
SUPPORT FOR MODEL COUPLING: AN INTERFACE-BASED APPROACH

by

THOMAS FRANCIS BULATEWICZ, JR.

A DISSERTATION

Presented to the Department of Computer and Information Science
and the Graduate School of the University of Oregon

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

June 2006



"Support for Model Coupling: An Interface-based Approach," a dissertation pre-

pared by Thomas Francis Bulatewicz, Jr. in partial fulfillment of the requirements

for the Doctor of Philosophy degree in the Department of Computer and Informa-

tion Science. This dissertation has been approved and accepted by:

Dr. Janice E. Cuny, Chair of the Examining Committee

ace.) cx,aDate

Committee in Charge:	 Dr. Janice E. Cuny, Chair
Dr. John Conery
Dr. Michal Young
Dr. Pat Bartlein

Accepted by:

Dean of the Graduate School



iii

@ 2006 THOMAS FRANCIS BULATEWICZ, JR.



An Abstract of the Dissertation of

Thomas Francis Bulatewicz, Jr.	 for the degree of	 Doctor of Philosophy

in the Department of Computer and Information Science

to be taken
	

June 2006

Title: SUPPORT FOR MODEL COUPLING: AN INTERFACE-BASED

APPROACH

Approved: 

	

	
Dr. Janice E. Cuny

There is an increasing need in the scientific community for the compre-

hensive simulation of complex, dynamic, physical systems. Often such simula-

tions are built through model coupling, that is, the merging of existing, component

models so that their concurrent simulations affect each other. Model coupling is,

however, a nontrivial task that is not adequately supported by existing frame-

works which often require direct manipulation of model source code. This work

presents an approach to model coupling that avoids this hurdle, allowing for the

fast-prototyping of coupled models.

Our approach to model coupling allows the scientist to work with a novel

model representation, called the Potential Coupling Interface (PCI). The PCI is an

iv



V

abstraction that exposes only those aspects of a model relevant to coupling, and

it is the basis for specifying couplings. Specifically, this dissertation contributes

• the design of a new representation, the PCI, for model coupling interfaces,

• the design of a domain-specific language, called the Coupling Description

Language, for describing the coupling of models in terms of their PCIs, and

• the implementation of a prototype coupling environment for Hydrological models.

We conclude that the use of the PCI model interfaces makes it possible to

quickly design and execute prototypes of model couplings for further experimen-

tation and investigation. This dissertation research aims to influence the way in

which model coupling is practiced in the scientific community.



CURRICULUM VITAE

NAME OF AUTHOR: Thomas F. Bulatewicz, Jr.

PLACE OF BIRTH: Philadelphia, PA

DATE OF BIRTH: February 6, 1978

GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED:

University of Oregon
University of Rochester

DEGREES AWARDED:

Doctor of Philosophy in Computer and Information Science, 2006,
University of Oregon

Master of Science in Computer and Information Science, 2003, University
of Oregon

Bachelor of Science in Computer Science, 2001, University of Rochester
Bachelor of Arts in Religion, 2001, University of Rochester

AREAS OF SPECIAL INTEREST

Distributed Systems
Modeling and Simulation
Domain-specific Environments

PUBLICATIONS:

Bulatewicz, T. and J. Cuny. 2005. Interface-based support for model coupling:
Spatial representation and compatibility issues. Proceedings of the 8th In-
ternational Conference on GeoComputation. Ann Arbor, MI.

Bulatewicz, T., J. Cuny, and M. Warman. 2004. The potential coupling inter-
face: Metadata for model coupling. Proceedings of the 2004 Winter Simu-
lation Conference, Washington D.C., 1: 175-182.

vi



VI I

ACKNOWLEDGMENTS

There were many people that helped me along the way to completing this

work. I am indebted to my advisor Jan Cuny for her help and guidance through-

out my graduate career. She gave me guidance when I needed it, let me explore

when I wanted to, and I feel fortunate to have had the opportunity to work with

her. I am also indebted to Roy Haggerty and Alphonce Guzha for their valuable

collaboration throughout this research. I owe ineffable thanks to my parents for

their unfaltering support throughout my academic career and to my girl Kelli for be-

ing there to help me through these challenging years. I send props to all my col-

leagues and friends that I've made along the way, and I thank Merlin for his relent-

less companionship throughout the preparation of this manuscript. The investiga-

tion was supported in part by grants from the National Science Foundation, ACI-

0081487 and SBE-0318372.



To my family.



ix

TABLE OF CONTENTS
Chapter	 Page

I. INTRODUCTION 	 1
Background and Motivation 	 1
Contributions of this Work 	 5
Organization of the Dissertation 	 6

II. RELATED WORK 	 7
Introduction 	 7
Approaches to Model Coupling 	 7

The Monolithic Approach 	 8
The Scheduled Approach. 	 9
The Component Approach 	 10
The Communication Approach 	 12

Computational Steering 	 14
Summary 	 17

III. APPROACH OVERVIEW 	 20
Introduction 	 20
Creating a Coupled Model 	 20
Representing Model Interfaces for Coupling 	 24
Summary 	 28

IV. DESCRIBING COUPLING POTENTIAL 	 29
Introduction 	 29
What Is Coupling Potential? 	 29

The Basic Elements of Coupling Potential 	 30
Presentation of the Basic Elements 	 31
The PCICreate Software Assistant 	 36

How PCIs are Created 	 42
Creating the PCI 	 43
Instrumenting the Model Codes 	  	 48
Is There More to Coupling Potential? 	 54

The Coupled Model Study 	 54
Methodology 	 54
Results 	 56
Model Compatibility 	 58

Summary 	 61



Chapter	 Page

V. DESCRIBING COUPLED MODELS 	 62

Introduction 	 62
Overview 	 62
The Actions 	 64

The Send Action 	 64
The Update Action 	 67
The Store Action 	 69

Sending Data Between Models 	 71
Coordinating Data In Time 	 85

Implicit Temporal Coordination 	 85
Explicit Temporal Coordination 	 87

Examples 	 89
Example One 	 89

The Participating Variables 	 93
Creating the Coupling Description 	  94
Incorporating the Spatial Distribution of Physical Quantities 	  98
Incorporating Another Model 	 99

Example Two 	 103
The Participating Variables 	  104
Creating the Coupling Description 	  105
Simulating More Areas 	 108

Summary 	 111

VI. EXECUTING COUPLED MODELS 	 112

Introduction 	  112
Overview of the Runtime System 	 112
Compiling the Coupling Description 	 114

Send Actions 	 114
Store Actions 	 115
Update Actions 	 116
Example Compilation 	  116

Operation of the Runtime System 	 118
Starting a Coupled Model 	 118
How Couplers Store Values 	 118
How Couplers Execute Update Functions 	 119

Summary 	 121



xi

Chapter	 Page

VII. CASE STUDIES 	 122

Introduction 	 122
Case Study: Simulating Stream-Aquifer interaction 	 123

Coupled Model High-Level Design 	 124
Calculating Seepage 	 124

Implementation of the Reference Coupling 	  127
Implementation of the Interface Coupling 	 130
The Study Site 	  135
Evaluation of the Interface Coupling 	  136

Case Study: Watershed-wide Surfacewater Transport 	 139
Coupled Model Overview 	 141
The Coupled Model Inputs 	 142
The Coupling Description 	 149
Results 	  152
Case Study Summary 	 155

Case Study: Simulating Runoff-Aquifer Interaction 	  156
Motivation 	  157
Coupled Model Design 	  157
The Coupling Description 	 159
Results 	  166
Case Study Summary 	 168

Summary 	 169

VIII. CONCLUSIONS 	 170

APPENDIX

A. PCI COLLECTION 	 175

B. GUIDELINES FOR ANNOTATING MODEL CODES 	 186

C. ADDING CUSTOM DATA MAPPINGS 	 188

D. ADDING CUSTOM UPDATE FUNCTIONS 	 189

BIBLIOGRAPHY 	 191



LIST OF FIGURES

Figure	 Page

1. The comprehensive simulation incorporates many different processes 	 2

2. The comprehensive simulation accounts for interactions
between streams 	 3

3. Model codes are scavenged to create a new model code 	 8

4. Model inputs and outputs are connected 	 9

5. Components are connected to create models 	  11

6. Models are instrumented so they can exchange data at runtime 	  13

7. The server acts as an intermediary 	 15

8. Two different coupling surfaces 	 22

9. The scientist works only with the coupling interfaces 	 24

10.A single PCI for each model is created and reused 	 27

11.A PCI for the model ModFlow 	 34

12. How recursion is handled in the PCI 	 36

13_ Screenshot of the PCICreate application 	 37

14. The solution loop is grouped into a single block labeled "Group" 	 38

15. How a coupling point can appear as an edge or a block 	 38

16. Information about blocks can be viewed in the inspector 	 40

17. The inspector window shows the accessible variables 	 41

18. The process of creating a PCI 	 42

19.An example of an annotation 	 43

20. How interval analysis collapses a subgraph 	 45

21. How our algorithm collapses a subgraph 	 46

22. How a different placement of annotations affects the reduced graph 	 47

23. Early vs. late instrumentation of model codes 	 49

24. Scripts describe coupling-specific behavior 	 50

25. Source code of the generated accessor subroutine for
the annotation shown in Figure 19 	 51

26. Interactions between hydrological systems 	 56

xii



Figure	 Page
27. Summary of similarities and differences between the models 	 59

28. The coupling environment of PCICouple 	 63

29. The explicit depiction of Send Actions 	 65

30. An intra-model Send Action 	 65

31. The sent variable X is now accessible at Coupling Point B 	 66

32. The properties of the Send Action as they appear in the inspector 	 67

33. Source code for the built-in assignReal function 	 68

34. The properties of the Update Action in PCICouple 	 68

35. The properties of the Store Action in PCICouple 	 69

36.A simple data mapping between two models 	 71

37. Sending a variable to two different models 	 72

38. Sending data from two different models 	 72

39. The data mapping indicates there are three instances of
the Stream model 	 73

40. A data mapping that indicates there are two instances of
the Lake model 	 74

41. A data mapping that indicates there are two instances of
each model 	 75

42. A data mapping that indicates that two instances send
to a third instance 	 76

43. A data mapping that indicates there are five instances of
the Stream model 	 76

44. Each instance can be identified by a unique number 	 77

45. The y variable is sent to only instance 2 of the Lake model 	 78
46. Array-level data mappings allow for a finer grain mapping 	 79
47. Format of data mapping input files 	 80

48, The meaning of variables differs across models 	 81
49, Third-party sources of information can be used to relate variables 	 81

50. The elements of the two arrays represent different spatial areas 	 82

51. A GIS can be used to relate spatial data 	 83



xiv

Figure	 Page

52. The physical space represented by the elements of an
array can change between study sites 	 84

53. Implicit coordination by matching start times and step lengths 	 85

54. Specifying frequencies to resolve differences in time step length 	 86

55. Typical structure of a discrete event simulation 	 87

56. Illustration of the physical system simulated by SWMM 	 90

57. Water flux occurs through the unsaturated zone 	 91

58. Relationships between the water table, root zone, and the surface 	  91

59. Illustration of the physical system simulated by ModFlow 	 92

60. Subcatchments are irregularly shaped polygons 	 93

61. A single subcatchment superimposed on a single grid cell 	 94

62. The coupling description as shown in PCICouple 	 95

63. The source code for the setHead update function 	 96

64. The details of the Send and Update Actions 	 97

65. The default 1-to-1 data mapping 	 97

66. The area beneath the subcatchment is discretized as four cells 	 98

67. The array-level data mapping 	 99

68. How the array elements are combined and sent 	 99

69. Illustration of the physical system simulated by UEB 	 100

70. The updated coupling description 	  101

71. The source code of the addMelt function 	 101

72. The details of the Send and Update Actions 	 102

73. Illustration of the physical system simulated by GLEAMS 	 103

74. Lumped models do not support heterogeneity 	 104

75. The spatial distribution of the variable 	 105

76. The coupling description as it appears in PCICouple 	  105

77. The data mapping used by the Send Action 	  106

78. The details of the Send and Update Actions 	 106

79. The final coupling description 	 107

80. Details of the Update Action applied to the nutin variable 	 108



XV

Figure	 Page

81. A field with four parts 	 109

82. An alternative data mapping indicating four instances 	 109

83. How values from multiple instances are combined 	 109

84. A field with nine parts 	 110

85.A data mapping indicating nine instances 	 111

86. Overview of the runtime system 	 113

87. Script for instance 1 	 117

88. Script for instance 2 	 117

89. Instances send values to couplers only 	 119

90. Couplers store values for their assigned instances 	 119

91. Function inputs are assembled by the coupler 	 120

92. Couplers use updaters to apply update functions 	 121

93. Illustration of the physical system simulated by DAFIow 	 123

94. Each subreach is associated with a single grid cell 	  125

95. Physical quantities that influence seepage 	 126

96. How the model codes were integrated, arrows
indicate function calls 	  128

97. The coupling description as it appears in PCICouple 	  131

98. The source code for the calcSeepage subroutine 	 132

99. The source code for the tributary functions 	 133

100. The source code of the adjVolume function 	 134

101. The schematic for example application 1 	 135

102. Simulated streamflow at node 14 for each coupling 	  137

103. Comparison of aquifer head at a well located in row 7, column 10 	 137

104. Mack Creek gaging station in the Andrews Experimental Forest 	 139

105. Illustration of the physical system simulated by STAMMT-L 	 141

106. The physical stream network and its abstraction 	  142

107. The input file used by STAMMT-L 	 143

108.The stream network and forest boundary in ArcMap 	 145

109. The extended attribute table for the stream network in ArcMap 	 147



xvi

Figure	 Page

110. Script used to generate the value list 	  148

111.The generated parameter list (showing values for
only 17 instances) 	 149

112.The coupling description 	 150

113.The ArcMap script used to generate the data mapping 	 151

114.The data mapping used in this case study (for only 17 streams) 	 152

115.Breakthrough curves of different streams 	 153

116. Comparison of the breakthrough curve of instance 12
with that of 11 and 17 	 154

117.Tenmile creek 	  156

118.Three subcatchments in the Tenmile Creek Watershed 	 158

119. Subcatchments superimposed on a grid 	 158

120. The coupling description 	  159
121. Source code for the setHead function 	 162

122. The data mapping relates the regular grid to the irregular
subcatchments 	 163

123. Spatial units are numbered by array element or instance id 	 163

124.The script that generates the data mapping 	 164

125. The runtime environment provided by PClCouple 	 165

126. The precipitation input used by TopModel in all three cases 	 166

127. Comparison of the overland flow simulated by TopModel
in each case 	 167

128. Comparison of the recharge simulated by TopModel in each case 	 168

129.A PCI for BioMOC 	 176

130.A PCI for Branch 	 177

131.A PCI for FourPt 	 177

132.A PCI for DAFIow 	 178

133.A PCI for GLEAMS 	 179

134.A PCI for SHAW 	 179

135.A PCI for ModFlow 	 180

136.A PCI for OTIS 	 181



xvii

Figure	 Page
137.A PCI for STAMMT-L 	 181
138.A PCI for SWAT 	 182
139.A PCI for SWMM 	 183
140.A PCI for TopModel 	 184
141.A PCI for UEB 	 185
142.A PCI for WASP 	 185
143.Available data mappings (left) and the mapping details (right) 	  188
144. The communication wrapper function for the setHead function 	 189
145. The update function list (left) and function details (right) 	  190



LIST OF TABLES

Table	 Page
1. A summary of frameworks that can be used for coupling 	 18
2. The basic elements of coupling potential 	 31
3. Reduction ratios for various hydrological models 	 47
4. Models used in the coupling study 	 55
5. Coupling-relevant variable characteristics identified in the study 	 58

6. Time and bandwidth measurements of each coupled model 	 138
7. The input parameters for STAMMT-L 	 144
8. Representative properties of streams of different sizes 	 144

xviii



CHAPTER 1

INTRODUCTION

Background and Motivation
Modeling and simulation have become an essential tool in scientific inves-

tigation, complementing both the theoretical and experimental activities of sci-

ence. The ability to simulate a dynamic system that is too difficult or costly, or

even impossible to experiment with has been one of the most important techno-

logical advances for science. As a result, a great wealth of models exist today,

informing nearly every scientific discipline, including biology, physics, geology,

hydrology, and climatology. These models (also called computational models or

computer models) vary greatly in their complexity and purpose, from

spreadsheet-based financial prediction models that run on handheld computers,

to earth-scale climate prediction models that run on the biggest and fastest com-

puters in existence.

For the purposes of this work, we define a model to be the mathematical

representation of some dynamic system along with its implementation as a com-

puter program and all the associated input data and documentation. The term

model code is used to refer specifically to the program source code of a model.

As our ability to accurately model individual physical phenomena has in-

creased, the challenge now is to create simulations of complex, interacting

1



2

physical systems. In the hydrological community, for example, models of sur-

facewater, groundwater, rainfall-runoff, and transport are now being combined

into simulations of the complete water cycle. Figure 1, for example, illustrates the

various processes of the hydrological cycle that could be incorporated into a

surfacewater-flow model.

Individual Simulation Comprehensive Simulation

Figure 1. The comprehensive simulation incorporates many different processes.

In some cases, this combining of models can happen between instances

of the same model linked together to cover interactions over larger geographic

areas. Models that simulate limited areas could simply be applied repeatedly in

order to simulate a wider area, but independent simulations preclude the ability to

study the interactions between instances. For example, a model capable of simu-

lating a single stream could be applied once for each stream of a network, but

the interactions between the streams would not be accounted for in the simula-

tions. A more holistic, accurate approach would be to combine the simulations

into a single, larger simulation as illustrated in Figure 2.

This raises the question of how to achieve these more comprehensive

models? One way is by developing entirely new models that encompass multiple

phenomena across wide areas, but the time and expense involved in developing

such models is prohibitive. Designing and implementing a model requires a com-

bination of software engineering skill and domain expertise, and involves an ex-



3

tensive amount of verification and validation, often requiring field studies,

throughout the entire development process.

Figure 2. The comprehensive simulation accounts for interactions between streams.

The more complex the model, the more stifling these aspects become. For this

reason, most computational models were developed as complex, special-

purpose monolithic programs (Page et al. 1998) that simulate an isolated physi-

cal phenomena.

A better approach to creating new, more comprehensive models, is to re-

use these existing models, combining them in a process called model coupling.

The term coupled model is widely used although there is no common agreed

upon definition. For the purposes of this work, we start with a general definition: a

coupled model is a group of models executing together that have the ability to

affect each other's computations. The reuse of software is a key principle of soft-

ware engineering and is usually achieved by developing a set of simple compo-

nents, or modules, that can be combined in different ways to create more com-

plex components. Ideally scientists would couple their models by integrating the

existing model codes, treating them as modular pieces that can be easily and

quickly plugged together. This, however, can be a very difficult task when the

legacy model codes themselves may be poorly understood, were not originally



4

designed to be coupled, and may be written in different programming languages

for different computing platforms!

Despite the potential benefit of building new models from existing ones,

model coupling is not a common practice in the scientific community because of

the difficulties inherent in working with model codes. Reusing source code in

general is difficult for many reasons. Not only are programs difficult to compre-

hend (a necessary part of any software reuse) (Rajlich and Wilde 2002) but the

task of identifying useful source code fragments and integrating these source

code artifacts that were not designed for reuse is challenging (Krueger 1992).

This is especially true for model codes written in unstructured languages and

languages that make extensive use of global data (e.g. Fortran). Reusing model

code is particularly difficult because models are a unique class of computer pro-

grams whose design and use is intertwined with a great deal of domain-level

theory outside the model code itself (Robinson et al. 2004). The task of under-

standing a model code requires relating the variables and calculations in the

model code to the domain-level concepts with which they are associated. This

makes the task of understanding how a model can be coupled to another, that is,

understanding the coupling potential of a model, difficult.

The coupling potential of a model can be thought of as an abstraction that

describes the characteristics of a model that in some capacity dictate how it can

be coupled to another model (this is discussed in detail in Chapter 4). Model

code is a poor representation of coupling potential because it includes every de-

tail about how a model is implemented, most of which is not relevant to coupling,

and the model code itself does not convey to the scientist its domain-level mean-

ing.

Our hypothesis is that a better representation of coupling potential would

enable the design of infrastructure that could more effectively support model



5

coupling. Such infrastructure could simplify the task of model coupling to the ex-

tent that it would be possible for scientists to quickly prototype coupled models.

Our work seeks to design a more powerful representation of coupling potential

and to test that representation by developing a model coupling environment for

hydrological models based on it.

Contributions of this Work
The primary research contribution of this work is the development of a

novel approach to model coupling that supports the fast-prototyping of coupled

models. We call our technique the InCouple approach. To our knowledge this is

the first work to focus on the representation of the model coupling interface as

the basis of the approach. The model coupling interface is a high-level represen-

tation of a model that is used in the design of coupled models. We make three

specific contributions. The first is

(1) the design of a novel representation for model coupling interfaces: the Po-

tential Coupling Interface (PCO.

This representation serves four roles: it is a new form of metadata describing the

coupling potential of a model; it is the vehicle for describing couplings; it is the

basis for automatic source code generation; and it is a reusable representation.

The second contribution is

(2) the design of a coupling language based on PCIs.

This language is used to describe the behavior of coupled models, and includes

support for resolving incompatibilities (spatial, temporal, etc.) between models. It

may be applicable to other coupling frameworks.



6

The third contribution of this work is

(3) the implementation and evaluation of a test environment for hydrology.

The implementation was created as a proof-of-concept to demonstrate how the

InCouple approach could be implemented. It was important to build the prototype

to show that the design is usable in practice. Although our approach is general

and applicable to nearly any scientific domain and nearly any kind of model, we

chose hydrology as our prototype domain because the basic concepts of hydrol-

ogy are generally accessible, and there is a wide variety of open source models

available from many universities and government agencies. In addition, existing

hydrological models typically simulate a particular subsystem of the hydrological

cycle, making them obvious candidates for coupling. Most models in this field are

serial (non-parallel), continuous simulations, some are spatially distributed, and

others are lumped, meaning they do not account for the spatial variation of

physical quantities (also called lumped-parameter).

Organization of the Dissertation
Chapter 2 reports on existing approaches to model coupling. Chapter 3

presents an overview of the coupling process and introduces coupling interfaces.

Chapters 4 and 5 present a specification mechanism for coupling interfaces and

the coupling language based on that interface. Chapter 6 explains how the run-

time system executes coupled models based on coupling descriptions. Chapter 7

presents three case studies that demonstrate our approach, and Chapter 8 con-

tains our conclusions.



CHAPTER II

RELATED WORK

Introduction
Comprehensive models can be created in a variety of ways. This chapter

surveys existing approaches and emphasizes frameworks that were designed for

coupling models, as well as those that can be used for coupling even though not

specifically designed for it. In the next section, we describe each approach and

classify them based on how the model codes are integrated. In the following sec-

tion we discuss a related field, computational steering. We conclude with a sum-

mary that provides the context for our work.

Approaches to Model Coupling
The most basic way to integrate multiple model codes, called the mono-

lithic approach, is to merge them into a single program. Some coupling-like tech-

niques allow for limited interaction between models, and are collectively referred

to as the scheduled approach. More sophisticated approaches involve frame-

works designed to support model coupling. We use the term frameworks to refer

to software systems that assist in designing software by providing a foundation

upon which more complex and customized software can be built. With respect to

model coupling, frameworks provide the building blocks to create coupled mod-

els. Some frameworks focus on enabling models to communicate, called corn-

7



8

munication frameworks, while others focus on creating models from software

components, called component frameworks. Here we discuss each of these four

categories of approaches: monolithic, scheduled, communication, and compo-

nent.

The Monolithic Approach

The monolithic approach to model coupling was first used to couple mod-

els (Swain and Wexler 1996; Jobson and Harbaugh 1999; Guo and Langevin

2002). In this manual process, the scientist creates a single program from the in-

dividual model codes, splicing together source code fragments with additional

custom source code as illustrated in Figure 3.

Figure 3. Model codes are scavenged to create a new model code.

Early monolithic hydrology couplings by the U.S. Geological Survey (Jobson and

Harbaugh 1999; Swain and Wexler 1996), for example, merged the groundwater-

flow model ModFlow (McDonald and Harbaugh 1988) first with the surfacewater-

flow model DAFlow (Jobson 1989), and then with the more complex

surfacewater-flow model Branch (Schaffranek, Baltzer, and Goldberg 1981). In

both cases, the surfacewater-flow model codes were separated into subroutines

which were then combined with the groundwater-flow model code to create a

single model code. This monolithic approach had the advantage of being familiar

to scientists, as it was not much different from the normal model writing process,

that is, composing subroutines and writing source code. This approach also gave

the scientist full control over all the coding details (control structure, memory allo-

cation, data types, input/output file formats, etc.).



9

Although these couplings were very successful, the approach had signifi-

cant drawbacks. The scientists performing the couplings needed a complete and

detailed understanding of the constituent models and their model codes, which is

often difficult to obtain: Legacy model codes are frequently complex, uncom-

mented, and poorly documented. In addition, this whole process must be re-

peated from scratch by anyone wanting to replace one of the constituent models.

The single combined model code is also difficult to work with from a software en-

gineering point of view (testing, debugging, verifying, updating, etc.) since it is

much larger than its constituent model codes, and improvements made to the

original model codes must be repeatedly made to each coupled model code as

well. For these reasons, scientists turned to more reusable techniques for cou-

pling models.

The Scheduled Approach
In the scheduled approach, the models remain independent programs and

do not affect each other as they are executing. A model is given a dataset and

executed to completion to generate an output dataset. That output dataset is

then given to another model (perhaps after some transformation) which uses it as

input and is also executed through to completion. This process can then be con-

tinued with other models, and they can be executed concurrently if there are no

dependencies between their datasets. This is illustrated in Figure 4.

Figure 4. Model inputs arid outputs are connected.



10

Scheduling frameworks support this process by providing an automated way for

the user to select models and datasets, and then specify the distribution of data-

sets and the order of model execution (Simon; Akarsu et al. 1998; Whelan et al.

1997). One such framework, Le Select (Simon), uses a database-oriented ap-

proach in which both models and datasets are stored in geographically distrib-

uted databases and the user specifies the execution and data distribution

through textual queries in a standard database query language. Others provide a

visual interface to specify the order of execution of the models (Whelan et al.

1997; Akarsu et al. 1998). Models typically have different user interfaces and dif-

ferent input/output data formats making them difficult to use, especially for non-

specialists. Some frameworks provide a standard user interface to each model

(Neteler and Mitasova 2004). This requires that the original user interface source

code be removed from each model and replaced with the common user interface

source code. To address the issue of nonuniform data input and output formats,

some frameworks require the user to perform this data transformation manually

between model runs (Akarsu et al. 1998), while others require the user to change

the model codes so that they use a standard data format (Whelan et al. 1997).

This requires that all the input and output source code be removed and replaced

with source code to access the common database and use its data types.

The Component Approach
The component approach to model coupling is similar to the monolithic

approach in that the result of the coupling is a single model code, but differs in

that rather than decompose the constituent model codes into blocks of source

code designed for integration into another specific model code, the scientist de-

composes the model codes into software components. Components are subrou-

tines that are modular and reusable. We use the term modular to mean that the

components can be written with little knowledge of the other components, and

that they can be replaced independently without significant changes to the rest of



Reads
Equation

Maker

Components

Reader
	

[ writer .

Newtein
	

4000
Maker.

simple, well-defined
interfaces

Coupled Model

'11

the program (Parnas 1972). We use the term reusable to mean that a component

can be used in a variety of different situations without any changes made to it.

Components possess a standard interface for invoking and passing parameters.

The components are then recomposed by connecting their interfaces, as shown

in Figure 5.

Figure 5. Components are connected to create models.

This can be thought of as a finer-grained scheduled approach, at the level of

software components rather than models. The interfaces are generally simple

and consist of a set of input data that must be supplied before the component

can be executed, and a set of output data that is available upon completion. The

computation that a component performs is encapsulated and hidden within the

component. These components can be classified (Breunese et al. 1998) and or-

ganized in searchable libraries and the strict interfaces allow for automatic com-

patibility checking (Fox, Brogan, and Reynolds 2004). The specification of the

component connections can either be through a visual environment (Piacentini

2002; Johnson et al. 2002; Gijsbers 2003; Blind et al. 2000; Leavesley et al.

1996; Ahuja, David, and Ascough 2004) or textual configuration files (Ford et al.

2004; Balaji 2002; Hill et al. 2004; Knox et al. 1997). Components are connected

by specifying which component outputs map to which component inputs. This

configurable dependence is a key feature of components. The component-based

strategy is advantageous because simpler components are easier to test, debug,

update, compare, and verify, and once the components are created they can be



12

easily assembled, reassembled in different ways, and can be reused in later

compositions. In addition, frameworks can supply pre-made general purpose

components for common operations (Piacentini 2002; Hill et al. 2004; Johnson et

al. 2002; Gijsbers 2003; Blind et al. 2000; Leavesley et al. 1996). Projects that

use the component approach differ in their interfaces and how the components

can be connected. Some frameworks standardize the argument data types of the

components (Hill et al. 2004; Johnson et al. 2002; Gijsbers 2003; Blind et al.

2000) while others allow no arguments and require putlget calls (from a custom

library) within the component for data input/output (Ford et al. 2004; Piacentini

2002; Johnson et al. 2002; Leavesley et al. 1996), and some use a combination

(Balaji 2002). Frameworks can be general purpose (Ford et al. 2004; Johnson et

al. 2002) or apply to specific domains such as climatology (Piacentini 2002; Balaji

2002; Hill et al. 2004) or hydrology (Gijsbers 2003; Blind et al. 2000; Leavesley et

al. 1996). Those that apply to specific domains typically support the transfer and

transformation of domain-specific data types (grids, flux, etc.). Although the com-

ponent approach addresses the issues of coupled model code complexity (by

breaking the computations down into simple components) and reuse (by allowing

easy reuse via standard interfaces), it still requires the scientist to have a com-

plete and detailed understanding of the underlying model codes in order to re-

write them into components. Although coupled models would be easier to create

from components than from scratch, such an approach to model coupling re-

quires substantial reprogramming. For this reason, scientists turned to ap-

proaches that do not require such a substantial model code rewriting effort.

The Communication Approach

Using the communication approach, the underlying model codes remain

independently executing programs that interact only by exchanging data via

message passing during execution. Frameworks that use this approach can be

classified by whether or not they include an independent application (a coupler)



Octr
tiL

Exee

'.127Vrempao
1	 4(	 num

send and receive calls
added by scientist

"=,j:reps■01

send x
aizitt==.—

X receive x

1.4
'n.1712,7
"•11:413
I: •'Ll:Ft.t7

Model A Model B

13

that mediates the execution and communication between the models. The pri-

mary role of the coupler is to transform exchanged data, which typically involves

data type conversions and mesh regridding (Joppich, Kurschner, and the MpCCI

team 2005), but they also sometimes control the startup of the models or track

the global state of the coupling as well (Sottile 2001). Frameworks that do not in-

clude a coupler are essentially libraries of data transfer and transformation rou-

tines customized for the data types (grids, flux, etc.) and communication styles

(high-bandwidth, parallel, etc.) needed by models (Sklower et al.; Larson, Jacob,

and Ong. 2005). Frameworks that do include a coupler have communication li-

braries that support direct model-to-model communication as well as model-to-

coupler communication (Valcke et al. 2004; Blackmon et al. 2001; Beckman et al.

1998; Bettencourt 2002; Valcke, Guilyardi, and Larsson 2005; Joppich,

Kurschner, and the MpCCI team 2005; Sydelko et al. 1999; Dahmann, Fujimoto,

and Weatherly 1998). In either case, these libraries often require the scientist to

convert the model data into a standard data type, which is then communicated.

All of these frameworks require the scientist to instrument the model codes with

library calls in order to send or receive data, as shown in Figure 6.

Figure 6. Models are instrumented so they can exchange data at runtime.

The user then writes configuration files that specify which models are to execute,

and the data that is to be sent and received. The communication approach

avoids the substantial model code rewriting required by the monolithic and com-

ponent approaches, but the user still needs a complete and detailed understand-

ing of the model codes in order to properly instrument them. Furthermore, the in-



14

strumentation is often specific to a single coupling, so the instrumentation proc-

ess has to be repeated for each coupling. These frameworks also suffer from the

problem that the instrumentation of the model code (e.g. adding a send() call

which sends a value to another model) is separate from the specification of the

coupling which is done in configuration files (e.g. specifying that one model will

be sending a value to the coupler and another will be receiving a value from the

coupler). This can make setting up a coupling error-prone because there is no

way to perform consistency checks to ensure that the model codes are instru-

mented in a way consistent with the coupler configuration files. This typically isn't

a serious problem when the projects that use these coupling frameworks are

large (often climate-related) and specialists familiar with the models are available

to instrument them, but this does become a problem for scientists in other do-

mains seeking to create prototype couplings quickly and easily.

