WINDOW-BASED PROJECT SCHEDULING ALGORITHMS

by

TRISTAN SMITH

A DISSERTATION

Presented to the Department of Computer
and Information Science
and the Graduate School of the University of Oregon
in partial fulfillment of the requirements
for the degree of
Doctor of Philosophy

June 2004

ii

“Window-Based Project Scheduling Algorithms,” a dissertation prepared by Tristan
Smith in partial fulfillment of the requirements for the Doctor of Philosophy degree
in the Department of Computer and Information Science. This dissertation has been

approved and accepted by:

i 61}1/.}»«-.._«

Dr. Christopher Wilson, Chair of the Examining Committee

TJuw {, 2z00¢
Date

Committee in charge: Dr. Christopher Wilson, Chair
Dr. Matthew Ginsberg
Dr. David Etherington
Dr. Andrzej Proskurowski
Dr. John Goodale

Accepted by:

T ir) A e,

Dean of the Graduate School

Copyright 2004 Tristan Smith

iii

iv

An Abstract of the Dissertation of
Tristan Smith for the degree of Doctor of Philosophy
in the Department of Computer and Information Science
to be taken June 2004

Title: WINDOW-BASED PROJECT SCHEDULING ALGORITHMS

Approved: 04/ @7[04 b () nr
6r. Christopher Wilson

The goal in project scheduling is to assign start times to activities so that all
constraints are satisfied and some objective function is optimized. A wide range of
real-world scheduling applications is matched by a variety of theoretical and experi-
mental results in Artificial Intelligence and Operations Research.

In this dissertation, we suggest a window-based approach to project scheduling.
Underlying this approach is the use of a generalized simple temporal problem (GSTP)
framework that allows us to maintain for each activity an interval of temporally fea-
sible start times, called a time window. We describe how windows can be maintained
during both schedule construction and local search and discuss the properties of time
windows for problems with both cyclic and acyclic constraint graphs.

We show that window-based search is effective for two very different problem
domains. The first is the resource constrained project scheduling problem with arbi-

trary temporal constraints (RCPSP/max). We present a new heuristic algorithm that

combines the benefits of squeaky wheel optimization with an effective conflict reso-
lution mechanism, called bulldozing, to address RCPSP/max problems. On a range
of benchmark problems, the algorithm is competitive with state-of-the-art systematic
and non-systematic methods and scales well.

The second problem for which we use window-based search is the labor cost op- -
timization problem (LCOP) where the objective is to minimize the total labor costs
(including wages, overtime, undertime, hire and fire costs). For the LCOP, simply
computing the objective function is time-consuming; we show how this computation
can be done quickly enough to be incorporated into search. We then describe the
ARGOS optimization tool, a collection of algorithms for the LCOP, and show how it
can produce significant cost savings over other available approaches on a number of
real-world problems. Finally, we describe SimYard, a simulation tool for a shipyard
environment, and use it to show that the theoretical cost savings of ARGOS schedules
should be matched by actual savings in a real-world setting.

This dissertation includes my co-authored materials.

CURRICULUM VITA

NAME OF AUTHOR: Tristan Smith
PLACE OF BIRTH: Newton, MA, U.S.A.

DATE OF BIRTH: September 23, 1975

GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED:

University of Oregon
Williams College

DEGREES AWARDED:

Doctor of Philosophy in Computer and Information Science, 2004
University of Oregon

Bachelor of Arts in Mathematics, 1998, Williams College

AREAS OF SPECIAL INTEREST:

Project scheduling
Search
Optimization

PROFESSIONAL EXPERIENCE:

Software Engineer, On Time Systems, Inc., 2000 - present
Mathematics Teacher, Casablanca American School, 1998 -2000
Teaching Assistant, Williams College Mathematics Dept., 1997-1998
Researcher, SMALL Undergraduate Math Research Program, 1997

Wi

vii

AWARDS AND HONORS:

Sigma Xi Associate Membership, 1998 - present

Phi Beta Kappa Society Membership, 1998 - present

Sam Goldberg Prize in Mathematics, Williams College, 1998
Witte Problem Solving Award, Williams College, 1998
Governor General’s Award, 1994

Matheson Cup for Leadership, 1993

PUBLICATIONS:

Tristan B. Smith and John M. Pyle. An effective algorithm for project
scheduling with arbitrary temporal constraints. In Proceedings of
the Twenty-first National Conference on Artificial Intelligence (AAAI-
2004) (to appear), San Jose, July 2004. AAAI Press.

Tristan B. Smith. The Planarity of Subgraphs in Quter-facial Drawings.
Senior honors thesis, Williams College, 1998.

viii

ACKNOWLEDGMENTS

I am grateful for the contributions that so many people have made fo this project. 1
would particularly like to thank Matt Ginsberg. I wouldn’t have considered tackling a
Ph.D. without his encouragement and couldn’t have completed it without his guidance
and support. I have been very fortunate to have Matt as an employer, adviser, and
friend.

Thanks to everyone on my committee. Andrzej Proskurowski and John Goodale
brought different perspectives to my research area. Chris Wilson served on all three
of my committees and agreed to be the Chair of my dissertation committee; [enjoyed
spending time discussing my research with him. David Etherington was also on all
three committees and his thoughtful and detailed suggestions helped me improve the
final version considerably.

Thank you to all of the people, past and present, at CIRL and OTS who have
contributed, each in their own way, to my work. Discussions, both in Friday meetings
and in hallways, have been invaluable. Andrew Baker and John Pyle directly con-
tributed to the work in this dissertation while Bryan Smith and Najam Ul-Haq each
worked on the ARGOS project at one time or another. Bud Keith helped me figure
out object oriented programming and get the ARGOS project started on the right
foot. Richard Jones read an early draft and gave me suggestions. Matthew Austin,
Laurie Buchanan and Pat Sullivan keep the whole place running. I owe a tremen-
dous amount to Heidi Dixon and Andrew Parkes for their guidance and friendship
throughout my graduate school experience.

My life over the past three years has had the biggest impact on, and has been
most improved by, Kate. I thank her for everything.

To family

TABLE OF CONTENTS

Chapter

1. INTRODUCTIONo i@ o fas ob o

1.1 OVeIVIEW . . . o o e e e e e e e e e e e e e e e e e e e
1.2 Outline . . . 1. v v o o e e e e e e e e e e ... SRR ORGSR A0 N

2. BACKGROUND o e

2.1 Introduction i e e e e e e e
2.2 Problem Definition
221 ProblemClasses
2.2.2 Objective Functions
223 Complexity o e
2.3 Classification of Scheduling Algorithms
2.3.1 Chronological Scheduling
2.3.2 Order-Based Scheduling
2.3.3 Disjunctive Scheduling
2.3.4 (CSPs and Constraint Propagation
2.4 Window-Based Search

3. MAINTAINING TIME WINDOWS FOR REAL-WORLD PROBLEMS

3.1 Solvingthe GSTP e
3.1.1 Time Windows: The General Case
3.1.2 Time Windows: The AcyclicCase
3.2 Time In Project Management Systems
321 Time e
3.2.2 Temporal Constraints
323 Calendars e
3.3 Adapting the GSTP Framework to PMS Problems
331 TheBasicSetup,
3.3.2 The Building Blocks for Edge Functions
3.3.3 The Edge Functions of the GSTP

xi

334 TimeWindows 45
3.4 Maintaining Windows for Acyclic Problems 46
3.4.1 Window Initialization 46
3.4.2 Windows During Schedule Construction 47
3.4.3 Windows During Schedule Deconstruction 51
3.5 Maintaining Windows for Cyclic Problems 56
3.5.1 Window Initialization 56
3.5.2 Windows During Schedule Construction 58
3.5.3 Windows During Schedule Deconstruction 59
3.6 OtherIssues 61
3.6.1 FixedStart Times 61
3.6.2 Stretchable Activities 61
3.6.3 Splittable and Elastic Activities 62
3.7 Related Work 63

. AN ALGORITHM FOR MAKESPAN MINIMIZATION WITH ARBI-

TRARY TEMPORAL CONSTRAINTS 67
4.1 Introduction 67
4.2 The RCPSP/max Problem 69
4.3 Solving RCPSP/max Problems 69
4.3.1 Time Windows and Constraint Propagation 69

4.3.2 Squeaky Wheel Optimization 71

433 Bulldozing 00, 74

434 Refilling o 77

44 Experimental Results 78
4.4.1 Quality of the Greedy Constructor 80

44.2 Benchmark Results 81

4.4.3 Generalizing SWO(B,R) 84

4.5 Conclusions i e 85
. MINIMIZING LABORCOSTS 87
5.1 Introduction e 87
5.2 Labor Costs Given Staffing Levels 89
5.3 The LCOP e e ettt 91
5.4 Using Dynamic Programming to Minimize Labor Costs 32
5.4.1 Calculating the Optimal Staffing Profile 95

5.5 Improvements Over Basic Dynamic Programming 97

5.5.1 Calculating the Optimal Staffing Profile 105

56 A Final Improvement,
5.7 Using Dynamic Programming During Search
58 OtherIssues i e
5.81 Penalty Costs
582 UnresolvedIssues.
58.3 Additional Notes
59 Related Work

6. ARGOS: AN ALGORITHM FOR LABOR COST OPTIMIZATION

6.1 Introduction
6.2 The Techniques it ..
6.2.1 Schedule Construction
6.2.2 Polishing
6.23 Morphing L o
6.2.4 Simulated Annealing 0.
6.3 ARGOS e
6.4 Additional Noteso
6.41 Bulldozing
642 LocalSearch
6.4.3 Activity Orderings
6.4.4 Additional Functionality
6.4.5 Possible Algorithmic Modifications

7. ARGOS EXPERIMENTAL RESULTS

7.1 Introduction e e e e e e e
7.2 Problem Sets e e e e
7.3 ARGOS Settings« o o i i i
74 BasicResults e
7.5 Where Does The Time Go?
76 AnExampleinDepth.

7.6.1 Float @ e
7.7 A Comparison With Indirect Optimization
7.8 ARGOS on RCPSP/max Problems
7.9 Conclusions e e e e e e e e e

8. SIMYARD: THE EFFECTS OF REAL-WORLD COMPLICATIONS . .

xii

108
112
114
117
120
121
122

124

124
125
125
126
126
128
129
130
130
132
134
135
136

137

137
138
139
140
147
150
154
157
159
161

163

xiii

8.1 How a Schedule Really Works 164
8.1.1 Problems 164

812 Solutions e 165

8.2 SimYard e e e e e e e 166
8.2.1 Parameters i e e 166

822 Pseudocode 167

8.3 Experimental Results 169
8.3.1 Are Better ARGOS Schedules Really Better? 174

8.4 Future Work e e e e e 177
8.5 Related Work e 179
9, CONCLUSION e e e e e e e e e e 181
9.1 SummAary i e e e e e e e e e e e 182
0.2 Contributions e e 183
9.21 The GSTP Framework 183

022 TheLCOP i e 183

923 Window-Based Search 184

9.2.4 Shipyard Simulation 185

9.3 Future Work e e e e e e 185
INDEX . . e e e e e e e e e e e e 187

LIST OF FIGURES

Figure
4.1 The third iteration of SWO finds a feasible schedule.
4.2 Bulldozing.
4.3 With refilling, A> and Az are bulldozed left and the makespan is reduced
fromBunitstod. e e e
4.4 The results of using the three constructors with each possible priority
order as described in Example4.3.3.
5.1 Anexample of a PWLC function.
5.2 Anexample of a PWLC function g, (p) (total-min-costs) for time ¢t updated
to produce a PWLC function go(p) (start-min-costs) for time ¢t + 1 as
described in the proof of Lemma 5.5.2.
5.3 PWLC functions representing the calculations of FIND-MIN-COST-FAST
for Example 5.4.1. The z-axis is the staffing level and the y-axis is cost.
5.4 A daily cost function with a maximum overtimerate.
5.5 Updating a PWLC function with a fractional inflection point when only
integer staffing levels are allowed.
7.1 Cumulative work levels: an ARGOS schedule compared with the original
NSCschedule. e
7.2 Work levels of resource 81: an ARGOS schedule compared with the orig-
inal NSC schedule.
7.3 Original schedule for resource 81 of problem NSC': work levels compared
with staffing levels.
7.4 ARGOS schedule for resource 81 of problem NSC': work levels compared
withstaffinglevels.,
7.5 Schedule quality by iteration for ARGOS4 with and without bulldozing.
7.6 Schedule quality over time for ARGOS4 with and without bulldozing. .
7.7 Cumulative work levels: 3 versions of ARGOS with different emphases on
float. e e
7.8 Work levels of resource 81: 3 versions of ARGOS with different emphases
onfloat. e
7.9 Total work broken down by the amount of float available for that work: 3
ARGOS schedules and the original NSC schedule. Work is divided into
buckets of size 10; the y-intercept values correspond to all work done with
1l0orfewerdaysof float.
8.1 Theoretical vs. actual costs of various N SC schedules with reduced penalty

cost (measured in $10,000s). L.

xiv

79

98

100

106
115

118
151
151
152
152
153
154

155

156

156

8.3

8.4

Theoretical vs. actual costs of various NSC schedules with original (high)

penalty cost (measured in $10,000s). 175
Theoretical vs. actual costs of various OB schedules with reduced penalty
cost (measured in $10,000s). L 176

Theoretical vs. actual costs of various OB schedules with original (high)
penalty cost (measured in $10,000s). 176

Table

4.1
4.2

4.3
4.4
5.1
5.2
5.3
5.4
7.1
7.2
7.3
7.4
7.5
7.6
7.7

7.8

7.9

7.10
7.11

7.12
8.1
8.2
8.3

8.4

xvl

LIST OF TABLES

Page
Benchmark names and characteristics. 80
Results of schedule construction with all priority queues for feasible J10
problems. e e 80
Results for benchmark problems. 83
Comparison of SWO(B,R) and SWO(B,R,G). 85
Calculation of project cost for Example 5.2.1 using (5.1). 91
Calculation of optimal cost for the work of Example 5.2.1. 95
Table 5.2 extended to allow an optimal staffing profile to be calculated. . 97
Various resource-based objective functions in the LCOP framework. . . . 123
Dataset characteristics. e 139
ARGOS results for problem OB. 141
ARGOS results for problem WY. 142
ARGOS results for problem NSC. 143
ARGOS results for problem KHOV. 144
ARGOS results for problem SC., 145
Best average ARGOS results: overall savings and savings without base
costs (excesscostsonly). L o 146
Profile results for ARGOS2, with and without bulldozing: the percentage
of overall run time spent in various pieces. 148
Two runs of float relative to a run without float. Savings on float and
other costs relative to the original schedule are presented for each run. . 155
Procrustesresults. e 158
Costs for Procrustes schedules {(negative values mean the Procrustes sched-
ule are more expensive than the original). 158
ARGOS results for RCPSP/max problems. 160
SimYard results (dollars). 171
SimYard results (percentages). 172
Cost savings before and after simulation (ARGOS schedules compared
with original schedules) as well as the decrease in savings. 173
Correlation coefficients between theoretical and actual costs. 174

CHAPTER 1

Introduction

We suggest a window-based approach to project scheduling. By maintaining a
window of feasible start times for each activity, search techniques can directly and
efficiently navigate and explore the space consisting of only time-feasible schedules.

For problems without resource constraints, this is exactly the space we wish to ex-
plore. For problems with resource constraints, resource conflicts can often be resolved
by moving directly to other time-feasible schedules in this space.

Using a window-based approach, a variety of objective functions can be addressed
and a variety of algorithms can be used. Constructive search is easy to implement
and can be augmented with local repair. Local search can explore the space directly
as the windows identify possible neighboring schedules that are achievable via small
or large-scale moves in the space.

Windows can be maintained efficiently, even when real-world temporal constraints
are involved. This allows for scalable algorithms that can be effective on large-scale

real-world problems.

1.1 Overview

A project consists of a number of activities, each of which uses resources during its
execution. The goal in project scheduling is to decide start times for the activities so

that all constraints are satisfied and a given objective function is optimized. Because

there are so many real-world applications, scheduling problems have been well-studied
by the Artificial Intelligence (AI} and Operations Research (OR) communities.

The scheduling algorithms in the literature can roughly be grouped into the fol-
lowing categories:

e Chronological scheduling approaches that step forward in time; at each time
point, a subset of activities is scheduled.

e Order-based scheduling where activities are prioritized and scheduled one at a
time in a greedy fashion.

e Disjunctive scheduling where activities are scheduled as early as possible and
conflicts are resolved by the addition of temporal constraints that force conflicts
to be avoided on subsequent iterations.

e Constraint-based scheduling where the focus is on search space reduction using
constraint propagation.

The above approaches have been applied successfully on the problems usually
addressed by the research community: problems of small size, straightforward con-
straints and regular objective functions. Unfortunately, real-world problems are often
much larger, involve more complex constraints and have nonregular objective func-
tions, and it is not clear how the above approaches will generalize to real-world
settings.

In this dissertation, we suggest a window-based approach to scheduling. It relies on
a generalized simple temporal problem (GSTP) framework that allows us to maintain
an interval of temporally feasible start times for each activity, called a time window.
QOur GSTP framework differs from current approaches in the types of constraints that
can be modeled. One important benefit is the ability to handle the calendar issues
of commercial project management systems. We describe how to maintain windows
during schedule construction, schedule deconstruction and local search and discuss
the properties of time windows and how those properties differ between problems
with cyclic and acyclic constraint graphs.

Resource-constrained project scheduling problems with arbitrary temporal con-
straints (RCPSP/max) are an important generalization of standard job-shop prob-

lems. Approaches for RCPSP/max problems with the goal of minimizing project

duration (minimizing makespan) have been developed by both the Al and OR com-
munities. We describe a non-systematic hybrid algorithm called SWO(B,R) that,
on a number of RCPSP/max benchmark suites, is competitive with state-of-the-art
approaches and scales well. SWO(B,R) combines squeaky wheel optimization, an
order-based algorithm, with an effective window-based conflict resolution mechanism,
called bulldozing.

While makespan minimization is the most commonly studied scheduling objective,
a more important objective in many real-world projects is the minimization of cost {of
which makespan might be a component). When labor is an important resource, extra
costs are incurred for overtime, undertime (workers paid when no work is available),
hiring and firing. We define the labor cost optimization problem (LCOP), whose goal
is the minimization of these excess costs. The LCOP subsumes a number of recently
considered problems with resource-based objective functions.

For an LCOP instance, evaluating the objective function for a schedule requires
finding the optimal staffing levels for that schedule; calculating these levels can be
done with dynamic programming. We formally present the work of Andrew Baker who
observed properties of this dynamic programming approach that allow for an efficient
implementation of it. We then present the ARGOS algorithms that take advantage of
this implementation to heuristically solve LCOP problems. The ARGOS algorithms
are window-based and built upon a GSTP foundation. We show how ARGOS can
produce less expensive schedules than existing techniques for a number of real-world
problems.

Although ARGOS produces schedules that are significantly cheaper in theory, it is
important to understand how the theoretical costs will be affected by reality. A real-
world project differs significantly from its theoretical representation, both because the
details will not all be represented correctly and because unpredictable disturbances
invariably occur in the real world that require schedule modifications. To help un-
derstand these effects, we describe SimYard, a simulation tool that is an attempt to
incorporate real-world issues into a shipyard model. SimYard takes schedules as input
and outputs their expected costs. We use SimYard to show that, despite real-world

complications, ARGOS schedules can be expected to reduce shipyard costs.

1.2 Outline

Chapter 2 provides background concerning project scheduling problems, objective
functions, and complexity. A survey of scheduling algorithms is provided and the
proposed window-based alternative is introduced.

Chapter 3 introduces the GSTP framework for maintaining time windows, de-
scribes the associated algorithms and shows how the GSTP framework can be used
to model the temporal issues of standard commercial project management systems.

Chapter 4 describes the SWO(B,R) algorithm for RCPSP/max problems and
compares experimental results with the best results reported in the literature. This
chapter is based on material co-authored with John Pyle that is in press [90].

Chapter 5 formalizes the LCOP, describes Andrew Baker’s dynamic programming
algorithms for effectively computing labor costs and shows how this dynamic pro-
gramming approach can be used within search algorithms.

Chapter 6 describes the ARGOS algorithms that take advantage of the dynamic
programming techniques discussed in Chapter 5. Experimental results from applying
ARGOS to a number of real-world problems are then presented in Chapter 7.

Chapter 8 outlines real-world issues that arise in scheduling, presents the Sim-
Yard simulation system, and discusses how real-world issues are handled in SimYard.
Experimental results are given using SimYard to evaluate the schedules produced by
ARGOS.

Finally, chapter 9 reviews the contributions of this dissertation and suggests pos-

sible extensions and future work.

CHAPTER 2

Background

2.1 Introduction

Project scheduling is the allocation of resources and times to activities in a plan.
Scheduling problems arise in an enormous range of fields, including manufacturing,
construction, distribution, software development, transportation and a number of
space applications. Research has been done in a wide variety of settings including
manufacturing, government, scheduling software companies and academia (in depart-
ments that include computer science, mathematics, business, management science,
operations research and engineering).

The approaches taken to tackle scheduling problems in both Operations Research
(OR) and Artificial Intelligence (Al) are as varied as the problems themselves. Ex-
act or systematic approaches search for optimal schedules. While they achieve the
highest solution quality, they rarely scale well and are limited to very small problems.
Non-systematic or heuristic algorithms sacrifice optimality but attempt to find good
solutions quickly. Finally, local search is a heuristic approach that improves solutions
by iteratively considering nearby solutions in the search space and selecting ones that
are better.

In Section 2.2, we define the scheduling problem and discuss problem classes,
objective functions and complexity. In Section 2.3, we overview the history and

current state of scheduling research by describing the main approaches used in the

literature.! Finally, Section 2.4 contains a brief description and discussion of the

window-based approach we use in this dissertation.

2.2 Problem Definition

The input to a scheduling algorithm includes information about activities, re-
sources and constraints. Given this input, the goal of scheduling is to produce a
schedule that specifies when activities will be started so that all constraints are sat-
isfied and some objective function is maximized or minimized.

For the purpose of this dissertation, we can break a scheduling problem into the

following pieces:

Activities: A = {A,,..., A,} Also called jobs, operations or tasks, these are the
pieces that must be done to complete the schedule.

Resources: R = {Ry,..., Rm} These are the resources required to complete activities.
Execution of each activity A; requires an amount r;. of resource % for each time
unit of execution.

We consider only renewable resources; when an activity finishes, the resources
it used become available for other activities. Common examples of renewable
resources include machines, facilities, equipment, space and people.

Constraints: These are rules or restrictions that limit the possible arrangements of
the activities and can be divided into two types:

1. Resource constraints limit the capacity of resources. For example, there
may only be a certain number of machines or people available to work on
activities at any given time.

2. Temporal constraints restrict the times at which activities can be sched-
uled. A unary constraint restricts a single activity, usually with a release
time (the earliest possible start time) or a deadline (the latest possible
finish). A binary constraint (or precedence constraint) restricts the rela-
tive start times of a pair of activities. For example, we would probably
require that an activity that paints a room be scheduled after an activity
that installs the walls. A minimum time lag between A; and A; imposes
a minimum amount of time that must pass between execution of A; and

n addition to the general background provided here, later chapters discuss details concerning
background in particular areas relevant to those chapters.

A;. A maximum time lag is the opposite; it imposes a maximum amount
of time that can pass between A; and A;.

A schedule S is an assignment of a value to the start time start,, of each ac-
tivity, A;. A schedule is time-feasible if it satisfies all temporal constraints and is
resource-feasible if it satisfies all resource constraints. A schedule that satisfies all

constraints is feasible.

2.2.1 Problem Classes

A number of problem types and problem classification schemes appear frequently
in the literature. In the OR community, the classification scheme of Brucker [15] has
been widely used. Others are described by Herroelen et al. [50] and Tzafestas and
Triantafyllakis [95].

The problems that have received the lion’s share of attention over the past 50
years are job shop problems. An n * m problem contains n jobs (activities) and m
machines (resources). Each job j consists of n; operations {01, ..., 0, }. Precedence
relations form a chain between all of the operations of each job. So, for job j, the
precedence relations will be 0;; — 0j2 — ... = 0js,. Consecutive operations of a
job are processed by different resources. Each resource R; has a capacity ¢; = 1 (a
machine can perform a single operation at a time).

Job shop problems have a huge number of variants including general shop, flow
shop, open shop and mixed shop problems.

The resource constrained project scheduling problem (RCPSP) is a proper
generalization of job shop problems. Each R; has some capacity ¢; for the duration
of the schedule (where we no longer require ¢; = 1). In addition, each activity can
require any quantity of any number of resources (unlike job shop problems where each
activity requires a single unit of a single resource).

Finally, the resource constrained project scheduling problem with arbi-
trary temporal constraints (RCPSP/max) is a generalization of the RCPSP in
which the temporal constraints include both minimum and maximum time delays be-

tween activities. The addition of maximum time delays makes a problem much more

difficult to handle and solve. In Chapter 3, we show that allowing maximum time
delays is equivalent to allowing cycles in a problem’s constraint graph and discuss the

important differences between cyclic and acyclic constraint graphs.

2.2.2 Objective Functions

Recall that scheduling is an optimization problem. Therefore, there is some ob-
jective function f(S) that serves to measure the quality of any schedule S. The goal

is then to find a schedule that minimizes or maximizes f(.S).

Definition 1. An objective function f(S) is regular if for any feasible schedules S
and S’ in which each activity A; has start times starty, < start),, f(S) < f(5') (or
F(S) = f(S') if the objective is to mazimize). That is, if all activities start at least
as early in S as they do in §', S will be at least as good a schedule. A nonregular

objective function is one that is not regular.

The majority of scheduling research has focused on regular objectives. By far
the most common of these is makespan minimization: shortening the schedule length
or duration. One reason for this is that project makespans are simple to calculate
and compare. Another is momentum in the scheduling community; if most work has
focused on makespan, the only way for a new approach to be comparable is for it also
to consider makespan.

This focus has been somewhat misguided as makespan minimization is an appro-
priate objective in only a small number of real-world scenarios. This problem has
not gone unnoticed. In his 1974 book, K. R. Baker brought up “the disproportionate
attention that researchers have paid to the makespan problem”[5]. Almost a quarter
century later, Beck and others echoed that concern: “It is unclear whether our pre-
occupation with makespan has allowed us to make many in-roads into the realities of
scheduling problems that have existed for decades in industrial settings” [11].

Here are a few other common regular objectives:

o Maximize throughput: a factory may want to maximize the amount it can
produce in any given time period.

e Minimize tardiness: if deadlines must be missed, the number missed should be
minimized. Weighted tardiness is an extension where some deadlines are more
important than others.

e Minimize maximum lateness: in make-to-order production, no delivery date
should be missed by too much.

While regular objectives have received most of the attention, some nonregular

objectives are mentioned in the literature. Here are a few:

e Minimize work in progress (WIP): for a variety of reasons, factories may not
want a lot of partially finished jobs lying around.

e Minimize waiting times: in a steel making plant, for example, it is extremely
costly to keep molten steel heated between operations [80]. Similar issues arise
in semiconductor manufacturing [34].

e Maximize net present value (NPV) [48, 60, 75]: if a project has significant cash
flow during the project, in terms of expenses for beginning certain activities and
income for completing others, it may be important to maximize the amount of
cash on hand at various times during the project.

Notice that the above nonregular objectives are all based on the start times of
activities. It is possible for objectives to be based instead on how resources are used.
Recently, three types of resource-based nonregular objective functions have been tack-
led by the OR scheduling community (see Neumann et al. [74] for a good survey?). For
these problems, the objective functions no longer depend on how individual activities
are scheduled but on how they combine to use resources.?

The first is the resource investment problem (RIP) where the goal is to mini-
mize the sum (possibly weighted) of the maximum work levels over all resources. The
idea is that an investment in each resource has to be made that is proportional to the
maximum capacity that will be required.

The second is the resource leveling problem (RLP) of which there are three

varieties:

It is interesting that even here, half of the book is devoted to makespan minimization.

3Specifically, the contributions of individual activities to f(S) cannot be computed separately.

10

e Minimize the total squared utilization cost. This is the sum of the squares of
the work profile values where the work profile of a resource is the amount used
per time unit.

e Minimize the totel overload cost. Here each resource Ry, is given a threshold ¢,
above which a weighted cost is incurred per unit used.

e Minimize the total edjustment cost. Here costs are incurred for each increase
wi and decrease w;, in the work profile.

The third is the resource renting problem (RRP) [78]. Here, each resource R
is assigned a procurement cost cost}, for each increase in capacity and a renting cost
cost}, for each time unit of capacity (imagine, for example, a backhoe that costs 100
dollars to procure plus a rental cost of 20 dollars per day). This problem subsumes
the RIP since the RIP can be represented by setting cost], = 0 for each resource %.

If labor is a significant resource, minimizing labor costs is a reasonable goal.
Horowitz [51] discusses three variations of this goal, all of which are addressed by
the above three problem classes. In fact, the goal of the RLP is often expressed as
the indirect minimization of labor costs.

In this dissertation, we suggest a fourth resource-based objective whose goal is
to minimize labor costs directly. Labor costs include standard wages and overtime
costs as well as the costs to increase or decrease staffing levels. The labor cost
optimization problem (LCOP) has as a goal the minimization of the sum of these
costs and properly subsumes the above resource-based objectives. See Section 5.3 for
a formal definition of the LCOP and Section 5.9 for a comparison of the LCOP with

other resource-based objectives.

2.2.3 Complexity

There has been considerable research on the complexity of scheduling problems
[13, 15, 41, 55, 74]. Garey and Johnson [41] list a number of scheduling problems

known to be NP-complete.? Brucker’s book [15] contains tables of known complexity

4The authors, of course, are referring to the decision version of a problem whereas we usually
discuss the optimization version. The decision variant of a scheduling problem asks whether, given
some value v, there is a schedule S for which f(S) < v (or f({S) > v for a maximization problem).

11

results for scheduling problems and includes references to those who showed them. For
polynomially solvable problems, Brucker gives known upper bounds for the asymp-
totic complexity. The problems listed include many cases where small changes (a
different optimization goal, for example) will push a problem class from polynomially
solvable to NP-hard.

Only a tiny subset of scheduling problems are actually polynomially solvable.®
Good overviews of such problems and polynomial algorithms are given by Tzafes-
tas [95] and Karger [55]). These two papers also discuss pseudo-polynomial algorithms
and approximation algorithms (algorithms that are guaranteed to arrive within a cer-

tain percentage of the optimal value) for some problems that are NP-hard.

Scheduling problems tend to be difficult, not just in theory, but in practice as well.
Applegate and Cook note that the job shop problem is “not only NP-hard, it also
has the well-earned reputation of being one of the most computationally stubborn
combinatorial problems to date”[1]. In 1963, a book by Muth and Thompson [72]
introduced a ten machine, ten job problem that took the OR community more than

20 years of hard work to solve.®

The two specific scheduling problems we consider in this dissertation are both
NP-hard. RCPSP/max problems properly subsume a number of job shop problems
that are known to be NP-hard [41] while LCOP problems subsume the other three
problems with resource-based objective functions (the RIP, RLP and RRP) that are
also known to be NP-hard [74].

Finally, it is worth noting that, for the RCPSP/max, the problem of simply finding
a feasible solution is NP-hard [23].7

5For example, the job shop problem with at most 2 resources where each activity has duration 1
and the goal is makespan minimization.

61t has since become clear that this problem isn't even a particularly difficult one!

TThis differs from many scheduling problems, for which feasible schedules are easy to find but
optimal ones are not.

12

2.3 Classification of Scheduling Algorithms

Most search algorithms fit cleanly into a tree search framework.? Each node in the
tree corresponds to a branch point; at each node a decision is made that determines
which branch is selected. The leaves of the tree correspond to potential schedules.

In this section, we classify scheduling algorithms into four groups according to
general approach. For each, we describe how it fits into the tree search framework. In
addition, we highlight some specific algorithms that have been developed using that

approach.

2.3.1 Chronological Scheduling

An iteration of a chronological scheduling algorithm takes the following form:

CHRONOLOGICAL-SCHEDULING
1 U = set of unscheduled activities

2 while U#0
3 do select the next relevant time ¢
4 schedule a subset of U at ¢ and reduce U accordingly

Each £ is a branch point and the decision at each branch point is the subset of
activities to schedule at t. This is also referred to as a parallel schedule generation
scheme[59, 74).

The most famous such algorithm is that of Giffler and Thompson [43] for job
shop makespan minimization problems. They begin with all activities scheduled as
early as possible. They then step through the relevant time points (given by the
completion times of activities) and at each such ¢ determine conflicts due to resource
constraints. In their search tree, each branch decision corresponds to the choice of
which activity involved in the conflict to leave at ¢; the rest are postponed. They
discuss variations of their algorithm for other problems (besides the job shop) and
different objective functions. Their algorithm has formed the basis for local search

using genetic algorithms {27, 97, 98].

8Local search is an important exception.

13

Chronological scheduling continues to be used in many algorithms. In fact, Bap-
tiste et al. claim that “Most search procedures for the RCPSP chronologically build a
schedule” [8, page 152]. Obviously, chronological scheduling can easily be used in both

systematic and non-systematic algorithms depending on how the search is structured.

2.3.2 Order-Based Scheduling

In an iteration of order-based scheduling (OBS), activities are greedily scheduled

one at a time according to their priority.

ORDER-BASED-SCHEDULING

1 fori=1ton
2 do select unscheduled A; with highest priority
3 schedule A; greedily

There is a branch point after each activity is scheduled and the decision at each
point is which activity to schedule next. OBS is also called priority-based scheduling,
list scheduling and a serial schedule generation scheme [59, 74].

In some cases, priorities are determined dynamically; in this case the next activity
to schedule depends on how other activities have been scheduled. Most often, however,
a priority order {(or queue) P is determined before scheduling begins. In this case, P
completely determines the resulting schedule since activities are scheduled greedily.
Therefore, P can serve as a stand-in for the schedule it will produce.

One of the oldest forms of OBS approaches is single-pass dispatch scheduling. Here
a single iteration of the ORDER-BASED-SCHEDULING procedure is run to construct
a schedule. Dispatch algorithms are easy to understand and implement and scale
well. They are also the algorithms used in most commercial project management
systems. The key to successful dispatch scheduling is the quality of the heuristics
used to determine priorities. Many such dispatch rules have been tried [5, 53, 55).
Karger and others [55] consider a few dispatch rules that are optimal for very simple
problems, and provably within a certain fraction of optimal for some others.

The problem with single-pass dispatch approaches, of course, is that they are not

particularly effective at optimization. For most problems, there is no priority rule

14

that is guaranteed to outperform others and the schedule quality produced by any
one heuristic is often quite problem dependent.

An obvious way to improve dispatching approaches is to run more than a single
pass. If the heuristic incorporates some randomness, multiple iterations with the
same heuristic will yield different schedules.

Multi-pass scheduling leads to other non-systematic or heuristic approaches that
search for orderings that produce high quality schedules. An example is squeaky wheel
optimization (SWO), where on each iteration, activities that are scheduled poorly are
moved toward the front of the priority order under the assumption that they will be
handled better when handled earlier [24, 54].

Most local search algorithms for scheduling use OBS techniques. In local search,
operators are defined that modify an existing schedule to produce neighbor schedules
in the search space. Because each priority order P can serve as a stand-in for a
schedule, a natural approach is to define neighborhood operators that modify P. For
example, in job shop scheduling, a common local search operator randomly exchanges
the order of two operations that use the same machine.

There are a number of local search approaches that have been applied to schedul-
ing problems. The simplest approach is to hill-climb in the search space by mov-
ing to neighbors with improved objective values until no such improvements can be
made [53].

Simulated annealing is a variation of hill-climbing where neighbors with less good
objective values are sometimes selected to keep the search from getting stuck in local
optima [13, 85).2

In Tabu search [46], memory is used to both guide search toward potentially
fruitful parts of the search space and to avoid previously visited areas [56, 74, 77, 100].
Blazewicz et al. [13] provide a good review of Tabu approaches in job shop scheduling
and describe six different neighborhood operators, all of which are different ways to

modify a priority order.

9In addition to swapping the order of activities, Sadeh et al. [85] also consider shifting activities
left or right as a neighborhood operator. This can affect the objective value because they consider
a nonregular objective function. Therefore, this approach is not purely an order-based one.

15

In genetic algorithms, populations of priority orders are evolved and mutated over
time [27, 86, 92, 97, 98].

Finally, OBS approaches are used in many of the branch and bound algorithms
of the OR community [74].

2.3.3 Disjunctive Scheduling

Each step in a disjunctive scheduling algorithm creates an early start schedule
(ESS).!® Before each step, temporal constraints are added to the problem to help
eliminate resource conflicts and another ESS schedule is produced. The process con-
tinues until a feasible!! schedule is produced. The constraints added are usually
precedence constraints between activities.

An iteration of disjunctive scheduling takes the following form:

Di1SIUNCTIVE-SCHEDULING

1 construct ESS S

2 while S is not feasible

3 do add temporal constraints to the problem
4 reconstruct ESS §

The branch point for this approach is a current set of constraints and the decision
at the branch point concerns which constraint(s) to add. This has been called a
precedence constraint posting approach [21, 25, 26].

Disjunctive scheduling originates in the job shop scheduling environment where
each machine can work on a single activity at a time. In this setting, for any pair of
activities in conflict, a branch decision corresponds to choosing which one will go first.
This approach is currently the most effective for systematic job shop algorithms [1, 18].

These ideas have been extended to other scheduling problems in a variety of ways.
For RCPSP and RCPSP/max problems, a common approach is to analyze the set of

activities that contribute to a resource over-allocation. A minimal critical set (MCS)

19Every activity is put at its earliest time-feasible start time.

1Even for problems where it is easy to find feasible schedules, this approach can be used to find
good feasible schedules.

16

X is a subset of the conflicting activities for which the combined requirements of
any X' C X is less than the resource capacity. Therefore, given any MCS, a single
precedence constraint between two of the activities in it will eliminate the resource
contention among the activities in the MCS. Notice that for job shop problems, an
MCS is simply a pair of activities and this approach is equivalent to basic disjunctive
scheduling,.

MCSs are introduced by Cesta et al. and used within non-systematic search [21,
23, 22|. Earlier work in the OR community developed similar ideas using the notion
of forbidden sets; sets of activities that cannot all overlap [9, 70]. Neumann et al. [74]
develop a number of branch and bound algorithms based on these ideas. Another
similar approach is the use of schedule schemes [14, 16]. The Tabu algorithm of
Baar [3] using schedule schemes is one of the few local search algorithms we have seen
that fits into the disjunctive scheduling framework.

Finally, a variation on disjunctive scheduling is to add unary temporal constraints
instead of binary ones. Fest et al. [35] impose temporary precedence constraints
by delaying activities involved in resource conflicts (the constraints are temporary
because the predecessor might be delayed in a subsequent iteration and the two may

end up overlapping again).

2.3.4 CSPs and Constraint Propagation

It quickly became apparent that constraints play a key role in scheduling. In Al,
a number of early approaches designed for real world problems were described as
constraint directed [36, 37, 83, 89]. However, this early real-world focus soon became
limiting. The burden of working with complex problems made implementation of,
and experimentation with, new ideas difficult.

At the same time, the importance of constraints was becoming apparent in a wide
range of other Al domains. Therefore, work in scheduling merged with work in other
areas under the umbrella of the constraint satisfaction problem (CSP) framework.
Within this framework, it became apparent that many general AI methods could

compete with and sometimes outperform specialized approaches to specific problems.

17

A CSP is described by a set of variables, each with a finite domain, and a set of

constraints that allow only certain combinations of values. A more formal definition
of a CSP is [45):

Definition 2. A CSP (V, D,C) consists of a set V of variables, a set D of variable
domains and a set C of constraints. Each variable v; € V has a finite domain
D; € D (D; = {Dy,...,Di}) of possible values. The set of constraints C consists
of pairs (J, P} where J = (j1, ..., jx) 18 an ordered subset of V and P is a subset of
Dy, x ... x Dy,

A solution contains, for eachv; € V, a value d € D; such that for every constraint
(J, P) of the above form in C, (d;,,...,d;,) € P.

The standard CSP approach for scheduling is to let variables represent the activity
start times; the domain of each variable is then its set of possible start times.

While the CSP definition doesn’t include an optimization function (it is designed
for decision problems), it can easily be extended with one, resulting in the constraint
optimization problem (COP).

