AUTOMATING PSEUDO-BOOLEAN INFERENCE WITHIN A DPLL
FRAMEWORK

by

HEIDI DIXON

A DISSERTATION

Presented to the Department of Computer
and Information Science
and the Graduate School of the University of Oregon
in partial fulfillment of the requirements
for the degree of
Doctor of Philosophy

December 2004

ii

“Automating Pseudo-Boolean Inference within a DPLL Framework,” a dissertation
prepared by Heidi Dixon in partial fulfillment of the requirements for the Doctor of
Philosophy degree in the Department of Computer and Information Science. This
dissertation has been approved and accepted by:

Mog——7

Dr. Matthew Ginsberg, Co-chair of the Examining Committee

e

Dr. Christopher Wilson, Co-chair of the Examining Committee

(d-0/-0f

Date

Committee in charge: Dr. Matthew Ginsberg, Co-chair
Dr. Christopher Wilson, Co-chair
Dr. David Etherington
Dr. Michal Young
Dr. Charles Wright

Accepted by:

S Svea

Dean of the Graduate School

Copyright 2004 Heidi Dixon

i

iv

An Abstract of the Dissertation of
Heidi Dixon for the degree of Doctor of Philosophy
in the Department of Computer and Information Science
to be taken December 2004
Title: AUTOMATING PSEUDO-BOOLEAN INFERENCE WITHIN A
DPLL FRAMEWORK

Approved: Mwﬂ-’\ﬁ

Dr. Matthey’Ginsberg, Co-chair

(/A.s b

Dr. Christopher Wilson, Co-chair

State of the art satisfiability solvers provide important tools for problem solving
in a number of real world problem domains [44, 10, 18, 60, 42]. These methods are all
based on the classic DPLL algorithm. Unfortunately, these methods perform poorly on
many important families of problems including the pigeonhole problem. Pigeonhole
problems state that n + 1 pigeons cannot be placed in n holes and are believed to
be common subproblems in many problem domains such as planning and scheduling.
The most competitive satisfiability solvers show exponential scaling on these simple
structured problems. These problems should be easy but traditional satisfiability
methods make them unnecessarily hard.

Traditional satisfiability methods fail to solve these types of problems because the

proof system they automate is very weak. The proof system used by traditional meth-

ods is resolution and all resolution proofs of the pigeonhole problem are exponential
in length [35]. Consequently, traditional methods scale exponentially on pigeonhole
problems. The only way to improve performance on these problems is to improve
the strength of the underlying representation and inference system. This approach
was thought to be impractical because the overhead of managing and automating
a stronger and more complex inference system would outweigh any benefits derived
from the stronger inference.

We implement a DPLL style satisfiability solver that uses pseudo-Boolean repre-
sentation and automates an inference system properly stronger than resolution. We
show that this approach is practical and that in fact, there is no significant advan-
tage to resolution based satisfiability methods over their pseudo-Boolean counterpart.
Building a pseudo-Boeolean solver entails adapting all sub-procedures of a DPLL style
method to use pseudo-Boolean representation. We provide an implementation of
the learning procedure for pseudo-Boolean constraints and show experimentally that
choices made in how learning is implemented determine the strength of the underlying
inference system.

We give experimental results showing that the pseudo-Boolean solver can always
closely match the performance of traditional methods yet the reverse is not true. The
pseudo-Boolean solver allows exponential speedups over traditional methods on pi-
geonhole problems. We also give experimental results showing that traditional meth-
ods are unnecessarily slow on random planning problems due to embedded pigeonhole

problems.

vi

CURRICULUM VITA

NAME OF AUTHOR: Heidi Dixon
PLACE OF BIRTH: San Francisco, CA, U.S.A.

DATE OF BIRTH: December 14, 1970

GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED:

University of Oregon
Oberlin College

DEGREES AWARDED:

Doctor of Philosophy in Computer and Information Science, 2004,
University of Oregon

Bachelor of Arts in Geology, 1993, Oberlin College

AREAS OF SPECIAL INTEREST:

Artificial Intelligence
Boolean Satisfiability
Automated Deduction

PROFESSIONAL EXPERIENCE:

Research Assistant, Computational Intelligence Research Laboratory,
1998 - 2004

Software Engineer, Terralink, Portland Maine 1997 - 1998

Mathematics Teacher, The Chewonki Foundation, Maine Coast
Semester Program, 1996 - 1997

vii

AWARDS AND HONORS:

Sigma Xi Associate Membership, 1994
George B. Wharton Prize in Geology, Oberlin College, 1993

PUBLICATIONS:

Heidi E. Dixon, Matthew L. Ginsberg, Eugene M. Luks, and Andrew
J. Parkes. Generalizing Boolean Satisfiability II: Theory. Journal of
Artificial Intelligence Research, (accepted).

Heidi E. Dixon, Matthew L. Ginsberg, David K. Hofer, Eugene M.
Luks, and Andrew J. Parkes. Implementing a generalized version of

resolution. In Proceedings of the Nineteenth National Conference on
Artificial Intelligence (AAAI-2004), pages 55-60, 2004.

Heidi E. Dixon, Matthew L. Ginsberg, and Andrew J. Parkes. Gen-
eralizing Boolean Satisfiability I: Background and Survey of Existing
work. Journal of Artificial Intelligence Research, 21:193-243, 2004.

Heidi E. Dixon, Matthew L. Ginsberg, and Andrew J. Parkes. Likely
Near-term Advances in SAT Solvers. Workshop on Microprocessor Test
and Verification (MTV ’02). Held in Austin, Texas, USA. June 2002.

Heidi E. Dixon and Matthew L. Ginsberg. Inference methods for a
pseudo-Boolean satisfiability solver. In Proceedings of the Eighteenth
National Conference on Artificial Intelligence (A AAI-2002), pages 635-
640, 2002.

Heidi E. Dixon and Matthew L. Ginsberg. Combining Satisfiabil-
ity Techniques from Al and OR. The Knowledge Engineering Review,
15(1):31-45, 2000.

viii

ACKNOWLEDGMENTS

Often we walk through life unaware of how substantially we affect the lives of
those around us. Moments of acknowledgment are far too rare. Many people have
impacted my life over the past few years by offering support and encouragement, and
for this, I feel very fortunate.

First, I thank my adviser Matt Ginsberg. As a mentor, Matt believed in me when
I struggled to believe in myself. He held me to high standards and expected that I
would achieve them. I will always be thankful for his generosity and his friendship.
Matt and David Etherington both supported my choice to start a family during the
past year. They are both dedicated fathers who understand the importance of family.
The accommodations they made for me have allowed me to balance family and career.

I would like to thank Chris Wilson, David Etherington, Michal Young, and Charlie
Wright being on my committee and giving my thesis a thorough review. I thank
Andrew Parkes for the many conversations we shared. Andrew always encouraged
me to be meticulous about the details. My mother-in-law Ellen looked after my
two month old son Izzy Robin while I finished writing. No one could have cared
more lovingly for my son, and I couldn’t have managed without her help. Bud
Keith gave me valuable feedback on the C++ code written for this dissertation. The
code and my general programming practices were both improved. Jan Saunders and
Star Holmberg helped me navigate the labyrinth of graduate school and department
procedures, policies, and requirements. Tristan Smith has been a faithful friend and I
suspect that the dissertation formatting files he gave me saved me from a tremendous
headache. I would like to thank everyone at CIRL and OTS past and present. It has
been a fun and challenging place to work.

Finally, I thank my husband Stew. It is not possible to quantify or express how
much Stew has helped me in my life and my work. He gives his support everyday

and it sustains me.

To family [6G6]

TABLE OF CONTENTS

Chapter Page
1. INTRODUCTION e e e e 1
1.1 Overviewof Thesis 5

2. SYSTEMATIC SATSOLVERS, 7
2.1 Inthe Beginning: DPLL 9
2.1.1 Davis-Putnam-Logemann-Loveland 9

2.1.2 Unit Propagation 10

2.1.3 Early Branch Heuristics 10

2.2 Tackling Structured Problems with Learning 11
2.2.1 Resolution: The Inference of Learning 12

2.2.2 Bounded Learning 17

2.2.3 Non-Standard Backtracking 20

2.2.4 Branching Heuristics That Work with Learning 23

2.3 The Benefits of Fast Propagation 25
2.3.1 Unit Propagation: The Main Loop 25

2.3.2 DataStructures oo 26

2.3.3 Notes on the Interplay of Propagation and Learning . .. 32

24 Summary e e e e e e e e e e 33

3. RECONSIDERING REPRESENTATION 34
3.1 Systematic Solvers: A Special Kind of Proof System 35
3.1.1 DPLL Descendants: Resolution-Based Methods 36

3.2 Proof Complexity and Systematic Solvers 37
3.21 Proof Complexity, 38

3.2.2 Exponential Lower Bounds for Resolution 40

4. A PSEUDO-BOOLEAN SAT SOLVER 42

xi

4.1 Pseudo-Boolean Representation 43
41.1 P-simulating Resolution 44

4.1.2 Translating Pseudo-Boolean Constraints into CNF 45

4.1.3 Short Proofs of the Pigeonhole Principle 48

4.2 Unit Propagation 53
421 Count-Based Methods 53

4.2.2 Watched Literals 87

423 SUMIMATY v v o v i e e e e e e e e e 60

43 Learning 61
4.3.1 Resolution Analog, 62

432 Capturing Conflicts 62

4.3.3 Bounded Learning, 68

434 Summary o it e 71

4.4 Non-Standard Backtracking and Unique Implication Points 71
4.5 Branching Heuristics, 75
4.6 Strengthening e 76
. SOLVING THE PIGEONHOLE PROBLEM 82
51 CNF Encodings v i i 83
51.1 DoNoHarm 83

5.1.2 Experimental Results 84

5.2 Pigeonhole Problems 88
5.2.1 Experimental Results 89

5.3 Pigeonhole Problems Embedded in Planning Problems 95
5.3.1 A Simple Logistics Problem 95

5.3.2 The Logistics Pigeonhole Problem 97

533 CNFEncoding 98

5.3.4 Pseudo-Boolean Encoding 99

5.3.5 Experimental Results 100

53.6 Discussion. e 106

5.4 Random Planning Problems 107
54.1 Experimental Results 108
.RELATED WORK e e 115
6.1 Integer Programming Techniques 115
6.1.1 Branch-and-bound 116

6.1.2 Branch-and-cut 119

6.1.3 Solving Satisfiability Problems 123

xii

6.14 Summary 00 e e e e .. B RS & 125

6.2 Lifted Solvers 127
6.2.1 Pseudo-Boolean, 127

6.2.2 Parity Constraints 128

6.2.3 Zero Suppressed Binary Decision Diagrams 131

6.2.4 Finitely Quantified Clauses 133

7. CONCLUSION o e e e e e e 134
7.1 Contributions e 134

7.2 Future Work 136
INDEX . . . vt i o e R 138

LIST OF FIGURES

Figure

SR IS
Lo T B U B

3.2
5.1

5.2

5.3

5.4

3.5

5.6
a.7

Learning in a DPLL search tree
Percent of CPU time spent in unit propagation for ZCHAFF
Percent of CPU time spent in unit propagation for RELSAT

A DPLL search tree (a) and corresponding resolution proof of the empty
clause A(b) L

Performance on PHP?*! for some well known solvers

Comparison of execution time for PBCHAFF and ZCHAFF on CNF encod-
ings. Each point corresponds to a CNF problem instance. The z coor-
dinate corresponds to the execution time in seconds for ZCHAFF and the
y coordinate corresponds to the execution time in seconds for PBCHAFF.
The line f(z) = 4.37 + 1.61z is the best linear fit to the data, and the
curve f(z) = 1.89z%" is the best log transformed linear fit.

Comparison of node counts for PBCHAFF and ZCHAFF on CNF encodings.
Each point corresponds to a CNF problem instance. The z coordinate
corresponds to the number of nodes expanded for ZCHAFF and the y
coordinate corresponds to the number of nodes expanded by PBCHAFF.
The line f(z) = z is plotted as a reference. The curve f(z) = 0.99z is the
best log transformed linear fit., .

Size of search trees in terms of node counts for PBCHAFF on the pigeonhole
problem. The curve shown, f(n) = 0.83n2%, is the best polynomial fit
forthedata. e e e e

Preprocessing and solution time for PBCHAFF on the pigeonhole problem.
The best polynomial fit for the preprocessing data is the curve f(n) =
en®1, and the curve f(n) = dn'® is the best polynomial fit for the

gsolution data. e e e e e

Comparison of solvers on the pigeonhole problem. Resolution based meth-
ods ZCHAFF, RELSAT, and BERKMIN show exponential scaling. OPBDP,
and the PBCHAFF version that learns only clausal constraints both show
exponential scaling. PBCHAFF shows polynomial scaling. The best poly-
nomial fit for the PBCHAFF solution data is the curve f(n) = dn*8.

Comparison of solvers on the pigeonhole problem.

Comparison of solvers on the logistics pigeonhole problem.

xiii

85

87

91

92

93
94
101

5.8

5.9

5.10

3.11

5.12

5.13

6.1

6.2

Comparison of ZCHAFF and PBCHAFF on the logistics pigeonhole prob-
lem. Encoding 1 is the original encoding described in Section 5.3.1. En-
coding 2 is the same encoding with the addition of ground instances of
resolvent (5.26).
Comparison of PBCHAFF and ZCHAFF on random planning problems.
Each point corresponds to a CNF problem instance. The z coordinate
corresponds to the execution time in seconds for ZCHAFF and the y co-
ordinate corresponds to execution time in seconds for PBCHAFF. The
points above the line f(z) = z represent instances where ZCHAFF out-
performed PBCHAFF. Points below f(x) = z represent instances where
PBCHAFF outperformed ZCHAFF. The curve f(z) = 0.49z%77 is the best
log transformed linear fit.
Comparison of solvers on satisfiable instances of random planning prob-
lems. The plot shows execution time in seconds for ZCHAFF on the z axis
versus PBCHAFF on the y axis. The best log transformed linear fit is the
curve f(z) = 2.53z%%. The line f(z) = z is plotted as a reference.

Comparison of solvers on satisfiable instances of random planning prob-
lems. The plot shows the number of nodes expanded by ZCHAFF on the
z axis versus nodes expanded by PBCHAFF on the y axis. The curve
f(z) = 3.34z%% is the best log transformed linear fit. The line f(x) =z
is plotted as areference. o
Comparison of solvers on unsatisfiable instances of random planning prob-
lems. The plot shows execution time in seconds for ZCHAFF on the z axis
versus execution time for PBCHAFF on the y axis. The line f(z) = z is
plotted asareference. Lo
Comparison of solvers on unsatisfiable instances of random planning prob-
lems. The plot shows the number of nodes expanded for ZCHAFF on the
z axis versus PBCHAFF on the y axis. The line f(z) = z is plotted as a
reference. e e
The non-integer solution (%, %) is eliminated by cutting-plane zo < 2 and
ZBDD for set of clauses (6.2). Solid edges represent 1-edges, and dashed
edges represent O-edges.

105

109

110

111

113

120

XV

LIST OF TABLES
Table Page

5.1 Results for PBCHAFF on pigeonhole problems. The table lists node counts,
execution time in seconds for strengthening as a preprocessing method,
and execution time in seconds for solution. 90
5.2 Size of the logistics pigeonhole problem as a function of the number of
objects. The columns give the number of variables for each instance, the
number of clauses in the CNF encoding of the instance, and the number
of constraints in the pseudo-Boolean encoding of the instance. 101
5.3 Range of possible values for domain sizes for the randomly generated plan-
ning problems. L L e 107

CHAPTER 1

Introduction

This thesis explores new ways of solving the propositional satisfiability problem
{SAT). An instance of SAT consists of a set of Boolean variables and a set of disjunc-
tive clauses over the variables. The challenge is to find an assignment of values to
variables that satisfies all the clauses, a task known to be NP-complete [17]. SAT is
an easy encoding language for many problem domains because it is a simple logical
language. For this reason, methods that solve the SAT problem have the potential
to be very useful as general purpose solvers.

Because SAT problems are NP-complete, they currently require solution methods
that use search. Search methods can explore the search space in a systematic way
or move about the space in a nonsystematic way. The DPLL [22] algorithm is the
classic systematic approach to solving SAT problems. Its basic structure underlies
the most successful SAT methods to date. DPLL-style solvers have undergone a series
of advances in recent years that allow the solution of dramatically larger problems
than previously. Current solvers now provide important tools for problem solving in
many real-world problem domains such as planning [48], microprocessor verification
(10, 20, 70}, and software design and analysis [46].

DPLL-style solvers have been improved in a number of ways. Extremely fast
propagation gives solvers the ability to traverse large search trees quickly, and the
size of search trees is reduced by bounded learning, a technique that caches failed

sets of assignments to prevent repeatedly re-solving the same subproblem. Non-

(S

standard backjumping and restart methods allow solvers to move more freely about
the search space, giving DPLL-style solvers some of the advantages of nonsystematic
search methods. Additionally, branching heuristics continue to play an important
role in solver performance.

Despite their significant success, systematic satisfiability methods perform poorly
on many important families of problems including certain parity problems, the pi-
geonhole problem, and clique coloring problems. Consider the well known pigeonhole
problem stating that n + 1 pigeons cannot be placed in n holes if only one pigeon
can occupy a hole. This simple problem is very hard for current solvers. The most
competitive solvers such as ZCHAFF [76] and BERKMIN [35] show time scaling that
is exponential in the number of pigeons. This discouraging result is made worse by
the fact that the pigeonhole problem and related counting principles are common
subproblems in many important problem domains such as planning and scheduling.

If we want to understand what is going on here, we must first understand the role
of proof construction in a systematic solver. If an instance of a satisfiability problem
is unsatisfiable, the solver must construct some form of a proof that no solution exists.
The inference system used by DPLL-style solvers to construct proofs of unsatisfiability
is a form of the resolution proof system. For this reason DPLL-style solvers are called
resolution-based methods. Resolution is a simple proof system with a single inference
rule that allows new clauses to be derived from a set of clauses. Unfortunately, the
shortest resolution proof of unsatisfiability for the pigeonhole problem is exponential
in the number of pigeons [38]. Clearly the time to construct a proof is at least propor-
tional to the length of the proof. This guarantees exponential scaling on pigeonhole
problems and unnecessarily poor performance on problems containing embedded pi-
geonhole problems. Refining current algorithms may yield improvements, but cannot
provide polynomial-time scaling on these problems and many others, unless the un-
derlying preof system used by the solver is changed.

However, the general belief has been that stronger inference systems are impracti-
cal to automate. The following quote is from a paper written by Bart Selman, Henry
Kautz, and David McAllester detailing a set of challenge problems for the satisfiability

community.

.. attempts to mechanize these more powerful proof systems usually yield
no computational savings, because it is harder to find the small proof tree
in the new system than to simply crank out a large resolution proof. In
essence, the overhead in dealing with the more powerful rules of inference
consumes all the potential savings [64].

A similar sentiment is expressed by David Mitchell. He argues here that resolution-

based methods are prevalent because of their simplicity.

The prevalence of resolution is ... in part a result of it being a weak
enough proof system that it is not too hard to find complete strategies
which can be practically implemented. Much stronger proof systems, such
as extended resolution (for which no non-trivial lower bounds are known),
do not offer much promise for practical implementation [54].

A new direction in the area of SAT research is the construction of lifted solvers.
A lifted solver takes the framework of a Boolean SAT solver, such as DPLL, and
adapts it to use a stronger (more concise) representation. The original motivation for
this approach was to improve performance through the use of concise representations
(2, 34, 74]. In fact, many problems of interest are initially encoded concisely in a
high-level language. When this high-level encoding is translated to a satisfiability
problem, the resulting encoding can easily become too large to be managed by a
SAT solver. By working directly with a higher level encoding, lifted solvers avoid the
memory issues of overly large CNF encodings.

Lifted solvers were originally thought to be impractical because individual con-
straints are more complex and are likely to increase the cost of many subprocedures.
Studies have since disproved this assumption, showing that stronger representations
can improve solver performance, mainly by improving the speed of the unit propaga-
tion procedure [2, 34]. The cost of propagation per constraint may be higher, but a
single high-level constraint may be a standin for an exponential number of Boolean
clauses that would need to be dealt with individually by a conventional satisfiability
solver.

A point that has been often overlooked by implementations of systematic lifted

solvers is that stronger representations can also be used to improve the strength of

the solver’s underlying proof system. A major goal of this thesis is to give guidelines
for how to do this within the ppPLL framework. We will show that improving proof
strength requires more than just using a stronger representation. Stronger inference

rules must somehow be incorporated.

The primary inference step of DPLL style solvers is learning. In current resolution-
based solvers, learning corresponds to a resolution step. Because learning is the
primary inference step in DPLL style solvers, it is an ideal place to incorporate a
powerful inference rule. However, the additional complexity of individual constraints
means there are more choices in implementation. We will see that choices in the
implementation of learning play a key role in determining the strength of the solver’s

underlying proof system.

We present an implementation of a pseudo-Boolean SAT solver that automates
a proof system properly stronger than the proof systems of current resolution-based
solvers. Pseudo-Boolean representation is commonly used by the operations research
community and a constraint consists of a linear inequality over Boolean variables. The
major question is whether the stronger proof system actually leads to improvements
in solver performance. There are many ways things can go wrong. First, the solver
may not be able to find short proofs for a particular problem instance, even though
short proofs exist. The cutting-plane proof system associated with pseudo-Boolean
representation allows short proofs of the pigeonhole problem; however, that does not
mean that all cutting-plane proofs of the pigeonhole problem are short. The solver
may produce a cutting-plane proof that is as long as a resolution proof. Second, the
solver may produce a short proof (corresponding to a small search tree) but the cost
of expanding a node may increase. The additional complexity of constraints may
make subprocedures more expensive. The benefits of the reduced search tree may be
outweighed by the higher cost of expanding a node, yielding no real improvement in
performance. To examine these possibilities, we will compare the performance of our
solver with the performance of resolution-based methods on many problem domains.
We give in-depth comparisons of solvers on the pigeonhole problem and planning

problems.

1.1 Overview of Thesis

Most systematic SAT solvers are based on the DPLL algorithm, but they also em-
ploy a variety of methods that improve performance over simple DPLL. These methods
include clause learning combined with a restriction method for bounding the size of
the learned clause set, indexing schemes for quickly identifying unit propagations,
branching heuristics, and backjumping methods. The DPLL algorithm, together with
these improvements, form what we call the DPLL framework. In Chapter 2 we review
the elements of this framework, survey the relevant research, and try to identify the

elements of this framework that make it successful.

Chapter 3 explores the role of systematic satisfiability solvers as proof systems
and reviews some lower bounds for current satisfiability solvers. We give an introduc-
tion to some concepts from the field of proof complexity that will allow us to analyze
and compare the strength of different proof systems. We discuss work showing expo-
nential lower bounds on the performance of resolution-based solvers like RELSAT [5],
ZCHAFF [76], and BERKMIN [35]. These bounds follow from the fact that all reso-
lution proofs of the pigeonhole principle are known to be exponential in length. We
show that the theoretical lower bound is mirrored in experimental results showing

exponential runtime scaling for these solvers on pigeonhole problems.

Chapter 4 describes our implementation of a pseudo-Boolean version of ZCHAFF.
The hope is that our implementation will respect the lessons from both Chapter 2 and
Chapter 3, improving the strength of the underlying proof system while retaining the
elements that make current satisfiability solvers successful. First we describe pseudo-
Boolean representation and review some associated proof complexity results. We show
that pseudo-Boolean representation can be exponentially more concise than CNF and,
when combined with cutting-plane inference, it is possible to write polynomial-length
proofs of the pigeonhole principle. We then make some observations about why strong
representations lead to strong proof systems. These observations motivate our solver
implementation. The remainder of Chapter 4 gives implementation details. We revisit
the methods of Chapter 2, describing a pseudo-Boolean implementation for each

element of the DPLL framework. A solver that uses pseudo-Boolean representation

can also apply additional methods that cannot be applied in traditional resolution-
based methods. In Section 4.6, we show how a form of the coeflicient reduction
method from operations research can be applied within the DPLL framework.

In Chapter 5, we answer the question of whether automating strong proof systems
leads to improvements in solver performance. We start by comparing performance of
the pseudo-Boolean solver with its resolution-based counterpart on a large set of CNF
benchmarks. Next we compare performance on pigeonhole problems, and finally we
compare performance on planning problems.

In Chapter 6, we discuss related work. We survey some standard operations
research methods for solving integer programming problems. Pseudo-Boolean rep-
resentation is a subclass of a more general operations research representation that
allows linear inequalities over positive integer variables. We review some applications
of integer programming methods to solve satisfiability problems. We also review other
work on lifted SAT solvers. Chapter 7 gives concluding remarks and discusses ideas

for future work.

b |

CHAPTER 2

Systematic SAT Solvers

In this chapter we introduce the family of algorithms for solving satisfiability
problems that are based on the Davis-Putnam-Logemann-Loveland procedure [22].
Descendants of the DPLL algorithm are currently the best methods for solving general
satisfiability problems and provide competitive solutions in a number of important
problem domains such as microprocessor testing and verification (10, 20, 70] and

planning [48].

Definition 2.0.1. An instance of satisfiability is a set of Boolean variables U =
{vi,va,...,v,} and a set of clauses C = {c1,¢3,...,cn}. A clause is e disjunction
of literals, where a literal is a Boolean variable v;, or its negation U;. A clause is
satisfied if and only if any one of its literals evaluates to true. A solution fo ¢ SAT
problem is an assignment of values to variables that satisfies every clause; if no such

assignment ezists, the instance is called unsatisfiable.

The SAT problem is known to be NP-complete [17].

The performance of the DPLL procedure has been improved in many ways. We
restrict our discussion in this chapter to improvements that do not require a represen-
tational change. The benefits of strengthening the underlying problem representation
will be discussed in subsequent chapters. In Section 2.2 we introduce techniques that
improve performance by taking advantage of structure. Structured problems might

be best defined as problems in which subproblems recur. Earlier DPLL implementa-

tions were notoriously bad at solving structured problems because each encountered
subproblem was solved from scratch, even if the subproblem had been previously en-
countered many times. The key technique here is learning, a technique that caches
solutions to subproblems to avoid the need to repeatedly re-solve the subproblem.
Learning alone proved to be impractical because the set of learned items could be-
come unmanageably large. The development of learning combined with a suitable
method to restrict the size of the set of cached solutions signaled an important turn-
ing point for satisfiability methods. Solvers then could solve interesting structured
problems that were more representative of real-world problems [6]. Consequently, the
focus of satisfiability research moved away from the randomly generated satisfiability

problems typically considered in earlier papers.

The DPLL procedure proceeds by selecting a subset of variables and fixing their
values, a process known as branching. Then the unit propagation procedure identifies
variables whose values are forced by the branching choices. Unit propagation con-
tinues to be the major computational task of DPLL-style algorithms, taking up over

eighty percent of computation time.

In Section 2.3, we look at techniques that improve performance by reducing the
cost of expanding a node. These techniques focus on reducing the amount of time
spent in the unit propagation procedure. Efforts here have focused mainly on building

better data structures.

Branching heuristics continue to play an important role in reducing the size of
the search space for satisfiability problems. Our presentation of branching heuristics
is divided to reflect the fact that heuristics developed in different contexts. Early
heuristics were designed to work with simple DPLL implementations, and most exper-
iments were run on randomly generated SAT problems. More recent heuristics are
designed to work in concert with learning, and focus on structured problem domains

such as planning and microprocessor verification.

2.1 In the Beginning: DPLL

2.1.1 Davis-Putnam-Logemann-Loveland

As we stated earlier, the techniques discussed in this chapter are all based on the
Davis-Putnam-Logemann-Loveland method [22]. The algorithm takes a valid partial
assignment and attempts to extend it to a valid full assignment by incrementally
assigning values to variables. A partial assignment is a set of variable value pairs of
the form v; = V such that v; is a variable and V' € {true, false}. Literals provide
a shorthand notation for variable assignments with a representing ¢ = true and a

representing a = false.

Definition 2.1.1. A partial assignment is en ordered sequence of literals.

{II:EQ: s :"'n}

A partial assignment P for a set of clauses C is invalid if there is a clouse ¢ in C
such that every literal in c is unsatisfied by P. Otherwise, a partial assignment is

considered valid. A partial assignment P' extends a partial assignment P if and only
f PP ={Pl li,...}.

