SCHEDULING FOR FAST TURNAROUND IN PEER-BASED DESKTOP GRID
SYSTEMS

by

DAYI ZHOU

A DISSERTATION

Presented to the Department of Computer
and Information Science
and the Graduate School of the University of Oregon
in partial fulfillment of the requirements
for the degree of
Doctor of Philosophy

June 2006

SCHEDULING FOR FAST TURNAROUND IN PEER-BASED DESKTOP GRID
SYSTEMS

by

DAYI ZHOU

A DISSERTATION

Presented to the Department of Computer
and Information Science
and the Graduate School of the University of Oregon
in partial fulfillment of the requirements
for the degree of
Doctor of Philosophy

June 2006

ii

“Scheduling for Fast Turnaround in Peer-based Desktop Grid Systems,” a dissertation
prepared by Dayi Zhou in partial fulfillment of the requirements for the Doctor of
Philosophy degree in the Department of Computer and Information Science. This

dissertation has been approved and accepted by:

U ypmia I -

Dr. Virginia ﬂo, Chair of the Examining Committee

é/ob/oé

Date

Committee in charge: Dr. Virginia Lo, Chair
Dr. Allen Malony
Dr. Andrzej Proskurowski
Dr. Patricia A. Gwartney
Dr. Sharad Garg

Accepted by:

Ay T

Dean of the Graduate School

1

An Abstract of the Dissertation of
Dayi Zhou for the degree of Doctor of Philosophy
in the Department of Computer and Information Science
to be taken June 2006
Title: SCHEDULING FOR FAST TURNAROUND

IN PEER-BASED DESKTOP GRID SYSTEMS

Approved: ‘

! Dr. Virginia Lo, Chair

This dissertation focuses on scheduling strategies that achieve fast turnaround in
open, dynamic, and large scale peer-based desktop grid. The challenges are two-fold:
How does the scheduler quickly discover idle cycles in the absence of global informa-
tion about host availability? And how can faster turnaround time be achieved within
the opportunistic scheduling environment? Thus, our research is focused on two com-
ponents of a peer-based desktop grid system: (1) fast scalable resource discovery and
(2) application scheduling for fast turnaround.

We first describe a general peer-based desktop grid architecture, CCOF (Clus-
ter Computing on the Fly). All of our research is based on this open, scalable,
autonomous architecture.

Resource discovery is used to find available hosts in the peer-to-peer overlay net-

work. We are the first to conduct a comprehensive study of generic resource discovery

iv

methods in dynamic peer-based desktop grid systems. We found that the rendezvous
point algorithm performs best under both light and heavy workloads because of its
high success rate and consistently low message overhead.

We capitalized on the features of structured overlay networks to design two inno-
vation rendezvous point selection schemes. SORPS (Structured Overlay Rendezvous
Point Selection) selects a group of rendezvous points in a structured overlay network,
with the goals of a balanced load among rendezvous points and low latency access
from ordinary peers to rendezvous points. We then introduced virtual rendezvous
points, which, in contrast to SORPS, do not utilize any physical nodes for resource
discovery. Instead, we encode resource information in each node label, creating a
RAON (resource-aware overlay network).

We designed a new peer-to-peer infrastructure called WaveGrid which uses a
timezone-aware RAON for fast resource discovery and migration from heavily loaded
host to lightly loaded host to improve throughput. We evaluated the performance
of WaveGrid using a heterogeneous host CPU profile based on statistical data de-
rived from the BOINC volunteer computing system. The simulation results show
that WaveGrid outperforms other systems with respect to turnaround, stability and
minimal impacts on hosts.

This dissertation includes both my previously published and my co-authored ma-

terials.

CURRICULUM VITA

NAME OF AUTHOR: Dayi Zhou
PLACE OF BIRTH: Xi’an, Shannxi, China

DATE OF BIRTH: November 17, 1976

GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED:

University of Oregon
Tsinghua University

DEGREES AWARDED:

Doctor of Philosophy in Computer Science, 2006 , University of Oregon
Master of Science in Computer Science, 2002, University of Oregon
Bachelor of Engineering in Computer Engineering, 2000, Tsinghua Uni-
versity

AREAS OF SPECIAL INTEREST:

Distributed Computing
Peer-to-peer networks
Grid computing

PROFESSIONAL EXPERIENCE:

Teaching Assistant, Computer and Information Science Department,
University of Oregon,Eugene, Oregon,

2000 - 2006
Research Assistant, Network Research Group, Computer and Informa-
tion Science Department, University of Oregon,

2000 - 2006

PUBLICATIONS:

Dayi Zhou and Virginia Lo. WaveGrid: a Scalable Fast-turnaround
Heterogeneous Peer-based Desktop Grid System, In Proceedings of
the 20th International Parallel and Distributed Processing Symposium,
April, 2006.

Virginia Lo, Dayi Zhou, Yuhong Liu, Chris GauthierDickey, and Jun
Li. Scalable Supernode Selection in Peer-to-Peer Overlay Networks, In
Proceedings of International Workshop on Hot Topics in Peer-to-Peer
Systems 2005 (HOT-P2P’05), July, 2005.

Dayi Zhou and Virginia Lo. Wave Scheduler: Scheduling for Faster
Turnaround Time in Peer-based Desktop Grid Systems, In Proceed-
ings of the 11th Workshop on Job Scheduling Strategies for Parallel
Processing (JSSPP’05), June, 2005.

Xun Kang, Dayi Zhou, Dan Rao, Jun Li and Virginia Lo. Sequoia - A
robust communication architecture for collaborative security monitor-
ing Systems, In SIGCOMM’04 Poster Session, August, 2004.

Jun Li, Virginia Lo, Xun Kang, Dayi Zhou, and Dan Rao Re-
silient and self-organizing overlay of collaborative security monitors,
In USENIX’04 Work-in-progress, June, 2004.

Dayi Zhou and Virginia Lo. Cluster Computing on the Fly: Resource
Discovery in a Cycle Sharing Peer-to-Peer System, In Proceedings of the
Fourth International Workshop on ”Theory and Experience of Desktop
Grids and P2P systems (GP2PC’04), April, 2004.

Virginia Lo, Daniel Zappala, Dayi Zhou, Yuhong Liu, and Shanyu Zhao.
Cluster Computing on the Fly: P2P Scheduling of Idle Cycles in the
Internet, In Proceedings of the Third International Workshop on Peer-
to-peer Systems (IPTPS’04), Febury, 2004.

Daniel Zappala and Dayi Zhou. Performance Evaluation of Local
Search Heuristics for QoS Multicast Routing, In Proceedings of The
11th International Conference on Computer Communications and Net-
works (ICCCN’02), October, 2002.

vi

vii

ACKNOWLEDGMENTS

I would like to first express my sincere appreciation to my advisor, Professor
Virginia M. Lo, for her guidance and support during my graduate study. I am very
lucky to have an advisor who is always willing to spend her time to listen to my
problems no matter how small they might be. Without the long hours she spent and
her valuable technical and editorial advice, this work could not have been completed.
I thank Professor Lo for everything she has done for me.

I would also like to thank Professor Allen Malony, Professor Andrzej Proskurowski,
Professor Patricia Gwartney and Dr. Sharad Garg for serving as my dissertation
committee members and for their help during my thesis writing.

I thank the Department of Computer and Information Science for providing a
friendly and supportive research environment and financial support during the years
of my Ph.D study.

Finally, my parents receives my deepest gratitude and love for their dedication and
sacrifice. I thank them for their support in all levels during my high school and un-
dergraduate study, and their soothing encouragement when I encountered roadblocks

in pursuing my goals.

viii

To my late grandparents.

TABLE OF CONTENTS

ix

Chapter Page
1. INTRODUCTION TO PEER-BASED DESKTOP GRID SYSTEMS . . 1
1.1 Research Challenges. 5
1.2 Dissertation Roadmap 7
2. BACKGROUND AND RELATED WORK 11
2.1 Foundation Areas for Research in Peer-based Desktop Grid Systems 12
2.2 Peer-to-peer Networks 13
2.2.1 Unstructured vs. Structured Overlay Networks 14
2.3 Overlay Construction in Peer-to-peer Networks 16
2.3.1 Overlay Construction in Unstructured Overlay Network 17
2.3.2 Overlay Construction in Structured Overlay Network . . . 18
2.4 Resource Discovery in Peer-to-Peer Networks 21
2.4.1 Resource Discovery in Unstructured Peer-to-peer Networks 22
2.4.2 Resource Discovery in Structured Peer-to-peer Networks . 22
2.5 Cycle Sharing Systems 24
2.5.1 Institutional-based Load Sharing Systems 25

2.5.2 Internet-based Computing Projects and Web-based Com-
puting Projects L. 27
2.5.3 Peer-based Desktop Grid Systems 28

2.6 Resource Discovery and Application Scheduling in Peer-base Desktop
Grid Systems L. e 30
2.6.1 Resource discovery in Peer-based Desktop Grid Systems . 30
2.6.2 Application Scheduling in Peer-based Desktop Grid Systems 33

3. A GENERAL ARCHITECTURE FOR PEER-BASED DESKTOP GRID
SYSTEMS e 35
3.1 CCOF: a General Architecture for Peer-based Desktop Grid Systems 35
3.2 Suitable Applications for Peer-based Desktop Grid Systems 39
3.3 Workpile Applications. 41

4. RESOURCE DISCOVERY IN PEER-BASED DESKTOP GRID SYS-

TEMS

4.1 Introduction
4.2 CCOF Resource Discovery Model
421 DynamicHosts
4.2.2 Profile Based Model
4.2.3 Workpile Applications
424 Search Algorithms
4.2.5 Scheduling Strategies.
43 Simulation
4.3.1 Simulation Configuration
432 SimulationResults
44 Conclusions i e e e e

. DYNAMIC RENDEZVOUS POINT SELECTION IN PEER-TO-PEER
OVERLAY NETWORKS

5.1 Problem Definition and Related Work
5.1.1 Criteria of the Rendezvous Points Selection Problem . . .
5.1.2 Related Theoretical Problems
5.1.3 Rendezvous Point Selection in Unstructured Overlay Net-
works
5.2 Rendezvous Points Selection in Structured Overlay Networks
5.2.1 SORPS: Structured Overlay Rendezvous Point Selection .
5.2.2 Drawbacks of Physical Rendezvous Points
5.3 Virtual Rendezvous Points Schemes
5.3.1 Examplesof RAON
5.3.2 Advantages and Limitationof RAON.
5.3.3 Timezone aware RAON for Peer-based Desktop Grids
534 Summary e e

. WAVEGRID: SCHEDULING FOR FAST TURNAROUND IN OPEN
PEER-BASED DESKTOP GRID SYSTEMS

6.1 Introduction
6.2 Timezone-aware Overlay Network and Scheduling in WaveGrid . . .
6.3 Migration
6.3.1 Suitable Applications for Migration in Peer-based Desktop
GridSystems e

64
64
66

67
70
70
77
78
79
81
82
83

86

86
89
93

6.3.2 Migration Strategies 95

6.3.3 Peer-based scheduling strategies that utilize migration . . 96

6.4 Simulation-based Evaluation of WaveGrid. 98
6.5 Heterogeneous Host CPU Power Profile 99
6.6 Simulation configuration 103
6.6.1 Basic Simulation Configuration 103

6.6.2 Heterogeneous Environment and Rescheduling 104

6.7 Evaluating Different Migration Strategies 105
6.7.1 Simulation Metrics 106

6.7.2 Simulation Results 107

6.8 Simulation Experiments using a Hetergeneous CPU profile 116
6.8.1 Simulation Metrics 116

6.8.2 Simulation Results 117

6.9 Extensions to WaveGrid 123
6.10Conclusion e 125
7. CONCLUSION AND FUTUREWORK 128
7.1 Contribution L 128
72 Future Work 132
7.2.1 Improvement to WaveGrid. 132

7.2.2 Peer-to-peer Checkpointing 133

7.2.3 Fairness in Peer-based Desktop Grid Systems 134

BIBLIOGRAPHY 136

LIST OF FIGURES

Figure

1.1 The different architectures of client-sever model and peer-to-peer model .
2.1 Nodejoinin CAN
2.2 Resourcediscovery in CAN

2.3
3.1
3.2
3.3
4.1
4.2
4.3
4.4
4.5
4.6
4.7

4.8

5.1
5.2

9.3

5.4

6.1
6.2

Relationship between peer-based cycle sharing systems and their ancestor
SYSLEIMS e

CCOF Architecture it it
Client submits jobto CCOF.
Host receives request from client.

Job completion rate under uniform workload, when the ratio of clients to
donorsis 0.1. e e

Message overhead (for 24-hour period) under uniform workload, when the
ratio of clients todonorsis 0.1.

Average distance from clients to donors under uniform workload, when
the ratio of clients todonorsis 0.1

Job first submission success rate under uniform workload, when the ratio
ofclientstodonorsis 0.7. e

Job completion rate under uniform workload, when the ratio of clients to
donorsis 0.7. e

Job migration failure rate under uniform workload, when the ratio of
cients todonors is 0.7o oL

Job completion rate under normal workload, when the ratio of clients to
donorsis 0.7. e e e

Message overhead under uniform workload, when the ratio of clients to
donorsis 0.7 L. L e e e e

Gnutella two-tier hierarchical overlay network.

Rendezvous point selection in CAN. (Rendezvous point label expression
is (0.05+0.25 n)%1,(0.20+0.26 m)%1

An example of RAON, the information of operating system and CPU clock
rate on hosts is embedded into the overlay network.

An example of Timezone-aware RAON. Hosts join according to their time-
zone information. oL

Job initiation and migration in WaveGrid
Sample host profile of available idlecycles

Page

4
19

25
36
37
37

52
53
54
99
56
57
58

a9
68

72

80

6.3

6.4

6.9

6.6

6.7

6.8

6.9

6.10

6.11

6.12

6.13

6.14

6.15

6.16

6.17

6.18

6.19

6.20

6.21

6.22

6.23

CPU powers of different CPU groups using empirical data from BOINC
statistic (collected in Aug. 2005). The credits are averaged over all the
CPUsinthesamegroup.«,
Percentage of different CPU groups with different ranks
Average slowdown factor for no-migration vs. migration (The percentage
of clients in the system is 20%)}
histogram of slowdown factors of successfully finished jobs (The percentage
of clients is 20% and the percentage of free time on hosts is 15%)

% of jobs that fail to complete(The percentage of clients in the system is
20%0) . e e e
% of jobs that fail to complete (The percentage of free time on the hosts
during the day is 15%)
Average number of migrations for successfully finished jobs (The percent-
age of clients in the system is 20%)
Wave Scheduler: Average slow down factor(The percentage of client re-
quest is 20%)
% of job that fail to complete (The percentage of clients in the system is
20%) B At e S
% of job that fail to complete (The percentage of available time on the
hosts during the day is 15%)
Average number of migrations (The percentage of client in the system is
2000) . e e e e
Average makespan vs host availability (The percentage of clients is 20%)
Average slowdown vs host availability (Percentage of clients is 20%)
Histogram of distribution of makespan (Percentage of clients is 20%. Per-
centage of available time on hosts during the day is 40%.)
Average number of migrations (Percentage of clients is 20%)
Average makespan when the migration delay varies {Percentage of clients
in the system is 20%. Percentage of free time on hosts during the day is
50%0.) . e
Average number of retries during the job execution {Percentage of clients
1820%) e
Average slowdown vs host availability when using random host selection
(Percentage of clients is 20%)
Percentage of performance improvement when using the most powerful
host selection instead of a random host selection (Percentage of clients is
20%0) .. e
Average slowdown when using the eager migration strategy (Percentage
of clients is 20%)
Percentage of performance improvement when using eager migration (Per-
centage of clients is 20%) L oL,

xidi

101
102

LIST OF TABLES
Table

2.1 Comparison of unstructured to structured overlay networks
2.2 Properties of different structured overlays (n is total number of peers. d
is the number of dimensions in CAN.)
2.3 Existing Peer-based Cycle sharing Systems
3.1 Examples of workpile applications
4.1 Average/Max size of jobs scheduled under uniform workload, when the
ratio of clients to donors is 0.7. (Job size is measured in unit of processor-
hours) e
5.1 Comparison of SORPS with rendezvous point selection in unstructured
overlay network (RP: rendezvous point)
5.2 Comparison of physical rendezvous point with virtual rendezvous points
(RPirendezvous point)
6.1 Different migration strategies
6.2 Sample statistical data for SETI@home organized by types of CPUs, which
groups hosts according to type of its CPU. (Note: " Average credit” is the

average credit granted over the last few days to the hosts with this type
of CPU.Y . . . e

xiv

84

84
97

CHAPTER 1

Introduction to Peer-based

Desktop Grid Systems

Peer-based desktop grid systems represents a new research area stimulated by
the recent success of Internet-based computing projects such as SETI@home and
BOINC and rapid developments in peer-to-peer computing. The goal of peer-based
grid systems is to support the automatic execution of CPU intensive i.e. long-running
applications in a network of voluntary peers willing to donate idle cycles. These
systems aggregate idle cycles from host machines on the edge of the Internet into a
large resource pool and manage these resources in an efficient, fair, and secure way.
here are two types of nodes in a cycle sharing system: the client and the host. The
host donates idle cycles and the client seeks extra cycles for its tasks. In a peer-to-
peer cycle sharing system, a node can be either a client or a host or both. Research
in peer-based desktop grid systems lies in the intersection of distributed computing
research and peer-to-peer networking research, and represents a new generation of
cycle sharing systems.