A related area of research called computational steering is presented next.

This research is particularly relevant to the communication approach because

both involve the instrumentation of source code to affect a model's behavior, and

both utilize an intermediary application to facilitate communication.

Computational Steering

The ability to interact with potentially long-running scientific models during

their simulations both facilitates performance enhancements that are difficult to

automate and provides insight into the application's behavior. This is called com-

putational steering (or interactive program steering, application steering, interac-

tive steering). It enables scientists to observe and interact with a simulation dur-

ing its execution, steering it as necessary. Common steering operations include

modifying model parameters, adjusting load-balancing, changing algorithms used

in the application, and starting/stopping/replaying some part of a simulation.

Model coupling can be thought of as an instance of steering, because the con-



15

stituent models "steer" each other. Conversely, computational steering can be

thought of as coupling a model to a scientist. In both cases, the inner state of a

model is changing in response to events outside the model.

Steering is accomplished in two primary ways, either by swapping compo-

nents in and out of an application as it is executing (such as changing the algo-

rithm used in part of the simulation) or by manipulating an application's data

(such as changing the value of a variable). In both cases, the state of the applica-

tion is conveyed to the scientist, and the scientist can steer the application ac-

cordingly. These two functionalities, monitoring and user interaction, are typically

supported in steering framework architectures through the use of an intermediary

server (Jablonowski et al. 1993; van Wijk and van Liere 1997; Muralidhar and

Parashar 2003; Gu et aI.1998). The server collects monitoring data from the

model and forwards it to the scientist, and forwards steering requests from the

scientist to the application, as shown in Figure 7.

/
Model

monitoring

steering

Figure 7. The server acts as an intermediary.

The monitoring data is presented in a variety of ways via the user interface and

can range from simple variable-value inspection capabilities, to complex graphi-

cal visualizations provided by third-party software. This basic architecture is very

similar to the communication frameworks presented earlier, where the server is

performing a similar role as the coupler. Direct model-scientist interaction is

avoided because a model may produce a great deal of monitoring data: sending

this data to a local server allows the server to reduce the data via analysis before

sending it on to the scientist, thus conserving bandwidth. This becomes more im-

portant in the case of distributed models being monitored by multiple, collaborat-



16

ing clients. In this case, a set of servers (usually one per machine) can be used

to help distribute the data collection and analysis work which is then communi-

cated through a central server to the scientist. Typically this analysis includes

storing the data in a database (Rathmayer and Lenke 1997), reducing and filter-

ing the data based on the needs of the user (Vetter and Schwan 1995), global

event ordering (Gu et al. 1998), or distributed consistency analysis (Miller et al.

2001).

Program monitoring is the basis for steering: the user must know what the

model is doing in order to intervene. Program monitoring is also important in de-

bugging and performance analysis, especially in parallel and distributed applica-

tion environments. In these cases, the overall behavior of the system is of inter-

est, while computational steering focuses on just a few user-specified aspects of

a model. The VASE system (Jablonowski et al. 1993) uses a graph to highlight

the computational steering-related aspects, while the MOSS system (Eisenhauer

and Schwan 1998) and DIOS system (Muralidhar and Parashar 2003) group ap-

plication data into objects which are then presented to the user. in all the frame-

works, this requires the user to directly instrument the model source code with

function calls to a custom API library to register the variables with some form of

server process. In most frameworks, the user defines an object that contains ref-

erences to some set of variables, and then registers the object with the server

(Rathmayer and Lenke 1997; Kohl and Papadopoulos 1998; Vetter and Schwan

1997). It is also possible to require variables to be registered individually (van

Wijk and van Liere 1997) or to have the framework automatically determine the

variables in scope at a particular point the program and present them to the user

later on for selection (Jablonowski et al. 1993). In all cases, the user must de-

cides where in the source code data is meaningful and readable and/or writable.

Some authors claim that this is a straightforward task because these are easily

identifiably places, such as before a main loop, or at the end of a main loop (van



17

Wijk and van Liere 1997), while others note that someone familiar with the

source code must perform the instrumentation (Jablonowski et al. 1993). This in-

strumentation process is very similar to the instrumentation required by both the

communication approach to model coupling and our approach.

When these points in the program are readied, the values of the regis-

tered variables are sent to another process, and hence, provide synchronous in-

teraction between the application and server. In many applications of steering, it

is very important to understand and minimize the effect that the steering system

has on the application (i.e. minimize the perturbation of the application caused by

steering). This can also be important in coupling frameworks if the models inter-

act very frequently, incurring a great deal of communication time and dramatically

slowing down the execution of a model.

Summary

This chapter surveyed a number of different frameworks that can be used

for model coupling, organized into four different approaches. Clearly the compo-

nent approach is an ideal way to construct new models if components are avail-

able, but the approach is impractical for coupling existing models. The communi-

cation approach though, allows existing models to be coupled with minimal

changes to the model source codes. Since we are interested in model reuse, we

focus on the communication approach in this work, and refine our use of the term

model coupling to refer specifically to this approach. A summary of the frame-

works discussed in this section is shown in Table 1.

Existing communication-style frameworks support the transfer and trans-

formation of data between models well, assuming that the scientist knows which

variables should be exchanged between the models, and what those variables

mean. For example, if an air temperature variable should be sent from an atmos-

phere model to a sea-ice model, it is well known how to efficiently send and re-



18

ceive the data, and how to transform it in a variety of ways, from simple unit and

data type conversions, to complex spatial regridding (Joppich, Kurschner, and

the MpCCI team 2005).

Table 1. A summary of frameworks that can be used for coupling.

Project
Name

Framework
Type

Visual
Ul

Communication
Type

Domain Languages
Supported

Reference

GCF Component No Tuplespace None Fortran/C/C++ Ford et al. 2004
PALM Component Yes Tuplespace Climate Fortran/C/C++ Piacentini and the PALM

group 2002
FMS Component No Tuplespace/Args Climate Fortran Balaji 2002
ESMF Component No Argument/Impl Climate Fortran Hill et al. 2004
SciRun Component Yes Implements None C/C++ Johnson et al. 2002
OpenMI Component Yes n/a Hydro Fortran/C/C++ Glisters 2003
CF Component Yes n/a Hydro C++ Blind et al. 2000
WISE Component No n/a Ecology Fortran Knox et al. 1997
CCA Component No Arguments None Fortran/C/C++/Java Armstrong et al. 1999
MMS Component Yes Shared Memory Hydro Fortran/C Leavesley et al. 1996
OMS Component Yes n/a None Java Ahuja, David, and As-

cough 2004
DDB Comm Lib No Custom Lib Climate Fortran Sklower et al.
MCT Comm Lib No MP1 None Fortran Larson, Jacob, and Ong

2005
GRISSLi Comm Lib No MPI None Fortran/C Ding, Munch, and Laux

1999
OASIS Comm No MPI/PVM Climate Fortran/C/C++ Valcke et al. 2004

I CCSM Comm No MPI Climate Fortran Blackmon et at. 2001
 PAWS Comm No Nexus None C++ Beckman et at. 1998
MCEL Comm No CORBA None Fortran/C/C++ Bettencourt 2002
PRISM Comm Yes Custom Lib Climate Fortran Valcke, Guilyardi, and

Larsson 2005
MpCCI Comm No MPI Climate Fortran/C/C++ Joppich, Kurschner, and

the MpCCI team 2005
DIAS Comm No CORBA Ecology Fortran/C/C++ Sydelko et al. 1999
HLA Comm No Any None Java/Ada/C++/IDL Dahmann, Fujimoto, and

Weatherly 1998
n/a Comm No Any None Fortran/C/C++ Shengsheng et at. 2005
Le Select Scheduling No n/a None n/a Simon
WebFlow Scheduling Yes CORBA/GLOBUS None Fortran/C/C++ Akarsu et al. 1998
FRAMES Scheduling Yes Files Risk Analy. Fortran/C/0++ Whelan et al. 1997
GRASS Scheduling No n/a Hydro Fortran/C Ahuja, David, and Ong

2004



19

What is not known however, is how to assist the scientist in identifying the rele-

vant variables, understanding what they mean, and crafting the interaction be-

tween the models. Currently, the only way to acquire this information is through a

time-consuming and tedious manual analysis of the model code by each scientist

who wishes to couple the model. Furthermore, existing frameworks offer little or

no support for finding models that can be coupled, or identifying and understand-

ing the kinds of incompatibilities that exist between them. Our work presents a

solution to these problems based on a novel representation of model interfaces,

customized for coupling, that captures this essential information in a reusable

way. In this way, our approach focuses on the knowledge necessary to couple

models. Our work does not seek to replace any of these existing frameworks, but

rather, it complements these frameworks by assisting the scientist in additional

tasks. Our representation could be used in conjunction with these frameworks to

support the scientist in the task of designing a coupled model, after which the

framework would be used to execute it.

Our goal is to enable scientists to easily experiment with a variety of cou-

plings before investing in recoding efforts. Like communication frameworks, we

support the use of annotated legacy model codes rather than recoding. Like

component frameworks, we promote modularity and reuse, allowing the scientist

to plug together models that have been made available within the framework. We

support all aspects of model coupling (identifying appropriate models, specifying

their interactions, integrating their model codes, and executing the coupled

model), while allowing the scientist to work at a high level of abstraction without

becoming enmeshed in low-level model code details_ Before presenting the de-

sign of the interface, the coupling process that we intend to support is explained

in detail, along with an introduction of how the use of model interfaces can sim-

plify the process.



CHAPTER III

APPROACH OVERVIEW

Introduction
In this chapter we first present the process by which coupled models are

created, and then discuss how the process can be supported through the use of

a better representation for model interfaces for coupling.

Creating a Coupled Model
Before we can talk about support for model coupling, we must be clear

about the process we are supporting. It is based on the communication approach

introduced in Chapter 2. We describe the process in terms of six steps to which

we refer throughout this text.

As in any modeling task, the process begins when the scientist identifies

the physical system of interest, sometimes within a specific study site. The first

step toward creating a coupled model is to obtain a set of models that collectively

simulate these physical systems. In some cases the scientist may possess ex-

pertise with a specific model and want to couple another model to it, in other

cases a group of specialists in one model may wish to collaborate with scientists

in another domain working with a different model, or a scientist may need to col-

lect all the models needed in the coupling.

20



21

Step 1. What models should participate in the coupling?

These models can be found by searching various agencies' online model reposi-

tories, such as the ones provided by the U.S. Geological Survey 1, and the U.S.

Environmental Protection Agency's Center for Exposure Assessment Modeling2.

These sites though, only give short descriptions of each model, requiring the sci-

entist to download each one and review its documentation in order to determine

whether or not a model is appropriate for his/her study. Some model repositories

offer more detailed information (Plentinger and Penning de Vries 1996; Smith et

al. 1997; Benz, Hoch, and Legovic 2001), but these still lack information about

how the models can be coupled, complicating the task of finding appropriate

models. Once the models have been collected, the scientist must understand

what physical processes are simulated by each model, and how those processes

affect each other.

Step 2. What interactions between the physical processes are to be stud-

ied and along what physical boundary do these interactions occur?

The scientist must identify how the physical processes simulated by each model

interact with the processes simulated by the other models. The interactions - how

the physical quantities of each process influence each other - can be unidirec-

tional or bidirectional and they can take place continuously or only at discrete

points in time. Often the physical quantities themselves are spatially distributed

(in the physical study site), and influence each other across a common physical

boundary. in this step, this boundary, which we call the coupling surface, is iden-

tified. Figure 8 shows an example of two different coupling surfaces. In the figure,

A, B, and C represent modeled spaces, and 1 and 2 are coupling surfaces be-

tween them. At one extreme the coupling surface is an adjacency, labeled 2 in

1 www.usgs.govlsoftwarel

2 www.epagoviceampubl/



22

the figure; at the other, it is a complete overlap, the entire physical space simu-

lated in both models, labeled 1 in the figure.

Figure 8. Two different coupling surfaces.

For the cases in between, the coupling surface is an overlapping region between

the two modeled physical spaces.

Once the systems' interacting physical quantities and coupling surfaces

have been identified, the next step is to look at the variables in the model codes

that represent these quantities.

Step 3. Which variables in each model represent the physical quantities

involved in the interactions, and what are their syntax and semantics?

The variables that represent physical quantities (called modeled quantities) can

be identified through inspection the model's documentation and/or its source

code. We use the term state variable to refer specifically to a variable that repre-

sents some physical quantity. Model documentation typically includes lists of im-

portant state variables, describing what physical quantity they represent, their

semantics (units and how they are spatially distributed), and their syntax (data

type and shape). Often though, inspection of the source code is necessary to

fully understand the syntax and semantics of a variable since available documen-

tation is sparse.



23

Once the variables of interest are understood, the locations within each

model code where they can be accessed by other models must be identified.

Step 4. At what locations in the model codes should the state variables be

exchanged between models?

Any point in a model code where a state variable is in scope is a point where that

variable could be exchanged with another model. Typically though, the variable

contains meaningful values at only a subset of these points. Choosing these criti-

cal points may be straightforward for the model author, or someone familiar with

the model code, but for those not familiar, this task requires an exhaustive analy-

sis of a model code. Further discussion of locating state variables in a model

code is presented in Chapter 4.

Once the locations for accessing the relevant state variables are chosen,

the next step is to specify precisely how the state variables affect each other.

Step 5. What is the quantitative relationship between the variables of each

model?

The values of state variables may need to be transformed before they can be

used to affect each other. These transformations may be general purpose, or

specific to a particular group of variables. General purpose transformations range

from simple unit conversions to complex spatial regridding, and are often pro-

vided by coupling frameworks. Special purpose transformations are often

domain-specific or are necessary to convert between custom data types, and

must be provided by the scientist, usually in the form of additional source code.

The final step in creating a coupled model is to instrument the model

codes to enable them to communicate.



StiO'	 al	 I Coupling
Interface

nu-- ---

Model Code   

Tr:
Coupling
Interface   

Model Code

24

Step 6. How should the model codes be instrumented to carry out the de-

sired interaction?

Here, the scientist instruments each model code by adding new source code that

allows the models to communicate. This is usually done in conjunction with a

coupling framework. The scientist places calls within each model code to an API

provided by the framework. Each model is then recompiled. Its execution is then

typically handled through the framework and requires that the necessary configu-

ration files for the framework also be prepared.

This section has stepped through the process of creating a coupled model

using the communication approach. As evident from this discussion, existing

coupling frameworks support only steps 5 and 6. The next section describes how

the entire process can be supported through the use of a novel representation for

model interfaces for coupling.

Representing Model Interfaces for Coupling
The motivating hypothesis behind this work is that model codes are a poor

representation of coupling potential and that a better representation would enable

infrastructure that could broaden the use of model coupling throughout the scien-

tific community. We propose an interface-based approach where the scientist

works exclusively in terms of a novel coupling interface to design and execute

coupled models, freeing him/her from working directly with the model codes. This

is illustrated in Figure 9.

Figure 9. The scientist works only with the coupling interfaces.



25

The coupling interface is a high-level metadata description of a model that de-

scribes how a model can be coupled to any other model, that is, it describes a

model's coupling potential and is created only once and then reused thereafter.

We call our coupling interface the Potential Coupling Interface (PCI).

Traditional model documentation does not sufficiently describe the cou-

pling potential of a model. It typically includes descriptions of the model and its

limitations (variable description lists, simple flow graphs, domain diagrams, de-

tails about how space and time are abstracted, narratives, figures, equation de-

scriptions, and references to related work) as well as information on executing

the model (sample input and output, and hardware and software requirements)

(Trescott, Pinder, and Larson 1980; Haggerty and Reeves 2003). Although this

information is necessary, it is not sufficient for coupling. For coupling, the user

must know which state variables can be accessed and where in the model codes

those accesses can occur: Can a specific state variable be modified at any point

in a simulation, or only during an initialization phase? Can a set of data be read

by another model on every iteration of a solution loop, or is it only meaningful af-

ter the solution has converged? If two models use each other's state on each

time step, how are their time steps to be coordinated? The Potential Coupling In-

terface succinctly captures this information and serves four primary roles. The

PCI is:

1. a form of model metadata that conveys a model's coupling potential,

2. a vehicle for visually describing the behavior of coupled models,

3. the basis for automatic generation of model code instrumentation, and

4. a reusable interface allowing coupled models to be quickly prototyped.

Each of these roles facilitates the coupling process just described. The PCI aug-

ments existing model documentation with a complete description of the coupling



26

potential of a model. It can be added to a model's documentation and distributed

with the model.

The PCI can augment emerging model metadata standards as well. In or-

der to realistically share models on a large scale, scientists have begun to define

metadata standards for model descriptions (Hill et al. 2001) allowing models to

be organized, searched, and compared, similar to existing metadata standards

for geographic data (Federal Geographic Data Committee 1998). CAMASE

(Plentinger and Penning de Vries 1996), SOMNET (Smith et al. 1997), and

ECOBAS (Benz, Hoch, and Legovic 2001), for example, provide online meta-

databases with entries that describe a model's general characteristics, its scien-

tific and technical specifications, contact information, and domain-specific infor-

mation. By incorporating the PCI into these metadata standards and the reposito-

ries based on them, models can be organized, searched, and compared in terms

of their coupling potential, simplifying, and possibly automating, the task of find-

ing groups of models to couple (Step 1 of the coupling process).

Since the PCi exposes all the aspects of a model that are relevant to cou-

pling, this representation is a sufficient basis for describing coupled models. This

simplifies Steps 2, 3, and 4 of the coupling process because these steps require

the scientist to expend a great deal of effort working with the model code and re-

viewing various forms of model documentation to locate the necessary coupling-

related information. All of this information though, is clearly and concisely pre-

sented by the PCI. Just as coupling frameworks support the transformation of

data between models (Step 5 of the coupling process), so too could a framework

based on PCIs.

Since models are not written with the ability to communicate with each

other, the model codes must be instrumented with additional source code that

enables them to do so. We do not want the scientist to perform this task due to



27

the difficulty (and likelihood of error) involved in instrumenting model codes di-

rectly. Therefore, the model codes must be instrumented automatically. For this

reason, the PCI is created directly from the model source code so that there is a

direct correspondence between the interface and the underlying model code.

This allows the interface both to generate source code automatically, since it is

aware of the data types and variables of a model, and to instrument the model

codes with the generated source code. Through the use of automatic instrumen-

tation, Step 6 of the coupling process is fully automated.

A key advantage of an interface-based approach is that the interface for a

model need only be created once, and after that, can be used in any coupling of

that model. This process is shown in Figure 10.

Figure 10. A single PCI for each model is created and reused.

Once the PCI has been created, it is published on the Internet along with its as-

sociated instrumented model code, and possibly the coupling-ready model ex-

ecutable (1). When a scientist wishes to use the model in a coupling, s/he re-

trieves the PCI and the coupling-ready executable from the Internet (2). The sci-

entist then describes the coupling in terms of the model PCIs in a custom cou-

pling environment (3) (further described in Chapter 5). Finally, the coupled model

can be executed (4). Through the use of reusable interfaces, the time and effort

required to construct coupled models is dramatically reduced.



28

Summary
This chapter explained the six steps in the process of creating a coupled

model. The concept of using model interfaces for coupling was then presented,

and the four primary roles of our novel coupling interface, called the Potential

Coupling Interface, were introduced. The use of the PCI supports the entire

process of creating a coupled model and does so in a reusable way. So far we've

only said that the PCI describes the coupling potential of a model, but not how.

The next chapter investigates the concept of coupling potential and identifies

specifically what it entails_



CHAPTER IV

DESCRIBING COUPLING POTENTIAL

Introduction
This chapter presents the Potential Coupling interface (PCI). The PCI

must describe the aspects of a model that affect and dictate how it can be cou-

pled to other models. What characteristics of a model must be exposed? How

are those characteristics best described with minimal effort on the scientist's

part? What is the best and most intuitive way to present them so that scientists

can use them? This chapter gives our answers to these questions. The first sec-

tion motivates and describes the design of the PCI and our process for creating

them. The second section reports on the results of a coupled model study that

we conducted in order to better understand coupling potential and how it differs

across typical models in our domain.

What Is Coupling Potential?
We developed the PCI by first investigating a small number of case stud-

ies of existing and hypothetical coupled models. These studies identified the ba-

sic elements of coupling potential and are described in the next section, along

with a software tool that is used to create PCIs.

29



30

The Basic Elements of Coupling Potential

From our initial case studies (Bulatewicz, Cuny, and Warman 2004), the

purpose of model coupling was clear: to allow the state of a model to affect, and

be affected by, the state of another model. The state of a model is the collective

state of all its variables. So, model coupling allows the variables of a model to

affect, and be affected by, the variables of another model. In the case studies

though, only a small number of the variables of each model participated in the

coupling: the ones that had meaning outside the model code itself. They were

usually representative of physical quantities. All the other variables had no mean-

ing outside the model, and were therefore irrelevant with respect to model cou-

pling. Thus the first basic element of the coupling potential of a model is its state

variables. These have to be specified by the PCI designer.

The values of these state variables are continually changing throughout

the execution of a model code and they do not necessarily possess valid values

at all points. For example, state variables typically possess valid values at the

start of each time step, and at the end of each step where they are often saved

as output. Within the time step loop or before the model inputs are read, though,

state variables may possess partial or inconsistent values. Thus, it is not suffi-

cient to simply know what the state variables of a model are: to use them within a

coupling one must also know where they have meaningful values. This is the

second basic element of coupling potential: the locations within a model code

where state variables possess meaningful values. These also have to be

specified by the PCI designer.

Different locations within a model code are reached different numbers of

times throughout the simulation. The number of times that a location is reached

during a simulation dictates how many times the state variables in scope at that

location are accessible to other models for reading or writing. For example, pro-

gram statements located within the initialization phase of a model code are



31

reached only once in each execution of a model, while statements located at the

start of the time step loop are reached once on each iteration of the time step

loop. In this way, control structures such as loops and conditionals dictate the ac-

cessibility of state variables. This is the third basic element of coupling potential:

the control structure surrounding places where state variables possess meaning-

ful values. These surrounding control structures are determined from the model

source code, although the user may further simplify them.

The three basic elements of coupling potential are thus summarized in Ta-

ble 2. Our initial design of the coupling interface describes these basic character-

istics of a model code.

Table 2. The basic elements of coupling potential.

Basic Elements of Coupling Potential

State variables of a model

Locations in a model code where state variables possess meaningful values

The control structure surrounding these locations

Presentation of the Basic Elements
In order for an interface-based approach to model coupling to be practical,

the coupling interlace must intuitively and clearly describe all the elements rele-

vant to coupling to the scientist. These elements are characteristics of a model

code, and thus, the coupling interface must be derived from that source code.

Since the coupling potential describes various aspects of the model code to the

scientist (lists of variables, places where state variables have meaningful values

and the control structure surrounding these places), it is an aid to program com-

prehension. The field of program comprehension seeks to understand how peo-

ple comprehend programs, and how that knowledge can be used to develop

ways to facilitate the process of understanding programs. Therefore, to guide our

design of the presentation of the PCI, we employed research from the field of



32

program comprehension (also called software comprehension or program under-

standing) and present the relevant research throughout this chapter as appropri-

ate. In this section we begin by showing an example of the presentation of the

PCI, and then we discuss the design with respect to the basic elements de-

scribed above and the field of program comprehension.

Our aim is to develop a representation that allows all coupling relevant as-

pects of a model to be readily understood by scientists who are not familiar with

its source code, while at the same time maintaining a correspondence with the

underlying program that is sufficient for automatic instrumentation and source

code generation. In order to encourage the participation of the original program-

mers, we want our representation to be easy to create. To accomplish these

goals, we base our representation on control flow graphs (CFGs) in which blocks

(often called nodes) represent sections of source code and directed edges repre-

sent the flow of control between them. Note that we are using an abstraction of a

CFG: in a standard CFG there is one block for each straight-line section of

source code called a basic block, while in our use of CFGs, each block may rep-

resent many basic blocks.

We chose to use the CFG as the basis of the presentation of the PCI for

several reasons. First, it is similar to the control flow graphs and flow charts that

are commonly used in model documentation, so it is a representation of a model

code that is already familiar to scientists. Second, it is a visual description, which

the program comprehension literature suggests as a mechanism to facilitate

comprehension (Storey et al. 1997). Since the PCI must assist the scientist in

understanding a model code, the use of a visual representation for the PCI is im-

portant.

The complete control flow graph of a model often consists of thousands of

blocks, most of which represent source code that performs very low-level tasks



33

that do not have any domain-level significance and hence are irrelevant to cou-

pling. These low-level tasks include calendar calculations, equation solving, file

input/output, etc. Although it is important for the scientist to know where some of

these tasks are carried out, such as where input parameters are read, it is not

necessary (or helpful) to describe every statement in the PCI. For this reason, we

use a combination of automated and user-assisted mechanisms to reduce the

CFG size (explained further in the next section). With these mechanisms, the

complete graph is reduced to a smaller graph in which the uninteresting parts of

a model code are grouped into blocks, hiding the irrelevant details and highlight-

ing the locations of coupling points. We expect the reduced graphs to generally

be small in size, and in the model codes we considered, the number of blocks

ranged from approximately 10 to 30 (with 10 to 20 coupling points).

The VASE visualization system (Jablonowski et al. 1993) used CFGs in a

similar manner to specify breakpoints for source code visualization. VASE graph

reduction was not automatic but was specified by the user who demarcated

blocks of source code that were to be coalesced; s/he then identified breakpoints

by selecting CFG edges.

As an example, consider the PCI shown in Fi gure 11. It represents Mod-

Flow (McDonald and Harbaugh 1988), a widely used groundwater-flow model

developed by the U.S. Geological Society. ModFlow is written in Fortran and has

approximately 10,000 lines of source code. We step through the process of cre-

ating this PCI in the following section. Appendix A presents additional PCIs for

other hydrological models.

In our PCI, each dark arrow represents a coupling point, that is, a place in

the model code where a set of state variables is accessible (coupling points can

also appear as blocks in the PCI by "expanding" these arrows). Only the state

variables that possess meaningful values at that point in the model code are ac-



34

cessibte at a coupling point. The control structure (e.g. loops) around coupling

points is clearly visible in the graph.

Allem*

Figure 11. A PCI for the model ModFlow.

A key theme in the program comprehension literature is the different kinds

of knowledge that are used and constructed when understanding programs. Of

particular relevance to model interfaces for coupling is the difference between

knowledge about the low-level details of a particular model code, and general

knowledge about the problem domain and the field of modeling and simulation.

Computational models are a unique class of programs because there is a great

deal of information associated with them outside the model code itself, most of it

at the domain-level. A central role of the PCI is to relate the domain-level knowl-



35

edge about a model to the constructs in the model code with which they're re-

lated.

Two common methods of facilitating knowledge acquisition in program

comprehension have direct manifestations in the PCI: beacons and rules of dis-

course (Storey, Fracchia, and Willer 1997). Beacons are cues in a source code

that index directly to knowledge, such as naming a routine sort to indicate its

purpose. Similarly, the block colors and labels/descriptions act as beacons in the

PCI - each block can be colored according to the role that its representative sec-

tion of source code plays in the model, such as initialization, time step loop, or

computation.

Rules of discourse are programming conventions, such as coding stan-

dards or mnemonic naming. With respect to model codes, the overall organiza-

tion of the model code usually adheres to a typical structure depending upon the

kind of model. In continuous simulations, for example, convention suggests that

there is an initial setup and input phase, followed by a loop that solves a set of

equations, and then concludes by outputting the results. A scientist's knowledge

of how different kinds of models are typically structured can be directly and visu-

ally applied to a PCI, making the PCI immediately informative.

Other low-level aspects of a model code have little or no domain-level as-

sociation, such as the functional decomposition of the statements of a model

code. For this reason, the flow graph of the PCI is not structured according to

how the subroutines of a model code are organized, but rather, the PCI presents

a cohesive view of a model code, hiding details of the underlying functional de-

composition. Subroutines that possess coupling points are inserted into the

graph at each place where they are called unless they are recursive (i.e. it calls

itself). If a subroutine is recursive, then it is not inserted at the recursive call

Similarly, if two subroutines are indirectly recursive (i.e. each one calls the other),



A is not
inserted

subroutine B 

a''A3	inserted 

subroutine C	 subroutine A

36

then the subroutines are not inserted at the (indirectly) recursive calls. For exam-

ple, consider two subroutines, A and B, that call each other, and A is called from

subroutine C, as shown in Figure 12 (top).

Figure 12. How recursion is handled in the PC!.

In the PCI, subroutine A is inserted where it is called in subroutine C, and subrou-

tine B is inserted where it is called in subroutine A. But, subroutine A is not again

inserted where it is called in subroutine B, as shown in Figure 12 (bottom).

The PCICreate Software Assistant
To assist the scientist in the creation of PCIs, we have developed an ap-

plication called PCICreate that automatically converts an annotated model code

into a simplified control flow graph and then allows the user to edit the graph and

incorporate important high-level information into it. Model code annotation is ex-

plained in the next section. PCICreate is written in Java, making it usable on dif-

ferent computing platforms, and it uses the open source JGraph component

(Benson 2006) to display the flow graphs. The implementation supports only For-

tran source codes, but can be extended to support any programming language. A

screenshot of the application is shown in Figure 13.



ModF

Clan .

Mod F14;;

I  Read &Prepare
Thr 

-sh*i"tbi?

Bead :4:0044ke

.	 .
Flame P o d Flow

*.ion 96

author UKS

coda :rnodflin*.

date 4/20/05

003atk : :data

command.:: modflow

sooren. :path:: ouple

Allocate
• Model Information

FileiniyenOsuo. s illy

ri

37

Figure 13. Screenshot of the PCICreate application.

The large editor window displays the PC!, and the smaller inspector window

shows different kinds of information about the PCI and its parts. In the figure, the

inspector is showing the model's general information, which has been entered by

the PCI creator. The buttons along the top of the editor window allow the PCI to

be viewed and manipulated in a variety of ways. From left to right, the buttons

are: zoom in, zoom out, show/hide coupling point, group blocks, ungroup blocks,

auto-layout, show/hide inspector window, and collapse blocks. Both group and

collapse reduce the number of blocks in the graph, but the difference between

them is that the collapse operation changes the structure of the PCI by merging



38

the set of blocks into a single block (which cannot be undone), while the group/

upgroup feature affects only the appearance of the PCI, but does not change the

actual structure of the PCI. An example of grouping a set of blocks is shown in

Figure 14.

Figure 14. The solution loop is grouped into a single block labeled "Group"_

The show/hide coupling point button allows the scientist to toggle the appearance

of a coupling point between a dark arrow and a block (it is easier to see the cou-

pling points of interest in a PCI by having them appear as blocks). An example is

shown in Figure 15.

If14-EZig
Etimffs.:

Figure 15. How a coupling point can appear as an edge or a block.

The placement of the blocks can be automatically arranged via the auto-layout

button (the layout of the graph in Figure 13 was automatically performed), and

the placement of individual blocks and edges can be changed by dragging the

blocks. Menu items provide a way to save and load PCIs, generate the instru-

mentation, and save an image of a PCI.



39

Storey et al. have proposed guidelines for the design of program compre-

hension tools (Storey, Fracchia, and Miler. 1997). Those guidelines include:

• Indicate syntactic and semantic relations between software objects; both

low-level source code as well as high-level relationships should be shown

via graphs where nodes represent source code and arcs represent rela-

tions.

• Reduce the effect of delocalized plans (explanations of isolated, partial parts

of a program); this can be avoided by not allowing any representation of the

program to be isolated from other representations.

• Provide abstraction mechanisms; users should be able to create their own

abstractions and label them to reflect their meaning and in many tools sub-

graphs can be collapsed into a single composite node.

The design of PCICreate adheres to each of these recommendations. The syn-

tactic relationship between the blocks is shown in the graph structure, and the

semantic relationship is indicated by the block colors and textual descriptions

viewable in the inspector window. The label of each block quickly conveys the

purpose of the section of model code that it represents. There is a single repre-

sentation of the model code, the flow graph, so delocalized plans are avoided.

Blocks in the graph can be grouped together and later ungrouped, providing a

way for the user to abstract the graph as s/he desires. Information is associated

with blocks and coupling points, and can be viewed via the inspector window. In

Figure 16, the coupling point immediately following the "Time Step Loop" block

has been made visible as a block and selected to show the general information

about it in the inspector.



Couplin•Paint A

Block Information
Start of Time Step Loop
This coupling point marks the start of
the time step loop and is reached once
on each iteration of the loop.

Any updates to variables that need to
I take place before the calculation of the
lime step should be performed here.

Pggre

Mod Flow

Pc201WRO:

1,816■0*

40

Figure 16. Information about blocks can be viewed in the inspector.

