DISCRETE GLOBAL GRID SYSTEMS: A NEW CLASS OF

GEOSPATIAL DATA STRUCTURES

by
KEVIN MICHAEL SAHR

A DISSERTATION

Presented to the Department of Computer
and Information Science
and the Graduate Schoot of the University of Oregon
in partia! fulfillment of the requirements
for the degree of
Doctor of Philosophy

August 2005

DISCRETE GLOBAL GRID SYSTEMS: A NEW CLASS OF

GEOSPATIAL DATA STRUCTURES

by
KEVIN MICHAEL SAHR

A DISSERTATION

Presented to the Department of Computer
and Information Science
and the Graduate School of the University of Oregon
in partial fulfillment of the requirements
for the degree of
Doctor of Philosophy

August 2005

il

“Discrete Global Grid Systems: A New Class of Geospatial Data Structures,” a
dissertation prepared by Kevin Michael Sahr in partial fulfillment of the requirements for
the Doctor of Philosophy degree in the Department of Computer and Information

Science. This dissertation has been approved and accepted by:

PP
Dr. John @@r of the Examining Committee

AVS ‘L“?) VeH5

Date

Committee in Charge: Dr. John Conery, Chair
Dr. Andrzej Proskurowski
Dr. Arthur Farley
Dr. Patrick Bartlein

Accepted by:

~hetty Ll

Dean of the Graduate School

© 2005 Kevin Michael Sahr

i

iv

An Abstract of the Dissertation of
Kevin Michael Sahr for the degree of Doctor of Philosophy
in the Department of Computer and Information Science tobe taken August 2005
Title: DISCRETE GLOBAL GRID SYSTEMS: A NEW CLASS OF GEOSPATIAL

DATA STRUCTURES

Approved: E&(
U Kdr. John Conery

Limitations in traditional approaches to the representation of geo-referenced data
sets has led to the development of a number of data structures based on regular, multi-res-
olution partitions of spherical polyhedra. These constitute a new class of geospatial data
structures that we call Discrete Global Grid Systems (DGGSs). After defining an abstract
data type for structured geospatial data structures that encompasses DGGSs we survey
the proposed DGGS approaches. We show that the primary DGGS alternatives can be
constructed by specifying five substantially independent design choices: a base regular
polyhedron, a fixed orientation of the base regular polyhedron relative to the Earth, a
hierarchical spatial partitioning method defined symmetrically on a set of faces of the
base regular polyhedron, a method for transforming that planar partition to the corre-
sponding spherical/ellipsoidal surface, and a method for assigning point representations
to grid cells. An examination of the design choice options leads us to the construction of

the Icosahedral Snyder Equal Area aperture 3 Hexagon (ISEA3H) DGGS.

We next develop a topology-independent implementation of DGGSs based on
our abstract data type that will enable us to perform empirical comparisons between the
primary DGGS topologies of hexagons, triangles, and diamonds. Since a major advan-
tage of DGGSs is that they can function as topologies for dynamic simulation and
analysis, for our initial comparison we implement a simple dynamic simulation by
extending the definition of a planar cellular automata to be spherical, multi-scale, and
topology-independent. We then report the first results for a study of such simulations.

Finally, we note that the practical use of icosahedral aperture 3 DGGSs, such as
the ISEA3H, has been hindered by a lack of efficient hierarchical location coding
schemes. We introduce two path-based hierarchical location coding systems: the Icosahe-
dral Modified Generalized Balanced Ternary approach for indexing point data, and the
Icosahedral Aperture 3 Hexagon Tree for indexing raster data and for use in bucket-based
spatial databases. Algorithms for conversion from geographic coordinates to these sys-
tems are given.

This dissertation includes both my previously published and my co-authored

materials.

Vi

CURRICULUM VITAE

NAME OF AUTHOR: Kevin M. Sahr

GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED:
University of Oregon
University of Colorado at Colorado Springs
Bucknell University
DEGREES AWARDED:
Doctor of Philosophy in Computer and Information Science, 2005,

University of Oregon

Master of Science in Computer Science, 1995, University of Colorado
at Colorado Springs

Bachelor of Arts in Mathematics and Philosophy, 1984, Bucknell University
AREAS OF SPECIAL INTEREST:

Spatial Data Structures

Computer Graphics
PROFESSIONAL EXPERIENCE:

Assistant Professor, Southern Oregon University, 2000 — present

Graduate Teaching Fellow, University of Oregon, 1997 — 2000

Research Associate, Oregon State University, 1993 — 1999

Software Engineer, CAE-Link Corporation, 1992 — 1993

Programmer/Analyst, Kaman Sciences Corporation, 1989 - 1992

vii

GRANTS, AWARDS AND HONORS:
Research Grant from GRIDS, Limited, 2003
Distinguished Military Graduate, 1984
Army ROTC four-year scholarship recipient, 1980

PUBLICATIONS:

Sahr, K. (2004, October). Spatial indexing on icosahedral aperture 3 discrete glo-
bal grids. Paper presented at the Second International Conference on
Discrete Global Grids, Ashland, OR.

Kiester, R., & Sahr, K. (2004, October). Spatially hierarchical cellular automata
on discrete global grids. Paper presented at the Second International Con-
ference on Discrete Global Grids, Ashland, OR.

Kimerling, A.J., & Sahr, K. (2004, October). Using data loss and duplication
maps as tools for comparing data use when resampling from equal-angle,
hexagonal, and triangular discrete global grids. Paper presented at the
Second International Conference on Discrete Global Grids, Ashland, OR.

Gregory, M., Kimerling, J., White, D., & Sahr, K. (2004, October). Evaluating
desirable geometric characteristics of discrete global grid systems: Revis-
iting the Goodchild criteria. Paper presented at the Second International
Conference on Discrete Global Grids, Ashland, OR.

Sahr, K. (2004, March). Developing software for discrete global grids. Paper pre-
sented at GeoTec 2004, Toronto, Canada.

Sahr, K., White, D., & Kimerling, A.J. (2003). Geodesic discrete global grid sys-
tems. Cartography and Geographic Information Science, 30(2), 121-134.

Song, L., Kimerling, A.J., & Sahr, K. (2002). Developing an equal area global
grid by small circle subdivision. In M.F. Goodchild & A.J. Kimerling
(Eds.), Discrete global grids: A web book. Santa Barbara, CA: University
of California. Retrieved June 1, 2005, from http://www.ncgia.ucsb.edw/
globalgrids-book/song-kimmerling-sahr

Sahr, K. (2000, March). 4 preliminary comparison of proposed topologies for
geodesic discrete global grid systems. Paper presented at the First Interna-
tional Conference on Discrete Global Grids, Santa Barbara, CA.

Gregory, M., Kimerling, J., White, D., & Sahr, K. (2000, March). Comparing
intercell distance and cell wall midpoint criteria for discrete global grid

viii

systems. Paper presented at the First International Conference on Discrete
Global Grids, Santa Barbara, CA.

Kiester, R., & Sahr, K. (2000, March). Unexpected and complex behavior of hier-
archical, multiresolution cellular automata. Paper presented at the First
International Conference on Discrete Global Grids, Santa Barbara, CA.

Kimerling, A.J., Sahr, K., White, D., & Song, L. (1999). Comparing geometrical
properties of global grids. Cartography and Geographic Information Sci-
ence, 26(4), 271-287.

Sahr, K., & White, D. (1998). Discrete global grid systems. In S. Weisberg (ed.),
Computing science and statistics (volume 30): Proceedings of the 30th
Symposium on the interface, computing science and statistics {pp. 269-
278). Fairfax Station, VA.: Interface Foundation of North America.

White, D., Kimerling, A. J., Sahr, K. & Song, L. (1998). Comparing area and
shape distortion on polyhedral-based recursive partitions of the sphere.
International Journal of Geographical Information Science, 12, 805-827.

Carr, D.B., Kahn, R., Sahr, K., & Olsen, A.R. (1997). ISEA discrete global grids.
Statistical Computing & Graphics Newsletter, 8(2/3), 31-39.

Kimerling, A. J., Sahr, K., & White, D. (1997). Global scale data model compari-
son. Proceedings of Auto-Carto 13: American Congress on Surveying and
Mapping, 357-366.

Arthur, I. L., Hachey, M., Sahr, K., Huso, M., & Kijester, A.R. (1997). Finding all
optimal solutions to the reserve site selection problem: Formulation and

computational analysis. Environmental and Ecological Statistics, 4, 153-
165.

Csuti, B., Kennelly, P., Meyers, S.M., & Sahr, K. (1997, July). Current status of
biodiversity indicators using GIS. Paper presented at the 1997 ESRI User
Conference, San Diego, CA.

Csuti, B., Polasky, S., Williams, P.H., Pressey, R.L., Camm, J.D., Kershaw, M.,
Kiester, A.R., Downs, B., Hamilton, R., Huso, M., & Sahr, K. (1997). A
comparison of reserve selection algorithms using data on terrestrial verte-
brates in Oregon. Biological Conservation, 80, 83-97.

Kiester A.R., Scott,].M., Csuti, B, Noss, R., Butterfield, B., Sahr, K., & White,
D. (1996). Conservation prioritization using GAP data. Conservation Biol-
ogy, 10(5), 1332-1342.

ACKNOWLEDGMENTS

QOver a decade ago | had the privilege to begin working with a very special group
of people, at what came to be called the Terra Cognita Laboratory in the Department of
Geosciences at Oregon State University. It is only through the support of all the faculty,
scientists, graduate students, and administrators associated with Terra Cognita over the
years that this research has come to fruition, and to all of them I am most grateful. In par-
ticular, I wish to give a special thanks to Ross Kiester, Jon Kimerling, Tony Olsen, and
Denis White for their many-varied forms of support over the years.

In addition, I wish to thank my advisor, Dr. John Conery, and the department
graduate secretary, Star Holmberg, for all their assistance in shepherding me through this
process in spite of myself.

Finally, I want to thank another very special group of people without whose sup-
port I would never have finished: my wife Carolyn and my children Stephen, Matika,

Hope, and Natalia.

To Ross Kiester, for always finding the right problems.

TABLE OF CONTENTS
Chapter

I. INTRODUCTION AND BACKGROUNDccooiniimnrenmriensereneasessaesessesans

MOBIVALION .vovieriiiiiniiniiiere e reenee e se s e e e st e e e rassae e ensstesnesnsnssnans
Background: Geospatial Data Structuresccocveeeeriverirrseenreereererinnes
Fundamental Geospatial Operation Classesccevverivrirrrreecerrcrvererinnns
Traditional Geospatial Data Structuresccvevevrieerrerereesiesrecrrenscerenaenns
The Next Step ...ocvoiiiiniiiiiiiiiiini it sesessee s s rens

I1. GEODESIC DISCRETE GLOBAL GRID SYSTEMS.........cccvveverienneerennen.

AcknowledZemEntsccccerrereereneniesennneniorenenenieneniesnene e rsesssesens
Discrete Global Grid Systems: Basic Definitionsoccveerveeveieerneernens
Geodesic Discrete Global Grid SYSLEmSccveevveeerierierrrerierisnnresseeesnens
Summary and ConcluSionsc.cccvereiieerecrecvicneninrerrsneressessessessens
Directions for Further Researchcocccverreineiniinnienieneinereennneisesseerenns

III. NULIB: A TOPOLOGY-INDEPENDENT DGGS ARCHITECTURE

IMOBIVALION 1iviiiiiverinsieinsiiemrnrnesseseersssnsessesssssssssssssseseseseressessesssasssssssasssssassssssssssssasssss

Implementing the Nulib COrecc.vcviiieiveeereececciecccrree s seeenes e
Applications 0f NUlD ...ttt ssssssrsesenssssssssssssssnsareans

IV. SPATIALLY HIERARCHICAL CELLULAR AUTOMATA ON

DISCRETE GLOBAL GRIDScooviemrrinnrinsisssinsenonioesecoeen

AcCKNOWIEAZEMENLS ..uuuiceieiisisininiincrneerescnerenicesensorsessassesssssssssssssssssssarsansassns
TNEOAUCHION crviiciereriereicie et esise st sesss s sssstssessssasess sasssssnnnsnmnesseasnsaevessesnesensas
Extending Cellular Automata t0 DGGSs....vcemiorerrierieneseressessisesessessseenns

Results 65

OCIUSIONS .ievriiiiiiiiseiciisiitiisnisiisiiirarsnnrssrsissrerasircrasisesristsistssssussssssnnsons

V. LOCATION CODING ON ICOSAHEDRAL APERTURE 3 HEXAGON

DISCRETE GLOBAL GRIDScconirreenenenonesessasssessnessssnsoseons

INEOAUCHON ettt escesssssssres o sssnsesasssssrssrossiarians
Background e s ssnsenrasenns

Pyramid Addressing on Aperture 3 Hexagon Grids: The Quadrilateral

Two-Dimensional Integer SyStemccccocevceivevvcenverceeneernrsenenns
Path Addressing on Aperture 3 Hexagon Gridsccccocevveercenecveenenrvneneens
Quantization Algorithm for the iIAZHTcccoooeiirverinrnrr e
CONCIUSIONS ...oireireieerceetee ettt s e e nr s eae e san s s b e bben

xi

Chapter

VI. SUMMARY AND CONCLUSIONS ...oiiiinimsirisimioormssessorsossersenssssessessessssosass

BIBLIOGRAPHY

...

xiii

LIST OF FIGURES
Figure Page
1. Two Definitions of Adjacency on Square Rastersc..cccveveererirrerncreerinrseecennans 15
2. Two Definitions of Adjacency on Triangle Rasters......ccocceveieniericnninnensienisiecrenens 15
3. Hexagon Grids Display Uniform Adjacency......cccccovceeererreneenirienensseesienesenesneens 16
4. A Portion of Two ResolUtions......c.ccceveiieiniiinineninninnseeceesisenesse e nessaeene 27
5. Planar and Spherical Versions of the Five Platonic Solids........ccccccvevivecieccnnnnnnee. 30
6. Spherical Icosahedron Orientation.............cooiiiiiicnenee e eereesereererae 32
7. Three Levels of a Class I Aperture 4 Triangle Hierarchyc.cccoiiiiiniiiiininicns 34
8. Three Levels of a Class II Aperture 3 Triangle Hierarchy........cccccvevciecncrcencnnnn. 34
9. Three Levels of a Aperture 4 Diamond Hierarchy.......ccccovceecvncrvrncireeirnecriensinecenes 36
10. Seven-Fold Hexagon AZEregationcccerecerreervreereersrrsornerssssosnassrssossesesnesses 37
11. Three Levels of a Class I Aperture 4 Hexagon Hierarchyc..cocveeiccivicvvicecnnnes 39
12. Three Levels of a Class IT Aperture 4 Hexagon Hierarchy.......coccovvivenveccrecnneennes 39
13. Three Levels of an Aperture 3 Hexagon Hierarchy........cccccvvvevenciccicninnccnncnne. 39
14. Three Resolutions of Icosahedron-Based Geodesic DGGSSc..oovvevvineiveicvcnnennne 40
15. ETOPOS5 5’ Global Elevation Data Binned into the ISEA3H...........c.cccovceneeneee. 48
16. Hierarchical Adjacency Set for the Planar Aperture 4 Triangle Topology 56
17. Hierarchical Adjacency Set for the Planar Aperture 4 Diamond Topology........... 56
18. Hierarchical Adjacency Set for the Planar Aperture 3 Hexagon Topology 57
19. Hierarchical Adjacency Set for the Planar Aperture 4 Hexagon Topology 57
20. Four-Resolution Aperture 3 Hexagon Grid Initializedccccociericveecnecnnccnnnns 65
21, SamPple TIME SETIES ..ccvvvierrerirricrrierereeeeronesnrersrrerssssnassssnssersrsssrassnasssrsssarosnassses 68
22, ACF for Representative Hexagon Sample Seriesccveeviieeicrnieicrennonneneraennes 69
23. Three-axis Hexagon Coordinate SYStemScoccverervereericrienerncnrereerneserenennns 76
24. Class I 2di Coordinate SYSIEIMcceverivrernrriusniorsanserisnssnissassisssrneniossssosssssasssssses 77
25. Four Resolutions of an Aperture 3 Hexagon Grid Systemccccovevevvvrneenenenes 78
26. Icosahedral Faces Paired to Form Ten Quadrilateralscocvevvivevrinineenineenranenne 79
27. Unfolded Icosahedron with 2di Coordinate Systemsccceiverieirveeriienienierennenens 79

28. Class II Grid on a Single Quadrilateralcoocvvevvviiernnncrerceisnenenmsioniesinn. 80

29.
30.
3L
32.
33.
34.
35.
36.
37.
38.
35.
40.
41.

Xiv

Quantization at One Resolution Restricts Possible Quantization Candidates 81
MGBT Addressing of Class II Childrencoccveoveeenreennrernerenmreresrecsneerorneens 82
MGBT Addressing of Class I Children..........cccoovrvvoerieeennenconeieronencnee e 82
Sub-Regions Addressed by MGBT ..o 83
iMGBT Base Tiling on an Unfolded Icosahedroncccveevervenniinnneninniencnnnenn 85
A3HT Open (Type A} Generator HEXagonccccevverecnrieenneeeniericeereeescneennas 86
A3HT Closed (Type B) Generator Hexagoncocoocmniiinininiiniininnnin, 87
Generation of Four Resolutions of an A3HT Gridccccoocvvincineirincinnceniennee 88
A3PT Open (Type A) Generator Unfolded on the Planecoccvvvininnninncnnnnne. 89
A3PT Closed (Type B) Generator Unfolded on the Plane........cccccvereeriucererrnnnense 90
iA3HT Base Tiling on an Unfolded Icosahedronc.ccccceiicieevnirceenicencnnnnnen. 91
The First Six Resolutions of an iA3HT Generation Patternccovveeincinrenonnns 92
Relationship Between Base iA3HT Tiles and the Corresponding

Q2di Quadrilateralcocriiiinmiiriiriiireriere s arae e s s e reennens 101

XV

LIST OF TABLES
Table Page
1. Minimal ADT Components of an RFccocooiiiiininiinincnesecnes e rnereseenns 12
2. Primary Forms of the Proximity Operatorsccccvcerveriveeesiienienisncsnsenenenseenennns 12
3. Summary of Geodesic DGGS Design ChoiCes.....ccocerrerivrereerienienisncsnissianssemenaniens 45
4. Life State Transition Tableccccocciiiirciiniiiniinrrirerrse e srnrrssrasssrsesnesssnseses 63
5. Generalized Life State Transition Tablecccovviriviiiiinienininininicnieniennncrnnen 64
6. Mean Number of Time Steps Achievedcccccooviiiiiciiiinniicren e eerennens 66
7. Substitutions for Rotation of an A3HT Cellcccoeverrrenrerneinrienieninnneecreneen 99
8. Quadrilateral g vs. iIAJHT Base IndeX Ac.ccoecrieiiiniceceeeecrrrnnve e nvrenesnnns 100
9. iA3HT Base Cell Look-Up and Adjustmentsccoceeveererrrrrerrennereesierserenrsanes 103

CHAPTER 1

Introduction and Background

Motivation

Many of today’s most challenging computer science applications involve data ref-
erenced to the earth’s surface. These include problems in global climate modeling,
environmental monitoring and assessment, transportation planning, and military model-
ing and simulation. Integral to all of these applications is some representation of the
geospatial extent of the data elements, which we will refer to as a geospatial data
structure.

Increasingly inexpensive technologies (e.g., embedded Global Positioning Sys-
tem (GPS) receivers) allow for the real-time update of the location of mobile computing
devices — and hence the location of the device’s mobile user. This ability will greatly
enhance the user’s interface to the physical world by facilitating location-specific access
to geospatial data (where is the closest pizza parlor?) and algorithms (what is the shortest
route from here to New York City?) (Noronha, 2000). The new field of location-specific
or location-aware computing has begun to develop to address the needs of these user
communities.

Advances in computing hardware, GIS software, and in collection-related tech-
nologies such as satellites and GPS receivers have facilitated the availability of global
spatial data sets of increasingly fine granularity, allowing researchers to analyze, visual-
ize, and model processes on a global scale at increasingly higher resolutions. The
familiar, convenient, and relatively transparent structure of the raster grid makes it the
data structure of choice for high-resolution satellite imagery. But simple raster grids are

not efficient in terms of storage usage, making such datasets among the most massive in

use. For example, NASA’s multi-platform Earth Observation System generates over one
terabyte of geospatially referenced raster data per day (Shekhar & Chawla, 2003). Effec-
tive use of such datasets will push the limits of current massive database technology.

Active, on-going research in the often overlapping fields of geographic informa-
tion systems (GIS), spatial data structures and algorithms, spatial databases, and
computer graphics has provided geospatial applications with a rich set of techniques, data
structures, and algorithms (see, for example, the surveys in Samet, 1989, 1990; Shekhar,
Chawla, Ravada, Fetterer, Liu, and Lu, 1999; Rigaux & Voisard, 2002; Shekhar &
Chawla, 2003). Techniques developed to solve general problems in spatial computing
have been adapted with a great deal of success to geospatial computing.

But these techniques primarily use approaches to the representation of geospatial
location developed in the pre-computer days of paper-based mapping, in which locations
on the earth’s topologically spherical surface are projected onto a portion of the plane
before mapping them into a geospatial data structure. Given the challenging nature of
modern geospatial computing problems, and the prevelance of high-resolution global data
sets, researchers have begun to search for more efficient approaches to representing
geospatial location, Alternative data structures have been proposed based on highly regu-
lar, multi-resolution partitions of polyhedral approximations of the earth’s surface. Sahr,
White, and Kimerling (2003) have proposed the name Geodesic Discrete Global Grid
Systems (Geodesic DGGS) for this class of spatial data structures.