It has long been acknowledged that a vast amount of cycles lie idle on user ma-
chines, and the advantage of utilizing idle cycles through automatic scheduling tools
has not gone unnoticed. A number of predecessors of cycle sharing systems have
paved the way for research in peer-based desktop grid systems. These include load

sharing systems, Internet-based computing projects and scientific Grids.

In the mid 1980’s, load sharing in distributed systems emerged as an approach to
utilize idle cycles within one institution. Condor [63, 94], which was implemented at
University of Wisconsin, is one of the most widely recognizied load sharing projects.
The original Condor system was built as a production system within one institution
using a central matchmaking server for resource management. With the development
of new techniques, Condor evolved to include more than one institution. Condor-
Flock [33] proposed to build a Condor pool of multiple institutions via connecting
matchmaking servers at different sites. CondorG [94] advanced the research by uti-
lizing Grid computing techniques to connect multiple sites. However, it is hard to
expand Condor to a system without institutional support, to allow machines not asso-
ciated with any institutions to join. The central servers may also become performance
bottlenecks and points of failure in a large scale system.

Internet-based computing projects were built about the same time as Condor.
They focus on utilizing idle cycles scattered throughout the Internet. The most no-
ticeable design features of these systems are a client-server architecture, rigid master-
slave scheduling model, and strict protection of local jobs’ privileges. In such a
system, the volunteer hosts have to manually download and install hosting software.
The central sever then dispatches jobs to the registered hosts. The foreign jobs run
on the hosts under a screensaver model; that is, they run when there are no recent
mouse or keyboard activities, otherwise they sleep. The Internet-based computing
projects have attracted a large group of users, which shows the potential for utilizing
idle cycles on the Internet. For example, BOINC has over 500,000 registered users.
On the other hand, the frequent down time of servers in these systems suggests there
is need for a more scalable infrastructure then the client-server architecture.

Finally, traditional Grid systems connect federated computing sites such as su-
percomputer labs and then provide tools and services to users within the commu-
nity [38, 8). Traditional grid computing infrastructures use matchmaking schemes
that are similar to those used in the distributed systems [65] or specialized proto-
cols [27] for negotiating resource usage and to locate available resource. Therefore,

they are costly to assemble and operate.

The most recent type of cycle sharing systems are known as desktop grid sys-
tems. Desktop grid systems are low-end grids which harness idle cycles on desktop
machines at the edge of the Internet. These systems can serve the needs of a wide
user population, ranging from research scientists running compute-intensive scientific
applications to commercial enterprises specializing in multimedia and digital arts pro-
cessing, to high school students engaged in science or art fair projects. Our work and
that of systems including flock of condors [12], OurGrid [3], CompuP2P {45] and Per-
sonalGrid [46] advances the state of the art by utilizing the newest techniques from
peer-to-peer networking in the design of desktop grid systems.

A light-weight, open peer-based desktop grid system is a desktop grid system built
using peer-to-peer techniques and is thus easy to assemble and operate. It allows
cycle donors with similar interests to self-organize into a cycle sharing community by
joining an overlay network, similar to those used by peer-to-peer file sharing systems.
In contrast to the institutional-based Grid systems [37, 94], load sharing systems
in local networks [63, 106], and client-server-based Internet computing projects [2,
75, 90, 6], peer-based desktop grid systems circumvent the performance bottleneck of
central servers and are capable of achieving much larger scale. Moreover, a peer-based
desktop grid system allows each peer to be a potential donor of idle cycles as well as
a potential source of tasks for automatic scheduling in the virtual resource pool. The
peer-based model is distinctly different from the client-server-based global computing
projects such as BOINC, SETI@home and Stanford Folding. In these systems all
the volunteer machines donate idle cycles to a single scientific application but reap
no benefits for their own computational needs. Figure 1.1 contrasts the client-server
model and the peer-based cycle sharing model.

Although peer-based desktop grid systems are scalable, lightweight, and easy to
assemble and operate, many open problems remain to achieve the highest quality
of service possible in an dynamic large-scale desktop grid environment such as fast
turnaround scheduling, fault-tolerance and security.

The problem addressed in this dissertation is the development of scheduling strate-
gies that achieve fast turnaround time in open, dynamic, and large scale peer-based

desktop grid systems. Scheduling is the essential function of a peer-based desktop

- e

AN
S VAR

O fost
@ peer {Host/Client)

Client-sever model Peer-to-peer model

FIGURE 1.1: The different architectures of client-sever model and peer-to-peer
model

grid system and key to the performance of such systems. While scheduling for fast
turnaround has always been the goal of traditional scheduling research, compared
with scheduling in a dedicated environment, scheduling in an opportunistic cycle
sharing environment is more challenging. Scheduling in a peer-based cycle sharing
system is even more changing as the hosts are connected by a dynamically changing

virtual overlay network and the size of the system is potentially very large.

The dissertation is the first to address scheduling for fast turnaround in a large
scale desktop grid system. The scheduling methods in traditional cycle sharing sys-
tems are not suitable in this new cycle sharing infrastructure. Condor style scheduling
requires central servers for resource discovery and scheduling, and therefore cannot
be transplanted into an Internet-scale system beyond the boundaries of institutions.
Existing Internet-scale cycle sharing systems use best effort scheduling techniques
relying entirely on external incentives such as fame. These systems also suffer from
bottlenecks due to client-server architecture. Present research [57, 58] in schedul-
ing for fast-turnaround in desktop grid systems assumes the use of central servers;

therefore these results cannot be used in a peer-based system.

1.1 Research Challenges

The design of scheduling strategies to satisfy higher quality-of-service (QoS) re-
quirements, such as fast turnaround and high throughput, is a big challenge in
dynamic, opportunistic peer-based cycle sharing systems, which faces a number of
unique challenges inherent to the nature of the peer-to-peer environment.

The challenges first come from the opportunistic and volatile nature of the peer-
based cycle sharing systems. Peer-based cycle sharing systems use non-dedicated
machines in which local jobs have much higher priority than foreign jobs. Therefore,
compared to running on dedicated machines, the foreign job will make slower progress
since it can only access a fraction of the host’s CPU availability. The resources are
highly volatile in a peer-based cycle sharing system. Nodes may leave and join the
system at any time, and resource owners may withdraw their resources at any time.
Therefore, the foreign jobs may experience frequent failures due to the volatility of
the resources.

The challenges for design of an efficient scheduling system for peer-based desktop
grid systems also come from the difficulties in collecting global and accurate resource
information. It is unscalable to collect resource information such as idle time slots,
CPU speed and type of operating system for all the nodes in a large scale peer-based
cycle sharing system. Also users of peer-based cycle sharing systems may find it is
intrusive to report their computer usage information periodically to some unknown
remote clients. Therefore, scheduling in large scale cycle sharing systems are usually
best effort scheduling based on limited resource information.

The problem of scheduling in peer-based cycle sharing systems encompasses all
the activities involved with utilizing idle cycles in a distributed, open environment:
overlay management, resource discovery, application scheduling, local scheduling on
the host, and meta-level scheduling which involves coordination of efforts among a
community of application-based schedulers. Qur research is focused on two of these
problems: (1) fast scalable resource discovery methods and (2) application scheduling

for fast turnaround.

e Resource discovery. The goal of resource discovery in peer-based cycle shar-
ing systems is to discover available hosts in the ocean of hosts, even when hosts
leave and join the system dynamically, and the amount of resources dynam-
ically change. This dissertation addresses fundamental questions in the area
of resource management within large scale, dynamic, opportunistic computing
environments: what is the best scalable protocol for searching through a large
network of candidate nodes to discover those qualified and willing to donate
cycles? How can resource information best be represented and kept up to date

in a dynamically changing environment?

e Application scheduling. The goal of application scheduling is to choose the
best hosts on which to schedule the job, even when the resource information is
limited, imprecise, and inaccurate. There are many open questions in this field.
How can the scheduler adjust quickly to dynamic changes in the availability
of the machine hosting the foreign code? Should the task continue to reside
on the current host machine or migrate to a new machine with potential for
better service? Can a peer-based cycle sharing system meet reasonable QoS

requirements regarding turnaround time to complete the task(s)?

Scheduling in peer-based cycle sharing environment represents a new body of
research resulting in the synergy of both distributed computing and networking, which
pushes the frontier far beyond scheduling in a dedicated environment or within one or
several institutions. Qur work is part of the cross-fertilization of ideas and discoveries
in this evolving research domain. As an immediate result, our work will enhance
the computing environment for a diverse population of users and their applications,
ranging from scientists to ordinary users. In the long run, our work contributes
valuable guidelines to design of scheduling strategies in a wide range of computing
environments, spanning the spectrum from open, ad hoc communities of low-end

clients, to federated Grid computing systems.

1.2 Dissertation Roadmap

Starting with the design of the general architecture, we first focused on resource
discovery methods in this type of system and schemes to aid resource discovery such
as scalable rendezvous point selection. Based on results of these study, we designed
the scheduling methods for fast turnaround in this open, fully distributed and het-
erogeneous peer-based infrastructure. This dissertation work can be divided into four

phases:

¢ General peer-based cycle sharing architecture. We first designed a gen-
eral peer-based cycle sharing architecture, CCOF (Cluster Computing on the
Fly). All of our research is based on this open, scalable, autonomous archi-
tecture, and follows the same light-weight and non-intrusive design philosophy.
CCOF is composed of a community-based overlay network, application sched-
uler, local scheduler and coordinated scheduler. In the CCOF architecture,
hosts join a variety of community-based overlay networks, depending on how
they would like to donate their idle cycles. Clients then form a compute cluster
on the fly by discovering and scheduling on sets of machines from these overlays.
CCOF charts many research challenges, including incentives and fairness, trust
and reputation, security and performance monitoring. At this stage, we also
identified four types of applications, which are suitable to run in this type of
systems: infinite workpile application (bag-of-task), workpile applications with
deadlines, tree-based search applications, and point-of-presence applications.
Among these applications, We focus on the scheduling of workpile applications,
those that consume a large amount of cycles with little or no data communica-

tion.

s Resource discovery methods. Resource discovery is used to collect host in-
formation and to find available hosts in the peer-to-peer overlay network. The
focus is to understand what scalable generic resource discovery method is the
best for fast turnaround cycle sharing. Though resource discovery was widely

studied in peer-to-peer file sharing system, it was unknown whether the results

can be directly applied to a cycle sharing system, as cycles and data are inher-
ently different types of resources. We are the first to conduct a comprehensive
study of four generic resource discovery methods in a dynamic peer-based cycle
sharing environment: expanding ring search, random walk, advertisement-based
search, and rendezvous points based search. For comparison purposes, a central-
ized search algorithm was also included in the study, which is optimal but not
scalable. We found that the rendezvous point algorithm performs best overall
under both light and heavy workloads because of its consistently low message
traffic overhead.

Rendezvous point selection methods. Rendezvous point selection meth-
ods in peer-based desktop grid systems are used to select a group of peers
to function as matchmatching servers. Hosts submit their resource profiles to
rendezvous points, and rendezvous points match client requests with suitable
hosts. Based on our study about generic resource discovery methods which
shows that rendezvous point based resource discovery performs the best, We
tackled the open problem of placing a dynamic group of rendezvous points in a
large scale overlay network. The goals for placement are a balanced load among
rendezvous points and low latency access from ordinary peers to rendezvous
points. Existing rendezvous point selection methods in unstructured overlay
networks cannot evenly distribute the rendezvous point throughout the overlay
networks. In addition, they all rely on probing with high message overhead to

discover rendezvous points.

I capitalized on the features of structured overlay network to design two inno-
vative rendezvous point selection schemes. The first rendezvous point selection
algorithm, SORPS (Structured Overlay Rendezvous Point Selection) selects a
group of rendezvous points in a structured overlay network, with a goal of keep-
ing the rendezvous point to ordinary peer ratio stable as peers join and leave
the overlay. Although SORPS is scalable and can achieve access and load bal-
ance requirements, it relies on physical nodes to serve as rendezvous points and

thus require complex maintenance and is susceptible to malicious nodes’ attack.

Therefore, we introduced the notion of virtual rendezvous point which does not
puts burdens onto one or a few physical rendezvous points. Instead, a special
node labeling scheme categorizes hosts according to their resources to create vir-
tual rendezvous point in the node label space. Hosts register themselves with
the virtual rendezvous points according to their resource profiles using the node
label formula, and the clients’ requests are automatically routed to matching

hosts with low resource discovery overhead.

Migration-based scheduling for fast-turnaround. A host may withdraw
cycles or completely leave from the peer-based desktop grid system, and then
the foreign jobs cannot continue execution on that host. This is the major
reason for the relatively long computation time in peer-based desktop grid sys-
tems compared with computation time in a dedicated machine. Migration is
a technique used in distributed systems to migrate jobs from heavily loaded
hosts to lightly loaded hosts to improve throughput. We are the first to apply
this technique to peer-based cycle sharing environments to provide continuous
execution. We answered the challenge of selecting the best migration target and
migration time in this large dynamic system by using the virtual rendezvous

point idea for fast resource discovery and to provide a suitable migration target.

WaveGrid: timezone-aware overlay network Combining the concept of
virtual rendezvous points and fast migration, we designed a new peer-to-peer
scheduling infrastructure called WaveGrid. WaveGrid integrates a novel timezone-
aware overlay construction method with task migration. Hosts organize them-
selves into a timezone-aware structured overlay network, which supports fast
and straight-forward resource discovery. Hosts with potentially long chunks of
idle night cycles will be identified as candidates for scheduling or as migration
targets. Scheduling methods in WaveGrid takes heterogeneity into account in
choosing hosts. WaveGrid then rides the wave of available cycles by migrat-
ing jobs to hosts located in night-time zones around the globe. We evaluated
the performance of WaveGrid using a heterogeneous host CPU profile based on

statistical data derived from the BOINC volunteer computing system.

10

The rest of the dissertation is organized as following. Chapter 2 summarizes the
previous cycle sharing systems in distributed computing and the related research in
peer-to-peer networks, especially overlay construction and resource discovery. Chap-
ter 2 also surveys existing peer-based desktop grid systems discussing their different
research goals, resource discovery schemes and scheduling methods. Chapter 3 de-
scribes decribes general peer-based cycle sharing architecture, CCOF (Cluster Com-
puting on the Fly). Chapter 4 reports our performance study of generic resource
discovery methods in peer-based desktop grid systems. Chapter 5 describes Struc-
tured Overlay Rendezvous Point Selection (SORPS) and the concept of virtual ren-
dezvous points. Chapter 6 describes WaveGrid, a scalable, heterogeneous peer-based
desktop grid system for fast turnaround utilizing virtual rendezvous points and mi-
gration. Chapter 7 concludes the dissertation with key results and observation about
fast resource discovery and scheduling for fast turnaround in peer-based desktop grid
systems. The last part of dissertation describes future research in advanced features
of WaveGrid, comprehensive host resource profiling and fault-tolerance schemes to

supplement fast turnaround scheduling,.

11

CHAPTER 2

Background and Related Work

Peer-based desktop grid systems is a new area of peer-to-peer networking research
whose goal is to support the execution of user applications in a network of voluntary
peers willing to donate idle cycles. It aggregates the idle cycles from the host machines
on the edge of the Internet into a large resource pool and manages these resources in
an efficient, fair, and secure way. Peer-based desktop grid systems inherit many
advantageous design philosophies and techniques from the previous cycle sharing
systems. More importantly, they adapt new peer-to-peer techiniques, thus have many
advantages over the traditional cycle sharing systems, such as scalability, light-weight,
and easy to assembly and operate.

The idea of capturing idle cycles on desktop workstations first arose in the mid
1980’s in the environment of local area distributed systems. Distributed institution-
based load sharing systems were developed to automatically schedule and execute
user applications using idle cycles within one or several institutions. One of the most
popular load sharing systems, Condor [63, 95, 33, 41}, was implemented in 1982 to
serve as major source of computing cycles to faculty and students at the University
of Wisconsin. The original Condor system utilized idle cycles within one institution,
using a centralized server to discover and manage available resources.

