FROM SYNTACTIC THEORIES TO INTERPRETERS:

SPECIFYING AND PROVING PROPERTIES

by

YONG XIAO

A DISSERTATION

Presented to the Department of Computer
and Information Science
and the Graduate School of the University of Oregon
in partial fulfillment of the requirements
for the degree of
Doctor of Philosophy

June 2004

ii

“From Syntactic Theories to Interpreters:

Specifying and Proving Properties,” a dissertation prepared by Yong Xiao in partial
fulfillment of the requirements for the Doctor of Philosophy degree in the Department
of Computer and Information Science. This dissertation has been approved and accepted

by:

Russ, /uiale

Dr. Zena M/ Ariola, Chﬂir of the Exﬁmining Committee

g}/ﬂﬂx} 2)?’[, 2004,
ate

Committee in charge: Dr. Zena M. Ariola, Chair
Dr. Andrzej Proskurowski
Dr. Christopher Wilson
Dr. Sergey Yuzvinsky

Accepted by:

~T it %a-—\»

Dean of the Graduate School

(€2004 Yong Xiao

iii

iv

An Abstract of the Dissertation of
Yong Xiac for the degree of Doctor of Philosophy
in the Department of Computer and Information Science
to be taken June 2004
Title: FROM SYNTACTIC THEORIES TO INTERPRETERS:
SPECIFYING AND PROVING PROPERTEES

Approved: f% Ulp-\ 4 /LA- 4

Zkna M. Ariola

Syntactic theories have been developed to reason about many aspects of modern
programming languages[AB97, AFM™*95, LS97, 599, FLS99]. Having roots in the \-
calculus, these theories rely on transforming source programs to other source programs.
Only the syntax of the programming language is relevant.

Experience shows that the development of such theories is error-prone. In order to
ensure that the theories are sensible, many properties need to be checked. For example,
we need to know if there is always a rule to rewrite a valid program and if a unique value
can be obtained (which is described by a unique-decomposition lemma) and if the type
of a program is preserved during evaluation (which is described by a subject reduction
lemma). In many situations, the proofs of these properties do not require deep insight.
However, many purported proofs suffer from being incomplete and often the missed case
is the most problematic one. Thus, we think that in order to rely on syntactic theories,
it is of mandatory importance to design tools that support their development. The work

described in this thesis offers a first step in that direction.

We introduce the specification language SL which can directly reflect primitive
notions of syntactic theories such as evaluation contexts and dynamic constraints. An
experimental system has been implemented that generates interpreters from SL specifi-
cations. Currently the generated interpreters are programs in CAML[Cam), a dialect in
the ML family. Various examples have been tested, including the operational semantics
of core-ML and a syntactic theory for Verilog[FLS99].

We experiment with the SL system to automatically check whether the unique-
decomposition and subject reduction properties hold for the specified syntactic theories.

We map the unique-decomposition lemma to the problems of checking equiv-
alence and ambiguity of syntactic definitions. Because checking these properties of
context-free grammars is undecidable, we work with regular tree grammars and use al-
gorithms on finite tree automata to perform the checking. To make up for the insufficient
expressiveness of regular tree grammars, we enhance the basic framework with built-in
types, constants, contexts, and polymorphic types.

In order to specify type systems, we extend the SL system to allow rules written
in natural semantics. We also introduce a meta-level of the SL system with utilities to
handle substitution and equivalence, and to simulate pattern matching and type reason-
ing. A subject reduction lemma can be represented as a meta-theorem. The proof is
performed automatically by induction on the rewriting rules, the type checking rules,
as well as the structure of the object-terms. The induction step consists of instantiating
the meta-theorem into simpler forms which are also a meta-theorems. The base case
corresponds to the meta-theorems that can be easily proved, for example, a logical tau-
tology. The induction framework for automatically proving subject reduction can be

easily extended to other properties.

CURRICULUM VITA

NAME OF AUTHOR: Yong Xiao

GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED:

University of Oregon
University of Science and Technology of China

DEGREES AWARDED:

Doctor of Philosophy in Computer and Information Science,
2004, University of Oregon

Master of Science in Computer Science and Technology,
1996, University of Science and Technology of China

Bachelor of Science in Computer Science and Technology,
1993, University of Science and Technology of China

AREAS OF SPECIAL INTEREST:
Programming Languages
Software Engineering

PROFESSIONAL EXPERIENCE:

Research Assistant, Department of Computer Science and Technology,
University of Science and Technology of China, Hefei, China, 1993-1996

Research Assistant, Computer and Information Science,
University of Oregon, Eugene, Oregon, 1996-2001

Senior R&D Engineer,
Synoposys, Sunnyvale, California, 2001-2004

vi

vii

ACKNOWLEDGEMENTS

I own too much thanks to my advisor, Professor Zena M. Ariola, who set me on
this track and kept me moving forward. Zena had given valuable guidance and offered
financial support for my studying and research. She helped to set a colaboration between
Cristal group at INRIA, France and the programming language team at University of
Oregon. The project was to generate interpreters from language specification, which the
initial part of the dissertation (Chapter II). Zena mentored the follow up projects which
include automatically proving properties and enhancement on the initial system. The
efforts result in Chapter III, Chapter IV, and Chapter V in the dissertation. This work is
result of Zena’s care, patience, encouragement, and important suggestions.

Thanks to my committee, Professor Andrzej Proskurovsky, Professor Christopher
Wilson, and Professor Sergey Yuzvinsky. Andrzej and Chris have also been in my com-
mittee for DRP and Area exam. I appreciate their comments and suggestions on the
drafts.

I would like to thank Michel Mauny, Xavier Leroy and Didier Rémy of the Cristal
Group in INRIA for their contribution to the earlier version of the SL system. I am
also indebted to Amr Sabry for his joint work on Chapter III and Miley Semmelroth
for his detailed review on my dissertation, as well as other faculty, staff, and students
of the Computer and Inforamtion Science Department who provided help, advice, and
discussion.

Thanks to my parents, my wife, and my daughter, who had always encouraged me

and supported me.

viii

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION it it eie e 1
SyntacticTheories.o v i i 2
Logical Frameworks o 7
The SLSystem v vt ittt ittt s 15
Organization. i e e 16

[I. THE SL SYSTEM - GENERATING INTERPRETERS FROM SYNTAC-
TICTHEORIES ittt et e it i e s 18
Overviewofthe SL System oo 18
The SL Language 22
Compiling SL specifications 26
The SL Runtime Libraries A4
Example of code generatedby SL. 51
SummaryandDiscussion oo 58
III. AUTOMATICALLY PROVING DECOMPOSITION 61
Manual Proof of Unique Decomposition 63
Equivalence and Ambiguity of Grammars 64
Regular Tree Grammars and Finite Tree Automata. 65
Algorithms for Proving Unique Decomposition 72
Extensions i o i i e e 79
Automatically proving unigue-decomposition in the SL System 90
Summary and Discussion o000 93
IV. EXTENSIONSTOTHESLSYSTEM, 94
Abstractpatternst e e 94
Natural DeductionRules 102
Signature Functionso e e 106
Meta-subStitution v v i i i e e e e e e e e 117

Summary and Discussion00 L 120

Page

V. AUTOMATICALLY PROVING SUBJECT REDUCTION 122

A Manual Proof of Subject Reduction 123

Representing the Type SysteminSL 124

A Meta-layer forthe SL System 125

An Example of Automatically Proving Subject Reduction by Induction 134

Automatically Proving Subject Reduction by Induction 138

Summary and Discussion oo oo e 141

VI. CONCLUSION ANDFUTUREWORK 143

Contributions and Applications of the SL System 143

Futurework oo e 145
APPENDIX

THESLLANGUAGE 147

BIBLIOGRAPHY o i s 152

LIST OF FIGURES

Figure Page
1. Typingrulesfor A™ 6
2. DerivingthetypeofaA-term 6
3. DerivingthetypeofaA-term 7
4, An SL Specification of a Simple CBV Language 19
5. Abstractsyntax of the SL language 23
6. Generating CAMLcode« .. i iy 45
7. Transformation between runtime terms and lambdaterms 47
8. An automaton for the grammarof Example2 73
9. SL Specification of Decomposing a Simple CBV Language 921
10. An SL Specification of a Simple CBV Language using abstract patterns . 96
11. call-by-value lambda calculus in natural deduction semantics 102

12, An SL Specification of a Simple CBV Language specified with natural
deductionrules L, 104
13. An SL Specification of a Simple CBV Language using signature functions 108
14. An SL Specification of a Simple CBV Language using signature functions 113
15. An SL Specification of a Simple CBC Language with meta-substitution . 119
16, The SL specification of the type system of CBV A-calculus 126
17. Meta-layerofthe SLsystem 127
18. Unification of meta-expressionsxb, 130
19. Merging two environments o v v v b v e 131
20. Meta-patternmatching 133

21.

Meta-expression evaluation

.......

xi

Table

S S

I IS

10.

1.
12.

xii

LIST OF TABLES

Page
The type checking rules for typeexpressions 27
The type checking rules for SL expressions 28
The type checking rules for SL patterns 30
The type checking rules for declarations 31
The type checking rules foraxioms 32
The type checking rules for inferencerules 33
The type checking rules for abstractpatterns 99
The type checking rules for abspat definitions 100
The type checking rules for extended inferencerules 105
The type checking rules for sigfun definitions 110
The type checking rules for sigfunaxioms 114

The type checking rules for sigfun inferencerules 115

CHAPTER 1

INTRODUCTION

In everyday computing we deal with a variety of programming languages. Some
languages are for general purposes such as C, C++, Ada, ML, Prolog, Lisp, and Java.
Some are designed for specific domains, such as SQL for querying, Perl for text pro-
cessing, Tex for documenting, and Verilog for hardware description. Moreover, new
languages emerge everyday.

There are numerous aspects to programming language design and implementa-
tion. First are issues of concrete syntax, abstract syntax, and parsing. The next question
concerns the semantics of a program, such as its type and its result by evaluation. In
addition, many questions regarding properties of the language.can be asked. Is it effec-
tively decidable if an input expression is well-typed? Are types preserved during the
execution of a program? Does every well-typed program produce a unique result?

For each programming language, implementing a compiler or interpreter and prov-
ing its properties is a daunting task. It is highly desirable to develop a framework that
isolates the uniformities of a wide class of language designs so that much of the effort
can be expended once and for all. By convention, we call the framework the meta-
system, and call the languages object-languages.

In this thesis, we present a special-purpose framework that is tailored to speci-
fying and proving properties of programming languages. Our framework is called the

SL system. It provides necessary primitive notions, such as data types, dynamic values,

contexts, axioms, and inference rules, for specifying the syntax and semantics of lan-
guages. It also deals with properties of a language, such as decomposition and subject
reduction. The SL system automatically generates compilers from the specifications,
and it automatically proves the property statements or shows counterexamples about the
statements.

The rest of this chapter is divided as follows: We first give an introduction to
syntactic theories, one of the common formal representations for languages. We then
provide a survey of logic frameworks. Next, we give a brief overview of the SL system.

Finally, we outline the organization of the rest of this thesis.

Syntactic Theories

The notion of syntactic theories is one of the most well-known and extensively
used formal description techniques for programming languages [AB97, AFM 195, LS97,
$899, FLS99]. Having roots in the A-calculus[Plo75], these theories rely on transform-
ing source programs to other source programs. Only the syntax of the programming
language is relevant. In this section, we use the call-by-value A-calculus as a running

example to introduce operational semantics based on syntactic theories.

Operational Semantics

The set of terms of the call-by-value A-calculus is generated inductively over an
infinite set of variables ranged over by z, y, etc, and it includes A-abstractions and

applications, defined as follows:

ATerms M = zx|Xx M| MM

Two terms that only differ in the names of bound variables are considered identi-
cal, e.g., Az.z is equivalent to Ay.y. This is called a-conversion.
The operational semantics is based on the 3, reduction rule which requires a syn-

tactic definition of the notion of value:

Values V = .M
By Az M)V — [V/z]M

where [V/x]M is the term resulting from substituting V' for the free occurrences of the
variable x in M.

A call-by-value computation consists of successively applying the 3, reduction
rule to a subterm. Positions of 3, redexes are restricted by an evaluation context which
is defined as follows:

E:=0|EM|VE

where O represents a “hole”. If E is an evaluation context, then E[M] denotes the term
that results from placing M in the hole of E. The evaluation of a program is then defined

by a stepping relation, denoted by ~, given as follows:

M= M
E{M) — E{M")

In other words, at each step of evaluation, we attempt to decompose a program

into an evaluation context and a redex (a term matching the left-hand side of 3, rule)
and to rewrite the redex using our axiom.

For example, the term (Ay.y) ((Az.z) Az.z) can be reduced to (Ay.y) Az.z by
using the 8, rule and the evaluation context (Ay.y)O. It can be further reduced to Az.z
by using the 3, rule and the evaluation context 0. The term Az.z is a normal form,
that is, a term that cannot be further reduced. Note that in the first reduction, the term

(Az.z) Az.z has to be reduced to value before the 3, can be applied to the outmost term.

Unique Decomposition

The evaluation process defined above is not guaranteed to yield a final value. For
instance, the term y{Az.x) cannot be decomposed into an evaluation context filled with a
redex. The existence of programs that have no decomposition indicates either a mistake
in the definitions, or situations that need to be accounted for using compile-time or run-
time checks. In both cases, it is useful to have a precise statement that lists all the
possible decompositions for a term: every term can be decomposed as a value (i.e.,
a final answer that needs no further evaluation) or an evaluation context filled with a
current instruction. The current instruction could be a valid redex, or could indicate
an erroneous program that contains a reference to an unbound variable. The formal

definitions are given below:

(Values) V o= A M
(Redexes) R = (Az. M)V
(Decomposed Terms) D := V | E[R] | E[z]

The existence of decompositions for all terms guarantees that evaluation considers
all possible cases for the input programs. But for many languages, it is important that
the evaluation is specified deterministically. In other words, the decomposition of each

program is unique. This property is stated as follows:

Lemma 1 (Unique Decomposition)

Every term M can be uniquely decomposed into one of the following forms:
a value V, or a demand for a variable = within an evaluation context £, or

a redex R within an evaluation context £,

Subject Reduction

Most programming languages are equiped, either explicitly or implicitly, with
type systems. We define a simple typed extension (denoted by A™) of the call-by-value

A-calculus previously presented as follows:

A-terms M = z|Xx:T.M | M M

Types T a|T—>T

where a denotes a type variable and 77 —+ T stands for a function type whose argument
type is T} and its result type is T>. — is right-associate, that is, T} — T» — T3 is the
same as 1) — (T> = T3).

Some A-terms are meaningless. For example, it is nonsensical to apply a term
which is not a function. We will consider well-typed A-terms, those that can be derived
from the type-checking rules. The type-checking rules for the simply-typed A-calculus

are given in Figure 1, where T" stands for a set of type assignments for constants and

(start) Ty if(z:0) el
I''e:n Fe:m

=D 'k Aze:mm—=m

F'Feypimm—mn T'ke:n

(=E) F'Fee:n

FIGURE 1. Typing rules for A~

tart
{z:aqy:0} b z:a slar

{z:a} F yz:f—oa o {z:7} F z:7
 Fdzdyzia2foa {}F Azz:7 >
{} F Qzdyz)dzz: o177

=]

—I

FIGURE 2. Deriving the type of a A-term

variables. I" has the following properties:
— weakening: Assignments can be added freely.
— strengthening: Unused assignments can be removed.
— permutation: The order of assignments is irrelevant.
— contraction: The same assignment can be used more than once.

As an example, the term (Az.Ay.z) Az.z can be assigned the type § — 7 = T.
Figure 2 shows how this type is derived using the type system in Figure 1.
An important property of the type system is subject reduction, that is, the evalua-

tion of a well-typed program preserves its type.

{y:8,z:7} b 2:7
{y:8}F A2zt =1 -1
{} Fdyprzz: o7

—1

FIGURE 3. Deriving the type of a A-term

Lemma 2 (Subject Reduction)

IfM— MandT - M:o,thenT - M : 0.

For example, the term (Az.Ay.z) Az.z can be reduced to Ay.Az.z which also has
type § — 7 — 7. The type derivation of the terrn Ay.Az.z is given in Figure 3.

In this thesis, we introduce a special logical framework that assists in writing
syntactic theories and proving some important properties such as unique decomposition

and subject reduction. Next is a brief survey of logical frameworks.

Logical Frameworks

Logical frameworks are systems for specifications of deductive systems. The se-
mantics and properties of a programming language can be described using various de-
ductive systems that are given via axioms and rules of inference. For example, a type
system is specified by type-checking or type-inference rules and the result of a program
is determined by evaluation rules. Properties are also proved in a certain reasoning sys-
tem. Therefore, we can interchange the following concepts: programming languages,
logics, and deductive systems.

In this section, we give a brief overview of the general themes, concepts, and

design choices for logical frameworks.

Representing Syntax

The first task of a logical framework is to represent the syntax of object-languages.
In order to concentrate on the structure of expressions, we do not consider issues of

concrete syntax and parsing, and only focus on specifying abstract syntax.

First-order Representation

One of the simplest approach of representing syntax is to choose the first-order
terms themselves. For our running example, the representation of a variable z is its name
with a tag, written as Var(z). An abstraction, Az.t, is represented as an application of a
first-order constructor Lam to a pair of = and the representation of £. Similarly, the ap-
plications in the object-language are represented as terms with constructor App. We use

[—] for the representation function that maps object expressions to meta-expressions.

[z] = Var(z)
[Az.M]) = Lam(z,[M])
[M M) = App([M], [M5])

Systems such as Coq [DFH*93] allow first-order inductive definitions. This ap-

proach is similar to the representation above.

datatype o = Var of string | Lam of string xo | Appofo * o

It has the advantage of easily handling sub-typing. First-order inductively defined types

are regular tree types. Membership of a term in such a type can be decided by a finite

tree automaton[GS84] and sub-typing can be reduced to tree automata homomorphism.

The first-order representation above does not support the variable convention. Re-
naming of bound variables must be implemented explicitly. For example, Lam(z, Var(z))
and Lam(y, Var(y)) need to be identified. Another issue of the first-order representation

is that substitution must be also explicitly provided in the specification.

Higher-Order Abstract Syntax

The approach of higher-order abstract syntax (HOAS) represents variables of an
object-language by variables in the meta-language. Most HOAS approaches, such as
those for LF [HHP93] and Isabelle [Isa, Pau90], are supported by the simply-typed A-
calculus. Notice that this A-calculus works as a meta-calculus.

We use a type constant o for the object A-terms. We also introduce constants

assigned to certain types, and represent object-terms in A-terms as follows:

[z} = =
[Az M] = Lam(Az:o.[M]) Lam : (0—oo0)—>o0
(M, M;] = App [Mi] [M:] App : o= o0=o0

The first and second cases depict HOAS representation. The variables are used
as both object-variables and meta-variables, and object lambda abstractions are repre-
sented as applications of a constant to a meta-abstraction. The bound object variables are
bound meta-variables. Therefore, object a-conversion automatically holds in this repre-
sentation. Moreover, substitution in the object-language is handled by S-conversion in

the meta-language. For example, (Az : 0.[M])[M2] = [[M.])/z}[M1] = [[M2/z])M].

10

The latter equation is proved by simple induction on A-terms.

An object-term can be represented by many A-terms that can be converted to
each other. In order to make the representation non-ambiguous, only canonical forms
are chosen as representations. Canonical forms have the form of Az; : 7.... Az, :
Tn.My My ... M, where M is either a constant or a variable, My M, ... M, is
fully applied, i.e., My M, ... M, should not be of a function type, and M,,... , M,
are canonical A-terms. The canonical form of a A-term is unique; it is obtained by by
first repeatedly applying S-conversion from left to right and then repeatedly applying
n-conversion from left to right. The canonical forms are also called Sn-long normal

Jorms.

Representing Semantics

The next step is to represent the the semantics of the object-language. Semantic

rules can be represented as rewriting rules, logical formulae, or dependent types.

Rewriting Rules

If the object-terms are represented as first-order meta-terms, it is only natural to
represent semantic rules as first-order rewriting rules, also called small-step semantic
rules. The Elan system adopts this approach. For example, the evaluation rules for the

call-by-value A-calculus are represented as follows:

App{Lam(z, My),v) — [v/z]M; where v = Lam(y, M;3)
E{M] —» E[M'| whereM — M’

11

Natural Deduction Rules

The operational semantics can be also formalized in natural deduction rules, also

called big-step semantics rules. —» defines the result of evaluation (in multiple steps).

{evlam)

Az M — Az M

Myvs Az M, Myvs Vi

(evapp)

Logic Formulas

The semantic rules can be also represented as higher-order formula, or Hereditary

Harrop Formulas[Mil89]. Hereditary Harrop Formulas are defined as follows:

Hereditary Harrop Formulas H == P | T |H\AHy | Fy D Ha |V2: T.H

where T stands for a type. The Isabelle [Isa, Pau90] system adopts this approach. Hered-
itary Harrop formula has two important differences with Homn logic formula: the addi-
tion of types so that quantifiers now range over simply-typed A-terms, and the fact that
generalization allows the body of clauses to contain implication and universal quantifi-
cations (so called embedded implication and embedded universal quantification).

