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Ecologists have relied increasingly on computer simulation to model population

dynamics. New models that focus on the behavior and interactions of individuals, rather
than aggregate measures of population dynamics, have increased in use. With the increase
in computationally intensive models, however, ecologists have been forced to find
compromises between the accuracy of the new techniques and computational efficiency of
the old techniques. Multiple-resolution modeling is one proposed method to solve this
problem. A multiple-resolution model uses the accurate, but computationally intensive,
models only when necessary; otherwise, it uses the less accurate, but computationally
efficient, models.

This dissertation examines issues related to the development of a multiple-
resolution modeling framework. Developing this framework required the formulation of a

general, population modeling schema on which to build the multiple-resolution modeling



framework and the formulation of a general structure for multiple-resolution modeling,
Software engineering techniques were applied in the development of the framework.

A set of multiple resolution models were developed and tested. The results of these
tests do not verify the generality of multiple-resolution modeling; rather, they suggest that

the framework can produce correct multiple-resolution models.
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CHAPTER

MULTIPLE RESOLUTION MODELING IN POPULATION ECOLOGY

1.1 Introduction

Traditionally, ecologists have modeled population dynamics with finite difference
equations or differential equations using aggregated measurements of population
characteristics. Huston, DeAngelis and Post (1988), however, argued that the traditional
models violate fundamental precepts of organism behavior. Aggregating the properties of
individuals into a single variable causes a loss of information regarding individuals and
their impact on population dynamics. This led Huston et al. (1988) to argue for an
individual-oriented modeling approach in which populations are represented as a set of
discrete individuals. These individual models implement a set of predefined rules to

represent the behavior and interactions of real individuals.

An advantage of the systems approach is that IOMs use the observations made by
ecologists to represent population dynamics (Judson, 1994; McGlade, 1999). The
resulting models are assumed to be easier to understand, as they are expressed in
ecological terms. Moreover, the model parameters and simulation output are based on the
data collected by ecologists (Huston, et al., 1988), so the modeler can compare simulation

results with experimental observations of the population. These benefits led Huston et al.



and others to the belief that IOMs would replace traditional, analytic models as the

dominant population modeling paradigm (Huston, et al., 1988).

By 1992, the optimism regarding the future of IOMs gave way to the
understanding that IOMs have advantages and disadvantages relative to their traditional
counterparts (DeAngelis and Rose, 1992). This understanding led DeAngelis and Rose to
develop a set of criteria for selecting a modeling approach based on the characteristics of a
problem. Though these criteria are an important aspect of this dissertation, the conclusion
reached by DeAngelis and Rose is of more immediate interest, namely, the authors
“envision many situations in which both approaches [system theoretic and analytic] will

be used together” (1992). This vision is the basis of this dissertation.

The vision expressed by DeAngelis and Rose can be restated as a desire for a
modeling mechanism that combines two models of a single system, at different levels of
resolution, into a single representation. Coupling single-resolution models to form a
multiple-resolution model (MRM) requires a specialized approach to model development
at both the design and implementation levels. Computer scientists have studied techniques
for multiple-resolution modeling since the late 1980’s (Davis, 1993), however, research in
this field has failed to produce a general system for supporting the development of
multiple-resolution models (Reynolds, Natrajan and Srinavasan, 1997). The problem with
creating such a system for ecologists is exacerbated by the lack of a general population
modeling framework. That is, ecologists have not adopted a general system for describing
or implementing IOMs and such a system is necessary as a basis for multiple-resolution

modeling. This dissertation describes an investigation into the problems of developing of a



general population modeling framework and a multiple-resolution modeling extension to

the framework.

1.2 Population Modeling and Computer Simuiation

The resolution at which a population should be modeled is, according to Levin
(1992) and Pascual and Levin (1999}, a central problem in ecology. An individual’s
behavior is influenced by its spatial, temporal and organizational experience, and these
experiences vary relative to the resolution, or scale, of the experience. For example, an
individual’s response to a threat depends both on its recent and long-term experiences.
Therefore, the effect of the threat is based on both fine and coarse-scaled temporal
experiences. In modeling the individual’s response to the threat, the modeler will include a

representation of one or the other scales of experience.

A system should be represented at a scale consistent with the properties under
investigation. For example, a small population should be represented as a set of interacting
individuals rather than a single entity according to DeAngelis and Rose (1992). This
choice is reasonable because the influence of random processes is greater on smaller
populations than it is on larger populations and IOMs represent randomness better than
aggregate models. On the other hand, a large population should be represented by an
aggregate model because, according to the law of large numbers, a large population will
exhibit average case behavior. If, however, the population fluctuates between small and

large population sizes, the representation should accommodate both scales. As the



aggregate model cannot adequately express the behavior of a small population, the
modeler must use the more accurate of the two, that is, the population should be

represented by an IOM.

The requirement, that a modeler choose one scale over another, is a limitation of
simulation technology and not the desire of the modelers. Besides the comment by
DeAngelis and Rose, several ecologists have argued for the use of multiple resolution
models (Levin, 1992; Hyman, McAninch & DeAngelis, 1991; De Vasconcelos,
Goncalves, Catry, Paul & Barros, 2002; Maxwell, 2000). Multiple-resolution models are
seen as a necessity because the complex temporal, spatial and social interactions
encountered by organisms can take place across several scales. Nevertheless, the current
state of simulation technology does not support a general framework for multiple-

resolution modeling (Reynolds, Natrajan & Srinavasan, 1997).

The problems associated with multiple resolution modeling are well known in
computer science (Davis 1993, Davis & Hillestad 1993, Reynolds, et al., 1997).
Researchers have developed MRMs for military simulations and, in the process, they have
identified fundamental issues for creating valid MRMs. An MRM, as described by Davis
and Hillestad (1993), consists of two models that represent a system at two resolutions and
a set of transformations that map the state of one model to the state of the second. Figure
1, which is adopted from Davis (1993), shows the temporal and state behavior between a
low-resolution model (LRM) and a high-resolution model (HRM). At time ¢, the state of

HRM, Oy, must be consistent with the state of the LRM, Q; and vice-versa. As the two
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Figure 1. Davis-Hillestad Diagram adapted from Davis (1993, p. 5).

models have different representations of state, imposing consistency between the models

requires a transiation from the state of one model into the state of the other. That is, there

must be an invertible function, f, such that f{Qpra) = Qrras and £ rar) = Cprrige
Moreover, if the states of both models are consistent at time f and one model transitions its
state at time 7+/, the state of both models must be consistent at time ¢+ /. For example, if
the HRM changes its state, using Sypum(Curas ) = CHras e+ 1+ then the LRM must have the
state f{Onpa, 1+ 1) Though this description does cover the essential problem with multiple-
resolution modeling, it is incomplete. The Davis and Hillestad diagram only considers

synchronized models and it does not consider interacting. Populations, however, are

asynchronous systems that include interacting between populations and the environment.

Recent work by Reynolds et al. (1997) and Natrajan, Reynolds and Srinavasan
(1997) offers a set of empirically derived rules for maintaining consistency between

interacting MRMs. The rules proposed by Reynolds et al. were designed to coordinate



interactions between MRM, by describing a model coupling mechanism that maps state
data between models. The rules do not, however, provide a general framework for
multiple-resolution modeling. Consider an MRM consisting of an IOM and an aggregate
model. The rules proposed by Reynolds et al. impose consistency between the two
models, but the system described by Reynolds et al. (1997) does not impose consistency

between the IOM and the individual models belonging to the IOM.

This dissertation will describe the development and implementation of a multiple-
resolution population modeling framework designed to support general multiple-
resolution modeling. Conceptually, the framework unites two models of a system into a
single representation that coordinates the behavior of all aspects of its constituent single-
resolution models. The framework is based on a generally accepted theory of modeling
and simulation (Zeigler, 1976) and the multiple-resolution modeling component is
developed from the theory. The result of the research performed for this dissertation is the
development of the Spatio-Temporal Ecological Modeling and Simulation System
(STEMSS) (Glass, 2002, Glass and Stevens, 1999) and its multiple-resolution modeling

extension, STEMSS-MRM.

1.3 The Central Hypothesis

The central hypothesis of this dissertation is that multiple resolution modeling will
allow the representation of populations at more than one level of resolution while keeping

the results bounded by, and arbitrarily close to, the behavior of the constituent single-



resolution models. An MRM is also expected to reduce the execution time of the high-
resolution models. Please note that spatial modeling will not be discussed in this
dissertation, instead, the dissertation will focus on what Levin calls the scale of

“ecological organization” (Levin, 1992, p. 1994).

1.4 Research Questions

The hypothesis assumes three main points. First, ecologists want to represent a
system at more than one level of detail. Second, there exists a system for multiple-
resolution modeling. Third, there exists some methodology for comparing models. These
assumptions are examined and the results of the examination are used in the development

and testing of STEMSS.

The assumptions described above motivate several important sets of research

questions:

* How do ecologists use computer simulation?

* How does a model’s resolution affect its accuracy and execution speed? What factors
affect the selection of a particular resolution? What problems may arise in representing

a population at two levels of resolution?

*  What are the computer science issues in developing MRMs and using them in a simula-
tion? In particular, how can consistency between constituent models, in an MRM, be

ensured?



* How well do multiple-resolution population models perform?

The dissertation will address these questions.

1.5 Research Methodology

1.5.1 Research Areas

1.5.1.1 Research Area 1: Population Modeling and Computer Simulation

A motivating argument for the development of a population modeling framework
is, that the current computer simulation approaches of population dynamics lack credence
among some theoretical ecologists (Judson, 1994). The lack of credence, Judson argues, is
due in part to the lack of a verifiable and replicable method for describing the programs
used to model these systems. As these programs can consist of thousands of lines of code,
written in cryptic styles and with idiosyncratic naming conventions. The underlying
theoretical structure of the simulation is rarely presented, so the readers of simulation

studies do not have sufficient information to verify the claims made in these studies.

One solution to these problems is development and implementation of a validated
population modeling and simulation framework. The framework must be based on sound
modeling and simulation principles, with well-defined simulation structures. It must also

support the development of population models from the population modeling perspective.



To create replicable simulations, a method for developing models, within the context of

the framework should be developed.

To create a general purpose population modeling framework, the framework
designer must consider three issues. First, he or she must consider the questions ecologists
ask. If the framework is to be of general use to ecologists, it must be able to support these
questions without forcing the modeler to adopt idiosyncratic programming rules.
Therefore, the framework must support ecological concepts by supplying an ecological
modeling interface to the modeling and simulation structures. Such an interface will
include, for example, a basic IOM that represents a population as a collection of
individuals and an individual model that supplies predefined behaviors such as birth and
death. The IOM’s structure is, therefore, an association between individual models and a

population model that implements these rules.

The second issue the modeler must consider is how computers are used to answer
ecological questions. For example, there are two major types of computer simulation:
discrete time (DTS) and discrete-event (DES) simulation. The designer must consider why

an ecologist would select a particular simulation technique and how to support alternative

techniques.

The third issue the designer must consider is the role of software engineering in the
development of the framework. One problem with the current state of ecological
modeling, particularly in light of Judson’s critique, is the lack of a well-designed
population modeling process. By considering these three issues, the framework designer

should be able to construct a versatile and extensible system for population modeling.
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1.5.1.2 Research Area 2: Resolution and Population Modeling

A model’s resolution or scale refers to the granularity at which the system is
represented. Before the work by Huston et al. (1988), modelers represented a population
either as a single entity, such as the logistic equation, or as a set of equivalence classes,
such as the Leslie matrix (Leslie 1943; Sinko & Streifer, 1967). These models use
statistical aggregation of individual characteristics to represent the system'’s state and an
equation, or set of equations, that update the state. When a population is large and the
environmental conditions are static, these models are expected to generate valid
simulations (Judson, 1994). However, as several researchers have noted, small populations
or environmental stochasticity can diminish the reliability of these models. Therefore, the

analytic equations are of limited utility.

To increase the validity of population models, ecologists increased the granularity
at which populations are represented. For example, Sinko and Streifer (1967) developed a
mode! of population dynamics based on the physiclogical characteristics of individuals.
The model describes a population in terms of distributions of individual age and mass and
represents population dynamics as a set of integro-differential equations. The increased
resolution of the distribution models improves the model’s accuracy when the population
size is small relative to the more aggregated values. The advent of personal computers in
the 1960’s opened a new direction for increasing granularity based on a system theoretical
approach (Huston et al., 1988). The increase in computing capacity allowed ecologists to

develop computationally expensive models based on the explicit representation of
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individuals and their interactions by a set of behavioral rules deduced from direct

observation,

The different approaches to population modeling pose an interesting question.
Which approach is appropriate for a given problem (DeAngelis & Rose 1992)? This
question is periodically asked and answered in reviews of ecological modeling techniques
and the conclusions rarely vary. In general, IOMs are preferred when the modeled
populations are small or subjected to large stochastic effects and the aggregate models are
preferred when the modeled populations are large (DeAngelis & Rose 1992, McGlade
1999). Despite their advantages when the population size is small, IOMs have some
important disadvantages. In particular, IOMs are computationally intensive, which has led
to some interesting techniques to improve computational efficiency. For example, Rose,
Christensen and DeAngelis (1993) and later Scheffer, Baveco, DeAngelis, Rose, and van
Nes (1995) proposed partial aggregations of IOMs to improve efficiency. The latter work
grouped physiologically similar individuals into objects called *super-individuals.” Super-
individuals exhibit the same behavior as individuals, except that mortality and birth are

represented as changes in the size rather than the creation or removal of an individual.

One response to the problem of computational efficiency, and the basis of this
dissertation, is that the selection of a single resolution may not be the optimal solution for
the problem. For some problems, the time required to execute an IOM is too long and the
inaccuracy of aggregate models is too great to rely on either approach. Consider an
environmental emergency, such as an oil spill. The main priority for the groups

responsible for minimizing the damage caused by the spill is the placement of clean up
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resources (U.S. Environmental Protection Agency [EPA]), 2002). To optimize the
placement of these resources, the groups need to compare clean up alternatives in a timely
manner, but a thorough study using IOMs can take several days, weeks or even months to
complete. The assumption in this dissertation is that an MRM could provide sufficiently

accurate results, quickly enough to be useful.

Though researchers have suggested the development of population MRMs, no
such models were found in the ecological literature. There are two reasons for the lack of
progress. First, the lack of an ecological modeling framework inhibits the ability to extend
modeling techniques and, second, the lack of a general structure for multiple-resolution
modeling forces the modeler to create a complex system by hand. To facilitate MRM
development, the requirements for a population modeling framework and a multiple-
resolution modeling extension are identified in chapter II; the design and implementation

for the framework and extension are discussed in chapter ITI.

1.5.1.3 Research Area 3: Multiple Resolution Modeling

The fundamental problem in multiple-resolution modeling is the maintenance of
consistency between resolutions (Davis, 1993; Natrajan, et al., 1997; Reynolds, et al.,
1997). The MRM controls state changes by switching control between the constituent
LRM and HRM. When an MRM switches control from one constituent model to the other,
the states of the models must match. If they do not match, the model’s state is not defined.

Increasing consistency is particularly difficult when a simulation includes interacting
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MRMs. Each MRM in the system must provide a consistent temporal view of its state to
other models in the system. Otherwise, the interactions are inconsistent (Reynolds et al.,
1997). To address this problem, an understanding of the computational issues related to

multiple-resolution modeling is required.

1.5.1.4 Research Area 4: MRMs Performance

The idea of multiple-resolution modeling makes sense in some contexts. There are
reasonable ideas from probability theory to suggest the validity of MRMs. Also, MRMs
are used in military simulations and the suggestion that MRMs may be useful in
ecological modeling has lead to some credence in the technique. However, until the
_ viability of MRMs is demonstrated, the usefulness of multiple-resolution modeling will
not be accepted. To this end, three sets of tests, based on existing ecological models, were
implemented to validate the STEMSS and STEMSS-MRM. Each test consists of a low-
resolution (LRM) and a high-resolution (HRM) model developed using STEMSS and a
STEMSS-MRM that couples the LRM and the HRM. The tests were designed to

characterize the behavior of MRMs and are described in sections 1.6, 3.2.3, and 3.4.

The tests are designed to answer three questions: does the MRM maintain state
consistency for these models? Do simulations based on the MRM remain bounded
between the high and low resolution models? Do the MRMs improve execution time? In
addition to answering these questions, the performance tests will be used to estimate the

trade off between accuracy and execution time. This estimate is, in some sense, the most
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important result of the dissertation. The goal of muitiple-resolution modeling, with respect
to the dissertation, is to exploit the execution speed of aggregate models, while
maintaining the accuracy of IOMs. By providing a method for estimating the trade off
between accuracy and execution, the user can estimate the accuracy attainable by a

simulation running for a given time.

1.5.2 Summary of Research Questions

The research performed for this dissertation follows a path from the motivating
questions in ecological modeling and computer simulation to the development of a
framework for population modeling and simulation and the development an MRM
component for this framework. The first motivating question addresses the computational
needs of modelers and how computer science can address these needs. The answer to this
question is the development of a framework for ecological modeling and a method for
developing models within the context of the framework. With the framework in place, the
next step in developing and testing multiple-resolution population models is the creation
of a definition for multiple-resolution modeling and the incorporation of that definition

into the population modeling framework.
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1.6 Ecological Model Primer

1.6.1 Introduction

“Ecology deals with organisms and their environments . . .” (Begon, Harper &
Townsend, 1996, p. 5) and, as such, ecologists are interested in the behavior of individuals
and the impact of the environment on individuals. In particular, ecologists are interested in
how individual behavior affects the abundance of the organism over time. Hence,
ecological models are concerned with the relationship between an individual’s

environment and the ability of the individual to survive and reproduce.

Early efforts to describe population growth focused on the average-case behavior
of individuals and projected the behavior to the population level. Theorists hypothesized
that populations have an intrinsic growth rate and that resource limitation would constrain
the population to a maximum allowable size. Verhulst and Pear] (Olinick, 1976), for
example, developed population models that incorporate these inhibitory effects. For

example, the discrete logistic model represents a population as a finite difference equation:

an = i1 _%) )
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where ¥ is the population size, r is the intrinsic birth rate and X is the population’s
carrying capacity. When N is less than the K, AN is positive, that is, the population’s size
increases. When N is greater than K, the population size decreases. The model relies on
some aggregate measures, such as the average individual birth and death rates, as model

parameters.

The representation of a single population by a finite difference equation was
extended to represent interacting populations such as predator-prey relationships. For
example, the Lotka-Volterra model (Olinick, 1976) of predator-prey interactions uses a

pair of finite difference equations:

AP = P(cN,-d) @)

AN = N(a-bP) (3)

where P is the size of the predator population and N is the size of the prey population. The
terms a and ¢ are the growth rates of the prey and predator populations respectively and

the terms b and d are the mortality rates for the prey and predators respectively.

The model assumes density independent growth for the prey population, which is
constrained by predation. According to Murray (Murray, J. D., 1993), this assumption is

unrealistic, For example, in the absence of predators, the prey population will encounter
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resource limitations. A more realistic version of the predator-prey model includes density-

dependent terms for both the predator and prey populations:

hP,
=kP|1-— 4
AP kp,(z N:) 0
Ny _ANE, 5)
AN = rN,(1 "f)"N =

where P is the size of the predator population and N is the size of the prey population. The
terms k and r are the growth rates of the prey and predator populations respectively, h is
the prey-dependent carrying capacity, K is the prey population’s carrying capacity, and the

terms A and B are predation related constants.

Finite difference models ignore several important features related to the structure
of a population. For example, individuals birth rates vary over the age of the individual.
Therefore, a model of an age-structured population must account for the distribution of
ages within a population, as well as the age dependent birth rate. An early model of age-
structured populations, developed by Leslie (Leslie, 1945), represents a population as a set

of equivalent age-classes v where, for each v; € v, v; is the number of individuals in age-

class i. Population growth is represented by a matrix L of birth and survival rates called

the Leslie matrix. Population growth is computed as v, ; = Ly, and the matrix is used to
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compute important population characteristics, such as stable population size and
generation time. As with the analytic population models, the Leslie matrix represents a

population by the average-case birth and death rates.

The models described so far subsumed the linkage between population dynamics
and the environment. To make this linkage explicit, Sinko and Streifer (1967) extended
Leslie’s approach by decomposing populations into physiological distributions. These
distributions inciude properties such as weight or length distributions. The model
represents population dynamics as an integro-differential equation that depends on
distribution-dependent growth and mortality rates. The impact of the environment is
expressed as a function of the distribution of physiological characteristic and

environmental characteristics.

More recently, ecologists have developed I0OMs that use a physiological
description of individuals to simulate population dynamics (Huston, et al., 1988; Caswell
& John, 1992). IOMs represent a population as a set of explicitly modeled individuals.
These models represent the behavior of individuals and their environmental and social
interactions. That is, individual behavior is determined by the individual model, not the
population model. This representation uses a fine-grained resolution of organizational
behavior which gives ecologists a technique for developing more realistic models of

population dynamics.

One such model, developed by Rose and others (Rose, Cowan, Houde, Coutant,
1993; Rose, Rutherford, McDermot, Forney, and Mills, 1996; Rose, Tyler, SinghDermot,

and Rutherford, 1996), represents a yellow perch population as a set of individuals,
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partitioned into age classes. Each individual can grow from a “first-feeder” to an eight-
year-old, assuming the individual survives that long. As the individual matures, the model
determines the individual’s gender (50% female) and each female breeds according to a
length dependent probability function. The length of an individual is determined by the
amount of food it eats, which, in turn, depends on prey density. Adults can prey on the

young.

The model expresses growth due to consumption as:

Aw = pC E-R (6)

max "~ tot

where C,,,,, is the maximum possible consumption for an individual and p is the
proportion of C,,, realized by an individual. The variable E represents consumption
losses due to waste and R,,, is the loss due to metabolic processes. The value of C,,,;. is a

function of weight and environmental temperature:

C,.. = aw-F(T) 7

max



20

where a,. and b, are age-specific constants and F(T) reflects the environmental impact on
consumption. The expression for R,,, is similar to C,,,,. The expressions for E and p both

rely on realized consumption, C,:

el 7]
n |WCinax K.
C = 2 Y (8)

where, PD,-jv is the density of prey item j adjusted by its vulnerability V to individual i, Kj;
is a saturation constant. The importance of Equation 8 is its impact on computational
efficiency. To account for adult predation, the model must impose a method for finding
appropriately sized individuals and supply a method for an interaction between each adult

and the young cohort.

This model is computationally expensive. A 400-year population simulation based
on this model took approximately four days to execute. Given that a thorough analysis of
the model may require simulations of thousands of years, the model is impractical for
general use. In response to this problem, Rose developed the super-individual concept of
population modeling (Scheffer, et al., 1995). A super-individual is a modified individual

model that aggregates similar individuals into a single representation. The super-
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individual’s consumption and reproduction behavior are multiplied by the number of

individuals it aggregates.

1.6.2 Test Models

The logistic model, density-dependent predator-prey model and the yellow perch
models were used to test the STEMSS and STEMSS-MRM. The low-resolution models
were based on the logistic equation (Equation 1), the predator-prey equations (Equation 4
and Equation 5) and a “super-individual” version of the yellow perch model. The high-
resolution models are IOM equivalents of the low-resolution models. Details for each

model] are provided in Chapter III.

1.7 Plan of the Dissertation

Chapter 2 will discuss the current state of ecological modeling frameworks and the
current state of multiple-resolution modeling. Two conclusions that dictate the direction of
this dissertation are drawn from this discussion. First, the lack of a well-structured,
discrete-event simulation framework has inhibited both the incorporation of discrete-event
modeling and multiple-resolution modeling to the ecological modeling repertoire. Second,
the Jack of a structured method for multiple-resolution modeling has hindered the use of

this approach generally.
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Chapter 3 will discuss the development of the STEMSS and STEMSS-MRM
designs. This discussion will show how STEMSS relates to modeling and simulation in
general and how STEMSS can be used in ecological modeling specifically. The STEMSS-
MRM design will introduce a new concept for multiple-resolution modeling and an

implementation of the concept.