Geodesic grids have been proposed for a wide variety of geospatial applications,
including global climate modeling (e.g., Thuburn, 1997), storage of continuous field val-
ues (Fekete & Treinish, 1990), the development of statistically sound survey sampling
designs (White, Kimerling, and Overton, 1992; Olsen, Stevens, and White, 1998), and
even as a replacement for traditional geospatial coordinate systems (Dutton, 1989). The
Quaternary Triangular Mesh (QTM) system (Dutton, 1999) has been used in the develop-
ment of a number of global geospatial algorithms including optimal path planning
(Stefanakis & Kavouras, 1995), line simplification (Dutton, 1999), and as an index for
spatial databases (Dutton, 1999). QTM has been used as the basis for spatial indexing

3

systems in commercial applications such as Microsoft Encarta (Dutton, 1999), The popu-
larity of QTM, and other DGGS based on 4-fold recursive decomposition of triangles or
squares (e.g., Alborzi & Samet (2000)), seems in large part due to the fact that they
induce data structures which are forests of quadtrees. The quadtree is a well-studied class
of spatial data structure, allowing these DGGS to be quickly exploited using traditional
models developed for planar geospatial data structures.

But GIS researchers and geospatial data end-users have proposed DGGS based on
alternative tilings, such as the hexagon. Studies by GIS researchers (Kimerling, Sahr,
White, and Song, 1999) and mathematicians (Saff & Kuijlaars, 1997) indicate that hexa-
gon-based DGGS may have clear advantages for many applications. A hexagon-based
DGGS has been adopted by the US Environmental Protection Agency for global sam-
pling problems (White et al. 1992). And hexagon-based DGGS have been proposed at
least 5 times in the atmospheric modeling literature (Williamson, 1968; Sadournay,
Arakawa, and Mintz, 1968; Heikes & Randall, 1995a, 1995b; Thuburmn, 1997; Ringler &
Heikes, 1999), to our knowledge more often than any other Geodesic DGGS topology.

While many DGGS alternatives have been known to the spatial data structures
community for over a decade (see, for example, Samet’s (1989, 1990} classic two-vol-
ume survey of spatial data structures), designs based on topologies other than the 4-fold
decomposition of triangles have received little attention from data structures researchers.
Multi-resolution hexagon grids, in particular, do not fit well with current models of hier-
archical geospatial data structures. The cells of such grids cannot be created by simple
aggregation of atomic pixels, nor by recursive partition. Such grids do not induce hierar-
chical data structures which are quadtrees, or even strictly trees. But hexagon-based
DGGS are clearly an important approach that cannot be ignored by the geospatial data
structures community. To quote the conclusion of Sahr et al. (2003): “a significant effort
must be made by the data structures community to develop and evaluate algorithms for
the regular, but non-tree, hierarchies they form.”

If we wish to objectively evaluate the relative potential of all DGGS alternatives

as geospatial data structures, then we must begin with a model that includes them all. Qur

goal, then, is to develop a theoretical framework for the definition of global geospatial
data structures that can serve both as the basis for a denotational semantics of DGGS,
facilitating analytical comparisons, and as a basis for the implementation of these alterna-
tives, making possible empirical evaluations. In the next section we will attempt to define
an abstract data type for geospatial data structures, based upon a survey of the require-
ments that have conditioned the representation of geospatial location. In the next chapter
we will survey the major proposed DGGS alternatives. In subsequent chapters we will
describe our implementation of the abstract data type developed here to provide a test
platform for comparing discrete simulations defined independent of particular DGGS
topologies, and use this implementation to implement an initial comparison experiment
using a multi-resolution, topology independent spatial simulation. Finally, we will use the
terminology we have developed to describe efficient hierarchical location coding meth-
ods for one of the most promising hexagon-based DGGS alternatives, the Icosahedral
Snyder Equal Area Aperture 3 Hexagon (ISEA3H) DGGS. In the final section we dis-
cuss what we believe to be key research issues remaining as we move forward in

developing DGGS as practical geospatial data structures.

Background: Geospatial Data Structures

Any attempt to define new geospatial data structures should begin by defining an
abstract data type (ADT) for the effective representation of geospatial location. An ADT
can serve as the basis for a denotational semantics of DGGS, facilitating analytical com-
parisons, and as a basis for the implementation of these alternatives, making possible
empirical evaluations. An ADT must include a description of the basic form of the data
elements, and of the operations that must be supported. Such a model must be inclusive
of the requirements that geospatial applications impose upon geospatial data structures.
But we must be clear to distinguish between those requirements that are inherent to
geospatial computing, and those that have been imposed by traditional geospatial data

structures and practice.

Geospatial computing applications involve an association between data objects
and a representation of some portion of the earth’s surface. This representation is some-
times referred to as the spatial or geometric extent. We will call such a representation the
location of the data object. The basic data element is then the two-tuple [data-object,
location), though this may be implemented in a variety of equivalent forms (e.g., the
location may be represented parametrically and calculated as needed). Data objects range
from a single value (e.g., the strength of a continuous field, such as surface temperature),
to an arbitrarily complex representation of some object on the earth’s surface (e.g., an
agent representing a person in an individual-based military simulation). In practice the
location associated with a data object may represent any of a number of location forms: a
zero-dimensional point, a one-dimensional line or curve, a two-dimensional region, or an
arbitrary set of these primitive location forms.

A point associated with a data object may represent the actual location of the
object if its spatial extent is a point (as in the case of the point strength of a continuous
field) or it may be the centroid, or some other significant point, associated with a higher
dimensional spatial extent. A region associated with an object may be the exact region
that the object occupies, or it may be a simplified region, often a convex bounding region.
Sometimes both representations are maintained, and the simplified representation can be
used as a coarse filter to increase the efficiency of some geometric operations such as
equality, intersection, or containment. For example, an object intersection algorithm can
test for intersection between two locations by first testing for intersection between the
simplified bounding regions; this can greatly reduce the number of more expensive inter-
section tests amongst full location representations. Perhaps the most common simplified
region representation is a minimum bounding axes-aligned rectangle, the smallest bound-
ing rectangle with sides parallel to the orthogonal axes of a two-dimensional cartesian
coordinate system. Such a representation allows for particularly simple and efficient algo-
rithm definition.

Locations are defined in the context of a particular geospatial data structure, or

reference frame (RF). An RF defines the possible values for location representations, as

well as the set of operations defined on these representations. We call an RF-specific
location representation an address. A location, then, is a two-tuple [RF, address]. We
designate that the location p is defined as an address in the RF « (i.e., p = [a, address])
by writing p%.

Whether the address is fully materialized and stored, or computed as needed using
some spatially referenced function, on current digital computers it must be expressible as
a string of bits. Let A% be the set of all addresses @ for some RF o. Note that by defini-
tion A% may be its own power set and theoretically infinite in cardinality. But for any
particular instantiation of o on a digital computer there exists some finite number of bits
n available for address representation; therefore [A9| is finite and less than 27. If & sup-
ports a point location form we may define PZ, the set of all point location addresses p®.
Note that P%is a subset of A% Let n,, designate the base resolution of a, defined n, =
log|P9|.

Casati and Varzi {1996) distinguish between location representations which are
structured (e.g., 145.2°W longitude, 45° N latitude) and those that are unstructured (e.g.,
Poland and Warsaw). Structured RFs are those that can be used to specify or calculate
arbitrary spatial relationships. Spatial relationships among addresses in unstructured RFs
must be specified explicitly, or calculated using quantitative operations on corresponding
locations defined on a structured RF. An RF on which a limited set of relations have been
defined is known as a semi-structured representation. The set of relations in a semi-struc-
tured RF are often represented as a directed graph.

For example, Poland and Warsaw are both meaningful addresses in the unstruc-
tured RF List-of-Places. A semi-structured RF that defined mereological (part/whole})
relations (e.g., “Warsaw is-part-of Poland”) could efficiently implement useful mereolog-
ical inference operations. But such a data structure cannot be constructed based solely on
the unstructured RF List-of-Places. We could, however, calculate these relationships by
testing for intersections between polygons representing the boundaries of each place,
defined as polygons in the structured geographic (latitude, longitude) RF. Semi-struc-
tured RFs are thus fundamentally dependent on structured RFs; they support only a

specific set of operations directly and must rely on a structured RF to provide general
purpose geospatial computing support, either storing or calculating on-the-fly the
required structured RF object locations. Semi-structured RFs cannot, in and of them-
selves, meet the requirements of a general purpose global geospatial location system.
Our geospatial ADT must be compatible with the diverse set of structured and
semi-structured RFs in use by geospatial applications; if our ultimate goal is a general-
purpose geospatial ADT, we cannot restrict ourselves to RFs favored by any particular
class of application. Indeed, by definition an ADT for structured geospatial data struc-
tures must support any operation which has been or might be defined on an RF. Simply
compiling a list of the many operations required by current geospatial applications would,
at the very least, create an unwieldy ADT. We must instead attempt to identify funda-
mental operations from which these application-specific operations can be composed,
ideally determining a minimal set of core operations. By definition these would consti-
tute a minimal set of operations necessary to define an ADT for structured RFs. In the
next section we will discuss some classes of geospatial operators that appear to be funda-
mental to any structured RF. In the following section we will survey traditional geospatial
data structures to determine the viability of our ADT definition, as well as to understand

the kinds of location address forms that are currently in use.

Fundamental Geospatial Operation Classes

An ideal general-purpose RF would faithfully mirror all aspects of the rich geo-
metric structure of our shared experience of physical geospatial location. To quote
Nievergelt (1989) “the first point to be made about spatial data structures sounds so trite
that it is often overlooked: The main task of a spatial data structure is to represent space.”
The main task of an RF, then, is to represent the spatial structure of the surface of the
earth. The surface of the earth is thus the primary RF, which we designate as E. The fun-
damental nature of RFs as representations of E implies that every RF o must define a

mapping between addresses in E and addresses in o. If operations in o produce new loca-

tions then the inverse operation, mapping addresses in a to addresses in E, must also be
defined for those locations to be meaningful.

Let quantization be the operation of mapping an address in one RF to an address
in another. Formally, given two RFs o and B the quantization operator =%8: 4% — 4P
defines a location p® for each location p®. For convenience we will often write a particu-
lar application of this operator to a location p% as p® = pB. Note that in general a series
of quantization operations =98 = can be composed into a single operation =%,
though such a chained quantization operation may not constitute a unique operation; i.e.,
there may be multiple quantization paths between any two RFs.

From the above we can conclude that every RF o must define a primary quantiza-
tion operator =£%. 4E 5 4% and will usually define the inverse primary quantization

@E. 4@ — 4E In the case of unstructured RFs these operations may be

operator =
defined by direct association. For example, the address Poland in the unstructured RF
List-of-Places is known to correspond to a particular bounded region that can be indi-
cated directly on E. Alternately, the operations can be defined to/from an RF with a well-
defined correspondence to E, such as a geographic RF with a fully specified datum; note
that this RF would usually be structured. In such cases we can compose a primary quanti-
zation operator = for an RF o from the operations =P and =%, where p is the
structured RF surrogate for E, If there exists multiple quantization paths between E and o
we can, without loss of generalization, choose one of them to be the primary quantiza-
tion operator.

The primary quantization operator determines the basic efficiency and accuracy of
representation for the RF. It is the one operation that must be defined for any RF, whether
unstructured, semi-structured, or structured. Associated with each act of quantization is
some (possibly zero) quantization error, which we will define explicitly later in the con-
text of specific RFs. It is important to distinguish between quantization operations
between RFs that share the same base partition (i.e., which have a one-to-one correspon-
dence between address values) and those which do not. We call the former partition-

equivalent RFs. For now we note that we can define quantization operators between parti-

tion-equivalent RFs which have zero quantization error, while this is not in general the
case for RFs which are not partition-equivalent.

In addition to the quantization operator, a number of other operations are gener-
ally accepted as fundamental to any structured RF. Probably the most fundamental of
these are equality operators.

The base partition of an RF forms the basis for the fundamental operation isE-
qualTo®: A% x A% — bool. Given an RF a two locations p; and p; are considered equal in
a if and only if they have the same address in « (i.e., the address components of p;* and
p,% are elements of the same location equivalence class in 4%); this is written p,% ==
py% Usually equality operations are only defined between equivalent location forms
(point-point, curve-curve, region-region, and set-set). In some data structures locations
may be considered equal if they are “very close” (see the definition of distance operators
below and the specific example in the next section), but this is really a redefinition of the
semantics of the abstract data type in response to difficulties with a particular data
structure.

Ideally the operations which we define are invariant with respect to quantization.

A predicate relation operator®: A% x A% — bool has this property if and only if
operator®(p;®, p,%) == operator®(="E(p,E), =Ep,F)

for all locations p; and p,. Given locations defined in different RFs, we can apply quanti-
zation operators to one or both of the locations to transform them into a common RF for
equality testing. Note, however, that the choice of common RF may affect the result
unless all of the RFs involved are partition equivalent.

Equality is one of a class of fundamental geospatial operators which we call prox-
imity operators; these are operations that involve the notion of nearness and farness, and
capture the concept of coincidence of location. These operations form a natural progres-
sion of increasing generalization that is loosely analogous to degree of proximity. Listed

in order from high to low proximity they are: containment, equality, intersection, adja-

10

cency, and distance.

The containment predicate operator isContainedIn®: A% x A® — bool is true if and
only if the first argument is a proper subset of the second argument. Containment opera-
tions are defined between equivalent location forms. [n addition, a location may be
contained within a location form of higher dimension (e.g., a point may be contained in a
line or a region).

In addition to predicate forms, proximity operations also have generation and
selection forms. For example, the generation containment operator contains®: A% — A®
generates the set of all locations that are contained in the specified location argument. Let
D be the set of all data objects associated with the current application. Then the selection
containment operator selectContainedin®: A* — D would select all data objects in D for
which the associated location is contained in the indicated location argument.

The intersection predicate operator isIntersectedBy®: A% x A® — bool is true if
and only if the intersection of the two location arguments is non-empty. Intersection oper-
ations are well-defined between any pair of location forms, though they are equivalent to
containment operations when one location is of higher dimension, and to an equality
operation when both are points.

Distance (ideally metric) operations have an unambiguous definition only in the
case of point locations. Given an RF ¢ we can define the graph G with P® as the set of
vertices and with a unit-length edge defined between each pair of addresses in P if and
only if the actual geospatial regions associated with these two addresses are physically
“next to” each other on the surface of the earth (this will be discussed more fully in the
context of specific data structures in the next section). Then we can define the value of
the operation distance®(p ;% p,%) to be the length of the shortest path between p;* and
p>% in G% Note that by definition the distance operator returns a positive {or zero) inte-
ger result; the distance operator has the form distance®: 4% x A% — Z*.

Equality and adjacency (or neighborhoad) operations can be defined as special
cases of the distance operation. The equality predicate isEqualTo%(p;%, p,% is true if and

only if distance®(p ;% p,%) is zero. The adjacency predicate isNextTo%(p;% p,%) is true if
y P1 P2 1+ P2

and only if distance®(p;%, p,°) is one.

Distance operators also allow us to quantify the absolute error introduced by a
quantization operation as the distance between the original and quantized locations,
defined in the original RF. That is, the absolute error associated with a specific quantiza-
tion operation p® = pf is given by distance®(p® =P%pP)). The characteristic error of a
quantization operator = is the maximum absolute error for all locations in P%.

Quantization and proximity operators appear to have a unique status in the litera-
ture as the absolute minimum set of operations required for a structured RF. While
perhaps not as widely mentioned, one additional class of operators is often also consid-
ered more fundamental than others in capturing a notion of location: the direction
operators. These operators attempt to capture information about the relative position of
locations beyond the notion of proximity. Directions are most commonly defined
between point locations and are commonly represented as either vectors or angles. Let
M® be the set of directions defined on the RF a. Then two common direction operators
are directionTo%: P% x P® — M%, which calculates the direction from one location to
another, and directionQffset®: P® x M® x Z— P, which calculates the location a given
distance in a given direction from an initial point.

To summarize, then, we may conclude that the minimal structured geospatial
ADT defines an RF a as the set of sets { A%, P% G% M® } with the following operations
defined: a primary quantization operator, proximity operators (containment, equality,
intersection, adjacency, and distance), and direction operators (directionTo and direction-
Offset). Table 1 summarizes the ADT set components and Table 2 summarizes the

primary forms of the proximity operators.

Table 1. Minimal ADT components of an RF a.

component

description

L
po
Go
M
D

set of addresses in a

set of point locations in 4%

graph induced by P®

set of directions defined on o

set of data objects

Table 2. Primary forms of the proximity operators.

operation predicate form

generation form selection form

containment isContainedIn®:
A% x A® — bool

equality isEqualTo®:
A% x A% = bool

intersection isIntersectedBy®:
A% x A% — bool

adjacency isNextTo“:
A%x A% = bool

distance isDistanceTo®™:
A% x A%x Z* — bool

contains®: A% — A selectContainedIn®:

A% =D
equalTo®: A% — A% selectEqualTo®:
A% —D
intersects®: A% — A% selectIntersects®:
A% =D
neighbors®: A% — A% selectNeighbors®:
A% =D
neighborhood™: selectNeighbohood™:
A%x Zt — A% A%xZt D

Traditional Geospatial Data Structures

Now that we have identified a minimal set of fundamental operations for an

abstract data type for the representation of geospatial location, let us turn our attention to

the specific forms that RFs have traditionally taken. This will allow us to validate our set

13

of fundamental operators, to identify additional operators for our ADT, and to under-
stand the basic forms that have been used for geospatial data structures in the past. For
this purpose it is useful to distinguish three broad geospatial application domains: the
end-user domain, the spatial data model domain, and the resource mapping domain. We
will discuss each of these application domains in detail below. But briefly, end-user
domain applications are those in which an RF is chosen which transparently mimics the
geospatial representation form used by the end-user in formulating their problem. In spa-
tial data model domain applications the end-user location representations are quantized
into RFs chosen specifically to facilitate efficient algorithms for important operations.
Resource mapping domain applications are those in which locations are explicitly
mapped to physical resources (or vice versa), and RFs are chosen to optimize resource
usage.

While a number of data structures and algorithms may be applied to more than
one of these domains, each domain is characterized by a distinct emphasis in require-
ments that tend to condition the form of the RFs employed under that domain. We will
discuss each of these in turn. While we believe our approach and organization is original,
most of the material itself follows traditional lines (see in particular Samet, 1990; Rigaux
et al. 2002; Shekhar & Chawla, 2003).

The End-User Domain

When end-users formulate geospatially referenced problems they typically use
some preferred mathematical representation of geospatial location. When translating
these problems into computer models the end-user often finds it convenient to choose an
RF which mimics their preferred mathematical representation, and that supports similar
operations. We term this class of geospatial data structure usage the end-user domain.
There are traditionally two distinct approaches to the representation of location by end-
users, often referred to as raster and vector approaches. Both approaches are considered

structured. We will discuss each of these in turn.

14

Under the raster approach to location representation the spatial domain of interest
is partitioned by a uniform grid. Usually the raster grid is not truly uniform on the earth’s
surface, but is defined on some mathematical space that acts as a surrogate representa-
tion of that surface. Common surrogate spaces include planar surfaces produced by the
application of map projections to portions of the earth’s surface, cylindrical projections of
the entire earth surface, and polar coordinate spaces defined on a spherical or ellipsoidal
approximation of the earth’s surface, which produces the widely used latitude/longitude
graticule.

Raster RFs map conveniently onto the abstract data type given above; a raster RF
o is specified by assigning each grid cell a unique address. The address graph G% has a
convenient geometric analogue which can be constructed by placing a uniform lattice of
vertices on the surrogate surface and then connecting adjacent vertices with edges. The
spacing of these vertices determines the resolution of the raster, or the minimum size of
details which the raster can distinguish. The faces (or voronoi cells) of the graph vertices
form the location equivalence classes. Each graph face is called a pixel. Quantization of
point locations is performed in a geometrically intuitive manner by mapping each point
on the surrogate surface to the nearest graph vertex, with some rule specified for the
assignment of points falling on the boundary between cells (commonly referred to as
“rounding™). Curves and regions are represented by the minimal set of pixels which they
intersect, contain, or are contained by, depending upon the application.

The most common raster form is generated by a regular square point lattice with
square pixels. It is favored because it is the traditional basis for spatial grids among end-
users, and it allows for extremely efficient quantization to/from traditional cartesian coor-
dinate systems. The most common pixel address form is a two-tuple of integers, allowing
for a simple two-dimensional matrix representation of the domain space that is highly
transparent to most generic end-users. Because each square pixel has four neighbors with
which it shares an edge, and another four neighbors with which it shares only a vertex,
there are two possible definitions for adjacency. As illustrated in Figure 1, under the D4

metric only edge neighbors are considered adjacent, while under the D8 metric both edge

15

and vertex neighbors are considered adjacent. Both lead to definitions for the distance

operator which are metrics.

D4 Metric D8 Metric

Figure 1. Two definitions of adjacency on square rasters generate
two different metrics,

In addition to the square pixel raster, a number of other pixel shapes have been
used. The most uniform shapes, and therefore those which have received the most atten-
tion for raster RFs (see, for instance, the classic and influential study Bell, Diaz, Holroyd,
and Jackson, 1983), are regular polygons that tile the plane. There are three such shapes:
the square, the regular hexagon, and the equilateral triangle.

As with square grids, triangle grids have two possible definitions for adjacency,
depending on whether or not vertex neighbors of each cell are considered adjacent. As
illustrated in Figure 2, this leads to two possible metric definitions. In addition, triangle
grid pixels do not have uniform orientation; each pixel can point up or down. Thus the
orientation of each pixel must be taken into account when developing algorithms on tri-

angle grids.

AVAVAVANRNY ',
VA / VAVANRV./ /. VN
VA AVAVANR /7 AVA
\VAVAVAVAN\VAVAVAV

D4 Metric D12 Metric

Figure 2. Two definitions of adjacency on triangle rasters generate
two different metrics.

16

Hexagon grids have received a great deal of attention. Among the three regular
polygons that tile the plane, hexagons are the most compact, they quantize the plane with
the smallest average error (Conway & Sloane, 1988), and they provide the greatest angu-
lar resolution (Golay, 1969). Unlike square and triangle rasters, hexagon rasters do have
uniform adjacency. As illustrated in Figure 3, each hexagon pixel has six neighbors, all of
which share an edge with it, and all of which have centers exactly the same distance away
from its center. Each hexagon pixel has no neighbors with which it shares only a vertex.
This fact alone has made hexagons increasingly popular as bases for discrete spatial sim-
ulations. Frisch, Hasslacher, and Pomeau (1986) argue that the six discrete velocity
vectors of the hexagonal lattice are necessary and sufficient to simulate continuous, iso-
tropic, fluid flow. A recent textbook (Rothman & Zaleski, 1997) on fluid flow cellular
automata is based entirely on hexagonal meshes, with discussions of square meshes
included “only for pedagogical calculations.” Triangle grids, which are even more lim-

ited for this purpose, are not mentioned.