DPLL creates a binary search tree where each node corresponds to a partial assign-
ment. The tree is explored using depth-first search with backtracking. Backtracking
occurs if the algorithm reaches a state where there is no valid assignment for a partic-
ular variable. The algorithm terminates when a solution is found or when the entire

space has been explored.

10

Procedure 2.1.2 (Davis-Putnam-Logemann-Loveland). Given a SAT problem

C and a partial assignment P of values to variables, to compute DPLL(C, P):

1 P «— UNIT-PROPAGATE(C, P)

o

if P contains a contradiction
then return FAILURE
if P assigns a value to every variable
then return SUCCESS
! — a variable not assigned a value by P
if pPLL(C, {P,1}) = SUCCESS
then return SUCCESS

o 00 =1 oy 1 e W

else return prLL(C, {P,[})

2.1.2 Unit Propagation

The unit propagation procedure identifies clauses that have no satisfied literals and
exactly one unvalued literal. A clause with these properties is called a unit clause.
In each such clause, the unvalued literal must be valued true to satisfy the clause.
This process is repeated until a contradiction is encountered, a solution is found, or

no more clauses meet the necessary conditions.

Procedure 2.1.3 (Unit propagation). To compute UNIT-PROPAGATE(C, P):

1 while no contradiction is found and there is a ¢ € C that under P
has no satisfied literals and exactly one unassigned literal

2 do I « the literal in ¢ unassigned by P

3 P —{Pl}

4 return P

2.1.3 Early Branch Heuristics

Before the development of successful learning techniques, branching heuristics

were the primary way of reducing the size of the search space. The main approach

11

was to try to encourage a cascade of unit propagations. The result of such a cascade is
a smaller and more tractable subproblem. There are two popular classes of branching
rules that are based on this idea. The MOMS rule branches on the variable that
has maximum occurrences in clauses of minimum size [21, 28, 45, 47, 58]. This
gives an approximation of the number of unit propagations that a particular variable
assignment would cause. It has the advantage of being inexpensive to calculate.
Another heuristic is the unit propagation rule [21, 30]. This rule calculates the full
amount of propagation caused by a branching choice. Given a branching candidate
v;, the variable is independently fixed to true and false and the unit propagation
procedure is run on each subproblem. The number of unit propagations caused by an
assignment becomes a weight used to evaluate branching choices. Unlike the MOMS
heuristic, this rule is exactly correct at determining the number of unit propagations
an assignment will cause. It is also considerably more expensive to compute. A logical
approach would be to combine these two techniques [21, 50]. The cheaper MOMS
heuristic is used to determine which branching candidates should be investigated with
the more expensive unit propagation heuristic. This was shown to outperform either
technique used alone [50).

The branching heuristics presented above were all developed to work with a simple
DPLL algorithm. The studies cited compare performance of strategies on randomly
generated &-SAT problems. These particular algorithms are among the best methods
for randomly generated SAT problems; however, for reasons we discuss in the next
section, they perform poorly on large structured problems. The heuristics discussed
here may still be viable within the context of learning algorithms, but this has not
yet been demonstrated. In the next section, we introduce a difficulty encountered
by backtracking algorithms called thrashing that cannot be addressed by branching

heuristics alone.

2.2 Tackling Structured Problems with Learning

The simple DPLL methods described in Section 2.1 suffer from a condition called

thrashing that occurs when a method re-solves the same subproblem over and over

again. Thrashing is inevitable for simple DPLL methods because they have no way of
identifying whether a subproblem has been seen before. As a result, each encountered
subproblem must be solved from scratch. For this reason, simple DPLL methods
perform poorly on structured problems where subproblems may be encountered over
and over again.

Imagine solving a SAT problem with variables i, Z, . . ., T100, having successfully
valued the variables zj,...,Z4. In this problem there happens to be a subset of
constraints involving only the variables zsg,...,Z100 that together imply that zso =
true. If we begin by setting x5 = false, it will require some degree of searching
to discover our mistake. When we finally do, we backtrack to zsg, set it to true,
and continue on. Unfortunately, if later we need to backtrack to a variable set before
Tso, for instance x4, we are in danger of setting zs to false again. We could
potentially solve the same subproblem many times. The solution to this problem is to
record the information that we discovered. In this example the pertinent information
is that =5y must be true. We can record this information by adding the unary
clause z5p to the set of clauses. Now we can immediately prune any subproblem
with {zsp = false}. This technique, called learning, was introduced by Stallman
and Sussman in dependency directed backtracking [67] and will be described in detail

helow.

2.2.1 Resolution: The Inference of Learning

Learning occurs when a contradiction is encountered, and is essentially an analysis
of what went wrong. The learning procedure determines the subset of the current
assignment that caused the contradiction to occur. A new clause called a nogood is
generated that prunes exactly the set of assignments that led to the contradiction.
Generating a nogood serves two purposes: first, it is used in backjumping (32], a
process that determines how far to backtrack; and second, it can be added to the
constraint set to ensure the “bad” set of assignments will be avoided in the future, a

technique called learning [67].

13

At the heart of the learning method is resolution. Resolution is the proof system
generally associated with CNF representation. It has a single inference step defined

as follows:
aV---Va,Vli

byV---Vb, VI
QIV"'VakaIV"'me

Two clauses resolve if there is exactly one literal [that appears positively in one clause
and negatively in the other. A new clause is derived by disjoining the two clauses and
removing both [and —l. If a literal appears twice in the resulting clause, the clause
can be rewritten with the literal appearing only once. This is known as factoring.
The resolution inference step is ideal for analyzing contradictions in a DPLL search
tree.

Analyzing the cause of a conflict requires that we maintain some record of why
each variable assignment was made. This is achieved by annotating each assignment

in our partial assignment with a reason (also referred to as an asserting clause).

Definition 2.2.1. An annotated partial assignment is an ordered sequence

{(llv Cl): s (lny Cn)}

of literals and clauses, where ¢; is the reason for literal l; and either ¢; = true
(indicating the l; was a branch point) or ¢; ts a clouse such that l; is a literal in ¢;,
and c¢; is a unit clause under {l;,ls,...,L;i_1}. An annotated partial assignment will
be called sound with respect to a set of constraints, C, if and only if for each reason

ei, ¢; € C or ¢ is derived from C by resolution.

After the literals I;,...,[;_; are all set to true, either I; is a branch choice, or it is

possible to conclude ; from ¢; by unit propagation.

14

Procedure 2.2.2 (DPLL-with-Learning). Given a SAT problem C and a partial

assignment P of values to variables, to compute DPLL-WITH-LEARNING(C, P):

1
2
3
4
9
6
7
8
9

10
11

while P is not a full assignment
do P «— UNIT-PROPAGATE(C, P)
if P contains a contradiction
then v — contradiction variable
¢; + reason associated with v
co +— reason associated with ©
if BACKJUMP(resolve(c), c2), P) = FAILURE
then return FAILURE
else [« a literal not assigned a value by P
P — {P,(l,true)}
return SUCCESS

Procedure 2.2.3 (Backjump). Given a nogood c that is unsatisfied under an an-

notated partial assignment P = {(l1,c1),(la,¢2),...,(Im,Cm)}, to compute

BACKJUMP(c, P):

Q]

W 00 =~ G WLt W= W

if ¢ is the empty clause
then return FAILURE
l; « literal in P with maximum 7 such that [; satisfies ¢
P —{(li,c1), (l2,€2), ..., (L, i)}
if ¢; = true
then add c to the clause set
P —{(ly,c1), (la,c0), . -, (licy, i), (8iy €)}
else return BACKIUMP(resolve(c;,c), P)
return SUCCESS

15

In Figure 2.1{(a) we show an example of this process for the small set of clauses
aVvb
bve
avbvd
bvd

The original clause set contains no unit propagations under the empty partial assign-
ment, so the search will begin at the top of the graph with a branch decision. The
variable a is set to false, giving the partial assignment P = {(@,true)}. In our
graph we represent true and false by 1 and 0 respectively and continue this format
throughout our discussion. At this point, the clause aVb generates a unit propagation
forcing the assignment b. The partial assignment is extended to contain the new as-
signment, together with its motivating reason giving P = {(g, true), (b,a v b)}. The
branch b = 1 is marked pruned and labeled with the pruning clause. Continuing with
unit propagation, the partial assignment is extended with the additional assignments
{(g,bVv©), (d,avbVd), (d,bVd)} and pruned branches are labeled with their respective
reasons. A contradiction occurs since there is no valid assignment for variable d.
Note that the reasons for assignments d and d resolve. This is a natural result
of the way DPLL methods partition the search space. In Figure 2.1(b) we show the
resolvent of these clauses. The resolvent a V b is called a learned clause or a nogood.
A nice property of the resolvent is that we can construct from it the exact set of
assignments that need to be revised in order to avoid the immediate contradiction.
We do this by simply creating a set containing the negation of each literal in the clause.
In our example, this set would contain {&@,b}. This set of assignments is sometimes
called the conflict set. One of these assignments must be revised before we can
progress forward again. The solver now backjumps to the nearest assignment in this
set, in this case the assignment b, giving partial assignment P = {(a@, true), (b,aVb)}.
Note that we skip over the assignment &. The analysis tells us that the assignment
¢ does not contribute to the cause of the conflict so changing its assignment will not
remove the inconsistency. Continuing on in Figure 2.1(c), we find that we are unable

to revise the assignment b because it has an associated reason. Here we repeat the

16

bvd avbvd

bvd

(c)

FIGURE 2.1: Learning in a DPLL search tree

17

process, generating the unary clause a by resolving the reasons for b and b and calling
backjump again. We backtrack to assignment @ and find that this assignment has
no associated reason because it was a branch decision. We now try the assignment a
and proceed forward again.

We now add the unary clause a to the set of clauses. If our example were a
subproblem within a larger search tree, the new clause a ensures that we never attempt
to set @ = 0 again and therefore we will never need to repeat this particular analysis.
In this case we avoid re-solving a very small subproblem, but in practice, a single
learned clause may prune a very large subtree and be derived through extensive
branching and backtracking. These prunings add up over the entire search, leading
to dramatically smaller search trees. Adding new learned clauses to the set of clauses
is a form of inference, and more specifically, within the context of a DPLL search
tree, learning is resolution. The resolution inference rule captures exactly the task of

analyzing conflicts within a DPLL search tree.

2.2.2 Bounded Learning

Learning new constraints reduces the size of the search space by eliminating parts
of the space that cannot contain solutions. Unfortunately, learning also indirectly
increases the cost of propagation. The cost of unit propagation is a function of
the size of the constraint database, and the number of constraints learned can be
exponential in the size of the problem. The algorithm spends more time managing its
large database of constraints and performance degrades. A solution to this problem
is to limit the size of the constraint set in some way to prevent an unmanageable
number of constraints from accumulating. It would be useful to have a way to ensure
that the set of learned clauses is polynomially bounded in the size of the problem. To
achieve this we need a method to determine when to cache a learned clause, and when
to discard a clause from the existing cache. Ideally we’d like to keep the clauses that
will be most useful for pruning the search space. In this section we review heuristical
methods for choosing which learned clauses to retain so as to restrict the overall size

of the learned clause set.

18

Length-bounded Learning

The first method proposed for restricting a learned clause set was length-bounded
learning {23, 31]. In length-bounded learning we discard all clauses with length greater
than some constant bound k. A clause of length ! will prune 5‘; of the possible
assignments of values to variables. The size of the search space pruned by a clause is
inversely proportional to its length. This is the motivation for retaining shorter clauses
over longer clauses. DPLL with length-bounded learning improves substantially over

DPLL with unrestricted learning {23, 31).

Relevance-bounded Learning

Length is not the best measure of the value of a learned clause. If we look at
any particular subproblem within the search, we find long clauses that are useful for
pruning the search space and much shorter clauses that are not useful at all for the
task at hand. Imagine we have just expanded the node with the partial assignment
P = {a,b,c,d,&}. All other variables are unvalued. Suppose also that we have learned

the following two clauses in our search thus far:

avVbVevdveV f (2.1)
avbVvyg (2.2)

The algorithm now solve the subproblem below the node given by the current partial
assignment. The first clause (2.1) is unit and tells us to set f and to prune the
branch with f. The second clause (2.2) cannot be used to prune the subproblem’s
search space at all, since it is already satisfied by the current partial assignment. The
longer clause is more useful than the shorter one in solving the immediate subproblem.
Length-bounded learning would discard the long clause and retain the shorter one.
What is needed is a measure of length that considers the current context. The
length of (2.1) should really only be one since the other literals in the clause are cur-
rently false. Relevance-bounded learning defines length relative to the current partial
assignment. This idea originated in dynamic backtracking [33] and was generalized

by Bayardo and Miranker who defined a general irrelevance measure [5].

19

Definition 2.2.4. Given a clause c and partial assignment P, the irrelevance of ¢
under P is defined as the number of satisfied literals in ¢ plus the number of unvalued

literals in c.

Their implementation, called RELSAT, retained only those clauses whose irrelevance
was less than a given bound. As the position in the search space changed, clauses
that were no longer relevant were discarded to make room for more relevant ones.

Relevance-bounded learning, like length-bounded learning, also has the property
that it retains all clauses with length less than the relevance bound k. This follows
because the irrelevance of a clause can never exceed its length. Additionally, relevance-
bounded learning also retains long clauses when they are relevant to the current search
position.

Experiments show that relevance-bounded learning makes better use of space re-
sources than does length-bounded learning, and even when relevance-bounded learn-
ing is restricted to linear space, the performance is comparable to that of unrestricted
learning [6, 5]. Like length-bounded learning, relevance-bounded learning also main-
tains a set of learned clauses that is polynomially bounded in the size of the original
problem [26].

Hybrid Approaches

Some solvers employ a hybrid approach. The ZCHAFF algorithm [55] uses a rel-
evance bound and a larger length bound. The length bound is often significantly
larger than the relevance bound. Clauses must meet both the relevance bound and
the length bound to be retained. Another approach is taken by the BERKMIN [35]
algorithm. Here, the set of nogoods is partitioned into two separate groups based
on how recently the nogoods were acquired. The fractional sizes of these groups are
% and % with recently learned clauses being the larger of the two groups. A rela-
tively large length bound is used to cull the recently learned clauses while a smaller
length bound is used to aggressively cull the smaller group of older clauses. There
are currently no studies comparing these hybrid approaches to pure length-bounded

or relevance-bounded methods.

20

Unique Implication Points

Unique implication points provide another way of restricting the number of clauses
that are learned. UIPs were first introduced as part of the GRASP algorithm [52] and
they occur in DPLL-style search trees. If we consider a node in the search tree, we can
count the number of branch decisions between the root and the node. The branch
decisions divide the path into decision levels with increasing index as we descend into

the tree.

Definition 2.2.5. Given a partial assignment P = {(l1, ¢1), (I2, ¢2), ..., (lm, €m) }, the
set of branch decisions (l;, true) € P partition P into decision levels {do, d1, da, . .., di}

where a level d; consists of the ith

branch decision (i, true) together with the following
assignments (lw1, Crs1)y- -+ (4 ¢;) up to but not including branch decision number

i+ 1.

Consider a clause that is learned in response to a conflict. When we learn a clause,

it is unsatisfied with all its literals being valued unfavorably.

Definition 2.2.6. Given a nogood c and a set of decision levels {do,d;,ds, ..., d;},

the clause ¢ is a UIP clause if it contains exactly one literal l; such that I; € d;.

Experimental results show that UIP clauses are particularly useful for pruning
the search space [76]. However, it is not fully understood why UIP clauses are so

effective.

2.2.3 Non-Standard Backtracking

When a nogood is learned, the algorithm backs up, removing assignments from
the partial assignment until the nogood becomes satisfiable again. The ZCHAFF
algorithm uses a non-standard backjump method. Instead of backing up to where the
nogood is satisfied, it backs up further to the decision level where the nogood would
have become unit had the nogood been around at the time.

ZCHAFF begins its backjump using standard backjumping, iteratively generating

new nogoods until a UIP clause is generated. Once a UIP clause is generated, the

21

clause is added to the clause set and non-standard backjumping is applied, ending

the backjump process.

Procedure 2.2.7 (Backjump). Given a nogood c that is unsatisfied under annotated

partial assignment P = {(l1,¢1), (I2,¢2), - - -, (Im, Cm)}, to compute BACKIUMP(c, P):

1 if ¢ is the empty clause
2 then return FAILURE

3 if cis a UIP clause

4 then return NON-STANDARD-BACKJUMP(c, P)

5 else

6 l; « literal in P with maximum index ¢ such that ; satisfies c
7

return BACKJUMP(resolve(c;,c), P)

Procedure 2.2.8 (Non-Standard-Backjump). Given a nogood c that is unsatis-
fied under annotated partial assignment P = {({1,¢1), (I2,¢2), ..., (Im;Cm)}, to com-
pute NON-STANDARD-BACKJUMP(c, P):

1 add c to the clause set

2 l; « literal in P with minimum index i such that c is

unit under {(I1,¢), (s, ca), ..., (i, i)}

| — the literal in c that is unit under {(i;, 1), (la, ca},. .., (li, &)}
d « decision level such that [; € d

[, — literal in d with maximum index &

P —{{l;,e1),(l2,2)y .-, (liy), (I,)}

return SUCCESS

-] G W e W

The advantage of procedure NON-STANDARD-BACKJUMP is that earlier decisions
can be evaluated again in light of new information. Bad decisions made early in the
search can be extremely costly. The size of the search tree can vary greatly depending
on the order and choice of branch decisions. Consider a choice made early in the search

process that creates a subproblem that has no solutions and requires a lengthy proof

22

of unsatisfiability. DPLL with standard backjumping is a form of depth-first search
and therefore is forced to search the entire subtree.

Learning new clauses can improve the quality of branch decisions. This includes
previously made decisions in addition to those the solver is about to make. Algorithms
cannot fully take advantage of this aspect of learning in a depth-first search setting.
Non-standard backtracking methods give algorithms more freedom in how they move
about the search space and enable solvers to recover from early mistakes.

Non-standard backjumping can jump back over multiple branch decisions. At first
glance, this appears to abandon what might be significant progress toward solving the
current subproblem. However, if the clauses used to prune the search space along the
abandoned path are retained, then the intermediate work is not really lost. Perhaps
more concerning is that DPLL with non-standard backjumping is no longer a depth-

first search algorithm. The completeness of this algorithm needs to be established.

Proposition 2.2.9. Procedure 2.2.2 with non-standard backjumping Procedure 2.2.7

is complete.

Proof. First, we discuss a few preliminaries. When a confradiction occurs, we say
the contradiction occurred at decision level d; where d; is the decision level with
the highest index. When a contradiction occurs, a UIP clause is always eventually
learned. Let ¢ be a learned clause that is not a UIP clause, having more than one
literal assigned a value at the current decision level. Because c is unsatisfied under the
current partial assignment P, the literals in c valued at the current decision level are
falsified by assignment P. At least one of these assignments has an associated reason
that resolves with ¢ generating a new nogood allowing us to backjump further. This
is seen in line 7 of Procedure 2.2.7. So a UIP clause is in fact necessary to terminate
the backjump procedure.

Next we define the notion of progress for a decision level d;. Each time the
procedure backjumps to a decision level d; (without backjumping over it), the decision
level is appended with a new assignment implied by the learned nogood, as seen in
line 6 of Procedure 2.2.8. Fach time we backjump to a decision level and append a

new assignment we make progress at that level. Assuming we never backjump over

23

decision level d; to a decision level with lower index, the number of assignments that
can be appended to decision level d; is bounded by the number of variables because
each variable can only be appended once. Consequently, we can only backjump to
decision level d; a finite number of times before a contradiction occurs at decision
level d; or a solution is found.

We prove that progress is made at every decision level by induction on the max-
imum number of decision levels seen during the solution of a problem. For the base
case we show that if a contradiction occurs at level m, then progress occurs for some
decision level with index less than m. For the inductive case, we assume that progress
occurs for some decision level with index less than ¢ and show that if no solution is
found, then progress eventually occurs at some decision level with index less than
i — 1. If a solution is not found, we can conclude that progress will occur at dy
eventually leading to a contradiction at do and the derivation of the empty clause.

For the base case, let a contradiction occur at decision level d,,. We learn a UIP
clause and backjump to some decision level with index less than m and make progress
at that level.

For the inductive case we assume that we make progress at some decision level d;
such that j < i. If j < i —1 then we make progress at a decision level with index less
than ¢ — 1. If § = ¢ — 1 then we make progress at decision level d;_;. If we continue
searching, we will either at some point backjump to a decision level with index less
than i — 1 or we will continue to append assignments to decision level d;_; until a
contradiction occurs at decision level d;_; or a solution is found. If a contradiction
occurs we again learn a UIP clause and backjump to a decision level with index less
than 7 — 1.

We can conclude that if no solution is found, progress is made at decision level dp

and the empty clause is eventually derived. O

2.2.4 Branching Heuristics That Work with Learning

Branching choices and learning are deeply related to each other. The addition of

learning to a DPLL style algorithm will have a significant effect on branching decisions

24

for all of the branching strategies we have discussed. As new clauses are learned and
added to the clause database, they will change the literal counts used in approxima-
tions, and may also change the number of unit propagations an assignment will cause.
The reverse is also true in that the choice of branch variables influences the clauses
that are learned.

Very little is known about the relationship between branching and learning. Some
newer heuristics begin to explore this relationship and are designed to work in concert
with learning. The Variable State Independent Decaying Sum (VSIDS) heuristic [55]
used by ZCHAFF maintains a count of the number of times each literal occurs in the
theory being solved. Each time a new clause is added, the counter associated with
each literal in the clause is incremented by one. This is done for learned clauses as
well as clauses contained in the original problem description. The heuristic prefers an
unassigned variable with a high count value. Periodically all counts are divided by a
constant factor. The routine reduction of the counts causes a bias toward branching
on variables occurring in recently learned clauses. This rule, like the MOMS rule, is
very inexpensive to calculate.

The BERKMIN heuristic builds on the zCHAFF idea, but is far more dynamic
at responding to recently learned clauses. The BERKMIN {35] heuristic prefers to
branch on variables that are unvalued in the most recently learned clause that is not
yet satisfied. The heuristic also maintains VSIDS-like counts that are used to choose
among unvalued variables in the clause. The domain value of the chosen variable ! is
selected so as to even out the occurrences of the literals [and [in the set of learned
clauses. The BERKMIN algorithm compares favorably with ZCHAFF on a number of
benchmarks [35). Unfortunately, it is difficult to determine whether the observed
improvements in performance result from the BERKMIN branching heuristic because
the algorithms also have other significant differences.

Branching heuristics for satisfiability solvers have become quite numerous. There
is still much work to be done in evaluating their relative effectiveness. The studies
comparing older heuristics were done with non-learning DPLL algorithms mainly on
random 3-SAT instances [21, 28, 29, 30, 45, 47, 50, 58]. It is unclear how these

heuristics fare in the presence of learning and on more structured real world problems.

25

Newer heuristics are designed to work with learning, but no rigorous experiments have

been done comparing these heuristics to others.

2.3 The Benefits of Fast Propagation

2.3.1 Unit Propagation: The Main Loop

It is common knowledge within the SAT community that the bulk of computation
time for DPLL-based solvers is spent in the unit propagation procedure. To verify
this we profiled both ZCHAFF and RELSAT on a variety of problems from the following

benchmark suites:

e Microprocessor test and verification benchmarks

http://www.ece.cmu.edu/ mvelev

e DIMACS benchmarks
ftp://dimacs.rutgers.edu/pub/challenge/satisfiability /benchmarks/cnf

e SatLib benchmarks
http: / /wwww.intellektik.informatik.tu-darmstadt.de/SATLIB /benchm.html

Experiments were run on an Intel Pentium 4M running at 1.6GHz with a timeout
occurring at 100 seconds. The percent of CPU time devoted to unit propagation for

zCHAFF and RELSAT is shown in Figures 2.2 and 2.3 respectively.

The fraction of time that is spent in unit propagation increases with the difficulty
of the problem and if we consider only those problems that timed out at 100 seconds
(i.e. problems that required more processing time) the average time spent in unit
propagation is 89.4% for ZCHAFF and 81.1% for RELSAT. Because unit propagation
is the major computational task of DPLL-style methods, it has been the focus of

optimization efforts.

100 g 7 T T
+
+
90 + + %
s + +
8
'cun +
g 80 — et
a8 + +
= + + +
5 o
£ 70} -
=
]
&
o +
E eo0} -
>
o
[&]
B
= 50} 4
B
2
& +
"
a0 | .
o
30 2 M | i PR Y 1 " i i 1
0.1 1 10 100

Execulion time (sec) for zCHAFF

FIGURE 2.2: Percent of CPU time spent in unit propagation for ZCHAFF

2.3.2 Data Structures

Within the unit propagation procedure, the bulk of computation time is spent on
the subtask of identifying clauses with no satisfied literals and exactly one unvalued
literal. A naive approach is to examine every clause in the database. Each clause
is walked to determine the number of unvalued literals and the number of satisfied

literals.

Literal Indexes

The naive approach can be improved by creating a literal index. For each literal,
we create a list of pointers to the set of clauses that contain that literal. When an
assignment is made it is only necessary to search the set of clauses containing the
negation of the assignment. For example, if we make the assignment x;, we search

only the set of clauses containing the literal T; for new unit propagations.

100 — - - =
+
.
90 . .+ 1
+ e N +
c 80 + = s
£ 7| 3
5 ' : '
g 70-- . |
= + *
e 60 +
E
& 50 4
]
]
E wnl i
E +
Q
€ 30Fr .
o
8
w .
o 20F J
10 .
0 i " i L . i " aaad
i 10 100

Execution time (sec) for RELSAT

FIGURE 2.3: Percent of CPU time spent in unit propagation for RELSAT

Count-Based Methods

Count-based indexing improves on this further by maintaining for each clause a
cached value of the number of unsatisfied literals and the number of satisfied literals
in the clause. The number of unvalued literals can be calculated from these counts
given the total number of literals in the clause. There is some overhead involved in
incrementally maintaining these counts when variables are labeled and unlabeled. If
we make the assignment z,, we must increment the count of satisfied literals for all
clauses containing z,, and increment the count of unsatisfied literals for all clause
containing Z;. If we later unvalue z;, we must decrement these counts accordingly.
The advantage is that we can tell directly from the counts whether a clause is unit and
avoid walking the length of the clause. The clause is only walked if the clause is unit,
to identify which literal is unvalued. Count-based indexing improves significantly over

naive indexing [21].

28

Watched Literals

The count-based method maintains a full literal index. For every literal in a
given clause, there is a corresponding entry in that literal’s index. The main idea
of the watched literals 75, 76] method is that a full literal index is unnecessary. It
is sufficient to have only two literals indexed per clause provided that they are both
unvalued under the current partial assignment. A clause that is indexed in this way
cannot be unit regardless of how other literals in the clause evaluate under the current
partial assignment. This leads to smaller literal indexes and fewer clauses that need

to be examined for unit propagations.

Definition 2.3.1. Let ¢ be a clause and let S be a subset of the literals in c of size
|S| = 2. S is a watching set for ¢ under partial assignment P if the literals in S are

both unvalued or one of them is satisfied under P.

Proposition 2.3.2. If S is a watching set for a clause ¢ under partial assignment

P, then the clause ¢ cannot be unit under P.

Proof. A clause is unit when it has no satisfied literals and exactly one unvalued
literal. The clause ¢ has either two unvalued literals or at least one satisfied literal

and therefore is not unit. O

The definition of watched literals assumes that clauses have length greater than
one. We can assume that unary clauses are valued in the first decision level and retain
their values for the duration of the search and therefore do not need watching sets.
This is true for unary clauses in the original clause set. It is also true for learned
unary clauses if non-standard-backjumping is applied.

If a watching set is maintained for each clause, the clause set cannot contain an
unsatisfied clause under the current partial assignment. The challenge is to maintain
these watching sets as the algorithm moves forward assigning values to unvalued

variables, and as the algorithm backtracks.

29

Proposition 2.3.3. Let S be a watching set for a clause ¢ under partial assignment
P. There ezists a set 8 that is a watching set for clause ¢ under partial assignment

{P,1} if any one of the following conditions are true.