About the same time as Condor, Internet-based computing projects [2, 84, 75, 29,
49] on the Internet emerged. Internet-based computing projects projects harness idle

cycles from volunteering users to serve one particular application,while users recap

12

no benefits for their own applications. The project SETI@home [84] (Search for Ex-
traterrestrial Intelligence) which began in 1982, uses voluntary machines to analyze
signals from outer space for artificial radio signals coming from stars. SETI@home re-
quires clients to manually download specialized software from the SETI@home server.
The process running on the client side will report results to the same server. Today,
SETI@home has over 5 million concurrent users who donate cycles.

The peer-based desktop grid systems [11, 12, 42, 67, 3, 46] combine the advantage
of previous cycle sharing systems such as institutional based load sharing systems and
Internet-based computing projects, while overcoming their shortcomings. Peer-based
desktop grid systems eliminate the performance bottleneck of the central servers found
in both institutional-based load sharing systems and Internet-computing projects, as
the responsibiliy of resource discovery and scheduling are distributed among cooper-
ated nodes in peer-to-peer overlay networks. Like SETI@home, peer-based desktop
grid systems harness cycles from ordinary users on the edge of the Internet and can
potentially be of very large scale. However, Peer-based desktop systems are more
general than systems like SETI@home because they are not limited to a single ap-
plication but support execution of arbitrary client applications. Like Condor’s load
sharing system, peer-based desktop grid systems support automatic resource discov-
ery, scheduling and execution of user applications. However peer-based desktop grid
systems are much more open, allowing average citizens to participate and not requir-

ing a central server to be configured nor any institutional support.

2.1 Foundation Areas for Research in Peer-based

Desktop Grid Systems

Peer-based desktop grid systems lie in the conjunction of two major fields of
computer science research: cycle sharing systems and peer-to-peer networks. Thus,
research in this field requires a deep understanding of principles and methods from
both of the fields.

13

The advantage of using idle cycles is well-received and explored by many cy-
cle sharing systems. Load sharing tools for traditional distributed systems, such as
Condor [63], pool idle cycles within one or more participating institutions. Internet-
based computing projects uses a client-server model to recruit volunteering hosts in
supporting one particular long-running scientific application. With the emergence
of peer-to-peer techniques, new peer-based cycle sharing architectures are proposed.
Peer-based desktop grid systems are built in belief of the convergence of peer-to-peer
networks and the Grid computing predicted in serveral studies [39, 61, 40, 36). This
chapter beriefly surveys the cycle sharing systems including institutional based load
sharing systems, Internet-based computing projects, and peer-based cycle sharing
systems.

Peer-based desktop grid systems use peer-to-peer techniques evolved from peer-
to-peer file and information sharing systems, ranging from popular file sharing tech-
nologies such as Gnutella to sophisticated information sharing and distributed hash
table (DHT) systems. All these peer-to-peer systems presume a large-scale, open,
insecure, and untrusted environment. Peer-to-peer techniques especially the overlay
management are adopted in peer-based desktop grid systems. This chapter introduce
the peer-to-peer overlay construction protocols and resource discovery in peer-to-peer

networks, which are foundations of peer-based desktop grid systems.

2.2 Peer-to-peer Networks

Peer-to-peer networks emerged in 1999 with the popular file-sharing peer-to-peer
system Napster. Soon a wealth of academic research developed to investigate the
structure, scalability, and performance of peer-to-peer networks. In contrast to tra-
ditional client-server systems in which servers, often the more powerful machines, are
dedicated to serving the clients, a peer-to-peer network is one in which functions of
the systems are distributed among all the nodes, and any node can provide services
to others. In a word, in a peer-to-peer network, nodes can be function as both server

and client.

14

Peer-based desktop grid systems directly inherit many of the properties and char-
acteristics of peer-to-peer networks in general. It organizes large number of machines
on the edge of the Internet into an overlay network for sharing resources. Like peer-
to-peer information sharing systems, it does this in a dynamic, open, unreliable,
and untrusted environment. Therefore, the research achievements from peer-to-peer
networks are highly relevant to the research in peer-to-peer cycle sharing systems, es-
pecially that addressing fundamental problems such as overlay construction, resource
discovery, incentives, fairness, fault tolerance, security, and trust.

This section will present results from two key fields in peer-to-peer networks:
overlay construction and resource discovery, which are most relevant to my research.
Other issues such as incentives and fairness, fault tolerance, and most security-related

issues are outside the scope of this dissertation.

2.2.1 TUnstructured vs. Structured Overlay Networks

An overlay network is a virtual network that is overlaid on top of the physical
network of the Internet. It allows peers to communicate directly with each other
at the application level, making the details of message routing through the Internet
invisible to the application. Peers who are connected to each other in the overlay
network are referred to as neighbors and communication in an overlay network uses
neighbor-to-neighbor communication, i.e. hop-by-hop message passing in the virtual

overlay network.

Current peer-to-peer systems can be divided into two classes based on the char-
acteristics of the underlying network overlay topology used for connecting the peers:
unstructured overlay networks(also called random-mesh topologies) and structured
overlay networks. Unstructured peer-to-peer overlay networks were the approach
taken by the popular peer-to-peer applications such as Gnutella [56] and BitTor-
rent {24]. Unstructured overlay networks, as their name implies, do not presume any
structure. Peers simply connect to other peers in an unconstrained manner forming

an unstructured mesh. Thus, they are easier to build but require more effort for

TABLE 2.1: Comparison of unstructured to structured overlay networks

15

Topology | Diameter | Number of | Routing | Shared Data Migration
Neighbors Storage | When
Node Leave
Local policy,
Unstruc- No demonstrate
tured Random .. similarity Flooding Not .
Overlay Mesh Exphgt to a small | based required L
Networks oun world topol-
ogy
Repular
Node
topology: Within Uniform -
Structured such as theoretical with a i . .
Overlay . . based Required | Required
Ring, upper- theoretical e
Netwaorks explicit
n-torus, bound bound routin
butterfly g

resource discovery. They are well-suited to best effort applications which are tolerant
of the longer latencies incurred by flooding-based search through the unstructured
overlay.

Structured overlay networks were originally designed for indexed lookup in a dis-
tributed file system. By imposing a regular or mathematical node labeling scheme
onto the nodes of the overlay network, peers are able to efficiently look up infor-
mation using an index (such as a hash of the file names) using node label-based
routing. Several research projects on structured overlay networks have been highly
visible, including CAN [78], Chord citeChord, Tapestry [102], and Pastry (83] which
provide a basic distributed hash table (DHT) model for information lookup. A rich
array of applications were built on the structured DHT overlays. To name a few,
OceanStore [80] which is a data storage trading system built on Tapestry; Scribe [19]
which is an application layer multicast protocol built on Pastry, and Squirrel [54]

which is a web caching service also built on Pastry.

Table 2.1 compares unstructured overlay networks with structured overlay net-
works. The fundamental difference between the two lies in the different types of
topology used, different node labeling schemes and different content storage schemes.
The structured overlay networks take advantage of the power of regular networks:
symmetric topology with bounded diameter and efficient node label-based routing
schemes, so they can reduce the message overhead in locating contents. In addition,

routing in an unstructured overlay network is not as efficient as in a structured overlay

16

network. The structured overlay network uses regular node labels, which corresponds
to locations in the overlay network. Therefore, It can use an explicit label-based rout-
ing, which requires minimum route computation time. In contrast, the unstructured
overlay network does not use a regular node labeling scheme. As a result, it does not
and cannot support direct communication with other peers in the overlay network,
but replies on broadcast to discover peers.

However a structured overlay is much more complicated to implement and hard to
maintain. The structured networks requires that each peer in the system store some
index information (keys) for the contents shared in peer-to-peer networks. While the
storage requirements may not be excessive on the peers, since the keys are small, the
maintenance of such keys in the system is a bigger issue. Keys need to be added
and deleted from the overlay, when the file is created or deleted. When a node
leaves the system, the keys owned by it need to be properly transferred. To handle
node failure, keys often need to be replicated on several peers. The unstructured
overlay network does not required shared storage to store globally consistent indexes
of file. Some unstructured networks may require caching local file indexes on the peers
functioning as rendezvous points, but they do not require storing any state on the
ordinary nodes and maintain a globally consistent state. The maintenance problem
of structured overlay network becomes an even harder problem under churn, which is
the phenomenon of node continuously frequent arrival and departure. Many papers

have proposed to address churn for structured overlay network [81, 86, 1].

2.3 Overlay Construction in Peer-to-peer Networks

The primary requirement for peer-to-peer system is scalability with the ever-
increasing population of the peers. A system with centralized server, such as the
now defunct Napster system, is not scalable. To organize millions of nodes, scalable

self-organized peer-to-peer overlay construction methods are required.

17

2.3.1 Overlay Construction in Unstructured Overlay Net-

work

An unstructured overlay construction protocol, namely Gnutella 23], was pro-
posed, after Napster. An unstructured overlay network builds a random topology
and it is simple. The original Gnutella [23] protocol builds a flat overlay network.
When the node wants to join the system, it connects to the overlay network by estab-
lishing a TCP connection with some existing peer (the predominating way to acquire
address of another peer is via address caching). The peer may flood a Ping message
in a limited area to discover more neighbors, once it is in the system. On receiving
such Ping message, peers can choose to respond with Pong message which contains

the address of a peer and the amount of data it shares.

The flooding based key word search causes high network traffic overhead, which
is a serious problem especially when involving peers with slow dial-up connections.
The latest Gnutella protocol [56] builds a two-level hierarchical overlay to solve this
problem. Ultrapeers, which are powerful nodes with high-speed network connections
in the system, form the core of the overlay, while the other non-ultra peers (so called
leaf peers) are attached to the core by connecting to some ultrapeers. Ultrapeers
function as proxies for leaf nodes (cache indexes of files shared by leaf nodes and
forward queries for leaf nodes). Before a new node joins the system, it is up to the
node itself to pre-decide whether it can potentially be an ultrapeer or a leaf peer
according to the following metrics: suitable operating system, sufficient bandwidth,
sufficient uptime and sufficient RAM and CPU speed. The new node joins the overlay
network according to basic Gnutella protocol described in the previous paragraph,
but Ultrapeer capabilities and information are exchanged during the join procedure
to select Ultrapeers. The new node can then connect to an Ultrapeer if it is not
qualified to be an untrapeer, or it promotes itself to be an ultrapeers and let existing

leaf node to connect to it.

18

Currently, the unstructured overlays with ultrapeer or supernodes are used in the
most popular peer-to-peer file sharing systems. There are several other file shar-
ing systems similar to Gnutella developed after Gnutella, such as KazaA [85] which
uses supernodes similar to the ultrapeer in Gnutella. In such systems, the probing
procedure is more efficient with less flooding activities (ultrapeers only forward the
queries to leaf nodes when it is possible that the leaf nodes have the related files) and
smaller flooding scope (flooding is mostly among ultrapeers). However, the new over-
lay network construction method does not change the flooding nature of the original
protocols, which is rooted in lack of file location information.

In addition to the unscalable flooding based schemes, the Gnutella style overlay
network construction protocol has other drawbacks, such as non-topology-sensitive,
since the overlay network built by such a protocol may not map well to the underlying
physical network. New methods are proposed to improve the topological sensitivity.
Liu et.al. [64]suggests improving the performance of the Gnutella network by trimming
the low performance redundant links over time, however this local adjustment may

not finally achieve a global optimized state.

2.3.2 Overlay Construction in Structured Overlay Network

Structured overlay networks were developed to overcome some of the drawbacks
of unstructured overlay networks. They exploit the power of regular topologies to
reduce the resource discovery overhead. The structured overlays provide symmetric
and balanced topologies, explicit labelbased or Cartesian distance based routing and
theoretical-bounded virtual routing latency and neighbor table size. The most well-
known structured overlays, CAN [34], Chord [35], Pastry (36] and Tapestry [37] use
an n-torus, hypercube, and prefix-based ring respectively. Consistent hash methods
motivated by the distributed hash algorithms are used to store and locate content,

thus, this types of overlay networks are also called DHT (Distributed Hash Table)

19

TABLE 2.2: Properties of different structured overlays (n is total number of peers.
d is the number of dimensions in CAN.)

Topology | Routing Neighbor | Shortest Path
Chord Ring Numeric Node | O(logn) O(logn)
label based
CAN n-torus like | Cartesian 0O(d) O(nil/9)
coodinate based
Pastry Ring Pre-fixed O(logn) O(logn)
based routing
Tapestry | Ring Pre-fixed O(logn) O(logn)
based routing

overlay network. Table 2.2 compares difference between different structured overlays
in regarding to the topology used, routing method, size of the neighbor (routing)
table and length of the shortest path.

In a structured overlay network, the node ID of the peer decides its location in
the overlay network, as well as its neighbors. When a node joins the system, it first
generates a virtual node ID (by either hashing the IP address or the public key, or by
picking a coordinate in the Cartesian space). Then a join message is routed toward
the location corresponding to that node ID. As an example, we will explain the CAN

overlay construction in details.

O (083,027

" New Node

E &m0

FIGURE 2.1: Node join in CAN

20

The CAN structured overlay [78] uses a Cartesian coordinate space. The entire
space is partitioned among all the physical nodes in the system at any time, and each
physical node owns a distinct subspace in the overall space. Any coordinate that lies
within its subspace can be used as an address to the physical node which owns the
subspace. For example, in Figure 2.1, the whole Cartesian space is partitioned among
7 nodes, A,B,C,D,E,F and G. The neighbors of a given node in the CAN overlay are
those nodes who are adjacent along d — 1 dimensions and abut along one dimension.

The neighbors of node G are nodes F, E, B, and C.

In Figure 2.1, new node N joins the CAN space by picking a coordinate in the
Cartesian space and sending a message into the CAN destined for that coordinate.
(The method for picking the coordinate is application-specific.) There is a bootstrap
mechanism for injecting the message into the CAN space at a starting node. The
message is then routed from node to node through the CAN space until it reaches
node D who owns the subspace containing N's coordinate. Each node along the way
forwards the message to the neighbor that is closest in the Cartesian space to the
destination. When the message reaches D, it then splits the CAN space with the new
node N and adjusts the neighbor tables accordingly. Latency for the join operation
is bounded by O(n{*/#)) in which n is the number of peers in the overlay network and

d is the number of dimensions of the CAN overlay network.

Many efforts have been spent on building topological-aware structured overlay
networks. A topological-aware overlay construction method uses proximity informa-
tion in the underlying physical network to map peers which are close to each other in
the physical network into close locations in the overlay network. Topologically-aware
CAN [79] suggests using landmark nodes to group the CAN nodes into the right zone
in the Cartesian coordinated space. eCAN [98] builds a hierarchical CAN on top of
the topologically-aware CAN construction protocol. Xu et.al [97] tried to improve the
routing efficiency of structured networks by building an auxiliary expressway network,

which takes advantage of the AS (autonomous systems) in the Internet.

21

‘The research in peer-to-peer overlay construction is an important building block
of peer-to-peer cycle sharing system. However, only to leverage the existing overlay
construction protocols may not be adequate. The reason is that most of the existing
overlay construction protocols are motivated by peer-to-peer file sharing systems, but
file sharing systems and cycle sharing systems differ in many ways:

First, the resources shared are different and they should be organized according to
their distinct characteristic. For example, the usage pattern of files does not greatly
influence the information sharing; however, the usage pattern of the CPU cycles
greatly influences the scheduling in the P2P cycle sharing systems.

Second, the two types of applications place different requirements with different
priorities. The peer-to-peer file sharing system emphasizes routing efficiency since
fast communication is needed for lookup and transport. However, in the cycle sharing
system, routing efficiency is not as important for typical cycle sharing applications
in which computation time dominates and the data communication is infrequent.
An important requirement for cycle sharing systems is users’ willingness and ability
to share cycles. Therefore, new overlay network construction protocols need to be
designed to organize peers according to their available cycles and to support efficient

scheduling strategies.

2.4 Resource Discovery in Peer-to-Peer Networks

The classical resource discovery problem in P2P networks is the problem of discov-
ering dynamically changing available resources in a scalable matter. In a small-scale,
static environment, it is adequate to use a centralized directory server keeping track
of all the available resources. In a peer-to-peer environment, not only is the central
server approach non-scalable, often there is no clear incentive for a third-party to pro-
vide such a service. Therefore a peer-to-peer system needs to use a fully distributed,

self organizing resource discovery method.

22

2.4.1 Resource Discovery in Unstructured Peer-to-peer Net-

works

In an unstructured peer-to-peer system, the simplest resource discovery method [23]
uses an expanding ring search. The request is sent to direct neighbors, and if un-
satisfied, the client increases the searching scope, which may cause a high message
overhead. A simple improvement to expanding ring search is random walk [70]. With
random walk, the node sends a query to a group of random neighbors instead of
all neighbors, and on receiving the query, the neighbor will forward the query to a
group of their random neighbors. The message overhead of random walk is lower than
expanding ring search, but still high.