Figure 17 shows another screenshot of PCICreate in which the variable list of the

selected coupling point is shown in the inspector window. The scientist can pe-

ruse the list of variables that are accessible at a coupling point, inspecting their

properties and descriptions. This information about the variables was added by

the scientist in the final step of the PCI creation process.



Figure 17. The inspector window shows the accessible variables.

We investigated the use of templates of common model structures as a way of

standardizing the overall shape of the PCI's graph, but found the structure of

simplified flow graphs to vary too much. If all PCIs shared the same overall

shape (or a small set of them), they would be easier to understand and compare

to each other. Further research on this topic could be beneficial.

41

470fAL'-ni,t,

This variable represents the current
:water table head of the aquifer. Each
element represents the water table head
in a different grid cell. The dimensions
of the 2d array are given by NROW and
NCOL, the number of rows and cotumns
respectively.

Read'Atg.

End

filtroPerted successful



Annotate
model code

Convert code into
intermediate form

2	 X(LCED)

3	 NITER,HCIOSE

• NPC0191,48POL

5	 0,0.54,$4,5R

CONVERGENCE
(RI-7E41A

IF(ECNVG.E6.1) GO TO 114
100 COATTREF

KITER-WITER
114 CONTINUE

2	 XCLCCA)
3	 NITEK,HCLOSF

4	 IIKOM),NBAX
5	 4,4,54.SP,5R

(all pci_couple( .ENDS'.

E

(7C2C---IT (oNYEARENIE
CRITERIA

IF(IEN46.E6.1) E6 Ty
CORMAVE
ETTER-RECITER

110 CONTINUE

Simplify control
flow graph

Generate
communication

code

42

How Pas are Created
This section steps through the process of how Pas are created. An over-

view of the process is shown in Figure 18.

Create control
flow graph

-	 •••••••• 	 .	 l.:...p.top.-06._j

Pr1RoTY-5ourEe_file,
source_ftle_0: "Aodfla6.f'

P,114,Y-Scope; Seope_e

MOin_roUtine:

object_89: "WORS/N"

conoiler_version: '2.4.1"

t Ime_of_comptlatton: 'Fri
Nov 19

cose_sensitTu6_1denti450,6:

FALSE
source Language: 51_Fortmln
source_file_e, "modfloe.f.

X(LCCD>

6I7ER,NCLOSE

4	 NRCOND,N8POL

5	 0.4.(4.M,(SR

call saraVarlable
( 'ENDS"

C7C2C---1; CONVERGENCE
CRITERIA

1FCITNYG.Eq.1) an TO 116
104 (0111110JE

114 CONTINUE

Figure 18. The process of creating a PCI.

Each arrow represents a step in the process of creating a PCI. The dark arrows

are steps that are performed by the scientist, and the light arrows are steps per-



43

formed automatically by PCICreate. In Step 1 the scientist annotates the model

code, indicating which state variables should be accessible, and at what points in

the source code. In Step 2, the annotated model code is automatically converted

into an intermediary (analyzable) form, from which a complete control flow graph

is derived (Step 3a) and from which the original model code is instrumented

(Step 3b). In Step 4 the complete graph is reduced around the coupling points.

The scientist then customizes the simplified graph and incorporates any neces-

sary domain-level information in Step 5. PCI creation is explained in the next sec-

tion, and the instrumentation step in the following section.

Creating the PCI
The first step in creating a PCI is to identify the state variables of the

model, and specify where they have meaningful values in the model code. Since

it is not possible to automatically identify the state variables of a model code in

general, the model author or someone familiar with the source code annotates it,

marking potential interaction points and state variables that can be read or modi-

fied at those points. Figure 19 shows an example of an annotation.

annotation 

ENDIF
CLOSE(21)

after program setup, before inverse calcs
call pci_break_osbi( TIME_DELAY,1, TDP,size(TDP), &

TDI,size(TDI), CDI,size(CDI))   

CALL error(xx, Ltime, Lz)
rP = L/alphaL   

accessible variables 

Figure 19. An example of an annotation.

The annotation in the figure indicates that a coupling point should be created at

the specified point in the model code, uniquely identified by the name asbi, and

that the four variables time delay, tdp, tdi, and cdi should be accessible at the



44

coupling point. These variables are said to be local to that coupling point. Each

variable in the annotation is followed by a number that indicates the number of

elements in the variable (for scalars, the number of elements is 1). The difference

between annotations and coupling points is that annotations are program state-

ments added to a model code that indicate that a coupling point should be added

to the model's PCI. Annotations take the form of function calls because functions

are a familiar programming construct to scientists, and they simplify our imple-

mentation. The actual function does not exist at the time of annotation, it serves

only as a placeholder and the function is generated automatically in Step 3b. Al-

ternatively, annotations could have the form of compiler directives as done in

OpenMP (Dagum and Menon 1998).

Coupling points are either breaking or inline. If a coupling point is a break-

ing coupling point (indicated by prefixing the annotation with "pci_break"), then

the coupling point will be preserved in the PCI as a block. If a coupling point is an

inline coupling point (indicated by prefixing the annotation with "pci_inline"), then

the coupling point is not preserved in the PCI and the variables accessible at the

point are associated with the block in the graph that represents the section of

source code in which the annotation lies. Inline coupling points are used in cases

where the accessible locations of several variables are scattered throughout a

section of source code, and creating a separate coupling point block in the graph

for each location would complicate the graph unnecessarily. Guidelines for anno-

tating model codes is given in Appendix B.

After the model code is annotated, it is imported into PCICreate via the

New menu item, and is then translated (Step 2 in Figure 18) from its source lan-

guage into a structured intermediate form (called a program database file) using

the Program Database Toolkit (PDT) (Lindlan et al. 2000). PDT supports C, C++,

and Fortran. The intermediate form is then parsed by PCICreate in Step 3 to

generate a complete control flow graph. With one block in the graph for each



45

statement in the model code, these graphs are generally far too large to be com-

prehensible. To reduce them (Step 4 in Figure 18) we use a modified form of the

graph reductions used in interval analysis (Aho and Ullman 1972). The interval

analysis algorithm reduces a graph by collapsing adjacent blocks. It inspects only

the edges of the blocks and treats all blocks the same. Our algorithm additionally

inspects the type of each block (control statements such as loops, jumps, and

conditionals, and annotation statements), enabling us to preserve annotations

and the control structures surrounding them in the reduced graph.

The interval analysis algorithm partitions a flow graph into disjoint intervals

(subgraphs), Each interval contains at least one node (we use the term node

rather than block throughout the remainder of this section since this is the termi-

nology used by the algorithm authors), known as the header node, from which all

the other nodes in the interval can be reached by following only forward-edges.

The algorithm traverses the flow graph incrementally adding nodes to each inter-

val. When a node is encountered that has an in-edge that originates from a node

that is not already in the interval (and if that node is not a header node), then a

new interval is created for that node (in which it is the header node) and the

process continues. After the intervals have been partitioned, each interval is

added as a node in the derived graph, which is the final reduced graph. An ex-

ample of how interval analysis collapses a subgraph is shown in Figure 20.

Interval 1

Interval 2

Figure 20. How interval analysis collapses a subgraph.



46

The original graph is shown on the left of the figure, and the derived graph on the

right. The first two "Expression" nodes are added to interval 1, but since the "For

Loop" node has an incoming edge that originates from a node outside this inter-

val, it cannot be added to the interval. Rather, a new interval is started, interval 2,

to which the "For Loop" node, and the remaining nodes are added.

The original algorithm was modified for our purposes with two additional

rules. The first rule is that nodes in the graph that correspond to breaking cou-

pling points are not collapsed (note though, that inline coupling points are col-

lapsed, so there may be several inline coupling points within a collapsed node).

The second rule is that control structures, such as loops and conditionals, whose

bodies contain nodes that correspond to breaking coupling points, are not col-

lapsed either. This is because these control structures are closely related to the

coupling point since they dictate when the coupling point is reached during exe-

cution of the model. The algorithm preserves loop constructs such as for, while,

and do loops, and it also preserves goto statements that span coupling points

since they are sometimes used as loops (both forward and backward jumps are

preserved). An example of how our algorithm collapses a subgraph is shown in

Figure 21. Notice how the loop nodes are preserved since there is a coupling

point within the body of the loop.

C. eifpripssitig:       

Figure 21. How our algorithm collapses a subgraph.



47

By changing the placement of the annotations in the model code, a different re-

duced graph will result. Figure 22 shows how the same source code used in Fig-

ure 21 with annotations at different locations will result in a different reduced

graph. In this example, the loop is collapsed because there are no coupling

points within its body.

amssi

FO-50**00:: 

Coupling Point )

PO:(6000. 

( Coupling Point )

ri-Vfos,sf :Ht     ( Coupling Point 

$.150;.$4146     

Figure 22. How a different placement of annotations affects the reduced graph.

This reduction process significantly reduces the number of nodes of a

graph. In the case of the ModFlow model, the complete CFG consisted of 10,158

nodes, while the reduced graph consisted of only 35 nodes. The reduced size is

only 0.50% of the original size. Table 3 shows the reduction ratios for several

models. In the figure, the number of nodes in the reduced CFG is the number of

nodes in the PC I after automatic reduction before any user changes.

Table 3. Reduction ratios for various hydrological models.

Model Number of nodes
in complete CFG

Number of an-
notations

Number of nodes
in reduced CFG

Percent of
original size

ModFlow 10,158 16 35 0.50%

DAFIow 672 10 25 5.21%

STAMMT-L 2,159 9 12 0.97%

TopModel 431 15 35 11.6%

SHAW 5,758 11 57 1.18%



48

The number of annotations placed in a model code will directly affect the number

of nodes in the reduced control flow graph. The fewer the annotations, the

smaller the reduced graph (a model with no annotations would be reduced to a

single node). A precise relationship between the number of annotations and the

size of the reduced graph is not possible since annotations located within nested

control structures will result in a larger reduced graph (due to the preservation of

the control structures) than annotations located outside any control structure.

After the reduced graph has been created, the PCI creator must edit it to

enhance readability and to integrate domain-level information (Step 5). Some of

the editing features include collapsing, labeling, and coloring blocks, grouping

blocks, viewing the underlying source code associated with a block, adding de-

scriptions to blocks and variables, and arranging the visual placement of the

blocks. The final PCI is then stored and reused thereafter. An explanation of how

the model code is automatically instrumented by PCICreate (Step 3b) is pre-

sented next.

instrumenting the Model Codes

The annotations indicate that variables are accessible at various points

throughout a model code, but they do not enable the model to actually send and

receive the values of these variables. The function that is called by each annota-

tion must be defined, which requires additional source code to be generated and

added to the model codes. Our original design called for late instrumentation in

which the model codes are instrumented after the coupling description is

specified, and the instrumentation is coupling-specific (the models could only

communicate with each other, as specified in a particular coupling description).

Our final design though, uses early instrumentation in which a model code is in-

strumented immediately after its PCI has been created (Step 3b in Figure 18).

The instrumentation is coupling-independent allowing the model to communicate

with any other model. These approaches are compared in Figure 23.



Late: performed once
II

performed once for each coupling   

	 	 I	

performed once for each couplingEarly: performed once

Create.	 Instrument	 Compile.	 Describe
PCI	 Codes	 L/ Codes	 Coupling

49

Figure 23. Early vs. late instrumentation of model codes.

As shown in the figure, in the late-instrumentation approach the PCI creation is

the only step that is performed once, and the rest of the steps are performed

once for each coupling, and the instrumentation is coupling-specific. In the early-

instrumentation approach, the PCI creation, along with the model code instru-

mentation and compilation, are all performed only once. The advantage of the

late approach is that the instrumentation itself is simpler since it must only be in-

strumented to carry out a specific interaction with a specific set of models, rather

than the more complex instrumentation that is capable of sending and receiving

any variable at any coupling point as in the early approach. Furthermore,

coupling-independent instrumentation also requires that each model be told dy-

namically what to do at each coupling point at runtime, again, complicating the

instrumentation. The advantage of the early approach is that it requires less effort

on the part of the scientist who is coupling the models. It removes the burden of

compiling the model codes after every change to the coupling description. Com-

pilation of model codes can be difficult due to differences in computing platforms

and compilers, so avoiding this step allows the scientist to more rapidly execute

the coupled model. Since the scientist will likely develop the coupling iteratively,

incrementally making it more complex and testing it, a significant amount of time

can be saved. This iterative development process is particularly important in im-

plementing distributed systems (such as coupled models), due to the difficulty

and complexity inherent in their design and use. Early instrumentation also has

the advantage that closed source model codes can still be used in couplings



Ill
CW10.09-:. Coupling- Unique Model

Independent
Rstrurneotation

Specific
Instructions

=MI
MOM Behavior for Each

Coupling
(fir

Model Code
	

Script

50

since the scientist does not need to compile the model codes him/herself. The

model author can create the PCI and coupling-ready executable for their closed

source model, and release them to the public without the source code. Although

the early-instrumentation approach requires more complex instrumentation, it

does not limit the utility of our approach to model coupling, and facilitates the sci-

entist's task of quickly prototyping coupled models.

In Step 3b of the PCI creation process shown in Figure 18, coupling-

independent communication source code is added to the model source code,

enabling the model to send and receive the value of any variable at any coupling

point. Which variables are sent and received in a particular coupling is described

by a script, a list of put and get events. The combination of coupling-independent

instrumentation and coupling-specific scripts, as illustrated in Figure 24, allows

instrumented model codes to be reused, while at the same time allowing the be-

havior of the model to differ in different couplings.

Figure 24. Scripts describe coupling-specific behavior.

Scripts are created automatically by PCICreate and are used behind-the-scenes

in the execution of coupled models. They are described in detail in Chapter 6.

The model code instrumentation, generated by PCICreate, enables a model code

to receive a script and carry out the events described by it. This instrumentation

process is explained next.

To instrument a model code, PCICreate begins by adding a small amount

of communication source code at the very start of the annotated model code that



51

enables the model to receive a script. It then automatically generates a custom

accessor subroutine for each annotation. These accessor subroutines are capa-

ble of sending and receiving any variable at a given coupling point, as directed by

a script. Since different variables may be accessible at different coupling points,

each accessor subroutine is different, and specific to the variables available at a

particular coupling point. An example is shown in Figure 25.

one subroutine for each coupling point

the script is stared in a global
parameter block

variables are passed into the function

each event in the script is iterated
through in a loop

each event is checked to see if it
occurs at this coupling point

event type (send or receive) is checked

a large case statement identifies the
variable to send or receive

the activation frequency is used to
determine activation

a communication function is called to
send or receive the variable

	 subroutine pci_break_ASBI(
1 TIME_DELAY,TIME_DELAY_len,
2 TOP,TDP_Ien,
3 TDI,TDI_len,
4 CDI,CDI_len)
	  include "couple.cmn"

integer TIME_DELAY_len
double precision TIME_DELAY(TIME_DELAY_len)
integer TDP_Ien
	  double precision TDP(TDP_Ien)

integer TDI_len
double precision TDI(TDI_len)
integer CDI_len
double precision CDI(CDI_len)

integer
= ASBIi

entryNum+ 1,i,active
ASBIi 
entryNum = 1
	  do while( entryNum.le.script(2))

i = ((entryNum-1)*9)+3
	  if( script(i).eq.1095975497 ) then

select case( script(i+3))
case(1)
select case( script(i+4))

case(18)
if( script(i+2).eq.1) then
active = 0

else
if( script(i+2).1t.0 ) then
active – remain(ASBIi, script(i+2)*(-1) )

else
active - remain(ASBIi-1, script(i+2) )
end if
end if

if( active.eq.0 ) then
	  call sDbl(script(1),script(i+0),
1 script(i+1),script(i+2),
2 TIME_VELAYMME_DELAY_len,script(i45),script(i+6),
3 script(i+7),script(i+8))

end if

case(19)

Figure 25. Source code of the generated accessor subroutine for the annotation shown
in Figure 19.



52

The accessible variables are passed into the function (see the annotation exam-

ple in Figure 19), the script itself is stored in a common block (couple.cmn). The

function consists of a large do loop that iterates through each event in the script.

The condition in the loop checks to see if the event is for this coupling point, and

if so, switches the appropriate event execution.

The overhead of the generated subroutines, in terms of lines of source

code, grows linearly with the number of variables at a coupling point. The number

of lines of source code for a generated function is 10 lines, plus 25 lines per vari-

able. In the complete function shown in the figure, which has 4 variables, there

are 110 lines of source code. The overhead of the generated subroutines, in

terms of execution speed, is minimal compared to the overhead involved in send-

ing and receiving data between instances. Each iteration of the script event loop

performs a single switch statement, and the number of events in a script will

generally be small (under 50). After the model code has been instrumented, it is

compiled by the scientist to create a coupling-ready executable. The PCI and ex-

ecutable can then be distributed and reused by scientists wishing to use the

model in a coupling.

The communication subroutine call shown in the figure, sDbl, can send

any double precision variable. There are analogous functions for sending and re-

ceiving real, integer, logical, and character types as well. Differences in the num-

ber of bytes used to store variables (long integer vs. integer, and double preci-

sion vs. real) are kept track of in the script and that information is used by the

communication subroutines. The communication subroutines that are called from

the generated coupling point functions are part of a custom communication li-

brary that we developed. The library is written in C and provides access to stan-

dard TCP sockets. The functions are essentially wrappers around TCP's send

and rent-functions, that add additional resiliency and error handling specific to

our runtime environment. The library functions do not interpret the values that are



53

sent and received: all parameters to the functions are unsigned byte arrays, al-

lowing for any data type of any size and shape to be used.

The library is written in C, so C-Fortran interoperability techniques are

necessary to allow Fortran programs to use it. If the object file format used by

both the C and Fortran compilers is the same (taking care that the name man-

gling is compatible), then the library and the model code object files can simply

be linked together to create the final executable. Some compilers support C-

Fortran interoperability through use of proprietary compiler directives. An addi-

tional issue regarding the exchange of data between Fortran and C is that multi-

dimensional arrays are internally stored in C/C++ in row major order, while For-

tran stores them in column major order. if arrays are communicated between

models written in different languages, then the arrays must be translated during

communication, which can either be performed at the application level (via trans-

formations within the coupling framework), or at the instrumentation level. Such

transformations can be supported by incorporating existing work in this area

(Rasmussen et al. 2001).

It would be possible to substitute any communication library in place of our

custom library that provides the same point-to-point style communication. Since

the communication library is based on TCP sockets, coupled models can be exe-

cuted in a distributed fashion where each model is executed on a machine at a

different geographic location. This is consistent with the emerging Grid research,

in which management of massively distributed computational resources are or-

ganized and coordinated to support distributed simulation (Armstrong et al.

2005). Exchanging data across different computing platforms introduces an addi-

tional issue that must be handled, byte-ordering. For example, Motorola proces-

sors use big endian byte ordering, while Intel processors typically use little en-

dian byte ordering. Any data exchanged between models running on platforms



54

based on these different processors must be reordered at the byte level accord-

ingly.

Is There More To Coupling Potential?
The basic elements of coupling potential presented in this section are

clearly necessary for creating coupled models, but are they sufficient? Are there

additional elements related to the model, its structure, or its variables that are

also necessary? To investigate this question we conducted a study of coupled

models in which we stepped through the process of designing a series of cou-

plings based on PCIs (Bulatewicz and Cuny 2005). This empirical approach

showed us what worked well in our initial PCI design, and more importantly,

showed us what additional model characteristics must be described in the PCI.

The Coupled Model Study
The purpose of this investigation was to identify the common characteris-

tics of models that affect coupling compatibility and to assess the degree of com-

patibility of model pairs based on those characteristics.

Methodology
We studied a set of 14 hydrological models and the design of the 91 pair-

wise couplings between them. The models, which varied in complexity, are serial

programs written in Fortran and are representative of the different kinds of sys-

tems commonly modeled in hydrology: groundwater (G), surfacewater (S),

rainfall-runoff (R), receiving water (W), and field (F) systems, and are listed in Ta-

ble 4. For each pairing of these models, we created the appropriate PCIs (using

an initial design that described the basic elements presented above) and used

them to design a coupling between the models (a PCI for each is given in Ap-

pendix A). The design of each coupled model followed steps 2-5 of the model

coupling process described in Chapter 3. Step 1, choosing the models, was not



55

applicable because the models of interest were already collected; Step 6, instru-

menting the model codes, was not applicable because we were interested only in

the design of the couplings, not executing them. What we learned in our study

from the remaining four steps is described in the next section.

Table 4. Models used in the coupling study.

Model Description Kind Reference

BioMOC Groundwater-flow and transport G Essaid and Bekins 1997

Branch Surfacewater-flow S Schaffranek, Baltzer, and Goldberg
1981

DAFlow Surfacewater-flow S Jobson 1989

FourPt Surfacewater-flow S DeLong, Thompson, and Lee 1997

GLEAMS Soil chemistry and runoff F Leonard, Knisel, and Still 1987

ModFlow Groundwater-flow G McDonald and Harbaugh 1988 '

OTIS Surfacewater transport S Runkel 1998

SHAW Soil chemistry and runoff F Flerchinger 2000

STAMMT-L Surfacewater transport S Haggerty and Reeves 2003

SWAT Rainfall-runoff and transport R Neitsch et al. 2001

SW■vIrvl Rainfall-runoff R Huber and D ickinson 1922

TopModel Rainfall-runoff R Beven 1997

UEB Snow-melt R Tarboton and Luce 1996

WASP Receiving water W Ambrose, Wool, and Martin 1993

The physical systems simulated by the models in our set influence each

other in many ways, but since water (represented as a height, flow rate, volume,

etc.) is the physical quantity common to all the systems, we focused on the water

flux interaction between the systems. Most water flux interactions can be classi-

fied into the nine kinds illustrated in Figure 26, many of which have been studied

previously with coupled models (Johnston et al. 2003; Jobson and Harbaugh

1999; Ross et al. 2004; etc.). As indicated by the arrow directions in the figure,

these interactions can be unidirectional or bidirectional. All of them are continu-

ous over time.



56

A Groundwater - Groundwater
B Surfacewater - Groundwater
C Runoff - Groundwater
D Groundwater - Receiving Water
E Surfacewater - Surfacewater
F Runoff - Surfacewater
G Runoff - Receiving Water
H Field - Surfacewater
I Field - Groundwater

Figure 26. Interactions between hydrological systems.

Results
Since our intent was to study the water flux between these physical sys-

tems, we first identified the coupling surface (Step 2), at the domain-level, across

which the models would exchange water. Each arrow in Figure 26 crosses a

coupling surface, and the one used in a particular coupling was dependent upon

the physical processes simulated by the two models.

The next step was to identify the state variables in each model that repre-

sent the physical quantity of water (Step 3 in the coupling process). This was triv-

ial because the PCI provides a description of each variable, making it easy to

identify the variables associated with a particular physical quantity.

ing the relevant state variables of each model, it was necessary to develop a

clear understanding of their syntax and semantics, which varied considerably

across our set of models (Step 3). The PCIs included syntactic information about

the variables, such as data type and shape, but they did not (yet) describe the

semantics. Key to the semantics of this data is its spatial distribution: modeled

quantities were distributed as a set of Od points, vertically along a 1 d profile, hori-

zontally along a id line, as a set of 2d points arranged on a surface, as a 2d

regular or irregular grid, a 2d regular grid cross section, or a 3d regular grid vol-

ume. Within a single model, different variables were often distributed in different

ways. In addition to the distribution, the spatial scale (field, catchment, basin,

After identify-.



57

etc.) at which the variables were distributed varied significantly. This flexibility in

spatial distribution and scale allows the models to be used at a variety of sites

(where the particular spatial configuration used in a model run is dependent upon

the study site) but it can complicate the design of the coupling as discussed in

Chapter 5. Step 3 showed the importance of the spatial distribution and scale of

state variables when relating variables between models. This step was per-

formed once for each model.

After the variables were identified and understood, the locations within the

model code where they should be exchanged was determined (Step 4). The

PC's of each model limit access to state variables to locations where those vari-

ables are meaningful, thus, it was necessary only to insure that the data ex-

changes happened at consistent locations, that is, locations in the model codes

that represent the same point in simulation time. This was determined by consid-

ering both the surrounding control structure (loops, conditionals, etc.) and the

time step length (and whether it varies or not), which collectively dictate the set of

(simulation) times at which a variable is accessible; this is further discussed in

Chapter 5. The length of time steps supported by our models varied considerably

and were often restricted to a particular range for convergence, accuracy, or effi-

ciency reasons. The duration of a simulation is important because it dictates the

span of (simulation) time during which the state of a physical quantity is accessi-

ble, although most models did not limit the duration of a simulation and were ca-

pable of simulating very long periods of time (several years). Step 4 showed the

importance of the temporal characteristics of models, particularly the length of

the time step, and its relationship to the control structure.

After identifying the coupling points at which variables should be ex-

changed, the qualitative relationship between the variables of each model was

determined (Step 5). In this step, we specified the functional relationship between

the state variables of each coupling. These functions varied in their complexity



58

and were customized for each coupling. In some cases, the value of a state vari-

able simply overwrote the value of another, but in most cases, non-trivial calcula-

tions were necessary. This step was performed once for each model pair.

Our purpose for conducting this study was to identify the additional ele-

ments of coupling potential beyond the basic elements identified in the previous

section. We found that the original design of the PCI sufficiently allowed for easy

identification of coupling points, state variables, and the control structure around

them, but that more information about the meaning of the state variables was

necessary in order to correctly relate variables between models. Table 5 summa-

rizes the additional characteristics of state variables that must be described in the

PCI.

Table 5. Coupling-relevant variable characteristics identified in the study.

Variable Characteristic Variation Found -in,Study
Spatial Distribution Od, id profile, id channel, 2d points on a surface, 2d regular grid

surface, 2d irregular grid surface, 2d regular grid cross section, 3d
regular grid volume

Spatial Scale field, catchment, basin, etc.

Time Step Properties length: short, hourly, daily, weekly, monthly; variable or constant

In order to better understand the extent to which differences between models in-

fluence how they can be coupled, we compared each pair of models in terms of

their coupling potential.

Model Compatibility
We rated the similarity of each pair of models with respect to the elements

of coupling potential identified in this chapter. We classified the elements identi-

fied above into four dimensions of similarity: space (distribution and scale), time

(time step properties), structure (control structure of the model code), and data

(physical quantities). Then, for each model pair, we compared the models with



7,	 --e1--.	
`R 2	 = 0

2 2 1.--	 < 2 cn € rf vc 61:

	

co 0. 2 < < `-J 	 17,, = < L 0w	 o	 = --I	 O ■ . 2 a : 1 toI—	 til en in U11911MNIMMIIIMIIIIENNENE INNM= 	
U

BIoMOC [c]
Mod Flow [G]

Branch [5]

DAFIow [S]

FourPt [S-.1

OTIS [S]

STAMMT-L

GLEAMS [F]

SHAW [F]

SWAT [R]

SWMM [R]

O
0

Similar
II Different

Not considered

59

respect to their similarity in each of these four dimensions. Along each dimen-

sion, a model pair was rated as either similar or different. With respect to the spa-

tial dimension, two models are considered similar if they both support at least

one common spatial distribution and scale, and different otherwise. In the tempo-

ral dimension, a model pair is similar if both models support at least one common

constant time step length, and different otherwise. A model pair is similar along

the structural dimension if the models possess the same nesting of loop kinds

(time step loop, spatial loop, solution loop, etc.), and different otherwise. With re-

spect to data, two models are different if one simulates only water at the surface,

and the other only water below the surface, and similar otherwise. A summary of
the model similarity for all of the pairings is shown in Figure 27.

Figure 27. Summary of similarities and differences between the models.



60

In general, the more similar the models, the easier it will be to couple them. The

models in the figure are grouped according to their simulated processes (e.g.

ModFlow and BioMOC are both groundwater models, so they're listed together).

This ordering reveals that models of the same phenomena are often similar with

respect to their coupling potential. This suggests that once one of them has been

used in a coupling, swapping it for another (that may be more appropriate for a

particular site, for example) will generally be straightforward. Couplings that

lacked a sensible interaction between the modeled systems were not evaluated

and are indicated in the diagram by white squares. These were mostly couplings

between runoff models, which at large catchment scales do not interact with

other catchments.

This is a comparison of the models' base compatibility. As an example,

consider the compatibility of ModFlow and TopModel (discussed in Chapter 7).

Although the figure indicates that the models differ only along the structural di-

mension, this is not the only incompatibility. While some modeled quantities are

spatially distributed in the same way in both models (hence, rated as similar in

the figure), some quantities, such as ModFlow's groundwater height and Top-

Model's groundwater height, are not spatially distributed in the same way and

present an additional incompatibility between these models. Similarly, the appli-

cation of a model to a specific site may introduce other incompatibilities, as an

example, inputs for both models may not be available for the same period of

time, such as long term precipitation records vs. short term stream-flow records.

The figure indicates wide dissimilarity along the structural dimension, with

only 30% of the model pairs marked as similar. Although nearly all the models

possessed a time-stepped loop, only half possessed a central solution loop, re-

sulting in the low similarity. Furthermore, DAFlow and TopModel were unique in

their inclusion of spatial loops, and STAMMT-L was unique because it possessed

no time-stepped loop, both of which further reduced the overall structural similar-



61

ity of the models in the set. With respect to time, 60% of the pairs were found to

be similar, which is expected due to the flexibility in the time step lengths sup-

ported by the models. With respect to the similarity of the water quantities mod-

eled, 70% of the pairs were found to be similar. The high similarity is due to the

variety of water quantities included in each model. Of the four dimensions, the

spatial similarity was the lowest, with only 20% of the models marked as similar.

This can be explained by the high variability in the spatial characteristics of the

models. Over the four dimensions of characteristics, though, the models were

more similar than dissimilar, suggesting that there are many opportunities for

coupling models within the domain of hydrology. The dissimilarities though, indi-

cate that incompatibilities between models are common, and that techniques are

needed to resolve these differences. This is discussed in the next chapter.

Summary

Through our work in early case studies we were able to identify the basic

elements of coupling potential and then design a representation, the PCI, that

succinctly describes it. Our coupled model study revealed what was lacking in

the original design: detailed information about the meaning of the state variables.

Our look at model compatibility showed us that differences between models are

common (in our set of models), and must therefore be resolved when designing a

coupling. The next chapter presents a language for describing coupled models in

terms of their PCIs and explains how the language supports resolving incompati-

bilities between models.



CHAPTER V

DESCRIBING COUPLED MODELS

Introduction
This chapter shows how the behavior of a coupled model can be de-

scribed in terms of the models' Potential Coupling Interfaces (PCI). We first pre-

sent an overview of the coupling language and the environment in which it is

used. We then discuss how incompatibilities can be resolved and present a pair

of examples that demonstrate the process of creating a coupled model.

Overview
Scientists describe the interactions between models in the coupling envi-

ronment (CE), provided by our PCICouple application. In this way, PCICreate is

used in the creation of PCIs, and PCICouple is used to describe and execute

couplings. The inspector window is used to inspect different aspects of a PCI,

just as in PCICreate, but in PCICouple it is also includes information about cou-

plings as well. A coupling specification begins with the PCIs for one or more

models that are to be coupled. Figure 28 shows an example of a coupling de-

scription within PCICouple, with two PC Is, each for a different model. The envi-

ronment incorporates the Coupling Description Language (CDL) which consists

of a set of actions that operate on the accessible variables at coupling points. To

describe a coupled model is to specify a set of actions, called an action list, for

62



iLouplIng Point A
Store veLocity

1.21 Update: rintke,3101

DAFlawdF I ow
---"

Al c cate •

434';'	 Etad Pregar, I

0 Store Veiget:ty
4 4 Update Priatittal( value)

*	 	
CI

PCI added gueee,stASIV:

63

each of the relevant coupling points. On the left of the figure, the action list is dis-

played for Coupling Point A which has been expanded by the user. During execu-

tion of the coupled model, when a model reaches a coupling point, the actions in

its action list are carried out. There are three kinds of actions: Send, Update, and

Store. Collectively, they allow the values of a model's variables to be changed

based on the values of other variables from that model, or from other, coupled

models. Blocks for which an action list has not been specified appear with

rounded corners, and those with action lists appear with sharp corners with the

actions listed in the block.

Figure 28. The coupling environment of PClCouple.

Most of the buttons along the top of the window are identical to those in

PCICreate, but the collapse button is replaced by three action buttons (left to



64

right): send, update, and store, and the execute button. Actions are added to the

action list of a coupling point by clicking the block to select it, and then clicking

the appropriate action button. The menu provides options to save and load a

coupling description, add PCIs to a coupling description, save a description of the

coupling in HTML, save an image of the coupling description, and execute the

coupled model.

