study the extremal properties of general stable sets, i.e., with
no restrictions on the number of repair indices for a break. The first theorem concerns
the minimum size of a stable set. To complete the proof, once again we need to turn

to the partially stable (i.e.,'k-stable) families.

Theorem 5.17. If F C 2I" is a non-empty k-stable family, then |F| > k.
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Proof. By induction on k. For the base case k = 0, clearly |F| > 0 since F is
non empty. Assume that the hypothesis is true for all 1 < & < [l. Let F be l-stable.
Let zo € [n] be such that there is some set S € F such that o € § and some T € F
such that zq € T. Clearly such an z; has to exist: consider any element zq € 7({) for
i€ R(X) forany X € F.

Let oy ={X € F |79 € X}. Foreach X € Fp, let i(X)={i € R(X) | zp €
r(i)} (note that r(:) is still defined with respect to the original family F). Let
ip = max{|i(X)| | X € Fy,}-

It is easy to see that Fy, is max{0,! — ip — 1} repairable (z, could itself be
in R(X) for some X € Fy,). If Il < iy + 1, then consider the X &€ F,, such that
#{X) = ip. Then each §;;,(X) € F for i € R(X) such that zo € r(i). Since there
are at least ! — 1 choices for 4, |F| > 1 — 1+ 1 = I (we also include the string X in
this count). If o < ! — 1, then by the induction hypothesis, |F;,| > — iy — 1. Again
consider the X € F,, such that i(X) = i;. For each of the iy breaks §; ;,(X) we get a
distinct element in F\ F,,. Hence this gives us at least [ —ip —1+14p+1 = [ members

(we include X in the count) in F. O
If F C 2I"l, the largest that k could be in the above theorem is n.
Corollary 5.18. If F is a non-empty stable family, then |F| > n.

This lower bound is easily seen to be tight: the boolean formula Ey(z, z,,. .., Z,)
defines a stable set of size n, where E,(z;,z3,...,Z,) is true iff exactly one variable
in {Z1,T2,...,Z,} is true.

As in the previous section, we define the undirected graph G(F) with vertices

as elements of F and edges {u, 6;;(u)} for v € F and i, j € [n]. We can also easily see
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that a weaker version of the statement in Lemma 5.2 holds for general stable sets.
Lemma 5.19. Let F be a minimal stable set. Then F is connected.

Observe that the converse is not necessarily true. The family of sets with an
even number of elements is clearly stable and connected but not minimal.

Because minimal stable sets are connected and @ € F (wlog), all sets in F have
even parity (analogous to Lemma 5.5). It is thus clear that minimal stable sets can
have size at most 2*~!. We can improve this result to a constant fraction of 2"~1.
The key to the proof again are bounds on the sizes of partially stable sets.

We need to derive some easy lemmas.

The following lemma is trivial to prove:

Lemma 5.20. Let G = (V, E) be a graph such that each v € V has degrees 1 or
2. Then |V| < 2|E|.

Proof. Count the family C = {{v,e}| v € V is incident on e € E'} in two ways.
Clearly |C| > |V| since each vertex has degree at least 1 and [C| = 2|E| since each

edge is incident on exactly two vertices in V. This gives us |V|/2 < |E}. O

We first investigate the properties of dense k-sparse stable families and use this
to prove upper bounds on the sizes of minimal stable families.
Let F be a dense k-sparse stable family. Let X,Y € F : let : € R(X) and

r; = j, such that 6;;(X) =Y. Since j = r;, we write Y = 4y, ,,

(X). Observe that
the order (7, §) is important: a break to coordinate j can have multiple repairs in X.
For Z C [n], we say that the pair {X,Y} ezcludes Z if Y = d(; ;,(X), Z = §u(X) for

some distinct k € [n],k # i or j. Note that we can write {X,Y} as an unordered
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pair because if Y = 4, ;,(X) then X = §(;,,(Y) and Z is still excluded. Thus if
Y =4, ;(X), then {X,Y} excludes n — 2 elements Z = §;4)(X) where k # j,i. We
say that X € F excludes Z if there is a Y € F such that {X,Y} excludes Z.

Lemma 5.21. Let F C 2[" be dense k-sparse stable and let X € F,Z C [n].
Then
|{Y € F| {X,Y} excludes Z}| < 2.