A constraint graph can be associated with a CSP. In the constraint graph, each
node represents a variable and the edges represent constraints between variables.
Binary constraints are plain edges. For example, each precedence constraint would
induce an edge in the graph. Unary resource constraints (as in job shop scheduling)
induce an edge between each pair of activities that requires that resource (indicating
that no pair can be scheduled at the same time).

More general scheduling problems require more complicated constraints. For ex-
ample, in an RCPSP, a resource bound would be represented by a constraint restrict-
ing the sum of the resource usage over all activities using that resource. The resulting
constraint graph is a hyper-graph with hyper-edges that join groups of nodes.

The CSP framework provides a way to cleanly separate a problem’s representation
from the algorithms and heuristics used to solve it [81]. This allows a system to have
a flexible and extensible representation since any constraints are expressible and can
easily be included. Systems that have a CSP foundation include the commercially
available ILOG suite of tools [52] and the ODO framework that was designed as a

18
laboratory for studying and comparing scheduling algorithms [10].

Constraint Propagation

In general, a search algorithm for a CSP might consider every possible domain
value for every variable. Constraint propagation techniques allow many such values to
be ignored by recognizing implicit and explicit constraints in a problem. Constraint
propagation can be viewed as either the reduction of variable domains or as the
addition of extra constraints.

The goal of constraint propagation is to maintain a certain level of consistency
among the variable domains. We describe the notion of consistency with respect to

the constraint graph:

Definition 3. A constraint graph is node consistent if and only if all values in

each variable’s domain are consistent with unary constraints on that variable.

Definition 4. A constraint graph s arc consistent if and only if it is node consis-
tent'? and, in addition, all values in each variable’s domain are consistent with the

domains of all variables with which it shares an edge.

In scheduling, node consistency is achieved by limiting an activity’s start times to
those that satisfy unary constraints such as release times (earliest starts) or deadlines.
Arc consistency is achieved by the propagation of precedence constraints between

activities.

Example 2.3.1. Consider a CSP with two variables and constraints, vy # 0, vo # 0
and v; # vs. The domains D, = D, = {0} are not node consistent. Domains
D, = Dy = {1} are node consistent but not arc consistent. Domains Dy = Dy =
are both node consistent and arc consistent; this shows that a constraint graph can be
arc consistent but not solvable.

Notice also that domains D; = D, = {1,2} are arc consistent while domains

D) ={1,2} and Dy = {1} are not (v; =1 1s not consistent with any values in D).

1280me definitions of arc consistency do not require node consistency.

19

These concepts can be generalized using the following definitions:

Definition 5. A constraint graph is k-consistent if and only if we can choose any
value for k — 1 variables so that all constraints among those variables are satisfied,
and be guaranteed a value for any kth variable that satisfies all constraints among the

k variables.

Definition 6. A graph is strongly k-consistent if and only if it is j-consistent for
all j < k13

Note that node consistency is 1-consistency while arc consistency is strong 2-
consistency. There is one further form of consistency commonly maintained in prac-

tice:

Definition 7. A constraint graph is path consistent if and only if for any path
V1, ..., U 0 the graph and any values for v, and v, that satisfy the constraints between
v, and v, there will be values for vy through v, that satisfy the binary constraints

between each pair (v;,vi;,) in the path.

Many other varieties of consistency exist and a number of generic consistency
maintenance algorithms have been developed [4, 32, 62, 94].

If variable domains are ordered (as they are for scheduling problems when the
domain is a set of possible start times), an alternative to arc consistency is the

following:

Definition 8. A constraint graph is arc-B consistent if and only if the highest and
lowest values in each variable’s domain are pairwise-consistent with those values in

the domains of all variables with which it shares an edge.

Maintaining arc-B consistency can be done more efficiently since internal domain
values can be ignored. In addition, this allows time to be continuous in problem rep-

resentation even though the technical definition of a CSP requires discrete domains.

131t seems counterintuitive that a graph could be k-consistent but not (k — 1)-consistent, but
Tsang [94] cites the following simple example in which this occurs for £ = 3: V = {v1,v2,v3},
Dy = {r}, D; = {r,b}, D3 = {r}, and constraints require that v; # v, and vy 5 v;.

20

In most scheduling approaches, a domain of start times is therefore maintained as an

interval.

In the standard CSP approach, propagation achieves the desired level of consis-
tency before search begins. In addition, lookahead strategies can be used [62]; these
perform propagation at each node in the search (every time a variable is valued). This
results in further domain reductions due to valued variables. In Chapter 3, we describe

lookahead algorithms that maintain arc-B consistency for real-world problems.

Resource Constraint Propagation

In resource constrained problems, resource constraint propagation can significantly
reduce the search space. Within the past decade, much work has been done to find

algorithms that efficiently propagate resource constraints.

The simplest form of resource constraint propagation is timetabling, where inter-
vals of time are tested to see if the minimum resource requirements over that interval

eliminate possible start times from some activity domains [7, 8).

Another common form of resource constraint propagation is edge-finding, or en-
ergetic reasoning, where the ways that activities can be scheduled with respect to
one another are reduced {1, 7, 8, 18, 33]. The amount of resources used over various
intervals (the energy) is calculated in order to find activities that must be scheduled
before or after other subsets of activities. Notice that this is similar to the disjunc-
tive scheduling approaches mentioned above; the crucial difference is that here the

constraints are added only when they are necessary rather than as a branch decision.

The above propagation techniques, although much better for some problems, suffer
from high computation costs and limited applicability. Recently, Laborie [63] has
attempted to deal with the latter disadvantage by introducing resource constraint
propagation that depends on the relative positions of activities rather than absolute
position; while his approaches appear promising, it is unclear how effective they will

be in practice.

21

2.4 Window-Based Search

A central contribution of this dissertation is the suggestion that time windows can
be used as a basis for search. For each activity, A;, we maintain two time windows

during search:

1. The hard window, [hesy,, hiss,], contains the interval of time points ¢ for which
there exists a time-feasible schedule with A; starting at t. The hard window
will not change during schedule construction.

2. Given a partially constructed schedule, the soft window, [ses,, sls4,], contains
time points ¢ for which there exists a feasible schedule with each scheduled
activity A; starting at the current value of starts, and A; starting at i.

The hard window corresponds to the domain achieved by temporal arc-B consis-
tency prior to search while the soft window corresponds to that domain during search.
In Chapter 3, we discuss these windows in detail and show how and when they can
be efficiently maintained.

We use the window-based approach to tackle two very different types of scheduling

problems:

1. Type I: RCPSP/max problems with makespan minimization (a regular cbjec-
tive function} as the objective.

2. Type II: LCOP problems with cost minimization (a nonregular objective func-
tion) as the objective.

All of our algorithms schedule activities one at at time by selecting for each A; a
start time from A;'s soft window. Here is the pseudocode for a constructive window-

based algorithm.

WINDOW-BASED-SCHEDULING

1 fori=1ton
2 do select unscheduled A;
3 Choose a start time for A; from [ses4,, slsa,]

Notice that this is similar to the order-based scheduling approach described earlier.

However, in the order-based approach, the emphasis is wholly on the selection of the

22

next A;. We shift the focus to the selection of an appropriate start time for A;. For
Type I problems, we enhance an order-based approach with a window-based conflict
resolution mechanism called bulldozing. For Type II problems, we focus entirely on
the choice of start time as experimental evidence suggests that priority order makes
little difference.

In addition to the shift in focus, the use of both hard and soft windows during
search is new. This allows mechanisms like bulldozing to select start times that are
outside an activity’s soft window but within its hard window. The resulting schedule
can be made feasible by ‘bulldozing’ activities involved in temporal constraints that
have been broken.

For Type II problems, we use window-based local search. From any schedule we
can obtain neighbor schedules by changing the start time of a subset of activities.!
While most local search algorithms search over priority orders, we show that we can
effectively search schedule space directly.

A majority of scheduling algorithms do maintain time windows either implicitly
or explicitly. However, the windows themselves are rarely viewed as the search space.

There are a number of possible explanations for this:

1. In the job-shop environment, where most scheduling theory originates, the ob-
jective is to find an order of operations on each machine to optimize a given
criteria. This focuses attention on the order of operations and hides the fact
that windows exist at all.

2. From the point of view of systematic search, branching on possible start times
for an activity may not work well. The branching factor can be large and is
affected by factors such as time granularity that arguably should not affect the
problem difficulty.

3. Most algorithms have been designed to optimize regular objective functions
with an emphasis on makespan minimization. When minimizing makespan, it
makes sense to simply choose the earliest possible start for an activity and there
appears little reason to consider other possible start times. Recent attempts to
optimize nonregular objective functions seem to be extensions of approaches
that have been used for regular objectives.

l4Usually we move a single activity. However, with bulldozing, this may force additional activities
to move,

23

We believe that standard scheduling approaches will not be effective for nonregular
objective functions or problems with unlimited or variable resource capacities for the

following reasons:

1. When the objective function is nonregular, an algorithm cannot simply schedule
activities at their earliest possible start times. Therefore, chronological schedul-
ing is unlikely to be effective since it will be hard to tell at time point ¢ which
activities should be scheduled at ¢ and which should be delayed (making this
decision requires the consideration of other time points as well).

Similarly, order-based approaches will no longer be as effective since there may
be no way to achieve an optimal schedule by greedily scheduling the activities
in any priority order. As a result, a priority order P can no longer be a stand-in
for a schedule S. Therefore, most local search algorithms will not carry over to
the case of nonregular objective functions.

2. If resource capacities are non-existent or highly variable over time, resource con-
straint propagation will be impossible. Disjunctive scheduling will be difficult
to guide since it can no longer focus on the resolution of resource conflicts.

A few window-based approaches have been suggested in the literature. Some of the
original CSP approaches are based on start time selection; recall that this is the most
obvious way to solve a scheduling problem within the CSP framework. Nuitjen and
Aarts use a CSP approach for ‘multiple capacitated’ job shop problems [79] but focus
on constraint propagation and not on start time selection. Javier and Larrosa [64]
define two CSP approaches for job shop problems, one window-based and the other
disjunctive.

Some work has been done on texture-based heuristics, where expected resource
contention over time is used to guide variable and value selection in CSP approaches
[10, 12, 36, 83, 84]. Probabilities of resource contention can be used to select activities
that are likely to be difficult to schedule and to select times for those activities that
are most likely to make other activities easy to schedule.

In research produced by the OR group at Universitat Karlsruhe, there are ex-
amples of scheduling algorithms that use a window-based approach. For nonregular
resource-based objective functions, Neumann and Zimmerman [75] consider activities
one at a time and search for the start time that minimizes the decrease in quality of

the overall objective function.

24

Similarly, the text by Neumann et al. {74] has “Time Windows” in the title and
discusses many of the issues we address in this dissertation. They also describe a
repair algorithm that is very similar to the bulldozing we describe. However, despite
their focus on time windows, the algorithms they discuss are almost entirely order
based.

In their effective algorithm for RCPSP/max problems, Ulrich et al. [33] describe
a ‘time-oriented’ approach. However, the branch decision in their search is to either
schedule an activity or delay it by a certain amount of time. Therefore, they are
never really selecting a start time from a set of possibilities.

Finally, we are not aware of any approaches that do window-based local search.

25

CHAPTER 3

Maintaining Time Windows for
Real-World Problems

Solving a scheduling problem involves the assignment of a start time to each
activity so that constraints are satisfied while an optimality criterion is optimized.
To facilitate start time assignments, we wish to maintain a domain of feasible start
times, called a time window, for each activity.

In Section 3.1, we define the generalized simple temporal problem (GSTP) frame-
work that can be used to maintain time windows so that schedule construction can
proceed backtrack-free with respect to temporal constraints. We distinguish between
the acyclic and cyclic version; propagation can be done more efficiently and the re-
sulting windows have more desirable properties in the acyclic case.

In Section 3.2 we consider the temporal issues that arise in project management
systems. Sections 3.3 through 3.6 show how the GSTP framework can be used to
represent them. Section 3.7 takes a brief look at other work on temporal constraint

management.

3.1 Solving the GSTP

To handle temporal constraints in many contexts, we define a generalized simple
temporal problem (GSTP). An n-variable GSTP consists of a set V = {1}, .., V,} of

26

variables and a set E of binary constraints {Ev, v} between variables.!

Each V; represents a time point and can have a continuous or discrete domain.
Two fixed times, tpegin and tenq, are added as dummy variables to represent the earliest
and latest relevant time points in the problem (we usually set tyeqin = 0).

Each binary constraint, By, v;, represents the minimum time lag between V; and V;.
While time lags are assumed to be constant in the literature, we will see that calendar
issues create situations where the lag depends on the value of V;. For example, suppose
V; and V; are meetings and V; is to be scheduled at least one business day after V.
If V; is on Friday, there will be a minimum time lag of 3 days before V; (because the
weekend cannot be used). However, if V; is on any other business day the lag is only
1.

To handle situations like this, we represent a binary constraint as a function
ev,v;(t) that computes the minimum time lag between V; and V; when V; has value

t. We would like the function ey, v, (t) to have the following two properties:

If V; =t then any value of V; > ey, v,(t) satisfies the constraint, and (3.1)

If V; = ey, v,(t) then any value of V; <1 satisfies the constraint. (3.2)

A maximum time lag between V; and V; can be represented by a minimum lag
ev; v;(t) in the other direction. Therefore, although maximum time lags are discussed
in later chapters (they are the reason for the ‘max’ in RCPSP/max, for example), we
do not need to handle them separately in our framework.

We can also represent unary constraints on V; with binary ones that use our

dummy variables Zy.gin and teng:
o To represent V; > d, use ey, v(t) = d.

e To represent V; < d, use either ey, ;,,,(t) = tena — d OF €y, 4, (t) = —d.

10ur definition of a GSTP generalizes the simple temporal problem (STP) of Dechter et al. [32].
They generalize the STP to a TCSP (temporal constraint satisfaction problem) but the two gener-
alizations are orthogonal. Their general case includes disjunctive constraints that we do not allow
here; it is known that allowing disjunctive constraints makes it NP-hard even to determine problem
consistency [32]. On the other hand, our general case allows edge weights to be functions rather
than constants, something not allowed in their framework.

27

To reason in the opposite direction (to find a maximum time for V; given a time
for V;), we note that each constraint function defines an implicit function representing

the minimum time lag in the other direction:?
Definition 9. ey, (t) = maz{t' | ey, v, (t') < t}

The following example shows that to satisfy both (3.1) and (3.2), we must require

each ey, y,(t) be a non-decreasing function.

Example 3.1.1. Suppose we have a constraint function given by ey, v,(0) = 2 and
ev,v;(1) = 1. According to (3.2), if V; = 1, any V: < 1 should satisfy the constraint.

However, V; = 0 does not.

It should be clear that if we require constraint functions be non-decreasing, (3.1)

and (3.2) will be consistent with each other. Therefore, we require:

tm <t, = evhp;(tm) < ev;,V; (tn) (33)
Lemma 3.1.1 shows that the same property holds for el_/,-l,v_,- (t):
Lemma 3.1.1. i, < ¢, = ef,‘,llvj(tm) < e“,:vj(tn)

Proof: Let &, = ey (tn) and t, = ey, (ta). By Definition 9, ey, v, (th) < tm.
Then, since t,, < t,, we have ey, v;(t,,) < t,. Therefore i, satisfies the requirement
of Definition 9 for t], so t,, < t., as required.
[|
A GSTP is feasible if there is an assignment {V) = vy, ..., V,, = v,} that satisfies
all binary constraints. We say any such assignment is feasible. Similarly, a partial
assignment is feasible if it can be extended to a feasible assignment. For any feasible
partial assignment, each unvalued variable has a set of feasible times that can be
assigned to the variable so that the resulting partial assignment is feasible. The
maintenance of these sets of feasible times is the goal of this chapter.
Finally, associated with a GSTP is a directed constraint graph G = (V, E) where

nodes represent the variables and each binary constraint defines a directed edge from

2Although not technically an inverse function, we use the notation eﬁl'v}(t) for clarity later.

28

V; to V; labeled with ey, v, (t). We say the GSTP is acyclic if its constraint graph is

acyclic.

3.1.1 Time Windows: The General Case

While solving a GSTP, we would like to efficiently maintain a set of feasible times
for each variable so that search can proceed backtrack free. To do so, we define for
each V; an interval [lby,, uby,], called a time window. We say a window is empty if

Iby, > uby;,. If possible, we would like our windows to have these two properties:

e A window is sound if it contains no infeasible times (every t such that lby, <
t < uby, is feasible).

o A window is complete if all feasible times are included (lby, < t < uby, for every
feasible t).

In some cases, unfortunately, it is not possible to maintain a single interval that is
both sound and complete because the set of feasible times is not contiguous. We will

see such an example in Section 3.5.1. In such cases, we aim for the following weaker

property:

e A window is minimally complete if it is the smallest possible complete window.
That is, Iby, and uby, are the lowest and highest feasible times for V;. Notice
that a sound and complete window is necessarily minimally complete.

The CREATE-WINDOWS procedure shows how we can use the constraint graph to
find time windows for a GSTP given a feasible partial assignment. This is roughly

adapted from the constraint propagation described by Meiri [69).

29

CREATE-WINDOWS(V, E)

1 for each V;
2 do [lbv‘.,ubp".] = [tbegim tend]
3 Q=E
4 while @ # 0 and no empty window
5 do select and delete any edge (V;, V;) from Q
6 if REVISE-FORWARD(V;, V;)
7 then @ = Q U {all edges (V}, V&) in E}
8 Q=F
9 while @ # 0 and no empty window
10 do select and delete any edge (V;, V;) from @Q
11 if REVISE-BACKWARD(V;,V})
12 then @ = Q U {all edges (V;, V;) in E}

Lines 1 and 2 initialize each window to its largest possible domain (fsegin, tend)-
Lines 3 to 7 update the lower bounds of all windows while lines 8 to 12 update the
upper bounds. CREATE-WINDOWS will stop if an empty window is created (in which
case the problem is infeasible); otherwise it completes the temporal propagation.

The CREATE-WINDOWS procedure calls the two subroutines REVISE-FORWARD
and REVISE-BACKWARD. The former is outlined below. It considers a constraint
(Vi, V;) and updates the window of V; to be consistent with the current window of V;.
If V; is valued, [lby,, uby;] will be made consistent with that value. If not, [lby,, uby,]
will be made consistent with lby,. REVISE-FORWARD returns TRUE if an update was
made and FALSE otherwise. The procedure REVISE-BACKWARD (not shown here) is

symmetric and reduces the upper bounds of a window.

REVISE-FORWARD((V;, V;))

1 if V; is valued

2 then lower-limit = V;

3 else lower-limit = lby,

4 new-lower-bound = ey, v, (lower-limit)
5 if new-lower-bound > lby,

6 then by, = new-lower-bound

7 return TRUE

8 else

9 return FALSE

30

If time is continuous, there is no guarantee that CREATE-WINDOWS will termi-
nate; a counterexample is described below in Example 3.1.2. If time is discrete, it
should be clear that CREATE-WINDOWS will terminate since edges are added to @
only when a window has been reduced. We bound the running time of CREATE-
WINDOWS in Lemma 3.1.6.

Example 3.1.2. Consider a GSTP with V = {V, Va} and two constraints:

lena — 1
2

ev1|v2(t) = eszvl (t) = t+

Even though this problem has a feasible solution (Vi = Vo = tena), the forward prop-
agation of CREATE-WINDOWS will not terminate; the REVISE-FORWARD procedure
will continually update lby, and lby, by smaller and smaller amounts but never reach
lby, = by, = tena.

For ezample, suppose that t.,g = 16 and we begin with lby, = lby, = 0. Propagating
the first constraint will update lby, to 8. Propagating the second will yield lby, = 12
and add the first constraint back into Q). Propagating this will yield lby, = 14 and
add the second constraint to Q. This loop will continue increasing lby, and lby, by

smaller and smaller amounts but never end.

Example 3.1.3 describes how windows are created by CREATE-WINDOWS in a

more straightforward case.

Example 3.1.3. Consider a GSTP with V = {V}, V,, V3} and two constraints given
by ev, v(t) =t +4 and ey, (t) =t + 2 (in other words, Vo must be at least 4 time
units after Vi and Vi must be at least 2 time units after V1). In addition, suppose
that V3 = 5 (while V| and V3 are unvalued). If tyegin = 0 and tena = 10, CREATE-
WINDOWS will initialize the three windows to

[lbvl,‘ubvl] == [lbvz,’ubvz] = [lbva,’u,bva] = [0, 10].

During forward propagation (using REVISE-FORWARD) the two constraints will be

used to reduce the lower bounds of Vo and V3 resulting in windows:

[lbvz,ubvzl = [4, 10] [lbvg,,'ubva] . [2, 10]

31

During backward propagation (using REVISE-BACKWARD), the constraint belween V)
and Vy will force lby, < 6. In addition, since V3 = 5, the constraint between V, and

Va will force lby, < 3.8 Therefore, we will get window:
[lby;, uby] = [0, 3].

As noted above, we will see examples where, in the general case, windows cannot
be both sound and complete. In these cases, we would rather include infeasible time
points than exclude feasible ones because we wish to know that it is never worth
trying times outside a window.

Therefore, we want minimally complete windows. Theorem 3.1.2 shows that
CREATE-WINDOWS results in complete windows. Lemma 3.1.3 shows that the end-
points of those windows are themselves feasible. These two facts guarantee that the

windows are minimally complete.

Theorem 3.1.2. For a GSTP with a feasible partial assignment, CREATE-WINDOWS

results in complete windows if it terminates.

Proof: Suppose the resulting windows are not complete. Since windows are clearly
complete on initialization, there is a feasible ¢ removed from some window. Assume
that t is the first such time removed during CREATE-WINDOWS and is removed from
the window of V;. There are four ways ¢ could be removed (where the first two are

symmetric with the last two).

1. t is removed by a valued predecessor V; = v; because ¢ < ey v;(v;). Thisis a
contradiction; ¢ would not be feasible if it did not satisfy this constraint.

2. t is removed by an unvalued predecessor V; because
i< EV,,V; (lbv‘.). (3.4)

If ¢ is feasible for V; then there is a feasible solution with V; =t and V,; =¢'. At
the point ¢ is removed, lby, < t' since ¢ is the first feasible time removed. Then
by (3.3),

ev,v; (lbv.) < ev,y, (t).
By combining this with (3.4), ¢ < ey, v;(t') and we again have a contradiction
because the constraint is not satisfied.

INotice that if V4 were unvalued, the constraint between V) and V4 would only force by, < 8.

32

3. t is removed by a valued successor V. because ¢ > 3‘7,-1,vk (ux). This is a contra-
diction; ¢t would not be feasible if it did not satisfy this constraint.

4. t is removed by an unvalued successor V;. because

ey, (uby,) < t. (3.5)

If ¢ is feasible for V; then there is a feasible solution with V; =t and V; = ¢t'.

When ¢ is removed, t' < uby, since t is the first feasible time removed. Then by
Lemma 3.1.1,

ey, (t) < ey, (uby,).

By combining this with (3.5), e“,jl‘vk (t') < t and we again have a contradiction
because the constraint cannot be satisfied.

Since each case leads to a contradiction, there can be no such feasible ¢t and
CREATE-WINDOWS must produce complete windows.

|

Completeness by itself does not imply much; notice each initial window [tbegins tend]

is complete as well. We now show that the windows are as small as possible by

showing that the endpoints of each window are feasible. This is shown directly: we

show how to extend a feasible partial assignment to feasible full assignments that use

the endpoints.

Lemma 3.1.3. If CREATE-WINDOWS has been invoked for any GSTP with a fea-
sible partial assignment, two extensions of that partial assignment to a full feasible

assignment are:

1. Any unassigned veriable V; is assigned lby,.

2. Any unassigned variable V; is assigned uby;.

Proof: Consider the first assignment. We must show that each constraint is satisfied.

For any constraint Ey; v,) there are four possibilities:

1. Both V; and Vj are valued in the partial assignment. Since the partial assignment
is feasible, the constraint must be satisfied.

2. V; is unvalued and V; = ¢. In this case, REVISE-FORWARD will have ensured
that ey, v;(t) < lby; and the constraint will be satisfied.

33

3. V; is unvalued and V; = £. In this case, REVISE-BACKWARD will have ensured
that ey, v, (uby;) < t. Since Theorem 3.1.2 implies that no window can be empty,
lby, < uby, and the constraint will be satisfied.

4. Both V; and V; are unvalued in the partial assignment. Again, we know that
REVISE-FORWARD will have ensured that ey, v, (Iby;,) < lby, and the constraint
will be satisfied.

Since all constraints must be satisfied, the assignment is feasible.
[|

Example 3.1.4. Consider the problem of Example 3.1.3 where V3 = 5. A feasible
schedule can be attained by assigning values V) = lby, = 0 and V5 = lby, = 4. Notice

that these values leave all constraints satisfied.

Corollary 3.1.4. For a GSTP with a feasible partial assignment, CREATE-WINDOWS

results in minimally complete windows.

Proof: Theorem 3.1.2 shows that the windows are complete and Lemma 3.1.3 shows
that the endpoints are feasible.?

[|

A side benefit of the above Lemmas is that CREATE-WINDOWS can be used to

determine problem feasibility. It can be used before any variables are valued to deter-

mine problem feasibility and can be used at any point during schedule construction

to ensure that a partial assignment is feasible.

Lemma 3.1.5. For a GSTP with a partial assignment, CREATE-WINDOWS will re-

~ sult in an empty window if and only if the partial assignment is infeasible.

Proof: If any V; has an empty window, Theorem 3.1.2 implies there can be no feasible
time for V; so the partial assignment cannot be feasible.
On the other hand, if no V; has an empty window the arguments of Lemma 3.1.3
can be used to show that the partial assignment is feasible.
|

4Technically, we did not show that the windows of valued variables are also minimally complete.
However, the arguments of Lemma 3.1.3 can also be used to show that we could move each valued
V; to by, or uby, without changing the feasibility of the schedule.

34

The point of using windows is that an algorithm that is selecting values for
variables need not consider infeasible values for variables. Unfortunately, infeasi-
ble times cannot be completely avoided in the general case because windows are not
sound. However, if an infeasible time is chosen for some variable, the subsequent
call to CREATE-WINDOWS will recognize the problem. This follows directly from
Lemma 3.1.5.

Therefore, although backtracking may be required, it will only ever need to undo
the most recently valued variable. If the domain size of V] is d, we will choose at
most d — 2 infeasible times for V; from its window before finding a feasible one.®
We saw in Example 3.1.2 that CREATE-WINDOWS might not terminate when time
is continuous; the following lemma bounds the runtime for the case where time is

discrete.

Lemma 3.1.6. The time complezity of CREATE-WINDOWS is O(v + ed) where v is
the number of variables (vertices in the constraint graph), e is the number of binary
constraints (edges in the constraint graph), and d is the mazimum domain size (in our
formulation, we have d = tend—1thegin+1. Note that for continuous time, domain sizes

are infinite and this result does not bound the running time of CREATE-WINDOWS.®

Proof: Setting up the initial windows is O(v). Each loop (forward and backward)
steps through an initial set containing all edges of the constraint graph and processes
the constraints. An edge from V; to V; will be added to the set of constraints to
process if and only if V’s window was decreased. Each window can be decreased at
most d times. Therefore, each edge can be added at most d times giving overall time

complexity O(v + ed).
|

5By Lemma 3.1.3, we know that lby, and uby, are feasible; they can safely be chosen if we wish.

5Using arguments like those of Franck et al. [39], we can bound the running time for the continuous
case if we know there are a finite number of ‘jumps’ in the constraint function.

35

3.1.2 Time Windows: The Acyclic Case

In the case where there are no cycles in the constraint graph, the CREATE-
WINDOWS procedure has better properties; it is able to maintain sound and complete
windows and has a lower worst-case running time.

To show these properties, we take advantage of the fact that, for an acyclic prob-
lem, we can topologically sort V with respect to the constraint graph.” This gives us
a one-to-one mapping T : V — {1,...,n} such that T'(V;) < T(V;) implies that there
is no path from V; to V; in the constraint graph (there might or might not be a path
from V; to V}).

CREATE-WINDOWS maintains minimally complete time windows due to Corol-
lary 3.1.4; we now show that it also maintains sound time windows for acyclic prob-

lems.

Lemma 3.1.7. For an acyclic GSTP with a feasible partial assignment, CREATE-

WINDOWS produces sound windows.

Proof: We must show that for any variable V;, valuing V; =t where lby, <t < uby,
will result in a feasible partial assignment.® We show the partial assignment is feasible
by demonstrating how the partial assignment can be extended to a feasible solution.

First, use a topological sort to separate the variables (except V;) into two sets:
S, ={Vi | T(V}) < T(V;)} and S2 = {V; | T(V;) < T(V;)}. Then, schedule the

activities as follows:

{
vV already valued to v,

t i=17
Vi= 9 (3.6)
th- V; € Sla

k'U,(JV‘. V.e 5

7A constraint graph may have many topological sorts; any one of them will work.

8Notice that we do not require V; to be unvalued. Windows are also maintained for valued
variables V.

36

We put any variables before V; (in the topological sort) as early as possible and
any variables after V; as late as possible. We must show this schedule is feasible.
Consider the constraints on V;. Any predecessor V; of V; is in 5. This means that
V; = lby, and the REVISE-FORWARD piece of CREATE-WINDOWS guaranteed that
ev,v;(lby;) < lby,. Since by, < t, this constraint will be satisfied. A similar argument
shows that constraints between V; and its successors will be satisfied.

Now consider constraints not involving V;. If a constraint is between two variables
in either S; or Ss, the arguments of Lemma 3.1.3 show the constraint is satisfied. Fi-
nally, if there is a constraint between V; € Sy and V. € Sy, V; must be the predecessor
by the topological sort. But then ey, v, (Iby;) < by, < uby, so this constraint will be
satisfied.

|

Corollary 3.1.8. For an acyclic GSTP with a feasible partial assignment, CREATE-

WINDOWS produces sound and complete windows.

Proof: This follows directly from Corollary 3.1.4 and Lemma 3.1.7.
[|

Corollary 3.1.9. For an acyclic GSTP with a feasible partial assignment, if all

windows are minimally complete, they are also sound.

Proof: The arguments of Lemma 3.1.7 can be used to show that, given minimally
complete windows, any variable V; can be valued to any t satisfying lby, < ¢ < uby,
such that the new partial assignment can be extended to a feasible solution. Therefore,
all such ¢ are feasible and V;’s window is sound.
|
As a result of Corollary 3.1.8, search can proceed backtrack free in an acyclic
problem. We can also improve its running time by taking advantage of a topological
sort as shown below in the procedure CREATE-WINDOWS-ACYCLIC.
In CREATE-WINDOWS-ACYCLIC, a topological sort is obtained on line 3 (for the
rest of the procedure, we assume for convenience that T(V;) = ¢). TOPOLOGICAL-

SORT is a straight-forward algorithm and is described by Cormen et al. [30). Lines 4

37

to 6 perform a forward-pass through the topological sort to update each lby,. In

lines 7 to 9, a similar backward pass is performed to update each uby;.

CREATE-WINDOWS-ACYCLIC(V, E)

for each V;
do [lbv;,ubv‘.] == [tbegina tend]
(V1, ..., V) =TOPOLOGICAL-SORT(V)
fori=1ton
do for each successor V; of V;
do REVISE-FORWARD(V},V;)
fori=ntol
do for each predecessor V; of V;
do REVISE-BACKWARD(V}, V})

O 00 ~1 O W = N

Theorem 3.1.10. For an acyclic GSTP with a feasible partial assignment, CREATE-
WINDOWS-ACYCLIC produces sound and complete windows.

Proof: We will show that CREATE-WINDOWS-ACYCLIC results in the same windows
as CREATE-WINDOWS and Corollary 3.1.8 confirms that those windows are sound
and complete.

The first two lines of each procedure are identical. Now consider the forward prop-
agation: lines 3 to 7 in CREATE-WINDOWS and lines 4 to 6 in CREATE-WINDOWS-
AcycLic.

In CREATE-WINDOWS, REVISE-FORWARD is called for every edge (V;, V;) and if
the window of V; is updated, all edges (V;, Vi) are added to Q). In CREATE-WINDOWS-
AcvycLic, REVISE-FORWARD is still called for every edge; the difference is that edges
are never reconsidered. However, when (V;,V;) is revised, since T(V;) < T(V;) (by
the topological sort), V; will be reached later in the for loop. Therefore all edges
(V;, Vi) will be subsequently considered anyway. Symmetric arguments can be made
for the backward propagation. Therefore, the resulting windows are the same and
CREATE-WINDOWS-ACYCLIC does produce sound and complete windows.

|

Because the topological sort is used, the running time of CREATE-WINDOWS-

AcycLic has a much better theoretical bound. Most importantly, perhaps, the run-

ning time remains bounded when time is continuous.

38

Lemma 3.1.11. The time complezity of CREATE-WINDOWS-ACYCLIC is O(v + €)

where v is the number of variables and e is the number of binary constraints.

Proof: Setting up the initial windows is O(v). TOPOLOGICAL-SORT is O(v +e¢) [30].
The forward and backward passes can both be completed in O(v + e) since each
activity is visited once and each binary constraint is propagated once. Therefore, the
overall running time is O(v + e).
|
Although it doesn’t affect the theoretical running time, it is worth noting that
any implementation of CREATE-WINDOWS-ACYCLIC need only create the topolog-
ical sort once and reuse it in subsequent iterations. We will see other practical im-
provements later in this chapter when we consider an implementation of the GSTP

approach that is specific for project scheduling.

3.2 Time In Project Management Systems

In the real world, most scheduling is done within project management systems
(PMSs). Examples include Microsoft Project, Primavera Enterprise, Open Plan and
Artemis 9000/EX. These systems allow managers, supervisors, schedulers and all
of those involved in large projects to coordinate and keep track of completed and
projected work during a project. While scheduling is only a small piece of the focus,
all project management systems include some basic schedule optimization, usually in
the form of an order-based greedy construction algorithm.

Any attempt to provide scheduling algorithms to companies working within these
frameworks must account for problems as represented in them. Otherwise, the sched-
ules produced may not satisfy all of the real world constraints. Unfortunately, much
of scheduling theory has been developed within the comfortable confines of academia
and does not account for some of the complications that arise in the real world.

In this section, we begin by outlining the properties of time as maintained in
PMSs and show how the GSTP framework of Section 3.1 can be used to tackle PMS

scheduling problems.

39

3.2.1 Time

In PMSs, time is discrete and has some atomic base unit. Depending on the PMS
and the particular problem, the size of this base unit can range anywhere from a

minute to a year.

3.2.2 Temporal Constraints

PMSs include both unary and binary temporal constraints. Unary constraints
restrict the start time, starts, or finish times, finish,, of an activity A; in four

possible ways:?

1. An early start es,, represents the constraint, starts, > esa, (often called a
release time).

2. An early finish ef,, represents the constraint, finisha, > efa,.

3. A late start lsa, represents the constraint, starty, < lsg;.

4. A late finish If,, represents the constraint, finisha, < Ifs, (often called a
deadline).

Binary constraints are precedence constraints between pairs of activities.!® A con-
straint (A;, Aj, typea, a,,laga; 4;) represents a minimum time lag, given by laga, 4;,
between A; and A;. It has four basic forms based on typeg, 4;:

1. If typea,a, =FS (Finish-Start) the constraint is stertsy, > finisha, +
laga, a; (A; cannot start until a certain number of units after A; finishes).

2. If typea,a, = FF (Finish-Finish) the constraint is finisha, > finishy, +
laga, a, (Aj cannot finish until a certain number of units after A; finishes).

3. If typea, o, =SS (Start-Start) the constraint is starts; > starty, -+ laga, a;
(A; cannot start until a certain number of units after A; starts).

4. If typea,a, = SF (Start-Finish) the constraint is finishs, > starts, +
laga; a; (Aj cannot finish until a certain number of units after A; starts).

?Any subset of these 4 constraints can be specified for an activity.

101t is possible for a pair of activities to have more than one binary constraint between them. We
see below why it may not be possible to choose a strongest one and ignore the others.

40

Example 3.2.1. The Unwersity of Oregon Graduate School enforces the following

constraints on doctoral students:
(submit committee, defend thesis, 'S, 6 months)

(enroll in 18 credits of dissertation, defend thesis, SF,0)

In scheduling literature, including the vast majority of work done on job shop prob-
lem variants, constraints are usually limited to typegs, 4; € {F'S,SS} and laga, 4, =

0.1! Among the exceptions is some work of Steve Smith and his colleagues [23, 25).

3.2.3 Calendars

An important feature of project management systems is that users may define and
use multiple calendars. A calendar splits the overall time units into disjoint working
and non-working subsets. For example, one calendar might represent an 8 hour shift
each day, another might represent 10 hour shifts and a third might represent shifts
that only work on weekends.

One way to represent a calendar is to use a bit mask where 1 represents a working
unit and O represents a non-working unit.!> Consider these examples that we will

return to in later examples (here, the atomic time unit is a day):

Example 3.2.2. 1. An absolute calendar (CALBASE):

1111111111111111...

2. A five day o week calendar (CALS5):

0011111001111100...

3. A five day a week calendar with a holiday on a Wednesday (CAL5H):

0011111001101100...

UThis is one of the complaints of Beck et al. [10].

121f the granularity of time units is small, it may be more efficient to use a different data structure
where only the changes between working and non-working units are stored.

41

Calendars can be assigned to both activities and constraints. The calendar as-
signed to an activity A; limits starts, and finish,, to fall on working units in that
calendar and requires that the duration, dur,,, of A; is the number of working units
in the interval [starta;, finishg,).!® In other words, the duration of an activity with
respect to CALBASE may be longer than dur 4, if A;’s calendar has some non-working
units. For example, an activity requiring 10 business days will actually span more
than 10 days.

The calendar assigned to a constraint is only relevant when lagy, a, # 0. In this
case, just as for activity duration, laga, 4, is the number of working units in the span

between the two times specified by the constraint type, typea, a;-

Example 3.2.3. If laga, a; = 2, typea, a; = FS and finishs, = Friday , A; may
start Sunday if the constraint calendar is CALBASE but cannot start until Tuesday
if the constraint calendar is CALS.

3.3 Adapting the GSTP Framework to PMS Prob-

lems

In this section, we see how a scheduling problem as represented by PMSs can be
fit into the GSTP framework. Section 3.3.1 outlines the framework. In Section 3.3.2,
we define a number of functions that arise from the PMS situation. In Section 3.3.3,
we combine those into edge functions that make up the binary constraints of the
GSTP. Finally, Section 3.3.4 shows our implementation-specific representation of time

windows.

Once our implementation of a GSTP framework has been presented, Sections 3.4

and 3.5 discuss scheduling-specific implementations of the GSTP algorithms.

13Notice that we are using finish4, to denote the first time unit on which A; is not working. This
allows us to say finish,4, = starts, + dura,.

42

3.3.1 The Basic Setup

We represent an n-activity scheduling problem with an n-variable GSTP where
the variable V; represents the start time of activity A; (From now on, we use A;
to refer to the variable) and the binary constraints represent the binary temporal
constraints of the problem. Although we have seen that a unary constraint on A,
can be represented by a binary constraint with either tyegin OF tend, We choose to treat
unary constraints separately for our implementation.

Because time is discrete in all PMSs, we use the discrete version of a GSTP and
use the units used by the PMS in question. All time points discussed will be with
respect to an absolute calendar (CALBASE); therefore every time point ¢ will be ¢

units after the base time tpegin = 0.1°

3.3.2 The Building Blocks for Edge Functions

Calendars complicate temporal reasoning. Any time span associated with a cal-

endar has no fixed span with respect to the absolute calendar.

Example 3.3.1. Consider a two-day activity, A;, using calendar CALS. If starty, =
Monday then finishas, = Wednesday = start,, + 2. However, if start,, = Friday
then finish,, = Tuesday = starty, + 4.

To handle calendars, we represent all time spans as functions of the time point on
which they begin. We define the following functions that form the building blocks of
the edge functions used by our GSTP algorithms.

1. dury,(t) The duration in absolute time units of A; when starts, = t.

2. o:lur;h1 (t) The duration in absolute time units of A; when finish,, =1t.

18ince most of our temporal reasoning concerns intervals, much of it genersalizes to a continuous
representation of time. However, for cyelic problems, we have seen that the complexity of the GSTP
algorithms is unbounded in the continuocus case.

15Most PMSs have something like a project start date that is an obvious candidate for the begin-
ning of time.

43

3. laga,,a, (t) The duration in absolute time units of the lag when the relevant
time point of A; is £.16

4. lagy, Aj() The duration in absolute time units of the lag when the relevant
time point of A; is 2.