Figure 3. Hexagon grids display uniform adjacency.

However, hexagon rasters have a disadvantage in that hierarchical grids can not
be built of hexagons using the usual techniques of aggregating small hexagons into larger
hexagons or, conversely, sub-dividing large hexagons into smaller ones.

The second major end-user domain approach to location representation is the vec-
tor approach, in which locations are given a mathematical representation. There are two

common types of vector representation. Under the first, point locations are represented by

assigning them some coordinate value, usually in a cartesian coordinate system. A line
segment is represented by specifying it’s endpoints, and arbitrary curves are approxi-
mated by a series of connected line segments (a polyline), and represented as the ordered
vector of point locations (nodes or vertices) connected by the line segments (arcs). Simi-
larly, in this vector approach regions are represented using a closed polyline (a polygon)
constituting their boundary. The second common type of vector location representation is
to indicate each location form using a parametric equation. Note that even when this sec-
ond approach is employed, particular materialized location address representations are
almost always given in some coordinate system, as under the first approach. The most
common address representation for points under the vector approach is a two- or three-
dimensional vector of real numbers. Traditionally these are either polar (latitude/longi-
tude) coordinates or cartesian coordinates defined in some planar map projection space.
Such locations are conveniently represented as two-tuples of floating point numbers.

Both raster and vector RFs can be constructed using a lattice of fixed points; in
this sense their underlying mathematical structure is identical. The difference between
them is in the way in which they are perceived and utilized. Raster RFs are sometimes
called space- or field-based models, because in such data structures the underlying space
itself is the primary organizing principle. Often a fully materialized matrix forms a data
structure analog to the geospatial area of interest, with data objects associated with corre-
sponding matrix locations. In contrast, vector RFs are entity- or object-based models,
with the data objects being the primary, materialized, components with which particular
location addresses are associated.

This reflects an underlying assumption that vector RFs are somehow more like
real number coordinate systems than the explicitly discrete raster RFs; indeed vector
addresses are sometimes referred to as “exact” addresses. Thus operations are conve-
niently defined on the vector RF addresses to mimic the corresponding mathematical
operations defined on vectors of real numbers. But while the cartesian plane is continu-
ous, representations of cartesian coordinates on digital computers are always finite and

discrete. Operations defined on these finite addresses can introduce rounding errors into

18

the resulting location addresses. Consequently even fundamental operations on vector
RFs must take into account the possibility of propagated rounding error. For example,
earlier we defined the equality predicate to be true if and only if the distance between the
two address arguments is zero. But in the case of vector addresses they are usually con-
sidered equal if the distance between them is less than some relatively small number.
This makes it impossible to distinguish between two addresses which are distinct yet very
close, and two addresses which are intended to indicate the same location on the earth’s
surface but which differ due to rounding error when one or both of them were calculated.
In many applications this distinction is of little consequence and hence can be ignored
without effect. However, in the case of spatial location applications the result of a loca-
tion equality test may well be an important decision point in determining the future
course of execution for the application. And while it is often possible to bound the round-
ing errors in the calculations of a single application run, modern geospatial computing
increasingly involves interactions between multiple geospatial applications. In such situa-
tions it may be very difficult to bound the overall round-off error in the final system
results.

In addition to the fundamental operators of quantization, proximity, and direc-
tion, end-user applications make use of a diverse variety of operations. These include the
common constructive solid geometry operations (union, exclusive-or, etc.), affine trans-
forms (translation, rotation, and scaling), and measurement operations such as length and
area. Both raster and vector RFs are commonly used as spatial substrates for stochastic
simulations which require, in addition to the fundamental operations already listed, oper-
ations that introduce a stochastic element such as movement (change in address value
over time) and deformation (arbitrary change in location representation associated with a
data object over time).

Because they are explicitly finite, raster grids also support fraversal operations, or
spatially explicit orderings of all location addresses (and hence of all associated data
objects). Additionally, raster grids are widely used for storing and processing digital

imagery, and a diverse set of map algebra operations have been defined for this purpose.

19

These operations transform pixel values based on linear (and sometimes non-linear) func-
tions of the original pixel values. Examples of such operations include thresholding,
frequency filtering, and edge enhancement. Note that the fundamental adjacency and dis-
tance operations are used in the definition of many map algebra operations.

The GIS applications domain deserves special mention. Applications in this area
are distinguished by the emphasis they place on RF location, in and of itself, as a pri-
mary object of analysis, manipulation, and visualization. As throughout the end-user
domain, vector and raster RFs are the primary RFs used in GIS applications. But the GIS
community straddles the boundary between the end-user domain and the spatial data
model domain discussed in the next section. GIS applications include all of the opera-
tions so far discussed, though the community has developed its own terminology for
many of these structures and operations. For example, the topological niodel is the GIS
term for the representation of basic location forms as points, lines represented as con-
nected series of points (polylines), and regions represented by closed polyline boundaries.
GIS, in conjunction with the fields of computational geometry and computer graphics,
has developed a rich set of algorithms for efficiently representing and manipulating loca-
tion representations such as the topological model. For example, representational
redundancy in a topological model can be reduced by introducing a vertex- or edge-table

representation.

The Spatial Data Model Domain

More computationally sophisticated users are much less concerned with address-
ing transparency than they are with the efficiency with which an RF can be used to
implement specific sets of operations. We refer to this user domain as the spatial data
model domain. Research in the computer science data structures community has tradi-
tionally focussed on this domain, with a particular emphasis on two areas: spatial graph
models and spatial databases.

Geospatial graph or network models are traditional graphs in which the nodes rep-

20

resent distinct locations and the edges represent connectivity between these locations;
note that by definition graph models are semi-structured RFs. The graph edges may be
weighted. In one common example, the nodes represent cities and the edges represent
highways connecting the cities, with edge weights indicating the length of each route. In
some cases the edges are directed, as when the graph represents drainage paths in a river
system.

Most of the traditional graph operations have direct applications to geospatial
graphs. For example, shortest path determination and graph traversal operations have
important application in transportation planning. Indeed, the oft-cited traveling salesman
problem {Lawler, Lenstra, Kan, and Shmoys, 1985) is explicitly a geospatial graph
problem.

The spatial database domain is concerned with the efficient storage and retrieval
of geospatially referenced data. Spatial database research attempts to integrate spatial
data with existing relational database technology as well as to develop new approaches
tailored to the unique requirements of spatial database users. Spatial data differs from tra-
ditional data records in a number of respects. In most data sets fields used as index keys
have limited mathematical structure relevant to query construction; this structure is usu-
ally limited to a linear ordering. In spatial databases the location address is a primary key,
and as we have seen these addresses have a rich mathematical structure. This structure is
routinely exploited in building spatial database queries. Traditionally these queries have
been limited to the fundamental proximity operators listed above. But recently it has
become clear that users desire the ability to build queries using arbitrarily complex spa-
tial operators; in the case of relational databases these are known as arbitrary spatial
Joins.

Both structured and semi-structured RFs have been used as the basis for spatial
databases. Since structured RFs support arbitrary spatial operations by definition they
allow for the construction of arbitrary spatial queries. The guadtree is the basis for a vari-
ety of hierarchical structured RFs developed for storing various location forms. It is an

efficient RF for storing field-based data like raster grids. However, the quadtree can be

21

very inefficient for storing entity-based or sparse field-based data objects. Some research-
ers have proposed modified quadtree structures that use non-uniform subdivision adjusted
to the distribution of data objects in space. But such adjustments degrade the regular
structure that is the quadtree’s chief advantage.

The cells of the multi-resolution quadtree can be used as buckets for storing data
objects, with data objects associated with the highest resolution cell that entirely contains
them, known as the minimum bounding cell. This tree of minimum bounding cells can
then be queried using spatial operators. However, in most cases the tree itself will not be
height-balanced, resulting in inefficient search algorithms, Non-spatial databases with
linear keys make use of height-balanced tree structures such as the B-tree to increase
search and data access efficiency. As previously noted, linear traversal orderings can be
defined on raster RFs, and such orderings can then form the basis of a B-tree structure.
However, since the geospatial surface is usually two-dimensional the transformation to
one-dimension destroys the proximity structure of the original raster. Guttman (1984)
proposed the R-tree semi-structured data structure as a natural two-dimensional exten-
sion of the B-tree. Object locations are represented in this structure by minimum
bounding rectangles. While this creates an efficient height-balanced tree for geospatial
data, it has at least two limitations. First, the minimum bounding rectangles are only use-
ful as a coarse filter for proximity queries; the actual object locations must be stored in
the data structure so that they are available for exact query computations. This is an
example of the fact we discussed earlier, that semi-structured RFs are always dependent
on structured RFs to provide general purpose spatial support. The other difficulty intro-
duced by the R-tree is that the minimum bounding rectangles are not disjoint. This can
lead to inefficient processing of some spatial queries. A number of R-tree variants have
been proposed to increase the query performance of these structures, sometimes at the
expense of more restrictive assumptions about the data set.

The spatial database problem is directly concerned with the mapping of spatial
data to secondary storage and thus it straddles the boundary between the spatial data

model domain and the resource mapping domain discussed in the next section.

The Resource Mapping Domain

The resource mapping domain involves geospatial applications where the pri-
mary criteria is the efficiency of the mapping between geospatial data and physical
resources. There are two basic problem classes in this domain: the efficient mapping of
geospatial RFs to computational resources, and the use of computations on geospatial
RFs to drive the efficient distribution of location-dependent physical resources on the sur-
face of the earth.

The primary computational resource mapping problem has traditionally been the
problem of efficiently mapping non-linear (usually two-dimensional) spatial surfaces to
linear (one-dimensional) secondary storage. This has traditionally been solved using one
of two approaches: explicit linearization of the RF (with the consequence of loss of prox-
imity), or by decomposing the space into buckets that are then mapped to storage units;
for example, each leaf node of an R-tree usually corresponds to a single page on disk.
The rise of distributed and massively parallel computing architectures, and the desire to
apply these architectures to complex geospatial problems such as global climate model-
ling, has led to a more general problem of mapping subsets of geospatial RFs to arbitrary
computing nodes connected with diverse communications topologies, while attempting to
retain the original geospatial proximity. Algorithms have also been developed which take
advantage of structured hierarchical RFs like the quadtree. For instance, traditional field-
based integration algorithms make iterative use of neighbor data values to constrain pixel
values; multi-grid algorithms incorporate constraints between parents/children within the
hierarchy and often result in faster convergence.

An increasingly important geospatial application area is the calculation of effi-
cient distributions of geospatially constrained physical resources on the earth’s surface;
perhaps the most studied such problem over the last decade has been the allocation of
limited-range cell phone transmitters to provide for optimal coverage. In the fast-grow-
ing field of location-based computing, it has long been recognized that location-specific

data repositories (and associated physical resources) are most efficiently located near the

23

associated location on the earth’s surface. The optimal distribution of these resources and
their associated communication topologies for efficient access by mobile users presents

new challenges in geospatial computing.

The Next Step

Our survey of geospatial computing applications has yielded a set of fundamental
abstract data type operations and an overview of the data structures that have been devel-
oped to meet the needs of geospatial computing applications. As previously noted, a
number of researchers have found limitations in these traditional approaches when
applied to the increasingly common high-resolution global data sets. Extensions of these
approaches onto topologically spherical data structures has led to a new class of struc-
tured geospatial data structures known as DGGs. In the next chapter we will survey the
primary DGG alternatives that have been proposed.

24

CHAPTER 11

Geodesic Discrete Global Grid Systems

Acknowledgements

This chapter is substantially the same as the previously published and co-authored
paper Sahr et al. (2003). The present author was the primary developer of the definitions
and classification scheme that constitute the main contributions of that paper. Figure 6

was created by Denis White. All other figures were created by the present author.

Discrete Global Grid Systems: Basic Definitions

Discrete Global Grid

A Discrete Global Grid (DGG) consists of a set of cells, where each cell is a tuple
consisting of an areal region on the surface of the earth, and a single point contained in
that region. The cell regions form a partition of the Earth’s surface. Depending on the
application, data objects or vectors of values may be associated with regions, points, or
cells. If an application defines only the regions, the centroids of the regions form a suit-
able set of associated points. Conversely, if an application defines only the points, the
Voronoi regions of those points form an obvious set of associated cell regions.

Applications often use DGGs with cell regions that are irregular in shape and/or
size. For example, the division of the Earth’s surface into land masses and bodies of
water constitutes one of the most important DGGs. A more general example, the Hippar-
chus System (Lukatella, 2002), allows the creation of arbitrarily regular DGGs by
generating Voronoi cells on the surface of an ellipsoid from a specified set of points. But

for many applications it is desirable to have highly regular cells, with regions as uniform

25

in shape and size as possible, and with cell points evenly distributed across the surface of
the earth.

Regular DGGs are unbiased with respect to spatial patterns created by natural and
human processes and allow for the development of simple and efficient algorithms. A
single regular DGG may play multiple data structure roles. It may function as a raster
data structure, where each cell region constitutes a pixel. It may serve as a vector data
structure, where the set of DGG points replaces traditional coordinate pairs (Dutton,
1999). Each data object may be associated with the smallest cell region in which it is
fully contained, and these minimum bounding cells may then be used as a coarse filter in
operations such as object intersection. The DGG can also be used as a useful graph data
structure by taking the DGG points as the graph vertices and then connecting points asso-
ciated with neighboring cells with unitweight edges.

The most commonly used regular DGGs are those based on the geographic (lati-
tude—longitude) coordinate system. Raster global data sets often employ cell regions with
edges defined by arcs of equal-angle increments of latitude and longitude (for example,
the 2.5 x2.5,5 x5, and 10" x 10" NASA Earth Radiation Budget Experiment [ERBE]
grids described in Brooks, 1981). Data values may also be associated with points spaced
at equal-angle intervals of latitude and longitude (for example, the 5’ x 5° spacing of the
ETOPOS5 global elevation data set described in Hastings & Dunbar, 1998). Similarly,
vector data sets that employ a geographic coordinate system to define location values
commonly choose a specific precision for those values. The choice of a specific preci-
sion for geographic coordinates forms an implicit grid of fixed points at regular angular
increments of latitude and longitude, and a particular data set of that precision can con-
sist only of coordinate values chosen from this set of fixed points. Ideally, the regions
associated with the geographic vector coordinate points would be the corresponding
Voronoi regions on the Earth’s surface, although they are more commonly the corre-
sponding Voronoi regions on a surrogate representation of the Earth’s surface, such as a
sphere or ellipsoid. In practice, applications often implicitly employ Voronoi regions

defined on the longitude x latitude plane, on which the regions are, conveniently, regular

26

planar squares. As we shall see, employing a surrogate representation for the Earth’s sur-
face on which the cell regions are regular planar polygons is a useful and common

approach in DGG construction.

Discrete Global Grid System

A Discrete Global Grid System {(DGGS) is a series of discrete global grids. Usu-
ally, this series consists of increasingly finer resolution grids; i.e., the grids in the series
have a monotonically increasing number of cells. If the grids are defined consistently
using regular planar polygons on a surrogate surface, we can define the aperture of a
DGGS as the ratio of the areas of a planar polygon cell at resolution & and at resolution
k-+1 (this is a generalization of the definition given in Bell et al., 1983). Later we will dis-
cuss DGGSs that have more than one type of polygonal cell region. In these cases there is
always one cell type that clearly predominates, and the aperture of the system is defined
using the dominant cell type. Kimerling et al. (1999) and Clarke (2002) note the impor-
tance of regular hierarchical relationships between DGGS resolutions in creating efficient
data structures. Two types of hierarchical relationship are common. A DGGS is congru-
ent if and only if each resolution & cell region consists of a union of resolution k+/ cell
regions. A DGGS is aligned if and only if each resolution & cell point is also a cell point
in resolution &4+1. If a DGGS does not have these properties, the system is defined as
incongruent or unaligned. For example, the widely used geographic {/atitude, longitude)
vector coordinate system constifutes a DGGS generated implicitly by multiple precisions
of decimal geographic vector representations. This DGGS has an aperture of 10 and is
incongruent and aligned (Figure 4).

Discrete Global Grid Systems based on the geographic coordinate system have
numerous practical advantages. The geographic coordinate system has been used exten-
sively since well before the computer era and is therefore the basis for a wide array of
existing data sets, processing algorithms, and software. Grids based on square partitions

are by far the most familiar to users, and they map efficiently to common data structures

27

and display devices. But such grids also have limitations. Discrete Global Grid Systems
induced by the latitude-longitude graticule do not have equal-area cell regions, which
complicates statistical analysis on these grids. The cells become increasingly distorted in
area, shape, and inter-point spacing as one moves north and south from the equator. The
north and south poles, both points on the surface of the globe, map to lines on the longi-
tude x latitude plane; the top and bottom row of grid cells are, in fact, triangles, not
squares as they appear on the plane. These polar singularities have forced applications
such as global climate modeling to make use of special grids for the polar regions. Square
grids in general do not exhibit uniform adjacency; that is, each square grid cell has four
neighbors with which it shares an edge and whose centers are equidistant from its center.
Each cell, however, also has four neighbors with which it shares only a vertex and whose
centers are a different distance from its center than the distance to the centers of the edge

neighbors. This complicates the use of these grids for such applications as discrete

simulations.
I

0d s - R R R L R s

ootw 4 T EERE R e e S R

0ty 4 AR BRI Rt E s

o | M U] | I
Ftmttmtmptet bbbttt
' t0'x e

Figure 4. A portion of two resolutions (10 and 1° precision) of the
DGGS implicitly generated by multiple precisions of decimal
geographic coordinate system vector representations. Note that this
is an incongruent, aligned hierarchy.

Attempts have been made to create DGGs based on the geographic coordinate

system but adjusted to address some of these difficulties. For example, Kurihara (1965)

28

decreased the number of cells with increasing latitude so as to achieve more consistent
cell region sizes. Bailey (1956), Paul (1973), and Brooks (1981) used similar adjust-
ments of latitude and/or longitude cell edges to achieve cell regions with approximately
equal areas. But these schemes achieved more regular cell region areas at the cost of
more irregular cell region shapes and more complex cell adjacencies. Tobler and Chen
(1986) projected the Earth onto a rectangle using a Lambert cylindrical equal area projec-
tion and then recursively subdivided that rectangle, but, as in the case of the other
mentioned approaches, this did not address the basic problem that the sphere/ellipsoid

and the plane are not topologically equivalent.

Geodesic Discrete Global Grid Systems

The inadequacies of DGGSs based on the geographic coordinate system have led
a number of researchers to explore alternative approaches. Many of these approaches
involve the use of regular polyhedra as topologically equivalent surrogates for the Earth’s
surface, and, in our opinion, these attempts have led to the most promising known options
for DGGSs. A number of researchers have been inspired directly or indirectly by R.
Buckminster Fuller’s work in discretizing the sphere, which led to his development of the
geodesic dome (Fuller, 1975). We will thus refer to this class of DGGSs as Geodesic Dis-
crete Global Grid Systems.

Geodesic DGGSs have been proposed for a number of specific applications.
Inherently regular in design, these systems have most commonly been used to store ras-
ter data sets, but they may also be used as a substitute for traditional coordinate-based
vector data structures (Dutton, 1999), as data containers, or as the basis for graphs (as
described in the previous section). Geodesic DGGSs have been used to develop statisti-
cally sound survey sampling designs on the Earth’s surface (Olsen et al., 1998), for
optimum path determination (Stefanakis & Kavouras, 1995), for line simplification (Dut-
ton, 1999), for indexing geospatial databases (Otoo & Zhu, 1993; Dutton, 1999; Alborzi
& Samet, 2000), and for the generation of spherical Voronoi diagrams (Chen, Zhao, and

29

Li, 2003). They have also been proposed as the basis for dynamic simulations such as
those used in global climate modeling (Williamson, 1968; Sadournay et al., 1968; Heikes
& Randall, 1995a, 1995b; Thuburn, 1997).

It is highly unlikely that any single Geodesic DGGS will ever prove optimal for
all applications. Many of the proposed systems include design innovations in particular
areas, though their construction may have involved other, less desirable design choices.
Therefore, rather than surveying individual Geodesic DGGSs as monolithic, closed sys-
tems, we will take the approach here of viewing the construction of a Geodesic DGGS as
a series of design choices which are, for the most part, independent. The following five
design choices fully specify a Geodesic DGGS:

1. A base regular polyhedron;

2. A fixed orientation of the base regular polyhedron relative to the Earth;

3. A hierarchical spatial partitioning method defined symmetrically on a face (or
set of faces) of the base regular polyhedron;

4. A method for transforming that planar partition to the corresponding spheri-
cal/ellipsoidal surface; and

5. A method for assigning points to grid cells.

We will now look at each of these design choices in turn, discussing the decisions

made in the development of 2 number of Geodesic DGGSs.

Base Regular Polyhedron

As White et al. (1992) and many others have observed, the spherical versions of
the five platonic solids (Figure 5) represent the only ways in which the sphere can be par-
titioned into cells, each consisting of the same regular spherical polygon, with the same
number of polygons meeting at each vertex. The platonic solids have thus been com-
monly used to construct Geodesic DGGSs, although other regular polyhedra have

sometimes been employed. Among these the truncated icosahedron has proved to be pop-

30

ular (White et al., 1992). It should be noted, however, that an equivalently partitioned
DGGS could be constructed using the icosahedron itself. The other regular polyhedra

remain unexplored for DGGS construction, so we limit our discussion here to the pla-

Figure 5. Planar and spherical versions of the five platonic solids:

the tetrahedron, hexahedron (cube), octahedron, dodecahedron,
and icosahedron.

tonic solids.