Many works have been proposed to increase the searching efficiency in unstruc-
tured overlay networks, but all focused on improving performance for locating files
but not for general types resources including cycles. Several works suggest using su-
perpeers which function as a rendezvous point or directory server [56, 85, 20] as we
have mentioned in the overlay construction section. In order to lower the network
traffic, queries from the leaf nodes are handled by the super nodes and super nodes
cache indexes of file on the leaf nodes. Some work [43, 91] focused on improving the
request forwarding methods, based on the assumption that clients can be grouped

according to their interests. In addition, a few papers propose to use non-forwarding

methods [99)].

2.4.2 Resource Discovery in Structured Peer-to-peer Net-

works

Unlike search in unstructured network, a structured peer-to-peer system, such
as [78, 93, 83, 102|, directly maps content to locations in the overlay network using
a consistent hash function and the content is retrieved using the same hash function.

Instead of doing a flooding-based search in the unstructured network, the request is

23

directly routed to the location, where the content is stored. For example, the content
stored in a CAN overlay network is hashed into the coordinates of a point (the key
of the content) in the Cartesian space. The node that owns the area containing that
point stores the content or real address of the content. When a node wants to locate
some file, it sends out a query to the node, which owns the key. On receiving the
query message, each node forwards the query to the neighbor, which has the shortest
Cartesian distance to the key. This procedure repeats until the query reaches the
node that owns the key. Figure 2.2 demonstrates the content location in CAN: the
key to locate is (0.11,0.9), which is owned by node A according to the rule.

{0.11,09)*
A~ E"{-.___
B
b
F G
c | D Ho |

| Searchfof (0.11.09)

FIGURE 2.2: Resource discovery in CAN

Although there are a large number of resource discovery solutions proposed for
file sharing peer-to-peer system, the question of how to effectively and efficiently lo-
cate idle machines in a fully distributed peer-based desktop grid system remains an
open question. It is due to the inherent difference between file sharing systems and
cycle sharing systems. A comprehensive study needs to be performed to understand
whether the generic search methods such as expanding ring search and random walk

are effective in peer-based desktop grid systems.

24

® The availability and amount of resources in cycle sharing system is much more
dynamic then in a file sharing system. In the latter system, once a file appears,
it remains in the system as long as the owner of that file stays. Also the file
can be replicated in strategic locations and linger a long time, even after the
original owner leaves the system. However, the availability of CPU cycles on

host machines changes over time.

e The incentives and model of volunteer behavior will be different in the two
systems. Users may be willing to allow others to download files, provided the
bandwidth consumption is small. However, the same group of users may not be
so willing to let others share CPU cycles when they are working on their own
computer. They may require that foreign jobs leave their machine or sleep with

the lowest priority when the owners of the machine reclaim it.

e In a cycle-sharing system, multiple resources, such as CPU, memory and net-
work connection etc., need to be taken into consideration, while in file-sharing

system there is only one type of resource concerned.

2.5 Cycle Sharing Systems

There are many existing cycle sharing systems, which can be divided into four cat-
egories: institution-based load sharing systems, Internet-based computing projects,
web-based computing and existing peer-based desktop grid systems according to the
scale of the systems and the infrastructure used by the systems. Figure 2.3 briefly
illustrates the relationship between peer-base cycle sharing systems and their ancestor

systems.

25

pistributed Systoms Networks

DPistribu Computing Grid Computing

Heb-baped Internat Computing Load Sharing besktop Grid Peex-to-peer
Computing using Projects Systems Bystens networks
Protable Languages {SETIfhome, BOINC) (Condor, Utopia) (XtremWeb,Entropia) (Gnutella,CaN,
(PopGorn, Charlotte) Chord,Pastry}
Protable Languaga Incantive Resource discovery Resource discovery Cvarlay congrruction
Sandboxing tocal palicy Application scheduling Resource management Rasource discovary
Migration Sandboxing Reputation
Local policy Security

| Peer-basad Cycle Bharing System
i {CCOF,0urGrid,Flock of Condor,CompuP2p)

FIGURE 2.3: Relationship between peer-based cycle sharing systems and their
ancestor systems

2.5.1 Institutional-based Load Sharing Systems

A key area of research that is related to peer-based desktop grid systems is that
of institutional-based load sharing [87] in distributed computing systems. The goal of
load sharing in distributed computing is to distribute the load across machines in the
system and therefore reduce response time. Load sharing realizes this goal by moving
jobs from heavily loaded nodes to lightly loaded nodes in the distributed system.
This body of work developed during the late 1980s and early 1990s in the context
of networks of workstations within a single institution, examples include Legion [74],
Sprite and Condor [63]. As with peer-to-peer systems, the idea of harnessing idle
cycles evolved naturally from the earlier idea of file sharing and data sharing (i.e.

network file systems).
Condor [63] is the most famous classical load sharing systems. Condor was first

installed as a production system in the University of Wisconsin Department of Com-

puter Sciences nearly 15 years ago. Condor aggregates idle cycles within one institu-

26

tion and provides automatic scheduling of tasks. Condor uses a centralized match-
making server to match available hosts with client requests. In this non-dedicated,
opportunistic environment, whenever a host is judged as available and there is a client
request for extra cycles, Condor can schedule a job on that host. When the host be-
comes busy again, Condor can preempt the foreign tasks and reinstate them later

using checkpointing schemes.

To attract users to stay in the system, Condor allows clients to control their local
resource using policies expressed in the profile of the hosts, including time slots when
the host cannot accept foreign jobs, the CPU threshold below which the host can
accept foreign jobs and whether the host can run foreign jobs when there is recent
keyboard activity. Condor also allows users to manually create groups of people they

trust and limit the access to those people only.

Over time, Condor has evolved with new techniques, changing from a load sharing
system within one institution to a load sharing system across different administration
domains [33, 94] . An augmentation to Condor architecture using peer-to-peer meth-
ods was recently proposed by Butt et.al [12], which will be discussed in the peer-based
desktop grid systems.

From the above description, one key observation is that institution-based load
sharing systems heavily rely on the correct configuration of the central servers, which
take charge of resource management, resource usage negotiation and scheduling. Also,
the institution-based load sharing systems has a strict membership management
scheme: Only users within participating institutions can access the resource. An
open peer-based desktop grid systems can circumvent these drawbacks with its fully

distributed architecture and access to ordinary users.

27

2.5.2 Internet-based Computing Projects and Web-based Com-
puting Projects

Internet-based computing projects, such as SETI@home [84] and BOINC [90] use
a client-server model to distribute tasks to volunteers scattered in the Internet. The
cycle donators download and install the software, which can do the computation
under a screen saver model or background model. The host connects to the central
server when it wishes to download new code and data. Because an Internet-based
computing project requires manual coordination from a central server, it experiences
downtime due to surges in client requests. SEIT@home and Folding@home have
already demonstrated that was a serious performance bottleneck. Also, the goals of
such systems are to support one particular application, so only one client can take

advantage.

Web-based computing projects, such as PopCorn [15] and Charlotte [6], are mo-
tivated by the portable, secured Java language and the web techniques. They use
client-server architectures, and all the programs are implemented in Java. When a
client wants to recruit some workers to compute its applications, it advertised the
URL of the work on a central website. The users who are willing to help will browse
the active programs on the website and manually download the program to run on
their machines. This type of infrastructure is un-scalable and very difficult for user

to deploy and use.

There are many common features among Internet-based computing projects and
web-based computing projects, and thus they share same flaws. The server in this
type of system is performance bottleneck and single point of failure. In addition,
both of the systems require a lot of human interference in configuring the server and

manually downloading the program for the systems to function correctly.

28

2.5.3 Peer-based Desktop Grid Systems

Traditional Grid computing 38, 27] is an infrastructure that integrates supercom-
puters, networks, databases and scientific instruments from multiple sources to form a
virtual supercomputer on which users can work collaboratively. With the flourishing
of peer-to-peer networks, Grid systems began to evolve into peer-based desktop grid
systems. A peer-based desktop grid systems harness idle cycles on desktop machines
using a peer-to-peer overlay network.

Peer-based desktop grid systems belong to the category of desktop grid systems.
The desktop grid systems include both master-slave desktop grid systems and peer-
based desktop grid systems. The master-slave desktop grid systems use the same
master-slave/client-server model as the Internet-based computing projects. One of
the new desktop grid systems, the XtremWeb [17, 16, 30} project, has two types of
implementation: a traditional grid computing infrastructure or a SETI@home style
infrastructure. The latter requires a central sever as coordinator. Clients send tasks
to the server and the tasks are batched in a task queue. When the worker (donor
of cycles) is idle, it requests new tasks from the server. Entropia [32, 14] desktop
grid system designed by the AppleS group [18] also uses central servers for resource
discovery and management. The focus of the project is to build a virtual machine
using sandboxing technique within an enterprise or an institution.

The peer-based desktop grid systems are motivated by the new peer-to-peer tech-
niques. Foster et.al.’s work [39] and Ledlie et.al.’s work [61] analyzed the differ-
ences and similarities between the two fields and predicted that the two fields will
eventually converge. Also in pragmatic aspect, some of the desktop Grid computing
projects, such as OurGrid [3, 26], Personal Grid [46], Flock of Conder [12, 13, 11], and
SHARP [42] are designed and implemented using peer-to-peer methods for resource
location. We also propose a general peer-based desktop grid architecture CCOF [67],
which is described in details in chapter 3. Table 2.3 summarizes existing peer-based

desktop grid systems.

29

TABLE 2.3: Existing Peer-based Cycle sharing Systems

Project Focus Overlay Resource Application
Network Discovery Scheduler

OurGrid (3] Fairness, Unstructured | Flooding Hosts
Scheduling for with
Bag-of-Tasks most credits

SHARP [42] Security, Unstructured | Advertisement, | Ticket-based
Fairness Link-state style | bartering

Gossip

Flock of Easy assembly, [Pastry Advertisement, | First available

Condor [12, 11] | Fairness Structured Broadcasting

Personal Assembling, Gnutella style | Rendezvous First available

Grid Matchmaking Unstructured | points

CCOF [67] Scheduling, CAN/Pastry | Rendezvous Multiple
Result Structured points criteria,
Verification Migration

CompuP2P {45] | Incentives, Pastry Rendezvous Lowest
Economic model | Structured points financial cost

OurGrid [3] is built on JXTA and uses the JXTA resolver as supernodes to
map client requests to available resources and therefore heavily relies on the

flooding-based performance of JXTA [25].

SHARP [42] is aimed at secure resource sharing, which is implemented in Planet-
Lab [76]. It uses a static unstructured overlay formed by nodes in the PlanetLab

testbed.

Personal Grid [46] proposed to use a two-hierarchy overlay network similar to
gnutella network [56] to build the cycle sharing system. The system clusters
nodes according to the local networks they belong to, and rendezvous points in

each cluster are in charge of resource discovering and scheduling.

Flock of Condor [12, 11] reported research in peer-to-peer cycle sharing at Pur-
due University. In Flock of Condor, the cycle sharing community is built on
Pastry. The system is also a heavyweight system, which maintains a fine grained

strict cycle-for-cycle fairness. The system requires modification to the compiler

30

strict cycle-for-cycle fairness. The system requires modification to the compiler
as it inserts beacons into the program at compile time for checking job progress

and keeping account of cycle usage.

There is also research focused on cycle bartering systems and auction strategies
in this type of systems. CompuP2P [45] came up with a peer-to-peer cycle bartering
system and studied auction strategies in this type of systems, which is built on Pastry

overlay network [83].

2.6 Resource Discovery and Application Schedul-
ing in Peer-base Desktop Grid Systems

There are many dimensions of designing the peer-based desktop grid systems
including overlay construction, resource discovery, scheduling, incentive and trust.
The most relevant work to my research is about resource discovery schemes and

scheduling for faster turnaround.

2.6.1 Resource discovery in Peer-based Desktop Grid Sys-

tems

The goal of resource discovery is to identify available resources in the system.
There are many resource discovery methods proposed for peer-to-peer file sharing
system [22, 92, 60, 101, 44], since peer-to-peer file sharing system is the first peer-to-
peer system ever created and remains the most popular applications. While many of
them are tailored to content-sharing systems, the generic resource discover method
such as expanding ring search, random walk, advertisement-based search may be
leveraged into cycle sharing systems. With expanding ring search, a client sends
out queries to all its neighbors for resource discovery. If the search fails, the client

expands the search scope by one and the sends out query again. With random walk, a

31

client sends out queries to a random of neighbors and these neighbors will forward the
queries to their random neighbors. With advertisement-based search, hosts advertise
their available resource periodically, and clients cache such information and consult
their local cache when resources are needed. Peer-based cycle sharing systems use
these solutions without a systematic study on how well these solutions scale to a

large-scale dynamic system.

The research conducted by Iamnitchi proposed peering multiple sites in a Grid
computing infrastructure [53]. She conducted a study on how to satisfy resource
discovery requests for a variety of types of resources. The research compared random
walk with a learning-based strategy and a history-based strategy to make the request-

forwarding decision, and analyzed the latency (in hops to satisfy resource requests.

The project Flock of Condors at Purdue [12] used an advertisement-based ap-
proach, in which a Condor server sends out resource information for its site in a
limited scope. On receiving the information, Condor servers of other sites cache and
then select the candidate Condor flock when needed. The system is static and the
paper does not present direct measurements of how this type of resource discovery

performs. Also it does not compare their method with other types of search methods.

The SHARP project [42] proposed an architecture for secured resource sharing.
It uses a link state style protocol to propagate resource information, and then nodes
compute the route to the available resource. This method is not scalable in a large,
highly dynamic environment with the heavy traffic of resource information propa-
gating in the system. The emulation is on a static and small scale overlay network
(PlanetLab), so it cannot demonstrate how the protocol works in a large scale peer-

to-peer system.

The Personal Grid project (46] uses a rendezvous point based resource discovery
methods. The system clusters nodes according to the local networks they belong to,
and rendezvous points (supernodes) in each cluster are in charge of resource discover-

ing and scheduling. Ordinary nodes report their status to the rendezvous points and

32

rendezvous points function as matchmaking servers to match clients’ requests with
available hosts. The study does not provide a dynamic rendezvous points selection
methods which is core to the success of this type of systems: It is unclear how to
cluster those nodes which are not in any local networks, and how to balance load

among rendezvous points.

There are recent work using DHT overlay network for resource discovery in Grid.
NodeWiz [7] connected the directory servers of individual organizations using DHT
methods. Y. Huang et.al [52] described DHT-based resource management service and
its API to replace the current web-based Grid services. Both of them are not designed
for a fully distributed peer-based cycle sharing system, and it is unclear whether they
can work without the institutional supports. M. Hauswirth [48] suggests that users
can store the description of their work in DHT overlay network using the number of
CPU cycles as the key. Resource provider then clook for jobs which they are willing
to process. This rigid method requires precise prediction of job running time, which is
often not feasible. Felix [51] uses DHT overlay network to store ontology information
of the machine, which can only handle discovery for static resource information such

as CPU types and operating systems.

Recent studies [21, 4] propose to use DHT overlay network to support point-in-
range queries for grid resource discovery. Andrzejak et. al. [4] use space-flling curves to
perform range query process-ing in P2P environments based on CAN overlay network.
L. Chen et. al. [21] studied several different methods to match virtual information
space to physical nodes with replication schemes to reduce search time and to achieve

load balance.

One observation is that the proposed resource discovery methods based on DHT
overlay network are effective in discovering static resource information such as search
for any Linux machine with CPU speed larger than 500MHZ. However, a missing
piece is search for dynamic resources such as available cycles, which is important in

peer-based desktop grid systems centered with the goal of cycle-sharing. There are

33

two aspects in answering this question. First, how do the generic research methods
perform in discovery cycles, these methods can handle dynamic information well as
changes of resource information only impacts the local hosts, in contrast to DHT
overlay network, where keys need to be updated on all replicas. Second, whether the
DHT overlay network can be leveraged to store coarse-grained cycle profiles, which

trades precision for a better search speed and search overhead.

2.6.2 Application Scheduling in Peer-based Desktop Grid Sys

tems

The function of the application scheduler is to choose the best host to schedule
the job on and ship code to that host. All of the previous Internet-scale cycle sharing
systems use the simple and straightforward scheduling method, that is to choose the

first available host and the job will stay on that host during its entire lifetime.