The following examples show cases where lagy, 4;(f) can be positive or negative

even when laga, 4, = O:

Example 3.3.2. For constraint, (A;, Aj, FS,0,CALBASE), the lag is zero. How-
ever, if A; uses CALBASE and A; uses CALS, laga, a,(t) can be nonzero. For ez-
ample, laga, a,(Saturday) = 2 (if A; finishes Saturday, A; cannot start for 2 days).

Example 3.3.3. Suppose in Ezample 8.8.2 that A; uses CAL5 and A; uses CAL-
BASE. If finish,, = Monday,"" then A; was completed at the end of Friday and A;
may start Saturday. Therefore, laga, a,(Monday) = —2.

Using the above functions, we can now define:

durFinisha,(t) =t + dura,(t) (3.7)
durStarta,(t) = t — dur! (t) (3.8)
lagFinisha, a,(t) = t + laga,,a;(t) (3.9)
lagStarta, a,(t) =t —la g;il'Aj(t) (3.10)

While dur 4, and laga, 4, represent relative time, the above functions specify abso-
lute positions in time. For example, given a start time ¢ for A;, dur4,(t) tells us how
many time units after ¢ A; will finish but dur Finish,,(t) tells us the specific time on
which A; will finish.

It is worth noting that, as we saw for generic edge functions ey, v; and e{,il‘vj in the
GSTP, lagFinisha,a,(t) and lagStart 4, 4,(t) are not strictly inverses of each other

since they can each be many-to-one functions.'® For example, in Example 3.3.2,

lagFinisha, a,(Saturday) = lagFinisha, 4,(Sunday) = Monday

16The relevant time unit will be start s, if typea,, a; € {SS, SF} and finish,, otherwise.
17Recall that finish,, is really the first time unit that A; does not work.

18This is not an issue for our duration functions since we can assume that both time points (input
and output) and the duration itself share the same calendar.

44

The above functions are all well-defined and easily computed. It should be clear that
the following inequalities hold (since, for example, starting an activity later will never

allow it to finish earlier):

tm < tn, = durFinishy,(tn) < durFinisha,(t,) (3.11
tm < tn = durStarts,(t,) < durStarta,(t,) (3.12
tm < tn = lagFinisha, a,(tm) < lagFinishy, a, (ta) (3.13

)
)
)
tm < tn = lagStarta,a,(tm) < lagStarta, a,(ts) (3.14)

Because calendars can be defined arbitrarily, the above are the strongest assertions
we can make. It is simple to construct examples where the functions return arbitrarily
far apart values for any pair of non-equal ¢,, and t,, {Consider a calendar with a long
string of holidays in it).

Finally, although the value of dur4,(t) changes depending on t, we assume here
that dur,, is constant.!® This is what allows us to use variables only for start times

and ignore finish times since the finish time of an activity can always be obtained

from the start time:

finishy, = starty, + dura,(start,,)

= durFinisha,(starta,)

3.3.3 The Edge Functions of the GSTP

We now have the building blocks to define the edge functions that are the con-
straints in our scheduling GSTP. Each edge function e; ;{t) represents the constraint
(Ai, Aj typea, a;, laga, a,). 1t computes the minimum successor start time (starta,)
that satisfied the constraint given the predecessor start time (starts,). There are four
cases:

¢ If the constraint type is SS:

e; ;(starty,) = starts, + laga, a,(startys,)
= lagFinisha, ,(starty;)

19Tn some PMSs, activities can be allowed to stretch in which case dur,, is itself a variable to
optimize. We mention this extension and others in Section 3.6.

45

e If the constraint type is SF:

e; j(starts,) = starty, + laga, 4;(starta;)
- dur;‘:(startm + laga, 4;(start,,))

= durStart4;(lagFinisha, 4;(starta,))

o If the constraint type is F'S:

e; j(starta,) = starty, + durs,(starty,)
+ laga, a;(start s, + dury,(start,,))
= lagFinisha, a;(dur Finisha, (start,,))

» If the constraint type is FF:

e;j(starta,) = starta, + dury (starta;)
+ laga, a;(start 4, + durg,(starta,))
- dur;}(startm + dur g, (starta,)

+ laga, 4, (starta, + dura (start 4,)))
= durStarty,(lagFinisha, 4, (dur Finisha,(starta,)))

Because the function e; ;(t) can be expressed as a combination of functions (3.7)
through (3.10), we can use facts (3.11) through (3.14) to conclude that, as required
for the GSTP (see (3.3) and Lemma 3.1.1):

tm < tn = e,-,j(tm) S e,-,j(tn) (3.15)
tm < tn = €} (tm) < €7} (£n) (3.16)

3.3.4 Time Windows

For each activity A;, we extend the GSTP notion of a window as follows. We
define a window as a five-tuple of time values, (hesg,, sesa,, starta,, slsa,, hls,,) with
intended meaning: (hard earliest start, soft earliest start, actual start time, soft latest
start, and hard latest start). These five can be divided into three subsets that serve
the following purposes during schedule construction:

e The start time, starts,, will be the start time of the activity if it is scheduled
and DEFAULT-TIME otherwise.

46

e The hard window, [hes,, hlsa,], represents the interval of time points ¢ for which
there is at least one feasible schedule with A; starting at £. The hard window
will not change during schedule construction.

e Given a partially constructed schedule, the soft window, [sesa;, sls4,], contains
time points ¢ for which there might be a feasible schedule with each scheduled
activity A; starting at the current value of start4; and A; starting at ¢. The soft
window corresponds to the window [lba,, uba,| defined for the generic GSTP.

When no activities are scheduled, sesa, = hesa, and slsa, = hls,,. Also, for any
feasible partial schedule, each activity window will have the property that hess, <
sesa, < slss, < his,,. In the following sections, we show how the GSTP algorithms
can be used and enhanced to ensure backtrack-free search to solutions that satisfy all

temporal constraints.

3.4 Maintaining Windows for Acyclic Problems

Now that we have shown how the GSTP framework can be used for scheduling
problems as represented in PMSs, we adapt the GSTP algorithms for this problem.
While some of our changes simplify implementation, others improve the running time
in practice, if not in theory. We begin with the less general case and consider acyclic

scheduling problems.

3.4.1 Window Initialization

Before running a scheduling algorithm using time windows, we initialize the win-
dows using the procedure INITIALIZE-WINDOWS, a variation of CREATE-WINDOWS-
Acycric. The two main differences are:

1. We separate unary constraints from binary ones so that the former only need
to be considered during initialization and can be ignored afterward.

2. We assume here that no variables are valued (notice that we set starts, =
DEFAULT-TIME on line 14).

As was shown in Section 3.1.2, the resulting windows will be sound and complete.

We also know the problem is feasible if and only if all hard windows are non-empty.

47

Finally, Lemma 3.1.11 showed that the complexity is O(v + e) where v is the number

of activities and e is the number of binary constraints.

INITIALIZE-WINDOWS(A)
1 fori=1ton
2 do hesa, =max(esgy,, durStarta,(€fa,), thegin)
3 hisa, =min(ls,,, durStarta,(Ifa;), tend)
4 (Ay,...,A,) = ToPOLOGICAL-SORT(A)
5 fori=1ton
6 do
7 for each successor A; of A;
8 do hess, =max(hesya,, e;j(hesy,))
3 fori=ntol
10 do
11 for each predecessor A; of A;
12 do hisa, =min(hls,,, €7 (hlsa,))
13 fori=1ton
14 do start,, = DEFAULT-TIME
15 sesy, = hesgy,
16 slsa, = hlsy,

3.4.2 Windows During Schedule Construction

During schedule construction, an algorithm will assign start times to activities. If

we maintain sound and complete windows at each step, the algorithm need never select

infeasible start times. The procedure SET-START-TIME is a variation of CREATE-

WINDOWS-ACYCLIC that can be used to assign a start time and update all soft

windows at the same time. Although similar to the way that hard windows are

initialized, there are two key differences:

1. Instead of starting at one end of a topological sort and propagating toward the

other, the algorithm begins at the scheduled activity and propagates constraints
outward in both directions. In the successor direction, soft earliest starts are
moved later. In the predecessor direction, soft latest starts are moved earlier.

2. The propagation must be able to handle activities whether or not they have

been scheduled. A scheduled activity only serves to cut off propagation; since
any scheduled activity A; will have already propagated constraints using stari,,

48

when A; was scheduled, propagating constraints use ses,, and sls,, is unnec-
essary since they are less constraining than start 4 .2

Consider lines 2 to 5 of SET-START-TIME. Because A; has been scheduled, each
successor A; may no longer be able to be scheduled as early as sess;. A new time
sesa; = e;j(start,,) is calculated on line 4. This is done for each successor and a list

of (activity, new-earliest-start-time) pairs is created.

SET-START-TIME(A;, t;)
1 StGT‘tA,. = {;
2 succs-to-update = ()
3 for each successor A; of A;
4 do tj = ei,j(t,-)
5 succs-to-update.insert(A;, ;)
6 SHRINK-SUCCESSORS({succs-to-update)
7 preds-to-update = ()
8 for each predecessor A; of 4;
9 do t; = €7} (t;)
10 preds-to-update.insert(A;, ;)
11 SHRINK-PREDECESSORS(preds-to-updute)

Once all successors of 4; have been added, SHRINK-SUCCESSORS is called. Pseu-
docode for this procedure is shown below; it propagates the constraints forward
through the constraint graph. At each iteration, pair (A;,t;) is selected where A;
is the earliest activity in the topological sort appearing in succs-to-update.?! If ¢;
forces the soft window of A; to be smaller, the soft window is updated. If this occurs
and A; is unscheduled, this new time must be propagated to all successors of A;. The
process continues until the list of propagations to perform becomes empty.

The procedure SHRINK-PREDECESSORS is symmetric to SHRINK-SUCCESSORS.
It propagates backward according to the topological sort and will update soft latest

start times of activity predecessors.

20This assumes that sesy, < starty, < slss, which is guaranteed by Theorem 3.1.2.

21The topological sort can be kept around from the INITIALIZE-WINDOWS phase since it will never
change.

49

SHRINK-SUCCESSORS(succs-to-update)
1 while succs-to-update # 0
2 do Choose (A4;,t;) € succs-to-update such that
V(Ag, tr) Esuccs-to-update, T(A;) < T(Ag)
and remove (A;,t;) from succs-to-update

3 if ¢; > sesq,
4 then sess; =t;
5 if starts; = DEFAULT-TIME
6 then for each successor A of A;
7 do if (Ag,t:) € succs-to-update
8 then set t; = maxz(ty, e;x(t;))
9 else
10 succs-to-update.insert(Ag, e; 1 (2;))

Notice that when an activity is scheduled, we do not set sesa, = slsa, = starta,
as one might expect. Instead, the soft window maintains the interval of start times
that work for A; given the current partially constructed schedule. This will be useful
later for unscheduling (Section 3.4.3).

We use Lemmas 3.4.1 and 3.4.2 to show that windows will be minimally complete
which implies that they are sound for acyclic problems. The arguments are similar to
those used for in Section 3.1.1; this should be no surprise since SET-START-TIME is, in
spirit, a reorganized version of CREATE-WINDOWS-ACYCLIC that avoids unnecessary

computation.

Lemma 3.4.1. For an acyclic problem, if all soft windows are sound and complete for
a feasible partial schedule and SET-START-TIME(A;,t;) is called for a feasible time

t:, each sesa, in the resulting soft windows will be the smallest feasible start time for
Aj;.

Proof: To show that there is no smaller t < sesA; that is feasible, we can make
arguments similar to those of Theorem 3.1.2. We assume that there is such a ¢ and
that, without loss of generality, A; is the first activity to have a feasible time removed
from its window.

We know the windows were complete before the SET-START-TIME call therefore
t must have been removed during an iteration of the SHRINK-SUCCESSORS while

loop. But then the new value of ses,, is determined by a predecessor with whom all

50

t' < sesn, will be inconsistent. Therefore, we have a contradiction and each sesy, is
the smallest possible feasible start time for A;.

We must also show that sesa, is in fact feasible. Let P and P’ be the partial
schedules before and after the call to SET-START-TIME. We now modify the argu-
ments of Lemma 3.1.3 to show that we can extend P’ to a feasible schedule S with
each start,, = sesa, for each unscheduled A;.

To show that S is feasible, we must show that all constraints are satisfied. Clearly,
any unary constraint will be satisfied due to the initialization of hard windows (and
subsequently, soft windows). For any binary constraint between A4; and Ay, consider
the possibilities for the values of A; and Ay in P":

e A; and Ay are both valued. If one of them is A; then the constraint must be
satisfied since we require that starts, be feasible. Otherwise, the constraint
must be satisfied since we assume P is feasible.

o A; is valued. If A; = A;, then lines 2 to 5 guarantee that any ses,, will be
consistent with this start time. Otherwise, A; was valued in P and sess, was
already consistent with its value.

e A;is unvalued. If sesy; is not changed during SET-START-TIME, the constraint
will be satisfied since the old ses,, will work. If sesu; is changed, A will be
updated on line 10 of SHRINK-SUCCESSORS and the constraint will be enforced
in a subsequent iteration of the corresponding while loop.

Therefore, each ses,; is the smallest feasible start time for A;.

Lemma 3.4.2. For an acyclic problem, if all soft windows are sound and complete
for a feasible partial schedule and SET-START-TIME(A;,t;) is called for a feasible

time t;, each slsa, in the resulting soft window will be the largest feasible start time
for A;.

Proof: The proof is symmetric to that of Lemma 3.4.1.

Corollary 3.4.3. For an acyclic problem, if all soft windows are sound and complete
and SET-START-TIME(A;, t;) is called for a feasible time t;, the resulting soft windows

will be sound and complete.

51

Proof: Together, Lemmas 3.4.1 and 3.4.2 imply that the resulting windows are
minimally complete. By Corollary 3.1.9 they must also be sound.

|

If start times are always chosen from within soft windows and SET-START-TIME

is invoked with each selection, schedule construction can proceed backtrack free.

Example 3.4.1. Consider the GSTP of Ezample 3.1.3 as a 3 activity scheduling
problem with 5SS constraints e;2(t) = t + 4 and e;3(t) = t + 2. Because we have

starta, = 5, we have soft windows
[sesa,,5l54,] = [0, 3], [s€54,, 5184,] = [4,10], and [sesa,, slsa,] = [2,10].

If we decide to schedule A, at time 3, the call to SET-START-TIME(Ay, 3) will invoke
SHRINK-SUCCESSORS({(As, 7), (As,5)}). This will reduce those two windows to

[ses4,,5l54,) = [7,10], and [sesq,, slsa,] = [5, 10]

Lemma 3.1.11 means we can perform backtrack-free schedule construction in
O(v(v + €)) time. There are a couple of reasons to believe the running time in
practice will be much better than this. First, if a soft window is not shrunk dur-
ing SHRINK-SUCCESSORS, the successors of that activity need not be considered at
that time?? (likewise for predecessors in SHRINK-PREDECESSORS). Second, when a
scheduled activity is reached during propagation, the propagation stops. Therefore,
in practice, each SET-START-TIME call will only lead to propagation through a small

subset of the constraints rather than all of them.

3.4.3 Windows During Schedule Deconstruction

Some algorithms may not be purely constructive. For example, it is possible to

do local search in schedule space by altering completed schedules. Such algorithms

22The successors might still be affected by another activity whose soft window is shrunk.

52

require the ability to unschedule and reschedule activities. We would like to be able

to do so while maintaining soft windows that are sound and complete.

The procedure UNSET-START-TIME updates soft windows when an activity A;
is unscheduled. We noted above that the soft window of A; itself does not need
updating: it is dependent only on the predecessors and successors of A; and not on
starts,. However, the windows of the predecessors and successors of A; must be

suitably expanded.

UNSET-START-TIME(4;)

1 starty, = DEFAULT-TIME

2 preds-to-update = 0

3 for each predecessor A; of A;

4 do preds-to-update.insert(A;)

5 EXPAND-PREDECESSORS(preds-to-update)
6 succs-to-update = 9

7 for each successor A; of A;

8 do succs-to-update.insert(A;)

9 EXPAND-SUCCESSORS(succs-to-update)

Consider the predecessors of A;. These are added to a list that is processed
in EXPAND-PREDECESSORS. When A; is unscheduled, this affects sis,; for each

predecessor A4; of A; since it may be possible to schedule A; later than before.

EXPAND-PREDECESSORS, outlined below, processes the preds-to-update list be-
ginning with the largest A; according to the topological sort. The maximum value
for sls,; is recomputed from scratch beginning with its maximum value, hls,,, as set
in line 3. In lines 4 to 8, slsy, is further reduced enough so that the constraint with

each successor of A; is satisfied.

In lines 9 to 13, sls,, is updated. If the window is expanded and if A; is not
scheduled, all predecessors of A; are added to the preds-to-update list. Notice that
the propagation does not continue if A; is scheduled since starts; (< slss;) remains

the relevant constraint on the predecessors.

93

EXPAND-PREDECESSORS(preds-to-update)

1 while preds-to-update # 0

2 do Choose (A;) € preds-to-update such that
VA €preds-to-update, T(A;) > T(Ax)
and remove A; from preds-to-update

3 latest-start = hisy,

4 for each successor A of A;

5 do if stariy, = DEFAULT-TIME

6 then must-start-before = ej__,t(sls Ar)

7 else must-start-before = ej_,é(sta'rt A)

8 latest-start = min(latest-start, must-start-before)

9 if latest-start > slsy,

10 then slsy; = latest-start

11 if starts; = DEFAULT-TIME

12 then for each predecessor A; of A;

13 do preds-to-update.insert(A;)

Notice that UNSET-START-TIME is the reason we have explicitly separated hard

and soft windows.23

Example 3.4.2. Consider the problem of Example 3.4.1. We have two activities

scheduled (starts, = 3 and starta, = 5) and windows
[sesa,, slsa,] =0, 3], [sesa,, slsa,] = [7,10], and [sesa,, slsa,} =[5, 10].

If we decide to unschedule A; (currently scheduled at time 5), UNSET-START-TIME
will invoke EXPAND-PREDECESSORS({A;}). The window of A, will be expanded to

[sesa,, slsa,) = [0,0]
Notice that A, is now limited by A; rather than As.

Lemma 3.4.4. For an acyclic problem, if all soft windows are sound and complete
for a feasible partial schedule and UNSET-START-TIME(A;) is called, each sls,, in

the resulting soft windows will be the largest feasible start time for A;.

23 Although it is possible to do the above without the hard window, hard windows also allow the
problem to be quickly reinitialized without another call to INITIALIZE-WINDOWS.

54

Proof: This will be an inductive proof based on the topological sort and beginning
at its end. It relies on the fact that the slsa, values are updated in reverse topological
order. This fact can be seen by noting that line 2 chooses the activities in this order
and an activity can only be added to preds-to-update if it is before the current activity
in the topological sort {since only predecessors of the current activity are added).

For each such A;, we must show the following two facts:
1. slsy, is feasible.

2. There is no feasible ¢ where ¢ > sls,..

Base case: Consider the last activity A; in the topological order. Since sls,, is
only dependent on successors and A; has none, slss; = hlsy;. Therefore siss, must
be the largest feasible start time for A;.

Inductive case: We assume the above two facts hold for all A, such that T{Ax) >
T'(A;). Therefore, for each successor Ay of A;, slss, is the largest feasible start time
for A,

The correct value of slss; depends on the windows of its successors. Inspec-
tion of the code indicates that sls,, will be updated if and only if it is added to

preds-to-update which implies either:
1. A; (the unset activity) is a successor of A;, or

2. An unvalued successor Ay of A; has been updated.?

If either of these occur, sls,, will be updated in lines 3 to 10. Since this checks
every constraint (A;, Ax), the resulting sls4; will be feasible. Also, since each update
uses sls4, which is the largest feasible time of A (by the inductive hypothesis), sls4;
is only reduced in cases where it is necessary.

If neither of the above occur, slsy, will be unchanged. It is clear that the un-

changed slsy, is feasible. To see that there is no larger feasible time, we use the

24 Although our inductive hypothesis only states that this is true after the call to UNSET-START-
TIME, it is clear that it must then also be true before A; is considered due to the fact that windows
are expanded in reverse-order according to the topological sort.

357¢, on the other hand, a valued successor Ay is updated, A; is unaffected by that update. This
is because start,, is more constraining than sis,, .

99

fact that windows were complete before the UNSET-START-TIME call; for any larger
time to be feasible would therefore require at least one constraint between A; and a
successor to be weakened and this could not have occurred.

Therefore, our inductive arguments show that each sls,; after UNSET-START-
TIME is the largest feasible start time for A;.

Lemma 3.4.5. For an acyclic problem, if all soft windows are sound and complete
for a feasible partial schedule and UNSET-START-TIME(A;) is called, each sesy; in

the resulting soft windows will be the smallest feasible start time for A;.

Proof: The proof is symmetric to that of Lemma 3.4.4.

Corollary 3.4.6. For an acyclic problem, if all soft window are sound and complete
for a feasible partial schedule and UNSET-START-TIME(A;) is called, the resulting

time windows will be sound and complete.

Proof: Together, Lemmas 3.4.4 and 3.4.5 imply that the resulting windows are

minimally complete. By Corollary 3.1.9 they are also sound.
n

Like SET-START-TIME, the complexity of UNSET-START-TIME is O(v + ¢) since
all vertices and edges will be handled at most once. Notice that we could also invoke
a version of CREATE-WINDOWS-ACYCLIC to update windows when an activity is
unscheduled. Although the theoretical complexity would be the same, it should be
clear that UNSET-START-TIME will be much faster in practice.

The above results now guarantee that sound and complete soft windows can be
maintained throughout any amount of scheduling or unscheduling. This framework
can therefore underlie many different search algorithms and ensure that search will
be backtrack-free as far as temporal constraints are concerned. In later chapters, we

build search algorithms using this framework.

96

3.5 Maintaining Windows for Cyclic Problems

In the above procedures for maintaining time windows, we assumed an acyclic con-
straint graph. Although most commercial tools disallow cycles, they are common in
real-world problems. For example, consider a supervisor’s inspection that must take
place at some point while an electrician is wiring a house. We want to impose con-
straints (wiring, inspection, $5,0) and (inspection, wiring, F'F,0). Including both
of these constraint puts a cycle into the constraint graph. Other examples occur in
situations like the ‘hot ingot’ problem where there is the need to impose maximum
time lags as well as minimum time lags between activities [42]. This is the motivation
for work considering RCPSP/max scheduling problems [14, 20, 23, 74].

In this section, we adapt the GSTP framework for PMS problems with cycles. The
main difference between the results here and the previous section is that we cannot
define and use a topological sort for a cyclic constraint graph. In the many places

where that sort was used above, we can no longer do so.

3.5.1 Window Initialization

The procedure INITIALIZE-WINDOWS-WITH-CYCLES adapts procedure CREATE-
WINDOWS for our problem formulation. As before, the main difference is that unary
constraints are handled separately. Notice that a topological sort is no longer used.
Also notice that on lines 5 and 13 we stop if a window has become empty. Without
this, propagation could continue forever even when time is discrete (see Example 3.5.2,

for example).

As we saw in Section 3.1.1, the resulting windows will be minimally complete.
Lemma 3.1.3 showed two feasible schedules that can be obtained and Lemma 3.1.5
showed that the problem is feasible if and only if no empty window results. Exam-

ple 3.5.1 shows why the resulting windows are not necessarily sound.

o7

INITIALIZE-WINDOWS- WITH-CYCLES(A)

1 fori=1lton

2 do hess, = max(esy,, dury!(efa,), thegin)
3 hisa; = min(Isa,, dur;! (1fa,), tend)
4 Q=(A,..,A,)

5 while Q # § and no empty hard window

6 do Choose any A; in @

7 for each successor A; of A4;

8 do new-earliest = ¢; j(hesy,)

9 if new-earliest > hesy,

10 then hess, = new-earliest
11 add A; to @

12 Q= (Al:'"aAn)

13 while @ # 0 and no empty hard window

14 do Choose any A; in @

15 for each predecessor A; of A;

16 do new-latest = e] (hlsa,)
17 if new-latest < hisy,

18 then hls, = new-latest
19 add 4; to @

20 fori=1ton

21 do start,, = DEFAULT-TIME

22 ses4, = hesy,

23 slsa, = hisg,

Example 3.5.1. Consider constraints (A;, A;, §S,0) end (A;, A;, FF,0) between two
1 day activities where A; uses CALBASE and A; uses CALS. It is possible for the
constraint propagation to result in hard windows (hesa,, hlss] = [hesa,, hlsa] =
[Friday, Monday]. INITIALIZE-WINDOWS-WITH-CYCLES need not further reduce
these windows, since scheduling both activities on either Friday or Monday gives a
feasible schedule.

However, the window for A; is not sound. In particuler, A; cannot start on Sat-
urday or Sunday even though these are work days in its calendar. In both cases A;
would have to be on Monday to satisfy the SS constraint and on Friday to satisfy the

FF constraint which is impossible.

The next example shows a simple case where a single hard window can be updated

a number of times before INITIALIZE-WINDOWS-WITH-CYCLES is finished. This

58
shows why the complexity for cyclic problems is O(v + ed) (see Lemma 3.1.6).

Example 3.5.2. Consider the two constraints of Example 3.5.1 and suppose that
A; works Monday, Wednesday and Friday and A; works Tuesday, Thursday and
Saturday. Suppose that line 2 of INITIALIZE-WINDOWS-WITH-CYCLES sets hes,, =
Monday. The constraint propagation of INITIALIZE-WINDOWS-WITH-CYCLES will

result in the following set of propagations:

hess, = Monday = hess; = Tuesday
= hesa, = Wednesday

= hesa, = Thursday...etc.

This should make it clear that the cyclic nature of the precedence graph means that

a single constraint can be propagated many times.

3.5.2 Windows During Schedule Construction

As for the acyclic problem, we maintain soft windows during schedule construction.
The SET-START-TIME procedure can still be used because it does not rely on a
topological sort although line 2 in SHRINK-SUCCESSORS must be replaced with one
that arbitrarily picks an A; from the succs-to-update.

Example 3.5.1 shows that soundness does not hold during schedule construction
for a cyclic problem (since not all time points in the window are feasible). By the
arguments of Lemma 3.1.5, however, if SET-START-TIME is called with an infeasible
time, we immediately get an empty window. Therefore, backtracking only requires
undoing the most recent decision.

Because of the possibility of backtracking, an attempt to feasibly schedule any
activity might take up to d tries. Therefore, the time complexity of constructing a
schedule will be O(v{v + ed)). However, we always know that sess, and sls,, are
feasible start times for an activity and we could construct the two feasible schedules
of Lemma 3.1.3 in O(v) time.

59

3.5.3 Windows During Schedule Deconstruction

The following example shows that UNSET-START-TIME will not work for cyclic

problems.

Example 3.5.3. Return to Ezample 3.5.1 and suppose that starty, = Friday and

A; is unscheduled. We will have soft windows:
[s€5.4,, 51s4;] = [s€54;, 5l54;] = [Fridey, Friday]
If we then unschedule A;, we should get back the soft windows:
[sesa,, slsa,] = [sesa,, slsa;| = [Friday, Monday]

However, UNSET-START-TIME will not expand the soft windows. In particular, the
attempt to ezpand the soft window of A; will fail because the latest start of A; (Friday)

will continue to constrain it even though that latest start itself should be ezpanded.

When cycles are allowed, a scheduled activity can constrain itself and this con-
straint will not be lifted when UNSET-START-TIME is used. Instead, to maintain
minimally complete soft windows (and therefore get the most out of window expan-
sion), we must recompute soft windows from scratch. This can be done with proce-
dure UNSET-START-TIME-WITH-CYCLES as shown below. It is simply a version of
INITIALIZE-WINDOWS-WITH-CYCLES that takes into account scheduled activities.

Theoretically, then, the complexity of unscheduling is roughly the same as schedul-
ing. In practice, however, UNSET-START-TIME-WITH-CYCLES is likely to do a lot

of unnecessary work as the following example shows.

Example 3.5.4. Consider an activity A; that is not involved in any binary con-
straints. When A; is unscheduled, UNSET-START-TIME-WITH-CYCLES(A;)} will end
up resetting all soft windows even though it is clear (to us) that no updates to the soft

windows are necessary.

To avoid the slower speed of UNSET-START-TIME-WITH-CYCLES, there are a

couple of approaches that can be used:

60

1. A simple approach is to ignore the problem of Example 3.5.3 and use UNSET-
START-TIME (modified to not use a topological sort). Because the only problem
is that soft windows are not expanded as much as possible, search will be able
to continue toward feasible solutions. The disadvantage, of course, is that some
feasible schedules may not be considered once unscheduling has been done.

2. A better approach might be to keep track of which activities are part of cycles.
Only when a window of one of these activities is expanded would extra work
be necessary. Unfortunately, though, even an activity not involved in any cy-
cle can affect activities that are involved in cycles. Nonetheless, unnecessary
computation in situations like that of Example 3.5.4 can be avoided.

UNSET-START-TIME-WITH-CYCLES(A;)

1 fori=1ton

2 do sesa;, = hesy,

3 SlSA'. - hlSA..

4 Q=(A4,..,4,)

5 while Q # 0

6 do Choose any A; in ¢

7 for each successor A; of A;

8 do if start,, = default-time

9 then new-earliest = e; j(sesya,)
10 else new-earliest = e; ;(starta,)
11 if new-earliest > sesy,

12 then sesy, = new-earliest

13

14

15

add A; to @

Q@ =(4,..,4,)

while Q # 0
16 do Choose any A; in @
17 for each predecessor A; of A;
18 do if staris, = default-time
19 then new-latest = ej"il(sls,q‘.)
20 else new-latest = ¢} (starts,)
21 if new-latest < slsy,
22 then slsy, = new-latest
23 add A4; to @

Note that this second approach could also speed up window initialization and
activity scheduling for cyclic problems. A topological sort could be maintained for
all non-cycle activities. This could help keep to a minimum the number of times any

binary constraint is re-propagated.

61

In conclusion, it is probably the above complications of cyclic problems that have

led most PMS developers to disallow cycles.

3.6 Other Issues

We have not yet touched on all of the temporal issues that exist in PMSs. There
are options available in some systems that affect how window management should
work. While most of them do not affect the complexity of our approach, they do

affect the implementation and ought to be mentioned here.

3.6.1 Fixed Start Times

In addition to the unary constraints we have considered, Artemis allows ‘fixed start
day’ or ‘fixed start period’ unary constraints that further restrict when an activity
can begin. For example, the user can require that activity A; start on a particular
day of the week or at a particular time of day. A variation of this type of constraint
could force an activity to be completed during a single shift or during a single day.

The properties and complexity of our window management procedures remain
unchanged as long as we ensure that the five time points in a window also satisfy the
new constraint. For example, line 2 in the procedure INITIALIZE-WINDOWS should
be followed by one that then moves hes,, to the next time point that also meets the

fixed start time constraint.

3.6.2 Stretchable Activities

In Artemis, the user may allow activities to stretch. In this case, dura, specifies
a minimum duration for A;. Because each activity A; no longer has a set duration
dur ,,, we can no longer use only start,, to define how A; is scheduled. Our GSTP
framework must include two variables for each activity: starts, and finish,,. We
will then have two time windows for each activity: (hesy,, sesq,, starta,, slsa,, hlsa,)
and (hefa,, sefa,, finisha,, slfa, hifa,).

62

If we represent an activity with two windows, we must also add a binary constraint
between them that represents the minimum duration. With this representation, we
can continue to use our procedures without affecting their properties or complexity.

It is worth noting that some cyclic problems become acyclic when stretch is allowed

as the following example shows.?8

Example 3.6.1. Consider a problem with the two constrainis (A;, A;,SS,0) and
(A;, A, FF,0).7

There is a cycle since A; is a successor of itself. However, there is no cycle when
stretch is allowed. This is because finish,a, is a successor of starta, but not of itself.
If we define separate windows (and separate variables) for the starts and finishes of

activities, our constraint graph will have no cycles.

3.6.3 Splittable and Elastic Activities

In Artemis and Open Plan, activities may be defined as splittable or as elastic. A
splittable activity may have its duration split into a number of pieces. For example, a
three day activity could have two days scheduled one week and the third day scheduled
a month later.

An elastic activity is further relaxed so that it has no specified duration. Instead,
a certain amount of total work must be accomplished between its start and finish.

In the literature, splittable activities correspond to preemption as often discussed
with respect to job shop scheduling [14, 42, 47, 55]. Elastic activities are less studied
but are considered by Baptiste et al. [8] and Caseau and Laburthe [19]. Although these
theoretical studies consider fully preemptive schedules or the ‘fully elastic problem,’
PMS users are required to bound the flexibility of activities with extra constraints

(maximum duration, for example).

26y fact, it appears that this is precisely the reason that stretch is allowed in Artemis. It allows
some desirable cyclic constraints to be ‘represented’ without losing the computational advantages of
an acyclic problem.

27This is the example used by Artemis to explain loops with respect to their STRETCH/NO
STRETCH option [2].

63

As far as our window representation is concerned, it should be the case that the
extension discussed above for stretchable activities can be used in both the splittable
and elastic cases as well. The procedures will still work and their properties will hold
as far as the start and finish of any activity are concerned. However, more information
than simply a start and finish time will be required in order to know exactly how and

when an activity is scheduled.

3.7 Related Work

Maintaining temporal consistency using time windows is common in scheduling
systems. It has origins in the CPM and PERT project management techniques that
have been around for half a century (the basic idea of performing a forward and
backward pass to calculate windows was introduced in these techniques). In Al
approaches, temporal consistency forms the foundation for solving problems within
a. CSP framework [23, 66, 96, 99] and in OR approaches, windows are used to prune
possible choices, determine branching choices and propagate resource constraints (8,
13, 14, 19, 73].

Because temporal domains are ordered, it is standard for temporal constraint
propagation algorithms, like those we have outlined above, to propagate the con-
straints using the domain bounds (earliest start and latest start). For example, our
procedures explicitly maintain arc-B consistency since they make sure that ses4; and
slsa, are kept feasible. For the acyclic case, we saw that arc consistency (which is
stronger) is achieved as well since windows are sound (Lemma 3.1.7).

A common approach to maintaining temporal consistency is that described by
Dechter et al. [32]. Dummy activities Ap and A,y are used to represent the begin
and end of the project and the Floyd-Warshall all pairs shortest path algorithm is
used to calculate a distance matriz of minimum time lags d;; between every pair of
activities. Windows can be derived directly from the resulting distance matrix by
setting [lba,, uba,] = [doi, tend — ditns1)). Window updates during schedule construc-
tion or deconstruction can also be derived directly from the distance matrix. Path

consistency can be achieved.

64

The work of Dechter et al. is generalized somewhat by Meiri [69]. The latter
approach has many features in common with ours including the notion of sound
domains, a constraint graph and the use of a topological sort for acyclic problems.
Many of Meiri’s algorithms are similar to the ones we have described here. For
example, our INITIALIZE-WINDOWS algorithm is quite similar to Meiri's algorithm
2-DAC (two way directional arc consistency).

On the one hand, the work of both Dechter et al. and Meiri is more general than
ours in the sense that they consider a wider variety of constraints including disjunctive
temporal constraints (A; and A; cannot overlap, for example). We keep our definition
of the GSTP narrower because otherwise the computational efficiency of maintaining
time windows is lost.?® For example, disjunctive constraints lead to domains that can
no longer be represented by single intervals.

On the other hand, the work of Dechter et al. and Meiri is not as general as ours
because it cannot handle calendars. Specifically, they assume that edge functions
are constant. Because our constraint graph has variable edge weights (represented
by functions), we cannot compute a distance matrix. There is no reasonable way to
combine edge functions and to maintain implicit constraints. Even two constraints be-
tween a single pair of activities cannot be combined; the one that is more constraining
may depend on the particular time point under consideration.

Therefore, it is impractical to maintain anything stronger than arc consistency in
our framework. This suggests our procedures are doing as much as we can expect
in terms of consistency maintenance in the general case.?® If a problem has certain
characteristics (many activities share a single calendar, for example}, it might be
reasonable to locally maintain stronger forms of consistency.

There is very little discussion in the literature concerning the maintenance of

time windows during search but we suspect many people do it. It has the flavor of

28 Also, other varieties of constraints do not typically show up in the scheduling problems considered
in the literature or allowed in PMSs.

290f course, if we used the general CSP approach and represented constraints as sets of feasible
values, stronger forms of consistency would be possible but impractical. For each pair of variables,
we would have to keep track of the specific combinations of domains values that are consistent with
each other.

65

lookahead algorithms for maintaining arc consistency during search as discussed by
Tsang [94]. There is even less discussion of how temporal issues are handled when
scheduling decisions are retracted, probably because most algorithms are purely con-
structive. An exception to this is the ODO constraint-directed scheduling framework

discussed by Beck et al. [10], in which retraction is a key component.

As for calendars, there is work on efficient and rational ways to represent time [29,
61, 76, for example]. These concern the representation of time with different granular-
ities (seconds relative to years), how to understand relationships between temporal
representations (how the first Monday of December relates to the first day of De-
cember, for example) and how to represent time compactly so that computation is
efficient. This work is orthogonal to our notion of calendars. Here we are only really
concerned with splitting time units into working units and non-working units.

What appears to be a first attempt to address the calendar issues we address
here appears in a paper by Zhan [102]. This work is concerned simply with calcu-
lating the earliest possible dates for all activities given minimum and maximum time
lags and calendars. The resulting algorithm and proof of correctness are similar to
procedure CREATE-WINDOWS and Theorem 3.1.2, respectively. Zhan also considers
activities that must be completed within a single span of working units for a calendar
(each activity cannot overlap any break times). Handling this would be equivalent to
handling the fixed start day and fixed start time issues mentioned above.

The other work that considers the particular calendar issues we discuss here is
that of Franck et al. [39]. Their work is similar to what we describe here. They define
calendars as zero-one step functions and describe functions for activity durations and
time lags that integrate those step functions.’® This representation fits directly into
our GSTP framework.

Frank et al. describe a forward pass and a backward pass algorithm. Together,
those produce the windows we get with CREATE-WINDOWS. The algorithms that
use their windows include both scheduling and unscheduling steps. However, there

is no mention of specific algorithms to update windows; instead, they suggest the

30For example, finish,, is the minimum ¢ for which the sum between start,, and ¢ is dury,.

66

initialization algorithms be called each time.

The complexity results of Franck et al. are slightly different than ours. They do not
assume that the duration and lag functions can be computed in constant time as we
do. Also, they describe the overall complexity of CREATE-WINDOWS as O(ve(b+1))
(instead of O(v + ed)), where b is the number of breaks in the relevant calendar. This
is obviously a better bound when time is continuous since d is not included.

Obviously, calendar issues have also been solved to some extent in the imple-
mentation of project management software systems. However, we are not aware of
documentation that describes these solutions. Also, we suspect the implementations
may be somewhat inefficient since they were not designed with optimization algo-

rithms in mind.

67

CHAPTER 4

An Algorithm for Makespan
Minimization with Arbitrary

Temporal Constraints

4.1 Introduction

The minimization of makespan is a reasonable objective whenever it is beneficial to
complete a project as quickly as possible. This occurs when a shorter makespan allows
more projects to be completed (imagine cars on an assembly line) or when financial
incentives are associated with a project’s completion. Makespan minimization is
the most well-studied objective in the project scheduling literature. In most project
management systems the only available scheduling algorithm is one that minimizes

makespan.

In this chapter,! we focus on RCPSP/max problems. These generalize many
of the well-known and well-studied classes of scheduling problems (including job-
shop problems and their variants) through non-unary resource constraints and, most

importantly, arbitrary temporal constraints. The latter permit both minimum and

1This chapter is based on material co-authored with John Pyle that is in press [90}.

68

maximum time lags between activities to be represented.? This allows many real-
world constraints to be modeled, including fixed start times, releases and deadlines,
set-up times, minimum and maximum overlaps, activities that must start or finish

simultaneously, and shelf life constraints.

RCPSP/max problems have been tackled by both the AI and OR communities [23,
33, 74] with most results achieved by the latter. Successful exact methods incorporate
constraint propagation into a variety of branch and bound algorithms. Since these
algorithms have limited scalability, a number of non-systematic methods, including

Tabu search, simulated annealing and genetic algorithms have also been developed.

In this chapter, we describe how another heuristic approach, squeaky wheel op-
timization (SWQO), can be applied effectively to RCPSP/max problems. The main
component of SWO is a priority-based greedy schedule constructor. Search is used

to find effective prioritizations for that constructor.

