REGIONS AND CONTROL

by

MILEY EDWARD SEMMELROTH

A DISSERTATION

Presented to the Department of Computer
and Information Science
and the Graduate School of the University of Oregon
in partial fulfillment of the requirements
for the degree of
Doctor of Philosophy

March 2003

“Regions and Control,” a dissertation prepared by Miley Edward Semmelroth in partial
fulfillment of the requirements for the Doctor of Philosophy degree in the Department of

Computer and Information Science. This dissertation has been approved and accepted

by:

Kong,__Muol:

Dr. Zena M. Ariola, Chair of the Examining Committee

3-40 - 2003

Date

Committee in charge: Dr. Zena M. Ariola, Chair
Dr. Andrzej Proskurowski
Dr. Marie Vitulli
Dr. Michal Young

Accepted by: "

U] AT

Dean of the Graduate School

iii

An Abstract of the Dissertation of
Miley Edward Semmelroth for the degree of Doctor of Philosophy
in the Department of Computer and Information Science
to be taken March 2003
Title: REGIONS AND CONTROL

Approved: . W’O—) M ‘QQQ/

’ Dr. ZenﬁM. Ariola

Region analysis provides a conservative approximation of the lifetimes of objects
in higher-order programs. Stemming from earlier work on type and effect calculi, the
region system proposed by Tofte and Talpin has led to an implementation of Standard
ML based entirely on static memory management.

Extensive research has focused on the optimization and extension of region sys-
tems, as well as the subtle problem of formalizing their correctness. Although the
classical region calculus of Tofte and Talpin scales suitably to most of the constructs
of modern functional languages, relatively little is known about its relation to control
mechanisms such as exception handling and the manipulation of reified continuations.

We present a simple and scalable operational framework for proving the correct-
ness of region systems based on a variant of the Tofte-Talpin calculus. We then define
two extensions to this framework which serve to both clarify and formalize the inter-
action between region systems and constructs for generative exceptions and first-class

continuations.

iv

CURRICULUM VITA

NAME OF AUTHOR: Miley Edward Semmelroth
PLACE OF BIRTH: Washington, D.C.

DATE OF BIRTH: January 17, 1970

GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED:

University of Oregon
Western Michigan University

DEGREES AWARDED:

Doctor of Philosophy in Computer and Information Science,
2003, University of Oregon

Master of Science in Computer Science,
1995, Western Michigan University

Bachelor of Science in Mathematics,
1993, Western Michigan University

AREAS OF SPECIAL INTEREST:
Programming Language Semantics
Type Theory

PROFESSIONAL EXPERIENCE:

Research and Teaching Assistant,
Department of Computer Information Science,
University of Oregon, Eugene, 1995-2002

Teaching Assistant,
Department of Computer Science,
Western Michigan University, Kalamazoo, 1994-95

ACKNOWLEDGEMENTS

I owe many thanks both to my advisor, Zena, and to my parents, Carl and Sara,

for their patience and support during my graduate-student life.

vi

TABLE OF CONTENTS
Chapter Page
I. INTRODUCTION i 1
History and Background 2
Summary of Contributions L ... 4
II. TYPESANDEFFECTS 6
Milner'sSystem i i e e 6
ImperativeFeatures, 18
Typing References withEffects 24
. REGIONS e e e e e e e e 32
Static Memory Management 32
TheRegionCalculus 33
TheLanguage RL i it 38
DynamicSemantics oL, 42
StaticSemantics o oo e e e e 45
Discussion e 50
IV. EXCEPTIONS e e e e 53
Exceptionsinthe ML-Kit 53
Type and Effect Rules for Exceptions. 56
The Language RE i 58
Dynamic Semantics 61
StaticSemanticso o o 64
V. SOUNDNESSOFRE ittt e e e 70
BasicProperties, 70
PreservationandProgress 75
VI CONTINUATIONS e 98
Programming with Continuations 98

TheProblem i e 99

vii

Page

Effects vs. Capabilities 100

Typing Continuations 107
TheLanguage RC i ien. 109
Dynamic SEMantics cuer w5 s W e wasiie B . 110
StaticSemantics L. e e 113

VII. SOUNDNESSOF RC it e e e e e e e e 118
BasicProperties 118
PreservationandProgress 120

BIBLIOGRAPHY

viii

LIST OF FIGURES

Figure Page
1. Transition Rules for Expression Language 9
2. MilnerCalculus 14
3. Transition Rules forReferences 19
4. TypingRulesforReferences 20
5. Selected Typing Rules for Machine States 23
6. Talpin-JouvelotCalculus (Part1) 27
7. Talpin-JouvelotCalculus (Part2) 28
8. Tofte-Talpin Calculus Variant 36
9. TramsitionRulesforRL 43
10. Static Semanticsfor RL(Part1) 46
11. Static Semanticsfor RL(Part2) 47
12. Static Semanticsfor RL(Part3) i v v v v vt v .. 48
13. Static Semanticsfor RL (Part4) v i it 49
14, ML-KitExample 54
15. Type and Effect Rules forExceptions 57
16. TransitionRulesfor RE (Part1) 62
17. TransitionRulesfor RE (Part2)« v ... 63
18. Static Semanticsfor RE (Part1) 65
19. Static Semanticsfor RE (Part2) 67
20. Static Semanticsfor RE (Part3), 68
21. Static Semanticsfor RE (Part4) 69

22,
23.
24.
25.
26.
27.
28.
29.
30.
31.

ix

Page
Static Semantics for RE (Part5), 69
SMI/NJExample 99
Simple Effect-Based Regionn System 102
Simple Capability-Based RegionSystem 103
TransitionRulesforRC (Part 1) ' uu... 111
Transition Rules for RC (Part2) 112
Static Semantics for RC (Part 1) o v i v i 114
Static Semantics for RC (Part2) uu... 115
Static Semantics forRC (Part3) 116

Static Semantics for RC (Part4) v v v v e e e 117

CHAPTER 1

INTRODUCTION

The study of type systems has become a ubiquitous aspect of programming lan-
guage theory. Fundamentally, these systems provide structure by assigning types as
static descriptions to terms which serve as the building blocks for a language. Although
type systems are often understood as a means of language definition which can elimi-
nate potentially ill-behaved programs, typing disciplines have found a number of other
uses in compiler construction.

An important family of augmented type systems has been based on embellishing
type descriptions with effects. Just as types can be seen as classifiers of terms, effects
provide more detailed classifications by conservatively approximating the potential for
program fragments to perform imperative computations. Systems for assigning both
type and effect descriptions to terms are typically cast in a functional language setting
with imperative features such as mutable state, exceptions, first-class continuations, and
concurrency. Type and effect descriptions are often mutually defined with the inter-
related concept of regions. Regions may be regarded as static names for partitions of
unbounded size within the run-time store.

Several variants of type, effect, and region systems have been proposed with dif-
fering goals. In this chapter, we provide context for the present work with a brief survey
of the history of these systems. We then summarize the contributions of this thesis and

provide a road-map for the remaining chapters.

History and Background

Most of the essential concepts underlying type and effect systems first appeared in
the work of Lucassen and Gifford on the FX programming language[34). FX is based on
a variant of the second-order lambda-calculus enriched with store operations. The type
and effect system for FX is used to detect shared-state dependencies among program
fragments for the purpose of efficient automatic parallelization. Although powerful, this
system requires that programmers explicitly annotate their code with type information
making programs syntactically unruly and complex. Later research therefore focused
on the difficult problem of automatically inferring type and effect annotations [27, 42,
48, 55).

The ability to approximate the side-effects performed by program fragments has
proven helpful for a variety of program optimizations such as dead code elimination,
common subexpression elimination, and hoisting of loop invariants. Effect systems have
been incorporated in the TIL and Standard ML/NJ compilers for this purpose[45, 44].
An earlier proposal for a control effect system was aimed at optimizing the implementa-
tion of first-class continuations[26]. The well-known problem of soundly incorporating
effects into the framework of Milner-style polymorphism has also been approached with
systems based on effects[13, 42, 43, 57].

As hypothesized by Wadler, effects systems can be alternately cast with a monadic
phrasing [29, 40, 55]. This analogy has been exploited to provide an elegant framework
for incorporating mutable state into the purely functional language Haskell[30, 31]. This
analogy also underlies some frameworks for effect dependent optimizing transforma-
tions for ML-like languages[6, 53].

Arguably one of the most visible successes in applying type and effect systems

has been in the implementation of static memory management[48, 50, 51]. In contrast
to garbage collectors which rely on run-time examinations of the heap, static memory
management is based on an analysis that makes all decisions about when memory will
be freed at compile-time. Region analysis, the process of statically assigning regions to
heap-allocated objects in a program, was formalized in the seminal work of Tofte and
Talpin[52]. The Tofte-Talpin region calculus is a type and effect system which describes
how ML-like programs may safely use regions. This framework, when composed with
supplementary analyses, scales to a practical implementation of Standard ML[49].

The work of Tofte and Talpin has led to an abundance of research on region sys-
tems. An early extension proposed by Aiken et al. was aimed at relaxing the requirement
that regions are managed in a strictly last-in-first-out (LIFO) manner[1]. The idealized
framework has been further supplemented by analyses such as multiplicity inference
and region-representation inference[7, 54]. More recent work has explored the benefits
of combining region-based memory management with a conventjonal copying garbage
collector[17]. A region-based system has also been employed in implementation of
Cyclone[16), a type-safe dialect of the C language.

In addition to the applied research just outlined, a number of theoretical aspects
of region systems have been studied. For example, because the original proof of cor-
rectness for the region calculus relied on a complex co-inductive argument, alterna-
tive approaches to proving soundness have been proposed[8, 21]. The work of Walker
and Watkins explores the combination of regions with linear types[56]. Other au-
thors have explored the relationship between region systems and frameworks such as
the polymorphic lambda-calculus, the pi-calculus extended with groups, and monadic

state[4, 40, 60). Finally, the calculus of capabilities, proposed by Crary et.al., provides

a means for implementing a type-safe continuation-passing-style (CPS) transformation

on the Tofte-Talpin language[11].

Summary of Contributions

The Tofte-Talpin calculus was originally cast in an idealized setting including only
the essential constructs of ML-like languages. Extending this core framework to handle
other important features of ML such as references and recursive datatypes can be done
with relative ease[52]. Although these language features interact benignly with region
inference, a more subtle situation arises with control constructs such as Standard ML's
generative exceptions, and Standard ML of New Jersey’s first-class continuations[3, 36].
Operationally, exceptions and continuations allow “jumps” that are at odds with region
inference. Previous work on region systems has not addressed the use of control con-
structs in relation to the Tofte-Talpin calculus.

We study the interaction between region analysis and control constructs in the

setting of a higher-order polymorphic language. The primary contributions of this work

are as follows:

1. We define a variant of the Tofte-Talpin calculus and an operational semantics
which capture the essential features of region analysis and the intended execution
model. Building on previous work on syntactic type-soundness [11, 21, 59], our

abstract machine provides a scalable framework for investigating control features.

2. We extend this framework with idealized constructs for generative exceptions sim-
ilar to those defined by Wright and Felleisen[59]. Although the extension of our
region system is simple and intuitive from a typing perspective, verifying its cor-

rectness is not. We present a formal proof of soundness for this extension which,

for the first time, demonstrates the correctness of a higher-order region system

augmented with a control feature.

3. We show how a direct-style variant of the calculus of capabilities can be em-
ployed to accommodate first-class continuations within the region-based execu-
tion model[11]. By building again on our operational framework, we formally
prove soundness for an extension with ML-like constructs for capturing and in-

voking continuations.

The remainder of this thesis is organized as follows: In CHAPTER I, we provide
a pedagogic presentation of the essential concepts related to types and effects while
focusing on the technical evolution of region analysis. In CHAPTER III, we discuss
a close variant of the Tofte-Talpin calculus. We then motivate and define the language
R L which serves as the basis for our study of control constructs. In CHAPTER IV, we
define the language RE, and extension of RL with constructs for generative exceptions.
CHAPTER V contains a detailed proof of soundness RE. In CHAPTER VI, we contrast
approaches based on effects and capabilities and motivate our solution to the problem of
typing continuations based on the latter. We then define the language RC, an extension
of RL with constructs for manipulating first-class continuation. Finally, a soundness

proof for RC is provided in CHAPTER VII.

CHAPTER II

TYPES AND EFFECTS

We now introduce the fundamental technical notions underlying the current work
and trace the early evolution of the region calculi studied in later chapters. Historically,
this evolution is best understood by exploring the properties of Milner’s system in re-
lation to computational effects, and in particular, by discussion of the type and effect

discipline of Talpin and Jouvelot [43].

Milner’s System

At the core of typed functional languages such the ML and its dialects is the
Hindley-Milner typing discipline for polymorphic functions[35]. We will discuss the
general concepts related to this system in the context of a minimal functional language.

Consider the following syntax where f and x range over a set of term variables, n ranges

over the integers, and op € {+, —, =} is a binary operator symbol:
v u= z|rec f(z) = e|n|true | false
e = v|e e |letzbeejiney |ife;theneselsee; | e ope;|!e

For convenience, the expressions of our language, ranged over by e, are defined us-
ing a separate syntactic class of values, ranged over by v. Expressions of the form
rec f(x) = e represent recursive functional abstractions in which the variables f and
z are bound within e. The free and bound variables of an expression have standard in-

ductive definitions. For non-recursive functions, that is, whenever f does not occur free

in e, we use the abbreviated notation fn z = e. Function applications are indicated by
Juxtaposition, written e; e, where ¢; is an expression yielding a function to be applied
to the argument eo. Expressions of the form let x be e, in e, represent local declarations
in which the variable z is bound within e, but not e;. Following common notational
conventions, we identify terms up to consistent renaming of bound variables and we
will freely make use of parentheses to clarify the syntactic structure of expressions. For

example, consider the following expression:

((fnz = z2)(fnz = 1)) (2 + 3)

Striping is used in order to distinguish numerals, a syntactic notion, from numbers, a
semantic notion. The expression above consists of an application of the identity function
to itself, the result of which is applied to the argument 2 + 3. For brevity, we include
only four primitive operations : integer addition and subtraction, integer equality, and
logical negation, written ! e. Our language also includes constants for boolean values
and a standard form of conditional expression. We note in passing that other common

arithmetic and boolean operations can be encoded using the given constructs.

Dynamic Semantics

Throughout the present work, we consider only call-by-value semantics for func-
tions. In other words, we assume that function arguments are evaluated prior to applica-
tions. In order to formalize the meanings of expressions, we will make use of a syntactic
style of semantics called transition semantics. The key idea is to regard the expressions
themselves as the states of an abstract machine. A transition relation, defined on the

states, provides a deterministic means of making progress in the computation by evalu-

ating a particular subexpression. Although the bare syntax of our expression language
is presently sufficient, we shall see later that special syntax is often required to repre-
sent machine states. One then distinguishes between surface expressions, relevant to
the programmer, and computational expressions, relevant to the intermediate states of
evaluation.

In order to identify a unique subexpression, transition rules will be defined using
the auxiliary notion of an evaluation context[14). Evaluation contexts, ranged over by E,
are expressions containing a hole, written | -], corresponding to a missing subexpression.

We define evaluation contexts for our expression language as follows:

E = [-]|Ee|vE|letzbeEine |
if Etheneelseey | Eope |vopE | E

The given contexts will serve to specify a left-most outer-most evaluation strategy. Fill-
ing the hole of a context £ with an expression e yields a new expression written £ [e]-

The single-step transition relation, ~—, is defined in FIGURE 1 where e[z := v]
denotes the capture-avoiding substitution of the value v for the free occurrences of z in
e and = is used for syntactic identity. We define the multi-step transition relation, —*,
as the reflexive and transitive closure of —. Finally, we define an evaluator as a partial

function from expressions to values as follows:

eval(e) = vif and only ife +—* v

Partiality arises for two reasons. Firstly, the application of a recursive function may
result in an infinite reduction sequence. In that case, we say that such an expression

diverges. A second possibility is that a non-value state may be reached from which no

E[(rec f(z) = e)v] +— E[(e[z := v])[f := rec f(z) = ¢]]

E[letzbevine] — Efe[z :=1]]
E[if true thene; else e2 | — E| ¢ |
EJif false then ey else e,] —+ E| e,]

Eln, + ny] ~— E[n +n,]

Elny - np} — E[ny = n,]
Elp, = ny] — E[true]ifn, = n,
E[n, = ny] +— E[false]ifn, #n,

E[!true] —» EJ false]

E[!false] — E[true]

FIGURE 1. Transition Rules for Expression Language

10

transition is defined. We shall have more to say about the latter situation shortly.
As an example of the consequences of our semantics, we may define a sequential

expression, written e; ; e», using syntactic sugar as follows:

A .
er; e = letzbee;ines

where x does not occur free in e;. The intention is that first e; will be evaluated and its
value discarded, then e; will be evaluated yielding the value the of the whole expression.
Semantically, let-expressions may be regarded as a special form of function appli-

cation. Informally, the equivalence can be written as follows:

let zbeejine, = (fnzx = ex) g

However, for the purposes of typing, let-expressions will play a special réle in allowing
the introduction of polymorphic functions. Parametric polymorphism is a hallmark of
functional programming. Intuitively, parametric polymorphism allows the same func-
tional algorithm to be applied to different types of data. As a trivial example, the follow-
ing expression binds the polymorphic identity function to the variable f which is then

applied to both boolean and integer constants:

let f be (fnz = z)in (f true; f 5)

We say that the function bound to f above is used heterogeneously on both integer

and boolean values. Perhaps a more convincing example is the following higher-order

11

function:

fnf = (fnz = (fz))

Although a formal discussion of typing is yet to follow, it should be intuitively clear
that for applications of the function above to make sense, some appropriate relationship
must exist between the function argument named f and the argument named z. This

relationship must be captured in the type of the expression as a whole.

Program Errors

The fundamental purpose of a type system is to prevent type errors. Consider the

following expression:

(fnz = z + 1) true

With respect to the semantics introduced earlier, the expression results in a stuck state.
In other words, after a single transition, the state (true + 1) is reached which is neither
a value, nor reducible by any transition rule. Thus, our formally defined semantics
says nothing about the meaning of this expression. In order to avoid unpredictable
behavior in the case of such programs, language systems have historically used two main
approaches to this problem: Dynamic typing, used for example in the language Scheme
and its dialects, seeks to detect and report such situations at run-rime[28). Static typing,
an altemnative approach used to some extent in most modern programming languages,
employs an analysis to reject programs at compile-time if they may cause certain errors.

The dynamic approach has the advantage of affording the greatest flexibility to the
programmer; programs are assumed to make sense until an error is actually encountered

during execution. Considerable debate has focused on whether this constitutes a virtue

12

of dynamic typing. For example, consider:
if e then 5 else (1 + true)

where e is some unspecified expression. In a dynamically typed system, the expression
above will result in a run-time error only when e evaluates to false. In a statically typed
system, the expression above would be rejected outright as nonsensical, even though it
may execute and terminate normally. Indeed, it should be clear that even in our simple
setting, it is undecidable whether an arbitrary expression will produce an error in the
sense of resulting in a stuck state. Therefore the design of a type system involves a
tradeoff; one may want to be as permissive as possible while retaining the algorithmic
decidability of the analysis.

Pragmatically, one can often side-step computational intractability by requiring
programmers to provide type information to guide the analysis. In the context of poly-
morphic functional languages, a variety of systems with and without explicit type in-
formation have been studied [5]. Although type annotations may be regarded positively
as a form of documentation, they may also be considered too cumbersome for pro-
grammers. Type-inference is the process of determining the type, if one exists, of an
un-annotated expression based on the rules of a type system.! The work of Hindley,
Milner, and Damas led to the development of a system for typing higher-order poly-
morphic functions which provides an appealing degree of expressive power while still
allowing a practical algorithm for type-inference [12, 23, 35]. This system has served

as the backbone of the statically typed functional languages Haskell and ML[25, 37].

"Note that this problem subsumes the question of whether an expression is weli-formed.