The Actions
In a coupled model, the values of variables within one model change

based on the values of variables within other models. The actions of the CDL

provide a means to accomplishing this. We explain each of the three actions

next.

The Send Action
The Send Action allows the value of a variable at one coupling point to be

used at another coupling point. Send Actions are explicitly depicted in the cou-

pling environment by a labeled, dashed line between the source and destination

coupling points in the PCIs, as shown in Figure 29. Solid lines indicate the flow of

control, and dashed lines indicate the flow of data. In the figure, the value of vari-

able hnew is sent from Coupling Point A in the model on the left, to Coupling

Point B in the model on the right. The explicit depiction of Send Actions in the en-

vironment makes the communication between the models clear. This is analo-

gous to parallel programming languages such as ZPL (Chamberlain et al. 2000)

which make communication explicit in the source code, in contrast to other ap-

proaches such as OpenMP where communication is implicitly specified in the

source code.



.:_ DAFiow _,_',	 .___ ModFlow

- t 

*	
- --kl, , *ow *: 	 j

i 
=Read &Prepa!o 1

—0CFStOO).0op . )	 1 ROC a:Prepar

tOW-0.--t10. i	 l'd',,,ti

Big=j4 44: .]	 t  le..14444.47C

Pf=f.!.3-.17,7=7.-

EML1214

nd ikcoon

T
Corrpling Point Ai
.* Send X

''—GOCNit**10

C aeaO Do 14

Fed-

PC1t,dded successfuN

Coupling feint 13

Send OW

65

Figure 29. The explicit depiction of Send Actions.

Variable values can be sent from one instance of a model to an instance

of different model, or to a different instance of the same model. in the latter case,

the depiction within the coupling environment is a dashed line between coupling

points of the same PCI, as shown in Figure 30.

Figure 30. An infra-model Send Action.



66

When a scientist adds a Send Action to a coupling specification, the sent variable

appears in the list of accessible variables at the destination coupling point, mak-

ing it usable by the actions at that point. The variable name is prefixed with the

name of the sending model to avoid name conflicts as shown in Figure 31, where

the model name "daflow" is prepended to the variable name X.

V MEW
HOLDlea KOER
KSTP
NCOL

This variah	 NNELARY)current
water tab.	. Each
element represents the water tape head
in a different grid cell. The dimensions

, oF the 2d array are NROW and NCOL,the
number of rows and columns in the grid.
;respectively.

Figure 31. 31, The sent variable X is now accessible at Coupling Point B.

Sent variables cannot be changed or sent again from the destination coupling

point, so the value is only usable by Store Actions and as a read-only variable in

Update Actions (the ability to re-send variable values could be implemented, but

this was not necessary for our case studies). Each kind °faction has aa eat ofset 1..I3

properties that are set by the scientist when an action is added to the action list

of a coupling point. The properties of the Send Action are variable, frequency,

and mapping, as shown in Figure 32. The variable property is the name of the

variable to send, which is selected from the list of accessible variables at the

coupling point. The frequency property indicates the activation frequency of the

action, which is how often the action is performed. Normally, the actions in a cou-

pling point's action list are carried out each time execution reaches that point. In

some cases though, in order to match the execution rates of different models, the

interaction needs to occur at a lesser frequency. This is the purpose of the activa-

tion frequency property. It describes how often the action should be performed.



67

Figure 32. The properties of the Send Action as they appear in the inspector.

For example, an activation frequency of 1 indicates that the action should take

place every time the coupling point is reached, while a frequency of 4 indicates

that the action should take place every 4 th time the coupling point is reached.

More general activation mechanisms are possible, but this simple use of fre-

quency has been sufficient for our case studies. The mapping property is the

name of the data mapping that should be used for this action. It describes which

individual instances should send the variable, and which should receive it. Data

mappings are discussed in detail following the presentation of the actions.

The Update Action
The Update Action is used to change the values of variables according to

an update function, that is, a self-contained (stateless) subroutine that uses vari-

ables as arguments. When executed, the update function updates the value of

one or more of its arguments. The coupling environment provides a collection of

common functions (assign, sum, average, etc.) and the scientist can add their

own, as explained in Appendix D. A function is usually written in the same pro-

gramming language as the model within which it is used. The source code for the

built-in assignReal function is shown in Figure 33.



68

subroutine assignReal(instanceID,dest,source)
integer instanceID
real	 dest,source

dest = source
end

Figure 33. Source code for the built-in assignReal function.

Although the function in the figure is very simple, arbitrarily complex computa-

tions can also be implemented as needed. The scientist can specify how a set of

variables are transformed based on the values of other variables.

A custom language for specifying update functions was not considered

because the results of the coupled model study showed that data must typically

be transformed in non-trivial ways, requiring the full expressive power of a gen-

eral purpose programming language. A single, common programming language

is not used for update functions because our experience working with scientists

showed us that it would be impractical to ask the scientist to learn a new pro-

gramming language. The properties of the Update Action are function, frequency,

and the argument assignments, as shown in Figure 34. The scientist chooses the

update function from the list of available functions, and assigns a variable to each

of its arguments, chosen from a list of accessible variables.

Figure 34. The properties of the Update Action in PCICouple.



69

If any of the variables used as an argument are sent from another instance, then

the Update Action will block until all the parameter values have been received.

The Store Action
Store Actions provide a way to create stored variables, which are new, in-

dependent, mutable variables that do not exist in any of the model codes. They

are accessible at all the coupling points in a PCi and are usable in Send and Up-

date Actions. Each time a Store Action is activated, the stored variable associ-

ated with the action is set to either a (constant) value specified by the scientist, or

to the value of a model variable, overwriting the previously stored value (if any).

The latter case allows for the value of a variable at one coupling point to be ac-

cessed later, at a different coupling point. Stored variables can be used as argu-

ments and updated in multiple Update Actions, providing a way for the result of

one Update Action to be used in another Update Action, or in a subsequent acti-

vation of the same action. Each instance of each model has its own private data

memory in which these variables are stored. The properties of the Store Action

are name, set from, and frequency (as well as variable, if "Existing" is chosen

from the set from menu, and the properties data type, length, element size, and

value if "Constant" is chosen from the set from menu), as shown in Figure 35.

Figure 35. The properties of the Store Action in PCICouple.



70

The name property is the name of the new stored variable. If its value is to be set

to a model variable, then "Existing" is chosen from the set from menu and a vari-

able is selected from a list of model variables and assigned to the variable prop-

erty. If its value is to be specified by the scientist, then the set from menu is set to

"Constant" and the scientist specifies the data type and shape, and the value of

the new stored variable.

The actions added to a breaking coupling point are performed in the order

specified by the scientist. This allows the actions in an action list to affect subse-

quent actions in the same list. For example, if an action list consists of two Up-

date Actions that both operate on the same stored variable, then any changes

made to the stored variable by the first Update Action would be seen in the sec-

ond Update Action. However, actions are not ordered if they are added to a block

with which two or more inline coupling points are associated. This is because the

actions may operate on variables at different inline coupling points, and each in-

line coupling point may be located at a different place in the control structure of

the source code associated with the block.

These actions provide the building blocks for describing coupled models.

We may want to couple different models together, or the same model to itself. In

the latter case, many instances of the same model code are coupled, where an

instance is an executing model process. In cases with multiple instances, show-

ing a PC1 for each instance in the CE would make the description cumbersome to

create and difficult to understand. For this reason, we separate the description of

a coupling into two parts. The interaction between the models is described visu-

ally in the CE in terms of the models' PCIs, and the communication between the

instances of those models is described textually in data mappings. In this way,

only a single PCI is displayed in the CE for each model in a coupling, and it

serves as a template that represents the behavior of possibly many instances of

that model.



Lake.y = 0.75 * Stream.y

sender	 receiver weight

Stream-y Lake.y	 0.75

71

The data mappings are used to describe the communication between

model instances. The CE describes the action lists that are to be performed at

each coupling point, but which instances communicate with which? Which ones

perform which actions? This is described by data mappings, which we explain

next.

Sending Data Between Models
Each Send Action requires an associated data mapping that indicates how

the value of a variable sent from one model is communicated and transformed

before it is received by another model. A simple data mapping is shown in Figure

36 (right), with a partial coupling description (left).

Figure 36. A simple data mapping between two models.

In the figure, the data mapping indicates that the value of the y variable sent from

the Stream model, should be scaled to 75% before being received by the Lake

model. The resulting value of the yvariable is then available for use in Update

and Store Actions at the destination coupling point in the Lake model, and the

variable appears in the list of accessible variables at that point. Data mappings

describe how one variable is transformed as it is communicated from one model

to another by a Send Action. At most one variable can be sent in any single Send

Action, and if two variables need to be transformed in the same way, then the

specification of the data mapping can be reused. Figure 37 shows two Send Ac-

tions, each with its own data mapping, sending the same variable to two different

models.



Lake.y = 0.25 Stream.y

sender	 receiver weight

Stream.y Lake.y 0.25

Field.y = 0.75 * Stream.y

sender receiver weight

Stream.y Field.y 0,75
y

Stream Model

Lake.y= tO `Stream.y

sender receiver	 weight 1	 I
Stream.y Lake.y	 1.0

72

Figure 37. Sending a variable to two different models.

hi the figure, the Lake model receives 25 4)/0 of the value of y and the Field model

receives 75% of the value of y. In the case where two models each send a vari-

able to another model, two data mappings must again be used, as shown in Fig-

ure 38. Both the Stream and River models have a Send Action at their coupling

point in the coupling description, each with its own data mapping.

Figure 38. Sending data from two different models.

The data mappings used in the figure indicate that 100% of both the x and y vari-

ables should be sent to the Lake model.



Lake Model

seuit_

=A, 

I Coupling Paint
%

N.
y

rI.	 ...cwt.,

4'1 Co ling Pointf	 Coupling

Stream Model

River Model
x;

P 	1
ir

1 Coispiing Point 

Lake.y = (1.0 * Stream., .y)

(1.0 * Stream2.y)

(1.0 * Stream3.y)

sender	 receiver	 weight

Stream' .y Lake.y 1.0

Stream2.y Lake.y 1.0

Stream3.y Lake.), 1.0 LaKe.

Lake.x=1.0*RiVerx

sender receiver weight

River.x Lake.x	 1.0
River

73

The data mappings in the figure could represent a study site in which a

stream and a river both lead into a lake. It is likely though, that there are several

streams that lead into the lake. Each of these streams can be simulated by a dif-

ferent instance of the Stream model. This capability of coupling any number of

instances of the same model to another model is an important feature of the

Coupling Description Language. The PCI serves as the template that describes

the behavior of all the instances of a model. The PCI describes how models send

to models, while the data mapping describes how instances send to instances. In

Figure 39, the coupling description is identical to that of Figure 38, but a different

data mapping is used. The upper data mapping in Figure 39 indicates that there

are three instances of the Stream model, rather than a single instance as in the

upper data mapping of Figure 38.

Figure 39. The data mapping indicates there are three instances of the Stream model.

Since the data mapping indicates that there are three instances of the Stream

model, then at least three instances of the model will be started when the cou-

pling is executed. In this way, each data mapping is only a partial description of

the overall behavior of a coupled model. The global behavior of a coupling is de-

termined collectively by all the data mappings used in a coupling description. The



Stream Model
r_

LCoupling Point

Lake Model

Coupling Point

Laker .y = 0.35 * Stream.y

eender	 receiver weight14

	  Stream.y Lakei .y 0.35

Stream.y Lake2.y 0.65

Lake2

74

scientist does not need to explicitly list how many instances there are in a cou-

pling, the total number can be determined from the collection of data mappings.

Since all three instances of the Stream model are sending their value of

the same y variable, those values must be combined in some way so that only a

single value for y is received by the Lake model. This is because the Lake model,

initially written in a different context, does not expect multiple values. The values

of a variable sent from several instances of a model are combined as a weighted

sum, as shown in Figure 39 (top-right). Other schemes are possible (such as

min, max, average, etc.), but this simple weighted scheme has worked for our

domain.

Just as data mappings can be used to specify that there are multiple send-

ing instances, they can also be used to specify that there are multiple receiving

instances as shown in Figure 40.

Figure 40. A data mapping that indicates there are two instances of the Lake model.

The data mapping in the figure indicates that there should be two instances of

the Lake model, and that 35% of the value of y should be sent to the first in-

stance, and that 65% of the value of y should be sent to the second instance of

the Lake model. The data mapping in Figure 41 indicates that there are two in-

stances of each model.



Lake i .y = (0.9' Streams) + (0.3 * Stream2)

sender 	 weight
Sire,arrivy Lake i .y	 0.9
Stream i .y Lake2.y 0.1
Stream2.y Lakety 0.3
Stream2.y Lake2.y 0.7

Lake y (0 1 * Stream 1 .y + (0.7 Stream 2-y)2-	 •	 1-

75

Figure 41. A data mapping that indicates there are two instances of each model.

Instance 1 of the Lake model receives a y value that is 90% of the value sent by

instance 1 of the Stream model, and 30% of the value of y sent from instance 2

of the Stream model. The second instance of the Lake model receives a y value

that is 10% of the value of yof instance 1 of the Stream model, and 70% of the

value of y of instance 2 of the Stream model,

The data mapping in Figure 41 could represent a study site in which there

are two streams, each of which partially leads into two different lakes. It is likely

though, that each of these streams is part of a larger network of interconnected

streams. Each of the streams in the network can be simulated by a different in-

stance of the Stream model, and those instances can be coupled together. The

ability to couple together instances of the same model is an important feature of

the Coupling Description Language. Figure 42 shows how three instances of the

same model, the Stream model, can send to each other. Each instance in a data

mapping can uniquely be identified by a number from 1 to n, called the instance

identifier, where n is the total number of instances in a coupled model.



76

Stream Model
arn

*
(Coup inn Point	 Al-

i Y
*

Streami
Stream3.y =. (1.0 * Streamo) + (1.0 * Stream2.y)

raopting Point 1- -,
* f sender •	 receiver	 weight.........______

\

.....
Slreamty Stream3.y	 1.0 Y-	 Stream3
Stream2.y Stream3.y	 1.0

Stream

Figure 42. A data mapping that indicates that two instances send to a third instance.

The data mapping in the figure indicates that instances 1 and 2 of the Stream

model should send their yvalues to instance 3 of the Stream model. The values

from instances 1 and 2 are combined, via a weighted sum, and the final value is

received by instance 3. Note that this data mapping indicates that there should

be three instances of the Stream model in the coupled model. The topology of

which instances send to which is determined directly from the data mapping. A

topology involving five instances of the Stream model is shown in Figure 43.

Stream Model

Ste; i	 -arna

■ - t.I.

Coupling Point 14-

7101; sender	 receiver	 weight
*

Coupling Point }-- ,
Strea

Streami.y Stream3 .y	 1.0

Stream2.y Stream3.y	 1.0 Y	 Stream-1.-*
Models Models

Stream3.y Stream5 .y	 1.0

Stream4.y Stream5.y	 1.0

Figure 43. A data mapping that indicates there are five instances of the Stream model.



77

The figure shows the physical stream network topology, and how it is described

in a data mapping. Instances 1 and 2 both send to instance 3, and instances 3

and 4 both send to instance 5. Instance 5 does not send y, and instances 1, 2,

and 4 do not receive y. Notice how only the data mapping was changed in order

to change the topology of the instances. Different data mappings refer to the

same instances by their globally unique instance identifier. This is shown in Fig-

ure 44.

a

aril
-	 -

Stream Model	 Lake Model
*	 r.,

(	 :5gto	 i	 _
*

Stream

Stream3.y = (1.0 * Stream ! ,y) ÷ (1.0 * Stream2.y)

\
Y	 Stear

Coupling Poin041--	 , -04; coupling Point j______—y i
.,..	 r	 ,	 ,	 _c.	 ,	 r	 .,..,.

,x

-sender	 receiver	 weight
Stream 	 Stream3 .y	 1.0
Stream2.y Stream3.y	 1.0

Models

Stream

► Models,
1 Coup ng Point ',[_-::_t

sender receiver weight Lake
Mode Stream3.x Lake.x	 1.0 Model

_.•
Lake.x

/
= 1.0* Stream3.x

Figure 44. Each instance can be identified by a unique number.

In the figure, there are two Send Actions in the coupling description, each with its

own data mapping, shown on the right of the figure. The data mapping of the

send of the y variable indicates that instances 1 and 2 of the Stream model

should both send their value of y to instance 3 of the Stream model. The data

mapping of the send of the x variable indicates that only instance 3 of the Stream

model should send its value of x to the Lake model. Since the data mapping indi-

cates that the x value is sent only from instance 3 of the Stream model, instances

1 and 2 of the Stream model do not perform their Send Actions. Just as some in-



Stream Model

L	 set,* 
Ay 

Coupling Point

Lake Model
* 

f 

-oi Coupling Point X  

y 	 *	 -04  Coupling Point 1

Lake2.y 1.0 * Stream.y

Lake1 .x = 0.3 Stream.x
\

sender receiver	 weight

Stream.x Lake1-x	 0.3 Lake 1

sender receiver weight

Stream.y Lake2.y 1.0	 y

78

stances may not send a variable, some instances may not receive a variable as

well. This is shown in Figure 45.

Figure 45. The y variable is sent to only instance 2 of the Lake model.

In the figure, the x variable is sent from the Stream model to only instance 1 of

the Lake model, and the y variable is only sent to instance 2 of the Lake model.

Since only instance 1 of the Lake model receives the x variable, then only in-

stance 1 is able to perform the actions that use the variable at that coupling point.

If x is used in an Update Action in the Lake model, then only instance 1 of the

Lake model would perform the update function, since only that instance receives

a value for x. Similarly, since only instance 2 of the Lake model receives the y
variable, then only that instance performs the actions at that coupling point that

use the y variable.

The examples in this section showed how data mappings are used to de-

scribe the communication between model instances, but they have only consid-

ered how a single value is sent. Typically, each Send Action is performed many

times during a coupled simulation, resulting in many values being sent. It is im-

portant to understand how the models are synchronized through these asynchro-

nous Send Actions. We have adopted a producer-consumer style of communica-

tion in which each Send Action results in a single value being produced, which is

then consumed by a specific Store or Update Action in another instance. In this



Streams.z[i ] = Stream i 2[1] * 1.0
Stream3.z[2] = Stream' .z[2] * 1.0
Stream3.z[3] (Stream2.z[1] * 0.4) + (Stream22[2] * 0.6)

sender	 receiver	 weight

Streami .z[1]	 Stream3.z[1] 1.0
Streami .z[2]	 Stream3.z[2] 1.0
Steam2-411 Stream3.z[3] 0.4
Stream2.42]	 Stream3.z[3] 0.6

z

79

way, there is a strict equality between the number of values produced, and the

number of values consumed (each value produced has a specific target action at

which it is consumed). This allows the communication to remain synchronized

even if there is only one-way communication between the models: the producer

model can execute ahead of the consumer sending values, and the order in

which they are sent is preserved in the consumer's queue.

For the case of sending array values, data mappings can describe how

each individual element of an array is communicated and transformed between

instances as well. These data mappings are called array-level data mappings, as

opposed to simple data mappings which have been used in the examples up to

this point. Figure 46 shows an example of an array-level mapping.

Figure 46. Array-level data mappings allow for a finer grain mapping.

In the figure, the z array is sent from instances 1 and 2 of the Stream model to

instance 3 of the Stream model. The data mapping indicates that elements 1 and

2 of the z variable from instance 1 should be placed into elements 1 and 2 of the

array that is received by instance 3. It also indicates that elements 1 and 2 of the

z variable from instance 2 should be weighted, summed, and placed into element

3 of the array that is received by instance 3. Data mappings are stored in text

files and in general are automatically generated (this is demonstrated in Chapter

7), an example of which is shown in Figure 47. A simple mapping is shown at the

top of the figure, and an array-level mapping at the bottom of the figure.



list of sends 1:1 3:2 0.25
2:1 3:Z 0.75

sender
instance id : array index

weight

receiver
instance id : array index

name and description

list of sends

my mapping
a simple mapping

1 3 0.25
2 3 0.75

instance id of	 instance id of
	 weight

sender	 receiver

name and description my other mapping
an array-level mapping

80

Figure 47. Format of data mapping input files.

This discussion has explained what data mappings are and how they are used,

but how are data mappings created? The answer to this question is dependent

upon the relationship between the variables of the two models. Consider the ex-

ample in Figure 48. There are two financial models A and B. Model A simulates

the behavior of bank customers, and has the state variable savings, an array, the

elements of which each represents the predicted amount of money that a differ-

ent customer possesses in his/her bank account. In this example, element 1 of

savings represents the amount of money that Joe has in his bank account, and

element 2 represents the amount that Kelli has in her account. Model B simulates

customer investment behavior and has the state variable likelihood, an array, the

elements of which each represent the probability that a different customer age

range will invest in stocks in the next year. Element 1 of likelihood represents the

probability that customers in the age range of 18-25 will invest in stocks in the

next year, and elements 2 and 3 represent age ranges 26-45 and 45-60 respec-

tively. In this coupling, the user wants to scale the value of the savings variable

so that it reflects the likelihood that the customers would invest, such that a low



Financial Model A

savings - how much money a customer has
in his/her bank account

Financial Model B

likelihood - probability that customers in
an age range will invest

savings[1] =
savings[2] =

$2000
$800

(Joe)
(Kelp

likelihood[1] =
likelihood[2] =
likelihood[3] =

0.1
0.4
0.7

(18-25 years)
(26-45 years)
(46-60 years)

1
savings[1] = scale( savings[1], likelihood[ ? ] )
savings[2]= scale( savings[2], likelihood' ? ] )

Financial Model A

savings - how much money a customer has
in his/her bank account

Financial Model B

likelihood - probability that customers in
an age range will invest

savings[1] =
savings[2] =

$2000	 (Joe)
$800	 (Kelp

likelihood[1] =
likelihood[2] =
likelihood[3]=

0.1
0.4
0.7

(18-25 years)
(26-45 years)
(46-60 years)

+I-savings[1] = scale( savings[1], likelihood[ 2] )
savings[2] = scale( savings[2], likelihood[ 1 ] )

81

investment likelihood would lower the predicted savings account value for a cus-

tomer, and vice versa.

Figure 48. The meaning of variables differs across models.

In order to create the correct data mapping, we need to know the age of each

customer represented by the savings array. One of the sources of this additional

information is databases, but the information could come from any source. Figure

49 shows how a customer database can provide the necessary information to

properly relate likelihood to savings.

Figure 49. Third-party sources of information can be used to relate variables.



Spatial Model A	 I Spatial Model 13

trans - water volume lost via transpiration	 evap - water volume lost via evaporation
for a county	 for a state

evap[i]=0.7 (Oregon)trans[1]	 0.3 (Lane County) evap[2] = 0.9 (Idaho)trans[2] = 0.2 (Linn County) evap[3] = 2.3 (California)

trans[1] = sum( transflj, evap] ? )
trans[2] = sum( trans[2], evap[ ? )

82

Through the use of the customer database, the ages of the customers repre-

sented by the savings array can be determined, which can then be used to iden-

tify which elements of the likelihood array are related. In this example, since Joe

is age 27 according to the customer database, then element 2 of the likelihood

array should be used to update element 1 of the savings array. Similarly, since

Kelli is age 24, element 1 of the likelihood array should be used to update ele-

ment 2 of the savings array.

As another example, consider the models in Figure 50. Model A has an

array variable trans, the elements of which each represent the volume of water

lost via transpiration for a different county. Model B has an array variable evap,

the elements of which each represent the volume of water lost via evaporation for

a different state. In this coupling, the scientist wants to add the amount of water

lost via evaporation to each element of the trans array.

Figure 50. The elements of the two arrays represent different spatial areas.

In order to create the correct data mapping, we need to know how each element

of the evap array is related to each element of the trans array. As in the previous

example, a third party can be used to relate the data. Here, a Geographic Infor-

mation System (GIS) can be used to determine what percentage of each state is

covered by each county, a common spatial analysis performed by GIS's known

as an overlay operation. This is shown in Figure 51.



Spatial Model S

evap - water volume lost via evaporation
for a state

evap[1] = 0.7 (Oregon)
evap[2] = 0.9 (Idaho)
evap[3] 2.3 (California)

Spatial Model A

trans - water volume lost via transpiration
for a county

trans[1] = 0.3 (Lane County)
trans[2] = 0.2 (Linn County)

c
_c .2

0E
0
	 >,

47 "-
0)._

transil] = sum( trans[1], evap[ 1 ] * 0.10 )
trans[2] = sum( trans[2], evap[ 2 ] *0.20 )

83

Figure 51. A GIS can be used to relate spatial data.

Through the use of a GIS, the percentage of Oregon made up by Lane County

can be determined and then used to properly scale the value of evap (to 10% in

the figure) so that the proper value of evaporation is added to element 1 of the

trans array. Similarly, the percentage of Oregon made up by Linn County can

also be determined and used to properly scale the value of evap (to 20%) that is

added to element 2 of trans.

Iri some t,clovo, the creation of a data mapping can be fully automated by

taking advantage of the scripting or querying capabilities common in databases.

In the spatial data mapping example, a script can be created within the GIS that

iterates through each county in the GIS and calculates the percentage of each

state that it covers. If the GIS is also told which elements of the trans array rep-

resent which counties, and which elements of the evap array represent which

states, then the script can automatically create the complete array-level data

mapping in terms of just the array elements. We will see in detail how this is ac-

complished in the hydrology case studies in Chapter 7.



84

Models are often written to support the simulation of a range of spatial dis-

tributions and scales. This allows the model to be customized for different study

sites. A side effect of this is that the physical space represented by the elements

of an array can change depending upon the parameterization of a model. This is

illustrated in Figure 52. Each element of the array represents a different volumet-

ric cell of a lake.

Figure 52. The physical space represented by the elements of an array can change be-
tween study sites.

Given one set of model inputs, the array elements each represent a small cell of

a shallow lake, but when given a different set of model inputs, the array elements

each represent a large cell of a deep lake. Since the physical space represented

by the array elements can change from study to study, so too must the data

mappings used. Note though that only the data mappings need to be created for

each study site, the coupling description itself does not need to change.

This section has explained how data mappings are used to describe the

communication between model instances. It was shown how any number of in-

stances of a model can be coupled to another model, and how any number of

instances of the same model can be coupled together. It was also shown how

data mappings can describe the communication of variable values via simple

data mappings, as well as the communication of the individual elements of a



85

value via array-level data mappings. Next we will see how these exchanges of

values can be coordinated in simulation time.

Coordinating Data In Time
In time-dependent models, exchanged data must be related in time as well

as meaning. For a model to change its state based on the state of another

model, those model states must be representative of the same (or otherwise co-

ordinated) point in simulation time. There are two general approaches to coordi-

nating the models in time: implicitly and explicitly.

Implicit Temporal Coordination

Figure 53 shows two models with typical structures: a setup phase fol-

lowed by a time step loop. In the implicit approach, the models do not exchange

information about their simulation times, or use temporal variables to decide

when to communicate. Rather, their loops are coordinated such that they start

together at the same point in simulation time, and each iteration of each loop rep-

resents the same length of time. The result is that the models will remain coordi-

nated in time, communicating once on each time step. This is shown in Figure

53.

X 

Figure 53. Implicit coordination by matching start times and step lengths.

In the figure, the models communicate at the end of their time step loops. Both

start at the same point in simulation time and use the same time step length. If



Coupling Point )4-

\
frequency = 2

End	 '7)

86

the models must use different time step lengths, then the greatest frequency at

which they can communicate is the least common multiple of the two time step

lengths (values of variables at intermediary points in time could be estimated via

interpolation/extrapolation). The activation frequencies of the actions must be set

accordingly, as shown in Figure 54.

Figure 54. Specifying frequencies to resolve differences in time step length.

In the figure, both models start at the same point in simulation time, and model A

uses a time step length of 1 day, while model B uses a time step length of 2

days. In order for the models to remain coordinated, the actions at the coupling

point in model A must use an activation frequency of 2, and in model B, an acti-

vation frequency of 1. The examples in the next section and the case studies in

Chapter 7 use the implicit approach.

The advantage of this approach is that the models do not need to send

time information to each other in order to stay coordinated. This is particularly

useful because it avoids the need to translate the temporal variables between the

models. The way that models represent time varies significantly across models.

Some models have variables that keep track of the simulation day, month, year,

hour and second, while others simply have one variable that keeps track of the

current hour of the simulation. Without implicit synchronization, the temporal

variables must be translated. The disadvantage to the implicit approach is that

some models use variable length time steps, in which case this approach will not



87

keep the models synchronized because each iteration of their time loops do not

represent the same length of time. In such a case, the models must coordinate

their communication times explicitly.

Explicit Temporal Coordination
When one or more models in a coupling is a time-stepped (continuous)

simulation with a variable length time step, or is a discrete event simulation

(DES), the models must explicitly negotiate the simulation times at which they will

communicate. We focus this discussion on DES models, but the coordination is-

sues presented here apply to time-stepped simulations with a variable length

time step as well. Figure 55 shows the typical structure of a discrete event simu-

lation.

Add.101#et Events • 

4 .
Event Loop

Figure 55. Typical structure of a discrete event simulation.

Typical discrete event simulation models consist of an event queue to which

events are added and removed. Each event is associated with a point in simula-

tion time at which the event occurs. An initial set of events is added to the event

queue and then the event loop is entered. On each iteration of the event loop, the

next event (the one with the minimum time) is removed from the queue and the

model's simulation time is advanced to the event's time. The state of the model is

then updated in response to the event, which may result in additional events be-



88

ing added to the event queue. The event loop iterates until there are no more

events in the event queue.

In a coupling involving DES models, each constituent DES model would

likely communicate with the other models and adjust its state after it handles

each event, at the end of the event loop. To illustrate how two simple, typical

DES models can be coordinated in simulation time, consider an example in

which there are two DES models A and B, that initially have two events in each of

their queues which occur at times 12 and 16 in model A, and 7 and 14 in model

B. The models are coupled such that Model B sends its state to model A at the

end of its event loop, and model A updates its state in response. When the mod-

els begin their simulations, each removes the next event, advances its simulation

time to the next event's time, and updates its state in response to the event. At

the end of the first iteration of the event loop, model A's simulation time is 12, and

model B's is 7. Model B then sends its state (which includes its current simulation

time) to model A. Since the state of model B represents an earlier point in time

than the state of model A, the state of model A cannot be updated based on the

current state of model B. Rather, model A must save the state that it received and

wait until model B processes more events and advances its time to 12 (or some

later point). Model B would handle its next event, which occurs at time 14, and

send its state to model A. Since model B now represents a later point in time than

model A, model A can update its state based on the saved state of model B that

represents the state of model B at time 7. This is acceptable because the state of

model B is the same at time 7 as it is as time 12 (since no events occur in model

B until time 14). Model A then stores the new state of model B and the interaction

repeats.

This simplified example demonstrates how the current simulation time of a

DES model cannot be anticipated by other coupled models, requiring the models

to exchange temporal information. In these cases, the activation frequencies of



89

actions are set to 1 so that the models communicate every time a coupling point

is reached. The update functions interpret the temporal state of the other models

and behave accordingly.

Examples
To illustrate how the CDL can be used to describe coupled models, two

examples follow. Chapter 1 presented two ways in which comprehensive models

can be created by coupling existing models. The first way is to incorporate the

simulation of additional physical processes by coupling different models. The first

example demonstrates this. The second way is to couple together many in-

stances of a single model, accounting for the interactions between instances.

The second example demonstrates this. In both examples, we follow the six

steps to creating a coupled model described in Chapter 3 and we focus on how

the process is carried out in our approach. Since we have already chosen the

models (Step 1), the process will begin at Step 2 in each example. In the first ex-

ample we begin with a discussion of the basic hydrological concepts upon which

the examples and case studies (in Chapter 7) are based.

Example One
A common use of modeling in the field of hydrology is in the study of how

rainfall affects surfacewater, such as rivers and streams. One such rainfall-runoff

model is the Storm-water Management Model (SWMM) (Huber and Dickinson

1988), which simulates the amount of surfacewater runoff that exits an area of

land in response to rainfall. It was developed by the U.S. Environmental Protec-

tion Agency and consists of approximately 30,000 lines of Fortran source code.

The physical system simulated by SWMM is illustrated in Figure 56.



90

Figure 56. Illustration of the physical system simulated by SWMM.