Arbitrary temporal constraints can cause problems for a greedy constructor since
it is NP-hard to find any feasible schedule; if most prioritizations do not yield feasible
schedules, SWO will be ineffective. Therefore, to increase the power of the greedy
constructor, we have added a window-based conflict resolution mechanism, called
bulldozing, that allows the greedy constructor to move sets of activities later in a
partial schedule to maintain feasibility. Similar mechanisms move sets of activities

earlier in a feasible schedule to allow shorter schedules to be discovered.

Our algorithm is compared with the best reported results in the OR and Al liter-
ature for benchmark RCPSP/max problems ranging in size from 10 to 500 activities.
Competitive for all problem sizes, our algorithm begins to outperform other algo-

rithms as problem size increases.

2As we saw in Chapter 3, a maximum time lag between A; and A; can be represented with a
minimum time lag in the other direction (between A; and A;). Therefore, allowing maximum time
lags is equivalent to allowing cycles in the temporal constraint graph. In this chapter we use the
maximum time lag terminology as it is the standard way to discuss RCPSP /max problems.

69

4.2 The RCPSP/max Problem

We begin with a formal definition of the RCPSP/max problem:

Definition 10. An RCPSP/maz problem contains a set { Ay, ..., A,} of activities and
a set {Ry,..., Rm} of renewable resources. Fach activity A; has a start time start,,
and a duration d;. Each resource Ry has a mazimum capacity ¢, and ezecution of
each activity A; requires an amount ;. of resource Ry, for each time unit of execution.
Binary precedence constraints [T[3", T73°%] enforce minimum ") and mazimum
(T73°%) time lags between the start times of activities A; and A;.

The goal of an RCPSP/maz problem is to find a feasible schedule such that the

project makespan,® MK = mazci<n{starta, +d;}, is minimized.

The two constraints types of an RCPSP/max problem can be summarized as

follows:

o Precedence Constraints: T7" < starta; — starty, < T]"

¢ Resource Constraints: Zjsan A St<starty +di}Tik < cr, Vit Vk

Unlike scheduling problems without both minimum and maximum time lags, even
finding a feasible schedule for the RCPSP/max problem is NP-hard [9].

4.3 Solving RCPSP/max Problems

4.3.1 Time Windows and Constraint Propagation

At the core of our algorithm is a greedy schedule constructor that selects a start
time for each activity from a domain of possible values. Therefore, a framework for
maintaining time windows forms the foundation for our algorithm.

The GSTP framework described in Chapter 3 can be used to maintain time win-
dows for RCPSP/max problems. However, because we consider benchmark problems

without calendar constraints, we use the more common and more efficient framework

3The project duration beginning at time 0.

70

described by Dechter et al. [32]. In Section 4.4.3, we present results using the more
generic problem representation based on the GSTP framework that is applicable to
real-world problems.

Windows are updated during schedule construction. When a start time ¢ is se-
lected for an activity A;, the PLACE-ACTIVITY (4;,t,W) method (as outlined below)

does two things:

1. Call SET-START-TIME to update soft windows using temporal constraint prop-
agation.

2. Call INCREASE-WORK-PROFILE which updates the work profiles (W) accord-
ingly. Work profiles represent resource usage as determined by scheduled activi-
ties and will be compared with resource capacities to determine where activities
can be feasibly scheduled.

PLACE-ACTIVITY(A;,t,W)
1 SET-START-TIME(A;,t)
2 INCREASE-WORK-PROFILE{A;,t,W)

Similarly, when a start time is retracted (as we do in bulldozing), the UNSET-
START-TIME-WITH-CYCLES(A;,W) method decreases the work profiles (W) accord-
ing to the scheduled start of A; and expands windows if possible:

UNPLACE-ACTIVITY-WITH-CYCLES(A;,W)

1 DECREASE-WORK-PROFILE(A;,starta,, W)
2 UNSET-START-TIME-WITH-CYCLES(A;)

While the temporal propagation of window maintenance considers only precedence
constraints, the propagation of resource constraints can further reduce start time
domains [63, 71]. While some resource constraint propagation is likely beneficial, it
comes at a computational cost and limits the scalability of algorithms. Also, studies
have shown that different problem characteristics seriously affect the effectiveness of
any given technique [7].

The algorithms we describe in this chapter explicitly avoid resource constraint
propagation as our intent is to show that search can be effective without it and to
highlight the differences between our algorithm and others that have been proposed.
However, there is no inherent reason for us to avoid resource constraint propagation

and it could complement our approach.

71

4.3.2 Squeaky Wheel Optimization

Squeaky Wheel Optimization (SWO) is an iterative approach to optimization that
combines a greedy algorithm with a priority scheme [54]. A number of results suggest
that SWO can be applied effectively to a range of real-world problems and scales
well [24, 54].

Each iteration of the SWO algorithm can be divided into two stages: construction
and prioritization.* The construction stage takes a variable ordering and builds a
solution using a greedy algorithm. In the prioritization stage, a variable is penalized
with ‘blame’ depending on how well that variable was handled during construction.

The updated priorities result in a new variable ordering for the next iteration.

The key to SWO is that elements that are handled poorly by the greedy con-
structor have their priority increased and are therefore handled sooner (and hopefully
better) the next time (“The squeaky wheel gets the grease”). Over time, elements
that are difficult to handle drift toward the top of the queue, those that are always

easy to handle drift toward the bottom, and the rest settle somewhere in between.

A SWO implementation using a time window framework for the RCPSP/max

problem, embedded in a search over possible horizons, is outlined below.

Line 3 and lines 14 through 16 perform something similar to binary search over
possible makespans, ranging from the resource-unconstrained lower bound to double
the trivial upper bound.® Although not included in the pseudocode, our algorithm

will quit if the minimum makespan is reached.

Line 4 initializes the priorities. Lines 7 to 11 make up the greedy schedule con-

structor and priorities are updated on line 17.

41t has been described as a three step process by Joslin and Clements [54]. However, their analysis
and prioritization stages can be combined for our purposes.

Sub = T maz(d:, maz(T7}")) [33]. We found that doubling this enabled bulldozing to find
feasible schedules more easily.

72

SWO((maz-iter)
1 counter — 1
2 MKpeg ~— +o0
3 SET-HORIZON-LOWER-BOUND
4 (P,..., P,) = initial priorities
5 for counter — 1 to maz-iter
6 do feasible «— TRUE
7 fori—1lton
8
9

do
A; — unscheduled activity with highest P

10 if SCHEDULE(A;) fails
11 then feasible +— FALSE
12 if feasible
13 then M Koo — MK urrent
14 DECREASE-HORIZON
15 if 10 iterations without feasible solution
16 then INCREASE-HORIZON
17 (P, ..., P,) = updated priorities

The basic SCHEDULE(A;) method is outlined below. It looks for the earliest time-
feasible and resource-feasible place to start A;. If none is found, resource constraints
are ignored and A; is put at the earliest time-feasible start time ses,,.

Notice that we explicitly continue even when SCHEDULE(A;) fails. The reason is
that there may be many activities that prove difficult to schedule in any one iteration;
we want to be able to blame (and reprioritize) all of them rather than only the first
one that fails. While the schedule is no longer resource-feasible once SCHEDULE fails,

it is kept time-feasible.

SCHEDULE(A;)

1 ¢« earliest resource-feasible time for A;
in [sesq,, slsa,)

2 if t = DEFAULT-TIME

3 then PLACE-ACTIVITY(A;, sesy4,, W)

4 return FALSE

5 else PLACE-ACTIVITY(A;t, W)

6 return TRUE

Example 4.3.1. Consider the following three activity, one resource problem:

73

Priority Order: A] A2 A3 : A, T
A3 cannot be scheduled feasibly A

0 2 1

Ay

Priority Order: A3 A1 A2 ’ A o
A2 cannot be scheduled feasibly Ay

0 2 +
Priority Order: A2 A3 A] Al Al
All activities can be feasibly scheduled A

2
o 2 :

FIGURE 4.1: The third iteration of SWO finds a feasible schedule.

Durations dy = dp = d3 = 2

Resource capacity vy = 2

Resource requirements 143 =19, =731 =1

A constraint that A; must start exactly 1 unit before Ay. That is, S3 =52 = —1
(or T3yt = Ty = —1).

Figure 4.1 demonstrates SWO beginning with the priority order (A1, A2, A3). Us-
ing this order, no resource-feasible time is available for A; after A; and A, have been
scheduled, so its priority is increased and the priority order (As, Ay, Ap) is obtained.®
On the second iteration, Ay has the same problem. Finally, in the third iteration, the
order (Ag, As, A1) leads to a feastble schedule with MK = 4. SWO will then reduce

the horizon to 3, recompute time windows and continue.”

For initial priorities, we have chosen to use the hls,, values calculated by the

SFor illustration, an activity is moved to the beginning of the priority queue when it cannot be
scheduled feasibly.

7Notice that this schedule is optimal. However, with only temporal constraint propagation, a
schedule of length 3 cannot be ruled out and SWO will try to find one.

74

temporal constraint propagation (where the activity with the earliest hls4, value gets
the highest priority).

In our implementation, the priorities of activities that are not scheduled feasibly
are increased by a constant amount. To add randomness, priorities of other activities
are increased by a smaller amount with a small probability. Since binary search
ensures that the horizon is less than the best makespan found, we know that on each
iteration either a new best schedule will be found or at least one activity will have its

priority changed.

4.3.3 Bulldozing

In Example 4.3.1, we saw how SWO can find a feasible schedule by getting the
three activities in the right priority order. For large or highly constrained problems,
there can be many sub-problems of this nature and it may be difficult for SWO to
get all of them right at the same time.

To avoid this potential problem and strengthen the greedy construction, we add
a conflict resolution method called bulldozing to the SCHEDULE method. While we
use bulldozing to resolve conflicts in this chapter, we will show in Chapter 6 that it
can also be used to enhance window-based local search.

In the RCPSP/max context, bulldozing is inspired by the complication of maxi-
mum time lags. Without maximum time lags, a greedy algorithm can easily find a
feasible schedule since each A; can be postponed as long as necessary until resources
are available. When there are maximum time lags, however, A; may not be able to
be postponed long enough if activities that constrain it have been placed ‘too early’
{(consider the first iteration of Example 4.3.1 where A3 cannot be postponed long
enough since it is constrained by A4,).

If such an A; is encountered, bulldozing will attempt to delay the activities that

constrain it so that A; can be scheduled in the postponed position.

Example 4.3.2. Consider again the simple problem of Example {.3.1. Figure 4.2
shows what happens if we add bulldozing to the constructor. Activities A; and A

are placed successfully. When Aj; is considered there is no feasible start time. Times

73

To be resource-feasible, A,

A3 must wait until time 2 A A,

To be time-feasible, this

— : :
requires A2 to be delayed A, A,
0 2 4]
A2 can be delayed feasibly pommEeT A, -
and bulldozing works
Ay As
0 2 f i

FIGURE 4.2: Bulldozing.

t > 2 are resource-feasible but only time t = 0 is time-feasible since Aj is constrained
by the chosen start time for A;. Therefore, we place As at 2 and bulldoze A,. Since
Ay can then be feasibly scheduled at time 3, bulldozing is successful and the resulting

schedule is feasible.

We get algorithm SWO(B) by replacing SCHEDULE(A;) with SCHEDULE-WITH-
DozING(A;, X), a recursive procedure outlined below (X is the set of activities that
must be delayed; in the initial call, X = 0). Instead of simply searching the current
window [sesa,,slsa,] for a feasible time, SCHEDULE-WITH-DOZING considers the
larger interval [sesa,, hlsa,] (recall that hlsy, is the latest start of A; when no other
activities are scheduled). If t is not a feasible time or is before sls,,, the algorithm
proceeds as before.

If the earliest resource-feasible time is outside the current window but within the
original window, bulldozing is invoked. Activity A; is placed at this potential start
time and line 9 updates set X with the activities that must be moved.® Each A; in this
set is then unplaced (one at a time) and a recursive SCHEDULE-WITH-DOZING(4;,X)

call is made. If all activities can find new feasible start times, bulldozing succeeds.

8These will be activities that forced slss, <t in the first place.

76

Otherwise, all delayed activities revert to their previous positions and A; is placed

back at sesg;,.

SCHEDULE-WITH-DOZING(4;, X)

1 ¢t « earliest resource-feasible time for A;
in [sesa,, hlsa,)

2 if t = DEFAULT-TIME

3 then PLACE-ACTIVITY(A;, sesa,, W)

4 return FALSE

5 else if { < slsy,

6 then PLACE-AcCTIVITY{A;, {, W)

7 return TRUE

8 else PLACE-ACTIVITY(A;,t, W)

9 X «— X U{A; forced to move by A;}
10 while X # 0
11 do A, «— randomly selected element of X
12 UNPLACE-ACTIVITY-WITH-CYCLES(Ay, W)
13 if SCHEDULE-WITH-DOZING{ A, X) fails
14 then UNDO-ALL-BULLDOZING
15 UNPLACE-ACTIVITY-WITH-CYCLES(A;, W)
16 PLACE-ACTIVITY(A;, sesa,, W)
17 return FALSE

The recursive nature of bulldozing means that more activities can be moved than
the original set forced by A;. In fact, we have observed that A; itself is often bulldozed
further in attempts to settle on start times where all activities are resource-feasible.
The reason seems to be that a highly constrained sub-problem may need to be moved
out past other activities to fit. This is the motivation for selecting activities to
bulldoze randomly on line 11; if a subset of activities proves difficult to schedule,
attempts to reschedule them will be done in different orders.

This suggests a side benefit of bulldozing. If a problem has subsets of activities
that are highly constrained, the subsets will be pushed out past other activities until
they can be scheduled feasibly. It is interesting to note that in other work [74],
RCPSP/max problems are explicitly divided into such sub-problems that are solved
separately and then combined into an overall solution. Bulldozing similarly isolates

subproblems from the rest of the problem but does so only when subproblems prove
difficult.

77

\ 4

FIGURE 4.3: With refilling, A; and A; are bulldozed left and the makespan is
reduced from 5 units to 4.

If there is a difficult subproblem, SWQ without bulldozing may also work because
the activities involved are likely to move up in the priority queue and be scheduled
before others. However, if there are multiple such subproblems, they will likely be
jumbled together in the early part of the priority queue and SWO may have trouble
fitting them all together. Bulldozing appears to overcome this problem.

Bulldozing can be considered a form of intelligent backtracking [44] since we un-
value and revalue the variables whose values contribute to an infeasible state. It also
lhas the favor of iterative repair algorithms that build schedules and then eliminate
conflicts through local search. However, a key difference with local repair is that

bulldozing is done with partial rather than complete schedules.

4.3.4 Refilling

Consider our simple example once more. In Example 4.3.2, we saw how bulldozing
can allow feasible schedules to be constructed with priority queues that result in
infeasible schedules without bulldozing. However, notice that the resulting schedule
is not optimal. As shown in Figure 4.3, the two activities involved in bulldozing (As
and Aj;) can be shifted left to fill in the space vacated by the bulidoze.

Algorithm SWO(B,R) results from adding two such ‘refilling’ pieces to the pro-
cedure SCHEDULE-WITH-DOZING:

1. Left Bulldozing After a successful bulldoze, an attempt is made to bulldoze
the same set of activities back to earlier start times. This often works because
of the space vacated by the bulldozed activities. This step is also bulldozing
because the subset of activities considered may be highly constrained among
themselves (hence the bulldoze in the first place). Therefore, it may not be
possible to left-shift any of them individually but they may move as a group.

78

2. Left Shifting After a successful bulldoze, an attempt is made to left-shift
activities that can take advantage of resources vacated by bulldozed activities.
We simply consider each activity A; for which starts, > sesy,.

These refilling mechanisms are able to reduce the makespan of an already feasible
schedule or partial schedule. When the horizon is small, they may also indirectly help
the construction of more feasible schedules since they leave more room for activities
that have yet to be scheduled.

Example 4.3.3. In the simple problem of Example 4.3.1, there are 6 possible priority
orders. For SWO, 2 of them are both feasible and optimal. For SWO(B), all 6
become feasible and 4 are optimal. Finally, for SWO(B,R), all 6 are optimal.

In Figure 4.4 the results of using the three constructors for each priority order
are shown. Each row represents a priority order. The first column shows the results
of SWO using that priority order. The second column shows the results of using
SWO(B), if bulldozing is invoked. Finally, the third column shows the results of
using SWO(B,R) in the cases where that makes a difference.”

It is straightforward to show that each version of our algorithm is guaranteed to
terminate in polynomial time and therefore cannot be guaranteed to find a feasible

solution (since the problem is NP-hard).

4.4 Experimental Results

We have tested our algorithms on five sets of benchmark problems (set A is divided
into 3 subsets). All benchmarks were generated with ProGen/max [87] using a number

of parameters to vary problem characteristics. Table 4.1 lists the benchmarks with

9For the two priority orders where refilling changes the schedule, the refilling required is the
left bulldozing we have described. It should be noted, however, that the current implementation of
SWO(B,R) will not actually succeed in these two cases. The problem is that it tries to bulldoze
Az back to time 0, discovers that this does not work and then gives up. To fix this would require
multiple attempts at left bulldozing (to try different positions for A3); we suspect this would not be
worth the extra computation time. Nonetheless, for the purposes of demonstration, we assume that
the refilling is figured out.

Priority Order

A Ay Ay

A Ay Ay

Az A; A;

A Mg Ay

A Al A,

Ay AL A

SWO

-

- _:{\1‘-: .

Ay

Ay

A

A;

Ay

Ay

SWO with bulldozing

Ay

unnecessary

unnecessary

79

SWO with bulldozing
and refilling

Ay

unaecessary

AI Az
Ay

unnecessary

unfecessary

unnecessary

FIGURE 4.4: The results of using the three constructors with each possible priority

order as described in Example 4.3.3.

80

TABLE 4.1: Benchmark names and characteristics.

Set Ninstances | Njeas | Nact | Nres
J10 270 | 187 | 10 5
J20 270 184 20 5
J30 270 | 185 | 30 5
B 1080 | 1059 | 100 5
C 120 119 | 500 5

TABLE 4.2: Results of schedule construction with all priority queues for feasible
J10 problems.

% feas %opt
Constructor Worst | Avg. | Best | Worst | Avg. | Best
SWO 0 4 o4 0 2 LR
SWO(B) 18 94 | 100 | 0.0002 7| 100
SWO(B,R) 15 94 | 100 0.02 13| 100

the number of instances and how many are feasible as well as the number of activities
and resources of each instance.
Our algorithm has been implemented in C++ and was run on a 1700 MHz Pentium

4. It uses well under 15 MB of memory on the largest problems.

4.4.1 Quality of the Greedy Constructor

For a SWO algorithm to be effective, it is crucial that the greedy constructor be
capable of finding feasible and optimal solutions. We want to be confident that there
are at least some (preferably many) priority orders from which optimal schedules will
be produced.!® The JI0 problems are small enough that all 10! = 3628800 possible
priority queue permutations can be tried for each instance.

In Table 4.2, we show the percentage of those queues that lead to feasible and opti-
mal schedules using the constructors of our three SWQO algorithms: SWO, SWO(B)
(bulldozing) and SWO(B,R) (bulldozing and refilling). For both %.p and %feqs, we

give the worst and best cases among all 187 feasible problems in J10 as well as the

191t is not obvious that this is the case with maximum time lags.

81

average.

The benefits of strengthening the constructor are clear; bulldozing yields a jump
in the number of feasible schedules produced while refilling yields another jump in
the number of optimal schedules produced. While the SWO constructor fails to find
any solution to 3 feasible problems, the other two find feasible solutions with at least
15% of the prioritizations for every feasible problem.!!

Another consideration, of course, is time. On average, the SWO(B) constructor
took 3.2 times longer than that of SWO and the SWO(B,R)) constructor took twice

again as long. Experiments suggest that these computational costs are worth paying.

4.4.2 Benchmark Results

We compare SWO(B,R) with the best methods reported in the literature:

o B&Bsgs [88] is a branch and bound algorithm that delays activities by adding
precedence constraints.

e B&Bpss [33] is a branch and bound algorithm that reduces the search space
with a significant amount of resource constraint propagation.

o B&Bggs [35] is a branch and bound algorithm that dynamically increases the
release dates of some activities.

o ISES [23] is a heuristic algorithm that begins with all activities scheduled as
early as possible and then iteratively finds and levels ‘resource contention peaks’,
by impesing additional precedence constraints and restarting.

e KDE [28] improves upon priority rule methods by using models of search per-
formance to guide heuristic-based iterative sampling.

For each of the above, results are available for a subset of the benchmark prob-
lems. The results from a number of algorithms that do less well than the above five
algorithms are not reported. These include a genetic algorithm, Tabu search and

simulated annealing [40], and priority rule-based methods [38].

11Tt is unclear to us why the SWO(B,R) constructor did worse than the SWO(B) constructor in
the worst case.

82

For SWO(B,R), we report the average of 5 runs for each benchmark set. Each
run was capped at 10 seconds (or 1000 iterations, whichever came first) in an attempt
to ensure that we used no more computation time than other algorithms.

Results are summarized in table 4.3 where we include the following statistics:

o A1p% gives the average relative deviation from the known lower bounds.

» opt gives the percentage of feasible problems for which optimal solutions were
found (solutions that matched the lower bound or have been proven optimal by
some algorithm).

o Yreas Eives the percentage of feasible problems for which feasible solutions were
found.

e Cpu,,. gives the average computation time, scaled by processor speed.!?

Algorithm SWO(B,R.) was able to find solutions to all 1733 feasible problems (on
all 5 runs}. The only other algorithm that does not miss feasible solutions is B& Bgy,
which does so at the expense of quality, especially on set C.

Not surprisingly, exact methods get the best results for small problems. B& Bggg
is able to solve all J10 problems optimally, does fairly well on the J20 problems but
already fails to find a number of feasible solutions to some of the problems in J30.
B&Bpgs is better able to handle larger problems and is by far the best algorithm
on problem set B. However, when the number of activities is increased from 100 to
500 (set C), it fails to find all feasible solutions and solves fewer to optimality than
SWO(B,R).

SWO(B,R) is also very competitive with the best non-systematic algorithms. It
outperforms ISES on all metrics and on all problem sets. While KDEF is significantly
better on measurement Arg%, SWO(B,R) is slightly better than KDFE on the other
three dimensions.

Finally, in addition to scaling well in terms of relative solution quality, SWO(B,R)

appears to scale effectively in terms of running time. For example, while ISES takes 33

12For example, the times reported for ISES have been reduced by a factor of 1700,/200 since they
were obtained on a Pentium 200 machine. This rough comparison is the most we can hope for given
that the algorithms were developed in different languages and run on different platforms. For some
systematic algorithms, this time also includes the time to prove optimality.

TABLE 4.3: Results for benchmark problems.

83

Set Algorithm | Azg% | Yopt | Yofeas | Scaled Cpugec
SWO(B,R) 02! 94.0| 100 0.31

J10 B& Bggs 00| 100 | 100 -
ISES 1.3(2 | 859 | 99.5 0.08

SWO(B,R) 49| 664 100 0.63

J20 B& Bggs 431|853 100 -
ISES 54| 64| 100 0.53

SWO(B,R)| 103 |51.1| 100 1.07

J30 B&Bggs 9.6+ | 62.3 | 98.9 -
ISES 11.0 | 494 | 100 2.67

SWO(B,R) 6.8 | 64.2| 100 1.85

KDE 46 | 63.8 | 99.9 1.97

B ISES 8.00¢ | 63.2| 99.9 ®)
B& Bggs 96| 637 100 -

B&Bpgs 461731 100 3.49

B& Bragg 7.0 | 725 100 (b)

SWO(B,R) 05| 79.2| 100 3.27

C B& Bpes 0.5 | 714 | 97.5 11.53
B& Brgo 5.2 | 58.8 | 100 ()

(a) Not directly comparable to other numbers since problems not feasibly solved are excluded.
{b) Cutoff of 11.8 seconds used but no average time reported.
(¢) Cutoff of 23.6 seconds used but no average time reported.

84

times longer on J80 than on J10, SWO(B,R) takes less than 4 times longer.!® Sim-
ilarly, B& Bpgg takes 3.3 times longer on C than on B; the difference for SWO(B,R)
is under 2. It is unclear how KDFE scales since results are only reported for problems

of a single size.

4.4.3 Generalizing SWO(B,R)

As described in Section 4.3.1, our implementation of SWO takes advantage of the
simplified nature of benchmark problems. However, a primary goal of this dissertation
is to develop algorithms that can handle real-world problems. Therefore, we have also
implemented SWO(B,R,G) (where G represents the fact that it is generalized) which
differs from SWO(B,R) in three important ways:

1. Time windows are maintained in SWO(B,R,G) using the GSTP framework of
Chapter 3.

2. Resource management is also capable of handling calendar issues. This requires
a slightly more complicated implementation of INCREASE-WORK-PROFILE and
DECREASE-WORK-PROFILE. For example, if an activity is scheduled over the
course of a number of weeks but does not work on weekends, work profiles must
be increased during the week but not on weekends.

3. The UNPLACE-ACTIVITY-WITH-CYCLES procedure is replaced with the proce-
dure UNPLACE-ACTIVITY, outlined below. This is the version used to unsched-
ule activities in later chapters and does not account for cycles in the constraint
graph. As discussed in Section 3.5.3, the resulting windows may not be complete
due to maximum time lags. However, window expansion is much faster in prac-
tice and we decided this implementation was more appropriate for real-world
problems. The end result will be that there will be times that bulldozing may
fail even though it would have succeeded if cycles had been handled properly.

UNPLACE-ACTIVITY({A4;,W)

1 DECREASE-WORK-PROFILE(A;,starta,,W)
2 UNSET-START-TIME(A;)

In Table 4.4, we show results for the SWO(B,R,G) version of our algorithm
compared with the SWO(B,R) results from Table 4.3.

130f course, such comparisons must be taken with a grain of salt; running times depend partly
on the cutoff times chosen.

85

TABLE 4.4: Comparison of SWO(B,R) and SWO(B,R,G).

Set Algorithm ApLp% | Yoopt | Pofeas | Scaled Cpugec
710 SWO(B,R) 0.2 94.0 100 0.31
SWO(B,R,G)| 0.1]960]| 100 0.50
120 SWO(B,R) 49| 66.4| 100 0.63
SWO(B,R,G) | 501|653 100 1.24
130 SWO(B,R) 10.3 | 51.1 100 1.07
SWO(B,R,G) | 104|511 100 2.39
5 SWO(B,R) 68| 642| 100 1.85
SWO(B,R,G)| 7.2|631| 100 2.68
SWO(B,R) 05| 79.2| 100 3.27
C
SWO(B,R,G) | 07771 997 3.62

As expected, running times for SWO(B,R,G) are somewhat longer (up to twice
as long) than for SWO(B,R). Results are comparable for most problem sets but
SWO(B,R,G) has some trouble with set C' and does not solve all problems feasibly;
there is one problem that it solves on only three of the five runs. We suspect this is
due both to the slower running time (the 10 second cutoff time is reached most often

for set C) and the fact that windows aren’t kept complete during bulldozing.

4.5 Conclusions

We have described a new heuristic algorithm, SWO(B,R.), for RCPSP/max prob-
lems. It uses bulldozing and refilling to improve the performance of greedy schedule
construction in SWOQ. On a range of benchmarks SWQO(B,R) is competitive with
systematic and non-systematic state-of-the-art techniques. Able to consistently solve
all feasible problems, it scales well, both in terms of solution quality and running
time, relative to the best OR and Al algorithms known.

There are several ways SWQO(B,R) could be improved. We have already men-
tioned that some resource constraint propagation should help guide SWO. Preliminary
experiments using one of the consistency tests of Dorndorf et al. [33] give improve-

ments for J10 and J20. However, the benefits seem to be outweighed by the extra

86

computational costs for the larger problem sizes.

It might be effective to incorporate SWO(B,R) into a meta-heuristic like Tabu
search!* or simulated annealing so that priority space is explored more intelligently;
the current search is relatively unstructured.

Finally, SWO(B,R) should be tested on more difficult problems. While it didn’t
struggle with the above benchmarks, we do not know how it will do on problems that

are larger or more difficult.

14Tahy search was found to be an effective meta-heuristic to combine with SWO to solve the
container ship yard allocation problem [24].

87

CHAPTER 5

Minimizing Labor Costs

5.1 Introduction

Historically, scheduling research has addressed factory-like settings where the rele-
vant resources are machines. For example, the job-shop scheduling variants that have
received so much attention over the years explicitly refer to operations performed by
machines. In these settings it makes sense to solve resource constrained scheduling
problems where the resource capacities (the number of machines, for example) are
fixed and the goal is to optimize a criterion such as makespan without exceeding those
capacities.

There are many domains, however, where the relevant resources are people rather
than machines. For example, in construction, resources like electricians, plumbers
and painters are of more cost and concern than resources like wires, pipes, ladders or
paint. In fact, project management systems are designed with the expectation that
resources will often be people, allowing the user to specify such details as job titles,
skills and overtime costs.

When labor is the important resource, it may not make sense for the resource
capacity (staffing level) to be fixed. Instead, the staffing level can likely be increased
or decreased as necessary {(at some cost) to match demand.

In this chapter, we consider the labor cost optimization problem where the goal is

to find a schedule that minimizes total labor costs subject to the problem constraints.

88

To solve the problem, we must distinguish between the work profile (the amount of
work scheduled) and the staffing profile (the number of workers on staff to do the
work). These profiles will match when there is just enough work for all workers to be
working full time. Often, they will not match: a higher work profile corresponds to
overtime (workers doing extra work at a higher cost) while a lower work profile corre-
sponds to undertime (paid workers with nothing to do). Costs will be associated with
overtime and undertime as well as with changes in the staffing profile (corresponding

to hires or fires).

To simplify discussion throughout this chapter, we assume that a project has a
single resource. There is no resulting loss of generality; when there are multiple

resources, each one can (and should) be handled separately as discussed here.

We also often refer to time units as days since time units are days in most projects
we have seen and days make the most sense intuitively. However, the theory presented

is applicable to any time granularity.

In Section 5.2, we show how to calculate labor costs given both a work profile and
a staffing profile. The notation introduced there helps us formally define the LCOP
in Section 5.3. In Section 5.4, we show how dynamic programming can be used to
find an optimal staffing profile given only the work profile. Sections 5.5 and 5.6
show how the properties of the problem can be used to significantly speed up the
dynamic programming. In Section 5.7, we address the final goal: optimizing the work
profile (schedule) in order to get a minimum labor cost. Other issues are discussed

in Section 5.8, and Section 5.9 concludes with a review of related work.

It is important to mention here that most of the algorithms described in this chap-
ter were developed by Andrew Baker. My contributions are a formal description of
those algorithms, proof that they have the desired properties, and results concerning
their time and space complexity. In addition, the observations of Section 5.6 are my

OWTIl.

! An important exception to this is the case of cross-trades mentioned in Section 5.8.2.

89

5.2 Labor Costs Given Staffing Levels

In this section, we show how we can calculate total labor costs for a project if
we are given both a work profile (determined by the schedule) and a staffing profile
(determined by staffing decisions).

Labor costs can be calculated given the following five resource rates:?

e Base Rate (B) is the amount paid to workers to complete scheduled work.
This might include wages and any employee benefits but only for time during
which work is accomplished.

e Overtime Rate (V): is the additional amount paid for overtime work.

e Undertime Rate (U) is the amount paid to workers for time during which
they are employed but are not accomplishing work. Usually, U/ = B.

e Hire Rate (H) is the expense of adding a worker to the staff. This might
include recruiting and training costs.

e Fire Rate (F) is the cost to decrease the number of workers. This might
include severance pay.

Suppose that on some day we have work level w (the amount of work to be done).
Let the change in staffing level relative to the previous day be staff-change; a negative
value means we have fired workers from the previous day. Let the number of extra
workers be staff-excess; a negative value means there is more work to be done than
there are workers.

We can break the labor cost of the day into the following five pieces:

¢ Base Cost: b(w) = B-w.

o Overtime Cost: v(staff-excess) = V - maz(0, — staff-ezcess).

e Undertime Cost: u(staff-ezcess) = U - maz(0, staff-ezcess).

e Hire Cost: h(staff-change) = H - maz(0, staff-change).

e Fire Cost: f(staff-change) = F - maz(0, — staff-change).

2In what follows, we assume they are all non-negative.

90

Finally, we can pair up the two costs associated with staff-ezcess and the two

costs associated with staff-change as follows:

e Staff Offset Costs: A,,(staff-ezcess) = v(staff-excess)+u(staff-ezcess). The
costs incurred for a difference between the work to do and the number of people
on staff to do it.

e Staff Change Costs: Ayf(staff-change) = h(staff-change)+ f(staff-change).
The costs incurred for a change in staffing levels.

Now suppose that we have a schedule spanning m days. Let the work profile
(amount to be done by day) be W = (wy, wa, ..., w,,) and the staffing profile (number
of people by day) be P = (py, po, ...,). In addition we need a starting staffing level
po to represent the staffing level on the day before the project begins; this will be
needed to calculate the hire and fire costs for the first day.

The total project cost is then:

Ctotal = Z b{wn) + Buu(pe — wi) + Bnp(pe — Pe-1) (5.1)

t=1

Example 5.2.1. Consider a three day project spanning Tuesday through Thursday.
Let the work to be done be W = (2,3,0) and suppose we have staffing levels P =
(1,2,1) and let the staffing level on Monday be po = 1.

Table 5.1 shows how we arrive at a total project cost of 8 using equation (5.1) with
rates B=U=1and V = H = F = 0.5. The first three rows show the values used
to calculate costs. The next 5 rows break down the costs and the last row shows the
total cost.

For ezample, on Tuesday there are 2 units of work to do which results in a base cost
of 2. Since there is only 1 worker, staff-ezcess = —1, resulting in an overtime cost of
0.5 and no undertime cost. Since there was also 1 worker on Monday, staff-change =
(and there is no hire or fire cost.

The final column shows the totals for the whole project.

Notice that the base cost depends only on the amount of work and not on the

number of people available. Unlike the other costs, the total base cost of a project

91

TABLE 5.1: Calculation of project cost for Example 5.2.1 using (5.1).

Cost Tuesday | Wednesday | Thursday | Total
Wy 2 3 0 5
staff-ezcess = py — w, -1 -1 1 -
staff-change = p; — pi—1 0 1 -1 -
b(w) 2 3 0 5
v(staff-excess) 0.5 0.5 0 1
u{staff-excess) 0 0 1 1
h(staff-change) 0 0.5 0 0.5
f(staff-change) 0 0 0.5 0.5
Ciotal 2.5 4 1.5 8

corresponds only to the total amount of work and is unaffected by how that work is
scheduled or staffed. This can be called the ‘value-added’ cost.

The other costs, however, depend on the work and staffing profiles and are accrued
either when the two are different or when the staffing profile fluctuates. These can
therefore be considered unnecessary costs; for an ideal project, with constant work

and constant staff profile, they will all be zero and the only cost will be the base cost.

5.3 The LCOP

We are now ready to formally define the LCOP:

Definition 11. A labor cost optimization problem (LCOP) contains a set A =
{A1,...,A,} of activities and a set R = {R,, ..., R,} of resources (pools of workers or
trades). Each activity A; has a start time starta, and o duration d; and there is an
overall deadline D. Ezecution of A; requires an amount ry, of resource k for each
time unit t of ezecution (starty, <t < starts, +d;).3

Binary precedence constraints [T7F™, T3] enforce minimum (I73") and mazi-

mum (I73%*) time lags between the the start times of activities A; and A;.

3For all of the problems we consider, the resource requirements of each A; are constant for its
duration. However, this need not be the case and all of our algorithms work for this more general
definition.

92

The objective is to find a feasible schedule S with the lowest minimum cost. In
other words, the objective is to find S that determines work profile W such that the
optimal staffing profile P for W minimizes cioat (see (5.1)).

The next three sections describe how to find the minimum cost (and an optimal
staffing profile P that gives that cost) given W. Section 5.7 shows how these methods
can be incorporated into search for cost effective schedules. In Chapter 6, we describe
the ARGOS tool that uses these algorithms to heuristically solve LCOP problems.

5.4 Using Dynamic Programming to Minimize La-

bor Costs

Above, we showed how to compute labor costs given both a work profile and a
staffing profile. We now want to consider the optimization problem of minimizing the
total labor cost cjoie given only the work profile.

Standard dynamic programming can be used. Let p.. be the maximum staffing
level that might be required during a project.! Function minCost,(p) recursively
computes the minimum cost of having p workers for day ¢ based on the values of
minCost,_,{p') for all possible staffing levels p’ on the previous day. For all p, we
define minCosty(p) = 0 to represent the fact that we can have any staffing level on
the day before the project begins at no cost.’> Qur recursive function is then:

minCost,(p) = min (minCost,_1(p') + Anp(p —p")) + bw) + Apu{p —w:) (5.2)

0Ly <pmaz

To compute the overall minimum cost, we simply find staffing level p on the last day

m of the project for which minCost,,(p) is lowest:

minCost o = 0<1Ir)rg’n (minCostn(p)) (5.3)

4Given a work profile, we can let pma: = [maz{w,.}] since it will never be worth having more
staff than that.

5In Section 5.8, we show how to handle cases where this is not true.

93

Consider equation (5.2) again. We can break down the calculation into two pieces.
The first piece (in parentheses) calculates the minimum cost to begin day ¢ with p
workers by considering the costs of having all of the possible staff levels p’ on the
previous day and adding the cost to change the staffing level from p' to p.

The second piece of (5.2) adds the new costs for work on day ¢ and has nothing
to do with previous days. From now on, we discuss the calculation in terms of these
two pieces: one to calculate the minimum starting costs for day ¢ and the other to
add the new costs for t.

The results of (5.3) can be achieved by the non-recursive procedure FIND-MIN-
CosT that follows.

FIND-MIN-CosT(W)

1 total-min-costs = (0,0,....,0)

2 fort=1tom

3 do

4 for p=0to pmaz

5 do start-min-costs[p] = FIND-STARTING-MIN(p,total-min-costs)
6 new-costs[p] = b(w,) + Ayu(p — wy)

7 total-min-costs = start-min-costs + new-costs

8 return minimum value in array total-min-costs

On line 1, FIND-MIN-COST sets the cost of each staffing level to 0 for time 0 (recall
that we are allowed to begin with any staffing level at no charge). Then, for each day
t, the FIND-STARTING-MIN procedure calculates the minimum starting costs. The
new costs for ¢ are calculated on line 6. Finally, the two pieces are summed on line 7.
The overall minimum cost is the smallest entry in the array total-min-costs[p].

The FIND-STARTING-MIN procedure is outlined below. It is given the minimum
total costs at each staffing level for day ¢t — 1. Using these, it determines the cheapest
way to end up with p workers on day ¢.

FIND-STARTING-MIN(p, total-min-costs)

1 answer = o0

2 for p' =0 to pras

3 do this-cost = Ays(p — p') + total-min-costs(p']
4 if this-cost < answer

5 then answer = this-cost

6 return enswer

94

Example 5.4.1. Suppose we want to find the optimal cost to complete the small
project of Example 5.2.1. Table 5.2 shows the values computed by FIND-MIN-COST.

There are three columns for each day:

1. The first column shows the minimum cost to begin work on the dey with p
workers (computed by FIND-STARTING-MIN).

2. The second column shows the new costs for that day

3. The third column is the sum of the first two and shows the minimum cost to
complete the project up to that day with p workers.

Consider the costs on Tuesday. Since we assign no cost to starting the project at
any staffing level, the costs in the first column are all 0. The new costs for Tuesday
are the costs to do 2 units of work at each staffing level p. If p = 0, there are 2 units
of work (at cost 1) and two units of overtime (at cost 0.5) which gives the new cost
of 35 The lowest new cost is if there are ezactly 2 people. If there are 3 people, the
cost is 3 (2 for the work and 1 for the undertime).

Now consider the minimum starting costs for Wednesday. The minimum cost of

3 to start with 0 workers could actually be achieved three ways:

1. Using Tuesday’s cost for 0 workers (cost 3) without changing the staffing level.

2. Using Tuesday’s cost for 1 worker (cost 2.5) and reducing the staffing level by
1 (cost 0.5).

3. Using Tuesday’s cost for 2 workers (cost 2) and reducing the staffing level by 2
(cost 1).

Notice also that the minimum starting cost for 8 workers on Wednesday is cheaper
than the cost to have 3 workers on Tuesday. The cost of 2.5 is achieved by using
Tuesday’s cost for 2 workers (cost 2) and increasing the staffing level by 1.