In general, platonic solids with smaller faces reduce the distortion introduced
when transforming between a face of the polyhedron and the corresponding spherical sur-
face (White, Kimerling, Sahr, and Song, 1998). The tetrahedron and cube have the largest
face size and are thus relatively poor base approximations for the sphere. But because the
faces of the cube can be easily subdivided into square quadtrees, it was chosen as the
base platonic solid by Alborzi and Samet (2000). The icosahedron has the smallest face
size and, therefore, any DGGSs defined on it tend to display relatively small distortions.
The icosahedron is thus the most common choice for a base platonic solid. Geodesic
DGGSs based on the icosahedron include those of Williamson (1968), Sadournay et al.
(1968), Baumgardner and Frederickson (1985), Sahr and White (1998), White et al.
(1998), Fekete and Treinish (1990), Thuburn {1997), White (2000), Song et al. (2002),
and (with an adjustment as discussed in the next section) Heikes and Randall (1995a,
1995b).

Dutton chose the octahedron as the base polyhedron for the Global Elevation
Model (1984) and for the Quaternary Triangular Mesh (QTM) system (1999), while
Goodchild and Yang (1992) based a similar system on it, and White (2000) used it as an

31

alternative base solid. The octahedron has the advantage that it can be oriented with verti-
ces at the north and south poles, and at the intersection of the prime meridian and the
equator, aligning its eight faces with the spherical octants formed by the equator and
prime meridian. Given a point in geographic coordinates, it is then trivial to determine on
which octahedron face the point lies, but, because the octahedron has larger faces than the
icosahedron, projections defined on the faces of the octahedron tend to have higher dis-
tortion (White et al., 1998).

Wickman, Elvers, and Edvarson (1974) observe that if a point is placed in the
center of each of the faces of a dodecahedron and then raised perpendicularly out to the
surface of a circumscribed sphere (“stellated”), each of the 12 pentagonal faces becomes
5 isosceles triangles. The stellated dodecahedron thus has 60 triangular faces compared to
the 20 faces of the icosahedron, and an equal area projection can be defined on the
smaller faces of the stellated dodecahedron with lower distortion than on the icosahedron
(e.g., Snyder, 1992). However, the triangular faces are no longer equilateral and there-

fore such a projection displays inconsistencies along the edges between faces.

Polyhedron Orientation

Once a base polyhedron is chosen, a fixed orientation relative to the actual sur-
face of the Earth must be specified. Alborzi and Samet (2000) oriented the cube by
placing face centers at the north and south poles. White et al. {1992) oriented the trun-
cated icosahedron such that a hexagonal face covered the continental United States.
Dutton (1984, 1999), and Goodchild and Yang (1992) oriented the octahedron so that its
faces align with the octants formed by the equator and prime meridian, Wickman et al.
(1974) oriented the dodecahedron by placing the center of a face at the north pole and a
vertex of that face on the prime meridian, thus aligning with the prime meridian an edge
of one of the triangles created by stellating the dodecahedron. In the case of the icosahe-
dron, the most common orientation (Figure 6a) is to place a vertex at each of the poles

and then align one of the edges emanating from the vertex at the north pole with the

32

prime meridian. This orientation is used by Williamson (1968), Sadournay et al. (1968),
Fekete and Treinish (1990), and Thuburn (1997).

Figure 6a. Spherical icosahedron orientation with vertices at poles and
an edge aligned with the prime meridian. Note
the lack of symmetry about the equator.

Figure 6b. Spherical icosahedron oriented using Fuller’s Dymaxion
orientation. Note that all vertices fall in the ocean.

Figure 6c. Spherical icosahedron oriented for symmetry about equator
by placing poles at edge midpoints. Note the symmetry about the
equator and the single vertex falling on land.

Heikes and Randall’s (1995a, b) icosahedron-based system was developed specif-
ically for performing global climate change simulations. They note that in the common

vertices-at-poles icosahedron placement (Figure 6a) the icosahedron is not symmetrical

33

about the equator. When a simulation on a DGGS with this orientation is initialized to a
state symmetrical about the equator, and then allowed to run, it evolves into a state that is
asymmetrical about the equator, presumably due to the asymmetry in the underlying
icosahedron. To counter this effect they rotate the southern hemisphere of the icosahe-
dron by 36 degrees, and the resulting “twisted icosahedron” is symmetrical about the
equator.

Fuller (1975) chose an icosahedron orientation (Figure 6b) for his Dymaxion
icosahedral map projection that places all 12 of the icosahedron vertices in the ocean so
that the icosahedron can be unfolded onto the plane without ruptures in any landmass.
This is the only known icosahedron orientation with this property. Note that one compact
way of specifying the orientation of a platonic solid is by giving the geographic coordi-
nates of one of the polyhedron’s vertices and the azimuth from that vertex to an adjacent
vertex. For platonic solids this information will completely specify the position of all the
other vertices. Using this form of specification, Fuller’s Dymaxion orientation can be
constructed by placing one vertex at 5.2454 W longitude, 2.3009°N latitude and an adja-
cent one at an azimuth of 7.46658" from the first vertex.

We note that if the icosahedron is oriented so that the north and south poles lie on
the midpoints of edges rather than at vertices, then it is symmetrical about the equator
without further adjustment. While maintaining this property we can minimize the num-
ber of icosahedron vertices that fall on land, following Fuller’s lead. The minimal case
appears to be an orientation (Figure 6c) that has only one vertex on land, in China’s
Sichuan Province. This orientation can be constructed by placing one vertex at 11.25'E
longitude, 58.28252°N latitude and an adjacent one at an azimuth of 0.0° from the first

vertex.
Spatial Partitioning Method

Once we have a base regular polyhedron, we must next choose a method of subdi-

viding this polyhedron to create multiple resolution discrete grids. In the case of platonic

34

solids one can define the subdivision methodology on a single face of the polyhedron or
on a set of faces that constitute a unit that tiles the polyhedron, provided that the subdivi-
sion is symmetrical with respect to the face or tiling unit. Four partition topologies have
been used: squares, triangles, diamonds, and hexagons.

Alborzi and Samet (2000} performed an aperture 4 subdivision to create a tradi-
tional square quadtree on each of the square faces of the cube. We have observed that the
preferred choices for base platonic solids are the icosahedron, the octahedron, and the
stellated dodecahedron, each of which has a triangular face. The obvious choice for a tri-
angle is to subdivide it into smaller triangles. Like the square, an equilateral triangle can
be divided into »? (for any positive integer n) smaller equilateral triangles by breaking
each edge into » pieces and connecting the break points with lines parallel to the triangle
edges (Figure 7). In geodesic dome literature this is referred to as a Class I or alternate
subdivision (Kenner, 1976). Recursively subdividing the triangles thus obtained gener-

ates a congruent and aligned DGGS with aperture 77,

VAV

Figure 7. Three levels of a Class I aperture 4 triangle hierarchy
defined on a single triangle face.

AV

Figure 8. Three levels of a Class II aperture 3 triangle hierarchy
defined on a single triangle face,

Small apertures have the advantage of generating more grid resolutions, thus giv-

ing applications more resolutions from which to choose. For congruent triangle

35

subdivision the smallest possible aperture is 4 (7 = 2). This aperture also conveniently
parallels the fourfold recursive subdivision of the square grid quadtree; many of the algo-
rithms developed on the square grid quadtree are transferable to the triangle grid quadtree
with only minor modifications (Fekete & Treinish, 1990; Dutton, 1999). This subdivi-
sion approach (Figure 7) was used by Wickman et al. (1974), Baumgardner and
Frederickson (1985), Goodchild and Yang (1992), Dutton (1999), Fekete and Treinish
(1990), White et al. (1998), and Song, Kimerling, and Sahr (2002). Congruent and
unaligned Class I aperture 9 (r = 3) triangle hierarchies have been proposed by White et
al. (1998} and Song et al. (2002).

An aperture 3 triangle subdivision is also possible. In this approach, referred to as
the Class II or triacon subdivision (Kenner, 1976), each triangle edge is broken into n =
2™ pieces (where m is a positive integer). Lines are then drawn perpendicular to the trian-
gle edges to form the new triangle grid (Figure 8). The Class II breakdown is incongruent
and unaligned. No Geodesic DGGSs have been proposed based on this partition, though
the vertices of a Class Il breakdown have been used as cell points by Dutton (1984) and
by Williamson (1968) to construct a dual hexagon grid.

Triangles have a number of disadvantages as the basis for a DGGS. First, they are
not squares; they are thus a foreign alternative for many potential users, and they do not
display as efficiently as squares on common output display devices that are based on
square lattices of pixels. Like square grids, they do not exhibit uniform adjacency, each
cell having three edge and nine vertex neighbors. Unlike squares, the cells of triangle-
based discrete grids do not have uniform orientation; as can be seen in Figures 7 and 8,
some triangles point up while others point down, and many algorithms defined on trian-
gle grids must take into account triangle orientation,

While the square is the most popular cell region shape for planar discrete grids, its
geometry makes it unusable on the triangle-faced regular polyhedra that we have seen are
preferred for constructing Geodesic DGGSs. However, White (2000) notes that pairs of
adjacent triangle faces may be combined to form a diamond or rhombus, and this dia-

mond may be recursively sub-divided in a fashion analogous to the square quadtree

36

subdivision (Figure 9). When one begins with either the octahedron or icosahedron, this
yields a congruent, unaligned Geodesic DGGS with aperture 4. Because diamond-based
grids have a topology identical to square-based quadtree grids they can take direct advan-

tage of the wealth of quadtree-based algorithms. But like square grids, they do not display

VA TR Y

Figure 9. Three levels of an aperture 4 diamond hierarchy. The coarsest
diamond resolution consists of two triangle faces as indicated.

uniform adjacency.

As discussed in the last chapter, the hexagon exhibits a number of advantages as a
planar tiling unit relative to squares and triangles. Studies by GIS researchers (Kimerling
et al., 1999) and mathematicians (Saff & Kuijlaars, 1997) indicate that many of the
advantages of planar hexagon grids may carry over into hexagon-based Geodesic
DGGSs. A hexagon-based grid has been adopted by the U.S. EPA for global sampling
problems (White et al., 1992). And hexagon-based Geodesic DGGSs have been pro-
posed at least four times in the atmospheric modeling literature (Williamson, 1968;
Sadournay et al., 1968; Heikes & Randall, 1995a, 1995b; Thuburn, 1997)—to our knowl-
edge more often than any other Geodesic DGGS topology. It should be noted that it is
impossible to completely tile a sphere with hexagons. When a base polyhedron is tiled
with hexagon-subdivided triangle faces, a non-hexagon polygon will be formed at each of
the polyhedron’s vertices. The number of such polygons, corresponding to the number of
polyhedron vertices, will remain constant regardless of grid resolution. In the case of an
octahedron these polygons will be eight squares, in the case of the icosahedron they will

be 12 pentagons.

3

Figure 10. Seven-fold hexagon aggregation into coarser pseudo-hexagons.

While single-resolution, hexagon-based discrete grids are becoming increasingly
popular, the use of multi-resolution, hexagon-based discrete grid systems has been ham-
pered by the fact that congruent discrete grid systems cannot be built using hexagons; it is
impossible to exactly decompose a hexagon into smaller hexagons (or, conversely, to
aggregate small hexagons to form a larger one). Hexagons can be aggregated in groups of
seven to form coarser resolution objects which are almost hexagons (Figure 10), and
these can again be aggregated into pseudohexagons of even coarser resolution, and so on.
Known as Generalized Balanced Ternary (Gibson & Lucas, 1982), this structure has
become the most widely used planar multi-resolution, hexagon-based grid system. How-
ever, it has several problems as a general-purpose basis for spatial data structures. The
first is that the cells are hexagons only at the finest resolution. Secondly, the finest resolu-
tion grid must be determined prior to creating the system, and once determined it is
impossible to extend the system to finer resolution grids. Thirdly, the orientation of the
tessellation rotates by about 19 degrees at each level of resolution. Finally, it does not
appear to be possible to symmetrically tile triangular faces with such a hierarchy, which
makes it unusable as a subdivision choice for a Geodesic DGGS.

There are, however, an infinite series of apertures that produce regular hierar-
chies of incongruent, aligned hexagon discrete grids; Dacey (1965) notes that aligned
hexagon grids can be formed for any aperture #* + hk + k2, where h and k are any posi-

tive integers. It should be noted that, as these hierarchies are incongruent, they do not

38

naturally induce hierarchical data structures which are trees, and thus common tree-based
algorithms cannot be directly adapted for use on these hexagon hierarchies. But it should
also be noted that, as indicated previously, traditional multi-resolution vector data struc-
tures such as the geographic coordinate system are also incongruent and aligned. This
may indicate that hexagon grids are more appropriate for vector applications than congru-
ent, unaligned triangle and diamond hierarchies.

Aperture 4 is the most common choice for hexagon-based DGGSs. Figures 11 and
12 illustrate aperture 4 hexagon subdivisions corresponding to the Class I and Class II
symmetry axes, respectively. The DGGSs of Heikes and Randall (1995a) and Thubum
(1997) are Class I aperture 4 hexagon grids, while Williamson {1968) uses a Class II
aperture 4 hexagon grid.

As noted above, small apertures have the advantage of allowing more potential
grid choices. Aperture 3 is the smallest aperture that yields an aligned hexagon hierarchy
(Figure 13). In aperture 3 hierarchies the orientation of hexagon grids alternates in suc-
cessive resolutions between Class I and Class II. Aperture 3 hexagon Geodesic DGGS
have been proposed by a number of researchers, including Sahr and White (1998).

White et al. (1992) proposed hexagon grids of aperture 3, 4, or 7, and White et al.
(1998) discussed hexagon grids of aperture 4 (Class I) and 9 (Class II). Sadournay et al.
(1968) used a Class I hexagon grid of arbitrary aperture, which is incongruent and
unaligned. We refer to this approach as an n-fiequency hierarchy. Note that it is possible
to construct incongruent, unaligned n-frequency hierarchies using triangles and dia-
monds as well, though, to our knowledge, this has not been proposed.

Figure 14 illustrates the most common partitioning methods defined on an icosa-
hedron and projected to the sphere using the inverse Icosahedral Snyder Equal Area
(ISEA) Projection (Snyder, 1992).

39

b

Figure 11. Three levels of a Class I aperture 4 hexagon hierarchy
defined on a single triangle face.

.0 b

Figure 12. Three levels of a Class II aperture 4 hexagon hierarchy
defined on a single triangle face.

0

Figure 13. Three levels of an aperture 3 hexagon hierarchy
defined on a single triangle face. Note the alternation of
hexagon orientation (Class II, Class I, Class I, etc.)
with successive resolutions.

Transformation

Once a partitioning method has been specified on a face or faces of the base poly-
hedron, a transformation must be chosen for creating a similar topology on the
corresponding spherical or ellipsoidal surface. There are two basic types of approaches
(Kimerling et al., 1999). Direct spherical subdivision approaches involve creating a parti-
tion directly on the spherical/ellipsoidal surface that maps to the corresponding partition

on the planar face(s). Map projection approaches use an inverse map projection to trans-

40

form a partition defined on the planar face(s) to the sphere/ellipsoid. White et al. (1998)

provide a comparison of the area and shape distortion that occurs under a number of dif-

ferent transformation choices.

Y

% A5 A v e A Py LR DY
G ORI, s R R
~}fié;@€£ﬁ”"‘“ '*'f‘:kﬁ"} N //,/’: ,”’ :'. “\

e e TS AT NN Y e

g r YAV AT T N TH A LX)

G eSS AUV R NS
AT AV AvA T ALy Ll RN At
XTI O OGIEX o NN AN ‘\ \
e, OoOAH G GRAX KRR

i R RSO0 R ety l"’.“”"“““"\‘l :

3 Pofiot ﬁ'nuwxuuuﬁnwﬁm HH J ﬁl‘i 4 """’.”’%’.M"“:m“P

I UGB

st

RN SRR XA
T AT AYAYAVATAVAVAYA Y AT OOAXAD
SRS | AR
o y%ﬁvxemm":‘kYAVAf‘Ai‘:" 275 ‘0,0 %Y 97

3 A EAY ATATL AL
BN '31‘"""&"'}&'333,
NSRBI S rh s A

SRS AT
\5\ e R)
e T 5
(a) N R o
S

Figure 14. Three resolutions of icosahedron-based Geodesic DGGS’s using four
partition methods: (a) Class I aperture 4 triangle, (b) aperture 4 diamond,
(c) aperture 3 hexagon, and (d) Class I aperture 4 hexagon.

Perhaps the simplest approach is to perform the desired partition directly on the
spherical surface, using great circle arcs corresponding to the cell edges on the planar
face(s). The aperture 4 Class I triangle subdivision can be performed on the sphere by
connecting the midpoints of the edges of the base spherical triangle and then, recursively

performing the same operation on each of the resulting triangles. This technique was used

4]

by Baumgardner and Frederickson (1985) and Fekete and Treinish (1990). Dutton (1984)
performed a Class II triangle subdivision on the surface of the octahedron and then
adjusted the vertices to reflect the point elevations.

While this straightforward approach works for creating an aperture 4 triangle sub-
division, it is important to note that, in general, sets of great circle arcs corresponding to
the edges of planar triangle partitions do not intersect in points on the surface of the
sphere, as they do on the plane. More complicated methods are needed to form spherical
partitions analogous to some of the other planar partitions we have discussed.

Williamson (1968) used great circle arcs corresponding to two of the three sets of
Class II triangle subdivision grid lines to determine a set of triangle vertices and then
formed the last set of grid lines by connecting the existing vertices with great circle arcs.
These triangle vertices form the center points of the dual Class II aperture 4 hexagon grid
(the cell edges of which are not explicitly defined).

Sadournay et al. {1968) created an aperture m (where m = n? for some positive
integer 1) Class I triangle subdivision on the sphere by breaking each edge of the base
spherical triangle into » segments and connecting the breakpoints of two of the edges
with great circle arcs. These arcs are then subdivided evenly into segments correspond-
ing to the planar subdivision. The resulting breakpoints form the centers of the dual Class
I hexagon grid. Thubum (1997) performed a Class I aperture 4 triangle subdivision and
then calculated the spherical Voronoi cells of the triangle vertices to define the dual Class
I aperture 4 hexagon grid.

A number of researchers have attempted to adjust the grids created using great
circle arcs to meet application-specific criteria. For instance, for many applications it
would be desirable for the cell regions of each discrete grid resolution to be equal in area;
the grids discussed above do not have this property. Wickman et al. (1974) began by con-
necting the midpoints of the base spherical triangle to form the first resolution of a Class I
aperture 4 triangle grid. They then broke each of the new edges at the midpoint into two
great circle arcs and adjusted the position of the breakpoint to achieve equal area quasitri-

angles. This procedure is then applied recursively to yield an equal-area DGGS. Rather

42

than using great circle arcs for triangle subdivision, Song et al. (2002) proposed using
small circle arcs optimized to achieve equal cell region areas.

Heikes and Randall (1995a) constructed a Class [aperture 4 hexagon grid by tak-
ing the spherical Voronoi of the vertices of a Class I aperture 4 triangle subdivision on
their twisted icosahedron. They then adjusted the grid using an optimization scheme to
improve its finite difference properties for use in global climate modeling.

White et al. (1998) evaluated a number of methods for constructing triangle sub-
divisions on spherical triangles and observed that using appropriate inverse map
projections to transform a subdivided planar triangle onto a spherical triangle may be
more efficient than using recursively defined procedures. Any projection may be used,
provided that it maps the straight-line planar face edges to the great-circle arc edges of
the corresponding spherical face.

There are at least four projections with this property. The common gnomonic pro-
Jection has this property for all polyhedra but exhibits relatively large area and shape
distortion. Snyder (1992) developed equal area projections defined on all of the platonic
solids, but with greater shape distortion and more irregular spherical cell edges than the
equal-area method of Song et al. (2002). On the icosahedron, the implementation of
Fuller’s Dymaxion map projection (Fuller, 1975) given in Gray (1995) also has the
required property but with less area and shape distortion than the gnomonic projection
and less shape distortion than Snyder’s icosahedral projection, though the Fuller/Gray
projection is not equal area. Goodchild and Yang (1992) used a Plate Carree projection to
project the faces of the octahedron to the sphere, and Dutton (1999) developed the
Zenithial OrthoTriangular (ZOT) projection for the same purpose.

White et al. (1998) constructed Class I aperture 4 and 9 triangle grids on planar
icosahedral faces. They also constructed a Class I aperture 4 hexagon grid by taking the
dual of the aperture 4 triangle grid and a Class II aperture 9 hexagon grid by aggregating
the cells of the aperture 9 triangle grid. In all cases they transformed the resulting cells to
the sphere, using direct spherical subdivision or the inverse gnomonic, Fuller/Gray, or

Icosahedral Snyder Equal Area (ISEA) map projections.

43

White et al. (1992) and Alborzi and Samet (2000) used the inverse Lambert Azi-
muthal Equal Area projection to project the faces of the truncated icosahedron and cube
to the sphere. White et al. (1992) noted, however, that this projection does not map the
straight-line planar face edges to the corresponding great-circle arc edges and, therefore,

does not create a true Geodesic DGGS.
Assigning Points to Grid Cells

When specified, the points associated with grid cells are usually chosen to‘ be the
center points of the cell regions. If an inverse map projection approach is used to trans-
form the cells from the planar faces to the sphere, then it is often convenient to choose the
center points of the planar cell regions (which do not, in general, correspond to the cell
region centroids on the Earth’s surface) so that the points form a regular lattice, at least
on patches of the plane. If the cells are formed by direct spherical subdivision, the choice
of points may be complicated by the counter-intuitive behavior of great-circle arcs
described above. Gregory (1999) discussed several alternatives for point selection in the
case of direct spherical subdivision. Dutton’s (1984) GEM DGGS used points that are the
vertices of a Class II triangle subdivision. As described in the previous sub-section, the
hexagonal DGGSs of Williamson (1968), Sadournay et al. (1968), Heikes and Randall
(1995a), and Thuburn (1997) all specify cell center points as the vertices of a dual spheri-
cal triangle grid. The hexagonal grid cell boundaries, when specified, are created by

calculating the associated spherical Voronoi cells.
Summary and Conclusions

Table 3 summarizes the design choices that define each of the Geodesic DGGSs
we have discussed. Note that the number of options employed to construct a Geodesic
DGGS is actually rather small, and certain choices clearly predominate in the existing

designs. In particular, the icosahedron is clearly the popular choice for a base polyhe-

dron; it is used in 10 of the 16 listed grid designs. Methods based on direct spherical
subdivision are employed by about half of the grid designs. Also popular are equal area
transformations, which are used by six of the grids. The grid designs are almost evenly
split between triangle and hexagon partitions, but the diamond partition is a recent design
that may yet prove popular due to its direct relationship to the square quadtree,

We have shown that a Geodesic DGGS can be specified through a very small
number of design choices, each of which is relatively independent of the others. In effect,
future Geodesic DGGS designers may pick-and-choose from the menu of design choices
to construct a DGGS to meet their specific application needs. As an example, let us take
each of the design decisions in turn and attempt to construct a good general-purpose Geo-
desic DGGS.