A statement about the evaluation of a term (such as “M evaluates to V) is rep-
resented by a meta-expression (such as eval(M, V)), where eval is a predicate in the
meta-logic. Each inference rule defining a case of eval is turned into an axiom in the

meta-language. For our running example, the natural semantics can be represented as

12

follows:

(evlam) Vf :o0 — o.eval(Lam f,Lam f)
(evapp) Vmy :o0¥m,:o0Vv:o.
(Vf:0—=0Vuv:o0.
eval(m;, Lam f) A eval(ma, v2) A eval(f va,v)) =

eval(App my ma,v)

where “¥”, “A”, and “=" denote quantification, conjunction, and implication, respec-

tively.

Dependent Types

Another approach is to design a representation of derivations themselves explicitly
in the meta-language. More specifically, we introduce a new type for evaluations in the
object-language, where each rule becomes a constructor of the new type. This approach,
which is related to the Curry-Howard isomorphism [How80], is known as judgments-
as-types and derivations-as-objects. System LF [Gar92] represents evaluation relations
as types in the dependently typed A-calculus, A", and represents reductions of terms as
objects.

Al is a calculus with three levels (kinds, types, and objects) which are defined as

follows:

Kinds K := TYPE|Nz:TK
Types T 2= al|la|TM|lNz:T.T
Objects M = clz Xx:TM MM

13

where TYPE is a kind constant standing for all types in A™.

For our running example, the evaluation can be represented as a dependent type,
eval, indexed by object programs before and after evaluation. eval m v is a type indi-
cating that m evaluates to v. The two inference rules are represented as constructors
for building terms in the evaluation type. Building terms using the constructors then

captures evaluation using the inference rules. Details are below.

eval : IIm:ollv:oTYPE
evlam : IIf:o0 — o.eval{Lam f){Lam f)
evapp : IIm; :0Jlms:o0.0lv: 0.
(TIf : 0 = o.ITvs : 0.
eval m; (Lam f) — eval my va — eval (f va) v) =

eval (App my mp) v
Representing and Proving Properties

Since logical frameworks are designed to express the language and inference rules
of deductive systems at a very high level of abstraction, one rightly suspects that they
should be amenable to an investigation of the meta-theory of deductive systems, such as
the decomposition property.

One approach is to represent properties as propositions in some mathematical sys-
tem such as set theory or automata theory, and to apply theorems in the system to prove
the properties. The logical framework must embed the mathematical theorems.

A more common approach is to represent properties as logical formulae so that

proving the properties corresponds to checking validily of the logic formulae. This tech-

14

nique, used in systems such as Nuprl [C*86, Nup] and AProlog [IPr, NM88], involves
proof searching,

Another commeon approach is using inductive proof, both over the structure of
expressions and derivations. Thus, one naturally looks towards frameworks that permit
inductive definitions of judgments and support the corresponding induction principles.
Unfortunately, induction conflicts with the representation technique of higher-order ab-
stract syntax. For example, the lambda abstraction was represented in LF by the con-
structor

Lam: (0o 2 0)—o0

Because of the negative occurrence of o in the type of Lam, attempts to formulate a valid
induction principle for the type o would fail.

Several options have been explored to escape this dilemma. The first, for example
used in [BBKM93, MN94] is to reject the notion of higher-order abstract syntax and use
inductive representation directly. This engenders a complication of the encoding and
consequently of the meta-theory, which now has to deal with many lemmas regarding
variable naming. Using de Bruijn indices alleviates this problem somewhat. In Coq,
users can define functions over inductively defined types. Another possibility is to ex-
ternalize the induction. This leads to a three-level architecture: the object-logic, the
logical framework, and a meta-framework for reasoning about the logical framework.
Schurmann and Pfenning’s Twelf system[Twe] is one such framework.

Twelf incorporates HOAS and induction by analyzing different cases of canonical
normal forms of meta-terms. An inductive function can be encoded as a logical relation.
More specifically, a function f in the type of T} — T, may be represented as a relation

f: Ty = 1o — TYPE. As an example, consider the meta-theorem that whenever

15

m +—» v is derivable, then v is a value. The theorem can be represented as a type:

vs: IIm : o.Ilv : 0.eval m v — value v = TYPE

where value is a type I1v : 0. TYPE which has only one constant lamvalue : IIf : 0 —

o.value (Lam f).

In summary, logical frameworks are meta-systems for specifying deductive sys-
tems. Most existing logical frameworks are designed to be general purpose. When used
to specify syntactic theories, they do not support the necessary primitive semantic no-
tions and they lack support for the automation of proofs. To address these issues, we

developed a new system called SL.

The SL System

The SL system employs a first-order representation of object-languages. It uses
first-order conditional rewriting rules (i.e., axioms and inferences) for interpreters, and
natural deduction rules for type systems. The SL system supports values and contexts as
built-in notions leading to great flexibility and simplicity in specifying semantic rules.
Various examples have been tested including the operational semantics of core-ML
(lambda-calculus with built-in operations, store operations, and exception handling),
type inference for core-ML, a syntactic theory for a store encapsulation language[S599],
and a syntactic theory for Verilog[FLS99].

We extend the SL system to automatically check whether unique decornposition
and subjective reduction hold in the specified syntactic theories.

We map the unique-decomposition lemma to the problems of checking equiv-

16

alence and ambiguity of syntactic definitions. Because checking these properties of
context-free grammars is undecidable, we use regular tree grammars and algorithms on
finite tree automata to perform the checking. To make up for the insufficient expressive-
ness of regular tree grammars, we extend the basic framework with built-in types and
constants, contexts, and polymorphic types.

In order to specify type systems, we exhance the SL system to allow rules written
in natural semantics. We also introduce a meta-level of the SL system with utilities to
handle substitution and equivalence, and to simulate pattern matching and type reason-
ing. The subject reduction lemma is represented as a meta-level theorem, with a list of
meta-expressions as premises and a list of meta-expressions as conclusions. The proof is
done automatically by induction on the rewriting rules, the type checking rules, as well
as the structure of the data types defining the object-language. The induction step con-
sists of instantiating the meta-theorem into simpler forms, which is also a meta-theorem.
The base case corresponds to the meta-theorems that can be easily proved, for example,
a logical tautology.

The induction framework for automatically proving the subject reduction lemma
can be easily extended to check other properties.

The SL system is available from:

http://www.cs.uoregon.edu/ "aricla/SL/.

Organization

This thesis is organized as follows: Chapter II demonstrates how the SL system
generates interpreters from syntactic theories; Chapter III describes how to automati-

cally prove the unique-decomposition lemma by using and extending tree automata al-

1

gorithms; Chapter IV extends the previous SL system to allow abstract patterns, natural
deduction specifications, and internal substitutions; Chapter V presents the meta-level
reasoning used to automatically prove subject reduction; Chapter VI summarizes and

concludes.

18

CHAPTER II

THE SL SYSTEM - GENERATING INTERPRETERS FROM SYNTACTIC
THEORIES

In this chapteR, we introduce a specification language, SL, which is tailored to
the writing of syntactic theories of language semantics. More specifically, the language
supports the specification of primitive notions such as dynamic constraints, contexts,
axioms, and inference rules. We also introduce a system which generates interpreters
from SL specifications. A prototype system is implemented and has been tested on a
number of examples, including a syntactic theory for Verilog.

We first provide an overview of the SL system by using the call-by-value A-
calculus as an example. Then we describe the constructs of the SL language, demon-
strate its compilation, and discuss the runtime library for the SL system. We also show

an example of a generated interpreter before our closing summary and discussion.

Overview of the SL. System

We use the call-by-value A-calculus[Plo75] as an example and show how it is spec-
ified in the SL language. By convention, we call the SL language the meta-language,

and call the call-by-value A-calculus the object-language.

Representation in SL

The specification of the call-by-value A-calculus in SL is given in Figures 4. The

SIGNATURE part describes the abstract syntax of the language using CAML type def-

19

SIGNATURE:
type M = Var of string | Lam of string*M | App of M*M;;
startfrom M;;

SPECIFICATION:
#open "namesupply";;
let rec subst (tl,x,t2) =

match tl with

Var s -> if s = x then t2 else tl
| Lam(s,ti’) -> if s = x then tl
else let s’ = freshname() in
Lam{s’, subst(subst(tl’,s,Var s’),x,t2))
| App(tll,ti2) -> App(subst(tll,x,t2),subst(tl2,x,t2));;

dynamic V = Lam _;;

axiom betav: App(Lam{x,tl}), (£2:V)) ==> subst(tl, x, t2);;
context H = BOX | App(H,_) | App(V,H);;

inference eval:

tl ==> t2

{h:H) t£t1 ==> h t2 ;;

FIGURE 4. An SL Specification of a Simple CBV Language

20

initions. In general, the SL type definitions may be polymorphic but are restricted to
first-order type expressions, i.e., expressions that do not contain function types. To ac-
count for cases in which the description needs more than one type, the type of programs
in the object-language is explicitly given by the start from phrase.

The SPECIFICATION part describes the semantics of the language. A dynamic
definition defines a subset of a type with some semantic significance. The meta-language
also has a primitive notion of contexts with BOX as the empty context. The axioms are
conditional rewriting rules. Each inference rule has one premise clause, one conclusion
clause, and an optional condition expression. The optional conditions are CAML ex-
pressions following the keyword when. Axioms and inference rules use a richer notion
of pattern-matching than the one used in most functional languages. They include dy-
namic constraints as in £2 : V, context constraints as in h : H, and context fillings such as
h t2. Meta-operations of the semantics like substitution are written directly in CAML
as auxiliary definitions.

The BNF of the SL language is given in Appendix A.

Generating interpreters

The SL system is very domain-specific, targeting exactly the kind of semantic
specifications based on syntactic theories. In addition, it performs basic checks to ensure
the specifications are well-formed. Other than the basic syntactic checks, the SL system
has a (meta-)type system that ensures that contexts are used appropriately, e.g., every
context has one hole, contexts are filled with expressions of the appropriate types, and
both sides of each axiom have the same type. After performing these basic checks,

the SL system compiles the specification into a non-deterministic automaton, which is

21

then transliterated into CAML code. The code uses success continuations to encode the
sequencing of states and uses exceptions with handlers to encode the non-deterministic
selection of a state.

Feeding the code in Figure 4 to the SL system produces an interpreter. This
interpreter can then be invoked on terms of the language to evaluate them by repeatedly
decomposing them into evaluation contexts and redexes, and contracting the redexes,

until an answer is reached. For example, if the input file contains:

App(Lam(nyn ,Var lly“) ,App(Lam(tlxll 'var "xtl) ,Lam(llzll ,Var nzu))) ;’.

the generated interpreter produces:

App (Lam("y",Var "y"),App({Lam ("x",Var "x"),Lam{"z",Var "z"}))
==> by betav,eval

App{(Lam("y",Var "y"},Lam("z",Var "z"))
==> by betav,eval

Lam(nzu'var uzn)

Interpreters generated by the SL system preserve the semantics of an object-
language in the sense that if a specification is non-deterministic, the generated inter-

preter evaluates input programs non-deterministically.

22

The SL Language

Because CAML phrases can be used in SL specifications, the SL language con-
tains all the constructs of CAML such as expressions, patterns, and type expressions. In
addition, the SL language has constructs specific to the SL system, such as dynamic
expressions, context expressions, and their corresponding declarations.

The abstract syntax of the SL language is shown in Figure 5. We write x for vari-
ables, ¢y for nullary constructors, ¢, for constructors of arity one, const for constant ex-
pressions, o for type variables, ¢y for built-in types, and op for built-in operations. Note
that the symbol “=" and the symbol “|” in the figure are symbols of the SL language.
We will explain type expressions, expressions, patterns, declarations and definitions,

axioms, and inference rules next.

1. Type Expressions

Type expressions in the SL language are similar to those in the CAML language.
The only difference is that the SL types need to be first-order when used to specify
the datatypes of the object-language. The types allowed for object-datatypes can
be type variables, constant built-in types such as bool and int, a type name
already defined, tuples, and lists. Type variables make the type system in the SL

language polymorphic.

2. Expressions

SL Expressions are also similar to the expressions in CAML. The expressions
can be one of the following forms: variables, constants, constructors, built-in
operations, type constraint expressions, functions, applications, context filling, let

expressions, or letrec expressions.

Type Expressions Tg

Expressions E
Patterns P
Type Declaration T Decl
Dynamic Definitions DDecl
Context Definitions CDecl
Axioms A
Inference Rules I

= inf_name:

a|cr|typename |Tgp * -+« * Tg |
TE list

z|const|co | qE | (E,... ,E)|
opE | z.E|EFE|

letz=EinE |

letrecc=FEin E |

(E : type Tf) |

|z |comst|eo|aP|P|P|Pasx
(P typeT5) | (P,...,P) |

(P : dynamic_name) |

O | (P : context_name) [P)

typename=cp | --- |1 Tg
dynamic.name = P
contezt.name=PFP | ... | P

ar_name : P when F ==> F
E==> P
Pwhen FE==>F

FIGURE 5. Abstract syntax of the SL language

24

Other forms such as exceptions and memory references are supported in the SL
language. They are excluded in this thesis because they are not essential to specify
the object-language constructs. Also, let expressions and letrec expressions are

simplified to have only one binding clause.

. Patterns

SL patterns include common patterns such as wildcard patterns, variable patterns,
constant patterns, alternative patterns, type-constraint patterns, alias patterns, and
tuple patterns. The SL patterns are also enriched with dynamic constraint patterns
and context filling patterns. The dynamic constraint pattern (p : dynamic_name)
and context filling pattern (p : context.name) [p2] require p to be a wildcard

pattern or a variable pattern.

SL patterns can be used in the left-hand sides of axioms and the left-hand sides of
conclusion clauses in the inference rules. They can also be used in the right-hand
side of premise clauses of inference rules, but those pattems should not contain

dynamic constraints or context fillings.

Context expressions are special kinds of patterns, Each context expression has a
hole O that is not filled with a pattern. For example, O, ¢,(0), context_name,
and (p : contexrt.name) (O] are context expressions, while ¢, const, and (p :
context.name) |cp] are not. Context expressions cannot be top-level patterns

except in context declarations.

. Declarations and Definitions

Datatype declarations in the SL language are similar to those in CAML. The

difference is that they can use only first-order type expressions. Type declarations

23

introduce new constructors as well as type names.

Dynamic definitions can be considered as definitions of SL patterns, and context
definitions are parametric patterns where the parameters denote the holes. Each
alternative pattern in the right-hand side of a context definition must be a con-

text expression. Dynamic definitions and context definitions can be recursively

defined.

. Axioms

Each axiom has one name for easy reference. Its left-hand-side pattern should
be linear. In other words, no variable can occur more than once in the pattern.
The right-hand side is an expression and the condition is also an expression. The
set of free variables in the two expressions is restricted to be a subset of the free

variables in left-hand pattern.

. Inference Rules

Each inference rule has a name, a premise clause, and a conclusion clause. The
premise clause has an expression as its left-hand side and a pattern as its right-
hand side, whereas the conclusion clause has a pattern as its left-hand side and an

expression as its right-hand side.

Similarly to the restrictions for axioms, both patterns in the premise clause and
the conclusion clause should be linear. The set of free variables on the right-hand
side of the conclusion clause should be a subset of the union of free variables
on the left and free variables in premise clauses. Moreover, the free variables of
the left-hand side expression of a premise clause should be a subset of the free

variables in the corresponding left-hand pattern of the conclusion clause.

26

The dynamic definition, context definition, and rules in Figure 4 can be repre-

sented in the abstract syntax of the SL language as follows:

V = Llam._

O { App((h1 - H)(D),) | App({v: V), (ha : H)(DV))

B, : App(lLam(z, M), (v: V))==>M[z := v]
t1 == {9
(h:H)ty==>ht,

eval

where variables are introduced for dynamic constraint and context filling patterns.

Compiling SL specifications

The compilation of an SL specification includes the usual phases such as lex-
ing, parsing, static checking, and code generation. For an object-language specified
by an SL program, a parser and a pretty-printer for the object-language are generated
from the signature part, and a reduction machine based on pattern-matching automnata is
generated from the semantic rules. These parts work together as an interpreter for the
object-language with the support of the SL runtime libraries.

In this section, we address some special issues in the SL compilation such as
type checking, pattern matching and building automata, and transforming automata into

CAML code.

Type System

The type system for SL extends the type system for CAML. The extensions deal
with dynamic definitions and contexts. Here, we only present the idea of typing expres-

sions and typing patterns in a simply-typed framework.

27

'k a:r T,er:ep Fer:er
Ckte:ny o+ [k teg:my
Diin:7 F tn:7 'k tep® - xteg:iT*- - %Ta
' -te:7

' - telist: T list

TABLE 1. The type checking rules for type expressions

First, we give definitions of types and context types in the SL type system.

Types T aler | T «T |Tlist | T =T

Context Types U 1= Toa T

A type can be either a type variable, built-in type, tuple type, list type, or function
type. Note that although type expressions in the SL language do not have function types,
the types in the SL type system can. A context type has the form of {,0— &5, where , is
the type for the hole and ¢, is the type of the whole expression if the hole is filled. Only
context expressions and context definitions have context type.

In the following, we discuss the type checking rules for the SL constructs.

1. Typing type expressions

The typing rules for type expressions are given in Table 1. The rules are straight-

forward.

2. Typing expressions

28

z:thkx:7

Dieg:T Feg:T

T',const : cr + const:cp

Faegeinm—=mnkFca:n=n

F''teag:m—=m ThFe:n 'k e :mn T'le,:m
F'Fee:n CF (e,...,eq) T %%y
F'rFop:mm—7m FTkFein

Fopim =7k op:m = Tl ope:m
Ft‘EliTl—}Tg F’-t‘ig:‘ﬁ

Cz:my bk e:m
'k Aze:np =1

%]
-

F|'81:T1 P,SE:TlI_

' e e :m

1",::::1‘1 - [

Le:mp Fe:r

-*

F''Fletz=ejine:

Fr+e:r THTg:7
Ik {e:typeTxg):

s‘

' letrecz=eine: 7

Hae:noam kFzimesrn

F'Fe:moomn FkFe:n

I 61[62]]

TABLE 2. The type checking rules for SL expressions

20

The typing rules for SL expressions are given in Table 2. The first part of the table
is the set of rules for expressions except context filling. Those rules are standard.
The second part of the table is the rule for context-filling expressions, which is
similar to the rule for function applications. For instance, if e; in a context filling
expression e;[e;] has type To— 7o and e, has type 7, then the resulting type of

4] [Eg] is Ta.

3. Typing patterns

The typing rules for SL patterns are given in Table 3. The first part of the table is
the set of rules for common patterns. Those rules are standard as well. The second
part is the set of rules for context expressions and context-constraint patterns. The
typing rule for the O pattern gives the pattern the type 70— 7. The rule for context-
constraint patterns is similar to the rule for function applications if the patterns to
be filled do not have context type. Typing rules for other context expressions
express the “lifting” of the context type constructor o— whenever possible, so
that context expressions preserve context types. If a pattern p; has context type
90— 71 and another pattern p» has type 7., then the pair pattern (p;,p2) has
type (70— (7 * 72)) instead of ({rpo— 71) * 72). The context type constructor
o—+ is always at the top level of a type. Another example is the rule for context
constraint patterns if the patterns to be filled are context types. If a context cn
has type 10— 72 and a context expression p. has type 50— 7y, then the context
expression (p; : cn)[ps] has type go— 7 instead of (ro— 71)o— 72. Such

behavior is like function composition for context types.

4. Typing declarations

30

r-_:r Lz:rkax:T
[,const: T F const:t Fieg:T F et
T'kFp:im Fr'rppimy oo« Tk opuimy
Cep:mm—= T -op:m Lk (pry..,pn)iTi %o oxry,
F'Fp:r FT'Fpy:7 T pa:r
Cx:7 - pasz:7 CkFplpe:r
't+p:r THTg:T C'kp:r
T (p:typeTg): 7 Cidn:7 F (p:dn):t

''Fpimgo=n I'Fp:iny

TF O:ros7 Toen:mos o b (pr:en)ps):m
F'Feg:m—=7m TEFpimgeon F''FppinlEpiimgorn D Fppimy
P'Fepimosrm L F (pryeeosPivee sy Pr) iTo0 TL ko % Ty

F'Fpinosrn T'Fpinoern
Fen:near o - (pl : Cﬂ)[pg] s ToQ=t T

TABLE 3. The type checking rules for SL patterns

Type Declaration:
Citn:7mco:7y...,C1:0—=>THF co:7T

Citn:re:7y...,p:0—=717 | te:o

Tyin:T,c0:7,...,q:0=7 bk tn=c | |arte:7

Dynamic Definitions:
C,dn:7 - py:71

Fdn:7F py:7

Cidn:7 kdn=p| - |pn:7

Context Definitions:
Feniogos 7t pyigos T

Cen:oo7 F ppioo= T

Fien:ogo7 b cen=p | - |ppioos 7

TABLE 4. The type checking rules for declarations

31

32

Cozy:7,...,Zn:Ta E piT
C,z1:7i,00. yXn:Tn F €. :bool
Cyzy:im,...,Zn:Th F e:T

I' - ax_name:pwhene,==>e: 1

TABLE 5. The type checking rules for axioms

The typing rules for type declarations, dynamic definitions, and context definitions

are given in Table 4.