Chapter 4 will discuss the validation tests and results for STEMSS-MRM. The
tests were done in three phases: validation of the method, use of STEMSS-MRM in a

simple model and the use of STEMSS-MRM in a complex model.

Chapter 5 will discuss the performance tests of the STEMSS-MRM framework.
The tests will show that STEMSS-MRM can improve the performance of the high-

resolution model and it will identify specific costs in using STEMSS-MRM.

Chapter 6 will summarize the contributions of this dissertation and suggest

possible future research directions.
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CHAPTER II

LITERATURE REVIEW

2.1 Introduction

Chapter I outlined the research questions addressed in this dissertation. Chapter II
will address the research questions related to the current state of ecological modeling and
multiple-resclution modeling. The chapter begins with a discussion of the use of computer
simulation in population ecology, focusing on the approaches used by ecologists to solve
computational problems. The crux of this discussion is that ecologists have created
modeling frameworks with varying degrees of success, but these frameworks have not
produced a generally accepted technique for population modeling. The discussion also

identifies a set of requirements for a population modeling framework:

1 the framework must be based on a well-defined and generally-accepted set of modeling

and simulation system,

2 the modeling and simulation system must support a set of general modeling structures
that can be specialized to arbitrary model types (e.g., discrete-time, continuous-

equation, and discrete-event),
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3 the framework must provide interface classes that refine the modeling structures to

population modeling structures,

4 the framework must specify a method for code development based the framework’s

implementation.

The last requirement is particularly important. The framework consists of a set of classes
that implements a general modeling and simulation system and an anoter set of classes
that implements general concepts of population ecology. However, without a systematic
way of describing code development, the modeler cannot express his or her models in a

reproducible way.

The second part of the chapter will review the current state of multiple-resolution
modeling. Specifically, it will focus on the definition and requirements of multiple-
resolution modeling. This discussion will develop two significant points. First, the
literature is ambiguous with respect to the meaning of multiple-resolution modeling and
second, the current research has failed to produce a general framework for multiple-
resolution modeling. The conclusion of this section is that following requirements are

necessary for developing general MRMs:

1 the MRM must maintain consistency between the states of the constituent models at all

times,
2 the MRM must support interactions between MRMs,

3 the MRM must maintain consistency between aggregated and disaggregated states.
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2.2 Population Modeling and Computer Simulation

Chapter I included a discussion of general population modeling approaches. This
discussion emphasized two population modeling paradigms: aggregate modeling that
includes differential equations, and individual-oriented modeling, which describes
populations as a set of interacting models of individuals. IOMs are designed to represent
populations using the theoretical concepts and experimental observations of population
ecology. This design implies that IOMs rely on ecological intuition, rather than the
mathematical abstraction associated with aggregate models (DeAngelis and Rose, 1993;
McGlade, 1999). Moreover, by aggregating individual parameters, the resulting models
lose information regarding population dynamics. Aggregate models are therefore
presumably less accurate than models that incorporate explicit representations of
individual behavior. IOMs, on the other hand, are computationally expensive, as the
models must track thousands of individuals. According to Huston et al. (1988), the rise of
individual-oriented modeling is the result of dissatisfaction with aggregate models and an

increase in the computational capacity of computers.

The central role of systems theory in the development of individual-oriented
modeling has lead to two specific complaints about IOMs. First, IOMs do not lend
themselves to analysis. The models are complex, potentially consisting of thousands of
simuitaneous equations and the temporal behavior of these models can be discontinuous.
The second complaint is that the code used to represent individuals and populations is not

published or subject to review (Judson, 1994; McGlade, 1999). The difficulty in analysis
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limits the theoretical use of IOMs, but the lack of review makes the models “suspicious”

(Judson, 1994, p. 12}, which can reduce their acceptance.

To reduce the suspicion caused by the lack of a formal review, ecologists have
pursued various design techniques to control the model development process. These
techniques range from the imposition of coding requirements to the development of meta-
modeling languages. Though many of these techniques are no longer areas of active
research, they have identified requirements for a general population modeling system.
This section will describe representative examples of these techniques from which a set of

design principles will be derived.

2.2.1 Software Design in Ecology

2.2.1.1 Stvle and naming conventions

A basic technique for controlling the software development process is the
imposition of coding style and naming conventions. By imposing conventions on
programmers, the interface between different pieces of code will have a consistent
meaning, regardless of whom actually writes or develops the code. This approach
enhances the code’s readability and supports the development of models as components

rather than complete programs.

These benefits are particularly important in collaborative systems where groups of

developers contribute to modeling efforts and the models must share code. An example of
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this technique is found in the Across Trophic Level System Simulation (ATLSS) project
(ATLSS, 2002a; ATLSS, 2002b). ATLSS is a collaborative effort between academic and
government researchers to develop models of the ecosystems of the Everglades and

Southern Florida.

The ATLSS base model consists of hydrological and topological models of
Southern Florida that gives contributing modelers a predefined structure for spatial
interactions. The modelers create specific population sub-models, which are coupled to

the base model to produce spatially-explicit ecosystem simulations (DeAngelis, et al,

| GENERAL STRUCTURE OF ATLSS EVERGLADES MODELING SYSTEM |
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Figure 2. ATLSS Ecosystem Structure, adapted from the ATLSS project home
page (ATLSS, 2002a)
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1998; Abbot, Berry, Comiskey, Gross & Luh, 1997). The structure produced by coupling
the models forms a graphical representation of the ecosystem that shows the biomass and
nutrient flow through the system. Figure 2 is one such representation used by the ATLSS

group (ATLSS, 2002a).

The graphical representations and the naming and style conventions facilitate the
description of the model by explaining how information is shared among the components
of the model. The description, however, is limited to data flow; it does not describe
behavior of the population models developed by the contributors and it provides no
support for defining these models. Instead, it imposes a programming discipline on the
modelers, which can only be successful if the modelers are willing to abide by that
discipline. Therefore, the population models are developed in an ad hoc fashion and the

concerns raised by Judson (1994) and McGlade (1999) are not satisfied by this approach.

2.2.1.2 Frameworks

Two problems with using coding requirements as a software development
technique is their reliance on disciplined programming and the lack of support for
specifying system behavior and interactions. To aid modelers in specifying models,
theoretical ecologists have created population modeling frameworks. A software
framework, according to Booch, is “a set of classes that provide a set of services for a
particular domain; a framework thus exports a number of individual classes and

mechanisms that clients can use or adapt” (Booch, 1994, p. 514). A population modeling
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framework therefore supplies the modeler with structures for developing population
models that subsume the programming discipline required by coding requirements. If the
framework is developed with domain specific support in mind, then it can also support

model] development.

The hierarchical and concurrent individual-based model (HCIBM) system,
developed by Palmer (1993), is an early attempt to produce an object-oriented population
modeling framework. Though work on that project apparently has been discontinued,
some of his ideas are important for the development of a population modeling framework.
In particular, Palmer discusses three specific issues that would facilitate the development
of a general population modeling framework: the use of object-oriented design, the
hierarchical description of a population model and the explicit representation of individual

development within the model.

The interest in using object-oriented design (OOD) in developing a simulation
framework is not surprising, as many object-oriented concepts originated in the discrete-
event simulation language, Simula 67. The relationship between OOD and modeling is
especially significant because software engineers have applied this relationship to
software development and to the graphical representation of programs (Booch, 1994;
Booch, Rumbaugh, Jacobson, 1999). In the development of HCIBM models, Palmer uses
a form of OOD and a graphical representation, to describe the relationship between spatial

location and individual behavior.

Figure 3 is an example of Palmer’s representation of a spatially distributed, age-

structured population. The diagram describes a population in the context of its
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Figure 3. Palmer’s Representation of Spatially Explicit Population from
Palmer (1992 p.194)

environment (i.e., season and spatial location) and its organization (i.e., sub-populations).
The relationship between the environment, social organization and individuals is
described as a hierarchy of models, where each level of the hierarchy influences the

models below it through a set of predefined paths.

One of the more important individual-oriented modeling problems addressed in
Palmer’s example is the explicit representation of individual development. An individual
model represents the individual’s life-cycle holistically, as opposed to a set of “life-stage”

classes. This allows the modeler to specify an individual by its developmental and social
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behavior, so the individual model is consistent with an intuitive perception of individual

behavior.

The HCIBM hierarchy is constructed using two class base classes: Part and Whole.
The Part class represents entity models in a system and the Whole represents collections
of Part objects. For example, an individual is represented as a Part object and the niche is
represented as a Whole object consisting of zero or more individuals. The Part and Whole
classes implement a set of accessor methods for setting and retrieving state values and a
set of behavior methods, for representing the model’s dynamics. These classes are general
modeling classes, in that they provide a structure for implementing models, but they do
not support the modeler in developing models. For example, Palmer describes how to
define a specific individual as a Part class. However, to use this definition, the modeler is
required to formulate the model, then translate that formulation into the HCIBM structure.
This translation requires the use of idiosyncratic methods, such as “setPotential,” and
statements, such as “parts := self inclusions,” which limits system to those users who are
willing to learn the HCIBM terms and structures. Anecdotal evidence suggests, however,
that modelers are unlikely to adopt a framework that imposes a set of terms, structures and
concepts that are not consistent with the modelers existing set of terms, structures and
concepts. As Maxwell and Costanza put it, “the current generation of models tend to be
idiosyncratic monoliths that are comprehensible only to the builders” (Maxwell &

Costanza, 1995, p. 251).

Despite the problems associated with HCIBM, the system does provide a starting

point for the construction of a population modeling framework. Palmer’s graphical
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representation is an improvement on the representation supported by the ATLSS project as
it identifies the interactions between individuals and their environment. Therefore, the
representation aids communication about the model’s structure, which partially addresses
Judson’s complaints regarding the ability to review simulations. HCIBM also provides

structures that support model construction even if the support is idiosyncratic.

2.2.1.3 Ecological Modeling Languages

Modeling frameworks provide developers with a set of structures that support the
construction of models, but they require adoption of the framework’s underling
assumptions regarding modeling and simulation. Alternatively, one may use modeling
languages. Maxwell and Costanza (1995), Costanza and Maxwell (1997), for example,
developed the Spatial Modeling Environment (SME) as a meta-modeling language for
spatially-explicit population models. SME uses off-the-shelf modeling languages, such as
STELLA, to specify model behavior, then translates these specifications to the underlying
spatial representation through the Modular Modeling Language (MML) which produces

Java or C++ code (SME, 2000).

The important feature of SME, with respect to the current state of population
modeling, is the use of a graphical modeling system, STELLA. STELLA uses a set of
icons to represent a system. These icons include stocks (i.e., variables), flows (finite
difference equations), converters (constants) and connectors (fiows), in addition to more

specialized flow types. A STELLA implementation of the logistic equation (Equation 1),
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dN out

Figure 4. STELLA Representation of the Logistic Model

shown in Figure 4, demonstrates how a user would produce a population model. The
number of individuals in a population, N, is represented by the stock icon labeled N, the
birth rate, r, and carrying capacity are represented by converters labeled r and X,
respectively, and the differential equation is represented by the flow, dN. On each time
step, N individuals “flow out” of 4V and rN(J- N/K} individuals “flow in.” The modeler
defines the start and stop times, and the time step of the simulation, which are used to
control the simulation. STELLA converts the graphical representation to a finite difference

equation specification, which MML uses to describe the non-spatial part of and SME

model.

Since STELLA is a differential equation solver (STELLA, 1997), SME supports
the development of aggregate models. Ecologists, however, have expressed an interest in
the use of discrete-event simulation for population modeling, especially with respect to

individual-based modeling (Palmer, 1992, Haefner, 1992; Gathmann and Williams, 1997).
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The SME project was extended to include for discrete-event simulation frameworks such
as Swarm (Hiebler, 1994; Santa Fe, 2002), which is an agent-based simulation framework.
As with the other modeling and simulation frameworks discussed earlier in this chapter,

however, Swarm does not provide a domain specific interface for ecological modeling, so

the models are apparently developed in an ad hoc fashion.

2.2.1.4 A Synopsis of Ecological Software Development

The desire for a generally accepted technique for describing and creating IOMs
has not been fulfilled. The existing structures fail to provide the necessary ecological
specificity and modeling support for the development IOMs. This claim is made apparent
when considering the current state of individual-oriented modeling. In a survey of papers
from the journal, Ecological Modeling, between May 2001 and May 2002, ten papers with
the keywords “individual-oriented” or “individual-based” were published. The papers
were sorted according to software design style: “ad hoc,” “design concept” or “software
package.” “Ad hoc,” implies the modelers did not explain their software design principles.
“Software design concepts,” implies that the paper describes the software design.
“Software package,” implies the use of off-the-shelf software. Of the ten articles that
qualified, six were *ad hoc,” one was a “structured design” and three were “software
packages.” The survey suggests that population modelers have not yet addressed the

problems identified by Judson (1994) and McGlade (1999).
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The purpose of a framework is to suppiy the modeler with a set of services that
support the development of arbitrary models. From the literature review, these services
include a simulation engine for simulating system dynamics and a set of classes that
support basic modeling structures. In providing these services, the framework removes
important programming and design issues from the modeler and, therefore, the framework
must implement a well-designed and generally-accepted modeling and simulation theory.
The literature also suggests that modelers require several simulation types. These types
include differential equation simulators, such as SME/STELLA, discrete-time simulators,
such as ATLSS and discrete-event simulation, such as SME/Swarm and inter-cite
(Gathmann and Williams, 1997; Gathmann, 1996). A successful framework must,

therefore, support these modeling systems.

As described in the literature review, the population modeling framework must
support the modeling process from the ecologist’s point-of-view. This support is not a
matter of conforming to the nomenclature of the population ecology, rather, the framework
must supply a set of classes that conform to population modeling concepts. For example,
an IOM population model is structure that contains zero or more individuals of a given
species. To represent an IOM, the framework must include a container class to represent
the population and an individual model class to represent the individual. The population
class must include specific methods that represent an individual joining the population
such as birth or immigration and methods that represent an individual leaving the

population such as death or emigration.
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The final requirement for the population modeling framework identified in this
review, is a method for concisely specifying models in a way that supports the derivation
of code from the specification. STELLA is an example of such a system. The graphical
specification of the model is used, in conjunction with user input, to derive code for the
model. In doing so, a STELLA specification also supplies a format for describing,

discussing, and reproducing the model.
To summarize, the framework must meet the following requirements.

1 The framework must be based on well-defined and generally accepted modeling and

simulation system.

2 The modeling and simulation system must support a generalized notion of modeling
that can be specialized to arbitrary model types (e.g., discrete-time, continuous-

equation, discrete-event).

3 The framework must provide interface classes that refines the modeling structures to

population modeling structures,.

4 The framework must also specify a technique for defining how the code will be

structured.

2.2.2 Software Design in Computer Science

Software engineers have developed methods for designing and implementing

frameworks that are extensible and maintainable (Booch, 1994; Shaw & Garlan, 1996;
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Stroustrup, 1997; Oestereich, 1997; Booch, Rumbaugh & Johnson, 1999). The Unified
Modeling Language, or UML (Booch, Rumbaugh & Jacobsen, 1999; Conallen, 1999;
Kobryn, 1999), is used as the basis for specifying models in this dissertation. Specifically,
the model classes (e.g., individuals and populations) are identified from a narrative
description of the model. From this narrative, the inheritance and containment
relationships between classes are identified and used to develop a structural description of
the system. These structures are used, in conjunction with class and interaction diagrams,

to specify the system.

The interaction diagram, Figure 5, describes the interactions between objects. Each

column of in the diagram shows the sequence of interactions for a particular object. The

obj:Object :Object2
0 |
)
1
|
method(a,b,c 7
(a,b,c) p
-]
£
=~ ¢ -----~----.
return action
:
L 1
] 1
] 1
] I
1 1
1 1
Voo '

Figure 5. UML Interaction Diagram
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class SuperClass class IteratorType

I

protectedAttribute : SomeType
privateAttribute : IteratorType

+ method1()
# method2()
- method3() : Type

publicMethod(param : Type) : Type
protectedMethod(param : Type) : Type
privateMethod(param : Type) : Type

I ¥#* +

A4

class SomeType

class SubClass

protectedAttribute : Type

Figure 6. UML Class Diagram

interactions are represented as arrows pointing from one object to another and are
annotated with the name of the interaction method. In this example, an object obj interacts

with an arbitrary object of class Object2 using the interface called method{a,b,c). This

methed returns the value action.

The class diagram, shown in Figure 6, shows the relationships between classes,
including inheritance and association. The class, SuperClass includes an aggregate of
IteratorType objects, called “privateAttribute.” The SuperClass object interacts with
objects of type SomeType and is inherited by class SubClass. The tags “#,” “-,” and “+"

mean that the associated method or attribute is protected, private or public respectively.
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2.3 Creating an Ecological MRM

Ecologists have argued that multiple-resolution models are desirable for efficient
simulations, assuming the models can maintain reasonable accuracy (DeAngelis & Rose,
1992; Levin, 1992; de Vasconcelos, et al., 2002). By representing a system at multiple
levels of resolution, the simulation can direct computational effort where it is needed
while ensuring consistency between the constituent models. To produce a multiple-
resolution modeling extension for a population modeling framework, two issues must be
resolved. First, a general definition of MRM must be developed and, second, structures to

implement this definition must be developed.

2.3.1 What is Multiple Resolution Modeling?

To implement an MRM, there must be some description of the requirements for an
MRM and this description must satisfy the requirements of the source problem. Recall
from chapter I, the multiple-resolution modeling idea expressed by DeAngelis and Rose.
The idea, was to model a system using a valid high-resolution model (HRM) unless state
of the MRM allowed the use of a valid, low-resolution model (LRM). In population
models, the switching condition could be based on population size. The MRM switches
between models under specific conditions either by aggregating the state of the high-
resolution model or by disaggregating the state of the low-resolution model. To produce a

valid MRM, the transition functions of the constituent models must produce consistent
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results. This is a particularly challenging constraint as the MRM’s constituent models will
not necessarily have the same functional form. For example, growth in an IOM (high-
resolution model) is due to individual behavior and growth in an aggregate model, such as
the logistic model, is computed by a finite difference equation. The relationship between
the consistency requirements and examples of multiple-resolution modeling found in the

literature are examined in the following section,

2.3.2 Types of MRMs

The first category of MRMs consists of models with multiple state resolutions,
such as grid refinement models. These models represent the state of a system at more than
one level of granularity, for example, Geofogo is a fire ecology modeling system (de
Vasconcelos, et al., 2002) that represents spatial data at several levels of resolution. In the
example provided by the authors, fire spread is modeled as a function of the combustible
material in a given area. The spatial distribution of the combustible material is represented
as a grid of nodes, where each node includes the amount of combustible material within
the region represented by the node. Geofogo allows the modeler to define spatial data at
more than one resolution, though each simulation will use only one representation (i.e.,
the models do not switch between representations). There are three interesting points from
this study. First, Geofogo does not use the multiple resolutions directly, rather it combines
the resolutions as required. Second, the combination of resolutions is one-way, that is,

spatial-data is aggregated only. Third, the model supports multiple state resolutions,
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though it maintains a single behavioral representation, that is, all resolutions use the same

equation.

The second MRM category consists multiple temporal resolution models. The
essential problem with multiple temporal resolutions is that differing time scales can
create representational inconsistencies. This is most easily seen in discrete-time systems
when the constituent models update their state values at regular, but disparate, time steps.
One model, usually the high-resolution model, operates on a finer time scale than the
other. When the MRM switches the active model, the passive model’s transition function
may not have a valid update at the current time. As the state of a discrete time model is not
defined between transitions, the disparity in time steps could lead to an undefined state. To
correct this problem, the framework must support a mechanism that approximates the

model’s behavior between state updates.

The ability to impose state consistency is necessary for arbitrary multiple
resolution models, however, if the constituent models transition simultaneously, then
imposing state consistency is not sufficient: the states induced by one model will not
necessarily match the state of the other model. If both the transitions are valid, but the
states are different, then imposing consistency based on the results of one model is not
sufficient. This leads to the third category of MRM, those that impose behavioral
consistency. The MRM must supply a mechanism for resolving state differences induced

by the models. This problem is suggested by the Davis-Hillestad diagram (see Figure 1).

The fourth category of multiple-resolution models consists of the models that

impose interaction consistency. When a system consists of interacting MRMs, the MRMs



42

may interact using different resolutions. For example, in a predator-prey model, the high-
resolution predator model may interact with the low-resolution prey model. To account for
this condition, the output of the predator model must be translated to the resolution of the

prey model, then mapped to the input of the prey model.

The Multiple Resolution Entity (MRE) concept developed by Reynolds, et al.
(1997) address the problem of cross resolution interactions. The modeler must identify a
set of core state values that can generate the required state values for each level of
resolution. When a state value is required for an interaction, the MRE's consistency
manager generates the value from the core set. To coordinate the interactions between
MREs, the MRE uses a “public world view” to map interaction requests and data to the
MRE. The MRE uses a consistency enforcer to map the data to the constituent models and

to map core values to the “public world view.”

Though the MRE is a general concept for developing MRMs, it only addresses the
interaction aspect of the MRM and it does not operate within the context of a theoretical
framework for modeling and simulation. As such, it offers neither programming nor
conceptual support for the development of MRM interactions, Nevertheless, the
observations made by Reynolds et al. (1997) and Natrajan et al. (1997) suggest important

constraints for multiple-resolution modeling.

The fifth category of multiple-resolution models consists of models that impose
the organizational consistency. LRMs are represented by model structures, whereas HRMs
are represented by network structures. When the MRM imposes state consistency, it forces

the state of the LRM to match the state of the HRM but it does not impose consistency on
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the HRM's component models. Therefore, as a consequence of translating the state of an
LRM to the state of an HRM, the aggregation of the HRM’s component model might not
match the HRM’s state. To ensure organizational consistency, the MRM must resolve this
inconsistency. The process is known as disaggregation. The MRM suggested by
DeAngelis and Rose (1992) requires that, when the population size falls below some
value, the MRM must impose state consistency on the HRM and the HRM must

disaggregate its state by adjusting the number of individual models.

This literature review suggests five properties for characterizing model
resolution: time, state, behavior, organization and direction (i.e., aggregating only or
aggregate-disaggregate). They also suggest three requirements for the development of

valid MRMs, namely:

1 the MRM must continuously maintain consistency between the states of the constituent

models,
2 the MRM must support interactions between MRMs,

3 the MRM must maintain consistency between aggregated and disaggregated states.

2.4 Summary

This chapter reviewed the current literature regarding the use of ecological

modeling and simulation frameworks, the interest in multiple-resolution population



modeling among ecologists, and the current state of multiple-resolution modeling

approaches. The findings are summarized below:

Ecologists have been working on various techniques to create modeling frameworks to
solve both problems with consistency in model representation and communicating
about models. These approaches range from imposing a programming style to provid-

ing a graphical user interface.

The ecological modeling frameworks are based on well-defined structures for modeling

and simulation.

Imbedded in the discussions regarding individual representation is the problem of
dynamic behavioral changes. An arbitrary IOM must represent parallel behaviors and

developmental changes to these behaviors.

MRMs are desired by ecologists, but there are no frameworks for multiple-resolution

modeling.
The key to producing MRMs is to impose state consistency.