13

Static Semantics

We now turn to the formalization of a Milner-style type system. Expressions will

be assigned (mono-) types, ranged over by 7, of the following forms where o ranges

over a set of type variables:

Tu=a|int | bool | 7, = 7

Base types, int and bool, will play an obvious role . Functions will be assigned arrow
types, written 73 — 72, where 7, and 7 are the domain and codomain types respectively.
Type variables are place-holders for an unspecified type. Type schemes, ranged over by
7, represent a set of types obtained by substitution for a sequence of quantified type

varjables:

Tu=T1|Va.r

For convenience, types schemes are defined to include monotypes. The free and bound
type variables of a type scheme have standard inductive definitions and we write ftv(r)
for the set of free type variables occurring in 7. Type schemes are identified up to
consistent renaming and reordering of bound type variables. Throughout the present
work, we will use vector notation, such as &, to represent sequences of distinct bound
variables.

We write 7[ay 1= 71, ..., ax := 7;] for the simultaneous substitution of 7; for ¢;
in 7 for each 1 < ¢ < k. We say that the type scheme 7 subsumes or generalizes the
type 7, written 7 > 7, if and only if 7 = 7 or # = V&.7’ and 7 can be obtained from 7'
via substitution for zero or more type variables occurring in &.

Type environments, ranged over by I', are finite maps from term variables to type

14

NG

e zxz:r

I'> n:int
I' > true : bool
" b false : bool

I{fimn—on)z:n) be:n
F'brecf(z) =e:m—mn

F'bpe:m—=mn F'be:mn
'bee:m

{&}nfiv(I) =0
'pe:mn T{z:VYamn) > e :
I'c letzbeeyines : ™

I' > e; : bool I'be:r 've:r
I' > ife; theneyelsee; : +

['> e :int I'p ey : int
' eyopey : 7

where 7, = intif op € {+, -} and 7, = bool otherwise

I' > e : bool
I'b!le : bool

FIGURE 2. Milner Calculus

15

schemes. We write dom(T") for the domain of " and use the notation I'{z : 7) for
functional updates. We use () for the empty map. Type environments are used to carry
assumptions about the types of the free term variables occurring in expressions. We
write ftu(T") for the set of free type variables occurring in all of the type schemes in the
range of I,

The type system is defined by judgments of the foom I" > e : 7 asserting that
the expression e has type 7 given the assumptions in I'. A judgment is valid if it can be
derived from the axioms and inference rules defined in FIGURE 2. Each of the phrases
of our language has a corresponding rule in the type system. Axioms, that is, typing rules
without premises, are given for numerals and boolean constants. Term variables may be
assigned any type which is subsumed by the assumption given the type environment.
Each of the remaining rules involve premises corresponding to the subexpressions of
the given phrase. The rules for function applications, conditional expressions, and the
primitive operations are straightforward. For each of the binding constructs, functions
and let-expressions, the type environment is extended with assumptions about the types
of the bound variables.

In order for a function to be used heterogeneously, it must be bound to a term
variable. The key idea underlying Milner’s system is to allow only let-bound variables
to be used this way. Thus, the typing rule for functions allows only monotypes to be
added to the typing environment. In contrast, the rule for let-expressions allows for the
type of the let-bound expression to be generalized. The criterion for generalizability
requires that the quantified type variables not occur free in the type schemes of any

assumptions in the typing environment.? To clarify this condition, it may be helpful to

2This proviso should be familiar from universal quantification in first-order logic.

16

consider the following (incorrect) derivation:

(g:a—a) plet fbegin(ftrue; f5) : int
() Pfng = (let fbegin(ftrue; f5)) : (a = a)—int

Without the restriction on generalization, the let-bound identifier f above could be as-
signed the type scheme Va.a — a thus making the expressions above typable. How-
ever, such a derivation, if allowed, could be used to construct a larger derivation for the

following erroneous expression:

let hbe (fng = (let fbegin (ftrue; f5)))inh(fnz = z + 1)

An expression is open if it contains free term variables and closed otherwise. A
program is a well-typed and closed expression. It is easy to show that for any valid
judgment, the type environment must contain an entry for every free term variable of
the expression and that any additional entries are unnecessary. Programs may therefore
be typed in an empty environment and we use the abbreviated judgment form b e :
to assert that the program e has type 7.

Technically, the given arrangement of type schemes in relation to bound variables
results in so-called prenex-predicative polymorphism. Prenex refers to the fact that our
type schemes are shallow, that is, nested quantifiers are not allowed. Predicativity refers
to the fact that our domain of quantification is limited to monotypes, and therefore does
not include types schemes themselves. As an example of the expressive limitations of
this system, consider that the expression (fn ¢ = (z z)) which involves the self-

application of the function bound variable z is not typable. In a more general system,

17

one can imagine assigning this expression the following non-shallow type:

(Va.a = a) = (Va.a = a)

Type Soundness

Having defined a type system, or static semantics, and an evaluator, or dynamic
semantics, the question now arises as to whether the system is sound in the sense of
avoiding any possibility of type errors. Although we have been informal about what
exactly constitutes a type error, we claim that all reasonable means of proceeding with
evaluation have been accounted for in our formal semantics and we therefore identify
errors with stuck states. In a more complete setting, the question of what potential error
situations can and should be avoided is more subtle.3

We say that the type system is sound if all programs either diverge or produce a
value of the expected type. In other words, the partiality of our semantic function should
be the result only of infinite loops in our programs. In the vernacular of type-theorists,

we may formalize Milner’s slogan — “programs don’t go wrong” — as follows:

Proposition 2.1 (Type Soundness)

If b e : 7 then either e diverges oreval(e) =vand b v : 7.

The difficulties involved in proving type soundness are to some extent dependent
on the style of dynamic semantics. The syntactic style of semantics used throughout the
present work leads to a particularly simple and scalable proof technique based on the

seminal work of Wright and Felleisen[59]. It will be instructive to sketch the main steps

3Cardelli’s work provides a detailed taxonomy of program errors [9].

18

of such a proof in the simple setting of our expression language.*
The syntactic proof technique advocated by Wright and Felleisen consists of two

main steps. The first is to show that any transition from a well-formed state produces a

well-formed state with the same type.

Proposition 2.2 (Type Preservation)

Ifre: Tande — e'thenp e : 7.

In the context of a non-deterministic reduction relation, this property is normally phrased
relative to open expressions and referred to as subject reduction. We prefer the term type
preservation to emphasize the deterministic nature of our transition relation. The proof
of Proposition 2.2 is by case analysis on the transition rules and requires a number of
auxiliary properties which we will not detail here. The second step is to show that

evaluation progress can be made from any well-formed state which is not already a

value.

Proposition 2.3 (Progress)

If & e : 7 then either e is a value, or there exists €’ such thate — ¢,
The proof is by induction in the structure of e. Type soundness is now an easy conse-
quence of Proposition 2.2 and Proposition 2.3.
Imperative Features

The purely functional system presented so far is a simple and elegant means of en-

forcing type safety without the need for cumbersome type annotations. Subtle problems

4Wright and Felleisen distinguish between strong type soundness, as formalized by Proposition 2.1,
and weak type soundness in which the type of the value produced is unconstrained.

19

(i, E[newv]) — (p{l - v), E[1])ifl & dom(u)
(u, E[getl]) — (p,Blv])if p(l) = v

(1, E[setiv]) — (p{l = v),E[v])ifl € dom(u)

FIGURE 3. Transition Rules for References

arise, however, when extending this framework with the common imperative features of
modern functional languages. We will explore this issue by defining a naive extension
for mutable references. Let [range over a set of location names which we will regard as

(computational) values. We extend the syntax of our expression language as follows:

v on= e |

e u= --- [newe|gete|sete; ey

These operations represent respectively the creation, dereferencing, and assignment of

reference cells. We extend the definition of evaluation contexts as follows:

Euv=---|newE |getE |setEe|setvE

A store, ranged over by p, is a finite map from location names to (closed) values. We
write dom () for the domain of u and use the notation u(l — v) for functional updates.
Our machine states will have the form (, e) consisting of a store and an expression.
The transition rules for our reference operations are defined in FIGURE 3. Each of the
other transition rules from FIGURE 1 may be adapted mutatis mutandis.

We will delay our discussion of the typing rules for machine states and instead fo-

20

F'ee:r
' > newe : ref 7

I'pe:refr
I'> gete: 7

' e :refr 'pe:r
I' > setejep : 7

FIGURE 4. Typing Rules for References

cus on surface expressions. We extend our syntax of monotypes with a type constructor

for references as follows:

Tiu=--. |refr

The typing rules for our operations, given in FIGURE 4, are essentially those employed
by Standard ML. However, when used in conjunction with the type system defined so
far, they are unsound. The following program shows the well-known problem with the

naive rules:

letrbenew (fnx = z)insetr (fnz = z + 1); (get r) true

Operationally, the program above first allocates a new reference cell containing the
polymorphic identity function. The expression bound to r above may be assigned
the type ref (o — «) which may in turn be generalized resulting in the type scheme
Va.(ref (@ — a)) being associated with the let-bound variable r. Within the body of

the let-expression, the newly allocated cell is then assigned to the successor function.

21

This use of the bound variable r is justified by the following subsumption:
Va.(ref (& = a@)) > ref (int — int)

Finally, the location is dereferenced and its contents applied to a boolean constant. This

second use of the variable r is similarly justified:
Va.(ref (a = a)) > ref (bool = bool)

Thus, although the program above is well-formed according to our typing rules, its
evaluation results in the stuck state true + 1. Intuitively, because the reference cell
originally contained a polymorphic function, a more appropriate type for the variable
variable r may be ref (Va.a — «a). Unfortunately, such non-shallow types cannot be
accommodated within the confines of Milner’s system.

The problem of soundly incorporating imperative operations into Milner’s system
has received extensive attention[24, -32, 33, 43, 46, 47, 57]. Indeed, similar problems
arise with the naive inclusion of first-class continuations, or equivalently, with the com-
bination of references and exceptions[19]. Earlier versions of Standard ML adopted a
solution based on the work of Tofte[47]. The key intuition underlying Tofte’s proposal is
that one should avoid generalizing type variables which would occur free in the types of
locations in the store. This phenomenon should be clearly visible in our example above,
Thus, a distinction is enforced between imperative and applicative type variables with
only the later variety being subject to generalization.

Based on the observations of Wright, Standard ML currently solves this problem

by enforcing a simple value restriction on let-bound expressions[58]. By allowing gen-

22

eralization only for the types of syntactic values, examples like our program above are
ruled out. Non-value expressions may still be let-bound, however, the corresponding

variable may not be used heterogeneously. To clarify, consider:

let fbe(fnz = z)(fnz = z)in f35; f false

Although the let-bound expression above is harmless, this expression is rejected since it
requires a polymorphic assumption for the let-bound variable f. Wright observed that
in the case of purely functional expressions, this limitation could be side-stepped via
the mechanism of eta-expansion. For example, the let-bound expression above could be

replaced with the following operationally equivalent value:

fny = ((fnz = 2)(fnz = x))y)

Using the syntactic proof technique introduced earlier, one can show that the typ-
ing rules for references given in FIGURE 4 are sound if type generalization is restricted
to syntactic values. Although we will not prove type soundness in detail, it will be
instructive to see how the static semantics of our modified abstract machine could be
arranged for such a proof.

The typing rules given in FIGURE 5 employ three new judgment forms. The
judgment > (i, e) : 7 asserts that the machine state (g,) is well-formed and may be
assigned type 7. The judgment > u : X asseris that the store u is well-formed with
store type £ where X ranges over finite maps from location names to monotypes. As
usual, we write ftv(Z) for the set of free type variables occurring in all of the types in the

range of £. The judgmentZ; I’ > e : 7 asserts that the expressions e has type 7 relative

23

LTI Y E;{()vpe:r
> (p,e) : 7T

dom(p) = dom(X)
2 () v oplz) : Z(x) (Vz € dom(T))

TR
E(l)=17
;P l:r

{a} 0 (fiw(Z) U fto(T)) = 0
S:Teowv:mn L, MNz:Van) ve:mn
5;0 b letzbevine : m

;Ppe i m EsTMz:n)pe:n
L;0 b letzbeeyine :

FIGURE 5. Selected Typing Rules for Machine States

to both a store type £ and a typing environment I". The nature of mutable references
leads to the possibility of mutual recursion among the values stored in reference cells.
Consequently, these values are typed relative to the type of the entire store in which they
reside. With the exception of the rule for let-expressions given in FIGURE 2, each of
the rules from FIGURE 2 and FIGURE 4 may be adapted directly to this new judgment
form by including an arbitrary store type. The remaining rules account for dynamically
created locations, and for our new convention of restricting type-generalization to apply
only to the types of let-bound values. The usual proviso for type generalization is also
modified to account for free type variables occurring in the store type. One can now

establish typability preservation and progress properties for the modified system.

24

Typing References with Effects

Although the value restriction provides a simple and elegant means for imperative
operations to safely coexist with Milner-style polymorphism, a number of more flexible
proposals have been based on the concept of an effect system[13, 42, 43, 57). In this
section we discuss a variant of one of the more sophisticated proposals based on the
work of Talpin and Jouvelot.

We have already seen two approaches to incorporating references in Milner’s 5ys-

tem. The following example reveals a shortcoming of each:

let f be get (new (fnz = z))in f5; f false

Evaluation of the let-bound expression above results in the harmless creation and deref-
erencing of a location containing the identity function. Both the imperative type disci-
pline of Tofte, and the value-restricted system advocated by Wright would reject the pro-
gram above. Thus, the intuition that one should avoid generalizing type variables which
occur free in the types of locations is in some cases overly restrictive. Moreover, because
the bound expression is not purely functional, the simple device of eta-expansion would
not yield an operationally equivalent program. Intvitively, what makes programs such
as this harmless is the fact that the reference manipulated by the let-bound expression is
entirely local to its evaluation. The type and effect discipline of Talpin and Jouvelot can
be understood as exploiting this intuition by detecting the locality of reference cells.
The system we will now explore assigns both type and effect descriptions to the
phrases of our expression language extended with store operations. Effects are defined

using the concept of regions which should be regarded as unbounded partitions within

25

a store. Let p range over an infinite set of region variables which will serve as static
names for regions. Let € range over an infinite set of effect variables. Atomic effects,
written eff(p, 7), represent the manipulation of a reference residing in region p which
holds a value of type 7.> Effects, ranged over by ¢, are finite sets of atomic effects and
effect variables.

In order to track effects, the types for our language are redefined as follows:

T u=int | bool | a | ref p7 | 7y = {0, T2)

No confusion should arise from our repeated reuse of metavariables such as 7 through-
out the present work. Our type constructor for references now carries an extra argument
representing the region in which the reference resides. Arrow types are decorated with
latent effects which represent a conservative approximation of the effects incurred when
applying a function. Following common practice, we will not distinguish between ef-
fects, defined as sets, and their syntactic representations as they appear in types. Type

schemes may now be quantified with respect to region, effect, and type variables:

We retain earlier notational conventions for typing environments and for the identifica-
tion of type schemes. We use the term constructor variable to refer uniformly to all
region, effect, and type variables, We write fev(r), fev(y), and few(T) for the set of

free constructor variables occurring respectively in a type scheme, effect, and typing

5Our presentation differs from that of Talpin and Jouvelot in that we use only a single variety of atomic
effect, rather than one for each reference operation.

26

environment. Similarly, we write frv(-) and fev(-) for free region and effect variables.
Substitutions on types now come in three varieties: types may be substituted for type
variables, effects for effect variables, and region variables for region variables.6 Sub-
sumption is defined as 7 > 7 if and only if * = 7 or 7 = Vj,€, &7’ and 7 can be
obtained from 7' via substitutions for zero or more of the constructor variables occur-
ring in g, €, and &.

'The type and effect rules given in FIGURE 6 and FIGURE 7 employ judgments of
thefomT' & e : 7, asserting that the expression e has type 7 and effect ¢ relative to
typing environment I'. The rules in FIGURE 6 might informally be called propagation
rules; in addition to doing the job of their counterparts from FIGURE 2, they serve to
propagate effect information through typing derivations. In contrast, the rules given in
FIGURE 7 either generate or remove effects at some point in a derivation.

Syntactic values require no evaluation and thus cannot generate effects. Each of
the rules for values in FIGURE 6 therefore assigns the empty effect along with the usual
type to the given value. The effects incurred by an application consist of those generated
by evaluating both the function and argument, as well as the latent effect of applying the
function. Similar reasoning applies to conditionals and primitive operations where in
each case, the effects of evaluating each subexpression are accumulated. The latent
effect attributed to a function is simply the effect of evaluating its body.

The typing rule for let-expressions now allows for quantification of any construc-
tor variable according (almost) to the usual criterion. In addition to avoiding the gener-
alization of variables occurring free in the typing environment, the proviso also includes

variables occurring in the effect of the let-bound expression. Intuitively, this is exactly

éFor now, we omit region constants which will become relevant only when defining dynamic semantics
for region systems in later chapters.

27

{z) » 1
F'ez:70
e n:int,®

[> true : bool, 0

I’ > false : bool, @

Tif = {em)lz:n] b e: mp
I'precf(z) = e:n— {p,m),0

L'boe :n—={p, e ['boe:7,es
Fpeer:mpiUpUp;

{A&a}n (fev(T) U fev(pr)) = 0

F'oe:m,pm Nz:Va&an) o e me;
'c letzbeeines : 73,0 U

' b ey : bool, I'p e : 7,0 ' b es: 1,03
I' o ife;theneselsee; : 7,0y Upo U s

I'p e :int,p ' > ey : int, e,
L'beoper: mprUpe

where 7, = int if op € {+, —} and 7, = bool otherwise

[' > e: bool,yp
I'ple: bool gy

FIGURE 6. Talpin-Jouvelot Calculus (Part 1)

28

F'be:ryp
T b newe : ref p7,0U{eff(p, 7)}

I'be:refpr,p
U b ogete: 70U {eff(p,7)}

Coe :refprg I'> e : 7,00
I' b sete;er : 7,0 U, U{eff(p, 7)}

've:rnpy 1 S 2
F'pe:7e

Ceoe:7e péfrul) p & fru(r)

Lo e: 7 e\{eff(p,7)}

Coe:rep ¢ & feu(T) € & fev(r)
Lo e:re\{e

FIGURE 7. Talpin-Jouvelot Calculus (Part 2)

29

the observation made by Tofte: type variables occurring in the types of locations, or
equivalently in the effect description of a let-bound expression, should not be general-
ized. However, a key aspect of the expressiveness of the type and effect system is that
in some cases, localized effects can be masked. We will discuss this feature shortly.

Turning to the typing rules in FIGURE 7, one can see that each reference operation
generates a new effect and that newly created references may be placed in an arbitrary
region. Note, however, that the references created by programs cannot always be placed
in different regions. Consider, for example, the following conditional expression where
e is arbitrary:

if e then (new 5) else (new 7)

Because the branches of a conditional are required to have the same type, the regions
assigned to the locations above are forced to be unified. Similarly, the next rule, called

effect subsumption, allows for effect descriptions to be made less precise. Consider

if ethen (fnz = 5)else (letrbenew 5in (fnz = getr))

Effect subsumption is necessary to attribute an appropriate latent effect to the pure con-
stant function above.

Finally, the last two rules of FIGURE 7 allow for the masking of effects which are
purely local to a given expression. Intuitively, if a region variable does not occur free
in any assumption in the typing environment, then the region need not exist prior to the
evaluation of an expression. Furthermore, if a region variable does not occur free in the
type of an expression, for example, as a latent effect, then it will not be accessed again

after evaluation. Similar reasoning applies to effect variables. This operational reading

30

of the effect masking criteria will have greater significance in the coming chapters.

To appreciate the utility of polymorphism with respect to regions and effects, con-

sider the following expression:

fnf = (fnz = (new (f 1))

A principal type scheme for an expression is one which subsumes every type which
could legally be assigned to it. The existence of principal types is an important aspect
of the computational tractability of type-inference. Relative to Milner's system, the

expression above has the following principal type scheme:

Yaq, 0!2.(0’1 — Cl.’2) - (al — ref 02)

Relative to the type and effect system, note that applying the expression above to a
single argument should incur no effect, but the argument itself could be a function with
any latent effect whatsoever. Applying it to a second argument results in the allocation
within an arbitrary region, as well as the latent effects of the first argument. However,
we have already seen that effect information can always be made less precise through

the effect subsumption rule. Thus we arrive at the following type scheme:

Vp, €1, €2, €3, 1, 02.{a1 = {{€1}, 20)) — ({e2}, (a1 = {{e1, €3, ff (p, as)}, ref p az)))

The system presented here was shown to be sound relative to a big-step operational
semantics[43]. Talpin and Jouvelot also provided an algorithm for inferring the principal

type and minimal effect of an expression. Wadler later pointed out certain infelicities in

31

the proof of correctness for the inference algorithm while adapting it to a closely related

setting[55].