Proof. Wlog assume Z = @. Then X = {i,5} for some i,j € [n]. Any Y # X

such that {X,Y} excludes Z has to have {Y| =2 and Y N X # @. We claim that
Y N X has to be distinct for each such Y: otherwise suppose Y1 = {i,k},Y> = {i,{}
such that both {X, Y1} and {X,Y;} exclude Z . This means that d}; ,,(X) = Y; and

8(;(X) = Yo, a contradiction. Hence there can be at most 2 such sets ¥’ with distinct

intersection with X. O

Construct the graph Gz z = (V, E) where Z C [n],and V = {X € F| X excludes Z}

and

E={{X, Y} {X,Y} excludes Z, where X,Y € F}.

Then Lemma 5.21 implies that the maximum degree of G(F) is at most 2 and since

we only include those X which exclude Z, the minimum degree is at least 1.
Lemma 5.22. Let G = Gz z = (V, E). Then |V| < 2n.

Proof. Assume wlog Z = @. Then the vertices of G consist of unordered
tuples of 2-element subsets of [r]. Consider the family ¢ = {X N Y| {X,Y} € E}.

It is clear that C consists of one element subsets of [n]. We claim that the map
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E = Cvia {X,Y} = X N Y is injective. Suppose not: then there are two pairs
{X,Y},{R,S} € Esuchthat X N Y =R N S. Let X = {a,b},Y = {a,c} so that
Y =63 ,(X) and let R = {a,d},S = {a,e} so that &; ,(R) = S. Observe that
b # d, otherwise S = §.(X) and then Y = &;, ,(X) is violated. Similarly d # c.
Since da)(R) =Y, we cannot have Jf'd'e)(R) = S, a contradiction.

Since |C| < n, |E| < n. Now lemma 5.20 implies that |[V| < 2|E|, so |V| < 2n.

O

Remark: We strongly suspect that Lemma 5.22 can be improved. In fact, if the upper
bound of 2n can be replaced by n + O(1) (explicit constructions seem to give at most
that many vertices in the graph), this improvement will lead us to a better upper
bound for the largest minimal sparse stable families {(see Conjecture 5.29).

We need the following lemma to count the number of sets Z that a set X € F

can exclude. For X € F denote

Zx ={ Z| X € F excludes Z}

and
z= | zx.
XeF
Lemma 5.23. Let F C 2[*! be a dense k-sparse family. Let X € F and Z C [n].
Then

Zxl > k(n—- 53 ifk<n-3
X<

n(n — 3)/2 otherwise

Proof.  Wlog assume that X = @. Recall that R(X) C [n] is the set of
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coordinates with a unique repair in F (so |R(X)| = r > k) and for each i € R(X), r;
is the unique repair. Let Z; = {Z C [n]|Z = 6;;{X),J # i}, i.e.,, Z; denotes the sets
that X excludes because of its unique repair to the break at coordinate i. Also each
Z; € () and |Z;| = n — 2. Obviously Zx =Uepx) Z:-

Let ¢,j,k be distinct elements in R(X) and let Z € Z; N Z; N Z;. Then
Z = iz, (X) = 8j2;(X) = ke, (X) (where z; # r; for I € {4, 5,k}) or in other words
Z = {i,z;} = {j,z;} = {k, z}. Since 1, j, k are distinct and Z is a 2-element set, such
a Z cannot exist. Hence Z; N Z; N Z, = @. Similarly we conclude that |Z; N Z;] < 1
forall i #£ 5.

Now using the principle of exclusion-inclusion,

1Zx] =3 ierixy 12 — Xig;1Zi 0 Z51+
R (-l)k Zip{ig...(ik ni;i] 23 + e (—I)ER(X)I |niER(X) Zi

>r(n—2)— () since all higher terms are 0

= r(n - 25

The function f(r) = r(n— =£2) can attain its minima only at its extreme points:

r =k or n. A comparison gives us the required minimum values.

Lemma 5.24. Let F C 2\l be a dense k-sparse family and let Z C [n].

2] %(n—%) ifk<n-3

iz otherwise
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Proof. Count the family
H={{X,Z}| X € F,Z € Zx}
in two different ways. Lemma 5.23 implies that
|’H|z|f|xk(n-’i}§) ifh<n—2.
Otherwise if k > n — 2,

[H| = |F| x n(n—3)/2.