MRMs need access to both data and behavior of a single entity.
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CHAPTER III

SOFTWARE DESIGN

3.1 General Design Problem

Chapter II described the current state of multiple-resolution population modeling
frameworks and derived a set of rules for producing a population model framework and an
MRM extension based on the description. Chapter III will describe the implementation of
a multiple-resolution population modeling framework based on the requirements
identified in chapter II. This discussion begins with the development of a modeling
framework and a set of population modeling structures. It then describes the
implementation of an MRM using the modeling structures. The chapter finishes with a

description of a method for defining population models,

3.2 The Design and Implementation of the STEMSS

The Spatio-Temporal Ecological Modeling and Simulation System (STEMSS) is a
population modeling framework consisting of four packages: the model abstraction, the

simulation engine, the population modeling interface and a support package (see Figure
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7). The simulation engine controls time progress by storing model events in time order and
iteratively selecting and processing them. The model abstraction is a set of classes that
implement the model and network classes described in chapter I and form the base
classes for the population modeling interface. The interface classes implement concepts
from population ecology while conforming to the modeling structures. The support
package provides the framework with basic abstract data types, such as lists, and
simulation utilities, random number generators and file I/O handlers. This section will
describe the development of the model abstraction package, followed by the development

of the simulation engine package.

STEMSS Framework

Simulation Engine Package

Support Package Model Abstraction Package

Ecological Model Package

\ User Models

Figure 7. Simulation Engine Class Diagram
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3.2.1 Model Abstraction Package

The model abstraction is based on a formal theory of modeling and simulation
(Zeigler, 1976). The theory identifies two general modeling structures, the model and the

network. The model is defined as the structure,

M=(XY 03801 (9)

where, X is the set of input values, Y is the set of output values, O is the set of state values,
d is the transition function, A is the output function and 7 is the time advance function. The

transition function, §, has two components, the internal transition, 3;,,, which represents
the model’s behavior and the external transition, d,,,, which represents the interactions

between models.

The network is defined by the structure,

N = ({MY,{I;},{Z;}) (10)

where { M} is the set of models associated with the network, {1;;} is the set of models {M;}

that interact with M; and each element of the set Z;; (also called Zmaps) maps the output
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values of M; to the input values of M;. If the transition function of model M; involves an
interaction with another model, M;, (e.g., predation), then the output of M; is mapped to

the input of M; via Z;;.

The model and network structures can be specialized to represent discrete-time,
differential equation, or discrete-event models and networks. The flexibility of these
structures satisfies the requirement that the framework support these types of simulations.
Researchers have also extended these models to include hybrid models, i.e., models using
differential equation and discrete-event systems, and dynamic networks that dynamically

alter the model set, {M;}, the influence set, {J ij} and the set of maps {Z,-j]. The STEMSS

model abstraction package (see Figure 8) uses the hybrid model as the base class for all
models and dynamically structured discrete-event network as the base class for all

network types.

3.2.1.1 The Model class

The STEMSS Model class is based on the discrete/continuous hybrid model

structure described by Prachofer, Auernig and Reisinger (1993) and Reisinger (1995):

MH = (de Yda Qd: Xc’ Yc'r QC’ 6,‘,“: aexp T) (1 1)
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where X4, Y, and Q, represent the system’s discrete input, output and state values
respectively and X, Y, and Q. represent the system’s continuous input, output and state
values respectively. The functions 6, and &, control internal and external state changes

and T defines the model’s time advance function. The purpose and behavior of the time
advance function are the same as that of the time advance function of the general model
structure, M. The internal and external transitions extend the definition to include rate

equations.

Transition functions represent the behavior of a modeled system. For example, the

reproductive and metabolic behavior of individuals is represented as a set of reproduction

class Event

+ transition()

class Model class Model
+ transition()
class Network class ModelList

+ members : ModelList + head : ModelWrapper

+ insert{evt : Model)
+ remove(evt : Model)

+ execTransition()

Figure 8. STEMSS Model Abstraction Package
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and survival transition functions (see Figure 9). The reproduction transition in this
example begins with a female in a quiescent state. The individual moves from the
quiescent state to “findMate” state, which involves an interaction between the individual

and its environment. Once a mate is found, the individual mates and may become pregnant

Environment
Reproduce / i
Environment
find food

Survival /\

Figure 9. Individual Transitions
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which involves another interaction and state change. If she becomes pregnant, she will
produce offspring then return to a quiescent state (the model assumes no parental care). If
she does not become pregnant, she returns to the quiescent state. The survival transitions
begin with the individual in a quiescent state. The individual transitions from the quiescent
state to a hungry state and begins a search for food. To find food, the individual must
interact with its environment by searching for food. After finding food (i.e., after the
environment responds with a prey item), the individual consumes the food, adjusts its

physiological make up, then returns to the quiescent state.

To implement mode! behavior described in Figure 9, the modeler specifies the
functions and associates them with an array of method pointers, deltalnt, for internal
transitions and deltaExt, for exiernal transitions, that represent separate sets of transition
functions. Each function specifies the conditions for changing the transition state and, if
necessary, configuring the transition array to use a different transition function. The model
class records the timestamp (i.e., the time at which the transitions must happen) and sets

the transition time as the smallest of these timestamps.

3.2.1.2 The Network Class

The STEMSS Network class is based on the dynamically structured discrete-event
network developed by Barros (Barros, 1996, 1997; Barros, Zeigler, and Fishwick, 1998).
As with the Model class, the user must specify the Network’s discrete and continuous

values and configure the deltalnt and deltaExt arrays. The Network includes a model list
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and a set of functions that allow models to join or leave the network. In addition to the join
and leave methods, the Network also includes an array of network transitions, deltaExec,
that coordinate interactions between models and the network. These methods are defined

by the user.

The network transitions are used to reconfigure the network by adding or removing
models or reconfiguring the relationships between the models. For example, in an IOM,
the birth or death of an individual is modeled by the addition or removal of an individual
from the population. The user can implement birth as an instantiation of a newborn
individual and the insertion of the individual into the population network’s model list.
When an individual dies, the model notifies the population network, which removes the

model from the network.

3.2.2 Simulation Engine Package

The simulation engine package is responsible for ensuring that model transitions
take place in causal order. To implement this behavior, the package provides three main
classes, the Event, EventList and EventLoop classes. Event objects are used to store
models in a time ordered EventList object. Specifically, the Event class is a super class of
the Model class, which stores the model’s time stamp and other ordering information. The
EventLoop removes the first event in the EventList, updates the current time to the time
stamp of that event and processes it (i.e., it invokes the transition function). After

processing, the event, the EventLoop determines whether to reinsert the event into the
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class SimulationEngine
# fel: EventList

+ simulate()

class EventList class Event
head : Event timeStamp
pop() : Event Pnority

id

lessThan{evt: : Event)
greaterThan(evt : Event)
equalTo(evt : Event)
transition()

insert(evt : Event)
remove(evt ; Event)

+ 4+ + [

N EE T

Figure 10. Simulation Engine Class Diagram

loop. This process repeats until the current time reaches a predetermined time stamp or

until the event list is empty.

The class structure used to implement the interface diagram is shown in Figure 10.
The Event class includes a timestamp, which specifies when to invoke the event transition
function, and an abstract internal transition function. The Model class implements the
internal transition function. Upon completion of the transition, the user-defined function
will return true, if it is going to process another event, or false if it does not. If the

transition returns false, then the model must either be deleted or stored elsewhere the list.
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3.3 The Multiple Resolution Modeling Extension

3.3.1 Consistency Maintenance

The implementation of an MRM relies on a definition of multipie-resolution
modeling that is consistent with the STEMSS model and network structures. To create this
definition, consider the purpose of the MRM. An MRM uses a valid LRM and a valid
HRM to model the behavior of a system. In this instance, “valid” implies that the behavior
predicted by the model is similar to the real system under a set of specified conditions, for
a specified length of time. If both models are valid, then there must be a correspondence
between them, that is, the state of one model must match the state of the other model,
within some tolerance. The main purpose of the MRM is to leverage the correspondence

between the models by imposing state consistency between the LRM and the HRM.

Recall the assertion by Davis and Hillestad, from chapter I that if two models of a
system are in the same state before a transition, both models should be in the same state
after the transition (see Figure 1). To ensure this equivalence, the MRM must provide a
function to translate the state of one model to that of the other model. Unfortunately, the
implication of the diagram is that transitions involve state changes only. However, from
the discussion of the model and network structures, transitions can include interactions
between models (external transitions) and changes in the relationships between models
(network transitions). As each transition has an impact on different aspects of the model,

each transition must be accounted for separately. That is, an internal transition can impact
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LRM: t 1,
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Figure 11. Alternate Version of Davis-Hillestad Diagram

the model’s state, external transitions can impact the model’s input and network transitions
can impact the relationships between the models in a network. These addition behaviors

lead to an alternate version of the Davis-Hillestad (see Figure 11).

Another implication of the Davis and Hillestad diagram is that transitions in both
constituent models are synchronous. For synchronization, both models must have the
same sequence of transitions and their time advance functions must produce the same

results over the entire simulation. There is no reason to assume synchronization between
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Figure 12. Asynchronous Time Advance

arbitrary models. Consider the example in Figure 12. The state transition for both the
LRM and HRM produce identical results at times ¢ and #+1, however, the state of the low-
resolution model is defined only at ¢ and #+1. If the MRM attempts to resolve state
differences between LRM updates, it must supply a method for approximating the LRM
state and it must supply a modified transition function that accounts for unanticipated time

advances.

Figure 11 shows the consistency relationships between the constituent models of
an MRM and Figure 12 shows the impact of asynchronous time advance functions. These
diagrams suggest requirements that the MRM must meet if it is to produce valid resuits.

Specifically, the MRM must:

» include a means for translating the state of the constituent models (state consistency),

* include a means for resolving state differences (behavioral consistency),
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* include a means for resolving differences induced by temporal scale (segmentation

consistency),
* include a means for resolving differences in input values (cross-resolution consistency),

* include a means for resolving differences between network and model states (organiza-

tion consistency).

3.3.1.1 State Translation

To understand state translation, consider an MRM consisting of a logistic equation
as the LRM and a logistic IOM as the HRM. The logistic equation is a discrete-time finite
difference model of population dynamics and the IOM is a discrete-event network of
individual models. The logistic equation maintains a single state value, i.e., population
size, that changes at regularly spaced time intervals. The individual-oriented population
model determines the population size by “taking a census” of the individuals belonging to

it, but the population dynamics are based on the behavior of individuals.

Assume that these behaviors are reproduction and survival and that they are
dependent on the individual’s weight, then the model must include a state variable for
weight. The IOM population is a set of individuals. Therefore, the IOM’s state can be
described by the pair (alive, w), where alive is an implicit state indicating that the
individual is a part of the population, and w is the weight of the individual. The aggregated
network state can be separated into two sets, the census set, whose size is the population’s

census, and the weight set. The size of the census set is the population’s size and the sum
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of the values in the weight set is the total biomass of the population. As the logistic
equation uses the census to compute its behavior, the MRM must augment the LRM to
compute dynamic changes to the weight distribution to ensure consistency between the
models. The augmented logistic equation will maintain the same set of values as the IOM
population model, so state translation is a matter of forcing both models to have the same
state values. It is important to note that forcing the LRM and HRM to have the same
values means that the LRM must have the same set of state values as the IOM. It does not
imply that the number of individuals in the IOM is consistent with then state of the IOM.

This problem must be handled separately.

In some cases, the state of one model is functionally related to the state of the other
model. Consider an LRM that represents a population as a distribution of individual
lengths and population dynamics as a function of the distribution. If there is a relationship
between length and weight, then the MRM can impose state consistency between the
LRM and the previously describe HRM, using this relationship. That is, state translation
maps one model’s state to that of the other by converting weight to length, or vice-versa,
Ideally, this mapping is a bijection, so the translation from the HRM is the inverse of the
translation from the LRM, however, the states are not required to be exact. The

translations must ensure validity, so the translations do not be inverses of each other.

Given the states of the LRM and HRM at time £, S; gas, and Sgppy , respectively, let

RES be a Boolean value, where RES = true when the HRM is active and RES = false when

the LRM is active. At time 7, state of the MRM is (RES A Syppg) v (RES A Spgpgp)- At

every simulated time, Sypas ¢ =fASLry ) and Spepr ;= 2(Shrat ), Where fis a valid
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translation from Sgpys 10 Sy s and g is a valid translation from Sgypprto Spppy. If g =f N

then we can ensure consistency. If one model is stochastic, and g is the inverse
transformation of the distribution function f, then the simulation should be statistically

valid. Any other condition is up to the user to validate.

3.3.1.2 Behavioral Consistency

Behavioral consistency is the type of consistency implied in Figure 1. A state
transition in one model must produce the same state as the equivalent transition in the
other model. If the LRM and HRM are deterministic and equivalent, then this condition
should hold. If, however, either the LRM or HRM is stochastic or the transitions are not
equivalent, Figure 1 does not hold. In this case, the MRM must provide a function for
resolving differences between the constituent models after a transition. The nature of the

function depends on how the MRM uses the constituent models.

The MRM can allow both models to run simultaneously. After each transition, the
MRM must resolve state differences between the two models through some process, such
as averaging the state values. The MRM can also switch control between the constituent
models, which means that state and behavioral consistency are equivalent problems, For
example, in the MRM consisting of the logistic model (LRM) and the equivalent IOM
(HRM), the LRM can control the state transition and time advance when the population is
large and the HRM can control when the population is small. The model responsible for

controlling transitions and time advance is the active model and the other model is the
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passive model. When the MRM switches control, the state of the passive model is forced

to match the state of the active model.

The model suggested by DeAngelis and Rose is a switching model, The LRM is
active for some portions of a simulation while the HRM is active for others. As the
DeAngelis and Rose suggestion is the basis of this dissertation, the remainder of this

chapter will consider switching models.

3.3.1.3 Segmentation Consistency

A model’s state between transitions is defined as a state segment, so the purpose of
the time advance function, ¢, is to compute the time interval of the segments. Each model
assumes a set of allowable segments based on the model’s time scale, where segment size
is based on the modeler’s assumptions regarding the temporal behavior of the system.
Again, consider Figure 13. The LRM state segment on the interval (¢,+1) is constant and
the definition of the LRM transition function is based on the state remaining constant on
this interval. The HRM makes several state changes on this interval and its transition
function is defined so that it makes these changes at the specified times. If the MRM

switches from the HRM to the LRM at time 7,, where ¢, € (1,+1), then the MRM must
resegment the LRM, that is, the MRM must estimate the state of the LRM at time ¢, and

approximate the transition function for the resegmentation,

To support a model switch between updates, consider the behavior of the time

advance function. Let T;{g, ;) = t+1, where 1; is the low-resolution model’s time advance
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function and g, is the state of the low-resolution model at time ¢. If the high-resolution
model switches at time ¢ + 7, where 0 < T < 1, then we can claim that 8y pp(xy; 147 ) =
qr41» Where xy, ;. 17 implies that the system is changed by an external interaction at time

t + T. However, the low-resolution model does not claim validity at that time and, in fact,

we know that 8; 5y is not valid at that point. If the user can produce a valid transition

function 8, for this situation, where dypp(X,1 1. 40 = Spprm(X 4 1» BresegCpnra 1 40

then the MRM can support arbitrary switching time. The function, §,,,,, is called a

resegmentation function.

3.3.1.4 Interaction Consistency

A model interaction is represented by an external transition function, 8,gp oxr
where xRM is either the LRM or the HRM, and an input mapping from the source of the
interaction to the destination. The effect of an external transition is a change in the state of
the system and the time advance of the affected model. When an interaction happens
across resolutions, the external transition function is no longer valid as it is designed to

accept input from a model] at the same level of resolution.

The state and behavior of a model are altered by interactions with other models.
Specifically, 8,zp1 exr X X @ — g where X is the model’s input and @ is the model’s state.
In a cross-resolution interaction between a model at resolution x and a model at resolution

y; the external transition becomes, 8ypy, exr' Xyrt X Oxrat = Qrrats Where 8y oy, i the
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external transition function with resolution x, O, gy is the state with resolution x and X, gy

is the input value from resclution y.

There are two approaches to resolving this problem: to change the functional form
of the external transition, and to translate the input values from the y resolution to the x

resolution. The first approach leads to a new definition of the external transition &,,, =
81x,2y(X 1,0 @2y}, where 8y ; is the external transition between model 1 and model 2. The

other approach is to provide a translation function @ that translates the request from one
resolution to the other. The user should be able to select one or both of these approaches

based on the representational sense of the model.

3.3.1.5 Organizational Consistency

The fifth source of state inconsistencies, as suggested by diagram 3-7, is
inconsistencies involving networks. Again consider the MRM consisting of a logistic
model and its equivalent IOM. If the model switches from the logistic model to the IOM,
then the MRM must impose consistency between the logistic model’s state and the IOM’s
aggregate state. That is, the MRM will force the logistic model to match the aggregate
state of the IOM, it will not, however, force the aggregate state of the IOM to match the
aggregation of the IOM’s component models. The MRM must impose consistency

between the IOM and its component model by disaggregating the state of the IOM.
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Consider an aggregate model. The model represents the average-case state of the

system (g) as the average state of the system’s entities (gg, g},....4,,)- If the model is

allowed to switch between a fully aggregated state and a fully disaggregated state, Then

the user must define two valid switching operations 8: Qg = O and ©: Qi — Q; where

6 aggregates all or part of the high-resolution representation and © disaggregates all or
part of the low-resolution state. In the latter case, disaggregation may lead to several
possible configurations. If the model requires a unique configuration, the modeler must
impose a set of rules to produce the correct configuration, or this technique will not work.

The underlying assumption of this approach is that the user defines valid switch functions.

3.3.1.6 MRM Definijtion

The consistency requirements (sections 3.3.1.1-3.3.1.5) are used to produce an

MRM definition. To maintain consistency between a high-resolution model, Mg, and
low-resolution model, M} gy, of a single system, the multiple-resolution model must

supply a coupling system that coordinates model switching by imposing consistency on

the constituent models. Myzys must be a dynamic network that coordinates individual
models within the network. M[ g3 may be either a network or a model. The MRM

includes a translation function f and its reverse g defined in section 3.2.1.1, a transition

function dypys, defined in section 3.3.1.2, a resegmentation function, defined in 3.3.1.3, an

interaction translation function, defined in section 3.3.1.4 and a disaggregation function,
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defined in 3.3.1.5. The MRM also includes a boolean valued variable called resolution.

This variable tracks the current resolution of the MRM’s active model.

3.3.2 MRM Implementation

The multiple-resolution modeling extension to STEMSS, STEMSS-MRM,
implements the MRM definition above. The implementation of the switching and
consistency functions should be transparent to the user. That is, the functions required to
implement the MRM should not force an alteration of the existing constituent models. To

accomplish this goal, STEMSS-MRM implements three additional classes: the MRM

class Translator

interaction
destination

interaction
source

clasg MRM class MRM I
class ResolutionControl I

Figure 13. STEMSS MRM Class Structure
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class, the Translator class and the ResolutionControl class (Figure 13). The MRM class
couples the LRM and the HRM, by implementing a model switching function and by
imposing consistency on the state of the constituent models. The Translator class couples
map set {Z;;}, for each resolution level. Coupling resolves inconsistencies induced by
cross-resolution interactions. The ResolutionControl is a pseudomodel that maintains

configuration control over all MRMs in a given simulation.

3.3.2.1 MRM Class

An MRM class represents the LRM and HRM as a single model. So the MRM is,
in some sense, an LRM and an HRM. The implication this observation is that the MRM
inherits both the LRM and HRM (Booch, 1994; Booch, et al., 1999). By inheriting the
LRM and the HRM, the MRM can override the abstract internal transition method of the
Event class (recall, from Figure 10, that the Model class inherits the Event class). The
internal transition method, implemented in the MRM, invokes the transition function of
the active model, then checks if the model has reached a switching condition by invoking
the switch detection method. The switch detection method is defined by the user to
determine if the model switching criteria are met and, if so, to reconfigure the system by
scheduling the ResolutionControl object for execution. The MRM interaction diagram is

shown in Figure 14.

An MRM changes state when the EventLoop invokes the internal transition of the

MRM'’s active model. The MRM overrides this method with its version of the internal



transition

xRM::transition()

retumn if switch switchxRM()

condition not met . .
-— switchCondition met

s

=~
-

insert into FEL

resolutionSwitch()

T

call user define switch

external

translateReq() :

transition i
return '

A

Figure 14. MRM Interaction Diagram

transition. The MRM transition function invokes the active model’s transition function
(the resolution operator ensures that the appropriate transition method is invoked) then
tests for the switch condition. If the condition is met, the MRM schedules the
ResolutionControl to execute the appropriate switch and terminates. The
ResolutionControl transition method invokes the scheduled resolution change, which
removes the active model from the fel, and causes the MRM to reconfigure the active

model. The class diagram for MRM transitions is shown in Figure 15.

66
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class HRM : Model

class LRM : Model

class MRM

A A

transition() : bool

switchHRM() : bool
switchLRM() : bool
switchLRM() : bool
switchLRM() : bool
resolveHRM() : bool
resolveLRM() : bool

Figure 15. MRM Class Diagram

3.3.2.2 Translator Class

The Translator class is used to impose interaction consistency in the same way that

the MRM class imposes state and behavioral consistency. As with the MRM class, the

Translator inherits the LRM and HRM Zmaps and overrides the interaction methods of the

constituent Zmaps. When a single-resolution model maps data to the Zmap, the Translator

traps the interface method, translates the input to the resolution of the destination model
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and maps the data to the Zmap with that resolution. The user may also configure the

Translator to map data to both Zmaps.

3.3.2.3 ResolutionControl Class

The ResolutionControl object is a pseudomodel that controls all aspects of
resolution switching. When an MRM switches resolutions, it schedules the
ResolutionControl object for immediate execution. The resolution controller notifies all
relevant classes of the switch (e.g., Zmaps and influencing models) and it invokes the

MRM'’s switching mechanism.

3.3.2.4 Difference between MRE and STEMSS-MRM

The most fundamental distinction between STEMSS-MRM and the MRE is the
role of the MRM in model interactions. The MRE design replaces the LRM and HRM
interfaces with the MRE. The user must define mapping functions to provide “public
views" for each of the constituent models. The MRE developer also might need to alter the
LRM and HRM behavioral representations to accommodate cross-resolution interactions,
as the MRE does not provide a method for dynamically changing behaviors. If a static
change in the behavior of the model is not desirable, or is invalid, then the MRE is not a

good option.



69

The STEMSS-MRM implementation gives the user access to the complete
representation of the model, so the MRM modeler can define specific changes to the
model’s state and behavior in response to the current configuration of the model. The user
can therefore opt to impose consistency by manipulating the state of the system, by

manipulating the behavior of the system or by manipulating both state and behavior.

The MRE design concept does not deal with the internal transitions of the active
model. That is, the MRE concept does not explain how to resolve differences between
constituent models when the changes are internally produced. There are two possible
solutions to this problem: make the MRE (i.e., the coupled model) the active model or
switch between resolutions. Regardless of the choice made by the modeler, he or she must
alter the original LRM and HRM to support interoperation with the MRE (Natrajan, et al.,
1997). The STEMSS-MRM framework does not require any changes to the original
models, but the MRM may angment the existing model. Any additional behaviors
necessary for supporting model switching or state resolution can be defined in the MRM

and Translator classes.

3.3.3 STEMSS Population Modeling Interface package

The simulation and modeling packages represent arbitrary models, however, the

structures provided by these packages require the modeler to adapt their modeling

concepts to the conceptual framework of the system. Forcing modelers to adopt the



class STEMSSIndividual
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Figure 16. STEMSS Ecological Base Classes

nuances of a particular system has not been a successful design principle in past projects,

so it is unlikely to be successful now. Therefore, STEMSS provides a set of modeling

classes that implement common population modeling concepts. These classes are

extensible allowing the modeler to adapt these classes to specific problems.