First, due to its lower distortion characteristics we choose the icosahedron for our
base platonic solid. We orient it with the north and south poles lying on edge midpoints,
such that the resulting DGGS will be symmetrical about the equator. Next we select a
suitable partition. The hexagon partition has numerous advantages, and we choose aper-
ture 3, the smallest possible aligned hexagon aperture. Because equal-area cells are
advantageous for many applications, we choose the inverse ISEA projection to transform
the hexagon grid to the sphere, and we specify that each DGGS point lies at the center of
the corresponding planar cell region. We call the resulting grid the ISEA Aperture 3 Hex-
agonal (ISEA3H) DGGS. Figure 15 shows the ETOPOS global elevation data set
(Hastings & Dunbar, 1998) binned into four resolutions of the ISEA3H DGGS. The ele-
vation value for each ISEA3H cell was calculated by taking the arithmetic mean of all

ETOPOS data points that fall into that cell region.

45

SIOIIOA 93uBLL]

yomuady uoisialpqng [eouaydg (1 ssejD) uoTexo sajod UOIP3YBSOI] (as661 ‘©S661)
[SSBID PASIM] a1 paziwundo axnpady parsimy, I8 SDIUIIA paIsim], Jlepuey % SaqIsH
(1sse1D) paudije (z661)
patj1oadg 10N Ja1re) Med 9)8ueu], ¢ anuady R0 uoIpayeld Zuey 2 pliyopoon
uoISIAIpQNg (1sse1D) sajod (0661)
payioadg 10N Jesurayds 10anQg a{Suell], p axnpady 1B S90IUA uoIpayesod| YSIUIRL], 79 9999
(1 sse1D) pousye
payioadg 10N LOZ 3|8ueLl], $ aimiady ueP) uoIpaye;nQ (6661) uonng
(uoBexoy
SOOILIDA UoISIAIpgNng £ aamuady parjduy) pausije
a[8ueLL],] sse|D [eanaydg 1021 pay1adg 10N it Tg) uoIpaye)d {(#861) uonngg
uoIsIAIpqng (1 sse1D) (5861) uosyoLIapal]
patj1oadg 10N Jeauaydg 1230 d18ueLl] ainpady parjioadsupn UOIpayesod] 2 Iduplefuineg
eary [enbyg SI9)U3D (0007
pagjioadg 10N [BYINWIZY Haquie] arenbg ampady 208 UO S9j0¢ aqn) Jowieg 7% 1Z10q)y
JUDWUTISSY UOIBULIOJSUEI], uonnaeg uoneIudLIQ uoapayijod MAIINY
jutod aseq

*$2010Y2 ud1sop §NHN(J d1SIPoan) Jo Aleunung ¢ Aqe],

SNNOD

zoIy [enbyg uogexal] SuLdA0239EY uoIpayesod]
payioadg 10N [eYINUIZY HaqUUET] £ 10 ‘¢ ‘g amuady uodexoH paieounI] {zZ661) 17 10 2Iym
S291M9A 2|3ueLL UOISIAIpgNg (1 sseD) sajod
f anuady | ssej) Teautayds 10a11(] uodexay ¢ aanuady 18 SIOIUSA UoJIpayesod] {(L66]) wngny |
(1 sse[D)
uoISIAIpgNS 9011 aJSuenl],
pan1oadg 10N [[ewiS eary [enbyg 610 ¢ amnuady payroadsupny uoIpaYBS0I] (z002) ‘12 32 8uog
aoedg
uonovaford vasI JLnowwAs
ul SI2JUI)) 19D VST uodexsy ¢ ampady 101enbyg uoIpayesod] (8661) dMYM % Jyes
S3OIMI9A
a]3uel] | sse|) uolstalpgns (1 sse[D) sajod (8961)
Aouanbaiy-u jeouaydg 10ang uoBexaH Aouanbaiy-u 18 SQOIIAA UOJIpaLBs0djf ‘|8 12 Aulnopeg
NRWUZISSY UOIJEULIOJSURI], uonnIeg uonpvyually uoIpayijod NUIIAJY
juiod aseqg

‘(panunuos) sasioyd usisap SHN(J J1Sapoan) Jo Alswung ¢ 3qeL

47

(uoBexoH aamady so[od 1e
SA2IMAA 3[3uell], UoISIAIpqNS 11 sse[D patdwy) sigua)) 908y
11 SSe|D) payIpoN [eouaydg 10211(] panyadg 10N 10 S2OTDA U0Ip2Yes0I] (8961) uosuIBI[IA
arod
uotsIAIpqng [eouaydg (1 sse|D) U0 Xal2A uolpayedapo((rLel)
paywadgioN 92u(] pasnipe-eary 9)dueu], y anuady uone[[/s paie|as ‘[B 39 UBUIYOIM
uoIpayeId
pagads 10N paymwadgjoN puowel ¢ aunpady payoadsuy) 10 UOIpPaYeSOI] (0007) anym
uodexaH
6 2anuady [sse[D
Aeanydqn 10 anpady [ssepD
10 “Ygg] “oruowiour)y 10
‘uoisiAIpgng o[duen],
pay1dadg 10N [eouoydg 10211 gJo pamnpady[sse) payroadsun UOJIpPaYES09] (8661) "2 19 2MyM
JUIWUBISSY U0 BULIOJSURI], uonnied uoneIuILIQ uoapayijoq UIAJY
jutog aseqg

‘(panunuoo) saoioys udisop SHO(] 2159p0arn) jo Aemiwng ¢ qel,

Figure 15. ETOPOS 5’ global elevation data binned into the ISEA3H Geodesic
DGGS at four resolutions with approximate hexagon areas of:
(a) 210,000 km?, (b) 70,000 km?, (c) 23,000 km?, and (d) 7,800 km?.

Directions for Further Research

While such studies as White et al. (1998), Kimerling et al. (1999), Clarke (2002),

and the current work have made significant steps in defining and evaluating existing

49

DGGS alternatives there remain a number of areas that we believe require further
research. First, it should be noted that additional research may reveal new design choice
alternatives that are superior to those already proposed. In particular, we feel that further
research into transformations for Geodesic DGGS definition is required. For example, a
DGGS projection that is equal area, but has less shape distortion than the ISEA projec-
tion, would be very desirable. Additionally, the grids discussed here are defined with
reference to the sphere; many applications will require more accurate definitions refer-
enced to ellipsoids. And as specific grids are chosen for practical use efficient
transformations must be defined that will allow data to be moved between grids while
preserving data quality.

Existing studies have treated DGGSs from the perspective of the broader GIS
community, but effective evaluation of design alternatives can only take place in the con-
text of specific applications and end-user communities. In particular, the computer data
structures community has yet to play a significant role in DGGS evaluation. Input from
this community, which should play a key role in making appropriate design choices in the
future, has been primarily limited to the adaptation of quadtree algorithms to aperture 4
triangle grids (in particular the QTM DGGS of Dutton, 1999). Hexagon-based Geodesic
DGGSs, which have clear advantages for many end-users, remain largely ignored. A sig-
nificant effort must be made by the data structures community to develop and evaluate
algorithms for the regular, but non-tree, hierarchies they form.

In order to conduct empirical evaluations of the relative performance of various
DGGS topologies we will require an implementation of DGGS’s designed specifically to

facilitate experiments. In the next chapter we will describe just such an implementation.

50

CHAPTER 11

Nulib: A Topology-Independent DGGS Architecture

Motivation

Previous DGGS researchers have primarily concentrated on implementing and
analyzing a single DGGS topology, which has hampered efforts to compare and contrast
the many varieties of DGGSs. The burgeoning interest in these data structures by end-
users has increased the need for software architectures that would facilitate attempts to
prototype, visualize, and analyze particular DGGS instances. Such an architecture should
provide a common, consistent interface for constructing and interacting with DGGS, ide-
ally in a manner that would allow client applications to build prototype applications and
construct grid performance tests in a topology-independent way. Such an interface should
include at least a core set of the functionality expected by common spatial data structure
clients. At the same time, it should provide a consistent interface to non-DGGS geospa-
tial data structures to facilitate access to existing capabilities that may be defined on those
structures, for example data import or visualization. In this section we will give a specifi-
cation for a software architecture that we believe meets these requirements. We have
implemented the described specification as a C++ software library we call nulib (after
Nuit, the Egyptian goddess of undifferentiated space). We will begin by discussing the
design and implementation of the core nulib library. We will then demonstrate the use of
the library in building one important class of DGGS application: a DGGS-based topol-

ogy-independent discrete simulation engine.

51

Implementing the Nulib Core

Geospatial Data Structures ADT

In Chapter I we gave a formal definition of an ADT for structured geospatial data
structures. Since we wish our library to allow us to potentially construct any structured
geospatial data structure, this definition provides us with our minimal design require-
ments. In this section we will revisit the terminology we developed in Chapter 1, but
specifically from the perspective of implementing our core library functionality.

The primary concept that any spatial data structure must capture is that of loca-
tion. Location is independent of any particular representation of it. We can distinguish
between a location and a particular computer representation of that location in the con-
text of a particular reference frame (RF). We will use the term address to refer to a
computer representation of a particular location equivalence class in a particular location
RF. Such a representation would normally have no meaning outside the context of that
particular frame of reference.

Ideally, domain-specific client applications interface with spatial data structures
using locations. Intenally each location consists of an address and a pointer to the RF
under which that address is defined. If a sufficient set of operations are defined on loca-
tions, then applications should not need to access—or even have knowledge of the nature
of —the current address value. For example, the RF (and thus potentially both the form
and value of the address) under which the location is currently defined might change, but
this should have no effect on client applications. Since locations cannot be defined inde-
pendent of an RF, we can use RF objects as factories for creating location objects. RFs
are implemented generically in nulib using a templatized address type.

In order for such a location system to be generally useful it must define a reason-
able set of functionality on locations. This functionality is then implemented internally in
the appropriate RFs in terms of operations on RF addresses.

In order for a newly introduced RF to be useful it must define at least one quanti-

52

zation operator that converts locations from some other, previously known, RF into
addresses in the new RF. Take any two reference frames RF! and RF2 defined on the
same spatial domain. Given a location consisting of an address defined on RF/, it should
be possible to define a converter function that determines the value of the corresponding
address in RF2. Let us suppose that converter functions are defined from RF/ to RF2,
and from RF2 back to RFI. Assume also that converter functions are defined from/to
RF2 to/from a third reference frame, RF3. Whenever a series of converters that yield a
two-way transformation path between two reference frames exists we say that the frames
are connected. Thus in this example RF! and RF2 are connected, RF2 and RF3 are con-
nected, and RFI and RF3 are connected (via RF2). Given a network of connected RFs
and an unconnected RF, we need only provide converters to/from the new RF from/to a
connected RF and the new RF will be connected to all other RFs in the network. The con-
nection path can then be followed automatically to perform location conversions without
forcing the user to explicitly define and invoke intermediate converters.

Complex geospatial data structures such as DGGSs may be constructed from a set
of sub-RFs, with multiple conversion paths defined between these sub-RFs. In such sys-
tems it may not be a priori clear which sequence of conversions will be most efficient and
involve the least quantification error. Maintaining an explicit network of existing convert-
ers gives us a convenient place to track the accumulation of quantification error, and to
implement conversion tracing and performance monitoring. Once a particular conversion
sequence is chosen the entire sequence can be implemented in a single converter, thus
removing any inefficiency associated with multi-step conversion.

The explicit storage of an RF pointer in each location is wasteful in situations
where only a single RF is under consideration. In such cases it makes sense to use a loca-
tion vector, a vector of locations all defined on the same RF, which can be stored together
as a vector of addresses with a single RF pointer. Location vectors can be converted by
applying the appropriate converter to each of the individual addresses. Location vectors
can be used to specify a vector of point locations, or they can specify a polyline, or the

boundary of a polygon.

53

In earlier versions of our architecture we made a fundamental distinction between
explicitly discrete RFs, such as planar grids or DGGSs, and RFs that attempt to mimic
real number coordinate systems, e.g., vectors of floating point numbers. A further funda-
mental distinction was made between single resolution RFs and multi-resolution RFs,
These distinctions led to an unneccesarily complex class hierarchy. We have since real-
ized that any computer-based RF can be viewed as discrete—since any address
representation on a computer must by definition be discrete and finite—and multi-resolu-
tion—even if only a single resolution of the RF actually exists.

If we assume that every RF is discrete, then each location corresponds to a region
on the spatial domain of interest. This region must itself be defined in the context of some
RF, which may or may not be the same RF as the original location specification. Thus for
all RFs we specify a back-frame, which is the default frame for that RF for the definition
of location regions. In addition, since it is often useful to have a point representation of
any location, we designate the back-frame as the default frame for such a definition. Thus
a location is a functional match for a DGGS ce/! (as defined in Chapter 2). This terminol-
ogy is reflected in the nulib implementation, and we will use it for the remainder of our
discussion.

The minimal functional interface for an RF consists of the following operations
on cells (regions and sets are specified as location vectors):

I. quantization (conversion).

2. region format specification (in back-frame RF).

3. point format specification (in back-frame RF).

4. metric distance.

As discussed in Chapter 1, the availability of a metric distance operator for an RF
allows nulib to define default equality and adjacency operators for that RF.

For any RF we can define one or more sequence RFs that have a linear address
form. These sequence RFs have as their back-frame the desired primary RF and specify a
total order that is bounded above and below on that RF. Sequence RFs specify address

increment and decrement methods that iterate over all legal addresses in the primary RF.

54

Hierarchical Multi-Resolution RF Operators

Traditional multi-resolution structured geospatial data structures, such as the
quadtree, form hierarchies based on spatial containment that are trees. That is, given any
resolution & cell, there is one and only one resolution 4-7 cell whose region entirely con-
tains the region of that cell. The coarser and finer resolution cells have a strict parent/
child relationship that allows us to define a tree structure, As we have seen in Chapter 2,
however, the hierarchies implied by multi-resolution hexagon grids do not define tradi-
tional tree structures, The region associated with a resolution & hexagon cell may or may
not be entirely contained in a single resolution k-1 cell region.

In order to be able to define the notion of hierarchical operators in a topology-
independent manner we must extend our notion of hierarchy to include non-tree struc-
tures. We call this more general definition a spatial hierarchy. A spatial hierarchy is
defined on a DGGS by determining, for each resolution & cell C in a DGGS, the follow-

ing four sets:

1. Parents. The set of all resolution -/ cells whose interiors intersect the interior
of C.

2. Neighbors. The set of all resolution & cells that are neighbors of C, defined
using resolution & grid adjacency operator.

3. Interior Children. The set of all resolution £+ / cells whose interiors are
entirely contained in the interior of C.

4. Boundary Children. The set of all resolution k+/ cells whose interiors

intersect, but are not entirely contained in, the interior of C.
We further define the hierarchical adjacency set for the cell C to be the union of
these four sets.
Additionally, the natural concept of ancestors and descendents can be used to
extend the concept of hierarchical neighborhood beyond the simple adjacency case,
though we will not do so here.

As noted above, we can treat all RFs as multi-resolution RFs; we thus add the

determination of spatial hierarchy sets to the minimal RF interface defined in the last seg-5
tion. Note that in the case of single-resolution RFs all sets except the set of neighbors will
be empty for all cells.

Nulib implements the spatial hierarchy operators for the primary icosahedral
DGGS topologies given in Chapter 2. These are aperture 4 triangle (as illustrated in Fig-
ures 7 and 14(a)), aperture 4 diamond (Figures 9 and 14(b)), aperture 3 hexagon (Figures
12 and 14(c)), and aperture 4 hexagon (Figures 11 and 14(d)). Figures 16 and 17 illus-
trate the hierarchical adjacency set for planar aperture 4 triangle and aperture 4 diamond
topologies respectively. Note that for both of these topologies the set of boundary chil-
dren is empty. On the plane both the diamond and triangle grids have two valid metric
definitions, depending on whether or not we count cells that share only a vertex as neigh-
bors. On the spherical icosahedron the topology of triangles or diamonds adjacent to the
icosahedral vertices differs from those elsewhere on the icosahedron; these cells have an
irregular number of vertex neighbors. For this reason we will restrict our attention to the
edge neighbor metrics only.

Figures 18 and 19 illustrate the planar aperture 3 and 4 hexagon topologies
respectively. Note that for the hexagon topologies the number of parent cells varies; in
the aperture 4 case a cell may have either one or two parents, and in the aperture 3 case a
cell may have one or three parents. Additionally, a hexagon grid can only be tiled onto
the spherical icosahedron by making each of the twelve cells centered on the icosahedron
vertices into pentagons. These cells will have one less neighbor and boundary children
cells in their hierarchical adjacency sets than the hexagonal cells that tile the remainder of
the spherical icosahedron.

Since the core nulib library is independent of any particular address form, the spa-
tial hierarchies were determined using geometric means. Specific hierarchical addressing
systems should override these default definitions with more efficient address-based

calculations as required.

resofution k-7

resolution &

resolution k+/

Figure 16. Hierarchical adjacency set for the planar aperture 4 triangle topology. The
focal cell is given in black at resolution £. The parents, neighbors, and interior children
sets are given in gray at resolutions k-1, k, and k+/ respectively. Note that the boundary
children set is empty under this topology.

/ § 7
resolution k-7 / / /
S S

resolution &

s &
S
AP A A

resolution &+/ 5 A
o

L

il A A

i
e

Figure 17. Hierarchical adjacency set for the planar aperture 4 diamond topology. The

focal cell is given in black at resolution . The parents, neighbors, and interior children

sets are given in gray at resolutions k-1, &, and k+/ respectively. Note that the boundary
children set is empty under this topology.

56

57

resolution &-/

resolution k

Figure 18. Hierarchical adjacency set for the planar aperture 3 hexagon topology. The

focal cell is given in black at resolution k. The parents, neighbors, and interior children

sets are given in gray at resolutions k-1, &, and k+/ respectively. The boundary children
set is indicated by cross-hatching in resolution k+1.

resolution k-/

resolution &

resolution k+/

Sl S S S S e
e
Figure 19. Hierarchical adjacency set for the planar aperture 4 hexagon topology. The
focal cell is given in black at resolution 4. The parents, neighbors, and interior children
sets are given in gray at resolutions k-1, &, and k+1 respectively. The boundary children

set is indicated by cross-hatching in resolution k+1.

58

Spatial Database Functionality

Up to this point we have treated RFs as mathematical entities, with no storage
space associated with particular RF cell addresses. Such RFs are extremely useful as
intermediate conversion spaces, as well as providing a means for performing calculations
on conceptually infinite address spaces. But many applications, such as simulations or
spatial databases, require an association between cells and potentially arbitrary data con-
tents. For this we introduce the database RF. Objects of this class are associated with a
particular RF and provide methods that, given a cell defined on that RF, will as desired
set, get, replace, or delete the data contents of that cell. In nulib the database RF is imple-

mented generically using a templatized content type.

Applications of Nulib

The nulib implementation of this specification has been used to implement the
four primary icosahedral DGGS topologies discussed in the last chapter, using the ISEA
projection. In order to maximize code reuse in the construction of the grids all of the
DGGS topologies are addressed using a quadrilateral two-dimensional integer system
(see chapter 6).

The nulib architecture provides the necessary functionality to allow us to imple-
ment a discrete spatial simulation engine; at the same time the construction of such an
engine provides a test of the expressive power and functionality of the nulib architecture.

We define a generic simulation cell that provides an abstract interface to the fol-
lowing state data and methods, which must be fully defined by a particular discrete
simulation instance:

1. aset of static state data, the value of which does not change over time.

2. aset of variable state data that can change over time. Each cell maintains two

sets of identically formed variable state data to support double-buffering (as

described below).

39

3. agraphical cell representation and a method which sets the cell’s graphical
display parameters based on the cell’s current state.

4. an initialize method, which must be called once before the first time a simula-
tion involving this cell is executed.

5. areset method, which must be called before each simulation run.

6. a process method, which is called on the cell at each time step. In a double-
buffered simulation the cell uses the data from the current variable state buff-
ers of itself and its neighbors to calculate its next variable state, which it stores
in the second variable state buffer. After all cells have been processed this
state data is then copied back into the current variable state in preparation for
the next time step.

7. a postprocess method, which is called on the cell after a simulation run has
completed execution.

A simulation RF is a database RF of simulation cells with the following addi-

tional functionality:

1. adiscrete clock which allows the client application to specify a simulation
start time, time increment size, and stop time.

2. an initialize method that initializes the clock, and initializes the grid cells by
using the sequence iterator facility to call each cell’s initialize method.

3. areset method that re-initializes the clock and calls each cell’s reset method.

4. aprocess method that has the pseudocode description:

time = initialTime

while time <= stopTime
foreach cell: cell.process()
foreach cell: cell.setGraphicState()
grid.display()
foreach cell: cell.swapbuffers()
time = time + timeIncrement

endWhile

5. apostprocess method that calls each cell’s postprocess method.

Each of the simulation engine methods may be redefined as desired by specific
simulation engine instances.

Given the nulib implementation of DGGS topologies and this generic discrete
simulation interface we are now in a position to implement any specific discrete simula-
tion. If we specify the simulation cell processing using only interface functionality
defined on nulib cells (as described above), we can then change the underlying spatial
model of our simulation by simply switching the RF that is associated with the underly-
ing database RF. No changes need to be made to the simulation specification itself. This
allows us to easily experiment with alternative DGGSs. In the next chapter we will dem-
onstrate this capability by using our nulib simulation architecture to implement a simple
discrete simulation model and comparing the results of running this simulation on differ-
ent DGGS topologies.