1. S does not containl orl

2.1e8§
3. 1€ S and S contains a satisfied literal under P

4. 1 € S and there ezists an z such thatz €c, c €S, T & P

Proof. If condition (1) is true, then S remains a watching set under {P,{}. Under
conditions (2) or (3), the set S will contain a satisfied literal under {P,!} and will
therefore be watching set for ¢ under { P, {}. If condition (4) is true, then we construct
a new watching set &' = S U {z} — {I} for ¢ under {P,{}. O

Under the conditions stated in Proposition 2.3.3, it is easy to maintain watching
sets when progressing forward assigning values to variables. As each new assignment
is made, the watching sets are incrementally maintained. Any newly unsatisfied
member of a watching set S for a clause ¢ is replaced with a different satisfied or
unvalued literal from the clause, generating a new watching set for ¢. The one case
not covered by Proposition 2.3.3 is the case where both elements of S are unvalued
under P, ! € 8, and the remaining literals in ¢ are unsatisfied under P. In this case

there is no literal = to replace [.

Definition 2.3.4. A partial assignment P for a set of C clauses will be called C-
closed if no clause c € C is unit under P. A C-closure of P is any minimal extension
of P that is C-closed. A C-closure of P will be denoted closure(P)c or simply
closure(P) if C is clear from contezt.

A partial assignment P becomes closed when all unit clauses have been identified
and all unit literals have been added to P. Any partial assignment returned by UNIT-
PROPAGATE that does not contain a contradiction is a closed partial assignment. This

is the termination condition for procedure UNIT-PROPAGATE.

30

Proposition 2.3.5. Let closure(P) = {P,l;,l2,...,l} be a closure of partial as-
signment P for a set of clauses C. If S is a watching set for a clause ¢ € C under
partial assignment P such that both elements of S are unvalued under P, €8, and
the remaining literals in ¢ are unsatisfied under P, then S is ¢ watching set for c

under closure(P).

Proof. The clause ¢ is unit under {P,/;} and the remaining unvalued literal in &,
call it y, must be valued to true. Because closure(P) is closed, y € closure(P).
S contains a satisfied literal under closure(P) and remains a watching set under
closure(P). 0O

Proposition 2.3.3 and Proposition 2.3.5 together ensure that watching sets can be
maintained as the algorithm proceeds forward.

An advantage of the watching set approach is that watching sets remain valid
during a backtrack without any incremental maintenance. If an element of a watching
set S for a clause ¢ is already unvalued, then unvaluing more assignments will not
change this. If an element of S is satisfied, then backtracking could cause this literal
to become unvalued. This is only a problem if the other watched literal in S is

unsatisfied. Consider the following example.

Example 2.3.6. Let P = {(l;,¢1),...,{(a,a V b)} be a partial assignment, and S =
{a,b} be a watching set for the clause aVb. The literal a is satisfied under P, so S is
a valid watching set for aV b. However, the literal b is unsatisfied under P assuming

that P is a sound partial assignment. P must have the form

P={{l1,c1),...,(b,ck),...,(a,aVb)}

Now imagine that there is a branch decision somewhere between the assignment of b

and a.

P={{l,a)-..., (b,ct),..., (L, true),...,(a,a vV b)}

If we backtrack and unvalue a, but do not back up far enough to unvalue b, the set S

won't be a valid watching set for the clause a V b under the new partial assignment.

31

Definition 2.3.7. Given a partial assignment P = {(l, 1), . .., (Im,)} and assign-
ment (I;,¢;) € P such that ¢; # true, let k be the minimum indez in P such that l;
follows from {(l1,¢1), ..., (i, cx)} by unit propagation. Assignment P will be called
unit complete if for every non-branch assignment (I;,¢;) € P, l; and l;. are valued at

the same decision level.

If the partial assignment P in the previous example were unit complete, then
the assignments b and a would occur at the same decision level. The backtrack
procedure must unvalue the entire decision level, leaving both watching set literals b
and a unvalued under the new partial assignment. The watching set {b,a} remains a

watching set under the retracted partial assignment.

Proposition 2.3.8. If S is a watching set for a clause ¢ under a unit complete partial
assignment P = {l;,...,1;}, then S is a watching set for c under any unit complete

partial assignment P' = {l;,...,1l;} such that j < 1.

Proof. If an element of S is unvalued under P, then it is also unvalued under P. K
an element of [€ S is satisfied under P, then it may become unvalued under P'.
This is only a problem if the other literal I’ € S is unsatisfied under P, and has a
lower index in P than !. Unvaluing { without unvaluing I’ would leave S containing
one unvalued literal and one unsatisfied literal. This situation cannot occur since [
must follow from ' by unit propagation. Otherwise I’ would have been removed from
S and replaced by some other element of ¢ that was unvalued or satisfied under P.
Furthermore, because P’ is unit complete, { and !’ are valued at the same decision
level. P’ will either leave both [and {’ valued, or unvalue them both. In either case

S continues to be a watching set for c. O

Most DPLL style methods maintain a unit complete partial assignment; however,
this has never been discussed in the literature. Because the unit propagation proce-
dure terminates only when all unit clauses have been identified, DPLL-style algorithms
maintain a unit complete partial assignments when proceeding forward. Maintaining

a unit complete partial assignment during backtracking is trivial for a simple DPLL

32

algorithm. In the presence of learning, maintaining a unit complete partial assign-
ment requires non-standard-backjumping. Standard-backjumping backs up only to
the point where a learned clause c is satisfied. This can potentially split the point
where ¢ is unit and the point where c is satisfied between decision levels. Non-
standard-backjumping backs up to the decision level in the partial assignment where
c is unit, keeping the point where a clause becomes unit and the point where it is
satisfied within the same decision level.

The watched literal method reduces the number of clauses that must be inspected
for unit propagations when a variable is labeled. In addition, variables that are repeat-
edly assigned and reassigned tend to be watched in only a small number of clauses.
This results in even shorter lists of clauses to inspect for unit propagations. When a
variable is labeled, watchers are shifted away from that literal to other unvalued and
satisfied literals. Watched literal data structures outperform count-based methods in

almost all problem domains [51}.

2.3.3 Notes on the Interplay of Propagation and Learning

An aspect of the relationship between propagation and learning was made clear
with the introduction of the ZCHAFF solver. The ZCHAFF algorithm made a number
of important contributions, but the most notable was the watched literals technique
that greatly improved the speed of unit propagation. While the most significant con-
tribution of ZCHAFF was faster propagation, the indirect effect was to make ZCHAFF
a more effective learner.

The improved speed of propagation allows ZCHAFF to manage a larger set of
learned clauses efficiently. Before ZCHAFF, an early rule of thumb put optimal rele-
vance bounds around 3 to 4 for most problems. The default settings for ZCHAFF are
a relevance bound of 20 and a length bound of 100. ZCHAFF outperforms RELSAT not
just because it is faster per node, but also because it learns more and builds smaller
search trees.

All the methods described in this chapter emphasize keeping the cost of expanding

a node low, favoring the fast traversal of a large search tree. This is in contrast to

33

the operations research techniques presented in Section 6.1 that use & more expen-
sive computation at each node, but tend to generate small trees. While there is no
clear argument in favor of either approach, it is clear that the choices made about
speed of propagation will have profound effects on the type of learning that can be

implemented.

2.4 Summary

In this chapter we have presented the family of systematic satisfiability meth-
ods that are based on the DPLL procedure. We have described the DPLL procedure
and detailed the most significant improvements to this method, covering branching
heuristics, bounded learning, and improved data structures for unit propagation.

Bounded learning has played an important role in the development of current
methods because it has enabled solvers to begin solving structured problems. We will
later show that this is only the first step in this direction; the power of learning is
greatly increased when stronger representations are used. We saw that learning is a
form of inference, and for DPLL-style trees, learning corresponds to resolution.

Fast propagation continues to be a requirement of DPLL-style methods and a focus
of research. Unit propagation is the major computational task of DPLL-style solvers
taking over eighty percent of execution time. The recent introduction of watched
literals data structures has significantly reduced the cost of expanding a search node
by increasing the speed of unit propagation. The result is solvers that can manage
larger sets of clauses efficiently. These solvers can afford to increase their learning
bounds and retain much larger sets of learned clauses and this in turn leads to smaller

search trees and improved performance.

34

CHAPTER 3
Reconsidering Representation

In Chapter 2 we reviewed the history and development of modern systematic
satisfiability engines. We saw that learning is an inference step, and that in the case
of traditional satisfiability methods, learning is a resolution step. In this chapter, we
develop this perspective further and show that the solvers discussed in Chapter 2 are

automated proof systems.

When we view systematic satisfiability solvers as proof constructors, it makes
sense to draw on results from the field of proof complexity. The major task of the
field of proof complexity is to investigate the ability of propositional proof systems to
generate polynomial-sized proofs. Much of this work takes the form of lower bounds
on proof length for specific propositional proof systems. For example, there are known
families of problems for which all resolution proofs are exponential in length [38, 69].
If we are in the business of constructing resolution proofs, then such a result is quite
troubling. The underlying proof system a solver uses to construct proofs can place
some very serious limitations on its performance. We will introduce the pigeonhole
problem as a problem class that requires exponential length resolution proofs and
show experimental results for many well known satisfiability solvers on pigeonhole
problems. It is no surprise to see exponential runtime scaling on these instances.

It is important to note that the pigeonhole problem is not a rare or unrealistic
problem instance. It is instead a pervasive subproblem in real-world problems includ-

ing many of the primary problem domains of AI such as planning and scheduling. We

35

postpone a full discussion of the prevalence of pigeonhole problems until Chapter 5
when we present some experimental results showing the extent to which embedded
pigeonhole problems occur within a simple logistics domain. What we hope to make
clear in this chapter is that the limitations of the resolution proof system amount to
a major roadblock for satisfiability research. Systematic methods that continue to
follow the path of CNF and resolution will never provide efficient solutions in any

domain that requires counting.

3.1 Systematic Solvers: A Special Kind of Proof
System

Systematic methods are guaranteed to determine whether a problem instance is
satisfiable or unsatisfiable. If an instance is satisfiable, the solver produces a solution
as a witness. If the instance is unsatisfiable, the solver must construct some form of
a proof that no solution exists. The depth-first backtracking methods we discussed
in Chapter 2 spend the bulk of execution time constructing proofs of unsatisfiability,
even on satisfiable instances. Consider that up until the point a solution is found, all
time is spent proving that earlier encountered subproblems were unsatisfiable. We
can conclude that the primary goal of the systematic methods we have discussed is
to produce proofs of unsatisfiability.

Systematic satisfiability methods are really proof systems, and it is important to
think of them in this way. If we think of a proof system as a set of syntactic inference
rules for deriving new statements, then a systematic method is somewhat more than
a proof system, since it also provides rules for how to combine inference steps to
construct a proof given a problem instance. While systematic methods construct
proofs of unsatisfiability, they typically aren’t required to return those proofs as an
answer. Usually a “no” answer affirming that no solution exists is sufficient. This is
important because as we will see, many proofs are necessarily long, potentially having
length exponential in the size of the original problem. In such cases, the runtime of

solvers will be proportional to the time required to construct such a long proof, but

36

memory resources need not similarly suffer, since large parts of the proof can be
discarded once they are no longer needed.

For any given solver, it would be useful to know what the underlying proof system
is and what its properties are. For some systematic methods this is well known while
for others very little is known. DPLL methods have the benefit of being well analyzed

in this respect.

3.1.1 DPLL Descendants: Resolution-Based Methods

We now look specifically at the types of proofs constructed by the algorithms
discussed in Chapter 2. All of these algorithms construct some form of resolution
proof to determine unsatisfiability. Such methods are often referred to as resolution-
based methods.

We look first at proofs constructed by the simple DPLL algorithm. The DPLL
procedure constructs tree-style resolution proofs [7]. Every DPLL search tree can be
converted to a resolution proof tree. Figure 3.1 shows a DPLL search tree and its
corresponding tree-style resolution proof. In the search tree, pruned subtrees are
represented by leaf nodes that are labeled with the clause that caused the subtree
to be pruned. In the corresponding resolution proof, each interior node is labeled
with the resolvent of its two child nodes. The empty clause A is derived at the root
node. Similarly, resolution proof trees can be converted to DPLL search trees of equal
or smaller size [7]). In a tree-style proof, each resolvent can be used only once. If
it is needed again, it must be re-derived from the original clauses. This is exactly
the thrashing phenomenon discussed in Section 2.2, from the perspective of proof
construction.

This is the first indication of the role learning plays in determining the strength
of the underlying proof system. Branching heuristics help DPLL methods find shorter
proofs, but without learning, those proofs are still tree-style resolution proofs. The
data-structures work presented in Section 2.3 has no direct effect on the underlying
proof system. The addition of learning allows solutions from one part of the search

space to be applied throughout the search. In terms of proof structure, this means

37

bvd avhvd avd @vevd bvd avbvd avd avevd

(a) (b)

FIGURE 3.1: A pPLL search tree (a) and corresponding resolution proof of the
empty clause A (b)

resolvents can be applied again without repeating their derivation. This leads to
resolution proofs with the structure of a directed acyclic graph (DAG). DAG style
proofs are significantly more efficient than tree-style proofs. For a thorough discussion
of complexity results for conventional DPLL-style solvers, see the work of Beame,
Kautz, and Sabharwal [8].

Observation 3.1.1. Of all the improvements to the DPLL method discussed in Chap-

ter 2, only learning improves the strength of the underlying proof system.

3.2 Proof Complexity and Systematic Solvers

In this section we introduce the field of proof complexity and show how different
propositional proof systems can be compared in terms of their strength. We then
begin applying results from the field of proof complexity to the systematic satisfiability
methods discussed in Chapter 2.

38

3.2.1 Proof Complexity

The field of proof complexity is concerned with determining the ability of spe-
cific proof systems to produce short proofs. Understanding the proof complexity of
individual proof systems will ideally lead to deeper insights into the questions of the-
oretical computer science. A major question in the field of proof complexity concerns
the existence of a polynomial-bounded propositional proof system. The non-existence
of any proof system that has short proofs (polynomial bounded in the size of the prob-
lem) for all problem instances would imply that NP # co-NP and by consequence P
NP [18].

A proof system is formally defined as an algorithm.

Definition 3.2.1. [7] A proofsystem for a language L is a polynomial time algorithm
V such that for all inputs strings z, = € L if and only if there exists a string P such

that V accepts input (z, P).

Algorithm V determines whether proof P is a valid proof of z. If the language
we are concerned with is the set of unsatisfiable propositional formulas then we can

define a propositional proof system as follows.

Definition 3.2.2. [7] A propositional proof system is a proof system for the set
UNSAT of unsatisfiable propositional logic formulas, i.e. a polynomial time algorithm
V such that for all formulas F, F is unsatisfiable if and only if there exists a string
P such that V accepts input (F, P).

Definition 3.2.3. [7] The complexity of a proof system V is the function f : N = N
defined by

fln) = w17

max
z&L|z|=n | P:V accepls (z,P)

For a given input length n, there are multiple inputs z. For each input z there
may be multiple proofs P of input z, and the lengths of these proofs may vary. The

function f returns the worst case proof length |P| over all inputs , assuming that P

is the shortest possible proof of an input z.

39

A proof system V is called polynomial bounded if and only if f(n) is bounded from

above by a polynomial function of n.

Theorem 3.2.4. [18] There is a polynomial bounded propositional proof system if
and only if NP = co-NP.

We can think of the strength of a propositional proof system as its ability to
produce short proofs of unsatisfiability. It is useful to have a way of determining the

relative strengths of different proofs systems.

Definition 3.2.5. Given proof systems U and V' that prove the same language L, the
proof system U polynomially simulates (or p-simulates) a proof system V if and only
if proofs in V' can be efficiently converted into proofs in U, i.e. there is a polynomial-

time computable function f such that
V accepts (z, P) <= U accepts (z, f(P))

Definition 3.2.6. Given proof systems U and V that prove the same language L, U 1is
exponentially separated from V if there is an infinite sequence of inputs €,,Ts,--- € L
such that for complezity functions fy and fv, fu(z:) is polynomial in |z;| for all i

and fv(z;) is exponential in |z;|.

Two proof systems are said to be polynomially equivalent if each can polynomially
simulate the other. A proof system U is ezponentially stronger than proof system V/,
if U polynomially simulates V and is exponentially separated from it. Using these
definitions we can define a hierarchy of proof systems. Notice that this definition
of exponential separation requires finding a class of problems that are “hard” for a
particular proof system. An example would be the pigeonhole problem mentioned
earlier, which is hard for the resolution proof system. The proof complexity commu-
nity has generated a suite of test problems used to separate out the different proof
systems. These test problems can be used to test the strength of satisfiability solvers
as well.

The framework used to study proof complexity has a lot to offer those interested in

building satisfiability solvers. If we are in the business of constructing proofs, then we

40

care very much about proof length. If there are examples of problems that are known
to be hard for a solver’s underlying proof system, then this places a lower bound
on solver performance. It is useful to know, for a given solver, what the underlying
proof system it uses to construct proofs of unsatisfiability is, where this system falls
in the hierarchy of proofs systems, and what classes of problems are known to require

exponential length proofs in the proof system.

3.2.2 Exponential Lower Bounds for Resolution

The time it takes to construct a proof is obviously bounded from below by the
length of the proof, so efficiently constructed proofs are necessarily short. We have
established that the satisfiability solvers discussed in Chapter 2 construct some form
of resolution proof as a witness to unsatisfiability. Unfortunately, it has been shown
that many families of unsatisfiable problems do not have short resolution proofs of
unsatisfiability. Consider for example the pigeonhole problem, that states that n + 1
pigeons cannot be placed into n holes that each admit only one pigeon. The shortest
resolution proof of unsatisfiability for the pigeonhole problem is exponential in the
number of pigeons [38]. Any solver that constructs a resolution proof as a witness to
unsatisfiability will necessarily have exponential scaling on pigeonhole problems.

We examine the performance of current resolution-based solvers on the pigeonhole
problem in Figure 3.2. All problems were run on 1.5GHz Athlon processors. We report
all times that did not exceed the time limit of 4000 seconds. As expected, for all solvers
scaling is exponential, with problems of size 13 — 14 pigeons becoming impractical.
It is critical to understand that the poor performance seen here is a result of using
resolution for the underlying proof system. If methods can only construct resolution
proofs then they are guaranteed bad performance on these problem instances.

It is important to ask whether pigeonhole problems occur naturally as subproblems
in domains of interest. If they do not occur in real world problems, then perhaps we
need not be concerned. It has long been believed that pigeonhole problems do occur in
many problem domains wherever counting or mapping is involved. Some examples of

constraints that may induce pigeonhole problems are resource or capacity constraints

41

10000 T T T

2CHAFF —e—
BerkMin —e—
RELSAT —+—
[GRASP —»—]
1000 | b
100 | -
g
2
Py 10 .
E
=
1 i
01t 4
u-ut I 1 1 L L
8 10 12 14 16 18 20

Number of Pigaons

FIGURE 3.2: Performance on PHP! for some well known solvers

that are integral in nature. There are also other problems that are hard for resolution.
These include, but are not limited to, clique-coloring problems and certain parity
problems. This is because resolution is a fairly weak proof system located near the
bottom of the proof system hierarchy.

Improvements to current methods that do not move the underlying proof system
beyond resolution can only lead te modest gains in performance. This sentiment was
nicely summed up by David Mitchell [54], who said in reference to further resolution-

based research:

These are valuable methods, but it may turn out that we are arguing over
the best way to build ladders when we need rocket-ships.

42

CHAPTER 4

A Pseudo-Boolean SAT Solver

If we want to solve problems like the pigeonhole problem efficiently, then we will
need to work with a stronger proof system. Moving to a stronger proof system is
clearly a necessary step toward improving performance; however, it does not guarantee
that efficient solutions will be found. When automating strong proof systems a new
set of problems can arise. Short proofs may exist but be difficult to find and ultimately
inefficient to generate. We’d like to retain the substantial progress made within the

CNF and resolution setting.

Pseudo-Boolean representation is a good first choice for this type of exploration.
The proof system commonly associated with pseudo-Boolean representation is the
cutting-plane proof system (CP). It is a relatively weak proof system within the
proof system hierarchy, but it is stronger than the resolution inference system. Two
important characteristics of strong representations and inference systems can be seen
in pseudo-Boolean representation. First, a pseudo-Boolean constraint can be expo-
nentially more concise than the logically equivalent CNF representation. Second,
pseudo-Boolean inference can generate new, concise constraints from existing ones.
As a result, a single pseudo-Boolean inference step may require an exponential num-
ber of resolution steps to derive the same information. Pseudo-Boolean representation
together with cutting-plane inference allow polynomial-length proofs of the pigeon-
hole principle {19]. These aspects of pseudo-Boolean representation are explored in
Section 4.1.

43

The remainder of this chapter describes PBCHAFF, our implementation of a DPLL-
style algorithm adapted to use pseudo-Boolean representation. The goal of this im-
plementation is to improve the strength of the underlying proof system without dis-

carding the successful elements of traditional resolution-based methods.

4.1 Pseudo-Boolean Representation

Definition 4.1.1. A pseudo-Boolean constraint is a linear inequality over Boolean

variables ; of the form

Za,-:c,- Z k

with z; € {0,1} and fized integers a; and k.

This representation comes from the operations research community and is a subset
of the more general integer programming representation in which the z; are allowed
to take non-negative integer variables. Linear pseudo-Boolean inequalities typically

have the more general form
apTo + boTo + a1y + 01Ty - + AuTpn + 0nTn 2= T

and allow for real coefficients a;, b;, and r [39]. For 0-1 problems integer coefficients

are sufficient and we will assume that coefficients are integral from here on.

Definition 4.1.2. A pseudo-Boolean constraint of the form

Z.’E;Zk

in which all coefficients are equal to 1 is called a cardinality constraint.

This constraint requires that at least k of the z; are valued 1.
The cutting-plane proof system originated from an algorithm for general integer
programming created by Gomory [36]. The algorithm was rarely used in practice be-

cause it converged slowly, but Chvétal recognized [15] that the method could function

44
as a proof system. The system has two rules of inference. First, we can derive a new
inequality by taking a linear combination of a set of inequalities

Y.z >k
Zi b,':Eg Zl

Soipaiti + >, qbir; > pk + gl

provided that multipliers p and g are non-negative integers. The second rule allows

fractional rounding.

20 aimi 2 K

il %l 2 fﬁ]

Here d is a positive integer, and the notation [g] denotes the least integer greater
than or equal to q. A derived inequality of this type is called a cuf. If the inequality

0 > 1 can be derived in this fashion, the original set of inequalities is inconsistent.

4.1.1 P-simulating Resolution

We can p-simulate the resolution proof system using the CP system {19]. Recall
that a proof system U is said to p-simulate a proof system V if and only if proofs in
V can be efficiently converted into proofs in U. Disjunctive clauses can be written as
linear inequalities with propositional variables restricted to values of 0 = false, and

1 = true. A disjunction of literals:
ToVIT V- VI,
can be equivalently written as the linear pseudo-Boolean inequality:
To+T1+- -+, 21

The variable T refers to the negation of the variable z, so that for all literals z,
T=1—=z.

45

The resolution rule will now have the following form: given two clauses C) =
pVVi:c,- and Cg =3_9VV,-?J:'

pVV,
5\/\/,'%'

ViziV Vv

can be written as

P+ >1
ﬁ"'ziyi >1

Zimi”f'Ziyi 21

The derived inequality follows because p + 7 = 1. The factoring rule takes the form:

ptp+d T 21

2T 20

p+2%,z: 21
p+ iz 2[5

Rounding the fraction % to 1 by virtue of the CP rule of integer rounding now gives
the inequality p + >, z; > 1.

From a proof complexity point of view, the CP proof system is at least as strong
as resolution. It can be seen by inspection that the CP proof system is a proper

generalization of the resolution system.

4.1.2 Translating Pseudo-Boolean Constraints into CNF

We have seen how to translate CNF clauses into pseudo-Boolean. We can also
translate a pseudo-Boolean constraint back into clause form, although multiple clauses

may be required to capture the logically equivalent statement.

46

Proposition 4.1.3. [9] Given a pseudo-Boolean constraint
> ez >k (4.1)
i=1
The constraint (4.1) is logically equivalent to the set of disjunctions
V = (4.2)
;€S
such that both S C {z1,T2,...,2Z,} and

Y ai<k (4.3)

i|lzigS

Proof. Suppose that the full assignment p satisfies (4.1), and R C {z1,%a,...,Za} is

the subset of literals that are true under p so that

Z a;T; Z k

ilIiER
If d is any disjunction in (4.2}, then (4.3) says that the sum over the literals not in S
is not enough to satisfy (4.1). It follows that SN R # @ and p must also satisfy d.

.

For the converse, suppose that assignment p satisfies all (4.2) but not (4.1). If

R C {z,,Z0,...,T,} is the subset of literals that are true under p we have
Z ;T < k
‘l‘l:l:,'GR
But this implies that the disjunction
V =
;&R
is an instance of (4.2} and is unsatisfied under p, contradicting our original assump-

tions. The assignment p must therefore satisfy (4.1). O

Proposition 4.1.4. [27] There is no CNF encoding of a cardinality constraint
i+ +Im 2k (4.4)

that is more efficient than the encoding defined in Proposition 4.1.8.

47

Proof. By Proposition 4.1.3, (4.4} is equivalent to the set of (m_"; +1) disjunctions
V I; (45)
;€S

where S C {z1,...,Zm} and |[S|=m -k + L.
To show that this encoding is minimal we first note that the literals in any clause

of our encoding will be a subset of {zi,Zs,...,%n}. Otherwise, if an implied clause

v z; V \/ Ty (4.6)

had the form

;€S €T
where § C {z1,...,Tm} and TN {z4,...,2,} = @ we could write it more concisely
as
V = (4.7)
;e85

Any assignment satisfying (4.4) will also satisfy (4.6); however, it must also satisfy
(4.7). Given any assignment p that satisfies (4.4) and (4.6) but not (4.7), we can
construct another assignment p’ by flipping all the literals in T that are satisfied.
Assignment p' still satisfies (4.4) but not (4.6). This falsifies our assumption that
(4.6) is implied by (4.4). We can conclude that (4.7) must also be implied by (4.4).

Next, note that any axiom c with length less than m—k+1 cannot be a consequence
of (4.4). Let S C {Z1,...,Tm]} be the set of literals in c. We can construct an assign-
ment p that makes all of the literals in S false and all the literals in {z1,...,Zm}— S
true. Assignment p satisfies (4.4) but does not satisfy c.

Consider the set of clauses formed if we leave a single instance

V=

;e85

of (4.5) out of our encoding and include the rest of the instances of (4.5) together
with every clause with length greater than m —k-+1. We can construct an assignment
p that satisfies all of our clauses but does not satisfy (4.4) by letting p make all the
literals in §' false and the remaining literals true. We can conclude that (4.5) is the

most efficient encoding of (4.4). O

438

Observation 4.1.5. A pseudo-Boolean constraint can be exponentially more concise

than the equivalent set of Boolean clauses.

This potentially exponential blowup cannot be avoided unless we are willing to
introduce new variables [72]. The ability to represent problems efficiently is an im-
portant characteristic of strong proof systems.

Translating pseudo-Boolean constraints to CNF is useful, but a question we are
more likely to encounter in practice is how to rewrite a set of Boolean clauses as a
logically equivalent yet smaller set of pseudo-Boolean constraints. Proposition 4.1.3
gives us some insight into when a set (or subset) of Boolean clauses can be rewritten

as a single pseudo-Boolean constraint. Consider the set of clauses

aVb
aVe (4.8)
bve

that are equivalent to the cardinality constraint
a+b+c=2 (4.9)

Here we simply note that the compression of (4.8) into the cardinality constraint (4.9)
is possible because (4.8) contains a pattern. Informally we might say that cardinality
constraints capture a particular type of problem structure. The constraint (4.9) can
be generated from (4.8) through inference. We will discuss this type of inference

further in the next section and give a method for automating it in Section 4.6.

4.1.3 Short Proofs of the Pigeonhole Principle

Unlike resolution, the CP proof system allows polynomial-length proofs of the
pigeonhole problem [19]. This result, combined with the earlier p-simulation result,
asserts that the CP proof system is exponentially stronger than resolution. A closer
look at the pseudo-Boolean proof of the pigeonhole problem will help generate in-

tuition about why the cutting-plane proof system is stronger than resolution, and

49

more generally what makes a proof system efficient. Recall from the previous section
that a pseudo-Boolean constraint can concisely express a large number of Boolean
clauses. We will call a psendo-Boolean constraint whose equivalent CNF encoding
requires more than one clause a compound constraint. If a pseudo-Boolean constraint
is equivalent to a simple Boolean disjunction we will call it a clausal constraint. The

power of pseudo-Boolean inference over resolution comes from two types of inference.