71

Section 1.6 presents some general population representations including aggregate,
partitioned and individual-oriented models. Each representation is either based on or uses
general ecological concepts such as population, cohort and individual. STEMSS supplies
a set of base classes that represent the general behavior of these population modeling
concepts (see Figure 16). Using these base classes, STEMSS derives a set of specific
classes that represent aggregate models, such as the logistic equation, partitioned models
such as the Leslie matrix, and IOMS. Rather than elaborating on the features of these

classes, they will be described in the context of actual examples in the next section.

3.4 Single-Resolution Models

To develop a model with STEMSS, the modeler must describe a system in terms of
the behaviors and influences that change the system significantly. For example, in the
logistic IOM, the behaviors of interest are individual reproduction and survival, To create
this description, the modeler must first identify the changes of interest and identify the
factors responsible for these changes. This description can take the form of a state
machine (Papadimitriou & Lewis, 1981). Each change is a transition and the change in
state is the result of an internal or external transition. The diagram in Figure 17 represents
models and networks by rectangles and their associated transition states as circles. Internal
transitions are represented by arrows leading from one state to the next and, if appropriate,

the conditions for the transition are included. An external interaction is represented as an
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arrow from the source model to any appropriate states. To represent network behavior, the

network model includes a set of ports, represented by small rectangles within a network.

For each transition and port, the modeler must identify the state and inputs required to

implement it.

To specify the time-advance function, the modeler can use a modified UML

interaction diagram (see Figure 5). The transition diagram shows the sequence and timing

of actions required to perform an operation or a set of operations. The sequence of actions

flows downward from the top, however, it does not imply timing. To specify timing

information, the interaction diagram is decorated with specific timing statements.
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3.4.1 Logistic Model

The logistic model is an aggregate population model. The model’s behavior,
described in Figure 18, consists of a single transition, growth, which is implemented as a

modified logistic equation:

N
N, = RN,(I—T]-') (12)

where, R = r + 1 and U = KR/r. R is the population growth rate and U is the upper bound

on population size, that is, if a population exceeds U it will go extinct.

logistic zmap

RN

Figure 18. Logistic Model Transition
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Population : AggPopulation LogZMap : ZMap

. '
growth ) X
d+0 map_prey_size() -

return N

e

compute population size

. eu time_stamp = d + 0,95
true l
1

Figure 19. Logistic Model Timing

The model’s state is the current population size, N, from which it computes the
population size at the next time step N,, ;. The population size is mapped to the logistic

Zmap, which records the current time and the population size. The timing diagram for the

logistic model is shown in Figure 19.

3.4.2 Logistic IOM

The individual-oriented version of the logistic model consists of two basic model
types, an IOM population mode! and a basic individual model (see Figure 20). The IOM
population, LogIOM, is a network of individuals that allows individuals to become part of
the population through birth and removes individuals through culling as part of the

individual’s life cycle. The LogIOM growth transition records the current population size
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in the logistic IOM’s Zmap, LogIOMZmap, which uses the population size to project the
future population using the logistic equation (Equation 12). The model assumes the
population birth rate is constant and equal to the population growth rate, so the density-
dependent effects are accounted for by mortality. To account for density-dependence, the
LogIlOMZMap determines the number of individuals required to produce the next

generation, N,,,,, and removes the excess. The Zmap computes the number of

reproducing individuals using:

Noepro = [ ‘R*'J (13)

To account for numerical deviations due to truncation error, the adjusted birth rate

compuied as:

+1 (14)

Nrepro

Individuals surviving the population’s culling event reproduce then die. The

individual begins the reproduction event by accessing the adjusted birth rate, R, 4, from

the LoglOMZmap. The truncated value of R, ; is the number of offspring produced by the
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individual, but, in truncating this value, the number of individuals actually produced

differs from the number projected by the Zmap. To account for these differences, the

individual model, in conjunction with the Zmap, accumulates the fractional part of R

LoglOM : 10MPopulmion LoglOMZMap : ZMap  members : ModelList : Limbo : BasicIndividual
r 7 v T —_—
) L ] L] [}
o i ] ) '
transition P‘ : ‘ ' ;
growth set_N(} ! : !
" B b ' ]
~ ] ] ]
L} L 1
gei_n_repro{) ; ; i
L] ) (]
retuen H H :
. : : :
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) - 1 n
] ] 1
culln . retum ind : : :
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fel->remove(ind) ! H : i
diefind) ‘ i N f
T ra ]
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:i tamp += | : ! ¢ ( } =
rewme | B < E : get_r)
1rue . I h ' retum r N
] ] t
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Figure 21. Logistic Model Interaction Diagram
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When the accumulated value exceeds one, the individual produces an additional offspring.
This procedure allows the individual-oriented logistic model to maintain numerical

consistency with the aggregate model. The population timing diagram is shown in Figure

21.
3.4.3 Predator-Prey
The predator-prey model is based on density-dependent predator prey equations:
hP,
P, = kP,(l-m) (15)
and,
N t P :N t (16)
Nir = RN'(I 'EJ_(l +B)

The first equation represents the density dependent growth rate of the predator population
and the second represents the density-dependent growth rate prey population minus the
number of prey lost to predation. The predator-prey model consists of two population

models: the aggregate predator population model and the aggregate prey population (see
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PredatorPop

logistic zmap

Figure 22. Predator-Prey Model Transition

Figure 22). The growth transition for each model retrieves the current population size of
the other model from the PPZmap and computes its new size. The internal transition is
changed to update and the model is rescheduled for execution. The update transitions

record the new population sizes in the Zmap and the predator population model forces an

output transition. The interaction diagram is shown in Figure 23,
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3.4.4 Predator-Prey IOM

The individual-oriented version of the predator-prey model consists of four basic
model types: predator and prey IOM population models and predator and prey individual
models (see Figure 24). The PredatorIOM and PreyIOM models are identical to the
logistic population models. The growth transition, for either model, records the current
population size in the Zmap (PPIOMZMap) which computes the number of offspring
produced by either population at each time step and the number of prey individuals
captured by predator individuals. The number of offspring produced by the predator is

predicted by Equation 17,

_"_Pr) PN, (17)

Pl+|=kpt(1 N —m

i

where P, is the population size at time ¢, k is the predator growth rate,  is the upper

population bound due to the prey population. The number of predator individuals required

to produce the population at time P, ; is:

Prepro = [ ‘k*'J (18)
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The number of offspring produced by the prey population is:

N
Ny = RN,(I —E’) (19)

where R is the prey growth rate and U is the upper population bound of the prey

population. The number of prey individuals required to produce N, individuals is:

N
Nrepro = [ *RHJ. (20)

Both Py, and N ., are used to create adjusted birth rates for either population. The

PPIOMZMap also computes the number of prey captured by each predator using:

n = [ﬁ]/}nwm 21)

That is, n is the number of prey consumed by an individual predator.

Each individual that survives the population’s culling event reproduces then dies.
The predator individuals cull their allotted number of prey individuals before they
reproduce. To ensure numerical consistency, the methods that determine the number of
offspring produced and the number of prey individuals captured use a faction accumulator
similar to that in the logistic IOM model. The interaction diagram for both populations is
shown in Figure 25 and the diagram of predator individuals is shown in Figure 26. The

prey interaction diagram is the same as the BasicIndividual sequence shown in Figure 21.
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Figure 27. Yellow Perch Cohort Transitions

3.4.5 Yellow Perch IOM

The IOM yellow perch model is based on Rose’s yellow perch model, described in
section 1.5. The population consists of eight cohorts, which are represented as a set of as
IOM populations (see Figure 27). The cohorts are partitioned into one young cohort, one
yearling cohort and six adult cohorts. The population updates each cohort, on an annual

time step, by computing mortality for each cohort and removing that number from the
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cohort. It then invokes the chronological development transition for each individual,
which, for the young and yearling cohorts causes the individuals move from their current
cohort to the next older cohort, i.e., the young become yearlings and move to the yearling
cohort and the yearlings become adults and move to the first year adult cohort. The adults
remain in their current cohort and the cohorts advance in age, that is, adult cohort 0
becomes adult cohort 1, cohort 1 becomes cohort 2, and so on. The individuals in adult
cohort 6 are removed from the cohort and the cohort becomes adult cohort 0. In addition to
the controlling the development of young individuals, the young cohort also creates the
first-feeders for each individual hatching on each day and sorts the young into length

classes to facilitate adult cannibalism.

The yellow perch individual model consists of four sets of state machines (see
Figure 28). The machines are chronological development, reproduction, consumption and
physiological development. On each annual time step, the cohorts cause the individuals to
develop, i.e., young become yearlings, yearlings become adults and adults get a year older.
Chronological development causes changes in the feeding habits and metabolism of the
young and yearling classes and it determines whether an individual, adult female becomes
reproductive. As the young and yearlings grow (because of consumption) their predatory
behavior change as they cross specific lengths. The first-feeders become young-of-the-
year when they reach 20 mm, which changes their success at catching prey, and the young-
of-the-year change the type of prey they can collect when they reach 30 mm. Consumption
events are processed daily for all individuals and reproduction events are processed

annually for reproductive female.
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3.4.6 Yellow Perch Super-Individuals

The “super-individual” version of the yellow perch model represents the behavior
of individuals as a two-dimensional distribution of weight and length. The distribution is
represented as a grid and each grid node represents a group of individuals. The growth and
reproduction functions are computed for each node using the weight and length of the
node. The amount of food consumed and the number of offspring produced is the produce

of the individual behavior times the number of individuals at the node.

3.5 MRM Examples

Three ecological modeling examples will be used to demonstrate MRM
development with STEMSS. The first example uses the logistic population models
described in sections 3,2.3.1 and 3.2.3.2. The second example is a density-dependent,
predator-prey model based on the models described in sections 3.2.3.3 and 3.2.3.4. The

third example is based on the models describe in sections 3.2.3.5 and 3.2.3.6.

3.5.1 Logistic MRM

The logistic MRM couples the aggregate logistic model (section 3.3.4.1) and the

logistic IOM (section 3.3.4.2), using a threshold population size to determine which model

should be active. The aggregate logistic model updates the change in population size, from
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N, to N,,,, at time ¢ and the Jogistic IOM updates the change at time t+1. When the switch

is made from the aggregate logistic model to the logistic IOM, (LRM to HRM), the
population size N, is mapped to the aggregate model’s Zmap and the necessary culling and
reproduction parameters are generated. That number of reproductive individuals are
“reincarnated” and inserted into the fel and the logistic IOM growth method is scheduled
for t+1. These actions ensure that the state of the aggregate model is consistent with the
state of the IOM. When the MRM switches from the logistic IOM to the aggregate logistic

model, the current census of the IOM is N,. The aggregate logistic model’s population size

must be set to N; and the individuals in the event list removed and stored in “Limbo.”

3.5.2 Predator-Prey MRM

The MRM tests, described in Chapter I'V, rely on two versions of the predator-prey
model. The first version is used to test cross-resolution interactions and the second tests
resegmentation. The predator MRM is composed of an aggregate predator-prey model
(see section 3.3.4.2) and a predator-prey IOM (see section 3.3.4.3). As with the logistic
MRM, a threshold population size is used to determine which model is active. Since the
predator and prey populations switch the active models independently, the active models,
for both populations will occasionally have different resolutions. That is, at any point, the
active models in the predator-prey MRM may have the following combinations: predator
IOM-prey IOM, aggregate predator model-prey IOM, predator IOM-aggregate prey

model, and aggregate predator model-aggregate prey model. The predator-prey MRM
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must coordinate interactions between the population models when the active models have

different resolutions.

When the predator IOM and aggregate prey model are active, an interaction
between the predator and prey models must make the interaction behave like an IOM-to-
IOM interaction from the predator’s perspective and an aggregate-to-aggregate interaction
from the prey’s perspective. To accomplish this, the MRM accumulates the predator’s
requests for prey between population updates. The prey MRM replaces the aggregate prey
model’s growth method with a version that uses the accumulated predation to update its

size, rather than the value produced by the aggregate predator model.

When the aggregate predator model and the prey IOM are active, the predator’s
interactions with the prey must be translated from an aggregate interaction to an
individual-based interaction. To represent aggregate predation, the predator-prey MRM
includes a surrogate individual class. The surrogate predator is provided with the number
of prey to be consumed over the simulated year after each aggregate predator model
update. The surrogate predator determines the distribution of consumption events, based
on the consumption behavior of individuals in the predator IOM and schedules itself for

execution.

To use the predator-prey MRM as a test of the resegmentation mechanism, the
MRM must be modified to allow for model switches at arbitrary times. For the sake of
analysis, the resegmentation test for the predator IOM remains active throughout the test,
so only the prey MRM involves switching. To create this model, the prey MRM overrides

the join and leave methods of the prey IOM to keep track of births and deaths between
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population updates. If the prey population falls below the threshold value, the prey model
switches from the aggregate model to the IOM model. Using the aggregated culling
behavior of the predator, the prey model estimates the number of individuals alive at the
current time. This number of individuals are inserted into the model. If the prey population
rises above the threshold, the number of individuals required to produce the prey

population (at the current time) is used as the aggregate prey model’s population size.

3.5.3 The Yellow Perch Model

The yellow perch MRM couples the yellow perch super-individual model (section
3.3.4.6) and the yellow perch IOM (section 3.3.4.5). As most of the computational effort
in the yellow perch IOM is used to maintain young individuals, only the young cohort
model switches resclution. The young hatch as a super-individual and remains a super-
individual until its size falls below a threshold level, at which point, the size of the super-
individual and its weight and length are used to generate individual young perch. As with
the predator-prey MRM, when the young are represented as super-individuals, the culling

of young by adults is translated to an aggregate request.

3.6 Future Refinements

Though the current version of STEMSS implemenits the design philosophy

described in this chapter, the implementation is incomplete. A driving force behind the
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STEMSS design is to hide implementation details from the user and the Model and
Network classes are largely successful in this attempt. However, the Zmaps are still
constructed by hand. Hence, the translation classes must also be constructed by hand. This
problem can be overcome by applying the same encoding principles to the Zmap structure

applied to the Model and Network classes.

STEMSS currently implements only dynamic networks and hybrid models.
Though we can tailor these structures to produce strictly discrete-event, differential
equation or discrete time systems, the existing structures require more overhead than the
specific structures. A future revision should include a wider range of modeling choices.
One of these choices should be a class for adapting models that were not developed with
the STEMSS to the STEMSS framework. A wrapper class, called the
STEMSSConforming class, is being developed. The STEMSSConforming class inherits
the Model class, which allows it to use the STEMSS simulation package. To adapt models
to STEMSS, the STEMSSConforming class maps the target model’s state information and
transition functions to it own state and transition methods, which allows the adapted

model to be used in a STEMSS or STEMSS-MRM based simulation.

The STEMSS-MRM and the STEMSSConforming models can be generalized to
include a broader model coupling system. The MRM is a specialized model coupler. It is
intended to seamlessly resolve state differences between two, possibly disparate, models.
There are two, relatively minor differences between an MRM model coupling system and
a general model coupling system. First, all models in a coupled model are active. This

forces a change in how events are processed. Second, the model coupler does not switch
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between resolutions. To implement this systern, the MRM must be able to distinguish

which model’s transition function was invoked. The transition function is called when the
model’s event is processed and the event has a unique identifier. By passing the event’s id
to the transition function, the MRM can determine which model’s transition function was

invoked. This will convert STEMSS-MRM to a general model coupling system,

3.7 Summary

This chapter described the development of a discrete-event ecological modeling
and simulation framework that offers a solution to specific criticisms of ecologists about
computer simulation. These solutions include a well-defined structure for model
development, an interface for ecological modeling and a facility for developing an MRM.
The approach to multiple-resolution modeling developed for this dissertation is novel in
its definition of the problem, in its solution to the problem and in its implementation. This
chapter developed fundamental definitions to determine what the MRM must do to ensure
consistency. These definitions led to a combined state and behavioral representation for
ensuring state consistency which was incorporated into STEMSS. The next two chapters

will describe the results of the system tests.
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CHAPTER IV

MRM VALIDATION STUDIES

4.1 An Overview of the Tests

The design of the STEMSS framework, the MRM extension to the framework and
three sample models were described in the previous chapter. The tests used to validate
STEMSS and STEMSS-MRM, and the results of those tests, will be described in this
chapter. Each of the validation tests uses one or more model suites (see Table 1), i.e., sets
of models consisting of low-resolution, high-resolution and multiple-resolution versions
of a particular model. The logistic suite, for example, consists of an aggregate logistic
model, a logistic IOM and a logistic MRM. Each test was designed to show the ability of
the STEMSS-MRM mechanisms to support the development and use of MRMs and that

the MRMs support model consistency. The results of these tests will show three points:

* MRMs can produce time series bounded by their constituent models,
* STEMSS-MRM mechanisms to maintain consistency between constituent models,

* STEMSS supports the development and implementation of ecological models.
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Table 1. Test Model Suites

Model Suite LRM HRM MRM
Logistic Aggregale finite IOM equivalent Switching model,
difference model of Logistic model decision based
number of reproducers
Predator-Prey Density-dependent IOM predator and Swilching models for
Lotka-Volterra, finite prey population both population using t
difference maodels threshold number of

reproducers, modeis
include cross-resolution
interactions and

resegmentation
Yellow Perch Rose Model of Super-individual Young cchort is MRM,
Yellow Perch Yellow Perch Yearling and Adults
are IOMs. Switching is
size based.

The first test will validate the correctness of the STEMSS-MRM structures using
the logistic and predator-prey suites. The test is divided into five sections designed to
validate the basic muitiple-resolution modeling mechanisms. The first section compares
the effect of perturbing the logistic IOM and predator-prey IOM. This test will establish
that the models are sensitive to minor perturbations and, therefore, any perturbation
induced by the multiple-resolution modeling mechanisms will induce a detectable change
in the time series produced by the model. The remaining sections of this test will use the
sensitivity of these models to establish that systematic errors are not induced by STEMSS-

MRM.

The second test uses the yellow perch suite to test the efficacy of STEMSS in
developing realistic multiple-resolution population models. The yellow perch suite

consists of the super-individual and IOM versions of the yellow perch model discussed in
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Figure 29. Yellow Perch Simulation

chapter III and an MRM composed of these models. The yellow perch model produces a
complex time series (see Figure 29) that potentially require thousands of simulated years
to collect a sufficient amount of data for analysis. The 400-year time series shown in
Figure 29 took four days to run, therefore, a ten thousand-year simulation may take more
than three months to complete. As the complexity, in the time series, is due to stochasticity
in the model, the yellow perch test uses deterministic versions of the constituent models to
reduce the simulation time. By removing stochasticity, the revised model will not produce
the same results as the original model, however, the structure of the revised model, (i.e.,

the set of behaviors and interactions of the models) are the same as the original model.
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Therefore, the revise model should provide a sense of the computation behavior or the

yellow perch model.

The third set of tests examines the behavior of the MRM under stochastic

conditions using the logistic suite. These tests were designed for two purposes:

* to validate that the MRM is bounded by the LRM and HRM when the time series are

stochastic,

» to develop a procedure for predicting relative differences between the HRM and the

MRM.

The logistic model suite used in this test is identical to the one used for the first test
except that the growth rate in the HRM is stochastic. As a result, the LRM and HRM
produce different time series, so if the MRM satisfies the hypothesis stated in Chapter I,
the MRM should produce results bounded by these time series. As stochasticity in the
HRM alters the nature of time series it produces, the three time series must be statistically
compared. Therefore, validating that the MRM is bounded by the LRM and the HRM
prompts two questions: what data should be analyzed and how should the data be

analyzed?

The time series is composed of two components: amplitude and frequency. This
test will focus on the amplitude of the time series, leaving frequency for future work. The
MRM time series is bounded by the LRM and HRM time series when the maximum (and
minimum) values of the MRM are bounded by the maximum (and minimum) values of the

LRM and HRM. The specific relationships between the LRM, HRM and MRM depend on
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the model, but, without loss of generality, assume that, for some measure of the time

series, HRM,,x < LRMpor < LRMyin < HRMpy;. Under this condition, the MRM is
bounded when, HRM;,,, < MRM;,,x < LRMp0x < LRM i < MRMpin < HRM o0 As

the one or both of the constituent models maybe stochastic, establishing the boundedness
relationship requires a statistical technique for comparing the time series measure. The
technique employed by in this dissertation is Fischer’s Least Significant Difference (LSD)

test.

One proposed use for STEMSS-MRM is to analyze a population under emergency
conditions. To use the framework effectively, the user must be able to predict execution
time and the loss in accuracy. For example, if the model is required to execute within a
day, the modeler should be able to find a switching threshold value that allows the
simulation to finish execution within the specified time. Then the modeler should be able
to use the threshold value to predict accuracy of the MRM. Chapter V will provide a
method for predicting the execution time of an MRM and this chapter will provide a
method for measuring the consistency of the MRM relative to the HRM (the working

assumption in this chapter is that the HRM is the more accurate model).

As a general note, regarding the statistical analysis of simulation results, STEMSS
uses a pseudo-random number generator based on Knuth (1998). The sequence of
numbers created by the random number generator is autocorrelated, that is, each number
in the sequence is dependent on the previous number. As a result, the simulation will not

produce a sequence of independent and identically distributed random numbers as



100

required by the statistical analysis techniques used in this chapter. Nevertheless, the use of

a PRN is necessary for stochastic simulation and is commonly used in practice.

4.2 MRM Testing Environment

The validation tests used in this chapter are the logistic, the predator-prey, and
yellow-perch suites (see Table I). Each model was described in Chapter I1I. When
necessary, some of these models were modified to emphasize specific principles related to
multiple-resolution modeling. If a model is changed for a test, the changes will be

described in that section.

All tests were performed on an HP model Pavillion 7955 with a 1.5 GHz Intel
Pentium IV processor and 512 Mb of RAM or Sony Vaio model PCV RX651 with a 1.7
GHz Intel Pentium IV processor and 256 Mb of RAM. Both systems use Mandrake Linux

version 8.0 and the code was compiled with gcc version 2.96.

4.3 STEMSS-MRM Mechanism Tests

The tests in this section were designed to validate the MRM mechanisms, i.e., the
switching, resegmentation functions, and aggregation-disaggregation functions, and cross-
resolution interactions described in Chapter III. The logistic model suite was used to
validate the switching, and aggregation-disaggregation functions and the predator-prey

suite was used to validate the resegmentation functions, aggregation-disaggregation
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functions and cross-resolution interactions. All models used in this set of tests were
deterministic to ensure consistency between the LRM and HRM results and the LRM and
HRM were tested to verify that they produce identical time series, under identical

parameterizations.

If the LRM and HRM are consistent and produce identical results, the time series
produced by the LRM and MRM must be equal to establish consistency in the MRM. If
the LRM, or HRM, is sensitive to perturbation and the time series it produces is identical
to the time series produces by the LRM, or HRM, then the MRM maintains consistency.
The perturbation test will demonstrate that both the logistic and predator-prey models are
sensitive to perturbations and therefore, the models are suitable for testing consistency of
the STEMSS-MRM consistency mechanisms. The remaining tests validate each

mechanism.

4.3.1 Models and Methods

4.3.1.1 Simulation Models

As described in Table 1, the logistic suite consists of the aggregate logistic model
(LRM), the logistic IOM (HRM), and a logistic MRM. The predator-prey suite, consists of
the aggregate predator-prey model (LRM) and predator-prey IOM and a predator-prey
MRM. These models are discrete state models, that is, their states are discrete valued. The

aggregate model uses a real-valued growth rate and a real-valued upper population bound
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to compute the integer valued population size (see section 1.6 for details regarding the
model). The IOM, in contrast, determines population change by counting individuals at
periodic intervals and computing the individual birth rate based on the current population
size. Each reproducing individual uses this birth rate to determine the number of young it

produces.