The amount of runoff that is generated in response to a storm event is not only

dependent upon the intensity of the rainfall, but it is also dependent upon the

characteristics of the land upon which it falls. The slope of the land and the type

of ground cover (grass, forest, urban, etc.) are salient characteristics that are

taken in to account in the model. Another important characteristic is the depth of

the groundwater beneath the land, called the water table or head. If the water ta-

ble is close to the surface, then water is drawn upward and contributes to the

amount of runoff, decreasing the amount of groundwater. This upward movement

of water is called baseflow. Conversely, if the groundwater is deep below the sur-

face, then runoff is drawn downward and contributes to the quantity of groundwa-

ter, decreasing the amount of runoff. This downward movement of water is called

recharge. This water flux occurs through the unsaturated zone, located just be-

neath the land surface. In the unsaturated zone, the very small spaces between

particles of dirt and sand are filled partially by air and partially by water. The up-

per part of the unsaturated zone is called the root zone. Below the unsaturated

zone is the saturated zone, in which the small spaces between particles are filled

entirely by (ground)water. The upper limit of the saturated zone is the water table.

An illustration of these zones and the water flux between them in shown in Figure

57.



91

Figure 57. Water flux occurs through the unsaturated zone.

There are three possible relationships between the water table, root zone,

and land surface, as shown in Figure 58.

Figure 58. Relationships between the water table, root zone, and the surface.

The water table can either be below, within, or above the unsaturated zone. Each

case is described.

Case 1: the water table is above the surface, z< 0, resulting in the surface

being saturated. The excess water in these areas becomes (saturation-

excess) runoff, and the root zone moisture content is saturated.

Case 2: the water table encroaches into the root zone, where 0 < z < d. In

these areas, the soil moisture content is increased due to the presence of

the shallow groundwater. The increase in soil moisture results in both a

reduced infiltration capacity, which may result in increased (infiltration-



92

excess) runoff, and an increase in moisture available for plants, possibly

increasing evapotranspiration.

Case 3: the water table is deep, where z < d, and the groundwater does

not affect the root zone. There may be some recharge to the groundwater

from the root zone, depending upon the amount of water present.

In hydrological modeling, it is imperative that the interaction between sur-

facewater and groundwater is well understood. In many situations, it is essential

for simulations to fully account for the impact of surfacewater dynamics on

groundwater dynamics and vice-versa. Most hydrological models either accu-

rately simulate surfacewater dynamics and poorly simulate groundwater move-

ment, or accurately simulate groundwater movement and do not fully account for

surfacewater dynamics. SWMM is a surfacewater model that does not accurately

simulate groundwater movement. SWMM calculates changes in the water table

elevation using simplified flow calculations. A more accurate simulation can be

achieved if a more accurate water table elevation is simulated.

ModFlow (McDonald and Harbaugh 1999) is a widely used hydrological

model that simulates the movement of groundwater where the primary output is

the water table head of the groundwater. It was developed by the U.S. Geological

Society and consists of approximately 10,000 lines of Fortran source code. Fig-

ure 59 illustrates the physical system simulated by ModFlow_

output:
water table head

Figure 59. Illustration of the physical system simulated by ModFlow.



93

In this example, we show how SWMM can be coupled to ModFlow such

that the water table head simulated by ModFlow is used by SWMM in place of

SWMM's own simplified groundwater calculations. This is achieved in the cou-

pled model by overwriting the water table value calculated by SWMM with the

water table value simulated by ModFlow. This example is based on an existing

coupling between these models performed by Rowan (2001), although to simplify

our discussion we show only how Mod Flow affects SWMM but not the reverse.

The Participating Variables

The first step in creating the coupled model is to identify which state vari-

ables in the ModFlow and SWMM Pas represent water table elevation. inspec-

tion of the model PCis reveals that this variable is called stg in SWMM, and hnew

in ModFlow. As described in the SWMM PC I, stg represents the water table head

beneath an irregularly-shaped 2d area of land called a subcatchment A sub-

catchment is an area of land that drains to a single point. Figure 60 shows how

subcatchments appear in the ArcMap GIS.

Figure 60. Subcatchments are irregularly shaped polygons.

The stg variable is an array in which each element represents the water table

head beneath a different subcatchment. As described in the ModFlow PCI, hnew

represents the water table head of a body of groundwater called an aquifer. An



94

aquifer is a 3d volume of groundwater with defined lateral and vertical extents.

The hnew variable is an array in which each element represents the water table

height of a different regularly-shaped 3d cell. The units of both variables are in

feet, as referenced to some known benchmark such as mean sea level. Figure

61 shows a single subcatchment superimposed on a single rectangular grid cell,

as it appears in the ArcMap GIS.

Figure 61. A single subcatchment superimposed on a single grid cell.

This difference in spatial distribution of the participating variables is com-

mon in couplings and must be taken into consideration in the coupled model de-

sign. In the CDL, such incompatibilities are resolved through data mappings. Be-

fore we explain how these spatial differences are resolved, we first present the

coupling description. We first show how the models can be coupled where

SWMM is parameterized to simulate a single subcatchment and ModFlow is pa-

rameterized to simulate a single grid cell. We then show how the coupling can be

modified to support the simulation of several grid cells by ModFlow.

Creating the Coupling Description

The coupling description is shown in Figure 62. As in most couplings, the

models communicate within their time step loops.



Coupling Point A
AL Update setHead0

95

Figure 62. The coupling description as shown in PCICouple.

As long as the models start at the same point in simulation time, and use

the same time step length, then the models will remain coordinated in simulation

time. ModFlow though, usually uses a long time step length, on the order of days

or weeks due to the slow speed at which groundwater moves, and SWMM can

use either a short step length to study individual storm events (on the order of

hours), or a longer step length to study long term trends (on the order of days).

Differing step lengths can be accommodated by adjusting the activation frequen-

cies of actions. For example, if ModFlow uses a step length of 2 days, and

SWMM uses a step length of 1 day, then the greatest frequency at which the

models can communicate is every 2 days, and the activation frequencies of the



96

actions in SWMM would be set to 2, and set to 1 in ModFlow. To keep this exam-

ple simple, we parameterized the models to use a common step length of 1 day.

At the start of the time step loop in ModFlow, the value of the hnew vari-

able represents the current water table head, so we expanded the coupling point

located there and labeled it "Coupling Point B". The value of stg is calculated

and set within the "Process Areas" block in the SWMM PCI, so it is immediately

after this block that the value must be overwritten with the value of the hnew

variable received from ModFlow. We expanded the coupling point that follows

this block and labeled it "Coupling Point A". We then added a Send Action from

Coupling Point B to Coupling Point A that sends the value of the hnew variable

from ModFlow to SWMM. We added an Update Action at Coupling Point A that

applies a custom update function called setHead, written in Fortran (added to the

coupling description following the process explained in Appendix D), that assigns

the value of the stg variable to the value of the hnew variable received from

ModFlow. The function assumes that the units of the variables are the same and

it accounts for the difference between the reference datum from which two vari-

ables are measured by adding 5.0 feet to hnew. The source code for the update

function is shown in Figure 63.

subroutine setHead(instanceID,dest,src)

integer instanceID

real	 dest,src

lest = src 4- 5.0

end

Figure 63. The source code for the setHead update function.

Notice though, that Coupling Point A is located within the subcatchment

loop in SWMM. Since SWMM is parameterized to simulate only a single sub-

catchment, the body of this loop is executed only once on each time step. If,

however, SWMM is parameterized to simulate more than a single subcatchment,



97

Coupling Point A would be reached several times on each time step, once for

each subcatchment, and hence SWMM would expect ModFlow to send the value

of the hnew variable several times on each time step. Since ModFlow only sends

this value once on each time step, the models would become unsynchronized

during execution of the coupled model. To resolve this structural incompatibility,

the activation frequency of the Update Action must be set equal to the number of

subcatchments. In this way, activation frequencies can be adjusted to accommo-

date both differing time step lengths and differing loop structures between mod-

els.

The details of the Send and Update actions are shown in Figure 64 as

they appear in PCICouple's inspector window.

Figure 64. The details of the Send and Update Actions.

The Send Action uses the default data mapping provided by PCICouple.

This data mapping is shown in Figure 65.

1-1 Mapping (default)

Figure 65. The default 1-to-1 data mapping.



98

The mapping indicates that there is a single instance of each model, and that in-

stance 1 sends the value of the variable to instance 2 with a weight of 1.0 (the

value is unchanged).

Thus far we have only considered the case where ModFlow is parameter-

ized to simulate a single grid cell. We now explain how this coupling can be

modified to account for the case where ModFlow is parameterized to simulate a

grid of cells.

Incorporating the Spatial Distribution of Physical Quantities

ModFlow is capable of spatially distributed simulation in which the water

table head is simulated for many cells of a grid. Figure 66 is similar to Figure 61,

but shows how the area beneath the subcatchment can be divided into 4 cells.

Figure 66. The area beneath the subcatchment is discretized as four cells.

In this part of the example we parameterize ModFlow to simulate four grid cells.

As a result, the hnew array contains four elements, each of which represents a

different grid cell. The setHead update function though, only accepts a single

scalar value as the input from ModFlow. For this reason, we must change the

data mapping used so that the four values of Mod Flow's hnew array are com-

bined to form a single water table value representative of the area below the

subcatchment, which is then received by SWMM and used in the update func-

tion. Note that we could also modify the setHead function to accommodate re-

ceiving an array from Mod Flow, but such customizations to update functions for

specific couplings is not desirable since it limits the reusability of the functions.



SWMM.hnew = 0.25 * ModFlow.hnew[1] +
0.25 * ModFlow.hnew[2] +
0.25 * ModFlow.hnew[3] +
0.25 * ModFlow.hnew[4]

\sender receiver weight

ModFlow hnew ModFlow .hnew[1]
ModFlow .hnew[2]

SWMM .hnew[11
SWMM .hnew(11

0.25
0.25

hnew
►

ModFlow .hnew[3] SWMM .hnew[1] 0.25
ModFlow .hnew[4] SWMM .hnew[1] 0.25

99

The new data mapping is shown in Figure 67. Unlike the previous map-

ping, this is an array-level mapping which indicates how the individual elements

of the variable are transformed and communicated.

4 Cell-to-1 Subcotchment Mapping

1:1 2:1 0.25
1:2 2:1 0.25
1:3 2:1 0.25
1:4 2:1 0.25

Figure 67. The array-level data mapping.

The mapping indicates that the four elements of the variable being sent are each

scaled to 25% and then summed into a single scalar value before being received

by instance 2. If SWMM is parameterized to simulate multiple subcatchments,

the data mapping can be be modified accordingly. Figure 68 illustrates how the

elements of the array are combined and sent from ModFlow to SWMM.

Figure 68. How the array elements are combined and sent.

The CDL is capable of describing couplings between any number of mod-

els. We explain next how a third model can be added to this coupling.

Incorporating Another Model
Suppose that snow accumulates over the lower-right area of our hypo-

thetical study site. As the snow melts, it infiltrates into the ground and recharges



100

the groundwater below. We can account for this in the coupled model by coupling

a snowmelt model to ModFlow.

The Utah Energy Balance (UEB) (Tarboton and Luce 1996) snowmelt

model simulates the amount of water produced as a result of snowmelt for the

given meteorological conditions. It is written in Fortran and consists of approxi-

mately 1,000 lines of source code. The physical system simulated by UEB is il-

lustrated in Figure 69.

Figure 69. Illustration of the physical system simulated by UEB.

UEB is a lumped model, so it calculates a single snowmelt value that is represen-

tative of the snowmelt over the entire area being simulated. Temperature varia-

tion throughout the day plays an important role in the simulation of snowmelt, so

the length of time step used in this model is typically one hour. The updated cou-

pling description is shown in Figure 70.

We parameterized UEB to simulate the area of land located above the

lower-right cell of ModFlow, and we added the PCI for UEB to our coupling de-

scription. According to the PCI for UEB, the q variable, a scalar, represents the

amount of snowmelt (as a height in feet) so it is the value of this variable that

must be sent to ModFlow. It should be sent at the end of the time step loop in

UEB, so we expanded the last coupling point in the loop and labeled it "Coupling

Point C". We added a Send Action from this coupling point to Coupling Point B

that sends the value of the q variable to ModFlow.



ifa
;Ruling Point B
Send 1-INEW

l Update addldellO

Coupling Point C
4 Send PLOW

101

Figure 70. The updated coupling description.

We added an Update Action at Coupling Point B that applies a custom update

function called addMelt	 gthnt nrijimt the water table 	 hriPt4t, based on the

snowmelt value received from UEB. The source code for the addMeft function is

shown in Figure 71.

subroutine addMelt(instanceID,head,melt)
integer instanceID
real	 head(2,2),melt

head(2,2) = bead(2,Z) + melt
end

Figure 71. The source code of the addMelt function.

The function adds the melt value to element 2,2 of hnew, which is the element

that represents the grid cell located beneath the area simulated by UEB. Notice

that the after the Update Action was added to Coupling Point B, it was reordered



s

trAriabto . : rFLAW	 h.
•

• frequency .24

his tame 3
head HNEW

nie/t rate uethFLOW

Save .

102

to occur before the existing Send Action at that point. This way, the effect of UEB

on ModFlow indirectly affects SWMM.

The details of the Send and Update Actions are shown in Figure 72. No-

tice that the Send Action has an activation frequency of 24 since UEB uses a

time step length of 1 hour, yet it should only communicate with Mod Flow once

per day.

Figure 72. The details of the Send and Update Actions.

This example has demonstrated how models can be coupled together to

create more comprehensive simulations of physical systems. We saw how Mod-

Flow and SWMM could be coupled first in a simple way, where each model was

parameterized as a lumped model, and then we saw how the spatial-distribution

simulation capabilities can be supported in couplings. We then saw how an addi-

tional model could be added to the existing coupling, incorporating the simulation

of additional physical processes into the coupled model. The original coupling

between SWMM and ModFlow can be thought of as a model itself, to which UEB

was coupled. In the next example, we show how many instances of the same

model can be coupled together to achieve spatially distributed simulation.



output: loadings in field
ronntt and rent zone

103

Example Two

In this example we show how a lumped-parameter model can be coupled

to itself to achieve a spatially distributed simulation. We consider a hypothetical

study site in which there is an agricultural field that is subject to a variety of man-

agement practices including fertilization and irrigation. The fertilizer introduced

into field is transported by the movement of water into the unsaturated zone and

along the surface as runoff. The Groundwater Loading Effects of Agricultural

Management Systems (GLEAMS) (Leonard, Knisel, and Still 1987) model pro-

vides the simulation of the movement of water, sediment, pesticides, and nutri-

ents based on meteorological and management practice inputs. This system is

illustrated in Figure 73.

Figure 73. Illustration of the physical system simulated by GLEAMS.

The time step length used by the model is fixed at one day in length, and the

length of time simulated is typically multiple years to account for seasonal varia-

tion in the model inputs and to assess long term trends.

Since GLEAMS is a lumped-parameter model, all model inputs and out-

puts are single values representative of the entire field. If the study field has ho-

mogeneous characteristics, then the model is appropriate for simulation of the

field. If however, some characteristics of the field vary spatially, such as the con-

centration of a particular nutrient, then the study field must be divided into homo-

geneous parts, and each part must be simulated individually using individual in-



higher
concentration

104

put parameter sets for each model run. If, for example, the nutrient concentration

varies significantly across two parts of the field, as in Figure 74, then two sepa-

rate simulations would have to be performed, one on the upper half of the field

and one on the lower half.

Figure 74. Lumped models do not support heterogeneity.

Independent simulations of the field would result in separate simulations of the

groundwater, possibly resulting in significantly different water table heads, even

though the groundwater beneath the entire field is connected and continuous. To

avoid this discrepancy, we couple several instances of GLEAMS together so that

each instance simulates a different, homogeneous, part of the field, while at the

same time maintaining a consistent water table head. We begin by showing how

to couple two instances of the model, one of which simulates the lower half of the

field, and the other which simulates the upper half.

The Participating Variables
Since the interested physical quantity is water table head, the variable that

represents this physical quantity must be exchanged between the instances of

the model. By inspection of the PCI for GLEAMS, the soil water content variable,

st is identified. The variable is an array in which each element of the array repre-

sents the soil water content at a different soil layer (depth in feet), over the full

area of the field. The vertical soil layers are illustrated in Figure 75. Now that the

participating variable has been identified and understood, the next step is to de-

termine the location within the model code where this variable - should be ac-

cessed.



totigging PaintA
4 Send ST
,t1 Update average°

ST

105

Figure 75. The spatial distribution of the variable.

Creating the Coupling Description

The coupling description is shown in Figure 76. The PCI for GLEAMS

shows that there are two temporal loops, an outer loop that iterates over years,

and an inner loop that iterates over days. As in the previous example, the in-

stances communicate within their time step loops. We expanded the coupling

point at the end of the daily loop and labeled it "Coupling Point A". We then

added a Send Action and an Update Action to this point. The st variable is initial-

ized in the "Setup" block and then updated throughout the "Solve" block on each

daily time step.

St

Figure 76. The coupling description as it appears in PC1Couple.



'-yikehtbie

ftequen0

mapping

106

We want instance 1 to send to instance 2, and vice versa, so we wrote a simple

data mapping by hand that indicates there are two instances, and that each one

sends to the other. This mapping is shown in Figure 77.

GLEAMS Mapping - 2 Instances
The simple data mapping for example 2
1	 2	 1.0
2	 1	 1.0

Figure 77. The data mapping used by the Send Action.

When each instance receives the value of the st variable that was sent from the

other instance, it must average that value with its own value of st. To accomplish

this, we added an Update Action that applies the built-in average update function

to these values. The details of the Send and Update Actions are shown in Figure

78 as they appear in PCICouple.

Figure 78. The details of the Send and Update Actions.

The Send and Update Actions were deliberately ordered such that the

Send Action occurs prior to the Update Action. When each instance reaches the

coupling point, the Send Action is activated and the value of the st variable in

each instance is sent to the other instance immediately (recall that data is sent

asynchronously). Each instance then waits to receive the value from the other

instance before carrying out the Update Action. If however, the Update Action



Coupling Point A
Send ST

al Update average()
ST 1

107

were placed before the Send Action, each instance would stop and wait at the

Update Action and never reach the Send Action, deadlocking the coupled model.

If executed as is, both instances will perform the same exact simulation

because they will both read the same model input file. What we want though, is

for each instance to use a different input file that describes the half of the study

field that it simulates. To accomplish this, we added an Update Action at the

"Setup" block that applies the custom update function make Unique to the vari-

able that holds the filename of the nutrient input file, nutin. The built-in make-

Unique function prepends the instance identifier to the start of a filename, making

it unique. The revised coupling description is shown in Figure 79.

Setup
al Update InalzeUriNde0
.11...UpdateloiWniqde0
Ad..tfidate

Figure 79. The final coupling description.



108

We added two additional Update Actions at the "Setup" block that apply the

make Unique function to each output filename as well, hydout and eroout other-

wise, both instances will attempt to write its output to the same file, resulting in

runtime errors. The details of the Update Action that operates on the nutin vari-

able is shown in Figure 80.

Figure 80. Details of the Update Action applied to the nutin variable.

When the coupled model is executed, two instances of the GLEAMS

model are started and at the end of each simulation day, the instances exchange

their values of the st variable, average them, and maintain a consistent water ta-

ble head throughout their simulations. Thus far we have only considered the case

where there are two instances of the model. In the next section we show how the

coupling description can be easily extended to support the coupling of several

instances.

Simulating More Areas

in the previous section we showed how a field can be divided into two

parts, each of which is simulated by a different instance of the model. It is likely

though, that the field has several heterogeneous areas, each of which must be

simulated by a different instance as shown in Figure 81.



GLEAMS Mapping - 4 Instances

Four instances, arranged as a 2x2 grid
1 2 0.5
1 4 0.5
2 1 0.5
2 3 0.5
3 2 0.5
3 4 0.5
4 1 0.5
4 3 0.5

sender	 receiver	 weight

GLEAMSI GLEAMS2	0.5
GLEAMS.' GLEAMS4	0.5
GLEAMS2 GLEAMSI	0.5
GLEAMS2 GLEAMS3	 0.5

GLEAMS3 .GLEAMS2 	 0.5

GLEAMS3 GLEAMS4 	 0.5
GLEAMS4 GLEAMSI	 0.5

GLEAMS4 GLEAM%	 0.5

GLEAMS4.st = (0.5 * GLEAM,s i st) + (0.5* GLEAMs3.s1)

St

109

Figure 81. A field with four parts.

To accommodate the involvement of four instances, the coupling description

must only be changed such that the Send Action uses a different data mapping.

This mapping is shown in Figure 82.

Figure 82. An alternative data mapping indicating four iriStatic,us.

We wrote this simple mapping by hand which indicates that there are four in-

stances and that each instance communicates with its neighbors. This is illus-

trated in Figure 83.

Figure 83. How values from multiple instances are combined.



110

The figure illustrates how the st value received by instance 4 is created. Instance

4 simulates the lower-left quadrant of the field, so the cardinal neighbors of this

quadrant are simulated by instances 1 and 3, the top-left and bottom-right quad-

rants, respectively. Since there are two neighbors to the quadrant simulated by

instance 4, the value received from each instance is scaled to half its value (the

0.5 in the figure) and is summed. This summed value represents the average wa-

ter table head of the neighboring quadrants.

The data mapping can indicate any number of model instances. Consider

the case where the field is divided into nine parts, as shown in Figure 84.

Figure 84. A field with nine parts.

Such a scenario is described by the data mapping in Figure 85. The cor-

ner instances communicate with their two neighbors, as in the previous data

mapping, but the inner instances communicate with either three or four neighbors

and the weightings are adjusted accordingly, either 0.33 or 0.25 respectively.

In these examples we wrote the data mappings by hand. The data map-

ping in Figure 85, which describes the communication between only nine in-

stances, is more complex than the previous cases and writing data mappings for

large numbers of instances would become tedious and error-prone. In such

cases it is favorable to create the data mapping through the use of third-party

software. This is explained in more detail in the case studies in Chapter 7.



GLEAMS Mapping - 9 Instances
Nine instances, arranged as a 3x3 grid
1 2 0.5
1 4 0.5
2 1 0.33
2 3 0.33
2 5 0.33
3 2 0.5
3 6 0.5
4 1 0.33
4 5 0.33
4 7 0.33
5 2 0.25
5 6 0.25
5 8 0.25
5 4 0.25
6 3 0.33
6 5 0.33
6 9 0.33
7 4 0.5
7 8 0.5
8 7 0.33
8 5 0.33
8 9 0.33
9 6 0.5
9 8 0.5

111

Figure 85_ A data mapping indicating nine instances.

Summary

This chapter has introduced the Coupling Description Language and the

coupling environment based on it within PClCouple. The actions of the COL were

explained, along with data mappings and techniques for keeping the models co-

ordinated in time. Two examples were then presented that demonstrate the proc-

ess of creating a coupling model in our approach. In the next chapter, we present

the runtime system and explain how the actions described in coupling descrip-

tions are carried out during execution of the coupled model.



CHAPTER VI

EXECUTING COUPLED MODELS

introduction

In Chapter 4 we saw how PCIs and their associated coupling-ready model

executables can be created through the use of PCICreate. We then saw in Chap-

ter 5 how the behavior of a coupled model can be specified through the Coupling

Description Language. This chapter presents the coupled model runtime system

that is capable of executing these coupled models. An overview of the system is

presented next, followed by an explanation of how coupling descriptions are

compiled into scripts. A detailed description of the runtime system is then given.

Overview of the Runtime System

An overview of the runtime system is shown in Figure 86. Each shape in

the figure represents an independently executing process, of which there are four

kinds: model instances (circles), couplers (squares), updaters (diamonds), and

controllers (house shape). The communication between these different proc-

esses is indicated by arrows in the figure (the controller also communicates with

all of its associated processes, indicated by a dotted line in the figure, during

startup and as described in the next section). Note that both updaters and model

instances communicate only with couplers.

112



controller 

113

Figure 86. Overview of the runtime system.

Every instance is assigned to a specific coupler, indicated in the figure as a

dashed line, and many instances may be assigned to the same coupler. An in-

stance's coupler provides two services to the instance, value storage and value

updating:

1. Couplers store the values of stored variables for their instances, and act

as queues that collect values destined to their instances, holding them

'Intl! their instances are ready for them.

2. To support Update Actions, couplers use their updater processes to

carry out the execution of update functions. Each coupler has an up-

dater process that can execute the built-in update functions and any

custom functions added by the scientist. Couplers also apply data map-

pings, which is why instances do not communicate directly, but do so

through couplers.

When executed on a parallel computer, the ratio of instances to couplers may

have significant performance impacts since the couplers are providing potentially

time-consuming services (function execution) to the instances, so this ratio is

customizable by the scientist.



114

Compiling the Coupling Description
After a coupling has been described, the appropriate scripts for each

model instance are created. As introduced in Chapter 4, a script is an ordered list

of events that are to take place at the coupling points of a particular model in-

stance; a separate script is created for each instance. There are two kinds of

events: put and get. Put events indicate that the value of a variable needs to be

used outside the model instance, and therefore must be sent by the instance.

Get events indicate that the value of a variable needs to be set to a new value,

and therefore the new value must be received by the instance. Note how actions

are different from events: Actions are high-level constructs associated with a

model, while events are low-level communications between specific instances of

models. Each kind of action is decomposed into an event sequence which is said

to be derived from that action. Some put and get events indicate that data (vari-

able values) should be communicated, and others indicate that control requests

should be communicated. Put and get events used for control are referred to as

put message and get message events to distinguish them from put and get

events that are used for data. For example, couplers do not make assumptions

as to the state of each instance, so when an instance needs to receive a value

(via a get event), it must request it from the coupler (through an initial put mes-

sage event).

Send Actions
Send Actions indicate that the value of a variable should be sent from one

group of instances to another group of instances, where the sending and receiv-

ing instances are determined by the associated data mapping. Put events are

added to the script of each sending instance, one put event for each receiving

instance. Put events specify which variable (value) at which coupling point should

be sent, and which coupler should receive it.



115

Store Actions
Store Actions indicate that a stored variable should be created (or if it has

already been created by an earlier activation of the Store Action, then its value is

updated) and set to either a constant value or the current value of a model vari-

able. In both cases, the instance must send a request to its coupler indicating

that the stored variable should be created or updated. The value that the stored

variable is set to can originate from three places and results in different events

added to the instances' scripts in each case:

• If the stored variable is to be set to a constant value specified by the scien-

tist, then a put message store request is added to the script of every in-

stance of the model, and the coupler creates and stores the value.

• in the case where the stored variable is to be set to the current value of a

local model variable, then a store request is added to the script of every in-

stance of the model, immediately followed by a put event that sends the

value of the local model variable to the coupler.

• In the case where the stored variable is to be set to the value of a model

variable sent from another instance, no value is sent from the instance and

hence no put event is added since the coupler will receive the value from

the sending instance directly. In this case, only a store request is added,

and it is only added to the scripts of the instances that are specified to re-

ceive the value from the sending instance (as indicated by the data mapping

associated used by the sender).

In all cases, after the store request event (and after the put event if there is one)

in the instance's script, a final get message event is added which causes the in-

stance to wait until the coupler has fulfilled the request and sends a confirmation.

This is important in the case where the a stored variable is to be set to the value



116

of a model variable sent from another instance, which may not have been re-

ceived by the coupler by the time the coupler receives the store request.

Update Actions
Update Actions are used in the coupling description language to indicate

that an update function should be applied to a set of variables, some of which

may be local to the model in which the action is associated, and some of which

may be values from other models. The local variables must be sent to the coupler

that executes the function, and then received after the execution is complete (in

order to reflect any changes in their values in the model). For this reason, one

put event and one get event, for each local variable, is added to the script of

each instance that will carry out the Update Action (the put events are added

such that they occur before the get events). If all of the variables used in an Up-

date Action are local to the model with which the action is associated, then all the

instances of that model carry out the Update Action. If, however, some of the

variables are sent from other model instances, then only the instances that re-

ceive those variables carry out the Update Action (if an instance does not receive

a particular variable that is used in an Update Action, then that instance cannot

perform the action). Along with the set of put and get events, there is also a put

message commence request that is added after the put events which indicates to

the coupler that the local variables have been sent and that the coupler should

begin execution of the function after it has received any other necessary values.

After the coupler has executed the update function, the resulting variable values

are stored temporarily in the coupler and sent back to the instance in response to

each of the instance's get events.

Example Compilation
To illustrate the compilation process, we show how the coupling descrip-

tion in Example 1 of Chapter 5 is compiled into a set of scripts. The coupling de-



117

scription includes two actions, a Send and an Update, as shown in Figure 62.

The data mapping used by the Send Action indicates that there are two in-

stances, and that instance 1 sends to instance 2. Therefore, there are two in-

stances in the coupling, and a script is created for each. The script for instance 1

includes a single put event derived from the Send Action at Coupling Point B, as

shown in Figure 87.

coupling point B: put hnew to instance 2's coupler

Figure 87. Script for instance 1.

The put event indicates that that the value of the hnew variable should be sent

from Coupling Point B in instance 1, to instance 2's coupler. The script for in-

stance 2 includes three events derived from the Update Action at Coupling Point

A, as shown in Figure 88.

coupling point A: put stg to own coupler
coupling point A: put commence request to own coupler
coupling point A: get stg to own coupler

Figure 88. Script for instance 2.

The first event in the script for instance 2 sends the value of the stg variable to its

coupler, and the second event sends a commence request to its coupler indicat-

ing that the coupler can start the function execution whenever it has received the

value of the hnew variable from instance 1. The third event in the script causes

instance 2 to stop and wait until its coupler has completed execution of the up-

date function and returns the final value of the stg variable to the instance.

The result of this compilation process is a set of scripts, one for each in-

stance of each model. These scripts though, simply instruct instances to send

and receive variable values. How these values are communicated and trans-

formed between instances is explained in the next section.



118

Operation of the Runtime System
The way in which a coupled model is started is described next, followed by

an explanation of how couplers provide each of the two services listed earlier.

Starting a Coupled Model
When a coupling is executed in PCICouple, the description is compiled

into scripts, and the controller is started. The controller oversees the execution of

the coupled model and has control over starting and stopping all the other proc-

esses involved. The controller begins by starting each instance and each coupler,

along with the updater for each coupler. The model instances contact the control-

ler, and the controller sends a script to each instance. The couplers also contact

the controller, and a copy of the coupling description is sent to each. Since there

may potentially be a large number of instances and couplers contacting the con-

troller simultaneously, the controller is multithreaded. After receiving its script,

each instance begins its simulation. When a coupling point is reached by an in-

stance, the coupling point's accessor subroutine is invoked. The subroutine iter-

ates through the instance's script, sending and receiving values. The way in

which these values are communicated is explained in the following two sections.

How Couplers Store Values
Couplers store values for instances in two ways in support of Send and

Store Actions. When an instance performs a put event that was derived from a

Send Action, the value is sent from the instance to the coupler that is assigned to

the receiver instance (not to its own assigned coupler, unless both instances are

assigned to the same coupler). The receiving coupler stores the value in a queue

until it is needed, as shown in Figure 89. Instances never send values directly to

other instances; the values are always sent to the coupler that is assigned to the

receiving instance. In the figure, instance A sends a value to the coupler as-

signed to instance B. Put events always execute immediately (asynchronously).



119

instance

coupler 

Figure 89. Instances send values to couplers only.

When an instance performs a put event that was derived from a Store Ac-

tion then the value is sent from the instance to its assigned coupler, and the cou-

pler stores the value, as shown in Figure 90 where instance B sends a value to

its coupler, for storage.

coupler
	 instance B

Figure 90. Couplers store values for their assigned instances.

if the value to be stored was sent from another instance, then when the coupler

receives the store request, it moves the received value from its queue into its

storage. When a stored variable is later used in Send or Update Actions, its value

is sent by the coupler to another coupler or to its updater, respectively.

How Couplers Execute Update Functions
The coupler must be informed when an instance has reached an Update

Action and is ready to execute an update function. This is the purpose of the

commence request. When an instance sends a commence request (via a put

message event), the request is sent to the coupler assigned to the instance. The

instance then sends any of its local variable values to the coupler (via put

events), and then waits to receive the new values from the coupler (blocking).



coupler

120

When a coupler receives a commence request (labeled 1 in Figure 91)

from one of its assigned instances, it first checks to see if all the required variable

values specified as arguments in the Update Action have been received into its

queue. If they have not, the request is placed on a waiting list, and each time

new values are added to the coupler's queue or storage, the waiting list is

checked to see if any pending requests can be satisfied. Once all the necessary

variable values have been received into the coupler's queue, the coupler then

applies the associated data mappings (labeled 2 in Figure 91) in order to create

the actual input values for the update function. These data mappings may cause

values received from multiple instances to be combined in a weighted sum, or

cause values to be scaled according to the weights specified in the data map-

ping.

Figure 91. Function inputs are assembled by the coupler.

After all the inputs to the update function have been created, all the values are

sent to the coupler's updater process. Each coupler has an independent process

called an updater that handles the actual execution of update functions, and is

written in the same language as the functions. The coupler cannot execute up-

date functions itself because the functions may be written in a different program-

ming language than the coupler. The coupler tells the updater which function to

execute, and sends it the input values (labeled 1 in Figure 92).



coupler

121

Figure 92. Couplers use updaters to apply update functions.