Since there are | Z| choices of Z and each Z is excluded by at most 2n elements in F

(via Lemma 5.22), we also have
[H| < 2] % 2n
which proves the result. 0

If F is dense k-sparse minimal, without loss of generality we may assume that
both F and Z consist of sets of even parity and clearly F N £ = @. Then, for

k < n -3, we have

|Fl+12] < 27 e,
fn — 452)

|7:|+IT|T <
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If k> n-3, then
|F| +|F|(n - 3)/a < 2",

We record these facts in the following theorem:

Theorem 5.25. If F is a minimal dense k-sparse stable family, then

2n n—=1 ¢t —
1Fl < { =B 2»1 ifk<n-3
- 2ﬂ+l

) otherwise

Theorem 5.25 actually gives us essentially the same result for the largest size
of a minimal sparse stable set, a bound of %‘—E{- (use k = n in the above expression),
a result slightly worse than obtained in Theorem 5.12. However notice a subtle
point: a dense k-sparse stable family need not be k-sparse stable because there might
be a coordinate which uniquely repairs multiple coordinates for a set in the family.
However, a dense n-sparse sub-family of 21! is automatically an n-sparse family, since
it is sparse stable.

Similarly, a slight modification of the argument in Theorem 5.25 produces a
slightly worse upper bound to the size of a sparse stable set (not necessarily minimal)
of % (compared to Corollary 5.11).

Surprisingly, Theorem 5.25 also gives us an upper bound on the size of minimal

stable families, even though its statement is about k-sparse families. To establish the

connection, we need to make the following observation:

Lemma 5.26. If C is a minimal stable set, then it is a dense 1-sparse stable

family.
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Proof. Suppose there is some X € F does not have a coordinate with a unique
repair in F. Since F is a stable set, this means that every coordinate break in X
has multiple repairs. We claim that F \ {X} is a stable set. Suppose not. Then
there is some Y € F \ {X} and an ¢ € [n] such that & ;,(Y) = {X} for some j # i.
However this means that 6('1.".)()( } =Y so X does a coordinate with a unique repair,

a contradiction. 0

Corollary 5.27.  Let F is a stable minimal family of subsets of [n], then
|7l < (§+0(1)) 2271

Proof. Lemma 5.26 and Theorem 5.25 imply that

2
= 3_2

n

2n—1

from which the result follows. O

As in the situation for sparse stable sets, we do not know of constructions of large
minimal stable sets which achieve the above bound. However we have the following

lower bound.
Theorem 5.28. There exists a minimal stable subset of 2 of size 22"/3,

The proof of the theorem relies on the existence of a minimal stable set of size
16 for n = 6 (displayed in Section 6), which was found by exhaustive search. A direct
product of these yields a minimal set of size 16"/, thus proving the theorem. Similar
searches found the minimal set for n = 5 is 8 and for n = 4 is 4. This suggests the

following conjecture.
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Conjecture 5.29. The largest minimal stable subset of 2" is of size 2"~2.

We now turn to the following algorithmic question : given a stable set as input,
is it minimal? Observe that a brute force algorithm that checks each subset of the
stable set will run in exponential time in the size of the input. The size of the input
could itself be exponential with respect to n, the length of the strings. Our goal is to
find an algorithm that runs in polynomial time in the size of the input (not necessarily-

polynomial time in n).
Theorem 5.30. In polynomial time, one can test if a stable set is minimal.

Proof. Let JF denote the input stable set. For each vertex u € F the algorithm
runs the procedure expand({u}). The procedure expand(X) executes the following

steps in sequence:

1. If X = F return true.

2. If there exists an v € F \ X and an i € [n] such that for all § € [r] (§ # i),

8;;(u) € F = 6;;(u) € X, then set X = X U {u}.

3. If no such u exists and X C F then return false (F is not minimal). Else go to

step 1.

If expand({u}) returns true for each u € F then F is minimal. If expand({u})
is false for any 4 € F then F is not minimal.

Now we prove correctness. It is obvious that if expand({u}) stops (i.e., returns
false) with X C F, then F \ X is a stable set and F is not minimal.

We now prove that if 7 was not minimal, then there is a u € F that will make

expand({u}) return false. If 7 was not minimal, then there is some stable set S C F.
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Let u € F\ S. We claim that at any stage of expand({u}), the set X that it has built
so far, will be disjoint from S, i.e., X N S = @. Suppose not, then let s € S be the
first element in S which is being added to a set X' built so far by expand({u}) in step
2. This means X’ N § = @. s is added because all repairs to a break to particular
coordinate lie in X’. However, this implies that all repairs to that particular break to
s actually lie outside S, so § cannot be closed, a contradiction. Since expand({u})
can never include an element in S, it has to stop with a subset X C F and return
false.