32

CHAPTER Il

REGIONS

An important prerequisite to the success of higher-order programming languages
such as Java and Standard ML has been freeing programmers from the burden of mem-
ory management. Extensive research has been devoted to improving the technologies
underlying automatic garbage collectors. An alternative approach, static memory man-
agement, has been developed in the work of Tofte, Talpin, and Birkedal among others
[1,7, 11, 48, 50, 51, 52, 54]. The key formalism underlying this approach is the Tofte-
Talpin region calculus, a type and effect system which describes how annotations may
be statically added to programs which safely determine their interaction with memory.

This approach has been implemented in the ML-Kit with Regions[49].

Static Memory Management

Static memory management is based on an execution model in which the heap is
organized as a stack of regions. Allocations can potentially be made into any region
currently on the stack and are guided by annotations inserted into the program by region
analysis. New (empty) regions are pushed onto the stack and later deallocated in a Jast-
in-first-out order, again following program annotations. It is important that although
each region can grow indefinitely during its lifetime, deallocation of an entire region
takes only constant time.

The essential features of region analysis can be clarified by a simple example.

Returning to the expression language introduced in CHAPTER II, consider a program

33

containing the fragment (--- ((fnz =) 5)---). The region inference process might

produce the following annotated program:

letreg pin (--- (letreg ¢’ in (fnz = z)atp (hatp)):-)

Every value in the source program is annotated to indicate into which run-time region it
will be allocated. Regions are introduced with the lexically scoped construct letreg pin e
which binds the region variable p within e. These expressions are evaluated by first
pushing an empty region onto the stack, then evaluating e, and finally popping the top
region from the stack. In our example, the closure for the function (fn 2z = z)is
allocated in the inner region, p/, and its argument is allocated in the outer region, p.
When the inner region is popped, it is safe to reclaim the closure allocated in ', but not

so for its argument which may yet be needed in the context of the outer region.

The Region Calculus

The region calculus formalizes how programs may be safely annotated. Most of
the technical features of the region calculus can easily be seen as stemming from the
type and effect framework of Tofte and Talpin discussed in CHAPTER 1I. The central
ideas are to incorporate the implicit effects of the intended implementation framework
into the typing rules, and to use the effect-masking criteria to guide the introduction and
collection of memory regions.

We will now define in detail a slightly simplified variant of the original Tofte-

Talpin calculus.! We have already introduced most of the required notational conven-

!The main simplification is related to the omission of arrow-effect labels which are relevant only 10
the algorithmic inference process. Crary et al. define an explicitly-typed variant similar to ours[11].

34

tions in CHAPTER I including the meaning of meta-variables such as z, f, p, o, and ¢.

The syntax of expressions is defined as follows:

e = z|natp|fnz = eatp|e e |letrec f(F)(z)atpbee ine,

f(p)atp]|letreg pine

Variables and applications appear in their usual form. In our example above, we have
already seen the use of region annotations on numerals and functions and the use of the
let-region construct itself. Although numerals provide a representative base type, for
brevity we will henceforth omit arithmetic operations from our formal presentation.

The remaining constructs relate to the introduction and application of region poly-
morphic functions. In contrast to the systems discussed in CHAPTER II, the presence
of region annotations requires that polymorphism with respect to regions be made ex-
plicit, that is, region-polymorphic functions are passed actual arguments representing
the regions they will act on.

The expression (letrec f{ 7)(z) at p be e; in e;) allocates a function named f with
body e, in the region named p and then delivers the result of evaluating e;. The function
f has formal parameters 7 and z which are bound within the function body. Because the
function may be recursive, the variable f is bound both in e, and es.

In order to apply such a function, actual regions arguments must first be provided
via the expression (f {p) at p). Operationally, this expression dereferences the region-
polymorphic function represented by f and applies it to the actual arguments given
by 7. This results in an ordinary function closure which is then allocated in region p.
Recall that the notation j stands for a sequence of distinct region variables so that the

formal region parameters of function are distinct. In contrast, the notation 7 refers to

35

any sequence of region variables so that the actual arguments may overlap. We write ||
and |p} for the length of these sequences. We will often use notation such as [:= 7] for
the simultaneous substitution of constructors for constructor variables. This notation is
only defined when the given sequences have the same length.

Types will be defined mutually with a new syntactic category of types with places,

ranged over by p:

p = (7, p)

The reader may consider types with places as corresponding closely to region annotated
reference types of the form (ref p 7). Indeed, in the remainder of this work, reference
types will supplant the former. The definition of types is modified so that functions are

assumed to receive and produce allocated values:

Ta=int | a | p = (p p)

For the remainder of this work we represent atomic effects with bare regions. Therefore
we now assume effects, ranged over by ¢, are finite sets of region and effect variables.
We use ¢ to range over type schemes which quantify region, effect, and type

variables over types with places:

The subsumption relation, >, is defined as usual. The systems discussed in CHAPTER
II allowed only values with mono-types to be allocated. We have already seen that this
restriction is relaxed in the Tofte-Talpin calculus by allocations of region-polymorphic

function closures. Thus, we require an additional syntactic category of type schemes

36

Iz)=un
Foz:ud

I' > natp: (int,p), {0}

C{z:m)>e:pp @229
I'ecfnz = eatp: (1 — (p2, i2),0), {p}

C'boe (= {onm)p)he: T ooe:p,es
T'ooeer: o UpaUpsU{p}

{5, a}n(fev(T)U{p}) =0
I{f:Vp,&(r,p)) b fnz = eyatp : 7,{p}
I{(f:Vp & a(r,p) > e : pp
T b letrec f(p)(z)atpbeeyine; : p,oU{p}

T(f)=(Vp,&,&r,p) Ve ar[p:==p 1
o f(pYatg : (v, 0){p,r}

Fve:rp pgml) pé fro(r)
v letregpine : 7,0\{p}

FIGURE 8. Tofte-Talpin Calculus Variant

with places, ranged over by :

T u= (m,p)

The type and effect rules for the Tofte-Talpin system are defined in FIGURE 8
using judgments of the form I’ & e : pu, ¢ asserting that the expression e has type with
place p and effect o relative to typing environment I'. The reader may wish to read
these rules in contrast to the Talpin-Jouvelot system defined in FIGURES 6 and 7 of
CHAPTER II. Just as before, the type of a variable is determined by the typing context

and variables incur no effect. In contrast, numerals and functional abstractions now

generate an effect equivalent to the region annotation they are assigned. The proviso
ws 2 v allows a less-precise latent effect to be assigned and thus plays the role of
the effect subsumption rule in the Talpin-Jouvelot system. Just as functions are always
allocated in some region, the typing rule for applications incorporates the implicit effect
of dereferencing the closure for e;.

The rules for declaring and applying polymorphic functions are more complex.
Generalization of type, region, and effect variables is controlled by the usual proviso
preventing the quantification of constructors occurring free in the typing context. This
proviso is extended to include the region into which the closure is being allocated which
is assumed to be bound outside the expression. The instantiation of a polymorphic type
occurs only when region arguments are supplied in the typing rule for (f (7) at p). This
instantiation is dependent, in part, on the actual region arguments supplied.

In relation to the Milner-style let-construct seen previously, the letrec-construct in
the Tofte-Talpin system has an interesting and important twist. Note that the body of
the recursive function declared by a letrec is typed relative to a polymorphic assumption
about the type of the function itself. Intuitively, polymorphic recursion is the ability for a
recursive function to make heterogeneous use of itself within its own body. Polymorphic
recursion in types leads, in general, to the undecidability of type-inference[22]. For
practical reasons, the Tofte-Talpin calculus permits polymorphic recursion in regions
and effects only.

Finally, we have already discussed the operational intuition behind the masking
of region variables in the Talpin-Jouvelot system in CHAPTER II. The Tofte-Talpin
system takes this intuition more seriously by using the same criteria to guide the typing

of let-region expressions.

38

A typical example of the use of region polymorphism is when the value returned
by a function is stored in some region provided as an argument. Consider the following
program fragment:

letrec f{p)(z) at p’ be (5 at p) in -

The function f requires a single region argument named by formal parameter p, and an
ordinary argument named z whose type is unconstrained. The function itself is allocated
in region ' and delivers an integer allocated in p. The variable f could be assigned the

following type scheme with place in the body of the expression above:

(Vp, e, a.a = (e U {p}, (int, p)), o)

Although the latent effect of applying the function f could be just the set {r}, we have
already seen that one gains greater flexibility by allowing f to take on larger effect sets

as well. This can be achieved by instantiating the quantified effect variable e above.

The Language RL

Our goal is to capture the essential aspects of region systems such as the Tofte-
Talpin calculus in way that facilitates both simple and scalable proofs of soundness.
We have already seen the close analogy between types with places in the Tofte-Talpin
system, and the reference types of the Talpin-Jouvelot system defined in CHAPTER
II. For clarity and simplicity, we choose to work with only explicit effects and their
associated reference types.

For ease of presentation, we will dispense with any separation of surface terms

from computational terms, choosing instead to view our language as already embedded

39

in an abstract machine. As a first step, we assume £ ranges over a new set of region
names which will serve as the runtime counterparts to region variables. Region identi-

fiers, ranged over by +, are defined as either region variables or names:

yi=nle

We use the notation frn(-) for the set of region names occurring in a type or expression,
even though region names cannot be bound in the sense of constructor variables.

Our expressions will be mutually defined with syntactic values:

vi=z|n|fnz = e|rec f(P)z) = e| (€1)

In addition to variables, numerals, and functional abstractions, our language includes a
construct for introducing recursive region-polymorphic functions. The two-dimensional
nature of memory in our execution model leads to the use of pairs of the form (£, 1) to

represent a reference to location [in region £. Expressions are defined as follows:

ex=v|e(F)|ee:|newye|gete|letregpine

where 7 is a sequence of region names which serve as arguments for region-polymorphic
functions. Our language includes operations for allocating and dereferencing locations.
The operation (new vy €) generalizes the region annotations defined in the Tofte-Talpin
language by allowing the value of any expression to be allocated. Finally, regions are in-
troduced by (letreg p in ¢) which binds p in e and will be subject to the same operational

reading previously introduced.

In contrast to approaches based on evaluation contexts which were discussed in
CHAPTER 1, our abstract machine will maintain an explicit representation of the con-
tinuation for the current program expression. Continuations, ranged over by K, are

defined as follows:

Ku=[]|Ko([J(AN 1 Keo(l-]1e) [Ko(v[-]) | K o (pop; [-])

Empty continuations, indicated with a hole, { -], are extended to the right by continu-
ation frames. Each of these frames contains another hole where, intuitively, the value
delivered by the next frame to the right should fit. In analogy to the sequential operation
discussed in CHAPTER II, frames of the form (pop; []) represent the operation of re-
ceiving a value in the given hole, then popping the region stack, and then delivering the
value unchanged.

Our theoretical study of regions will be based on more general framework which
is not limited to shallow types in the sense introduced in CHAPTER I1. Thus, we define

types as a single syntactic category which includes quantified types:

Tu=int | alrefyr | = (o) | VA,Ea.T

The only modifications we require from earlier definitions relate to the fact that region
identifiers, not just region variables, can occur in types and effects. For the remainder
of this work, we assume effects, ranged over by ¢, are finite sets of region identifiers
and region variables. In analogy to the 7 notation already mentioned, we will use ¥, ,
and T for sequences of region identifiers, effects, and types which in each case, need

not be distinct. Constructor substitutions now map region variables to region identifiers,

41

effect variables to effects, and type variables to types. We will often write simultaneous
constructor substitutions as [§ 1= ¥,&:= 3, & := 7).

Memory regions, ranged over by R, are finite maps from locations, {, to values. In
order to accurately capture the region-based execution model, we will view memories
as finite sequences of binding between distinct region names and regions. The resulting

region stacks, written 3, have the form

L= Ry, 6= Ry

With some abuse, we will treat these sequences dually as finite maps from region names
to regions by using typical notations such as 5(£ — R) for functional updates. We also
write 3(£)(!) to obtain the value v such that 5(¢) = R and R({) = v. The operation
5 @5’ appends two sequences. In order for our treatment of sequences as maps to make
sense, this operation is only defined when dom(3) N dom(3') = (. We write e for the
empty sequence and assume 3 @ @ = o @ 3 = 5. Our region stacks will grow to the
right. Thus, pushing a new region R named £ on to the stack 5 will be expressed as
@£~ R

Region types, ranged over by X, are finite maps from locations to types. Memory
types, written ¢, are finite sequences of binding between region names and region types.

Thus, memory types have the form

EIHZI,...,&F—)Ek

and are subject to all of the notational conventions discussed above for memories.

Machine states, ranged over by M are triples consisting of a region stack, a con-

tinuation, and an expression:

M:=(3 K, e

Informally, we may regard initial states of computation as having the form (3, [-], €)

where 3 contains the global regions to be used by the program e.

Dynamic Semantics

The transition rules for RL are defined in FIGURE 9. In the remainder of this
work, we will continue to use —* for the reflexive and transitive closure of a transition
relation —. For clarity, the rules are grouped into three sets. The decomposition rules
are administrative in the sense that they do not correspond to normal computational steps
in evaluation. Instead, they serve to explicitly build and maintain a syntactic represen-
tation of the continuation for the current program expression. The computational rules
express the normal operations associated with function applications and references. Fi-
nally, the region management rules express the pushing and popping of memory regions.

A simple example will help to clarify the use of continuations. Consider the fol-

lowing initial machine state:

(8, [-], letreg pin ((fnz = (getx)) (new p 5)))

The first evaluation step is given by (710) which requires that we choose a run-time
name for the region p. For technical reasons, this name must be chosen to be distinct
from any region names occurring the in the current program expression and region stack.

The notation frn(3) refers to the set of all region names occurring the in values stored

43

[Decomposition]
(T1) (5 K, e(7))— (5 Ko ([-](7)) e)
(12) (5, K, ey €2) — (5, K o ([-] €2), e1)
(T3) (5 Ko(f-]le), v} — (5, Ko(v]-]), e)
(T4) (5, K, new y e) — (3, K o (new v [-]), e)
(T5) (3, K, gete) — (3, K o (get [-]), e)
[Computation]
(T6) (3 Ko([-]1(7)), rec f(F)(z) = e)
—

(5, K, (fnz = e)[f = (rec f(P)(z) = &)[5:=7])

(T7) 3 Ko ((fnz = €)[-]), v) — (5, K, e[z :=v])

(T8) (5, Ko(new&[-]), v) — (3{6 = R — v)), K, (£,1))
if5(¢) = Rand! ¢ dom(R)

(79) (5, Ko (get[-), (§,0)) — (5, K, v)
if5(6)(1) =v

[Region Management)

(T10) (5, K, letreg pine) —> (5@ £ — (), K o (pop; [-]), e[p :=¢])
if € ¢ frn(s) U fre)

(T11) (@€ R, K o (pop; [-]), v) — (5, K, v)

FIGURE 9. Transition Rules for R.L

in 5. Choosing £ for the name of our new region yields

(€= (), [-]o(pop; []), (fnz = (get z)) (new £ 5))

In an approach based on evaluation contexts, one would identify the program expression
above as having the form E[new £ 5] where E = (fnz = (get) [-]. Instead,
our machine explicitly extends the current continuation with a frame equivalent to the

context E. Thus, the application of rules (72) and (73) yields

(€= (), [-]o(pop; []) o ((fnz = (getz))[-]), new & 5)

Because expressions of the form (new £ e) could, in general, require further evaluation

of e, our machine continues with the decomposition step given by (T4) yielding

€= () [-1o(pop; [N o((fnz = (getz)) [-]) o (new £ [-]), B)

At this point, the program expression is a syntactic value so that our next step is depen-
dent on the top-most continuation frame. Applying rule (78) results in an allocation in

the region named £ producing

€= {=5), [-]o(pop; [-Do((fnz = (getz)}{-]), (&, 1)

Once again, the resulting program expression is a syntactic value. Looking again at the

top-most continuation frame, we see that this value is the argument for a function and

45

we apply rule (77) to arrive at

(5 L (l — é)! []o (pop; [])! get (Ea l))

Evaluation now leads to the dereferencing of the location (£,1) via the rules (T'5) and

(79) producing
(€= {—5), [-]o(pop; [-]), B)

At this point, the let-region expression of our original program has been completely
evaluated. Noting that the region stack has the form ¢ @ £ — R, we apply (T11)

yielding the final program state

(.1 []1 E‘—))

Although our initial and final states have empty region stacks, this need not be the case
in general. Any number of global regions may be assumed in an initial configuration.
Because these regions would not have corresponding continuation frames of the form

(pop; [-]), they would appear in the final state as well.

Static Semantics

The static semantics for RL is defined to facilitate a soundness proof based on
typability preservation as discussed in CHAPTER II. Each of the syntactic categories
we have defined — values, expression, continuations, regions, memories, and machine
states — has a corresponding judgment form in the static semantics which will be dis-
cussed in tum.

The main departure from the systems studied so far is the use of a constructor

environment to control type generalization. Recall that type, effect, and region variables,

46

Nzy=17
(var) A Tepx:T
(num) ¢:A;T'pn:int
A Tz:m) v e: nmp
(abs) 01 Cps fev(m)Ufev(pa) CA = & dom(T)
T;A;Tp fnz = e: 1 — (2, T2)
S;Aw{g&al; I{f:voar) > fnz = e: 7
(rec) fev(Vp,Ear)C A [& dom(I)
T;A;T b rec f{(F)(z) = e : Vp,&a.r
: W) =1 feu(r)=10
Loaiid AT (§1) s refér
Egdom(3) feu(r)=10
e TA TS (§1) :refEr

FIGURE 10. Static Semantics for RL (Part 1)

ranged over by a, ¢, and p respectively, are gathered into a single class of constructor
variables. Constructor environments, ranged over by A, are finite sets of constructor
variables. We write A & A’ for the union of disjoint constructor environments.

The typing rules for values are given in FIGURE 10 using judgments of the form
$; A; I'> v : 7asserting that the value v has type 7 relative to the given memory type,
constructor environment, and typing environment. Because values incur no computa-
tional effects, no effect description is assigned.

The rules (abs) and (rec) enforce that any new type added to the typing context
must be well-formed relative to the constructor environment. That is, the constructor

environment, A, should carry all of the free constructor variables of I". The quantifica-

47

(val) ;AT v T
;AT pov:T,d
;AT b oe: Vo Ear,p
(papp) fev(F)U fev(P) U feu(T) C A
AT b e(7) : 7[f=7¢E=0,a:=Tl¢
(app) GATe e = {om)p: AT >er:m,ps
;AT D erer: m,pUpaUgps
;A Tpe:Tg fro(y) C A
(new) ;A0 b newye: refyr,pU {7y}
;AT o e:refyre
t
e ;AT o e:7pU{y}
(letreg) SiAW{p}iTpe:np pdfru(r)

;AT b letregpine : 7,0\{p}

FIGURE 11. Static Semantics for RL (Part 2)

tion of constructor variables in the rule (rec) is allowed only for variables not already
occurring in A. The reader should understand these conditions as being equivalent to
the usual proviso which restricts generalization in each of the systems previously stud-
ied. Note also that the rule (rec) admits full polymorphic recursion in types, regions,
and effects. Locations are typed via the rules (loc-live) and (loc-dead). Because only
closed values are allocated, the store type may only supply closed assumptions about
their types which is seen in the proviso fev(r) = @ for each rule. We will discuss the
necessity of the rule (loc-dead) shortly.