For a type declaration, all the alternatives should have the same type and the whole
declaration is considered to have this type as well. Newly introduced constructors

and the type name are added into the typing environment.

For a dynamic definition or a context definition, all the alternative patterns should
have the same type and the whole definition will have this type as well. This type
cannot by a context type in the case of a dynamic definition, however it must be
a context type in the case of a context definition. The dynamic name or context

name is added into the typing environment.

. Typing axioms

The typing rule for axioms is given in Table 5. Both sides of an axiom should have
the same type and the type cannot be a context type. The axiom is considered to

have that type as well. The condition expression in an axiom should have boolean

type.

33

| PR TR, S S g R
Fozy:71,... ,Zn:Tn F e.:bool
Fzy:7,... 1 En Ty P ep:0
Dz 7T, @ Ty Y1201y s Um:Om F Do O
T,z :m, o T Ty W1 501, Um0 €T

pwhene,==>c’

I' - inf_name:

TABLE 6. The type checking rules for inference rules

6. Typing inference rules

The typing rule for inference rules is given in Table 6. Similarly to the rule for
axioms, both sides of either clause in an inference rule should have the same
type. The type of the premise clause and the type of the conclusion clause are
not necessarily the same, but neither of the types can be context types. The type
of the whole inference rule is the same as the type of its conclusion clause. The

condition expression in an inference should have boolean type.

Building pattern-matching automata

Pattern matching is the crucial part in compiling an SL specification. A naive
way is to check a list of patterns one by one. The obvious drawback of this approach is
inefficiency. Tree-like automata [GS84] address the efficiency issue. Matching proceeds

by making branches of different constructors and ascribing the list of patterns to those

34

branches. This approach has the disadvantage of space explosion. The combination of
tree automata with failures is the basis for the current implementations of most common
functional languages [Mar94, Ler90]. Pattern matching in the SL system follows this
approach, but it requires extensions to the existing algorithms to support our semantic

notions and the non-determinism of rewriting.

1. Automata

An automaton consists of states. Some states are final. Matching a term consists
of traversing the states until reaching a final one. States are inductively defined as

follows:

States S := branch (¢, (test,S),... , (test,S})) | accept E |
S|+ |S | fail |letvars=fEinS |

if E then S else S | let vars = varsin S

where vars denotes a variable or a tuple of variables.

The first four states are standard. branch (¢, (test;, S1), ..., (test,,S,)) is a
branch-test state, where £ is the term under test, and each fest; has the form ¢,
¢, z, or “." for otherwise. All tests are mutually disjoint. accept e is a final state,
where e is a CAML expression representing the action after acceptance. A choice
state Sy | - - - | S, has alternatives Sy,...,S,. When pattern matching traverses
this state, it non-deterministically chooses to enter an alternative. If a final state
is reached, then traversing the choice state is successful. Otherwise it backtracks

to other altemmatives. This semantics differs from the usual choice state whose

35

alternatives are ordered (lexically). fail is a failure state. One new form, reference
state let vars = f e in Sy, is added to support dynamic values and contexts.
It calls a function matching the parameter as the corresponding dynamic value,
context, or redex . If it succeeds, it continues in state S;. Failures in S) may cause

backtracking to other possibilities in the function call f e.

States are also extended with conditional expressions and let variable bindings.
The reason for the former extension is that the semantic rules are conditional. The
latter extension is helpful for code generation. States are annotated with terms to

be matched, but we made them implicit in our presentation.

. Structures for pattern-matching

The SL compiler collects the inference rules and axioms with the same type to-
gether. The patterns of the rules form a vector which can be considered as a
one-column matrix. Each rule contributes a row in the matrix. We introduce pa-
rameters bound to the terms matching the patterns, and we can keep track of the
variable bindings in the pattern matching. There is also a state for each rule, in-
dicating what to do when the patterns of the rule have been matched. The whole

pattern-matching structure is represented as follows:

[t t,

Piit " Pin 51

\ Pm1*Pmn Sm

The compilation of pattern-matching can be regarded as a function, C, which maps

such a structure to a state.

The initialization of the pattern matching sets the states in the structure.

— For an axiom p; when e, ==> e,, the corresponding state is:

if e, then accept e, else fail

€ ==2>p|

— For an inference rule
py when e, ==> e

, the corresponding state is:

if e, then let p; = rewritel e, in accept e, else fail

where rewritel is one-step rewriting function in the generated code.

3. Pattern-matching algorithm

The pattermn-matching algorithm is a divide-and-conquer algorithm. It selects one
column of the pattern matrix to work on according to certain criteria. Without loss
of generality, we assume that the algorithm always chooses the first column. The

algorithm repeats the following steps until the pattern matrix is empty:

(a) Preprocessing

This step canonicalizes the patterns in the first column. It removes the type
constraints since the type information is not useful at the current stage. It
binds variables in alias patterns to the corresponding parameters. It turns
each alternative pattern into several rows having one alternative each. For-

mally, the preprocessing repeats the following simplifications.

C
(pir : type T} - 5;
\
[4
C
(pir as x)- -+ 54
[4
C

Pila |Pnb' T

(b) Splitting the matrix

c

Di1

T AT

[4.

ty -
Pite " Si
Py 8y

"Si

cooletz =t ins;

37

The algorithm splits the matrix horizontally so that in each submatrix, all

first-column patterns are in one of the following groups:

variable group: wildcard patterns or variable patterns,

tuple group: tuple patterns,

constructor group: constructor patterns,

dynamic constraint group: dynamic constraint patterns on the same dy-

namic definition,

context filling group: context filling patterns on the same context defini-

38

tion.

The result of the splitting is a choice state.

o) [) [

Piicc St P15 Pk+1)17 " " Skl

\Pml"'-"'m) \Pk;l‘“skl) \ Pm1 " 8m

(c) Analyzing different cases

For each submatrix, the compilation function C is inductively defined as fol-

lows:

i. Base case:
When the pattern matrix is empty, pattern-matching is vacuously suc-

cessful. The function C creates a choice state.

51

Cl : — 81| | Sm

ii. Variable group:
Wildcard and variable patterns always match successfully. The function
C removes the column of patterns. For variable patterns, bindings are

added for further access to the variables.

ili.

iv.

39

[[1, \

c -8 o Piz- -+ 5
T8 pja---letx =1, in s;
\ it \ /

Tuple group:
The function C treats each component of the tuple as an individual pat-
tern. It replaces the first column of patterns with columns of the com-

ponent patterns, and introduce parameters for the components.

/ tl e \ let (tll!“‘)tlk)=tl in

(ST RERR 37 SRR \
(Pm,"‘ ,Puk)) |
“) . — Pt Puktte 81

\ (pmlh"' ypmlk)"'sm)

\ Pmir " Pmik " Sm)

Constructor group:

The function € collects the rows which have the same constructor in
the first column into a group of new pattern-matching structures, and it
creates a branch-test state. The tests of the state are distinguished by

having different constructors as roots. The corresponding actions for

40

the tests are the results of compiling the new structures. In the new
structures, the first column is removed for the constructors of zero arity,
or it is replaced by the column of argument patterns for the constructors

of non-zero arity.

([)

p. .-.31:.
@ c| %
(4
\pig2“'si2 /
L'o ---S!
C — branch | {,,
: : Ietc1 t’l=t1 in
Clp_’]'l"'sj (t"l.
. . !
\ .) (c1 By, : Pl si
\ \ Pl i

v. Dynamic constraint group:
The function C creates a reference state. The reference will initiate pat-
tern matching for the dynamic definition D with the value of ;. Its
result is bound to a new parameter. The state in the let body is the result
of compiling a structure consisting of the patterns without the constraint

and the rest of the patterns.

vi.

41

/ fet t] = match_D ¢, in
b)

' (tll \
(P : D)+ 81 ,
C ‘ . — P S1

o

\ P+ S/
Pattern matching for dynamic definitions will be presented later.
Context filling group

Similar to the dynamic constraint group, the function C creates a refer-
ence state. The reference will initiate pattern-matching for the context
definition A with the value of #;. Its result is bound to a pair of param-
eters which represent the context and the corresponding hole occurring
in #;. The state of the let body is the result of compiling a structure

consisting of the context patterns, the hole patterns, as well as the rest

of the patterns.

[\ let (¢},t]) = match_H ¢, in
£

/ t] .- \
(P'u:H)P'fl'“sl , ;
C . . — Py Pl s

\ (Pt * H)Pmy* " 8m)

\P:m Pmi " Sm)

Pattern matching for context definitions will be presented next.

42

4. Matching dynamic definitions and context definitions

Pattern-matching for dynamic definitions and context definitions uses the same
form of structures and uses the same algorithm. Each definition corresponds to a
structure which has only one pattern, one parameter, and one state. The pattern
comes from the definition. Assuming t is the term to be matched, the state is

initialized as follows:

— For a dynamic definition, the state is accept .

— For a context definition, the state is accept (A\x.body, x}, where z is the
parameter for the context and the body is a placeholder. When the base case
in the algorithm is encountered, the SL compiler sets the contents of body by
reconstructing the term ¢ with the variable x. Each body may have different
content if the final state is copied. The reconstruction retrieves the bindings
along the path from the start state to the final state.

In other words, matching a context definition returns a pair with a construct-

ing function and a term filling the hole. Applying the function to the term

results in the term ¢.

The state starting pattern matching for a definition can be referred to by the name

of the definition. For example, the dynamic definition and the context definition

43

in Figure 4 are associated with the following states:

match.Dt = branch(t, (Lam t’, accept(t)})

match.HHt = letz =t in accept{Az.body,,z) |
branch(t,
(App t', let (t1,f2) =t in
(let (t],t]) = match_H ¢, in
let hy = £} in
let z = t{ in accept(Az.bodys, z)) |
(let t] = match_D ¢; inlet v =t} in
let (t5,13) = match_H t; in
let he = t5 in

let z = t} in accept{Az.bodys, z})))

where body,, body, and body; are as follows:

body, : lett=zint

bodya : lett] =z inlett] = h, inlett; =¢] tfin
let t' = (t,2;) inlett = App t'in ¢

bodys : lett] = zinlet th= hy inlet to=t, t5in
let)= vinlet ¢;= tjinlet t'= (¢,,t2)in

let t= App t'int

Transforming automata into CAML code

The transformation of states in the pattern-matching automata into CAML code is
described in Figure 6. Each state corresponds to a function with implicit parameters for
the terms to be matched and a continuation expressing the remaining pattern-matching
work. The initial continuation for rewriting is the identity function. State functions may
raise an exception when matching for the state fails. The branch-test state corresponds
to the match --- with --- construct in CAML. If the branch tests do not cover all
constructors of the same type, a default test associated with a failure state is added. For
a final state, the success continuation is consumed by applying it to the expression. For
a choice state, a random alternative is tried. Failure exceptions may be caught and then
other alternatives can be tried. The failure state just raises a failure exception. For a
reference state, it calls the matching function with the continuation accepting the result,
then it continues with the state in the body of the let. The conditional expressions and
variable bindings in states are considered atomic with respect to continuation passing
and exception handling. Transforming a conditional state is thus transforms both branch

states, and transforming a let state is transforms the in part.

The SL Runtime Libraries

The code generated by SL is mainly a rewriting engine. It cannot be executed
directly as an interpretor. Runtime libraries in the SL system provide necessary utilities
such as for parsing input terms, invoking and controlling reduction, and printing traces

of reduction.

45

[branch (¢, (co, S),...,(c1 2, 51))] k =
matchf with
Co - > l[So]l k

az -> [Si1]k
- — > raise failure
[accepte] & =k (e)
[Si] - [Sm] & =
tW[Si]I k 0<t<m
with failure — >
[Sil - |Sei | Siwal -+ |1Sm] &
[fail] & = raise failure
[letvars= feinS]) k =
fe(At.letvars=tin[S] k)
[if e. then Sy else S»] k =
ifecthen [S,] kelse[S:] &
[let vars; = varsainS] k =
let vars; = vars,in [S] &

FIGURE 6. Generating CAML code

46

Runtime terms

Runtime terms are the terms to be evaluated at runtime. They are inputs for the

generated interpreters. Runtime terms and runtime phrases are defined as follows:

Runtime Terms R := id|const|(R,... ,R)|[R;...,R] | C(R)

Runtime Phrases O := R | rewrite number R

Runtime terms include identifiers, constants, tuples, lists, and the constructor C.
C is the only constructor for runtime terms. Note that runtime terms are simple and gen-
eral. Therefore, there exist universal parsers to parse the terms for all object-languages.
The parser scans inputs and builds runtime terms which correspond to parse trees in the

object-language. For example, the term

App (Lam(nyn ,Var nyu) ,

App(Lam(nxn ,Var ||x||) ,Lam("z" ’var "Z"))) 13
is parsed into runtime term

C(App, (C(Lam, ("y", C(Var, "y"}}),
C{app, (C(Lam, ("x", C{Var, "x"))},

C(Lam, ("z", C(var, "z"})})})})

Besides a term, the interpreter input can also specify the maximum number of
reduction steps in evaluation. If the number is —1, there is no limit on the number of
steps in evaluation.

Because the rewrite engine works on the object terms with specific datatypes given

in the specification, transformation between runtime terms and object terms are needed.

47

[const] = const
[C(Var,rt)] = Var[rt]
[C(Lam,rt)] = Lam][rt]
[C(App,rt)] = Applri]
[(rt, rt2)] = ([rtal, [rta])
[const]™ = const
[Varz]! = C(Var,[z]™")
[Lamt}™t = C(Lam,[t]™!)
[4ppt]™' = C(4pp,[t]™)

(L1t = ([{e2)™)

FIGURE 7. Transformation between runtime terms and lambda terms

The transformations between runtime terms and the lambda terms defined in Figure 4 is
given in Figure 7. We use [] for transformation from runtime terms to lambda terms and
use []~ for transformation from lambda terms to runtime terms. Such transformations
are straightforward so that they can be generated according to the data-type definition.

The input runtime terms must be successfully transformed into object-programs
that have the startfrom type specified in SL. Syntax errors in the runtime terms can be
detected when the transformation is unsuccessful. For the transformation in Figure 7,
the runtime term C(Lam, (“z", “y", “z")) will encounter problems during translation to
lambda terms. The problem is that the type for Lam is not consistent with the SIGNA-
TURE in the SL specification.

Not all errors can be detected. Most of the semantic errors are not detected by

the transformations. Users of the SL system may need to specify more rules to enforce

reporting semantic errors.

48

Runtime rewrite controls

Runtime rewrite controls include the continuation function, failure exception, rewrit-

ing iterations, and choosing non-deterministic states.

1. Success continuation and failure exception

The default success continuation is the identity function. It is used at the top level
of rewriting, which is the entry point of the corresponding pattern-matching func-
tions. The top-level of rewriting is the outer-most rewriting step for the object-
programs which are object-terms with the startfrom type specified in the SL spec-

ification.

A failure exception is defined in the runtime libraries. The generated rewriting
engines use the failure exception for matching. The code generated from a failure

state raises such an exception.

2. Rewriting iteration function

The rewriting iteration function controls whether the evaluation should stop. The
condition for terminating evaluation is that either the term is already in normal
form or the number of iterations exceeds the given limit. There is a counter to
record the number of iterations. Each time a reduction occurs, the counter in-

creases by one.

More specifically, the rewriting iteration function is the entry point for reduction
in all object-languages. The function takes the following argument: the number of
iterations, the initial function for reduction, a printing function for object-terms, a

pattern matching function, and a term to be rewritten.

49

3. Non-deterministic choosing function

The non-deterministic choosing function takes three arguments. The first is a list
of alternatives. The second is the success continuation. The third is the choosing

method. The choosing method can be one of the following:

— List order
The function chooses the alternatives one by one in the order appearing in
the list. That is, the first alternative is chosen first, If the first alternative fails
in matching, the next will be tried, and so on.

— Reverse order
The function chooses the alternatives in the reverse order in the list. In other
words, the last alternative is chosen first. If the last alternative fails in match-
ing, the next-to-last altemative will be tried, and so on.

— Random

The function randomly picks one alternative. If it fails in further matching,
the function will make a random choice among the rest of the alternatives,

and so on.

Other utilities

Runtime libraries also provide utility functions that extend from standard CAML
libraries. These include list utilities, name utilities, debug utilities, and printing utilities.
1. List utilities

List utilities contain functions to handle lists, such as inserting one element at a

particular place, extracting a specified element from a list, and rotating a matrix.

50

The functions provide extensions to the standard libraries in the CAML.

. Name utilities

Name utilities contain functions to generate new names. The new names are com-
posed by adding a suffix to a specified base. The suffix is an integer that represents
the value of a counter. The counter is initialized to 0 and there are functions to set
or reset the counter value. Each function call for newname increases the counter
by one. For example, calling function newnamebase with “tmp” will produce the

name “tmp_0". Subsequent calls will produce “tmp_1", and so on.

. Debugging utilities

Debugging utilities contain functions that can optionally show the status of reduc-
tion or the values of important variables. There are also functions to control the

level of verbosity during the reduction.

. Printing utilities

Printing utilities contain functions to pretty print runtime terms, and to print re-
duction traces.

. Main function

All the interpreters share the same main function code. The main function per-
forms the command line options, calls the top function to parse the input terms,

and invokes the rewrite engine to reduce the terms.

51

Example of code generated by SL

We now describe the code generated from the specification for the call-by-value

A-calculus. The generated codes contain the following parts:

1. Datatype definition and conversion.

Datatype definitions in the SIGNATURE part for the object-language are repli-
cated into the generated code. For each datatype declared in the SIGNATURE
part, functions to convert between terms with the type and runtime terms are gen-

erated.

In our example, the only datatype in the SIGNATURE part is M. Hence, M is
declared as a datatype and functions rtexpr2M and M2r texpr are conversion
functions that implement the transformations show in Figure 7. Also, the example

has a wrapper function that prints object-terms with type M.

type M = Var of string | Abs of (string* M) | App of (M* M)

]
L]

let rec rtexpr2M tname rte =

and MZ2rtexpr e =

let sp_print_term sp_t_14 =

(print_rtexpression (M2rtexpr sp_t_14})

52

2. User functions

This part includes the CAML phrases given in the SPECIFICATION part. In our
example, the subst function is replicated from the SL specification to the gener-

ated code.

{* The code in function part of source program *)

#open "namesupply”;;

let rec subst (tl, x, t2) =

3. Automata for dynamic values or contexts

For each declared dynamic value or context, the definition is replicated into the
generated code as comments for easy reference and comparison. There are match-
ing functions generated from the automaton corresponding to the dynamic value
or the context. Each state in the automaton contributes a function in the gener-
ated code. The function takes two arguments. One is the term to match and the
other one is the success continuation. The entry point for the matching function
is sp.matchNAME_0, which corresponds to the start state of the antomaton. The

NAME is the dynamic name or the context name.

In our example, sp.matchValue 0 is the matching function for dynamic Value. We
can see that in function sp.matchValue 0, it tries to use the matching construct in
CAML to check whether the term has a constructor Abs at the top. If so, it calls
the function sp_matchValue_l which corresponds to the accept state. Otherwise,

it raises the matching failure exception.

53

Similarly, sp_matchE_0 is the matching function for context E. There are more

functions generated for context E since the automaton has more states. The func-

tion sp_matchE_12 corresponds to one of the accept states for O. It passes a pair

to its success continuation argument. The pair consists of the identify function and

the term argument.

{* The code for dynamic
dynamic Value = Abs(_);;
*})
let rec sp_matchValue_0 sp_t_0 sk =
begin match sp_t_0 with
Abs((sp_t_1}) -> (sp_matchValue_1 sp_t_1

| _ -> (raise SP_Fail} end

and sp_matchValue_1 sp_t_1 sk =

{let sp_ £t 0 = (Abs (sp_t_1)) in (sk [sp_t_0J)):;

(* The code for context
context E = BOX | App{((E, _)) | App((Value, E})
*)
let rec sp_matchE_0 sp_t_0 sk =
(sp_choices
Dir_leftright [(sp_matchE_12 sp_t_0};
(sp_matchE_1 sp_t_0)]

sk}

sk)

and sp_matchE_1 sp_t_0 sk =

and sp_matchE_12 sp_t_0 sk =
(let sp_t_0 = sp_t_0 in
(sk
{ (function sp_t_0 ->

(let sp_t_ 0 = sp_t_0 in sp_t_0}), sp_t_0)))

4. Code for rewriting rules

Code for the rewriting rules is organized with the rule groups that are collected
in compiling the SL specification. The code contains initialization functions and

matching functions for all groups.

The initialization functions reset the list of used rules and reset the term tables for
each group. The list of used rules is for the purpose of showing which rules are
used in a deduction. Each rule group has a term table. The table records all the

terms that already matched with the rule group.

Most of the functions generated in this part are matching functions for rule groups.
Like the matching functions for dynamic values and contexts, these functions cor-
respond to the states in the automata for the rule groups. Each function takes two
arguments. One is the term to match and the other one is the success continuation.
The entry point for the matching function for each rule group is sp_.mat chNAME_O,
which corresponds to the start state of the automaton. The NAME is the rule group

name.