In a broader sense, we hope that our implementation of a topology independent
DGGS software architecture will enable further studies comparing the use of various
DGGS topologies for the wide range of applications for which they may be appropriate,

and for which such studies are sorely lacking.

61

CHAPTERI1V

Spatially Hierarchical Cellular Automata
on Discrete Global Grids

Acknowledgements

The material in this chapter is being prepared for publication submission with my
co-author, A. Ross Kiester. The research was conducted in partnership with Dr. Kiester,

and he prepared figures 21and 22, All other figures were created by the present author,

Introduction

One important application of DGGSs is as a spatial substrate for the dynamic dis-
crete simulation and analysis of global processes. DGGSs allow for the definition of such
simulations on a surface that is topologically equivalent to the spherical surface of the
earth. Many proposed DGGSs are multi-resolution, with regular relationships between
grid cells as differing resolutions, and they thus hold the potential of providing a consis-
tent spatial model for the simulation of multi-scale phenomenon, with hierarchical
relationships between spatially coincident processes at different scales.

When constructing traditional single resolution simulations the choice of topol-
ogy can have important effects. In particular, while the traditional square grid remains the
primary spatial substrate for discrete simulations on the plane, grids based on hexagons
have received a great deal of recent interest as a basis for simulations both on the plane
and on the sphere. For example, we observed in Chapter 2 that hexagon-based DGGSs

have been proposed more often than any other DGGS topology for atmospheric model-

62

ing simulations. The increased interest in hexagon grids appears to be primarily a
consequence of the fact that cells in hexagon grids display uniform adjacency, as dis-
cussed in Chapter 1.

The use of DGGSs as the basis for multi-scale discrete global simulations has not
previously been attempted. Thus we know virtually nothing about the potential conse-
quences that a particular choice of hierarchical DGGS topology may have. In this chapter
we will report the development and results of the first experiments designed to begin to
give us some understanding of these issues. For these initial experiments we have chosen
the simplest of discrete simulations: a cellular automata (CA). In previous research
(Kiester & Sahr, 2000) we developed a topology-independent multi-scale analog of tradi-
tional single-resolution CA. We begin here by extending that definition to the sphere by
defining multi-scale CA for the primary DGGS topologies. We then describe the devel-
opment of a software architecture designed to facilitate the implementation of topology-
independent discrete simulations on DGGSs. This architecture is used to implement a
specific CA, a spherical multi-scale topology-independent analog of Conway’s Game of

Life. Finally, we discuss the results of our first experiments running this simulation.

Extending Cellular Automata to DGGSs

A CA (von Neumann, 1966) is a discrete dynamical mathematical structure

defined by four properties:

1. A State Space. The set of all possible values for a single grid cell. The sim-
plest and most commonly employed state space is binary, often indicated by
saying that a cell is “alive” or “dead.”

2. A Grid Topology. The most common two-dimensional grid topology is a grid
of squares with either the D8 or D4 metric (as illustrated in Figure 1). Other
grid topologies, such as the hexagon, have received limited attention.

3. A Rule Set. For each cell at each discrete time 4, the rule set specifies the state

of the cell at time step #+1. The new state is a function of the current states of

63

the cell and of the cells in a neighborhood of that cell. In the most common
case only the states of the nearest neighbors of the cell (those at a metric dis-
tance of one) are considered.
4. An Initial Condition. At time t = 0 each cell is assigned an initial state from
the state space.
By far the most widely studied CA is John Conway’s Game of Life; this makes it
a good candidate for our first set of experiments. As first described by Gardner (1970),
Life is defined on a single resolution square grid with the D8 metric and a binary state
(alive or dead). Each cell is initialized with a random value. At each time step, the cell
determines its next state based on its current state and the number of its neighbors which

are currently alive, using the state transition table given in Table 4.

Table 4. Life state transition table (with D8 metric)

state at time # of alive state at time
[neighbors i+l
dead 3 alive
dead 1,2,4-8 dead
alive 2,3 alive
alive 1,4-8 dead

The state transition table given in Table 4 assumes that each cell has 8 neighbors.
In order to implement Life in a topology-independent manner we must generalize this
table so that it can be used with the variable neighbor counts generated by the alternate
DGGS topologies. One simple way to do this is to change the second column so that it
uses the fraction of adjacent cells currently alive, rather than a discrete count of alive

neighbors. The resulting state transition diagram is given in Table 5.

Table 5. Generalized Life state transition table

state at time x = #alive / #total state at time

i (of adjacent cells) i+1
dead 28 <x=3/8 alive
dead x=2/8orx>3/8 dead
alive 1/8 <x=<3/8 alive
alive xs 1/8orx>3/8 dead

In order to extend the CA concept to multi-scale grids we expand the notion of
adjacency used in specifying a rule set to include the concept of hierarchical adjacency
sets as defined in the last chapter. Then the cell state at each time step is a function of the
current states of the cell and of the cells in the hierarchical adjacency set of that cell,
rather than just of the states of its neighbors at the same resolution. A rule set may treat
all cells in the hierarchical adjacency set in an equivalent manner, or it may make a dis-
tinction by, for example, weighting cells in each of the sub-sets differently.

For our first experiments we chose to treat all hierarchical adjacency set members
equally. This allows us to use Table 5 to define our state transitions.

We can now implement a DGGS-based, topology-independent, multi-scale ver-
sion of Life using the nulib discrete simulation interface specified in the last chapter.
Each Life grid cell has no static state data and variable state data consisting of a single
boolean variable that indicates the current state (alive or dead) of the cell. In both the ini-
tialize and reset methods each cell is initialized to a random state based on a user-
specified percentage of desired initial live cells. The process method implements the state
transition diagram given in Table 5, using the topology-independent nulib interface to the
underlying DGGS RF. We define no postprocess method for this cell type. Finally, we
specify the graphic state of alive and dead cells to be solid black and solid white cell
polygons respectively. Given this cell definition, no redefinition of the basic simulation

engine functionality is needed.

65

Results

Experiments were run with the major DGGS topologies described in chapter 2:
aperture 4 triangle, aperture 4 diamond, aperture 3 hexagon, and aperture 4 hexagon.
After some initial exploratory runs we arbitrarily chose a maximum of 50,000 time steps
for each run and four initializing percentages: 6%, 11%, 18%, and 25%. A four-resolu-
tion grid was run for all topologies. Additional runs were made with three- and five-
resolution hexagon grids using 11% and 18% initialization rates. For each set of parame-
ters 24 simulations were performed (each using a unique random number seed). A total of
28 separate parameter combinations were simulated for a total of 672 runs. Figure 20
shows a four-resolution aperture 3 hexagon grid initialized with an initialization percent-
age of 6%.

: ———

Figure 20. Four-resolution aperture 3 hexagon grid initialized with an initialization per-
centage of 6%. Live cells are shown in black.

66
Runs were continued until they reached the maximum time of 50,000 time steps

or until they achieved a steady, unchanging state, whichever came first. Table 6 gives the
mean number of time steps for all four-resolution runs. As illustrated, while the great
majority of hexagon runs continued running until the maximum time step, every triangle
and diamond run quickly achieved a steady state. Indeed, the longest-running triangle run
terminated in 76 steps, while the longest running diamond run terminated in 33 steps.
This result was not anticipated. Note that the hierarchical adjacency set of an aperture 4
triangle cell consists of 8 cells (1 parent, 3 neighbors, and 4 interior children), which
matches the number of neighbors in the traditional Game of Life. From a purely numeri-
cal standpoint we might expect the triangle grid to perform similarly to traditional Life,
as would the aperture 4 diamond topology with 9 adjacent cells (1 parent, 4 neighbors,
and 4 interior children). Observation revealed that the cells at the finest resolutions were
dying off immediately, with no cells coming alive, followed by a similar pattern in suc-
cessively coarser resolutions. This behavior makes sense when we realize that the finest
resolution cells have no children; thus a finest resolution triangle cell has only 4 adjacent
cells (1 parent and 3 neighbors) and a finest resolution diamond cell has only 5 adjacent
neighbors (1 parent and 4 neighbors). Given the ranges in Table 5 this makes it impossi-
ble for dead cells to become alive at the finest resolution, and unlikely that live cells will
remain alive. Thus, while the spherical surface of a DGGS has no boundary effects within
a given resolution, there is a definite boundary effect at the finest resolution of the multi-
resolution spatial hierarchy.

Table 6. Mean number of time steps achieved by four-resolution
runs by topology and initializing percentage.

Initializing Percentage

Topology 6% 11% 18% 25%
triangle 4 9 19 29
diamond 3 6 15 20

hexagon (3) 12,503 45,834 50,000 50,000
hexagon (4) 33,335 50,000 30,000 50,000

67

The number of cells at a given resolution that are alive (or dead) as a function of
time in the simulations form a time series. Figure 21 shows a sample time series for the
fourth (finest) resolution of a four-resolution aperture 3 hexagon case. This series was
randomly initialized to 18% live. The simulation ran for 50,000 time steps. Notice that
while the series is mostly constrained, occasional values higher and lower than usual
occur. We do not know how long this series would have continued. We have run similar
simulations for 250,000 time steps that were exhibiting similar dynamics throughout.

These time series may be analyzed using the methods of time series analysis (see,
e.g. Shumway, 2000). The autocorrelation function (ACF) is, perhaps, the easiest way to
look for temporal structure in data. It simply measures the strength of the statistical corre-
lation between sets of pairs of points separated by a given lag or distance in time. Like
the usual statistical {Pearson) correlation, the ACF varies between -1 and 1. Significant
departures from 0 indicate temporal structure in the data. Significant ACF values beyond
lag = 0 can be interpreted as a kind of memory in an otherwise apparently noisy process.
In Figure 22 we give the ACF for some representative sample series for lags up to 200
from simulations with different topologies. Each topology was run with four resolutions
and a random 18% of cells initialized to live. Data for the planar cases is from Kiester &
Sahr, 2000. ACF values above or below the dashed blue lines are statistically significant.
Note that both planar cases show more autocorrelation than the spherical cases, with a
striking difference between planar hexagon aperture 3 and planar hexagon aperture 4.

Both spherical cases show very little autocorrelation.

Number Live

120

100

40

Hex Aperture 4 Resolution 4 of 4

Ill!..,.' |ilé || A0 i

i

I [|] I I
0 10000 20000 30000 40000 50000

Tims

Figure 21. Sample time series for the fourth (finest) resolution of a
four-resclution aperture 3 hexagon case.

68

Planar Aperture 3 Ptanar Aperture 4

1.0

= _

=

[i+]

Q--i
G S
< <

g

o

Lag Lag
Spherical Aperture 3 Spherical Aperture 4
Q Q
o | @
o Q
@ o
1= L=
3 3]
g 2
T =
[=] (=]
o =
[=] Q

Figure 22. ACF for representative hexagon sample series. Each topology was run with
four resolutions and a random 18% of cells initialized to live.

70

Conclusions

In this chapter we demonstrated that the nulib architecture can be used to build
testbeds that can facilitate useful comparisons between DGGS alternatives.

In the current study we have implemented the first spherical multi-scale topology-
independent cellular automata and conducted a preliminary set of experiments with it.
These experiments appear to imply clear differences between the behavior of different
spherical topologies, as well as clear differences between planar and spherical versions of
the same cellular automata. In particular we note that the behavior of the planar CAs was
dominated by boundary effects at the edges of the grid. But this does not occur on the
closed but unbounded surface of the sphere. Instead the spherical behavior is dominated
by the boundary effect of having a finite number of resolutions.

The current work is only a first step in exploring this new class of discrete simula-
tion. In particular, a great deal of effort will be necessary to identify interesting rule sets

beyond the simplistic rule set used in this study.

71

CHAPTER V

Location Coding on Icosahedral Aperture 3 Hexagon

Discrete Global Grids

Introduction

Calculations on computer systems involving the locations of objects situated on,
or referenced to, the surface of the earth require a location coding system — a particular
computer representation of geospatial location. DGGSs are a relatively new approach to
the representation of location on the earth’s surface. As we saw in Chapter II, DGGSs
have been proposed based on cells that are triangles, squares, diamonds, and hexagons.
But while DGGSs based on hexagons exhibit clear advantages and have become increas-
ingly popular among many end-user communities, hexagon-based DGGSs have been
largely ignored by the data structures community. This is because, unlike squares, trian-
gles, or diamonds, hexagons do not induce hierarchical data structures which are
quadtrees — or even trees — and thus common tree-based algorithms cannot be directly
adapted for use on hexagon DGGSs.

Yet hexagon hierarchies do exhibit regularities that can be used to develop hierar-
chical location coding systems. Multi-resolution hexagon grids can be formed such that
the center point of each resolution & cell is also a cell center point in resolution £+ /. Such
a hierarchy is known as a central place (Christaller, 1966) or alighed (Sahr et al., 2003)
hierarchy. Dacey (1965) notes that aligned hexagon grids can be formed for any aperture
1% + hk + K2, where and k are any positive integers. DGGSs have been proposed using
hexagon hierarchies in which increasing resolution reduces cell area by a factor of 3 (2 =

1, k=1)or4 (h=0, k= 2). These are known as aperture 3 and aperture 4 grids respec-

72

tively. As noted in Chapter II, these hexagon hierarchies have been tiled onto the surface
of a spherical icosahedron to form DGGSs. It should be noted that the sphere cannot be
totally tiled using just hexagons; thus the cells of a hexagon-based icosahedral DGGS
always include exactly twelve pentagonal cells at each resolution; these are centered on
the twelve vertices of the icosahedron. Hexagon DGGSs include the Icosahedral Snyder
Equal Area aperture 3 Hexagon (ISEA3H) DGGS (Sahr, 2003), which has equal-area
cells, and the aperture 4 hexagon DGGS of Heikes and Randall (1995a, b), which has cell
shapes optimized for performing global climate change simulations.

In this chapter we will first discuss the use of DGGSs as data structures and the
two primary approaches to developing location coding systems on multi-resolution grids.
We will then propose a series of location coding systems specifically for icosahedral
aperture 3 hexagon DGGSs such as the ISEA3H.

Background

The cells of any DGGS can form the basis of at least three types of geospatial data
structure. Under the most common usage the DGGS cell regions constitute the pixels of a
raster system. For each resolution in a DGGS, each zero-dimensional point on the earth's
surface can be represented by mapping it to the DGG cell region in which it occurs. One-
dimensional lines and curves can be represented as an ordered vector of cell regions inter-
sected by the curve. A two-dimensional region can be represented using a one-
dimensional representation of its boundary, or as the set of cells containing, intersecting,
or contained by the region being represented.

As proposed by Dutton (1989} the center points of DGGS cells can form a multi-
resolution vector system. For each resolution in the DGGS, each zero-dimensional point
on the earth's surface is mapped to the DGG center point of the cell region in which it
occurs. One-dimensional lines and curves can be represented as an ordered vector of cell
point vertexes. A two-dimensional region can be represented using a one-dimensional

representation of the region’s boundary.

73

Finally, the DGGS cell regions can serve as buckets into which data objects are
assigned based on their location. Depending on the application, a data object can either be
assigned to the finest resolution cell which entirely contains it, or to the coarsest resolu-
tion cell which uniquely distinguishes it from all other data objects in the data set of
interest. The DGGS then forms the basis for a spatial database that can be efficiently que-
ried due to the regular geometry and hierarchical structure of the DGGS.

In order to be usable as a data structure, each cell in a DGGS must have assigned
to it one or more unique location codes. On contemporary computer systems each of
these location codes consists of a string of bits. A quantization operator must be defined
which maps each location on the earth’s surface to a single location code or set of loca-
tion codes; usually the inverse mapping is also defined.

Location codes generally take one of two basic forms: pyramid addresses and path
addresses. Under a pyramid address approach (Burt, 1980) each cell is assigned a unique
location code within the DGG of corresponding resolution. This single-resolution loca-
tion code may be multi-dimensional or linear. Given a resolution & cell with single-
resolution location code k-address, we can designate the DGGS pyramid location code to
be the two-tuple (%, k-address). A multi-resolution DGGS address representation of a
location can be constructed by taking the series of single-resolution DGG addresses
ordered by increasing resolution.

Pyramid addresses are useful in applications that work with single resolution data
sets. Various pyramid address location coding systems with associated quantization oper-
ators are known for grids based on triangles, squares, diamonds, and hexagons.

The resolution & quantization of a geospatial location into a DGGS cell restricts
the possible resolution £+/ quantization cells to those whose regions overlap or are con-
tained within the resolution & cell. We can construct a spatial hierarchy by designating
that each resolution k cell has as children all resolution &+ celis whose regions overlap
or are contained within its region. A path address is a location code which specifies the
path through a spatial hierarchy that corresponds to a multi-resolution location quantiza-

tion. Path address location codes are ofien linear, consisting of a string of digits with each

74

digit in the code corresponding to a single resolution and specifying a particular child cell
of the parent cell specified by the address prefix. If the numerical base of the digits is
equal to the number of children at each resolution, then each possible digit value can
uniquely and optimally indicate a particular child cell; in this case the path address is
known as a trie (Fredkin, 1960).

Since pyramid addresses do not store redundant multi-resolution location infor-
mation, they can be much more compact than multi-resolution pyramid addresses. And
because path address location codes can be constructed such that the number of digits in
the code corresponds to the maximum resolution, or precision, of the address, path
addresses automatically encode their precision (Dutton, 1989), obviating the need for
separate precision metadata.

Path addresses also often simplify the development of hierarchical algorithms. In
particular, the coarser cell represented by the prefix of a location code can be used as a
coarse filter for the proximity operations containment, equality, intersection/overlap,
adjacency, and metric distance. These proximity operations are the primary forms of spa-
tial queries used in spatial databases, and such queries are thus rendered more efficient by
the use of path addresses. For example, take a bucket system where data object bound-
aries are assigned to the smallest containing cell. A query may ask for all data objects
whose locations intersect a particular region. We can immediately discard from consider-
ation all objects in bucket cells that do not intersect the smallest containing bucket cell of
the query region (Samet, 1989).

Path addresses are usually associated with spatial hierarchies which form tradi-
tional trees, where each child has one and only one parent. The most commonly used
such structure is the quadtree, consisting of a square root cell that is sub-divided into four
square children, each of which is recursively sub-divided into four children, and so forth
to the desired resolution. At each successive resolution one of four digits (usually 0, 1, 2,
or 3) is added to the location code of the parent cell to indicate the location code of each
child cell. Quadtree-like hierarchies can also be created by the four-fold recursive subdi-

vision of triangle or diamond cells. Thus DGGSs based on the four-fold recursive

75

subdivision of squares, triangles, or diamonds can all be location coded as forests of
quadtrees.

Figure 13 (see Chapter II) illustrates three resolutions of an aperture 3 hexagon
hierarchy defined on one triangular face of an icosahedron. Note that each cell can have
up to three parents, and that the spatial hierarchy induced by an aperture 3 hexagon grid
is therefore not a tree. For this reason aperture 3 hexagon DGGSs have previously been
addressed using pyramid addressing systems. In the next section we will review one
approach to pyramid addressing on aperture 3 hexagon DGGSs. We will then introduce
two path addressing location coding systems for these DGGSs, one for use in vector data

structures and one for use in raster and bucket data structures.

Pyramid Addressing on Aperture 3 Hexagon Grids: The Quadrilateral

Two-Dimensional Integer System

Traditional planar cartesian coordinate systems employ two coordinate axes that
are perpendicular to each other. Hexagon systems, however, naturally form three axes
that are at 60 angles to each other. As illustrated in Figure 23, there are two natural ori-
entations of these three axes relative to the traditional cartesian coordinate system, which
we designate Class I and Class II as a generalization of terminology developed for trian-

gle grid systems (Sahr et al., 2003).

76

Jaxis
J axis k axis A
k axis
- P | axis
i axis
Class I Alignment Class IT Alignment

Figure 23. Three-axis hexagon coordinate systems.

Two of these axes are sufficient to uniquely identify each hexagon. Two-axis
coordinate systems have been used in the development of a number of algorithms for

hexagon grids, including:

o
.

quantization to/from cartesian coordinates (van Roessel, 1988)

metric distance (Luczak & Rosenfeld, 1976)

vector addition and subtraction (Snyder et al., 1999)

neighbor identification (Snyder et al., 1999)

adapted Bresenham’s line and circle rasterization (Wuthrich & Stucki, 1991)
edge detection {(Abu-Bakar & Green, 1996)

line-of-sight (Verbrugge, 1997)

field-of-view (Verbrugge, 1997)

I I I T

image gradient determination (Snyder et al., 1999)

10. variable conductance diffusion (Snyder et al., 1999)

Note that, since a quantization operator is defined for two-axis coordinate sys-

77

tems, any alternative location coding for a hexagon grid trivially implements the other
algorithms listed provided a mapping is defined between the alternative system and the
two-axis coordinate system. Location codes in the alternative coding would be converted
to two-axis codes, and the algorithm then performed on the two-axis codes. Any result-
ing location codes would be converted back to the alternative location coding.

We choose the / and j axes as a coordinate system basis because they are most
useful in constructing pyramid addresses for icosahedral DGGSs. We designate the
resulting coordinate system a two-dimensional integer (2di) coordinate system. Figure 24

illustrates the assignment of coordinate addresses in a Class I 2di coordinate system.

2.4y 3.4 G4 6.4

2.3 3.3 43 63

(-2,2) (-1,2) (.2) | (2.2) (3.2) 4.2)

Ly &n G0 @410

(-4.-3) (-3,-3) (-2,-3) (-1,-3) (-3 2.3

Figure 24. Class I 2di coordinate system.

A multi-resolution aperture 3 hexagon grid system may be formed as follows.
Begin with a single resolution Class I hexagon grid and call it the resolution & grid. To
form the next finer grid (resolution &£+1), create a Class II hexagon grid consisting of
hexes with exactly 1/3 the area of the resolution & hexagons, with the resolution &+/
hexagons centered on the vertices and center points of the resolution & hexagons. Repeat

this process the desired number of resolutions, alternating between Class I and Class II

78

grids at each successive resolution. Figure 25 illustrates four resolutions of such a grid.
(Note that the series may also be started with a Class II grid, again with successive reso-

lutions alternating class).

resolution k - -
(Class)

resolution k+1
(Class II)

resolution k+2
(Class I}

-

resolution k+3
(Class 1I)

resolutions
superimposed

Figure 25. Four resolutions of an aperture 3 hexagon grid system.