The typing rules for expressions are given in FIGURE 11 using judgments of the
form3; A; ' > e : 7, asserting that the expression e has type T and effect ¢ relative

to the given memory type, constructor environment, and typing environment. Values

48

frn(r) € dom(s) feo(r) =10

(k-empty) T
(b K~ 7[pi=%,=08:=7]
k-pa dlki
“PAD T RS[I(7) ~ vAsar
To K ~ 1y
(k-a 'l) <; 01 () b e:n,p; (plU(p2 g dom(?)
PP co Kof([-]e) ~ 71 = {p2,72)
T K ~n
50; (0> v:n=(pn) @ C dom(3)
e To Ko@) ~ n
T K ~ refyr v € dom(3)
enen) s> Ko(newy[-]) ~ 7
b K~ 17 € dom(3)
(k-get) o Kol(get|]) ~ refyr
o K ~ 71
(k-pop)

$@E— T b Ko(pop; [-]) ~ 7

FIGURE 12. Static Semantics for RL (Part 3)

are accommodated via the rule (val) assigning them the empty effect. Polymorphic
instantiation, given by the rule (papp), occurs only when expressions are applied to
region arguments in a manner similar to the Tofte-Talpin system. The rules (app), (new),
and (ger) are similar to their counterparts in the Talpin-Touvelot system of CHAPTER 1I
and have been adapted here to the new judgment form. Similarly, the rule (letreg) differs
from the construct defined in FIGURE 8 only in using the constructor environment to

enforce the generalizability of the bound region variable.

The typing rules for continuations are given in FIGURE 12 using judgments of the

49

dom(R) = dom(Z)
7:0;) R : () (V1 € dom(R))

(region) s RS
§=§1HR11 00 kHRk
=6 L., 65— Iy

| IO :FO (Ve € dom)

I
B3:T T K ~ 1
G {drernp oCdom(g)
(prog) > (3, K, e)

FIGURE 13. Static Semantics for RL (Part 4)

foom¢ o K ~» 7. Intuitively, 7 is the type for the value expected by the right-most
continuation frame. The memory type, g, plays a special réle in typing continuations
because of the presence of frames of the form (pop; [-|). The rule (k-empry) allows
empty continuations to take on any closed type. In this rule, the memory type is assumed
to be the type of the global regions which can never be freed by (pop; [-]) frames
occurring to the right. The condition frn(7)} C dom(3) enforces that the top-level type of
the program can only contain these global regions. Therefore programs cannot produce,
say, a function with latent effects in some dead region. The rule (k-pop) allows an
additional region to be added to the memory type for the frames to the right. Each of
the other rules enforce that the given frame will produce a value of the appropriate type,
and that the effects associated with that computation involve only the regions currently
in memory.

The typing rules for regions, memories, and machine states are defined in FIG-

URE 13 with each requiring only a single rule. Regions are typed with the judgment

50

formT & R : I asserting that the region R has type T relative to the memory type
<. Each of the values bound in R must be closed and must have the type given by I,
The domains of these maps must also coincide. Because the values stored in a particular
region could contain references to any other region in the stack, each value is typed rel-
ative to the entire memory type. Memories themselves are typed via the judgment form
> 5 : T asserting simply that the memory 3 has type Z. Each region in 3 must have the
corresponding region type given in 3. These sequences must also bind the same region
names in the same order.

Finally, the judgment > M asserts that the machine state M is well-formed. The
machine state must consist of a well-formed memory whose type is consistent with
the continuation stack. The program expression must have the type expected by the

continuation, and an effect involving only regions currently in memory.

Discussion

The design of our abstract machine draws on three primary sources: the Tofte-
Talpin calculus as a canonical region-based system and execution model[52], the static
semantics of the calculus of capabilities defined by Crary et al. [11], and the use of ex-
plicit continuations given by Harper[18]. The language RL differs considerably, how-
ever, from each of these settings.

The expressive power of region systems such as the Tofte-Talpin calculus allows
regions to be freed despite the presence of dangling pointers. This well-known feature of
region systems leads to potential problems for soundness proofs based on preservation

arguments. For example, the evaluation of a well-formed program could result in an

51

intermediate state of the form

(5@&w— R, Kofpop; [-]),fnz = ((fny = 5) (&,1)))

Subsequent evaluation will free the region named £ leaving the dangling reference (&, {)
embedded in the program expression. The rule (loc-dead) in FIGURE 10 is needed to
type locations such as (£, !) which may occur in dead code.

Our treatment of dead locations is similar to that used in the capability language of
Crary et al. [11]. However, preservation in both settings becomes dependent on restrict-
ing run-time name generation as well. This can be seen in the rule (T10) of FIGURE 9
which prevents the use of new region names for which dead locations already occur.
Helsen and Thiemann solve this problem with an alternative approach based on the sub-
stitution of a distinguished dead-region identifier for all occurrences of region names
such as £ above[21]. Thus, both approaches require a slight departure from the ideal-
ized semantics of region systems. Moggi suggests that this phenomenon is an inherent
limitation of approaches based on small-step operational semantics[38].

The semantics of our abstract machine has been defined so that the following key

properties hold:

Proposition 3.1 (R L Typability Preservation)

If o Mand M — M’ thenp M’

Proposition 3.2 (R L Progress)

If > M then either M — M'or M = (5, [-], v).

We will not prove these properties here as the technical details involved are subsumed

52

by proofs given for the language RE introduced in CHAPTER 1V. The soundness of

R L is an easy consequence of Propositions 3.1 and 3.2:

Proposition 3.3 (R L Soundness)

If & M then either M diverges or M —* (3, [-], v).

Although soundness, as stated above, guarantees that regions are used safely, it does
not guarantee that programs produce values of the expected type. By modifying the
static semantics of continuations and machine states for RL , one could state and prove
a stronger form of soundness equating the type of the initial and final machine states.
However, in the extensions we will study next, strong soundness will be either less

meaningful or more awkward to prove.

33

CHAPTER IV

EXCEPTIONS

Exception handling constructs are a staple of high-level languages such as Java
and Standard ML.. Although often associated with error handling, exceptions more gen-
erally provide a means of “jumping” outside the normal flow of execution. In this chap-
ter, we provide the simple intuition behind type and effect rules for idealized exception

constructs. This intuition is then formalized in the language RE.

Exceptions in the ML-Kit

Standard ML provides constructs for locally declaring, raising, and handling con-
structed exceptions[36]. The fact that exceptions can be locally declared is not universal
to ML dialects and it leads to some subtlety in their semantics.! For example, when an
exception declaration is nested immediately within a recursive function, each successive
invocation of the function results in the creation of a new exception constructor. This is
referred to as the generative nature of Standard ML exceptions.

Exceptions are the only construct leading to non-constant time operations for man-
aging regions in the ML-Kit[49]. When an exception is raised, the (control) stack is
scanned for a matching handler causing a statically unknown number of regions to be
popped. Exceptions may even propagate to the top-level, in which case the name of the
exception is printed. This aspect of region systems has never been formalized.

The constructs provided by Standard ML, and their treatment in relation to region-

1The CAML dialect allows only top-level exception declarations.

34

Source code:

fun £(x) =
let exception foo of string
val ex = (foo "hello")
in

(if (x=0) then (raise ex)
else (f(x-1}})
handle foo(y) => 5

end
ML-Kit Output (Simplified):
fun £ (x)=
letregion r8
in
let exception foo : ((string,r8)-->(exn,rl),rl)
val ex : (exn,rl) = foo at rl "hello"at r8
in
if (x=0)
end

end (*r8*)

FIGURE 14. ML-Kit Example

55

inference can be clarified by a simple example. In FIGURE 14, we give the source code
for a simple recursive function along with the region-annotated output of the ML-Kit.2

The function named £ locally declares an exception constructor named foo. Then
an exception value is built by applying this constructor to an argument string. The func-
tion itself accepts an integer argument and simply counts down to zero via a sequence
of recursive calls. At this point, the exception is raised and handled and the function re-
tumns the constant 5. Although contrived, this example demonstrates the basic features
of declaring, raising, and handling constructed exceptions in ML.

The region annotated version of £ is shown in a skeletal and heavily simplified
form. First, the function declares a local region, named r 8, into which the stringhello
will be allocated. The types for both the exception constructor and the exception value
are explicitly given. The region named r1 is global to the program and thus never
reclaimed. Each invocation of the recursive function will result in the allocation of a new
exception constructor in the region r1, followed by a string in the local region x 8, and
then a constructed exception value again in the region r1. This situation therefore leads
to a space leak. The ML-Kit can be configured to emit warnings about space leaks which
in this case would indicate that the function £ has escaping effects on the region r1. It is
important to note that although the ML-Kit has allocated both the exception constructor
and exception value in a global region, the string being carried by the exception is stored
in a local region which is reclaimed before the function returns. Thus, the space leak
associated with exceptions is related to the small and constant amount of space required
for constructors[49]. Obviously, a more serious situation would arise if any value carried

by an exception were globally allocated. The resulting space leak would be proportional

The ML-Kit can be configured to output various intermediate representations used by the compiler.

56

not only to the depth of the recursion, but also the unbounded size of the value being

carried.

I'vpe and Effect Rules for Exceptions

Our treatment of region systems based on explicit effects will allow us to ignore
the global effects associated with exceptions and focus on the issue of how ordinary data
carried by exception constructors fits into the region-based execution model.

To build our intuition about the relationship between exceptions and regions, we
will informally discuss an extension to R.L using simplified judgments of the form " o
e : 7, which are sufficient for surface terms. Qur study will be based on idealized
constructs for ML-like exceptions which are similar, although not identical, to those

defined by Wright and Felleison [59]. Consider adding the following new phrases to our

language:

e =+ | exception z in e | raise e; with e, | try e; handle e; with z = e

Exception declarations introduce (unary) exception constructors. Exceptions are both
constructed and raised via the construct (raise e, with e,) in which e, should evaluate to a
constructor to be used with the argument e;. The construct (try e; handle e, with = = ¢;)
provides a means of handling a particular exception, given by e,, which may be raised
during the evaluation of e;. Operationally, we assume e, is evaluated first yielding a
constructor, and then the body e, is evaluated. If ; produces an ordinary value then that
value is delivered by the whole expression. If e; produces an exception matching the
constructor given by e, then the value carried by that exception is bound to z and eval-

uation proceeds with e3. Thus, unless additional exceptions are raised, the expression

57

[{z:mexn) > e: 7,

[' > exceptionzine : 7,

' b e : mexn, ' oes: 7,00
' b raise ey withey : 7,01 Us

' e :n,¢» IF'p oey: mexn, g
F'pfrnz = e3: 17— (p3,7),0
I' b trye; handle ey with z = e3 : 71,01 U o U 3

FIGURE 15. Type and Effect Rules for Exceptions

will produce either the value of e;, or the value of e; whose evaluation depends on the
exception argument dynamically bound to z.

The type and effect rules are shown in FIGURE 15. These rules simply propagate
effect information from each sub-expression in the obvious way. Exception construc-
tors are assigned types of the form (7 exn) which serve as a convenient foil for the
functional types of unary constructors in ML. Note that the type for expressions of the
form (raise e, with e;) is completely unconstrained. This flexibility is required so that
the same exception can be raised at arbitrary program points whose types may differ.

The question is now whether these simple rules are semantically sound in relation
to the region-based execution model. In other words, if an exception carries a value with
effects in some particular regions, a handler for that exception may manipulate that value
thereby incurring those effects. Therefore the regions involved should not be collected
as long as the possibility remains that the exception can be handled. Recall that regions

are introduced according to the following (simplified) rule:

Fee:ne p&frul) pg fru(r)
[o letreg pine : 7,0\{p}

58

The following example, which is not typable, shows an unsound use of exceptions:
exception z in (try (letreg p in (raise = with (new p 5))) handle z with y = (get y))

In this example, the region named p will be deallocated before the handler is applied,
resulting the the dereferencing of a dead location. Note that because the type of the
raise expression is not directly related to the type (ref p int) being carried, the criterion
p € fru(r) cannot detect the fact that this reference escapes. However, because that
handler must be in the scope of the exception declaration itself, the criterion p & fru(T')
prevents this example from being typable. Therefore the soundness of this solution rests

on the fact that exceptions can only be handled within the scope of their declarations.

The Language RE

Although the intuition behind extending our region systems with exceptions is
simple, verifying the soundness of such an extension is rather involved. Our use of ex-
plicit continuations will pay dividends in the preservation argument for RE by allowing
us to reason about the unwinding of the control stack. In order to cleanly accommodate
exceptions, we will require some reorganization of the syntactic categories defined in
CHAPTER III for RL. As a technical convenience, we will assume a new set of excep-
tion variables, ranged over by h. Exception variables will serve as names for exception
constructors in the manner just described. We continue to use the notation kto signify
a sequence of distinct exception variables.

Region identifiers are the only syntactic category to remain completely unchanged

from its definition in RL :

ya=p1i§

59

Values will now include exception variables which may be referenced, passed as

function arguments, or otherwise manipulated like other first-class values:

vi=z|h|n|fnz = e]|rec f{F)(z) = e]| (&)

Intuitively, because programs may produce uncaught exceptions at the top-level, another
form of value should be needed to represent them. Exception packets, ranged over by p,
are defined by:

p = faill h with v

Packets represent raised exceptions which have not yet been caught. They carry both
the name of the exception and value to be passed to an appropriate handler. Terminat-
ing programs will now produce answers, ranged over by a, which are either values or
exception packets:

ax=v|p

Expressions are extended to include answers and the three new phrases for exceptions:

e u= ale(y)|eres|newye|gete|letreg pine | exception kine |

try e; handle e; with £ = e3 | raise e; with e,

Exception declarations are slightly different from the construct introduced earlier. Be-
sides the switch to exception names, the declaration allows a sequence of distinct excep-
tions to be declared simultaneously. The significance of these choices will be become
clear later.

Rather than extend our definition of continuations directly, it will be useful to

separate our continuation frames into groups. Applicative frames, ranged over by 4, are

60

defined as:

§ == (1N 1A 1e) | @ {-]) | (new y[-]) | (get[-]) | (raise [-] with €] |

(raise v with [-]) | (try e handle [-] with z =€)

These include most of the frames seen previously, along with new ones to evaluate the
sub-expressions of our new phrases. Note that for try-expressions, evaluation will begin
with the sub-expression representing the exception being handled. Next, we define non-

binding frames, ranged over by &, to include the applicative ones:

k=6 | (pop; [-1) | (try [-] handle v with z = ¢)

These new frames play a more complex role in the semantics because of their relation
to region management and exception handling. Finally, our revised definition of contin-

uations is as follows:

K :=[]| K o(exception hin[-]) | Kok

Empty continuations are again represented by | - | and are extended to the right. The main
departure from our earlier definition is that the frame (exception £ in [-]) is a binding
construct which provides new exception names to be used in frames to the right.

Types are extended with a new type for our unary exception constructors:
Tu=int|a|refyT|Texn | = {p, ™) | V5, E a1

All other definitions for effects, substitution, typing contexts, etc., carry over directly.

61

Dynarmmic Semantics

The main complication involved in handling generative exceptions is related to the
scope of exception declarations which must be maintained throughout evaluation. Our
approach is very similar to that used Wright and Felleison [59]. Consider, for example,

an application of the form

(exception h in €) (exception A’ in €')

Because the evaluation of both e and €’ could produce values with embedded occur-
rences of h and &', one cannot simply remove the exception declarations leaving these
names unbound. Furthermore, even if two exception names declared above were iden-
tical, that is A = h’, we should not confuse them. Instead, we rely on the identification
of expressions up to consistent renaming of bound variables, and the further convention
that bound variables are distinct in distinct expressions. Our dynamic semantics must
maintain a distinction between the exceptions declared above and allow exceptions em-
bedded in values to propagate beyond the scope of their original declarations. This is
accomplished by merging exception declarations and then lifting them, whenever neces-
sary, across intervening continuation frames. The values stored in memory may contain
occurrences of any exception declared within the frames of the current continuation,
The transition rules for RE are defined in FIGURES 16 and 17. Again the rules
are grouped according to their function. The computation rules are identical to those
defined in CHAPTER III. The decomposition include those previously seen but have
been extended to handle the sub-expressions occurring in our exception constructs. The

region management rules differ only because an answer may appear as the result of

62

[Decomposition])
(1) G K, e(T)— & Ko([-]{(7) e
(72) (3, K, e1 e2) — (5, K o ([-] e2), €1)
(73) (5, Ko([-]e), v)—r (5, Ko(v]-]) e
(T4) (3, K, new ye) — (5, Ko (new v [-]), €)
(T5) (3, K, gete) — (5, Ko (get[-]),)
(T6) (5, K, exception Rin e) — (5, K o (exception hin (-1, e
(T7) (3, K, try e; handle e; with z = ¢3)
}—}
(5, K o (try e; handle [-] with z = e3), eo)
(T78) (5, K o (try e; handle [- | with z = e3), v)
—
(5, K o (try [-] handle v with = => e;), ;)
(T9) (3, K, raise e; with ex) — (3, K o (raise [-] with e3), e;)
(Ti0) (5, K o (raise [-] with €), v) — (3, K o (raise v with [-]), e)
[Lifting and Merging]

(T11) (5, K ¢ ko (exception Rin [-]), a) — (5, K o (exception Rin [-] ok, a)

(T12) (5, K o (exception hin [-]) o (exception &' in [-]), a)
—r
(3, K o (exception h, k' in [-]), a)

FIGURE 16. Transijtion Rules for RE (Part 1)

63

[Computation]
(T13) (5 Ko ([-] (7)), rec f(F)(z) = ¢)
|——}
(3, K, (fnz = e€)[f = (rec f(P}(z) = €)][F:=7])
(T14) (3, Ko((fnz = €)[-]),v) — (3, K, e[z :=1])
(T15) (3 Ko(newé[-]), v) — (5{— R =), K, (£,1))
if5(¢) = Rand! ¢ dom(R)
(T16) (5, K o(get[-]), (§,1)) — (3, K, v)

if 3(§)(1) =v
[Region Management]

(T17) (5, K, letreg pine) — (5@ & — 0, K o (pop; [-]), elp :=¢&])
if € € frn(3) U fru(e)

(T18) (F@Q&— R, Ko(pop; [-]), a) — (5, K, a)
[Raising, Unwinding, Handling, and Unhandling]

(T19) (3, K o (raise h with [-]), v) — (5, K, fail h with v)
(T20) (3, K06, p)— (5, K, p)

(T21) (5, K oftry[:] handle h withz = ¢), p) — (35, K, (fnz = e)v)
if p = (fail h with v)

(122) (5, K o (try [-] handle h with z = ¢), p) — (5, K, p)
ifp= (fail K withv)and h £ &'

(T23) (3, Il o (try [-] handle h with £ = e,), v) — (5, K, v)

FIGURE 17. Transition Rules for RE (Part 2)

64

evaluating a let-region expression, rather than an ordinary value. Whenever progress is
blocked by an intervening exception declaration, that declaration is exchanged with the
preceding frame by rule (T11). If the preceding frame is another exception declaration,
then the two are merged according to rule (712).

The rules related to raising exceptions are more interesting. When an exception is
raised, a packet is formed by rule (719). The distinction between values and packets is
important because packet formation leads to the unwinding of the continuation in search
of an appropriate handler as expressed by rule (T20). Any intervening (pop; [-]) frames
will also result in the collection of regions according to rule (718). When a handler is

found, it either matches the given packet or is ignored according to rules (27) and (22).

Static Semantics

The static semantics of RE is defined in FIGURES 18, 19, 20, and 21. These judg-
ments rely on a new form of environment for maintaining assumptions about exception
names. Exception environments, ranged over by @, are finite maps from exception vari-
ables to types. These maps are subject to our usual notational conventions for typing
environments such as functional updates, written ®{h : 7). Informally, if ®(h) = 7 then
the exception name h is assumed to have type (7 exn). Each of our previous judgment
forms, other than > M, will be modified to carry exception environments.

The typing rules for answers are defined in FIGURE 18 with judgments of the
form$; A; ®; " > a : 7. The values defined for R L are included among RE answers
and each of our previous rules has been simply adapted to the new judgment form. In
analogy to (var), the rule (constr) types exception names according to the assumption

given in the exception environment. The rule {packet) types uncaught exceptions in

65

[(z)=71
(var) ;A0 Tz T
®h)=17
(constr) T;A;P; T h:Texn
(num) ;AP T n:int
;A9 T{z:m) b e: T,
(abs) 1 C 9 Jev(m) U fev(pa) C A z & dom(I")
;4,9 o fnz = e: 1 — (v, 70)
S;Aw{p&al; ®; T{(f:Vpear) b fanx = e: 7
(rec) fev(Vp,€&87)C A f & dom(T)
ree S:A;P;T b rec f{(F)z) = e: V5,6 a1
. W=7 feu(r) =0
(loc-live) S A0 T o &0 7
£ & dom(3) fev(t) =10
Sty ;A 9T (1) : 7
&hy=mn ;A;0; T v:m fev(m) C A
(packer) $;A;®; b failhwithv : 1y

FIGURE 18. Static Semantics for RE (Part 1)

66

roughly the same manner as we saw for raise-expressions. In particular, the type of the
overall expression is not related to the type of the exception involved. It is constrained
only to be a closed type.