35

In our example, we have two rule groups. The rule group rg.0 contains the
inference rule and the rule group rg_1 contains both the inference rule and the

axiom.

let rgtbl_sp rg_0

1

ref ([] :(T) list);;:

fl

let rgtbl_sp_rg_1 ref ([] :(T) list);;

]

let init_lstep ()

used_rules := [];

(}:
il

rgtbhl_sp_rg_0

rgtbl_sp_rg_ 1 :

{(* The code for rulegroup sp_rg_0 *)
let rec
sp_matchsp_rg_0_0 sp_t_1 sk =

{sp_sequence (sp_matchsp_rg_0_3 sp_t_1) (sp_matchsp_rg_0_1) sk)

and sp_matchsp_rg_0_3 sp_t_1 sk (sp_matchE 0 sp_t_1 sk)

and sp_matchsp_rg_0_1 sp_t_1 sk
{(let (sp_t_2, =sp_t_3) = sp_t_1 in

{sp_matchsp_rg 0.2 sp_t_2 sp_t_3 sk})

and sp_matchsp_rg_0_2 sp_t_2 sp_t_3 sk =

{let e = sp_t_2 in

56

{let tl = sp_t_3 in

{(let sp_t_1 = ({(sp_t_2 sp_t_3) in
(sk
(let _ = (add_usedrule "eval"} in
(try begin

match (rewrite_lstep sp_matchsp_rg 1 tl) with

{t2, sp_t_0) ->

{{e £2), (make_infer_pftree 1 "eval" [] [sp_t_01))

end
with SP_Fail -»>

{ {(remove_usedrule(})); {raise SP_Fail)})}}}))))

and sp_matchsp_rg_0 term =
if mem term !rgtbl_sp_rg_0
then raise SP_Fail
else
begin
rgtbl_sp_rg 0 := term::!rgtbl_sp rg 0;
sp_matchsp_rg_0_0 term

end

and (* The code for rulegroup sp_rg_1l *}

sp_matchsp_rg 1 0 sp_t_3 sk = ...

and sp_matchsp_rg_1 11 sp_t_3 sk = (sp_matchE_0 sp_t_3 sk)

57

and sp_matchsp_rg_ 1 term =
if mem term !rgtbl_sp_rg_ 1l
then raise SP_Fail
else
begin
rgtbl_sp_rg 1l := term::!rgtbhl_sp_rg_1l;
sp_matchsp_rg_1l_0 term

and

. Miscellaneous

This part of the code includes functions invoking rewrites and calling main func-

tions.

The function staxrt_rewrite is the function that starts reduction on the given
term. It calls the rewrite utility function and provides an initialization function,
printing function, and matching function that are specific to the object-language.
The reduction sequence is printed out by the runtime utilities if the trace flag is
set. If the trace flag is not set, the start_rewrite prints the final result of

reduction.

At the end of the code, there is a call to the main function defined in the runtime

libraries.

let start_rewrite i term =
sp_print_term term;

print_newline(};

58

let terml =
rewrite i init_lstep (sp_print_term) sp_matchsp_rg_0 term;
in
print_newlinel();
if not (get_traceflag())
then
begin
print_string " ==>> ";
print_newline();
sp_print_term terml;
print_newline();
end;

terml

printexc__ £

main_contreol (init_func, compile_term_phrase}; exit 0

Summary and Discussion

The SL system uses the first-order types of functional languages for specifying
abstract syntax. We have not followed the approach of higher-order abstract syntax
{HOAS) [PE88]. The HOAS representation would allow the variables of the object-
language to be represented as meta-variables, and hence alleviates the need for explicitly
reasoning about variable renaming and substitution of variables. However, higher-order

abstract syntax interacts poorly with the inductive reasoning techniques that are needed

59

to reason about the properties of semantic specifications [DPS97].

The SL system uses conditional rewriting rules for specifying semantic rules. In
other words, the system employs rewriting semantics (a.k.a. reduction semantics). Some
systems[HM89, BCD*88] express rules in natural semantics{BH91, Kah87]. Natural
semantics is well adapted to describing static behaviors such as typing. For transfor-
mational behaviors, such as dynamic semantics, rewriting semantics proves to be more
modular{WF94], and should therefore be more tractable when it comes to expressing
full-size programming languages. Another advantage of rewriting semantics is that it
allows one to observe intermediate states of reductions, so that it is more suitable for
non-terminating object-systems.

The ELAN system[ELA] is also based on first-order rewriting semantics. It has
more general application areas than the SL system. It supports many-to-one associative-
commutative(AC) patterns and provides an efficient algorithm[MK98]. Its strategy lan-
guage gives flexible control over non-deterministic reductions. The Stratego[str, Vis01]
system has more generic strategy specifications. There are also general-purpose tools
that can be used for manipulating formal semantics, such as Coq[Coq], Isabelle[Isa] and
Twelf[Twe]. When compared to those systems, the novelty of the SL system is that
it directly supports the specification of semantic notions such as dynamic values and
evaluation contexts, and it automatically generates executable interpreters. Associative-
commutative patterns can be represented by contexts, but the current SL system does
not optimize matching for efficiency.

The SL system described in this Chapter constitutes a first step towards designing
a specification language for syntactic theories and implementing a system generating

interpreters from specifications. It also provides an extension to pattern-matching tech-

niques. A number of interesting examples have been tested in the prototype system.

61

CHAPTER III

AUTOMATICALLY PROVING DECOMPOSITION

In almost every semantic treatment of programming languages that is based on
manipulating syntax, one is immediately required to prove a decomposition lemma
which shows the equivalence of two alternative syntactic specifications of the language:
one tailored for exposing the syntactic structure of the language, and the other reflect-
ing the relevant semantic notions, e.g., values, redexes, head normal forms, untypable
programs, and evaluation contexts.

In every natural case, the proof of the decomposition lemma is by induction on
the structure of A-terms as given in Chapter I. Such a proof is often straightforward: it
would typically be omitted from books or published articles. However, as discovered in
several current projects [AF97, FLS99, LS§97, S§899], such a proof is incredibly tedious
in all but the most trivial programming languages. Moreover, in the process of design-
ing the semantics one typically experiments with several definitions for the semantic
notions. Every such experiment requires a laborious and error-prone proof attempt. A
failed proof attempt typically reveals a missing case in one of the definitions. Even when
one settles on the comrect semantic notions, a successful proof might require several it-
erations where in each iteration one reformulates the syntactic definitions to strengthen
the inductive hypothesis.

A further complication arises when the decomposition of a term must be unigue.
This is needed, for example, to derive a deterministic evaluation function, i.e., an in-

terpreter. The proof of a unique-decomposition lemma is usually performed by using

62

routine induction as before to find some decompositions, and then arguing that no fur-
ther decompositions are possible. Published articles usually omit the complete proof
of uniqueness as well. And again, arguing that no further decompositions are possible
makes an already long and tedious proof even more intractable.

The obvious solution we seek is to automate the proof of unique decomposition.
Given the two syntactic definitions of interest, we would like an algorithm that either
confirms the equivalence of the two definitions or produces a counterexample. A coun-
terexample is a term that has no decomposition, or in the uniqueness case, a term with
more than one decomposition. Proving a decomposition lemma reduces to checking the
equivalence of two grammars and proving uniqueness reduces to checking that a gram-
mar is not ambiguous. However, both equivalence and ambiguity are undecidable in
general. We thus restrict the syntactic definitions to regular tree grammars, for which
the problems are decidable. Unfortunately, regular tree grammars are not quite expres-
sive enough to accommodate contexts, polymorphic types, and other constructs usually
needed in definitions of syntactic theories. We therefore engineer an extension of the
framework that is expressive enough while retaining the decidability of the fundamental
algorithms.

A prototype of the above checking is implemented in the SL system and has been
tested on a number of examples.

The remainder of this chapter is organized as follows: We first give a manual proof
of unique-decomposition for the call-by-value A-calculus. Then we show the relation-
ship between proofs of unique-decomposition lemmas and the problems of equivalence
and ambiguity of grammars. After presenting a survey of the needed concepts about

regular tree grammars and finite tree automata. We adapt those concepts to the develop-

63

ment of algorithms for proving unique-decomposition lemmas. We describe extensions
to this approach by considering built-in constants, tuples, contexts, and polymorphic
types, and explaining how to construct tree automata for them. Next we introduce an
extension to the SL system for automatically proving unique-decomposition lemmas.

We then summarize and review related work.

Manual Proof of Unique Decomposition

Lemma 3 (Unique Decomposition)

Every term M can be uniquely decomposed into one of the following forms:
a value V, or a demand for a variable = within an evaluation context H, or

a redex R within an evaluation context E.

Proof: We first prove that every term has some decomposition. The proof is by induction

on M and proceeds by case analysis:
e Case M = z: Then M is of the form E{z] where £ = [].
e Case M = Xx.M;: Then M is of the form V,

e Case M = M, M,: By induction, the expression M; can be decomposed in one
of the following four forms:
e Case M, = V': There have two subcases:

e Case M, = Azx.Mj3: Then we proceed by induction on M;:

o Case M, = V: Then M = (Azx.M;)V, which is of the form E[R]
with £ = [].

e Case M, = E[z]: Then M = (Az.M3)E[z], which is of the form
E'[z] with E' = VE.
o Case M, = E[R]: Then M = (\z.M;)E[R], which is of the form
E'[R) with E' = VE.
e Case M, = E[z]: Then M = E[z]M, which is of the form E'[z] with
E' = EMQ
o Case M, = E[R}: Then M = E[R|M, which is of the form E'[R] with
E' = EM,.

To prove that every term has a unique decomposition, we proceed by first showing that
some decomposition is possible as before and then once a decomposition is found, ar-

guing that no further decompositions exist. O

Equivalence and Ambiguity of Grammars

Abstractly speaking, the problem of unique decomposition consists of relating
two syntactic definitions for the same language. Generally, these syntactic presentations
would be given as context-free grammars G; and G;. Unique decomposition [Bar84,

Corollary 8.3.8] can then be restated as problems about grammars G; and Go:

— The existence of a decomposition can be reduced to checking that every term
derived by GG, can be derived by G» as well. Since the other implication is usually
trivial, the existence of a decomposition is reduced to checking the equivalence of

grammars G and G, which is undecidable [HU79, Theorem 8.12].

— The uniqueness of a decomposition can be reduced to checking that every term in

G can only be derived by G in a unique way. In other words, uniqueness requires

65

checking whether grammar G'» is unambiguous, which is also undecidable [HU79,

Theorem 8.9].

Therefore, we cannot hope to solve the problem of unique decomposition auto-
matically for syntactic definitions given as context-free grammars. Fortunately, syntac-
tic definitions of programming languages are usually given using constructors, and the
constructors impose structural restrictions on terms. These syntactic definitions can fit
in a class of grammars, called regular tree grammars, for which checking equivalence

and checking ambiguity are decidable.

Regular Tree Grammars and Finite Tree Automata

We review the necessary background on regular tree grammars and their compu-

tational models in this section.

Regular Tree Grammars

A regular tree grammar [GS84] is a context-free grammar with one important
restriction: the right-hand sides of the productions can only be generated using a fixed

number of constructors. The formal definitions are as follows:

Definition 1

Let ¥ be a finite set of constructors and let & be a finite set of variables.
The set of trees over £ and @, denoted as 7 (X, P), is inductively defined as

follows:

— o is a tree, where o € ©,

66

- If t,... ,t, are trees, then c*(t1,... ,t,) is a tree, where n > 0 and

c” is a constructor of arity n in L.

We sometimes blur the distinction between ferms and trees in this chapter, al-
though terms are typically defined over infinite sets of constants and variables. Terms
without variables are called ground terms.

Definition 2

A regular tree grammar is a quadruple of the form (X, N, 5, P) where:

— ¥ is a finite set of constructors.

- N is a finite set of non-terminals.

- S is the start symbol, § € V.

- P is a finite set of rules (productions) of the form L — s where L isa

non-terminal and s € T(Z, N).

If the same non-terminal appears as the left-hand side of several productions, we
merge all the productions into one clause using alternatives. Non-terminals do not all
necessarily derive ground terms. In the remainder of this chapter, we assume that all
non-terminals can be derived from the start symbol.

Example 1

A regular tree grammar for A-calculus is:

~ ¥ is the set {var, lam, app}.
- Nistheset {M}.

- Sis M.

67

~ P is the set:

M — var|lam(var, M) | app(M, M)

The grammar has been modified from the original presentation in Chapter I by
using terminal symbols such as lam and var. The infinite set of variables is abstracted
into var. This abstraction is usually possible since no reference to individual variables

is made in most semantic specifications.

Example 2
A regular tree grammar expressing the decomposition of A-calculus terms
into head normal forms and terms with a head redex is:

- I is the set {var, lam, app}.

- Nistheset {M,H,I,U,R}.

- Sis M.

— P is the set:

H|U

I | lam{var, H)
var | app({, M)
R | lam(var, U)

S e o B
l 4 1 4

app(lam(var, M), M) | app(R, M)

1The specification for the call-by-need calculus is an exception [AF97].

68

Some non-terminals are introduced in the regular tree grammar for decompositions to

A

avoid using the informal abbreviation *.,.".

Finite Tree Automata

The algorithms for checking equivalence and ambiguity of regular tree grammars

are described using the notion of finite tree automata defined as follows:

Definition 3 (FTA)

A finite tree automaton is a quadruple A = (I, Q, @y, A) where

— ¥ is a finite set of constructors.
— (@ is a finite set of states, ranged over by q, g1, g2, - - .
- @y € Qis asetof final states.
— A is a finite set of transition rules, each in one of the following forms:
€
* q) = ga,

* c*(q1,..- ,qn) = g where n > 0 and " is a constructor of arity

nin X,

An automaton can be represented by its transition rules and final states when other
information can be easily collected from the transition rules. If the final states are obvi-
ous to determine, they can be omitted as well.

Example 3

A possible tree automaton corresponding to the regular tree grammar of

69

Example 1 is:
qm _f> am var — au
M, = qu lam(gp,, gm) = Gas var — gy
aws = au @pP(au, QM) = Qus

where g1, , gu., Gar, correspond to the three alternatives of M.

Definition 4

Given a finite tree automaton A = (X,Q,Qy, A), the e-transition clo-
sure of states {qi,... ,qn}, denoted by cls{q,... ,qn}, is the set of states
{g]| a5 ¢1<i<n}, where 5 is the reflexive, transitive closure of

€

—.

Definition 5

Given an automaton A = (£, @, Q, A},

- arun®r of A on a ground term ¢ is a total mapping from subterms of ¢
to e-transition closures of the singletons {q}, such that r is compatible
with A, i.e., for every subterm p, if p = ¢*(py, ... ,ppn), Where c® € 3,
n > 0,r(p) = cls{q} and r(p;) = cls.{g;}, foreach1 < i < n, then
there exist ¢’ € cls.{q} and ¢! € cis{g;}, foreach 1 < i < n, such

that c*(q,... ,qL) = ¢’ € A.

-~ arunr of A on term t is successful if r(t) contains a final state.

20ur definition of run is more general than the standard definition which is based on automata without
¢-transitions. We keep e-transitions because they will be used in proving uniqueness.

0

— aterm t is recognized {or accepted) by an automata A if there exists a

successful run of A on t.

— aterm ¢ can reach a state ¢ if there exists a run r of .4 on ¢ such that

g €r(t).

Intuitively, a successful run on a ground term ¢ tells us how ¢ is constructed, i.e.,
it corresponds to £'s parse tree. For example, a successful run r of the automaton given

in Example 3 on app(lam(var;, vars), var3)? could be defined as follows:

r(var;) = {qum,}

r(var) = {qum,qm}
r(lam(vary,var2)) = {qm., qu}

r{vars) = {qum.qm}

r(app(lam(vary, vara),vars)) = {aum,anm}

As an example of r’s compatibility with the productions of A, note that the production
for the constructor lam maps the states gy, and g to qa,. and that these states are

included in the images of var,, vare, and lam(var,, vars), respectively.

Definition 6

The tree language recognized by an automaton .4, denoted by L(A), is the

set of all terms accepted by A.

Two finite tree automata are equivalent if they recognize the same tree language.
Like finite automata, finite tree automata are divided into deterministic finite tree au-

tomata (DFTAs) and non-deterministic ones (NFTAs). A finite tree automaton is deter-

3We use var;, i = 1,2, 3 to distinguish the different positions of var.

71

ministic if no two transition rules have the same left-hand side and there is no e-transition
rule. Otherwise, it is non-deterministic. For instance, the automaton for A-terms in Ex-
ample 3 is non-deterministic.

Many theorems in finite automata theory have counterparts in finite tree automata

theory. Here are some theorems [CDG*99] we will use later.

Theorem 1

Given an NFTA, there exists an equivalent DFTA.

The algorithm for constructing a DFTA from an NFTA is similar to the classical
subset construction algorithm for finite state automata [ASUS85]. It groups together the
non-deterministic states that have common terms reaching them and treats the groups as
deterministic states. The final deterministic states are the groups containing at least one
non-deterministic final state.

The union, intersection, complement, and difference of tree languages are still tree
languages. There is also a corresponding pumping lemma for tree languages, a useful

corollary of which is that testing emptiness of a tree language is decidable.

Theorem 2

The class of tree languages is closed under union, intersection, complement,

and difference.

Thecrem 3

Let A = (T, @,Qy, A) be a DFTA, then L(.A) is not empty if and only if
there exists a term ¢ in L{A) with Heigh:(t) < |Q|, where Height(t) is the

height of ¢'s tree representation and |@| is the number of states in Q.

72

Algorithms for Proving Unique Decomposition

Qur approach for automatically proving unique-decomposition lemmas consists
of translating the regular tree grammars for both terms and decompositions into finite
tree automata, and checking the existence and the uniqueness of decompositions using

corresponding automata algorithms.

Building Finite Tree Automata

Each regular tree grammar can be mapped to a finite tree automaton using the
following translation. Our algorithms for checking decompositions are specialized to

the output of this translation.

— If there are alternative production rules for the same non-terminal, introduce a
non-terminal for each alternative, and add a production rule from the original
non-terminal to the newly introduced ones. The reason alternative productions
are distinguished in this way is to simplify the check for non-overlapping produc-
tions required for proving uniqueness. For example, the production rules of M in

Example 1 are turned into:

M = M M, — var
M = M M, — lam{var, M)
M = M M; — app(M,M)

— Take apart the right-hand sides of the production rules in such a way that each
right-hand side is a non-terminal, a constructor of arity zero, or an application of a

constructor to non-terminals. For example, the production rule M; — lam{var, M)

g,
g,

qm
qH,

an
an

qu,
qu,

qRr
dn,
lam(qﬂd) QM)

Ie e

le el

Iode

URNENE

qum
g

au
Ui

ar
ar

qu
qu

R
dr
qRs

qu
qu

q1
Iam(QHs y QH)

var
app{(gr,qm)

dr
Iam(q{h: QU)

EPP(QR;,, Q'M)

app(qr, qu)
var

14 ld Il

L1l

g
qum,

qm
qt,

an
41

qU1
qirg

qry
R,
qny

var = qm,

var — G,

FIGURE 8. An automaton for the grammar of Example 2

is turned into My — lam{M,, M) and M; — var.

73

— Reverse the arrows of the production rules and introduce a state for each non-

terminal. The state corresponding to the start symbol is the final state.

Example 3 shows the automaton translated from the regular tree grammar for A-

calculus from Example 1. The automaton for decompositions built from the tree gram-

mar in Example 2 is given in Figure 8, where g is the final state.

The automaton produced by the above translation is usually non-deterministic

since most grammars have alternatives and the alternatives create e-transitions. This

non-deterministic automaton is then converted to a deterministic automaton. It is during

this translation that the checking of uniqueness of decomposition is made. The existence

of a decomposition is then established using the deterministic automaton.

74

Checking Existence of Decompositions

Given two deterministic automata: A, for the terms and A, for the decompo-
sitions, we can answer whether all terms have decompositions by checking whether
L(A;) C L{A,), which is equivalent to checking whether L(.A,) — L(.A2) is empty. By
Theorem 2, there exists an automaton .4; — A, whose language is L{A,) — L(A;). In
order to check the emptiness of L(.4;) — L(Az), according to Theorem 3, it is sufficient
to check whether the automaton .4, — A, accepts a term with height less than or equal
to its number of states. We thus generate all such terms and check whether they are
accepted. If none is accepted, then L{A;, — A,) is empty, i.e., L(A;) € L(.A), and all
terms have decompositions. Otherwise, if a term is accepted by the automaton, then it
is a counterexample without decomposition.

The number of terms being tested is O(|Z|™"), where |Z| is the number of con-
structors, m is the maximal arity of the constructors in I, and % is the number of states
in the automaton .4; — A,. The upper bound on £ is obtained as follows: A; — A, is
equivalent to 4; N A,, where A, is the complement of .4,. Suppose A, has k; states
and A has k, states, then by standard algorithms, A, has k- + 1 states and .4, N A, has
at most ky * (k» + 1) states. Usually k; is greater than |2 and k2 may be much greater.
Therefore k is greater than |Z|? in most cases and the algorithm is exponential in the

number of constructors.