To my best knowledge, none of the previous work has addressed the fast turnaround
scheduling problem in a scalable peer-based cycle sharing system. The most closest
work so far described methods for improving fast turnaround in institutional grids.
The most popular approach is to improve turnaround time via replication. With
replication, more then one duplicated copies of the task are submitted to the system,
to prevent one node from slowing the whole computation. Y. Li et. al [62] analyzed
performance improvement via replication using a centralized scheduling server. D.
Kondo et. al [57] evaluated the performance of replication with rescheduling when
hosts withdraw cycles. Replication scheme is not desirable when the system already
has a heavy load, as the duplicated copies will further burden the system. A re-
cent paper [59] described scheduling for rapid application turnaround on enterprise
desktop grids. The computation infrastructure used a client-server model, in which
a server stores the input data and schedules tasks to a host. When the host becomes

available, it sends a request to the server. The server keeps a queue of available

34

hosts and chooses the best hosts based on resource criteria such as clock rate and
number of cycles delivered in the past. The work did not considering migration
schemes. Moreover, this work is limited to scheduling within one institution and it
uses a client-server infrastructure, while scheduling in a large scale fully distributed
peer-based cycle sharing system is much more complicated and challenging.

The research in peer-based desktop grid system touches on research in both peer-
to-peer networks and distributed computing. It uses the peer-to-peer overlay network
and distributed resource discovery techniques from the peer-to-peer networks, and it
uses the concept of cycle sharing, opportunistic scheduling and local admission policy
from distributed computing systems. Taking advantage of both worlds, the unique
peer-based desktop grid systems chart many new research questions. The previous
peer-based desktop grid systems have focused on fairness, best-effort scheduling, and
secured resource sharing. The area of fast scalable resource discovery and schedul-
ing for fast turnaround remains an unexplored area which directly related to users’
satisfaction with the peer-based desktop grid éystems. My dissertation represents
pioneering work to help provide solutions to these open questions and pushes the

envelope of research on cycle-sharing in the Internet.

35

CHAPTER 3

A General Architecture for

Peer-based Desktop Grid Systems

We propose a general architecture for peer-based desktop grid systems which uses
the classical peer-to-peer paradigm. The goal is to build a flexible, distributed, mod-
ularized system, which does not require central services. In contrast to Grid com-
puting [37, 94] and other institution-based cycle-sharing systems [63, 69, 106], our
architecture targets a more open environment, which is accessible to ordinary users
and does not require strict institutional based membership management. However, a
federated institutional-based system can use a similar architecture, peering different

sites using a peer-to-peer overlay network, in which each institution joins as a peer.

3.1 CCOF: a General Architecture for Peer-based
Desktop Grid Systems

All of my dissertation research is based on CCOF (cluster computing on the
fly) [67], a peer-based cycle sharing framework, which I helped to develope at the
University of Oregon. CCOF is designed to support a large scale, open, and dynamic

36

Coordinated scheduling
Local scheduler Local scheduler

oa
§ *- Community-based overlay networks <"\
% g p ‘::#,.-

]
3 .
]

Local scheduler

Application scheduler

FIGURE 3.1: CCOF Architecture

cycle sharing community spread throughout the Internet. The key components of
the CCOF framework include overlay construction, resource discovery, application
scheduling, local scheduling, and coordinated scheduling. Other components such
as reputation system, accounting, and performance monitoring can be added to the
CCOF framework to further improve the QoS of the system. Figure 3.1 shows the
architecture and the cycle sharing community of CCOF.

In CCOF, peers join a cycle sharing community overlay network to request or do-
nate cycles based on their interests. Candidate hosts are discovered through resource
discovery schemes initiated by the clients when they need idle cycles for their applica-
tion. The application scheduler on the client chooses the best among the candidates
to schedule the jobs on and ships the codes to the selected host(s). Figure 3.2 shows
how a client discovers and then sends a request to a host when it submits a job to
CCOF. Depending on the local scheduling strategies, a host may preempt the foreign
tasks or suspend the foreign tasks when it becomes busy. Figure 3.3 shows how a
host handles a client’s request using its local scheduler. When results are returned
from hosts, clients may utilize CCOF’s result verification technigues to check the

correctness of the results returned by the potentially untrusted peers.

37

| Application Scheduler |

Client |. b
e
» uest
Hests to1he
N stlected
| Rescurce Discavery | fiost
z 3
Queries Hasts'

Response

Overlay Routing

FIGURE 3.2: Client submits job to CCOF.

Local Scheduler J

ias
HOSt : i‘!l: ill
il
llent ; Policy

y

Overlay Routing |

FIGURE 3.3: Host receives request from client.

38

e Overlay Management This component organizes communities of hosts willing
to donate cycles. Communities may span multiple organizations, such as a
collaborative research project among several research groups. Chess enthusiasts,
or participants in the SETI@home project [84) may form a community based

on their hobbies or a spirit of volunteerism.

One way to organize such communities is through the creation of overlay net-
works. The overlay management handles hosts join and leave, and detects and
repairs the overlay network when there is host failure. It also provides routing
schemes for peers to communicate with each other. CCOF overlay management
leverages the generic peer-to-peer overlay network construction protocols such
as CAN [78],Chord [93] and Pastry [83] by also considering information such as

trust, performance and geography.

® Resource Discovery The resource discovery component is used by clients to
collect resource information of the hosts and discover idle hosts. The resource
information about a host collected by a resource discovery scheme may include

the CPU speed, CPU utilization, memory and the type of operating system.

¢ Application Scheduler The application scheduler is responsible for selection
of hosts for a P2P computation from a pool of candidates, to export the code to
the hosts, and to manage and verify results. Application scheduling requires an
analysis of both the application’s needs and the nature of the offered resources
to achieve the best performance. The application scheduler may also use tech-
niques to improve the Quality of service such the migration schemes for fast

turnaround and checkpointing for fault-tolerance.

e Local Scheduler The local scheduler tracks idle cycles and negotiates with the
application scheduler using local criteria for trust, fairness, and performance to
decide which tasks to accept. It also interacts with its own native scheduler to

inject those jobs into the scheduling queue.

39

¢ Coordinated Scheduling A meta-level coordinated scheduling may also be
implemented to coordinate among local scheduler or application scheduler to

enforce security policy or long-run fairness through sharing of trust ratings.

3.2 Suitable Applications for Peer-based Desktop
Grid Systems

We identified three types of suitable applications in Peer-based desktop grid sys-
tems: workpile applications, tree-based search applications, and point-of-presence
applications, which are briefly introduced in this section. There scheduling needs
are starkly distinct, calling for individualized scheduling services that are tailored to
those needs. Among them, the most popular applications supported by the current
Internet-wide cycle sharing systems such as SETI@home and BOINC is the workpile
applications. Therefore, my research is focused on scheduling for workpile applica-
tions, and I will describe the character of workpile tasks in next section.

Workpile Applications. These applications consume huge amounts of compute
time under a master-slave model. Each host computes intensively, and then returns
the results back to the master node. The workpile application is “embarassingly
parallel” in that there is no communication at all between slave nodes. The workpile
applications can be further divided into infinite workpile tasks, which runs for a long
period time and deadline driven workpile tasks, which has a moderate need of cycles
and requires the result be returned fast. While many scheduling strategies are suitable
for infinite workpile jobs with and without deadlines, the urgency of deadlines calls for
more efficient approaches for discovery and scheduling of cycles. Details of workpile
tasks are described in next section.

Tree-based Search Applications. This classes of applications requires substantial
compute cycles, with loose coordination among subtasks requiring low communication

overhead. Distributed branch-and-bound algorithms, alpha-beta search, and recursive

40

backtracking algorithms are used for a wide range of optimization problems; these
computationally intensive state-space search algorithms are ideal candidates for P2P
scheduling.

Distributed branch-and-bound algorithms use a tree of slave processes rooted in
a single master node. The tree dynamically grows as slave processes expand the
search space and is dynamically pruned as subspaces leading to costly solutions are
abandoned. There is a small amount of communication among slave nodes to inform
other slaves of newly discovered lower bounds.

The scheduler manages the dynamic population of host nodes by continuously
providing new hosts while the search tree is growing. It must also support communi-
cation among slave nodes, either indirectly through the master or directly from slave
to slave.

Point-of-presence applications. PoP applications typically consume minimal cy-
cles but require placement throughout the Internet (or throughout some subset of the
Internet).

The dispersement of tasks from a PoP application is driven by specific require-
ments of the job. For example, distributed monitoring applications (security monitor-
ing, traffic analysis, etc.) require widely and evenly distributed placement as well as
placement at strategic locations. Testing of distributed protocols requires placement
of test-bots dispersed through the Internet in a manner that captures a variety of
realistic conditions with respect to latency, bandwidth, and server performance. In
addition, security concerns must be addressed by limiting communication only to the

set of PoP tasks.

41

3.3 Workpile Applications.

The type of applications I focus on are known as Workpile (Bag-of-tasks) jobs,
those requiring large amounts of CPU cycles but little if any data communication. A
workpile job may be a single, long-running task, or a (large) collection of long-running
tasks. These CPU intensive tasks are referred to as as embarassingly parallel tasks in

the parallel processing community.

Workpile applications are ideal candidates for a peer-based cycle sharing system,
because the scheduling overhead of such applications, which includes the resource
discovery overhead and the cost of transferring the code and data over the Internet,
is negligible compared to the total runtime of the applications. The code size of
many long running applications is small and these applications require minimal data
communication. For example, the average data moved per CPU hour by users of
SETI@home is only 21.25 KB, which is feasible even for users with slow dial-up
connections. With respect to program size, Stanford Folding is only about 371KB,
and SETI@home is around 791KB (because it includes the graphical interface for the
screensaver). These applications run for 2 long time. Using the same SETI@home

example, the average computation time of each job is over 6 hours (on an Intel x86).

Examples of workpile applications include state-space search algorithms, ray-
tracing programs, gene sequencing and long-running simulations. Table 3.1 sum-

marizes prominent workpile applications.

Most cycle sharing systems are best effort and presume that the client will be
satisfied to complete the results within a reasonable amount of time. However, many
users’ applications may have higher performance requirements for faster turnaround
time and higher throughput. Some of the above applications may have real time
constraints, such as weather forecasting, or deadlines such as scientific simulations

that must be completed in time for a conference submission. In general, productivity

TABLE 3.1: Examples of workpile applications

42

Application Description Running
Time
SETI@home Search for Extraterrestrial Intelligence Infinite
by analyzing radio telescope data
Intel Philanthropic | life science research programs dedicated to specific Years
diseases, from prostate cancer to Parkinson’s disease
Distributed.net Brute force key decryption Years
Folding@home Study protein folding, misfolding, Days
aggregation, and related diseases
State space search | simulated annealing, branch-bound Hours
graphics genetic algorithms to days
Graph algorithms | Geometrical transformations, partition, Hours
shortest path, minimal cut to days
Simulations Numerous Hours
to days
Image processing ray tracing, sky curvature, Hours
graphics 3-D mosaicing

for the users and efficient use of the cycle sharing system is enhanced by higher

performance scheduling. These needs motivate my research into resource discovery

and scheduling for faster turnaround in peer-based cycle sharing systems.

43

CHAPTER 4

Resource Discovery in Peer-based

Desktop Grid Systems

4.1 Introduction

The resource discovery methods in peer-based desktop grid systems locate avail-
able idle hosts for clients in needs of extra cycles. The chapter of the dissertation is a
systematic analysis of resource discovery methods for discovery of idle hosts to serve
as candidates for cycle sharing. Through a careful simulation analysis of classical
rechniques used in peer-to-peer networking, we found that rendezvous point provides
the fast resource discovery needed for fast turnaround scheduling.

Resource disocvery is a unique challenge for an open peer-based desktop grid
system such as the CCOF infrasture described in chapter 3, because the set of par-
ticipating hosts is potentially very large and dynamic. With its open nature, peer-
based desktop grid systems will be of much larger scale and be much more dynamic
than the traditional institutional-based distributed systems and traditional GRID
systems. In traditional distributed systems, central servers function as matchmak-
ers to match the request with the available resources or representatives for resource

negotiation [63, 65, 9]. This central server approach is not scalable and cannot be

44

adapted to peer-based desktop grid systems environment, as the central servers are
performance bottlenecks and traffic hot spots. Also there is no clear incentive for a

third party to provide such institutional support in this open peer-to-peer system.

The amount of available resources in peer-based desktop grid systems is highly
dynamic. Like any other peer-to-peer system, peers may join and leave the system
at any time. Furthermore, the amount of available resources in peer-based desktop
grid systems may change much more quickly and dynamically over time than in
traditional content sharing peer-to-peer systems. In the latter systems, once a file
appears, it remains in the system as long as the owner of that file stays. Also the file
can be replicated in strategic locations and linger a long time, even after the original
owner leaves the system. However, the crucial resource of CPU cycles in peer-based
desktop grid systems changes over time and cannot be replicated. Users may be
willing to allow others to download files, provided the bandwidth consumption is
small. However, the same group of users will not be so willing to let others share
CPU cycles when they are working on their own computer. The foreign jobs should
leave that machine or sleep with the lowest priority when the owner of the machine
reclaims it. The resource discovery strategy used by peer-based desktop grid systems

has to be adaptive to this ever-changing environment.

The rest of this chapter is organized as follows. Section 4.1 describes the research
methodology and assumptions. Section 4.2.5 presents the preliminary simulation

results and Section 4.3.2 concludes and discusses future work.

4.2 CCOF Resource Discovery Model

In this section, we describe the CCOF resource discovery model, which includes
the profile based model that describes each host’s idle cycles; the dynamic behavior

of hosts; and the search algorithms we study.

45

4.2.1 Dynamic Hosts

In CCOF, peers can leave and join at any time. When one peer joins the system,
new idle cycles will be available to the whole system; when one peer leaves the system,
the foreign task running on that peer will be stopped and that peer will inform the

initiator of the task to reschedule or migrate the task.

In CCOF, peers can withdraw cycles when the user reclaims his machine, based
on local policy. The peer cannot then be used to do computation, but it can still be

used to relay messages for other peers.

In traditional institutional based load sharing schemes, migration is acceptable,
because within one institution, the network latency between machines is low and the
central server provides quick discovery of newly available resource; thus the migra-
tion cost is comparatively small. However, within CCOF, the peers are scattered
throughout the Internet. Thus, there is no guarantee about the speed of locating new
resources among the peers and transmission speeds may vary greatly. CCOF needs to
be carefully designed to avoid unnecessary migration, due to lack of knowledge about

the 'remote’ host.

In an unreliable environment, peer machines may crash, and then the task dies.
The application scheduler will detect the peer failure when it stops receiving heart-
beat messages from that machine. The application scheduler then tries to restart the

tasks on some other available host.

The results reported in this dissertation report the impact of hosts’ withdrawing
cycles from the system due to changes in users’ daily schedule. This is a notable
phenomenon in systems for sharing idle cycles, while it is not so visible in other
types of peer-to-peer systems. Frequent changes in machine usage result in frequent
resource discovery activities. Methods which are not scalable will then produce excess

amounts of resource discovery message traffic.

46

4.2.2 Profile Based Model

We use a profile-based model to generate resource information about idle cycles
on each host. The profile we use is based on the observation that people have daily
routines for using their machines and that most machines are idle at night. For
example, users may process email and browse the Internet in the morning; then their
machines will be idle while they are in meetings or attending classes. Such usage
patterns can be acquired manually by user input or automatically from a monitoring
program running on the local host.

Currently, we only use profiles of available CPU cycles, however other resource
information such as memory size and operating system information can be easily

added into the profile as a separate attribute.

4.2.3 Workpile Applications

Workpile applications are those that consume huge amounts of compute time
under a master-slave model in which the master gives out code to many hosts, each
host computes intensively and then returns the results back to the master node. The
workpile application is 'embarrassingly parallel’ in that there is no communication

among slave nodes.

4.2.4 Search Algorithms

We evaluate four different generic search methods. The probing based search
methods such as expanding ring search and random walk search are widely used in
peer-to-peer file sharing networks. However, they are often associated with a high
message overhead when they are used to search for rare items. The four search
methods can be used in both structured overlay network and unstructured overlay
network. In our simulation study, we studied their behavior in an unstructured overlay

network without losing any generality.

47

The search latency of those methods are bounded by the scope of the search or
distance from non-rendezvous point to rendezvous point. However, if it fails to find
an available host, the client has to start another search. It may take a long time to

locate an available host, if the client has to search several times before it succeeds.

e Centralized Search. For comparison purposes, we also implement a central-
ized search algorithm, which we know is nonscalable. When a peer joins the
system and it is willing to share the idle cycles, it reports its profile information
to the central server. Clients send requests for cycles to the server. The central
server then matches their needs with available idle hosts. With our simulation,

the server always tries to find idle hosts near to the source of the task.

e Expanding Ring Search. When a client peer needs cycles, it sends the
request for cycles to its direct neighbors. On receiving the request, the neighbor
compares its profile to the request. If it is currently busy or the block of idle time
is less than the requested block of time, the neighbor turns down the request;
otherwise the neighbor accepts the request by sending the client peer an ACK
message. If the client determines there are not enough candidate hosts to satisfy
the request, it then sends the request to peers one hop farther. This procedure
repeats until the client peer finds enough candidates to start the computation

or the search reaches the search scope limitation.