The final column gives the minimum cost to complete the project with each staffing
level. The optimal cost is 6.5 and can be achieved only by ending with 0 workers on
Thursday.

6We assume for now that the work can be accomplished and ignore the fact that there is nobody
to do it.

95

TABLE 5.2: Calculation of optimal cost for the work of Example 5.2.1.

Tuesday: w =2 Wednesday: w =3 Thursday: w =10
R 8 8 8
E = oy =
= = = B B s B B 2 a
s 1§ |8 |8 |E |8 |8 1§ (&8 |E
5 |& |5 |2 & |52 [E |2 |&B |%
= = . = = 2, = = Z. =
0 0 3 3 3 4.5 7.5 6.5 0 6.5
1 0 2.5 2.5 2.5 4 6.5 6 1 7
2 0 2 2 2 3.5 5.5 5.5 2 7.5
3 0 3 3 2.5 3 5.5 5.5 3 8.5

It is worth noting here that the dynamic programming can just as easily proceed
from time m to time 1 since the computation is symmetric. We take advantage of

this in Section 5.7.

Lemma 5.4.1. The optimal value, minCost,oa, can be calculated in O(m(pmaz)?)

time using O(Pmaz) Space.

Proof: The FIND-STARTING-MIN procedure has p,,.. steps to perform and is called
Pmaz times by FIND-MIN-COST for m different times. This is the bottleneck and we
get O(m(pmaz)?) time. It requires O(pmq:) space since only three arrays of size Pmax,
total-min-costs, start-min-costs and new-costs, need to be maintained at any given

time.

5.4.1 Calculating the Optimal Staffing Profile

The procedure FIND-MIN-COST calculates the minimum cost given a schedule
but does not record the staffing profile needed to achieve that cost. If we want to
save the staffing profile as well, some extra bookkeeping is required.

During dynamic programming, we must maintain a set of arrays (one for each day)

X = (X1, X, ..., X;n) where each X, is an array X; = (.0, Z¢ 1, .-y Tipras) L he value

96

Ty, gives the staffing level on the previous day (¢ — 1) that results in the minimum
cost for staffing level p on day t. An z;, value will be updated whenever line 5 is
reached in the FIND-STARTING-MIN procedure.

Given X, we can use the FIND-OPTIMAL-STAFFING-PROFILE procedure to find
the optimal staffing profile, where parameter p is the optimal staffing level for the
last time unit m (it is straightforward to modify FIND-MIN-COST to return p as well
as the minimum cost).

FIND-OPTIMAL-STAFFING-PROFILE steps backward through X. The optimal
level on each day ¢ can be calculated by looking at the entry in X corresponding to
the optimal level on day £ + 1. Notice that the loop steps down to time 0; this will
give the optimal starting staffing level for the day before the project begins.”

FIND-OPTIMAL-STAFFING-PROFILE(X, p)
optimal-profile[m] = p
fort=m—-1to0

2
3 do optimal-profile[t] = Ty41,optimat-profite]t+1]
4 return optimal-profile

—

Lemma 5.4.2. Finding the optimal staffing profiles can be done in O(m(ppaz)?) time
and O(mpPmaez) Space.

Proof: Computing X during FIND-MIN-COST does not increase the time complexity
given in Lemma 5.4.1 and FIND-OPTIMAL-STAFFING-PROFILE is O(m).
The space complexity is increased to O(mpma.:) because X needs to be stored.
[

Example 5.4.2. In Table 5.8, we update the table of Example 5.4.1 to include the
Trp values for calculating the optimal staffing profile.

Column X, tells us that the optimal way to have 0, 1, 2, or 8 workers on
Tuesday is to have the same number on Monday, as we would ezpect. In Column

Xwed, we see similar results for 0, 1 or 2 workers (the cheapest way to have that

7This method will find one of possibly many optimal staffing profiles. The one that is found will
depend on how ties are broken when X is created.

97

TABLE 5.3: Table 5.2 extended to allow an optimal staffing profile to be calculated.
Tuesday: w =2 Wednesday: w =3 Thursday: w =0

g cost]

Total cost

en
=~
on

=1 o | Total cost

o

w
o @ & | Min starting cost
ch o

tn
=
an

w 2 = O Staffing level p
© © © <] Min starting cost]

w o b w |l New cost
w 0 o @ Total cost
2o 2o b3 @ Min startin
o

W w & | New cost
w o = of New cost

&
b
0
1
2
3

[I I R] XWed
SRR XThu

e)
e o

55 | 5.9

many on Wednesday is to have the same number on Tuesday). However, the final
values (Xwea|3)) indicates that the cheapest way to have 3 workers on Wednesdoy is
to have only 2 on Tuesday (and to therefore hire another to start on Wednesday).

Given the X; values, we can see how FIND-OPTIMAL-STAFFING-PROFILE will
work. The optimal staffing level on Thursday is 0 (resulting in cost 6.5). To find
the optimal staffing level on Wednesday, we look at Xri.[0] (highlighted) which tells
us that having 2 workers on Wednesday is the cheapest way to start Thursday with 0
workers (we will fire them after Wednesday). In the next iteration, we look at Xieq[2}
(highlighted) which tells us that having 2 workers on Tuesday is the cheapest way to
start Wednesday with 2 workers. Similarly, Xry.|2] tells us that having two workers
on Monday is cheapest and we end up with optimal staffing profile P = (2,2,2,0)
(starting on Monday).

5.5 Improvements Over Basic Dynamic Program-
ming

The time and space bounds of Lemmas 5.4.1 and 5.4.2 can be improved by ob-

serving that each array of costs ranging over p for day t is a piecewise linear convex
(PWLC) function g(p).

98

FIGURE 5.1: An example of a PWLC function.

Definition 12. Given real numbers by < by < ... < by, called inflection points, a

continuous function on R is:
e piecewise linear if it is linear on each segment [b;, by, and

o conver if the slope of segment [b;, b;y1] is less than that of segment [biy1, bisa)
for alli. In other words, any line drawn between two points on the function will
fall on or above the function.

An example of a PWLC function (defined over a subset of the real numbers) is

shown in Figure 5.1.

Lemma 5.5.1. The array of daily costs (new-costs) for any time t is a PWLC

function.

Proof: Given a work level w, new-costs is a PWLC function g(p) with an inflection
point (and minimum value) at p = w. For p < w, there will be additional overtime
costs but no undertime costs and the slope will be —=V. For p > w, there will be
additional undertime costs but no overtime costs and the slope will be U. This gives
us:

V(w- <
9(p) = A (5.4)
p+U(p—w) p>w

99

This is clearly a PWLC function.
|

Lemma 5.5.2. Given a PWLC function g,(p) representing the total-min-costs for
time t, the function go(p) representing the start-min-costs array for timet+1 is a
PWLC function.

Proof: The set of costs defined by gz(p) is an update of g(p) with the cost of any
point p reduced if that staffing level can be reached for lower cost by hiring or firing
from another level p’ at time ¢ (an example is shown in Figure 5.2).28 When that
happens, there are two possibilities:

1. Tt is updated by a point p’ < p. In this case, f(p' — p) = 0 and the update is
made because

91(p) > q1(p) + h(p — p')

2. It is updated by a point p' > p. In this case, h{p — p’) = 0 and the update is
made because

91{p) > g1 (p') + f(p' — p) (5.5)

Now consider function g;(p) that is getting updated. Given that it is a PWLC,

we divide its segments into 3 sets (see the second graph in Figure 5.2):

1. The first set of segments, A, (possibly empty) contains those for which slope <
—F. We can show that every segment in A will be replaced by a single one
of slope —F in gs(p) (see the shaded area on the left of the third graph in
Figure 5.2).

Let the set of segments in A end at point p.nq4. For every point p € A,

91(Pena) — 91(p) < —F
Pend — P

91(P) > 91(Pend) + F + (Pend — D) (5.6)

Since this satisfies (5.5), the cost at p will be updated using the cost at pend
unless there is an even better update available. We now show that there isn’t.
It should be clear that p will not be updated by any p’ < p since ¢:(p') > q:1(p).

8For example, this happened on Wednesday in Example 5.4.2; to start with 3 workers, it is
cheaper to have 2 workers on Tuesday and hire another one than it is to have already had 3 workers
on Tuesday.

100

g, (p)

0O

Staff

00

rin O 0

oo n

Uz (p)

Staff

FIGURE 5.2: An example of a PWLC function g;(p) (fotal-min-costs) for time
t updated to produce a PWLC function go(p) (start-min-costs} for time ¢t + 1 as
described in the proof of Lemma 5.5.2.

101

Therefore, consider any other point p~ such that p < p~ < peng. We have just
shown that:

91(p7) > 91(Pena) + F + (Pena — P7)
Therefore,
91(Pend) < g1(p™) — F + (Pend — D7)
Adding F - (pena — p) to both sides and rearranging the right side, we get:

91(Pend) + F - Bend — 1) < 91(07) = F - (Pend =P) + F - (Pend — p)
<q(p)+F-(p” —p) (5.7)

The left side of 5.7 is the new value of g,(p) if penq is used to updated it and
the right side is its value if p~ is used. Therefore, p~ will not be used to update
g1(p). A similar argument shows that for any p* > pena,

91(Pena) + F + (Pena — D) < g1{p*) + F - (p* —p)

Therefore, in the FIND-STARTING-MIN procedure, we set g2(p) = g1 (Pend) + F+
(Pena — p) for each point p in set A, resulting in a single segment between p =0
and p = Peneg with slope —F.

2. The second set of segments, B, (possibly empty) is those for which —F <
slope < H. Similar arguments to the above can show that for each point p in
segment B, g2(p) = g1(p) since there can be no other p’ from which a cheaper
starting cost can be obtained.

3. The third set of segments, C, (possibly empty) is those for which slope > H.
Let C begin at point ppegin. Similar arguments to case 1 show that in the FIND-
STARTING-MIN procedure, we set go(p) = G1(Pregin) + H(P — Degin) for each
point p in C (see the shaded area on the right of the third graph in Figure 5.2).

Combining the above three cases shows that go(p) will consist of a segment with
slope —F, an already PWLC set of segments, each with slope s; such that —F' < s; <
H, and a final segment with slope H. Therefore, go(p} will be a PWLC function as
required.

Theorem 5.5.3. The minimum costs obtained by FIND-MIN-COST at any time t is
a PWLC function g(p).

102

Proof: The initialization of total-min-costs is a function g(p) = 0 which is clearly
PWLC. Lemma 5.5.2 shows that the if total-min-costs is PWLC, start-min-costs will
be PWLC as well. Finally, Lemma 5.5.1 shows that array new-costs is PWLC. Since
the sum of two PWLC functions is also & PWLC function,? the total-min-costs at
the end of each iteration of FIND-MIN-COST will be a PWLC function.
|
We can now replace FIND-MIN-COST with a faster procedure, FIND-MIN-COST-
FAST. We represent a PWLC function with the coordinates of the inflection points
((po, %), ---, (P,) where pg = 0 and pr = pua, bound the range of staffing levels

we wish to consider.

FIND-MIN-COST-FAST(W)

1 min-cost-func = ((0,0), (Pmaz, 0))

2 fort=1tom

3 do min-cost-func = ADJUST-FOR-STARTING-COSTS(min-cost-func)
4 min-cost-fune = ADD-NEW-CoSTS(w;,min-cost-func)

5 return minimum point in min-cost-func

The FIND-MIN-CoST-FAST procedure steps through all time units adjusting a
single PWLC function min-cost-func. Each adjustment has a first step to adjust the
function to the minimum starting costs for ¢ and a second step to add on the new
costs incurred by .

The ADJUST-FOR-STARTING-COSTS procedure, outlined below, shows how a cost
function can be updated to the minimum starting costs.!® It proceeds in much the
same manner as our proof of Lemma 5.5.2. Lines 3 to 8 replace all segments with
slope s < —F with a single segment with slope —F'. Lines 9 to 11 maintain all of the
segments with slope —F < s £ H. Lines 12 to 14 replace all segments with slope
s > H with a single segment of slope H.

9This is well-known and can be shown directly using the definition of a convex function f(p) as
one where, for any p; and p; in the domain of f and any A € (0,1),

F(Ap1 + (1= A)p2) < Af(p1) + (1 = A)f(p2).

10For simplicity, we build the new set of inflection points from scratch. In practice, it is better to
adjust the current inflection points instead.

103

The second procedure, ADD-NEW-COSTS, is also outlined below. It adds the costs
for this time unit (the PWLC function described in Lemma 5.5.1) to the current
min-cost-func. This is done by updating the y-value of each inflection point and

possibly adding a new inflection point at p = w (if one does not yet exist).

ApJiusT-FOR-STARTING-COSTS((0, o), (P1, Y1), -y (P k)
i=0
new-values = ()
while i < k and slope of segment [p;, piyy] is £ —F

doi=i+1
ifi>0

then yy =y +pi - F
add (0, y;) to new-values

add (p;, ¥;) to new-values
while 7 < k and slope of segment {p;, pis) is < H
10 doi=1+1
11 add (p;, ¥;) to new-values
12 ifi<k
13 theny, =y +F-(pc —pi)
14 add (px, yi) to new-values
15 return new-values

O 00 ~] O) U W GO BN =

ADD-NEW-CosTs(w, ((0, %), (P1, ¥1), - (Pr, Y&)))

1 i=0

2 new-values = ()

3 whilep;, <w

4 doy=wi+w+V. (w—p)

5 add (p;, y!) to new-values

6 i=1+1

7 ifp=w

8 then add (p;, w + ¥;) to new-values

9 t=1+1
10 else curr-siope = (yi — ¥i-1)/(pi — pi-1)
11 Yt = y; + w — curr-slope -(p; — w)
12 add (w,y!) to new-values
13 whilei <k
14 doy=wi+w+U-(p; —w)
15 add (p:, y!) to new-values

16 return new-values

104

To keep the number of infiection points at a minimum (and therefore improve
efficiency), we would like to know that the above two procedures will not produce
PWLC functions that have two consecutive segments with the same slope.

Consider the PWLC function created by ApJusT-FOR-STARTING-Co0STS. It be-
gins with a single segment of slope —F. The next set of segments all have slope s
where —F < 5 < H'! and are taken directly from the input PWLC function. Finally,
the last segment created has slope H. Therefore, as long as the input PWLC function
does not have two consecutive segments with the same slope, neither will the resulting
PWLC function.

Now consider the PWLC function g created by AbD-NEW-COSTS; it is a result of
adding two PWLC functions, g, and g, (one for the starting costs for day ¢ and one
for the new costs on day t). Suppose g has two consecutive segments, a and b, with
the same slope. For there to be an inflection point between them, we can assume
that g; (without loss of generality) had an inflection point there with the slope of the
preceding segment less than the slope of the succeeding segment.

However, the slope of ¢ at any point is the sum of the slopes of g, and g, at that
point. Therefore, for a and b to have the same slope, go must add more slope to the
preceding segment of ¢; than to the succeeding segment. This is impossible if g is
a PWLC function. Therefore, as long as the input PWLC function to ADD-NEW-
CosTs does not have two consecutive segments with the same slope, neither will the
resulting PWLC function.

Example 5.5.1. Figure 5.8 shows how FIND-MIN-COST-FAST will maintain PWLC
functions to solve the problemn of Example 5.4.1. Each segment is labeled with its slope.

The easiest way to understend these graphs is to refer back to Table 5.2; each graph
represents a column in that table and each row of graphs represents a day (divided
into minimum starting costs, new costs and total costs). Therefore, the z-axis of each
graph is staffing level p and the y-axis is the associated cost.

For ezample, the first graph is the line y = 0 since we can arrive at any staffing

NNatice the use of the < symbol on lines 3 and 9. Using < instead, as suggested in the proof of
Lemma 5.5.2, would make it possible for two segments to end up with the same slope.

105

level p on Tuesday for no cost. The second graph for Tuesday shows the new costs
for that day; since there are 2 units of work to do, the inflection point is at p = 2 and
the cost increases for any p less than 2 (due to overtime costs) or more than 2 (due
to undertime costs). Finally, the third graph on the row is simply the sum of the first
two and shows the minimum cost (over the course of the project up to that point) to
use p workers on that day.

Notice that every graph is a simple PWLC function. The optimal cost of 6.5 at
final staffing level 0 can be seen on the final graph.

Lemma 5.5.4. FIND-MIN-C0ST-FAST has time complezity O(mpmaz) or O(m?). Its
space complezity is O(Pmaz) or O(m).

Proof:

The procedures ADJUST-FOR-STARTING-C0STS and ADD-NEW-COSTS are in-
voked for each time unit and each of them simply steps through the set of inflection
points for the PWLC function in question. Therefore, if the maximum number of
inflection points is &, we get time complexity O(mk).

There are two ways to bound the number of inflection points. Since we are never
interested in values of any PWLC function f(p) for p > Pmar, we know that k <
Pmaz- In addition, ADJUST-FOR-STARTING-COSTS can only decrease the number of
inflection points and ADD-NEW-CO0STS can only add a single inflection point for each
time unit as indicated by the proof of Lemma 5.5.1. Therefore, we also know k < m.
Replacing k with either py,q, or m in O(mk) gives the desired results.

During the above procedures, we store and modify a single PWLC function. Since
that storage requires information for each inflection point, we need O(k) space. As
above, we can replace k with either p,,.. or m to get the desired results.

|

5.5.1 Calculating the Optimal Staffing Profile

As before, we may want to acquire the staffing profile that achieves the optimal

cost in addition to determining that cost. The arguments of Lemma 5.5.2 show that

106

1 1 L]
=0.5 1 =0.5 1
Tue _‘hh‘“ﬁy_*h-"/””’ “n‘_“h“h“"”’/”
2 2 Z
o
0 L w 0 &
1] 1 2 3 o i, 2 El o 1 Fi 3
8 4
=1
[oé - i)

=0.5
4 4 \ 4
Wed -0.5 0.5

1] 1 2 3 0 1 F] k]] 1 Fi 3
1
8] 8 |
5
-0.5
] \hﬁhﬁ‘\ﬁ‘h““-g-- [6
Thu
q 4 4
2 2 3 2
0 0 - 0 -
0 1 2 3 0 1 2 3] 1 2 k]

min arrival

cost today cost total cost

FIGURE 5.3: PWLC functions representing the calculations of FIND-MIN-CoOST-
FAST for Example 5.4.1. The z-axis is the staffing level and the y-axis is cost.

107

when moving from time unit ¢ to ¢ + 1, there is an inflection point p.,q such that for
any p < Pend, the minimum cost to have p workers at ¢ + 1 is achieved by having pe.q4
workers at ¢ and firing to get level p.

Similarly, there is an inflection point ppegin Such that for any p > pDpegin, the
minimum cost to have p workers at ¢ 4+ 1 is achieved by having p.gin workers at ¢ and
hiring to get level p. For any points pend < P < Dhegin, the minimum cost is achieved
without a staffing change.

Therefore, to save the optimal staffing profile, we record pend and ppegin for each
time t. Let fire-below be the array of p.nq values and hire-above be the array of puegin
values. Then FIND-OPTIMAL-STAFFING-PROFILE will work as follows (where p is

the optimal staffing level for time m).

FIND-OPTIMAL-STAFFING-PROFILE(fire-below, hire- above,p)

1 optimal-profile[m] = p

2 fort=m—-1tol

3 do if optimal-profile(t + 1] < fire-below(t + 1]

4 then optimal-profile(t] = fire-below(t + 1]

5 else if optimal-profile[t + 1] > hire-above[t + 1]
6 then optimal-profile[t] = hire-above([t + 1]
7 else optimal-profile[t] = optimal-profile[t + 1]

8 return optimal-profile

Example 5.5.2. Consider the graphs of Figure 5.3 that show the PWLC functions
calculated by FIND-MIN-COST-FAST. For each time unit (row), we get the following

values:

e Tuesday: fire-below[Tue] = O and hire-above[Tue] = 3 since there is no need
to hire or fire to get to any staffing level.

o Wednesday: fire-below|[Wed] = 0 and hire-above[Wed] = 2. The latter occurs
since the cheapest way to arrive at staffing level 8 is to have 2 workers on
Tuesday and to hire the third to start Wednesday. This is why the second
segment of the last graph on row 1 is replaced by one with lower slope in the
first graph on row 2.

e Thursday: fire-below[Thu] = 2 and hire-above[Thu] = 3. The former occurs
since the cheapest way to arrive at any staffing level less than 2 is o have

108

2 workers on Wednesday and to fire as necessary to start Thursday with the
desired number. This is why the first segment of the last graph on row 2 s
replaced by one with slope closer to zero in the first graph on row 3.

FIND-OPTIMAL-STAFFING-PROFILE((0, 0, 2), (3, 2, 3), 0} will be the call made us-

ing the above siz values and will return optimal profile (2,2,0).

Lemma 5.5.5. Finding the optimal staffing profile takes O(m?) (or O(mpmaz)) time
and O(m) space.

Proof: Computing fire-below and hire-above does not increase the time complexity of
Lemma 5.5.4 and the FIND-OPTIMAL-STAFFING-PROFILE procedure remains O(m).
The additional space complexity of maintaining fire-below and hire-above is O(m);
adding this to the O(m) space complexity of FIND-MIN-C0OST-FAST does not change
the complexity.

|

5.6 A Final Improvement

The algorithm using PWLC functions outlined in the previous section is an im-
provement over dynamic programming in both theory and practice. From a complex-
ity theory point of view, however, like dynamic programming, the algorithm is only
pseudo-polynomial in the problem size. This is because the time complexity (O(m?))
is polynomial with respect to m but m could be exponential with respect to the size
of the original problem.!? Therefore, the algorithm is pseudo-polynomial.

Intuitively, the problem is that we could increase the time granularity without
changing the problem; yet changes in time granularity affect the computation time.

In what follows, we show that the we can transform FIND-MIN-COST-FAST into
a polynomial procedure. The basic idea is that any sequence of time points for which
the work level is constant can be collapsed into a single time point from the point of

view of our algorithm.

12The other parameter used for the complexity measures described in Lemma 5.5.4, pmqz, could
also be exponential with respect to the problem size for similar reasons.

109

Lemma 5.6.1. For any work profile in which two consecutive time points have the
same work level, there is an optimal staffing profile in which the two time points have

the same staffing level.

Proof: Assume this is not true. Then there is work profile where w, = w; for which
the optimal profile P has p;, # p;+1 and there is no optimal profile with p, = py4a.
We must show that there does exist an optimal profile P’ with p; = pj_, that is no
worse, thus contradicting our assumption.

We begin with P’ = P. We let p, and p},, be whichever of p; and p;4, incur less

overtime and undertime costs. In other words:

’ P Dt Avu(pt - wl'.) S Avu(pt+l - wt-l-l):
P =Pty =
P41 Otherwise

Now compare the costs of P and P'. Since they each correspond to the same
schedule, the base costs are the same. Qur above choice for p; and p;,, guarantees
that the overtime and undertime costs for P’ will be no worse than those for P since

we picked the staffing level from P that minimizes those costs.
This leaves the hire and fire costs. To compare them, we will use the following

fact that can be derived directly from the definition of Ay:
Ahf(a - C) < A],f(a - b) + Ahf(b = C) (58)

In other words, the cost of changing directly from one staff level (a) to another (c) is
never more expensive than the cost of changing to any third staff level (b) between
the two.

For profiles P and P, let the hire and fire costs for interval (¢ — 1,t + 2| (the

interval where the costs might differ) be cost and cost’ respectively. We have:

cost = App(py — Pi=1) + Bag(pre1 —) + Das(Praz — Peer)
cost’ = Apg(p) — pe-1) + Dng(Per2 — P))

Suppose that p} = p;. This gives us:

cost' = Ay, f(Pt - pi) + AVY; (Pera — P)

110

Now, if we subtract cost’ from cost, the two Ag;(p, — p;—1) terms cancel and we get:

cost — cost' = Apj(Der1 — Do) + Daf(Pers — Pra1) — Dig(Pre2 — p1)

We can now use (5.8) to show that cost — cost’ > 0. Similar arguments show the
same result in the case where p} = p,;. Therefore, the hire and fire costs of P’ can
be no worse than those of P.
Therefore, P’ must also be optimal. This contradicts our assumption and proves
the original statement.
|

Corollary 5.6.2. In the procedure FIND-MIN-COST-FAST we can skip the invocation
of ADJUST-FOR-STARTING-COSTS (line 3) for any time point t for which w, = w,_;.

Proof: In Lemma 5.6.1, we showed that there is an optimal profile with p, = p,_;.
Therefore our algorithm will still return the optimal answer if we make hiring and
firing infinitely expensive for time ¢ (set F = H = oo). However, if these two costs
are infinite, it is clear that ADJUST-FOR-STARTING-COSTS will make no changes to
the function passed to it and therefore can be skipped altogether.

|

Corollary 5.6.3. For any sequence of consecutive time points with equal work lev-
els, the procedure FIND-MIN-COST-FAST can be modified so that the min-cost-func

function can be updated a single time for the entire sequence of time poinis.

Proof: Consider some sequence of time points where w; = wyy = ... = w. In
Corollary 5.6.2 we showed that we need not invoke ADJUST-FOR-STARTING-COSTS
for times ¢ + 1 through %.

Now consider the calls to ADD-NEwW-Co0STS. We can show that the updates for
t 4+ 1 through k can all be done at once. First note that lines 10 through 12 will only
be invoked a single time at most; an inflection point can only be added at p = w,

once. The other changes result from lines 4, 8 and 14.13

13While the pseudocode creates a new PWLC function at each iteration, this is equivalent to
updating the points in the current PWLC function.

111

Consider line 4. For each time point ¢, it will add wy + V(wy — py). However,
since the values of p and w are identical for all time points ¢ through %, we can replace
all of these updates with a single update that adds (1 + & — £){w; + V(w, — p)).

The arguments for the other updates are the same. Therefore, a modified ADD-
NEW-Co0STS procedure can update the PWLC function for all requisite time points
at once.

Theorem 5.6.4. Given a schedule for an LCOP instance, if A, represents the num-
ber of changes in the work level, the optimal cost can be computed in O(A2) time

using O(A,,) space and therefore using polynomial time and space.

Proof: We now must update the PWLC function A,, times. As before, each such
update can add at most 1 inflection point. Since the time required for each update
is proportional to the number of inflection points, it is O{A,) and the overall time
complexity is O(A2).
Since we only store a single PWLC function and store it by recording the inflection
points, the space required is O(A,,).
[|

Corollary 5.6.5. Given a schedule for an LCOP instance, the optimal cost can be

computed in O(n®) time and O(n) space, where n is the number of activities.

Proof: It should be clear that A, < 2n. Therefore the result follows directly from
Theorem 5.6.4.

Corollary 5.6.6. Given a schedule for an LCOP instance, the optimal staffing pro-
files can be calculated in O(n?) time and O(n) space, where n is the number of activ-

ilies.

Proof: The proof is identical to that of Lemma 5.5.5.

112

5.7 Using Dynamic Programming During Search

We are now able to find a minimum cost (and the associated staffing profile} given
a schedule. Our final goal is to take this one step further and search for schedules
with minimum cost. That is, we want to solve the LCOP.

In the next chapter, we describe ARGOS, a search algorithm that heuristically
solves the LCOP problem. Much like our SWO algorithm in Chapter 4, it will consider
activities one at a time and for each will choose a start time from within that activity’s
time window.

For SWO, we chose for each activity its earliest feasible start time. For LCOP
problems, we instead want to choose the least cost start time. This choice depends
on the minimum cost for each possible start time. The FIND-BEST-START-TIME
procedure outlines a way to compare those costs. Given a set of possible start times
(s1, 82, ..., Sk), we schedule the activity at each possible s; and find the cost of that
position using the procedure FIND-MIN-COST-FAST.

FIND-BEST-START-TIME is outlined below. It uses INCREASE-WORK-PROFILE
to update the work profiles to include activity A; starting at time {. Similarly,
DECREASE-WORK-PROFILE) reduces the work profile to exclude the current position
of A;.

FIND-BEST-START-TIME(W, A;, (81, 82, -, Sk))

1 best-start = DEFAULT-TIME

2 min-cost = o0

3 forj=1tok

4 do INCREASE-WORK-PROFILE(A4;,s;,V)
5 this-cost = FIND-MIN-CoST-FAST(W)
6 if this-cost < min-cost

7 then min-cost = this-cost

8 best-start = s;

9 DECREASE-WORK-PROFILE(4;,s;,W)
10 return best-start

There is a tremendous amount of work that will be repeated in FIND-BEST-
START-TIME since the work profiles for most time units are not affected by the start

time of A;. It is possible to avoid most of that extra computation using procedure

113

FIND-BEST-START-TIME-IMPROVED described below. The only times for which
more than one PWLC function need to be considered are those between s; and
st + dura,. For each such time point ¢, the number of PWLC functions considered
will be the number of s; for which s; <t < s; + durg,.

The following outlines the procedure FIND-BEST-START-TIME-IMPROVED:

1. Without A; placed, perform FIND-MIN-COST-FAST from time { = 0 to ¢ =
s; — 1 and record the PWLC function f**"*(p) right before each start time s;
we wish to consider (at s; — 1).

2. Without A; placed, perform FIND-MIN-C0OST-FAST-BACKWARD! from time
¢t = m (the end of the schedule) to time t = s, + 1 and record the PWLC
function f/™*"(p) right after each finish time s; + dura, — 1 {(at s; + durg,).

3. For each start time s;, invoke INCREASE-WORK-PROFILE(4;, s;,W) and then
perform FIND-MIN-COST-FAST from t = s; to 8; + durs, — 1 beginning with
PWLC function f#**"*(p) (and invoke DECREASE-WORK-PROFILE(A4;, 5;, W)
when finished). The resulting PWLC function can easily be combined with the
already saved f/™*"(p) to calculate the minimum cost for the staffing profile
with A; scheduled at s;.

4. Return the s; that gave the smallest minimum cost.

The original FIND-BEST-START-TIME procedure will compute PWLC functions
for mk time points. The first two steps of the improved procedure (FIND-BEST-
START-TIME-IMPROVED) will compute PWLC functions for m + (s — 1) — (51 + 1)
time points. The third step will have to consider another & - dur,, PWLC functions.
Altogether, this will take O(m + k - dur,,) time. Compare this with O(mk) time for
the original procedures; whenever dur,, << m and k > 2 (both of which are usually
true), procedure FIND-BEST-START-TIME-IMPROVED will be considerably faster.

Despite these improvements, FIND-BEST-START-TIME-IMPROVED is still a bot-
tleneck for our search algorithms. Therefore, two other speedups have been imple-
mented to further improve performance:

1. As explained in Chapter 3, the set of possible start times for an activity, given a
partial schedule, can be represented with a time window [sesy,, sls4,]. Instead

14This is a procedure completely symmetric to FIND-MIN-CosT-FAsT that begins at the end of
time and moves toward the beginning.

114

of trying all s; such that sess, < 8; < sls4, in FIND-BEST-START-TIME, we
try a subset. We use the following conventions:

e Always try both sess, and slsg4,.

e If the activity had a previous start,’® s,.c,, always try Sprev —7 < 8; <
Sprev + for some given radius 7. Our reasoning is that, since we are not
trying each start time, a previously selected start time might have just
missed the optimal start time. If we came close to the optimal start time,
we want to avoid missing it again.

o All other start times are tried with some probability p.

2. Imagine an activity A; that has a window of length 10 near the end of a project
of duration 1000. The costs for times at the beginning of the project are likely
to have very little impact on the decision as to where to schedule A;. Therefore,
we only compute FIND-BEST-START-TIME between time maz(0,s, — b) and
min(m, s, + dur,, + b) for some buffer distance b. Since hire and fire costs
affect the relevance of times farther away from the window considered, b should
depend on H and F. It is important to note that cost calculations cannot be
exact when the entire makespan is not included. However, both intuition and
experience suggest that giving up some accuracy for speed is a trade-off worth
making.

5.8 Other Issues

For clarity, the above descriptions avoid many real-world issues that we must also
be able to handle. We now mention a number of those that have arisen in discussions
with industry and briefly describe how they are handled.

The most important one is a maximum overtime rate, ot,,;, that limits how
much overtime work can be done. Without it, a single worker could be scheduled to
do the work of 100 if that was cheaper than hiring or firing.!®

To handle this, we simply define an infinite cost C;ny and for maximum overtime
rate otmer, the PWLC function will begin with a segment of infinite negative slope
at p = w/(1 + Otyaz). The function remains PWLC (although, strictly speaking, it

15We sometimes want to consider moving an already scheduled activity to a better start position.

16T fact, it would be easy to concoct cases where 0 workers proved to be optimal, even when
there was work to do. This doesn’t translate well to reality.

115

-0.5

FIGURE 5.4: A daily cost function with a maximum overtime rate.

cannot be called a function anymore) and the only change is some extra bookkeeping

since it may no longer be defined for all values of p.

Example 5.8.1. Figure 5.4 shows the daily cost function for the first time unit of
Ezample 5.4.1 modified for the case where ot = 100%. Since the work level is 2

units, there must be at least one worker or else the cost will be infinite.

We may want to limit the maximum staffing level, p["**, or minimum staffing
level, p™*" for any time unit. Handling the latter is identical to the maximum over-
time rate; the PWLC function will have infinite negative slope at p{™". Handling
the former is symmetric; the last segment of the PWLC function will start at the
maximum staffing level and have infinite slope. We can handle a specified staffing
level by setting p{**"* = p™*=.

We may want to specify a starting staffing level, p**®, or an ending staffing
level, p°¢, to represent the staffing level at the beginning or end of a project. Both
of these can be handled as special cases of the maximum and minimum staffing level

cases. For the starting staffing level, we already have a cost function for time 0 (one

116

unit before the project begins) and we simply set p™™ = pe® = p**™.!17 For the

ending staffing level, we add a dummy time unit £ = m + 1 to the project and set

min

—_ — d
P = Pmgs =%

There also may be a maximum hire amount, 4]"**, or maximum fire amount,

ez specified for any time unit. This introduces some complications:

e In ADJUsT-FOR-STARTING-COSTS, some segments with slope < —F will con-
tinue to be replaced with one of slope —F. Others, however, may be replaced
with segments of smaller slope or may not be affected at all. Some segments
may be replaced with two segments with different slope. While the number of
inflection points may increase, the function will remain PWLC.

e To find the optimal profile, we must record additional points besides p.,q and
Dbegin for each time ¢ and the procedure FIND-OPTIMAL-STAFFING-PROFILE is
more complicated and time consuming as a result.

e The final improvement suggested in Section 5.6 will no longer always work.
That is, there can easily be situations where the work level is constant for a
number of days but there is no optimal staffing profile that is constant for those
days (imagine having to begin hiring to handle an upcoming spike in the work
profile, for example).

If hiring and firing is not allowed during some time unit ¢ (on a weekend for
example), we can set h]"* = f"* =0.

We may want to account for overtime units; time units on which all work is done
at the overtime rate (weekends and holidays, for example). As long as ADD-NEW-
CosTS is made aware of those units that are overtime units, this can be handled
easily. It is also straightforward to enforce a different maximum overtime rate for
these time units.!®

Fluctuating staffing levels occur when staffing levels change for reasons other

than hiring or firing. Possible reasons include people who quit or retire and vacation

17 Alternatively, recall that we defined minCosto(p) = 0 to represent the fact that there is no cost
to start with any staffing level. Instead, we can define minCosto(p**®™) = 0 and minCosto(p) = co
for all p # p**ert, This will force the optimization to use p*'®™ as the staffing level at the beginning
of the project.

18For example, it may be the case that a worker can work a regular day on the weekend but is
not aliowed to work any additional hours as she might be allowed to do during the week.

117

or sick leave.!® In some cases, the staffing levels available for the project in question
may also fluctuate.?’ These fluctuating levels can be handled by maintaining a set
of fluctuating workers that is used to adjust the work level at each time unit. For
example, if we know the fluctuation at some time unit is -2, we can increase the
corresponding work level by 2. There are some subtle issues to be considered due to
the effects of maximum overtime rates and other factors.

Notice that in equation 5.2, we assume that the staffing level must be an integer.
In many cases, this may be appropriate but in others, we may want to allow part-time
workers to be hired.

This highlights another advantage of PWLC functions; while dynamic program-
ming no longer works if the staffing level can be any positive real number, PWLC
functions can still be used. However, if we really do want the staffing level to be an
integer, we must do some work with the PWLC function approach. Specifically, when
the amount of work w, is non-integer (perfectly reasonable), we end up creating an
inflection point at a non-integer staffing level. To fix this situation, we simply update
ADD-NEW-COSTS to add inflection points at |w,| and [w;] instead of one at w;, as

demonstrated in Example 5.8.2.

Example 5.8.2. Using the parameters of Example 5.4.1, suppose that there is a single
time unit schedule with 1.5 units of work to do. The first graph of Figure 5.5 shows
the resulting PWLC function which obviously gives an optimal staffing level of 1.5. If
only an integer staffing level is allowed, this PWLC function must be updated to that

shown in the second graph with an optimal staffing level of 1.

5.8.1 Penalty Costs

In the real world, scheduling problems often have multiple objectives and the labor

cost model we have described may not account for all objectives deemed important

19The large shipyards apparently see a significant drop in staffing levels on the first day of hunting
S5eason.

20The large shipyards often share workers with other yards and their staffing levels fluctuate
accordingly.

118

[3
4 4
1
-0.5 1 -0.5 9¢.25
2 2
0 = 0 >
0 1 2 3 0 1 2 3

FIGURE 5.5: Updating a PWLC function with a fractional inflection point when
only integer staffing levels are allowed.

to the scheduler. To handle this, we add a sixth cost to our calculations, the penalty
cost (Cpenaity), to incorporate other objectives. To allow the comparison of multiple
objectives, we require that all objectives be measured in terms of cost.

A common objective that comes up time and again in industry is that of maxi-
mizing float. There are two versions of float common in the literature:
Free float is the amount of time an activity can be delayed without delaying any

successor activities. Using the notation of Chapter 3, FreeFloaty, = slsa, —
start ;.

Total float is the amount of time an activity can be delayed without delaying the
finish time of the entire project (other activities might need to be delayed). In
the notation of Chapter 3, TotalFloats, = hlsa, — starta,.

To add float maximization to our cost minimization objective function, we assign

a penalty cost to activities whose float is reduced using the function:

durg, Xn X1 Xa
(floata,/b) +1

where n is the number of resources used by A;, r is the total work done by those

penaltya, = (5.9)

resources on A;, floaty, is the total float, and a and b are user defined parameters

with the following meaning:
e a is the relative cost to be incurred when there is zero float.

e b is the number of time units of float which is deemed to be half as bad as zero
float.

119

The goal of equation (5.9) is to penalize float in a more rational way than simply
looking at free float or total float:

e The penalty increases relative to the duration of A;. The rationale is that one
day of float for a one-day activity is less dangerous than one day of float for a
100 day activity.

e The penalty increases relative to the work done by A;. The rationale is that
one day of float for an activity that involves 1 worker is less dangerous than one
day of float for an activity that involves 100 workers.

e The penalty for losing a day of float is more severe as the number of days of
float decrease. For example, floats, = floats, = 1 is better than floaty, =0
and floaty, = 2.

With float penalties included, the FIND-BEST-START-TIME procedure will bal-
ance the labor cost of the possible start times with the float penalty. Obviously there
are two extremes: one without any float penalty (regular labor cost minimization)
and one where the float penalty overwhelms ali labor costs (in which case every activ-
ity will be scheduled at its earliest possible start time, hes,,). The most appropriate
values for a and b between these two extremes depend on both the specific project

and the importance of float.

It is easy to make float costs activity dependent. For example, in ship repair,
there are a number of ‘inspection’ activities where part of the ship is inspected to
find out if repair work is needed. We could assign float penalties only to inspection

tasks since it may be more important for those activities to be completed early.

We can also use Cpenaiy to avoid situations where the cost of a schedule will be
infinite. For example, notice that with both a maximum staffing level and a maximum
overtime rate, it may be impossible to meet the work level for some time unit ¢. In
these cases, we may be interested in penalizing the situation appropriately but still
finding out a relevant cost for the schedule. This would be important if all schedules

are infinitely expensive but we still wish to find the best one possible.

120

5.8.2 TUnresolved Issues

In addition to the above issues, there are a few potential issues that appear to
make the cost minimization problem significantly harder.

The first is the presence of cross-trades. This occurs when one resource (set
of workers) is qualified to do the work of another set (nuclear welders doing the
work of welders, for example). Given a schedule, it is possible to include cross-trade
optimization while minimizing labor costs using linear programming. It is not clear,
however, that this can be made fast enough to be used during search.