The updater applies the update function and sends the values (some of which

may have changed) to the coupler (labeled 2 in Figure 92). The coupler then

stores the updated values temporarily and then sends them to the instance that

originated the commence request (labeled 3 in Figure 92). If a stored variable is

used as an argument to an update function, then value of the stored variable is

updated to reflect the value returned from the function. When a sent variable is

used as an argument to an update function, the value returned by the updater is

discarded since sent variables are considered to be read-only at the destination
inn! iniinn noint. After the instance receives the new values of its local variables, it

resumes its simulation.

Summary

This chapter first explained how each kind of action is decomposed into

scripts, and then described how the runtime system operates. Couplers play a

central role in the execution of coupled models, providing two important services

to model instances: storage of values, and updating of values. The next chapter

presents a series of case studies that put everything together, from describing

the coupling to executing the coupled model.



CHAPTER VII

CASE STUDIES

Introduction
This chapter presents three case studies that demonstrate the InCouple

approach to creating coupled models. In the earlier examples in Chapter 5, the

explanations focused on the process of creating the coupled models and the

physical interactions and spatial distributions were simplified in order to focus on

the presentation of the CDL. In these studies, the latter two of which conducted in

collaboration with hydrologists _ 	approach to creating coupled models is dem-

onstrated as it would be used in a scientific study. Although the interpretation of

the coupled model results is beyond the scope of this work, we nonetheless

show how coupled models can be created in a practical setting. The first study

shows how an existing coupled model can be recreated using our approach, and

evaluates our coupling in terms of the existing coupling. The second study inves-

tigates transport through the stream network of a watershed by coupling together

many instances of the same model. The third case study investigates the interac-

tion between rainfall-runoff and groundwater processes by coupling together two

different models, each of which simulates one of these processes.

122



output: flow velocity in
each stream

123

Case Study: Simulating Stream-Aquifer interaction
Modeling is commonly used in hydrology to study both groundwater and

surfacewater dynamics. These systems were originally modeled separately, re-

sulting in the development of a variety of models that simulate only surfacewater

or only groundwater. As scientists became more interested in comprehensive

simulations, they began to develop ways to study the interaction between these

two systems. In one such effort, Jobson and Harbaugh (1999) coupled the

groundwater-flow model ModFlow (introduced in Example 1 of Chapter 5) to the

surfacewater-flow model DAFlow. DAFlow (Jobson 1989) simulates the move-

ment of water through a network of interconnected channels. It was developed by

the U.S. Geological Society and consists of approximately 700 lines of Fortran

code. An example of a physical system that can be simulated by DAFlow is illus-

trated in Figure 93.

Figure 93. illustration of the physical system simulated by DAFlow.

As a reference for evaluating our approach to model coupling, we com-

pare the coupled model developed by Jobson and Harbaugh, the reference cou-

pling, with a coupled model that we created using our approach, the interface

coupling. The high-level design of the coupling common to both approaches is

presented next, followed by a description of how it is implemented in the refer-

ence coupling and in the interface coupling. We then compare the couplings in

terms of accuracy, efficiency, and design effort.



124

Coupled Model High-Level Design
The purpose of this coupling is to enable ModFlow to account for the

presence of surfacewater in its simulation of groundwater, and to enable DAFlow

to account for the presence of groundwater in its simulation of surfacewater. As

illustrated previously in Figure 57, water flux between these systems occurs

through the unsaturated zone as recharge (downward flux) and baseflow (up-

ward flux). We use the term seepage in this study to describe the movement of

water in both directions, where the sign of the seepage value indicates the direc-

tion of the movement of water). The seepage between the surfacewater channels

and the groundwater aquifer must be calculated and then used to adjust the vol-

ume of water in each. We first explain how the seepage is calculated, and what

variables in each model are used in the calculation. We then explain how the cal-

culated seepage value is used to adjust the values of the relevant state of vari-

ables of each model.

Calculating Seepage

The calculation of the seepage is based on both the state of the surface-

water and the state of the groundwater, so we must establish an association be-

tween the channels in the stream network and groundwater beneath them. Mod-

Flow abstracts the aquifer as a regular grid, and DAFlow abstracts the channel

network as a network of branches connected by junctions. Each branch is di-

vided into one or more segments where each segment is called a sutrreach.

Nodes indicate the start and end of each subreach. The subreaches of each

branch are delineated such that each subreach lies over a single grid cell. This is

illustrated in Figure 94 (adapted from Jobson and liarbaugh 1999).



Figure 94. Each subreach is associated with a single grid cell.

The calculation of seepage therefore involves determining the seepage between

each subreach and the grid cell beneath it. The calculation of the seepage be-

tween a subreach and a grid cell is given by the following equation:

Sep = Kc W (Hd-Y-Be)/131

where Sep is the flow from the aquifer to the stream through the streambed, Ke is

the hydraulic conductivity of the streambed, L is the length of the subreach, W is

the average width of the subreach, Hd is the head of the aquifer, Y is the average

depth of the subreach, Be is the average elevation of the streambed, and Bt is the

thickness of the streambed. These are illustrated in Figure 95 (adapted from

Jobson and Harbaugh 1999).

125

0



stream

water table

head in
aquifer( yd)	 elevation of

streambed
(Be)

datum	 V

width (W)

126

depth

thickness
(13t) l streambed

bottom
elevation

(Be)

Figure 95. Physical quantities that influence seepage.

Hd is represented by the hnew variable in ModFlow, and L is represented by the x

variable in DAFlow. The other variables though, Ke, W, Y, Be, and Bt are not in-

cluded in either model because these quantities are only necessary to simulate

the seepage between surfacewater and groundwater, but not simulate either in-

dividually. Therefore, these additional characteristics of each subreach must ei-

ther be calculated or supplied to the coupled model in addition to the typical

model inputs. The variables W and Y are calculated from the following variables

in DAFlow: the subreach velocity, v, two cross sectional area values, ao and al ,

an exponent of area value, a2, and two equation coefficients related to the

stream width, wl and w2. The terms Be, Bt and Kc are constants supplied to the

coupled model. After the seepage is calculated, it is used to adjust the state of

each model.

The calculated seepage is used to adjust the volume of water in the aqui-

fer through two variables in ModFlow, rhs and hoof. These variables are arrays in

which each element is associated with a cell in the grid. They are terms that are

used in the equation solved by ModFlow, but conceptually represent the introduc-



127

tion or removal of water from each cell. The seepage is converted into the appro-

priate units and is used to affect these variables.

The seepage is used to adjust the new flow at each junction, represented

by DAFIow's trb variable, with units ft3/s. Each junction in DAFlow may introduce

water into a subreach, or divert water before it reaches the downstream

subreach. Each element in the trb array represents the new flow at a different

junction in the network. So, to add the seepage to a subreach is to add the seep-

age to the upstream junction of the subreach.

The seepage is calculated and used to adjust the state of each model pe-

riodically throughout their simulations. ModFlow uses a time step length that is

generally much longer than the step length used in DAFlow, and as a result, the

DAFlow model may need to simulate several smaller time steps for each longer

ModFlow time step. In such a case, the seepage is calculated and used to adjust

the state of each model once on each of the longer time steps.

We have explained how the seepage is calculated, which variables are

needed from each model to perform the calculation, and which variables in each

model are updated as a result of the calculation. We have also described how

the models are spatially mapped and coordinated temporally. Next, we explain

how this is implemented in the reference coupling, followed by an explanation of

how it is implemented in the interface coupling.

Implementation of the Reference Coupling
The reference coupling was implemented using the monolithic approach

discussed in Chapter 2. The DAFlow source code was divided into subroutines

and inserted into the ModFlow model code to create a single model code. Addi-

tional source code was then added that calculates the seepage and updates the

values of the relevant variables. Figure 96 (adapted from Jobson and Harbaugh



STARTDALiDAF1AL

PRTFLW

LUBDSV2

--10-1__UBUDSV

Return

128

1999) shows how the DAFIow model code was decomposed and integrated into

the ModFlow model code. In this figure, edges indicate which DAFlow subrou-

tines are invoked at which locations within ModFlow.

Mod Flow	 DAFlow

Figure 96. How the model codes were integrated, arrows indicate function calls_



129

The DAFIow model code was divided into four subroutines (their names

are prefixed by "DAF"), each of which is a wrapper around one or more existing

subroutines in DAFlow. On each time step in ModFlow, the groundwater flow

equations are iteratively formulated and approximated. As part of the formulate

step, ModFlow invokes the DAF1FM subroutine which carries out some number

of DAFlow time steps. At the start of each of these time steps, the seepage is

calculated in the SEEP subroutine called by DAF1FM and the value of the trb

variable is adjusted accordingly. Then as part of the branch loop within each time

step, the flow in each branch is simulated by the ROUTE subroutine. After each

branch is routed, the LIMSEEP subroutine is invoked which limits the amount of

seepage in case there is not sufficient water in the stream. Since the DAF1FM

subroutine may be called several times on each time step of ModFlow, the state

of DAFlow is saved in the DAF1AD subroutine and restored at the start of the

DAF1FM subroutine, allowing sets of time steps to be re-simulated in DAFlow.

To calculate the seepage, the SEEP subroutine must know which stream

channels are associated with which groundwater grid cells. This is specified by

the scientist through an additional model input file which lists each subreach and

which grid cell is beneath it. The additional physical characteristics of each

subreach needed for the seepage calculation, streambed thickness, bottom ele-

vation, and hydraulic conductivity, are also specified in this file for each subreach.

Since ModFlow typically uses time step lengths on the order of days or

weeks, while DAFlow uses time steps on the order of hours or days, the

DAF1FM subroutine is therefore capable of simulating several time steps and in-

cludes the time step loop. In this way, if ModFlow uses a time step length of m,

and DAFIow uses time step length of d, where d< m, then m must be evenly di-

visible by d, and the number of DAFlow time steps simulated s, is equal to m / d.



130

Implementation of the Interface Coupling

The reference coupling was designed to fully integrate the DAFIow model

into the ModFlow model in a general way so that it could be used in a variety of

scenarios and support different dynamics between the models, including all three

cases shown previously in Figure 58. Since we are interested in creating this

coupling to specifically compare it to the reference model, we did not duplicate

the capabilities of the reference coupling exactly, just enough to reproduce the

results of one of the example applications included in the documentation for the

reference coupling. We point out the simplifications made in our discussion and

explain how each could alternatively be implemented exactly as in the reference

model. The coupling description is shown in Figure 97. At the start of each time

step, ModFlow sends the value of the hnew variable from Coupling Point A to

Coupling Point D in DAFIow. Since there is only one instance of each model in

this coupling, the default 1-to-1 data mapping can be used. The custom update

function calcSeepage is applied at the destination coupling point and calculates

the seepage. The subroutine is based on the SEEP subroutine used in the refer-

ence coupling and calculates three values, each of which is saved in a different

stored variable. The seepage, represented as a flow rate, is stored in the sep

stored variable, and the seepage, represented in terms of ModFlow 's cell vol-

umes, is stored in the rhs and hoof stored variables. All three stored variables are

initialized at Coupling Point C in DAFIow. The source code for the calcSeepage

subroutine is shown in Figure 98.



I  Read& Prepare

[Coupling▪ Point C
q Store rhs
o Store hcof
El Store sep 

;A:t#Op:401

—1
Coupling•  Point D
;di Update calcSeepagea

1 .prep 
4	

Coupling Point E
Update addToTributaryQ

114s0i;LOo;

Itiad & Prepare

Time 	 e`ep

Coupling Point A
4 Send HNEW
I:1 Store rhs
Ei Stare hcof

r,14.iirtlindl Point F%

A Update removeFrornTribtataryfi
- 4 Send rhs
i 4 Send hcof 

.644

Clean Up

End 

131

Figure 97. The coupling description as it appears in PC/Couple.

In an effort to implement the interface coupling in a manner similar to the

reference coupling, the mapping of grid cells to subreaches is embedded within

the subroutine (the first loop in Figure 98). It could alternatively be accomplished

using data mappings, or by reading the mapping in from a file as in the reference

coupling.



132

subroutine calcSeepoge(instanceID,hnew,rhs,hcoftvin,x,ao,a1,02,w1,w2,sep)

double precision hnew(39,13,1)

integer instanceIO,nrw(15,13),ncl(15,13),n,i
real	 rhs(15,13),hcof(15,13),vin(15,13),x(15,13),ao(15,13)

real	 al(15,13),02(15,13),w1(15,13),w2(15,13),hd

real	 bel(15,13),bth(15,13),cnd(15,13),vol,q,w,dpt,ar

real	 sep(15),qstr(15,13),stage(15,13),cstr(15,13)

n = 1
do 10 i=1,15

bel(i,n) = 46.00
bth(i,n)	 1.00
cnd(i,n) = 3.70E-04
nrw(i,n) = i-1
ncl(i,n) = 20
rhs(i,n) = 0
hcof(i,n) . 0

sep(i) = 0
qstr(i,n) = 0

stage(i,n) = 0
cstr(i,n) - 0

10 continue

do 20 1.1,13
vol = vin(i,n) / (x(i+1,n) - x(i,n))
q = ((vol - ao(i,n)) / 01(i,n))**(1.0 / a2(i,n))
w = w1(i,n) * (q**w2(i,n))

dpt = vol 1 w
hd = hnew( ncl(i+1,n), nrw(i+1,n), 1 )
hd = hd-bel(i+1,n) 	 dpt

or = (w+2.0*hd) * (x(i+1,n)-x(i,n))
cstr(i+1,n)	 cnd(i+1,n) * ar / bth(i+1,n)
sep(i+1) = cstr(i+1,n) * hd
stage(i+1,n)	 bel(i+1,n) + dpt
qstr(i+1,n) - 0.0

rhs(i+1,n) = rhs(i+1,n) - stage(i+1,n) * cstr(i+1,n) + qstr(i+1,n)

hcof(i+1,n) = hcof(i+1,n) + cstr(i+1,n)

20 continue
end

Figure 98. The source code for the calcSeepage subroutine.

The calcSeepage function has been simplified slightly such that some situations,

such as when the surfacewater has dried out, are not accounted for. This func-

tion also assumes that there is only a single branch in the stream network. Addi-

tional modifications to the function could remove these limitations but were not

necessary for our case study.



133

The calculated seepage value, sep, is added to the new tributary flow trb

in DAFlow at Coupling Point E, before the branch loop. After the branch loop, the

seepage is removed from the tributary flow because this value is used on the

next iteration of the time step loop, and if not removed, the added seepage will

be compounded on the next iteration. The source code for the addToTributary

and remove From Tributary functions is shown in Figure 99.

subroutine addToTributary(instanceID,trb,sep)
integer instanceID,i
real	 trb(25,20),sep(15)
do 10 i=1,15

trb(i,1) = trb(i,1)	 sep(i)
10 continue

end

subroutine removeFromTributory(instoncelD,trb,sep)

integer instanceID,i
real	 trb(25,20), sep(15)
do 10 i=1,15

trb(i,1) = trb(i,1) - sep(i)
10 continue

end

Figure 99. The source code for the tributary functions.

We simplify the coupling in that the LIMSEEP is not performed, since it did not

have an effect in the example application. This could easily be incorporated by

adding another update function.

The seepage values that are calculated by the calcSeepage update func-

tion that are to be used to adjust the state of ModFlow, rhs and hcof, are sent

from Coupling Point F in DAFlow and received at Coupling Point A in ModFlow.

The data mapping used by the Send Action is the Reverse 1-to-1 mapping in

which instance 2 sends to instance 1. Since the rhs and hcof values need to be

used at Coupling Point 6, they are stored when they are received at Coupling

Point A. At Coupling Point B, the custom update function adjVolume is invoked



134

which adjusts the rhs and hcof variables based on the stored values that bear the

same name. The source code for the adjVolume function is shown in Figure 100.

subroutine adjustVolume(instanceID,rhs,hcof,seeprhs,seephcof)

integer instanceID,i,n

real	 rhs(39,13,1),hcof(39,13,1),seeprhs(15),seephcof(15)

real	 bel(15,13)07th(15,13),cnd(15,13)
integer nly(15,13),nrw(15,13),ncl(15,13)

n = 1
do 10 i=2,14

bel(i,n) = 46.00
bth(i,n) = 1.00
cnd(i,n) - 3.70E-04
nly(i,n) = 1
nrw(i,n) = i-1

nly (i,n) = 20

10 continue

do 20 i=1,13
rhs( ncl(i+1,n), nrw(i+1,n), 1 ) =

rhs( ncl(i+1,n), nrw(i+1,n), 1 ) + seeprhs(i+1)

hcof( ncl(i+1,n), nrw(i+1,n), 1 ) =
hcof( ncl(i+1,n), nrw(i+1,n), 1 ) - seephcof(i+1)

20 continue

end

Figure 100. The source code of the adjVolume function.

Comparing the coupling description to the flow chart of the reference implemen-

tation in Figure 96, it can be seen that the reference implementation invokes the

entire time step loop multiple times, while in the InCouple implementation, the

models communicate within the DAFlow time step loop. This is acceptable be-

cause both models use the same time step length in the example application. If

however, we wish to execute several time steps in DAFlow for each time step in

ModFlow, the activation frequencies of the actions in DAFlow would have to be

increased accordingly.

Note that since the interface coupling was implemented to closely follow

the reference coupling, and the reference coupling was designed in for the mono-



135

lithic approach, it may not be the ideal way to design the interface coupling and

that a different design that takes advantage of the data mapping capabilities of

the CDL may be more ideal. Next we present the study site to which both cou-

pled models are applied.

The Study Site
The user documentation for the reference coupling includes three example

applications. We compare the reference coupling to the interface coupling as

each is applied to the study site used in the first example. The example applica-

tion site consists of an idealized unconfined aquifer with a stream flowing north to

south as shown in Figure 101 (adapted from Jobson and Harbaugh 1999).

Columns
node

junction

1111111111111111111i1111111111111111111

391	 5	 10	 15	 25	 30	 35

111111111111101110011111111111111111

111111111111111111P1111011111111111

11111111M110111101M1111111111111111

1111111111111111111011111111111111111

11111111111111111411111111111111111

111111111IMMIIM11111111111111111

1111M111111111111011111111111111110

111H111111111111111011111111111111111

M1111111111111111011111111IIIMM

1111111111111111110111111011111111

11111111111111111111111111111111111111

8,000 feet

Figure 101. The schematic for example application 1.

1

2

3

4

5

6

cc 7

8

9

10

11

12

13

A



136

The width of the aquifer perpendicular to the stream is 4,000 ft on each side,

while the length parallel to the stream is 13,000 ft. The aquifer was represented

in ModFlow by a grid with 39 columns and 13 rows. Each cell was 1000 ft long

and 200 ft wide, except for cells in columns 1 and 39 which were 300 ft wide. The

stream ran vertically through the center of column 20. The annual cycle was rep-

resented in Modflow by 24 stress periods each 15 days long, and each stress pe-

riod was divided into two 7.5 day time steps. ModFlow is parameterized to intro-

duce 1.5 feet of recharge evenly across the aquifer. The daily recharge rate has

a sinusoidal distribution for the first 180 days, and is zero for the remaining 180

days. Additional parameters and assumptions are given in the user documenta-

tion.

Evaluation of the Interface Coupling

We evaluate the interface coupling in terms of the reference coupling in

three respects: accuracy, efficiency, and effort. We reproduced the parameter in-

put files for the reference coupling according to its documentation, and created

the input files for each model in the interface coupling based on these input files.

The accuracy of the reference coupling was evaluated by the original

authors (with respect to known analytical solutions) and was found to be accept-

able. For this reason, the output from the reference coupling was used as a basis

of comparison for the interface approach. After executing each coupled model,

their output was found to be identical, indicating that the interface coupling can

provide sufficient accuracy (at least in some cases). Figures 102 and 103 com-

pare the output of the two coupled models. The simulated streamflow at node 14

as a function of time is compared in Figure 102.



25050

— reference coupling
+ interface coupling 

300 350

250 300 350

— reference coupling
IL interface coupling

Figure 102. Simulated streamflow at node 14 for each coupling.

Profiles of the aquifer head in row 7 on the right side of the stream on day 177,

near the end of the recharge period are compared in Figure 103.

137

Figure 103. Comparison of aquifer head at a well located in row 7, column 10.

Efficiency was characterized by both time and bandwidth, although the band-

width metric of the interface coupling does not have a corresponding metric with

which it can be compared in the reference coupling. Time was the wall-clock time

required by each coupling to complete its simulation. The reference model was

timed using the unix time command, and the interface coupling execution time



138

was provided by comparing time stamps produced by PCICouple (this is because

the interface coupling cannot be executed from a command line, so the time

command could not be used). Each coupling was executed 10 times with no

screen I/O on a 1.5 GHz PowerPC G4 computer. In the interface coupling, both

models were executing on the same machine and shared the same coupler

process. The bandwidth consumed by the interface coupling was determined

from internal profiling performed by PCICouple. Table 6 shows the results of the

coupled model executions.

Table 6. Time and bandwidth measurements of each coupled model.

Execution Time (sec)
mean / std dev

Bytes Sent & Received
(MB)

Reference Coupling 1.03 / 0.04 -

interface Coupling 70.4 / 3.5 run, 8.1 / 0.7 startup 34.2 sent, 20.2 received

The execution time of the reference coupling is much shorter, as would be ex-

pected since the reference coupling is a single process. 11.5% of the execution

time in the interface coupling is due to the initial startup cost involved in starting

the controller, coupler, updater, and two model instances. There is a penalty to be

paid for the fast prototyping capability and clearly the coupling must be tuned for

production runs. The bandwidth consumed by the interface coupling is a function

of the size of the variables that are exchanged and the how often they are used

in update functions, since each model variable used in an update function must

be communicated a total of four times: from the model instance to the coupler

and then to the updater, and back again. The overhead for the control messages

is very low, as is the overhead for each message header.

The third metric of comparison is the design effort of the coupling which

involves the difficulty involved in designing and implementing the coupled model.

This is largely a subjective question as even qualitative measures such as devel-

opment time are difficult to measure reliably. There are differences though in the



139

two strategies from the scientist's perspective. The interface approach did not re-

quire the scientist to edit the source code of the models once the PCIs had been

created. This saved the scientist from the considerable overhead of learning the

model code (and the language itself in which the model is written). Instead, s/he

worked only in terms of the model PCIs.

Case Study: Watershed-wide Surtacewater Transport3
Water quality is a rising concern across the country and throughout the

world and a common use of modeling in the field of hydrology is in the assess-

ment of water quality in which scientists study how pollutants are transported

through surfacewater and groundwater systems. Transport models can also be

used to study how naturally-occurring nutrients move through water systems.

One site at which a good deal of investigation has been conducted is the H. J.

Andrews Experimental Forest. The Andrews Forest is situated in the western

Cascade Range of Oregon in the 15,800-acre drainage basin of Lookout Creek,

a tributary of Blue River and the McKenzie River. Elevation ranges from 1,350

feet to 5,340 feet. The Andrews Forest is broadly representative of the rugged

mountainous landscape of the Pacific Northwest and contains excellent exam-

ples of the region's forest, wildlife and stream ecosystems. Figure 104 shows the

gaging station at Mack Creek where stream data is collected.

Figure 104. Mack Creek gaging station in the Andrews Experimental Forest.

3 in collaboration with Roy Haggerty, Oregon State University



140

Long-term field experiments and measurement programs have focused on cli-

mate dynamics, streamflow, water quality, and vegetation succession. Currently

researchers are working to develop concepts and tools needed to predict effects

of natural disturbance, land use, and climate change on ecosystem structure,

function, and species composition.

In a recent study (Gooseff et al. 2004), researchers conducted tracer tests

in four streams in the Andrews Forest and compared the empirical results with

simulation results. In tracer tests, a measured concentration of a specific sub-

stance is introduced into a stream, and then the amount of concentration that

passes through a downstream point in that stream is measured over time. The

resulting concentration timeseries is called a breakthrough curve. The study

compared the accuracy of two models with respect to how well they could repro-

duce the tracer tests in each of the streams. Both the models used, STAMMT-L

and OTIS, simulate transport through a single, homogeneous steam, requiring

that each of the four streams be simulated individually. If, however, the research-

ers wanted to simulate transport through the entire stream network within the An-

drews Forest, it would be a time-consuming and error-prone process to simulate

each of the 347 stream segments individually. In a related study (Lindgren,

Destouni, and Miller, 2004), scientists avoided the individual simulations by creat-

ing a new model that is capable of simulating transport through an entire water-

shed. The task of developing a new model though, is time-consuming, difficult,

and requires a significant upfront investment of resources. In our approach, we

reuse existing models to quickly create the watershed-wide model. This coupled

model could then be coupled to another model.

In this case study we show how a coupled model can be created by cou-

pling together many instances of the STAMMT-L model to support the simulation

of transport through a complete watershed. We also show how the preparation of

data mappings can be automated through the use of a Geographic Information



output: concentration
timeseries

141

System (GIS). An overview of the coupling is described next. Preparation of the

data mapping is then explained, followed by the coupling description. A discus-

sion of initial results is then presented.

Coupled Model Overview
STAMMT-L simulates the transport of a substance along a single, one-

dimensional stream. As input, the model is given a timeseries of concentrations

that describe the introduction of the substance into the upstream end of a stream.

As output, the model produces a breakthrough curve. This is illustrated in Figure

105.

Figure 105. Illustration of the physical system simulated by STAMMT-L.

The time step length is typically on the order of minutes, and the period of time

simulated varies from weeks to many years.

Since STAMMT-L is a lumped-parameter model, each stream in the wa-

tershed is simulated by a different instance of STAMMT-L. The input concentra-

tion timeseries for the outlying streams (those with no upstream stream) are

specified in the model input files, and the input concentration timeseries for the

inner streams (those that are connected to one or more upstream streams) use

the sum of the output breakthrough curves of its connected upstream streams. All

the instances, except for the instance simulating the downstream-most stream,

send their output timeseries to another instance. This is shown in Figure 106.

This is conceptually similar to a dataflow style of computation, where each in-



each branch is simulated
by a different instance

stance can be thought of as transforming a set of inputs to create a set of out-

puts.

142

Figure 106. The physical stream network and its abstraction.

Each of the streams has different characteristics, which must be reflected in the

simulations. In Example 2 in Chapter 5, each instance was told to use a different

input file (via Update Actions) and the scientist prepared one input file for each

instance. In this case, rather than create an individual input file for each instance,

we use a different approach, to demonstrate the flexibility of update functions, in

which all the instances read the same input file and the variables that describe

the unique characteristics of a stream are changed individually within the model

via Update Actions. We wrote a custom update function called setParameterVal-

ues that accepts a set of variables as input and sets each one to a value that is

read from an input file called a value list. The value list indicates what value

should be assigned to each variable for each instance. The next section de-

scribes how the value lists used by this update function are automatically gener-

ated through the use of a GIS.

The Coupled Model Inputs
A typical input file for STAMMT-L is shown in Figure 107. The model input

parameter values are shown on the left in the figure, and a short description of

each is given on the right.



143

100	 ni

50	 nm

500	 number of time steps (nt)

5	 nx (reverse sim only)

306.400D+00	 branch length (L)

300.000D+00	 distance to where conc is observed (xx)

0.102	 dispersion (DL)

0.118	 water velocity (vx)

1.00D+00	 Rm

15.02D+00	 btot

1.130+00	 dilute

1	 Ltime

0	 Lz

1000	 start time in seconds (Tmin)

20000	 end time in seconds (Tmax)

0	 is

1	 bc_form

3	 bc_type

11	 how long the conc is added to branch (±p)

0.00+00	 disc

5000	 kmax

1.0D-04	 relerr should be around D-05

1	 opt

0	 ocm

1	 lcom

8	 mass_xfer_type

1.30	 ln(rate) -26.4922D+00

7.05D-08	 vary

2.50D-05	 ! vary

Figure 107_ The input file used by STAMMT-L.

The parameters that are unique to each instance are the ones that describe the

physical characteristics of each stream, such as its length. It is these parameters

that must be included in the value list and given to each instance. Table 7 shows

which parameters are the same for all the instances, and which ones are

instance-specific. Collecting these ten parameters for possibly hundreds of

streams in a watershed is typically prohibitively expensive and rarely done in

practice. For this reason, rather than measure these parameters for every stream

in the watershed, they are only measured for a representative group of streams

from which the parameters for all the streams can be estimated.



144

Table 7. The input parameters for STAMMT-L.

General parameters that are the same for
all instances

Physical characteristic parameters that are
unique for each instance

ni - number of input concentrations vx - velocity

nt - number of simulation times alphaL- longitudinal dispersivity

Rm - retardation factor for mobile zone btot - total capacity coefficient

Ltime - flag for determining solution times dilute - dilution factor for concentrations

Lz - flag for time step increment pail - vary

Tmin - minimum simulation time par2 - vary

Tmax - maximum simulation time par3 - vary

is - initial conditions flag bc_form - boundary condition form

bc_type - boundary condition flag length - length of stream

tp - duration of concentration pulse xx - observation point

disc - maximum discontinuity in laplace Non-physical characteristic parameters
that are unique for each instancekmax - maximum number of iterations of laplace

relerr - relative error desired for laplace outconc - output filename for concentations

opt - flag for optimization outmass - output filename for mass

ocm - flag for optimization

icorn - flag for optimization

massxfertype - diffusion coefficient flag

In Spring of 2003, the parameters shown on the top-right in Table 7 were col-

lected (Ninnemann 2004) for each general classification of stream size, or order.

Lower order streams are smaller, while higher order streams are larger. The col-

lected parameters are shown in Table 8.

Table 8. Representative properties of streams of different sizes.

Order vx alphaL Btot a min_ a_max slope dilute

1 0.05 0.49 12 6.9d-8 4.0d-5 -2.0 1.0

2 0.053 0.507 22 7.05d-8 2.5d-5 -2.0 1.12

0.179 1.09 176.5 4.6d-8 1.25d-4 -1.37 1.68

4 0.45 1.28 80.2 2 Od-7 2.58d-4 -1.34 2.72

5 0.57 1.36 156 1.9d-7 8.1d-4 -1.31 3.18



145

The parameters listed in the table can be used to determine the values for the

upper 7 parameters listed on the right of Table 7, out of the 12 instance-specific

parameters. Two of the remaining 5 parameters are the output filenames used by

each instance (since all the instances can't write to the same file). Each instance

uses the names Xoutconc.txt and Xoutmass.txt, where the X is replaced with the

instance number, resulting in a unique set of output filenames for each instance

(these are set via the make Unique update function, not the setParameterValues

function). The instance-unique values for the remaining 3 parameters are taken

from a GIS. A great deal of spatial data about the Andrews Forest is available on-

line4 , including both geographic and ecological information. The stream network

and forest boundary data can be downloaded from the Internet and imported into

the ArcMap GIS, shown in Figure 108.

Figure 108. The stream network and forest boundary in ArcMap.

4 http://www.fsi.orsteduAter/



146

In a GIS, each spatial unit (line, polygon, etc.) has a number of attributes associ-

ated with it such as its length or area. These attributes are stored in attribute ta-

bles in ArcMap. The attribute table included with the downloaded spatial data in-

cluded the length_ and order of each stream. Since the order of each stream is

present in the attribute table, the appropriate values for these 7 parameters from

Table 7 can be easily matched to each stream.

The remaining 3 instance-unique parameters can be determined from the

attribute table. The xx parameter is the observation point, which is the distance

from the point where the concentration is introduced into the stream, to the point

where the breakthrough curve is calculated. Since we want to calculate the

breakthrough curve at the very end of each stream (so that it can be used as in-

put for the downstream stream), the xx parameter is set equal to the length of

each stream as given in the attribute table. The user manual for STAMMT-L sug-

gests that the length parameter be set equal to twice the value of xx. The final

instance-specific parameter is be form, which sets the kind of upstream bound-

ary condition to use in the simulation. Three forms are supported by the model,

but two are used in this coupling. The streams along the edges of the network,

that have no upstream stream, should set the be form equal to 2, indicating that

the model should introduce a concentration pulse as the input concentration to

these streams, while the inner streams should set the be form equal to 3, indicat-

ing that the model should read a breakthrough curve from a file and use that as

the input concentration. In the coupling though, the instances that have be form

set to 3 will initially read in a dummy input file, and then set the variable equal to

the breakthrough curve it receives from the upstream streams. Now that all the

parameters for all the instances have been identified, the next step is to create

the value list input file that is used by the setParameterValues update function.