¢ Random walk search. When a client peer needs cycles, it sends the request to
k random neighbors. On receiving the request, like the expanding ring search,
the neighbor then tries to match the request with its current status. If it has
enough time to complete the task, it then sends back an ACK message. The
neighbor also forwards the request to its k random neighbors, until the request

reaches the forwarding scope limitation.

48

® Advertisement based search (Ads-based search). When a peer joins the
system, it sends out its profile information to neighbors in a limited scope. The
neighbors then cache such profile information along with the node ID. When a
client peer needs cycles, it consults the profiles cached locally, and selects a list
of available candidates. Since other clients may try to use those hosts at the
same time, the client then needs to directly contact each of the candidates to
confirm their availability. If a host is not available at this time, the client then
tries the next host in the list, until the list is exhausted or the request is satis-
fied. There are several possible selection schemes, such as choosing the nearest
available hosts, choosing the hosts with longest available time or choosing hosts
with shortest matching available time block. Our simulation results show dif-
ferent selection schemes yield similar performance. The result we present in the

simulation section uses the scheme of choosing the nearest available host.

s Rendezvous Point Search. Our rendezvous point search method uses a group
of dynamically selected Rendezvous Points in the system for efficient query and
information gathering. Hosts advertise their profiles to the nearest Rendezvous
Point(s), and clients contact the nearest Rendezvous Point(s) to locate available

hosts.

We assume an out-of-band Rendezvous Point selection/placement method, which
guarantees that Rendezvous Points are geographically scattered in the peer-to-
peer system. We note that dynamic placement of Rendezvous Points such that
the system is balanced and a sufficient number of Rendezvous Points is within

short distance to every peer is still an open problem.

When a peer is selected as a Rendezvous Point, it floods information about its
new role within a limited scope. On receiving such a message, the peer adds
the new Rendezvous Point into a local list and deposits its profile information

on this new Rendezvous Point. When a peer joins the system, it acquires the

49

list of Rendezvous Points from the nodes it contacts or acquires the information
through some out-of-band scheme. When a client peer needs extra cycles, if it
has not already cached information about nearby Rendezvous Points , it queries
its neighbors until it accumulates a list of known Rendezvous Points. The peer
then contacts Rendezvous Points on the list one by one and each Rendezvous
Point then tries to match the request with candidate hosts. This procedure
repeats until the request is satisfied or all the known Rendezvous Points have

been queried.

4.2.5 Scheduling Strategies

After the application scheduler has discovered candidate hosts for the client job,
it can choose hosts based on multiple criteria, such as trust value, performance rank-
ing etc. In this simulation, we simplify the application scheduler and use only the

availability of cycles as the criteria.

When a client fails to find enough resources to start the computation, the appli-
cation scheduler can choose to give up or to try to reschedule the task at night, since
hosts have maximal available time at night. This is similar to the notion of prime
time v. non-prime time scheduling enforced by parallel job schedulers[66]. We also
did simulations using exponential back-off scheduling. With that method, when the
application scheduler fails to find enough resources, it retries after a random amount
of time. If it fails, it can retry multiple times, each time with a doubled back-off
time. The simulation results we present in this paper report the first two scheduling
methods: no retry and retry at night (The performance of exponential back-off is
comparable to retry at night).

After the client finds the idle hosts, in order to to avoid unnecessary competition

and migration, it then reserves blocks of time on those hosts to start the computation.

If a host withdraws cycles, the host migrates the task.

50

4.3 Simulation

4.3.1 Simulation Configuration

Our CCOF resource discovery experiments are conducted using ns simulator. A
power-law topology of 4000 nodes is used as the overlay topology, as current studies
have shown that peer-to-peer systems exhibit power-law properties [82, 5.

During the simulation, peers in the system are divided into two non-overlaping
groups. One group is the hosts, providing the idle cycles. The other group is the
clients, needing extra cycles. The ratio of clients to hosts varies from 0.1 to 1.3.
At light workloads, the hosts outnumber the clients; at heavy workloads, the clients
outnumber the hosts.

We model the dynamic peer-to-peer environment by varying the probability that
a given host will withdraw cycles from the system at any particular time of the day.
The idle cycles on that host become unavailable to the system after that time; however
the host still relays messages for the other peers.

We conduct a one-day simulation of CCOF. For each host, a 24-hour profile of
idle time blocks is generated. The synthetic profile is generated in the following way:
The machine is idle during the whole night (from 7pm to 7am); then for each time
unit (one hour) during daytime, it is randomly decided whether the machine is idle or
not. The probabilty of a machine being idle in one time unit is 0.3 in this simulation.

Clients submit random numbers of jobs into the system at random times during
the day based on two different client request arrival distributions. Two probability
distributions are used to model client request arrival patterns. With a uniform distri-
bution, a client is equally likely to submit a job at any time of the day; with normal
distribution, there is a peak load at noon.

The jobs are characterized by the number of processors needed and the length of
time needed on each of the processors. The minimum requested time block is one

hour, while maximum during the day is 4 hours and the maximum during the night is

a1

6 hours. The number of processors ranges from one to a maximum of 10 % of all the
peers in the system (400 in this simulation). The run time and number of processors
are independently generated using exponentially decreasing functions(e.g number of
jobs vs. number of processors or number of jobs vs. runtime).

We varied the search parameters for all of the search algorithms until we found
those values that yield reasonable job completion rates and when possible, acceptable
message passing overhead. For expanding ring search, the search scope is 5 hops in
the peer-to-peer overlay. For advertisement-based search, the scope of advertisement
propagation is also 5 hops in the overlay. Peers may contact up to 5 random neighbors
and the search request can be relayed up to 12 hops with random walk search. Using
the Rendezvous Point approach, 1 % of the nodes in the system are rendezvous points

and a Rendezvous Point informs peers within 7 hops.

4.3.2 Simulation Results

Our evaluation of search algorithms is based on how successful they are in finding
idle cycles and how scalable they are, based on the number of messages sent. In this
simulation study, we are not concerned about latency of one search attempt, since it

will be bounded by search scope. The metrics we use are the following;

e Job Completion Rate. Ratio of successfully finished jobs over total number

of submitted jobs. The job completion rate can be broken up into the following:

Job completion rate = first submission success rate + second submission success

rate - migration failure rate

where, first submission success rate is defined as the number of jobs successfully
scheduled the first time they are submitted divided by total number of jobs;
second submission success rate is the number of jobs successfully rescheduled at
night divided by total number of jobs; and the migration failure rate is defined
as the number of jobs failed after migration divided by the total number of jobs.

52

e Message Overhead. This is defined as the number of links traversed by
all messages in the resource discovery procedure divided by total number of
peers in the system. In this simulation, the message overhead is the total per
peer over 24 hours. For Rendezvous Point, the message overhead also includes
the messages for advertising the rendezvous points. Since the message count
indicates the number of overlay links traversed, the count will be much larger

in the physical network.

o Average Distance. This is the average hop count in the overlay from a client

to the hosts on which its job is scheduled.

08 |

Centralized, with retry
Centralized, no retry
Rendezvous Paint, with retry
Hendezvous Point, no retry
Ads-based, with rm
Expanding Ring, with retry
0.7 | Bandom Walk, with retry
Ads-based, no retry
Expanding Ring, no retry
Random Walk, no retry) -~
04

Job Completion Rate

0 0.1 0.2 0.3 0.5 0.6 07
Peer Cycle Withdrawal Probability

FIGURE 4.1: Job completion rate under uniform workload, when the ratio of clients
to donors is 0.1.

53

2200 ¥ L] + L L 1
Ads-based, with retry —r—

2000 | Ads-based, no retry —_ o
Random Walk, with retry —_—

1800 | Random Walk, no retry —— -
Expanding Ring, with retry —_— 3

1600 | Expanding Ring, no retry
Rendezvous Point, with retry
1400 | Rendezvous Point, ne retry

1200 |
1000
800 -
600 8

Number of Message Sent per Node

200 -1 »
0 — A # s — S
0 0.1 0.2 0.3 0.4 0.5 0.6 07
Peer Cycle Withdrawal Probability

FIGURE 4.2: Message overhead (for 24-hour period) under uniform workload, when
the ratio of clients to donors is 0.1.

Light Workload

This section shows the results under a light workload, with the ratio of clients to
hosts set at 0.1 and assuming uniform client request arrival distribution. The results
are similar with a normal arrival distribution under conditions of light workload.

Figure 4.1 shows that when there are abundant idle cycles, the job completion
rate for Rendezvous Point without retry is very close or equal to the performance of
a central server, with almost 100% completion rate over the full range of peer cycle
withdrawal probability. Due to these two algorithms’ inherent advantage in gathering
knowledge of idle cycles, the client is guaranteed to find all or many of the hosts.

While the performance of expanding ring search and ads-based search are not as
strong as the the first two methods, the job completion rates remain greater than
97% (with retry) for peer cycle withdrawal probability up to 30 %. (We note that
since scope limit is 5 hops for both, their performance is basically identical). Random
walk is the weakest of the algorithms with job completion rates around 95%. The

simulation results also show that all the algorithms have less then 5% migration

94

failure rate. In general, all five search algorithms are not greatly impacted by peer

withdrawal rates.

With a higher success rate on first submission, there is lower latency for scheduling
the jobs. Using Rendezvous Point most clients (close to 100%) find enough hosts to
start their tasks the first time they submit the tasks into the system. The other three
methods only satisfy 75% to 83% of the tasks at first submission.

Figure 4.2 shows that the message overhead for Rendezvous Point is much lower
than other techniques. The amount of messages sent for advertisement-based search is
consistently high, since this technique uses flooding in a limited scope to advertise the
profile information. The message overhead for random walk and expanding ring are
comparatively small, as they are launched on-demand and under this light workload,

the requests for extra cycles are infrequent.

|
&
f@
b
I
4!

Number of Hops
o
in

55

4.5

(TS

N W
M ihwis
e TV T T T

%
. S U, .

0.t 02 03 04 05 0.6 .7
Peer Cycle Withdrawal Probability
Centralized, with retry —O— Random Walk, no reiry — 38—
Centralized, no retry —— Ads-based, with retry —&—
Rendezvous Point, with retry —@— Expanding Ring, with retry —&—
Rendezvous Point, no retry —— Ads-based, no retry —5—
Random Walk, with retiry —p— Expanding Ring, no retry —¥—

FIGURE 4.3: Average distance from clients to donors under uniform workload,
when the ratio of clients to donors is 0.1

Figure 4.3 shows that random walk, expanding ring and ads-based search can only

locate hosts in a local area, while the others can find hosts in a much larger range.

95

Heavy Workload

This section shows the results under a heavy workload, with the ratio of clients
to hosts set at 0.7. We first present results under uniform client request arrival

distribution.

Rendezvous Point, no retry =6
07 L Centralized, no retry ——
’ Random Walk, no reiry -8~
Ads-based, no retry -&-
Expanding Ring, no retry %=
Ads-based, with retry —4—
Random Walk, with retry —o—
Expanding Ring, with retry —&—
Rendezvous Point, with retry -@-
Centralized, with retry -

0.5

0.4

Job First Submission Success Rate

03

0 0.1 0.2 03 04 05 0.6 0.7
Peer Cycle Withdrawal Probability

FIGURE 4.4: Job first submission success rate under uniform workload, when the
ratio of clients to donors is 0.7

Figure 4.5 shows that the performance of all of the search methods degrade greatly
under a heavy workload. We expected Rendezvous Point to consistently outper-
form the other search techniques. However, its performance drops below the others
when the cycle withdrawal probability becomes higher than 0.1. We investigated this
anomaly and found it is due to the ability of Rendezvous Point to discover more hosts
in the system and thus be able to schedule larger task. In the CCOF environment,
which satisfies requests on-demand, large jobs may block the smaller jobs from being
scheduled. Table 4.1 compares of the average and maximum size of jobs scheduled
by each algorithm with retry option turned on. Evidently, the average and maximum
size of jobs scheduled by rendezvous point are much larger than the other three. We

will discuss the nature and solution of this problem in section 4.3.2.

o6

' Centraliz;:d, with re'lry -5~
Rendezvous Point, with retry -@-

0.8 Ads-based, with retry —4—
Expanding Ring, with retry —&—
0.7 Random Walk, with retry -o-
T Rendezvous Point, no retry ¢
2 C Centralized, no retry —+—
& 0.6 Ads-based, no retry 5 -
5 panding Ring, no retry =%
= 05
E
S
S 04 F
=
0.3 r
02 |
O.l L L ' L ([l 'l
0 0.1 0.2 03 04 0.5 0.6 07

Peer Cycle Withdrawal Probability

FIGURE 4.5: Job completion rate under uniform workload, when the ratio of clients
to donors is 0.7.

TABLE 4.1: Average/Max size of jobs scheduled under uniform workload, when the
ratio of clients to donors is 0.7. (Job size is measured in unit of processor-hours)

Peer cycle Central | Rendezvous | Random | Expanding | Ads-based
withdrawn | Server Point Walk Ring

probability | Avg-Max | Avg-Max Avg-Max | Avg-Max Avg-Max

0 14.9-176 | 14.8-145 13.4-122 | 13.1-114 13.0-111
0.2 14.5-132 | 14.8-145 12.9-109 | 12.2-108 12.2-104

0.5 13.6-111 | 13.0-109 11.8-95 10.9-88 10.9-95

In Figure 4.4 the search algorithms are divided into two groups according to their
success rate on first submission. The upper group does not allow retry and the lower
group allows rescheduling at night. This graph shows a low first submission success
rate for the second group. The jobs that fail to be scheduled during the day are then
rescheduled at night, hurting the performance of jobs submitted at night.

The central server and Rendezvous Point algorithms have a higher migration fail-
ure rate than the other search methods (see Figure 4.6). Because the larger jobs
occupy more processors, the likelihood that one of its processors will withdraw is

higher than a small job.

57

04

Centralized, with retry -
Rendezvous Point, with retry -8
Random Walk, with retry -
Ads Based, with retry e
—B
-
==

Expanding Ring, with retry
0.3 | Centralized, no retry
Rendezvous Point, no retry
Random Walk, no retry
Ads Based, no retry
Expanding Ring, no retry

02

Job Migration Failure Rate

0.1

0 0.1 0.2 0.3 04 05 0.6 0.7
Peer Cyeles Withdrawal Probability

FIGURE 4.6: Job migration failure rate under uniform workload, when the ratio
of clients to donors is 0.7

Rendezvous Point has the lowest and most stable message overhead (see Fig-
ure 4.8). However, expanding ring exhibits much higher message overhead for a
heavy workload, compared to light workload (see Figure 4.2). The number of mes-
sages sent by it grows rapidly, because as cycle withdrawal probability increases, it

needs to frequently probe in the peer-to-peer system with greater scope.

We conducted the same set of simulations with normal client request arrival dis-
tribution (See Figure 4.7). Algorithms that allow retry are significantly better than
the corresponding algorithms without retry, while the difference is not as dramatic
under the uniform distribution. After the peak arrival rate, there are fewer tasks to

compete with the rescheduled tasks.

Job Completion Rate
=]
h

0.3

02 r

0.1

Centralized, with retry -6~
Rendezvous Point, with retry -#-
Ads-based, with retry -4~
Expanding Ring, with retry —&—
Random Walk, with retry -+
Ads-based, no retry -8
Expanding Ring, no retry —%
Random Walk, no retry -l -
Rendezvous Point, no retry —¢
Centralized, no rery =+ |

0 0.1

0.2 0.3 04 0.5 0.6 0.7
Peer Cycle Withdrawal Probability

58

FIGURE 4.7: Job completion rate under normal workload, when the ratio of clients

to donors is 0.7.

4.4 Conclusions

We make the following overall observations based on these simulations:

¢ The Rendezvous Point algorithm performs best overall with respect to all met-

rics and under both light and heavy workloads. The anomalous behavior that

we observe under heavy workloads can be addressed through scheduling poli-

cies that avoid favoring large jobs. However preventing large jobs from starving

small jobs is a hard open problem in a peer-to-peer environment. (This problem

has been successfully addressed for parallel machines with a central scheduler

using techniques such as backfilling.) In the chapter of conclusion and future

work, we propose to address this problem in conjunction with mechanisms of

fairness, QoS and security.

59

2200

Ads-baseci, with rclry' ' —a

2000 b Ads-based, no retry —8—
Expanding Ring, with retry —a—

| Expanding Ring, no retry ——

1800 T Random Walk, with retry ——
Random Walk, no retry —a—

1600 I Rendezvous Point, with retry
Rendezvous Point, no retry

Number of Message Sent per Node

0 0.1 02 03 0.4 0.5 0.6 0.7
Peer Cycle Withdrawal Probability

FIGURE 4.8: Message overhead under uniform workload, when the ratio of clients
to donors is 0.7

o Under light workloads, while Rendezvous Point performs best, the other al-
gorithms also perform well with job completion rates greater than 95%, when
retry is allowed. They are stable over dynamic peer cycle withdrawal changes.