Parallel inference

Parallel inference is the ability to infer a new compound constraint from a set
of compound constraints. A resolution step only allows the generation of a single
Boolean clause. Consider what happens when a new compound constraint is gener-
ated in a single inference step. The new constraint will represent a numerous (possibly
exponential) set of Boolean clauses. A single pseudo-Boolean inference step may re-
quire an exponential number of resolution steps to derive the same information. The
pseudo-Boolean inference step performs multiple resolutions in parallel. Chatalic and
Simon also discuss the idea of parallel resolution within the context of ZBDDs [13].

A discussion of their work and an introduction to ZBDDs is given in Section 6.2.3.

Building inference

The power of parallel inference is only possible if concise compound constraints
exist in our problem description. We also need the ability to infer a new compound
constraint from a set of clausal constraints or weaker compound constraints. The
new compound constraint subsumes a subset of its parent constraints, providing a

stronger, more concise representation of the set of parent constraints.

These are not intended to be formal definitions. An individual pseudo-Boolean
inference step may contain both of these elements. What is important to note is that
if either of these elements is removed from the proof system, then the strength of

the system is reduced. Concise representations are of littie value if there is no way

50

of exploiting that conciseness through inference. Similarly, a system that exploits
concise constraints is of limited value if concise encodings are not known and there is
no way of generating them.

A pseudo-Boolean encoding of the pigeonhole problem can be constructed by

taking the CNF encoding and translating each disjunction to a linear inequality.

Tl
Spe>1 i=1,...,n+1 (4.10)
k=1

The literal p;. represents pigeon being in hole k. The set of inequalities (4.10) asserts
that every pigeon is in some hole. Inequalities (4.11) say that two different pigeons
cannot occupy the same hole.

While this encoding is logically correct, pseudo-Boolean representation allows a
more concise encoding. The set of inequalities (4.11) can be more concisely expressed
by the set of cardinality constraints

n+41
> Pu2n k=1,...,n (4.12)
i=1

To better understand what is happening here, consider an instance of this set for
n=23.

Pi1+ Poy +Pa + Py 23 (4.13)

which translates to the following set of clauses:

P VP
P11 VPa
D1y VP (4.14)
Pn VPy
Pa VPa
Pa1 vV Pay
If we instead started with the set of CNF clauses (4.14), the constraint (4.13) might

be seen as capturing a pattern or structure in the CNF clause set. This structure

a1

is present in the set of CNF clauses, but the resolution system has no way to keep
track of this structure and make use of it. If we combine (4.10) with (4.12) we have
a second more concise encoding of the pigeonhole problem.

The benefit of this second encoding is that the inequality 0 > 1 can be derived
simply by summing (4.10) and (4.12) over i and k respectively and adding the results
giving a proof with length O(n). The final inference step is equivalent to an expo-
nential number of resolution steps. This is an example of parallel inference. Here is

another.

Example 4.1.6. Consider a single inference step from a pigeonhole problem of size 4.

We resolve constraint
P11 +DP2 + D51 +Pu 23
that says hole 1 can only have one pigeon, with the inequality

P +peet+pa=l

that requires pigeon 1 to be in a hole. The resulting constraint

P12+ P13 +Pgy +Pay +041 2 3

implies the new clauses

P12 V3 V Py
P2 Vs Vg
P2 VP Vi,

Deriving these clauses with clausal resolution would require three separate resolution

steps.

The pseudo-Boolean inference rule takes advantage of the stronger encoding in (4.13)
and performs multiple clausal resolutions in parallel.
The proof presented above is not an acceptable proof from a proof complexity

perspective. To truly provide a polynomial length proof of the pigeonhole principle

52

we must start from the first CNF encoding. Fortunately, the stronger encoding can
be derived from the first in n? steps. We will derive the set of inequalities (4.12) by
induction, generating all inequalities of the form

J+1

> Pa >3 (4.15)

i=1

for § < n+ 1. The base case 7 = 1 is contained in the initial inequalities. For the

inductive step, assume (4.15) is true for a given 7.

3O Put Pt -+ i) > 42
Put Ditak =1
Doyt Pipog =1
Dipipt Pipox 21

Pt APy 2 L =4k

The right hand side of the final equation rounds up to j 4+ 1. This is an example of
building inference. Notice that this is not pseudo-Boolean resolution. Consider that
no variables cancel out of derived constraints.

From a proof complexity perspective, building inference is an important compo-
nent of the proof. From the perspective of a solver builder, this type of inference
is important, but not as important as the ability to take advantage of strong con-
straints through parallel inference. Ideally one would like the ability to ignore any
known structure, automatically discover it from scratch, then solve the problem, and
do it all in polynomial time. While this may be a more elegant solution, solver builders
often must take advantage of the structure that is available and use it the best they
can. Currently, progress can be made with this approach since a large amount of
known structure is typically thrown away or ignored when encodings in high-level
representations are translated into CNF encodings. For this reason, our first priority
is building solvers that take full advantage of known structure.

At some point we begin to care about identifying structure and building up struc-
tured constraints. It may be that a constraint set has structure that is not made
explicit by a high-level description. One could also imagine that a problem contains

an embedded structured problem that only becomes apparent after some inference

53

has taken place. Solvers that cannot recognize this structure will not be able to
solve such problems efficiently. Fortunately, it is possible to automate cutting-plane

versions of both types of inference.

4.2 Unit Propagation

In this section, we give a pseudo-Boolean implementation of unit propagation.
We discuss how the data structures work of Section 2.3.2 can be implemented for
pseudo-Boolean constraints. We present both count-based and watched literal index-

ing schemes.

4.2.1 Count-Based Methods

Recall from Chapter 2 the count-based method for identifying unit propagations.
In addition to literal indexing, we maintain for each clause a count of the number of
satisfied and the number of unvalued literals in that clause under the current partial
assignment. These counts are incrementally maintained as assignments are made and
revised. A clause is unit when the number of satisfied literals drops to 0 and the
number of unvalued literals is one. A comparable count based implementation is
possible for pseudo-Boolean constraints and was first implemented by Barth [3]. We

define two new counts.

Definition 4.2.1. Let ¢ be a set of literals and P be a partial assignment. We define
the sets

Sp(c) = {zi|z;: € ¢ and z; € P}

Vp(e) = {zi|z: € c and T; € P}
where Sp(c) denotes the literals in c that are satisfied under P and Vp(c) denotes the

literals in c that are either satisfied or unvalued under P.

54

Definition 4.2.2. Let ¢ be a pseudo-Boolean constraint of the form 3 ,aiz; 2 k, T
be a subset of the literals in c, and P be a partial assignment of values to variables.
The counts current and possible are defined as
current(T, P) = Z a;—k
ilei€Sp(T)
possible(T, P) = Z a;—k

i|lzieVp(T)

The count current sums over the weights of satisfied literals in T' and subtracts off
k. If the value of current(c, P) is greater than or equal to zero, then the constraint
is satisfied. If the value is negative, the constraint is not yet satisfied. The count
possible sums over the weights of both the satisfied and unvalued literals in 7" and
subtracts off k. If the value of possible(c, P) is greater than or equal to zero, then
it is possible to satisfy the constraint. If the value becomes negative, it is no longer
possible to satisfy the constraint c. The counts current(c, P) and possible(c, F)

can be maintained for each constraint, and adjusted with each change in P.

Definition 4.2.3. A pseudo-Boolean constraint ¢ is e unit constraint under partial
assignment P if there is a literal z; in ¢ such that z; is unvalued and possible(c, P) <

a;. The literal z; is called a unit literal.

In this situation, the unit literal z; must be valued to 1 if partial assignment P is
to be extended to a full assignment. Any partial assignment P’ that extends P and

contains Z; is invalid because possible(c, P') < 0.
Example 4.2.4. Consider the constraint
2:[?1 +$2+2.’L‘3+I4 > 4

under the partial assignment P = {z,,%2} and counts current(c,P) = -2 and
possible(c, P) = 1. We must assign a value of 1 to z3 because the assignment

z3 = 0 will give possible(c, P) < 0 and the clause will be unsatisfiable.

Given a set of pseudo-Boolean constraints and a partial assignment, the set of unit
propagations generated by Definition 4.2.3 are exactly those generated by unit prop-

agation performed on the set of equivalent CNF clauses.

29

Lemma 4.2.5. Given pseudo-Boolean constraint ¢ of the form) ,a;z; > k and
partial assignment P, a literal z; in c is unit under P if and only if the set of CNF
clauses equivalent to ¢ as defined in Proposition 4.1.3 produces the unit propagation

z; under P.

Proof. First we show that if c is unit under P and z; € c is a unit literal, then there

must be a clause v implied by c that has the unit literal z; under P. By definition
possible(c, P) = Z a; — k < aj. (4.16)
ilzieVp(c)
We can construct v from the unsatisfied literals of ¢ and literal z;.
v=1x;V V T;
z;§Vp(c)

To show that clause v is implied by ¢, we manipulate (4.16) into Zi[miEVp(c) a;i—a; <k
and apply Proposition 4.1.3.

To show the other direction, let

z; V v T; (4-17)

T ER

be a CNF clause implied by ¢ with unit literal z; under P. By Proposition 4.1.3 we

Z a; < k

i|lz:g(RU{=;})

Z a;Xr; = 0

;ER

have

Additionally,

since the literals in R contribute nothing toward satisfying c¢. Therefore the value of

possible(c, P) is at most a; — 1, implying that z; is unit in ¢ under P. g

This shows the correctness of pseudo-Boolean unit propagation and that it is no more

and no less powerful than its clausal counterpart.

56

Procedure 4.2.6 (PB-Unit-Propagate). To compute
PB-UNIT-PROPAGATE(C, P):

1 while no contradiction is found and there is a ¢ € C that has an unvalued
literal z; with coefficient a; such that possible(c, P) < a;

2 do

3 P~ {Pz;}

4 return P

Proposition 4.2.7. PB-UNIT-PROPAGATION as computed by Procedure /.2.6 is

sound.
Proof. Soundness follows from Lemma 4.2.5. O

We have shown a pseudo-Boolean version of unit propagation that is correct. We
now need to show that it is also efficient to compute, in keeping with our second goal
of maintaining the speed of unit propagation. We compare the cost of count-based
pseudo-Boolean unit propagation with its clausal counterpart.

To begin, we examine the cost of maintaining the counts current and possible.
Like the clausal case, these counts need to be incrementally maintained for each
constraint. In the clausal case, counts are always incremented and decremented by 1.
In the pseudo-Boolean case, the amount of the increment or decrement will depend on
the size of the coefficient of the variable in the constraint being valued. For example,
if we are extending the partial assignment with the literal T;, and we have a constraint
¢ of the form

25,4+ To+ T3+ x4 > 2

then we must decrement possible(c, P) by 2. Caching literal weights in a literal
index allows easy access to the weight of the appropriate literal. If a constraint c
contains the weighted literal a;z;, we add to the literal index for z; a pair consisting
of a pointer to ¢ and the value a;. Now if we value the variable associated with z;,
we can adjust counts current and possible without searching ¢ to determine the
weight associated with z;. This allows counts to be maintained in time linear in the

number of clauses, as in the clausal case.

57

Determining whether a clause is unit can be done in constant time in the clausal
case by simply examining the values of the counts. A clause is unit exactly when
the number of satisfied literals is 0 and the number of unvalued literals is 1. By
Definition 4.2.3, a pseudo-Boolean constraint c is unit if possible(c, P) < a; for
some literal z; € ¢. Determining whether ¢ is unit will require scanning the literals
in the constraint to determine if any literal has a coefficient strictly greater than
possible(c, P). This can be made more efficient by ordering the literals by decreasing
weight. Now we can simply walk along the clause, stopping when we reach the first
literal for which a; < possible(c, P). Determining whether a constraint is unit
in the pseundo-Boolean case requires at most a partial walk of the constraint. The
complexity of this task increases minimally over the clausal case; however, a single
pseudo-Boolean constraint may be equivalent to an exponential number of Boolean
clauses. Checking whether a single pseudo-Boolean constraint contains a unit literal
may require a series of checks in the clausal case.

For cardinality constraints, where all weights are 1, there is no increase in com-
plexity relative to the clausal case. If possible(c, P) > 0, we only need to inspect the
first literal to determine that no unit propagation is possible. If possible(c, P) =0,
we walk the clause, setting every unvalued variable to 1. In general, once a constraint
is determined to contain a unit literal, the constraint must be scanned to determine
which literal is unit. This is the same in both the pseudo-Boolean and clausal cases
with the exception that a pseudo-Boolean constraint may contain more than one unit

literal.

4.2.2 Watched Literals

In Chapter 2 we discussed the watched literals method. Here we describe a
watched literals method for pseudo-Boolean constraints. Recall that the watched
literals method maintains a set of two pointers into each clause with the properties
that either both literals are unvalued, or at least one of the literals is satisfied. As
long as one of these properties is met, the clause cannot be unit. First, we generalize

this rule for cardinality constraints.

o8

Definition 4.2.8. Let ¢ be a cardinality constraint of the form), x; > k and let §
be a subset of the literals in c. S is a watching set for ¢ under a partial assignment

P if and only if either of the following properties on S is true:
1. possible(S, P)>1

2. current(S,P) >0

Proposition 4.2.9. If S is a watching set for ¢ under P then c cannot be unit.

Proof. If S is a watching set for ¢ under partial assignment P and the first property
is true, then possible(c, P) > 1 and c is not unit. If the second property holds, then

the clause is satisfied under P and again c is not unit. (]

Let S be a watching set for a constraint ¢ under partial assignment P. Consider
what happens when a literal z; € S is valued unfavorably by adding T; to P to form
a new assignment P’. There are two ways to obtain a watching set for ¢ under P":
create a new watching set &' = S — {z;} U {z;} such that z; € ¢, z; € Vp:(c} and
z; € S, or keep the same watching set S and extend partial assignment P’ by setting
the remaining literals in S to 1. If k£ = 1, then |S| = 2 and Definition 4.2.8 reduces
to the clausal watching set definition.

A version of the watched literals rule for general pseudo-Boolean constraints is

also possible.

Definition 4.2.10. Let ¢ be a pseudo-Boolean constraint of the form 3 _.aiz; = k
and let S be a subset of the literals in c. S is a watching set for ¢ under a partial

assignment P if either of the following properties on S is true:
1. possible(S, P) > max,es(a:).

2. current(S,P) >0

29

Proposition 4.2.11. If S is a watching set for ¢ under P then c is not unit.

Proof. If the second property is true, then the constraint is satisfied under P and c

is not unit. Now assume that the first property is true. We have
possible(c, P) > possible(S,P) = mgasc(a,-)
T;

Any unit literal in ¢ must have a coefficient strictly greater than max;,es(a;). This
immediately excludes all of the literals in S as possible unit literals.
Let literal z; with coefficient a; be a unit literal in ¢ such that z; € S. The value

of possible(c, P) is defined as

possible(c, P) = Z a; -k (4.18)
ilz,eVe(c)
The set Vp(c) can be broken down into the disjoint sets Vp(S) and Vp(c — 5), so

(4.18) can be rewritten as

possible(c, P) = Yiuevp(c-s) % F Limevp(s) @i K
=3 imicVp(e-5) i T possible(S, P)

Because «; is unvalued, it must be that z; € Vp(c — 8) and 37, cyp(c—s) @i 2= ;-

Additionally we know that possible(S, P) > max,,es(a;). So it must be that
a; > possible(c, P) > a; + mlgig(a,-)

This is a contradiction. We can conclude that if the first property is true, ¢ is not
unit.
a

As before, if S is a watching set for a constraint ¢ under partial assignment P, and
we extend P to P' = {P,T;} for some z; € S, then there is always a new watching set
for ¢ under P'. Either find a new set S’ that satisfies Definition 4.2.10, or or keep the
same watching set S and value a subset of the remaining literals in S to 1 satisfying
the constraint. This is always possible since the coefficient a; of z; will be less than

or equal to max, es(a;} assuring that the sum over the coefficients of the remaining

60

literals in S is at least k. Again we will require that partial assignments to be unit
complete. This ensures that watching sets remain valid during backtracking.

We now compare the computational cost of maintaining watching sets for pseudo-
Boolean constraints versus their clausal counterparts. Recall that, in the clausal
case, when a watched literal is valued to false, the clause is searched for a new
watching set. In the worst case, no watching set is found and the entire clause must
be traversed. The remaining watched literal is added to the unit propagation list to
satisfy the clause. The worst case complexity for maintaining a watching set is O(n)
where n is the number of variables in the theory. The pseudo-Boolean case is exactly
the same. If a watched literal is valued to false, we again search the constraint for a
new watching set, and again in the worst case no watching set is found and the entire
constraint must be traversed, giving a worst case complexity of O(n).

Where the two methods will differ is in the overall sizes of the literal indexes.

Consider that a cardinality constraint
$1+$2+"'+$m2k

requires only k + 1 watched literals. The equivalent Boolean clause set requires
(m_",: +1) clauses with two watched literals per clause for a total of Z(m_",: +1) watched
literals. The overall number of literals that need to be watched for a pseudo-Boolean
constraint set may be significantly smaller than the number required for the equivalent

Boolean clause set.

4.2.3 Summary

The unit propagation procedure can be adapted to the pseudo-Boolean setting.
Both count-based and watched literal methods are possible and both show minimal
or no increase in cost per constraint. Additionally, the pseudo-Boolean case is likely
to benefit from the added expressiveness of pseudo-Boolean constraints. Any of the
tasks of maintaining counts, identifying unit propagations, or maintaining watching
sets for a single pseudo-Boolean constraint will need to be carried out separately
for each of the possibly large number of Boolean clauses required for the equivalent

clausal encoding,.

61

The original work on pseudo-Boolean count-based methods was done by Barth [3].
Our PBCHAFF implementation currently applies a watched literal method for all
cardinality constraints (including simple disjunctions), and uses a count-based method
for pseudo-Boolean constraints with coefficients strictly greater than 1. An equivalent
implementation of watched literals for pseudo-Boolean constraints appears to have
been done in parallel by Chai [12].

4.3 Learning

The choices we make in our pseudo-Boolean learning method will determine the
ultimate strength of our underlying proof system. There are numerous choices to
make for an implementation of pseudo-Boolean learning, and not all of them are

good. The first bad choice is to not implement learning at all.

Lemma 4.3.1. A pseudo-Boolean implementation of DPLL without learning is equiv-

alent to tree style resolution.

Proof. In Lemma 4.2.5, we saw that a pseudo-Boolean implementation of unit prop-
agation produces exactly the same set of unit literals as unit propagation on the
equivalent set of CNF clauses. It follows that for a given set of branch choices, a
pseudo-Boolean version of DPLL will produce exactly the same search tree as the
CNF version of DPLL that, in Section 3.1.1, was shown to be equivalent to tree-style

resolution. O

Despite the stronger representation being used, the underlying inference system
remains resolution-based. A simple DPLL implementation has no way to take advan-
tage of the stronger representation through inference. What is missing is the parallel
inference described in Section 4.1.3. Recall that this type of inference was essential
for generating short cutting-plane proofs of the pigeonhole problem. In Chapter 5 we
will see that pseudo-Boolean versions of DPLL show exponential runtime scaling on
pigeonhole problems. Because learning is the primary inference method of DPLL-style

algorithms, it is the key to determining the strength of the underlying proof system.

62

Learning should be implemented to take maximum advantage of the pseudo-Boolean

representation through parallel inference.

4.3.1 Resolution Analog

A pseudo-Boolean implementation of learning requires a pseudo-Boolean version
of resolution. Resolution is ideal for analyzing conflicts due to the partitioning scheme
used by DPLL-style algorithms. We can define a pseudo-Boolean version of resolution

in the following way.

Definition 4.3.2. [0/ Given pseudo-Boolean constraints ¢, and co of the form

az + E a;z; > k
i

and
T+ > bixi =1
we call the derived constraint
Z bla;z;) + Z a(b;x;) > bk + al — ab

the pseudo-Boolean resolvent of the two constraints.

We take a linear combination of the constraints ¢; and ¢y in a way that causes the

variable z to cancel out of the resulting constraint.

4.3.2 Capturing Conflicts

The goal of learning methods is still to capture the cause of a conflict in the form
of a new learned constraint. This learned clause can then be added to the constraint
set to prevent the same set of bad assignments from recurring. The obvious imple-
mentation of learning for the pseudo-Boolean case is to replace the CNF resolution
rule with the pseudo-Boolean analog. We will see that this approach has many of
the benefits that we hoped for. Unfortunately, it is not sufficient to always capture

the immediate conflict. This is best illustrated with some examples. Recall that a

63

contradiction occurs when a partial assignment together with two constraints causes

a variable to be labeled both 1 and 0. Consider the following example.

Example 4.3.3. Suppose we have a partial assignment P = {c,e,b,d}, and con-

straints

a+d+e = 2 (4.19)
a+b+c 2 2 (4.20)

These constraints cause the variable a to be simultaneously forced to 1 and 0. Under
inspection we can see that this conflict is caused by the assignments {b,d} since the
assignments {c,e} both help toward satisfying the constraints. The pseudo-Boolean
resolvent of (4.19) and (4.20)

d+e+b+c>3 (4.21)

eliminates this bad set of assignments since it implies the clause bV d.
The constraint (4.21) does more than eliminate the immediate conflict. It also
eliminates additional bad assignments. Consider the logically equivalent set of CNF

clauses.
dvVe eVb

dvb eVce
dVec bVe
The constraint ({.21) also eliminates the assignments {C,&} which is not part of the

current partial assignment, in a sense eliminating a mistake we have not yet made.

Here we see the value of parallel inference from Section 4.1.3 within the context

of a search algorithm.

Observation 4.3.4. A single pseudo-Boolean inference step may require multiple
resolution steps on CNF clauses to generate the logically equivalent set of clauses. In
the context of search, this corresponds to the elimination of multiple conflicts with a

single learned constraint.

Unfortunately it is possible to construct cases where the pseudo-Boolean resolvent

does not exclude the set of assignments causing the contradiction.

64

Example 4.3.5. Given the partial assignment P = {c,e,b,d}, and constrainis

2 +d+e>2 (4.22)
W+b+c>2 (4.23)

assignment P together with constraint (4.22) implies a, and assignment P together
with constraint (4.28) implies @. The pseudo-Boolean resolvent d +e+b+c > 2,

allows the set of assignments in the conflict set {b,d}.

Note that variables ¢ and e are valued favorably for the constraints, in both
cases helping to satisfy the constraints. The assignments {c, e} are not part of the
conflict. Adding the pseudo-Boolean resolvent to the constraint set does not prevent
a repetition of this mistake, nor does it give any direction to the backtrack since it is
satisfied under the current partial assignment.

To solve this problem we need a learning method that is guaranteed to generate
an unsatisfied constraint. Additionally we want a learned constraint that is as strong
as possible, eliminating as many conflicts as possible. We begin by showing that
the pseudo-Boolean resolvent will generate an unsatisfied learned constraint if the
coefficient of the conflict variable has a value of 1 in at least one of reasons for the
conflict.

Proposition 4.3.6. Given constraints ¢, of form qze + Y a;z; 2> j and co of form
To + Y biz; > k that cause a conflict with variable zo under partial assignment P,

the pseudo-Boolean resolvent
Y ami+) qbim) 2 j+ak—q (4.24)
is unsatisfied under P.

Proof. The constraint ¢, forces zop = 1 under P, so the sum over the satisfied and

unvalued literals is less than j. It follows that

>, a-j<-l (4.25)

i|z;€Vp(cr)

65

Similarly, co forces zo = 0 under P, so we have

> o bh—k<-1

ilz;€Vp(c2)

which we multiply by ¢
> qlb) -kg< —q (4.26)

iz €Vp(ca)

Summing (4.25) and (4.26) and adding ¢ to both sides yields the inequality

> am+ Y qb)-i-kgt+g< -1

ilz:€Vp{ct) ilz;€Vp(ez)

in which the left hand side is the value of possible for the pseudo-Boolean resolvent
(4.24). (4.24) is unsatisfied under P. O

If we have reasons c¢; and cy that together force assignments z; and Z;, and the
coefficients for z; and Z; respectively in ¢; and ¢y are both greater than 1, then we
will reduce one of the constraints, say ¢;, to a cardinality constraint. In the reduced
cardinality constraint, the coefficient of z; is now 1 and we will be guaranteed to
generate an unsatisfied clause. There are two things we must consider when reducing
ci. First, we need to generate a cardinality constraint ¢} that is still a valid reason
for valuing z; to 1. Additionally, such a reduction will weaken the constraint so care
must be taken to generate as strong a cardinality constraint as possible. We begin
here with a method for generating a cardinality constraint from a pseudo-Boolean

constraint.

Proposition 4.3.7. Let ¢ be a pseudo-Boolean constraint) ,a;z; > k and L be a
subset of literals z; such that 37, oy a; <k. Define the set S to be

S = {zile: & L and a; > max(a;)}

The cardinality constraint
sz+zzi21+|8|
el ;€8

is entailed by c.

66

Proof. First we break down the left hand side of constraint ¢ into parts defined by L

and S. Let Gmer = maxz;e (a;). Now we take the following linear combination.

Z a;T; + Z amnzmi'i' Z(ai - amaz)mi + Z a;T; 2 k

el ;€S ;€S x;ELUS
Z(ai — Qmax)fi -+ Z aﬁi 2 0
;€85 T €LUS
;€L ;€8 zi€5 z;eLUS

Rearranging the right hand side gives the inequality
Z: a;x; + Z OmazTi Z k— Z a; + Z Gmax
el €S =i gL ;€8
Applying the definition of the set L, it follows that
Z a;T; + Z OmaxTi 2 1+ Z Qmazx-
el €S €S
Finally, dividing the inequality by @me; and rounding up the right hand side gives
Z::c,-+z:ri21+|8|
EL x;ES

O

Now we must ensure that the cardinality constraint ¢; we construct forces the

assignment z; just as our original reason ¢; did.

Example 4.3.8. The constraint 3a + 2b +2d + e + f > 6 is a reason for d under
partial assignment P = {g, f}. To reduce this constraint to a cardinality constraint,
we build a disjunction corresponding to the set L in Proposition 4.3.7 that is implied
by the original constraint and is also a reason for d under P, namely dVeV f. Next
we construct the set S from literals in the constraint with coefficients greater than or
equal to the mazimum coefficient for a literal in L. Here we have S = {a, b}. Putting
it all together, we sum over sets L and S and set the right hand side of the inequality
to 1+|8| = 3 producing the cardinality constraint d+e+ f +a+b > 3. This constraint

is also a reason for d under P.

67

Procedure 4.3.9 (Reduce-To-Cardinality). Given a constraint c¢; of the form
S a;x; > k such that ¢y is a reason for x; under P, to compute

REDUCE-T0-CARDINALITY(cy, P):

1 L+ {z;} UT where T is a subset of the literals in ¢;, for all z; € T', z; € Vp(c1),
and a disjunction over the literals in L is implied by ¢,

2 S+ x; such that z; € ¢; and a; > maxz,e(a;)

3 return), i+ 5T = 1+]S

Proposition 4.3.10. Given a constraint ¢, of the form Y _ a;x; > k that contains unit
literal z; under P, REDUCE-T0-CARDINALITY(c1, P) as computed by Procedure 4.3.9

returns a constraint ¢ that is a valid reason for the assignment x; under P.

Proof. The existence of the set L follows from Lemma 4.2.5. Consider the value of
possible(c), P). The sum over set L contributes at most 1 to the count since it
has one satisfied literal z; and the rest are unsatisfied under P. The sum over set S

contributes at most |S| to the count. This gives a count
possible(c}, P) <1+ |S|-(1+1iS[)=0
implying that ¢} is in fact a valid reason for z; under partial assignment P. O

Returning to Example 4.3.5, the constraint 2a¢ + d + e > 2 is reduced to the
cardinality constraint a + d > 1 using the cardinality reduction described above, and

then the pseudo-Boolean resolvent
2d+b+c2>2

is generated. This resolvent is unsatisfied under partial assignment P = {c,e,b,d},

and disallows the set of assignments in the conflict set {5, d}.

68

Procedure 4.3.11 (PB-Learn). Given constraints ¢; of form qro + > aiz; > J
and cz of form 7T + Y biz; 2 k that cause a conflict with variable o under partial

assignment P, to compute PB-LEARN(cy, ¢g, P):

1 ifg>landr>1
2 then ¢; — REDUCE-TO-CARDINALITY(¢;, P)

3 return PB-resolve(cy, ¢2)

Proposition 4.3.12. Given constraints ¢, of form qxo + Y_ a;x; = § and c2 of form
TEo + > bizi > k that cause a conflict with variable z9 under partial assignment P,
PB-LEARN(c, ca, P) as computed by Procedure 4.3.11 returns a constraint ¢ that is

entailed by ¢, and co, and unsatisfied under P.