In a couple of special cases, cross-trades will not make the problem any more
difficult. First, if a set of resources have equivalent costs and can substitute for one
another, they can all be treated as a single resource. Similarly, if one resource can
substitute for another whose costs are all equivalent or higher, we can always use that
resource and ignore the one with higher costs. Even in these special cases, additional
constraints like maximum hire or fire rates will make the problem more difficult.

In project management systems like Artemis, instead of the form of cross-trades
described above, the user is allowed to specify a number of different ways that an
activity can be accomplished (for example, perhaps for some strange reason an activity
can be performed either with 2 painters and an electrician or with 3 welders). This
is equivalent to multi-mode project scheduling [49, 74] and would be better handled
by the search side of an algorithm.?!

Another issue that has not been resolved is how overtime is accomplished.
The work in this dissertation originated with problems where each time unit is a work
day. Therefore, overtime corresponds to workers who stay beyond the regular work
hours to finish the required work. If work units instead correspond to other possible
time units (hours, minutes, shifts etc.), it may be that all work must be accomplished
during the specified time unit.

For example, if there are 3 hours worth of work scheduled from 8:00 to 9:00 and

only 2 workers, we can no longer assign the unfinished hour as overtime to one of

21The search algorithm might ask the dynamic programming procedures for the cost of various
modes; each of those could be calculated using our current approaches.

121

those 2 workers since the work scheduled at 9:00 likely assumes those 3 hours have
been accomplished. This problem could be handled by setting the maximum overtime
rate to 0. However, it may be that overtime is still allowed but must be represented
differently. For example, if a work day consists of multiple shifts, a worker may be
able to work overtime during the time units not on her regular shift.

The concept of shifts is the third potential difficulty worth mentioning. Suppose
the work day consists of two eight-hour shifts. If all work is scheduled on a daily
basis only (activities begin (end) only at the beginning (end) of the day), the day can
be combined into a single time unit and the above approach will work. At the other
extreme, if all workers must work either the morning or afternoon shift, the problem
can be split into two pieces for labor cost minimization since the shifts can be treated
separately. The most likely scenario, unfortunately, is one between the above extremes
where workers should usually stay on the same shift but may sometimes switch shifts
(temporarily or permanently) subject to some costs or restrictions. We do not know

the best way to handle this.

5.8.3 Additional Notes

It is interesting to notice that the labor cost framework we have set up can easily
be adapted for non-labor resources as well. To represent a machine, for example, we

might use the following costs:
e B = cost to run machine
e V = oo (machines can’t work overtime)
e U=0

e H = cost to buy new machine

F = cost to dispose of a machine

Using such a representation with maximum staffing levels, we can model the
RCPSP/max problems discussed in Chapter 4. In the SWO algorithm, for exam-
ple, the FIND-BEST-START-TIME procedure can be used to find out if there is a

resource-feasible time for an activity (it will return an infinite cost otherwise).

122

Of course, such a representation would be wildly inefficient for RCPSP/max prob-
lems. However, this shows that using the LCOP framework is possible for any prob-
lems in the range between strict labor cost minimization problems and the resource

constrained scheduling problems common in the literature.

5.9 Related Work

The importance of labor scheduling has been recognized for as long as scheduling
has existed as a discipline. For example, in a 1967 book, Horowitz [51] discusses
‘manpower leveling’ and suggests that the scheduler might wish to either avoid fluc-
tuations, keep the staffing level under some threshold, or schedule for a fixed staffing
level. His discussion, however, centers around using graphical methods to schedule
by hand (!) and there is no mention of quantitative analysis.

The use of dynamic programming to optimize staffing levels given a work profile
has been suggested before. For example, Taha [93, page 366] uses the calculation of
optimal work force size given hire and undertime costs as an example of a dynamic
programming application. However, we are not aware of any previous attempt to
incorporate such calculations into a search algorithm.

In the Operations Research community, there is a significant amount of work ad-
dressing labor scheduling and cost minimization, much of it for service industries.
However, here the goal is generally to come up with optimal daily or weekly sched-
ules for individual workers [6] that incorporate details like days off, specific worker
skills [17] and worker learning curves [48]. The time frame, problem size, relevant
industries and, as a result, the issues addressed are much different than those we
focus on here.

Qur labor cost minimization goal represents a nonregular objective function. Re-
call that a regular objective function is one where it is never advantageous to delay an
activity that satisfies all time and resource constraints. While nonregular objective
functions are mentioned a number of times in the literature, relevant algorithms and
experimental results are scarce.

As mentioned in Section 2.2.2, three types of resource-based nonregular objective

123

TABLE 5.4: Various resource-based objective functions in the LCOP framework.

Objective | B| V { U | H | F | Notes
RIP 0|oco| 0 {ce!| O | Mustbe forced to start with 0 workers

TSUC 0}l 0| 0| 0| 0 |Penalty cost must incorporate objective func-
tion

TOC 0|ec | 0| 0| O] Set max staffing level to threshold
TAC 0|oo|oo|cf|ecx
RRP tloo| |0

functions have recently been tackled by the OR scheduling community:

e The resource investment problem (RIP) problem where the goal is to minimize
the sum (weighted by resource using c) of the maximum work levels over all
resources.

o The resource leveling problem where the goal is to indirectly minimize labor
costs through leveling. There are three variations:
— Minimize the total squared utilization cost (TSUC).
— Minimize the total overload cost (TOC).
— Minimize the {otal adjustment cost (TAC).

e The resource renting problem (RRP) where the goal is to minimize the sum of
resource procurement and renting costs.

In Table 5.4, we show how each of the above objective functions can be represented
as an LCOP with appropriate cost constants.?? Therefore, these objective functions
are all subsumed by labor cost minimization. However, the cost of a given schedule is
a straightforward calculation for most of them and it is unlikely that we would want
to use our cost minimization algorithms for those.

Finally, it is worth noting that the LCOP is an NP-hard problem. This can easily
be shown by taking advantage of proofs by Neumann et al. [74] showing the above
problems are NP-hard. Since those problem can each be represented as an LCOP,
the LCOP is NP-hard.

22We show one of many ways each could be represented.

124

CHAPTER 6

ARGOS: An Algorithm for Labor

Cost Optimization

6.1 Introduction

In the previous chapter, we formally defined the LCOP, described efficient methods
for calculating minimum costs given schedules and showed how those methods can be

incorporated into search.

In this chapter, we describe ARGOS,! a suite of algorithms that heuristically
solve LCOP problems by using those methods as the inner loop in a number of search
procedures. Section 6.2 describes the four techniques (construction, polishing, mor-
phing and annealing) that are used by ARGOS. These are combined in different ways
to produce the four hybrid algorithms outlined in Section 6.3. Finally, Section 6.4
discusses some additional details and functionality of ARGOS.

Underlying the ARGOS algorithms is the GSTP framework for maintaining hard
and soft windows as described in Chapter 3. Recall that windows are updated
whenever activities are scheduled (PLACE-ACTIVITY) or unscheduled (UNPLACE-
AcTiviTy).

1A Really Good Optimization System. :)

125

6.2 The Techniques

In this section we describe and outline a number of algorithmic techniques that are
used by ARGOS. The first is a schedule construction algorithm. Due to the limited
effectiveness of schedule construction by itself (multiple iterations do not help much,

for example), the others are local search (or schedule improvement) techniques.

6.2.1 Schedule Construction

The CONSTRUCT-SCHEDULE procedure outlined below is a straightforward single-
pass priority dispatch procedure. It steps through activities one at a time, tries a
subset of start times for each activity, and greedily places each at the one resulting

in minimum cost.?

CONSTRUCT-SCHEDULE(W)
1 fori=1ton

2 do times-to-try=SELECT-TIMES-T0-TRY(A;,DEFAULT-TIME)
3 t =FIND-BEST-START-TIME-IMPROVED(W , 4;, times-to-try)
4 PLACE-ACTIVITY (A;, t, W)

On line 2, SELECT-TIMES-T0O-TRY is used to choose a subset of possible start
times for A;. The rationale behind this procedure, which is outlined below, is de-
scribed in detail at the end of Section 5.7. Once the subset of start times is chosen,

line 3 finds the best of those times and A; is then placed at that time.

SELECT-TIMES-T0-TRY(A;,currStart)
1 times-to-try = ()

2 add sesy, to times-to-try

3 add sis,, to times-to-try

4 fort=sess, +1toslsy, —1
& do if currStart # DEFAULT-TIME and currStart — v <t < currStart +r
6 then add t to times-to-iry

7 else add t to times-to-try with probability p

2Note that W is now a set of work profiles (one for each resource). In the previous chapter, we
assumed for simplicity that it was a single work profile.

126

6.2.2 DPolishing

The effectiveness of schedule construction is limited because placement decisions
for most tasks (all but the last, in fact) are made with incomplete information. A
position that has lowest cost when an activity is placed may not end up being a good
position for that activity by the time all other activities are placed.

Polishing is a straightforward attempt to address this through schedule improve-
ment; it is hillelimbing, the most basic form of local search. Outlined below, it steps
through the set of activities. Each A; is unplaced, a subset of feasible start times is
considered and A; is scheduled at the best one of these (with ties broken randomly}.
While A; may end up right back where it started, there is a good chance that a
better position will be found. As can be expected however, the cost improvements
of POLISH-SCHEDULE quickly decrease if it is run for more than one iteration; in

practice we seem to be close to a local minimum within 5 iterations.

PoOLISH-SCHEDULE(W)
1 fori=1ton

2 do

3 times-to-try = SELECT-TIMES-TO-TRY(A;,start,,)

4 UNPLACE-ACTIVITY({A4;, W)

5 t =FIND-BEST-START-TIME-IMPROVED (W, A4;, times-to-try)
6 PLACE-ACTIVITY(A4;,t, W)

6.2.3 Morphing

Consider schedule construction again. When each A; is scheduled, there will be
a subset A’ of other activities that have yet to be scheduled. On the one hand, this
is an advantage because A; will be less temporally constrained by activities in A’
and may therefore have more possible start times to consider. On the other hand,
this is a disadvantage because the costs of those start times may not relate to their
effectiveness in the final schedule since the final cost depends on the placement of
activities in A’. This advantage and disadvantage are both especially severe near the

beginning of schedule construction.

127

Morphing is an attempt to gain the above advantage while mitigating the effects
of the disadvantage. It is a form of schedule construction that uses the work profiles
W of a previous schedule to guide construction.

Morphing is outlined in the MORPH-SCHEDULE procedure below. Given a current
schedule, line 1 records the start times of that schedule. The soft windows are reset
to the hard windows in lines 2 to 5. Activity start times are also reset but we do
not use UNPLACE-ACTIVITY to do so because that procedure adjusts work profiles.
Unlike what would be done prior to schedule construction, the work profiles W of the
current schedule are kept.

Then, when each activity A; is considered, it is removed from W using its previous
start time. A new best start time is found within A;’s soft window and A; is placed

there.

MORPH-SCHEDULE(W)

1 previous-start = [start,,, ..., starty, |
2 fori=1lton
do starty, = DEFAULT-TIME
sesa, = hesy,
SlSA' = hlSA..
fori=1ton
do times-to-try = SELECT-TIMES-T0O-TRY(A;,DEFAULT-TIME)
DECREASE-WORK-PROFILE(A;, previous-start{i],W)
t =FIND-BEST-START-TIME-IMPROVED(W , A;,times-to-try)
PLACE-ACTIVITY(A;, t, W)

O O 00~ OO

1

Consider the first activity A; rescheduled during morphing. We will be able to
select any start time within its hard window {all windows have been reset) just as
we would for schedule construction. However, we already have the work profiles W
corresponding to the previous schedule, giving us some sense of what might be good
start times for A;.

Obviously, morphing is not perfect. For example, we may select a start time for
A, that gives a terrific cost but discover later that that cost is unattainable. This
is because W corresponds to start times for the remaining activities that may not
be time-feasible given the new start time of A;. Therefore, morphing is unlikely to

improve an already good schedule. Nonetheless, morphing is the most effective way

128

we have found to quickly achieve good quality schedules from initial ones. In addition,
it provides an interesting way to make large (but non-arbitrary) steps in the search
space.

When morphing is included in an algorithm, it is always followed by 5 iterations

of polishing to make up for the above difficulties.

6.2.4 Simulated Annealing

The final approach incorporated into ARGOS is a local search algorithm that is
a form of simulated annealing. The goal is to avoid the local minima into which
polishing quickly falls.

The main piece of our simulated annealing is a version of polishing that includes
a temperature £. In this version, the temperature is used to encourage activities to
move; for each start time s; considered for an activity A;, the actual cost of starting
at s; is decreased by t- (| s; — start,, |). This gives a preference to start times that

are far from start,, as long as they are not too much more expensive.

ANNEAL(W ,temperature)

num-without-improvement= 0
best-cost = 1! FiND-MIN-CosT-FAST(W,)

1

2 r=1

3 while num-without-improvement < 2

4 do

5 polish schedule once using temperature
6 fori=1to5

7 do POLISH-SCHEDULE(A, W)

8 cost = ! Pinp-Min-CosT-FasT(W,)
9 if cost < best-cost

0 then best-cost = cost

1

num-without-improvement = 0

1
1

The entire simulated annealing algorithm, ANNEAL, is outlined above. Line 5
performs the modified polish where the temperature plays its role. This is followed
by 5 regular polishes that approach the local minima for this new schedule. If the
resulting schedule is not as good as the best schedule seen, it is thrown out and

subsequent iterations start with the best schedule seen.

129

The whole loop is repeated until 2 consecutive iterations find no improved sched-
ule. This avoids the need to fine tune the femperature setting since the correct settings
are quite problem dependent. We can begin with a high temperature and reduce it
when no progress is made. This allows self-tuning; the algorithm will naturally settle

at effective temperatures and move on when they become ineffective.

6.3 ARGOS

The ARGOS scheduling tool consists of four hybrid algorithms based on the above
techniques. The main difference is the number of expected iterations each will perform
which in turn affects the expected solution quality. The fast ones can be used to get
results quickly but the slower ones should be allowed to run when a low final cost is

the main goal.

The first, ARGOS1, simply constructs a schedule and performs two polishes.
ARGOS2 performs 2 iterations of morphing (each followed by 5 polishes) followed
by 5 polishes. ARGOS3 performs 3 iterations of morphing followed by annealing
at 7 different temperature levels between 50 and 0. Finally, ARGOS4 performs
5 iterations of morphing followed by annealing at 19 different temperature levels
between 100 and 0. ARGOS4 produces the best results but can take days on large

problems.

ARGOS1(A)

initialize W (all profiles empty)
INITIALIZE-WINDOWS-WITH-CYCLES
CONSTRUCT-SCHEDULE(W)
POLISH-SCHEDULE(W)
POLISH-SCHEDULE(W)

[S

U1 o O

ARGOS2(4)

O 00 -1 O N

initialize W (all profiles empty)
INITIALIZE-WINDOWS-WITH-CYCLES
CONSTRUCT-SCHEDULE(W)
fori=1to2

do MORPH-SCHEDULE(W)

forj=1to5
do POLISH-SCHEDULE(W)

forj=1to5

do PoLISH-SCHEDULE(W)

ARGOS3(A)

W 00~ S U Wb

initialize W (all profiles empty)
INITIALIZE- WINDOWS-WITH-CYCLES
CONSTRUCT-SCHEDULE(W)
fori=1to3
do MosPH-SCHEDULE(W)
forj=1tob
do PoOLISH-SCHEDULE(W)
temperature = 50
while temperature > 20
do ANNEAL(A, W ,temperature)
temperature = temperature —10
temperature = 15
while temperature = 5
do ANNEAL{A, W, temperature)
temperature=temperature—5

6.4 Additional Notes

6.4.1 Bulldozing

130

All of the ARGOS algorithms can be run with a version of bulldozing. Recall
that bulldozing was shown to be a crucial piece of the SWO(B,R} algorithm for
makespan minimization (Chapter 3). The basic idea for bulldozing in ARGOS is that

instead of trying to schedule an activity A; at a new time in its soft window, the entire

hard window is considered. When start times outside of the soft window appear to

131

be preferable, other activities are bulldozed out of the way as necessary in order to
make the desired times time-feasible. If the cost of the resulting schedule remains
preferable to the cost obtained with A; starting in its soft window (it may not since
other activities are forced to move), the modified schedule is kept. Otherwise, the

modifications are undone and the best start time within the soft window is chosen
after all.

ARGOS4(A)
1 initialize W (all profiles empty)
2 INITIALIZE-WINDOWS-WITH-CYCLES
3 CONSTRUCT-SCHEDULE(W)
4 fori=1tob
5 do MORPH-SCHEDULE(W)
6 forj=1to5
7 do PoOLISH-SCHEDULE(W)
8 temperature = 100
9 while temperature > 50
10 do ANNEAL(A, W ,temperature)
11 temperature=temperature—10

12 temperature = 25

13 while temperature > 20

14 do ANNEAL(A, W temperature)
15 temperature=temperature—>5
16 temperature = 18

17 while temperature > 10

18 do ANNEAL(A, W ,temperature)
19 temperature=temperature—2
20 temperature = 6

21 while temperature > 1

22 do ANNEAL(A, W, temperature)
23 temperature=temperature—1

The FIND-BEST-START-TIME-IMPROVED procedure is modified to keep track of
the bulldozing and do all the necessary bookkeeping. The actual implementation
details will not be described here as they are both confusing and unenlightening.

Here are a couple of pertinent details:

¢ Bulldozing could occur in either direction since preferable start times could

132

be before or after the soft window.> However, each direction can be handled
independently and there are no additional difficulties.

e If there are multiple times outside a soft window that seem preferable, it is
not always clear which to consider. For example, suppose that ¢; is the best
start time within the soft window and both ¢, and t; are preferable where
t; < slsa, < ta < t3. If cost(t:) < cost(t3), we do not consider t3 since any
bulldozing required to make f3 time-feasible will also make ¢, time-feasible.!
However, if cost(tz) > cost(ta), it is not at all clear which is better. It is quite
possible that the extra bulldozing required to make t; time-feasible negates
the advantage it appeared to have. Therefore, our bulldozing implementation
pursues up to five (an arbitrary cutoff) reasonable possibilities in parallel to
find out which, if any, turns out to be best.

6.4.2 Local Search

The simulated annealing and polishing steps in ARGOS are each a version of
local search in schedule space. The operators to produce neighbor schedules are the

following.

o A simple move replaces the start time start, of some activity A; with a new
start time start), in A;’s soft window. In other words, sess; < start,, < slsa,.

¢ A bulldoze move replaces the start time start 4, of some activity A; with a new
start time start);, in A;'s hard window. In other words, hess, < start)y, < hlsa,.
In addition, a subset of the other activities is shifted so that the resulting
schedule is time-feasible.

As implied by the name, bulldoze moves are made only when bulldozing is turned
on. Any simple move is also a bulldoze move.

Because ARGOS relies heavily on this local search, we would like to know if it
can explore the entire space. That is, we want the search space to be connected with
respect to the move operators. The following shows that with an acyclic constraint

graph, only simple moves are necessary to ensure the space can be explored.

3In SWO(B,R), we would only ever try to bulldoze in one direction at a time.

4t is possible to concoct examples where t3 does turn out to be better but these seem unlikely
to occur in practice.

133

Lemma 6.4.1. For an acyclic problem, given any two time-feasible schedules, S, and

Sy, there are O(n) simple moves that will change schedule 5, into S,.

Proof: We prove this by producing one such series of simple moves. Because the
problem is acyclic there is some topological ordering of the activities. We can produce
S, with two passes through the topological order.

The first pass moves each activity A; to hes,, to produce the early start schedule
(ESS). Because we proceed in topological order, it is straightforward to show that
when A; is moved, hess, = sesy, (since all predecessors have already been shifted)
which is necessary since only simple moves are allowed.

The second pass is exactly the opposite. We step though the activities in reverse
topological order and move each activity later to the start time specified by Ss.

[|

The following simple example shows why Lemma 6.4.1 does not hold for cyclic

problems.

Example 6.4.1. Consider a two activity problem with constraints (A;, A2, SS,0) and
(Aa, Ay, §S,0). In other words, the two activities must be scheduled at the same time.
Now suppose we have feasible schedule Sy where starts, = starts, = 0 and another
feasible schedule So where starty, = starty, = 1.

There is no way to make simple moves to get S from Sy. The problem is that
Ay and A, lock each other in place and neither of them can be moved using a simple
move. In fact, the only way to produce a different feasible schedule is to move them
both together.

Fortunately, if bulldoze moves are allowed, the whole search space can be reached

even for cyclic problems.

Lemma 6.4.2. Given any two feasible schedules, S; and Sa, there are O(n) bulldoze

moves® that will change schedule S, into schedule Ss.

5In the worst case, a single bulldoze move could move n activities so we might move O(n?)
activities.

134

Proof: We can step through the activities and for each A;, move it directly to its
start time in So. The only thing that we must ensure is that activities we have already
moved will not be bulldozed out of place by subsequent moves. However, since Ss is
time-feasible, once an activity is in its new start position it will not conflict with the
new start position of any other activity.®

|

6.4.3 Activity Orderings

The ARGOS algorithms outlined above omit a commonsense modification that
has been implemented. Instead of stepping through all n activities in each procedure,

we divide the activities into the following three sets and treat them accordingly:

e Set I includes each A; for which hess, = hlss,. Since these activities will have
start,, = hesy, in all schedules, this set is scheduled first during CONSTRUCT-
SCHEDULE (since this will presumably help make more informed decisions con-
cerning the placement of subsequent activities) and is ignored during all schedule
improvement procedures (since these activities will never be moved).

e Set II includes any A; not in Set I that uses no resources. These activities are
common in real-world scheduling problems; they serve as milestone or book-
keeping activities. The start times of these activities do not affect schedule
costs.” Therefore, these activities are never scheduled by ARGOS since to do
so would unnecessarily constrain other activities whose start times do affect the
cost.®

e Set III includes the remaining activities. These are the activities that matter.
During polishing, morphing and annealing, it is this subset that is considered.

We did not mention the order the activities in Set III will be considered in the

ARGOS procedures. In initial schedule construction and morphing, we have chosen to

SWe have been purposefully vague about how bulldozing moves other activities. It is easy to
define it so that activities are bulldozed only enough to maintain feasibility; this is how our current
implementation works. Another reasonable approach would be to lock for times that are not only
time-feasible but also cost effective for the bulldozed activities. This latter approach is similar to
the bulldozing used in SWO(B,R).

"Notice that even the float penalty described in the previous chapter will be 0 for an activity
that doesn’t use resources.

8When ARGOS outputs a schedule, it simply schedules each such A; at ses,,.

135

order Set III based on hard window sizes; activities with the smallest hard windows
are handled first. This is based on the same intuition that suggests Set I should
be scheduled first. The idea is that activities which have very little leeway will be
handled first while those with large windows can be more opportunely handled toward
the end.

Unlike construction and morphing, Set III is randomly ordered before each itera-
tion of polishing. We experimented with a range of different orderings for the different
procedures. In general, ordering seems to have very little impact on the overall ef-
fectiveness of the different techniques; the above orderings were slightly better than
other choices.

Another option would be to avoid ordering the activities altogether. For example,
polishing could randomly choose activities from the entire set, making it likely that
some activities would be considered more often than others. Brief experiments showed
this tends to decrease performance.

Finally, an approach that might be effective but hasn’t been attempted is to
dynamically order the activities. If the ordering were based on soft windows, we
could immediately schedule every A; for which sess, = sls,,, as we probably should.

This might lead to improvements.

6.4.4 Additional Functionality

Often, a scheduling problem from industry includes a schedule that has already
been developed. This might be a schedule produced by a project management system,
a schedule produced by hand, or (as is often the case), some hybrid of the two. It is
straightforward to start ARGOS with such a schedule rather than from scratch - we
simply replace the initial schedule construction step with a schedule input step.

In the real world, it is unlikely that a schedule will ever be followed exactly due
to random variability and unexpected changes. Therefore, it is often desirable to
reschedule once work has begun. ARGOS includes a freeze capability; any work
that is complete or underway at a given point in time is locked in place before the

algorithms modify the remainder of the activities.

136

Finally, as a problem changes, a previously developed schedule may no longer
satisfy all constraints. Therefore, ARGOS has a legalize function that attempts
to modify a schedule as little as possible so that all constraints are satisfied. This

constructs a schedule in two phases:

1. In the first phase, any A; for which start,, continues to satisfy all constraints
is scheduled at startg,.

2. In the second phase, any A; not yet scheduled is placed at the point in its soft
window closest to starty,.

Obviously, the number of activities moved and the amount they are moved depends
on the order they are considered in the two phases. Therefore, the above approach
could be replaced with an optimization algorithm that attempts to minimize the total

disruption. We have yet to find the need for such an algorithm.

6.4.5 Possible Algorithmic Modifications

A couple of possible modifications to the ARGOS algorithms are worth mention-
ing. First, we may want to add a cutoff time to ARGOS3 and ARGOS4. This is
important if we care at all about running time since the number of iterations per-
formed by ANNEAL can vary wildly from problem to problem (recall that annealing
continues at the same temperature until it stops making improvements).

Finally, the many modifications and options discussed in 5.8 have all been incor-
porated into ARGOS.

137

CHAPTER 7

ARGOS Experimental Results

7.1 Introduction

In this chapter, we present results of running the ARGOS algorithms on a number
of real-world scheduling problems obtained from various sources. Section 7.2 describes
the origin and characteristics of those problems. Section 7.3 describes some of the

specific ARGOS settings used and general results are presented in Section 7.4.

In Section 7.5, we look at how the running time of ARGOS is distributed among
the various pieces. Section 7.6 focuses on a specific problem and looks in more detail

at some results to better understand what is going on.

Because most of the ARGOS runtime is spent calculating labor costs, it is rea-
sonable to ask if there is another objective function that is easier to calculate but
approximates labor cost well enough to be used instead. We consider the objective
of the resource investment problem in Section 7.7 and see that it cannot consistently

be used as a stand-in.! Finally, Section 7.9 summarizes our experimental results.

1 As we will see in Chapter 8, the LCOP objective used by ARGOS is itself a stand-in for the
even harder to calculate real-world objective of minimizing ezpected costs.

138

7.2 Problem Sets

The experiments in this chapter were done using the real scheduling problems from
industry described below. They span a range of problem sizes and project durations

and originate in different industries and from different project management systems.

o The OB (one boat) problem represents construction of a single ship at an anony-
mous shipyard. Although the shipyard has two eight-hour shifts per day, we
treat each day as a single time unit since durations are specified in days. The
amount of resources used by activities in this project have been scaled to protect
the original data.

e The WY (whole yard) problem represents a snapshot of much of the scheduled
work at the above shipyard over a 14 year span. As for OB, the amount of
resources used by activities in this project have been scaled.

e The NSC problem represents a specific project at a different anonymous ship-
yard. We represent each day (again corresponding to two eight-hour shifts) with
a time unit.

e The K HOV problem represents the construction of 50 new houses in a subdi-
vision (each house is identical?) by K. Hovnanian Enterprises. Each time unit
corresponds to a single 8 hour shift.

e The SC problem represents an oil refinery maintenance project of Synge Energy,
a Canadian company. Here activities have durations measured in hours and we
represent time units as hours as well. How to correctly represent this type of
problem is unresolved (see Section 5.8.2); we handle this by pretending each
time unit is a ‘day’ containing a single one-hour shift.

The shipyard that provided the OB and WY datasets uses the Artemis project
management software. The schedules they provided (with which ARGOS is com-
peting) were produced through a lengthy process using the Artemis scheduling tool
(performing makespan minimization) together with a lot of hand tweaking. The pro-

cess takes a number of weeks.

2In fact, we received a project representing a single house and, at their suggestion, created a
larger project by combining 50 copies.

139

TABLE 7.1: Dataset characteristics.

OB WY | NSC | KHOV SC
Activities 6998 | 139871 | 1140 11730 | 12248
Activities in cycles 598 10025 0 0 0
Resources 125 71(e) 17 42 98
Resource assignments 16530 | 163911 | 2133 10404 | 22060
Person-years(® of resource use 7047 | 66523 24 52| 152
Constraints 12690 | 198036 | 1783 24582 | 16288
Duration 2787 d | 6470d | 171d 635d| 713 h
Calendars 4 11 4 2 4

mesource usages have been scaled at the request of the shipyard.
{b) Assuming fifty-two 40 hour weeks.

(c) We do not know why WY has fewer resources than OB since it is a much larger amount of work
at the same shipyard. We suspect some of the less important resources are either grouped together
or ignored in the WY data.

The other datasets come from companies that use Primavera. We do not know
how the original schedule for set N SC was produced. We produced original schedules
for X HOV and SC using the Primavera leveling functionality.?

In Table 7.1 we list the important attributes of each problem. The number of
activities ranges from around 1000 (NSC) to over 100,000 (WY') while the number
of resources ranges from 17 to 125. Only the datasets OB and WY have cyclic
temporal constraint graphs; for each, between 5% and 10% of activities are involved
in cycles. The average number of resources used per activity ranges from just under
1 (NSC) to more than 2 (OB). There are between 1 and 3 precedence constraints
per activity. The number of time units in a project ranges from 171 (NSC) to 6470
(WY) and the number of relevant calendars ranges from 2 (K HOV) to 11 (WY).

7.3 ARGOS Settings

e We use the following resource rates as suggested to us by contacts in the shipyard
that sent us datasets OB and WY

3Primavera’s only scheduling mechanism is a makespan minimizing algorithm. To get reasonable
results using such an algorithm, resource capacities must be used. We chose capacities that looked
reasonable according to visual inspection.

140

~ B =$24.00/hr

- V = $12.00/hr (time-and-a-half, in other words).
— U =$24.00/hr

—~ H = $2460.00

— F = $3864.00

Although the relative values of the above costs (overtime cost relative to hire
cost, for example) is somewhat important, experiments suggest that there is no
need to get these values exactly right in order to achieve good schedules.

o When searching for a start time for activity A4;, we do not try every possibility
in A;’s window for speed reasons. We choose times as discussed in Section 5.7
and use probability p = 0.1 and radius r = 4.

e We arbitrarily impose a 2 hour maximum on the runtime of ARGOS for any
problem. The larger problems can run for days otherwise and we suspect that
schedulers in industry cannot afford to wait longer than 2 hours in many cases.

7.4 Basic Results

In Tables 7.2 through 7.6, we show ARGOS results for each dataset. For each,
we show the results for eight configurations; the four ARGOS versions each with and
without bulldozing. For each configuration, we report the average of five runs. For
each dataset, we list the costs of the original schedule and the costs of the ARGOS
schedule paired with the percentage improvements made by ARGOS. In addition,
we list the running time and the number of iterations completed for each run. All
experiments run on a 1700 MHz Pentium 4 laptop with 384 MB of memory.

See Table 7.7 for a summary of the ARGOS savings. Within the 2 hour cutoff
time, ARGOS reduces the overall schedule costs by 3.8% (WY') to 48% (KHOV).
The low percentage for WY is partly due to the fact that the problem is so big that
only a single iteration of polishing can complete within 2 hours. Argos can increase
that number to above 5% if given enough time (more than a day).

Recall that the base cost is necessary while the other costs are excess costs due to

scheduling inefficiencies. If we ignore base costs and consider only the excess costs,

141

0 . o/ n: 0, . 0 . o/ N 0
MMHM# %mmwm %MMH M..mwﬂo %m%% wmwsm Lud ok 500UV
%T Tl | %SGr | %9 | %E69 | %0'8S | %0
MM@NQ %QAN %@% %HE wmh w%sm LEERE [o YSOOUHY
1) . 1] K 0 * 0, ‘ 0, . 0,
hestr | orocs | st | vosm | g0 | vostes |00 | ¥ | S 65008V
0T 0 .m. o/ =7 L YE N 0/ 0" 0,
%Mommww %Mﬂw WM@M %me@ %Mcwm waBm ULes R LA o 350 1Y
0 . Q N 0, M) . i) . 0
o | wots | ossor | aese | aven | vomwes |02 || 28004V
0 * 0 . 1] " 0, N 0, ‘ 0
recsr | osoen | ooeoe | oo, | oge | cosreg |B981 |20 | o 2S00UV
0/ 0/t VR 0/ 0 T 0
osonn | arocs | wasm | wess. | ooor | vovies [EOPE [| = 1500UY
e 0/ 0 0Lz 00" %6°1F | &
oiaty | oot | votsy | veror | wosor | vostes |S%€ ¢ | o 1500UY
01ELG7 | T'6S6E | 0°LIVe | 67822 | 9°098T | T'081SE | - - - Teuug
il O 5" O o OO 0 160, =t spuooag | s193] | Surzopng o[patdg

rewSuQ) of, aane[ey ssutaeg / (s00‘0T§) s350D

‘g0 we[qoid 1oj s3Msa1 GODUY T4 ATIVL

142

%ST | %LEE | %LEE | %98 | BLEE | %0
ou
scvse | o'tvas | ozvee | Tesee | eoeve | soese | 0% |1 500UV
91628 | T88vgl | S816L | T 1928 | C-€TELT | G80es | - - = [EuBHO
2]
Lawe et LD IO, =t spuodag | s1e9] | Swizopng aMPaYOS

[euISuQ of, aatye[ay ssuiaeg / (SO00‘0T$) SIS0D

" AM wajqoid Iof s3msa1 SODUY £°L ATAV.L

143

T T T [[[[] = =
0/ G 206¢ | %268 | %e19 | %+ oz | ©
%m%m %m%m wmﬁm MM ’ %w - %m: LSS U o R LN/
o S o S 5[5 [v -
oLC o/ R oL LT 0L 0
G T BT ST Ty o | o
0, . 0, N 0, y 0, ‘ 0 . 4]
v |ove | ot |wor 0w e |E® | | 2500V
0, " [1 740 I 0, " 0 ’ 0s e 0
ot | oes | oo | ot |er |em s |2 | o 200V
0T 00" o/)" 07" 0rg° g
e e e e [| o —
0 m. 4] ‘ 0, m. 0 * 0, N 0,
b oes |t lent |ee |ewt|fe 2 | o 1500V
o |ove | goe |81c | v6 | giil|- : - CTTE)
EHOB mhmm QHMH-H r.—.LD BO QWQM_” mﬁﬁOUGm WHQHH mgmﬂoﬁu:ﬂ.m m:ﬂ—ﬂuOﬂ—Um

[eutBuQ of, aanepy sduiaeg / (S000°01$) SIS0D

"O§ N wejqoid 10f symsa1 GODYUY 'L ATHV.L

144

o/n” 2R o 0N LT o0 0
e e[R s T ae 0 Ty, [0 | w —
%6'97 | %S L | %STL | %eSL | %68 | ¢
%Mmmw %Mmﬁ M._om WMv : %m %Mm.m 00zL cetd o 0210
YL o/ Q" 0/ 0" /a° 0r) G,
R oo
040" 046" 0s 0 0/T" o0 0
ey [86| 0 8| 010 [0| o soony
oLz 041" 00" 0/ 0" o R 0
%mev M.,me@ % Mmm@ %MHS m‘&m K %Nmm Lbert | A1 A es0DUY
0/R" 009" [V 174 - 0/7" 0,
oo [U5 | A [o%s | @B iy [| —
(74 0rq° B 040" 00 0,
soor [som e [08]0% 180 [oo [0 | oo
oz 0 0/ 0" o/ %" 0Lz oL 0,
s | e (w0 o | | soony
€LLO | TPST | 8'GL €¢I | 982 |999C |- - - [eu8lQ
Ll = i L0 LO ik Spu0dag | sI199] mﬂmuoﬁuzzm ampatos

TewSiI oF, aAne[ey ssuaeg / (sp00‘01$) SI50D

'AOH) welqoid 10f synsa1 GODYY §°L ATHV.L

145

0 * 0, . 1) . [+) . 0, - 0,
G oS R A 0 T o | = -
%z oL | %182 | %0Lv | %620 | %0°2e | %0
w%ﬁ %@ow %M%w %M@N w@m w\.mwﬁ ULETE O ot PS5OV
o0 0/ 7" 0/ 0" U 046 9
e | s | vao | ooz | vor |ass [0 |ver | = 500UV
4] O 0, ._” 0, * 0, o 4] @@N [O
%@Nﬁ %mowm wmw%w MWMN %\lm %mﬁ LUESE | Jeiala B E500UY
0, * [[17& 3 [V 7% - 1)
R A T -
0 . 0, - 0 - 0 @.@ L) . 0, O
o | vort | von | oo | ree |gaes| T |4 | 800UV
G, . 0 " 0 * 0, ‘ L) * 0,
G [s e 36 0 Lo |1 | o oo
0 - 0 . 0 . 0, " 0, . 1]
Sovet | wgor | g5 |vige |vee | wee|E® [T | @ 15004V
L81L1 | 0Zcy | 908t |z6ve | 1ee | 888L |- : - EETEe)
(900 JeTLm foyH L0] IO o= spuodag | s19y] | Surzopyng a[npatg

TewStaQ) of, aare[d@y sSuiaeg / (s000'0T§) 51500

"08§ wejqold 10§ symsar SODUV 9°L ATHVL

146

TABLE 7.7: Best average ARGOS results: overall savings and savings without base
costs (excess costs only).

Problem Overall savings | Excess cost savings
OB 12.2% 52.4%
WY 3.8% 34.8%
NCS 21.4% 42.8%
KHOV 48.0% 77.2%
SC 17.6% 31.4%

ARGOS is able to significantly reduce those costs, saving between 31.4% (SC) and
77.2% (KHQV) of the excess costs of the original schedules.

Here are a number of other observations that can be made:

¢ Bulldozing gets mixed results. It is slightly better for KHOV and SC, for
KHOV, for example, ARGOS4 is able to get a better score in 41 iterations
with bulldozing than in over 600 iterations without bulldozing.

Bulldozing is not as effective for OB. While it still produces better results
per iteration, this is outweighed by the extra computation time required per
iteration. When WY is allowed to run beyond the cutoff time, similar behavior
can be observed: although it takes roughly 8 iterations without bulldozing to
produce a schedule of the quality seen after a single iteration with bulldozing,
the 8 iterations take less time than the single iteration of bulldozing.

The NSC results are inconclusive. Each version of ARGOS is able to achieve
better results with bulldozing but it takes much longer. However, the results
for ARGOS4 suggest that if time is not a factor, bulldozing may be beneficial
simply because it is able to explore the search space more thoroughly.

e On problems OB, WY and NSC, ARGOS reduces the undertime cost by sig-
nificantly more than the overtime cost. This makes sense because undertime is
more expensive; with our settings, a unit of undertime wastes $24.00 while a
unit of overtime wastes only $12.00 (since the other $24.00 of overtime pay goes
toward real work).

It is interesting that for problems K HOV and SC, and ARGOS versions 2, 3
and 4, ARGOS decreases undertime more than overtime only when bulldozing
is used. Since these tend to be the runs that get the best results, this may
suggest that reducing undertime is important.

e On the one hand, ARGOS is able to produce high quality schedules within a
very small number of iterations. The most extreme case occurs with OB where

147

two iterations without bulldozing (in 4 minutes) achieves 80% of the savings
achieved in over 60 iterations (in the full 2 hours).

This suggests that ARGOS could be effective as & scenario evaluation tool even
in industrial settings with large projects. That is, a scheduler could easily
perform a number of ‘what if’ experiments and run a few iterations of ARGOS
on each to get a reasonable idea of overall cost.

e On the other hand, ARGOS continues to slowly make progress on problems
for quite some time. Only the NSC runs with ARGOS4 had enough time to
complete; they stopped making improvements after around 500 iterations. For
all other problems, ARGOS4 continued to make progress until the cutoff time
was reached.

7.5 Where Does The Time Go?

To get some idea of what parts of ARGOS are costly, Table 7.8 summarizes the
results of using the Gnu profiling tool. For each problem, ARGOS2 was run both
with and without bulldozing.* The ARGOS runtime is broken down into the following
pieces:

e Start shows the percentage of time used to select start times for activities. For
bulldozing, this includes a lot of bookkeeping code in addition to calculating
the costs of possible start times.

e Cost is a sum of two parts: the percentage of time used to calculate the costs of
possible activity start times (procedure FIND-BEST-START-TIME-IMPROVED)
and the percentage used to calculate the overall score of a given schedule (the
procedure FIND-MIN-C0ST). The former is the main piece of the ARGOS inner
loop.

e Window shows the percentage of time used to manage time windows and
corresponds mostly to procedures PLACE-ACTIVITY and UNPLACE-ACTIVITY
(the latter is more expensive).

e Resource shows the percentage of time used to maintain and query work pro-
files during search. These get updated each time an activity is scheduled or
unscheduled. When bulldozing, this includes time to create multiple copies of
the work profiles (one for each possible start time we are considering).