A numerical error is induced in the IOM due to the discrete nature of the
reproduction computation. In the aggregated model, the population size is truncated after
the computation is done. In the IOM models, the individual birth rate is truncated then the
offspring are produced. The difference in these computational procedures produces a
significant difference in model behavior. Consider the following example. Let R= 1.9, U=
5000 and N, = 1000. Based on the aggregate logistic model, the population size at time
N, ; will be 1,520 individuals. To produce the same effect in the IOM, the model culls 200
individuals, leaving 800 to reproduce with a birth rate of 1.9. As 800*1.9 = 1,520, the
IOM and the aggregate model should arrive at the same answer. However, each individual
uses the truncated birth rate to compute the number of offspring she produces, which

means, in this case, each individual produces one offspring. Therefore, the population size

predicted by the IOM will be 800 not 1,500.

To impose consistency between the models, the IOM includes a mechanism to
collect “fractional individuals.” When an individual has a non-integral birth rate, the
fractional part of the rate is collected in an accumulator. When the accumulator exceeds

one, the accumulator is reduced by one and an additional offspring is produced. As a
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result, the number of offspring produced by the IOM matches the number of offspring

produced by the aggregate model.

4.3.1.1.1 Perturbation Test

The criterion for establishing consistency assumes that any perturbation of the
modeled population will induce a change in its time series. A perturbation test using the
aggregate logistic and aggregate predator-prey models was developed to establish the
sensitivity of both models. In the first step, the aggregate models are compared with their
IOM counterparts, which, if they are correct, will produce identical time series with
identical parameters sets. In the second step, a single individual is added to either model at
simulation time 10. If time series produced by a perturbed mode! are different from those
produced by the unperturbed models, the models are sensitive to perturbation. As this is
the smallest possible perturbation, the test shows that any perturbation should change the
behavior of the model. If, in the process of switching active models or during a cross-
resolution interaction, the MRM produces an inconsistent state (i.e., the number of
individuals in the active model is different from the number of individuals in the passive
mode] after the switch), the test will detect it. So, if the MRM is inconsistent with the

single-resolution model, its results will differ from the unperturbed model.
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4.3.1.1.2 Switch Test

State, behavioral and organizational (aggregation-disaggregation) consistency
requires that the state of an MRM'’s constituent models match at specified times. This
allows the MRM to switch between the models while ensuring that the state of the system
is not altered by the switch. To test consistency during a switch, the MRM uses the
deterministic aggregate logistic and the logistic IOM models to form the MRM. As the
models are deterministic, their states should match at each point in time (this is confirmed
by the perturbation test) so the MRM's state should match regardless of model switching.
In this test, the MRM is configured to switch between its constituent models on every time
step. The switching mechanism maintains state and behavioral consistency if the time
series produced by the MRM is identical to the time series produced by the aggregate

logistic model.

4.3.1.1.3 Resegmentation Test

Segmentation consistency requires that the MRM maintains consistency when a
model switch happens between allowable transitions for the passive model (i.e., at a
simulation time when the transition function is not defined). For example, if the MRM
switches from an IOM population to the aggregate population model, between annual time

steps, the state and transition function for the aggregate model are undefined. To
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compensate for this problem, the user specifies a resegmentation function using the

STEMSS MRM structures.

This test uses the predator-prey MRM in which the predator is configured as an
IOM and the prey is allowed to switch between the aggregate population model and IOM.
The MRM monitors the prey IOM’s size between population updates and, when the
population rises above a threshold size, the resegmentation function is called and the
aggregate prey model is activated. To maintain consistency, when the MRM switches from
the prey IOM to the aggregate prey model, the prey IOM tracks the number of offspring

produced before the switch, NV, then counts the number of individuals with pending

reproduction events, N. The pending individuals are treated as an aggregate population,

i.e., the number of offspring is computed as N*R. The next population size is N, + N*R.

4.3.1.1.4 Cross-Resolution Interaction Test

When a model is composed of two or more models, for example the predator-prey
model, and the models are not forced to have the same resolution, it is possible for the
models to have different combinations of resolutions. In the predator-prey models, the
combinations may be Predigp-Preyiom, Predagg-Preyiom, Prediom-Preyag, and Predg,-
Prey,g,. The predator-prey MRM resolves the problem by either aggregating individual
predator actions, when the predator IOM and aggregate prey model are active or

determining the aggregated predator’s culling behavior then temporally distributing these

actions when the aggregate predator model and prey IOM are active.
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When the models may have different combinations of resolutions and these
combinations can change on every time step, maintaining consistency requires the model
to account for several possible types of interactions and resolution changes, To ensure that
the MRM maintains consistency, the cross-resolution test examines the following

conditions:
1. the predator and prey models switch in phase on every time step,
2. the predator and prey models switch out-of-phase on every step,

3. the predator and prey switch out-of-phase on every other step, so they have the same

resolution every other step,

4. the predator and prey switch every fourth step, so they have the same resolution for two

consecutive steps,

5. switching occurs at arbitrary switching thresholds so the switching pattern is not

predetermined.

The first test forces the models to switch to the same resolution on each time step
during the simulation. This tests the ability of STEMSS to coordinate resolution changes.
The second, third and forth tests force the models to switch out-of-phase, increasing the
phase differences in each test, which validates the ability of STEMSS to coordinate
arbitrary sequences of resolution change. The final test validates the systern under the

expected conditions of use.
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4.3.1.2 Logistic Model Parameters

Each of the logistic models relies on three parameters, R, the average per capita

growth rate, U, the upper population bound and N,,, the initial population size. The value

of R determines whether the population declines, grows to a stable size, oscillates about a
population size or becomes chaotic. To test the range of behaviors (except chaotic
dynamics) the values for R were 2.5, 3.0, 3.5 and 3.7, which produce damped, single
cycle, 2-cycle and 4-cycle oscillations respectively. The upper population bound was set to

10, 100, 1000 and the initial population size was set to half the upper population bound.

4.3.1.3 Predator-Prey Model Parameter

The predator-prey model relies on six parameters (U, R, A, B, h, k). U and R are the
upper population bound and average per capita growth rate for the prey species. The
parameters A and B determine the impact of predator species on the prey population. The
parameters h and k are the density-dependent upper population bound and average per
capita growth rate of the predator species. This test uses two parameters sets: the set
(1000, 3.5, 1, 2, 0.7, 2.7) causes both populations to reach a stable population size and the

set (3000, 3.5, 1, 2, 0.8, 2.0) causes both populations to oscillate.
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4.3.1.4 Data Collection and Analysis Procedures

For this set of tests, the analysis consists of two procedures. The first is to compare
models by superimposing their time series and visually checking for changes. This
procedure is most useful when the difference between the time series is visually obvious,
The second procedure is to compute the sum of the squared differences (SS) between the

models. That is, for an MRM composed of a low-resolution model, LRM, and a high
resolution model, HRM S§ = Z(N, ., ; -Ny ,-)2, where xrm € {LRM, HRM, MRM}, yrm
€ {HRM, MRM} and xrm # yrm, and i ranges across elements of the time series. When

the time series tested by this procedure are the same, the value is zero. If the differences

between the models are visually obvious, then the value will be large.

To test the effect of perturbation on the models, establishing that the aggregate
model and IOM are identical is necessary. Once the equivalence of the models is
established, it is necessary to establish that the models are sensitive to perturbation. The
effect of perturbation is validated by adding a single individual to the population (for the
predator-prey model, the individual is added to the prey population) and visually

comparing the perturbed population with the unperturbed population.

After establishing the sensitivity of the logistic and predator-prey models, both
models can be used to test the specific MRM mechanisms. Each test isolates a specific
mechanism (see sections 4.3.1.1.2 -4.3.1.1.4) and a 500-year simulation was run for each

combination of model parameters. The data was analyzed as follows:
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* each time series was grouped according to parameter set and mechanism test type,

 for each pair of models (i.e., LRM-HRM, LRM-MRM, HRM-MRM) the sum of the

squared difference for each step of the time series was computed,

» the results of the comparisons and each mechanism were then tabulated.

4.3.2 Results

Simulations using the aggregate model and IOM for both the logistic and predator-
prey models were run and compared. For each parameter set, the sum of the squared
differences was zero. That is, aggregate model and IOM produce identical results, so they

are suitable for the perturbation and mechanism tests.

Figure 30 shows the effect of perturbation on the logistic models and Figures 31
and 32 show the effect of perturbation on the predator and prey models. For the logistic
model, the effect is visually obvious by year 20, approximately 10 simulated years after
the perturbation. Direct analysis of the simulation data shows that the perturbation has an
immediate numerical impact on the model. The impact of perturbation on the predator-
prey model is visually obvious immediately on the prey population after the prey model
was perturbed and the impact on the predator population lagged by a year, but the effect

was obvious. Therefore, both models are sensitive to perturbation.
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Table 2 presents the results for the switching test. The table shows the pairwise

sums of the squared differences for the aggregate model, IOM and MRM. In each instance

the tests confirm that the time series produced by the MRM is identical to the time series

produced by the aggregate logistic model (LRM) and the logistic IOM (HRM). These tests

validate the switching mechanism for the logistic MRM., The time series produced by each
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parameter set tested are presented in Figure 33 to provide a sense of the complexity of the

time series produce by the logistic model.

Table 3 presents the results for the resegmentation and cross-resolution tests. The

sum of the squared differences confirm that aggregate predator-prey model (LRM), the

predator-prey IOM (HRM) and the predator-prey MRM produce identical time series.

These tests validate that the resegmentation and cross-resolution mechanisms for the

predator-prey MRM. The time series produced the <1000, 3.5, 2, 0.8> parameter set is

shown in Figures 34 and the series produced by the parameter set <3000, 3.5, 2.7, 0.7> is

show in Figure 35. These figures provide a sense of the complexity of the predator-prey

model.
Table 3. Resegmentation and Cross-Resolution Interaction Results
Type  <U,R, k h> (HRM - LRM)®>  (HRM - MRM)? (LRM - MRM)?
CRI <3000, 3.5, 2.7, 0.7> 0 0 0
CRI <1000, 3.5, 2.0, 0.8> 0 0 0
Reseg  <3000,3.5,2.7,0.7> 0 0 0
Reseg <1000, 3.5, 2, 0.8> 0 0 0
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43,3  Discussion

The tests confirm that the aggregate and IOM versions of both the logistic and
predator-prey models are identical and are sensitive to perturbation. These models were
used to confirm that the mechanisms required by MRM and implemented by STEMSS-
MRM do not induce perturbations in the model’s state. Each of the mechanism tests
validated the MRM mechanisms, supported by STEMSS-MRM and implemented by the

user, maintained consistency.

The importance of consistency maintenance by these models is twofold. First, they
are examples of valid MRMs. The MRMs are bounded by the aggregate models (LRM)
and the IOMs (HRM). Second, the logistic model, after some modification, will be used as

the source model for the stochastic MRM tests.

4.4 Yellow Perch Model Suite

The second validation test uses the yellow perch suite to demonstrate the ability to
construct complex ecological models using STEMSS and the ability to construct an MRM
using these models. The model, using the parameter set suggested by Rose (1995),
requires 2000-2400 computer hours to generate a single 10,000-year time series. To avoid
this cost, the models used in this test are deterministic and produce analyzable results in
less than 24 hours. The modifications required to make the mode! deterministic alter the

results of the stochastic model, so the two models are not comparable. Nevertheless, the
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altered model retains the same set of transition functions and state value as the original

model, so the test does validate STEMSS’ ability to produce valid MRMs.

4.4.1 Method

4.4.1.1 Simulation Model

The yellow perch IOM (high-resolution model) and super-individual model (low-
resolution model) are described in chapter III. For both of these models, the stochastic
terms were replaced by constants to remove the confounding effects of stochasticity. The
yellow perch MRM, represents each cohort by an MRM composed of the IOM and super-
individual cohort models. Experience with the IOM version indicates that individuals in
the young cohort dominate the computation time, so it is the only switching model in this
test. The remaining cohort models are represented by MRMs, but the switching

mechanism in these models is inhibited, so they use the IOM exclusively.

4.4.1.2 Model Parameters

The parameters used for the model were adapted from Rose et al. (1992) and the
details regarding the parameters were discussed in section 1.5. The values listed in Table 4
are the parameters associated with individual consumption and growth (Equations 4 and

5); Table 5 lists the parameters associated with reproduction; Table 6 lists the set of
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predation parameters (see Equation 6); Table 7 lists the set of thermal modifiers for

consumption and growth; Table 8 lists the set of initial conditions for each individual.

Table 4. Consumption and Metabolic Parameters

Stage AC BC AL BL AR BR ACT KE Mortality
FF 0.5 -0.4 459 0.33 0.0005 -0.20 44 0.43 0.9
YoY 0.06 -0.3 459 0.33 0.002 -020 1.0 0.4 0.9
Yearling 0.13 -0.2 39.1 0.33 0.002 -0.20 1.0 0.43 0.9
Adult 0.0] -0.1 39.1 0.33 0.04 -0.25 1.0 0.5 0.5
Table 5. Fecundity Parameters
AF BF Sex Ratio(M:F)
Adult 180.0 3658.0 0.5
Table 6. Predation Parameters
Stage KZ KB KY
FF 0.005 0 0
YoY 4, 2500, 0
Yearling 4, 1000. 0
Adult 5000.0  5000. 0.00003
Table 7. Thermal Metabolic and Consumption Parameters
Stage Tco Tem  ThetaC  Tro Trm  ThetaR
Young 29 32 23 32 35 2.1
Adult 23 28 23 28 133 2.1
Table 8. Initial Size
AC young vearling adult2 adult3 adultd adult5 adult6 adult? adult8 adult9
Len 50.6 120.6 155.6 167.8 1823 1979 2144 230 248.8 268.6
Size 20005 5000 200 100 520 24 12 8 4 1
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4.4.1.3 Data Collection and Analysis Procedures

The yellow perch simulations used the parameter set and initial conditions found
in Tables 4-8. Simulations using the yellow perch super-individual model (LRM) and
yellow perch IOM (HRM) eventually reach a fixed point, so, rather than setting an end
time for the simulation, all simulations were terminated when the population stabilized.
The simulation output was collected and the time series superimposed on a single graph.
The graphs were visually compared and the stable population sizes were quantitatively

compared to establish boundedness.

4.4.2 Results

Figure 39 shows results of the population simulation. The steady state population
size was reached by day nine thousand, and the population size produced by the MRMs, is
bounded by the sizes produced by IOM and aggregate model. The assumption that the
super-individual model (LRM) and IOM (HRM) represent the same system is, however,
false. There is a 124% discrepancy between the steady state population size (i.e., the
population size on day nine thousand) of the aggregate model and the IOM, so the two

models are different.

The time series produced by each model are visually similar for the first three

years then they begin to diverge. The appearance of the divergence, in Figure 36, coincides
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119

with the maturation of the first cohort produced by the simulated adults, suggesting that

discrepancy arises from the individuals generated by the simulation, as opposed to those

generated at initialization. To confirm this suggestion, a separate model was run to track

the growth of individuals from birth to one year, which showed that the first-feeder and

young-of-the-year stages produced minor differences in growth for each day in the stage.

These differences were accumulated, causing the growth of the super-individual to lag

behind the growth of the IOM individuals by approximately 10 simulated days. As adults

have to reach a critical size before they can cull young and reproduce, the ten-day lag

creates a significant change in the model dynamics.
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4.4.3 Discussion

The results of these simulations are consistent with the hypothesis that the MRM is
bounded by the IOM and aggregate models. The stable population size confirms that the
MRM is bounded by the super-individual model and the IOM. Despite the discrepancies
in individual growth and reproduction between the constituent models, the MRM
performed as expected. The steady state population sizes produced by the super-individual
model and the IOM are qualitatively similar. That is, all three models reach a stable

population size that suggests that the underlying dynamics for each model are similar.

The discrepancy between the models adds another concern beyond questions
related to MRM. This test demonstrates that subtle numerical differences between models
can affect the time series produced by the models. In this example, numerical deviations
led to delays in discrete state changes (e.g., the ability to cull young) and the delay

induced changes in per capita growth rate, fecundity and egg laying.

The error in growth rate is associated with determinism in the model. Modeled
individuals grow in lockstep, so discontinuities in model behavior, such as culling ability
or reproduction, are simultaneously encountered by all individuals. In a stochastic system,
changes in behavior are not, usuvally, precisely synchronized. That is, individuals are not
generally identical, so individual size is not expected to be constant in a cohort. As there is
a distribution of sizes within a cohort, size-dependent changes will happen over a range of
times, which reduces the effect of state discontinuities. This effect is similar to antialiasing

(Foley, Van Dam, Feiner and Hughes, 1990).
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4.5 Stochastic Logistic Experiment

The third set of validation tests was designed to quantify the effect of model
switching on stochastic MRMSs by comparing the time series produced by the LRM, HRM
and MRM. The validated logistic suite, described in section 4.2, was used for this
experiment because the time series produced by these models are easy to understand. The
logistic IOM was modified to produce a stochastic time series, consequently, the MRM is
stochastic. To control which model is active, the MRM compares the population size with
a switching threshold. When the size falls below the switching threshold, the IOM is
activated when it rises above the switching threshold, the aggregate model is activated.
The switching threshold determines the amount of IOM activity in a simulation and,

therefore, it determines the accuracy of the MRM.

The results of these tests will be used to estimate the accuracy of an MRM as a
function of switching threshold and model parameters. The relationship between the
switching threshold and model accuracy suggests that user can select a level of accuracy
by selecting a threshold value. If the results validate this suggestion, then switching
threshold gives the modeler some control over the accuracy of the model. The next chapter
will explore the use of the switching threshold for controlling the execution time of the
simulation. Assuming both sets of tests validate the ability of the switching threshold to
control accuracy and execution time, then a user can estimate of the accuracy and

execution time of the simulation based on the switching threshold.



4.5.1 Models and Methods

4.5.1.1 Simulation Model

The deterministic models in the logistic suite are characterized by two parameters,
r and U. The stochastic model includes a uniform random number, A, to the individual
birth rate, R. The remaining parameters form specific test groups that will be described as
<U, A>. The MRM switches between the aggregate logistic model (LRM) and the logistic
IOM (HRM) based on a switching threshold that is a fraction of the upper population

bound. That is, the threshold parameter, th, is a value between 0 and 1.

4.5.1.2 Parameters

For all tests in this experiment, the average growth rate per individual is, R = 3.0,
This value was chosen because it produces interesting dynamics while avoiding chaos.
The upper population bound, U, was selected from the set {100, 1000, 2500, 5000} and
the initial population was set to U/2. To test the effect of stochasticity on MRM
performance, a uniform random term in the range, +/- A, was added to r, which, in this
model, is interpreted as the individual birth rate. Experience indicated that A= 1.0 and 2.5
produced sufficiently random simulations for the purposes of this experiment. To test the

effect of the switching threshold on model performance and to determine the relationships
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between th and accuracy, simulations for each set of model parameters were run for

switching thresholds, th e {0.23, 0.235, 0.24}.

4.5.1.3 Data to be Collected

The test determines whether the MRM is bounded by the aggregate logistic model
(ILRM) and the stochastic logistic IOM (HRM). The specific meaning of bounded is not
defined, however. For the logistic model suite, logistic MRM is bounded by the aggregate

logistic and the logistic IOM when it meets the following criteria:

*  NyrM max < NioMmax Where Nyspas may is the maximum population size from the time
series generated by the MRM and Njgps g, is the maximum population size from the

time series generated by the IOM

* Naggmax < NMRM,max Where Nygg mar, is the maximum population size from the time

series generated by the aggregate logistic model,

* NurM,min > Nagg.min» Where Nggo pin, is the minimum population size from the time

series generated by the aggregate logistic model,

* NioMmin > NyrM,min» Where Niopg min. 18 the minimum population size from the time

series generated by the IOM.

When a model satisfies this boundedness criteria, it is “amplitude bounded.”

One shortcoming of this definition is that it ignores frequency. Consider a low-

resclution model and a high-resolution model that produce a square-wave time series. If
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an MRM, composed of these models, produces a triangular-wave time series, then the
models are not bounded, even if the two series are amplitude-bounded. Therefore,
declaring the models bounded would be inaccurate. Nevertheless, amplitude-boundedness
does provide a measurable quantity for analyzing boundedness and, if the data do not

exhibit poor frequency behavior, it should stand as a reasonable measure of boundedness.

4.5.1.4 Statistical Tests

The goal of this experiment is to show that the upper bound of the MRM is
bounded by the upper bounds of aggregate logistic (LRM) and logistic IOM (HRM) and
that the lower bound of the MRM is bounded by the lower bounds of the aggregate logistic
model and logistic IOM. Let N,.,., jop and N,;,, 105 be the maximum and minimum IOM
population sizes, Ny, gop A Nppjip 400 be the maximum and minimum aggregate model
population sizes and Ny, prrar @0d Ny asras be the maximum and minimum MRM
population sizes. If, for the version of the logistic model used in this experiment, Ny, 40,
< Nmax,MRM < Npax 1o then the upper bound of the MRM is bounded by the upper
bounds of the aggregate logistic model and logistic IOM. If Ny 000 > Nopin st >

N in 1oM- E1ven that one set of tests is used to compare the upper bound and the other set is

used to compare the lower bound, the two sets can be combined into a single set of

relations: Nmin,lOM < Nmin,MRM“_z_, < Nmin.MRMu‘m B Nm:'n.MRM,,_n < Nmin.agg <

Nmax.agg < Nmax.MRM"_n . Nmax.MRM“.m < Nmax.MRM,,_u < Nmax,lOM '
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where MRMg 73, MRM 535 and MRM, 54 refer to the MRMs using switching thresholds

of 0.23, 0.235 and 0.24 respectively.

A common statistical test designed to establish the relationships above is the
Fisher least significant difference (ILSD) test (Freund & Wilson, 1997). The LSD test is a
two-step process. In the first step, an ANOVA is done to test the equality of a set of
population means (Freund & Wilson, 1997). In the second step, the LSD value is
computed and, for each pairwise comparison, the difference is significant if the difference
between the pair is greater than the LSD value. The ANOVA and LSD tests were

computed using SPSS 11.5 (SPSS, 2003).

By definition, pseudo-random number (PRN) generators do not produce random
number sequences, so the sequence of numbers produced by the PRN are autocorrelated.
The STEMSS PRN generator uses the algorithm found in (Knuth, 1998), which attempts
to reduce the effect of autocorrelation. Nevertheless, the PRN sequence is autocorrelated

and, therefore, it influences the validity of the statistical tests.

Since the aggregate logistic model is deterministic, it does not produce normally
distributed data and its variance is zero. Consequently, it does not meet the assumptions of
the LSD procedure. Therefore, it will not be included as part of the statistical tests.
Instead, the maximum and minimum population sizes of the aggregate logistic model will
be compared to the mean maximum and mean minimum population sizes from each

MRM. The aggregate value will be included for reference,
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4.5.1.5 Data Collection and Analysis

Each combination of parameters and switching threshold values was used to
produce 700 hundred year simulations and each simulation was repeated 100 time with
different random number seeds each time. After collecting the simulation results, the

following tasks were performed:

+ the first 200 years of data were removed from each simulation to eliminate the initial

simulation transient,

* data were grouped according to parameter type (e.g., all time series generated using

<100, 1> were grouped together),

* the maximum and minimum value of each time series were collected for each simula-

tion and grouped according to model type (i.e., for each <U, A>).

For each grouping, the SPSS one-way ANOVA function with the LSD option was used to

analyze the data.