A unique pyramid address of the form [# (i, j)] may be assigned to each hexagon
in the multi-resolution grid, where r is the resolution of the hexagon and (7, j) is the 2di

address of the hexagon on the resolution r grid.

79

The twenty triangular faces of the icosahedron can be paired into ten quadrilater-
als as illustrated in Figure 26. Each of these quadrilaterals can be addressed using a 2di
coordinate system. Each 2di coordinate system origin corresponds to one of the pentago-
nal vertex cells. Two pentagonal vertex cells are left-over and can be treated as single-cell
2di coordinate systems at every resolution. Figure 27 shows 2di coordinate systems on an
icosahedron unfolded onto the plane and with the quadrilaterals given one possible num-

bering. The pentagonal vertex cells have been drawn as hexagons.

Figure 27. Unfolded icosahedron with 2di coordinate systems.

80

Class II grids do not conveniently align with the Class I coordinate axes natu-
rally defined by the quadrilateral edges. We note that for every cell of a Class II
resolution & grid there is a single Class I resolution k+/ cell centered on that resolution &
cell. Thus without ambiguity we can assign to each resolution & cell the coordinates of the
class I resolution k+/ cell centered upon it. Figure 28 illustrates one Class II resolution

quadrilateral addressed using this method.

N AR L IV

Figure 28. Class II grid on a single quadrilateral addressed using
underlying Class I coordinates.

A unique pyramid address of the form {r, fq, (ij)]} may be assigned to each cell
in the multi-resolution grid, where r is the resolution of the hexagon, g is the quadrilat-
eral on which the cell occurs, and (7, j) is the 2di address of the hexagon on the
quadrilateral g resolution r grid. This icosahedral coordinate system is designated the

quadrilateral 2di (g2di) system (Sahr, 2002).

81

Path Addressing on Aperture 3 Hexagon Grids

Vector Location Coding: Icosahedral Modified Generalized Balanced Ternary

Let (x, y) be a zero-dimensional point location on the plane. Then a resolution £
aperture 3 hexagon grid quantization of this point restricts the possible resolution k+/
quantization of the point to the seven resolution k+/ hexagons that overlap the resolution

k hexagon. This is illustrated in Figure 29.

resolution k

resolution k+]

Figure 29. Quantization at one resolution restricts possible quantization
candidates at higher resolutions.

Given a linear code for a resolution £ cell in a planar aperture 3 hexagon grid, a
multi-scale hierarchical coding scheme can be specified by assigning specific digits to
each of the seven possible resolution k+1 cells, and then applying this scheme iteratively
until the desired maximum resolution is achieved.

An address can be assigned in a fashion inspired by the Generalized Balanced

Ternary (GBT) system (Gibson & Lucas, 1982) for hexagon aggregation and thus we call

32

this system Modified GBT (MGBT). Figures 30 and 31 show the assignment of resolu-

tion k+1 address digits based on class I/class Il resolution & addresses respectively.

Resolution 4 Class I hexagon implies possible resolution k+/ Class II
with address addresses as indicated

Figure 30. MGBT addressing of Class II children.

Resolution & Class 1I hexagon implies possible resolution &+1 Class I
with address f8 addresses as indicated
J

Figure 31. MGBT addressing of Class I children.

Each resolution £+ hexagon may be overlapped by up to three different resolu-
tion k parents to which different regions of it belong. This means that MGBT effectively

addresses sub-regions of hexagons, such that each entire hexagon is not assigned a unique

83

location code. Figure 32 illustrates the sub-regions that are addressed by three Class I

hexagons.

Figure 32. Sub-regions addressed by MGBT.

Since at each resolution one of seven digits is added to the location code, it is pos-
sible for each digit to be represented using three bits. Note that three bits can represent
eight distinct digits. The decimal digits 0-6 have been assigned as illustrated in Figures
23 and 24 above. The remaining eighth digit, decimal 7 or binary 111, can serve a num-
ber of useful functions. If the addresses are variable length, then a 7-digit can be
concatenated to an address to indicate address termination. If the addresses are fixed
length, a 7-digit can be used to indicate that the remaining higher resolution digits are all
center digits (i.e., zero), and therefore that additional resolution will not add information
to the location.

We can extend planar MGBT to a DGGS location coding by tiling an icosahedral
aperture 3 hexagon DGGS with MGBT tiles. Tiles centered on the twelve icosahedral
vertices form pentagons and thus require special tiling units. These can be constructed by
deleting one-sixth of the sub-hierarchy generated in the hexagon case. These are coded
using the procedure outlined for hexagonal MGBT tiles except that pentagonal tiles have

a single sub-digit sequence deleted. That is, for pentagonal tiles with address base address

B4

A, all sub-tiles are indexed as per the corresponding MGBT indexing except that sub-tiles
with sub-indexes of the form AZd are not generated, where Z is a string of 0 or more
zeroes and d is the sub-digit sequence (1, 2, 3, 4, 5, or 6) chosen for deletion. All hierar-
chical descendants of such tiles are likewise not indexed. We use MGBT-d to indicate an
MGBT tile with sub-digit sequence d deleted (e.g., MGBT-2 would indicate an MGBT
tile with sub-digit sequence 2 chosen for deletion).

Given hexagonal and pentagonal MGBT tiles, we may tile the icosahedron to cre-
ate the icosahedral MGBT (iMGBT) location coding system. In order to fully specify a
geospatial coding system based on the iMGBT, a fixed orientation must be specified for
each tile. One approach to achieving this is to unfold the icosahedron onto the plane and
then specify that each tile be oriented consistently with this planer tiling. Figure 33 shows
one such orientation. Each base tile is labeled with a base tile number. An iMGBT loca-
tion code can have one of the following four easily inter-convertible forms:

1. Character string code form. The location code consists of a string of digits
beginning with the two-digit base tile code (00, 01, 02, ... 31) followed by the digit string
corresponding to the appropriate address of each finer resolution within the tile.

2. Integer code form. The character string code form may be interpreted and
stored as a single integer value.

3. Modified integer code form. When displaying integer values leading zeroes
are usually removed. This will result in differences in the number of digits between codes
on base tiles 00-09 and those of the same resolution but on other base tiles. This can be
remedied by adding the value of 40 (four being the lowest unused value for the 10’s digit)
to each of the base tile values so that they are numbered 40, 41, ... 71. Note that since dig-
its 4-7 are not used as leading digits in the integer code form, modified integer codes can
be unambiguously distinguished from the standard integer codes.

4. Packed code forn. Under this form, the base tile codes are stored as five-digit
binary numbers. Sub-codes within each tile are stored as a packed series of three-bit
binary digits (as described above) and appended to the base tile number to fully specify a

geospatial code. Under this scheme, codes up to resolution 10 can be stored in 32 bits of

85

contiguous storage, and codes up to resolution 20 can be stored in 64 bits of contiguous

storage.

DGGS Vertex 0

Icosahedron
Face

/ / /7 /’ 7, 7 {, %
GG
&) W S & 9

Class I Axes

MGBT-6 MGBT-1 MGBT

Figure 33. iMGBT base tiling on an unfolded icosahedron.

An iMGBT code for a point location can be truncated such that any prefix of the
code yields a valid quantification of the point location at a coarser grid resolution. This
allows prefixes of the code to be used as a coarse filter for the proximity operations

equality, adjacency, and metric distance.

Raster Location Coding: The Icosahedral Aperture 3 Hexagon Tree

As mentioned above, the iIMGBT effectively addresses sub-regions of cells and
thus assigns multiple codes to many of the cells in an aperture 3 hexagon DGGS. This is
reasonable if the DGGS is to be used as a vector system, since the primary data objects

are zero-dimensional points that do indeed map to hexagon sub-regions. But in the case

86

of raster or bucket systems data objects are mapped to entire cells and it is therefore use-
ful to have a specific unique location code for each cell. If we wish to map the cells to
physical resources ~— to perform parallel processing, for instance — the assignment of a
unique code becomes a necessity.

For applications where unique cell location codes are required we must decom-
pose the iMGBT into unique sub-trees while, hopefully, retaining the regular hexagonal
topology of the underlying DGGS. No satisfactory way of achieving this is known using
a consistent sub-tree topology. However, if we allow the decomposition to consist of two
sub-tree topologies a solution is given by employing the planar Aperture 3 Hexagon Tree
(A3HT) (Sahr, Peterson, and Lutterodt, 2003).

Each hexagon in an A3HT is assigned one of two generator hexagon types: open
(type A), or closed (type B). As illustrated in Figure 34, an open generator at resolution &
generates a single resolution k+/ hexagon that is a closed generator centered on itself. A
closed generator hexagon at resolution k also generates a single resolution &+ closed
generator hexagon at its center. The closed generator in addition generates six resolution
k+1 open generator hexagons, one centered at each of its six vertices. Figure 35 illus-

trates a closed generator.

resolution &

resolution k+7

Figure 34. A3HT open (type A) generator hexagon.

87

resolution &

generates

resolution k+1

Figure 35. A3HT closed (type B) generator hexagon.

An A3HT of arbitrary resolution can be created by beginning with a single open
or closed hexagon and then recursively applying the above generator rules until the
desired resolution is reached. Figure 36 shows the first four resolutions of an A3HT gen-

erated by a resolution & closed generator hexagon.

88

resolution &

resolution k+/

resolution k+2

resolution k+3

Figure 36. Generation of four resolutions of an A3HT grid from a
closed (type B) initial generator.

Hexagons in an A3HT may be addressed using the corresponding MGBT codes.
In all cases (Class [or Class II, open or closed generator)}, the address of centroid chil-
dren are formed by concatenating a zero digit with the parent hexagon address. The
addresses of vertex children of closed generators are formed by concatenating one of the
digits 1-6 with the parent hexagon address, using the MGBT addressing given for Class I
and Class II parents in Figures 30 and 31 respectively.

We can use the A3HT to address an icosahedral aperture 3 DGGS by tiling the
DGGS with A3HT tiles. As in the case of the IMGRBT, tiles centered on the twelve icosa-

hedral vertices form pentagons and thus require special tiling units.

89

Aperture 3 Pentagon Tree (A3PT) tiling units are generated similarly to A3HT
tiles except that one-sixth of the sub-hierarchy is deleted. Each pentagon in an A3PT is
assigned one of two generator pentagon types: open (type A} or closed (type B). As illus-
trated in Figure 37, an open A3PT generator at resolution & generates a single resolution
k+1 pentagon that is a closed generator centered on itself. A closed A3PT generator at
resolution k also generates a single resolution k+/ closed A3PT generator pentagon at its
center, but in addition it generates five resolution k+/ open A3HT generator hexagons,
one centered at each of its five vertices. A closed A3PT generator is illustrated in Figure
38. An A3PT of arbitrary resolution can be created by beginning with a single open or
closed A3PT and then recursively applying the above generator rules until the desired
resolution is reached.

Like the MGBT-d tiles described in the previous section, A3PT tiles are
addressed with a single sub-digit sequence deleted. A3PT-d is used to indicate an A3PT
tile with the sub-digit sequence d deleted. This deletion occurs exactly as per the corre-
sponding MGBT-d tile.

resolution k

resolution k+/

Figure 37. A3PT open (type A) generator unfolded on the plane.

90

resolution &k

generates

resolution k+/

Figure 38. A3PT closed (type B) generator unfolded on the plane.

Given A3HT and A3PT tiles, we may tile the icosahedron to create the icosahe-
dral A3HT (1A3HT). As with the iMGBT we can specify the orientation of base tiles by
orienting them consistently with a planar unfolding of the icosahedron. In this case we
must also indicate which base tiles are closed and which are open. Figure 39 illustrates a
base tiling for the iA3HT with tiles labeled with base location codes. Figure 40 illustrates
the first six resolutions of an A3HT generation pattern on the ISEA3H DGGS.

The 1A3HT can be indexed using any of the four location code forms given for
the iMGBT in the last section. We note that since each open A3HT or A3PT generator
generates only a single center hexagon, every non-zero digit in an iA3HT location code
must be followed by a 0 digit. A first order compression of the codes can be achieved by

eliminating these redundant 0 digits.

|

DGGS Vertex 0

Icosahedron

),) ,/ /4 /
KL %ii
N A A A A

Class | Axes
@ @ ’,I r. | | |

Closed Closed Open
A3PT-6 A3PT-1 A3HT

Figure 39. iA3HT base tiling on an unfolded icosahedron.

The iA3HT system provides a unique location code for each cell in an icosahe-
dral aperture 3 hexagonal DGGS with many of the desirable characteristics of traditional
tree-based path addresses. Since each resolution (beyond the base tiling) is encoded using
a single digit, the codes implicitly encode precision metadata. Further, any prefix of an
1A3HT location code is guaranteed to be a valid cell at a correspondingly coarser resolu-
tion. But because closed iA3HT generators are prefixes for child cells which they do not
entirely cover, they cannot be used as a coarse filter for all of their child cells for the
proximity operations equality, adjacency, and metric distance. However, we note that all
children of a closed iA3HT generator are fully contained in the parent of that generator.
Thus in all cases prefixes two resolutions coarser than the target resolution can be used as

coarse filters for proximity operations.

02

Figure 40. The first six resolutions of an iA3HT generation pattern on the ISEA3H
DGGS. The shading indicates the sub-trees generated by the base tiles.

Quantization Algorithm for the iASHT

In order to use the iA3HT as a location coding system we must define a quantiza-
tion operator that maps locations on the earth’s surface to iA3HT location codes. As
previously discussed such an algorithm has been developed for the q2di coordinate sys-
tem; thus we need only develop an algorithm that maps q2di coordinates to iA3HT
location codes. In the next section we give algorithms for conversions between planar
A3HT and 2di pyramid systems. In the following section we then extend these algo-
rithms to icosahedral DGGS by defining the conversion between q2di coordinates and
1A3HT codes.

03

A3HT Quantization Algorithms

The definitions that follow assume that the root (resolution 0 hexagon) of all
A3HT indices are Class I type A generators. Algorithm definitions for initial generators
that are Class II and/or type B follow trivially from the algorithms given below. The
existence of the following algorithms are assumed; all are trivially definable based on the

A3HT definition given above except for distance, which is given in Luczak & Rosenfeld
(1976):

digit: A3HT x integer — integer. Returns a specific resolution digit from an A3HT
index.

distance:2di x 2di — integer. Returns the metric distance between two 2di addresses.

generateNextLevel: ASHT — {A3HT}. Returns the set of child location codes
generated by an A3HT location code.

isClassI:A3HT — boolean. Returns whether or not an A3HT index is Class I.
isTypeA:A3HT — boolean. Returns whether or not an A3HT index is type A.
resolution:A3HT — integer. Returns the resolution of an A3HT index.

resolve:A3HT x integer — A3HT. Extend an A3HT index to a specified resolution
by padding it with trailing 0’s.

Conversion from A3HT to 2di pyramid coordinates

The algorithm a3htToCoord2di gives a 2di address corresponding to a specified
A3HT location code. Algorithms used within this definition are given following the main

algorithm definition.

ALGORITHM ajhtToCoord2di:A3HT — 2di

Convert A3HT index ndx to a 2di address coord of the same resolution as ndx.

BEGIN a3ht2Coord2di

coord «— (0, 0)
sameClass +«— true

94

resOffset «— 0
for i = resolution{ndx) to 0 step by -1

if sameClass
coord « coord + sameClassDownN{digit({ndx, i), resOffset)
else
if (isClassI(ndx))
coord + coord + classIIdownOne(digit(ndx, i)) *
3_0(reaoffset-1)/2
else
coord <« coord + classIdownOne(digit(ndx, i)) *
3. O(reBOffset-l)lz
end if-else
end if-else

sameClass <« not sameClass
resOffset «— resQOffset + 1

end for
return coord

END a3htToCoord2di
ALGORITHM sameClassDownN:integer x integer — 2di

Given an A3HT digit digit calculate the corresponding 2di coord on the grid n
resolutions finer than the grid on which the A3HT digit is defined. Assumes both grids

are of the same class.

BEGIN sameClassDownN

if digit = 0©
coord «— (0, 0)
else if digit =1
coord <« (0, 1)
else if digit = 2
coord <« (1, 0)
else if digit = 3
coord < (1, 1)
else if digit = 4
coord «— (-1, -1)
else if digit = 5
coord « (-1, 0)
else if digit = 6
coord «— (0, -1}
end if-else

coord « coord * 3.0%/2

return coord

END sameClassDownN

ALGORITHM classIIdownOne:integer — 2di

95

Given an A3HT digit digit defined on a Class II grid calculate the corresponding

2di coord on the Class I grid one resolution finer.

BEGIN classIIdownOne

if digit = 0
coord «— (0, 0}

else if digit =1
coord +«— (1, 2)

else if digit = 2

coord «— (1, -1)

else if digit = 3
coord « (2, 1)
else if digit = 4

coord «— (-2, -1)

else if digit = 5

coord « (-1, 1)

else if digit = 6

coord « (-1, -2)

end if-else

return coord

END classIIdownOne

ALGORITHM classIdownOne:integer — 2di

Given an A3HT digit digit defined on a Class I grid calculate the corresponding

2di coord on the Class II grid one resolution finer.

BEGIN classIdownOne

if digit = 0
coord «— (0, 0)
else if digit 1

coord «— (-1, 1)

else if digit 2
coord +«— (2, 1)
else if digit = 3
coord <« (1, 2)

else if digit = 4
coord « (-1, -=2)
else if digit = 5
coord « (-2, -1)
else if digit = 6
coord «— (1, -1)
end if-else

return coord

END classIdownOne

Conversion from 2di pyramid coordinates to A3HT

The algorithm coord2diTeA3HT gives an A3HT index corresponding to a 2di

pyramid address. Algorithms used within this definition are given following the

definition.

ALGORITHM coord2diToA3HT:2di x ianteger — A3HT

Convert 2di address coord of resolution finalRes to an A3HT index ndx.

BEGIN coord2diToA3HT

if finalRes = 0
return 0
end if

if finalRes = 1
return 00
end if

oldSet < null set
newSet <« generateNextLevel{00)
for res = 2 to finalRes - 1 step by 1

oldSet +«— newSet
newSet + null set

for each ndx in oldSet
if confirmedDescendent(ndx, coord, res)
newSet <« generateNextLevel(ndx)
break for
else if possibleDescendent(ndx, coord, res)

newSet <« newSet + generateNextLevel(ndx)
end else-if
end for

96

97

end for

for each ndx in newSet
if coord = a3ht2Coord2di{ndx})
return ndx
end if
end for

END coord2diToA3HT
ALGORITHM confirmedDescendent:A3HT x 2di x integer — boolean

Determine whether or not the 2di address coord of resolution res is definitely a
descendent of the A3HT index ndx. Note that the vector radius used in this algorithm is

empirically derived.

BEGIN confirmedDescendent

radius < { 0, O, 1, 1, 3, 4, 9, 13, 27, 40, 81, 121, 243, 364,
729, 1093, 2187, 32B0, 6561, 9841, 19683, 29524, 59049, 88573,
177147, 265720, 531441, 797161, 1594323, 2391484 }

if isTypeA(ndx)

resDiff < res - resclution(ndx)
else

resDiff « res - resolution(ndx) + 1
end if-else

if distance(coord, a3ht2Coord2di(resolve(ndx, res))) >
radius{resDiff)
return false
else
return true
end if-else

END confirmedDescendent
ALGORITHM possibleDescendent:A3HT x 2di x integer — boolean

Determine whether or not the 2di address coord of resolution res is possibly a
descendent of the A3HT index ndx. Note that the vector radius used in this algorithm is

empirically derived.

BEGIN possibleDescendent

radius - { 0, 0, 1, 2, 4, 8, 13, 26, 40, 80, 121, 242, 364, 728,

98

1093, 2186, 3280, 6560, 9841, 19682, 29524, 59048, 88573,
177146, 265720, 531440, 797161, 1594322, 2391484, 4782968 }

if isTypeA(ndx)

resDiff < res - resolution(ndx)
else

resDiff <« res - resolution(ndx) + 1
end if-elsge

if distance(coord, a3ht2Coord2di(resolve(ndx, res))) >
radius(resDiff)
return false
else
return true
end if-else

END possibleDescendent
A3HT 60° rotation algorithm

In addition to the algorithms for conversion from 2di coordinates to/from A3HT
codes, our iA3HT conversion algorithm will require an algorithm for rotating A3HT
codes in 60° increments. Rotation of an A3HT cell 60° counter-clockwise about any pre-
fix cell is performed by making the substitutions given in Table 7 for all digits in the cell
code following the prefix code.

For example, the cell AQ506 (where A is the base cell code) rotated 60 counter-
clockwise about the prefix A would have a new code of A0402,

This algorithm can be efficiently implemented by creating separate tables for rota-
tions of 60°, 120°, 180°, 240°, and 300°, clockwise and counter-clockwise, through
multiple application of the table above. Further efficiency can be gained by generating

tables for multiple digit sub-sequences, rather than for single digits alone.

Table 7. Substitutions for rotation of an A3HT cell 60°
counter-clockwise about any prefix cell.

Original Rotated

Digit Digit
0 0
I 5
2 3
3 1
4 6
5 4
6 2

iA3HT Quantization Algorithms

We can now define an algorithm for conversion from q2di coordinates to iA3SHT
location codes.

First note that the iA3HT base cells pictured in Figure 32 correspond to resolu-
tion | of the q2di system. Thus q2di resolution 0 (which consists of just the 12
pentagonal vertices) has no corresponding representation under iA3HT. Also note that the
Class I axes of the q2di system illustrated in Figure 27 are rotated 60° clockwise relative
to the iA3HT Class I axes shown in Figure 32.

Let A" be the resolution #n iA3HT code consisting of the prefix code 4 followed
by n - I zero’s. For example, the iA3HT code 0600000 could be written 06%. Note that all
q2di coordinates of the form { r, {g, (0, 0)] } correspond to vertices of the icosahedron
and map directly to iA3HT coordinates 4", where 4 is the iA3HT base code correspond-
ing to the origin of the quadrilateral g. Table 8 lists the corresponding iA3HT base code

100

for each quadrilateral. Note that since quadrilaterals 0 and 11 consist of only a single ori-
gin cell at all resolutions, this table fully defines the transformation from these q2di
quadrilaterals to iA3HT.