The typing rules for expressions are defined in FIGURE 19 with judgments of the
form$; A; ®; T > a : 7,p. Again, each of our previous rules has been modified to
carry an exception environment and the rule (ans) replaces (var). The rules (exndec),
(try), and (raise) are appropriately modified versions of the rules given in FIGURE 15.
The main difference is our allowance for multiple exceptions to be declared in (exndec)
to accommodate the merging of exception declarations.

The typing rules for continuations are defined in FIGURES 20 and 21 with judg-
ments of the fom § > K ~» @, 7. Intuitively, continuations now provide a context
for values of a particular type, 7, which may also mention any exceptions declared in &.
The exception context is extended by the rule (k-exndec) each time a declaration frame
is encountered. These new declarations also apply to any expression embedded in any
continuation frame to the right.

The modified rules for typing memories, regions, and machine states are defined
in FIGURE 22. Because exception variables are first-class values, they may themselves
be allocated, or appear embedded in other values allocated in memory. The exception
environment appearing in the type of the current continuation in the rule (prog) contains
bindings for every exception declaration encountered during evaluation. This environ-
ment is used to type memory, via the judgment form & © 3 : ¢, and each memory

region, via the judgment form%; ® > R : L.

67

(ans)

(gen)

(letreg)

(exndec)

(try)

(raise)

=7,
;A0 Toe = (po,m)p2 T4;9;Tpe:m,p;

P > erer:mp1UpaUps

DA
T;0;9;Tpe:mp fro(y)CA
A;®; T > newye : refy7r, U {7}

1A O T b e:refyr,e
A;®; T e e:repuU{y}

;®; ety p & frv(r)
I' b letreg pine : 7,0\{p}

HEhl,...,hk {H}ﬁdom(@)=0
S A ®hy) (i) T boe:Tp
feo(nm)U---Ufeu(n) CA

T;A;®: T b exceptionﬁine P T,

[SHFARR) - R S TiA;9; ' b ey : Trexn,
A0, fnx = e — (p3,71)
T;A;9; T v trye; handlees withz = e3 : 71,01, U o U 3

S A;®;T b eyt 1exn,
;AT e 01yt oo, fev(m) C A
A ®; T b raisee; withey : 7,01 U o

FIGURE 19. Static Semantics for RE (Part 2)

68

(k-empty) T[] ~ ()7
T K ~» (I),T[ﬁ:_‘_y"g =¢,C_!' =?]
Lz T o Ko([1{7) ~ &,V5,68r
Te K ~ ®n
08 ()pe:mer o Ups C dom(T)
k-app-1
(-app-D) T Ko([1e) ~ &, = (pnm)
T K ~ ‘I’,Tz
Si0i2; ()b v:ini={pm) o Cdom()
(k-app-r) b KO(‘U[~]) ~ D, 7y
T K~ ®refyr v € dom(3)
(k-mew) To Ko(newy[-]) ~ ®,7
Tp K~ &7 y€dom(3)
(k-ger) T Ko(get[]) ~ ®,refyr
(k-pop) T K ~ &7

T@E— X o Ko(pop;[]) ~ &, 7

FIGURE 20. Static Semantics for RE (Part 3)

69

o K~ 8,7 h=h,...
{R} N dom(®) = & = Bhy i) (hy)
(k-exndec) fev(n)u---u fcv(rk) =0
¢ b K of{exceptionhin[-]) ~ &' 7

T K~ &,n 50,2, () e Ty
ety ;0;@;() > fnz = e 1= {p2,11) 1 Uws C dom(3)
4 g > Kof(trye, handle [-] withz = e2) ~ ®, 7 exn

T K~ &7 $;0;P;() > v:mexn
k-1ry-b) 5;0;2; (Yo fnz = e:n—={p,n) @Cdom()
- T > Kof(try[-]handlevwithz =€) ~ ®,7

(k-raise-1) T K ~ &1 0:2;, (> e:myp p & dom(s)
-raise S b K o(raise [-]withe) ~ @, 7 exn

(k-raise-r) T K~ &1 T;0;0;() b v:Tmexn
’ b Ko(raisevwith[-]) ~ &7

FIGURE 21. Static Semantics for RE (Part 4)

dom(R) = dom(X)
(regi $;0;9;() > R(l) : Z(I) (VI€ dom(R))
region) T 3> R. %

L= Ry, G Ry
G151, 6 I

€) : 3§} (V&€& dom(3))
dp3F:7T

V el
wl |||

(stack)

dp3:T S K ~ &7
$;0;2;()pe:T,0 ©Cdom(3)
(prog)

> (3, K, €)

FIGURE 22. Static Semantics for RE (Part 5)

70

CHAPTER V

SOUNDNESS OF RE

Before proving preservation and progress, Propositions 5.10 and 5.11, we will
require a number of auxiliary properties. These properties have simple inductive proofs
and, for the most part, have appeared in some form in previous work involving syntactic

soundness proofs and region systemsf11, 59].

Basic Properties

The following Lemma expresses a simple but important invariant maintained by
the static semantics, namely, that types and effects are well-formed with respect to the

constructor environment:

Lemma 5.1 (RE Proper Typing)

Suppose fev(®) U fev(T) C A.

1. If$; A; @, T o a: 7then fev(r) C A.
2.3, A; ;T b e: 7,pthen fev(r) U fev(p) C A.
3. Ifg p K ~ @,7 then fev(®) U fev(r) = 0.
PROOF: Parts 1 and 2 are established by mutual induction on the derivations

with all cases following directly from the induction hypothesis. Part 3 is by

induction on the derivation using parts 1 and 2.

71

As a technical convenience, we state the following Lemmas related exception
declarations. These Lemmas will be used in the proof of preservation for the rules
(T6) and (T11):

Lemma 5.2 (RE Exception Context Extension)

Suppose {hy, ..., e} N dom(®) =P andlet &' = &(hy i 1) - (hy : 7).

LU, A;®;T o a:rthenT; A;%:T b a: 7.
2. I3;A;0;T v e: r,pthenT; A;@;T b e: 7,0.
3. f® > 5:Tthend v 5: ¢

PROOF: Parts 1 and 2 are straightforward to establish by mutual induction.

Part 3 follows from part 1 by inspection of the rules (stack) and (region).

a
Lemma 5.3 (RE Exception Declaration Lifting)
If¢ > K ok o (exception % in [-]}) ~ @,7then
T > Kof(exceptionhin[-])ox ~ &,r.
PROOF: By case analysis on « using Lemma 5.2.
]

Value and constructor substitution properties, in some form, are standard parts of
syntactic soundness proofs. We require constructor substitution not only in the preser-
vation case for polymorphic applications, rule (T13), but also in the case for region

allocation, rule (T17).

-

Lemma 5.4 (RE Value Substitution)
Suppose$; @; @; () b v : Tandleta' = o[z :=v]and ¢’ = efz :=).

LIfS; A;®;{z:7) b a:7thenT; A;®; T v o' : 7.

223, A;0;T{z:7) > e: v othenT; A;®; T o & : 7, 0.
PROOF: By straightforward mutual induction on the derivations. Note that
in cases involving axioms such as for rule (num), we use the fact that any
variable not occurring free in an expression may be removed from the typing

context I'. Similarly, v above cannot be a variable since its judgment refers

to an empty typing context. We do not formally state these properties here.

O

Lemma 5.5 (RE Constructor Substitution)
Suppose fcu(F) U fev(@) U fev(T) € A and let
(al) & = 3[F:=7,&:= 5,8 :=7),

@) I"=Tf=7,=3,a:=7),

(a3) &' = e[p:=7],

(a4) o' = a[f:=7],

@5) ¢' = ¢[p:="7,&:=], and

@) ' =71[p:=7,6:=7,& =7l

1 If3; AW {g,6,&}; ®;C b a: 7thenT; A; ;I o o : 7.

2. Ifg;, Avw{p,€a}; ®;T b e: 1,pthenT; A; ;b €& : 7,

73

PROOF: By mutual induction on the derivations. Note that the constructor
substitution does not apply to the memory type because the premises of the

rules (loc-live) and (loc-dead) allow only closed types to be used.
a
The following Lemmas are used in the preservation proof for the cases involving
allocation and collection of entire regions given by rules (717) and (718) respectively.

Note that these Lemmas do not refer to the continuation judgment form because these

operations do not effect the typing of expressions already embedded in the continuation

stack.

Lemma 5.6 (RE Region Allocation)
Suppose £ € frn(a) and € & frn{e) and £ € frn(3) and letT =T @ £ — 0.
LLIT; A;®;T o a:7thenT; A:®: T b a: 7.
2.5, A;,9; T o e: 7,pthend’; A; 0, T > e: 7,
3If® b 5:3then® b 5@& > () : 7.
PROOF: Parts 1 and 2 are established by mutual induction on the deriva-
tions. The conditions restricting £’s occurrence are required in the case for

dead locations. Part 3 follows by inspection of the rules (stack) and (region)

using part 1.

Lemma 5.7 (R€ Region Collection)

Lett =3 @&~ I,

74

1. If5; A;®; ' > a: 7thenT; A; ®; T & a: 7.

2. If5; A;®; T b e:1,pthenT; A; ;T b e : 7, 0.

3.f® > 5@~ R :Tthen® v 5: 7.
PROOF: Parts 1 and 2 are established by mutual induction on the deriva-
tions. Note that the rule (loc-dead) is required when a = (£’, 1) was derived

by (loc-live), that is, when £’ = £. Part 3 follows by inspection of the rules

(stack) and (region) using part 1.
g
The proof of preservation for reference allocation, rule (T'15), requires the follow-
ing Lemma stating that memory types can be extended with new locations:

Lemma 5.8 (RE£ Reference Allocation)
Suppose 5(£) = T and ! € dom(Z) and let T = (£ — Z(I — 7)) and
5 =5 =3 -).

1L IfS; A; ;T pa:7then?; A; ;T > a: 7.

2.If5; A, ;T b e: r,othenT; A;9; T b e : 7,0.

3. IfS o K ~ ®,7then? b K ~ 9,71,

4. If® > 5:35and3;0;®; () > v:7then® > § : 7.
PROOF: Parts 1 and 2 are established by mutual induction on the deriva-

tions. Part 3 is by induction on the derivation using parts 1 and 2. Part 4

follows by inspection of the rules (stack) and (region) using part 1.

75

Finally, the following standard property summarizes the syntactic forms that val-

ues can have based on their types and is useful in the proof of Proposition 5.11:
Lemma 5.9 (R€ Canonical Forms)

Suppose ® > 5 :Tand$;0; ®; () > v T,

I. If T = 7' exn thenv = h.
2. If = ref £ 7' then v = (£, 1) and either £ &€ dom(3) or 5(€)(I) = v.
3.Ifr=7 = (p,) thenv = (fnx = ¢).

4, If T = V5,6 &' thenv = (rec f{F){(z) = e).

PROOF: The proof is by inspection of the typing rules for values using the

fact that v # z since the judgment for v has an empty typing context.

Preservation and Progress

Proposition 5.10 (RE€ Typability Preservation)

If > M and M — M’ then > M’

PROOF:

By case analysis on the transition rules.

Case (T1

Assume o (3, K, e (7)). From the premises of (prog) and (p-app)
(@) > 5:73,

BT K ~ &rf=7¢:

i
|
21
1
St

76

©3:0;2;() v e(7):7lp=78=5,a:=7|,0,
(d) ¢ C dom(%), and

€)3;0;2;() > e: Vp&Ear,y.
By (k-papp) with (b)
0Dz Ko((-](7)) ~ @ Vp&Ear.

We conclude > (35, K o ([-] (%)), €) by (prog) with (a), (d}, (e), and (f).
Case (T2)
Assume b (3, K, e; e). From the premises of (prog) and {app)

(@ ®v 5:5,

bYso K ~ @7,

© 30,2 () > erer: mpUpaUyps,

(d) w1 UpaU s C dom(3),

©3;0;2;() > e1 : 71— (p1,72), 2, and

030,25 () > e2: m, .
From (d) we know ¢, U @3 C dom(3) so by (k-app-I) with (b} and (f)
® 3> Kof[-]ex) ~ @, — (i1, 72).

Since (d) also implies ¢, C dom(s) we conclude > (3, K o ([-] e2), €1) by
(prog) with (a), {e), and (g).
Case (T3)

Assume > (3, K o ([-] e), v). From the premises of (prog), (k-app-I), and

(ans)

@@p>5:7

®) 3> Ko([-]e) ~ &, = (2, 7),

©3;0;2;() b v:m—(p27),0,

dse K ~ @& mn,

€ 3;0;2;() > e:m,p,

(0 1V 2 € dom(5), and

@ 3;0;%;() > v:mn—{om)
From (f) we know ¢» C dom(%) so by (k-app-r) with (d) and (e)
h o Ko(u[-]) ~ &,7.
Since (f) also implies p; C dom(g) we conclude & (5, K o (v{-]),) by
(prog) with (a), (e), and (h).

Case (T4)

Assume b (3, K, new v ¢). From the premises of (prog) and (new)
(@ ®v73:7
®Ipe K ~ Orefyr,
©T;0;®;() o newvye : refyr,oU{y},
(d) pU {7} C dom(3), and
©3;0;®;()>e: T
From (d) we know v € dom(%) so by (k-new) with (b)

0> Ko(newy[-]) ~ &7

Since (d) also implies ¢ C dom(3) we conclude © (3, K o (new v [-]), €)
by (prog) with (a), (e), and (f).
Case (T5)
Assume > (3, K, get €). From the premises of (prog) and (get)
@ ®p>3:7
b3 K ~ &,
©3;0;2;() > gete : T,0U {7},
(d) U {7} C dom(3), and
©7T;0;%;()p>e:refyr .
From (d) we know v € dom(%) so by (k-ger) with (b)

)T o Ko(get|-]) ~ D,refyrT.

Since (d) also implies ¢ C dom(g) we conclude & (3, K o (get [-]), €) by
(prog) with (a}, (e), and (f).

Case (T6)
Assume b (5, K, exception Fin e) and R =h,,..., h. From the premises
of (prog)

@ ®p3:7

s K ~ &7,
(€) 5;0;®; () > exception hine : 7,4,
(d) ¢ C dom(T), and

@T;0;®;() > e:refyre.

78

79

Let & = ®(h; : 1) -+ - (bt — 7%. From the premises of (exndec) with (e)
6 {R} N dom(d) =0,
8 3;0;,9;() > e: 7 and
(h) fev(m) U-U fev(r) = 0.
By (k-exndec) with (b), (f), and (h)
(i) T > K o (exception hin[-]) ~» &, 7.
By Lemma 5.2 with (a) and (f)
P o s5:8
We conclude > (3, K o (exception & in [-]), e) by (prog) with (d), (g), (i),
and (j).

Case (T7)

Assume b (3, K, try e; handle e; with x = e3). From the premises of
(prog) and (try)

(a) ® > 5:¢C,

Mo K ~ ®n,

© 3;0;®; () b trye, handle ea withz = €3 : 7y, U 3 U g3,

(d) p1 UV s C dom(3),

©3;0;2;:() > e 1,0,

N T;0,P; () > e : ™ exn, s and

@3 0,0, ()b fnz = e3: m— (wa,71)

From (d) we know ¢, U @3 C dom(%) so by (k-try-h) with (b), (e), and (g)
(h) § > K o(try e, handle [-Jwith z = e3) ~ @, 7 exn.

We conclude o (5, K ¢ (try e, handle [-] with z = €3), e;) by (prog) with

(a), (f), and (h) and the fact that (d) implies @, C dom(3).

Case (T8)

Assume & (3, K otry e; handle { -] with z = e, v). From the premises of
(prog), (k-try-h), and (ans)

@@ ®p 7:5,

(b) T > Kotrye handle[-] withz = e; ~ @, 75 exn,
©3;0;2;() > v: mexn,,

d3;0:2;() > et e,

€ @cpe K ~ &,n,

NT;0;8; ()b fnz = e : 7= (2, 7),

(8) 1 U2 C dom(3), and

h)T;0;P; () > v:mexn
From (f) we know @2 C dom(3) so by (k-try-b) with (e), (f), and (h)
(i) T v Ko(try{-]handle v with z = e3) ~ P, 7.

We conclude & (5, K o (try [-] handle v with z = €5), ¢;) (prog) with (a),
(d), and (i) and the fact that (g) implies y; € dom(3).
Case (T9)

Assume b (3, K, raise) with ;). From the premises of (prog) and (raise)

81

(@ @p>5:7

BT > K ~ @,

(€} T;0; @; () > raise e; with ea : 72,1 U 2,

(d) ¢1 U C dom(3),

) T;0;P; () > e : 7 exn g, and

0 3:0;2;() b ey
From (d) we know , C dom(T) so by (k-raise-I) with (b) and (e)

(g) T > K o(raise [-]| withes) ~ &, 7 exn.
We conclude b (3, K o (raise [-] with e2), e1) by (prog) with (a), (e), and
(g) and the fact that (d) implies ¢, C dom(3).
Case (T10)
Assume b (3, K o (raise |-] with e), v) From the premises of (prog), (k-
raise-I), and (ans)

(@ ®p>53:73,

(b) T > Koraise[-]withe ~ @, exn,

©T;0;9;() > v:mexnd,

Ao K ~ O,7,

©3;0;9;() > e:n,p,

(f) v C dom(3), and

@ %;0;,®; () > v:rexn

By (k-raise-r) with (d) and (g)

() T > Ko(raisevwith[-]} ~ &, 1.
We conclude > (35, K o (raise v with [-]), e) by (prog) with (a), (e), (f), and
(h).
Case (T11)
Assume b (5, K o & o (exception £ in [-]), a) From the premises of (prog)
(a ® o 3:7,
(b) T > K oxo(exceptionhin[-]) ~ &, 7, and
©z;82;, v a:T0
By Lemma 5.3 with (b)
(d) T b K o (exception A in [‘Dor ~ &, 7.
We conclude > (3, K o (exception hin {-]) o &, a) by (prog) with (a), (c),
and (d).
Case (T12)
Assume © (3, K o (exception h in [-]) o (exception &' in [-]), a) where
h = Ri,...,hy and B! = hi,..., ;. From the premises of (prog) and
(k-exndec)
(a) " o 3: ¢,
(b) § > K o (exception h in [-]) o (exception &' in [-]) ~ &7,
©%3;0;9";() > a:10,
(d) T > K o(exception hin[-]) ~ &,7,

() {'} N dom(®') =,

82

() fev(r)U---U fev(r]) = 0,

(@3> K ~ &7,

(h) {h} N dom(®) =0, and

G) fev(m)U:---Ufev(r) =0
where @' = ®(h; : 1)+ (hy 2) and @7 = D'(hY 2) - (RL 0 T,
From (e) and (h) we know the elements of k and &' are all distinct and we

have {E, R } N dom(®) = B. Using this fact with (f), (g), and (i) we have
by (k-exndec) that

() T b K o (exception h, R in[-]) ~ @ 1.
We conclude b (3, K oexception i, A’ in [-], @) by (prog) with (a), (c), and
G-
Case (T'13)

Assume & (5, K o ([-] (7)), rec f(F)(z) = e) From the premises of
(prog), (k-papp), (ans), and (rec)

(@ ®v35:5,

b)) T b Ko[-](F) ~ ®,V5Ea.T,

©3:0;9;() > rec f(F)z) = e: V5,EaETD,

Do K~ &71[p:=%,¢:=9,d:=T),

€ 3;0;2;() > rec f{F)z) = e: Vp,E a.T,and

) 5; {Aa}l;®;(f:Vp,&&7) b fnz = e : 7.

By Lemma 5.4 with (e) and (f)

83

@ T {Feal; ®; () v (fnx = e)[f :=(rec f{z)(p) = ¢e)] : T.
By Lemma 7.1 with (d) we have fcu(r[§ := 7, €:= P, & := T]) = 0 which
implies

(h) fev(7) U feu(p) U feu(T) = 0.