Proof. Entailment of ¢ from c; and ¢ follows from Proposition 4.3.7 and the sound-
ness of pseudo-Boolean resolution. That ¢ is unsatisfied under P follows from Propo-
sition 4.3.6 and Proposition 4.3.10. O

The current implementation of PBCHAFF has two learning modes. The first learns
full pseudo-Boolean constraints applying the methods described above. The second
learning mode learns only cardinality constraints. The previous methods are applied,
and if the resulting learned constraint is not a cardinality constraint, it is reduced to
one using Proposition 4.3.7. Full pseudo-Boolean representation is a stronger repre-
sentation than cardinality constraints alone. Some learned information may be lost
in the franslation to a cardinality constraint. The benefit of cardinality constraints
is that the unit propagation procedure for cardinality constraints is extremely fast.

Both forms of learning add representational strength over CNF representation.

4.3.3 Bounded Learning

In the clausal case, the length of a clause was a useful metric in determining the
pruning potential of a clause because it correlated indirectly with the number of as-
signments the clause eliminated from the overall search space. Relevance bounded

learning builds on this idea and defines length relative to a partial assignment. Again

69

the relevant length corresponds to the number of assignments eliminated from a sub-
problem in the search space.
Within the pseudo-Boolean context, the number of literals in a clause no longer

correlates with the number of assignments a constraint eliminates. Consider the

constraints
a+b+c>2 (4.27)
a+b>1 (4.28)
a+b+c>1 (4.29)

If these constraints are part of a larger theory that has a total of 5 variables, then
(4.27) has 3 literals and eliminates 16 assignments, (4.28) has 2 literals and elimi-
nates 8 assignments, and (4.29) has 3 literals and eliminates 4 assignments. Clearly
new definitions of length and irrelevance are needed.

For any cardinality constraint z; + --- + Z;» > &k the number of assignments

eliminated from the overall search space is

(G)+ @)+ (D))

where n is the total number of variables in the theory. Unfortunately, we do not
know any efficient way to calculate the number of assignments eliminated by a general
pseudo-Boolean constraint.

As the following example shows, it still makes sense to define the relevance of
a constraint in relation to the current position in the search space. Consider the

following nogoods given the partial assignment P = {a,b,c}:

a+b+c>2 (4.30)
a+b>1 (4.31)
a+b+e+f>1 (4.32)

Constraints (4.30) and (4.31) cannot be used for pruning anywhere in the subproblem
below. The constraint (4.32), which is the weakest constraint, can be used to prune
any node in the subproblem that contains {&, f} as part of its partial assignment,

making it the most useful to the immediate subproblem.

70

The PBCHAFF implementation employs a version of the hybrid bounded learning
method used by the ZCHAFF algorithm. Recall that this method uses a relevance
bound together with a larger length bound. Clauses that meet both the relevance
and length bound are retained in the clause set. Adapting this heuristic to the pseudo-
Boolean setting requires that we redefine our notion of length and irrelevance. The

definitions used are simple and easy to calculate.

Definition 4.3.13. The length of a pseudo-Boolean constraint) a;z; > k is defined
as Z a; — k +1.

Proposition 4.3.14. If a pseudo-Boolean constraint is equivalent to a disjunction,

then Definition 4.3.15 reduces to the clausal definition of length.

Proof. Given a pseudo-Boolean constraint of the form >, ¢ x; > 1, its length under
definition Definition 4.3.13 is |S]| — 1+ 1 = |S§|. O

If the constraint is a cardinality constraint, the length of the constraint by Defi-
nition 4.3.13 is equivalent to the length of any clause in the equivalent set of Boolean
clauses. If the constraint has coefficients strictly larger than 1, then the length by
Definition 4.3.13 will be greater than or equal to the length of any individual clause in
the equivalent Boolean clause set. This creates a somewhat biased policy that prefers

cardinality constraints over constraints with larger coefficients.

Definition 4.3.15. Given pseudo-Boolean constraint ¢ and partial assignment P, the

irrelevance of ¢ under P is defined as possible(c, P) + 1.

Proposition 4.3.16. If a pseudo-Boolean constraint is equivalent to e disjunction,

then Definition 4.3.15 reduces to the clausal definition of irrelevance.

Proof. Given a pseudo-Boolean constraint ¢ of the form } ,.;2; > 1 and partial
assignment P, by definition
possible(c, P) = Z 1-1+1
ilzi€Vp(e)
The value of possible is clearly equal to the number of satisfied literals plus the

number of unvalued literals in the constraint. O

71

This policy generalizes irrelevance in a way similar to the above generalization of
length. For cardinality constraints, the irrelevance of a constraint by Definition 4.3.15
will correspond to the irrelevance of the clause in the set of Boolean clauses that has
the smallest clausal irrelevance measure. Again the policy is biased toward cardinality

constraints over constraints with larger coefficients.

4.3.4 Summary

When we adapt a resolution-based method to use the stronger pseudo-Boolean
representation, the strength of the underlying proof system will be largely determined
by the learning method. The learning method defined in this section encourages
parallel inference where a single inference step can correspond to multiple resolution
steps. The pseudo-Boolean inference performs these resolutions in parallel. Within
a search context, this corresponds to the ability to eliminate multiple conflicts with
a single learned constraint. In addition to eliminating the immediate conflict, the
solver can now avoid analogous conflicts in parts of the search space not yet explored.
A resolution-based method is forced to discover these errors independently. Later in
Section 4.6 we will see how building inference can be automated. This will increase
the power of the underlying proof system further.

The main inference step used in psendo-Boolean learning is the pseudo-Boolean
analog of resolution. This inference is not sufficient to capture all conflicts and care
must be taken to ensure that immediate conflict is always eliminated. When necessary
one of the reasons for a conflict can be reduced to a cardinality constraint, which
avoids generating a satisfied constraint. These reductions must be done carefully so

that each learning step captures as much information as possible.

4.4 Non-Standard Backtracking and Unique Im-

plication Points

Both the techniques of non-standard backtracking and unique implication points

lift easily to the pseudo-Boolean setting. We begin with a discussion of pseudo-

72

Boolean UIP constraints, and follow with pseudo-Boolean versions of procedures
BAcCKJUMP and NON-STANDARD-BACKJUMP.

In Section 2.2.2 we defined a UIP clause informally as having exactly one literal
assigned a value at the current decision level. The remaining literals were valued

earlier at lower decision levels. Consider the equivalent definition.

Definition 4.4.1. Let ¢ be a learned constraint such that I, is the decision level at
which ¢ is unit and ly is the decision level at which c is generated. Constraint c is a

UIP constraint if and only if [} < lo.

Within the clausal framework these definitions create equivalent results. This is not
the case in the pseudo-Boolean framework. Consider the following example. Assume
that the assignments {a, b, &} were valued at the current decision level, and {d} was

valued at some earlier decision level. The learned constraint
a+b+c+d>3

has 3 literals valued at the current decision level, yet it is clearly unit at the earlier
decision level that contains d. PBCHAFF implements UIP constraints using Defini-
tion 4.4.1.

We chose to implement UIP constraint learning because ZCHAFF implements UIP
clause learning. Many implementation choices were made to mirror implementation
choices in ZCHAFF, with the goal of building a pseudo-Boolean version of ZCHAFF
that differs only in its choice of representation. It is easier to examine the benefits of

the representational change if all other factors are equal.

73

Procedure 4.4.2 (PB-DPLL-with-Learning). Given a pseudo-Boolean problem
C and a partial assignment P of values to variables, to compute PB-DPLL-WITH-
LEARNING(C, P) :

while P is not a full assignment
do P — PB-UNIT-PROPAGATE(C, P)
if P contains a contradiction

then v +— contradiction variable

1
2
3
4
5 ¢; — reason associated with v
6 ¢o — reason associated with @
7 if PB-BAckJuMP(PB-LEARN(cy, cs, P), P) = FAILURE
8 then return FAILURE
9 else [— a literal not assigned a value by P
10 P — {P,(l,true)}

11 return SUCCESS

Procedure 4.4.3 (PB-Backjump). Given a nogood c that is unsatisfied under an-
notated partial assignment P = {(l1,c1), (la,¢2), ..., (Im,Cm)}, to compute
PB-BACKJUMP(c, P):

1 if cis the empty constraint

2 then return FAILURE

3 if ¢ is a UIP constraint

4 then return PB-NON-STANDARD-BACKJUMP(c, P)
5 else

6 l; « literal in P with maximum i such that c is

satisfied under {l;,1lo, ..., L1, L)}
7 return PB-BACKJUMP(PB-LEARN(¢;, ¢, P), P)

74

Procedure 4.4.4 (PB-Non-Standard-Backjump). Given a nogood c that is un-
satisfied under annotated partial assignment P = {(l},c1), (l2,¢2),...,(Im,cm)}, to
compute PB-NON-STANDARD-BACKIUMP(c, P):

1 add c to the constraint set

2 [; « literal in P with minimum 7 such that ¢ is unit under
{(h,e1) oy ea)s -, {1y)}

3 [f1,--.,Jm] — the set of literals in ¢ that are unit under

{{ti,e1), (2, €2), ..., (4, ¢0) }

d «— decision level such that [; € d

i « literal in d with maximum k&

P —{(l,e1), (o,), -, (s cie)y (F1,€)s - -+ (G ©) }

return SUCCESS

-] O O

Once a constraint is determined to be a UIP constraint, non-standard backjumping
is applied. The pseudo-Boolean versions of the BACKJUMP and NON-STANDARD-
BACKJUMP procedures follow their clausal counterparts closely. There are two small
differences. In PB-BACKJUMP, the simple clause resolution denoted by resolve in
line 7 is replaced with the PB-LEARN procedure defined in Section 4.3.2. In PB-
NON-STANDARD-BACKJUMP the number of unit propagations caused by a constraint
may be more than 1. This set is identified in line 3 and appended to the partial

assignment in line 6.

Proposition 4.4.5. PB-DPLL-wITH-LEARNING(C, P) as computed by

Procedure 4.4.2 is both sound and complete.

Proof. Soundness follows directly from the soundness of pseudo-Boolean unit prop-
agation, Proposition 4.2.7 and the soundness of pseudo-Boolean learning, Proposi-
tion 4.3.12.

For the proof of completeness, recall that the definition of progress at a decision
level defined in Proposition 2.2.9 assumed that learned clauses are unsatisfiable under

the current partial assignment. We need to apply Proposition 4.3.12 again, this time

75

to show that PB-LEARN returns a learned constraint unsatisfiable under the current
partial assignment. Now we simply repeat the proof of Proposition 2.2.9. We prove
that progress is made at every decision level by induction on the maximum number
of decision levels seen during the solution of a problem.

For the base case, let a contradiction occur at decision level d,,. We learn a UIP
constraint and backjump to some decision level with index less than m and make
progress at that level.

For the inductive case we assume that we make progress at some decision level d;
such that j < 4. If 7 < i— 1 then we make progress at a decision level with index less
than i — 1. If j = ¢ — 1 then we make progress at decision level d;_,. If we continue
searching, we will either at some point backjump to a decision level with index less
than ¢ — 1 or we will continue to append assignments to decision level d;_; until a
contradiction occurs at decision level d;_; or a solution is found. If a contradiction
occurs we again learn a UIP constraint and backjump to a decision level with index
less than i — 1.

We can conclude that if no solution is found, progress is made at decision level dy

and the empty constraint 0 > 1 is eventually derived. O

4.5 Branching Heuristics

The branching heuristic currently used by PBCHAFF is based on the VSIDS heuris-
tic. Recall that this heuristic maintains literal counts based on the number of times
each literal occurs in the theory being solved. Counts are incremented each time a
clause is added to the clause set. This is done for learned clauses as well clauses in the
original constraint set. The heuristic prefers to branch on an unassigned variable with
a high count value. Periodically all counts are divided by a constant factor, creating
a bias toward branching on variables occurring in recently learned constraints.

This heuristic is quite easy to adapt to the pseudo-Boolean setting. The pol-
icy for incrementing counts varies depending on the type of constraint being added
to the constraint set. Cardinality constraints and pseudo-Boolean constraints with

coefficients larger than one are handled differently.

76

Cardinality constraints that are part of the original constraint set are managed
differently than learned cardinality constraints. If a cardinality constraint is one of the
initial constraints, the literal counts are incremented as if the cardinality constraint
were added in its equivalent CNF form. If it is added as a learned constraint, the
literal counts are incremented by one for each literal in the constraint. For example,
if we add the constraint

Ty +ITo+ T3 22

as one of the original constraints, then we would increment literal counts for z;, zs
and z3 by two each. If instead the same constraint was added as a learned constraint,
we would increment each of the literal counts z,, z; and x3 by only one.

When a constraint with coefficients greater than one is added to the constraint
set, we increment the literal count by one for each literal in the constraint. The
increment is always one and is not weighted by the weight of the literal.

The branch heuristic described above was chosen because it closely mirrors the
ZCHAFF heuristic and it performed well in informal experiments. Further study is

needed to evaluate a larger range of branch heuristic for pseudo-Boolean solvers.

4.6 Strengthening

We now present a technique that automates building inference, which was dis-
cussed in Section 4.1.3. The goal of building inference is to infer new compound
constraints from a set of clausal constraints, or weaker compound constraints. The
effect is to build up a stronger more concise representation of a problem from a larger
and weaker encoding.

The following method is a form of coefficient reduction. It is used in the operations
research field most often as a preprocessing method for mixed-integer-programming
problems [37, 61]. We have adapted it somewhat to the context of a DPLL-style
algorithm.

77

Definition 4.6.1. A constraint ¢ of the form > a;z; > k is over satisfied under

partial assignment P if current(c, P) > 0.

Procedure 4.6.2 (Strengthen). Given a SAT problem C, to compute
STRENGTHEN(C):

1 for each literal { in C

2 do

3 P« {1}

4 P — UnNiT-PROPAGATE(C, P)

5 for each constraint ¢ = 3 a;z; 2 k with current(c, P) > 0
6 do

7 ¢ — 3 a;z; + current(c, P)l > k + current(c, P)

We begin with an empty partial assignment P = @3. Now suppose we make the
assignment {, adding it to P, and then apply unit propagation to our constraint set.
We now discover that under the current partial assignment P, a constraint ¢ is over
satisfied with current(c, P) = s for some s > 0. The over satisfied constraint can be

replaced by a strengthened version of the constraint.

Proposition 4.6.3. Given constraint set C and an assignment P = {l}, if P/ =
UNIT-PROPAGATE(C, P), then any constraint ¢ of the form Y aix; > v with

current(c, P') = s such that s > 0, can be replaced by the constraint
s+ ami>r+s (4.33)

Proof. Let p be any full assignment that satisfies C. If [€ p, then P’ C p by
unit propagation. This causes ¢ to be over satisfied with current(c,p) = s, and
> a;z; = v+ 8, so p satisfies (4.33). If I € p, then sl = s. Since p satisfies every
constraint in C, p must satisfy }_ a;z; > r. Again, p satisfies (4.33). It follows that
(4.33) is implied by C.

78

To see that (4.33) implies ¢ we take the linear combination and derive ¢ from
(4.33).
sl Yaim >2r+s

sl >0
o 2T
a
Example 4.6.4. Consider the following set of clauses:
a+b=>1 (4.34)
at+c>1 (4.35)
bac> 1 (4.36)

If we set P = {@}, we generate the unit propagations {b, c}. Constraint (4.36) is over
satisfied and can thus be replaced by

a+b+e>2

In fact, this new constraint subsumes all three original constraints, so (4.34) and
(4.35) can be removed from the constraint set as well. The strengthened constraint

will often subsume some or all of the constraints involved in generating it.
This rule can be generalized as follows.

Proposition 4.6.5. Given constraint set C, partial assignment P = {ly,ls,... ,Ii},
assignment P' = UNIT-PROPAGATE(C, P), and constraint ¢ € C of form > a;z; 2> 7

with current(c, P') = s and s > 0, the constraint

k
SZL"E‘ZCL{Q&'ET*{-S (437)
im]
is implied by C.

Proof. Let p be any full assignment that satisfies C. If I; € p for every {; € P, then
P' C p by unit propagation. This causes ¢ to be over satisfied with current(c, p) = s,
and 3 a;z; > 7 + 8, so p satisfies (4.33). If for any [; € P, [; € p, then sELJ,- > s.
Since p satisfies every constraint in C, p must satisfy Y a;z; > r. Again, p satisfies
(4.33). It follows that (4.33) is implied by C. O

79

The general rule can be antomated as a preprocessing method as shown in Proce-
dure 4.6.2 or applied during search. When a constraint becomes over satisfied under
the current partial assignment, the set of assignments that caused the constraint to
be over satisfied can be determined in time O(n%c) where n is the number of vari-
ables and c is the number of constraints. The procedure GET-ASSUMPTIONS can be
applied to identify a set of assumptions A C P that causes c to be over satisfied. The

constraint is strengthened or a new constraint is learned.

Procedure 4.6.6 (Get-Assumptions). Given a constraint c and an annotated par-
tial assignment P such that current(c, P) = s and s > 0, o compute

GET-ASSUMPTIONS(c, P):

1 A—Q
2 L « {satisfied literals in c}
3 BEST « L
4 while L#0
5] do
6 [— aliteral in L
7 remove { from L
8 r « reason for {
9 if 7 = true
10 then A — AU {l}
1 else L « LU {unsatisfied literals in 7}
12 if [AUL| < |BEST|
13 then BEST «— |AUL|

14 return BEST

Proposition 4.6.7. Given a clause ¢ € C and an annotated partial assignment P
such that current(c,P) = s and s > 0, GET-ASSUMPTIONS(c, P) as computed by
Procedure 4.6.6 returns a set of assignments BEST such

current(c, closure(BEST)) 2 s.

30

Proof. We show that current(c, closure(BEST)) > s by induction on the num-
ber of loop iterations. Let A; and L; be the elements of A and L respectively
after 7 applications of the loop in Procedure 4.6.6. It is sufficient to show that
current(c, closure(A; U L;)) > s for all iterations 4, because the set of returned
assignments BEST is the set A; U L; for some 2.

For the base case, Ag = @ and Ly = P N {c}. We know that current(c, P) > s
and L is exactly the set of literals that are both in ¢ and are satisfied by P. It follows
that current(c, Ly) > s and therefore current(c, closure(Ag U Lg)) > s.

For the inductive case, assume that current(c, closure{A; U L;)) 2> s for itera-
tion 7. If r = true, then Li;; = L;—{{} and A;;; = A;U{l}, making A;UL;;, equal
to A; U L;, and current(c, closure{A;11 U Liyy)) > s. If r # true, then Ay = A;
and L;y; = L; — {I{} U@, where Q contains the literals in = that are unsatisfied by P.
The literal ! must be an element of closure(A4;,; U Liy;) because ! follows from @
by unit propagation. We have that A; U L; C closure(A;4, U L;y1) and therefore
closure(A4; U L;) C closure(A;;; U L;y1) so again

current(c, closure(A;s) U Liy1)) 2 s

To prove termination of Procedure 4.6.6 we need to show that the condition L = @
is always reached. To do this we show that collecting the set of assumptions that cause
a given set of assignments is equivalent to identifying for a set of nodes NV in a directed
acyclic graph (DAG) the set of all source nodes with a path to a node in V.

Given an annotated partial assignment P, we can construct a DAG as follows.
We begin by adding the first annotated assignment (I, ¢1) to the graph and continue
through each assignment until all assignments have been added. For any assignment
(L, ci), if ¢; = true then [; is a source node. If ¢; is a constraint, then let S be the
subset of {l;,ls,...,l;-1} whose negations are in ¢;. The set of assignments S force
the assignment of /;. Create a new node /;, and add for each element s of S a directed
edge from s to l;. The graph formed is acyclic because edges always flow from nodes
with low index in P to nodes with higher index in P. Set L is initialized with a
subset I of nodes in the graph. The loop recursively removes a node from L and

either replaces it with its parent nodes or if it is a source node, places it in the set

81

A. Because the graph is both finite and a DAG, termination follows, ending when all

source nodes with a path to nodes in set I are found. g

Initial informal results suggest that the cost of applying strengthening for every
occurrence of an over satisfied constraint is expensive. It is unclear whether an efficient
implementation will provide benefits beyond those gained by preprocessing alone.
However, excessive preprocessing can be expensive, so it may be valuable to let the
search direct the strengthening process. This would also allow the possibility of

strengthening constraints learned in response to contradictions.

CHAPTER 5

Solving the Pigeonhole Problem

In this chapter we explore the performance of the pseudo-Boolean satisfiability
solver PBCHAFF described in Chapter 4. Before we begin, let us first review and
integrate some of the results from earlier chapters with the goal of understanding
what we should expect from PBCHAFF.

In Section 4.1.3 we discussed two categories of inference that make the cutting-
plane proof system strong. The first, called building inference, makes it possible to
build stronger compound constraints from a set of clausal or weak compound con-
straints. Recall that a compound constraint can be equivalent to an exponential
number of clausal constraints. The second category of inference we defined was par-
allel inference. In parallel inference a new compound constraint is inferred from a set
of compound constraints with the effect of performing multiple resolutions in parallel.
Both types of inference were necessary for solving the pigeonhole problem. We used
building inference to generate the concise encoding (4.12) from the clausal encoding
(4.11). Then we were able to exploit the concise encoding with parallel inference to
construct a short proof.

The situation is the same for an automated form of the cutting-plane proof system
like PRCHAFF. The learning method used by PBCHAFF and defined in Section 4.3
automates a form of parallel inference. When applied to compound constraints, many
resolutions occur in parallel and multiple conflicts are eliminated at once. When

applied to clausal constraints, the method reduces to simulating resolution. The

83

power of the learning method is dependent on the conciseness of the encoding. If a
concise pseudo-Boolean encoding of the problem is not known, then the strengthening
method defined in Section 4.6 can be applied. This procedure automates a form of
building inference and may be able to build the concise encodings needed.

If PBCHAFT is given a CNF encoding, it easily translates the problem into pseudo-
Boolean by representing each clause as a clausal inequality. If strengthening is not
applied, then the learning method reduces to resolution. Similarly, all other PBCHAFF
methods such as bounded learning and branching heuristics reduce to the clausal ver-
sions when applied to clausal constraints. Although the solver uses pseudo-Boolean
representation, in this situation the solver performs as a resolution based method.
In Section 5.1.1 we examine how efficiently PBCHAFF performs as a resolution-based
method. If PBCHAFF is able to efficiently simulate a resclution based solver, then
there is little reason to prefer a traditional resolution-based solver over a pseudo-
Boolean solver. In Section 5.2 we explore the potential benefits of using the stronger
pseudo-Boolean representation by looking at the performance of PBCHAFF on pigeon-
hole problems. In this set of experiments, we apply strengthening to CNF encodings
of the pigeonhole problem and then apply PBCHAFF to the stronger encoding. In
Section 5.3 we go further still and look at performance on a set of planning problems
with embedded pigeonhole problems, and in Section 5.4 we examine the performance

of PBCHAFF on randomly generated planning problems.

5.1 CNF Encodings

5.1.1 Do No Harm

The resolution-based methods described in Chapter 2 have been very successful.
As we stated earlier, the goal of our implementation is to improve the strength of the
solver’s proof system without abandoning these successes. To test whether the latter
part of this goal has been achieved, we ran PBCHAFF as a resolution-based solver on

a large number of problems from many different problem domains, and compared

34

its performance with ZCHAFF. The goal of these experiments was to evaluate how
efficiently PBCHAFF simulates a resolution-based solver.

The PBCHAFF algorithm, when functioning as a resolution-based method, follows
the ZCHAFF model so closely we would expect the two solvers to build search trees of
similar size. The data structures used by PBCHAFF are necessarily different from those
used by ZCHAFF because PBCHAFF supports full pseudo-Boolean representation. We
would expect the more expressive pseudo-Boolean representation to increase the cost
of expanding a node.

We compared the performance of ZCHAFF and PBCHAFF on a large and diverse
set of problems encoded in CNF. We used a set of 488 problem instances from the
Velev, DIMACS, and SatLib benchmark suites.

e Microprocessor test and verification benchmarks

http://www.ece.cmu.edu/“mvelev

e DIMACS benchmarks
ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/benchmarks/cnf

e SatLib benchmarks
http:/ /wwww.intellektik.informatik.tu-darmstadt.de/SATLIB/benchm.html

Some of the problem domains included are microprocessor verification, random sat-
isfiability, planning, bounded model checking, parity, and pigeonhole instances. Both
solvers used the same CNF encodings. Parameter settings for both solvers were set
to the default values used by ZCHAFF. Both solvers were set to time out after 1000
seconds. All experiments were run on 1.53MHz Athlon processors with 256K on-chip
cache and 512MB of RAM. Code was compiled with Gnu g++ using full optimization

and run under Linux.

5.1.2 Experimental Results

Figure 5.1 shows a comparison of solution time of ZCHAFF and PBCHAFF on the

set of CNF instances. A data point in the graph represents a problem instance. A

85

10000

— % . . —
437+ 1.61x

100 |

pbCHAFF time {sec)

10 |

0'1 L] i " al L n ad " "
0.1 1 10 100 1000 10000

2CHAFF time (sec)

FIGURE 5.1: Comparison of execution time for PBCHAFF and ZCHAFF on CNF
encodings. Each point corresponds to a CNF problem instance. The z coordinate
corresponds to the execution time in seconds for ZCHAFF and the y coordinate corre-
sponds to the execution time in seconds for PBCHAFF. The line f(r) = 4.37 + 1.61z
is the best linear fit to the data, and the curve f(z) = 1.89z%% is the best log
transformed linear fit.

86

point’s x coordinate is the execution time for ZCHAFF and the y coordinate is the
execution time for PBCHAFF. Logscale is used on both axes. We fitted the data
with both a linear model and a power function model. To fit the data with a power
function model, both the z and y data are log transformed and then fit using a
linear regression. A power function model is a good choice for this data set because
the data has a strong linear trend when both axes are plotted using logscale and also
because the variance or spread of the data tends to increase as solution time increases.
Without the log transformation, the fit is biased toward the difficult instances. These
points have very large residuals and dominate the regression. The log transformed
linear regression weights the data more evenly and gives more insight into scaling
properties. We used a Deming regression to fit the data instead of the more classic
least squares regression because both the = and y data are subject to error. We made
the assumption that the amount of error for both solvers was the same.

The best linear fit to the data was the line f(z) = 4.37 + 1.61z. As expected, the
linear model does not fit the data. in the lower left quadrant of the graph at all. The
best fit to the log transformed data is the curve f(z) = 1.89z%%. It fits the data
more closely and gives a more accurate prediction of how the data scales. For small
problems PBCHAFF is slower by a factor of about 1.9. As problems get larger, this
factor decreases somewhat to a factor of about 1.6.

We also calculated the cost of expanding a node for each solver on each problem
and determined the average over the entire problem set. The average for PBCHAFF
was 1.86 x 1074 and the average for ZCHAFF 1.28 x 10~*. The ratio of these averages
is again approximately 1.5.

Figure 5.2 shows a comparison of node counts for ZCHAFF and PBCHAFF on the
CNF encodings. The best fit for the log transformed data is the line f(z) = 0.99z'9%,
implying that node counts are approximately the same for both solvers on CNF
encodings. Overall, the data suggests that the solvers build search trees of similar
size, but ZCHAFF is faster per node by a factor of about 1.6.

These experiments show that PBCHAFF functions quite well as a resolution-based
method. The cost of supporting the more expressive pseudo-Boolean representation

is a factor of around 1.6, allowing PBCHAFF to approximately match the performance

87

10407 5 BN Bl L R ETE.] T -7
i
0.99x
I »]
18406 | " <
[oy %]
Ead
q g 1
100000 S E
2 b +
.
5 10000 | bt :
g L +4‘ + F 4
E . ? ~
t 1000 | 1
<L
I
[&]
£
100 F . .
+ 9
10 1
L 4
+
L 9
‘ - P Py | e A 'l al A aal A iaal . il
1 10 100 1000 10000 100000 1e+06 18+07
2CHAFF nodes expanded

FIGURE 5.2: Comparison of node counts for PBCHAFF and ZCHAFF on CNF
encodings. Each point corresponds to a CNF problem instance. The z coordinate
corresponds to the number of nodes expanded for ZCHAFF and the y coordinate
corresponds to the number of nodes expanded by PBCHAFF. The line f(z) = z is
plotted as a reference. The curve f(z) = 0.99z is the best log transformed linear fit.