4For WY, we used a large cutoff time of 50,000 seconds because profiling executables are much
slower than regular ones. Therefore, the time spent in various techniques was slightly different for
this dataset.

148

TABLE 7.8: Profile results for ARGOS2, with and without bulldozing: the per-
centage of overall run time spent in various pieces.

Problem Bulldozing | Start | Cost | Window | Resource | Calendar
OB no | 96.0% | 79.9% 0.3% 1.0% 0.0%
yes | 99.8% | 12.8% 0.8% 85.3% 0.1%
WY no | 99.9% | 99.0% 0.0% 0.0% 0.0%
yes | 99.3% | 80.0% 2.6% 16.2% 0.3%
NSC no | 93.8% | 67.5% 2.8% 3.3% 1.1%
yes | 97.9% | 63.7% 7.7% 15.6% 2.0%
KHOV no | 94.6% | 55.8% 2.4% 2.7% 0.4%
yes | 99.8% | 76.4% 3.9% 8.7% 0.8%
sC no | 95.4% | 65.7% 1.9% 1.8% 0.5%
yes | 99.9% | 85.2% 2.1% 11.3% 0.2%

¢ Calendar shows the fraction of time used to convert from one calendar to
another (when propagating a temporal constraint between two activities with
different calendars, for example). This corresponds to solving the edge function
inequalities described in Chapter 3.

It should be clear that the above pieces are by no means disjoint. For example,
the FIND-BEST-START-TIME-IMPROVED method is always called during start time
selection and time spent in it is therefore included in both the Start and Cost columns.
Another example is the calendar conversions which are done within time window
management; when bulldozing, this occurs within start time selection as well.

Also, although we have separated the calendar conversion piece, the other pieces
are also generalized to handle calendars and are all somewhat slower as a result. For
example, adjusting a work profile for an activity involves more work when the activ-
ity’s span includes time points during which it does not work. It is therefore difficult
to measure how much slower ARGOS is as a result of calendar issues. A reason-
able prediction would be a difference comparable to that observed for SWO(B, R) in
Section 4.4.3 where we compared our algorithm with and without calendar general-
izations.

In almost all cases, the majority of the computation time is spent calculating

optimal staffing profiles and their associated costs. This is especially true when

149

bulldozing is off and indicates how important it is to use efficient cost calculation
algorithms.

When bulldozing is turned on, the associated bookkeeping costs increase; much
of this bookkeeping has to do with the maintenance of work profiles. Specifically,
for each bulldoze considered, entire copies of the resource profiles must be made to
enable the possible bulldozes to be done in parallel (this is why the cutoff of 5 possible
bulldozes at a time is important). This is especially costly for problem OB, probably
because it has the highest number of resources.

The time spent maintaining windows and making calendar calculations is rela-
tively small. This suggests that the lookahead temporal constraint propagation is
well worth the effort and that the GSTP implementation is effective.’

There are two obvious areas for improvement suggested by the table. First, it is
possible that further improvements can be made to the cost calculation algorithms of
Chapter 5. Second, there are a number of possible ways that making copies of work
profiles during bulldozing can be improved or avoided.

Because ARGOS is designed to handle real-world problems, scalability is crucial.
However, measuring scalability is difficult. At first glance, we might predict the
running time of an iteration to be linear in the number of activities since each iteration
steps through the activities and attempts to schedule or reschedule each one. However,
this is obviously not the whole story since KHOV and SC have twice as many
activities as OB yet complete their iterations in a fraction of the time.

Similarly, running time does not seem to be well correlated with most of the other
characteristics listed in Table 7.1. Another possibility would be a correlation with
the size of activity time windows since the number of start times considered for an
activity is roughly proportional to the number of possibilities. This is no better than
other measures, however, as OB has smaller windows on average than both KHOV

and SC.

The best correlation with running time we have found is the total amount of

50f course, it is possible that these numbers are low only because they are dwarfed by the cost
calculations. Therefore, we might want to find ways to improve them when solving problems with
simpler objective functions.

150

resource use in a project (the person-years row in Table 7.1). This is the only mea-
surement for which the datasets are ranked in the same order as they are for running
time (the problem with the lowest resource use has the fastest time per iteration and
so on). This can be explained by the fact that most of the computation time is used
calculating costs and the dynamic programming, despite the efficient implementation,
will be affected by the height of the work profiles.

Total resource use could only be used as a rough predictor of running time and
we cannot provide an equation that approximates the scalability. To come up with a

good correlation would require many more datasets with a variety of characteristics.

7.6 An Example in Depth

We now look more closely at the ARGOS results for problem NSC to get a better
sense of what is going on. We choose this problem only because it is small: the
characteristics we point out can be observed with all problems. We focus on two of
the runs done with ARGQOS4; one with bulldozing and one without.

First we compare the original schedule with the schedule produced by the bull-
dozing run. ARGOS reports that the latter is 21.2% less costly.

In Figure 7.1, we compare the cumulative work levels of the two schedules. In
Figure 7.2 we compare the work levels of resource 81, the largest resource pool used
by this project.’ Clearly, ARGOS has discovered a schedule that levels this resource,
as well as the whole project, more evenly over time.

Resource 81 costs 19.4% less in the ARGOS schedule than it does in the original.
To see where the money is saved for this resource, Figures 7.3 and 7.4 show the work
levels of each schedule with the corresponding optimal staffing levels (as calculated
by the dynamic programming). Recall that extra expenses are incurred when the
staffing level increases (hire) or decreases (fire) and when the work profile is above
(overtime) or below (undertime) the work level.

Inspection of the graphs shows that the ARGOS schedule has significantly lower

8Due to the desire of the shipyard to protect their data, we have no idea what trade this resource
is.

151

150

100
Work

Levels

50

]
0 20 40 60 80 100 120
Time (days)

FIGURE 7.1: Cumulative work levels: an ARGOS schedule compared with the
original NSC schedule.

NSC ——
ARGOS —

70
60
20

Work 40 7
Level
evels a0 b |

20 -
10 1

| i) 1 1

0 20 40 60 80 100 120
Time (days)

FIGURE 7.2: Work levels of resource 81: an ARGOS schedule compared with the
original NSC schedule.

152

70
60
50

Work 40
Levels

30

0 20 40 60 80 100 120
Time (days)

FIGURE 7.3: Original schedule for resource 81 of problem NSC': work levels com-
pared with staffing levels.

Work
Workers

70
60
80

Work 40 - 7
Levels 0 | mf\/_/\'\/j\f\/u\\\/\,\)

20 —
10 -

0 20 40 60 80 100 120
Time (days)

FIGURE 7.4: ARGOS schedule for resource 81 of problem NSC: work levels com-
pared with staffing levels.

153

240 i :
235

230

225 |- =

220 } -

Cost 215
($10000) 910
205

200

195

190

185

Bulldozing of ——
Bulldozing on

1] 20 40 60 80 100
Iterations

FIGURE 7.5: Schedule quality by iteration for ARGOS4 with and without
bulldozing.

costs in each of the above categories except overtime. In fact, the overtime cost has
increased by 5.3% while hire and fire costs have decreased by 43.8%, and undertime
cost has been virtually eliminated (reduced by 99.5%).

Figure 7.5 shows the quality of schedules produced by ARGOS4 by iteration
and compares results with and without bulldozing. Only the first 100 iterations are
shown for clarity; the trend continues out to 500 iterations where both runs stop

finding better results.

Although the results per iteration are better with bulldozing, bulldozing is slower.
Figure 7.6 shows the same runs over time. This makes it unclear which is preferable.
As we saw in our overall results, whether the extra effort of bulldozing is worthwhile

depends on the specific problem as well as on the importance of overall runtime.

In figures 7.5 and 7.6 we can see the results of the various pieces of ARGOS4.
Each peak corresponds to a large move in schedule space. The first five such peaks are
due to morphing and the rest to annealing. After each peak, we can see that polishing

improves the schedule with diminishing returns over five polishing iterations.

Clearly, ARGOS is able to achieve a huge fraction of its overall savings in the first

154

240 . .
235

230

225

220

Cost 215
($10000) 910
205

200

195

190

185 1} | | 1
0 20 40 60 80 100

Time (seconds)

Bulldozin‘g off ——
Bulldozing on T

FIGURE 7.6: Schedule quality over time for ARGOS4 with and without
bulldozing.

few iterations. However, letting the algorithm run its course is still beneficial if time

allows.

7.6.1 Float

The first concern of schedulers in industry when ARGOS is presented is that float
should be preserved. Due to the unexpected problems and delays that occur in the
real world, they are wary of postponing work for fear that a schedule will become
over-constrained in its later stages.

As described in Section 5.8.1, extra costs can be added to the labor costs in
ARGOS to give preference to schedules with float.

Izt Table 7.9, we show results, for the NSC problem, of ARGOS runs using different
values for the float parameters a {cost of zero float) and b (amount of float that is
twice as good as no float) as shown in equation (5.9) in Chapter 5. The three runs
are different ways to trade off the objectives of decreasing cost and increasing float.
The first run (A) does not include float penalties and is only minimizing cost. In

run B, float costs are somewhat important but are only a fraction of the overall cost.

155

TABLE 7.9: Two runs of float relative to a run without float. Savings on float and
other costs relative to the original schedule are presented for each run.

Float Parameters Float Cost Other Costs
Schedule
b $10,000s | savings | $10,000s | savings
ARGOS A |0 0 0 0% 1866 | 20.8%
ARGOS B 10) 78.0 23.7% 193.7 17.8%
ARGOS C 50 5 370.2 27.6% 202.5 14.0%
Gl ' ' 'Cumulative (ARGOS A) —-
120 | Cumulative {ARGOS Bi _
<0t --. Cumulative (ARGOS C) ------

100
80

Work
Levels 60
40

20

0 20 40 60 80 100 120
Time (days)

FIGURE 7.7: Cumulative work levels: 3 versions of ARGOS with different emphases
on float.

Finally, in run C, float is emphasized and the overall float penalties are higher than
the overall labor costs.

In Figure 7.7, we compare the cumulative work levels for each of the schedules in
Table 7.9 and Figure 7.8 shows the same thing for resource 81. Notice that the
schedules become increasingly left shifted as the importance of float is increased
but remain relatively smooth compared with the original NSC schedule depicted
in Figures 7.1 and 7.2.

In Figure 7.9, we show the number of days of work being done on activities with
different amounts of Aoat in the NSC schedule and ARGOS schedules A,B, and C.

Work is divided into buckets of size 10; the y-intercept values correspond to all work

156

81 gARGOS 'A§ -

50 - 81 (ARGOS B) ——
81 (ARGOS C) +++---
40
Work 0T
Levels
20
10
0

!
0 20 40 60 80 100 120
Time {days)

FIGURE 7.8: Work levels of resource 81: 3 versions of ARGOS with different
emphases on float.

2500

2000

1500
Person Days

1000 [

500

| | | 1 1 1 | 1
10 20 30 40 50 60 70 80 90 100
Float (days)

FIGURE 7.9: Total work broken down by the amount of float available for that
work: 3 ARGOS schedules and the original NSC schedule. Work is divided into
buckets of size 10; the y-intercept values correspond to all work done with 10 or fewer
days of float.

157

done with 10 or fewer days of float. Notice that schedule A has more ‘critical’ work
(work with very little float) than the NSC schedule, schedule B is similar to the
NSC schedule and schedule C is the best overall (it has the least amount of work on

activities with 20 or fewer days of float).

7.7 A Comparison With Indirect Optimization

The huge majority of the ARGOS runtime involves cost calculations. Therefore,
it might be possible to optimize with a simpler metric that, while easier to calculate,
still roughly measures cost. If improvements in that metric correspond to reductions
in cost, the ability to perform more iterations might lead to better overall results.

A candidate metric is that of the resource investment problem (RIP) where the
goal is to minimize the sum of the maximum resource levels over all resources. To
understand whether this metric could serve as a stand-in for labor costs, we used
Procrustes, an existing RIP algorithm designed for large-scale RIP instances,” on our
datasets.

Procrustes begins with a high constant capacity ci for each resource k. Each
iteration of Procrustes randomly chooses a resource k (with probability proportional
to the distance of ¢; from its lower bound), lowers ¢, and performs three iterations
of an algorithm similar to schedule packing [31] to see if a schedule can be found
that satisfies all of the resource capacities. If it succeeds, the new ¢ is kept and
the algorithm continues. Otherwise, ¢y is returned to its previous level, resource X is
marked as finished, and search continues.

Table 7.10 lists the results of the Procrustes for our datasets according to the RIP
objective. Each is the average of 5 runs and shows ¢y in the original schedule and
after optimization as well as the percent reduction. Procrustes was able to reduce
Yc, by between 17.6% (OB) and 82.5% (KHOV).

In Table 7.11, we show the results of the Procrustes runs according to our original

metric (labor cost). Negative values represent costs for which the Procrustes schedule

7In fact, Procrustes was our first attempt to solve the shipyard scheduling problems. Originally,
we were asked to level the resources and only later realized that the real objective was to lower cost.

158

TABLE 7.10: Procrustes results.

Problem Secondst® | Z¢x Original | Ze¢i Final | Improvement
OB 10463 6882.8 5672 17.6%
WYy 117724 18900.6 13929.6 26.3%
NSC 23.2 192.3 111.2 42.2%
KHOV 21782.2 399 70 82.5%
SC 13083 1569.4 1039.4 33.8%

(a) These runs were done on a number of computers and are not directly comparable to those for
ARGOS results. The machines used here are slightly faster on average.

TABLE 7.11: Costs for Procrustes schedules (negative values mean the Procrustes
schedule are more expensive than the original).

Costs (310,000s) / Savings Relative To Original
Problem
Base oT uT Hire Fire Total
OB 35180.1 | 1761.4 | 2390.8 | 2425.1 | 3970.1 | 45731.6
0% 53%| -46%| 09%| -0.3% 0%
WY 332084.7 | 12824.2 | 11328.0 | 9040.3 | 17491.2 | 382768.0
0% | -13.4% | -29.3% | -14.2% | -40.6% -2.8%
NSC 117.5 12.9 17.3 18.7 32.9 199.3
0% | -36.7% | 20.6% | 42.3% | 39.6% 15.4%
256.5 5.9 139.8 14.6 31.9 448.9
KHOV 0% | 79.5% | 13.8% | 80.6% | 79.2% 33.7%
sc 758.8 82.2 263.8 74.7 282.5 1462.0
0% | -54.9% | 24.5% | 42.8% | 33.8% 14.9%

is more expensive (by the given percentage).

The results suggest that the RIP objective is not an effective stand-in for the
LCOP objective. For two problem sets (OB and WY'), Procrustes has made no de-
crease in overall labor costs {for WY, it significantly increased most of the costs). For
the others, costs have been improved by between 14.9% (SC) and 33.7% (KHOV).
However, even for these problems, ARGOS is able to achieve better results in less

time.

159

7.8 ARGOS on RCPSP/max Problems

In Section 5.8 we mentioned that the labor cost framework can be adapted for non-
labor resources and could even be used to handle RCPSP/max problems. Therefore,
we can run ARGOS on these problems.

For ARGOS to correctly handle RCPSP/max problems, we adapt it as follows:

¢ Resource constraints are represented using maximum staffing levels so that AR-
GOS is not allowed to hire above the given resource constraint.

e Overtime is disallowed by setting the maximum overtime rate to 0.

e We use a finite penalty cost, Cpenatry = 20000, to avoid infinite costs when a
schedule has a work profile that exceeds the maximum staffing level.

e We choose toset B =1, U =0, and H = F = co. The result is that ARGOS
will keep the staffing levels constant (probably at the maximum staffing levels).
Therefore, the resulting costs of a schedule will only involve the base cost and
any penalty costs {incurred if the maximum staffing levels are exceeded).

Using ARGOS with the above settings means that a schedule is feasible® if and
only if it has no penalty overtime costs.
ARGOS was not designed for RCPSP/max problems and there are a few important

reasons to expect it to perform poorly:

e Unnecessary computation: ARGOS will be slow because it is constantly
computing the value of an objective function that is time-consuming to calcu-
late. To choose a start time for activity A;, ARGOS will compute labor costs
{(using PWLC functions) for a subset of possible start time and will choose the
one with lowest cost. In contrast, an algorithm designed for RCPSP/max prob-
lems will simply compare the work profile with the resource constraint and find
the earliest time where A; will fit.

e Inappropriate search: the ARGOS algorithms were designed for problems
without resource constraints; there is no notion of resolving resource conflicts.
Consider a schedule with a single activity that is not resource-feasible. ARGOS
will not pay this activity any more attention than the others because it does
not realize that this is the one problem keeping it from producing a feasible
schedule.

BARGOS will always create time-feasible schedules but may have trouble finding resource-feasible
ones,

160

TABLE 7.12: ARGOS results for RCPSP/max problems.

Set Algorithm | Bulldozing | Float | Apg% | %opt | %oseas | Scaled Chugec
SWO(B,R) - - 0.2 94.0 100 0.31
B& Bsgs - - 0.0 [100 100 -
ISES - - 1.3 | 85.9| 99.5 0.08
J10 ARGOS4 no no | 271.4® 0| 989 8.49
ARGOS4 no yes | 10.7® | 43.9 | 98.9 8.68
ARGOS4 yes no 271.6 0 100 25.96
ARGOS4 yes yes 10.3 | 40.1 100 30.05
SWO(B,R) - - 4.9 | 66.4 100 0.63
B&:Bggg - - 4.3 | 8.3 100 -
ISES - - 5.4 64 100 0.53
J20 ARGOS4 no no 546.2 0 100 22.02
ARGOS4 no yes | 16.3(@ | 31.0| 91.8 26.70
ARGOS4 yes no 552.0 0 100 104.74
ARGOS4 yes yes | 17.9({ 27.7| 98.9 150.36

{a) Not directly comparable to other numbers since problems not feasibly solved are excluded.

¢ Different objective: the objective for RCPSP/max problems is makespan
minimization but ARGOS searches for problems with lower costs and does not,
by default, pay attention to makespan.

This last problem can be handled by using float costs in ARGOS; by encourag-
ing ARGOS to schedule activities early, we can indirectly encourage it to minimize
makespan.

We have run ARGOS4 on the J10 and 720 benchmark suite introduced in Chap-
ter 4. We have run it with and without float costs and with and without bulldozing.
Results are summarized in Table 7.12 where the ARGOS4 results are compared with
state-of-the-art approaches.

Although ARGOS4 does not perform as well as the algorithms designed for these
problems, it is able to handle them reasonably well. Here are some observations that
can be made:

¢ Bulldozing enables ARGOS4 to find feasible solutions to all feasible problems

(although including float costs kept it from finding feasible solutions for two of
the J20 instances). This was surprising; it is NP-hard to find feasible solutions

161

and, as mentioned above, the ARGOS algorithms are not designed to search for
them.

o As the results without float costs clearly show, ARGOS4 is not paying attention
to makespan. However, with float costs included, it does a respectable job at
finding short schedules.®

e As expected, the runtime of ARGOS4 is much greater than that of other
approaches.

7.9 Conclusions

This chapter described results of running the ARGOS algorithms on a number
of real-world problems. ARGOS can handle even the largest problems and reduces
excess costs by between 31.4% and 77.2% within the 2 hour time limit.!® Bulldozing
increases the ARGOS runtime considerably but is worthwhile for some problems.

On all problems, most of the runtime is devoted to the dynamic programming
algorithms that calculate costs; when bulldozing is turned on, it also adds significant
bookkeeping costs to the overall runtime.

ARGOS was compared with Procrustes, an algorithm geared toward the RIP ob-
jective. Results of this comparison suggest this objective cannot serve as an effective
stand-in for total labor cost. We do not know if other objectives could serve that
purpose instead.

Finally, ARGOS was run on small RCPSP/max problems. While it does not do as
well as state-of-the-art approaches designed for those problems (including the SWO
algorithms described in Chapter 4), it is able to find feasible solutions to all feasible
problems and float costs are shown to serve as a effective way to encourage ARGOS
to minimize makespan.

There are a number of ways that the ARGOS algorithms could be improved. One

is to increase the efficiency of the current implementation. Bulldozing is one area

9Another way to encourage short schedules, that might be interesting to try, is to use costs
U>0,H =o00and F = 0. This would make shorter schedules preferable since they would have
lower undertime costs.

190n a number of other problems from industry, ARGOS achieves comparable results.

162

where this is likely to be fruitful. The other possibility is to improve the algorithms
themselves. One possibility is the use of Tabu search {46] to explore the search space
more effectively. While simulated annealing allows ARGOS to avoid getting stuck in
local minima, it may be that the same local minima are visited multiple times. It
might be helpful to use the Tabu notion of diversification to ensure that the local
search constantly explores new parts of the search space. This could be especially
important for ARGOS because the cost calculations are time consuming and therefore

the number of points in the search space that can be visited are limited.

163

CHAPTER 8

SimYard: The Effects of
Real-World Complications

In the previous chapter, we saw that ARGOS can reduce excess project costs by
between 31.4% and 77.2% for the problems we considered. These projects are large
and these savings correspond to millions of dollars in most cases (ARGOS is able to
reduce the cost of even the smallest problem, NSC, by more than $500,000).

While the schedulers who provided us with these problems are impressed with
ARGOS results and believe that the schedules produced by ARGOS are better than
schedules they can produce in any other way, they also doubt the predicted savings.
The problem is that the costs calculated by ARGOS assume that a schedule represents
exactly how a project will be accomplished.

There are two main reasons that practice diverges from theory:

1. Inaccurate Models: the activities, resources and constraints as recorded in a

project management system are only approximations of reality. In addition hu-
man misunderstanding or errors can result in missing or incorrect information.

2. Indeterminacy: even an accurate model cannot account for unpredictable
problems and issues that arise after a project has begun.

We spent time discussing the way scheduling works in practice with a number
of people at the shipyard that provided data sets OB and WY. In this chapter

we describe SimYard, a shipyard simulator that models their shipyard based on the

164

information they provided. SimYard allows us to compare projected actual savings
of ARGOS schedules with theoretical savings.

The results of SimYard experiments suggest that, although the improvements of
ARGOS schedules are likely to be muted by real world issues, the ARGOS sched-
ules will continue to be preferable to the original schedules. As mentioned below,
the results in this section are preliminary and intended to be indicative rather than
definitive; the expected costs reported must be considered in this light.

In Section 8.1, we describe our understanding of shipyard reality that resulted from
our discussions. In Section 8.2, we describe SimYard, a simulation tool that attempts
to faithfully model that reality. Section 8.3 presents preliminary experimental results
of SimYard on the data sets we have been considering. Finally, Section 8.4 suggests
ways to expand this preliminary investigation and Section 8.5 mentions some related

work.

8.1 How a Schedule Really Works

In a number of conversations with schedulers and supervisors at the shipyard from
which we received data sets OB and WY, we discussed the main issues that lead to
differences between a theoretical schedule and what gets done in practice. We now

outline those problems and then mention the current ways they are handled.

8.1.1 Problems

Especially when the projects are as large as those represented by OB and WY, the
scheduling data cannot accurately reflect the problem at the lowest level of granular-
ity.! Much of the activity and resource information will be approximate due both to
the need to represent it compactly and to uncertainty.> The main differences between

theory and practice are the following:

1At this shipyard, they have a secondary scheduling tool that handles the fine-grained details.
However, this information is not available to ARGOS.

2Many large projects are one-time jobs. Unlike factory settings, this means there will be less
certainty concerning how long things will take and how many resources they will require.

165

¢ The resource use of activities is rarely constant as represented in the model.
For example, if an activity requires 300 person-days of work by welders and has
a duration of 100 days, it will be represented as an activity using 3 welders on
each day. In reality, the number of welders needed per day is likely to vary over
the course of the activity.

e The total resources required by each activity will not always be right. Often,
more or fewer hours than planned will be used by an activity.

e Activity durations often deviate from planned durations.

e Activities may not be able to start when scheduled. This is often due to parts
or instructions that are not ready in time.

Another problem in this shipyard is that staffing levels are subject to variability
for reasons other than hire and fire decisions. This can be a result of a number
of factors including unplanned absences and workers who retire or change jobs. The
main cause of variable availability of workers in this shipyard, however, is the existence
of an external pool of workers for each resource. This is a group of workers who are
working on other projects or assigned to other duties.® Fluctuations in the external
pool spill over into each project and affect the number of workers available for that

project on any given day.

8.1.2 Solutions

All of the above problems must be handled by the schedulers and managers re-
sponsible for the success of a project. The first way that the shipyard adapts to
scheduling changes is by adjusting the available workforce. While this can’t be done
on a short-term basis (it is difficult to hire a worker who can begin work immediately),
a single project can take years and workforce adjustments help adapt to the evolving
schedule.

The second, and most important, way that the shipyard handles problems is

through one or more floor managers who make final scheduling decisions on a daily

3At least a quarter of the work done at this shipyard is not incorporated in the project manage-
ment systems and the corresponding schedules. This includes daily facility maintenance and other
overhead work.

166

basis. Each floor manager considers the available work force, the currently scheduled
activities and those scheduled to begin soon. On each day t, she may decide to delay
a subset of activities scheduled to start at ¢ and/or start some activities that were

scheduled to begin later.

8.2 SimYard

The SimYard tool is a shipyard simulator that models most? of the above inac-
curacies and uncertainties in an attempt to quantify the actual costs that will be
incurred by following any particular schedule. It can be used to compare theoretical

costs with expected actual costs.

8.2.1 Parameters

SimYard includes the following parameters that can be adjusted to simulate dif-
ferent conditions in the shipyard. We give the default value for each as specified by
the shipyard in question. While we only consider the default settings in experiments
reported here, the parameters are mentioned as they are ideal starting points for

sensitivity analysis.

® Niuture—days—considered = 30 represents the window of time the floor manager
has available from which to select activities to reschedule. At each time t, she
may select activities to begin at ¢ that were not scheduled to start for up to
Nfuture—days—considercd dayS-

o F,_tor—activity—durations = 0.2 represents the standard deviation between the
original and final durations of an activity, as a fraction of the original duration.

® Nirozen-manpower—days = 30 represents the number of time units for which the
hire and fire decisions cannot be changed, even if the manpower levels are re-
visited (see the next parameter). For example, if staffing decisions are updated
on day t, the actual staff levels can only be changed for days after ¢ + 30. This
is used to model the time required to hire and train new workers.

41t does not currently model activities that may not be able to start when scheduled; see Sec-
tion 8.4.

167

® Npire-fre—granularity = 30 represents the number of time units that pass between
each time unit on which the staffing levels can be updated.

® Feoxternal-poot = 1/3 represents the size of the external pool for each resource
as a fraction of the number of workers required for the project.

o P penalty—overtime-ratio = 20 corresponds to the additional cost incurred for time
that the work level exceeds the maximum amount of overtime allowed (where a
value of 20 means that the cost is 20 times the base rate). Although this penalty
is infinite in ARGOS, it must be finite for SimYard since there will invariably
be times at which there are not enough staff (due to unexpected variability).

To represent the uneven resource use of an activity, SimYard creates a random
resource use profile. To create this profile, strips of resource use of random length
and height are placed randomly between the activity’s start and finish until the total
use matches the amount required.® A uniform distribution is used to determine the
length and height of each strip.

The same process is used to create the profile of the external pool. The relevant
settings and default values for both situations are:

® Niin-strip—tength 20d Niax_strip-length represent the allowed range for the strip

length. For activity A;, Npmin—strip—tength = 0 and Nynaz_strip—tength = dura,. For

the external pOOl, Nm{n-str:’p—lcngth =0 and Nma:n—.strip—length = tend — tbegiﬂ (the
project duration).

® Niin-strip-beight 804 Nimax—strip—height represent the allowed range for the
strip height. For activities, the default settings are Npin—strip—height = 0 and
Ninaz—strip—height = avg where avg is the amount that would be used by the ac-
tivity each time unit if the resource use was evenly distributed. For the external
Pool, Niin—strip—height = Nmaz—strip-height = 1. Therefore, the variability due to
the external pool will not be as severe as the variability in the daily resource
use of an activity.

8.2.2 Pseudocode

The SimYard algorithm, SIMULATE-SCHEDULE(S), takes a schedule S as input
and chronologically steps through it. At each time unit ¢ it simulates the adjustments

that occur due to real life problems and events.

5When a strip overlaps the end of an activity, it begins again at the activity’s start time.

168

SIMULATE-SCHEDULE(S)

1 fort=0to it

2 do ApJusT-FOR-EXTERNAL-POOL(t)

activities-today = SCHEDULE-DAY (%)
UPDATE-PLANNED-WORKFORCE-IF-POSSIBLE(t)
UPDATE-ACTIVITY-GRANULARITY (activities-today)

[sh) Y- L]

In the first step, ADJUST-FOR-EXTERNAL-POOL(t), the staff available at ¢ are
adjusted due to the external pool. During initialization, SimYard randomly creates
a profile representing the external pool of each resource. By centering that profile

around 0, we get the number of workers to add or subtract at each time t.

SCHEDULE-DAY(t)
1 activities-today = ()
2 fori=1ton
3 do A; = activities-by-decreasing-size|i
4 if starty, =t
5 then UNPLACE-ACTIVITY(A;, W)
6 new-start = FIND-BEST-START-TIME(W, A;, (¢,t + 1))
7 PLACE-ACTIVITY (A;,new-start, W)
8 if new-start =1

9 then add A; to activities-today
10 else if t < starts, <t + Nfuture—days—considered
11 UNPLACE-ACTIVITY (A;, W)
12 new-start = FIND-BEST-START-TIME(W, A;, (2, start,,))
13 PLACE-ACTIVITY(A;,new-start, W)
14 if new-start =1
15 then add A; to activities-today

16 return activities-today

The second step, SCHEDULE-DAY(t), represents the floor manager. This proce-
dure is outlined above. Each activity A; is considered, beginning with the biggest. If
A; is scheduled to start at £, the cost of starting it at ¢ and ¢+ 1 are compared and the
better one is chosen. If it was scheduled to start at some t' < t+ Nyyiure~days—considered
the cost of starting at ¢’ is compared with starting at ¢ and the better one is chosen.
The end result of SCHEDULE-DAY is a list of activities that will begin at ¢.

In the third step, UPDATE-PLANNED-WORKFORCE-IF-POSSIBLE(?), the staffing

levels are updated (if allowed) for time units beyond t + Nfrozen—manpower—days- L 1iS

169

is only done once in every Nhire fire—granuiarity time units. This amounts to freezing
the staffing profiles from ¢ to ¢ + Nfrozen—manpower—days 81d then calling the procedure
FIND-OPTIMAL-STAFFING-PROFILE as described in Chapter 5 to get the desired
levels.

In the final step, UPDATE-ACTIVITY-GRANULARITY, the activities that start at
t (the list produced by SCHEDULE-DAY) are adjusted to use their actual durations
and profiles. This simulates the fact that nobody pays attention to the fine-grained
details until it has been decided to begin the work.

There are some subtle issues that arise when changing the duration of an activity.
The main one is that a new duration could make the scheduled starts of other activities
infeasible due to soft temporal constraints. We do not let this occur — if the random
duration chosen will make this happen, we adjust it to avoid the problem and also
adjust the resource profiles accordingly. In the shipyard modeled, they work very hard
to meet important deadlines and instead add workers to activities that risk missing

deadlines. Our approach is an attempt to model that.

8.3 Experimental Results

We have run SimYard on all of the datasets using the default settings.® For each
problem we have simulated each of the 5 schedules produced by ARGOS4 with
bulldozing turned on.” Each schedule was simulated 100 times (WY schedules were
only simulated 25 times due to problem size) and we report the average for all 500
(125 for WY') simulations.

Tables 8.1 and 8.2 outline the results. There are four results to compare:

1. The theoretical costs of the original schedule.

2. The actual costs of the original schedule after simulation.

6 Although SimYard is designed only to model the company that produced datasets OB and WY,
we use it on the other datasets in the absence of a better model for those companies.

TRecall that each of the ARGOS results presented in Chapter 7 reports the average of 5 different
runs.

170

3. The theoretical costs of the ARGOS schedule.

4. The actual costs of the ARGOS schedule after simulation.

In Table 8.1, the breakdown of costs for each is given. In Table 8.2, we use the
actual costs of the original schedule as a baseline and compare the other three with
that.

Notice that there are two numbers given for total cost. This is due to complications
of penalty costs. Phenalty—overtime-ratio must be finite or else total costs after simulation
will almost always be infinite; there are bound to be days when there aren’t enough
staff available.

The problem is that FIND-OPTIMAL-STAFFING-PROFILE can exploit any finite
cost. For example, if the maximum overtime must be exceeded only by a small amount
for a single day, it may be better to pay the penalty cost than to hire new workers.
Therefore, we use the high value Prenatty—overtime—ratio = 20 during simulation so that
staffing decisions avoid incurring penalty costs as a cheaper solution.

These high penalties are probably higher than the actual costs incurred for not
having enough workers (for example, it may be possible to borrow workers from the
external pool). Therefore, the second-last column in Tables 8.1 and 8.2 report the
SimYard total costs with the penalty ratio at 20 while the last column reports total
costs with that ratio decreased to 1.

Unlike tables in previous chapters, the percentages listed in Table 8.2 compare the
costs of the schedule in question relative to the actual costs of the original schedule
(rather than comparing the savings to the actual costs).

We can make a few observations:

¢ Unlike previous experiments, base cost actually varies slightly from run to run;
this is due to the fact that activity durations can increase and decrease.

e While the totals of ARGOS schedules after simulation are always better than
the original schedule, there are a few cases where a specific cost is actually
higher for an ARGOS schedule. An example is the overtime cost for problem
NSC: after simulation, the ARGOS schedule costs 1.7% more than the original
schedule.

171

1'8pel 0'88L1 | 92T ¢gsz | ves | osle | g9 6'8GL (ren3ov) SOOUY
L'T6E1 LEIVT | 158 9222 |Lvs |oese |98y 886 (K1009) SODUV
0°80LT L'T00C | PYIE 8L | 9s01 |waie | ¥89 AV (rengoe) reuidliQ 25
€619T S1991 | FFY voLe | T¥01 | 6CIE | 099 8'8GL (£10013) TewiBuQ
0'56¢ 1°218 9'821 Z'6¢ 80z | 218 AR 9'69% (ren3o®) SODUY
L6SE L'6GE 10 768 80z | TOF I'e 9°957 (£10073) SODYY
1°669 S191T | 2'08¢F gIST | OFL | 091 | T6C 9°65¢ (rengoe) [euISlIQ L
6°CL9 8'GL9 s gIST |[ovL | 0T9T | 98T 9°95¢ (£1001)3) [pUIBLIO
6'102 L'Y9% 199 g8 06T | 08T L11 VLT (renoe) SODYV
6781 7981 91 v'ze 681 oL 1'6 g L1T (A10013) SOOUV
rArAsa 1°66¢ g'0L 78 I'6c | LTe 601 AR (renyoe) [euisuQ 2L
238 2'8C¢ 09 L8y £6c | 791 £01 G LTI (£100Y3) reutdLQ
0'6YFPey 0'681299 | 0'ZPT082 | L1668 | 5'gves | 428868 | 9°6129T | 0°0sg1ee | (1enioe) SODYUV
0'P¥6.5E 0'SVEsSE | £'Tey L286L | 29905 | 72628 | 12152 | 0°S80gsE | (£10013) SODUV
0'188¥EY 0'€12969 | 0'08092T | T'29121 | L'2hLL | ¥'1296E | 2'8906% | 0'zeszes | (renjoe) feuiBuQ i
0'9581.E 0'158gLE | ¥'02S 2’16021 | 9°269L | 06098 | L'LVETT | 0°'G80GSE | (£10013) reutsuQ
0'9315¥ £'88099 | 677102 | 6'16g¢ | £'8¥vl | 0268 | 8'290% | voglse | (remioe) SODHUY
8'V9L6E 6'6900% | &1 T'ev6T | £9%21 | 00119 | z88L | T'0818E | (£10013) SODUY
£ 0916¥ 0'2LI0L | 9°L112¢ | 8'0LTF | 87289z | 9°€8e8 | 6'069z | 2'9zzse | (remioe) [ewiduQ g0
6'¢ETSY 9'98857 | 9°9L¥ €199¢ | g'goge | v611z | 01881 | T'0816E | (£100d) [RUIBLIQ
(peonpai)(esaf, | reof, feusd | axg sl | LN LO aseq S— S

(s000'0T$) s150D

“(sreqiop) synsax prexuns '8 ATAV.L

172

%P 16 %16 | %686 | %I'SL | %865 | %9001 | %¥'e8 | %S 00T | (remioe) SODUY
%z T8 %ezl | %z8 | %oeL | %eTe | %TL9 | %STL | %5001 | (£10043) SODYUV 08
%1°G6 040'€8 | %TFT | %P66 | %986 |%ees | %166 | %0001 | (£00ys)jeutduQ
%999 uLar | %1'8e | %6'ee | %082 | %09t | %zse | %666 | (1enioe) soOUVv
%G'1G uaie | %00 | %6cz | %08 | %09 |%For | %86 | (K10043) SODUY AOHM
%z 96 %285 | %90 | %0001 | %0001 | %0 TOT | %1'86 | %886 | (A10eyy)reutdug
%978 %689 | %z'er | %eL9 | %60 | %S¥L | %L T0T | %S66 | (fenioe) SODUV
%G L. %G '8% | %01 %0L9 | %Te9 | %88% | %S6L | %966 | (£108U3) SODUV OSN
%8°G6 o9l | %e8 | %9001 | %L 00T | %¥TL | %P F6 | %666 | (A108y3)rewiduiQ
%E'L6 UTP6 | %688 | %069 | %069 | %L101 | %616 | %e66 | (renioe) SODUY
%128 %605 | %10 %Fco | %rs9 | %SEl | %86 | %566 | (A1003) SOOUY AM
%G°G8 66 | %z 0 | %b66 | %ree | %L1z | %o6e | %666 | (£oay)reutduQ
%7 16 %666 | %866 | %9¥e | usce | %098 |%u6ze | %e66 | (remioe) SOOUV
%9°08 06028 | %81 | %e9r | weir | %181 | %068 | %s66 | (K10013) SODUY g0
%816 %069 | %2z | %68 | %928 | %979 | %669 | %666 | (£w00py)[eurdug
(paonpanjesor, | (2101, | Ajreusd | a1g sy | In 1O oseg] N— wogqoig

s[npayds TeurS1Io Jo $3500 [eNjOR JO 88BIUIDIDJ

‘(seSejuadiad) synsar preawis g8 ATAV.L

173

TABLE 8.3: Cost savings before and after simulation (ARGOS schedules compared

with original schedules) as well as the decrease in savings.

OB}| WY | NSC | KHOV SC
Before 11.9% | 3.7% | 16.9% 46.6% | 14.0%
After 82% | 2.4% | 13.0% 43.5% | 9.1%
Decrease 31.2% | 35.1% | 23.1% 6.7% | 35.0%

e Hire and fire costs for any schedule before and after simulation are usually

quite close. However, overtime and undertime are always significantly higher
after simulation. This can be explained by the fact that the disturbances we
model mostly have small, local effects. These seem to be absorbed by increases
in overtime and undertime and have little affect on long-term staffing decisions.

For ARGOS schedules for problems OB, WY, and NSC, the difference between
the undertime costs before and after simulation are much greater than the
same difference for overtime costs. We suspect this is related to the fact that
ARGOS reduced the undertime costs by significantly more than the overtime
costs for these three problems (see the comments of Section 7.4). Also, in
the theoretical ARGOS schedules for these problems, there is twice as much
overtime as undertime (since the costs are similar and an hour of undertime
costs twice as much as an hour of overtime). Therefore an hour of undertime
added during simulation has a greater impact than an added hour of overtime.
For comparison, note that in the theoretical ARGOS schedules for KHOV and
SC, the undertime cost is significantly higher than overtime cost.

Table 8.3 summarizes the results of Table 8.2 by comparing the theoretical® and

actual savings of the ARGOS schedule compared to the original for each problem as

well as giving the percent decrease in savings between theoretical and actual results.

As should be expected, the theoretical savings of ARGOS are muted somewhat
by real-world issues; they are reduced by between 6.7% (K HOV) and 35.1% (WY').

However, for all problems, the ARGOS schedules remain preferable to the originals.

It should be reiterated that these results are preliminary. While SimYard is an

attempt to faithfully model shipyard operations, we do not have the necessary data

to validate the model. We have also not included sensitivity analysis to evaluate how

the results would change if the parameters were varied.