Checking Uniqueness of Decompositions

Proving uniqueness corresponds to checking the non-ambiguity of the grammar
for the decomposition pattemns. If the grammar is ambiguous, there exists a term ¢ with

more than one parse tree which can only happen due to the presence of alternative pro-

75

ductions for the same non-terminal. Suppose that, in the non-deterministic automaton
translated from the grammar, states ¢, and ¢» correspond to those two alternatives. This
means that there are two successful runs of the non-deterministic automaton on ¢ that
map a subterm of ¢ to two different e-transition closures containing ¢, and g, respec-
tively. In other words, the sets of terms reaching states ¢, and ¢, have a non-empty
intersection. Such states, reached by overlapping sets of terms, can be found during the
translation of the non-deterministic automaton into a deterministic one, as the translation

naturally groups non-deterministic states by the common terms that can reach them.

To formalize the above algorithm, we first define conflict sets.

Definition 7

Given an automaton A = (Z,Q, Qy, A), a conflict set of Ais aset C of at

least two states, and a special state ¢ € () such that:

g. € Cifandonlyifg. > g€ A

DFTAs do not have conflict sets since they do not have e-transition rules. For
general non-deterministic automata, conflict sets may exist for many reasons. But for
the non-deterministic automata produced by our translation from regular tree grammars
(as described in a previous section), conflict sets correspond to alternatives for non-
terminals. For example, the automaton for lambda-calculus given in Example 3 has
only one conflict set {qg,, gum,, um; }» While the automaton for the decompositions in
Figure 8 has conflict sets {qu,, 4m, }» {am, @ }> {an, an}. {901, 90} and {gr,, ¢r, }-

Because of the special constraints on automata imposed by our construction, we

can check uniqueness of decompositions by keeping track of conflict sets while translat-

76

ing NFTAs to DFTAs. Our algorithm checks whether a deterministic state contains more
than one non-deterministic state from the same conflict set. If there does not exist such
a deterministic state, then the grammar is not ambiguous and hence, the decomposition
for any term (if one exists) is unique. Otherwise, counterexamples violating uniqueness
can be obtained by the following steps: Let Ay = (X, Qn, Qny, An) be an NFTA and
Ap = (£,Qp,Qpy, Ap) be the DFTA translated from Ay.

1. For each deterministic state, construct a term that reaches it. Such a term is also

called an instance term for the state. The instance terms are constructed bottom-

up:

(a) If a deterministic state g has no instance term and if there exists c* — g €

Ap, then ¢° is an instance term of g.

(b) If a deterministic state g has no instance term, states gy, . . . , g, have instance
terms ty,. .. , t, respectively, and if there exists ¢*(g1,... ,gn) —* 9 € Ap,
then ¢*(t,, ... ,t,) is an instance term of g.

(c) Repeat (a) and (b) above until all deterministic states have one instance term

each.

2. Suppose a deterministic state g contains ¢, and g», which are from the same con-
flict set, and g has an instance term ¢. Let g be the state associated with the conflict
set, i.e., g — ¢ € Ay and g» —+ ¢ € Ay. Initiate a queue L with an element

(g,t). Repeat the following steps until a counterexample is found:

(a) Get the first element out from L, let it be (¢, t').

(b) If ¢’ € Qny, then the term ¢’ is the counterexample.

77

(c) Otherwise:

— For each transition rule ¢"(py,... ,pn) — ¢" € Ay where ¢' = p;, let
g; be the deterministic state containing p; for each j # . Construct a
term ¢’ = ¢"(¢y,... ,t,) where t; is the instance term of g; for j # ¢
and ¢; = t'. Append (g",t") to the queue L.

— For each transition rule ¢ = ¢” € Ay, append (¢”,t') into the queue

L.

In the second step, we construct terms containing £ as a subterm in bottom-up
fashion following the productions of the automaton .Ayx. Runs of .45 on all the con-
structed terms map a subterm ¢ to cls.{¢,} or cls.{g.}. The construction ends when we
obtain an instance term for a deterministic final state. Termination is guaranteed since
we assume that all non-terminals can be derived from the start symbol of the grammar
and traversing of the productions of Ay is in breadth-first order.

The grammars seen so far are non-ambiguous. We show in the following example

how the algorithm works on an ambiguous grammar.

Example 4

Consider the following regular tree grammar:

S — not(false) | not(A)
A — or(true, B) | or(B, true)

B — true | false

A NFTA for the grammar is:
4s, — 4gs not(gs,)
95, — 4s not(ga)
qa _f} da or(QAn! QB)
qan — qa or(gm, qa,)
am 5 as true
as, = gp false

78

- s, false — gs,
—+ Qs
— qa, true - qa,
= Qa, true — ga,
—+ B
— q8,

where the conflict sets are {gs,,¢s, }» {94,+94.}» and {g5,,95, }.

The above NFTA is translated into the following DFTA:

a7

I 4 Iwl 101 = | |

a7

a =

4 =
g4 =
gs =
J6 =

gr =

{QAM Qa4 QBuQ'B}
{ass) 8.1 98}
{941,945, 94}
{qa,,94}
{94::94}

{95, a5}

{QSM QS}

The deterministic state g; contains g4, and g4, which are from the same

conflict set. The state g3 has an instance term or(true, true). We need

19

to construct a term that is accepted by the automaton and that contains
the instance term. The state g4 is the special state associated with the
conflict set {ga,,q4,}. By following the non-deterministic transition rule
not{g4) — gs,, we obtain the term not(or(true, true)) which can reach gs,.
Then by following the rule gs, — gs, the term can also reach the final
state gg. In other words, the term not{or(true, true)) is a counterexample to

uniqueness.

Extensions

Regular tree grammars are expressive enough for specifying terms and decom-
positions built only from constructors. However, in specifying unique-decomposition
lemmas, we often use contexts and polymorphic types. These semantic notions cannot
be directly defined by regular tree grammars. In order to handle definitions that use con-
texts and polymorphic types, we extend the definition of tree automata with variables
that stand for unknown subterms and identify necessary restrictions for maintaining de-
cidability.

We first give simple extensions by considering built-in constants and tuples. Then

we explain how to build automata for contexts and polymorphic types.

Buili-in Constants

Some built-in types such as int and string are infinite. As we saw previously,
we can collapse an infinite type into a constant. For example, we collapse int into int
and string into str. The transition rule int — g means that all integer numbers can

reach state ¢. It is a substitute for an infinite number of transition rules0 — ¢, 1 — ¢,

80

..., = g. In this way, we can use finite constructors and transition rules to recognize
elements of infinite types. This method works for specifications without specific built-in
constants such as the examples considered so far, but the following definition requires

distinguishing O from other constants.

Example 5

The following grammar defines integer lists with at most one occurrence of

0 and where the occurrence can be only at the head.

G — cons(int, [)

I — nil jcons(n,f) wheren#0

We divide the infinite set such that the constants appearing in the specification
are kept distinct, while those not appearing in the specification are collapsed into one
special constant. The special constants are represented as allexcept(T, {c,... ,ca}},
where allexcept is a tag, T is an infinite built-in type, and c,,. .. , ¢, are constants in the

type T appearing in the specification. In other words, we add a production rule

T—oc¢ | - |ca|allexcept(T,{c1,...,Ca})

in the grammars and move T from the set of terminals to the set of non-terminals. This

change preserves the set of terms that can be derived from the grammar.

8l

In this setting, an automaton for the grammar in Example 5 is:

cons(gint, 41)

N
0 —
nil -

—

allexcept(int, {0})

dc
¢ime allexcept(int, {0}) — qim
U cons{gy,q;) = @

an

Tuples

Tuples are frequently used in syntactic definitions. To build automata for defini-

tions with tuples, we introduce a new constructor tuple. The arity of tuple is not fixed.

The constructor tuple stands for any constructor tuple?, tuple®, . . ., tuple™, where tuple™

has arity n, n > 2.

Example 6

A pair of boolean values can be decomposed into four cases. The grammars

are specified as follows:

Gy — (bool, bool)

Go — (true,true) | (true,false) | (false, true) | (false, false)

The automaton for G; has the following transition rules, where qg, is the

final state:

tuple(Qbaahqbool) = 4G

true = Gpool false — Qoo

82

Contexts

Contexts are usually used to identify the location of a subterm in a term. For in-
stance, a call-by-value computation consists of successively applying the 3,-reduction
rule to any subterm. In order to define a deterministic evaluation function, i.e., an inter-
preter, we restrict the application of the reduction rule to a unique subterm of a program

whose position is determined using an evaluation context.

Example 7

The set of call-by-value evaluation contexts has the following definition:

E:=[]|EM|(z.M)E

where M stands for the set of A-terms defined in Example 1.

The [] represents a “hole”. If E is a context, then E|[t] denotes the term that results from

placing t in the hole of E.

Abstract Automata

Our approach is to represent the holes as (meta-)variables and to represent context
as terms with (meta-)variables. The exposition in “Computing with Contexts” [Mas99]
provides a more complete investigation of how to compute with contexts in general
settings. The finite tree automata cannot handle terms with (meta-)variables. To address
this issue, we introduce a new representation of a tree automaton which is a quadruple
(Z,(Q,®.),Q,A), where &, is a (finite) set of the states that do not appear in the
right-hand side of any transition rule. The sets ¢} and ®, are disjoint and their union is

the set of all states in the automaton. We call the states in ®, state variables and call

83

automata with a non-empty set of state variables abstract automata. All the theorems in
the survey section still hold in the presence of ®.. The definition of run will then map
a variable occurring in a term to the e-transition closure of a state variable. Different
variables should be mapped to different closures and different occurrences of the same

variable should be mapped to the same closure.

Example 8

An abstract automaton for the evaluation contexts £ of Example 7 is:

1~

qe qe a = qE,
e — dg app(ge, qu) — 4m
g5, — q& app(ge,q8) — 4&
lam{ge,, qu) — g var — g,

where o is the only state variable and {¢z,, ¢g,, ¢z, } is the conflict set. The
transition rules for ¢, are omitted.
A context {Az.z) [] can be represented as the term app(lam(var,, varz), a).

A successful run r of the automaton for this term is:

r(van) = {qz}
r{vars) = {qm qu}
r(lam{vary,var)) = {q&}
rie) = {o,qm,95}

r(app(lam(var,,var:), a}) = {¢g. 95}

The operation E[t] that fills a context E with term t corresponds to instantiating
the state variables of the automaton for E as follows: Instantiations add e-transitions
from the final states in the automaton for the term ¢ to the state variables which become
normal states of the automaton for E. In order to avoid conflicts in state names, instan-
tiations usually involve replications of the automata. Given an abstract automaton A =
(2,(Q,9,.),Qf, 2), {e1,... ,an} C @, and the automata A; = (Z;, (Qi, Bu), @iy A4)
for each subterm ¢;, 1 < i < n, instantiating o; with ¢;, for all 1 < i < n, involves the

following steps:
1. Make a copy of A, obtaining A' = (¥', (@', L), @}, A").

2. Rename states in A; for 1 < i < n if necessary, so that there is no name conflict

among states.
3. Combine A’ and A;, for 1 < i < n, but keep Q'f as the set of final states.

4. Add transition rules g;; = of, where g5; € Q. Move af, . .. , o, from the set of

state variables to the set of normal states.

The resulting automaton has the following components:
- constructors: &' U | Ji_, &
— states: (@' U {a}, .., 05} U Uiy Qi (2 — {af, ..., e,) VUL, @)
~ final states: Q'

— transition rules: A’ UL, & U UL {g5: = o | ap: € Qpi}

85

Example 9

An automaton for E|var] is:

dg = % o S g,
a5 — ¢5 app(ds,dy) — 45
a5, = d5 app(dh,.qk) — &
lam(gg,, ¢y} — g, var — qp,
var — gg, 48, 5 o

where g}, is the final state and {q%; , ¢%,, ¢, } is the conflict set. The transi-

tion rules for g, are omitted.

Note that the conflict sets are also copied because alternatives in a context definition

remain alternatives when the hole is filled with a term.

From Context Definitions to Automata

General context definitions do not belong to the class of regular tree grammars.

For example, the context definition

E ==b([]) | a(E[c([DD

where a,b, and ¢ are unary constructors defines contexts a”(b(c"([]))). This language
is not accepted by any regular tree grammar. It is however accepted by a context-free
tree grammar. A context-free tree grammar is a tree grammar (Z, N, S, P) where the

rules have the form L{ay, . .. ,a,) — t, where L is a non-terminal and ¢t € T(ZU N U

86

{al’ 500 ,an}).

Example 10

A context-free tree grammar for a*(b(c*([]))) is

E(a) = b(a) | a(E(c(a)))

As expected, the equivalence and ambiguity of context-free tree grammars are
undecidable [CDG™99]. Fortunately, context definitions are in a special subclass where
the right-hand sides of production rules are restricted to 7(X U N, @) which, with some
further restrictions, can be transformed to productions for regular tree grammars. For

instance, the productions for the evaluation contexts £ of Example 7 are:

E{a) — a | app(E(a), M) | app(lam(var, M), E(a))

If we regard E{c) as a single non-terminal, the grammar becomes a regular tree gram-

mar. We can then build an automaton for E{c) as shown in Example 8.

The following shows how we transform context definitions:

1. Introduce a variable for the hole of each context. In this way, each context is
associated with a variable. Then, replace all occurrences of the holes by the cor-
responding variables and replace all occurrences of unfilled contexts by filling the

contexts with the corresponding variables. The production rules in the resulting

87

context-free tree grammar G are grouped as follows:

idl(allw" :alkl) - ™ | ot I Timy
ida{On1y -+ 1 Cnk,) = Tmr | o | Tama
2. In each right-hand side r;;, search for occurrences of id;(ti, ... ,ty,) that do not

match any left-hand side. For each such occurrence add the following production
rules:

o I !
""dl(tls"' 1tki)_)rll | | Tim;
where 1y, is the substitution of ayy, ... ,aq, by t1,... , ti, i 748,

3. Consider the left-hand side of each production rule as a single non-terminal and

do the appropriate renaming,.

This process, when it terminates (see next paragraph), produces a grammar G' that
differs from a regular tree grammar only in allowing the subterms id;(¢,, . .. , t,) in the
right-hand sides of the production rules. Fortunately, we can build automata for these
subterms by instantiating the abstract automata for id;(an, . .. , oux,). Hence, we can
build an automaton for the grammar G'.

Expansions in the second step may not terminate. To gain more intuition, consider

the expansion of E(c(«)) in Example 10, which creates

E{c(e)) = b(e(a)) | a(E(c(c(a))))

where E(c(c{a))}) is to be expanded.

88

We have seen that constraints are needed for transforming context-free tree gram-
mars. Given a context-free tree grammar (3, V, S, P), for any recursive non-terminal
application idy(ty, . .. , ty,) in the right-hand side of a production rule id;{c1, . . . , it} =
r, each t, for 1 < h < k; should be either a variable or a term in 7(Z U ;) where NV;
is the set of non-terminals not recursively defined with id;.

These constraints guarantee termination of the expansion of context-free tree gram-
mars described. First, the arguments of recursive non-terminal applications do not con-
tain recursive non-terminal applications, so that we do not expand arguments. Second,
the arguments do not contain variables. When a group of production rules is instantiated,
the arguments of recursive non-terminal applications in the resulting right-hand sides are
either in the original right-hand sides or replacements for variables. In other words, all
arguments in the generated production rule are either variables or arguments in the orig-
inal context-free tree grammar. The combination of arguments can be exhausted since
both sets of variables and original arguments used in the grammar are finite. Therefore,
there is no infinite expansion.

The constraints are not necessary conditions for being able to build automata for
contexts, but they are sufficient. Moreover, context definitions under our constraints
are expressive enough for production rules in most grammars of interest. Most context

definitions in programming language semantics satisfy these constraints.

Polymorphism

A polymorphic type declaration defines a parametric type where the parame-
ters are type variables. A monomorphic type has no parameter. We use state vari-

ables to represent type variables. The automata for polymorphic types are abstract au-

89

tomata as well and type instantiation corresponds to linking the state variables. We
add one more component,®,, to the tuple representation of automata which is now
(Z,(Q, ¥y,), @y, A) where &, &, are the sets of state variables for polymorphic
types and contexts, respectively.

Polymorphic type definitions also belong to context-free tree grammars. Building
automata for polymorphic types is similar to building automata for contexts and requires
the same constraints.

For example, a polymorphic type List is defined as follows:

List{a) — nil | cons(a, List(a))

The automaton for the type List above is

nil = qrie cons(@, Grin) — qrist

where « is the state variable for the type variable a.

The automaton for the type int List s

i I ! !
nil = qii cons(o, qLise) = QLists

Qimp — o allexcept(int, {}) — Gint

where the automaton for the type int is linked to the state o'.

90

Automatically proving unigue-decomposition in the SL System

To automatically check unique decomposition, we introduce a new phrase for SL
specifications:

decompTof py | ... | o ;

where T is a type describing the terms and p,, . .. , p, are the patterns describing decom-
positions. The SL compiler to checks the unique-decomposition phrase before gener-
ating the interpreter. The implementation follows the approaches presented in previous
sections.

The output of checking includes the information about the existence of decom-
positions for terms in the type specified in the decomp phrase. The information about
uniqueness is shown only when the existence is satisfied. Counterexamples are given
when either fails.

For the call-by-value A-calculus example, we augment the SL specification in
Figure 4 with two dynamic definitions for redexes and faulty terms, and a decomp
phrase. The decomp phrase consists of the type M and alternative patterns for the four
decompositions: a value, a demand of a variable in an evaluation context, a redex in an
evaluation context, and a faulty term in an evaluation context. The resulting specification
is in Figure 9.

The SL compiler checks unique decomposition for the specification in Figure 9

and produces the following result:

All terms have decompositions.

91

SIGNATURE:
type M = Num of int | Var of string

| Lam of string*M | App of M*M;;
startfrom M;;

SPECIFICATION:

(* other parts of the specification, omitted *)

dynamic V = Num _ | Lami{_,_};;
dynamic R = App(Lam{_,_}.,V);;
dynamic F = App(Num _,_);:
context E = BOX | App(E, _) | App(V, E);:
decomp M of (_:V) | (_:E}{(vVar _)
| (_:E){(_:R) | (_:E}{_:F);;

FIGURE 9. SL Specification of Decomposing a Simple CBV Language

92

Counterexamples to unique decomposition:

App({Num(_), Var(_)))

App ({App((Num(_), Var(_)}), Num{_}))

{* more counterexamples omitted *)

The counterexamples provide hints about how to medify the specification in or-
der to obtain uniqueness. Violating uniqueness originates from applying a number to
another term. It can be fixed by restricting evaluation in the right subterm of an applica-
tion to occur only when the left is a A-abstraction. We modify the evaluation context in

the specification in Figure 9 as follows:

context E = BOX | App(E, _) | App(Lam(_,_), E);;

Unique decomposition holds in the new specification. The output is:

All terms have unique decompositions.

The SL system does not enumerate all counterexamples. We have tested the SL
system on some small examples, including the specification in Figure 9 and the specifi-

cation for the example in Chapter I. The SL system requires only a few seconds for these

93

examples. When we extend the datatype in the specification with more constructors, the
execution time increases dramatically. For example, if we add an addition operation
to the specification shown in Figure 9, proving the unique-decomposition lemma takes
about two minutes. Further extensions such as additional built-in types may require over

an hour. Optimizing the algorithms and the implementation is one of our future goals.

Summary and Discussion

Checking existence and uniqueness of decomposition is important for specifying
operational semantics using syntactic theories. Existence ensures that the evaluators
consider all the cases for an input program; uniqueness guarantees that evaluators are
deterministic at each step. We have introduced algorithms for automatically proving
unique-decomposition lemmas. These algorithms are implemented in the SL system. A
number of small examples have been tested in the system.

Tree automata are widely used in compilation, especially in pattern matching. In
terms of pattern matching, equivalence of tree automata corresponds to exhaustiveness
of patterns and non-ambiguity of regular tree grammars corresponds to non-overlapping
of patterns. However, the patterns used in earlier research do not support dynamic values
and contexts.

Fahndrich and Boyland’s work on abstract patterns [FB97] is very closer to our
work. The difference is that the SL system provides counter examples when unique

decomposition does not hold.

94

CHAPTER IV

EXTENSIONS TO THE SL SYSTEM

In this chapter, we enrich the SL system with more expressive power and flexi-
bility to specify syntactic theories. The first extension is the notion of abstract pattern
which is a natural extension to dynamic definitions and context definitions. The second
extension is natural deduction, another common specification style for syntactic theo-
ries. The third extension is signature functions whcih specify computations on signature
types. The last extension is meta-substitution which is implemented internally to pro-
vide general substitution utilities for all object-languages.

For each extension to the SL language, we also explain the corresponding exten-
sions to the SL compiler with respect to the issues discussed in Chapter II such as type

checking and pattern matching.

Abstract patterns

It is natural to extend from dynamic expressions and context expressions to ab-
stract patterns which are introduced in Fahndrich and Boyland’s paper [FB97].

We extend SL patterns with a new form called abstract constraint patterns (also
called abstract patterns or abspats in short): (p : abspat_name)[p.] where abspat_name
is the name of the defined abstract pattern and p, is optional depending on whether the
abspat_name takes arguments. The lefi-hand side of an abspat definition is a name and
optional arguments. The arguments are holes which are labeled so that they can be dis-

tinguished from each other. The right-hand side is a list of alternative patterns in which

95

the holes can be used. All arguments, i.e., holes, need to occur once and only once in
each alternative pattern.

The SL pattern definition becomes:

Patterns P = ---|
(P : abspat_name) [P)]
Abspat Definitions H(Oy,..-,0,) == P|--- | P wheren >0

Dynamic definitions and context definitions are special cases of abstract pattern
definitions for which n is either 0 or 1, respectively.