Table 8. Quadrilateral ¢ vs. iA3HT base index A.

g0 1 2 3 4 5 6 7 8 9 10 11
00 10 06 07 08 09 21 22 23 24 25 31

Temporarily ignoring the complications introduced by the pentagon cells, it is
useful to note that we can view each quadrilateral as lying on a closed A3HT generator
two resolutions coarser than the base iA3HT tiles. Figure 41 illustrates this relationship.
Assuming the base closed A3HT generator has address X, Figure 41 gives the corre-
sponding codes for all A3HT cells coincident with the quadrilateral.

The 1A3HT resolution 0 image in Figure 41 provides the key to transforming from
q2di to iIA3HT codes. The basic steps for transforming a non-origin Class I q2di coordi-
nate { r, [q, (i, j)] } to 1A3HT are as follows:

1. Perform a transformation (using coord2diToA3HT as defined in the previous
section) from 2di pyramid coordinate [r+1, (i, j)] to the corresponding A3HT code in the
system defined by the Class II closed generator X (as shown in Figure 41). Assume that
the 2di axes are aligned with the A3HT Class I axes.

2. Rotate the A3HT address 60° clock-wise to compensate for the g2di axes
offset.

3. Replace the first 3 digits of the address with the corresponding iA3HT base
cell code found in Table 9.

For most cells the resulting address will be the correct iA3HT address. In two
cases additional adjustments are necessary. These adjustments require that the cell in
question be rotated in 60° increments about its center-point. This transformation can be
accomplished by translating the cell center to the origin, performing the rotation, and then
translating the cell center back to its original position. In the case of A3HT cells the same

effect can be achieved by applying the rotation algorithm to all digits except the base cell

101

code prefix. We call this a sub-rotation.

iA3HT Class I axes

q2di q2di Class I axes
resolution;
-1
base iA3HT tile X

Figure 41. Relationship between base iA3HT tiles and the
corresponding q2di quadrilateral.
The first case requiring adjustment is that iA3HT base cells 0 and 31 {correspond-
ing to the unique single-cell pseudo-quadrilaterals 0 and 11) require additional sub-
rotations to account for their unique orientation relative to the standard quadrilaterals.

These rotations are indicated in the fourth column of Table 9.

102

We must also take into account the pentagonal cells which we have ignored up to
this point. To accomplish this we check for cases where the generated address lies on a
deleted sub-sequence of an A3PT tile. These cases occur when the cell has a prefix as
indicated in the fifth column of Table 9. In these cases we must perform the sub-rotation
indicated in the sixth column so that the appropriate existing portion of the pentagon
replaces the interruption.

Finally, note that, as previously discussed, Class II q2di cells are addressed using
the codes of the next finer resolution Class I q2di grid. Given a Class II g2di address { r,
[q. (i, j)] } first apply the above procedure for the address { r+1, {q, (i, j)] }. Since this
address is, by definition, the Class I center cell of the desired Class II cell, the resulting
1A3HT code will be the address of the desired Class II cell with an extra final digit of
zero. Dropping this final zero digit from the code will give the correct code correspond-

ing to the desired Class 11 resolution cell.

Conclusions

In this chapter we have specified two path addressing location coding systems for
icosahedral aperture 3 hexagon DGGSs. These systems share many of the advantages of
traditional tree-based path addressing systems, and it is our hope that these systems will
enable the use of hexagon DGGSs in a broader range of applications that have tradition-
ally relied on tree-based hierarchies. These systems have been implemented and are in
use as the location coding scheme for a geospatial data visualization application commis-
sioned by the Canadian Space Agency. Considerable work remains, however, to define

efficient algorithms on these systems before their full potential can be exploited.

103

Table 9. iA3HT base cell look-up and adjustments.

Q2DI A3HT iA3HT Cell 00/31 Interruption Interruption
Quad q Prefix Base Cell Sub-Rotation Prefix Sub-rotation

X00 10 - - -
X02 11 - - -

1 X03 01 - - -
X20 06 - 061 60° CW
X30 00 o0 i -
X60 21 5 i -
X00 06 i i -
X02 12 - . -

2 X03 02 - - -
X20 07 S 071 60° CW
X30 00 60° CCW - -
X60 22 s i 5
X00 07 ! - -
X02 13 - - -

3 X03 03 i : -
X20 08 g 081 60° CW
X30 00 120° cCcw - -

X60 23 - - -

104

Table 9. iA3HT base cell look-up and adjustments (continued).

Q2D1 A3HT iA3HT Cell 00/31 Interruption Interruption
Quad q Prefix BaseCell Sub-Rotation Prefix Sub-rotation

X00 08 5 - -
X02 14 5 2 -

4 X03 04) - -
X20 09 - 091 60° CW
X30 00 180° CCW 001 60° CCW
X60 24 i - -
X00 09 - - -
X02 15 i - i

5 X03 05 . - -
X20 10 - 101 60° CW
X30 00 60° CW - -
X60 25 . - -
X00 21 - 216 60° CW
X02 26 - i -

6 X03 16 - - -
X20 22 - - -
X30 06 - i -
X60 31 60° CwW - -
X00 22 - 226 600 Cw
X02 27 2 5 -

7 X03 17 ; - -
X20 23 - - -
X30 07 - - -

X60 31 180° cCwW 316 60° cCwW

105

Table 9. iA3HT base cell look-up and adjustments (continued).

Q2DI A3HT iA3HT Cell 00/31 Interruption Interruption
Quadq Prefix Base Cell Sub-Rotation Prefix Sub-rotation

X00 23 - 236 60° CW
X02 28 - - -

8 X03 18 - - -
X20 24 - - -
X30 08 - - -
X60 31 120° cCcw - -
X00 24 - 246 60° CW
X02 29 : - -

? X03 19 - - -
X20 25 - - -
X30 09 = s s
X60 31 60° CCW - -
X00 25 - 256 60° cw
X02 30 - - -

10 X03 20])]
X20 21 - - =
X30 10 - - -

X60 31 o - .

106

CHAPTER VI

Summary and Conclusions

In the current work we have attempted to develop the concept of DGGS as a new
and promising paradigm for the structured representation of geospatial location. We
begin here by reviewing the steps in that development.

Because DGGS do not fit neatly into the traditional classifications of spatial data
structures, it was necessary to begin by taking a fresh look at the notion of structured
geospatial data structures; that is, of data structures that have as their primary motivation
the representation of geospatial location in as complete a form as possible. This led us
necessarily to the development of an abstract data type for structured geospatial data
structures that defined the boundaries of our explorations in the chapters that followed.

In Chapter II we defined the basic concepts associated with DGGS, and devel-
oped a system of classification that allowed us to identify the design criteria that must be
evaluated in making comparisons and choices between DGGS alternatives. We then used
this taxonomy to survey the primary DGGS approaches.

Our analysis in the first two chapters led us to conclude that, among the major
DGGS design decisions, the choice of grid topology would appear to have the greatest
potential impact on the performance of DGGSs as data structures. We noted that the
hexagon topology is considered the most promising approach by many users. But,
because hexagon-based DGGSs do not induce traditional tree hierarchies, they have
remained problematic for, and consequently little-studied by, the data structures commu-
nity. We recognized that in order to evaluate the implications of topology choice on data
structure performance, we required a topology-independent implementation of the DGGS
paradigm.

Based on our ADT definition we defined and implemented nulib, a uniform inter-

107

face to DGGSs that at its core is independent of topology. As part of our implementation
we generalized the notion of hierarchy to the notion of a spatial hierarchy, defining a set
of hierarchical operators that apply not only to traditional trees but also to the regular, but
non-tree, hierarchies induced by multi-resolution hexagon grids. We then demonstrated
the suitability of nulib for designing and implementing real-world applications in a topol-
ogy-independent fashion by using it to develop a discrete simulation architecture.

Armed with a platform for conducting empirical comparisons between DGGS
topologies, in Chapter IV we implemented what we believe to be the first spherical,
multi-resolution, topology-independent discrete spatial simulation. We conducted initial
experiments that indicated that the choice of grid topology does indeed effect the results
of similar simulations,

In Chapter V we turned our attention to the primary remaining obstacle to the
practical adoption of hexagon-based DGGS: the lack of efficient hierarchical location
coding schemes for them. We discussed existing pyramid-based location codings for
aperture 3 hexagon grids, such as the increasingly popular ISEA3H grid. We then intro-
duced novel hierarchical systems for location coding vector and raster data in aperture 3
hexagon grids.

Discrete dynamic simulation on DGGSs provides many avenues for further
research. These include exploring the universe of possible interesting rule sets on spheri-
cal multi-resolution simulations for each specific topology in isolation, as well as
attempting to clearly understand the relationship between similar rule sets defined on dif-
ferent topologies.

But in addition to providing a spatial substrate for discrete simulations, we have
observed that DGGSs can form the basis of vector, raster, bucket, and graph-based
geospatial data structures. And with our introduction of a hierarchical location coding
scheme for aperture 3 hexagon grids, we believe that hexagonal grids will begin to be
used for these purposes. It would seem prudent, before the widespread adoption of partic-
ular DGGS topologies for any of these important data structure classes, to thoroughly

study the effect that the choice of DGGS topology may have on the performance charac-

108

teristics of such data structures. We believe that the current work provides the theoretical
foundation and practical tools necessary to conduct such studies, enabling both analytical

and empirical comparisons between the DGGS topology alternatives.

BIBLIOGRAPHY

Abu-Bakar, S., & Green, R.J. (1996). Detection of edges based on hexagonal pixel

formats. 3rd International Conference on Signal Processing Proceedings (ICSP-
96), Beijing, China, 1114-1117.

Alborzi, H., & Samet, H. (2000, March). Augmenting SAND with a spherical data madel.
Paper presented at the First International Conference on Discrete Global Grids,
Santa Barbara, CA.

Bailey, H.P. (1956). Two grid systems that divide the entire surface of the Earth into

quadrilaterals of equal area. Transactions of the American Geophysical Union, 37,
628-635.

Baumgardner, J.R., & Fredrickson, P.O. (1985). Icosahedral discretization of the two-
sphere. SIAM Journal of Numerical Analysis, 22(6), 1107-1114,

Bell, 8.B., Diaz, B.M., Holroyd, F., & Jackson, M.J. (1983). Spatially referenced methods
of processing raster and vector data. Image and Vision Computing, 1(4), 211-220.

Brooks, D.R. (1981). Grid systems for Earth radiation budget experiment applications,
NASA Technical Memorandum 83233. (NTIS No. N82-14818)

Burt, P.J. (1980). Tree and pyramid structures for coding hexagonally sampled binary
images. Computer Graphics and Image Processing, 14, 71-280.

Casati, R., & Varzi, A. (1996). The structure of spatial localization. Philosophical Studies,
82, 205-239.

Chen, J., Zhao, X., & Li., Z. (2003). An algorithm for the generation of Voronoi
diagrams on the sphere based on QTM. Photogrammetric Engineering & Remote
Sensing, 69(1), 79-90.

Christaller, W. (1966). Central Places in Southern Germany. Englewood Cliffs, NJ:
Prentice Hall,

Clarke, K.C. (2002). Criteria and measures for the comparison of global geocoding
systems. In M.F. Goodchild & A.J. Kimerling (Eds.), Discrete global grids: A
web book. Santa Barbara, CA: University of California. Retrieved June 1, 2005,
from http://www.ncgia.ucsb.edu/globalgrids-book/comparison

110

Conway, J.H., & Sloane, N.J.A. (1998). Coverings, lattices and quantizers, In Sphere
Packings, Lattices, and Groups (pp. 56-62). New York: Springer- Verlag,

Dacey, M.F. (1965). The geometry of central place theory. Geografiska Annaler, 47, 111-
124.

Dutton, G. (1984). Geodesic modelling of planetary relief. Carfographica, Monograph
32-33, 21, 188-207.

Dutton, G. (1989). The fallacy of coordinates. Multiple representations: Scientific report
Jor the specialist meeting. Santa Barbara, CA: National Center for Geographic
Information and Analysis.

Dutton, G. (1999). A hierarchical coordinate system for geoprocessing and cartography.
Berlin, Germany: Springer-Verlag.

Fekete, G., & Treinish, L. (1990). Sphere quadtrees: A new data structure to support the
visualization of spherically distributed data. SPIE, Extracting Meaning from Com-
plex Data: Processing, Display, Interaction, 1259, 242-25,

Fredkin, E. (1960). Trie memory. Communications of the ACM, 3(9), 490-499.

Frisch, U., Hasslacher, B., & Pomeau, Y. (1986). Lattice-gas automata for the Navier-
Stokes equations. Physics Review Letters, 56, 1505-1508.

Fuller, R.B. (1975). Synergetics. New York: MacMillan.

Gardner, M. (1970). The fantastic combinations of John Conway’s new solitaire game
“life”. Scientific American, 223, 120-123.

Gibson, L., & Lucas, D. (1982). Spatial data processing using generalized balanced
ternary. In Proceedings of the IEEE Computer Society Conference on Pattern
Recognition and Image Processing. Las Vegas, NV: IEEE Computer Society.
566-571.

Golay, J.E. (1969). Hexagonal parallel pattern transformations. JEEE Transactions on
Computers, C-18(8), 733-739.

Goodchild, M.F., & Yang,, S. (1992). A hierarchical spatial data structure for global
geographic information systems. CVGIP: Graphical Models and Image
Processing, 54(1), 31-44.

TH

Gray, R. W. (1995). Exact transformation equations for Fuller's world map.
Cartographica, 32(3), 17-25.

Gregory, M. (1999). Comparing inter-cell distance and cell wall midpoint criteria for
discrete global grid systems. Unpublished master’s thesis, Oregon State
University, Corvallis.

Guttman, A. (1984). R-tree: A dynamic index structure for spatial searching. In SIGMOD
‘84, Proceedings of the ACM SIGMOD International Conference on the Manage-
ment of Data, 47-57.

Hastings, D.A., & Dunbar, P.K. (1998). Development and assessment of the global one-
km base elevation digital elevation model (GLOBE). ISPRS Archives, 32(4), 218-
21.

Heikes, R., & Randall, D.A. (1995a). Numerical integration of the shallow-water equa-
tions on a twisted icosahedral grid. Part I: Basic design and results of tests.
Monthly Weather Review, 123(6), 1862-1880.

Heikes, R., & Randall, D.A. (1995b). Numerical integration of the shallow-water equa-
tions on a twisted icosahedral grid. Part II: A detailed description of the grid and an
analysis of numerical accuracy. Monthly Weather Review, 123(6), 1881-1887.

Kenner, H. (1976). Geodesic math and how to use it. Berkeley, CA: University of
California Press.

Kiester, R., & Sahr, K. (2000, March). Unexpected and complex behavior of hierarchical,
multiresolution cellular automata. Paper presented at the First International
Conference on Discrete Global Grids, Santa Barbara, CA.

Kimerling, A.J., Sahr, K., White, D., & Song, L. (1999). Comparing geometrical proper-
ties of global grids. Cartography and Geographic Information Science, 26(4), 271-
287.

Kurihara, Y. (1965). Numerical integration of the primitive equations on a spherical grid.
Monthly Weather Review, 93, 399-415.

Lawler, E., Lenstra, J., Rinnooy Kan, A., & Shmoys, D. (1985). The traveling salesman
problem. New York: John Wiley.

Luczak, E., & Rosenfeld, A. (1976). Distance on a hexagonal grid. IEEE Transactions on
Computers, C-25(5), 532-533.

112

Lukatela, H. (2002). A seamless global terrain model in the Hipparchus system. In M.F.
Goodchild & A.J. Kimerling (Eds.), Discrete global grids: A web book. Santa
Barbara, CA: University of California. Retrieved June 1, 2005, from http://
www.ncgia.ucsb.edu/globalgrids-book/terra

Nievergelt, J. (1989). 7 +/- 2 criteria for assessing and comparing spatial data structures.
In A. Buchman, O. Gunther, T. Smith, & Y. Wang (Eds.), Design and implementa-
tion of large spatial databases: Proceedings of the First Symposium SSD ‘89 (pp.
3-27). Berlin: Springer-Verlag.

Noronha, V. (2000, March). Design issues in the Go2 grid system. Paper presented at the
First International Conference on Discrete Global Grids, Santa Barbara, CA.

Olsen, A.R., Stevens, D.L., & White, D. (1998). Application of global grids in
environmental sampling. In S. Weisberg (ed.), Computing science and statistics
(volume 30): Proceedings of the 30th Symposium on the interface, computing
science and statistics (pp. 279-284). Fairfax Station, VA.: Interface Foundation of
North America.

Otoo, E.J., & Zhu, H. (1993). Indexing on spherical surfaces using semi-quadcodes. In
D.J. Abel & B.C. Ooi (Eds.), Advances in spatial databases: Proceedings of the
Third International Symposium on advances in spatial databases (pp. 510-529).
Singapore: Springer-Verlag.

Paul, M.K. (1973). On computation of equal area blocks. Bulletin Geodésique, 107, 73-
84.

Rigaux, P., Scholl, M., & Voisard, A. (2002). Spatial databases with application to GIS.
New York: Morgan Kaufmann.

Ringler, T. D., & Heikes, R.P. (1999). Modeling the atmospheric general circulation using
a spherical geodesic grid: A technical report on a new class of dynamical cores.
Colorado State University.

Rothman, D.H., & Zaleski, S. (1997). Lattice-gas cellular automata: Simple models of
complex hydrodynamics. Cambridge: Cambridge University Press.

Sadourny, R., Arakawa, A., & Mintz, Y. (1968). Integration of the nondivergent barotropic
vorticity equation with an icosahedral-hexagonal grid for the sphere. Monthly
Weather Review, 96(6), 351-356.

Saff, E.B., & Kuijlaars, A. (1997). Distributing many points on a sphere. Mathematical
Intelligencer, 19(1), 5-11.

113

Sahr, K., & White, D. (1998). Discrete global grid systems. In S. Weisberg (ed.),
Computing science and statistics (volume 30): Proceedings of the 30th
Symposium on the interface, computing science and statistics (pp. 269-278).
Fairfax Station, VA.: Interface Foundation of North America.

Sahr, K. (2002). DGGRID: User documentation for discrete global grid software.
Retrieved June 1, 2005, from http://www.sou.edu/cs/sahr/dgg/dggrid/docs/
dggriddoc31.pdf

Sahr, K., White, D., & Kimerling, A.J. (2003). Geodesic discrete global grid systems. Car-
tography and Geographic Information Science, 30(2), 121-134.

Sahr, K., Peterson, P., & Lutterodt, L. (2003) The aperture 3 hexagon tree. Unpublished
manuscript.

Samet, H. (1989). The design and analysis of spatial data structures, Menlo Park, CA:
Addison-Wesley.

Samet, H. (1990). dpplications of spatial data structures: Computer graphics, image pro-
cessing and GIS. Menlo Park, CA: Addison-Wesley.

Shekhar, S., Chawla, S., Ravada, S., Fetterer, A., Liu, X., & Lu, C. (1999). Spatial
databases - accomplishments and research needs. JEEE Transactions on
Knowledge and Data Engineering, 11(10), 45-55.

Shekhar, S., & Chawla, S. (2003). Spatial databases: A tour. Upper Saddle River, NJ:
Prentice-Hall.

Shumway, R.H. (2000). Time series analysis and its applications. New York: Springer
Verlag.

Snyder, J. P. (1992). An equal-area map projection for polyhedral globes. Cartographica,
29(1), 10-21.

Snyder, W., Qi, H., & Sander. W. (1999). A coordinate system for hexagonal pixels,
Proceedings of SPIE, the international society for optical engineering, 3661, 7116-
727.

114

Song, L., Kimerling, A.l., & Sahr, K. (2002). Developing an equal area global grid by
small circle subdivision. In M.F. Goodchild & A.J. Kimerling (Eds.), Discrete
global grids: A web book. Santa Barbara, CA: University of California. Retrieved
June 1, 2005, from http://www.ncgia.ucsb.edu/globalgrids-book/song-
kimmerling-sahr

Stefanakis, E., & Kavouras, M. {1995). On the determination of the optimum path in
space. In Proceedings of the 2nd International Conference on Spatial Information
Theory (COSIT '95) (pp. 241-257). New York: Springer.

Thuburn, J. (1997). A PV-based shallow-water mode! on a hexagonal-icosahedral grid.
Monthly Weather Review, 125, 2328-2347.

Tobler, W.R., & Chen, Z. (1986). A quadtree for global information storage.
Geographical Analysis, 18(4), 360-71.

van Roessel, J. (1988). Conversion of cartesian coordinates from and to generalized bal-

anced ternary addresses. Photogrammetric Engineering and Remote Sensing,
54(11), 1565-1570.

Verbrugge, C. (1997). Hex grids. Unpublished manuscript, McGill University, Montreal,
Quebec, Canada.

von Neumann, J. (1966). The Theory of Self-Reproducing Automata. University of Illinois
Press.

White, D., Kimerling, A. I., & Overton, W. S. (1992). Cartographic and geometric compo-
nents of a global sampling design for environmental monitoring. Carfography and
Geographic Information Systems, 19(1), 5-22.

White, D., Kimerling, A. J., Sahr, K. & Song, L. {1998). Comparing area and shape
distortion on polyhedral-based recursive partitions of the sphere. /nternational
Journal of Geographical Information Science, 12, 805-827.

White, D. (2000). Global grids from recursive diamond subdivisions of the surface of an
octahedron or icosahedron. Environmental Monitoring and Assessment, 64(1): 93-
103.

Wickman, F. E., Elvers, E. & Edvarson, K. (1974). A system of domains for global
sampling problems. Geografiska Annaler, 56(3/4), 201-212.

Williamson, D. L. (1968). Integration of the barotropic vorticity equation on a spherical
geodesic grid. Tellus, 20(4), 642-653.

115

Wuthrich, C.A., & Stucki, P. (1991). An algorithmic comparison between square- and
hexagonal-based grids. CVGIP: Graphical Models and Image Processing, 53(4),
324-339.

	kevin sahr 2005[58].pdf
	kevin sahr 2005 b[34].pdf