BThese numbers are slightly different than those reported in chapter 7 since the numbers here
include finite penalty costs and these affect the optimal staffing levels.

174

TABLE 8.4: Correlation coefficients between theoretical and actual costs.

Correlation coefficient
Problem Penalty - — - —
With original schedule | Without original schedule
OB high 0.763 0.417
low 0.947 0.924
NSC high 0.848 0.760
low 0.970 0.966

Nonetheless, the results suggest that ARGOS schedules are not brittle and sus-
ceptible to common real-world changes. This was not necessarily going to be true;
a concern of the shipyards was that ARGOS was delaying work and scheduling ev-
erything compactly so that small perturbations would cause much more trouble in
an ARGOS schedule than in an original one. Therefore, these results do allay these
original fears that ARGOS schedules might be difficult to implement in practice.

8.3.1 Are Better ARGOS Schedules Really Better?

Recall that ARGOS can produce high quality schedules within a small number of
iterations and subsequently makes progress at a much slower rate over many itera-
tions. If the project cost that really matters is the one predicted by SimYard and not
the theoretical savings of ARGOS it is possible that many of the ARGOS iterations
do not actually provide much value; the small improvements made after the initial
few iterations may become irrelevant due to the noise of simulation.

Given a number of schedules for a particular project, we can compare actual and
theoretical costs. Figures 8.1 through 8.4 present results for NSC and OB. For each
problem, we graph the results with both high and low penalty costs.

The top right data point for each graph represents the shipyard’s original sched-
ule. The rest represent the schedules produced for the various results reported in
Chapter 7.

Correlation coefficients for the four sets of data are presented in Table 8.4. We
provide the coefficient for each set with and without the original schedule included.

All scores are positively correlated. With low penalty costs, the coefficients are all

175

235 | | I i I I | [

230

225

220

Cost After
Simulation = O

210 |- §@ -
205 - 0@8}]

195 1 | 1 I 1 ! { 1

180 185 190 195 200 205 210 215 220 225
Cost Before Simulation

FIGURE 8.1: Theoretical vs. actual costs of various NSC schedules with reduced
penalty cost (measured in $10,000s).

310 T T T T T T T { T
300 - _
290

O
280 |- i
C:Ost Af_ter 08
Simulation 970 | o © é) _
$©
260 ¢ & _

250 - -

240] 1 1 1 | |] |)
180 185 190 195 200 205 210 215 220 225 230

Cost Before Simulation

FIGURE 8.2: Theoretical vs. actual costs of various NSC schedules with original
(high) penalty cost (measured in $10,000s).

176

49500 I | | | | I

49000 - -
48500 - -
48000 - -

Cpst Af_ter 47500 |- 7]
Simulation 47000

46500 -
46000 @ o

45500 y -
45000 | 1 1 [i 1
39000 40000 41000 42000 43000 44000 45000 46000
Cost Before Simulation

FIGURE 8.3: Theoretical vs. actual costs of various OB schedules with reduced
penalty cost (measured in $10,000s).

71000 T ; | | T

70000

69000

Cost After gangp
Simulation

67000

>
66000 | K -

1 1 1 |
00 42000 43000 44000 45000 46000
Cost Before Simulation

BaO O

65000
40000 41

o

FIGURE 8.4: Theoretical vs. actual costs of various OB schedules with original
(high) penalty cost (measured in $10,000s).

177

above 0.92. This suggests that if low penalty costs are a close representation of real
costs, it is worth letting ARGOS run as long as possible because small theoretical
improvements are likely to result in actual improvements.

There is less correlation with high penalty costs. For problem OB, the coeflicient
has dropped to 0.417 when only ARGOS schedules are considered. This lower number,
in addition to visual inspection of Figure 8.4 suggest that, if high penalty costs are
more realistic, it is less valuable to run ARGOS for many iterations. In fact, Figure 8.4
suggests there is very little correlation; the positive coefficient in this case is more
attributable to the clustered nature of the data points than to the fact that lower

theoretical costs yield lower actual costs.

8.4 Future Work

Our simulator is obviously designed to simulate how things work at a particular
shipyard. Although we suspect many of the SimYard features apply to a wide range
of industries, some of the details may not match reality at other companies. Given an
understanding of a different environment, it would be interesting to modify SimYard
to model that situation.

There are a number of real-world issues that might be expected to occur but have

not been included in our model:

o Delayed deliveries: Parts, plans or other requirements could force activities to
be delayed. Notice that SimYard only delays activities when the floor manager
decides it is locally cost effective; delays are never forced.

» Emergent work: In many situations, activities are added to a project after
work has begun. This could be a result of rework, added features, or unexpected
work.?

e Inaccurate temporal constraints: The constraints in the original problem
may not be accurate. On one hand, there may be some temporal constraints
that were imposed out of convenience but can be ignored in practice. On the

9Emergent work is common in repair environments where some of the project (inspections, for
example) must be accomplished before other parts can be specified.

178

other hand, there may be others that were missed in the theoretical model but
will be apparent to a floor manager when that part of a schedule is reached.

In addition to generalizing the SimYard model for other situations, the results
presented here are preliminary and there is considerable work and analysis that could

be done with the current model:

e Sensitivity analysis: We mentioned a number of parameters in Section 8.2.1
but used only the default setting (the setting suggested by the shipyard in
question) in our experiments. It would be interesting to see how results change
when these parameters are varied, both individually and together.

e Allowing ARGOS in the model: If ARGOS were used by the shipyard, it
should probably be used not only to create an initial schedule but also as an aid
to optimize rescheduling. Even the results of a couple of iterations of ARGOS
are preferable to the decisions of a floor manager who is making local decisions
without considering long-term impacts. It would be interesting to know how
much this would increase the difference between the expected costs of projects
in a yard with ARGOS relative to one without.

e Optimization with respect to SimYard: It may be possible for ARGOS to
include some notion of robustness in its optimization criteria. The goal would
be that, while the theoretical costs might be higher than for current ARGOS
schedules, the costs after simulation would be lower. There are a number of
possibilities:

— Change settings and rates: The biggest costs in simulation occur when
there are not enough people on a given day to get the work done. By
increasing the overtime costs, decreasing the maximum overtime rate or
adjusting other settings, we could encourage ARGOS to produce schedules
whose optimal staffing profiles leave more leeway to handle perturbations
in a schedule.

— Use float: Schedulers in industry strongly believe that a schedule must
have float in order to be executed successfully. We have seen how ARGOS
can increase float at the expense of cost savings. Schedules with float may
give better simulation results.

— Include StmYard features in ARGQS: Instead of using theoretical values for
activity resource use and duration, ARGOS could perform cost calculations
with sample activity profiles that are representations of possible actual
profiles. Work profiles and staffing profiles could be handled in the same
manner.

179

— Analyze SimYard: By looking closely at simulation results, there may be
lessons that can be learned. For example, perhaps it would be clear that
ARGOS should never schedule overtime work for a resource that only
has one worker because that would leave too little leeway for handling
disturbances.

8.5 Related Work

Simulation is a well-established discipline with practitioners in a wide variety of
fields. While most project scheduling research has concentrated on deterministic
scheduling where real-world complications are ignored, the complications have not
gone unnoticed. For example, Stoop and Wiers [91] overview some of the common
issues that make scheduling in practice differ, often significantly, from scheduling in
theory.

The goal of a typical project scheduling simulation study can be described as one

of the following:

1. Determine effective scheduling approaches: Use simulation of the real-
world environment to determine the effectiveness of various schedules and, as
a result, the effectiveness of the algorithms used to produce them. This is the

goal of SimYard; to compare ARGOS with current scheduling approaches.

2. Predict the effects of operational changes: Use simulation to predict the
results of large-scale infrastructure upgrades, technological improvements or
procedural changes before implementation to decide whether or not they are

appropriate.

A number of researchers have designed simulation studies of semiconductor wafer
fabrication facilities [34, 57, 65, 82]. The majority of this work is based on measuring
the effectiveness of various dispatch heuristics in real-world conditions. For example,
Kim et al. [57] describe methods to reduce the computational needs of simulation so
that it can be used in real time to choose among possible dispatch heuristics.

There is some recent work on shipyard simulation. For example, a group of re-

searchers has built a discrete event simulation model of a proposed steel processing

180

facility at a large shipyard to determine the effectiveness of the proposed facility and
investigate possible configurations [68, 101]. Kiran et al. [58] developed a shipyard
simulation approach designed to help identify bottlenecks, determine the impact of
technological improvement and determine appropriate staffing levels for a given sched-
ule.

The proposed simulation model of McLean and Shao [67] is the most similar to
the SimYard model described here. Among their goals are the analysis of different
staffing decisions based on the costs of undertime, hiring and firing and the prediction
of optimal staffing levels. Their system takes as input both a schedule and proposed
staffing levels. It is not clear how the end results of a simulation run are measured;
we suspect they measure how well activities are handled (based on lateness issues)

rather than the resulting cost of attempting to follow a particular schedule.

181

CHAPTER 9

Conclusion

We have suggested a window-based approach to project scheduling. A window of
feasible start times is maintained for each activity. This allows search algorithms to

directly navigate and explore the space of time-feasible schedules.

For problems without resource constraints, such as the LCOP, this is exactly
the space we want to explore. For problems with resource constraints, such as the
RCPSP/max, bulldozing can be used to resolve resource conflicts by moving directly

to other time-feasible schedules in this space.

Defining the search space using windows allows a variety of problems to be solved
and a variety of search algorithms to be implemented. An example is our SWO algo-
rithms that use constructive search, augmented with local repair, to address resource-

constrained problems with a regular objective function.

A very different example is our ARGOS algorithms that use local search to address
problems without resource constraints and a non-regular objective function. Local
search can explore the search space directly by using windows to identify neighbor

schedules that are achievable via small or large-scale moves in the space.

We showed how to maintain windows efficiently, even when real-world temporal
constraints are involved. This allows for scalable algorithms that are effective on

large-scale real-world problems.

182

9.1 Summary

In this dissertation, we addressed a number of real-world issues that are often

ignored by the project scheduling community:

e Scalability: Many real-world problems have thousands of activities yet exper-
iments with even 1000 activities are rarely mentioned in the literature. Our
ARGOS algorithms are scalable and were run on real-world problems rang-
ing in size from 1000 activities to almost 140,000 activities. While the avail-
able RCPSP/max benchmark suites only have between 10 and 500 activities,
SWO(B,R) was shown to scale well on those benchmarks relative to state-of-

the-art approaches.

e Complex constraints: The GSTP framework that underlies our algorithm is

able to handle two important classes of temporal constraints:

1. Arbitrary temporal constraints (both minimum and maximum time lags).

2. Calendar issues common to real-world projects.

While the former have been considered in the literature on occasion, the latter

have almost never been addressed.}

e Varied objective functions: While most research has focused on regular ob-
jective functions, many nonregular objective functions are better representations
of actual real-world goals. The LCOP generalizes a number of the nonregular
objective functions recently considered in the literature and ARGOS was shown

to effectively solve large-scale LCOP instances.

We also showed that the cost framework of ARGOS can solve multi-objective

problems by incorporating other objectives as monetary costs. We considered

11t is also worth noting that SWO(B,R) and ARGOS are also capable of handling non-standard
resource constraints. For example, both can easily handle resource capacities that vary over time.
ARGOS can also handle a number of labor-specific constraints such as maximum hire and fire
amounts and Auctuating staff levels.

183

the example where maximizing float and minimizing cost are competing objec-

tives.

e Reality: The experimental results presented for most scheduling algorithms
are purely theoretical. The implementation of SimYard as a validation tool
enables us to understand how theoretical schedule improvements will translate

into real-world results.

9.2 Contributions

9.2.1 The GSTP Framework

We described a generalized simple temporal problem (GSTP) framework and
showed how it can be used to efficiently maintain hard and soft time windows (do-
mains of feasible start times) for each activity during schedule construction as well as
during schedule deconstruction and local search. The important differences between
cyclic and acyclic problems were discussed as well as the complexity of the various
procedures in each case.

"The use of edge functions extends the GSTP framework beyond the capabilities
of similar approaches. An important result is the ability to handle complex temporal

constraints, including calendar issues, that arise in real-world scheduling problems.

9.2.2 The LCOP

While makespan minimization has been the primary focus of scheduling research,
a more important goal is often to minimize project costs, especially for problems
with a fixed deadline or with labor as a significant resource. We defined the la-
bor cost optimization problem (LCOP) and showed that it subsumes a number of
other resource-based nonregular objective functions {some of which are designed to
indirectly minimize labor costs).

Given a schedule, calculating optimal staffing levels can be done using dynamic

programming. We described Andrew Baker’s observation that costs can be repre-

184

sented with piecewise linear convex functions and outlined the efficient algorithms
he was able to implement as a result. We showed how these algorithms can be used

during search to successfully solve real-world LCOP instances.

9.2.3 Window-Based Search

Most scheduling algorithms fall into one of four categories: chronological, order-
based, disjunctive, or constraint-based scheduling. We proposed window-based search
as an alternative.

An important benefit of a window-based approach is the ability to move activities
around in a schedule while maintaining temporal feasibility. This allows local search
to be performed with schedules directly rather than with activity orders (as is most
common) and therefore allows local search even if objective functions are nonregular
or resource capacities are unlimited.

We introduced the concept of bulldozing, an idea that requires an explicit window-
based framework. Bulldozing was shown to be a crucial conflict resolution mechanism
for RCPSP/max problems. Although experimental results of bulldozing were mixed
for the LCOP, bulldozing is important theoretically because it allows the entire search

space to be reached during local search, even with cyclic temporal constraints.

Two very different window-based algorithms were discussed in this dissertation:

1. The procedures SWO(B), SWO(B,R) and SWO(B,R,G) incorporate bull-
dozing into an order-based scheduling algorithm. On RCPSP/max benchmark
suites, SWO(B,R) is competitive with state-of-the-art systematic and non-
systematic approaches and scales well. This approach is effective even without
any of the resource propagation techniques typically used for these problems.

2. The ARGOS algorithms combine a number of window-based techniques that
primarily perform local search in schedule space. In producing significant cost
savings relative to currently available algorithms, ARGOS provides a schedul-
ing tool that up until now has not been available. The ability to optimize
nonregular (and multiple) objectives, solve large problems quickly and produce
schedules that are not simply resource leveled (makespan minimized) has not
been available to the industries with which we are familiar.

185

9.2.4 Shipyard Simulation

SimYard is a shipyard simulator that can be used to compare the theoretical
savings of ARGOS for LCOP problems with the savings that can be expected in
reality. SimYard could also serve as a useful tool for a shipyard to perform scenario-
based evaluations. For example, it could be used to estimate the impact of adding an

additional project to the ongoing work in the shipyard.

9.3 Future Work

There are a number of ways the work in this dissertation could be extended:

e Algorithmic improvements: As mentioned in the relevant chapters, all of
our algorithms have potential room for improvement. For example, the com-
putational efficiency of cost calculations and bulldozing in ARGOS could be
improved and Tabu search seems a promising possibility for both SWO(B,R)
and ARGOS.

e Hybrid problems: The RCPSP/max and LCOP objective functions we con-
sidered are two extremes in a range of interesting problems. We showed how
the other resource-based objective functions in the literature fall between these
two. While ARGOS could solve any problem in the range, we saw that it is not
appropriate for RCPSP/max problems. Therefore, it would be interesting to
measure the performance of ARGOS in practice and to see at what point other

algorithms are more effective. Interesting questions include:

— How does ARGOS perform on the other resource-based nonregular objec-

tive functions?

— How does ARGOS perform when some or all resources have maximum

capacities but the goal is still cost optimization?

e Optimization using SimYard: ARGOS currently minimizes the theoretical
costs of a schedule. As mentioned in Chapter 8, it would be interesting to see

if ARGOS can be modified to minimize expected costs instead.

186

e Real-world implementation: The best measure of the effectiveness of a
scheduling algorithm should come from industry. We hope that both ARGOS
and SWO(B,R,G) will be incorporated into project management systems for
the use of schedulers in the real world. It will be interesting to find out the

effectiveness and applicability of these algorithms in real-world settings.

activity, 6

acyclic, 28

Apbp-NEw-CosTs, 103
ApJusT-FOR-STARTING-C0STS, 103
ANNEAL, 128

ARGOSI, 129

ARGOS2, 130

ARGOS3, 130

ARGOS4, 131

CHRONOLOGICAL-SCHEDULING, 12
consistency

k, 19

arc, 18

arc-B, 19

node, 18

path, 19

strong &, 19
constraint graph, 27
constraints, 6

binary, 6

resource, 6

temporal, 6

unary, 6
CONSTRUCT-SCHEDULE, 125
convex, 98
CREATE-WINDOWS, 28
CREATE-WINDOWS-ACYCLIC, 37
cross-trades, 120

DISJUNCTIVE-SCHEDULING, 15

ending staffing level, 115
ESS, 15, 133
EXPAND-PREDECESSORS, 53
external pool, 165

feasible, 7, 27
GSTP, 27

resource-feasible, 7

187

INDEX

time-feasible, 7
FIND-BEST-START-TIME, 112
FIND-BEST-START-TIME-IMPROVED,

113
FiNnD-MIN-CosT, 93
FIND-MIN-CosT-FAsST, 102
FIND-OPTIMAL-STAFFING-PROFILE,
96, 107
FIND-STARTING-MIN, 93
float, 118
floor manager, 165
free float, 118
freeze, 135

GSTP, 25

INITIALIZE-WINDOWS, 47
INITIALIZE- WINDOWS-WITH-CYCLES,
57

job shop, 7

LCOP, 10, 91
legalize, 136

maximum fire amount, 116
maximum hire amount, 116
maximum overtime rate, 114
maximum staffing level, 115
minimum staffing level, 115
MORPH-SCHEDULE, 127

nonregular, 8
ORDER-BASED-SCHEDULING, 13

penalty cost, 118
piecewise linear, 98
PLACE-AcCTIVITY, 70
PMS, 38
POLISH-SCHEDULE, 126

188

PWLC functions, 97

RCPSP, 7
RCPSP/max, 7
regular, 8

resource, 6
REVISE-FORWARD, 29
RIP, 9

RLP, 9

RRP, 10

SCHEDULE, 72
SCHEDULE-DAY, 168
SCHEDULE-WITH-DOZING, 76
SELECT-TIMES-To0-TRY, 125
SET-START-TIME, 48

shifts, 121
SHRINK-SUCCESSORS, 49
SIMULATE-SCHEDULE, 168
starting staffing level, 115
SWOQO, 72

time windows, 28
completeness, 28
empty, 28
minimally complete, 28
soundness, 28

total float, 118

UNPLACE-ACTIVITY, 84
UNPLACE-ACTIVITY-WITH-CYCLES, 70
UNSET-START-TIME, 52
UNSET-START-TIME-WITH-CYCLES, 60

WINDOW-BASED-SCHEDULING, 21

189

BIBLIOGRAPHY

[1] David Applegate and William Cook. A computational study of the job-shop
scheduling problem. ORSA Journal on Computing, 3(2):149-156, 1991.

[2] Artemis Management Systems Ltd, Boulder, CO. Artemis 9000/EX Network
Processing User’s Manual, 2000.

[3] Tonius Baar, Peter Brucker, and Sigrid Knust. Tabu-search algorithms for the
resource-constrained project scheduling problem. In S. Voss, S. Martello, I. Os-
man, and C. Roucairol, editors, Meta-heuristics: Advances and Trends in Local
Search Paradigms for Optimization, pages 1-18. Kluwer Academic Publishers,
1998.

(4] Andrew Baker. Intelligent Backiracking on Constraint Satisfaction Problems.
PhD thesis, University of Oregon, 1995.

[5] K. R. Baker. Introduction to Sequencing and Scheduling. Wiley, 1974.

(6] K. R. Baker. Workforce allocation in cyclical scheduling problems: A survey.
Operations Research Quarterly, 27(1):155-167, 1976.

[7] Philippe Baptiste and Claude Le Pape. Constraint propagation and decomposi-
tion techniques for highly disjunctive and highly cumulative project scheduling
problems. In G. Smolka, editor, Proceedings of the Third International Confer-
ence on Principles and Practice of Constraint Programming (CP-1997), pages
375-389, Schloss Hagenberg, Austria, 1997. Springer-Verlag.

[8] Philippe Baptiste, Claude Le Pape, and Wim Nuijten. Constraint-Based
Scheduling. Kluwer Academic Publishers, Boston, 2001.

[9] M. Bartusch, Rolf H. Méhring, and F. J. Radermacher. Scheduling project
networks with resource constraints and time windows. Annals of Operations
Research, 16:201-240, 1988.

[10] J. C. Beck, Andrew J. Davenport, Eugene D. Davis, and Mark S. Fox. The ODO
project: Toward a unified basis for constraint-directed scheduling. Journal of
Scheduling, 1(2):89-125, 1998.

190

[11] J. C. Beck, Andrew J. Davenport, and Mark S. Fox. Five pitfalls of empirical
scheduling research. In G. Smolka, editor, Proceedings of the Third International
Conference on Principles and Practice of Constraint Programming (CP-1997),
pages 390-404, Schloss Hagenberg, Austria, 1997. Springer-Verlag.

[12] J. C. Beck, Andrew J. Davenport, Edward M. Sitarski, and Mark S. Fox. Beyond
contention: Extending texture-based scheduling heuristics. In Proceedings of the
Fourteenth National Conference on Artificial Intelligence (AAAI-1997), pages
233-240, Providence, 1997. AAAI Press.

[13] J. Blazewicz, W. Domschke, and E. Pesch. The job shop scheduling problem:
Conventional and new solution techniques. FEuropean Journal of Operations
Research, 93:1-33, 1996.

[14] Peter Brucker. Scheduling Algorithms. Springer-Verlag, Germany, second edi-
tion, 1998.

[15] Peter Brucker, A. Drexl, R. Mohring, Klaus Neumann, and E. Pesch. Resource-
constrained project scheduling: Notation, classification, models, and methods.
European Journal of Operations Research, 112:3—41, 1999.

[16] Peter Brucker and Sigrid Knust. Solving large-sized resource-constrained
project scheduling problems. In Jan Weglarz, editor, Project Scheduling: Re-
cent Models, Algorithms and Applications, pages 27-51, Boston, 1999. Kluwer
Academic Publishers.

[17] Michael J. Brusco and Tony R. Johns. Staffing a multiskilled workforce with
varying levels of productivity: An analysis of cross-training policies. Decision
Sciences, 29(2):499-515, 1998.

[18] J. Carlier and E. Pinson. An algorithm for solving the job-shop problem. Man-
agement Science, 35(2):164-176, February 1989.

[19] Yves Caseau and Francois Laburthe. Cumulative scheduling with task intervals.
In Michael Maher, editor, Proceedings of the Joint International Conference and
Symposium on Logic Programming, pages 363-377, Bonn, 1996. MIT Press.

[20] Amedeo Cesta, Angelo Oddi, and Stephen F. Smith. Scheduling multi-
capacitated resources under complex temporal constraints. CMU Robotics In-
stitute Technical Report CMU-RI-TR-98-17, June 1998.

[21] Amedeo Cesta, Angelo Oddi, and Stephen F. Smith. Greedy algorithms for
the multi-capacitated metric scheduling problem. In Proceedings of the 1999
Furopean Conference on Planning, Durham, United Kingdom, September 1999.
Springer-Verlag.

191

{22] Amedeo Cesta, Angelo Oddi, and Stephen F. Smith. An iterative sampling
procedure for resource constrained project scheduling with time windows. In
Proceedings of the Sixteenth International Joint Conference on Artificial Intel-
ligence (IJCAI-1999), pages 1022-1033, Stockholm, 1999. Morgan Kaufmann.

[23] Amedeo Cesta, Angelo Oddi, and Stephen F. Smith. A constraint-based method
for project scheduling with time windows. Journal of Heuristics, 8(1):109-136,
January 2002.

[24] Ping Chen, Zhaohui Fu, and Andrew Lim. The yard allocation problem. In
Proceedings of the Nineteenth National Conference on Artificial Intelligence
(AAAI-2002), pages 3-8, Edmonton, 2002. AAAI Press.

[25] Cheng-Chung Cheng and Stephen F. Smith. A constraint-posting framework for
scheduling under complex constraints. In Proceedings of the Joint INRIA/IEEE
Symposium on Emerging Technologies and Factory Automation, Paris, October
1995. IEEE Computer Society Press.

[26] Cheng-Chung Cheng and Stephen F. Smith. A constraint satisfaction approach
to makespan scheduling. In First International Joint Workshop on Artificial
Intelligence and Operations Research, Timberline, OR, 1995.

[27)] Runwei Cheng, Mitsuo Gen, and Yasuhiro Tsujimura. A tutorial survey of
job-shop scheduling problems using genetic algorithms, part II: hybrid genetic
search strategies. Computers and Industrial Engineering, 36:343-364, 1999.

[28] Vincent A. Cicirello. Boosting Stochastic Problem Solvers Through Online Self-
Analysis of Performance. PhD thesis, The Robotics Institute, Carnegie Mellon
Univ., 2003.

[29] Carlo Combi, Massimo Franceschet, and Adriano Peron. A logical approach to
represent and reason about calendars. In Ninth International Symposium on
Temporal Representation and Reasoning (TIME-2002), pages 134-140. IEEE
Computer Society Press, 2002.

[30] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Cliffort Stein.
Introduction to Algorithms. MIT Press, Cambridge, 2001.

[31] James M. Crawford. An approach to resource constrained project scheduling.
In Proceedings of the 1996 Artificial Intelligence and Manufacturing Research
Planning Workshop, pages 35-39. AAAI Press, 1996.

[32) Rina Dechter, Itay Meiri, and Judea Pearl. Temporal constraint networks.
Artificial Intelligence, 49:61-95, 1991.

192

[33] Ulrich Dorndorf, Erwin Pesch, and Toan Phan-Huy. A time-oriented branch-
and-bound algorithm for resource-constrained project scheduling with gener-

alised precedence constraints. Management Science, 46(10):1365-1384, October
2000.

[34]) Zaid Duwayri, Mansooreh Mollaghasemi, and Dima Nazzal. Scheduling setup
changes at bottleneck facilities in semiconductor manufacturing. In B. A. Peters,
J. S. Smith, D. J. Medeiros, and M. W. Rohrer, editors, Proceeding of 2001
Winter Simulation Conference, pages 1208-1214, Arlington, 2001. The Society
for Computer Simulation International.

[35] A. Fest, R. H. Mohring, F. Stork, and M. Uetz. Resource constrained project
scheduling with time windows: A branching scheme based on dynamic release
dates. Technical Report 596, TU Berlin, Germany, 1999.

[36] Mark S. Fox. Constraint-guided scheduling, a short history of research at CMU.
Computers in Industry, 14:79-88, 1990.

[37] Mark S. Fox. ISIS: A retrospective. In Intelligent Scheduling, pages 3-28, San
Francisco, 1994. Morgan Kaufmann.

[38] B. Franck and Klaus Neumann. Resource constrained scheduling problems
with time windows - structural questions and priority-rule methods. Technical
Report WIOR-492, Universitat Karlsruhe, Germany, 1998.

[39] B. Franck, Klaus Neumann, and C. Scwhindt. Project scheduling with calen-
dars. OR Spektrum, 23:325-334, 2001.

[40] B. Franck and T. Selle. Metaheuristics for the resource-constrained project
scheduling problem with schedule-dependent time windows. Technical Report
WIOR-546, Universitat Karlsruhe, Germany, 1998.

[41] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-completeness. W.H. Freeman and Company, 1979.

[42) M. R. Garey, D. S. Johnson, and Ravi Sethi. The complexity of lowshop and
jobshop scheduling. Mathematics of Operations Research, 1(2):117-129, May
1976.

[43] B. Giffler and G. L. Thompson. Algorithms for solving production scheduling
problems. Operations Research, 8:29-53, July-August 1960.

[44] Matthew L. Ginsberg. Dynamic backtracking. Journal of AI Research, 1:25-46,
1993.

193

[45] Matthew L. Ginsberg, James M. Crawford, and David W. Etherington. Dy-
namic backtracking. Final Technical Report RI-TR-96-215, ARPA Order No.
A009, February 1997.

[46] Fred Glover and Manuel Laguna. Tabu Search. Kluwer Academic Publishers,
Boston, 1997.

[47] Teofilo Gonzalez and Sartaj Sahni. Flowshop and jobshop schedules: Complex-
ity and approximation. Operations Research, 26(1):36-52, 1978.

[48] John C. Goodale and Enar Tunc. Tour scheduling with dynamic service rates.
International Journal of Service Industry Management, 9(3):226-247, 1998.

[49]) Mohamed Haouari and Mohammad A. Al-Fawzan. A bi-objective model for

maximizing the quality in project scheduling. DIMACS Technical Report 2002-
14, April 2002.

[60] Willy Herroelen, Erik Demeulemeester, and Bert De Reyck. A classification
scheme for project scheduling. In Jan Weglarz, editor, Project Scheduling: Re-
cent Models, Algorithms and Applications, pages 1-26, Boston, 1999. Kluwer
Academic Publishers.

[51] Joseph Horowitz. Critical Path Scheduling. The Ronald Press Company, New
York, 1967.

[52] ILOG Optimization Suite: White Paper. Mountain View, CA, 2001.

[53] A. Jain and S. Meeran. A state-of-the-art review of job-shop scheduling tech-
niques. Technical report, Department of Applied Physics, Electronic and Me-
chanical Engineering, University of Dundee, Dundee, Scotland, 1998.

[54] David E. Joslin and David P. Clements. Squeaky wheel optimization. Journal
of AT Research, 10:353-373, 1999.

[55] D. Karger, C. Stein, and Joel Wein. Scheduling algorithms. In M. J. Atallah,
editor, Handbook of Algorithms and Theory of Computation. CRC Press, 1997.

[56] Gunnar W. Kau, Neal Lesh, Joe Marks, and Michael Mitzenmacher. Human-
guided tabu search. In Proceedings of the Nineteenth National Conference on
Artificial Intelligence (AAAI-2002), pages 41-47, Edmonton, 2002. AAAI Press.

[57) Yeong-Dae Kim, Sang-Oh Shim, Bum Choi, and Hark Hwang. Simplification
methods for accelerating simulation-based real-time scheduling in a semicon-

ductor wafer fabrication facility. JEEE Transactions on Semiconductor Manu-
facturing, 16(2):290-298, May 2003.

[58]

[59]

[60]

(61]

[62]

[63]

[64]

[65]

[66]

[67]

194

Ali S. Kiran, Tekin Cetinkaya, and Juan Cabrera. Hierarchical modeling of a
shipyard integrated with an external scheduling application. In B. A. Peters,
J. S. Smith, D. J. Medeiros, and M. W. Rohrer, editors, Proceeding of 2001
Winter Simulation Conference, pages 877-881, Arlington, 2001. The Society
for Computer Simulation International.

Rainer Kolisch and Sonke Hartmann. Heuristic algorithms for the resource-
constrained project scheduling problem: Classification and computational anal-
ysis. In Jan Weglarz, editor, Project Scheduling: Recent Models, Algorithms and
Applications, pages 147-178, Boston, 1999. Kluwer Academic Publishers.

Rainer Kolisch and Rema Padman. An integrated survey of project scheduling:
Models, algorithms, problems and applications. Technical Report, Heinz School
of Public Policy and Management, CMU, Pittsburgh, August 1997.

Sarit Kraus, Yehoshua Sagiv, and V.S. Subralimanian. Representing and inte-
grating multiple calendars. University of Maryland Technical Report CS-TR-
3751, 1996.

V. Kumar. Algorithms for constraint satisfaction problems: A survey. Af
Magazine, 13(1):32-34, 1992.

Philippe Laborie. Algorithms for propagating resource constraints in Al plan-
ning and scheduling: Existing approaches and new results. Artificial Intelli-
gence, 143(2):151-188, 2003.

Javier Larrosa and Pedro Meseguer. Generic CSP techniques for the job-shop
problem. In Jose Mira, Moonis Ali, and Angel Pasqual Del Pobil, editors, Pro-
ceedings of the Eleventh International Conference on Industrial And Engineer-
ing Applications of Artificial Intelligence And Ezpert Systems (IEA-AIE-98),
pages 46-55, Castello, Spain, 1998. Springer-Verlag.

Loo Hay Lee, Loon Ching Tang, and Soon Chee Chan. Dispatching heuristic
for wafer fabrication. In B. A. Peters, J. S. Smith, D. J. Medeiros, and M. W.
Rohrer, editors, Proceeding of 2001 Winter Simulation Conference, pages 1215~
1218, Arlington, 2001. The Society for Computer Simulation International.

Olivier Lhomme. Consistency techniques for numeric CSPs. In Proceedings of
the Fourteenth International Joint Conference on Artificial Intelligence (IJCAI-
1998), pages 232-238, Chambery, France, 1993. Morgan Kaufmann.

Charles McLean and Guodong Shao. Simulation of shipbuilding operations. In
B. A. Peters, J. S. Smith, D. J. Medeiros, and M. W. Rohrer, editors, Proceeding
of 2001 Winter Simulation Conference, pages 870-876, Arlington, 2001. The
Society for Computer Simulation International.

195

[68] D. J. Medeiros, Mark Traband, April Tribble, Rebekah Lepro, Kenneth Fast,
and Daniel Williams. Simulation based design for a shipyard manufacturing
process. In J. A. Joines, R. R. Barton, K. Kang, and P. A. Fishwick, editors,
Proceeding of 2000 Winter Simulation Conference, pages 1411-1414, Orlando,
2000. The Society for Computer Simulation International.

[69] Itay Meiri. Combining qualitative and quantitative constraints in temporal
reasoning. Artificial Intelligence, 87:343-385, 1996.

[70] Rolf H. Méhring. Minimizing costs of resource requirements in project networks
subject to a fixed completion time. Operations Research, 32:89-120, 1984.

[71] Nicola Muscettola. Computing the envelope for stepwise constant resource al-
locations. In Proceedings of the Eighth International Conference on Principles
and Practice of Constraint Programming (CP-2002), pages 139-154, Ithaca,
2002. Springer-Verlag.

[72] J.F. Muth and G.L. Thompson, editors. Industrial Scheduling. Prentice-Hall,
New Jersey, 1963.

[73] Klaus Neumann, Christoph Schwindt, and Jurgen Zimmerman. Recent results
on resource-constrained project scheduling with time windows: Models, solution
methods, and applications. Technical Report WIOR-617, Universitat Karlsruhe,
Germany, April 2002.

[74] Klaus Neumann, Christoph Schwindt, and Jurgen Zimmerman. Project Schedul-
ing with Time Windows and Scarce Resources. Springer-Verlag, Germany, 2003.

(75] Klaus Neumann and Jurgen Zimmerman. Methods for resource-constrained
project scheduling with regular and nonregular objective functions and
schedule-dependent time windows. In Jan Weglarz, editor, Project Schedul-
ing: Recent Models, Algorithms and Applications, pages 261-287, Boston, 1999.
Kluwer Academic Publishers.

[76] Peng Ning, X. Sean Wang, and Sushil Jajodia. An algebraic representation of
calendars. Annals of Mathematics and Artificial Intelligence, 36:5-38, 2002.

[77] Eugeniusz Nowicki and Czeslaw Smutnicki. A fast taboo search algorithm for
the job shop problem. Management Science, 42(6):797-813, June 1996.

[78] Hartwig Niibel. The resource renting problem subject to temporal constraints.
OR Spektrum, 23:359-382, 2001.

[79] W. P. M. Nuijten and E. H. L. Aarts. A computational study of constraint
satisfaction for multiple capacitated job shop scheduling. European Journal of
Operations Research, 90:269-284, 1996.

[80]

[81]

[83]

[84]

(85]

[86]

(87]

[88]

[89]

o0

196

Masayuki Numao. Development of a cooperative scheduling system for the
steel-making process. In Intelligent Scheduling, pages 607-628, San Francisco,
1994. Morgan Kaufmann.

Claude Le Pape. Constraint-based programming for scheduling: An histori-
cal perspective, working paper. In Operations Research Society Seminar on
Constraint Handling Techniques, London, 1994.

Oliver Rose. The shortest processing time first (SPTF) dispatch rule and some
variants in semiconductor manufacturing. In B. A. Peters, J. 5. Smith, D. J.
Medeiros, and M. W. Rohrer, editors, Proceeding of 2001 Winter Simulation
Conference, pages 1220-1224, Arlington, 2001. The Society for Computer Sim-
ulation International.

Norman M. Sadeh. Micro-opportunistic scheduling: The micro-boss factory
scheduler. In Intelligent Scheduling, pages 99-136, San Francisco, 1994. Morgan
Kaufmann.

Norman M. Sadeh and Mark S. Fox. Variable and value ordering heuristics for
the job shop scheduling constraint satisfaction problem. Artificial Intelligence,
86(1):1-41, 1996.

Norman M. Sadeh, Yoichiro Nakakuki, and Sam R. Thangiah. Learning to
recognize (un)promising simulated annealing runs: Efficient search procedures

for job shop scheduling and vehicle routing. Annals of Operations Research,
75:189-208, 1997.

Craig W. Schmidt. Graph-based schedule builder for tightly constrained
scheduling problems. U.S. Patent number 6,490,566, 2002.

Christoph Schwindt. ProGen/max: A new problem generator for different re-
source constrained project scheduling problems with minimal and maximal time
lags. Technical report WIOR-449, Universitat Karlsruhe, Germany, 1995.

Christoph Schwindt. A branch-and-bound algorithm for the resource-
constrained project duration problem subject to temporal constraints. Technical
Report WIOR-544, Universitat Karlsruhe, Germany, November 1998.

Stephen F. Smith. OPIS: A methodology and architecture for reactive schedul-
ing. In Intelligent Scheduling, pages 29-66, San Francisco, 1994. Morgan Kauf-
mann.

Tristan B. Smith and John M. Pyle. An effective algorithm for project schedul-
ing with arbitrary temporal constraints. In Proceedings of the Twenty-first
National Conference on Artificial Intelligence (AAAI-2004) (to appear), San
Jose, July 2004. AAAI Press.

197

[91] Paul P. M. Stoop and Vincent C. S. Wiers. The complexity of scheduling
in practice. International Journal of Operations and Production Management,
16(10):37-53, 1996.

[92] G. P. Syswerda. Generation of schedules using a genetic procedure. U.S. Patent
number 5,319,781, 1994.

[93] Hamdy A. Taha. Operations Research. MacMillan Publishing Company, New
York, 1987.

[94] E. P. K. Tsang. Foundations of Constraint Satisfaction. Academic Press, New
York, 1993.

[95] Spyros Tzafestas and Alekos Triantafyllakis. Deterministic scheduling in com-
puting and manufacturing systems: A survey of models and algorithms. Math-
ematics and Computers in Simulation, 35:397-434, 1993.

[96] Raul E. Valdes-Perez. The satisfiability of temporal constraint networks. In
Proceedings of the Sizth National Conference on Artificial Intelligence (AAAI-
1987), pages 256-260, Seattle, 1987. AAAI Press.

[97) Manuel Vazquez and L. Darrell Whitley. A comparison of genetic algorithms
for the dynamic job shop scheduling problem. In Sizth International Conference
on Parallel Problem Solving From Nature, Paris, 2000. Springer-Verlag.

[98] Manuel Vazquez and L. Darrell Whitley. A comparison of genetic algorithms for
the static job shop scheduling problem. In Darrell Whitley, David Goldberg, and
Erick Cantu-Paz, editors, Genetic and Evolutionary Computation Conference,
Las Vegas, 2000. Morgan Kaufmann.

[99] Marc Vilain, Henry Kautz, and Peter van Beek. Constraint propagation algo-
rithms for temporal reasoning: A revised report. In Daniel S. Weld and Johan
de Kleer, editors, Readings In Qualitative Reasoning About Physical Systems,
San Francisco, 1989. Morgan Kaufmann Publishers.

[100] J. P. Watson, J. C. Beck, A. E. Howe, and L. Darrell Whitley. Problem difficulty
for tabu search in job-shop scheduling. Artificial Intelligence, 143(2):189-217,
February 2003.

[101] Daniel L. Williams, Daniel A. Finke, D. J. Medeiros, and Mark T. Traband.
Discrete simulation development for a proposed shipyard steel processing facil-
ity. In B. A. Peters, J. S. Smith, D. J. Medeiros, and M. W. Rohrer, editors,
Proceeding of 2001 Winter Simulation Conference, pages 882-887, Arlington,
2001. The Society for Computer Simulation International.

198

[102] J. Zhan. Calendarization of time planning in MPM networks. ZOR-Methods
and Models of Operations Research, 36:423-438, 1992.

	DIS_D1
	DIS_D2