In the SL language syntax, an abstract pattern definition starts with abspat,
followed by a list of variables and a list of pattern alternatives. Figure 10 shows how
to use abstract patterns to rewrite the example given in Figure 4. The dynamic value
declaration for V and the context declaration for E are replaced with abstract pattern
definitions.

Abstract patterns can be used to easily specify semantic operations. The following
axiom describes swapping the head and tail of a list with at least two elements by using

abstract patterns.

abspat last{t) = [t] | _::{((_:last)(t));;
abspat firstlast(h,t) = h::{({_:last) (t));;

axiom swap_firstlast: (l:firstlast)(h,t) ==> 1(t, h);

The abstract pattern last describes a non-empty list with a hole for its last ele-

ment. The abstract pattern (1:firstlast) (h, t) matches a list with at least two

96

SIGNATURE:
type M = Var of string | Lam of string*M | App of M*M;;
startfrom M;;

SPECIFICATION:
#open "namesupply";:
let rec subst (tl,x,t2) =

match tl with

Var s -> if s = x then t2 else {1l
| Lam{s,tl’) -> if s = x then tl
else let s’ = freshname() in
Lam(s', subst{subst(tl’,s,Var s’),x,t2))
| App(til,t1l2) -> App{subst(tll,x, t2),subst(tl2,x,t2));;

abspat V = Lam

axiom betav: App(Lam(x,tl), (t2:V)) ==> subst(tl, x, t2);;
abspat H(x) = x | App((_:H)(x),_) | App({(_:V), H);;

inference eval:
tl ==> t2

{h:H) t1 |==> h t2 ;;

FIGURE 10. An SL Specification of a Simple CBV Language using abstract patterns

97

elements. It binds 1 to a list with two holes occurring in the first position and the last
position. It also binds h and 1 to the first element and the last element, respectively.
Ifalistis [1;4;3;2;5], then patiern (1:headtail) (h, t) can be matched suc-
cessfully with 1 bound to a function {0;4; 3; 2; O], h bound to 1, and t bound to 5.
Therefore, the result of reducing the list [1;4;3;2;5] by axiom swap_firstlast
becomes {5;4;3;2;1].

Similarly, we can use abstract patterns to specify a simple sorting axiom:

abspat anyone({e) = e::_ | _::((_:anyone) (e));
abspat anytwol{el,e2) = el::((_:anyone) {(e2})
| _::({_:anytwo) (el,e2));

axiom swap: (l:anytwo) (el,e2) when el > e2 ==> l(e2,el);

The sorting swaps two elements in the list if the prior element is greater than the
latter. Picking two element is non-deterministic. A possible reduction sequence for the

list [1;4;3;2;5] is the following:

[1;4;3;2;5] ==> (* swap 4 and 3 *)
[1:3:4;2;5]) ==> {* swap 4 and 2 *)
[1;3;2;4;5] ==> (* swap 3 and 2 *)

[(1;2;3;4:5]

Another possible sequence could be:

98

[1;4;3;2;5] ==> (* swap 4 and 2 *)

[1;2:3;4;5]

Next, we will explain the extensions to type checking and pattern matching for

abstract patterns.

1. Type checking for abstract patterns

The typing rules for abstract pattern are given in Table 7. The rule for non-
parametric abstract constraint patterns is similar to the rule for dynamic constrain
patterns. The type of a non-parametric abstract constraint pattern is the same
as the type of the abstract pattern and this type cannot be a context type. The
rule for parametric abstract constraint patterns is similar to the rule for context
constraint patterns. The type of a parametric abstract pattern is a context type
T % - -%T,0— T, Where 7, ... , T, are the types for the holes and 7 is the resulting
type when all holes are filled. The type of the corresponding parametric abstract
constrain pattern is either the resulting type of the abstract pattern if the pattern to
be filled is not a context type, or the composition of context types if the pattern to
be filled is a context type. One new rule is added for tuple patterns when there is
more than one component having a context type. The rule lifts the context-type

constructor to the top level.

The typing rules for abstract pattern definitions are given in Table 8. The rules are
similar to the rules for dynamic definitions and context definitions. All alternative

patterns should have the same type as the abstract pattern.

Crp:7
Lap:7 F (p:ap): 7

PFPIZTOO—)TI P"pg:Tg

Tyap:mo= 1 F (p1:ap)[pe) i

FT'kFprimosm 'EF pimgesn

T,ap: o= 1 F (p : ap)po] : o= ™

b piT
Pii 00T
Pj 00T
C'F ppima

r
rkE
rtE

L E (-

sPivee 1 Pis-or 1 Pn) 10 ¥ OO Ty % % Ty

TABLE 7. The type checking rules for abstract patterns

100

Tiap:7 bk pr:7

Chap:7 F po:7

C.ap:7 Fap=p |- |pa:T

Diap:(oy % *oplorT F (o1 % *0m)or T

Ciap: (g1 %+ %0y)oa T b pyi(oy*: - xap)o=r T

Fyap:(al*"'*am)HT = ap(Ell,..‘ aDm)=p1| |pn:(al*"°*am)HT

TABLE 8. The type checking rules for abspat definitions

2. Pattern matching for abstract patterns.

Extending the pattern matching algorithm is straightforward since matching ab-
stract patterns is similar to matching dynamic values or matching context expres-

sions.

After preprocessing and splitting the matching matrix, we need to consider a new
group in addition to the existing variable and construct groups. All the first column

patterns in the group are abspat constraint patterns with the same abstract pattern.

For an abspat constraint pattern group, we consider two subcases for pattern

matching function C.

— Non-parametric abstract patterns

Non-parametric abstract patterns are similar to dynamic values. The function

C creates a reference state. The reference will initiate pattern matching for

101

the abstract pattern P with the value of t;. Its result is bound to a new
parameter, The state in the let body is the result of compiling a structure

consisting of the patterns without the constraint and the rest of the patterns.

let #) = match_P t;in
[y '

| T
c (Ph: P)or s ,
. . —_— pll...sl

\ (Py = P)++5m

\p:m'“sm/

— Parametric abstract patterns

Parametric abstract patterns are similar to context expressions. The function
C creates a reference state. The reference will initiate pattern matching for
the context definition P with the value of ¢;. Its result is bound to a pair of
parameters which represent the abstract pattern and the corresponding holes
occurring in t;. The state of the let body is the result of compiling a structure
consisting of the context patterns and the hole patterns, as well as the rest of

the patterns.

102

1
{evalv) ——

t, —» Axdy ta—»v

1
(evalm) t) ta —» tafz := v]

FIGURE 11. call-by-value lambda calculus in natural deduction semantics

/ let (#),¢]) = match_H £, in
b)
! N
! 1 (tl t1 o
c (P11 PPl - 51 , Y
.) _— c Pu P8t

\ G PP 5m / o
\ Pmi Pm1 " 8m

Natural Deduction Rules

Natural deduction is an important way to write syntactic theories. The operational
semantics of many languages and as well as most type systems are described with natural
deduction rules. Figure 11 shows evaluation rules for the call-by-value lambda calculus,
where v stands for values and —» stands for zero or more steps. The rule evalv states
that values are normal forms. The rule evalm states that for an application ¢, ¢, if ¢; can
be evaluated in zero or more steps to a function Az.t3 and £, can be evaluated to a value
v, then the whole application can be evaluated to a term by substituting free occurrences
of z in 3 with the value v.

We extend the SL language to allow multiple premises in inference rules. Each

premise has an expression as its left-hand side and a pattern for its right-hand side. The

103

new definition for inference rules is as follows:

E==>P ... E==>P

I u= inf. :
nference Rules 1 inf_name Pwhen b —=> E

The call-by-value lambda calculus in Figure 4 can be re-stated as in Figure 4.2
using natural deduction rules. The inference rules veval and meval correspond to the
deduction rules evalv and evalm, respectively.

Next, we explain the extensions to the SL compiler for type checking and pattern

matching,.

1. Type checking

The typing rule for the extended inference rule is given in Table 9. The extension
to the typing rules is straightforward. The only change is to consider multiple
premise clauses in inference rules. Both sides of each premise need to have the

same type. Different premise clauses may have difference types.

2. Pattern matching

The pattern matching algorithm also needs to consider multiple premises in an in-
ference rule. This is done by using different continuation functions when match-

ing premises.

In the pattern matching algorithm, the initialization for inference becomes:

— For an inference rule

€] ==2> P1,€2 ==2 P2y... ,€q == Pp
pwhene, ==>¢

¥

104

(* Example: call-by-value lambda calculus with natural
deduction *)

SIGNATURE:

type M = Var of string | Lam of string*M | App of M*M;;

startfrom ¥M;;

SPECIFICATION:
#open "namesupply";;
let rec subst (tl,x,t2) = ...;;

dynamic V = Lam _;;

inference meval:
tl ==>> Lamix,tl’); t2 ==>> (£2':V)

App(tli,t2) ==>> subst(tl’,x, t2’)

HH
inference wveval:

inference Eappl:
£l ==>> tl1°’

Bpp{tl,t2) ==>> App(tl’,t2)

..
r I

inference Eapp2:
t2 ==>> t2'

App((tl:V),t2) ==>> App(tl,t2")

L

FIGURE 12. An SL Specification of a Simple CBV Language specified with natural
deduction rules

F,...,:E,'

r,.

ey TG Py

P

C,...,z;: piy...

C,...,z;:piy. ..

r,.
O,...,x;
P‘l"' 1 i L Py

T

o

y Y Py ..

it Piye.. Foey:
<Mt Pl

PPy Foeg
<o lni t Pniy -

Fp:T

. F e.: bool

a1
- oy

On
F pp:ion

JUni i pni e T

I' b inf_name:

e ==>p

€m ==2 Dm

pwhene, ==>c

T

TABLE 9. The type checking rules for extended inference rules

105

106

the corresponding state is:

if e, then
let py = rewritel ¢; in

let po = rewritel es in

let p, = rewritel e, in accept e

else fail

where rewritel is a one-step rewriting function in the generated code. To
accept the final expression e, the pattern p needs to be matched and the con-
dition e, needs to be true. In addition, all the premise clauses need to be
satisfied by rewriting the left-hand side expressions successfully and bind-
ing the results to the right-hand side patterns successfully. Any failure in
rewriting the left-hand side expressions in the premise clauses will cause

failure in rewriting with the inference rule.

Signature Functions

As we have seen, CAML functions are often used in the SPECIFICATION part.
Although these functions can specify computations in object-languages, they are given
with rules. As a result, the computation in these functions is not easy to track because
the SL system treats CAML function calls as atomic actions.

To address this issue, we introduce signature functions (sigfins for short) to spec-
ify computation with SL signature datatypes. All the argument and the result types

should be SL signature types. In other words, signature functions are functions handling

107

object-terms that only have types defined in the SIGNATURE part of the specification.
In the SL language, signature functions can be defined in two ways. The first way

is similar to function definitions in CAML. The other way is similar to using axioms and

inference rules: the semantics of signature functions can be given with reduction rules.

We will explain these two approaches and their impact on the SL compiler next.

1. Signature function definitions

Signature function definitions are formally defined as follows:

Sigfun Definitions F = sigfunsf P==>F |

P==>F

A signature function definition follows the keyword sigfun. It contains a func-
-

tion name, a list of arguments, and a list of alternative patterns with the corre-

sponding result expressions. Signature functions can be used anywhere ordinary

functions are used.

For instance, the subst function in Figure 4 can be redefined with a signature

function. The new specification is given in Figure 13.

SL patterns can be used in the alternatives of a sigfun definition so that sigfun
definitions can be made very concise by using contexts or abstract patterns. For
example, the function getenv below returns the first binding of a name s in an

environment env. Note that the env may have more than one binding of s.

let getenv (env,s) =

108

SIGNATURE:
type M = Var of string | Lam of string*M | App of M*M;;
startfrom M;;

SPECIFICATION:
#open "namesupply";;

sigfun subst (tl,x,t2)
(Var s,_,_) ==> if s = x then t2 else tl
| (Lam(s,tl’),_,_) ==> if 8 = x then tl
else let s’ = freshname() in
Lam(s’, subst(subst{tl’,s,Var s'),x,t2))
| (App(til,tl2),_,_) ==> App(subst(tll,x, t2),subst(tl2,x,t2));;

abspat V = Lam _;;

axiom betav: App{Lam(x,tl}, (t2:V)) ==> subst(tl, x, t2):;
abspat H(x) = x | App((_:H)(x),_} | App{(_:V)},H);;
inference eval:

tl ==> t2

(h:H) tl |==>h t2 ;;

FIGURE 13. An SL Specification of a Simple CBV Language using signature functions

105

match env with
[1] -> raise Not_found
| (s1,v)::rest ->

if (s == sl1) then v else getenv {(rest, s}

The function can be rephrased with an abstract pattern and a sigfun definition. The
abspat firstoccur defines the first binding of the name s in an environment
and binds the corresponding value to v. Sigfun getenv matches the firstoc-
cur with env and returns the corresponding value if it matches. If it does not

match, a predefined exception rewrite_failure will be raised.

abspat firstoccuri{s,v}) = (s,v)::_

| (s1,v1l)::{(_:firstoccur) {s,v}) when sl != s

sigfun getenv

{({(_:firstoccur) (sl,v)) as env, s) when s = sl => v;;

The introduction of signature function definitions requires minor extensions to the

SL compiler. We explain the extensions next.

(a) Type checking for sigfun definitions

The typing rules for signature function definitions are given in Table 10.

The rules are similar to the typing rules for function definitions in CAML.

110

Doxy i,y B i T e e e s Ui Pliyr T PLITL R % Ty
D,y Tiye e v @m ! Ty e oe s Y1i Pliy--- b €11 T
L,x1:71, o T Ty oo 2 Uni - Priver- | PniTi % % Ty
L,y T, e s Tm i Ty ov e s Uni s Prive-- F Ea 2T
Db siglunsfpr=>e | |[phn=>eaimi* 27

TABLE 10. The type checking rules for sigfun definitions

All alternative patterns need to be the same type which is the same as the
argument type for the signature function. All resulting expressions need to
be the same type which is also the result type for the signature function.

(b) Pattern matching for sigfun definitions

Pattern-matching for signature functions uses the same form of structures
and uses the same algorithm described in Chapter II. Given a signature func-

tion definition:

sigfun f(z1,...,Zm) p1=> € |

Pn =264

111

The pattern matching structure is:

2 \

p1 let(zy,...,Tm) = tinaccept{e;)

k Pn let(z1,...,zZm) = tinaccept(e,) /

An automaton is created from the matching structure and a CAML function
can be generated from the automaton. The generated CAML function uses

the same function name in the SL specification.

2. Signature function rules

Signature functions can be expressed with rules: sigfun axioms and sigfun infer-

ence rules. The rules are formally defined as follows:

Sigfun Declaration Fp = sigfunsf:Tg— >Tg

Sigfun Axioms Fy = rulename:sf Pwhen E==>FE
sfE==>P,...,sf E==>P
sf PwhenE |==>E

Sigfun Inferences F; u= rulename:

Sigfun axioms are similar to axioms except that the left-hand sides are applications
of signature functions to patterns. Similarly, the left-hand sides of both premise
clauses and conclusion clauses in sigfun inference rules are also signature function
applications. Signature functions must be declared before used in any sigfun rules.

Sigfun declarations also provide types for the signature functions.

Figure 14 shows an alternative definition of subst which uses signature function

112

rules. First, subst is declared as a signature function mapping a tuple to the
object-type. Two sigfun axioms and one sigfun inference rule correspond to the

three alternatives in the sigfun definition in Figure 13.

Compiling rule-style sigfun definitions is similar to compiling semantic rules. We

discuss the extensions to the SL compiler next.

(a) Type checking for sigfun rules

Sigfuns must be declared with explicit types before it is used in sigfun ax-
ioms and sigfun inference rules. The typing rule for sigfun declarations is
straightforward. The type of the sigfun is as declared. The rule is given

below.

'k tey:o

r - teg:*r
[F sigfunsf tey—>tea:o—7

The typing rules for sigfun rules are similar to those for axioms and inference
rules. The rule for sigfun axioms is given in Table 11. Both sides of a sigfun
axiom should have the same type and the type cannot be a context type. The
condition expression in an axiom should be of boolean type. A new typing
rule needs to be given for applying a signature function to a pattern. This
rule is similar to the rule for function application expressions. If a signature
function s f has type ; — 7 and a pattern p has type 7, then the application
sf(p) has type 7.

Similarly, both sides of each clause in a sigfun inference rule should have the

113

SIGNATURE:
type M = Var of string | Lam of string*M | App of M*M;;
startfrom M;;

SPECIFICATION:
#open "namesupply";;

sigfun subst : M*string*M -> M;;

axiom substvar:
subst ((Var s} as tl, x,t2) ==> if s = x then t2 else tl;;

axiom substLam:

subst((Lam{s,tl’)) as tl, x, t2) ==>
if s = x then tl
else let s’ = freshname() in

Lam({s’, subst(substi(tl’,s,Var s’'),x, t2))

- s
rr

inference substApp:
subst (£ll, x, t2) ==> tll’, subst(tl2, x, t2) ==> tl1l2’'

subst {(App(tll,tl2), x, t2) =-> App(tll’,tl2’)

abspat V = Lam _;;

axiom betav: App(Lam(x,tl), (t2:V)) ==> subst{tl, x, t2);;
abspat H(x) = x | App((_:H){(x),_) | 2pp((_:V),H);;
inference eval:

tl ==> t2

(h:H) t1 |==> h t2 ;;

FIGURE 14. An SL Specification of a Simple CBV Language using signature functions

(b

114

Osf:o—=17tFsfio=rT
Czy:71,...,ZniTh F pio

U.sf:o—7F sf(p):T

I,sf:o—=121:7,...,Zn:Tn F sf(p}:7
[,sf:0=7,21:T1y... Tn:Tn F e bool
Csf:o—27,21:7T1,...,Zn: T F e:T

I'sf:0 =7+ axname:sf(p)whene, ==>e:T

TABLE 11. The type checking rules for sigfun axioms

same type. This type cannot be a context type and the clause itself is con-
sidered to have that type as well. All the premise clauses and the conclusion
clause need not necessary have the same type. The condition expression in
a sigfun inference rule should have boolean type. The rule for sigfun infer-
ence rules is given in Table 12. In the table, A denotes the environment for

all defined sigfuns:

A={sf:o=7,...,8fit0i=T...}

Pattern matching for sigfun rules

Pattern matching for sigfun rules uses the same form of structures and uses
the same algorithm as used in Chapter II. Each signature function corre-
sponds to a pattern-matching structure. By compiling the structure, an au-

tomaton and matching functions in CAML can be generated.

115

LA,...,z;:pi,... F p:o
LA, ..., Zi: piy..- e bool

F,A,... 1 Ti PPy + €1
DVA o T piye e ¥l Py EP1I Ty

LA,...,zi:piy... F en:0p
LA, . %t Piseee s Uni: Paise-- F PriTa

DA, T Piye e Yli i Pliye -y Uni i Pni €T

LA F inf_name: sfile)) ==>p1 -+ 8fm(em) ==> pm T
sf(p) when e, ==> ¢

TABLE 12. The type checking rules for sigfun inference rules

116

First, all sigfun rules for the same signature function are collected. The rules

for a signature function can be:

— Sigfun axioms whose left-hand sides are applications of the signature
function.
~ Sigfun inference rules whose conclusion clauses have applications of

the signature function on the left-hand side.

Second, the signature functions are stripped. As a result, the sigfun applica-
tions to patterns become patterns.

Finally, the pattern-matching algorithm described in Chapter II can be used.
The treatment of sigfun axioms and sigfun inference rules is almost the same
as that for axioms and inference rules. The only difference is in the initial-

ization of the matching matrix for sigfun inference rules.

— For a sigfun inference

sfi(e)) ==>p1,sfoles) ==>pa, ..., 8fnlen) ==>pa
sf(p) whene, ==>¢e '

the corresponding state is:

if e, then
let p; = match_sf, e; in

let po = match_sf; e; in

let p, = match_sf, e, in accept e

else fail

117

where match_sf;,i = 1,2,... ,n are the matching functions for sig-
nature functions sf1, sfa, ..., sfs, respectively. To accept the final ex-
pression e, the pattern p needs to be matched with the argument of the
signature function sf and the condition e, needs to be true. In addition,
all the premise clauses needs to be satisfied. In other words, for each
premise, s f;(e;) need to successfully match the definition of the signa-
ture function sf; and the result must be successfully bound to p;. Any

failure in the above will cause failure in applying the signature function.

Meta-substitution

In the previous SL examples, we have used a substitution function written in
CaML. The substitution function needs to be changed for almost every language. It
would be better to provide a meta-level substitution that can work for all languages.

We introduce a variable phrase to specify the binding of a free variable in the
object-language. We also provide a meta-level function sp_subst to use for all substi-
tutions, as well as a function sp_fvars to get the free variables in the object-language.

A variable phrase can be specified in the SIGNATURE part. It describes which
constructor denotes free variables and which constructor introduces new bound vari-
ables, and what the scope of a new variable is. For example, we can extend the SIGNA-

TURE part of the SL specification in Figure 4 with the following phrase:

variable x : Var x : Abs(x,scope);;

This phrase describes the variables and bindings in lambda terms. For a name x,

118

Var x stands for a free variable z and Abs {x, scope) means that Abs introduces a
binding of variable z. The keyword scope represents the scope of variable z.