Only ads-based incurs higher message passing overhead.

e Under heavy workloads, the job completion rate for all algorithms declines to
values of 63% to 84% and drops quickly with increasing peer cycle withdrawal
rates. The message overhead is still stable for Rendezvous Point, while it in-

creases significantly for the other algorithms.

The simulation results show that rendezvous point algorithm performs best when
considering both efficiency in locating available hosts and message overhead. The
exceptional performance of rendezvous point algorithm is due to its ability to collect
resource information in a larger area and therefore clients can know about more hosts
in searching via rendezvous points. However, to achieve the best performance of a

rendezvous point based resource discover scheme, the rendezvous point scheme needs

60

to be within short access distance of non-rendezvous points and load on different
rendezvous points should be roughly equal to avoid overload one or a few rendezvous
points. There is also an one-time rendezvous point selection cost and small mainte-
nance cost when using rendezvous point search. In next chapter, we will introduce
dynamic rendezvous point selection methods in peer-to-peer overlay networks, includ-
ing our rendezvous point selection methods in structured overlay network for an even
distribution throughout the overlay and balanced load on rendezvous points, and a
new model that uses virtual rendezvous point for coordinating clients and volunteer

hosts.

61

CHAPTER 5

Dynamic Rendezvous Point
Selection in Peer-to-Peer Overlay

Networks

Results in Chapter 4 Show that in a peer-based desktop grid system, the ren-
dezvous point resource discovery method performs better than the probing-based
methods such as expanding ring search, random-walk and advertisement, when con-
sidering both resource discovery effectiveness for job throughput and message-passing
overhead.

In this chapter we explore the question of how to select a set of rendezvous points
in a peer-to-peer overlay network to support fast discovery of available hosts by the
application scheduler. We first define the rendezvous point selection problem ab-
stractly and outline the challenges associated with rendezvous point selection in a
dynamic, large scale peer-to-peer network. We investigate protocols for rendezvous
point selection in unstructured overly networks, and show that these protocols are
not suitable for fast resource discovery in peer-based grids. We then develop a ren-
dezvous point selection protocol for structured overlay networks that addresses most

of the problems encountered in previous rendezvous points selection protocol. QOur

62

key contribution is the introduction of the notion of virtual rendezvous points within
a resource-aware structured overlay network. This novel concept supports low latency

resource discovery combined with resilience, security, and scalability.

We broadly define the rendezvous point selection problem as that of selecting some
subset of the peers in a large scale peer-to-peer overlay network to take a special role,
with the designated rendezvous point providing service to the non-rendezvous nodes.
The specially selected peers must be well-dispersed throughout the peer-to-peer over-
lay network, and must typically fulfill additional requirements such as load balance,
resources, access, and fault tolerance. The rendezvous point selection problem occurs
across a spectrum of peer-to-peer applications, including file sharing systems, dis-
tributed hash tables (DHTSs), publish/subscribe architectures, and peer-to-peer cycle
sharing systems [56, 89, 68, 46]. The rendezvous point selection problem also shows
up in the fields of sensor networks, ad-hoc wireless networks, and peer-based Grid

computing [68, 55, 34, 35].

It is a big challenge to design a dynamic rendezvous points selection algorithm
in peer-to-peer overlay networks, which both supports low access latency from the
non-rendezvous-points to the rendezvous points and adapts to dynamic, unreliable,
large-scale peer-to-peer overlay networks. In the peer-to-peer environment, a large
number of rendezvous points must be selected from a huge and dynamically changing
network in which neither the node characteristics nor the network topology are known
a priori. Thus, simple strategies such as random selection do not work, since the even
distribution of rendezvous point relies on a uniformly populated topology. Rendezvous
point selection protocols are challenging because they must respond to dynamic joins
and leaves (churn), operate among potentially malicious nodes, and function in an

environment that is highly heterogeneous.

Since the rendezvous points selection problem is closely coupled to the underly-
ing overlay network, solutions to this problem are often tailored to the particular

type of the peer-to-peer overlay networks: unstructured peer-to-peer overlay network

63

and structured peer-to-peer overlay network. While many researchers have proposed
solutions to the rendezvous points selection problem in unstructured overlay net-
work [56, 89, 46}, few have addressed the problem of dynamic rendezvous points

selection in structured overlay networks.

We designed a rendezvous point selection protocol for structured overlay networks,
called SORPS(Structured Overlay Rendezvous Point Selection) [68]. SORPS takes
advantage of the regular node label in a structured overlay network to create an
even distribution of the rendezvous points with low message exchange and instant

rendezvous point discovery latency.

SORPS is scalable and can achieve an even distributions of the rendezvous points
on the overlay network. However, we found that there are no easy remedies for
some of the drawbacks of SORPS such as fault-tolerance, burdens on the physical
rendezvous points and security problems. To solve this problem, we developed the
notion of virtual rendezvous points in a resource-aware overlay network, which achieves
all the merits of a rendezvous points scheme while removing the drawback of reliance
on physical rendezvous points. A virtual rendezvous point is a subspace within the
structured overlay network (represented by a subset of the node labels) corresponding
to a specific collection of resources. A client’s request will be automatically routed
to the virtual rendezvous point and then finally reach the appropriate hosts with low

resource discovery overhead.

In the rest of this chapter, we will discuss the criteria of rendezvous points selec-
tion problem in peer-to-peer overlay networks. Then we will survey the rendezvous
points selection protocols in unstructured overlay network. Finally we will present the
SORPS protocol for structured overlay network, discuss the drawback of using physi-
cal rendezvous point, and introduce the idea of virtual rendezvous points in structured
overlay network, in which no single physical node undertakes the role of rendezvous

point.

64

5.1 Problem Definition and Related Work

We first describe the unique requirements and challenges of the rendezvous point
selection problem in the context of peer-to-peer systems. We then describe dominat-
ing set and p-centers problems from graph theory related to the rendezvous point
selection problem. We conclude with a survey of rendezvous point selection protocols

that have been developed for unstructured overlay network.

5.1.1 Criteria of the Rendezvous Points Selection Problem

First, we describe key topological distribution criteria that the rendezvous points
must fulfill relative to the non-rendezvous points. Second, we enumerate characteris-
tics of peer-to-peer networks that make rendezvous point selection difficult.
Rendezvous Point Distribution Criteria. The rendezvous points must be dis-
tributed throughout the peer-to-peer overlay network in a topologically sensitive way

to meet one or more of the distribution criteria listed below.

e Access: non-rendezvous points must have low latency access to one or more

rendezvous points. Access can be measured in hop counts or delay.

o Dispersal: rendezvous points must be evenly distributed throughout the over-
lay network; they should not be clustered within only a few subregions of the

overlay.

® Proportion: a pre-specified global ratio of rendezvous points to non-rendezvous
points must be maintained to meet application-specific performance require-

ments.

o Load balance: rendezvous points should not serve more than k& non-rendezvous
points, where k can be configured locally based on the resource capability of
each rendezvous point. Note that these criteria are inter-related in that speci-

fication of requirements for one may impact another, or

65

Peer-to-Peer Factors. The design of rendezvous point selection protocols within a
peer-to-peer environment is challenging because in addition to fulfilling the distribu-
tion requirements outlined above, they must also deal with factors arising from the

underlying nature of large scale, highly dynamic systems.

e Heterogeneity: Current large-scale peer-based systems consist of a large number
of heterogeneous nodes with differing hardware and software resources. A node
might not be eligible to be a rendezvous point unless it meets certain minimum
qualifications. These qualifications include resources, such as CPU power, disk
or memory space, or battery life; stability, such as uptime or fault tolerance;
communication, such as bandwidth or fan-out; and safety, such as trust or

security.

o Adaptability to churn: Peer-to-peer environments are extremely dynamic. Ren-
dezvous points selection protocols must be able to handle churn and respond
quickly, especially when rendezvous points leave the system. Rendezvous point
selection protocols must also be adaptive to dynamic changes in network traffic

and overlay topology.

e Resilience and fault tolerance: When a given rendezvous point dies, other ren-
dezvous points should quickly take over its functions or a new rendezvous point

should be quickly selected.

e Security: Rendezvous point may be vulnerable to denial of service attacks. Ma-
licious rendezvous point can disrupt the system by failing to forward messages

or by giving out wrong information.

66

5.1.2 Related Theoretical Problems

A wealth of research in graph theory, location theory, and distributed computing
provides a formal foundation for the rendezvous point selection problem.

The basic dominating set problem is the problem of finding a minimal subset of
the vertices in graph G, called the dominator set, such that every node is either a
dominator or adjacent to a dominator. Dominating set problems and algorithms are
described thoroughly in [50], and most versions are NP-hard.

Distance domination seeks to find a minimum size d-dominating set such that the
distance from an arbitrary node to a dominator is < d. Multiple (c,d)-domination
requires that every peer be within distance d of ¢ dominators. Colored domination
presumes that each node in graph G has an associated color from the set ¢;, ¢, ...¢,. A
dominating set of color ¢; is one in which the dominators are all of that color. Colored
domination can be used to model heterogeneous networks in which only certain nodes
are qualified to be dominators.

The p-center problem is applicable when placing a fized number of rendezvous
points in a network. Algorithms and variations on this NP-hard discrete location
problem are found in [47]. The p-center problem is the problem of finding a subset of
p vertices in a graph G, called centers, to minimize the maximum (or total) distance
between a non-center node and its nearest center. Colored p-centers can be used in a
colored graph for the problem of finding a subset of p; vertices of color ¢; to minimize
the above distance criteria.

The classic leader election problem from distributed computing differs from ren-
dezvous point selection in that the former assumes all nodes vote (directly or indi-
rectly) on the choice of each rendezvous point. Leader election algorithms are not
scalable because they require broadcasting or passing a token to all nodes. The best
known leader election protocols electing a leader (typically the node with highest ID

number) under various fault tolerant scenarios, such as Ring, Bully, etc. [96, 71].

67

Heuristic algorithms developed for these classic problems have been utilized in the
field of networking, but their applicability is usually limited to smaller scale, static
networks. For the most part, they involve centralized algorithms or high message
passing overhead. These algorithms were not designed for large scale peer-to-peer

networks that exhibit a high degree of churn and that are dynamically heterogeneous.

5.1.3 Rendezvous Point Selection in Unstructured Overlay

Networks

Previous research about rendezvous points selection methods are all focused on
rendezvous points selection in unstructured overlay networks. The rendezvous point
scheme was originally used in peer-to-peer file sharing applications. Researchers also
explored the power of rendezvous points in other applications, such as security mon-
itoring systems and peer-based desktop grid systems. Supernode and ultrapeers are
used as interchangeable terms for rendezvous points in the literature.

The best known example of rendezvous point selection in a peer-to-peer unstruc-
tured overlay is the gnutella protocol [56, 89] for selection of ultrapeers—peers with
sufficient bandwidth and processing power to serve as proxies for other peers. The
use of ultrapeers reduces network traffic and speeds up content discovery. Figure 5.1
demonstrates the two-tier network structure of the gnutella peer-to-peer network.

With the gnutella ultrapeer selection protocol, any peer can select itself as an
ultrapeer if it meets the following criteria: it has been up for at least 5 minutes, has
high bandwidth, sufficient processing power, runs an OS that can handle a large num-
ber of simultaneous TCP connections, and is not firewalled/NATed. The ultrapeer
selection protocol dynamically adjusts the number of rendezvous points as follows: if
a new peer cannot find an ultrapeer with free slots, it can promote itself to be an
ultrapeer if it is qualified to be an ultrapeer. Otherwise it does an expanding ring

search to search for ultrapeers. The gnutella ultrapeer selection protocol is backwards

68

@ ultrapeer
O leaf node

FIGURE 5.1: Gnutella two-tier hierarchical overlay network.

compatible with the original flat gnutella overlay network construction protocol with-
out ultrapeers, therefore if peer can still join the overlay network if no ultrapeers are

found by adding a connection to the contacted peer.

Gnutella’s ultrapeer selection protocol adapts dynamically to users’ needs in a best
effort fashion by limiting the number of leaf nodes one ultrapeer can handle and adding
ultrapeers when needed. Therefore, the gnutella protocol loosely meets the load
balance criteria. With the localized expanding ring search and self-promotion when
no ultrapeers are found, it also loosely meets access and disperal criteria. However,
gnutella cannot fulfill the proportion criteria. Even though one of gnutella’s goals
is to achieve a certain ratio of ultrapeers to leaf nodes, currently there is no way to

control this ratio.

The H,0 (Hierarchical 2-level Overlay) protocol [68] for rendezvous point selection
is a distributed negotiation protocol for unstructured overlay networks used in the
Sequoia [55] security monitoring system. H,0 uses a classic advertisement-based pro-
tocol, in which rendezvous points advertise security-related resource information, and
non-rendezvous points cache these advertisements. Non-rendezvous points can then

choose to join the best rendezvous point(s) using locally cached information. This

69

protocol gives full autonomy to both rendezvous points and non-rendezvous points,
allowing each to negotiate using its own local policy. H0 is similar in many ways to
the gnutella protocol, but allows for finer-grained control over the rendezvous point
selection process e.g., it can consider trust, secure paths, and routing performance.
The H20 protocol includes three steps: rendezvous point advertisement, rendezvous
point search and final handshake.

J. Han [46] proposed to use a gnutella-like rendezvous point based scheme to build
a desktop grid system in an unstructured overlay network. The paper proposed to
group peers into clusters without clearly defining how peers were clustered. Then the
most powerful and long lived peers in a cluster will be selected as rendezvous points in
that cluster. The resource information is submitted to the local rendezvous point, and
queries are propagated among rendezvous points and handled by rendezvous points
with available resources in its cluster. The paper is focused on usage of rendezvous

points without proposing an effective rendezvous point selection algorithm.

All these rendezvous point selection methods are designed for unstructured over-
lay networks, which require probing based rendezvous point discovery methods with
high message overhead. A newly joined peer has to sends out query messages to its
neighbors to acquire a list of rendezvous points; as a result each peer can only know
some of the rendezvous points in the system. These protocols are more effective in
adding new rendezvous points when there are more peers joining the system, but are
less effective in reducing the number of rendezvous points or adjusting the position
of rendezvous points when peers leave. Therefore the distribution of the rendezvous
points can be very uneven, which causes uneven load on rendezvous points. To achieve
fast turnaround scheduling in peer-based desktop grid system, the clients needs to
be able to locate the rendezvous point quickly and communicate with the rendezvous

point with low latency. The load on rendezvous points should not be excessively high

70

so that rendezvous points will not become the bottleneck of the system. Therefore the
rendezvous point selection protocols in unstructured overlay networks do not satisfy

the requirements of fast turnaround scheduling.

5.2 Rendezvous Points Selection in Structured Over-

lay Networks

As we have described, existing rendezvous point selection schemes in unstructured
overlay network cannot distribute the rendezvous point evenly throughout the over-
lay network, or balance the load on rendezvous points when peers dynamically leave
and join. In addition, a client in an unstructured overlay network can only know a
few rendezvous points. Rendezvous point selection protocols in structured overlay
networks can circumvent the problem of high message overhead and uneven distribu-
tion of the rendezvous points by taking advantage of the node labeling scheme in the

underlying structured overlay network.

5.2.1 SORPS: Structured Overlay Rendezvous Point Selec-
tion

A DHT (Distributed Hash Table) built on a structured overlay network such as
CAN [78], Chord [93], and Pastry [83] makes use of a symmetric, regular node label
space, in which each physical node owns a virtual subspace in the overlay. In these
structured overlay networks, a compact node label ezpression can encode a (large)
collection of virtual nodes.

We have designed the SORPS (Structured Overlay Rendezvous Point Selection)
protocol to exploit this notation and uses a node label expression to designate a
subset of the virtual node label space as rendezvous points. The rendezvous point

label expression is stored in the DHT for fast and easy lookup. The number of

71

rendezvous points can be expanded simply by changing the node label expression
(see examples below). Because a structured overlay network maps physical nodes
to virtual subspaces in a manner that is sensitive to both density and topology, the
rendezvous points are evenly distributed among physical ordinary peer nodes and
every ordinary peer has one or more nearby rendezvous points.

SORPS can keep the rendezvous point to ordinary peer ratio stable as peers join
and leave the overlay. It also maintains low access from ordinary peers to rendezvous
points and provides load balancing for each rendezvous point. In the last part of this
section, we discuss how SORPS addresses resource heterogeneity and how SORPS

copes with the departure or failure of rendezvous points.

SORPS Protocol

o Initiation of SORPS rendezvous point selection. A node that wishes to
initiate the rendezvous point selection procedure for some service hashes information
about the service into the DHT. This includes the public key of the initiator and
the rendezvous point selection policy. This policy contains the rendezvous point
label expression, the minimum criteria for a node to be a rendezvous point, and
maximum lifetime of a rendezvous point. An ordinary peer can discover the identity
of rendezvous points for this service by accessing the DHT using the service related
key to loockup the rendezvous point label expression.