88

of ZCHAFF on CNF encodings. This number might be improved if we spent additional
time optimizing the PBCHAFF code. Both algorithms have been carefully optimized;
however, ZCHAFF is a more established algorithm that has gone through a number of
revisions. It is likely that PBCHAFF still has some room for improvement. However,
we cannot reduce this factor below 1.0 since PBCHAFF is really equivalent to ZCHAFF
with slightly more complex data structures when run as a resolution based method.
The results seen here are analogous to the proof complexity result of Section 4.1.1
that showed the cutting-plane proof system is a proper generalization of resolu-
tion. Similarly, these experiments show that PBCHAFF is a proper generalization of
ZCHAFF in that PRCHAFF captures the same functionality as ZCHAFF with modest
performance costs. In the worst case, we can always run PBCHAFF as a resolution-
based solver and approximately match the performance of ZCHAFF. Later we will see
that the reverse is not true; ZCHAFF is exponentially worse than PBCHAFF on impor-
tant classes of problems. Clearly, pseudo-Boolean versions of DPLL style algorithms

need not sacrifice the ability to quickly traverse search trees.

5.2 Pigeonhole Problems

In this section, we begin to explore the performance of PBCHAFF on the pigeonhole
problem. We saw in Section 5.1.1 that PBCHAFF simulates a resolution based method
when applied to CNF constraint sets. While PBCHAFF does perform quite nicely as
a resolution-based method, the goal was to improve the strength of the underlying
proof system beyond that of resolution.

We start by applying strengthening to CNF encodings of the pigeonhole prob-
lem as a preprocessing method. Then we compare the performance of PBCHAFF on
the strengthened encoding to the performance of a number of resolution-based meth-
ods. In addition, we look at the performance of two other pseudo-Boolean methods.
OPBDP is a pseudo-Boolean version of the DPLL method that does not apply learn-
ing [3]. The second is a version of PBCHAFF that learns only clausal constraints
(simple disjunctions). Like PBCHAFF, both of these methods are given the encoding
strengthened by preprocessing.

89

For all solvers, parameter settings were set to the default values and a timeout
was set at 4000 seconds. Experiments were run on 1.8MHz Athlon processors with
256K on-chip cache and 512MB of RAM. Code was compiled with Gnu g++ using

full optimization and run under Linux.

5.2.1 Experimental Results

By applying the strengthening method described in Section 4.6, we were able to
generate a more concise encoding of the problem from the clausal encoding. In the

clausal encoding

n
Y pe21 i=1,..,n+1
k=1
?_Jik'*'ﬁjkzl i#j,k:l,.,.,'n (51)

the set of constraints (5.1) is replaced with the constraints

n+l

Zﬁ-kzn k=1,...,n

i=1

Table 5.1 shows node counts and execution time for both preprocessing and solution
time. Resolution-based methods can solve problems of size 14 in a few days of exe-
cution time. The pseudo-Boolean solver PBCHAFF can solve a problem of size 90 in
less than an hour.

The strengthened encoding generated by preprocessing the CNF encoding was
strong enough to allow polynomial size search trees. A graph of the node count
data is shown in Figure 5.3 and has been fitted with a polynomial curve f(n) =
0.83n2™ where n is the number of pigeons. The number of variables is n” + n, so
the number of nodes scales linearly with the number of variables. A similar graph for
both preprocessing and solution time is shown in Figure 5.4. Again we see polynomial
scaling. Preprocessing scales at about n® in terms of the number of pigeons, or n? in
the size of the CNF encoding. Solution time scales at around n® in terms of pigeons
and n?% in terms of the number of variables.

All of the other solvers we tested showed exponential scaling. Performance for all

solvers is shown in Figure 5.5. With the exception of PBCHAFF, data points for all

90

Instance Node count | Preprocessing (sec) | Solution (sec)
hole10.cnf 89 0 0.01
holel5.cnf 209 0.05 0
hole20.cnf 379 0.23 0.02
hole25.cnf 599 0.77 0.05
hole30.cnf 869 2.13 0.12
hole35.cnf 1189 5.19 0.36
hole40.cnf 1559 11.28 1.6
holed5.cnf 1979 23 2.82
hole50.cnf 2449 43.42 4.74
holeb5.cnf 2969 78.11 7.69
hole60.cnf 3539 134.61 11.7
hole65.cnf 4159 252.42 17.38
hole70.cnf 4829 417.32 25.49
hole75.cnf 5549 686.22 35.64
hole80.cnf 6319 1119.01 49.15
hole85.cnf 7139 1922.51 66.55
hole90.cnf 8009 3174.47 88.54

TABLE 5.1: Results for PBCHAFF on pigeonhole problems. The table lists node
counts, execution time in seconds for strengthening as a preprocessing method, and
execution time in seconds for solution.

91

100000

‘Node qﬂé .

0.83n

10000

Number of Nodes

100 |

10 f

L 1 L 1 1 L
10 20 30 40 50 60 70 -1} 90 100
Number of Pigeons

FIGURE 5.3: Size of search trees in terms of node counts for PBCHAFF on the
pigeonhole problem. The curve shown, f(n) = 0.83n%%, is the best polynomial fit
for the data.

92

10000 T T T T T T T T T
Preprocessing =
Soluqu L
1000 |- C) s, o —
o Y S—

100

10

0.1

o.M

CPU time in seconds

0.001

0.0001

16-05

10 20 30 40 50 60 70 80 90 100
Number of Pigeons

1e-06 ! L

FIGURE 5.4: Preprocessing and solution time for PBCHAFF on the pigeonhole
problem. The best polynomial fit for the preprocessing data is the curve f(n) = cn®!,
and the curve f(n) = dn*® is the best polynomial fit for the solution data.

93

10000 T T T T T T T

T 1]
ZCHAFF =—+—]
BarkMin —— 1
RELSAT ~—u—
OPBDP —— |

pbCHAFF learn distjgcuons ——

1000 |- POCHARF _° 4

[n]

100 |

Time (sec}

10 ¢

0.1 L L
i 20 30 40 50 60 70 a0 80 100

Number of Pigeons

FIGURE 5.5: Comparison of solvers on the pigeonhole problem. Resolution based
methods ZCHAFF, RELSAT, and BERKMIN show exponential scaling. OPBDP, and
the PBCHAFF version that learns only clausal constraints both show exponential scal-
ing. PBCHAFF shows polynomial scaling. The best polynomial fit for the PBCHAFF
solution data is the curve f(n) = dn*84.

the solvers are tightly clustered. Figure 5.6 provides a closer look at this cluster. The

resolution-based solvers scale as expected, timing out at 12 to 13 pigeons.

Scaling is exponential in the number of pigeons for the pseudo-Boolean solver
opBDP. This also should be expected. Recall that Lemma 4.3.1 showed pseudo-
Boolean DPLL without learning is still a resolution-based method. The version of
pBCHAFF that learns only clausal constraints also scales exponentially on the pi-
geonhole problem. Although the solver learns, it lacks parallel inference. Compound
constraints cannot be learned, so conflicts must be eliminated one at a time instead
of in parallel. Note that both of these methods have the benefit of building inference
used in the strengthening preprocessing method, but this is not helpful in reducing

the size of proofs in the absence of parallel inference. Strengthening could be applied

94

10000 T T T T T T
ZCHAFF —e—
BerkMin —e—
AELSAT ——
1 OPBDP —a— 1
1000 F pbCHAFF learn disjunctions —a— 4
100 | e
1
s
] 10r 3
£
=
1F .
01} -
0'0‘ 1 1 1 1 L] 1
6 7 8 8 10 1 12 13

Number of Pigeons

FIGURE 5.6: Comparison of solvers on the pigeonhole problem.

at every node, potentially building more compound constraints. Unfortunately, these

constraints also cannot be used to reduce proof length without parallel inference.

These results show that we can automate proof systems stronger than resolution
that easily find and efficiently generate short proofs of the pigeonhole problem. Given
a weak CNF encoding of the pigeonhole problem, PBCHAFF can construct a stronger
pseudo-Boolean encoding in polynomial time. PBCHAFF uses a learning method with
parallel inference that allows it an exponential speedup over both resolution-based
methods and pseudo-Boolean methods that lack parallel inference. We can conclude
that moving beyond resolution requires more than just changing representation. Pow-
erful inference rules must also be incorporated to shorten the length of constructed

proofs.

95

5.3 Pigeonhole Problems Embedded in Planning

Problems

Solving the pigeonhole problem is useful for exploring the proof strength of a
solver, but in its pure form it is not a particularly interesting real world problem.
However, many real world problems are believed to contain embedded pigeonhole
problems. In this section we look at solving a pigeonhole problem embedded in a
simple logistics problem. We compare the performance of ZCHAFF with PBCHAFF
when PBCHAFF is allowed a pseudo-Boolean encoding of the problem.

5.3.1 A Simple Logistics Problem

The problem domain we consider here and in the remainder of the thesis involves
moving packages between cities using airplanes. We will first describe the problem
in first-order logic and then show how it can be encoded as a satisfiability problem.
The axioms defined below allow three actions: packages can be loaded onto planes,
planes can fly between cities, and packages can be unloaded. The problem concerns
objects, locations, planes, and time, and their respective domains O, L, P and T are
finite in size. A problem instance is formed by adding an initial state describing the
initial locations for planes and packages, and a goal state describing the destination
cities for the packages. Then we can pose the question of whether a plan exists
that delivers packages from their initial locations to their destination cities within a
specified number of time steps.

The first-order encoding requires three predicates:

objectAt(Q,L,T) +~— object O is in location L at time T
planeAt(P,L,T) «— plane P is in location L at time T
inPlane(O, P,T) «— object O is in plane P at time T

96

We will use numbers to denote constants. The context of the number will be sufficient
to determine the domain of the constant. For instance, the literal objectAt((Os,!,t)

where Oj refers to the third element of O will be denoted objectAt(3,1,1).

Frame Axioms:
Yo,l,t.3p. objectAt(o,l,t) — objectAt(o,!,t+ 1) V inPlane(o,p,t +1) (5.2)
Vo,p,t.3l. inPlane(o,p,t) — inPlane(o,p,t + 1) V objectAt{o,{,t+1) (5.3)

Frame axioms require objects to maintain their current position unless they are
moved. Objects stay at the same location or they are loaded onto planes (5.2),

and they stay in the same plane or are unloaded (5.3).

Change of State:

Vo,l,t,p. objectAt(o,l,t) A inPlane(o,p,t + 1) — planeAt(p,l,t) (5.4)
Vo,l,t,p. objectAt{o,l,t) A inPlane(o,p,t + 1) — planeAt(p,l,t+1) (5.5)
Vo,l,t,p. inPlane(o,p,t) A objectAt(o,l,t + 1) — planeAt(p,{,t) (5.6)
Yo,l,t,p. inPlane(o,p,t) A objectAt(o,l,t +1) — planeAt(p,l,t+1) (5.7)

The change of state axioms define how packages are loaded onto and unloaded from
planes. If an object is loaded onto a plane, then the plane is required to be at the
same location as the object at the time when the object is loaded (5.5), as well
as the preceding time step (5.4). Axioms for unloading an object are simply the
reverse of loading. A loading or unloading action requires a total of two time-steps

for completion.

Consistency of State:

Vp,t, 1y, L. 1) # lp planeAt(p,l;,t) — —planeAt(p, ls,t) (5.8)
Vo,t Iy, la. I # 13 objectAt(o,l;,t) — —objectAt(o,ls,t) (5.9)
Yo,t,p1,p2. P1 # po inPlane(o,p;,t) — —inPlane(o, pa,t) (5.10)

Yo,t,1,p. objectAt(o,!,t) — ~inPlane(o,p,t) (5.11)

Yo,t.3p,l. objectAt(o,l,t)V inPlane(o,p,t) (5.12)

97

Consistency of state axioms (5.8) and (5.9) require that planes and objects be in only
one location at a time. Note that because planes cannot be at more than one location
during any given time, it follows that a plane must take at least one time step to fly
between cities. Axiom (5.10) requires that objects be in only one plane at a time.
Axiom (5.11) keeps objects from being in both a plane and a location at the same
time, and axiom (5.12) requires that each object always exists somewhere, either in
a plane or at a location. We could also require planes to always be at some location,
but these constraints are not actually necessary since planes disappearing can only

impede the loading and unloading of objects.

5.3.2 The Logistics Pigeonhole Problem

To embed a pigeonhole problem in our instances, we create problems that have
n + 1 objects and only n planes. We need to do a bit more to force a pigeonhole
problem since there is no limit on the number of objects a plane can carry. We could
potentially put all n+1 objects in one plane. We create n+1 locations so we can map
each object to a different starting location and give each object a destination city that
is one hop over from its initial location. Objects must arrive at their destinations by

time step 5. Each of the n planes are mapped initially to first n locations.

Initial State:

objectAt(i,i,1) 1<i<|O| (5.13)
planeAt(i,i,1) 1<i<|P| (5.14)
Goal State:
objectAt(i, i+ 1,5) 1<i<|0| -1 (5.15)
objectAt(|O|,1,5) (5.16)

The first n objects have planes immediately available for loading at time step 1.
They can be loaded by time step 2, arrive at their destination at time step 3, and

be unloaded at their destination by time step 4, well within the 5 time step deadline.

98

However, object number n 4+ 1 cannot be delivered on time. The fastest way to move
object number n+ 1 without making any other deliveries late, is to have the n'* plane
pick it up when it delivers the n** object to its destination. The plane arrives at time
step 3, so object number n + 1 can be loaded by time step 4 (loading and unloading
can occur in parallel). The plane now takes off for the destination city (back to city
number 1) and arrives at time step 5. The object does not arrive officially until it is
unloaded at time step 6, missing the deadline. Requiring all objects to arrive by time
step 5 creates an embedded pigeonhole problem of size n within the simple logistics
problem.

It was natural to consider the objects analogous to pigeons, and the planes analo-
gous to holes, but it is actually the locations that are analogous to the pigeons. The
distribution of the objects together with their deadlines force a mapping between
planes and locations. Each location requires a plane at the same time (the first part
of the pigeonhole problem), and planes can only be in one location at a time (the

second part of the pigeonhole problem).

5.3.3 CNF Encoding

We create SAT encodings of our logistics pigeonhole problem for different values
of n by grounding the first-order encoding over the finite domain values. For each
axiom we generate a ground encoding by expanding the quantifiers. First, existential
quantifiers are expanded to disjunctions. A literal with an existentially quantified
variable is replaced with a disjunction over the set of literals formed by taking an
instance of the literal for every possible assignment of domain values to the existential

variables in the literal.
Example 5.3.1. Given the formula
Yo. Jp. inPlane(o,p,3)

that says all objects are in some plane at time step 8, we create an instance of

inPlane(o,p,3) for every p € {1,2,...,|Pl} and form the disjunction

Vo. inPlane(o,1,3)V inPlane(o,2,3) V.-V inPlane(o, |P|, 3)

99

Once existential quantifiers are removed, universal quantifiers are expanded by
generating an instance of the first-order formule for every possible assignment of
domain values to variables. Finally, the propositional implications are converted to

disjunctions.

Example 5.3.2. If we consider a pigeonhole plan of size n = 2, the ground encoding
for aziom (5.2) will require |O||L||T| = 45 clauses. Here we have generated the first
9 of those 45.

—objectAt{l,1,1) V objectAt(1,1,2)} V inPlane(1,1,2) V inPlane(1, 2, 2)
—objectAt(2,1,1) V objectAt(2,1,2) V inPlane(2, 1,2) V inPlane(2, 2, 2)
—objectAt(3,1,1) V objectAt(3,1,2) V inPlane(3,1,2) V inPlane(3, 2, 2)
—objectAt(1,2,1) V objectAt(l,2,2) V inPlane(l,1,2) V inPlane(l, 2,2)
—~objectAt(2,2,1) V objectAt(2,2,2) V inPlane(2,1,2) V inPlane(2,2,2)
—objectAt(3,2,1) V objectAt(3,2,2)} V inPlane(3, 1,2) V inPlane(3, 2, 2)
-objectAt(l,3,1) V objectAt(l,3,2) V inPlane(l,1,2) V inPlane(1, 2,2)
—objectAt(2,3,1) V objectAt(2,3,2) V inPlane(2, 1,2) V inPlane(2, 2, 2)
—objectAt(3,3,1) V objectAt(3,3,2) V inPlane(3, 1,2) V inPlane(3, 2,2)

5.3.4 Pseudo-Boolean Encoding

The pseudo-Boolean encoding of the logistics pigeonhole problem is very similar
to the CNF encoding. For most axioms, we simply ground the first-order formula

into CNF and then write each ground clause as a pseudo-Boolean clausal constraint.

Example 5.3.3. The first ground clause from aziom (5.2)
—objectAt(1,1,1) V objectAt(l,1,2) V inPlane(l,1,2) V inPlane(l, 2,2)
is written as

—objectAt(l,1,1) + objectat(l, 1,2} + inPlane(l,1,2) + inPlane(l,2,2) > 1

100

The only axioms that are encoded with compound constraints are from the con-
sistency of state axioms. We use a pseudo-Boolean encoding for axiom (5.8), stating
that a plane can be in only one location at a time, that is more concise than the
equivalent CNF encoding.

IL|
> -planest(p,L,t) > |L| -1 p=1...|P|, t=1...|T| (5.17)
=1
We can combine axioms (5.9), (5.10), and (5.11), that together require an object to be
in only one place at a time (either a location or a plane) in the set of pseudo-Boolean

constraints

1Ll |P|

Z —-planeAt(p,!,t) + Z -iinPlane(o,p,t) > |P|+|L| -1
=1 p=1
(5.18)
p=12,...,|P|

t=1,2,...,|T|

5.3.5 Experimental Results

We compared the performance of ZCHAFF and PBCHAFF on the pigeonhole lo-
gistics problem. ZCHAFF was run on the CNF encodings using default settings.
PBCHAFF was run on the pseudo-Boolean encoding using the same parameters. Both
solvers were set to time out at 1000 seconds. Table 5.2 gives the number of variables
and constraints for problem instances. Experiments were run on 1.53MHz Athlon
processors with 256K on-chip cache and 512MB RAM.

The results for the pigeonhole logistics problem are shown in Figure 5.7. Both
solvers struggled with the problem, showing what appears to be exponential scaling
in the number of objects. This should be expected for solver ZCHAFF due to its reso-
lution based approach. The results for PBCHAFF are more interesting. In Section 5.2,
PBCHAFF was able to find short proofs of the explicitly stated pigeonhole problem:
however, when the pigeonhole problem is obscured within a planning problem the

solver fails to find a short proof, despite the stronger pseudo-Boolean representation.

N variables | CNF clauses | PB constraints
6 480 5,216 3,246

7 665 8,483 5,188

8 880 12,801 7,786

9 1,125 18,611 11,136
10 1,400 25,814 15,334
11 1,705 34,671 20,476
12 2,040 45,353 26,658
20 5,800 217,029 125,074
30 13,200 744,644 425,214
40 23,600 1,779,659 1,011,754

101

TABLE 5.2: Size of the logistics pigeonhole problem as a function of the number
of objects. The columns give the number of variables for each instance, the number
of clauses in the CNF encoding of the instance, and the number of constraints in the
pseudo-Boolean encoding of the instance.

10000 T T T T

ZCHAFF —s—]
poCHAFF —+—

100 |-

10

Time (sec)

0.1

ﬂ.ﬂ‘l’ ! 1] 1 L
-] 7 8 9 10 11 12

Number of Locations (Pigeons)

FIGURE 5.7: Comparison of solvers on the logistics pigeonhole problem.

102

This result prompted a closer look at the pseudo-Boolean encoding of the pigeon-
hole logistics problem. The consistency of state constraints
L
> -planeAt(p,,,t) > |L|-1 p=1...|P|, t=1...|T|
=1
require planes to be in only one location at a time. Stating it another way, it allows
only one location per plane. For any given time step ¢, these constraints are equivalent

to the pigeonhole constraints

n1

> Pu=n k=1,...,n

i=]

allowing only one pigeon per hole. The pigeonhole constraints that require every

pigeon to get a hole

dpw=1 i=1,...,n+1 (5.19)
k=1

are not part of the original problem encoding. They need to be derived from the
original constraint set through inference in order to make the embedded pigeonhole

problem explicit. The necessary constraint has the form
Vo,l,t. 3p. objectAt(o,l,t) A ~objectAt(o,l,t +2) — planeAt(p,I,t+1) (5.20)

The equivalent pseudo-Boolean encoding would be:

|7l
—objectht(o,l,t) + objectAt{o,l,t +2) + Z planeAt(p,l,t+1)>1
p=1

0=1,2,...,10 (5.21)

If an object is at a location at time ¢ and two time steps later it is gone, then there
needs to be a plane at the same location at time t + 1 to load the object and take
it away. Under these conditions a location needs (“gets”) a plane. In the pigeonhole

logistics problem these conditions are met for all locations at time step 2 (each location

103

“gets” a plane). Note that packages may be loaded at time step 2 or time step 3 and
still make the deadline of time step 5. In either case, a plane is required at time step 2
because a plane must be present at both the time step before and during loading. At
time step 2, a subset of the the inequalities (5.21) reduce to constraints of the form
(5.19) leading to the obvious contradiction.

The first-order constraint (5.20) can be inferred from the frame axiom (5.2) and
change of state axiom (5.4) by first-order resolution. First, we transform axioms
(5.2) and (5.4) to normal form. We remove implications by replacing them with

disjunctions. The axiom (5.2) becomes
Yo,l,t.3p. —objectAt(o,l,t) V objectAt(o,l,t + 1) V inPlane(o,p,t +1) (5.22)
and axiom (5.4) becomes
Vo,l,t,p. ~objectAt(o,!,t) V ~inPlane(o,p,t + 1) V planeAt(p, [, t) (5.23)

Next we remove the existential quantifier from (5.22) by adding a Skolem function [65].

Yo,l,t. ~objectAt(o,l,t) VobjectAt(o,!,t+ 1)V inPlane(o, F(o,1,1),t+1) (5.24)

The Skolem function F(o,!,%), when applied to an object, location, and a time step,
returns the plane that loads the object.

Now we are ready to resolve (5.24) and (5.23). We begin by determining the most
general unifier for atomic sentences inPlane(o, F{o,l,t), t+1) and inPlane(o, p,t+1).
These are the first-order literals we wish to resolve. A unifier is a substitution that
would make both atomic sentences look the same. The most general unifier is the
substitution that makes a minimal number of variable bindings. In this case, the
most general unifier is {p/F(o,!,t)}. We now replace all occurrences of variable p in

(5.23) with F(o,!,t). We can now resolve the two axioms.

Yo,l,t. ~objectAt(o,l,t) V objectAt(o,l,t+ 1) V inPlane(o, F{o,1,t),t + 1)
Yo,l,t,p. —objectAt(o,,t) V ~inPlane(o, F(0,,t),t + 1) V planeAt(F(o,l,1),!,1)

Vo,l,t. —objectAt(o,l,t) V objectAt(o,!,t + 1) V planeAt(F(o,I,t),!,1) (5.25)

104

Next we do another resolution, resolving the resulting constraint (5.25) with itself. We
unify objectAt(o,l,t) and objectAt(o,[,t + 1) by making the substitution {t/t+ 1}
in one version of the constraint.

Vo,l,t. —objectAt(o,l,t) V objectAt{o,!,t + 1) V planeAt(F(o,l,t),1,1)

Yo,l,t. —objectAt(o,l,t + 1)V objectAt(o,l,t +2) V planeAt(F(o,!,t),{,t + 1)

Yo,l,t. ~objectAt(o,l,t) V objectAt(o,l,t + 2) V planeAt(F(o,l,t),1,t + 1)

(6.26)
Recall that function F returns the plane that loads object o at location { and time
t. The resolvent (5.26) is equivalent to the constraint we would produce by removing
the existential quantifier from the formula (5.20). The two constraints are therefore
logically equivalent.

The embedded pigeonhole problem can be made explicit by two first-order resolu-
tion steps. However, PBCHAFF knows nothing about first-order resolution. To make
the embedded pigeonhole problem explicit, it must infer all the ground instances of
(5.26) with o = ! and t = 2 by learning. The resuit seen in Figure 5.7 suggests that
PBCHAFF is not able to quickly learn and collect these instances into the constraint
database. This is not surprising when we consider that PBCHAFF has no way of pref-
erentially deriving these instances over any of the many other constraints it might
learn. For example, given a logistics planning problem of size 10 PBCHAFF learns
over 24,000 new constraints. With so many possible constraints to learn, finding
the 10 pigeonhole instances that collapse the problem is like searching for needles in
a haystack. In fact, the problem is somewhat worse because every instance must be
found before any benefit occurs. If any one of the instances is missing, the pigeonhole
subproblem is satisfiable and a refutation proof is not possible.

A quick way to side-step this problem is to simply add all ground instances of
(5.26) to our problem encoding. Certainly, these constraints are valid for all problem
instances since they are derived from the basic problem axioms. We then repeated
the experiment giving both solvers the new encoding. Results for both experiments

are shown in Figure 5.8.

105

10009
1000 ¢
100 |
F)
n
@ 10 |
E
[
1r
o1r ZCHAFF encoding 1 —w—
zZCHAFF encoding 2 —e— |
pbCHAFF encoding 1 —+—
pbCHAFF encndingg .
dcq 3
ﬂ,ﬂt 1 1 L 1 1
5 10 15 20 25 30 35 40

Number of Locations {Pigeons)

FIGURE 5.8: Comparison of ZCHAFF and PBCHAFF on the logistics pigeonhole
problem. Encoding 1 is the original encoding described in Section 5.3.1. Encoding 2
is the same encoding with the addition of ground instances of resolvent (5.26).

106

The new encoding did not improve the performance of ZCHAFF over the old encod-
ing. The performance of PBCHAFF was dramatically improved with the new encoding,

allowing it to solve a logistics pigeonhole problem of size 40 in 4794 seconds.

5.3.6 Discussion

PBCHAFF was not able to solve the logistics pigeonhole problem efficiently because
it lacked the necessary ability to reason about the problem’s first-order structure. We
were able to sidestep this problem by doing the first-order reasoning by hand and
then adding the ground instances of the resolvent to the problem encoding.

This approach is not entirely infeasible. It was not difficult to identify the set
of ground instances needed to enhance the encoding. We identified a resource that
might become pigeonholed and added axioms that state explicitly the conditions in
which the resource is required. If weilzeeded to solve a large number of instances
from a single planning domain, the investment of time needed to build and test the
enhanced encoding might be warranted. The problem with this approach is that there
may be many resources to consider and possibly multiple conditions that require a
particular resource. The size of the encodings could grow substantially.

A heuristic approach might also be considered. Altering branching heuristics or
relevance policies to favor learning, and retaining constraints that might be part of a
pigeonhole problem, could increase the chances of an efficient solution. Unfortunately,
as we have seen, the problem is extremely briftle since there is no benefit to finding
any proper subset of the pigeonhole constraints. If any one instance is missed, the
problem cannot be solved efficiently. A heuristic approach is unlikely to be strong
enough to overcome the brittleness of the problem.

The results on the logistics pigeonhole problem are both surprising and interest-
ing. On one hand, pseudo-Boolean representation and inference is ideal for capturing
the structure of the pigeonhole problem and allowing an efficient solution. On the
other hand, as soon as the problem is embedded in a real-world domain the rep-
resentational benefits of psendo-Boolean are easily lost. The embedded pigeonhole

problem we consider here is about as simple as it can be and still be meaningful, yet

107

Domain Range of sizes
Objects 10-19
Planes 2-12
Locations 10-19
Time steps 5-8

TABLE 5.3: Range of possible values for domain sizes for the randomly generated
planning problems.

even this simple problem obscured the pigeonhole problem too much for PBCHAFF to
recognize it. It appears that pseudo-Boolean solvers might be both ideal for solving
pigeonhole problems and at the same time hopeless at solving any meaningful embed-
ded pigeonhole problem. The solution we use here is not elegant. An ideal solution
would capture and reason about the first-order structure of the problem as well as the
pigeonhole structure. This suggests that a more general representation and inference

system is needed to solve even simple embedded pigeonhole problems.

5.4 Random Planning Problems

In this section we revisit the logistics domain from Section 5.3, only now we
consider randomly generated problems. These problems again use the axioms from
Section 5.3.1. The domain size of each first-order domain is chosen randomly over a
range of possible sizes listed in Table 5.4. Initial locations are selected randomly for
objects and planes, and destination locations for objects are also selected randomly.
We construct both a CNF encoding and a pseudo-Boolean encoding as described in
Section 5.3. In addition to the basic axioms, initial and final conditions, we again
augment the pseudo-Boolean encoding with the ground instances of (5.26). We gen-
erated 3000 randomly generated logistics problems and compared the performance of
ZCHAFF on the CNF encoding with PBCHAFF on the pseudo-Boolean encoding.