4.5.2 Results

The average minimum population sizes, for each experiment, are presented in
Table 9 and the average maximum population sizes are presented in Table 10 and are

graphically presented in Figures 37-40. In general, the results satisfy the constraint,

Nm:'n,IOM . Nmin,MRM,,‘z,. < Nmin.MRM“.m < Nmin,MRM.,‘” B Nmin.agg < Nmax.agg <
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N pax MR Moz < Nmax'MR Mops < N, axMRMy5, < Nmax,IOM’ although there are some
exceptions. Specifically, some simulations, using the parameter set <100,2.5> produced
population extinctions that skewed the results. Also, the MRM_, 54 with A = 1.0, produced

a time series that was similar to the IOM time series.
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Figure 37. Average Maximum and Minimum Population Sizes, U = 100
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The ANOVA and LSD results presented in Tables 11-26 support the claim that, in
general, the logistic MRM is bounded by the aggregate logistic model and the logistic

IOM. The tests also reinforce the claim that the MRMj 54 is the same as the IOM, when A

= 1.0, though the tests are not conclusive because of variability in the standard deviation of
each model type (see Tables 11-26). As the upper population bound increases from U =
1000 to U = 5000, the probability that models are equivalent increases, that is, the time
series produced by the MRMj, 54 appears to converge to the time series produced by the
IOM. There is, however, insufficient evidence to state this claim with statistical

confidence,
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The ANOVA and LSD tests also indicate that the MRM ;35 and MRMj 55 diverge

as U increases. Figures 41 and 42 show the impact of the switching threshold with
increasing U for a given A. Each point on the x-axis shows the maximum and minimum
population sizes (as ratios of upper population bound, U). For A = 1 (Figure 41), the

difference between MRMj; 535 and MRM, 23, as a ratio of U, declines as U increases,

which is unexpected since the models diverge as U increases. Since the variation in
maximum and minimum values, for all models, declines as U increases, concluding that
the divergence is more a loss of variation is reasonable than it is an actual divergence.
Moreover, the data suggest that all of the models are converging to the aggregate model as

U increases.



Table 9. Average Minimum Population Size.

Sud.

N Minimem  Maximum Mean Dev.
IOM<100,1> 100 37 50 45.81 2.54
MRMj 54<100,1> 100 39 51 45.89 2.36
MRM 535<100, I> 100 45 53 50.47 1.65
MRMj »3<100,1> 100 45 53 50.47 1.65
AGG<100> 60
10M<1000,1> 100 545 598 569.7 9.98
MRM 14<1000,1> 100 554 596 576.47 7.32
MRMy 235<1000,1> 100 570 597 586.36 6.12
MRMy 23<1000,1> 100 572 605 588.49 6.83
AGG<1000> 634
10M<2500,1> 100 1407 1543 1483.31 23.84
MRM 54<2500,1> 100 1445 1542 1485.75 17.90
MRM 135<2500, 1> 100 1473 1558 1508.76 13.60
MRM 53<2500,1> 100 1479 1554 1516.57 13,45
AGG<2500> 1600
I0OM<5000,1> 100 2963 3117 3042.80 34.35
MRMy, »4<5000,1> 100 2967 3125 3039.24 34.94
MRMj 235<5000,1> 100 3011 3155 3063.20 24.46
MRM 535000, 1> 100 3035 3141 3088.03 24,86
AGG<5000> 3228
IOM<100,2.5> 100 0 33 19.76 6.79
MRMj24<100,2.5> 100 0 32 19.01 7.89
MRMj 735<100,2.5> 100 16 44 31.79 5.50
MRMj 73<100,2.5> 100 16 44 31.79 5.50
AGG<100> 60
10M<1000,2.5> 100 428 523 483.08 20,75
MRM; 54<1000,2.5> 100 469 542 518.01 14.91
MRM 435<1000,2.5> 100 478 552 531.22 12.25
MRMy 23<1000,2.5> 100 512 561 539.72 11.33
AGG<1000> 634
I0M<2500,2.5> 100 1246 1404 1333.20 33.67
MRM, 44<2500,2.5> 100 1252 1430 1384.45 25,55
MRMy 235<2500,2.5> 100 1342 1448 1411.55 21.23
MRM,, 53<2500,2.5> 100 1368 1461 1419.75 2047
AGG<2500> 1600
10M<5000,2.5> 100 2640 2911 2793.66 54.66
MRMg 24<5000,2.5> 100 2762 2935 2857.31 33.53
MRMj 235<5000,2.5> 100 2828 2978 2914.88 30.14
MRMp 53<5000,2.5> 100 2847 3035 2936.02 33.23
AGG<5000> 3228
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Table 10. Average Maximum Population Size

Std.
N Minimum Maximum  Mean Dev
10M<100,1> 100 77 83 79.94 1.29
MRMg 74<100,1> 100 78 85 79.95 1.31
MRMg ;35<100,1> 100 74 79 76.23 1.14
MRMg13<100,1> 100 64 79 76,23 1.14
AGG<100> 72
IOM<1000,1> 100 728 760 742.02 6.46
MRMj 24<1000,1> 100 728 751 735.77 435
MRMj 535<1000,1> 100 721 735 727.51 3.16
MRM »3<1000,1> 100 716 734 72592 3.59
AGG<1000> 696
IOM<2500,1> 100 1768 1863 1815.67 6.86
MRMg, 24<2500,1> 100 1773 1836 i813.78 10.95
MRMg 335<2500,1> 100 1759 1815 1794.19 8.49
MRMj »3<2500,1> 100 1764 1812 1788.97 8.59
AGG<2500> 1728
IOM<5000,1> 100 3526 3652 3579.73 26.43
MRM 24<5000,1> 100 3526 3642 3582.34 25.76
MRM 235<5000,1> 100 3508 3593 3560.96 14.66
MRMj 53<5000,1> 100 3503 3578 3541.68 17.57
AGG<5000> 3432
IOM<100,2.5> 100 85 100 90.88 9.55
MRM, 54<100,2.5> 100 96 100 89.00 16.00
MRM; 235<100,2.5> 100 78 23 86.00 3.065
MRMy23<100,2.5> 100 78 93 86.000 3.065
AGG<100> 72
10M<1000,2.5> 100 769 829 790.66 11.70
MRMj) 54<1000,2.5> 100 748 791 768.090 10.21
MRMg 235<1000,2.5> 100 741 787 752.92 8.24
MRMj »3<1000,2.5> 100 738 767 745.380 4.60
AGG<1000> 696
I0M<2500,2.5> 100 1866 1948 1910.48 18.81
MRM24<2500,2.5> 100 1842 1929 1869.43 16.80
MRM(135<2500,2.5> 100 1827 1868 1844.34 8.72
MRM, 53<2500,2.5> 100 1821 1858 1839.36 8.20
AGG<2500> 1728
I0M<5000,2.5> 100 3663 3836 3748.45 36.82
MRMy, »4<5000,2.5> 100 3645 3764 3695.03 23.32
MRMg »35<5000,2.5> 100 3616 3698 3648.45 14.88
MRM,, 53<5000,2.5> 100 3578 3677 3634.78 17.41
AGG<5000> 3432
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Table 11. ANOVA and LSD Resuits for Minimum Population Size <100, 1>

Sum of Mean F Sig.
Squares df Square
<100,1> Between Groups 2134.76 3 711.59 163.36 <001*
Within Groups 1725.00 396 4.35
Total 3859.76 399
Dependent Mode! Model Mean Std. Sig.
Variable I I Diff (I-1) Error
<100,1> 1OM MRMgq 44 -0.08 .2952 787
IOM MRMj 235 -4.66 .2952 <.001*
oM RMj 53 -4.66 .2952 <.001*
MRMO_24 MRM0_235 -4.58 .2952 <.001*
MRMg 24 MRMj 23 -4.58 2952 <,001*
MRMg 535 RMj 23 .00 2952 1.000
* The mean difference is significant at the .05 level.
Table 12. ANOVA and LSD Results for Minimum Population Size <1000, 1>
Sum of Mean F Sig.
Squares df _Square
<1000,1>  Between Groups 23060.94 3 7686.98 129.68 <.001*
Within Groups  23473.53 396 59.27
Total 46534.48 399
Dependent Model Model Mean Std. Sig.
Variable I J Diff (I-1) Error
<1000,1> 1IO0M MRM 24 -6.76 1.08882 <.001*
IoM MRMgpas3s -16.65 1.08882 <001*
IoM MRMj 53 -18.78 1.08882 <.001*
MRMy 24 MRMj 235 -9.89 1.08882 <.001*
MRMjy 54 MRMj 23 -12.02 1.08882 <.001*
MRMg 235 MRMg 33 -2.13 1.08882 051

* The mean difference is significant at the .05 level.
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Table 13. ANOVA and LSD Results for Minimum Population Size <2500,1>

Sum of Mean Sig.
Squares df Square
2500,1> Between Groups  82505.307 3 27501.769 <.001*
Within Groups ~ 124200.860 3596 313.639
Total 206706.197 399
Dependent Model Model Mean Std. Sig.
Variable I J Diff (I-I) Error
<2500,1> IOM MRMy 4 -2.44 2.50455 331
IOM MRMpo3s  -25.45 2.50455 <.001*
10M MRMg 23 -33.26 2.50455 <001*
MRMg 24 MRMys35  -23.01 2.50455 <.001*
MRMj 94 MRM, 24 -30.82 2.50455 <.001*
MRMg 215 MRMj 54 -7.81 2.50455 002*

* The mean difference is significant at the .05 level.

Table 14. ANOVA and LSD Results for Minimum Population Size <5000,1>

Sum of Mean Sig.
Squares df Square
<5000,1>  Between Groups 151141.528 3 50380.509 <.000*
Within Groups ~ 358113.15¢ 396 904.326
Total 509254.678 399
Dependent Model Model Mean Std. Sig.
Variable 1 J Diff (I-1) Error
<5000,1> IOM MRMj 14 3.56 4.25283 403
IOM MRMg135 -20.40 4.25283 <.001*
IOM MRMj 73 -45.23 4.25283 <.001*
MRMg 24 MRMga3s 2396 4.25283 <.001*
MRMg 24 MRMj +3 -48.79 4.25283 <.001*
MRMp 235 MRMj 04 -24.83 4.25283 <.001*

* The mean difference is significant at the .05 level.
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Table 15 ANOVA and LSD Results for Minimum Population Size <100, 2.5>

Sum of Mean F
Squares df Square Sig.
<100,2.5> Between Groups 15416.527 3 5138.842 121.677 <.001*
Within Groups 16724410 396 42.233
Total 32140.938 399
Dependent Model Model Mean Std. Sig.
Variable I J Diff (I-) Error
<100,2.5> 10M MRMy 14 150 9191 415
1cM MRMgays  -12.03 9191 <001*
IOM MRMj 23 -12.03 9191 <.001*S
MRMg»4 MRMga35  -12.78 9191 <.001*8
MRMO‘24 MRMO‘23 -12.78 19 < 001*
MRMj 945 MRMy 17 .000 9191 1.000

* The mean difference is significant at the .05 level.

Table 16 ANOVA and LSD Results for Minimum Population Size <1000,2.5>

Sum of Mean F
Squares df Square Sig.
<1000,2.5> Between Groups  186593.308 3 62197.769 267.158 <.001*
Within Groups 92193.670 396 232.812
Total 278786978 399
Dependent Model Model Mean Sud, Sig.
Variable 1 J Diff (I-]) Error
<1000,2.5> IOM MRMg a4 -34.9300 2.15783 <.001*
1O0M MRMpa35 -48.14 2.15783 <.001*
IoM MRMg 5, -56.64 2.15783 <.001*
MRMj 54 MRMga35  -13.2100 2,15783 <.001*
MRMg 24 MRM; 54 -21.71 2.15783 <.001*
MRM(] 215 MRMQ 23 -8.50 2.15783 <. 001*

* The mean difference is significant at the .05 level.
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Table 17 ANOVA and LSD Results for Minimum Population Size <2500,2.5>

Sum of Mean F
Squares df Square Sig.
«2500,2.5> Between Groups 457593.187 3 152532.729 229.692 000\
Within Groups  262974.250 396 664.076
Total 720572.437 399
Dependent Model Model Mean Sid. Sig.
Variable i J Diff (I-1) Error
<2500,2,5> IOM MRMj 24 -51.25 3.64438 <.001*
IOM MRMg 435  -78.35 3.64438 <,001*
IOM MRMp 23 -86.55 3.64438 <.001%*
MRM0,24 MRMO_235 -27.10 3.64438 <.001*
MRMg 54 MRMj 54 -35.30 3.64438 <.001*
MRMgaas MRMgq 24 -8.20 3.64438 025*

* The mean difference is significant at the .05 level.

Table 18 ANOVA and LSD Results for Minimum Population Size <5000,2,5>

Sum of Mean F
Squares df Square Sig.
<5000,2.5> Betwcen Groups 122421]1.228 3 408070.409 266.529 .000
Within Groups 606298.35 396 1531.056
Total 1830509.578 399
Dependent Madel Meodel Mean Std. Sig.
Variable I ] Diff (I-1) Error
<5000,2.5> IOM MRMg 14 -63.65 5.53364 <.001*
IOM MRMga3s -121.22 5.53364 <. 001*
IOM MRMg.;  -142.36 5.53364 <. 001*
MRMg a4 MRMps35 -57.57 5.53364 <.001*
MRMg 94 MRMg 23 -78.71 53364 <.001*
MRMO_235 MRMO 23 -21.14 5.53364 <.001*

* The mean difference is significant at the .05 level,
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Table 19 ANOVA and LSD Results for Maximum Population Size <100,1>

Sum of Mean F
Squares df Square Sig.
<100,1> Between Groups  1380.127 3 460.042 307.830 <.001*
Within Groups 591.810 396 1.494
Total 1971.937 399
Dependent Model Model Mean Std. Sig.
Variable 1 J Diff (I-H) Error
<i00,1> IOM MRMg 24 -.010 1729 954
IOM MRMO_235 3710 1729 <.001*
IOM MRM; 53 3.710 1729 <.001*
MRM°'24 MRMO.235 3.920 1729 < (001*
MRMg 04 MRMg 23 3.720 1729 <.001*
MRMjg 735 MRMj 23 .000 1729 1.000

* The mean difference is significant at the .05 level.

Table 20 ANOVA and LSD Results for Maximum Population Size, <1000,1>

Sum of Mean F
Squares df Square Sig.
<1000,1>  Between Groups 16914.770 3 5638.257 269.720 <.001*
Within Groups 8278.020 396 20.904
Total 25192.790 399
Dependent Model Model Mean Std. Sig.
Variable I J Diff (I-1) Error
<1000,1> IOM MRMg 54 6.25 64659 <.001*
IOM MRMy 235 14.5100 64659 <.001*
IOM MRMy 4 16.1000 .64659 <.001*
MRMg 14 MRMj 335 8.2600 64659 <.001*
MRMg 34 MRMj 24 9.8500 64659 <.001*
MRMg 235 MRMg 14 1.5900 .64659 .014*

* The mean difference is significant at the .03 level.
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Table 21 ANOVA and LSD Results for Maximum Population Size, <2500,1>

Sum of Mean F
Squares df Square Sig.
<2500,1>  Between Groups 55110.127 3 18370.042 133.552 <.001*
Within Groups 54469.570 396 137.549
Total 109579.697 399
Dependent Model Madel Mean Sud. Sig,
Variable I ] Diff (I-I) Error
<2500,1> IOM MRMg 24 1.89 1.65861 255
IOM MRMg 735 21.48 1.65861 <.001*
ioM MRMg 13 26.70 1.65861 <.001*
MRMg 14 MRMg 235 19.59 1.65861 <,001*
MRMg 24 MRMg 53 24.81 1.65861 <.001*
MRMgp 945 MRMj 54 5.22 1.65861 .002*

* The mean difference is significant at the .05 level.

Table 22 ANOVA and LSD Results for Maximum Population Size, <5000,1>

Sum of Mean F
Squares df Square Sig.
<5000,1>  Between Groups 107224.648 3 35741.549 75.821 <.001*
Within Groups ~ _186671.750 396 471.393
Total 293896.398 399
Dependent Model Model Mean Std. Sig.
Variable | J Diff (I-1) Error
<5000,1> 10M MRMj 14 -2.61 3.07048 396
IOM MRMy 235 18.77 3.07048 <.001*
IOM MRMg 55 38.05 3.07048 <.001*
MRMg 24 MRMgs35  21.38 3.07048 <.001*
MRMg 44 MRM( 53 40.66 3.07048 <.001*
MRMg 735 MRMg 13 19.28 3.07048 <.001*

* The mean difference is significant at the .05 level.
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Table 23 ANOVA and LSD Results for Maximum Population Size <100,2.5>

Sum of Mean F
Squares df Square Sig.
<100,2.5> Between Groups  3330.270 3 1110.090 127.182 <.001*
Within Groups 3456.440 396 8.728
Total 6786.710 399
Dependent Model Model Mean Std. Sig.
Variable I J Diff (1-J) Error
<100,2.5> IOM MRMg 04 .1400 41781 738
IOM MRMg 235 5.8400 41781 <.001*
IOM MRMg »3 5.8400 41781 <.001*
MRMg 24 MRMg 115 5.7000 41781 <.001*
MRMjg 54 MRMg 23 5.7000 41781 <.001*
MRMj 545 MRMj 44 0000 41781 1.000

* The mean difference is significant at the .05 level.

Table 24 ANOVA and LSD Results for Maximum Population Size, <1000,2.5>

Sum of Mean F
Squares df Square Sig.
<1000,2.5> Between Groups 119667.887 3 39889.296 483,188 <.001*
Within Groups 32691.55 396 82.554
Total 152359.438 399
Dependent Model Model Mean Std. Sig.
Variable I J Dift (I-1) Error
<1000,2.5> IOM MRMj 14 22.57 1.28495 <.001*
IOM MRMya3s  37.74 1.28495 <001*
IoM MRMg ;3 45,28 1.28495 <.001*
MRMg 4 MRMj 235 15.17 1.28495 <.001*
MRMO,:M MRM(]‘-_::.‘ 22.71 1.28495 <, 00]1*
MRMj 535 MRMj 14 7.54 1.28495 <.001*

* The mean difference is significant at the .05 level
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Table 25 ANOVA and LSD Results for Maximum Population Size, <2500,1>

Sum of Mean F
Squares df Square Sig.
<2500,2.5> Between Groups 316904,248 3 105634.749 542272 <001*
Within Groups 77140.950 396 194,800
Total 394045.198 399
Dependent Model Model Mean Std. Sig.
Variable I J Diff {I-I} Error
<2500,2.5> IOM MRMg 24 41.05 1.97383 <.001*
I0M MRMjq 235 66.14 1.97383 <.001*
IOM RMj 23 71.12 1.97383 <.001*
MRMg 14 MRMj 235 25.09 1.97383 <.001*
MRMg 94 MRMg 23 30.07 1.97383 <.001*
MRMg 915 MRMg 44 4.98 1.97383 .012*

* The mean difference is significant at the .05 level.

Table 26 ANOVA and LSD Results for Maximum Population Size, <5000,1>

Sum of Mean F
Squares df Square Sig,
<5000,2.5> Between Groups 794029.827 3 264676.609 436,717 < 001*
Within Groups ~ 239999.570 396 606.060
Total 1034029.397 399
Dependent Model Model Mean Std. Sig.
Variable I ] Diff (1-) Error
<5000,2.5> IOM MRM, 24 5342 3.48155 <.001*
10M MRMg 25  100.00 3.48155 <.001*
I0M RMg. 113.67 3.48155 <.001*
MRMg 24 MREMy 235 46.58 3.48155 <.001*
MRMj 54 MRMg 93 60.25 3.48155 <.001*
MRMg 35 MRMg 14 13.67 3.48155 <.001*

* The mean difference is significant at the .05 level

4.5.3 Discussion

Figures 41 and 42 show that the MRM is bounded by the aggregate logistic model

(LRM) and the logistic IOM (HRM). Moreover, the graphs show that the MRMs are
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bounded by the switching threshold value. That is, larger threshold values are bounded by

smaller threshold values and the JOM. As the threshold increases, the time

series produced by the MRM changes from an LRM-like time series to an HRM-like time
series. If increasing the threshold causes a monotonic change in time series behavior, then

the threshold value gives us a mechanism for control the accuracy of the MRM.

The data suggest that the switching threshold has a direct bearing on the
consistency of the MRM time series and the HRM time series, which may provide a
means of predicting the accuracy of the MRM. For example, Figures 43 - 46 are plots of

the maximum and minimum population sizes, relative to the upper population bound, U.
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Each plot shows the family of model curves (i.e. IOM, MRMj 33, MRMj 535 and

MRM, 54) for upper population bound in the set, U = {1000, 2500, 5000}. If a modeler

decides to use a particular threshold value, for a given problem, he or she can predict the

accuracy of a simulation that uses that threshold value.

Besides the boundedness of the MRM, the experiment also suggests that the
MRMs are ordered by threshold values. This result is stronger than boundedness as it
suggests that the time series changes from an LRM-like series to an HRM-like series as
the threshold increases. Specifically, if increasing the threshold causes a monotonic

change in time series behavior, then the threshold value gives us a mechanism for control
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the accuracy of the MRM. With the current set of tests, we cannot affirm the correctness of

this assertion, however, the possibility warrants further investigation.

The threshold value is an important factor in controlling MRM results. The data
suggest that switching threshold has a direct bearing on the similarity between the MRM
time series and the IOM time series, which may provide a means of predicting the
accuracy of the MRM. For example, a model of “similarity to IOM” versus switching
threshold can be developed using the maximum population size. Figure 46-49 shows a
series of curves plotting the relative difference between the IOM and MRM over the range
of threshold values tested. Each graph consistently shows a monotonic decrease in error as
the threshold value increases and a monotonic decrease in error as the population size
increases. Therefore, MRM accuracy is likely to improve as the switching threshold or
upper population bound increases. A superficial analysis of these graphs suggests that the
decrease in relative error with respect to the threshold may be linear or possibly
asymptotic. If this is true, the threshold value may give modelers fine control over the
accuracy of the model. A more detailed analysis of the characteristics of the relative error

is warranted.

4.6 General Discussion

The three tests described in this chapter illustrated two significant points. First,
valid population models can be constructed with STEMSS and STEMSS-MRM. Second,

the MRMs tested in this chapter confirmed the hypothesis stated in Chapter 1. The logistic
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and the predator-prey models demonstrated the use of STEMSS in developing basic
population models and the yellow perch models showed its use in developing complex
models. Each of these models produced simulations bounded by the constituent high-
resolution and low-resolution models. Consequently, the models were consistent with the
central hypothesis of the dissertation, that the results of the multiple resolution population
models were bounded by and arbitrarily close to the results of constituent single resolution

models.

The affirmation of the hypothesis, based on the results of the experiments
discussed in this chapter, implies that further investigation into multiple-resolution
modeling is warranted. Some possible topics for further studies include the development
and analysis of more complex models, the development and analysis of other model
switching policies and techniques, the investigation of boundedness in other time series

characteristics and the impact of resegmentation on model accuracy.
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CHAPTER V

MRM PERFORMANCE STUDIES

5.1 Introduction

The results reported in Chapter IV described the relationship between the mode]
switching threshold and MRM accuracy. The data showed that as the switching threshold
increased, the accuracy of the MRM increased. Given that an increase in the switching
threshold value implies an increase in HRM activity, the results from Chapter [V imply
that as HRM activity increases the accuracy of the model increases. Unfortunately, an
increase in HRM activity causes an increase in simulation execution time. Therefore, an
increase in accuracy implies an increase in execution time. This chapter will investigate

the impact of the switching threshold on the MRM execution time,

The relationship between accuracy and execution time js particularly important
when the model is used to decide a course of action during an environmental crisis.
Consider the yellow perch model, described in section 4.5. The IOM model required 20
hours to simulate 30 years of population data while the aggregate model required 20
minutes for the same simulation. The steady-state population size, predicted by the IOM,

is approximately 250% of the population size predicted by the aggregate model. The
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MRM required 10 hours to execute the same simulation and reduced this error to 120%, so
the MRM simulation results in a loss of accuracy and a decrease in execution time. If the
results from this model must be collected within 10 hours, then a 120% loss in accuracy is
expected. If this loss in accuracy is acceptable, then the model is successful. That is, it

delivers an acceptable simulation within the time constraints of the user.