Also by Lemma 7.1 with (d) we know fev(®) = 0 and hence (5 :=7,&:=
B,a:=7]=&. Letv=(fnz = e)[f := (rec f(7)(z) = e)]lF:=7]
By Lemma 5.5 with (g) and (h)

;0,0)b v:7[p=76=94a:=T]

By (ans) with (i)
NT;0;9;,) > v:7[p=7=pa:=7,0

We conclude > (3, K, (fnz = e)[f := (rec f(F}(z) = e)]ip:=7]) by
(prog) with (a), (d), and (j).
Case (T14)

Assume > (5, K o (fn@ = e) [-]), v). From the premises of (prog),
(k-app-r), (ans), and (abs)

@®v35:7

T Ko({fnz = e)[-]) ~ &7,

©3:0;2;() > v:mn,b,

T K ~ &7,

@50, () fnx = e:n — (o),

(£ ¢ C dom(3),
@3%;0;2;(z:m) > e: 7y,
(h) ¢’ C ,and
T;0;2;()pv:mn.
By Lemma 5.4 with (g) and (i)
3T:0;9; () > elz:i=1] : 7,4
We conclude > (3, K, e[z := v]) by (prog) with (a), (d), and {j) and using
the fact that ¢’ C dom(3) which follows from (f) and (h).
Case (T15)
Assume b (3, K o (new £ [-]), v) where 5(£) = R for some R and choose
I ¢ dom(R). From the premises of (prog), (k-new), and (ans)
@®p>35:%,
® 3> Ko(newy[:]) ~ ®,7,
©3;8;2;() > v:m0,
dsp K ~ drefér,
(e) £ € dom(S), and
0HT;0;,2;,()pv:T
From the premises of (stack) and (region) with (a) and our assumption about

§ we know $(§) = Z forsome £ and ! ¢ dom(Z). LetT =T{€ — (I —
7)). By Lemma 5.8 with (d) and (f)

@7 > K ~ & refyrand

85

86

0 3T;0;2;() > v:T.
By Lemma 5.8 with (a) and (h)
@) @ > 5(E Rl v)) : T
By Lemma 5.1 with (b) we know fcu(r) = @ so by (loc-live)
3 T50;2;() » (&) :refET.
By (ans) with (j)
& T:0;P;() > (&) : ref&7,0.

We conclude > (3, K, (£,1)) by (prog) with (g), (i), and (k).
Case (T16)
Assume b (3, K o (get [-]), (£,1)) where 5(§) = R and R(l) = v for
some R and v. From the premises of (prog), (k-get), and (ans) and from
inspection of the typing rules for locations

(a) ® b 3:C,

b)s > Ko(get{-]) ~ ®,refé T,

©) 3;0;2; () > (&1) : refE 7,0,

T K~ &7,

(e) £ € dom(3), and

00,2, (617
From (e) we know (f) was derived by (loc-live) with premise T(£)(I) = 7.

Using this fact with (a) we have from the premises of (stack) and (region)

that

87

@50,)pv:T.
By (ans) with (g)
M 30,8, () > v:T0

We conclude > (5, K, v) by (prog) with (a), (d), and (h).

Case (T17)
Assume > (3, K, letreg pin e) and choose £ such that £ & frn(3) U frn(e)
and 3 @ £ — () exists, in other words, £ € dom(5). From the premises of

(prog) and (letreg)

@ ®ov>3:5

e K ~ &,71,

() T;0; ®; () > letreg pine : 7,0\ {p},
(d) ©\{p} S dom(7),

€) 3;{p};®; () > e: 7 and

(f) p & fro(7).

Letg’ =5 @& — 0. By Lemma 5.6 with (a) and (e) and our assumptions

about £

@ ®b>35@6—{():7 and
M T {p};®;{) > e:mep
By (k-pop) with (b)

@3 > Ko(pop;[-]) ~ @,7T.

By Lemma 5.1 with (b) we know ®[p := £] = ® and from (f) we know
T[p := €] = r so by Lemma 5.5 with (e)

0 T;0;®;() > elp:=¢] : 7 p[p:=¢]
From (d) we have

(k) ¢lp:=£] C dom(T').
We conclude > (3@ & — 0, K o (pop; [+]), e[p := £]) by (prog) with (g),
(1), (j), and (k).
Case (T18)
Assume b (3, K o (pop; [+]), a). From the premises of (prog) and (k-pop)
and from inspection of the rule (stack)

@ ®p3sQE— R TQ@RE-L,

(b) T@QEF T b Ko(pop; []) ~ @7,

€ T;0;®;{)p> a: 7,0 and

@3 K ~ &7,
By Lemma 5.7 with (a) and (c)
e) P v 5:Tand
03;0,8;()>a:m0.
We conclude © (3, K, a) by (prog) with {¢), (e), and (f).

Case (T19)

Assume b (5, K o (raise h with [}, v} From the premises of (prog), (k-

raise-r), {ans), and (constr)

88

(@ ®>3:¢
(1) T b K o (raise hwith [-]) ~ &7,
©3%;0;2;()>v:mn,0
@3 K ~ &7,
©3T;0;9;()> h:m7exn
HHT;0;2;()> v:mn,and
(8 ¢(h) =n.
By Lemma 7.1 with (d) we have
(h) fev(m) = 0.
By (packer) with (f), (), and (h)
@) 2:0;®; () > fail hwithv : 7.
By (ans) with (i)
G) T;0; ®; () > fail hwith v : 75,0.

We conclude © (3, K, fail h with v) by (prog) with (a), {d), and (j).
Case (720)
Assume b (3, K ¢4, fail h with v) From the premises of (prog), (ans), and
(packet)
(@ &> 3:8
byg o Kod ~ 7,

© %;0; ®; () b fail hwithv : 7,0,

89

90

(d)T;0;®; () > fail hwithv : 75,
(e) ®(h) =, and

00,2, () v:mn.

From (b) by inspection of the typing rules for continuations frames ranged

over by 4 it is easy to see that there exists 7 such that
@< K ~ 0,7,
By Lemma 5.1 with (g)
(h) fev(r) =0.
By (packer) with (e), (f), and (h)
) 5;0;P; () o fail kwithv : 7.
By (ans) with (i)
M 3T;0;9; () o fail hwithv : 7,0.

We conclude > (3, K|, fail k with v) by (prog) with (a), (g), and (j).
Case (T21)
Assume b (3, K o (try [-] handle h with z = e), fail k with v). From the
premises of (prog), (k-try-b), (constr), (ans), and (packet)
(@ &> 535:7
(b) T & Koftry [-] handle h withz = ¢) ~ &, 1,
€ T;0;®;{) o fail hwithv : 7,0,

@3> K ~ &n,

91

@) c;0;92;() > h:mexn,

() 2(h) =7,

@T;0,0;()pfnz = e: 71— {pn)

(h) ¢ C dom(3),

() 2;0; ®; () > fail hwithv : 7,

G) ®(h) =7, and

&K g;0;P;{(}p v:T.
From (f) and (j) we know 7 = 7. By (ans) with (g) and (k)
Mz3;0;2;()p fnz = e: ™ — (pn)0and
m)3;0;2;() > v:mnh
By (app) with (1) and (m)

MT;0;2;{()p> (fnz = e)v: m,e.

We conclude o (5, K, (fnz = e) v) by (prog) with (a), (d), (h), and (n).
Case (T22)
Assume & (3, K o (try [-] handle h with = =), fail &’ with v). From the
premises of (prog), (k-try-b),

(a ® b 35:¢C,

(®) T > Ko(try[-]handle hwithz =€) ~ &7,

€)T;0;®;() > fail A withv : 7,0, and

Do K ~ &7,

92

We conclude » (3, K, fail i’ with v) by (prog) with (a), (c), and (d).
Case (723)

Assume b (3, K o (try [-] handle h with z => ¢), v). From the premises of
(prog), (k-1ry-b),

(@ ®p>3:3

(b) > K o(try[-]handle h withz = e) ~ ®,7,

©)T;0;®;() > v:r0and

dsp K ~ @,71.
We conclude » (3, K, v) by (prog) with (a), (c), and (d).

O

We now turn to the proof of progress. Although tedious, proving progress for RE
in detail is important as it verifies the mutual consistency of our fairly complex set of

syntactic definitions and transition rules.

Proposition 5.11 (RE Progress)

If > M then either M — M’ or M = (3, K, a) and either X = [-] or
K = [-] o (exception hin [-]).

PROOF: Assume M = (5, K,) and o M. The proof is by induction on
the structure of e. If e is not an answer, then it reduces by either (T1), (72),

(T4, (T5), (T6), (T7), (T9), or (T17).
If e = a then we proceed by induction on the structure of K:

Case ([-])
Then M = (3, [], a).

Case (K' o (exception & in [-]))

Now by induction on the structure of K":

If K' = [-]then M = (5, [-] o (exception hin [-]), a). If K' = K" o
(exception A’ in [-]) then M reduces by (T12). If K’ = K" o k then M

reduces by (T11).

Case (K" o ([-] (7))
If e = p then M reduces by (T20). Assume e = v. From the premises

of (prog), (k-papp), and (ans) and from inspection of the typing rule for
answers

(a) ® v 35:%,

(b) T > K'o([-]{(7)) ~ @,Vp&ér,

) T;0;9; () v v:V5¢Ear0,

@3> K' ~ I,7[p:=7,6:=9,&8:=7),and

©3:0;2;() > v:VpEaT
By Lemma 5.9 with (a) and () we know v = (rec f{7)(z) = e). Fur-

thermore, from (d) we know the substitution {7 := 7] exists, in other words

|21 = |7}. Therefore M reduces by (T13).

Case (K' o] €)

If e = p then M reduces by (T20). If e = v then M reduces by (73).

Case (K' o (¢' [+]))

If e = p then M reduces by (720). Assume e = v. From the premises of

(prog) and (ans) and from inspection of the typing rule for answers

93

(@ ®p>3:7,

T Ko([]) ~ &,

©T;0;9; () v :m— (g0 and

d3;0;2;() 0 v i m—{p7).
By Lemma 5.9 with (a) and (d) we know v' = (fnz = ¢). Therefore M
reduces by (T14).
Case (K' o (new v [-]))
If e = p then M reduces by (720). Assume e = v. From the premises of
(prog) and (k-new)

(@ ® > 3:8%,

BT K'o(newy[-]) ~ @7,

©3;0;2;() > v:70,

(e K ~ @ refvyr7,and

(e) v € dom(3).
From (a) and (e} by inspection of the rule (stack) we know v = £ and

¢ € dom(3) and so 5(£) = R for some R. Therefore M reduces by (T15)

by choosing any [€ dom(R).

Case (K’ o (get [1))
If e = p then M reduces by (720). Assume e = v. From the premises of

(prog), (k-get), and {ans) and from inspection of the typing rule for answers

(@ ® > 3:C,

94

95

®) T o K'o(get[-]) ~ @,refyr,

©3;0;2;) v v:refyT,,

d3T> K ~ @7,

(e) v € dom(3), and

D 0;8;() > v:refyr.
From (a) and (e) and the premises of (stack) we know v = £ and £ €

dom(3). Using this fact with (a) and (f) we know by Lemma 5.9 that v =
(&,1) and 5(€)(1) = v'. Therefore M reduces by (T16).

Case (K’ o (raise [-] with ¢))
If e = p then M reduces by (T20). If e = v then M reduces by (T10)

Case (K’ o (raise v with [-]))
If e = p then M reduces by (T20). Assume e = v. From the premises of
(prog) and (k-raise-r)

(a) ® b 5:73,

(b) T > K'o(raise v with|-]) ~ ®,7,and

©%;0;,0; () > v: Texn.
By Lemma 7.7 with (a) and (c) we know v = h. Therefore M reduces by
(T19).
Case (K’ o (pop; [-]))

From the premises of (prog)

(@) @ 5:T and

96

(b) T > Ko(pop;[-]) ~ @,71.

By inspection of the rule (k-pop) with (b) we know ¢ has the form ¢ @ £
¥ and so.from the premises of (stack) we know 5 has the form 5 @ £ — R.

Therefore M reduces by (T18).
Case (K’ o (try [-] handle v with z = ¢€'))
If e = v’ then M reduces by (723). Assume e = p. From the premises of
(prog) and {(k-try-b)
(@ &> 35:73,
(b) T o K'o(try[-] handle v withz = ¢€') ~ ®,7, and
©T;0;®; () > v: mexn
By Lemma 5.9 with (a) and (c) we know v = h. Now if p = fail h with v"

then M reduces by (721). Otherwise p = fail b’ with v”" and h # A’ and M
reduces by (722).

a

Finally, having established preservation and progress properties, soundness for
RE follows easily. Recall that a program, M, diverges if there exists and infinite reduc-

tion starting from M.

Proposition 5.12 (RE Soundness)

If > M then either M diverges or M —* (5, K, ¢) and v (5, K, a) and

either K = [-]or K =[] (exception in [-]).

PROOF: Suppose > M and M ——* M’ and that there exists no M*” such

that M’ —— M". By induction on the length of the reduction sequence

using Proposition 5.10 we have > M’. By Proposition 5.11 we have M’ =

(5, K, a) and either K = [-] or K = [-] o (exception in [-]).

97

98

CHAPTER VI

CONTINUATIONS

Continuations are a heavily studied subject having roots in both semantic foun-
dations and implementation technologies[2, 41]. The ability to capture and later invoke
continuations provides a powerful programming paradigm which can be used to im-
plement features such as coroutines and backtracking[15, 20]. This power comes at a
certain expense. Clinger et al. have compared a number of proposed implementation
strategies for first-class continuations[10]. Folklore also suggests that continuations and
references together subsume exception handling constructs such as those introduced in

CHAPTER IV. For example, Reynolds provides an (untyped) encoding[39].

Programming with Continuations

Although not part of Standard ML itself, the Standard ML of New Jersey compiler
provides constructs for capturing and invoking continuations[3, 36]. We have already
seen that incorporating imperative features into a system based on Milner polymorphism
is delicate. Just as mutable references can lead to potential unsoundness, continuations
must also be handled with care. The typing discipline for continuations employed by
SML/NJ was proposed by Harper et al. [19].

A typical use of first-class continuations is to provide an efficient exit from a
(non-tail) recursive function. The example shown in FIGURE 23 is adapted from [19].
The function product takes a list of integers, captures a continuation representing the

return point, and then recursively traverses the list using the internally declared function

99

let fun product 1 =
callcc(fn exit =>
let fun loop [] =1
| loop (0::tl) = throw exit 0
| loop (hd::tl) = hd * loop(tl)
in loop 1
end)
in product (4,5,6,0,7]
end

FIGURE 23. SMI/NJ Example

loop. If a zero is encountered, the captured continuation is used to return without the

overhead of returning from each of the intervening recursive invocations.

The Problem

From a typing perspective, continuations are slightly different from ordinary func-
tions. Ignoring effects for a moment, functions themselves are normally assigned types
of the form (7, — 73) where 7, represents the type of the expected argument, and 1,
is the type retumed by the function. In contrast, continuations do not “return” in the
sense of ordinary functions. Thus, the typing discipline of SML/NJ assigns continua-
tions types of the form (7 cont). This type can be understood as an abbreviation for the
function type (7 — ans) where ans is the top-level type of the program.

In each of the type and effect systems we have studied, functions are assigned
types of the form (1, — (p, 72)) where represents the latent effect incurred by a
function application. Intuitively, in order to accommodate continuations in to this frame-

work, we will need to assign them types of the form (cont ¢) where again, ¢ represents

100

the effects which may occur after invoking the continuation. The question is now what

effect to use.

Effects vs. Capabilities

We will motivate our solution to typing continuations by contrasting two ap-
proaches to effect systems. The systems studied so far are “bottomn-up” in nature in
the sense that effect information is propagated additively from each sub-expression to
enclosing expressions. Crary ef al. introduced a dual view, based on the notion of ca-
pabilities, in which the effects generated by an expression are constrained, in top-down
fashion, to occur only in the regions allowed by the current capability.

Although the purpose of casting region systems in terms of capabilities was orig-
inally related to typing programs in continuation-passing style, one can easily see the
equivalence of these dual views for direct-style programs. We will formalize this con-

nection for a minimal effect system based on the following syntax:

ex=z|fnz = e|eex|newpe|gete|letregpine

This language is a simple subset of RL for which we omit type, region, and effect
polymorphism
An effect system for this language would typically be defined using judgments of

the formI' © e : 7, where ¢ is a set of region variables and 7 is defined by:

r=a|refpr |7 = {(p,T)

In the absence of polymorphism, type variables play the rdle of base types.

101

An equivalent system, based on the idea of capabilities, can be constructed with
judgments of the form I'; ¢ > e : 7. In this judgment form, the effect ¢ is instead
regarded as a capability which describes all of the allowable regions which e may use.

Types are modified as follows:

ri=alrefpr|{p,n) =27

In contrast to the latent effects used previously, functions will be assigned types of the
form ({p, 1) — =) where ¢ is the capability which must be held in order to call the
function.

The typing rules for these systems are defined in FIGURES 24 and 25. For ease of
comparison, we will henceforth merge the syntax of function types so that both systems
are defined with the neutral notation (1, == ;). The rules for the effect system should
be unsurprising. They represent a simplification of the systems studied so far. The
capability system can be understood as taking the opposite approach to propagating
effect information. For example, the rules (e-var) and (e-abs) indicate that these values
incur no effect. In contrast, the rules (c-var) and (c-abs) indicate that no evaluation,
and hence no capability is required. The rule {e-app) adds the effects of evaluating a
function, its argument, and the latent effect of applying the function. Instead, the rule
(c-app) enforces that the current capability held is sufficient to evaluate the function
and argument, and that it subsumes the capability required to call the function. For
constructs that normally generate new effects according to the rules (e-new} and (e-get),
these effects are checked for legality according the current capability by rules (c-new)
and (c-gef). Finally, just as a region variable can be masked from the effect by rule

(e-reg), the rule (c-reg) extends the current capability to include the new region.

102

Iz)=r
(e Coaxz:70
(e-abs) z:m) b e:mp -'-:3P¢ dom(I')
FCofaz=e:m 7,0
(e-app) T'pe 7 57,0 I'b e :T,ps
. I'>eer:mprUpUps
've:nyp
(e-new) ' > newpe : ref pr,0U {p}
've:refprop
(e-ger) I > gete: 7,0U{p}
(e-reg) Cpe:Top p%frv(F)Ufrv(T)
T o letreg pine : 7,0\{p}
r : -
(e-sub) P eT, @ Y1 = P2

I've: 1,0

FIGURE 24. Simple Effect-Based Region System

103

L(ry=r
(evan Ti0bz:7
(c-abs) Tz:m);ppe:n x%dum(l")
0 fnz=>e:n—n
C;01>e :71 21y
(c-app) Fioprbpe:n v Coy
= Fiprpee:n
Il'Neve:r PE
(c-new) F';op newpe:refpr
; . ref
(c-gef) I'Neve:refpr PE W

I';op gete: 7

Fipw{plpe:7 pgfro(l)U fro(r)
I';o v letregpine : 7

(c-reg)

r; > e : C
(c-sub) 1 be- T Y1 < P2
Ciwspe:r

FIGURE 25. Simple Capability-Based Region System

104

The soundness of the capability system defined in FIGURE 25 is suggested simply
by relating it to the well-known effect system of FIGURE 24:

Proposition 6.1 (Equivalence)

' e:rmypifandonlyif'; o > e : 7.

PROOF: Each direction is established by induction on the height of the given
derivation with case analysis on the last rule used. Cases labeled by effect
rules apply to the “only if” direction and those labeled by capability rules
apply to the “if”” direction. The cases for (e-var) and (c-var) are immediate.
The cases for (e-abs), (e-sub), (c-abs), and (c-sub) follow directly from the
IH. The remaining cases are given below with the exceptions (e-get) and

(c-get) which are similar to (e-new) and (c-new) respectively:
Case (e-app)

Assume I’ > e; es : 72,91 U s U ;3. From the premises of (e-app)

@TIee :m -(p—l>1'2,(,02, and

O T o e : 1,03
By the IH with (a) and (b)

@0 b e :TlﬂM'g,and

(@I035 > ey
By (c-sub) with (c) and {d)

© T; pmUpaUps b e : 7 = 75, and

O op1UpUps b ey 7.

105

Now since ¢; C o U Uy weconclude I'; oy Uwo U B eyep @ T
by (c-app) with (e) and (f).

Case (e-new)

Assume D’ > new pe : ref p 1, U {p}. From the premise of {e-new)
@lrpe:mrep

By the IH with (a)
b)l,epe:T.