Parameter values for both solvers were set to default values. Both solvers were set
to time out after 1000 seconds. Experiments were run on 1.53MHz Athlon processors
with 256K on-chip cache and 512MB RAM.

108

5.4.1 Experimental Results

A comparison of PBCHAFF and ZCHAFF on the random logistics problems is shown
in Figure 5.9. Each data point represents a problem instance. A point’s x coordinate
is the execution time for ZCHAFF and the y coordinate is the execution time for
PBCHAFF. The graph uses logscaling on both the = and y axes. We fit the data with
a power function model by taking a log transformation of both axes and then fitting
the transformed data with a linear regression. Again, we used a Deming regression
instead of a least squares regression because both the z and y data contain error. We
assumed the error associated with both z and y data was the same. Data points were

discarded if either of the solvers timed out.

Unlike our earlier comparison of the solvers on CNF encodings, the data here does
not have a strong linear trend. As a result, the fitted curve only gives us a rough
quantitative measure of how the two solvers compare for this problem domain. There
are a significant number of points in the lower right corner of the plot. These points are
instances where PBCHAFF dramatically outperforms ZCHAFF. There are no similar
points in the upper left hand corner for ZCHAFF. A majority of the data falls below
the line f(z) = z. The best log transformed linear fit is the curve f(z) = 0.49z%".
For small problems that ZCHAFF solves in around 10 seconds we can expect PBCHAFF
to be, on average, faster by a factor of 3.5. For larger problems that ZCHAFF solves in
around 1000 seconds we can expect PBCHAFF to be, on average, 10 times faster. The

data shows that PBCHAFF has a clear advantage over ZCHAFT on these problems.

Figure 5.10 shows the same graph with only the satisfiable instances. Here we
see that on satisfiable instances, performance of the two solvers is fairly close, with
ZCHAFF performing slightly better. The best log transformed linear fit to the data
is the curve f(z) = 2.53z%%!. Figure 5.11 gives a comparison of node counts for
satisfiable instances. The best log transformed linear fit to the data is the curve
f(z) = 3.34z%%. The data suggests that the size of search trees constructed by
PBCHAFF and ZCHAFF are on average about the same for satisfiable instances. These

two graphs are very similar to Figure 5.1 and Figure 5.2 from Section 5.1.1. PBCHAFF

109

1000 ¢

100

10 |

pbCHAFF time {sac)

01 |

0.01 1

0.001 i P I . " . i
0.001 0.01 01 1 10 100 1000

ZCHAFF time (sec)

FIGURE 5.9: Comparison of PBCHAFF and ZCHAFF on random planning problems.
Each point corresponds to a CNF problem instance. The z coordinate corresponds
to the execution time in seconds for ZCHAFF and the y coordinate corresponds to
execution time in seconds for PBCHAFF. The points above the line f(z) = z represent
instances where ZCHAFF outperformed PBCHAFF. Points below f(x) = z represent
instances where PBCHAFF outperformed ZCHAFF. The curve f(z) = 0.49z%7 is the

best log transformed linear fit.

110

100 |

10

pbCHAFF time {sec)

0.1 |

0.01 F=i+ 1 1 . P | . S | . —
0.04 0.1 1 10 100 1000

2CHAFF time {sec)

FIGURE 5.10: Comparison of solvers on satisfiable instances of random planning
problems. The plot shows execution time in seconds for ZCHAFF on the z axis
versus PBCHAFF on the y axis. The best log transformed linear fit is the curve
f(z) = 2.53z%%. The line f(z) = z is plotted as a reference.

and ZCHAFF build search trees of approximately the same size, but PBCHAFF is

slightly slower per node.

When we look at the same comparisons for unsatisfiable instances the results
are quite dramatic. Figure 5.13 shows a comparison of node counts on unsatisfiable
instances and Figure 5.12 shows a comparison of execution time on unsatisfiable
instances. In both graphs, almost all of the points are below the line f(z) = z.
PBCHAFF almost always builds a smaller search tree and solves the problem in less
time. The significant number of points in the lower right hand corner show that
often PBCHAFF is dramatically better. PBCHAFF is clearly superior to ZCHAFF on
unsatisfiable instances, and by much more than small linear factor. It is common to
find randomly generated problems that require hundreds of seconds for ZCHAFF to

solve and only a fraction of a second for PBCHAFF.

ILL

1e+06

100000

10000

pbCHAFF node counts

1000 |

100 i i L] " N 1 . " | i .
100 1000 10000 100000 1a+06

2CHAFF node counts

FIGURE 5.11: Comparison of solvers on satisfiable instances of random planning
problems. The plot shows the number of nodes expanded by ZCHAFF on the z axis
versus nodes expanded by PBCHAFF on the y axis. The curve f(z) = 3.34z%% is the
best log transformed linear fit. The line f(z) = x is plotted as a reference.

112

1000 i
X —
100 |
10 |
g
L)
@
E
[TH 1r
o
<
I
2
o
01 |
»
0.01 + +++ / B b AR -
oml " L i 1 A " L i 1 el PR
0.001 0.01 0.1 1 10 100 1000

ZCHAFF time (sec)

FIGURE 5.12: Comparison of solvers on unsatisfiable instances of random planning
problems. The plot shows execution time in seconds for ZCHAFF on the z axis versus
execution time for PBCHAFF on the y axis. The line f(z) = z is plotted as a reference.

113

1a8+06 T 1 T T T

100000 |

10000

1000

pbCHAFF node counts

100 |-

1 n A 1 il "] P |

1 10 100 1000 10000 100000 18+06
2CHAFF node counts

FIGURE 5.13: Comparison of solvers on unsatisfiable instances of random planning
problems. The plot shows the number of nodes expanded for ZCHAFF on the z axis
versus PBCHAFF on the y axis. The line f(z) = z is plotted as a reference.

114

It has often been speculated that many problem domains such as planning and
scheduling contain embedded pigeonhole problems. These experiments suggest that
embedded pigeonhole problems do occur in random planning problems and may often
be the cause of unsatisfiability. Further study is needed to determine whether the
performance improvements seen here for the pseudo-Boolean methods can truly be
attributed to better performance on embedded pigeonhole problems.

Traditional satisfiability solvers continue to provide competitive solutions on plan-
ning problems. However, these experiments show that despite their success, they are
clearly unnecessarily slow. Lifted solvers that maintain the efficiency of traditional
methods and at the same time improve the power of clause learning through stronger
inference have the potential to provide highly competitive solutions on problem in-

stances from planning and logistics domains.

CHAPTER 6

Related Work

6.1 Integer Programming Techniques

In this section we present techniques from the field of operations research (OR).
Many important OR concepts and techniques have already been presented in Chap-
ter 4. These include pseudo-Boolean representation, the cutting-plane proof sys-
tem, and the coefficient reduction technique presented in Section 4.6. The methods
presented in this chapter are some of the most well known integer programming
techniques, and like PBCHAFF, they can be seen as automating some form of the
cutting-plane proof system. However, the style of automation has some significant
differences from PBCHAFF whose automation style is inspired by artificial intelligence
(AI) satisfiability algorithms.

Until recently, methods from the fields of Al and OR differed in both choices
of problem representations and algorithmic approaches. This made comparisons be-
tween methods difficult. The recent interest in integrated AI/OR techniques has
made a new and more interesting set of experiments possible, leading to a deeper
understanding of search and logical methods.

The operations research community is concerned with solving the infeger program-
ming problem. SAT problems are a subclass of zero-one integer programing problems.
An integer programming problem is an optimization problem in which all variables

are restricted to have nonnegative integer values. It can be described by a set of

116

constraints and an objective function of the form
maximize ¢’z

subject to: Az <b

T€ZL

where A € R™*" is an m x n real-valued array, and b € R™ and ¢ € R" are real-
valued vectors. The goal is to find a solution that does not violate any constraints
and gives the optimal value of the objective function. We will outline the classic
branch-and-bound and branch-and-cut methods and discuss how these methods have

been applied to solve satisfiability problems.

6.1.1 Branch-and-bound

The classic approach to solving the integer programming problem is branch-and-
bound. It is a systematic tree-style backtracking algorithm like the algorithms dis-
cussed in Chapter 2. Unlike satisfiability problems, the integer programming problem
is an optimization problem. The main pruning techniques used by branch-and-bound
are designed to eliminate feasible, but suboptimal solutions. The underlying idea of
branch-and-bound is to find a feasible integer solution early in the search process,
and use this solution to prune unproductive areas of the search space. Later we will
discuss how satisfiability problems can be encoded as integer programming problems,
and hence as optimization problems.

Branch-and-bound algorithms, like DPLL-style algorithms, use branch decisions
to iteratively partition the search space into a search tree. A node n in the tree
corresponds to a series of branch decisions, one for each of the nodes on the path
from the root to n. Unlike branch decisions in DPLL-style trees, a branch decision
in a branch-and-bound tree may not correspond to assigning a value to a variable.
Branch decisions will be discussed in more detail later in this section.

At each node in the search tree, a relaxation of the problem is solved. A relaxation
is an easier version of the problem that can generally be solved in polynomial time.
The solution set of the relaxed problem is always a superset of the solution set to the

original problem. For this reason the solution to the relaxed problem always provides

117

an upper (assuming a maximization problem) bound for the original problem. A good
relaxation provides a good approximation of the true solution.

Within the context of a branch-and-bound tree, the solution to the relaxation
can provide two types of bounds. If at any time during the search a relaxation
identifies a feasible solution, this solution can be recorded as the incumbent solution.
The incumbent solution records the best feasible solution encountered so far and is
updated each time a better solution is found. Additionally, any solution to the relaxed
problem at a given node provides an upper bound for all subproblems generated below
that node. Hence, if the solution to the relaxation at a given node is less than the
incumbent solution, then the subtree beneath that node can be pruned.

The most common relaxation used for IP problems is the linear relaxation which
consists of removing or “relaxing” the integer constraints of the IP problem and then
solving the associated linear programming problem (LP). An LP problem can be

stated as:

maximize ¢’z

subject to: Az <b

where again, A € R™*" is an m X n real-valued array, and 6 € R™ and ¢ € R"
are real-valued vectors. The linear programming problem is solvable in polynomial
time by the ellipsoid and interior point methods. The most commonly used simplex
method is not a polynomial time algorithm, but is very fast in practice. The solution
to the linear relaxation, as we discussed earlier, provides bounds for pruning the
search tree.

Each linear inequality az < b in an linear programming problem defines a half-
space in n-dimensional space. The intersection of the half-spaces is a polyhedron,
or polytope if it is bounded. Solutions to the relaxed problem are points in this
polytope, while integer solutions are a (possibly empty) subset of the polytope. The
optimal solution to the relaxed problem will always be an extreme (corner) point
of the polytope. Algorithms for solving the linear relaxation systematically search
among the extreme points of the polytope for the optimal solution. There are many

good references that discuss linear programming techniques [16, 56].

118

We return now to our discussion of the branch-and-bound algorithm. The de-
scription we give here might more accurately be referred to as a family of algorithms
or an algorithm framework. This is because branch-and-bound allows for a wide vari-
ety of methods for partitioning subproblems, and subproblem selection. A high-level

description of this framework follows.

1. Initialization. The original integer problem is added to the list of subproblems

L to be solved. There is no incumbent solution.

2. Termination. If the list of subproblems L is empty, the algorithm terminates.
The current incumbent solution is the optimal solution. If no incumbent solution

has been found, the problem is infeasible.

3. Problem Selection and Relazation. A subproblem is selected from the list L and
a linear programming relaxation is run to find the optimal solution z* to the

continuous problem.

4. Pruning and Fathoming.

o If the value of the objective function on z* is less than or equal to the
bound provided by the incumbent solution or there is no z* because the
problem is infeasible, then this subproblem can be pruned or fathomed. Go

to step 2.

o If the value of the objective function of the relaxed problem is greater than
the minimum bound provided by the incumbent solution and the solution
T* is integer, then it becomes the new incumbent solution. The list of
subproblems L is scanned for any problems that have objective function
values less than the new incumbent. These problems are removed from the
list. Go to step 2.

e If the value of the objective function of the relaxed problem is better than
that of the incumbent but is fractional, the current problem is partitioned

into subproblems. These problems are added to the list L.

119

The framework of branch-and-bound is highly flexible; however, some methods
are common enough to be considered standard. The most common subproblem par-
titioning method is to choose a variable in the relaxed solution with a fractional
value. Two new subproblems can be generated by adding constraints that eliminate
this fractional solution. For instance, if the variable z; has a value of % in the relaxed
solution, then the problem can be partitioned into two new subproblems, one with
the constraint z; < 0 and one with z; > 1, since clearly the range 0 < z; < 1 cannot
contain any feasible solutions. The most common subproblem selection method is

depth-first search. We will assume both of these methods from here on.

6.1.2 Branch-and-cut

Branch-and-cut is a variant of branch-and-bound with the additional ability to
generate cutting-planes at each node. Given an integer programming problem, a cut
or cutting plane is any linear inequality that is satisfied by the integral solutions of
the problem. Within the context of a branch-and-cut algorithm, we are interested in
generating a specific kind of cut called a separating cut. A separating cut is a cut
that is satisfied by all integral solutions, but unsatisfied by the solution to the linear

relaxation of the problem.

Example 6.1.1.
max I3 +Iq
st. —z; 42z,
3y +xe

IA A

I; € Z_?_
Figure 6.1 gives a graphical representation of this problem. The solution to the
linear relaxation (z1,z2) = (&, 32) gives the optimal continuous solution to the set
of inequalities. The solution is fractional and not a feasible integer solution. The

cutting-planes

120

.;.umu[lﬂll||||||H“”“m|my.‘.““|“ i

FIGURE 6.1: The non-integer solution (%, 1—78) is eliminated by cutting-plane z, < 2
and 2, + 22 < 3.

121

are examples of separating cuts. They both eliminate the fractional solution (z1,z2) =
(8, 8) while satisfying the integral solutions of the problem. If these cuts are added to
the linear relaxation, a new extreme point (1,2) is created giving an integer optimal

solution.

Branch-and-cut proceeds as the branch-and-bound algorithm. A linear relaxation
is solved at each node, but if the solution is fractional, there is the option of generating
and adding separating cuts to the constraint set. The addition of separating cuts
improves the quality of the linear relaxation by removing fractional extreme points.

Separating cuts can be seen as analogous to Al nogoods. Both are ways of in-
ferring new constraints that help prune the search space. Both in their own way
address an identified inconsistency. A nogood identifies a subset of the current par-
tial assignment that is inconsistent and eliminates all assignments containing that
subset. A separating cut eliminates an assignment that violates integer constraints.
In the Al setting, the addition of learned or inferred constraints enables propagation
to eliminate more assignments. Similarly, in the IP setting, cuts tighten the linear
relaxation. The resulting relaxation approximates the integer programming problem
more closely and can provide better direction for the search process.

There are many methods for generating cuts, and a full description of all methods
is beyond the scope of this work. The most common general-purpose cut method is
the Chvatal-Gomory cut. This method of cut generation was previously discussed
in Chapter 4 in the context of the cutting-plane proof system. Given a set of linear
inequalities, new implied constraints, or cuts are generated by taking linear combi-
nations over the set of constraints and then applying integer rounding. Recall the
separating cuts from our earlier example. If we take the following linear combination

over the original problem constraints

(3) —-I +2.’172 _<_4
(1) 3z, +z9 <6

1

o

T <

~|

and round down the fraction %, we generate the cut z» < 2. Note that here we are

122

dealing with < constraints as opposed to the > constraints used in Chapter 4. As a
result, the right hand side of the generated inequality is rounded down instead of up.

If we take the linear combination

(2) - +2z0 <4
(3) 3z =z <6

1 +Ts < '2?6

and we round down the fraction 2—76, we generate the cut z; + z» < 3. The result of
the most recent linear relaxation can be used to suggest which constraints should be
used to generate a cut. Variables assigned fractional values by the linear relaxation
have corresponding constraints in the simplex tableaun, and these are constraints are

used to generate cuts.

The side effects of generating numerous cuts are analogous to generating numerous
nogoods. Adding many constraints to the linear relaxation can dramatically reduce
the efficiency of the procedure. Branch-and-cut methods maintain a set of constraints
called the cut pool. Cut pools were first suggested by Padberg and Rinaldi [57).
Generated cuts are added to the linear relaxation and also stored for later use in the
cut pool. At a given node, the cut pool can be searched for separating cuts. Reusing
previously generated cuts can avoid a call to an expensive cut generating method.
However, if the size of the cut pool becomes too large, the cost of searching the cut

pool for separating cuts becomes more expensive.

One way of removing cuts from the cut pool is to maintain a count of the number
of times the cut has been checked for violation since the last time it was actually
found to be violated [59]. This metric is called the number of touches and provides a
simple measure of “effectiveness” or usefulness of a cut. Cuts with a low number of
touches are preferred over those with a higher number of touches. Systems may also
allow the user to define their own metric to determine which constraints to keep and
which to discard.

123

6.1.3 Solving Satisfiability Problems

A satisfiability problem can be encoded as an integer programming problem by

introducing an artificial variable. Consider the small CNF clause set:

Ty VI VI3
Ty VI3V Iy (6.1)
ToVITgV s

E1VIoV Iy

It can be formulated as the integer programming problem:

min o
st. T 4T +xT2 I3 >
Ty -+I +z3 —I4 >
o +Ia +ry —Iy 2
Tg —T1 =—To +rs =2 -1
z; € {0,1}, j=0,...,5

First, each clause in (6.1) is translated to an equivalent pseudo-Boolean inequality.
The artificial variable zo is then added to each clause. The problem is trivially
satisfiable by setting zo = 1. This provides a feasible starting solution. The CNF
clause set (6.1) is satisfiable if and only if the above integer programming problem
has a feasible solution with zo = 0.

The pruning method based on the incumbent solution described earlier has no
value in this context. Consider the trivial solution of setting zo = 1. The solution
to the linear relaxation will never produce a value greater than 1 for g so the trivial
solution does not lead to pruning. An integer solution with z¢ = 0 is a valid solution
to the satisfiability problem and no further pruning is necessary.

Branch-and-bound was first applied to satisfiability problems by Blair, Jeroslow,
and Lowe [11]. An interesting result shows that when the linear relaxation is applied
to an integer programming formulation of a satisfiability problem, the results are

equivalent to applying unit propagation.

124

Theorem 6.1.2. [11] The variables of a satisfiability problem T that are forced to
truth values by unit propagation are fized at the corresponding binary values by the
linear relazation. Any variable in T left unvalued by unit propagation is assigned a
fractional value by the linear relazation, and the linear relazation is inconsistent if

and only if unit propagation results in a coniradiction.

A consequence of Theorem 6.1.2 is that branch-and-bound and DPLL build identi-
cal search trees on satisfiability problems. An exception to this rule occurs when the
linear relaxation turns up an integer solution by chance. The search trees generated
by DPLL and branch-and-bound may have identical structure, however, DPLL provides
far more efficient solutions. This is because the linear relaxation is significantly slower
than unit propagation implementations (11, 47]. For this reason, branch-and-bound
does not provide competitive solutions on satisfiability problems.

There has been significant work applying cutting-plane methods to solving satis-
fiability problems. Much of this work focuses on using clausal resolution as a way to
generate cuts for cutting-plane methods (41, 42, 43]. This has led to branch-and-cut
methods for satisfiability problems [44].

A primary goal to the branch-and-cut method of Hooker and Fedjki was to ad-
dress the slowness of the linear relaxation for solving satisfiability problems [44]. Their
method improves over the branch-and-bound method by adding cutting-plane to re-
duce the search space and replacing the linear relaxation in part by unit propagation.
At any given search node, the unit propagation procedure is applied first. If a solution
is found, the algorithm terminates. If a contradiction is encountered, the algorithm
backtracks. Otherwise the linear relaxation of the problem is solved, and separating
cuts are found and added to the constraint set. The cuts generated are always clausal
inequalities and the separation algorithm is driven by clausal resolution. Separating
cuts are not generated below a given depth in the search tree because the benefit of
the cuts is not enough to offset the cost of the separation algorithm.

The branch-and-bound and branch-and-cut approaches to satisfiability problems
we have presented here all use pseudo-Boolean representation and integer program-

ming techniques. However, they don’t improve over the traditional satisfiability meth-

125

ods presented in Chapter 2. This is not surprising if we consider that these methods
take CNF encodings and translate them into clausal inequalities. On such encod-
ings, the linear relaxation is equivalent to unit propagation, and the cut generating
methods used are equivalent to clausal resolution. These methods are resolution-
based, just like the traditional satisfiability algorithms. These studies shed light on
the connections between IP and Al methods, but they do little to address the current

challenges of satisfiability research.

6.1.4 Summary

Our review of integer programming methods for satisfiability problems is some-
what misleading. Operations research attempts to solve satisfiability problems fail
to improve over the traditional CNF-based satisfiability solvers of Chapter 2 despite
the increased representational power of pseudo-Boolean constraints. Almost all of
the methods presented Section 6.1.3 would fail to solve a simple pigeonhole problem.
It would be incorrect to conclude that integer programming techniques have little to
offer for the solution of satisfiability problems. Consider that a pigeonhole problem is
easily solved by a single linear relaxation if a stronger non-clausal encoding is used.
General integer programming techniques are good at many other things including
many 0-1 optimization problems like traveling salesman problems.

Integer programming methods have some important commonalities with DPLL-
style solvers in their approaches. There is substantial literature discussing connections
between AI and OR; we only intend to make a few general remarks. Branch-and-
bound and branch-and-cut algorithms are tree based branching algorithms like DPLL-
style methods. Both approaches infer new constraints when an infeasible region of
the search space is identified to prune the infeasible region. An important connection
between the approaches was discovered by Jeroslow when he showed that the result
of applying the linear relaxation to an IP encoding of a satisfiability problem is
equivalent to unit propagation [11].

Despite these similarities, integer programming methods and DPLL-style solvers

have fundamentally different frameworks. In general, the concept of a relaxation is

126

very different from that of propagation. Propagation is a way to extend a partial
solution by identifying assignments that are forced by the partial solution together
with problem constraints. Unlike propagation, the linear relaxation does not identify
forced variables. Variables assigned integer values by the linear relaxation at a search
node may be assigned different values by the linear relaxation of a child node. A
relaxation disregards some problem constraints and searches a superset of the solution
space, finding solutions that may be infeasible, but hopefully are close to the optimal
feasible solution. Outside of the result of Jeroslow, comparing the linear relaxation
with Al propagation methods is a bit like comparing apples and oranges.

Running a linear relaxation at each search node is significantly more expensive
than unit propagation. The cost of expanding a node in a branch-and-cut algorithm
is much higher than the cost of expanding a DPLL search node, but the search trees
tend to be much smaller than DPLL-style trees. The cost of a linear relaxation is also a
function of the number of constraints in the relaxation, so similar to learning in DPLL-
style algorithms, the addition of a large number of cutting-plane to the relaxation
has a cost. For this reason, separation algorithms try to generate the strongest cut
possible. Separation algorithms tend to be more complicated than the simple nogood
learning schemes employed by satisfiability solvers. We noted in Section 2.3.3 the
tight relationship between learning and propagation. The extremely fast propagation
of traditional satisfiability methods allows them to be less particular about which
clauses are learned and allows them to maintain a very large database of learned
clauses.

PBCHAFF closely follows the DPLL search framework of fast propagation, quick
traversals of large search trees, and large learned constraint databases. Although
PBCHAFF shares a representation with integer programming techniques, the meth-
ods differ in their basic framework. Integer programming methods and traditional
satisfiability solvers differ in representation, inference, and search framework, making
comparisons of the methods difficult. A comparison of integer programming methods
with PBCHAFF would be of particular interest because the differences are reduced
to their frameworks. This opens the possibility of learning something fundamental

about the frameworks themselves.

127

6.2 Lifted Solvers

6.2.1 Pseudo-Boolean

Since the publication of our work on pseudo-Boolean learning [24, 25] a number
of other pseudo-Boolean DPLL-style solvers have emerged. The satisfiability solvers
SATIRE [74] and PBS [2] are both DPLL-style solvers that allow pseudo-Boolean con-
straints in addition to clauses. These solvers differ from PBCHAFF mainly in their
learning methods. Both solvers lack parallel inference in their learning methods,
learning only simple clausal constraints. They therefore do not improve the strength

of the underlying proof system beyond that of resolution.

The work of Chai [12] builds on one of our papers [25]. Chai describes a different
method for ensuring that the pseudo-Boolean resolvent captures the conflict at hand.
It uses the value of possible in each parent constraint to determine if one of the
parents needs to be reduced before the pseudo-Boolean resolution is performed. Given
constraints ¢; and ¢y that resolve and a partial assignment P that values all the literals
in both ¢; and ca, the value of possible(c, P) for the pseudo-Boolean resolvent c is

equal to the sum

possible(c|, P) + possible(c;, P)

where ¢, and ¢} are the parent constraints after they have been adjusted by linear

multipliers.

Example 6.2.1. Given the partial assignment P = {b,&,a} and constraints

Ja+b+c+d=3
ate+f+g=3

The value of possible(c, P) in the pseudo-Boolean resolvent c is the sum of the values

128

of possible(c!, P) in the adjusted parent constraints.

possible(c}, P)

+2 a+b+c+d >
-3 3(@+e+f+g) = 9
-1 3e+3f+3g+b+c+d >

To ensure that a pseudo-Boolean resolvent is asserting, we simply reduce the

parent constraints ¢; and cs until
mypossible(c;, P) + mgpossible(cs, P) <0

where m; and mq are the multipliers being used in the linear combinafion for c;
and ¢y respectively. Constraints can be reduced by removing unvalued literals and
then simplifying the constraint, or by reducing to a cardinality constraint by a method
similar to the one we presented in Section 4.3.2. Chai goes on to show that a reduction
to cardinality constraints outperforms the reduction to pseudo-Boolean constraints
described above. This is because the additional overhead of managing the coefficients
is greater than the benefit derived from the stronger representation.

Work by Hooker [40] generalizes the resolution procedure [60] for pseudo-Boolean
constraints. This procedure is an inference-based procedure rather than a tree-style
search algorithm like DPLL. It can also be viewed as a pure cutting-plane method.
It uses pseudo-Boolean resolution together with a type of building inference called
a diagonal sum. Work by Walser (71] adapts the local search method WSAT to use

pseudo-Boolean constraints.

6.2.2 Parity Constraints

A parity constraint has the form
(1121 + o+ -+.'1:n)mod2 =1
Parity constraints are sometimes referred to as XOR constraints and often written as

T PT2D--- DIy

129

A number of problem domains, including cryptanalysis and model checking, have
constraints that can most naturally be expressed as parity constraints. Problems
containing parity constraints can be translated into CNF and solved by traditional
satisfiability solvers. However, satisfiability solvers perform poorly on such encod-
ings. There are problems consisting entirely of parity constraints that have exponen-
tial proof complexity in resolution, and exponential time complexity for CNF based
solvers. An example is the set of charged graph problems defined by Tseitin and
shown to have exponentially sized resolution proofs [68]. These problems are some-
times referred to as Urquhart problems. Tseitin problems can be expressed with parity
constraints and solved in quadratic time via a form of Gaussian elimination [62]. The
translation to CNF clearly can make problems unnecessarily hard. Unfortunately, a
pure parity representation is functionally incomplete. There are Boolean functions
that cannot be expressed solely by parity constraints. More challenging problems
arise when both parity and disjunctive clauses are present. In such cases an inte-
grated approach is required if we are to avoid the unnecessary performance hit of a
full translation to CNF.

Inference Rules for parity constraints

The methods we describe make use of parity inference rules. The first rule deals
with manipulation of negation. Given a constraint with a negation, that negation can

be transferred to any other literal in the constraint.

AT BT D BZn) ETBT2D---DBTa
=z, PTeD - DTy

=BT B--- DI,

There is a simplification or factoring rule.

10l D, BB By
1R BB,

130

We can define a resolution-like inference.