Clearly this algorithm runs in polynomial time {polynomial in |F| and n). O

6. Examples of Stable Sets

We conclude with some examples of minimal sparse stable families and large
minimal stable families. Figure 2 shows a sparse stable set of size 10 for n = 6. The
break repair pairs are also shown for each string in the set.

Observe that the break-repair pairs in the above example is different for each
set. In fact, for each 1 < ¢ # j < 6, there is a set with {7, 7} as a break-repair pair.
Such stable families seem to be rather rare: experimentally, we found that, in most
cases, sparse stable sets are direct products or subsets of direct products.

We now show an instructive example of a minimal sparse stable set of size 32
for n = 8. This sparse stable subset is a proper subset of E[4] x E[4] where E[4] is
the set of 4-bit strings of even parity. The projection in the first 4 coordinates is E[4]
and for each vector in the projection, the corresponding set of vectors in the last 4
coordinates is a sparse stable set of size 4 as shown in Figure 3.

We now include the sparse stable set of size 80 for n = 10 used to prove The-
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=6

Figure 2: Sparse Stable Family of Size 10 for n
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orem 5.16. We also include the break repair pairs for each incidence vector. The
structure is remarkably similar to that shown in figure for the sparse set of size 32.
The projection in the last 4 coordinates is E[4), i.e., 4-bit strings of even parity. If
we consider the set of strings with the same last 4 coordinates, then their projections
into the first 6 coordinates will form a sparse stable family of size 10 (equivalent to

that shown in Figure 2 with some relabeling of coordinates).

0000000000[12}[34][56][78][910],
1101010000[15][23][46}{78] [910],
1100000101 (13][24][56][79)[810],
0011000000(16][25][34][78] [910],
0000001100[16}[25][34][78][910],
0111100000(14][25]{36][79][810],
1110101100 ([13](26][45)[78][910},
0101110000[15}]24][36][78)[910),
1101011100(15][24][36][78][910],
0110001010[13][26)[45)[78][910],
1100111010([12](34][56][78}[910],
0110000101 (13)[26][45][78)[910],
1100110101(12][34}{56][78][910],
0011000011[12}[34][56][78][910],
0000110101{12][35][46][79]{810],
0100101100([13][25)[46}{79][810],
1111001100(12][36][45)[79][810],
1100110110[16][25]([34][78][910],

1110100000 ([14)[26][35)[78][910]
1100001010{13)[24][56][79][810]
1100000000{12)[35][46][79][810]
0000110000[13][24][56](79] [810]
000000001 1[16][25](34][78][910]
1010110000(13](26)[45][78][910]
1110100011 [t3}[26][45][78]{910]
1011010000[16][23) [45][79]{810]
1101010011{15][24][36](78][910]
1001001010[15][24][36](78][910)
1100001111[12][35}[46]{79][810)
1001000101 [15][24][36]{78][910)
0011001100[12][34){56)[78][910]
0000111010(12]{35][46][79)[810]
1000011100{16][24][35][79}[810]
0000001111[12][34][56}[78][910]
1100111001(16][25][34)[78)[910]
1010111100(14][26][35)[78][910]



1000010110{13][25){46]{79][810},
0101111100[15][23][46)[78}[910],
0100101001 [16](24][35][79][810],
1111001001 {14][23}(56][79][810],
1111110110(12][34][56][78][910],
0100100011[13][25][46][79]{810],
1111110101(16][25){34][78][910],
0011110110[12][36][45][79][810],
010111001 1[15)[23][46][78][910],
1010111111 [13][26]{45](78][910],
0011111001 [12](36][45)[79][810],
0111101010{16][23][45][79][810],
1110101111[14][26][35){78][910],
1011010101 (14][25][36][79}[810],
0010011010([14][26](35][78][910],
0110001001 [14][26][35}{78][910],
1001000110(15){23][46][78][910],
0010010101[14][26][35}[78][910],
0011001111[16](25][34][78][910],
0010010110([13][26)[45][78][910),
0001100110[15)[24][36][78][910],
1011011111[16][23][45][79]{8 10},