The value list input file was created through the use of a custom ArcMap

. script that operates on the attribute table. Since the attribute table only describes



0.507 22 0.000000 0.000025 2 1.12 3

0.507 22	 0.000000 0.000025 2	 1.12
1.34 2.721.28	 80.2	 0.000000	 0.000258

0.00000080.2 0.000258

0.000000 0.000125c 	 1.68 MIL
Walla MEAN=

176.51	 0.000000	 0.000125	 1.37

0.05 12	 0.000000	 0.00004
12	 0.000000	 0.00004502.604	 0.05

22	 0.000000	 0.000025
12 0.000000 0.00004

0.05 0.49 MEE 0.000040.000000
1111MIIIEI	 Mlle

2 3

lit 4. 21	 .5houv:	 :$ cords (0 8J 104$ Se tecLJ

147

the length of each stream and how they are connected, the additional attributes

of each stream that are unique to each instance (vx, alphaL, etc.) must be added

to the table. A new attribute was added to the attribute table for each parameter,

and its value for each spatial unit was set according to the data in Table 7. For

example, to . set the be form attribute for all the spatial units, the user would tell

ArcMap to set the be form equal to 2 for all the units that are order 1, and set the

be form equal to 3 for all the units that are of order greater than 1. This way the
values for all the additional attributes can be quickly set. The extended attribute

table, along with all the correct values for each stream, is shown in Figure 109.

Figure 109. The extended attribute table for the stream network in ArcMap.

All of the attributes visible in the figure were added to the original data except for

the length attribute. By doing this, all the instance-specific parameters for every

instance are listed in the table, so creating the value list input file is simply a mat-

ter of translating the table into the value list input file format. This can be easily

accomplished through the use of the scripting capability of ArcMap. Figure 110

shows a script written in Visual Basic (ArcMap's scripting language) that steps



148

through each stream in the attribute table and adds the necessary lines to a new

value list file.

Public Sub createValueList()

Dim pMxDoc As IMxDocument

Dim pMap As IMap

Dim FeatureClassiable As liable

Dim pRow As IRow

Dim pFeatureLayer As IFeatureLayer

Dim pFeatureSelection As IFeatureSelection

Dim items As IEnumIDs

Dim pLength,pOrder,pVX,pBtat,pDisp,pDilute,pSlope,pAMin,pAMax,p0bsPoint As Double

Dim rowCount, pBCForm As Integer

Dim pOutMass, pOutConc As String

Set pMxDoc = Application.Document

Set pMap pMxDoc.FocusMap

Set pActiveView = pMap

If Not TypeOf pMap.Layer(0) Is IFeatureLayer Then Exit Sub

Set pFeatureLayer pMap,Loyer(0)

Set pFeatureSelection = pFeatureLayer

Set FeatureClassTable = pFeatureLayer.FeatureClass

Set items = pFeatureSelection.SelectionSet.IDs

rowCount = pFeatureSelection.SelectionSet.Count

Open "value_list" & rowCount & ".txt" For Output As #1

headerLine = Format(Now, "mm/dd/yyyy")

Print #1, "# Created by ArcMap on " & headerLine

items.Reset

For i = 1 To rowCount

Set pRow = FeatureClassTable.GetRow(items.Next)

thislD = pRow.Wilue(PRow.Fields.FindField("FNODE_"))

pLength pRow.Value(pRow.Fields.FindField("Length"))

pVX pRow.Value(pRow.Fields.FindField("vx"))

pBtot = pRow.Value(pRow.Fields.FindField("Btot"))

pDisp = pRow.Value(pRow.Fields.FindField("alphaL"))

pDilute = pRow.Value(pRow.Fields.FindField("dilute"))

pSlope = pRow.Value(pRow.Fields.FindField("stope"))

pAMin = pRow.Value(pRow.Fields.FindField("aMin"))

pAMax pRow.Value(pRow.Fields.FindField("aMax"))

pBCForm = pRow.Value(pRow.Fields.FindField("bc_form"))

Print #1, thisID & " " & (pLength * 2) & " " & pVX & " " & pBtot & " " & pDisp & "

" & pDilute & " " & pSlope & " " & pAMin & " " & pAMax & " " & pBCForm & " " & pLength

Next i

Close #1

End Sub

Figure 110. Script used to generate the value list.



# Created by ArcMap on 04/20/2006
1 2394.274 0.050 12.0 0.490 1.00 2.00 0.0000000690 0.000040 2 1197.137

21 1521.257 0.179 176.5 1.090 1.68 1.37 0.0000000460 0.000125 3 760.6287
4 2049.115 0.050 12.0 0.490 1.00 2.00 0.0000000690 0.000040 2 1024.557

11 1838.221 0.053 22.0 0.507 1.12 2.00 0.0000000705 0.000025 3 919.1105
18 1099.461 0.053 22.0 0.507 1.12 2.00 0.0000000705 0.000025 3 549.7303
14 801.4677 0.053 22.0 0.507 1.12 2.00 0.0000000705 0.000025 3 400.7339

3 2081.622 0.050 12.0 0.490 1.00 2.00 0.0000000690 0.000040 2 1040.811
10 523.3697 0.053 22.0 0.507 1.12 2.00 0.0000000705 0.000025 3 261.6848
6 617.5225 0.050 12.0 0.490 1.00 2.00 0.0000000690 0.000040 2 308.7613
5 1990.454 0.050 12.0 0.490 1.00 2.00 0.0000000690 0.000040 2 995.2269

19 2019.725 0.050 12.0 0.490 1.00 2.00 0.0000000690 0.000040 2 1009.862
2 936.2112 0.050 12.0 0.490 1.00 2.00 0.0000000690 0.000040 2 468.1056
7 939.5913 0.053 22.0 0.507 1.12 2.00 0.0000000705 0.000025 3 469.7957
9 190.3888 0.053 22.0 0.507 1.12 2.00 0.0000000705 0.000025 3 95.19439

12 885.7083 0.050 12.0 0.490 1.00 2.00 0.0000000690 0.000040 2 442.8541
16 849.5131 0.053 22.0 0.507 1.12 2.00 0.0000000705 0.000025 3 424.7565
20 1803.333 0.050 12.0 0.490 1.00 2.00 0.0000000690 0.000040 2 901.6663

149

The parameter list generated by the above ArcMap script is shown in Figure 111.

The list includes parameter values for 10 variables, for 17 instances.

Figure 111. The generated parameter list (showing values for only 17 instances).

This section explained how a GIS can be used to automate the process of creat-

ing value lists that assign unique characteristics to individual instances. The next

section describes the coupling description, and how these value lists are used

therein.

The Coupling Description
As described earlier, each instance must receive an input concentration

timeseries from the instances that simulate the upstream streams (if any), and

then send their output breakthrough curves to the instance that simulates the

downstream stream (if any). The input timeseries is stored in the cdi variable, and

the output breakthrough curve is stored in the c variable. Both are arrays of type

real. STAMMT-L does not use a specific system of units and the input values

used are assumed to be consistent with each other. The exchange of the time-

series variables is accomplished through a Send Action and an Update Action, as

shown in the coupling description in Figure 112.



150

,__---	 -----___
C_ STAMMT-1_ _..)

*
'Read file List
4 Update maketinique0
A Update makelinique0

Setup Batch i

I

Read Parameters
..11 Update seiPararneter

#
Program Setup )

10
Coupling Point A
alE Update setReal0

Figure 112. The coupling description.

The Send Action sends the c variable from Coupling Point B to 'Coupling Point A,

according to the data mapping discussed next. This value is then used at Cou-

pling Point A in an Update Action that applies the setRea/ function to set the

value of the input timeseries variable, cdi, equal to the value of the received out-

put timeseries variable, c. Both actions occur at an activation frequency of 1.

Instance-unique values are assigned to the instances via the Update Action at

the "Read Parameters" block which applies the custom function setParameter-

Values. The update actions at the "Read File List" block apply the makeUnique

update function to the outconc and outmass variables which store the output file-

names.

The Send Action uses a data mapping to describe which instances should

send the c variable, and which should receive it. In the examples thus far, these



151

mappings have been short and simple, but in this case, we must describe the to-

pology of hundreds of streams, a task which can be automated through the use

of a GIS, in much the same way as the value lists were created earlier.

The attribute table shown in Figure 109 describes the topology of the

stream network through three attributes: objectid, tnode and fnode (not visible

in the figure). For each stream in the table, the objectid is a unique number as-

signed to each stream (pre-assigned in the downloaded dataset), and the fnode_

and tnode are the object IDs of the upstream and downstream streams, respec-

tively. This information is precisely what is needed to create the data mapping,

since the data mapping is what describes the topology of (communication be-

tween) instances in the coupled model. The script in Figure 113 creates the data

mapping input file using these attributes.

Public Sub createDataMapping()

Dim pMxDoc As IMxDocument, pMap As IMap, pRow As IRow, items As IEnumIDs

Dim FeatureClassTable As liable, pFeatureLayer As IFeatureLayer

Dim pFeatureSelection As IFeatureSelection

Set pMxDoc Application.Document

Set pMap = pMxDoc.FocusMap

Set pActiveview = pMap

If Not TypeOf pMap.Layer(0) Is IFeatureLayer Then Exit Sub

Set pFeatureLayer pMap.Layer(0)

Set pFeatureSelection = pFeatureLayer

Set FeatureClassiable = pFeatureLayer.FeatureClass

Set items . pFeatureSelection.SelectionSet.IDs

rowCount pFeatureSelection.SelectionSet.Count

Open "data map" & rowCount & ".txt" For Output As #1

headerLine = Format(Now, "mm/dd/yyyy")

Print #1, "# Created by ArcMap on " & headerLine

items.Reset

For i = 1 To rowCount

Set pRow M FeatureClassiabIe.GetRow(items.Next)

modellD pRow.Value(pRow.Fields.FindField("Model"))

thislD = pRow.Value(pRow.Fields.FindField("FNODE_"))

nextlD = pRow.Value(pRow.Fields.FindField("TNODE_"))

Print #1, modelID & " " & nextlD & " " & thislD & " " & "1.0"

Next i

Close #1
End Sub

Figure 113. The ArcMap script used to generate the data mapping.



152

Generation of the data mapping is the final step in preparing the coupling de-

scription. The data mapping generated by the script in Figure 113, for 17 in-

stances, is shown in Figure 114.

STAMMT-L 17 Instance Mapping
created by ArcMap on 04/20/2006
1	 3 1.0
2	 3 1.0
3	 5 1.0
4	 5 1.0
5	 7 1.0
6	 7 1.0
7 9 1.0
8	 9 1.0
9 11 1.0
10 11 1.0
11 12 1.0
13 16 1.0
15 16 1.0
16 17 1,0
14 17 1.0
17 12 1.0

Figure 114. The data mapping used in this case study (for only 17 streams)_

The model can be executed via PCICouple's execute command. The result of the

coupled model run is a set of output breakthrough curve files, one for each in-

stance in the coupling. These files are typically analyzed through third-party soft-

ware such as MatLab. it would be easy to extend the implementation to support

online program monitoring. Since all exchanged values are passed through cou-

plers, these couplers could forward some of these values, as specified by the

scientist, to a visualization user interface within PCICouple. In the next section,

we present preliminary results of executing the coupled model.

Results5

Although a complete analysis of the coupled model outputs is beyond the

scope of this work, we present and discuss some of the results in this section.

5 These are results from an earlier version of the runtime system.



153

Figure 115 shows the northeast corner of the Andrews Forest (located in the

upper-right corner of Figure 108), and the output breakthrough curve for each of

the 17 streams therein. Each stream is uniquely numbered to match one of the

graphs.

Figure 115. Breakthrough curves of different streams.

The shape of the breakthrough curves vary across the streams, from single-peak

curves in the upstream-most segments, to different forms of multiple-peak curves

in the inner streams. The effect that upstream segments have on downstream

segments can be seen by inspecting steams 1, 2, and 3. The curves for streams

1 and 2 have a single peak, while the curve for stream 3 has two, indicating that

the concentration outputs from streams 1 and 2 arrived at different times at

stream 3. The curve for stream 7 has four distinct peaks, as influenced primarily

by the upstream segments 6, 5, 4, and 3. The curve of the final stream segment,



10

6
4-

2-

10
5

6:

6:

4:

2

1 0 8-
4

. ...............................

5
10

time (seconds)

	  stream 17
— stream 12

10 5
6

12, is flatter than any other curve, and is compared with the curves of its con-

nected upstream segments, 17 and 11, in Figure 116.

4-

2

154

	 stream 11
— stream 12

4	 5	 6	 7	 8 9 1
10

5
time (seconds)

2	 3

...........................

2	 3

Figure 116. Comparison of the breakthrough curve of instance 12 with that 0111 and 17.

In both graphs in the figure, the solid line represents the breakthrough curve of

stream 12 in Figure 115, and the dotted line represents the curve for one of its

connected upstream segments. The breakthrough curves for streams 11 and 17

clearly influence the curve of stream 12. The first peak of streams 11 and 17

likely contribute to the first peak of stream 12, while the second peak of stream

17 and the smaller peaks of stream 11 contribute to the second peak of stream

12, which is somewhat flatter, likely due to the series of small peaks.



155

Once a model has been created, either from scratch or by coupling, it is

often necessary to estimate the model parameters for a particular study site. This

functionality is sometimes built into the model code itself, or provided by third-

party software (Doherty 2004). Parameter estimation can be applied to coupled

models just as it is to standalone models. Parameter estimation requires that a

model be executed many times, each with slightly different parameters values.

This can only practically be performed if the model can execute in an automated

"batch" mode in which there is no user interaction, allowing the model to be exe-

cuted many times, quickly. The implementation of PCICouple does not include a

batch mode, but it could be added to support the optimization of coupled models.

The performance of the coupled model can be evaluated in terms of exe-

cution time and bandwidth used. The execution time, which was 4 minutes, 11

seconds on a 2.0 GHz AMD Athlon computer, is a combination of the execution

times of each instance (which are the same if individually executed) and the

communication time. The bandwidth used in the coupled model is 2.0 kb per

send (500 data elements, one for each time step, multiplied by the size of the

real data type, 4 bytes), for a total of 31.3 kb of bandwidth used in the 17-

instance simulation.

Case Study Summary
This case study showed how the STAMMT-L model can be coupled to it-

self to achieve a more comprehensive simulation of the stream network of a wa-

tershed. We showed how the creation of value lists and data mappings can be

automated through the use of the ArcMap GIS. In the next case study, we show

how two models can be coupled to study the interaction between surfacewater

runoff and groundwater.



156

Case Study: Simulating Runoff-Aquifer Interaction6
We describe in this study the initial results of a project we are conducting

in collaboration with Alphonce Guzha at Utah State University, in which we are

coupling the rainfall-runoff model TopModel to the groundwater-flow model Mod-

Flow to study the Tenmile Creek Watershed.

In year 2000, an initiative was founded called the WRIA 1 Watershed

Management Project (WRIA1). This project seeks to address the increasing chal-

lenges of limited water supply, water quality degradation, and reduced numbers

of Chinook salmon in Whatcom County, Washington State. Field research, data

collection, monitoring, and computer modeling all play a role in the project and as

a result there is a great deal of data available about the region making it an ideal

area for study. in the central part of Whatcom county is the Tenmile Creek water-

shed. Figure 117 shows a photograph of Tenmile creek.

Figure 117. Tenmile creek.

It encompasses 65 miles of creeks and streams throughout 35 square miles (22,

670 acres), and includes Tenmile, Fourmile, and Deer creeks, as well as Crystal

Springs, Barrett, Green and Fazon lakes.

We first motivate the purpose of the coupling, and then we describe how

the incompatibilities between the models can be resolved and a coupling created

using our approach. We then present the initial results of the coupled model.

6 in collaboration with Alphonce Guzha, Utah State University



157

Motivation
It is typically the case that hydrological models either simulate surfacewa-

ter dynamics well and simulate groundwater dynamics poorly, or simulate

groundwater dynamics well and simulate surfacewater dynamics poorly. Such

models are good candidates for coupling, and one in particular is the rainfall-

runoff model TopModel. TopModel (Beven 1997) simulates the amount of water

that exits an area in response to rainfall. It is written in Fortran and consists of

approximately 400 lines of model code. TopModel was not designed to accurately

simulate groundwater and makes simplifying assumptions regarding it: the satu-

rated zone is in equilibrium with a steady recharge rate over an upslope contrib-

uting area, and the water table is almost parallel to the surface such that the ef-

fective hydraulic gradient is equal to the local surface slope. A more accurate

simulation can be achieved by incorporating the simulation of the groundwater

performed by ModFlow into the simulation of surfacewater-runoff performed by

TopModel in a similar way as Example 1 of Chapter 5 in which the SWMM model

was coupled ModFlow. ModFlow, introduced in detail in Example 1 of Chapter 5,

simulates the movement of groundwater in the saturated zone,

Coupled Model Design
In this coupled model, the water table head value that is calculated by TopModel

is replaced with the more accurate head value simulated by ModFlow. The hnew

variable in ModFlow represents the water table head. It is an array in which each

element represents the head in a different grid cell. The sd variable in TopModel

represents the water table head beneath a subcatchment, measured as a depth

below the land surface, in meters. There is a loop in TopModel that iterates

through each subcatchment, so this scalar represents the head beneath a differ-

ent subcatchment on each iteration of that loop. In our study site in the Tenmile

Creek Watershed, there are 3 subcatchments. These are shown in Figure 118 as

they appear in the ArcMap GIS, including the stream network.



158

Figure 118. Three subcatchments in the Tenmile Creek Watershed.

In this initial work we divided the watershed into four grid cells that are simulated

by Mod Flow and we expect to increase the resolution of the grid substantially in

our future work. Figure 119 shows the three subcatchments superimposed on the

four grid cells.

Figure 119. Subcatchments superimposed on a grid.

This difference in the spatial distribution of the modeled quantities is common

and is resolved in the CDL through data mappings. Before explaining how this

spatial incompatibility was resolved, we present the coupling description.



CiToplidlodel

Setup
Update.:

4 Vgatelmikketinique0

Coupling Point A
ID Store water table

Coupling Point g
.4.1 Update setSDO

End:firrie

End

Coupling Point C
Send HN[W

159

The Coupling Description
The coupling description is shown in Figure 120. As in most couplings, the

models communicate within their time step loops.

Figure 120. The coupling description.

As long as the models start at the same point in simulation time, and use the

same time step length, then the models will remain coordinated in simulation

time. ModFlow though, usually uses a long time step length, on the order of days



160

or weeks due to the slow speed at which groundwater moves, and TopModel can

use either a short step length to study individual storm events (on the order of

hours), or a longer step length to study long term trends (on the order of days).

Differing step lengths can be accommodated by adjusting the activation frequen-

cies of actions. For example, if ModFlow uses a step length of 2 days, and Top-

Model uses a step length of 1 day, then the greatest frequency at which the

models can communicate is every 2 days, and the activation frequencies of the

actions in TopModel would be set to 2, and set to 1 in ModFlow. In this study the

models are parameterized to use a common step length of 1 day and we expect

to use differing step lengths in each model in our future work.

Inspection of the model PCIs reveals that TopModel simulates each sub-

catchment individually, each in a different iteration of the subcatchment loop. The

time step loop is therefore executed in its entirety for each subcatchment, in our

case, three times. The time step loop in ModFlow though, is executed only once

(the outer Stress loop is used to coordinate the time step loop, but each time step

is only executed once). During execution of the coupled model, the models would

remain coordinated in simulation time throughout their time step loops, but after

the time step loops finish, ModFlow would exit, and TopModel would begin its

simulation of the next subcatchment, during which it would expect to communi-

cate with ModFlow, resulting in an error. This structural incompatibility can be re-

solved by using three instances of TopModel, where each instance simulates a

different subcatchment. Since each instance simulates only a single subcatch-

ment, the subcatchment loop is executed only once in each instance, resulting in

the time step loop being executed only once in each instance, just as in Mod-

Flow.

The coupling description includes four action lists, one at each of the three

expanded coupling points (A, B, and C), and one at TopModel's "Setup" block.

We explain the purpose of each.



161

Setup Block: There are three instances of TopModel in this coupling that

execute concurrently, each of which should simulate a different subcatchment.

When executed though, each instance will read the same input files, resulting in

all the instances simulating a subcatchment with the same characteristics. In or-

der for each instance to simulate a different subcatchment, each instance must

use a different input characteristics file, The variables that store the filenames

used by TopModel are accessible at the Setup block and are the subcats and

outputs variables. These variables store the filenames of the input characteristics

file and the output file, respectively. Two Update Actions are added to this block,

each of which applies the custom update function, make Unique, to one of these

variables, making them unique (the output filename must be unique since multi-

ple processes cannot write to the same file concurrently). The function simply

prepends the instance identifier (accessible in all update functions via the in-

stancelD variable) to the filenames, making them unique.

Coupling Point A: Although the value of the hnew variable sent from Mod-

Flow needs to be used at Coupling Point C, the value is sent to Coupling Point A

and stored because Coupling Point C is located within a loop, and communicat-

ing with ModFlow at that point would cause the models to become unsynchro-

nized, similar to the subcatchment loop incompatibility discussed earlier.

Coupling Point B: Since TopModel needs to use ModFlow's hnew variable,

a Send Action is added to Coupling Point B in ModFlow, which sends the vari-

able's value to TopModel, making it accessible at Coupling Point A.

Coupling Point C: To set the value of TopModel's sd variable, an Update

Action is added to Coupling Point A which applies the custom update function,

setHead, which sets the value of the sd variable based on the value of Mod-

Flow's hnew variable. Note that ModFlow's hnewvalue is an elevation, whereas

TopModel's sd variable is a depth. In order to set the sd value to the hnewvalue,



162

the elevation must be converted into a depth. This requires knowledge of the ele-

vation of the surface, since the depth is equal to the difference between the sur-

face elevation and the water table elevation. In this function we assume a con-

stant surface elevation (10 feet). These custom update functions were written in

Fortran, and account for any differences in units between the variables upon

which they operate. Here, the depth value is calculated in feet and converted into

meters (my multiplying by 3.28) when the value of sd is set. The source code for

the setHead function is shown in Figure 121.

subroutine setHead(instanceID,sd,head)

integer	 instanceID
real	 sd(30)

double precision head

sd = (10.0 - head) / 3.28

end

Figure 121. Source code for the setHead function.

Differences in units are easy to resolve, but differences in spatial distribu-

tion are not so straightforward. Although hnew is an array representative of the

groundwater height across a regular grid, the value received by TopModel must

be a scalar that represents the groundwater height below the subcatchment be-

ing simulated. This transformation is accomplished via the data mapping shown

in Figure 122, and is assigned to the Send Action in the coupling description. The

data mapping indicates that there are three instances of TopModef and one in-

stance of ModFlow, and it describes how the groundwater height values from

each grid cell are weighted and combined to arrive at a value representative of

the groundwater height below each subcatchment. Notice that since hnew is an

array, the data mapping describes how each element is communicated and

transformed. For example, the value of hnew received by instance 1 of TopModel

is a combination of the groundwater heights of the cells below it, cells 1, 2 and 4

(elements 1, 2 and 4 of the hnew array), shown in Figure 122.



TopModel i hnew = 0.20387 * ModFlow i [1] +

0.79052 * Mod Flow.i [21 +

0.00561 * ModFlow i [4]

TopModeI3

sender	 receiver	 weight

ModFlowi [1] TopModel i 0.20387
ModFlowl [21 TopModeti 0.79052
ModFlowi [4] TopModel l 0.00561
ModFlowi [11 TopModel2 0.10822
ModFfewi [2] TopModel2 0.14999
tvlodFlow i t31 TopModel 2 0.27061
Mod Flow i [4] TopModel 2 0.47118
ModFfow431 TopIVIodef3 0.60139
Mod Row [4] TopModel3 0.39861

163

Figure 122. The data mapping relates the regular grid to the irregular subcatchments.

Specifically, the value is composed of 20.4% of the value from cell 1, 79.1 % of

the value from cell 2, and 0.5% of the value of cell 4.

This data mapping was created automatically via a script that we wrote in

ArcMap. The grid cell polygons within ArcMap were numbered according to which

element of hnew they are associated with, and the subcatchment polygons were

numbered according to which instance of TopModel simulates it, as shown in

Figure 123.

Figure 123. Spatial units are numbered by array element or instance id.



164

The script then performs a common GIS operation called an overlay. The script

determines which polygons overlap with each other, and by how much, and then

generates an output file in the proper data mapping format. In this way, the pre-

cise relationship between the variables can be established. Note though, that

data mappings are general-purpose and can describe the relationship between

any kind of data, not just spatial data. In this case we use a GIS to create the

mapping, but other third-parties could be used to create mappings between other

kinds of data. The script that we wrote is shown in Figure 124.

Public Sub createDataMapping()

Dim pMxDoc As IMxDocument, pMap As Nap, pFilter As IQueryFilter

Dim pIntersectLayer As IFeatureLayer, pOverlayLayer As IFeatureLayer

Dim pOverlayFCursor As IFeatureCursor, p/ntersectFCursor As IFeatureCursor

Dim pIntersectTopo As ITopologicalOperator As Double, theProportion As Double

Dim pintersectFeature As IFeature, pOverlayFeature As IFeature

Dim pSpatialFilter As ISpatialFilter, pOverlayArea As IArea, newArea As IArea

Dim pIntersectFClass,p0verlayFClass As IFeatureClass

Set pMxDoc = Application.Document

Set pMap pMxDoc.FocusMap

Set pActiveView x pMap

If Not TypeOf pMap.Layer(0) Is IFeatureLayer Then Exit Sub

If Not TypeOf pMap.Layer(1) Is IFeatureLayer Then Exit Sub

Set pIntersectLayer = pMap.Layer(0)

Set pOverlayLayer pMap.Layer(1)

Open "data_map.txt" For Output As #1

headerLine = Format(Now, "mm/dd/yyyy")

Print #1, "Created by ArcMap on " & headerLine

Set pintersectFClass = pIntersectLayer.FeatureClass

Set pOverlayFClass pOverlayLayer.FeatureClass

Set pFilter = New QueryFilter

pFilter.WhereClause = ""

Set pIntersectFCursor = pIntersectLayer.Search(pFilter, False)

Set pintersectFeature pIntersectFCursor.NextFeature

While Not pintersectFeature Is Nothing

Set pIntersectIopo = pIntersectFeature.Shape

Set pSpatialFilter = New SpatialFilter

pSpatialFilter.GeometryField pIntersectFClass.shapeFieldName

Set pSpatialFilter.Geometry = pIntersectFeature.Shape

pSpatiaIFilter.SpatialRel = esriSpatialRelIntersects

Set pOverlayFCursor = pOverlayFC/ass.Search(pSpatiolFilter, False)

Figure 124. The script that generates the data mapping.



contra ter

Objective function values
Fl 0.59988E+09 E. -0,03093 F2 0.60004E+05

Water Balance for Subcatcbrnent : Te rim
SUMP SU MAE SUMQ SUM RZ SUM UZ SEAR

BAL
0.1165E+01 0,3796E+00 0,4275E+00 0.4713E-02 .1399E
+00 0.1529E+00 0,8342E-01

Mean Obs Q -029997E+03 Variance Obs 0 0,290 E+ 0
7

Error Variance 029994E+07

109512 7876 1 1 2 46 SOO 4 16000
1398035276 1 13-1-i..1-1o33
1398035276 1 1 1 72 500 8 -1 soap

)
controller started Rate fling
coupler created 6000
REQUEST: CUPL
received request from coupler
updater created 7000
REQUEST: UPDT
received request from updater
sent port to updater
instance created

ir running command: /Users/tomb/Research Modetsitopmod

Stoppdd

165

Set pOverlayFeature = pOverlayFCursor.NextFeature

While Not pOverlayFeature Is Nothing

Set pOverlayArea pOverlayFeature.Shape

Set newGeometry = pIntersectTopo.Intersect(pOverlayFeature.Shape,

pIntersectFeature.Shape.Dimension)

Set newArea newGeometry

theProportion = newArea.Area / pOverlayArea.Area

iModel = pIntersectFeature.Value(pIntersectFeature.Fields.FindField("Model"))

iCouplelD =

pIntersectFeature_Value(pIntersectFeature.Fields.FindField("CoupleID"))

oModel = pOverlayFeature.Value(pOverlayFeature.Fields.FindField("Model"))

oCouplelD = pOverlayFeature.Value(pOverlayFeature.Fields.FindField("CoupleID"))

Print #1, iModel & ":" & iCouplelD & " " & oModel & ":" & oCouplelD & " " &

theProportion

Set pOverlayFeature = pOverlayFCursor.NextFeature

Wend

Set pintersectFeature = pIntersectFCursor.NextFeature

Wend

Close #1

End Sub

Figure 124. The script that generates the data mapping (cont'd).

Once the model input files have been prepared, the coupling can be exe-

cuted via PCICouple. The runtime environment provided by PCICouple is shown

in Figure 125.

Figure 125. The runtime environment provided by PCICouple.



0.12.

0.10-

0.08 

0.06 —

0.04 —

0.02 

0.00

166

The runtime system will start one instance of ModFlow and three instances of

TopModel, along with any necessary couplers and updaters. The instances will

communicate with each other throughout their simulations, and each instance will

write its output files which can then be analyzed. The output from any process

can be viewed by selecting it from one of the two process menus. In the figure,

the output from instance 2 is shown on the left (from TopModel in this case), and

the output from the controller is shown on the right. The buttons in the toolbar are

(from left to right): edit coupling description, execute coupled model, and stop

execution.

Results
We are interested in investigating how variations in the water table head

simulated by ModFlow affect the catchment outflow simulated by TopModel. We

performed two executions of the coupled model in which ModFlow was parame-

terized to simulate different water table heads, and we compared the TopModel

output from these runs to the output simulated by TopModel in an uncoupled

simulation, which serves as a control.

We created the input file sets for the models for each of the three cases

using initial data that we collected for the Tenmile Watershed. The precipitation

input is shown in Figure 126.

130	 140	 150	 160
	

170
	

80
	

190

time (days)

Figure 126. The precipitation input used by TopModel in all three cases.



topmodel only
	  topmodel+modflow (shallow)
- - • topmodel+modflow (deep)

167

The overland flow from saturated areas simulated by TopModel in each case is

shown in Figure 127 as a function of time.

2.0

3: 1.5

.0

0.50

0.0
130 140 150 160

time (days)
170 180 190

Figure 127. Comparison of the overland flow simulated by TopModel in each case.

The output of TopModel when it was not coupled to ModFlow is indicated by the

solid line (labeled "topmodel only" in the legend), and the output from TopModel

in each of the two coupled model runs is indicated by the dotted and dashed

lines. The dotted line (labeled "topmodel+modflow (shallow)" in the figure) repre-

sents the output from TopModel when it was coupled to ModFlow, where Mod-

Flow was parameterized to simulate a water table head that is half the depth as

simulated by TopModel alone (the control case). The dashed line (labeled "top-

model+modflow (deep)" in the figure) represents the output from TopModel when

it was coupled to ModFlow, where ModFlow was parameterized to simulate a wa-

ter table head that is twice the depth as simulated by TopModel alone (the control

case).

The simulated outflow in each of the coupled cases is consistent with our

expectations: in the case of the shallow water table, the outflow is greater than

the control case, indicating that baseflow from the saturated zone is contributing

to the outflow. In the case of the deep water table, the outflow is less than the

control case, indicating that the saturated zone contributes little to the outflow.



180	 190170

— topmodel only
	  topieodel+modtlow (shallow)
- - topmodel+modflow (deep)

-3
1.6x10 —

140 150 160
time (days)

168

The recharge to the saturated zone from the unsaturated zone as simulated by

TopModel in each of the three cases is shown in Figure 128. The recharge is

shown as a function of time.

Figure 128. Comparison of the recharge simulated by TopModel in each case.

Again, the output from TopModel is consistent with our expectations: in the shal-

low water table case, there is considerable recharge to the saturated zone indi-

cating that the unsaturated zone is at capacity and excess runoff is likely. In the

deep water table case, there is initially little recharge to the saturated zone, indi-

cating that the unsaturated zone is absorbing most of the rainfall and it is not until

day 178 that the unsaturated zone is close to capacity and contributes to the

saturated zone.

The coupled model runs had an execution time of approximately 54 sec-

onds on a 1.5 GHz PowerPC G4 computer, 8 seconds of which was startup time

(14.8%). The coupler sent a total of 1.0 MB of data and received 0.81 MB.

Case Study Summary
This case study showed how the rainfall-runoff model TopModel can be

coupled to the groundwater-flow model ModFlow to achieve a more accurate

simulation. We showed how complex spatial relationships can exist between the

variables of different models, and how data mappings, created in an automated

way via a GIS, can describe these relationships.



169

Summary

This chapter presented three case studies that demonstrate how the CDL

is used to create coupled models in scientific studies. In the first case study we

compared an existing coupling between Mod Flow and DAFlow to a re-creation of

that coupling using our approach. The second case study showed how many in-

stances of a lumped model, STAMMT-L, could be coupled together to enable

spatially-distributed simulation across an entire watershed. The third study

showed how two models can be coupled together to study the interaction be-

tween rainfall-runoff and groundwater by coupling together TopModel and Mod-

Flow. The next chapter presents the conclusions of this work.