The meta-function sp_subst performs substitution in all cases if the variable
bindings are provided. Like ordinary substitution, sp.subst takes three argument: an
expression to substitute, a variable name, and an object-expression to be substituted.
The meta-function searches for all free occurrences of the variable with given name and
replaces them with the given expression. The search is a depth-first traversing of the term
to identify the occurrences of the specified variable constructors. For the constructor
introducing bound variables, preprocessing is performed to ensure that names of bound
variables are distinct from the name of the argument for sp_subst. Similarly, the
meta-function sp_£vars returns free variables occuring in the given object-term.

The example given in Figure 15 uses the meta-function sp_subst instead of
the CAML substitution function subst. This makes the SL specification more ab-
stract and concise. Another advantage of using meta-substitution is that SL can track
substitution which it cannot do when using substitution functions specialized for each
object-language.

Another example shows the variable phrases used for the Let and Letrec con-

structs:

type T = Var of string | Abs of string * T | App of T* T |

Let of string*T*T | Letrec of string*T*T

-
ol

variable x : Var x : Abs(x,scope);;

119

(* Example: call-by-value lambda calculus,
using meta-substitutions *)

SIGNATURE:
type T = Var of string | Abs of string * T | App of T* T;;

variable x : Var x : Abs{x,scope);;
startfrom T;;

SPECIFICATION:
dynamic Value = B&abs _;;

axiom beta:
App(Abs{x, tl), (t2 : Value)) ==>>
sp_subst (€1, x, t2)

. »
L

context E = BOX | App(E, _) | App(value, E};;

inference eval:
tl ==> t2

(e : B) tl1 == (e t2)

FIGURE 15. An SL Specification of a Simple CBC Language with meta-substitution

120

variable x : Var x : Let(x,_,scope);;

variable x : Var x : Letrec({x, scope, scope) ;;

Note that there can be more than one variable phrase for the same data-type and
there can be more than one scope in a variable phrase. In the example above, Abs,
Let, and Letrec all introduce bound variables and the variable constructor is Var.
The scope occurs twice in the variable phrase for Letrec. The combination of the
two scopes specifies the scope of variable x for Letrec.

There are two limitations of the meta-substitution function. First, a variable must
use a string for its name. Second, a variable and its scope are introduced in the same con-
structor. However, these are limitations shared by all common languages with variable

bindings.

Summary and Discussion

By using the extensions described in this chapter, namely, abstract patterns, natu-
ral deductions, sigfunctions, and meta-substitutions, the SL. system becomes more pow-
erful for specifying syntactic theories and checking properties, such as subject reduction.

Abstract patterns are natural extensions from dynamic values and contexts. They
make it very easy to abstract computations with patterns. Earlier work [FB97] on ab-
stract patterns did not provide a mechanism on compile abstract patterns. We extend the
pattern matching algorithm for dynamic values and contexts so that it applies to abstract
patterns as well.

Natural deduction is another common style to represent operational semantic for

programming languages. The support of natural deduction enables the SL system’s

121

ability to specify another large range of language specifications.

The concept of sigfunctions is the result of combining function declarations and
SL patterns as well as the rules. Definition of sigfunctions can be much more concise
than the function definitions in CAML.

Meta-substitution is an important feature in the SL system, which make it much
easier to specify substitution in syntact theories. Instead of writing tedious substition
function, it is enough now to specify the introduction of scope and free variables. Also,
meta-substitution makes it very easy to check equivalence for the first-order terms,

which will be discussed in the next Chapter.

122

CHAPTER V

AUTOMATICALLY PROVING SUBJECT REDUCTION

When designing a programming language, one important task is to design its type
system. The main purpose of this task is to identify ill-behaved programs. For example,
type systems can detect errors such as using a non-function type expression as function.

Designing a type system is a complicated task. Is the language strongly typed
or weakly typed? Is the language explicitly typed or implicitly typed? One needs to
carefully consider type constructs and their releationship with langauge constructs, so
that the type system satisfies a number of important properties. Some other common
questions about the properties of a type system are: Is it deterministic to derived a type
from a term? Is is possible to derive two different types for a term? Does the type
change when evaluating a term?

We focus on this last property in this chapter which is usually formalized as the
subject reduction lemma. Proving the lemma is also laborious and error-prone. Several
iterations are usually needed to tune the type system. Therefore, it is natural to consider
an automatical way of proving the subject reduction.

We introduce a meta-layer in the SL system. The meta-layer consists of meta-
expressions, meta-theorems, and meta-utilites. The subject reduction lemma is repres-
ened as a meta-theorem. Automatic induction is done by mechanically simplifying the
meta-theorem. The simplification involves not only evaluation over mata-expressions,
but also instantiation with rewriting rules, typing rules, or structure of data-types of ob-

ject terms. The instantiation is equivalent to case analysis in an inductive proof. The

123

process is repeated until the simplified meta-theorem can be easily proved, for example,
when it becomes a logical tautology.

The remainder of this chapter is organized as follows: We first show a manual
proof of subject reduction for the simply-typed lambda-calculus. Then we give the spec-
ification of the typing rules for call-by-value lambda calculus in the SL system. Next we
describe extensions with the meta-layer of the SL system and a new phrase to represent
the subject-reduction lemma. Later we elaborate on the mechanism used to automati-

cally prove the subject reduction lemma by induction and close with a summary.

A Manual Proof of Subject Reduction

Lemma 4

Generation lemma:

1.ifC - z:0o,then(z:0) €T.

2. if = MN :7,then there exists a type o suchthatT" = M : (o — 7)
and" - N:o.

3. if " - Az.M : p, thenthere existtypesog and T suchthatl'z : 0 - M : 7

and p= (g — 7).
Proof: By induction on the length of derivation. O
Lemma 5
Substitution lemma:
1.ifT - M:o,thenTfa:=7] -+ M :o[a:=7]

2. If0,z:0 - M:r,andT + N:o,thenT M[z:=N]|:7.

124

Proof:
1. By induction on the derivation of M : o.

2. By induction on the generationof 'z : 0 - M : 7.

Lemmab

Subject reduction lemma: Suppose M —»g M’ and’ - M : o, thenT - M': 0.

Proof: Induction on the generation of — 5 using Lemma 4 and Lemma 5.

We focus on the base case, namely that M = (Az.P)Q and M' = Pz :=Q]. I

' (Az.P)Q:0

then by Lemma 4
Fyz:tF P:gandT F Q:7

and therefore by the substitution lemma 5,

'+ Plz:=Q}:¢

Representing the Type System in SL.

The SL code for the call-by-value typed lambda calculus is in shown Figure 16.
The type of lambda terms is given in the SIGNATURE part in a datatype decla-

ration. The types of lambda terms can be either type variables, “TVar s”, where s is a

125

string name, or function types, “TArrow(t1,t2)", where “t1” is the argument type and
“t2” is the result type.

In Figure 16, the sig-function “Typeof™ is declared. The function takes a pair of a
lambda term and a type environment as argument, and returns the term type. The type
environment is a map from string names to types.

The typing rules are given by a sigfun axiom and two sigfun inference rules, The
sigfun axiom phrase, given name “Vartype”, describes the base case of looking in the
environment for type variables. The sigfun inference phrases, “Abstype” and “Apptype”,

correspond to the typing rules for abstraction and application shown in Figure 1.

A Meta-layer for the SL System

We introduce a meta-layer for the SL System. The meta-layer includes meta-
expressions, logic-expressions, meta-theorems, and operations on them.

Meta-expressions extend the intermediate SL expressions with meta-variables.

Logic expressions are first-order logic formula that consists of meta-expressions
as primitive expressions and logic operations. Logic operations include logical opera-
tors, such as logical “or” and “and”, and predicates. The predicates in the SL meta-layer
are extended beyond the regular relational operations with semantic predicates to cap-
ture, for example, a reduction relation between two expressions or whether an expression
matches an abstract pattern.

Meta-theorems are built from logic-expressions. Each meta-theorem has a list of
meta-variables, a list of logic expressions as premises, and a list of logic expressions as
conclusions.

The formal definitions of meta-expressions, logic-expressions and meta-theorems

126

{(* Example: call-by-value typed lambda calculus *)
SIGNATURE:

type M = Var of string | Abs of string * M | App of M * M;;
type T = TVar of string | TArrow of T * T;;

startfrom M;;

SPECIFICATION:
dynamic Value = Abs _;;
context E = BOX | App(E, _) | App(value, E);;

axiom beta:
App{abs(x, tl}, {t2 : Value)) ==»>> sp_subst(tl, x, t2);;

inference eval:
tl ==> 2

fun Typeof : (M*{(string*T) list)) -> T;;

axiom Vartype:
Typeof (Var x, {(y,TVar tau)::_}) when x=y ==> TVar tau;;

inference absType:
Typeof (e, ((x,TVar taul)::gamma)) ==> taul

Typeof (Abs(x, e), gamma) ==> TArrow(taul, tau2)

L

inference AppType:
Typeof (el,gamma) ==> TArrow(taul, taul);
Typeof (e2,gamma) ==> taul

Typeof (Applel,e2), gamma) when taul = tau3d ==> tau2

LA

FIGURE 16. The SL specification of the type system of CBV A-calculus

127

Logic-Expressions L 1= M|M=M)|M<M|M=>M|M=>>M|
mpat M M |
LandL | LorL |notL |

Meta-Expressions M = z|o|const|colaM | (M,... , M)
op(M,... JM) | (NIWPETE) |
A M| MM|M[M]
let P=MinM |
letrec P =M in M

thm_name : forall zy,... ,z,
Meta-Theorems L = M,... .M

M, .. M

FIGURE 17. Meta-layer of the SL system

are given in Figure 17,

Meta-expressions

Meta-expressions extend expressions with meta-variables. In our implementation,
meta-variables are the same as the variables in intermediate expressions. A set of meta-
variables are used to distinguish them. In other words, a meta-expression is represented
as a pair (S, M), where S is a set of meta-variables and M is an expression. If a free
variable of the expression is in the set, it is considered a meta-variable. Otherwise, it is

a variable in the intermediate expression.

Logic-expressions

Logic-expressions can have the following forms: primary meta-expressions, pred-
icates on meta-expressions, high-level constraints on meta-expressions, and logic oper-

ations on logic-expressions. The predicates considered in this thesis are equal, less

128

then, one-step reduction, and multi-step reduction. The high-level constraints are spe-
cial predicates used to check whether a meta-expression is a value and whether it can
be matched by a context or abstract pattern. The logic operations include the regular

boolean operations and, or, and not.

Meta-theorems

Meta-theorems are represented by a tuple with a name, the set of meta-variables,
a list of logic-expressions as premises, and a list of logic-expressions as conclusions.

In the SL language, we introduce a new phrase for subject reduction:

subred [x,gamma] x:Typeof(x,gamma) and x;:;

It can be desugarred to the following meta-theorem:

theorem subred: for all x, gamma,

if x ==>> y, Typeof(x, gamma) = tl1 then Typeof(y, gamma) = tl

The meta-theorem has two meta-variables x and gamma. It also has two premises

and one conclusion.

129

Meta-layer utilities

To automatically prove meta-theorems, some operations on the constructs of the

meta-layer are needed. This section discusses the utilities of the meta-layer.

1. Meta-expression unification

Meta-expression unification is to find meta-variable instantiations on two meta-
expressions so that the meta-expressions can be identified if the instantiations ap-

ply to the meta-expressions respectively.

The algorithm of unifying meta-expressions is given in Figure 18. I/ is the uni-
fication function. The function takes a pair of meta-expressions, (m;,m,), as
arguments, and it returns a triple, (env;, envy, m3), where env, and env, are the
bindings for the meta-expressions m, and m, respectively, and m; is the resulting

meta-expression.

An auxiliary function merge_env is used in the algorithm, which merges two
instantiation enviroments into one. If the same meta-variable instantiated in both
environments, the corresponding expressions need to be unified and the resulting
enviroment from the unification will also be merged into the final enviroment. The

behavior of merge_env is given is Figure 19.

For example, the meta-expressions m, : App(z, 01) and my : App(o2,y) can be
unified into m3 : App(z,y) with instantiations (g : y) for m; and (o2 : z) for
m,. The unification for meta-expressions App(z, o) and Lam{gs, y) will fail, so

is the unification of App(z, o1) and App(y, 02).

The meta-expressions are first-order expressions. As shown in Chapter I, a mech-

anism is needed to equate lamba-expressions differing only in the names of bound

130

U(m,y, my) = (envy, envs, ms)

case(q, 02)
case(oy, mo)
case(m;, o2}

case{z,, 1)

case(cp, Co)

case(ci(s1), c1(s2))

case((su, 512), (-‘321, 522))

C&SC(AII.Sl, AEg.SQ)

case(s11 S12, S21 S22)

case(s11[s12], s21(s22])

others

({(a1,03)}, {(02,03)}, 03)
({(g1,m2)}, {}, ma)

({}; {(g2, m1)},)

({} {} =)

({}1 {}r cﬂ)

let (enwvy, envs, $3) = U(S1, 52) in
(envy, envs, ¢, (53)

let (envy;, envyy, Sa1) = U(s11, 521) in
let (envy2, enva, s32) = U(S12, 522) in
let env, = merge_env{envy;, envyz) in
let envy = merge_env(envs, envyy) in
(envy, envg, (sa1, $32))

let x = new_variable in

let s = subst(sy,xy,z) in

let s, = subst(sa, T, x) in

U(s}, 53)

let (envy1, envay, 531) = U{s11, S21) in
let (envya, envyg, Sa2) = U(s12, 522) in
let env, = merge.env(envyy, envyo) in
let envy = merge.env(envyy, enva) in
(envy, envs, 531 S32)

let (em}n, E€Nung, 831) = L{(Su, 321) in
let (envia, enva, 832) = U(512, 522) in
let env; = merge_env{envi, enviz) in
let envs = merge_env(enva;, envyz) in
(envy, enva, 831[532])

fail

FIGURE 18. Unification of meta-expressionsxb

131

merge.env(env,, envs) = envy

case({},envs} : env,

case((o) : ml) :: envy,envs) : let envz = merge_env(env,, envs) in
merge_env({{o1,m1)}, envs)
when (o, m2) & env, and env; # {}

case((oy : ml) :: envy, envs) : let envs = merge.env{env, envs) in
(o1, m)) :: envs
when (o1, my) € envs and env; = {}

case((oy : ml) :: envy, {01, ma) 2 enve) : let envy = merge_env(env, envs) in
let (envy, envy, m3) = U(my, my) in
let envy = merge_env{env], envy) in
let envy = merge_enu(env;, envy) in
merge_env({(c1, ms)}, envt)

FIGURE 19. Merging two environments

132

variables (« equivalence). This is achieved by using meta-expression unification.
a-equivalence is easily determined by unifying expressions while considering the

free variable and bound variable information.

. Meta-pattern matching:

Meta-pattern matching is matching primary meta-expressions with patterns which
are defined as in Chapter II. Meta-pattern matching does not build automata,

instead it creates bindings for both patterns and meta-expressions.

Figure 20 shows the process of meta-pattern matching, which is described by a
function P. The function P takes two arguments, (p, m}, where p is a pattern
and m is a meta-expression. The function returns a triple, (env1, env2, I), where
envl is the environment that records the bindings of variables in the pattern p,
env?2 is the environment that records the bindings of meta-variables in the meta-

expression, and !{ is the logic expressions created in the meta-pattern matching.

The function P focuses on the case when the meta-expression argument is a meta-
variable. The other cases can be reduced to the meta-variable case by adding a
binding to the meta-variable afterwards. For example, P(p, m) can be reduced to
P(p, o) whose return triple is used for the return value of P(p,) except that the

environment of meta-variable ¢ is added with the binding o = m.

. Meta-evaluator

Meta-evaluation is the evaluation of meta-expressions. It simplifies the meta-
expressions by using general evaluation rules. The rules are presented in Fig-
ure 21. The function £ is the evaluation function, which takes an environment

and a meta-expression as arguments, and returns a modified environment and a

133

p(pi m) = (envlr €nvs, ”)

case(_, o)
case(z,d)
case(const, o)
case(cg, o)
case(c1p1, o)

case(p,asz, o)

case((p, : type), o)
case((p1, pa), o)

case((p, : dyn), o)

case{(p; : apat)p2, o)

case(0, o)

{H {0

({{z.), {1 {})
({} {(g,const)}, {})
({} {{o,c0)}, {})

let (env,, envy, ll) = P(p1, 1) in
(enw, merge_env(envs, {(o,¢, 61)}), 1)

: let (envy, envy, Ul) = P(py,01) in

(merge_env(env;, {(z,0)}), enve, ll)

. P(p1,o)

let (envyy, envay, ll) = P(py,01) in

let (enU12, ENVaa, ”2) = P(pg, 0'2) in
(merge_env(envyy, envya),
merge_env{envs;, envm, {(o, (01, 02))}),
i Uit}

: let (envy, enwy, ll) = P(py, 0) in

(envy, envy, Il U {mpat(dyn,c)})

: et (E’n’Un, €NvVay, ”1) = 'P(pl, 0'1) in

let (envya, envg, lla) = P(ps, 02) in
(merge_env(envy;, envia),
merge_env(enva;, envxn, {(0, 01 02)}),
I, Ully U {mpat(apat, (oy,02}})

({}! {(0'1, /\:B.:L‘)}, {U =0 U’.!})

case(p,m)

let {envy, envy, ll) = P(p, o) in
(envy, enua, 1 U {o = m})

FIGURE 20. Meta-pattern matching

134

simplified meta-expression.

An Example of Automatically Proving Subject Reduction by Induction

This section shows the process of automatically proving subject by using the ex-
ample in Figure 16.
The proof is by induction. At first, induction is on the number of reduction steps

of x == >>y. This induction is trivial and we reduce the theorem to:

theorem subred: for all x, gamma,
if x ==> y, Typeof(x, gamma) = tl

then Typeof(y, gamma) = tl;;

The proof of subject reduction needs two lemmas. One is a substitution lemma
and the other is a context lemma.

The substitution lemma is stated as:

Lemma 7
If Typeof(m1, gamma) = t1 and Typeof(m, (x:t1)::gamma) = t2 then Typeof(m[m1/x],
gamma) = t2.

The context lemma is stated as:

Lemma 8

If Typeof(m, gamma) = Typeof(n, gamma) then Typeof(H[m], gamma) =
Typeof(H[n], gamma) for any context H.

E(env, m)

case{env, o)
case(env, o)
case(env,)
case{env, const)
case{env, ¢p)
case(env, c; my)
case(env, (m, : type))

case{env, (my, mp))

case{enu, op(my, my))

case(env, Az.m,)

case(env, m; ma)

case(env, m[my))

= (env', m’)

m') & env

(

(env,m’) when (¢, m') € env
(env,z)
(
(

env,c) when (g,

env, const)

let (envl, m}) = E(env,m,) in
(envy, c1 my)

let (envy, m}) = E{env,m,) in
{envy, (m; : type))

let (envy, m}) = E(env, m,) in
let (envy, mb) = E(env, ma) in

(merge_env(env,, envy), (mf, mh))

let (envy, m}) = E{env, my) in
let (env2, my) = E(env, ms) in

let m' = built — in(op, m}, m3) in

(merge_enu(envy, env,), m')
let (envy, m}) = E(env,m,)} in
(envy, Az.m})

let (envy, m}) = E(env, my) in
let (enuy, mb) = E(env, m,) in
let m' = m} m} in
(merge_enuv(env;, envs), m')
let (envy, m}) = £{env, my) in
let (envq, mb) = E(env, m2) in
let m' = m{[m5) in
(merge_enu(env;, enva), m')

FIGURE 21. Meta-expression evaluation

136

We apply induction on the cases of x ==> y by matching the axiom and infer-
ence rule. [t may match either the beta axiom or the inference rule. Meta-patternmatching
is performed so that the meta variable x will be instantiated in different cases.

casel: match beta axiom, x is bound to App{Abs(s,x1),x2). Two new meta-
variables are introduced but they are only part of the orignal meta-variables. y is bound
to x2{x1/s] according to the right-hand side of the beta axiom. The sub-theorem be-

comes:

for all s, x1,x2, Gamma:
if Typeof(App(Abs(s,xl),x2), Gamma) = tl

then Typeof (sp_subst{(xl,s,x2), Gamma) = tl1;;

Using the eval rule of Typeof on App, the theorem to be proven becomes:

for all s, x1, x2, Gamma:
if Typeof (Abs(s,x1), Gamma) = TArrow{tll,tl) and
Typeof (x2, Gamma) = tli

then Typeof {(sp_subst(xl,s,x2), Gamma} = tl

Using the eval rule of Typeof on Abs, the theorem to be proven becomes:

for all s,xl,x2,Gamma:

137

if Typeof{xl, (s:tll)::Gamma) = tl and
Typeof (x2, Gamma) = tll

then Typeof{xl[x2/s], Gamma} = tl

Then we apply the substitution lemma, and the case is proved.
case2: match inference rule, x is bound to E[x’]. Both E and x’ are new meta-

variables. y is bound to E[y'] where x’ ==> y’. The sub-theorem becomes:

for all x*, E, Gamma,
if x' ==> y’ and Typecf(E[x’'], Gamma) = tl

then Typecf(El[y’], Gamma) = t1

Introducing a temp variable t1’ = Typeof(x’, Gamma)

for all x', E, Gamma,
if x' ==> y’', Typeof(x’, Gamma) = t1’, and
Typeof (E[x’], Gamma) = tl1

then Typeof (E(y’], Gamma) = tl

Using the hypothesis

138

for all x’', Gamma: if x'==>y’, Typeof(x’', Gamma) = tl1’

then Typeof(y’', Gamma) = tl'

The theorem to be proven becomes:

for all x’, E, Gamma:

if x' ==> y’', Typeof(x’, Gamma) = tl’,
Typeof{y’, Gamma) = tl’ and
Typeof (E[x’]), Gamma) = tl

then Typeof (E[y’], Gamma)} = tl

By using the context lemma, the case is proved.
The subject reduction lemma is then since both cases are proved. The SL system

prints:

Theorem subred has been proved.