120

1000011001 [13][25][46)[79)[810]
0100100110[16][24][35]{79][810]
1111000110(14][23][56][79][810]
1111111001{12]{34}[56][78][910]
100001 0011[16}[24][35][79][810]
1111000011 [12]([36][45][79){810]
1111111010(16][25][34][78][910]
10101100111 4][26}[35][78][910]
0011110011 [14][23][56][79] [810]
0101111111([15)[24][36][78][910]
0011111100[14][23][56][79](810]
0111100101]16][23][45]{79][810]
101101101 0[14][25][36][79][810]
1101011111[15)[23][46][78][010)
0110000110{14][26][35][78][910]
0001101010(15][23][46)[78][910]
1001001001[15][23][46]{78][910]
0001100101 ([15][23][46][78][910]
0000111111{13][24][56][79][810]
0010011001 [13](26]{45){78][910]
0001101001[15][24][36][78}[910]
0111101111{14][25][36][79][810]
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An example of a minimal set of size 16 for n = 6 used to prove Theorem 5.28 is

below:

{100100, 010100, 001100, 111100
010010, 111010,000110,110110
101110, 011110, 100001, 001001

101101,011101,000011, 110011}

An essential ingredient in building stable sets is E;([n}) which is true iff exactly
 variables in [n] are set to true. E;([n]) is a stable set with interesting collection of

minimal stable sets. In this thesis, we study the structure of F,([n]).

Theorem 6.1. Any minimal stable set which is a subset of E»([n]) can be ex-

pressed as a direct product Ey(l) x E;(r), where [ and r partition [n], ||, |r| > 2.

Proof. Let C be a minimal closed subset of E;({n]) (it thus consists of two
element subsets). Assume X = {1,2} € €. This corresponds to the string X =
1100...0, whose membership we can assume wlog by renumbering the bits.

We partition the rest of [n] into sets a, 5, and - as follows. The set « consists

of those indices whose breaks are repaired only by index 1 and not by 2. Formally,

a = {i € [n]|61:(X) € C and 65(X) & C}.

Similarly, # are those indices repaired by 2 and not 1, while v will be those repaired

by both 1 and 2.
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First let us consider the case where ¥ = §}. Note that we must have a # @, or
else there is no repair for a break to index 1 in X. Similarly, 8 # 0. Let I = {1} U «
and r = {2} U B. We claim that F,(l) x E\(r) C C. From the definitions of & and
B, it follows that sets of the following form are already in C: {1,2}, {1} U {b|b € 8},
and {2} U {aja € a}. It remains to show that {a,b} € C for any a € « and b € 8.
Consider a break to bit b of {2,a} € C. Since C is stable, there exists a repair ¢ with
di({2,a}) € C. The only choices are i = 2 or ¢ = a since C C Ey{[n]). If i = g,
then {2,b} = d.4({2,a}) € C, contradicting the definition of 8. Therefore, i = 1 and
{a,b} = du({2,a}) €C.

Now suppose that v # . We can assume that one or both of a and g are
non-empty by the following argument: If C = E,([n]) it would not be minimal, so
C # E»([n]). This implies that there is a set {z,y} € C for which at least one of = or
y is not repaired by all indices in [r] \ {z,y}. We can then renumber the elements so
that {z,y} corresponds to X = {1,2}.

Consider at this point the case where v # @ and o # @ (8 may or may not
be empty). Here we set [ = {1} U @ and r = {2} U B U ~. As above, we claim
that E;(I) x Ey(r) C C. And as similar to the above, what we need to show is that
{a,b},{a,c}€eCforanya€a,bec B,and ce 7.

The argument that {e,d} € C is just as above. To see that {a,c} € C, consider
the set {1,c} € C. When there is a break to index a, there must be a repair i €
[n) \ {a}: 6:a({1,€}) € C. The only possibilities are i = 1 or i = ¢. If i = ¢, then
{1,a} = 8;5({1,¢}) € C. That would mean that an index in o was a repair for bit

2 in X, contradicting the definition of a. Hence, the only choice is { = 1, giving

{a,c} =du({l,ch) €C.
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The situation where v @, 8 # 0, and « = 0 is symmetric to the previous case

and can be handled in the same manner.

O

Note that while minimal sub-families of Fy([n]) breaks up as direct products,
that need not be the case for E;([n]): as Figure 2 shows, there is a sub-family of

E3([6]) which is not a direct product.

7. Summary and Future Work

The following table summarizes the results from Section 5.

stable | stable minimal | sparse stable | sparse stable minimal
largest [ 2"~! | < (¢ +o(1)) 27! <, <2%/n
> 92n/3 > Q(zn/nZ) > 80n/10
smallest n 9nj2

Table 3: Upper and Lower Bounds for Stable Families

The most interesting questions here involve tightening the bounds in the table
above and understanding the structure of the minimal sets. The sparse minimal sets

in particular seem to have a rich combinatorial structure.
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