DT DL D - DIy
e ®p® - Byn
L1000 BT, DY By D - BYn

We have presented this rule in a way that looks similar to resolution, however it has
a number of additional important properties we now point out. Unlike resolution
in CNF, here we place no restrictions on the literals =1, %2, ..., %n and y1,%2, .+ -1 Un-
Additionally, we note that if the literal [appears in the same phase in both constraints,
resolution can still be applied after first applying the negation rule. A third important
aspect of this inference rule is that one of the premises can be discarded at this point.
If need be, it can be regenerated from the remaining premise and the resolvent.
"The combination of these properties allows us to use this inference rule in a form of
Caussian elimination for parity constraints. Given a parity constraint that contains
a literal of the variable v in either phase, we can use that constraint to remove all
literals of v from the remaining parity constraint set. This is similar to a Gaussian
elimination row operation which removes a variable from a given equation.

Parity reasoning has been integrated into the DPLL algorithm [4, 49]. Such al-
gorithms must also support a CNF clause set since parity constraints alone are not
functionally complete. The earliest work that took this approach used a Gaussian
elimination type procedure to preprocess the parity constraints and then used a tra-
ditional method to solve the reduced problem [73]. This works well when parity
constraints dominate the constraint set. Unfortunately, variables that also occur in
the CNF constraint set cannot be removed from the parity constraint set. This limits
the preprocessing effectiveness for problems with significant CNF components.

In recent work a more integrated approach is taken [49]. Separate parity and CNF
constraint sets are maintained, but propagation is applied to both during search. In
this way propagations derived from one set can affect the propagation process of
the other set. Propagation for parity constraints is generally some form of Gaussian
elimination. In addition to identifying unit literals, these procedures also identify

binary parity constraints. Such clauses assert the equivalence of two literals. Consider

131

the constraint a &b, which tells us that a is equal to b. When this type of equivalence
is discovered, a substitution process is applied eliminating one of the variables from
the constraint set. Then, both parity and CNF constraint sets can be simplified, and
the size of the problem is reduced.

An integrated DPLL approach that adds parity reasoning dramatically outper-
forms traditional satisfiability solvers on the DIMACS 32-bit parity problem and
certain types of bounded model checking problems [49]. On other problems tested, it
appears to do no worse that the equivalent DPLL algorithm without parity reasoning.

This implies that the overhead of adding parity functionality is minimal.

6.2.3 Zero Suppressed Binary Decision Diagrams

Zero suppressed binary decision diagrams (ZBDD) [563] are a promising proposi-
tional representation for automation. ZBDDs, like traditional BDDs, are directed
acyclic graphs (DAGs) with two sink nodes and a set of internal nodes. The sink
nodes are labeled the 1-sink and a 0-sink. Each internal node has two outgoing edges:
a 0-edge and a l-edge. Traditional BDDs are used to represent Boolean formulas.
Internal nodes are labeled with Boolean variables and a path from source to the 1-
sink represents a model of the Boolean function. ZBDDs are designed to represent
sets of combinations. When used to represent sets of clauses, the internal nodes are
labeled with literals and each path from the source node to the 1-sink node represents
a clause. The clause contains the set of literals whose outgoing 1-edge is in the path.

An example of ZBDD for the set of clauses

aVb bVe
avVe bvd (6.2)
avVd evd

is shown in Figure 6.2.
A resolution inference step was defined for ZBDDs and was shown to have a high
degree of parallel inference [13]. This inference step was then incorporated into a

Davis-Putnam (DP) style algorithm called ZRES [14]. The DP algorithm has been

132

2

—
[=]

FIGURE 6.2: ZBDD for set of clauses (6.2). Solid edges represent l-edges, and
dashed edges represent 0-edges.

regularly confused with the DPLL, but is actually a purely inference based method

and not a tree style search method.

Procedure 6.2.2 {Davis-Putnam). Given a SAT problem C, to compute DP(C):

1 while empty clause ¢ C and C # @

2 do

3 v «— a variable of C

4 C, « all clauses in C that contain the literal v or v
5 C+—C-0C,

6 C « C U {all binary resolvents on v from C,}

7 C « C — {subsumed clauses}

8 if C = @ return SAT

9

else return UNSAT

133

Variables are incrementally removed from the constraint set by selecting a variable,
removing all clauses that contain the variable from the constraint set, and replacing
them with the set of all resolvents on the variable. The problem is unsatisfiable if the
empty clause is generated and satisfiable if the set of constraints becomes empty.

The DP algorithm is impractical for general satisfiability problems because the set
of resolvents generated is usually too large to manage efliciently. However, ZRES,
the ZBDD version of DP, provides polynomial solutions to both the pigeonhole prob-
lem and Urquhart problems. This shows that resolution defined for ZBDDs is strong
enough to provide short proofs for both pigeonhole problems and Urquhart prob-
lems, providing efficient solutions for problems with very different types of structure.
Unfortunately, ZRES performs poorly on general satisfiability problems from the DI-
MACS benchmark set. It is possible that ZRES suffers from the same inefficiencies
as clausal DP when applied to weak CNF encodings. There is work on adapting DPLL-
style solvers to use ZBDDs [1], but it does not incorporate learning methods and does

not take advantage of the stronger inference possible for ZBDDs.

6.2.4 Finitely Quantified Clauses

Ginsberg and Parkes extended the local search method WSAT [63] to use finitely
quantified constraints (QPROP) [34]. QPROP constraints allow universal quantifi-
cation over finite domains. They introduced the concept of subsearch, showing that
common solver subprocedures for managing a database of clauses are actually search
problems in their own right. The WSAT procedure spends a majority of its time
searching the clause database for clauses that are unsatisfied under a full assignment.
When constraints are represented as QPROP constraints, the structure of the con-
straint can be used to improve the performance of the subsearch task. This was
shown to be exponentially more efficient than using traditional methods for search-
ing through the set of equivalent CNF instances. This result has implications for
DPLL-style solvers. The task of searching the clause database for unit clauses is also
a subsearch task and could potentially be improved by applying knowledge of the

problem structure. This however, has not yet been tried.

134

CHAPTER 7

Conclusion

7.1 Contributions

We have built a pseudo-Boolean SAT solver based on the DPLL framework that
automates a. proof system properly stronger than the proof system of resolution based
methods. We found that the stronger proof system allowed exponential reductions
in both the size of search trees and execution times when compared with resolution-
based methods on pigeonhole problems and planning problems. In fact, not only did
we see dramatic advantages to using a stronger representation and proof system, we
showed that there are no significant disadvantages to this approach over the weaker
resolution-based methods since the pseudo-Boolean solver comes close to matching
the performance of its resolution-based counterpart on CNF encodings, differing only
by a factor of around 1.6 over a large variety of problem domains and sizes.

We introduced the idea that strong representations capture problem structure.
If we consider the set of disjunctive clauses that equivalently represents a pseudo-
Boolean constraint, the pseudo-Boolean constraint captures a pattern or symmetry
of the equivalent clause set. We define two types of inference that are particularly
useful for solvers: building inference that builds up a stronger, more structured con-
straint from a set of weaker constraints; and parallel inference that takes advantage

of strong representations performing multiple symmetric inferences in parallel. The

135

combination of these two inference types allows short proofs of the pigeonhole prin-
ciple in the cutting-plane proof system.

Our primary technical contribution was to show that the implementation of the
learning method is the key to improving the strength of the underlying proof system
of a pseudo-Boolean solver. Methods that use stronger representations, but fail to
incorporate strong inference rules, do not gain the extra pruning power available
when strong representations are combined with strong inference. Learning is the
primary inference rule of DPLL-style solvers, so it is a natural place to incorporate
a strong inference rule. We implemented a pseudo-Boolean version of learning that
uses parallel inference. Within the context of a search tree, the multiple inferences of
a parallel inference correspond to the elimination of multiple symmetric conflicts at
once. This creates a very powerful pruning rule that leads to exponential speedups
over clausal learning. The method we describe uses a pseudo-Boolean analog of
resolution. A resolution analog is necessary because the partitioning scheme of DPLL-
style solvers recursively partitions the search based on the domain values of a Boolean
variable.

Unfortunately, the pseudo-Boolean resolvent does not always capture the conflict
at hand. We proved conditions sufficient to ensure that the pseudo-Boolean resol-
vent will capture a conflict and gave a method for reducing two conflict reasons to
satisfy these conditions. This may require weakening one of the conflict reasons to a
cardinality constraint before the pseudo-Boolean resolvent is generated. We gave a
method for reducing a pseudo-Boolean reason to a cardinality reason with care given
to maintaining a high degree of parallel inference in the psendo-Boolean resolvent.
Experimentally, we saw that the learning rule that uses parallel inference achieved
polynomial time scaling on pigeonhole problems while pseudo-Boolean solvers that
don’t learn, or learn only simple disjunctions, still showed exponential scaling just
like resolution-based methods.

We applied the operations research technique of coefficient reduction within the
pPLL framework. Coefficient reduction automates a form of building inference and
therefore can be used to identify certain kinds of problem structure. The stronger

pseudo-Boolean encoding of the pigeonhole principle can be derived from the weaker

136

clausal encoding in polynomial time using our preprocessing method. We also de-
scribed an implementation that applies coefficient reduction during search although
it appears that such an implementation is too expensive to be applied at every node.

Although our method is able to solve the explicit pigeonhole problem efficiently,
we saw that it struggled to solve a pigeonhole problem embedded in a simple logistics
domain. The difficulty was caused by the solver’s inability to reason about the prob-
lem’s first-order structure. We avoided this problem by doing the first-order reasoning
by hand and adding the results to the problem encoding. This approach may work
well if we need to solve a large number of problem instances from a single domain
and time can be given to building and testing new problem encodings, but it is not
likely to be feasible in general. Solving pigeonhole problems embedded in real world
domains efficiently will likely require the ability to reason about more than one type
of problem structure.

We can draw two important high-level conclusions from this work. First, DPLL-
style solvers that automate proof systems stronger than resolution are not imprac-
tical. In fact, contrary to general sentiment, there appears to be little advantage to
resolution-based methods over their pseudo-Boolean counterparts. Second, in order
for an automated inference system to solve embedded pigeonhole problems efficiently,
it must use a representation and set of inference rules that are general enough to
capture a large range of problem structure. We believe the framework for building
lifted solvers outlined here can serve as a guide for adapting DPLL-style solvers to use

other representations and inference systems.

7.2 Future Work

There are a number of things we might do to extend this work within the pseudo-
Boolean framework. It would be interesting to see if the work on solving random
logistics problem could be extended to other planning domains. How difficult is it in
general to find encodings that enable PBCHAFF to identify the embedded pigeonhole
problems? It is unclear whether this approach will be practical for more complex

planning domains.

137

A comparison of PBCHAFF with branch-and-bound or branch-and-cut methods
might help illuminate the relative strengths and weaknesses of the integer program-
ming framework as compared to the DPLL framework. Unfortunately, because 0-1
integer programming methods also use pseudo-Boolean representation and cutting
planes inference, one could make a theoretical argument that 0-1 integer program-
ming techniques will suffer from the same inability to reason about multiple types of
structure.

The most compelling direction of future work is to implement a DPLL-style sclver
that uses a representation and inference system general enough to capture a vari-
ety of different types of problem structure and reason about structured constraints
uniformly. The augmented clause representation [26} is promising in this respect.
An augmented clause consists of a propositional clause together with a permutation
group on the set of literals. The augmented clause is logically equivalent to the con-
junction over the set of clauses that can be formed by applying elements of the group
to the representative clause. This representation is known to generalize cardinality
constraints, parity constraints, and finitely quantified clauses, and allows uniform
reasoning between all augmented clauses regardless of their origin. The resolution
procedure that has been defined for augmented clauses fosters a high degree of paral-
lel inference allowing short proofs of pigeonhole problems, parity problems and clique
coloring problems. The significant body of existing work from the field of compu-
tational group theory provides a library of routines for manipulating and searching

through the resulting groups.

annotated partial assignment, 13

sound, 13
asserting clause, 13

BAckJumMmP, 14, 21

backjumping, 12

BERKMIN, 19, 24

branch heuristics, 10
and learning, 23
BERKMIN, 24
MOMS, 11
pseudo-Boolean, 75
VSIDS, 24

branching, 8

building inference, 49

cardinality constraint, 43
coefficient reduction, 76
conflict set, 15
count-based indexing, 27, 53
current, 54
cutting-plane
p-simulate resolution, 44
proof system, 43

decision levels, 20

DP, 132

DPLL, 10
DPLL-WITH-LEARNING, 14
dynamic backtracking, 18

exponentially seperated, 39
exponentially stronger, 39

factoring, 13

GET-ASSUMPTIONS, 79
GRASP, 20

irrelevance, 18, 19, 70

learning, 11, 12, 61

INDEX

bounded, 17
length-bounded, 18
relevance-bounded, 18
length, 70
literal index, 26

nogood, 12

NON-STANDARD-BACKJUMP, 21

parallel inference, 49

partial assignment, 9
closed, 29
closure, 29
extends, ©
invalid, 9
unit complete, 31
valid, 9

PB-BaAckJumMmP, 73

PB-DPLL-wiTH-LEARNING, 73

138

PB-NON-STANDARD-BACKJUMP, 74

PB-UNIT-PROPAGATE, 56

pigeonhole problem, 40, 48, 88

polynomially equivalent, 39

polynomially simulates, 39

possible, 54

proof complexity, 38

proof system, 38
polynomial bounded, 39

propositional proof system, 38

pseudo-Boolean
bounded learning, 68
branch heuristics, 75
constraint, 43
irrelevance, 70
learning, 61
length, 70
resolvent, 62
watching set, 58

reason, 13

RELSAT, 19, 25
resolution, 12, 13, 44
DAG-style, 37

lower bounds, 40
tree-style, 36
resolution-based, 36

SAT, 7

satisfiability, 7
satisfied, 7

Skolem function, 103
solution, 7
STRENGTHEN, 77
strengthening, 76
subsearch, 133

thrashing, 11

UIP clause, 20
UIP constraint, 72

unique implication points, 20

unit clause, 10

unit complete, 31

unit constraint, 54

unit literal, 54

UNIT-PROPAGATE, 10

unit propagation, 10, 25
data structures, 26

unsatisfiable, 7

watched literals, 28, 32
watching set, 28
cardinality, 57
pseudo-Boolean, 58
WSAT, 133

ZCHAFF, 19, 20, 24, 25, 32

139

[1]

[2]

(3]

[4]

[5]

[6]

[7]

[8]

[9]

140

BIBLIOGRAPHY

Avour, F. A., MNEIMNEH, M., AND SAKALLAH, K. A. ZBDD-based back-
track search SAT solver. In International Workshop on Logic Synthesis (IWLS)
(2002), pp. 131-136.

ALour, F. A., RaMANI, A., MARKOV, I. L., AND SAKALLAH, K. A. PBS:
A backtrack-search pseudo-Boolean solver and optimizer. In Symposium on the
Theory and Application of Satisfiability Testing (2002}, pp. 346-353.

BARTH, P. A Davis-Putnam based enumeration algorithm for linear pseudo-
Boolean optimization. Tech. Rep. MPI-I-95-2-003, Max Planck Institut fiir In-
formatik, Saarbriicken, Germany, 1995.

BAUMGARTNER, P., AND Massaccl, F. The taming of the (X)OR. In Compu-

tational Logic, Lecture Notes in Computer Science 1861. Springer, 2000, pp. 508-
522.

BAYARDO, R. J., AND MIRANKER, D. P. A complexity analysis of space-
bounded learning algorithms for the constraint satisfaction problem. In Pro-
ceedings of the Thirteenth National Conference on Artificial Intelligence (1996),
pp. 298-304.

BAYARDO, R. J., AND ScHRAG, R. C. Using CSP look-back techniques to solve
real-world SAT instances. In Proceedings of the Fourteenth National Conference
on Artificial Intelligence (1997), pp. 203-208.

BEAME, P. Proof complexity. http://www.cs.toronto.edu/"toni/Courses
/Proofcomplexity/Papers/paul-lectures.ps. accessed August 2004.

BeAME, P., KauTz, H., AND SABHARWAL, A. Understanding the power of

clause learning. In Proceedings of the Eighteenth International Joint Conference
on Artificial Intelligence IJCAI'08 (2003), pp. 1194-1201.

BENHAMOU, B., SaIs, L., AND SIEGEL, P. Two proof procedures for a cardi-
nality based language in propositional calculus. In Proceedings of the 11th Annual
Symposium on Theoretical Aspects of Computer Science (1994), Springer-Verlag,
pp. 71-82.

141

[10] BIERE, A., CLARKE, E. M., RAamMi, R., AND ZHU, Y. Verifying safety proper-
ties of a PowerPC microprocessor using symbolic model checking without BDDs.
Lecture Notes in Computer Science 1633 (1999), 60-71.

[11} BLAIr, C. E., JEROSLOW, R. G., AND Lowe, J. K. Some results and ex-
periments in programming techniques for propositional logic. Computers and
Operations Research 13, 5 (1986), 633-645.

[12] CHAL D., AND KUEHLMANN, A. A fast pseudo-Boolean constraint solver. In
Proceedings of the 40th Design Automation Conference (2003), pp. 830-835.

[13] CHATALIC, P., AND SIMON, L. Multi-resolution on compressed sets of clauses.
In Twelth International Conference on Tools with Artificial Intelligence (IC-
TAI’00) (2000), pp. 449-454.

[14] CuATtALIC, P., AND SIMON, L. Zres: the old Davis-Putnam meets ZBDDs.
In 17th International Confernece on Automated Deduction (CADE’17) (2000),
D. McAllester, Ed., no. 1831 in Lecture Notes in Artificial Intelligence (LNAI),
pp. 449-454.

[15] CHVATAL, V. Edmonds polytopes and weakly Hamiltonian graphs. Mathemat-
ical Programming 5 (1973), 29-40.

[16] CuvATAL, V. Linear Programming. W.H. Freeman Co., 1983.

[17] CooK, S. A. The complexity of theorem-proving procedures. In Procedings of
the Third Annual ACM Symposium on the Theory of Computing (1971), pp. 151~
158.

[18] Cook, S. A., AND RECckHOW, R. A. The relative efficiency of propositional
proof systems. Journal of Symbolic Logic 44, 1 (1977), 36-50.

[19] Cook, W., CouLLARD, C., AND TURAN, G. On the complexity of cutting
plane proofs. Journal of Discrete Applied Math 18 (1987), 25-38.

[20] Corty, F., F1x, L., GIUNCHIGLIA, E., KaMHI, G., TACCHELLA, A., AND
VARDI, M. Benefits of bounded model checking in an industrial setting. In 13th
Conference on Computer Aided Verification, CAV'01 (Paris, France, July 2001),
pp. 436-453.

[21] CrawFORD, J. M., AND AUTON, L. D. Experimental results on the crossover
point in random 3SAT. Artificial Intelligence 81 (1996), 31-57.

[22] Davis, M., LOGEMANN, G., AND LOVELAND, D. A machine program for
theorem proving. Communications of the ACM 5, 7 (1962), 394-397.

142

[23] DECHTER, R. Enhancement schemes for constraint processing: backjumping,
learning, and cutset decomposition. Artificial Intelligence 41, 3 (1990), 273-312.

[24] DixoNn, H. E., AND GINSBERG, M. L. Combining satisfiability techniques from
Al and OR. The Knowledge Engineering Review 15, 1 (2000), 31-45.

[25] Dixon, H. E., AND GINSBERG, M. L. Inference methods for a pseudo-Boolean
satisfiability solver. In The Eighteenth National Conference on Artificial Intelli-
gence (AAAI-2002) (2002), pp. 635-640.

[26] Dixon, H. E., GINSBERG, M. L., Luks, E. M., AND PARKES, A. J. Gener-
alizing Boolean satisfiability II: Theory. Tech. rep., CIRL, University of Oregon,
Eugene Oregon, 2004.

[27] Dixon, H. E., GINSBERG, M. L., AND PARKES, A. J. Generalizing Boolean
satisfiability I: Background and survey of existing work. Journal of Artificial
Intelligence Research 21 (2004), 193--243.

[28] DuBois, O., ANDRE, P., BOUFKHAD, Y., AND CARLIER, J. SAT versus
UNSAT. In Second DIMACS Challenge: Cliques, Colorings and Satisfiability
(Rutgers University, NJ, 1993).

[29] DuBors, O., AND DEQUEN, G. A backbone-search heuristic for efficient solving
of hard 3-SAT formulae. In Proceedings of the Seventeenth International Joint
Conference on Artificial Intelligence (2001), pp. 248-253.

[30] FREEMAN, J. W. Improvements to propsitional satisfiability search algorithms.
PhD thesis, University of Pennsylvania, PA, 1995.

[31) FrosT, D., AND DECHTER, R. Dead-end driven learning. In Proceedings of
the Twelfth National Conference on Artificial Intelligence (1994), pp. 294-300.

[32] GascHNIG, J. Performance measurement and analysis of certain search algo-
rithms. Tech. Rep. CMU-CS-79-124, Carnegie-Mellon University, 1979.

[33] GINSBERG, M. L. Dynamic backtracking. Journal of Artificial Intelligence
Research 1 (1993), 25-46.

[34] GINSBERG, M. L., AND PARKES, A. J. Satisfiability algorithms and finite
quantification. In (KR)2000: Principles of Knowledge Representation and Rea-
soning (Breckenridge, Colorado, 2000), Morgan Kaufmann, pp. 690-701.

[35] GOLDBERG, E., AND Novikov, Y. Berkmin: A fast and robust SAT solver.
In Design Automation and Test in Europe (DATE) 2002 (2002), pp. 142-149.

143

[36) GoMORY, R. An algorithm for integer solutions to linear programs. In Recent
Advances in Mathematical Programming. McGraw-Hill, New York, 1963, pp. 269-
302.

[37] GuiGNARD, M., AND SPIELBERG, K. Logical reduction methods in zero-one
programming. Operations Research 29 (1981).

[38] HAKEN, A. The intractability of resolution. Theoretical Computer Science 39
(1985), 297-308.

[39] HAMMER, P., AND RUDEANU, S. Boolean Methods in Operations Research and
Related Areas. Springer, 1968.

[40] HOOKER, J. N. Generalized resolution and cutting planes. Annals of Operations
Research 12 (1988), 217-239.

[41] HoOKER, J. N. Resolution vs. cutting plane solution of inference problems:
Some computational experience. Operations Research Letters 7, 1 (1988), 1-7.

[42] HOOKER, J. N. Input proofs and rank one cutting planes. ORSA Journal on
Computing 1 (1989), 137-145.

[43] HOOKER, J. N. Constraint satisfaction methods for generating valid cuts. In
Advances in Computational and Stochastic Optimization, Logic Programming,
and Heuristic Search, D. L. Woodruff, Ed. Kluwer, 1997, pp. 1-30.

[44] HOOKER, J. N., AND FEDJKI, C. Branch-and-cut solution of inference problems
in propositional logic. Annals of Mathematics and Artificial Intelligence 1 (1990),
123-139.

[45] HOOKER, J. N., AND VINAY, V. Branching rules for satisfiability. Journal of
Automated Reasoning 15 (1995), 359-383.

[46] JACKSON, D., SCHECHTER, I., AND SHLYAKHTER, I. Alcoa: the alloy con-

straint analyzer. In Proceedings of the International Conference on Software
Engineering (Limerick, Ireland, 2000), pp. 730-733.

[47] JerosLow, R., AND WANG, J. Solving the propositional satisfiability problem.
Annals of Mathematics and Artificial Intelligence 1 (1990), 167-187.

[48] KauTz, H. A., AND SELMAN, B. Planning as satisfiability. In Proceedings
of the Tenth European Conference on Artificial Intelligence (ECAI’'92) (1992),
pp- 359-363.

[49] Li, C. M. Integrating equivalency reasoning into davis-putnam procedure. In
AAAI0OO (2000), pp. 291-296.

144

[50] Li, C. M., AND ANBULAGAN. Heuristics based on unit propagation for satisfi-
ability problems. In Proceedings of the Fifteenth International Joint Conference
on Artificial Intelligence (1997), pp. 366-371.

[51] LyNCE, 1., AND MARQUES-SILVA, J. Efficient data structures for fast SAT
solvers. Tech. rep., Instituto de Engenharia de Sistemas e Computadores, 2001.

[52] MARQUES-SILVA, J. P., AND SakALLAH, K. A. GRASP: A search algorithm
for propositional satisfiability. In IEEE Transactions on Computers (1999),
vol. 48, pp. 506-521.

[53] MINATO, S. Zero-suppressed BDDs for set manipulation in combinatorial prob-
lems. In Proc. 30th ACM/IEEE Design Automation Conf. (1993), pp. 272-277.

[54] MrtcHELL, D. G. Hard problems for CSP algorithms. In Proceedings of the
Fifteenth National Conference on Artificial Intelligence (1998), pp. 398-405.

[55] MoskEwIcz, M. W., MADIGAN, C. F., ZHAO, Y., ZHANG, L., AND MALIK,
S. Chaff: Engineering an efficient SAT solver. In Proceedings of the Design
Automation Conference (2001), pp. 530-535.

[56] NEMHAUSER, G. L., AND WoLSEY, L. A. Integer and Combinatorial Opti-
mization. Wiley, New York, 1988.

[57] PADBERG, M., AND RINALDI, G. A branch and cut algorithm for the resolution

of large-scale symmetric traveling salesman problems. SIAM Review 33 (1991),
60-100.

[58]) PRETOLANI, D. Satisfiebility and hypergraphs. PhD thesis, Universita di Pisa,
1993.

[59] RaLpus, T., LADANYI, L., TROTTER, L., AND JR. Branch, cut, and price:

Sequential and parallel. citeseer.nj.nec.com/486881.html. accessed November
2004.

[60] RoBiNsON, J. A. A machine-oriented logic based on the resolution principle.
Journal of the ACM 12, 1 (1965), 23-41.

[61) SAVELSBERGH, M. W. P. Preprocessing and probing for mixed integer pro-
gramming problems. ORSA Journal on Computing 6 (1994), 445-454.

[62] SCHAEFER, T. The complexity of satisfiability problems. Proceedings of the
10th ACM Symposium on Theory of Computing (STOC-78) (1978), 216-226.

[63] SELMAN, B., Kautz, H., AND COHEN, B. Noise strategies for improving
local search. In Proceedings of the Twelfth National Conference on Artificial
Intelligence (1994), pp. 337-343.

145

[64] SELMAN, B., KauTz, H., AND MCALLESTER, D. Ten challenges in proposi-
tional reasoning and search. In Proceedings of the Fifteenth International Joint
Conference on Artificial Intelligence (1997), pp. 50-54.

[65] SkoLEM, T. Uber die mathematische logik. Norsk matematisk tidsskrift 10
(1928), 125-142.

[66] SmiTH, T. Window-Based Project Scheduling Algorithms. PhD thesis, University
of QOregon, 2004.

[67] STALLMAN, R. M., AND SussMAN, G. J. Forward reasoning and dependency
directed backtracking in a system for computer aided circuit analysis. Artifictal
Intelligence 9, 2 (1977), 135-196.

[68] TsEITIN, G. On the complexity of derivation in propositional calculus. In Studies
in Constructive Mathematics and Mathematical Logic, Part 2, A. Slisenko, Ed.
Consultants Bureau, 1970, pp. 466-483.

[69] URQUHART, A. Hard examples for resolution. Journal of the ACM 34 (1987),
209-219.

[70] VELEV, M. N., AND BRYANT, R. E. Effective use of Boolean satisfiability
procedures in the formal verification of superscalar and VLIW. In Proceedings
of the 38th Conference on Design Automation Conference 2001 (New York, NY,
USA, 2001), ACM Press, pp. 226-231.

[71] WALSER, J. P. Solving linear pseudo-Boolean constraint problems with local
search. In Proceedings of the Fourteenth National Conference on Artificial Intel-
ligence (1997), pp. 269-274.

[72] WARNERS, J. P. A linear-time transformation of linear inequalities into con-
junctive normal form. Information Processing Letters 68, 2 (1998), 63-69.

[73] WARNERS, J. P., AND MAAREN, H. V. A two phase algorithm for solving
a class of hard satisfiability problems. Operations Research Letters 25 (1998),
81-88.

[74] WHITTEMORE, J., KIM, J., AND SAKALLAH, K. A. SATIRE: A new incre-

mental satisfiability engine. In Proceedings of the Design Automation Conference
(2001), pp. 542-545.

(75] ZHANG, H., AND STICKEL, M. E. Implementing the Davis-Putnam method.
Journal of Automated Reasoning 24, 1-2 (2000), 277-296.

146

[76] ZHANG, L., MapiGcan, C. F., Moskewicz, M. H., AND MALIK, S. Ef-
ficient conflict driven learning in a Boolean satisfiability solver. [International

Conference on Computer-Aided Design (2001).

	DIS_C1
	DIS_C2