To use STEMSS-MRM effectively, the modeler must be able to predict, with
confidence, the accuracy and execution time of the MRM. For example, during the initial
phases of an oil spill in the coastal United States, the U. S. Coast Guard is responsible for
directing the federal government’s response to the spill (EPA, 2002). The response
involves deciding where to place specific resources and doing so in a timely manner. Any
method designed to aid in making this decision must be able to produce results quickly

and with acceptable accuracy.

To understand how to predict execution time, consider the intent of an MRM. In a
sense, the desired outcome of an MRM is the creation of a model that produces the most
accurate results in a specified amount of time. That is, given all possible traces for the
HRM, LRM and every possible model switch and enough time, the traces could be
combined to construct every possible MRM. The accuracy of the MRMs, relative to the
HRM, can be plotted against execution time. The modeler can use these plots to determine
the minimurmn execution time required to produce for a given level of accuracy. Though
such an analysis is impractical, due to the cost of collecting and analyzing the data, it does
provide some insight into the factors that affect performance. In essence, the approach is

designed to find the sequence of model switches that produces the minimum execution
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time across a range of model accuracies. As the sequence cannot be known a priori, an
approach to estimating the performance cost of an arbitrary switching policy is necessary

if STEMSS is to be used effectively.

To estimate the cost of a switching policy, it is necessary to estimate the overhead
cost due to STEMSS, the constituent models and the user-defined switching methods. This

estimate is expressed as:

Tove = Tstemss * NurmT ypps + NeamT Lo + Nown T sun + NswiTswi (22)

where:

T, 15 the execution time of the model,

TsTEMss 18 the overhead cost of the STEMSS methods,

Ny is the number of HRM transitions performed in a simulation,
Ny gas i the number of LRM transitions performed in a simulation,
Typu 1s the time to execute the HRM,

T pag is the time to execute the LRM,

Nop is the number of HRM switches performed in a simulation,

Nyt is the number of LRM transitions performed in a simulation,
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T, 1s the time to execute the switch from the LRM to the HRM, and

T, 1s the time to execute the switch from the LRM to the HRM.

The timing parameters (i.e., T, Tstemss: Tarms Trrae Tavn and Ty,,p) can be
estimated by profiling the simulation to measure the time required by each routine and
associating those times with the performance equation parameters. These parameters may
be constants, they may be dependent on the number of models associated with the active

model, N, or the may depend on the number of model switches made by the simulation,
Ny, For example, in a population model, when the IOM is active, N,, is the population
size. When the aggregate model is active, N,, is the number of modeled populations. Since
the timing parameters depend on N,, or N,,,, profile data can be used to compute the

average value of the timing parameters as a function of N, or N,

The frequency parameters (i.e., Ny No Narass NLrms Nt Nowyg) can also be
estimated from the profiling data, but this approach may be counterproductive. Each
parameter can be associated with a specific function call. For example, the number of
switches from the HRM to the LRM, NLRM, is the number of calls to the user-defined
switching function. Unlike the timing data, however, the frequency data is dependent on
model execution. The number of calls to a given function depends on the model and the
duration of the simulation. This approach to estimating the frequency parameters has two
potential drawbacks with respect to this analysis. First, these parameters are model
dependent, so they require a complete characterization of the model’s behavior to

estimate. For a simple model, with a small parameter space, the characterization should be
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tractable. However, for a model with a large parameter space and complex behaviors and
interactions, a complete characterization will be difficult. The second drawback, actually a
benefit from the modeler’s perspective, is that a complete characterization would make the

need for further simulation unnecessary.

Since characterizing complex models is a difficult problem, an alternate method
for estimating frequency parameters is needed. One technigue is to rely on the domain
knowledge of the user to estimate the number of model transitions and switches. A second
technique is the incorporation of the performance equation into the running simulation.
The MRM, as it is currently implemented, uses a specific state value to decide when to
switch the active model. Conceivably, the performance equation might be used to
determine optimal switching times by using a system monitor to estimate the performance
parameters while the simulation is running. A third technique is to adapt the switch
detection logic to a steering mechanism. With a monitor providing performance
information, the user can manually intervene in (or steer) a running simulation by
reducing accuracy to speed up the execution, or to slow down the simulation to improve

accuracy. Both of these alternatives require an accurate performance equation.

The development of a performance equation assumes that the MRM will, in fact,
improve execution time. To validate this assumption, this chapter includes a performance
study in which the logistic model suite, described and analyzed in Chapter IV, is used to
validate the central hypothesis of this dissertation, that the MRM can improve the

execution time of the HRM. Without this validation, a performance equation is irrelevant.
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The second study discussed in this chapter is designed to develop the performance
equation for the logistic MRM and to demonstrate its use. In the first step of this study, the
STEMSS control flow is used to specify the performance equation of the logistic MRM
and profile data is collected and analyzed to derive parameters for this equation. The
logistic MRM performance equation is then validated by using it to predict the execution
times of the simulations used in the first step. In the final step of this study the validated
performance equation is used to predict the execution time of the logistic MRM for a
previously untested parameter set. The final step is a demonstration of the use of STEMSS

in a crisis.

5.2 Timing Analysis of Logistic Equation

5.2.1 Purpose

The central hypothesis of this dissertation asserts that, in part, an MRM can
improve model execution time relative to the execution time of the LRM. This assertion
cannot be proven, in general, as the performance characteristics of each model are unique
and some model characteristics may defy any atternpt to produce an acceptable MRM.
Nevertheless, the assertion can be validated (or invalidated), for a particular model, by
characterizing the execution time of the model with respect to the model’s parameters and

switching policies.
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In this analysis, the hypothesis is validated with the logistic MRM. The experiment
compares the execution time with the upper population bound, U, the stochastic birth rate
parameter, A and the model’s switching threshold, th. The performance study also
provides an analysis of the changes in execution time due to HRM activity. HRM activity
is the ratio of the number of times the HRM is active to the number of MRM events
processed by the simulation. This analysis shows that switching threshold is a valid
parameter for controlling MRM execution. That is, an increase in the switching threshold

will increase the execution time.

5.2.2 Procedure

The logistic model suite was used in this experiment (see Table 27) and the
simulation procedures are identical to experiment 4.5, except the model was compiled
using the TAU performance system (TAU, 2002). TAU was used to collect execution time

data and HRM activity. For the logistic model, HRM activity is:

[ — o (23)
¢ Niam + Nagg

where H, is HRM activity, Ny, is the number of times the IOM model is active and N,

is the number of times the aggregate model is active. For this test, H, is IOM activity.
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Table 27: Logistic Model Performance Data

%HRM ZHRM
<U, A> avg std aclivity  avg sid activity
<100, 1.0> <100, 2.5>
MRMga;  0.121 0.0058 73.5 0.108 0.0055 67.9
MRM,;5 0.122 0.0061 75.6 0.110 0.0037 67.9
MRMp,4 0.158 0.0050 99.4 0.148 0.0046 98.5
IOM 0.149 * 0.0270 100 0.144 * 0.0259 100
<1000, 1.0> <1000, 2.5>
MRM;,3  2.588 0.2120 67.4 2.267 0.1479 61.5
MRM,35 3.158 0.2092 83.1 2.595 0.1779 70.6
MRMp.4 3.730 0.1918 96.3 3.085 0.2169 82.7
10M 3.752 0.3036 100 3.586 0.0587 100
<2500, L.0> <2500, 2.5>
MRMg,; 22.221 4.6768 69.7 20.03 3.2569 63.4
MRMga35 30.681 5.70%9 90.0 25.41 5.2474 76.3
MRMp.4 34.954 5.3828 98.5 31.81 4.8771 88.3
IOM 33.240% 47261 100 34.58 5.1511 100
<5000, 1.0> <5000, 2.5>
MRM;»3;  280.35 32.591 722 243,70 22,721 66.1
MRMg ;35 379.63 13.725 93.1 304,33 2B.737 79.4
MRMp.4 408.78 6.0192 98.9 376.90 12.565 94.7
IOM 42281 10.459 100 416.55 8.8088 100

* execution time for the IOM model is less than the execution time of the MRMj, 54 simulation.

For all tests in this simulation, the average growth rate for individuals was set at R
= 3.0, the upper population bound was selected from the set U/ = {100, 1000, 2500, 5000},
the stochastic term for birth rate was selected from A = { 1.0, 2.5} and the threshold value
was selected from th = {0.23, 0.235, 0.24}. Thirty simulations for each combination of
parameters were run and the timing data for specific functions was collected. The average
execution times for each parameter set were collected and plotted as families of threshold

value curves.
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5.2.3 Results

Table 27 presents the average and standard deviation of the execution time and
HRM activity, as a percentage, for each parameter set. In general, the average execution
time increases as the threshold value increases except the <100, 1.0>, <100, 2.5> and
<2500, 1.0> data sets show a decrease between MRM 54 and IOM. The decrease is small
(6.4%, 2.8% and 5.1% of the IOM time for <100, 1.0>, <100, 2.5> and <2500, 1.0>
respectively), so the decrease may be an artifact of the stochasticity in the model or it may
be the result of simulation overhead, these assertions are still under investigation. In either
case, these inconsistencies suggest that there may be a limiting level of IOM activity in an

MRM that, when crossed, causes an increase in MRM, relative to the IOM, execution

450
th=0.23 —9—
400 th=0.235 —&—
th=0.24 —&—
IOM —%—
350
300
T 250
E
E 200
£
15¢
100
50
0 1
aco 1000 2500 5000

Upper Population Bound (U)

Figure 47. Execution Time of Logistic MRM with A= 1.0
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Figure 48. Execution Time of Logistic MRM with A = 2.5

time. The execution times for the A = 1.0 and 2.5 switching thresholds are shown in

Figures 47 and 48, respectively.

5.2.4 Discussion

The effect of the model parameters and threshold values on the execution time of
the simulation reaffirms the central hypothesis of this dissertation. That is, the data show
that the execution time of an MRM can be less then that of the high-resolution model. The
data also suggest that execution time of an MRM can exceed that of the HRM when the
amount of IOM activity is high. This is an undesirable result which will be characterized

in future work. Nevertheless, the observations from this study suggest that the switching
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threshold can control execution time. This suggestion, coupled with the observations
regarding model accuracy made in Chapter IV, indicate that a user can predict the
execution time and accuracy of a particular parameterization based on the switching

threshold value,

3.3 Logistic MRM Performance Equation

The analysis in section 5.2 suggests that an MRM can improve the execution time
of simulation and that a user can control the execution time, but it does not identify the
factors that influence execution time. These factors, if properly exploited, could provide
the user with more control over the execution time of the simulation and may form the
basis for automating MRM switching control. The study performed in this section uses a
detailed analysis of the simulator’s control flow and profile data of the logistic MRM to
identify the significant performance factors and to develop a performance equation based
on these factors. It is important to keep in mind that the logistic model represents one of
the simplest possible models to construct and analyze, so the performance equation must

provide good results in this case or it cannot be expected to work in other, more complex,

Cases.

Figure 49 shows flow of control in a STEMSS-MRM simulation. The simulation
begins with the event loop removing the head of the future event list (fel) and invoking the
MRM transition function associated with that event. The event may be reinserted into the

fel, depending on the outcome of the transition function, The MRM transition function
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Figure 49. MRM Control Flow

will invoke either an LRM transition function or an HRM transition function, depending
on which model is active, then test the model switching condition. If the condition is met,
the MRM will set up the switch, by activating the resolution controller. When the MRM

transition completes, control is returned to the event loop and the process repeats.

The execution time of a simulation is the sum of the cumulative cost of executing
the high and low-resolution models, the cumulative cost of model switching and

cumulative cost of the simulation overhead. The cost of executing the high and low-
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resolution models is the sum of cumulative execution time of each transition function, T},.;
The cost of model] switching is the cumulative execution time required by the switching
function, T, The simulation overhead costs consisting of the time for each iteration of
the event loop, Ty, the overhead costs of event processing, T}, and mode! switching, T,,,,.

For an arbitrary model, the performance equation can be rewritten as:

Tore = Too+ Tpo+ Tyt Y, Ty i+ T, +e (24)

ie { trans}

where {trans} is the set of model transition functions and € is the setup and cost which is
negligible compared with the rest of the simulation, so it will be ignored. To use equation

24, the specific performance behavior of each factor must be carefully investigated.

The processing overhead, T}, 1s the overhead cost of processing model transition
events. As there are only two types of transitions in STEMSS, network and model events,
the total overhead cost of event processing, during the course of a simulation, is the sum of

the network and model transition overhead costs, or:

- (25)
Tpo - NmHm+Nan
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where H,, is the exclusive time required to process a model transition, per method call
and H,, exclusive time required to process a network transition, per method call. Both H,,

and H, are model independent values. The value, T,,, is the total overhead cost of model

execution. To determine the overhead cost of event processing per event, and thus the

model independent cost of event processing, T, is reported as an average cost per event,

F,

po» and is computed as:

Foo o Tro (26)
Po = (N_+N,)

After processing a model event, the MRM transition function invokes a switch
detection method, defined by the user. If the switching condition is met, the MRM will
switch the active model, using the STEMSS switch configuration mechanism. The total
overhead cost of switching, T,,,, is the cost of switch detection plus the cost of setting up
the switch. The MRM tests for a switch-to-low condition when the HRM is active and the
switch-to-high condition when the LRM is active. Therefore, the number of switch-to-low
tests is the same as the number of HRM transitions and the number of switch-to-high tests
is the same as the number of LRM transitions. Given the relationship between the
switching tests and the resolution of the active model, the overhead cost of model

switching is:
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Twa = N:rHaTswl + NrrLaT.rwh + NswlT:.rwl +N T (27)

swh' sswh

N, is the number of transition functions invoked by the event loop, over the course

of the simulation,

H, is the ratio of high-resolution models to N,

L, is the ratio of low-resolution models to N,

T is the cost for setting up the switch to the high-resolution model and,
T 51, is the cost for setting up the switch to the low-resolution model,
N, is the number of switches to the high-resolution model,

N

qwi 18 the number of switches to the low-resolution model,

T .1, is the cost of making the high-resolution model active, and

T, is the cost of making the low-resolution model active.

The times required to set up a switch, T, and T, are model dependent. If the MRM

uses a switching threshold policy, as in the logistic MRM, then both values should be

constant, though not necessarily equal. The number of switches to the high-resolution

model and low-resolution model are such that Ny, = N,y 1, andN,,, = N, + Ny,
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where N, is the total number of switches. With some algebraic manipulation, equation 27

can be written as;

1
Twa = N:r(HaTswl + LaTswh) + iNsw(Tsswl + Tsswh) (28)

The cost of executing the constituent model is the cumulative time required to
execute each model transition, For an arbitrary transition function, {, the cumulative time

required to execute i is the total time required to execute the function, T},;, times the
number of times the methed is invoked, N,,... The number times the method is invoked can
be stated as a ratio, Ry,; = N,,.;/N,, and the total cost of model execution can be stated, in

an algebraically convenient form as,

29
Ner z Rrr,iT:r.i (29

i€ { trans}

The time required to switch the active model depends on the STEMSS method for
coordinating the switch and the switching methods defined by the user. The cost of model
switching therefore is the cumulative time required by the STEMSS resolution switching
function, and the time required by the user-defined high-to-low-resolution switch and low-

to-high-resolution switch. The cumulative time required by the STEMSS switching
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method is H,, *N,, where H, is the time required to switch models, excluding the
invocation of the user-defined switching method and N, is the number of switches
performed by the simulation. Recall from the discussion about computing T,,,, that N, ;=
Ngop and No o + No oy = N The cumulative time required to switch active models is
NowtTrstt + NownTpsn, Where N, and Ny, are as previously defined and T}, and 7, are

the inclusive times of a single reset of the IOM and aggregate mode! respectively. With

some algebraic manipulation, the performance equation becomes:

Ty = Tpp+ N,r[Fpo LTt H gt 3, Ry T+ (30)

fe { trans}

1
Nswl:i(Tssw[ + T.rswh + Tr.ﬂl + Tr.ﬂh) + st]

T,, is the overhead cost of executing the simulation loop, which includes event
insertion and removal. The inclusive cost of executing the simulation loop includes the
event processing costs and the exclusive cost ignores the list manipulation costs, therefore,
T, cannot be directly measured. Instead, T, is estimated as the difference between the

inclusive cost of executing the event loop minus the cost of event processing. In this case,

event processing includes both model and switching event processing, so T, is:



164

T,, = T“.m—(Tpo+ T+ 2 T, i+ T,w) (31

ie { trans}

where Ty, is the total cost of executing the event loop, including the invocation of

transition methods. The cost of executing the event loop per iteration is, Fy, = T, /N,

By estimating the time parameters, in terms of time per event or time per switch,
these parameters are model independent, in the sense that the values are not determined by
the execution of a specific model. This gives the user some latitude in measuring the
parameters. For example, the user could create a set of deterministic tests that provide
precise measurements of each parameter. In this study, profile data from several

simulations using the logistic MRM are used to estimate these values.

Unlike the timing parameters, the frequency parameters depend on the duration of
the duration of the simulation and the specific model. The frequency parameters can be
restated as N, = T*n,, and N, = T*n,, where T is the simulation duration, n,, is the
number of transitions per unit of simulation time and #,,, is the number of switches per

unit of transition time. The restated parameters lead to a general equation for a STEMSS-

MRM:

Texe = T{’I"[Fm L Fpo i LaT.rwl + HaTJWh + z R"’ iT"‘ i] * oz

ie {trans}

1
nsw[i(Tsswi + T:swh + Trsrl + Trsth) + st]}
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To use the general performance equation (Equation 32) for a specific model, the

T,

user must identify each parameter. The parameters, Fy,,, F,,, Tqop Teswr and Hy,, depend

sor ¥ pos

on STEMSS only while the parameters n,,, ng,, Hy, Ly, Rypio Tipis Tooie Ty and Ho, are

model dependent.

To determine the cost of model processing the specific transition functions must be
identified. In the logistic MRM, for example, the model transitions are reproduction, IOM
growth and aggregate model growth. The reproduction functions are associated
exclusively with the IOM, so the number of reproduction events depends on IOM activity.

That is, the cost of the reproduction events is N, aRreproT repro» Where T, is the total
cost of executing the reproduction method and Ryeprp is the number of reproduction events

per IOM event. The cost of model execution, for the logistic MRM, is:

H R T +L T. 4+HT (33)

a‘‘repro® repro a“ iom atagg

where Tj,,, is the cost of executing a single IOM growth event and Tagg 1s the cost of

executing a single aggregate model growth event.



Profiling information is used to derived values for the performance equation

parameters. The information supplied by the profile data includes the number of calls
made to specific methods, the cost of executing each function, excluding the cost of
subroutine calls (exclusive time) and the cost of executing each function, including the

cost of subroutine calls (inclusive time). The profile information does not map to the

parameters directly, so Table 28 is provided to show the association between the

performance equation parameters and simulation method calls.
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Table 28: Association of STEMSS Methods and Performance Equation Parameters

Function

number of
calls

inclusive
time

exclusive
time

main

simulate

Model::transition

MRM::transition

Network::transition

Nm, number of
model transitions
and used in the

estimation of Tpo

Ntr, number of
MRM transitions

Nn, number of
network transitions
and used in the
estimation of Tpo

Texe, program
execution time and
is used to validate

the performance equation

Tsim, simulation
loop execution time,
used (o estimate Fso

Hm, overhead cost
of model transition
call and is used in the

estimation of Tpo

Hmrm, overhead cost
of MRM transition

Hn, overhead cost
network transitions
call

estimation of Tpo
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5.3.1 Procedures

The logistic MRM was recompiled with TAU and executed with U = 100, 1000,
2500, 5000 and A = 1.0, 2.5 and threshold values, th = 0.23, 0.235 and 0.24 and R = 3.0.
The simulations were run 30 times for each parameter set and switching threshold
combination. The performance data generated by TAU was collected and organized
according to A, U and th. The data includes the number of calls to a given method, the
cumulative time required to execute the method, including the function calls (inclusive

time), and the time to execute a method excluding function calls (exclusive time).

The average value of each performance equation parameter, for each model
parameter set, was computed and tabulated. These values were used in the performance
equation, which was used to estimate the average execution time of simulations. To
validate the equation, and to estimate its accuracy, the error between the estimate average
execution time and measured execution time, relative to the measured execution time was
computed for each parameter set. The errors were plotted as a function of U and are used

to estimate the error in the performance equation.

To demonstrate how a user can predict model accuracy and execution time, the
logistic MRM was executed with an additional set of simulations. The new set of
equations used U = 3500, A = 1.0, 2.5 and th = 0.23, 0.235 and 0.24. The performance
equation was used to predict the execution time of these simulations and the error versus
switching threshold values was graphed. This demonstration shows how a modeler can use

STEMSS in a crisis when there are constraints on the execution time.
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5.3.2 Results

5.3.2.1 Performance Equation Parameters

The average value for each parameter in the performance equation will be
presented as tabular and graphical form. Each graph plots a parameter value as a family of
curves with constant switching threshold values plotted against the upper population
bound. Recall that this analysis is for the logistic MRM, other models may require

different methods for presenting the data.

As the estimation of parameters relies on TAU, the overhead for TAU was
estimated by comparing the execution of mode! with and without TAU instrumentation.
The measured overhead was between 0.1% and 2%. These results suggest that bias in

parameter values, caused by TAU, is not significant.

53.3.2.1.1 N,,and N,

Table 29 shows the average number of model transitions and model switches per
simulation for parameter set and switching threshold. Figures 50 and 51 show the graphs
of N, with A = 1.0 and 2.5, respectively. Both graphs show a roughly linear increase in the
number of events as U increases, so the modeler can estimate the number of model

transitions by interpolation with this graph.
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Figures 52 and 53 are graphs of the average number of switching events, for A =

1.0 and 2.5 respectively. The curves decline as a function of U when U > 1000, though it is

unclear whether the decline is asymptotic or the model eventually ceases to switch. For

values of U less than 1000, the behavior of the curves appears to be uncorrelated. This

may be due population extinctions for smaller values of I/ but the matter needs to be

investigated. Though the specific form of the curves can only be learned by further

analysis, a modeler can use these curves to estimate the number of transitions and

switchesin a simulation. As the impact of switching, on the logistic model is small, a

linear interpolation for U greater than 1000 should be sufficiently accurate. ,

Table 29: N,, and N, values

A=1.0 A=235
th 0.23 0.235 0.24 0.23 0.235 0.24
Ny
100 8182 8182 11300 7356 7356 10910
1000 72680 90900 106600 64830 75160 89440
2500 188600 248000 272900 168700 205800 241000
3000 392800 514000 548200 354500 431000 315400
NSW
100 264 265 5.6 322 322 15.
1000 326 169 37 385 295 173.
2500 304 99 15 366 237 117,
5000 278 69 Il 339 206 64
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Figure 50. n, versus U forA=1.0

aoo 1000 2500 5000
Upper Population Bound (U)

Figure 51. n,, versus U forA=2.5
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Nigm: Hyand L,

The average number of aggregate model and IOM growth events are presented in

Table 30. This

data is use to compute IOM activity (H,) and aggregate model activity (L,)

Table 30: N,... and N;

agg iom
A=10 A=25

th 0.23 0.235 024 0.23 0.235 0.24
Niom

100 369 369 498 340 340 493
1000 338 416 483 308 353 414
2500 349 451 493 318 382 442
5000 362 467 496 33 398 469
Nagg

100 132 132 2.8 161 161 7.67
1000 163 85 18 192, 148 87
2500 152 50 7.6 183 119 59
5000 139 34 5.5 169 103 32

60

50
40

Percent Activity

30
20
10

A
fmomoe—es o
th=0.24 —&—
. aggregate
= . S 8
E e "} wrro— =
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Upper Population Bound (U)

Figure 54. IOM and Aggregate Model activity versus U, with A=1.0.
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Figure 55. IOM and Aggregate Model activity versus U, with A=2.5.

and the resulting plots are shown in Figures 54 and 535, respectively. The curves for both

H, and L, appear to be either linear or asymptotic. In either case, a modeler can use these

graphs as a basis for estimating H, and L,,.