By (c-sub) with (b)
© T;oU{p} b e:r.

Now since p € p U {p} weconcludeI'; ¢ U {p} > newpe : ref p71 by

(c-new) with (c).

Case (e-reg)

AssumeT" o letreg pine : 7,9\ {p}. From the premises of (e-reg)
@7l ve:7pand
(b) p & fru(T) U fro(r).

By the TH with (a)
@l e:rT.

Now if p € @ then ¢ = &' W {p} and ¢’ = \{p} so we can conclude
['; ¢ o letreg pine : 7 by (¢-reg) with (b) and (c). Otherwise, by (c-sub)

with (c) we have

106

DT ow{ptre:r

and the conclusion follows from (b) and (d).

Case {c-app)

Assumel'; ¢ > e; e; : 7». From the premises of (c-app)
@T;0 b e 121,

T, e m,and

(©) p2 C 1.
By the IH with (a) and (b)

@I b>e 127, and

O e :m,p.

Now from (c) we know U U, = ¢ soweconcludeT" > e; €3 1 7,
by (e-app) with (e) and (f).
Case (c-new)

Assume['; ¢ © new pe : ref p 7. From the premises of {(c-new)

@7Il';¢p>e: Tand

(b) p€ .
By the IH with (a)
@Il pe:re

Now from (b) we know pU{p} = psoweconcludeI' b new pe : ref p7, ¢

by (e-new) with (c).

107

Case (c-reg)

AssumeI'; ¢ > letreg pine : 7. From the premises of (c-reg)
(@ T';pw{p} > e: rand
(®) p & fro(T)U fro(7).

By the IH with (a)
T pe:rew{p}

Now since (¢ W {p})\{p} = p weconclude " o letreg pine : 7, by
(e-reg) with (b) and (c).

Typing Continuations

As we saw in the example in FIGURE 23, invoking a continuation amounts to
“jumping” to some program point which was dynamically captured. This behavior poses
problems for the region-based execution model. When a continuation is captured, some
number of regions will be present in memory. When execution is restarted at that point,
these region may not only be involved in allocations and dereferences, but they will
subsequently be freed by an appropriate number of stack popping operations. Therefore,
just as we saw with exceptions, invoking a continuation should operationally involve
popping the stack down so that it contains only the regions present at the time of capture.
Of course, this is only possible if these regions are still present!

Our operational intuition about continuations suggests that the effect description
assigned in types of the form (cont ¢ 7) should reflect a static approximation of the

set of regions present on the stack. Our solution is motivated simply by the fact that

108

with minor modifications, capabilities can provide exactly this approximation. In order
to make this work, consider a modified system obtained by removing the rule (c-sub)
from FIGURE 25. Thus, the current capability carried through a derivation can only be
modified by adding a region via the rule (c-reg). This modification is not quite sufficient,
however, because function applications still involve subsumption. Therefore we replace

the rule {c-app) with

Tiove :{pn)—mn IF'iepbe:mn
T;opee T

Now, the capability held will always accurately reflect the regions currently in memory.

Consider extending the capability language with the following constructs for cap-

turing and invoking continuations:

en=--. | callcce | throw e, e,

These constructs will be typed by the following (simplified) rules:

Tiop e:{p(conter)) =7
I'50 b callcce : 7

['; 01 > e : contyey [;oibex:n 1 € @2
I'; 0, b throwey eg @ T

These rules reflect the basic character of ML-style continuations. For example, the type
for throw-expressions is unconstrained so that the same continuation may be invoked
from different contexts. More importantly, the proviso ¢, C - insures that the regions
present at the time of capture are a subset of those still present. Alarmingly, this is ex-

actly the flexibility we just removed from our ordinary function applications. However,

109

the operational behavior of a continuation is different; recall that we expect the stack to
be popped down to match - as an implicit part of invoking the continuation.

At first sight, our modification of the rule (c-app) above may appear overly re-
strictive; each function type allows for function applications only in a specific region
environment. However, our analysis has actually revealed an implicit form of polymor-
phism which was inherent in the effect and capability systems studied so far. In other
words, functions were always assumed to be polymorphic with respect to the region
environments they required. This assumption was harmless in the absence of first-class
continuations. In order for functions to recover this ability, they must be typed in a
principled way which accounts for multiple region environments. Polymorphism in ca-

pabilities provides exactly this mechanism.

The Language RC

The language KC will extend RL with ML-like continuation primitives. We have
already seen utility of explicit continuations in reasoning about exceptions in CHAPTER
IV. Not surprisingly, this advantage will be especially evident in reasoning about the

reification of continuations. Region identifiers are defined as usual:

vyui=p|§

Values are extended to include a dynamic representation of captured continua-
tions:

vi=zlnffnz = elrec f(F)(z) = e| (§1)] (¢ n K)

The value (¢, n, I) contains information relevant to both the dynamic and static se-

110

mantics, as we shall see. Expressions are extended with the constructs discussed in the

previous section:

e = v|e(F)|erex|{newye|gete|letregpine |

callcc e | throw e; es

Our previous definition of continuations requires only addition frames for the evaluation

of sub-expressions occurring in our new constructs:

K u= [[]| [Ko([-](TN | Ko([-]e) | Ko(v[-]) |
Ko(newy[-]) | Ko(get[-])| Ko(pop; [-]) |
Ko{callec [-]) | K o (throw [-] e) | K o (throw v [-])

Finally, types are extended as follows:

Tu=int |afrefpr|contor | {p,n) = | V5Ear

We will continue to use @ to represent capabilities and we now consider ¢ as ranging over
capability variables. This choice of vocabulary is irrelavent, however, to our technical
development and all our usual conventions related to types and substitutions carry over

directly.

Dynamic Semantics

The transition rules for RC are straightforward. When a continuation is invoked,
the region stack must be popped down to provide only the regions present at the time of

its capture. We define the operation (3 J. n) to produce the prefix for the sequence 5 of

111

[Decomposition]

(T1) (5 K, e (7)) — (5, Ko ([-] (7)) e)
(12) (3, K, eres) — (5, Ko ([-] e2), 1)
(T3) & Ko([-]e),v)— (5, Ko (v]-])€)
(T4) (5, K, new y &) — (3, K o (new 7 [-]), €)
(T5) 3, K, gete) — (5, K o (get[-]), e)
(T6) (3, K, calicc €) — (3, K o (callec [-]), €)

(T7) (3, K, throw e; e3) — (5, K o (throw [+] e2), €;)

(T8) (3, K o (throw [-] e), v) — (5, K o (throw v [.]), €)

FIGURE 26. Transition Rules for RC (Part 1)

length n if it exists. In other words, we define

(31 @32 .I, n) =75 if and Ol'lly if |§1l =n

The rules defined in FIGURES 26 and 27 are grouped as usual. The computation
and region management rules are identical to those for RL. The decomposition rules
have been extended appropriately for our new phrases. The rules for continuations are
more interesting. For technical reasons, captured continuations are tagged with an effect
describing the current regions in memory. This type information has no run-time signif-
icance, but is needed in order to constrain name generation for reasons similar to those

discussed in CHAPTER III. Continuations are also tagged with a numeral reflecting the

112

[Computation]
(79) (8 K o([-]{7)), rec f(F}=z) = ¢)
—
G K, (fnz = e)[f := (rec f(ANz) = €)][F:=7])
(T10) G Ko((fnx = e)[-]),v) — (5, K, e[z :=v])

(T1I) (3, Ko(new £ []), v) — (B{€ — R{l —v})), K, (£,1))
if5(¢) = Rand! ¢ dom(R)

(T12) (3, K o (get[-]), (&,1)) — (3, K, v)
if 5(£)(1) = v

[Region Management]

(T13) (5, K, letreg pine) — (3@ & — (), K o (pop; [-]), elo := &])

if§ & frn(5) U frn(e)
(T14) (3@E— R, K o(pop; [-]), v) — (3, K, v)
[Continuations]
(T15) (3, K o(callcc [-]), v) — (5, K, v (o, n, K))
where ¢ = dom(3) and n = 3|
(T16) (3, K o (throw (¢, n, K') [-]), v) — (3 L n, K, v)

FIGURE 27. Transition Rules for RC (Part 2)

113

current size of stack as shown in {(T15). The size of the stack is the only addition run-
time information required in (T76) which supplies the appropriate prefix of the current
stack to the reinstated continuation. Note that if an insufficient number of regions were

present, then rule (T16) could not be applied.

Siatic Semantics

The static semantics for RC , defined in FIGURES 28, 29, 30, and 31, vse judg-
ment forms based on capabilities, but are otherwise similar to their counterparts from
CHAPTER III. The most important modification to our original rules is that function
applications, given by (app) in FIGURE 29 are constrained in the manner previously
discussed. Furthermore, functional abstractions, typed by rule (abs) in FIGURE 28, no
longer involve subsumption of latent effects.

Continuations referring to dead regions may appear in dead code in the same man-
ner as we discussed for dead locations in CHAPTER III. Therefore, the typing rules for

values given in FIGURE 28 include rules for both live and dead continuations.

114

Mz)=r
(var) i A; Tz T
(num) S;A;'p n:int
ATz e:m
. fev{p)Ufeo(n) CA z & dom(T)
(abs) ;AT fnz = e: (pn)—n
S;Aw{p Eal, I{(f:vgear)o fnz = e: 7
feo(VB,EET)C A f ¢ dom(T)
(rec) AT b rec f{p)@) = e:Vp.car
: =7 fou(r)=0
(loc-live) T;A;Tp (6,0 :reféT
§&domT) feu(r)=10
(loc-dead) ;AT (6,0 crefEr

Sinpo K ~ 7 v = dom(T | n)

(cont-live) TiA;T > (g0, K) - contypr

T

> K ~ 7 = dom(7) v € dom(3)

(cont-dead) ;A;Tp (p,n, K) : contor

FIGURE 28. Static Semantics for RC (Part 1)

115

wvab) ;AT v T
;A T;ppv:T
T; AT, p b e: VGEar
e folg) o) i) € &
AT o p e(y) : 7[p=78=0,6:=7
(app) A T;ppe :(pn)—=n T A;T;ppe:m
o A T;opeer:m
(new) ;A T;ppe: T YTEY
;AT 0> newye :refyr
;Ao e:refyr YE
{
(get) ;A T,ppe: T
letreg) ;AuW{p}:Tipuw{ptpe:7 pg&fru(r)
;AT 0 letregpine : 7
T;A;T;0p e (g (contpr)) =7
(callcc) T;A;T; o b callecce : 7
T;A;T; 0 b e :contpy
(throw) ;AT pmbe:n @Ce fo(n)CA

T;A;T; ¢ b throwey e 1 7

FIGURE 29. Static Semantics for RC (Part 2)

116

(k-empty) So [~ T
T D K ~F T[ﬁ:=7,€=¢15 =-7-=]
(k-papp) Se Ko([-](7)) ~ Vo Edr
T K ~ 1
(k-app-1) i0i()ipvern p=dm()
Tpe Ko([-]le) ~ (o) =7
[QI C A Y
(k-app-r) G0, (ebvi{pn)=n p=dm()
To Ko(w[]) » n
T K ~ refyr v €dom(3)
(k-new) o Ko(newy[:]) ~ 7
To K~ 1 yedom(D)
(k-get) T b Ko(get[°]) ~ ref")r‘T
Gepom) T K~ 71
pop TQE~X v Ko(pop; [*]) ~ 7
T K ~ 1 <P=d0m(?)
(R, ¢ o Kofcallec[]) ~ (o (conteT)) =7
T K ~ 1 G0, ();pipe:m
= dom(?) 2] g g
(k-throw-1) z > _Ko(thl’OW[‘]e) ~ cont w2 T

cp K ~mn T0;();pm > v:contyrn
@1 = dom(3) w2 C
T > Kofthrowv [-]) ~ 7

(k-throw-r)

FIGURE 30. Static Semantics for RC (Part 3)

117

dom(R) = dom(X)
(region) T;0; OO R : (D (V1 € dom(R))

T R: X
S=6+ Ry, ., 5= Ry
=628, G B

(stack) T 3(E) : T(£) (V& € dom(3))
bS5:q
>3 : 7 T K ~ 71
(prog) 0, 0;ppe:T p=dom(d)

> (3, K, e)

FIGURE 31. Static Semantics for RC (Part 4)

118

CHAPTER VII

SOUNDNESS OF RC

The soundness proof for RC follows along similar lines as that of RE given in
CHAPTER V, although the relative semantic cleanliness of continuations leads to fewer
cases. After stating the required properties, we provide detailed proofs of preservation

and progress.

Basic Properties

Each of the Lemmas in this section has a counterpart in CHAPTER V which has
been adapted to the new judgment forms. Here, we merely state the revised properties
and refer the reader to CHAPTER V for sketches of their proofs and comments on their

role in the proof of preservation.

Lemma 7.1 (RC Proper Typing)

Suppose fev(I') U feu(yp) C A.
1. If5; A; T p v : 7then fev(r) C A,
2.If5; A; T ¢ b e : 7then fev(r) C A

3. fT o K ~+ 7then feu(r) =0.

Lemma 7.2 (RC Value Substitution)

SupposeT; @; () v : 7.

L f3;A;T{z—7)p v : 7thenT; A; T V[z:=v] : 7.

225, AsTz—=7);0p e: 7T'then$; AT 0 0 efri=v] @ 7.

Lemma 7.3 (RC Constructor Substitution)
Suppose fev(F) U fev(@) U fev(T) € A and let
(al) ' =T[f:=7,:=9,&:=7),

(a2) € = e[:=7),

(@3) v =v[p:=7),

1. If5; Aw{5,&a}; T > v : Tthent; A

2. If5; Aw{p,€,a}; ;¢ > e : Tthent

Lemma 7.4 (RC Region Allocation)

Letd =T @€ ()

Ve v 7.

AT 0 poe T

LUHT, A;Tev:rTandE € frr(v)thent; A;T;0 0 v Tl

265, AT, ppe:7andé & fru(e)thent; AT o b et 7.

3. Ifp5:Tandé ¢ frn(S)then> 3@ & —

Lemma 7.5 (RC Region Collection)

Lett=3 Q& — X.

1. H5; A;T o v : 7then?; A; ' v

():¢.

. T.

119

120

2.If5; Ao e:rthend; AT 0o b et T

3.If>5@f— R :Cthen b3 : T

Lemma 7.6 (RC Reference Allocation)

Suppose 5(€) = L and ! € dom(Z) and let T =5(£ — T = 7).
1. Ifg; A; T v:7then?d; A; e v T
2. If5; A;T;op e 7thenT; AT 00 e 1 7
3. 1fS > K ~ tthend » K ~ 7.

4. If>5:3andT;0; () > v:rtthenp S{E—SE (= v)) : T.

Lemma 7.7 (RC Canonical Forms)
Suppose >3 : Tand3; 0; (}p> v : 7.
1. If 7 = ref £ 7' then v = (£, 1) and either £ € dom(3) or 3(£)({) = v.

2.If 7 = cont ¢ 7' then v = (i, n, K) and either ¢ € dom(3) or

n < |si.

3. Ufr={(p,11) > nthenv=fnz = e.

-

4. If r =Vp, € a.m thenv =rec f{F)(z) = e.

Preservation and Progress

Proposition 7.8 (RC Typability Preservation)

If > M and M +— M’ then > M'

PROOF: By case analysis on the transition rules.

121

Case (T1)

Assume © (3, K, e (77)). From the premises of (prog) and (papp)
(@ >3:7,
®se K ~ 71[p=%¢=9,&:=7|
©50;();pve():7p=7&=pa:=7,
(d) ¢ = dom(3),
) 5;0;{(); ¢ > e:VpEar,and
By (k-papp) with (b)
O Ko([-](7)) ~ VpEar.
We conclude > (5, K o ([-] (7)),) by (prog) with (a), (d), (e), and ().

Case (T2)

Assume > (5, K, e; es). From the premises of (prog) and (app)
(a) p5:%,
B3> K~ 7,
©FT:0;();p > eer:m,
(d) ¢ = dom(3),
@) 5;0;();po > e : {p7)— 7, and
00,000 e:mn

By (k-app-1) with (b), (d}, and (f)

@ 3T > Ko(f-]lez) ~ (o) = T

122

We conclude > (3, K o ([-] 2), €:) by (prog) with (a), (d), (¢), and (g).
Case (T3)
Assume b (5, K o ([-] e), v). From the premises of (prog) and (k-app-I)
(@ ©>35:3
BT > Ko([-]e) ~ (o) =72
©3;0:(Oipvv:{pn)—=mn,
(d) ¢ = dom(3),
€ 3> K ~ 7and
M0:(0);epe:mn.
By (k-app-r) with (c), (d), and (¢)
@3> Ko@[]) ~ n.

We conclude © (3, K o (v [+]), €) by (prog) with (a), (d), (), and (g).
Case (T4)
Assume > (3, K, new 7 e). From the premises of (prog) and (new)
(@ >3:73,
b)) K ~ refyrT,
©) T;0;{); o> newvye:refyr,
(d) ¢ = dom(3),
©7c;0;();pbe:r and

N ree

123

By (k-new) with (b) and (f)
@3> Ko(newry|[]) ~ 1

We conclude & (5, K o (new v [-]), €) by (prog) with (a), (d), (¢), and (g).
Case (T5)
Assume o (3, K, get e). From the premises of (prog) and (get)
(@ »3:7,
®Te K~ T
©3%:0;(); o0 gete: T,
(d) ¢ = dom(3),
€ 3;0;(); o> e:refyr,and
) veo.
By (k-get) with (b) and (f)

(g s> Ko(get[-]) ~ refyr.

We conclude v (3, K o (get [-]), €) by (prog) with (a), (d), (e), and (g).
Case (T6)
Assume b (3, K, callcc €). From the premises of (prog) and (callcc)
(@ »3:7,
®»3o K ~ 7,
© 5;0;();¢ > callcce : T,

(d) ¢ = dom(3), and

©3:0;();epe: (pfcontpr)) =T
By (k-callcc) with {b) and (d)
() T > Kofallec[-]) ~ {(p,(contpT)) = 7.

We conclude v (3, K o (callcc [-]), €) by (prog) with (a), (d), (e), and (f).
Case (T7)
Assume & (3, K, throw e, e;). From the premises of (prog) and (throw)
(@ p>3:7
®) T > K ~ 1,
© T;0;(); 1 b throwe, ez : T,
(d) ¢ = dom(3),
©3;0; ;0 b e :contyyn,
(N 3T;0;()i¢1 > e :m,and

(8) v2 C o1.
By (k-throw-I) with (b), (c), (d), and (g)
(h) T © K o(throw [-]es) ~ cont o Ty.

We conclude o (3, K o (throw [-] e2), e1) by (prog) with (a), (d), (f), and
(h).
Case (78)

Assume > (5, K o (throw [:] e), v). From the premises of (prog) and (k-

throw-0)

124

(@ »3:%,
(b) T > K o(throw[-] e} ~ cont s 1,
©5;0;{); 1 b v:contpT,
(d) 1 = dom(T), and
e)s > K ~ 7,
0 T;0;);¢1 > e:m,and
(8) v2 C 1.
By (k-rthrow-r) with (c), (d), (e), and (g)

h) T o Ko(throwv [-]) ~ 7.

We conclude > (3, Ko (throw v {-]), e) by (prog) with (a), (d), (f), and (h).
Case (79)
Assume b (3, K o ([] (7)), rec f{5)(z) = e). From the premises of
(prog), (k-papp), (val), and (rec)

(@ >3s:7

(b) 3T > Ko([-](7)) ~ Vp,&ar,

© ;05 () @ > rec f(p)(z) = e: V5§ ar,

{d) ¢ = dom(?),

®3;0;()> rec f{p)Mz) = e: Vj,€ a.71,and

(@ T {p&a};{(f:vp,&ar)e (fnx =) : 7.

By Lemma 7.2 with (f) and (g)

(h) T {A&a}; () > (fnz = e)[f == (rec f{p)(z) = ¢)] : 7
By Lemma 7.1 with (e) we have fcu(7[7 := ¥,&:= p, &@ := 7]) = 0 which
implies

@) fev(F) U fev(P) L feu(T) = 0.