CHAPTER VIII

CONCLUSIONS

The process of model coupling allows existing models to be combined

such that they affect each other's simulations as they execute. This process is

intimately tied to the source codes of the models. Existing techniques require

scientists to work directly with these model codes, making the process prohibi-

tively difficult. In this dissertation, we address the problem by allowing scientists

to work at a higher level of abstraction through the use of model interfaces for

coupling.

Specifically, this dissertation contributes:

. the design of a representation for model coupling interfaces, called the Po-

tential Coupling Interface.

We introduced the concept of coupling potential, and showed how it can be con-

veyed concisely through a visual interface. This reusable interface is easy to cre-

ate with our software assistants, PCICreate and PCICouple. The coupling poten-

tial of a model can be quickly understood by inspecting a PCI, saving scientists a

great deal of (often redundant) effort. Since the PCI is derived from model codes,

we showed how it is capable of automatically instrumenting the model codes, a

necessary step in creating a coupled model that is difficult and error-prone in ex-

isting approaches.

170



171

The second contribution of this work is

• the design of a language for describing the behavior of coupled models,

called the Coupling Description Language.

The primary purpose of the PCI is to serve as the basis for describing coupled

models. One of the most challenging tasks in creating a coupled model is identi-

fying and resolving incompatibilities between models, and reasoning about how

the models should influence each other. Through a series of hypothetical exam-

ples and real case studies, we showed how the PCI reveals incompatibilities be-

tween models, and how the coupling language provides a means for resolving

them. The distributed, visual coupling language imposes no restrictions on the

kinds of models coupled, or the ways in which the models interact. Arbitrarily

complex interactions between many different kinds of models are supported. The

InCouple approach to model coupling is based on model PCIs, so the ability to

create a PCI from a model code is a prerequisite for coupling models. There may

be cases where it is not possible to create a PCI that accurately describes the

control structure of a model code (e.g. Time Warp simulations).

The third contribution of this dissertation is

• the evaluation of a prototype coupling environment for hydrological models.

Through the implementation of a proof-of-concept coupling environment, we

demonstrated the practicality of our approach to model coupling. Although we

populated the coupling environment with hydrology models, the environment it-

self does not contain any customizations that are specific to hydrology models,

making it suitable for model coupling in many domains. The framework is open

source and available for download and use by scientists.

Here we discuss how our work compares to and complements existing

model coupling frameworks. Since our approach is a variant of the communica-



172

tion approach described in Chapter 2, we will limit the comparison to these exist-

ing approaches. We compare the approaches in terms of the coupling process

and how it is supported by our approach and existing approaches.

With respect to finding models to couple, existing work offers little support

for this task. Locating models on the internet is difficult because there are so

many places where models are available, and the information online is generally

sparse, requiring the scientist to download and evaluate models individually.

Even once emerging model metadata standards are widely accepted and ap-

plied, these do not indicate to the scientist the coupling-compatibility between

models. The PC1 though, captures just this information and can be incorporated

into these standards to facilitate locating and comparing models in terms of their

coupling compatibility, greatly simplifying the task of finding models to couple.

With respect to understanding a model's state variables and accessible

locations throughout a model code, existing approaches offer little or no assis-

tance, whereas in our approach, we focus specifically on the knowledge required

to create a coupled model. These assume that the scientist is an expert in the

model and its source code, despite the severe challenge required to understand

them. The Pr-1 captures this information and clearly presents it to the scientist.

Documenting models, coupled and otherwise, is essential to their proper use by

other scientists. In our approach, the operational coupling description serves di-

rectly as documentation for the coupling.

Resolving incompatibilities between models and instrumenting the model

codes are central tasks of model coupling and are supported in both existing ap-

proaches and our approach. Extensive existing work has been done in the area

of spatial regridding and efficient communication of large datasets. Recent work

has focused on network applications of this in computational grids. Since several

of these frameworks offer more powerful transformations and efficient communi-



173

cation, our work could be adapted such that the model codes are automatically

instrumented with calls to one of these frameworks or libraries. Since the instru-

mentation in our models is generic, scientists can capitalize on the work of others

by reusing PCIs in different couplings whereas in existing approaches, instru-

mentation is typically coupling-specific.

The concepts and techniques presented in this dissertation describe a

novel way of reasoning about and constructing coupled models. The use of

model interfaces for coupling provides an unprecedented level of ease and flexi-

bility in creating coupled models, significantly broadening the practicality of the

practice of model coupling in the scientific community.



APPENDICES



175

Appendix A: PCI Collection
This appendix presents the Potential Coupling Interfaces (PCI) for each of

the hydrological models referenced throughout this work. The creation of the PCI

for a model requires a thorough understanding of the model, both in its use and

its implementation as a computer program. Although we have worked with each

of these models as part of our research, we may not have achieved a complete

understanding of them, and hence it is possible that more accurate and informa-

tive PCIs for these models could be created by scientists who possess a greater

level of understanding of the models. Nonetheless, we present the PCIs for each

model based on our knowledge. There is no single "correct" PCI for a model, and

different PCIs for a model could be equally informative and accurate, so these

represent only one possible PCI for each model. References for these models is

given in Table 4 in Chapter 4.



176

Figure 129. A PC! for BioMOC.

Figure 129 shows a PCI for the groundwater-transport model BioMOC. Notice

the nested temporal loops and the block that sets the time step length. Couplings

involving this model must explicitly coordinate the points in simulation time at

which communication takes place.



177

Figure 130. A PC1 for Branch.

A PCI for Branch is shown in Figure 130, and a PCI for FourPt is shown in Figure

131. These models simulate the movement of water through a network of inter-

connected channels, similar to DAFIow.

Cosh Up 

End — -

Figure 131. A PCI for FourPt.



178

Figure 132. A PCI for DAFlow.

The PCI for DAFIow used throughout this text is shown in Figure 132. Notice how

there are two spatial loops nested within the temporal loop: one that iterates over

the branches in the network, and one that iterates over the cross sections within

each branch.



Figure 133. A PC1 for GLEAMS.

The PCI used for GLEAMS in the text is shown in Figure 133, and the PCi for a

similar model SHAW is shown in Figure 134.

179

Figure 134. A PCI for SHAW



Figure 135. A PC1 for ModFlow.

The PCI for ModFlow used throughout this text is shown in Figure 135. Notice

the nested temporal loops and the lack of a spatial loop.

180



Figure 136. A PCI for OTIS.

A PCi for the OTIS model is shown in Figure 136 and the PCI used for the

STAMMT-L model is shown in Figure 137. Both models simulate surfacewater

transport. Notice how STAMMT-L does not possess any loops and hence can

only communicate with other models before and after its computation.

STAM MT-L  _

Figure 137. A PCI for STAMMT-L.

181



rid

Figure 138. A PCI for SWAT

A PCI for the rainfall-runoff model SWAT is shown in Figure 138.

182



Figure 139. A PCI for SWMM.

The PCI for SWMM used throughout this text is shown in Figure 139. This PCI

only includes coupling points within the runoff computation, but a complete PCI

would include points within the other computations as well (transport, storage,

etc.)

183



Figure 140. A PCI for TopMorlol.

The PCI used for TopModel throughout this text is shown in Figure 140.

184



End

Figure 141. A PCI for UEB.

A PCI used for UEB throughout this text is shown in Figure 141.

Figure 142. A PCI for WASP

A PCI for the receiving water model WASP is shown in Figure 142.

185



186

Appendix B: Guidelines for Annotating Model Codes
This section describes a series of guidelines regarding how model codes

should be annotated. The most important consideration when annotating a model

code is that it is done in a way which describes the model code's full coupling po-

tential. One of the key benefits of the InCouple approach to model coupling is

that the interfaces are reusable: created only once, the interface can be reused in

any future coupling endeavor. This requires that the model codes be annotated

such that all the variables that could potentially be involved in any future coupling

are anticipated and annotated. It is important that any variable that possesses

any domain-level significance be annotated. In addition to the state variables

themselves, auxiliary variables associated with them should be annotated as

well. For example, we saw in the text how each element of ModFlow's hnew ar-

ray represents the groundwater height at a different grid cell. Not only should the

hnew array be annotated, but so too the variables that describe how many cells

there are: nrow, ncol, play.

Certain loop s in a model code that have domain-level significance, such

as time loops or space loops, are good places for annotations. Annotations are

typically placed both before and after the loop of interest, and within the loop, at

its start and end. It is important though, to pay attention to the kind of loop, and

its iteration frequency. Placing annotations within a tight loop may have serious

performance impacts. Equally expressive annotations may be possible that do

not incur the performance penalty. For example, suppose a loop iterates over an

array, setting the value of each element. If an annotation was placed outside the

loop rather than inside of it, the full array could be accessible after, rather than

each of its elements within the loop.

Since the PCI is used to convey the overall structure of a model code to

the scientist, it is important to place annotations between the major phases of the



187

model code, such as before and after the initialization phase, and before and af-

ter results are output. Making sure that the prominent phases of a model code

are well represented will dramatically improve the readability of the PCI.



tl Mapping fartipte)
141 Reverse Mapping (simple)
1,2 Mapping (Simple
1,2 Reverse Mapping(simple)
1-3 Mapping ].`simple)
1-3 Reverse Mapping (Simla)
1-4 Mapping 44,106:
1-4 ReverSe::Mapp-ing:(simpie):::"

•:: ::GLEAMS Mapping Ito 1 (array-level):

simple

instances totili
.! :::instance 1 sends to

instance 2.

188

Appendix C: Adding Custom Data Mappings
This appendix describes how data mapping input files are added to a cou-

pling description within PCICouple. Once the scientist has created a data map-

ping input file, it must be added to PCICouple before it appears as an available

data mapping within Send Actions. The first step is to click the data mapping but-

ton in the inspector window, which shows the list of available data mappings, and

it initially contains only the built-in mappings as shown in Figure 143 (left). To add

a data mapping to the list, the scientist clicks the add button (marked by a plus

symbol) and selects the data mapping file.

Figure 143. Available data mappings (left) and the mapping details fright).

When a data mapping is in the list is double-clicked, the data mapping details

are shown in the inspector, as shown in Figure 143 (right).



189

Appendix D. Adding Custom Update Functions
Although the coupling environment includes a set of general purpose up-

date functions such as set, sum, and average, the way in which a value from one

model affects the value of another is complex, and often requires non-trivial cal-

culations. For this reason, PCICouple allows scientists to add their own update

functions to coupling descriptions. This process involves two steps: first, the sci-

entist must write the function and compile it into the updater program, then sec-

ond, the scientist must register the function with PCICouple. Each step is de-

scribed in turn.

The first step in using a custom update function in a coupling description is

to write the function source code, in whatever language the scientist prefers (For-

tran in our implementation). This function is then added to the source code of the

updater program, provided with PCICouple. The function source code is simply

added to the source code of the updater, so that couplers can invoke it. Currently

the scientist must add a wrapper function around each custom update function

that invokes send and receive library calls (using our custom API) to their func-

tions which retrieve the function arguments from the coupler and return them.

Figure 144 shows the source code of the wrapper function for the setHead up-

date function.

subroutine setHeadWrapper(instanceID,socket,sd,head)
integer	 socket,instanceID,sd_len,head_len

real	 sd(30)
double precision head(2,2)

call receive( sd, 30, 4, socket, sd_len )
call receive( head, 4, 8, socket, head_len )

call setHead( instanceID, sd, head )

call send( sd, sd_len, 4, socket )
call send( head, head_len, 8, socket )

end

Figure 144. The communication wrapper function for the setHead function.



des-trip:40

Available thid

• printReal( value ) .	 .

peintititeger( value
OrlitChar( value)
makellnique( Mena ):.

Makes the given
Function name
unique by
prepencling the

filename

arguments';

190

This is an implementation simplification and it could easily be changed such that

the arguments are automatically sent and received so that the scientist must only

add their functions to the updater source code without writing a wrapper function.

The second step in using a custom update function is to tell PCICouple

about the function. This is accomplished in PCICouple by clicking the update

functions button in the inspector window to view the list of available update func-

tions. The built-in functions will appear in the list, as shown in Figure 145 (left).

Figure 145. The update function list (left) and function details (right).

Additional update functions can be added by clicking the add button and entering

the details of the update function as shown in Figure 145 (right).



BIBLIOGRAPHY

Aho, A. V. and J. D. Ullman. 1972. The theory of parsing, translation and compil-
ing, Vol. II: Compiling. Prentice Hall.

Ahuja, L. R., 0. David, and J. C. Ascough II. 2004. Developing natural resource
models using the object modeling system: Feasibility and challenges. Meeting
Proceedings. International Environmental Modelling and Software Society
(Iemss) 2004 Conference - Complexity and Integrated Resources Manage-
ment. Osnabruck, Germany.

Akarsu, E., F. Fox, W. Furmanski, and T. Haupt. 1998. WebFlow-high-level pro-
gramming environment and visual authoring toolkit for high performance dis-
tributed computing. in Proceedings of Supercomputing '98: High Performance
Networking and Computing. IEEE Computer Society. 1-7.

Ambrose, R. B. Jr., T. A. Wool, and J. L. Martin. 1993. The water quality analysis
simulation program, WASPS, Part A: Model documentation. U.S. Environmen-
tal Protection Agency: Athens, GA.

Armstrong, C., R. W. Ford, J. R, Gurd, M. Lujan, K. R. Mayes, and G. D. Riley.
2005. Performance control of scientific coupled models in grid environments.
Concurrency and Computation: Practice and Experience. 17(2-4): 259-295.

Armstrong, R., D. Gannon, A. Geist, K. Keahey, S. Kohn, L. McInnes, S. Parker,
and B. Smolinski. 1999. Toward a common component architecture for high-
performance scientific computing. in Proceedings of the Conference on High-
Performance Distributed Computing.

Balaji, V. 2002. The FMS manual: A developer's guide to the GFDL Flexible Mod-
eling System. Internet. Available from:
http://www.gfdl.noaa.govi–vb/FMSManual; accessed 1 June 2006.

Beckman, P. H., P. K. Fasel, W. F. Humphrey, and S. M. Mniszewski. 1998. Effi-
cient coupling of parallel applications using PAWS. in Proceedings of the 7th

191



192

IEEE International Symposium on High Performance Distributed Computing.
Chicago, IL 215-222.

Benson, D. 2006. JGraph and JGraph Layout Pro User Manual. Internet. Avail-
able from http://www.jgraph.com/pub/jgraphmanual.pdf; accessed 1 June
2006.

Benz, J., R. Hoch, and T. Legovic. 2001. ECOBAS - Modelling and documenta-
tion. Ecological Modelling. 138: 3-15.

Bettencourt, M. T. 2002. Distributed model coupling framework. in Proceedings of
the 11th IEEE International Symposium on High Performance Distributed
Computing. Edinburgh, Scotland. 284- 290.

Beven, K. J. 1997. Topmodel: A critique. Hydrological Processes. 11(9): 1069-
1085.

Blackmon, M., B. Boville, F. Bryan, R. Dickinson, P. Gent, J. Kiehl, R. Moritz, D.
Randall, J. Shukla, S. Solomon, G. Bonan, S. Doney, I. Fung, J. Hack, E.
Hunke, J. Hurre J. Kutzbach, J. Meehl, B. Otto-Bliesner, R. Saravanan, E.
K. Schneider, L. Sloan, M. Spell, K. Taylor, J. Tribbia, and W. Washington.
2001. The Community Climate System Model. Bulletin of the American Mete-
orological Society. 82(11): 2357-2376.

Blind, M. W., A. Ubbels, L. R. Wentholt, Th. L. van Stijn, A. H. Bakema, J. D. Bu-
lens, J. J. Noort, B. van Adrichem, J. Stout, and F. C. van Geer. 2000. To-
wards a well-oiled model infrastructure for water management: the generic
framework water program. in Proceedings of Hydrolnformatics 2000. Cedar
Rapids, IA.

Breunese, A. P. J., J. L. Top, J. F. Broenink, and J. M. Akkermans. 1998. Libraries
of reusable models: Theory and application. Simulation. 71(1): 7-22.

Bulatewicz, T. and J. Cuny. 2005. Interface-based support for model coupling:
Spatial representation and compatibility issues. in Proceedings of the 8th In-
ternational Conference on GeoComputation. Ann Arbor, MI.

Bulatewicz, T., J. Cuny, and M. Warman. 2004. The potential coupling interface:
Metadata for model coupling. in Proceedings of the 2004 Winter Simulation
Conference. Washington D.C. 1: 175-182.

Chamberlain, B. L., S. Choi, E. C. Lewis, C. Lin, L. Snyder, and W. D. Weath-
ersby. 2000. ZPL: A machine independent programming language for parallel
computers. IEEE Transactions on Software Engineering. 26(3): 197-211.

Dagum, L. and R. Menon. 1998. OpenMP: An industry-standard API for shared-
memory programming. IEEE Computational Science & Engineering. 5(1): 46-
55. (



193

Dahmann, J. S., R. M. Fujimoto, and R. M. Weatherly. 1998. The DoD high level
architecture: An update. in Proceedings of the 1998 Winter Simulation Con-
ference. Washington, D.C. 797-804.

DeLong, L. L., D. B. Thompson, and J. K. Lee. 1997. Computer program FourPt:
A model for simulating one-dimensional, unsteady, open-channel flow. U.S.
Geological Survey Water-Resources Investigations Report 97-4016, Bay St.
Louis, Mississippi.

Ding, Y., M. Munch, and M. Laux. 1999. Dynamic coupling of grid-based multidis-
ciplinary applications. 7th Euromicro Workshop on Parallel and Distributed
Processing (EUROMICRO PDP' 99). 249- 255.

Doherty, J. E. 2004. PEST Model-independent parameter estimation user man-
ual: 5th Edition. Watermark Numerical Computing, Australia.

Eisenhauer, G. and K. Schwan. 1998. An object-based infrastructure for program
monitoring and steering. in Proceedings of the SIGMETRICS Symposium on
Parallel and Distributed Tools. Welches, OR, 10-20.

Essaid, H. I. and B. A. Bekins. 1997. BIOMOC, A muitispecies solute-transport
model with biodegredation. U.S. Geological Survey Water-Resources investi-
gations Report 97-4022.

Federal Geographic Data Committee. 1998. Content standard for digital geospa-
tial metadata. Internet. Available from
http://www.fgdcgovistandardsistandards_publications; accessed 1 June
2006.

Flerchinger, G. N. 2000. The simultaneous heat and water (SHAW) model: User's
manual. Technical Report NWRC 2000-10. USDA-ARS: Boise, ID,

Ford, R. W., G. D. Riley, M. K. Bane, C. W. Armstrong, and T. L. Freeman. 2004.
GCF: A general coupling framework. Concurrency and Computation: Practice
and Experience. 18(2): 163-181.

Fox, M. R., D. C. Brogan, and P. F. Reynolds Jr. 2004. Approximating component
selection. in Proceedings of the 2004 Winter Simulation Conference. Wash-
ington, D.C. 429-434.

Gijsbers, P. 2003. OpenMI - Harmonizing linkages between water related models.
in Proceedings of the International Conference on Application of Integrated
Modelling. Tilburg, The Netherlands.

Gooseff, M. N., S. M. Wondzell, R. Haggerty, and J. Anderson. 2003. Comparing
transient storage modeling and residence time distribution (RTD) analysis in
geomorphically varied reaches in the Lookout Creek Basin, Oregon, USA.
Advances in Water Resources. 26: 925-937.



194

Gu, W., G. Eisenhauer, K. Schwan, and J. S. Vetter. 1998. Falcon: On-line moni-
toring for steering parallel programs. Concurrency: Practice and Experience.
10(9): 699-736.

Guo, W. and C. D. Langevin. 2002. User's guide to SEAWAT: A computer pro-
gram for simulation of three-dimensional variable-density ground-water flow.
Techniques of Water-Resources Investigations of the United States Geologi-
cal Survey. Book 6, Chapter A7.

Haggerty, R. and P. Reeves. 2003. STAMMT-L: Formulation and user's manual.
Sandia National Laboratories: Albuquerque, NM.

Hill, L. L., S. J. Crosier, T. R. Smith, and M. Goodchild. 2001. A content standard
for computational models. D-Lib Magazine. 7(6).

Hill, C., C. DeLuca, V. Map, M. Suarez, and A. DaSilva. 2004. The architecture
of the earth system modeling framework. Computing in Science and Engi-
neering. 6(1): 18-28.

Huber, W. C. and R. E. Dickinson. 1988. Storm water management model - Ver-
sion 4: User's manual. Technical Report EPA-600/3-88-001a, U.S. Environ-
mental Protection Agency: Athens, Georgia.

Jablonowski, D. J., J. D. Bruner, B. Bliss, and R. B. Haber. 1993. VASE: The
visualization and application steering environment. in Proceedings of the
1993 ACM/IEEE conference on Supercomputing. 560-569.

Jobson, H. E. 1989. Users manual for an open-channel streamflow model based
on the diffusion analogy. U.S. Geological Survey Water Resources Investiga-
tions Report 89-4133.

Jobson, H. E. and A. W. Harbaugh. 1999. Modifications to the diffusion analogy
surface-water flow model (DAFIow) for coupling to the modular finite differ-
ence ground-water flow model (ModFlow). U.S. Geological Survey Open-File
Report 99-217.

Johnson, C. R., S. G. Parker, D. Weinstein, and S. Heffernan. 2002. Component-
based problem solving environments for large-scale scientific computing.
Concurrency and Computation: Practice and Experience. 14(13-15): 1337-
1349.

Johnston, R. K., P. F Wang, H. Halkola, K. E. Richter, V. S. Whitney, B. E. Ska-
hill, W. H. Choi, M. Roberts, R. Ambrose, and M. Kawase. 2003. An integrated
watershed-receiving water model for Sinclair and Dyes Inlets, Puget Sound,
Washington, USA. Estuarine Research Federation 2003 Conference Estuar-
ies on the Edge: Convergence of Ocean, Land and Culture. Seattle, WA.



195

Joppich, W., M. Kurschner, and the MpCCI team. 2005. MpCCI - a tool for the
simulation of coupled applications. Concurrency and Computation: Practice
and Experience. 18(2): 183-192.

Knox, R. G., V. L. Kalb, E. R. Levine, and D. J. Kendig. 1997. A problem-solving
workbench for interactive simulation of ecosystems. IEEE Computational Sci-
ence & Engineering. 4(3): 52-60.

Kohl, J. A. and P. M. Papadopoulos. 1998. Efficient and flexible fault tolerance
and migration of scientific simulations using CUMULVS. Symposium on Paral-
lel and Distributed Tools (SPDT '98). Welches, Oregon.

Krueger, C. W. 1992. Software reuse. ACM Computing Surveys (CSUR). 24(2):
131-183.

Larson, J., R. Jacob, and E. Ong. 2005. The model coupling toolkit: A new For-
tran90 toolkit for building multiphysics parallel coupled models. International
Journal for High Performance Computing Applications. 19(3): 277-292.

Leavesley, G. H., P. J. Restrepo, S. L. Markstrom, M. Dixon, and L. G. Stannard.
1996. The modular modeling system - MMS: User's manual. U.S. Geological
Survey Open-File Report 96-151.

Leonard, R. A., W. G. Knisel, and D. A. Still. 1987. GLEAMS: Groundwater load-
ing effects of agricultural management systems. Transactions of the American
Society of Agricultural Engineers. St. Joseph, Michigan. 30(5): 1403-1418.

Lindgren, G. A., G. Destouni, and A. V. Miller. 2004. Solute transport through the
integrated groundwater-stream system of a catchment. Water Resources Re-
search. 40(3).

Lindian, K., J. Cuny, A. Malony, S. Shende, B. Mohr, R. Rivenburgh, and C.
Rasmussen. 2000. Tool framework for static and dynamic analysis of object-
oriented software with templates. in Proceedings of the 2000 ACM/IEEE con-
ference on Supercomputing. 49-59.

McDonald, M. G. and A. W. Harbaugh. 1988. A modular three-dimensional finite
difference ground-water flow model. Techniques of Water-Resources Investi-
gations of the United States Geological Survey. Book 6, Chapter Al.

Miller, D. W., J. Guo, E. Kraemer, and Y. Xiong. 2001. On-the-fly calculation and
verification of consistent steering transactions. in Proceedings of the 2001
ACM/IEEE conference on Supercomputing. 1-17.

Muralidhar, R. and M. Parashar. 2003. A distributed object infrastructure for inter-
action and steering. Concurrency and Computation: Practice and Experience.
15(10): 957-977.



196

Neitsch, S. L., J. G. Arnold, J. R. Kiniry, and J. R. Williams. 2001. Soil and water
assessment tool (SWAT) user's manual version 2000. Grassland, Soil, and
Water Research Laboratory & Blackland Research Center, USDA-ARS: Tem-
ple, TX.

Neteler, M. and H. Mitasova. 2004. Open Source GIS: A GRASS GIS Approach.
Second Edition. Kluwer Academic Publishers, Boston, Dordrecht.

Ninnemann, Jeff. 2004. Summary report: Basin wide hyporheic parameter esti-
mates for the H.J. Andrews Experimental Forest, Oregon. Technical Report.
Oregon State University.

Page, E. H., A. Buss, P. Fishwick, K. J. Healy, R. E. Nance, and R. J. Paul. 1998.
The modeling methodological impacts of web-based simulation. in Proceed-
ings of the 1998 SCS International Conference on Web-Based Modeling and
Simulation. San Diego, CA, 11-14 January. 123-128.

Parnas, D. L. 1972. On the criteria for decomposing systems into modules.
Communications of the ACM. 15(12): 1053-1058.

Piacentini, A. and the PALM group. 2002. PALM: A dynamic parallel coupler. in
Proceedings of High Performance Computing for Computational Science -
VECPAR 2002: 5th International Conference. 479-492.

Plentinger, M. C. and F. W. T. Penning de Vries, eds. 1996. CAMASE, Register of
agro-ecosystems models. Internet. Available at http://library.wur.nlicarnase/;
accessed 1 June 2006.

Rajlich, V. and N. Wilde. 2002. The role of concepts in program comprehension.
in Proceedings of the 2002 International Workshop on Program Comprehen-
sion. IEEE Computer Society Press, Los Alamitos, CA. 271-278.

Rasmussen, C. E., K. A. Lindlan, B. Mohr, and J. Striegnitz. 2001. CHASM: Static
analysis and automatic code generation for improved Fortran 90 and C++ in-
teroperability. Los Alamos Computer Science Institute 2001 Symposium.
Santa Fe, NM.

Rathmayer, S. and M. Lenke. 1997. A tool for on-line visualization and interactive
steering of parallel HPC applications. in Proceedings of the 11th International
Parallel Processing Symposium, IPPS 97. 181-186.

Robinson, S., R. E. Nance, R. J. Paul, M. Pidd, and S. J. E. Taylor. 2004. Simula-
tion model reuse: Definitions, benefits and obstacles. Simulation Modelling
Practice and Theory. 12: 479-494.

Ross, M., J. Geurink, A. Aly, P. Tara, K. Trout, and T. Jobes. 2004. Integrated hy-
drologic model (IHM) Volume 1: Theory manual. Tampa Bay Water and
Southwest Florida Water Management District.



197

Rowan, A. 2001. Development of the multiple model broker, a system integrating
stormwater and groundwater models of different spatial and temporal scales
using embedded GIS functionality. Ph.D. diss. Rutgers, The State University
of New Jersey: New Brunswick, NJ.

Runkel, R. L. 1998. One-dimensional transport with inflow and storage (OTIS) - A
solute transport model for streams and rivers. U.S. Geological Survey Water-
Resources Investigations Report 98-4018.

Schaffranek, R. W., R. A. Baltzer, and D. E. Goldberg. 1981. A model for simula-
tion of flow in singular and interconnected channels. Techniques of Water-
Resources Investigations of the United States Geological Survey. Book 7,
Chapter C3.

Shengsheng, Y., W. Yuanqiao, H. Liwen, and D. Jian. 2005. Framework of dis-
tributed numerical model coupling system. 9th IEEE International Symposium
on Distributed Simulation and Real-Time Applications. 187-194.

Simon, E. Le Select Tutorial. INRIA-Rocquencourt. Internet. Available from
http://www-caravel.inria.frideselect; accessed 1 June 2006.

Sklower, K., H. Robinson, C. R. Mechoso, L. A. Drummond, J. Spahr, J. D. Far-
rara, and E. Mesrobian. The distributed data broker: A decentralized mecha-
nism for periodic exchange of fields between multiple ensembles of parallel
computations. Internet. Available from
http://www.atmos.ucla.edu/–mechoso/esmkidb_pp.html; accessed 1 June
2006.

Smith, P., D. S. Powlson, J. U. Smith, and P. Falloon. 1997. SOMNET: A global
network and database of soil organic matter models and long-term experi-
mental datasets. The Globe. 38: 4-5.

Sottile, M. 2001. The design of a general method for constructing coupled scien-
tific simulations. Masters thesis. University of Oregon.

Storey, M., F. Fracchia, and H. Muller. 1997. Cognitive design elements to sup-
port the construction of a mental model during software visualization. in Pro-
ceedings of the 5th International Workshop on Program Comprehension,
Dearborn, Ml. 17-28.

Storey, M., K. Wong, F. Fracchia, and H. Muller. 1997. On integrating visualiza-
tion techniques for effective software exploration. in Proceedings of IEEE
Symposium on Information Visualization (infoVis'97). Phoenix, AZ. 38-45.

Swain, E. D. and E. J. Wexler. 1996. A coupled surface-water and ground-water
flow model (ModBranch) for simulation of stream-aquifer interaction. Tech-
niques of Water-Resources Investigations of the United States Geological
Survey, Book 6, Chapter A6.



198

Sydelko, P. J., K. A. Majerus, J. E. Dolph, and T. N. Taxon. 1999. A dynamic
object-oriented architecture approach to ecosystem modeling and simulation.
In Proceedings of the 1999 American Society of Photogrammerty and Remote
Sensing (ASPRS) Annual Conference. 410-421.

Tarboton, D. G. and C. H. Luce. 1996. Utah energy balance snow accumulation
and melt model (UEB), computer model technical description and users
guide. Utah Water Research Laboratory and USDA Forest Service Intermoun-
tain Research Station.

Trescott, P. C., G. F. Pinder, and S. P. Larson. 1980. Finite-difference model for
aquifer simulation in two dimensions with results of numerical experiments. In
Techniques of Water-Resources Investigations of the United States Geologi-
cal Survey, Book 7, Chapter Cl.

Valcke, S., A. Caubel, R. Vogelsang, and D. Declat. 2004. OASIS3 Ocean At-
mosphere Sea Ice Soil User's Guide Technical Report TR/CMGC104/68,
CERFACS, Toulouse, France.

Valcke, S., E. Guilyardi, and C. Larsson. 2005. PRISM and ENES: a European
approach to Earth system modelling. Concurrency and Computation: Practice
and Experience. 18(2): 247-262.

van Wijk, J. and R. van Liere. 1997. An environment for computational steering.
in G.M. Nielson, H. Muller, and H. Hagen, eds, Scientific Visualization: Over-
views, Methodologies, and Techniques. Computer Society Press. 89-110.

Vetter, J. and K. Schwan. 1997. High performance computational steering of
physical simulations. in Proceedings of the 11th International Parallel Proc-
essing Symposium, IPPS 97. 128-132.

Vetter, J. and K. Schwan. 1995. Progress: A toolkit for interactive program steer-
ing. in Proceedings of the 24th International Conference on Parallel Process-
ing. 2:139-142.

Whelan, G., K. J. Castleton, J. W. Buck, B. L. Hoopes, M. A. Pelton, D. L.
Strenge, G. M. Gelston, and R. N. Kickert. 1997. Concepts of a framework for
risk analysis in multimedia environmental systems (FRAMES). PNNL-11748,
Pacific Northwest National Laboratory, Richland, Washington.

WRIA1. The Watershed Management Plan. Internet. Available from
http://www.wria1project.wsu.edu/watershedplan.htm; accessed 1 June 2006.


	Support_for_model_coupling_rev.001-01_ocr.pdf
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48

	Support_for_model_coupling_rev.001-02_ocr.pdf
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20

	Support_for_model_coupling.001-01_incomplete_ocr.pdf
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37

	Support_for_model_coupling.001-02_ocr.pdf
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39

	Support_for_model_coupling.001-03_ocr.pdf
	Page 1
	Page 2
	Page 3
	Page 4

	Support_for_model_coupling.002-01_ocr.pdf
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33

	Support_for_model_coupling.002-02_ocr.pdf
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35

	Pages from Support_for_model_coupling_rev.pdf
	Page 1

	Abstract_from Support_for_model_coupling_ocr.pdf
	Page 1