53.2.13 T,

The overhead cost of model transition processing is the cost of invoking the
transition functions. In STEMSS, the invocation of a transition function requires the
identification of the appropriate transition function and the invocation of that function.

This cost is the exclusive cost of executing the model and network transitions, H,, and H,,
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Figure 56. F,, versus U, with A = 1.0 on bottom and A = 2.5 on top.

times the number of model and network transitions, N, and N,,. Figure 56 shows the

graphs of processing overhead per event as a function of U for A= 1.0 and 2.5.
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The overhead cost of switching transitions is the cost of detecting and setting up a

model switch. These values are determined by the number model transition events, the

number of switches and the time to process each of the related methods. Table 31

presents the times associated with the switching parameters, Ty,

and Figures 57-60 show the graphs of T, T Teqep and T, versus U. Each figure

vah and Tsswl

shows the graphs for the A = 1.0 and 2.5. The graphs show an increase in each parameter

value as U increases, and the parameter values for each th are generally consistent, i.e.,
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th = 0.24 produces the highest results for T, and the lowest for T, and T,,,;. The trend

for T,y is unclear. The significance for each parameter is small, so linear interpolation is

used to approximate the values of these parameters.

Table 31: Switch Detection Parameters

A=1.0 A=25
th 0.23 0.235 0.24 0.23 0.235 0.24
Tswl
100 0.0011 0.0011 0.00025 0.0014 0.0014 0.00028
1000 0.0020 0.0011 0.00040 0.0024 0.0018 0.0011
2500 0.0029 0.0014 0.00088 (0.0032 0.0025 0.0017
5000 0.0027 0.0012 0.0007 0.0030 0.0023 0.0011
Tswh
100 0.0017 0.0017 0.0038 0.0017 0.0017 0.0024
1000 0.0018 0.0021 0.0024 0.0018 0.0018 0.0019
2500 0.0024 0.0025 0.0041 0.0021 0.0022 0.0024
5000 0.003 0.0034 0.0056 0.0030 0.003) 0.0034
Tsswl
100 0.0013 0.0013 0.0014 0.0013 0.0013 0.0013
1000 0.0019 0.0019 0.0019 0.0019 0.0018 0.0018
2500 0.0029 0.0029 0.0028 0.0027 0.0028 0.0028
5000 0.0034 0.0035 0.0034 0.0033 0.0033 0.0034
Tsswh
100 0.00027 0.00027 0.0003 0.00027 0.00027 0.00028
1000 0.00027 0.00027 0.00028 0.00027 0.00027 0.00028
2500 0.00030 0.00028 0.00028 0.00027 0.00028 0.00028
5000 0.00031 0.00030 0.00030 0.00031 0.00034 0.00030
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so 18 the difference between the inclusive simulation time and the inclusive cost of

processing events (see Table 32). The performance equation requires the use of F,,, rather

Table 32: STEMSS Overhead Cost, T,

A=1.0 A=25
0.23 0.235 0.24 0.23 0.235 0.24
TT()
100 285.97 276.67 408.57 250.98 240,50 362.39
1000 2231.65 2803.78 3554.04 2020.31 2289.91 2688.64
2500 5887.88 7831.91 9114.29 5515.77 6673.17 7513.57
5000 1209040  15665.32  18665.63 12726.83  15105.16 17171.34

2500

Time (usec)
8

5000

100 1000 2500
Upper Population Bound (U)

5000

Figure 61. Fy, versus U, with A = 1.0 on bottom and A = 2.5 on top.
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Table 33: Logistic Reproduction Parameters

A=10 A=235
0.23 0.235 0.24 0.23 0.235 0.24
N, repr
100 7681 7681 10800 6855 6855 10410
1000 72180 90400 106100 64330 74660 88940

2500 188100 247500 272400 168200 205300 240500
5000 392200 513500 547700 354000 430500 514800

Trepro A=10 A=25

0.23 0.235 0.24 0.23 0.235 0.24
100 00062 00062 00063  0.006 00060  0.0062
1000 0.013 0.013 0.013 0.012 0.012 0.012
2500  0.038 0.041 0.042 0.038 0.040 0,043
5000 0.1 0.22 0.22 0.20 0.21 0.22

than T, so Figures 61 show the graphs of F, versus U, for A= 1.0 and 2.5, respectively.

The curves in both graphs show an apparent minimum, which makes estimating the

parameter value difficult. Nevertheless, as the impact of F, is small, the value is estimated

using linear interpolation.

5.3.2.1.6 Logistic IOM Parameters

5.3.2.1.6.1 Reproduction Events

The time required to process reproduction events is the number of reproduction
events times the time required to process a single event. The data related to the cost of
processing reproduction events is presented in Table 33. The performance equation uses

the ratio of reproduction events to IOM events, Rrepro» rather than N,.,,,. The graphs of
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Figure 63. R, versus U, with A=2.5
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Rrpepro for A= 1.0 and 2.5 are shown in Figures 62 and 63, respectively. Both graphs appear

to be linear, so a linear interpolation should be sufficient for estimating the parameter

values. The graphs of 7, are shown in Figures 64 and 65, for A= 1.0 and 2.5,

respectively. These graphs show a nonlinear trend in the time required to process events

and the importance of the measurement requires a visual approximation of the parameter’s

value.

5.3.2.1.6.2 Aggregate Growth Events

The time required to execute the aggregate model’s growth method is the product

of the time to execute a single invocation of the method, Tagg, and the number of times the

method is called, N,z,. The data for N, are shown in Table 30. Table 34 presents the
average execution time for a single invocation of the method. These data suggest a

constant cost for invoking the aggregate model’s growth method. To estimate this

parameter, linear interpolation should be sufficient.

Table 34: Aggregate Logistic Growth Parameters

A=1.0 A=25
0.23 0.235 0.24 0.23 0.235 0.24

agg

100 0.00029 0.00029 0.00029 0.00029 0.00029 0.00029
1000 0.00030 0.00030 0.00030 0.00030 0.00037 0.00030
2500 0.00037 000036 0.00033 0.00038 0.00037 0.00038
5000 0.00040 0.00041 0.00039 0.00042 0.00040 0.000405
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5.3.2.1.6.3 IOM Growth Events

The time required to execute the IOMs growth method is the product of the time to

execute a single invocation of the method, T;,,,, and the number of times the method is
called, Nj,,,. The data for N;,,,, are shown in Table 30. Average execution time for each
parameter set is shown in Table 35 and in Figures 66 and 67. As with T,,,, To, has a

significant impact on the perforrnance equation, so a linear interpolation is not sufficient.

Instead, the equation is approximated visually.

Table 35: Logistic IOM Growth Parameters

A=1.0 A=125
0.23 0.235 0.24 0.23 0.235 0.24
T}Jim
100 0.095 0.096 0.11 0.088 0.088 0.10
1000 3.68 3.83 4,034 3.43 3.56 n
2500  35.52 43.20 45.35 39.15 42.00 46.06

5000 53191  561.60 569.56 504.50 526.04 554.47
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5.3.2.1.7 Switching Cost
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The cost of switching the active model is divided between the cost of the STEMSS

resolution switching method, A,

and the user-defined methods for performing the

switches, T,.z and T, The performance data for Hy,, is presented in Table 36 and the

data for Ty and T, are shown in Table 37. Figure 68 shows the graphs of H,,, versus U,

Table 36: H,,
A=10 A=25
0.23 0.235 0.24 0.23 0.235 024
H.I'W
100 0.002 0.002 0.003 0.002 0.002 0.002
1000 00025 0.0025 0.0025 0.0025 0.0025 0.0025
2500 0.0029 0.0029 0.0027 0.0027 0.0030 0.0031
5000 0.0033  0.0039 0.0030 0.0029 0.0036 0.0036
Table 37; Switching Times
A=1.0 A=25
0.23 0.235 0.24 0.23 0.235 024
Tm!
100 0.032 0.032 0.030 0.030 0.030 0.032
1000 046 045 0.39 0.43 0.43 0.43
2500  1.20 1.16 0.86 1.12 1.12 1.12
5000 246 2.38 1.68 2.30 2.29 2.23
Yy A=1.0 A=25
0.23 0.235 0.24 0.23 0.235 0.24
100 0.034 0.033 0.032 0.033 0.0329 0.032
1000 0.516 0.494 0.415 0.486 0.473 0.454
2500 136 1.28 0.982 1.263 1.238 1.191




for A= 1.0 and 2.5, respectively. The trends in these graphs are unclear, however, the

impact of H,,, is small, so a linear interpolation is used to approximate this parameter.

The graphs of the 7., for A= 1.0 and 2.5 are shown in Figures 69 and 70

respectively and the plot of Ty, for A = 1.0 and 2.5 are shown in Figures 71 and 72.
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respectively. The graphs for T,,; and T, are apparently linear, so a linear interpolation is

used to approximate these parameters.
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Figure 68. H,,, versus U, withA=1.0
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5.3.2.2 Validation of Performance Equation

The performance equation was used to estimate the execution time based on the
simulation parameters used to produce the performance equation parameters. The relative
error between the predicted and actual time, calculated as (T, pred - Toxe)/ Toxe» Was plotted

versus U and computed for each for each value of T, ,.4. The plots for A= 1.0 and 2.5

are shown in Figures 73 and 74 respectively. The error between the predicted and the
actual value does not exceed 5%, is not substantial. Therefore, the relative error between

the predicted and actual time is not significant.
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To validate the equation, an additional set of simulations was run using U/ = 3500,
A=1.0and 2.5 and th = 0.23, 0.235 and 0.24. The performance equation, using parameter
values from graphs describe above, was used to estimate the runtime for each of these
simulations. Figures 75 shows the relative error between the predicted and actual
runtimes. The error in the predicted execution time for the program is less than 10%. As

the IOM activity increases, the prediction becomes more accurate.

5.3.3 Discussion

This experiment validates the general MRM performance equation (equation 9)
and describes how a model can predict both accuracy and execution time for an arbitrary
simulation. Figures 73 and 74 show that, for the cases tested, the equation maintains a
prediction error of less than 5%. If a modeler were required to produce a simulation,
within a specified time limit, using the logistic MRM, he or she can select a switching
threshold that would accomplish the task. He or she can estimate the accuracy of the
model, relative to the IOM version of the model. The analysis provided in this experiment
is for the logistic model, which is easy to analyze. To produce a similar analysis of another
model say the yellow perch model, would be time consuming and the prediction accuracy
might not be as good. This is an inherent problem in using an MRM. The ability to predict
performance of any model depends on the nature of that model and, currently, it depends

on a thorough profile of that model. For an IOM with a large parameter space, it is unlikely
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that the user will produce a thorough profile, so the user must develop some intuition

regarding behavior of the model.

Another important result of the performance equation is that it may aid in the
development of model switching policies. The current policy of setting a constant
threshold value was developed for demonstration purposes. The performance equation, in
conjunction with the profile data, describes the factors that influence the simulation’s
execution time, which can aid in identifying potential performance bottlenecks. The
ability to identify and avoid these bottlenecks could improve and refine the ability of a

modeler to control the simulation’s execution time,

Consider the logistic MRM. The current switching policy waits for the invocation
of the annual growth method before testing for a switch. However, stochastic effects can
produce legitimate switching conditions before the annual step. The performance equation
can estimate the cost of switching between annual growth updates which can form the
basis of a new switching policy. Moreover, the equation can be incorporated into the
STEMSS framework to make these estimates during realtime. The potential uses of the

performance equation need further analysis.

5.4 General Discussion

Perhaps the most important result in this chapter is the evidence that STEMSS-
MRM can improve execution speed. In particular, the graphs of execution time versus

upper population bound (see Figures 47 and 48) show that, with an appropriate selection
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of the switching threshold, the user can improve execution time. This result reaffirms an

underlying aspect of the central hypothesis of this dissertation.

The chapter also points out possible avenues for further research. In particular, the
use of the performance equation in identifying bottlenecks is an important research
direction. To use the equation effectively, the relationship between performance factors
and model accuracy must be carefully analyzed. The analysis should lead to the

development of heuristics for setting model switching policies.

In addition to characterizing the behavior of specific models, the incorporation of
the performance equation into the STEMSS framework is an important research goal. By
incorporating the performance equation into the framework, the modeler may be able to
set switching policies based on a set of performance and accuracy goals rather than setting
them based on an analysis of profile data. Moreover, the equation may be able to monitor
the simulation’s performance in realtime giving greater flexibility in controlling and
possibly automating the simulation’s switching behavior. Further research in the
characteristics of MRM behavior must be conducted before these techniques can be

implemented.



194

CHAPTER VI

CONCLUSIONS AND FUTURE WORK

6.1 A Review of the Hypothesis and Contributions

The central hypothesis of this dissertation is that multiple resolution modeling will
allow modelers to represent populations at more than one level of resolution while keeping
the results bounded by, and arbitrarily close to the behavior of the constituent single-
resolution models. Multiple-resolution modeling should also improve the execution of the

model relative to the execution time of the corresponding high-resolution model.

To validate this hypothesis in a population modeling context, it was necessary to
develop a set of population MRMs. However, a review of the ecological modeling and
computer science literature revealed two problems with this approach. First, the ecological
modeling literature suggests that the MRM should be developed in the context of a
software framework for molding and simulation, but no such framework exists. Second,
the development of MRMs relies on a general structure for multiple-resolution modeling
that extends the framework, but no such general structure exists. The task of this
dissertation was the creation of a well-defined, general framework for population

modeling and multiple-resolution modeling component that extends the framework.
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The creation of the framework depended on the requirements of ecologists. To
identify these requirements, it was necessary to understand how ecologists might use the
framework. Therefore, the first step in the research presented in this dissertation was the
identification of the requirements for developing the system. The second step was the
identification of the requirements for a general multiple-resolution modeling system. The
first two steps led to the development of STEMSS, which provides a framework for
multiple-resolution population models. The final step in this dissertation was the
validation of MRMs developed with STEMSS. The results of the validation study

confirmed the central hypothesis for a specific set of models.

To identify the specific requirements for creating the multiple-resolution modeling
framework and to validate the central hypothesis, Chapter I identified four research
questions whose answers would direct the development and testing of the system. These

questions were:

* How do ecologists use computer simulation?

* How does a model’s resolution affect its accuracy and execution speed? What factors
affect the selection of a particular resolution? What problems may arise in representing

a population at two levels of resolution?

» What are the issues related to computer science in developing MRMs and using them in
a simulation? In particular, how can consistency between constituent models, in an

MRM, be ensured?

* How well do multiple-resolution population models perform?
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6.1.1 Ecological Modeling and Computer Simulation

Until recently, ecologists have relied on mathematical techniques, such as
differential equations and finite difference methods to model population dynamics. With
the arrival of inexpensive computing, ecologists have extended their modeling repertoire
to include system theoretic techniques such as individual-oriented modeling. These
techniques provide significant benefits. For example, IOMs are assumed to be more
accurate than mathematical models as the latter are based on average-case behavior and
thereby lose information. On the other hand, IOMs are computationally expensive and are
treated with suspicion because they implemented as large and generally ad hoc computer
programs. This discussion lead to the following set of requirements for a population

modeling framework:

the framework must be based on a well-defined and generally-accepted modeling and

simulation theory,

» the modeling and simulation system must support a general set of modeling structures
that can be specialized to arbitrary model types (e.g., discrete-time, continuous-equa-

tion, discrete-event),

» the framework must provide a set of interface classes that refines the modeling struc-

tures to population modeling structures,

* the framework must also specify a technique for supporting code development from the

model specification.
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The purposes of these requirements are twofold. First, the framework must support
the development of population models, from an ecological perspective, and second, the

framework must support a multiple-resolution modeling extension.

The ecological modeling framework, STEMSS, was designed as a response to
satisfy these requirements. STEMSS supports the development of ecological models by
supplying two sets of modeling structures. One set is based on a generally accepted theory
of modeling and simulation and the other extends the modeling structures to represent
commonly used population modeling concepts. STEMSS also supplies a set of procedures
for defining models. The procedures explain the model’s structure and implementation

concisely and completely.

STEMSS is, nominally, a population modeling framework. However, the
underlying structure of STEMSS separates the support for ecological modeling from the
general modeling and simulation packages. As a result, the ecological modeling support in
STEMSS can be replaced with a similar structure from another domain. For example, a
computational chemist can replace the population modeling structures with chemical
modeling structures. The chemical modeling structures can represent a molecule as a
single-entity (model class), as a set components, such as amino acids in a protein,
(network class), or as a set of atoms. The STEMSS structure should provide a modeling

interface for alternate domains.
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6.1.2 Development of STEMSS-MRM

The developers of IOMs hoped the technique would eventually become the
dominant paradigm for ecological models. However, as the development of individual-
oriented modeling techniques advanced, the complexity of the IOMs increased, which
increased the computational effort required to execute them. To address the problem with
the computational requirements, ecologists have developed alternative representations,
including mixed IOM-aggregate model representations. The alternative presented in this
dissertation comes from the suggestion by DeAngelis and Rose, in which they describe the
use of both models as a representation of a system. This suggestion is also a description of

multiple-resolution modeling.

The specific advantage of an MRM, as described in this dissertation, is that the
model can produce simulations that are arbitrarily close to the IOM, but can execute more
quickly than the IOM. This approach may be especially useful for managing an
environmental emergency, such as an oil spill. Under these conditions, those charged with
cleaning up the disaster must make timely decisions about the placement of resources. To
use STEMSS-MRM in this situation, the modeler must be able to predict, with confidence,

the accuracy and execution time the MRM.

The problem with creating an MRM is the lack of a general description of the
requirements for multiple-resolution modeling. The existing research into the problem,
such as battlefield MRMs developed for the military, has identified fundamental issues for

creating valid MRMs. Among these issues are the requirements for state consistency, as
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described by Davis and Hillestad (1993) and consistency in cross-resolution interactions
as described in the multiple-resolution entity (MRE) concept (Reynolds et al., 1997).
Other research groups have worked on different consistency problems. The following is a
set of five consistency maintenance categories derived from a review of the existing
literature:

» the first category of MRMs consists of models with multiple state resolutions,

* the second MRM category consists multiple temporal resolution models,

» the third category of MRM, those that impose behavioral consistency,

* the fourth category of muitiple-resolution models consists of the models that impose

interaction consistency,

+ the fifth category of multiple-resolution models consists of models that impose the

organizational consistency.

The description of multiple-resolution modeling presented in this dissertation used
a well-defined theory of modeling, in conjunction with the consistency categories, to

develop a set of structures for MRM. To maintain consistency between arbitrary models,

the MRM must:

* include a means for translating the state of the constituent models,
* include a means for resolving state differences,
* include a means for resolving differences induced by temporal scale,

* include a means for resolving differences in input values,
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» include a means for resolving differences between network and model states.

To incorporate these requirements into the STEMSS framework, three structures
were added to STEMSS. The MRM class is used to couple the low-resclution and high-
resolution models into a single representation, the Translator class is used to coordinate
cross-resolution interactions and the ResolutionController class is used to implement
model switches. The MRM class is used to impose state, behavioral and segmentation

consistency between constituent models.

6.1.2.1 Testing of STEMSS-MRM

Three MRMs were developed to test the implementation of STEMSS-MRM
extension to the STEMSS framework. These models include the logistic model, a
predator-prey model and aversion of Rose’s yellow perch model. The tests were designed
to answer four questions. Does the MRM maintain state consistency for these models? Do
simulations based on the MRM remain bounded between the high and low resolution
models? Do the MRMs improve execution time? Does the MRM decrease the execution

time of the model, relative to the IOM.

The first study is used to validate the STEMSS-MRM structures and model
development techniques. Before testing the central hypothesis of this dissertation, using
models developed with STEMSS-MRM, showing that the framework is correctly
implemented is necessary. Therefore, the specific consistency maintenance routines were

tested. The results of this test showed that the MRM was correctly implemented.
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The second study uses the yellow perch suite to test the efficacy of STEMSS in
developing realistic multiple-resolution population models. As the goal of the system is to
aid in resolving real problems, the STEMSS system must support the construction of
realistic ecological MRMs. The models used in this test were simplified for analysis
purposes and for time constraints, but they are structurally consistent with the original

models. Therefore, they provide a realistic illustration of a STEMSS-MRM model.

The third study examined the behavior of the MRM under stochastic conditions
using the logistic MRM. These tests were used as examples of MRMs that support the
central hypothesis of this dissertation. The results of the tests showed that the logistic
MRM was bounded by its constituent models. Moreover, the test showed that the MRM’s
switching threshold could provide the user with a mechanism for controlling the accuracy
of the model. This result, in conjunction with the results of the timing studies, suggested

that STEMSS-MRM may be a useful tool for crisis management.

The fourth study examined the effect of model switching and model parameters on
execution time. These studies use the same set of models and parameters as the accuracy
study except that the model was compiled using TAU, which was used to measure the
simulation’s execution time. The test showed a linear relationship between execution time
and switching threshold. This relationship shows that, over a range of values, an MRM can
decrease the execution time of a model, relative to the MRMs high-resolution constituent

maodel.
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The third and fourth studies confirm the central hypothesis of this dissertation. The
simulation produced by the MRM is bounded by its constituent models and the MRM

improved the execution of the simulation, relative to the high-resolution model.

6.2_Future Work

6.2.1 Refinement of STEMSS

The most important piece of future work for the research in this dissertation is the
refinement of STEMSS. The current version of STEMSS implements a hybrid model
structure and a dynamic network structure. Though these structures can support
continuous, discrete or hybrid models, their generality makes them cumbersome to use.
Therefore, STEMSS needs to incorporate a wider variety of modeling options (e.g.,
discrete time and differential equation systems). Also, the current version does not support
an abstraction of the Zmap. An appropriate generalization of the Zmap will aid in the

development of MRMs.

Despite the modeling interface, producing ecological models with STEMSS is still
difficult. This is especially true for MRMs. The ecological modeling package provides
general structures common to many population models, but the relationship between an
ecologist’s view of a population and these structures has not been established. As the

success of STEMSS relies on the ability of ecologists to construct complex models based
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on an ecological understanding of the problem, improving the STEMSS model

development interface is important.

Improving the interface should take two directions. First, a thorough study of the
way in which ecologists develop models must be performed. Second, the lessons learned

in this study should be incorporated into a language, perhaps a visual langunage.

6.2.2 Spatial models

A final direction for the ecological aspects of STEMSS is the development of a
spatial modeling component. Spatial modeling is an important direction in ecological
modeling and STEMSS will have only limited utility if I do not include a spatial modeling
component. Fortunately, the rudimentary spatial structures (grids, cellular automata and

coupled-rnap lattices) have structures similar to the mode! and network structures.

6.2.3 Multiple-Resolution Modeling

The results of the experiments discussed in chapters V and VI imply that further
investigation into multiple-resolution modeling is warranted. Some possible topics for
further studies include the development and analysis of more complex models; the
development and analysis of other model switching policies and techniques; the
investigation of boundedness in other time series characteristics; and the impact of

resegmentation on model accuracy.
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This dissertation is not a proof of the efficacy of multiple resclution modeling.
Rather, it supplies empirical evidence that MRMs may have a place in scientific modeling.
To establish this point, we need to explore, both empirically and theoretically, the

limitations of multiple resolution modeling.
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