Letv = ((fnz = e)[f := (rec f(7)(z) = €)])[7:=7]. By Lemma 7.3
with (h) and (i)

W30y v:T[p:=7,=0,&:=7.
By (val) with (j)

K000 v:Tf=5=p8&:=7.
We conclude & (3, K, ((fnz = e)[f := (rec f(z)(p) = e)])[F =7
by (prog) with (a), (d), (e), and (k).

Case (T10)

Assume > (5, K o ((fnz = &) [-]), v). From the premises of (prog),
(k-app-r), (val), and (abs)

(@ ©5:3,

®zIe Ko((fnz = &)[]) ~ m,

©350;();epv:m,

(d) ¢ = dom(3),

T K ~ 7,

126

127

M50, 0p fnz = e: {p,7) = n,
®3;0;,()> v:7,and

h)3;0;{(xz:n);0o0 e:m.
By Lemma 7.2 with (g) and (h)
D500 b efz:=v]: 7,

We conclude © (3, K, e[z := v]) by (prog) with (a), (d), (), and (i).
Case (T11)
Assume b (5, K o (new £ [-]), v) where 5(£) = R for some R and choose
! ¢ dom(R). From the premises (prog) and (k-new)

@@ »73:7,

)T o> Ko(newé[:]) ~ 7,

©@3:0; ()9 uv:m,

(d) v = dom(3),

e)s e K ~ refér,and

) £ € dom(7),
From the premises of the rules (stack) and (region) with (a) and our assump-
tions about £ and [we know $(£) = X for some ¥ and [¢ dom(Z). Let
¢ =%~ Z({ — 7)). By Lemma 7.6 with (c) and ()

®T;0;();9 v v:7and

h) 3T > K ~ refET.

128

From the premise of (val) with (g)
500> v:T
By Lemma 7.6 with (a) and (i)
G) bS(E = R =) : T
By Lemma 7.1 with (i) we know fev(r) = @ so by (loc-live)
k) T50; () o (&) : ref& .
By (val) with (k)
M50 Q0)ie v (&) :refEr

We conclude & (5(€ — R(l »+ v)), K, (£,1)) by (prog) with (d), (h), (j),
and (1).
Case (T12)

Assume > (3, K o(get [-]), (§,{)) where 3(¢) = R and R(l) = v for some
R and v. From the premises of (prog), (k-get), and (val) and from inspection
of the typing rules for locations

(a) >3 :T

b)Y T > Ko(get[-]) ~ refT,

©350; (b (€1) : refE,

(d) v = dom(3),

) s K ~ T,

(f) € € dom(3), and

129

@c;0;) (£, :refer.

From (f) we know (g) was derived by (loc-live) with premise $(£)(l) = .
Using this fact with (a) we have from the premises of (stack) and (region)

that

M300>v:T
By (val) with ()

D50 ()ppv:T

We conclude © (35, K, v) by (prog) with (a), (d), (e), and (i).
Case (T13)

Assume b (3, K, letreg pin €) and choose £ such that £ € frn(3) U fra(e)

and 5 @ £ = () exists, in other words, £ & dom(3).
From the premises of (prog) and (letreg)

(@ >3:%,

b)s v K ~ 1,

©) T;8;();p > letregpine : T,

(@) ¢ = dom(3),

© T {p}; ()i p¥{p} > e: 7, and

® p & fru(r).

Letg =T @ ¢ w (). By Lemma 7.4 with (a) and () and our assumptions

about £

130

(8) >5@¢— () : Tand
) S5 {p}i ()ipw{pt e
By (k-pop) with (b)
(i) T > Ko(pop; []) ~ .
From (f) we know 7[p := £] = 7 so by Lemma 7.3 with (h)

000 0u{f} >efp=¢ T
From (d) we have
(k) pu {£} = dom(T).
We conclude & (5@ & — (), K o (pop; {-]), e[== £]) by (prog) with (g),
), (), and (k).
Case (T14)

Assume b (3@ & — R, K o (pop; [-]), v). From the premises of (prog)

and (k-pop) and from inspection of the rule (stack)
(@ pTQ@E—L R:TQEH L,

b)sQ@&— X o Ko(pop;[]) ~ 7,
©TQE~Z;0;(d;0op v T,

d) g =dom(S @£+ XL}, and

€3 K ~ 7,

By Lemma 7.5 with (a) and (c)

(f) >3 :Tand

131

@3:0;);00v: T
From the premise of (val) with (g)
M0 (e v
Let ' = dom(3). By (val) with (h)
D0 ()¢ pv:T
We conclude > (3, K, v) by (prog) with (e), (f), and (i).

Case (T15)

Assume > (3, K o (callcc [-]), v). From the premises of (prog), (k-calicc),

and (val)
(@) »F:3,
®) T > Kolcallc[-]) ~ (o, (cont 7)) — 7,
©T;0;0 0> v:{p(contpr)) =T,
(d) v = dom(3),
€3> K ~ 7,and
O F0;()> v:{p(contyr)) =
Let n = 5| = [5]. Note that T | n = . By (cont-live) with (d) and (e)
@730 ()p> (pn K) :contor.

By (val) with (g)

M3;0;00;00 (p,n, K) : contr.

132

By (app) with (c) and (h)
B8 (0i9>vlpn K): T

We conclude o (5, K, v (p, n, K)) by (prog) with (a), (d), (), and (i).
Case (T16)

Assume > (3, K o (throw (@, n, K') []), v). From the premises of (prog)
and (val)

(@ v3:5,
(b) T v K o(throw (¢, n, K') [-]) ~ 7,and
@350, (0¥ pvem,
(d) ¢' = dom(%), and
@z;0;lvwv:rT.
From the premises of (k-app-r) with (b) and by inspection of the typing
rules for values
0 3;8; () > (p,n, K') : cont g7 and
®) ¢ € dom(3).
From (g) we know (f) was derived by (cont-live) with premises
hysdin v K' ~ rand
(i) ¢ = dom(T | n).

Therefore n < || = |35| so using (|g| — n) applications of Lemma 7.5

with (a) and (e)

133

) »p5ln:5ln,and

KkK)gsdin;0; v v: T
By (val) with (k)
M3in;0; ()5 p v

We conclude & (5 | n, K’, v) by (prog) with (h), (i), (§), and (1).

Proposition 7.9 (RC Progress)

If > M then either M — M' or M = (5, [-], v).

PROOF: Assume M = (5, K, e) and > M. The proof is by induction on
the structure of e. If e is not a value then it reduces by either (T1), (72),
(T4), (T5), (T6), (T7), or (T13). Now if e = v then we proceed by induction

on the structure of K.

Case ([-])
Then M = (3, [-], v).

Case (K" o ([-] (7))

From the premises of (prog), (val), and (k-papp)
(@ »3:53,
b) T > K'o([-](7) ~ Y5&dr,
© 5;8;{)> v:VjeEar,and

@dcp K ~ 7[p:=7¢&=0,4a:=7]

From (d) we know the substitution [7 := ¥, € := @, @ := 7] exists. In other
words we have |5] = |¥] and |€] = || and |&] = |7|. By Lemma 7.7 with
(a) and (c) we know v = (rec f{z)(p) = ¢'). Therefore M reduces by
(179).

Case (K'o([-]e'D
Then M reduces by (T3).
Case (K'ov'[-])
From the premises of (prog) and (k-app-r)
(a) p5:T,
e Ko(W[-]) ~ m,and
©3:0; (> v :{pm) 7
By Lemma 7.7 with (a) and (c) we know v = (fnx = e) and so M
reduces by (T10).
Case (K’ o (new v [-]))
From the premises of (prog) and (k-new)
(a) >5:73,
®3Ip K'o(newy[-]) ~ 7,and
(c) v € dom(3).
From (a} and {(c) and the premises of (stack) we know v = £ such that
3(£) = R. Therefore M reduces by (T11) by choosing ! € dom(R).

Case (K’ o (get [-]))

From the premises of (prog), (val), and (k-ger)

134

135

(a) b5 :3,
M) K'o(newy[-]) ~ refvym,
©) T;0;()> v:refyr,and
(d) v € dom(3).
From (a) and (d) and the premises of (stack) we know v = £ and £ €

dom(3). Using this fact with (a}) and (c) we know by Lemma 7.7 that v =

(£,1) and 3(€)(I) = v'. Therefore M reduces by (T12).
Case (XK' o (pop; |- 1))
From the premises of (prog) and (k-pop)
(@) 05 :Tand
(®) T > K'o(pop; [-]) ~ 7.
From the premise of (k-pop) we know T must have the formT @Q £ — T

and so from the premises of {stack) we know 3 has the form 3’ @ £ — R.

Therefore M reduces by (T14).

Case (K' o (callec [+]))
Then M reduces by (T15).

Case (K' o (throw [-] €'}))
Then M reduces by (T8).

Case (K’ o (throw v/ [-]))

From the premises of (prog) and (k-throw-r)

(@ p3:3,

®) T > K'o(throwv' |-]) ~ T,
©0;0p v,
@3;0; > v : contyr,and

(e) ¢ C dom(3).

By Lemma 7.7 with (a), (d), and (&) we know v' = (p, n, K")and n < |5|.
Therefore M reduces by (716).

Proposition 7.10 (RC Soundness)

If > M then either M divergesor M —* (5, [-], v) and > (5, [-], ©).

PROOF: Suppose > M and M +—* M’ and that there exists no M” such
that M’ — M". By induction on the length of the reduction sequence

using Proposition 7.8 we have > M’. By Proposition 7.9 we have M’ =

(3, []v v)-

136

137

BIBLIOGRAPHY

[1] Alexander Aiken, Manuel Fiahndrich, and Raph Levien. Better static memory

management: improving region-based analysis of higher-order languages. ACM
SIGPLAN Notices, 30(6):174-185, June 1995.

[2] Andrew W. Appel. Compiling with Continuations. Cambridge University Press,
1992.

[3] Andrew W. Appel and David B. MacQueen. Standard ML of New Jersey. In
J. Matuszyniski and M. Wirsing, editors, Proceedings of the 3rd Int. Symposium
on Programming Language Implementation and Logic Programming, PLILP91,
Passau, Germany, Lecture Notes in Computer Science, pages 1-13,
Springer-Verlag, August 1991.

[4] Anindya Banerjee, Nevin Heintze, and Jon G. Riecke. Region analysis and the
polymorphic lambda calculus. In Proceedings, Fourteenth Annual IEEE
Symposium on Logic in Computer Science, pages 88-97, 1999.

[5] Henk P. Barendregt. Lambda calculi with types. In Handbook of Logic in Computer
Science. Oxford University Press, Oxford, 1992,

[6] Nick Benton and Andrew Kennedy. Monads, effects and transformations. In
(HOOTS 99) Higher Order Operational Techniques in Semantics. Electronic
Notes in Theoretical Computer Science, volume 26, 1999.

[7] Lars Birkedal, Mads Tofte, and Magnus Vejlstrup. From region inference to von
Neumann machines via region representation inference. In Conference record of
POPL ’96, 23rd ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, pages 171-183, New York, NY, USA, 1996. ACM
Press.

[8] Cnstiano Calcagno. Stratified operational semantics for safety and correctness of
the region calculus. In Proceedings of the symposium on Principles of
programming languages, 2001.

[9] Luca Cardelli. Type systems. ACM Computing Surveys, 28(1):263-264, March
1996.

[10] William D. Clinger, Anne H. Hartheimer, and Eric M. Ost. Implementation
strategies for first-class continuations. Higher-Order and Symbolic Computation,
12(1):7-45, April 1999.

138

[11] Karl Crary, David Walker, and Greg Morrisett. Typed memory management in a
calculus of capabilities. In POPL '99. Proceedings of the 26th ACM
SIGPLAN-SIGACT on Principles of programming languages, January 20-22,
1999, San Antonio, TX, pages 262-275, New York, NY, USA, 1999. ACM Press.

[12] Luis Damas. Principal type schemes for functional programs. In the ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages
207-212, January 1982,

[13] Luis Damas. Type Assignment in Programming Languages. PhD thesis, University
of Edinburgh, 1985.

[14] Matthias Felleisen and Robert Hieb. The revised report on the syntactic theories of
sequential control and state. Thegret. Comput. Sci., 102:235-271, 1992. Tech.
Rep. 89-100, Rice University.

[15] Daniel P. Friedman, Christopher T. Haynes, and Eugene E. Kohlbecker.
Programming with Continuations. Springer-Verlag, 1984.

[16] Dan Grossman, Greg Morrisset, Trevor Jim, Michael Hicks, Yanling Wang, and
James Cheney. Region-based memory management in cyclone. In ACM
Conference on Programming Language Design and Implementation, Berlin,
Germany, June 2002,

[17] Niels Hallenberg, Martin Elsman, and Mads Tofte. Combining region inference
and garbage collection. In ACM Conference on Programming Language Design
and Implementation, Berlin, Germany, June 2002.

[18] Robert Harper. Programming Language : Theory and Practice. Draft, 2002.

[19] Robert Harper, Bruce Duba, and David MacQueen. Typing first-class
continuations in ml. Journal of Functional Programming, 3 part 4:465-484,
1993. Preliminary version in POPL 91.

[20] Christopher T. Haynes, Daniel P. Friedman, and Mitchell Wand. Continuations and
coroutines. In Conference Record of the 1984 ACM Symposium on Lisp and
Functional Programming, pages 293-298. ACM, ACM, August 1984,

[21] Simon Helsen and Peter Thiemann. Syntactic type soundness for the region
calculus. In In The Fourth International Workshop on Higher Order Operational
Techniques in Semantics, HOOTS , volume 41 of Electronic Notes in Theoretical
Computer Science, September 2000.

[22] Fritz Henglein. Type inference with polymorphic recursion. ACM Transactions on
Programming Languages and Systems, 15(2):253-289, 1993,

139

[23] 1. Roger Hindley. The principal type-scheme of an object in combinatory logic.
Trans. Amer. Math. Soc, 146:29-60, 1969.

[24] My Hoang, John Mitchell, and Ramesh Viswanathan. Standard ML-NJ weak
polymorphism and imperative constructs. In Proceedings, Eighth Annual IEEE
Symposium on Logic in Computer Science, pages 15-25, 1993,

[25] Paul Hudak, Simon Peyton Jones, Philip Wadler, Brian Boutel, John Fairbairn,
Joseph Fasel, Maria Guzman, Keven Hammond, John Hughes, Thomas Johnsson,
Dick Kieburtz, Rishiyur Nikhil, Will Partian, and John Peterson. Report on the
programming language haskell, version 1.2. Sigplan, 27(5), May 1992.

[26] Pierre Jouvelot and David Gifford. Reasoning about continuations with control
effects. In Proceedings of the SIGPLAN ’89 Conference on Programming
language design and implementation, Portland, OR, June 1989. ACM, ACM
Press.

[27] Pierre Jouvelot and David Gifford. Algebraic reconstruction of types and effects.
In Conference Record of the Eighteenth Annual ACM Symposium on Principles
of Programming Languages, Orlando, Florida, pages 303-310. ACM Press,
January 1991,

[28] Richard Kelsey, William Clinger, and Jonathan Rees (Editors). Revised® report on
the algorithmic language Scheme. ACM SIGPLAN Notices, 33(9):26-76, 1998.

[29] Richard Kieburtz. Taming effects with monadic typing. ACM SIGPLAN Notices,
34(1):51-62, January 1999.

[30] John Launchbury and Simon Peyton Jones. Lazy functional state threads. In the
ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 24-35, 1994.

[31] John Launchbury and Simon Peyton Jones. State in Haskell. Lisp Symbol.
Comput., 8:193-341, 1995,

[32] Xavier Leroy. Polymorphism by name for references and continuations. In the
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 220-231, January 1993.

[33] Xavier Leroy and Pierre Weis. Polymorphic type inference and assignment. In the
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 291-302, January 1991.

[34] Jon M. Lucassen and David Gifford. Polymorphic effect systems. In Conference
Record of the Fifteenth Annual ACM Symposium on Principles of Programming
Languages. ACM, ACM Press, January 1988,

140

[{35] Robin Milner. A theory of type polymorphism in programming. Journal of
Computer and System Sciences, 17, 1978.

[36] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard ML.
MIT Press, Cambridge, Massachusetts, 1990.

[37] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Definition of
Standard ML (Revised). The MIT Press, 1997.

[38] Eugenio Moggi and Fabrizio Palumbo. Monadic encapsulation of effects : a
revised approach. In (HOOTS 99) Higher Order Operational Techniques in
Semantics. Electronic Notes in Theoretical Computer Science, volume 26, 1999.

[39] John C. Reynolds. Theories of Programming Languages. Cambridge University
Press, 1998.

[40] Miley Semmelroth and Amr Sabry. Monadic encapsulation in ML. In Proceedings
of the Fourth ACM SIGPLAN International Conference on Functional
Programming, volume 34.9 of ACM Sigplan Notices, pages 8-17, N.Y.,
September 27-29 1999. ACM Press.

[41] Christopher Strachey and Christopher P. Wadsworth. Continuations: A
mathematical semantics for handling full jumps. Technical monograph prg-11,
Oxford University Computing Laboratory, Programming Research Group, 1974.

[42] Jean-Pierre Talpin and Pierre Jouvelot. Polymorphic type, region and effect
inference. Journal of Functional Programming, 2(3):245-271, 1992.

[43] Jean-Pierre Talpin and Pierre Jouvelot. The type and effect discipline. In the IEEE
Symposium on Logic in Computer Science, pages 162-173, June 1992,

[44] David Tarditi. "Design and Implementation of Code Optimizations for a
Type-Directed Compiler for Standard ML"”. PhD thesis, "Camnegie Mellon
University”, 1996.

[45] David Tarditi, Greg Morrisett, Perry Cheng, Chris Stone, R. Harper, and P. Lee.
TIL: A type-directed optimizing compiler for ML. ACM SIGPLAN Notices,
31(5):181-192, May 1996.

[46] Mads Tofte. Operational semantics and polymorphic type inference. PhD thesis,
Unviersity of Edinburgh, 1987.

[47] Mads Tofte. Type inference for polymorphic references. Inf. Comput., 89(1):1-34,
November 1990.

141

[48] Mads Tofte and Lars Birkedal. A region inference algorithm. ACMTOPLAS: ACM
Transactions on Programming Languages and Systems, 20, 1998.

[49] Mads Tofte, Lars Birkedal, Martin Elsman, Niels Hallenberg, Tommy Olesen,
Peter Sestoft, and Peter Bertelsen. Programming with regions in the ml kit (for
version 3). Technical Report DIKU-TR-98/25, University of Copenhagen, 1998.

[50] Mads Tofte and Jean-Pierre Talpin. A theory of stack allocation in
polymorphically typed languages. Technical Report 93/15, Department of
Computer Science, Copenhagen University, July 1993,

[51] Mads Tofte and Jean-Pierre Talpin. Implementing the call-by-value calculus using
a stack of regions. In the ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 188-201, 1994.

[52] Mads Tofte and Jean-Pierre Talpin. Region-based memory management.
Information and Computation, 132(2):109-176, February 1997.

53] Andrew Tolmach. Optimizing ML using a hierarchy of monadic types. Lecture
Notes in Computer Science, 1473, 1998.

[54] Magnus Vejlstrup. Multiplicity inference. Master’s thesis, University of
Copenhagen, 1994,

[55] Philip Wadler. The marriage of effects and monads. In Proceedings of the ACM
SIGPLAN International Conference on Functional Programming (ICFP '98),
volume 34(1) of ACM SIGPLAN Notices, pages 63—74. ACM, June 1999.

[56] David Walker and Kevin Watkins. On regions and linear types. In Proceedings of
the Sixth ACM SIGPLAN International Conference on Functional Programming,
pages 181-192, 2001.

[57] Andrew K. Wright. Typing references by effect inference. In European
Symposium on Programming, pages 473-491. Springer-Verlag, 1992.

[58] Andrew K. Wright. Simple imperative polymorphism. Lisp and Symbolic
Computation, 8(4):343-356, December 1995. Preliminary Version is
Polymorphism for Imperative Languages without Imperative Types, Rice
Technical Report TR93-200.

[59] Andrew K. Wright and Matthias Felleisen. A syntactic approach to type
soundness. Inf. Comput., 115(1):38-94, November 1994.

[60] Silvano Dal Zilio and Andrew D. Gordon. Region analysis and a pi-calculus with
groups. In Proceedings of the 25th International Symposium on Mathematical
Foundations of Computer Science, 2000.

	DIS_A1
	DIS_A2