Automatically Proving Subject Reduction by Induction

Generally, the inductive proof algorithm is given as follows: Given a theorem,

139

1. We check whether it is an instance of the theorems already known to be proved,
a hypothesis, or already rejected. This is done by searching the tables containing

all the theorems with known results.

2. If it is not known, check whether the depth of proofs exceeds the limit. If so, let

user to choose whether to continue or abort.

3. If the user chooses to continue, or the depth has not exceeded the limit, we put
the theorem in the hypothesis table, and do the following analysis on the most

important premise.

~ If the premise is a rewriting step, do case analysis on the axioms or inference
rules, For each matched rules, we simplify the theorem, hence we obtain a
list of sub-theorems to prove. Each sub-theorem in the list has to be true in
order to make the theorem true. The process for each sub-theorem follows

the same algorithm, only with the proof depth incremented.

If the list is empty, the theorem is vacuously proven.

— If the premise is a sig-function pattern, do case analysis on the rules or the
alternatives of the sig-function. For each matched one, we simplify the the-
orem, hence we obtain a list of sub-theorems. Each sub-theorem in the list
has to be tried in order to make the theorem true. The process for each
sub-theorems follows the same algorithm, only with the proof depth incre-

mented.

If the list is empty, the theorem is proved vacuously.

— If the premise is a logic premise, try to simplify the logic premise. If the the-

orem can be simplified, use the algorithm to process the simplified theorems.

140

The depth is not increased here.

— If the premise is a logic constraint, replace the logic constraint with simpler
premises by pattern matching the logic constraint. For example, if the con-
straint is that an expression M can be decomposed into a context C and an
inner expression /V, it uses the rules for contexts and instantiates the expres-
sion M to C[N] with all the possible contexts C, producing all the cases

needed to be prove the original theorem.

— If the premise is a logic operation, like logical OR, AND, and NOT, it sim-
plifies the theorem with the logic operation rule.
For logical OR, it derives two sub-theorems. Each theorem is a copy of the
original theorem except that the premise under consideration is replaced with
one of operands of logical OR. If one of the sub-theorems can be proven,

then the original theorem is proved.

For logical AND, it derives two sub-theorems. Each theorem is a copy of
the original theorem except that the premise under consideration is replaced
with one of operands of logical AND. If both of the sub-theorems can be

proven, then the original one is proved.

For logic NOT, it derives a sub-theorems which is a copy of the original
theorem except that the premise under consideration is replaced with the
operand of the logical NOT. If the sub-theorem is proved to be false, then

the original theorem is proved.

Each of the cases above increase the depth when proving sub-theorems.

4. The user may choose to abort, stop the current proving path, and track back to try

141

other paths.

5. All the sub-theorem proving is done by applying the same algorithm. When the
original theorem is proved or disproved, remove the hypothesis for the original

theorem.

Summary and Discussion

Subject reduction property is essential for soundness of type system of program-
ming language. We describe automatically checking such property in the SL system in
this chapter.

The SL system is enhanced with a meta-layer so that subject reduction lemma is
represented as a meta-theorem, which consists of a list of logic expressions as premises
and a list of logic expressions as conclusions. The meta-layer also contains the necessary
utilities for automatic proving, such as meta-unification, meta-patternmatching, meta-
evaluation, and meta-theorem management.

The automatic proving is inductive. Induction can be made on the number of
reduction steps, the rewriteing rules, the type checking rules, and the structure of data-
type definition of the object terms. Each induction step transforms a meta-theorem
into simpler meta-theorems. It either instantiates meta-variables with expressions, or
evaluates meta-expressions in the meta-theorem. The base case is reached in one of the

following conditions:
— The meta-theorem can be easily validated as logic tautology
— The meta-theorem is an instance of proved theorem

— The meta-theorem is an instance of active hypothesis.

142

The meta-framework is currently specialized for proving subject reduction lemma.

However, it is extensible for automatically proving other utilites.

143

CHAPTER VI

CONCLUSION AND FUTURE WORK

The SL system is a semantic toolkit for manipulating syntactic theories. Its basic
function is to read a syntactic theory for a language and to produce an interpreter for
that language. The syntactic theory is represented in the domain-specific SL language
and the generated interpreter is a program in CAML. The SL system is also able to
automatically prove or to check some properties about the specified syntactic theories.
The properties that SL currently handles are decomposition and subject reduction.

The SL system is available from:
http://www.cs.uoregon.edu/ “ariola/SL/.

In this chapter, we summarize the contributions and applications of the SL system.

We then discuss directions for future work.

Contributions and Applications of the SL. System

The contributions of this work include the following:

~ We designed a domain-specific language, SL, for writing syntactic theories.

Many notions for syntactic theories like dynamic expressions, contexts, abstract
patterns, axioms, and inference rules are among the special features in the SL
language. Therefore, representations of syntactic theories in the SL langauge are

more straightforward and readable.

— We introduced new forms of patterns.

144

The new forms of patterns include dynamic constraint patterns, context constraint
patterns, and abstract patterns. They provide an expressive and flexible means for
abstracting a large variety of terms. Abstract patterns can be extended to other

languages with patterns.

— We implemented a compiler for the SL language.

the SL compiler generates a parser and pretty-printer for any specified data-type.
The compilation also includes an extension of the pattern matching algorithm to

handle the new patterns.

— We explored two methods for automatically checking or proving properties of

syntactic theories.

For unique decomposition, our method is to map the property of syntactic theo-
ries to a property of tree automata. For subject reduction, our method is to use
inductive reasoning in a meta-layer. The latter method can be extended to check

or prove other properties.

We have shown examples of the use of the SL system in this thesis. In general,

the applications of the SL system could be the following:

— Language study:

People studying programming languages can use the SL systemn to understand the
language semantics and the evaluation of input terms. Given semantic rules, the
interpreters generated by the SL system can show how a term is evaluated. At
each step of reduction, the interpreter shows which rules are used and what the

position of the redex is.

145

Another student in our group had developed a GUI based on the SL system. The
GUI makes it more convenient to use the SL system and makes it clearer to view
the evaluation of terms. Multiple windows are used in the GUI. There are win-
dows for editting semantic rules and input terms. When the evaluation button or
the step-by-step reduction button is pressed, a new window will pop-up with the
reduction sequence. The evaluation contexts and redexes are shown with different
colors for each step. When the semantic rules are changed, one can instantly see

the change in evaluation.

— Prototyping compilers/interpreters:

Because the interpreters are generated automatically, the SL system is a good
candidate for prototyping compilers/interpreters. One only needs to represent the
abstract syntax and semantic rules in the SL language. If concrete syntax needs

to be addressed, a parser to parse a program to an abstract term is also needed.

— Code generation:

The SL system is not only for generating interpreters. If a process can be ab-
stracted into rules, the SL system can generate code for such a process. For ex-
ample, the transformation between two data-structures can normally be specifed
with rules, hence code for a such transformation can be easily obtained by using

the SL system.

Future work

The SL system is still in an experimental system. Future work can address the

following areas:

146

- Specification Languages:

More features can be added to the SL language. Some important notions such as
normal forms and term graphs can be added. In addition, SL specifications could
be made modular, so that it would be easy to import or export data-types and
rules. Additional built-in constructs, such as sets, stacks, and hash tables could
also be considered. These constructs could make SL more powerful for specifying

complicated data-types.

~ More efficient compilation:

The pattern matching algorithm described in Chapter I is efficient for one-step re-
duction. But after a reduction occurs, matching for the next step has to begin from
scratch. It would be more efficient if the intermediate results of pattern matching
from the previous step could be saved and used for the next step. The implemen-
tation used for automatically proving decomposition and subject reduction also

need efficiency improvement.

- Code optimization:

There is plenty of room for optimizing the generated code, which is not the focus
of the current SL system. For example, many functions corresponding to some
states can inlined. This would make the generated code more readable and im-

prove the performance of the generated executable.
— Property Checking:

Other properties could be considered. The meta-layer framework used for proving
subject reduction needs to be tuned to be more general. Other methods could also

be explored for performing the automatic checking/proving of properties.

147

APPENDIX

THE SL LANGUAGE

We describe a BNF of the SL language in this appendix, where program is the

start non-terminal. The following are the notations used for the BNF:

- Texts enclosed between *** 's are terminals.

— Texts enclosed between “<” and “>" are non-terminals.

— Texts enclosed between “/*” and *“* /" are comments.

- “{ part }*" means zero or multiple concatence of the part.

- “{ part }?" means zero or one occurence of part.

The BNF of the SL language:

program = ‘SIGNATURE:' <signature_part>

' SPECIFICATION: * <specification_part>

signature_part = {<sigtype_decls>}* <startfrom_phrase>

{<sigtype_decls>}*

sigtype_decls

‘type’ <sigtype_decll> {and <sigtype_decll>}* *;;’

sigtype_decll

{*7'ident, ..., '‘‘ident} ident ‘==' <sigtype_expr>

148

| {*"'ident, ..., '’'‘ident} ident '='

<constr_defl> ('|' <constr_defl>}*
constr_defl = ident ‘of’' <sigtype_expr>
sigtype_expr = '‘‘ident
| {<sigtype_expr>}* ident
| <sigtype_expr> { '*’' <sigtype_expr> }*
| (' <sigtype_expr '}’

startfrom_phrase = ‘startfrom <sigtype_expr> ';;’

specification_part =

<type_decl_phrase> /* see caml-light */

| <exception_phrase> /* see caml-light */
| <letdef_phrase> /* see caml-light */
| <expr_phrase> /* see caml-light */
| <direction_phrase> /* see caml-light */

| <dynamic_decl_phrase>
| <context_decl_phrase>
| <axiom_phrase>

| <inference_phrase>

| <strategy_phrase>

dynamic_phrase = ‘dynamic’ <dynamic_decll>

{'and’ <dynamic_decll>}* ';;"

149

dynamic_decll = ident '=' <dyn_expr> { ‘|’ <dyn_expr> }*
dyn_expr = <constant:>

| 1_1

| ident /* type name */

<constructor> { <dyn_expr> }* /* including list_cons */
<dyn_expr> { ‘,' <dyn_expr> }*
l(l <dyn_expr I)l

'[* { <dyn_expr> {’;’ <dyn_expr>}* }? ']’

context_phrase = ‘context’ <context_decli>

{ 'and’ <context_declls> }* *;;’

context_decll = ident ‘=’ <ctxt_expr> { '|’ <ctxt_expr> }*
ctxt_expr = <constant>

Ir '

| ident /* type name */

<constructor> { <dyn_expr> }* /* including list_cons */
<ctxt_expr> { *,’' <ctxt_expr> }*

"' <gtxt_expr> ‘)’

[{ <ctxt_expr> (';' <ctxt_expr>}* }? '1’

'BOX’

context_name <ctxt_expr> /* context apply */

150

axiom_phrase = ’'axiom’ {ident}? {'with’ ‘startfrom’}? ’:‘
<axiom_item> { ‘|’ <axiom_item> }* ';;°’
axiom_item = <lhs> <condition> ’'==>‘ <rhs>

lhs = ...patterns allowed in caml-light, except record pattern...

| (' <lhs> ":’ <dyn_name> ‘)’
/* lhs should be wild or var */
| *(’ <lhs> ’:* <ctxt_name> '}’
/* lhs should be wild or wvar */
| "{’ <lhs> ':’ ‘dynamic’ <dyn_expr> ')’
/* lhs should be wild or var */
| *(’ <lhs> *:’' ’'context’ <ctxt_expr> ‘)’
/* lhs should be wild or var */
| <lhs> <lhs>

/* the left <lhs> should be a context constraint */

condition = /* epsilon */

| 'when’ <expression>

rhs = <expression>

inference_phrase =

‘inference’ {ident}? {‘with‘’ ‘startfrom’'}? *':‘

<infrence_item> { '|’ <inference_item> }* ';;’

151

inference_item =

e ' /* any number greater than 4 */

<lhs> <condition> ‘==>‘ <rhs>

strategy_phrase = 'strategy’ {<strategy_specl>}+

strategy_specl = leftmost | rightmost

| topdown | bottomup

| innermost | outermost

152

BIBLIOGRAPHY

[AB97] Zena M. Ariola and Stefan Blom. Cyclic lambda calculi. In the International
Symposium on Theoretical Aspects of Computer Software (TACS), 1997.

[AF97] Zena M. Ariola and Matthias Felleisen. The call-by-need lambda calculus. J.
Functional Programming, 7(3), 1997.

[AFM*95] Zena M. Ariola, Matthias Felleisen, John Maraist, Martin Odersky, and
Philip Wadler. A call-by-need lambda calculus. In the ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, pages 233-246. ACM
Press, New York, 1995.

[ASU85] A. Aho, R. Sethi, and J. Ullman. Compilers—Principles, Techniques, and
Tools. Addison-Wesley, Reading, Mass., 1985.

[Bar84] Hendrik Pieter Barendregt. The Lambda Calculus: Its Syntax and Semantics,
volume 103 of Studies in Logic and the Foundations of Mathematics. Elsevier
Science Publishers B.V., Amsterdam, revised edition, 1984.

[BBKM93] David A. Basin, Alan Bundy, Ina Kraan, and Sedn Matthews. A framework
for program development based on schematic proof. In Proceedings of the 7th
International Workshop on Software Specification and Design, pages 162-171.
IEEE Computer Society Press, 1993,

[BCD*88] P. Borras, D. Clement, Th. Despeyroux, J. Incerpi, G. Kahn, B. Lang, and
V. Pascual. Centaur: the system. In Proceedings of SIGSOFT’88, Third Annual
Symposium on Software Development Environments (SDE3), Boston, USA, 1988.

[BH91] Rod Burstall and Furio Honsell. Operational semantics in a natural deduction
setting. In Gérard Huet and Gordon Plotkin, editors, Logical Frameworks, pages
185-214. Cambridge University Press, 1991.

[C*86] Robert L. Constable et al. Implementing Mathematics with the Nuprl Proof
Development System. Prentice-Hall, Englewood Cliffs, New Jersey, 1986.

[Cam] The CAML Language Homepage http://caml.inria.fr/.

[CDG*99] Hubert Comon, Max Dauchet, Remi Gilleron, Florent Jacquemart, Denis
Lugiez, Sophie Tison, and Marc Tommasi. Tree Automata Techniques and
Applications. Book draft available at http://www.grappa.univ-lille3.fr/tata, April
1999.

153

[Coq]l The Coq Project Homepage http://pauillac.inria.fr/coq.

[DFH+93] Gilles Dowek, Amy Felty, Hugo Herbelin, Gérard Huet, Chet Murthy,
Catherine Parent, Christine Paulin-Mohring, and Benjamin Wemer. The Coq
proof assistant user’s guide. Technical Report Rapport Techniques 154, INRIA,
Rocquencourt, France, 1993. Version 5.8.

[DPS97] Joélle Despeyroux, Frank Pfenning, and Carsten Schitrmann. Primitive
recursion for higher-order abstract syntax. In R. Hindley, editor, Proceedings of
the Third International Conference on Typed Lambda Calculus and Applications,
pages 147-163, Nancy, France, April 1997. Springer-Verlag, Berlin.

[ELA] The ELAN System Homepage http://www.loria.fr/ELAN.

[FB97] Manuel Fahndrich and John Boyland. Statically checkable pattern abstractions.
In the ACM SIGPLAN International Conference on Functional Programming,
pages 75-84. ACM Press, New York, 1997.

[FLS99] John Fiskio-Lasseter and Amr Sabry. Putting operational techniques to the
test: A syntactic theory for behavioral Verilog. Electronic Notes in Theoretical
Computer Science, 26:32-49, 1999. Third International Workshop on Higher
Order Operational Techniques in Sernantics.

[Gar92] Philippa Gardner. Representing Logics in Type Theory. PhD thesis, University
of Edinburgh, July 1992. Available as Technical Report CST-93-92.

[GS84] Ference Gécseg and Magnus Steinby. Tree Automata. Akadémiai Kiado,
Budapest, 1984.

[HHP93] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining
logics. Journal of the Association for Computing Machinery, 40(1):143-184,
January 1993,

[HM89] John Hannan and Dale Miller. A meta-logic for functional programming. In
H. Abramson and M. Rogers, editors, Meta-Programming in Logic
Programming, chapter 24, pages 453-476. MIT Press, 1989.

[How80] W. A. Howard. The Formulae-As-Types Notion Of Construction. In J. P,
Seldin and J. R. Hindley, editors, To H. B. Curry: Essays on Combinatory Logic,
Lambda Calculus and Formalism, pages 479-490. Academic Press, Inc., New
York, N.Y., 1980.

[HU79] J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages, and
Computation. Computer Science. Addison-Wesley, 1979.

154

[Isa] The Isabelle System Homepage http://www.cl.cam.ac.uk/Research/HVG/Isabelle.

[Kah87] G. Kahn. Natural semantics. In Proc. STACS, volume 247 of Lecture Notes in
Computer Science, pages 22-39. Springer-Verlag, Berlin, 1987.

[Ler90] X. Leroy. The Zinc experiment: An economical implementation of the ML
language. Technical Report 117, INRIA, 1990.

[IPr] The AProlog System Homepage http://www.cse.psu.edu/~dale/lProlog.

[LS97] John Launchbury and Amr Sabry. Monadic state: Axiomatization and type
safety. In the ACM SIGPLAN International Conference on Functional
Programming, pages 227-238. ACM Press, New York, 1997.

[Mar94] Luc Maranget. Two techniques for compiling lazy pattern matching. Research
report 2385, INRIA, 1994.

[Mas99] Ian A. Mason. Computing with contexts. HIGHER ORDER SYMBOLIC
COMPUTATION, 12(2):171-201, September 1999.

[Mil89] Dale Miller. A logic programming language with lambda-abstraction, function
variables, and simple unification. In Peter Schroeder-Heister, editor, Proceedings
of the International Workshop on Extensions of Logic Programming, pages
253-281, Tiibingen, Germany, 1989. Springer-Verlag LNAI 475.

[MK98] Pierre-Etienne Moreau and Héléne Kirchner. A compiler for rewrite programs
in associative-commutative theories. In “Principles of Declarative
Progranuning”, number 1490 in Lecture Notes in Computer Science, pages
230-249, Springer-Verlag, September 1998. Report LORIA 98-R-226.

[MN94] Lena Magnusson and Bengt Nordstrom. The ALF proof editor and its proof
engine. In Henk Barendregt and Tobias Nipkow, editors, Types for Proofs and
Programs, pages 213-237. Springer-Verlag LNCS 806, 1994.

[NM88] Gopalan Nadathur and Dale Miller. An overview of AProlog. In Kenneth A.
Bowen and Robert A. Kowalski, editors, Fifth International Logic Programming
Conference, pages 810-827, Seattle, Washington, August 1988. MIT Press.

[Nup] The Nuprl Project Homepage
http://simon.cs.cornell.edu/Info/Projects/Nuprl/nuprl.html.

[Pau90] Lawrence C. Paulson. Isabelle: The next 700 theorem provers. In P. Odifreddi,
editor, Logic and Computer Science, pages 361-386. Academic Press, 1990.

155

[PE88] Frank Pfenning and Conal Elliott. Higher-order abstract syntax. In the ACM
SIGPLAN Conference on Programming Language Design and Implementation,
pages 199-208, June 1988.

[Plo75] Gordon D. Plotkin. Call-by-name, call-by-value, and the A-calculus. Theoret.
Comput. Sci., 1:125-159, 1975.

[SS99] Miley Semmelroth and Amr Sabry. Monadic encapsulation in ML. In the ACM
SIGPLAN International Conference on Functional Programming, pages 8-17.
ACM Press, New York, 1999,

fstr] The Stratego System Homepage
http://www.stratego-language.org/Stratego/WebHome.

[Twe] The Twelf System Homepage http://www.cs.cmu.edu/~twelf.

[Vis01] Eelco Visser. Stratego: A language for program transformation based on
rewriting strategies. System description of Stratego 0.5. In A. Middeldorp,
editor, Rewriting Techniques and Applications (RTA'01), volumne 2051 of Lecture
Notes in Computer Science, pages 357-361. Springer-Verlag, May 2001.

[WF94] Andrew K. Wright and Matthias Felleisen. A syntactic approach to type
soundness. Inf. Comput., 115(1):38-94, November 1994.

	DIS_E1
	DIS_E2