Example 1: CAN structured overlay. Assume the CAN space is a d-dimensional
space and the length of the i,, dimension is d;. To select k rendezvous points, the ser-
vice initiator first factors k into ky,ky,k3.. .. kg where k = Hf=1 k;. The ;;, dimension
of the rendezvous point label should obey the formula (b; +n*d;/k;)%d;, where b; is a
random number chosen in the range of [0,d;] and n is an integer. The randomness pre-
vents different service initiators from choosing the same group of rendezvous points.
Figure 5.2 illustrates this process for 16 rendezvous points in a two-dimensional CAN

space.

72

[© (&)
(0.85, 0.95) (03, 0.95) {0.55, 0. {03, Virtual Supernode Label
D Supernode
I:l Non-supernode
O @ O @]
(0,05, 0.7) 03,09 a.55, 0. 08,0,

®

(]
(0.55,045) 02,045

o
4|

I__

0 I (]
0.55,0.) 3,02

(0.05, 0.3

EE
50

FIGURE 5.2: Rendezvous point selection in CAN. (Rendezvous point label expres-
sion is (0.05+0.25 n)%1,(0.20+0.25 m)%]1

Fzample 2: Pastry structured overlay. To select k rendezvous points, the service
initiator needs to generate a node label with [logk] don’t-care bits as the highest
order bits (or the don't-care bits can be distributed randomly within the label); the
remaining bits in the node label are randomly set to 0 or 1. For example, if the

service initiator needs 1024 rendezvous points it will use x x x-.-x 1001...1 as the

10 bits 118 bits
rendezvous point label expression. Any node whose label matches the 118 instantiated

bits is a potential rendezvous point. When a message are sent towards the rendezvous

point label, the physical node with the closest node label will receive it.

¢ Rendezvous point takes charge of the service. The initiator can send a mes-
sage towards the rendezvous point labels to inform the chosen rendezvous points. The
notification is done via multicast in the overlay network. Each physical node that
owns a node whose label matches the rendezvous point label expression will receive
the message and become a rendezvous point. Alternatively, a rendezvous point takes

charge upon receiving the first request from an ordinary peer.

73

¢ Ordinary peer joins service. If an ordinary peer wants to join a service, it
looks up rendezvous point label expression in the DHT. The ordinary peer can then
figure out the nearest rendezvous point in the virtual overlay according to the routing
protocol. The structured overlay network provides bounded virtual routing with path
length proportional to the distance between labels in the label space. In CAN the
ordinary peer uses the Cartesian distance between its own label and the rendezvous
point Iabel to estimate distance. In Pastry, the ordinary peer uses the bit-wise XOR

operation to compute the label distance from which it estimates the physical distance.

SORPS Features

We have also designed the following extensions to SORPS to fulfill the additional

requirements of the dynamic heterogeneous peer-to-peer overlay networks:

o Resilience and fault tolerance. SORPS must function in situations in which
rendezvous points depart gracefully or die suddenly. A rendezvous point can
replicate rendezvous point-related state on the neighbor nodes that will take
over the subspace covered by its label if it fails. Rendezvous point failure will be
detected by the underlying overlay network maintenance protocol. The most ca-
pable neighbor of the failed rendezvous point can then take over the rendezvous

point role.

o Heterogeneity. Rendezvous points should be those nodes with better capability
with respect to CPU speed, network connections, and other resources. If a new
node joins towards an existing rendezvous point coordinate, the new node and
the existing physical node serving as a rendezvous point can negotiate to see
which one is more capable to take the rendezvous point role. Finally, a2 nearby
ordinary peer can offer to take over a nearby rendezvous point’s role if it is more

capable by swapping virtual subspaces.

74

e Adaptability. An ordinary peer can switch to another rendezvous point when
it is not satisfied with the performance of its current rendezvous point. It can
determine the distance to other rendezvous points by comparing its own node
label expression with the rendezvous point’s node label expression, or it can
query the DHT to see if new rendezvous points have been selected by the ini-
tiator. When more rendezvous points are needed the initiator simply expands

the rendezvous point label expression to cover more virtual node labels.

SORPS for Scheduling in Peer-based Desktop Grid

Rendezvous point based scheduling uses the SORPS protocol described above
to select a group of rendezvous points in the system. Rendezvous points function
as matchmaking servers in the system, similar to the matchmaking servers in Con-

dor [77).

o Hosts report status. When a host becomes available, it sends a status report
to register with its nearest rendezvous points, reporting its CPU clock rate,
memory size and operating system. The rendezvous point will cache the status

report of the host.

¢ Clients send request. When a client wants to find available hosts to compute
its job, it sends a request to the rendezvous point including requirements about

CPU clock rate and memory size.

¢ Rendezvous point matches the request with available hosts. On receiv-
ing the request, the rendezvous point consults its cache and finds the matching
hosts. The rendezvous point then sends the list of candidate hosts to the client

for it to select the best host to use. If it cannot find any matching hosts, the

75

rendezvous point can forward the query to another rendezvous point. Alterna-
tively, it can return a negative report to the client, and the client can contact

another rendezvous point.

o Clients choose the best hosts. The client chooses the best host according to
its local policy and contacts the host. A typical local policy for fast turnaround
can include choosing the host with the highest clock rate and choosing the host,
which recently became idle. If the host is still available and decides to accept
the job based on its local scheduling policy, it will send a message to the nearest

rendezvous point to cancel the registration.

e Hosts become unavailable. When a host becomes unavailable, the foreign
job can sleep on that host or must be preempt according to the local policy of
the host. When the foreign job is preempted, the client has to reschedule the
job. If checkpointing is available, the client can migrate and restart the job on

another host.

Analysis of SORPS’s Performance

As SORPS uses structured node labeling schemes to form the rendezvous point
node label expression, it can provide a theoretical upper bound for several key ren-
dezvous point selection criteria: proportion, load balance and access. In this section,
we analyze these theoretical upper bound for SORPS in the Pastry structured overlay
network. The performance of SORPS in other structured overlay networks can be

analyzed using a similar approach.

The Pastry network uses prefix-based routing based on node label and it uses a
128-bit binary node label. In the routing table, node labels are interpreted as unsigned

inte- gers in base 2° (where b is a parameter with typical value 4). We assume The

76

rendezvous point node label expression in Pastry represents a group of rendezvous

points using do-not-care bits. We assume that the number of do-not-care bits in the

rendezvous point node expression is n in the following analysis, and the number of

nodes in the Pastry network is N (O(2!%)).

¢ Proportion. We measure the proportion criteria by the ratio of rendezvous
points to non-rendezvous points. The number of rendezvous points is O(2").

Therefore the ratio of rendezvous points to non-rendezvous points is O{2"/N).

Load balance. We measure load balance by maximal number of non-rendezvous
points handled by one rendezvous point. In best case that that node are evenly
distributed in the virtual node label space including the rendezvous point, the
number of virtual non-rendezvous points handled by one physical rendezvous
point will be O(N/2"). The even distribution of nodes depends on the hash

function used by Pastry to generate node labels.

Access. We measure access by latency between the non-rendezvous points to
its nearest rendezvous point. The virtual rendezvous points differ in n bits.
Therefore routing to the nearest non-rendezvous points is the same as routing
in a Pastry network with node label space of (128 — n) bits. Using the same
type of the orginal mathematics analysis in original Pastry paper, routing in
this Pastry network is bounded by O(log»2'?—"), in which 2° is the base used

in interpreting the numerical node label.

The performance of SORPS in Chord or Tapestry is similar as they use the same

binary node label and similar node label based routing. In CAN overlay networks,

the latency between one non-rendezvous point to its nearest rendezvous point is

O(nY¢/K), as length of routing path in CAN is bounded by O(n{*/®).

77

5.2.2 Drawbacks of Physical Rendezvous Points

The rendezvous points selection schemes we have discussed have a common draw-
back: a few physical nodes carry a lot of the burden. These physical nodes are in
charge of collecting resource information and matching clients’ requests with available
hosts. Therefore, there are high requirements on availability and capability, such as
network connection speed and CPU speed of the rendezvous points. It is possible that
qualified physical nodes do not even exist in parts of the overlay network. In addition,
the peers are potentially the target of attacks, and even worse, potentially malicious.
Dependence on the reliability and trustworthiness of those physical rendezvous points
opens performance and security holes in the system.

While the fault-tolerance of the system can be improved via replication, it is
often complicated and involves extra overhead. A host can send resource information
to more than one rendezvous point, and a client can also send its request to more
than one rendezvous point. However, this scheme causes higher message overhead
and higher burden on those rendezvous points. A rendezvous point can replicate
its information on its neighbors, hoping that one of its neighbors can take over its
function when it fails. However, periodic updates of the resource information on the
neighbors also introduces high message overhead, especially when the resources on
the hosts are highly dynamic.

Securing these type of rendezvous points selection schemes is a much more seri-
ous problem than providing fault-tolerance. In this asymmetric system, rendezvous
points take a much more powerful position and possess more knowledge about the
system than the ordinary peers. A malicious rendezvous point can attack the system
and stop it from functioning with the additional knowledge and privileges it has. For
example, it can keep forwarding requests to busy hosts, or refuse clients’ requests
even when there are available hosts. It is hard to detect this type of attack, as the
operations on rendezvous points are not transparent to the ordinary peers. When

the resource information is sent and replicated to multiple rendezvous points, incon-

78

sistency in the response to clients’ requests by multiple rendezvous points may alert
the ordinary peers about potential attacks, but some harm may be already done to
the system. Several malicious rendezvous points may collude in propagating faked
resource information. The scenario of colluding malicious peers adds another layer of
complication to the solution of the whole problem, as it is even harder to detect the
attack. Furthermore, it is hard to prevent malicious nodes from occupying some ren-
dezvous points position, since the rendezvous point selection algorithm is known to
all peers. A malicious node can always disguise itself as a qualified node and occupy
a strategic position in the overlay network.

Finally, there needs to be a motivation for peers to function as rendezvous points
since rendezvous points contribute more to the system and it is natural that they
would expect more rewards in return. The success of the gnutella [56] and kazaa [85]
peer-to-peer file sharing system shows that the extra burden of being rendezvous
points (supernodes) is acceptable to peers in this type of systems. It is unclear

whether this observation will still hold in a peer-based desktop grid.

5.3 Virtual Rendezvous Points Schemes

As discussed above, a physical rendezvous point scheme has inherent drawbacks
including high burden and reliance on physical rendezvous points, as well as worse
fault-tolerance and security problems. The problem boils down to whether we can
design a system which sustains the benefits of a rendezvous point based system but
without the drawbacks. This type of system should serve the same essential role as a,
rendezvous point scheme: the resource information of hosts in a larger area than the
local neighborhood is available to all clients. However, this type of system should not
rely on a few physical nodes in the system, and it should not make some physical nodes
in a position superior to the other nodes. Finally, from the a performance standpoint,

the overhead of selection and maintenance of the rendezvous points needs to be low.

79

We introduce the idea of virtual rendezvous points in a structured overlay network,
which does not require any physical node to take charge of the responsibilities of
a rendezvous point. Instead, resource information is built into the structure of a
resource-aware overlay network which encodes resource information using the node
labeling scheme associated with a given structured overlay network such as CAN or
Pastry.

A RAON (resource-aware overlay network) is a structured overlay network which
uses its native node labeling scheme to encode resource information. The types of
resource within each resource class must be finite (enumberable) and stable.

A virtual rendezvous point is a subspace within the structured overlay network
(represented by a subset of the node labels) corresponding to a specific collection of
resources.

Virtual rendezvous points occur in the RAON as follows: hosts join the RAON
by placing themselves at a coordinate in the subspace that represents their resource
capabilities. Clients discover resources by routing messages directly to a coordinate
in the subspace that represents their resource needs.

When a client queries for hosts satisfying its requirements, its request will be
automatically routed to the matching hosts by the underlying DHT overlay routing
protocol. A client can collect a group of hosts as the node label expression used for
routing may encode a group of hosts, and the client can then choose the best from
the group of candidates.

When the resources on a host changes, the host needs to leave the overlay network

and joins a new location matching its new resource specification.

5.3.1 Examples of RAON

Figure 5.3 shows an example of RAON, which is a 2-dimension RAON providing
both operating system and CPU clock rate information. One dimension in this RAQON

represents types of operating system, and the other dimension represents CPU clock

80

rate. There are 18 virtual zones (virtual rendezvous points) in the overlay network.
Hosts will join a particular zone in the overlay network, according to its operating
system and CPU speed. For example, a host running on WinXP with a 2.8GHz
CPU clock rate will join a random location in the zone containing all hosts running
on WinXP and with a CPU clock rate in the range of 2.0GHz to 3.0GHz. Notice
that the figure shows an idealized even distribution of hosts in the resource description
space. A realistic ROAN would be designed to accommodate an uneven heterogeneous
distribution of hosts. In addition, the granularity of the resource profile can be
improved by further dividing the zones. For example, the dimension representing
types of operating system can be further divided according to different versions and
different service package. Different type of clients’ requests can be expressed by
different node label expression. If a client wants to search for a Linux machine with
CPU speed in the range of 1.0GHz to 2.0GHz, it can send a request (Linux, k) which
k is a value greater than 1.0 and less then 2.0. However, if it does not care about
CPU speed, it can send a request {Linux,’X’) using a do-not-care 'X’ in the position

representing CPU speed.

Operating System
Llnux Win9X Win2000/Nt WinXP Unix Mac
JOGHz 7 T 7 ¥
s ! 5 5
.' A £ 5
i ¥ s
E ¥ ¥
K [i
20GHz s i
o ¥ 7
G ! ¥
CPU Clock Rate .c I Y I
i S ‘l _o
F !
i
i
'

S00MHz / \ j/ﬂ /
(l.lm:x,l AGH2) O/ (WinXP,2.80Hz)

(Mac,700MHz)

FIGURE 5.3: An example of RAON, the information of operating system and CPU
clock rate on hosts is embedded into the overlay network.

81

The binning scheme used by the topology-aware CAN overlay network [79] is a
special case of RAON. When a new node joins, it pings the well-known landmark
nodes and generates a landmark label according to the order of the landmarks based
on its distance to them. The node then joins the other nodes with the most similar
landmark label in the CAN space. Virtual rendezvous points are formed according to
the number and locations of the landmarks, and a host registers with the right bins

according to its network location.

5.3.2 Advantages and Limitation of RAON

There are many advantages of virtual rendezvous points compared with physi-
cal rendezvous point scheme such as fast resource discovery speed, minimal search

overhead, light-weight and secure architecture.

¢ Fast resource discovery with minimal search overhead. According to
the underlying node labeling scheme, the clients’ requests will be automatically
routed to matching hosts. DHT routing provides fast resource discovery without
the delays and overhead associated with probing-based resource discovery and

disturbing unrelated nodes.

o Light weight. ROAN is a light weight system in which no physical host stores
resource information. Instead, the resource information is embedded into the
topology of the overlay network. It reduces the burden on physical nodes,
as no physical nodes take charge of storing the hosts’ resource information.
In addition, there is no extra overhead to distribute, store, and maintain the

resource information.

¢ Fault-tolerance. In contrast to physical rendezvous point, ROAN does not
need the heavy-weight replication-based fault-tolerance, as the resource infor-

mation is not stored on a few physical nodes. When a host leaves or fails, only

82

the resources on that host are lost and resource information about other hosts

are still available as they are embedded into the topology of the overlay.

¢ Better security. There is no physical vulnerable point in ROAN, as no physical
node stores the resource information of the hosts. The attackers cannot start an
attack aimed at compromising the rendezvous points and ultimately the whole

system.

The only drawback of RAON is that the type of resources it can represent is
limited. ROAN is efficient in dealing with stable resources, however it is less efficient
in handling dynamic resource information such as filess. RAON cannot efficiently
represent content location, as the files can be duplicated and can be deleted. Each
redistribution and deletion of the contents requires hosts involved in the actions to
rejoin the overlay network. This will cause high maintenance overhead and severe
churn in the network. That is why content location is handled by additional file
keys other than node label alone in DHT overlay networks designed for peer-to-peer

content sharing.

5.3.3 Timezone aware RAON for Peer-based Desktop Grids

So far our discussion of RAON has been limited to static host resources such as
operating system type and CPU power. The most critical resource that must be
specified for cycle sharing systems is blocks of idle CPU time on the hosts. Studies
have consistently shown that large relatively stable blocks of idle time are available
on desktop machines, most notably night-time cycles on home machines or office
workstations. This information can be build into a RAON for fast resource discovery
by clients seeking idle cycles by construction of a timezone-aware RAON in which the

node label space is divided into international timezones based on the GMT system.

83

Figure 5.4 shows a timezone-aware overlay network for the CAN structured overlay
network with 24 virtual rendezvous point zones. For simplicity, only a few virtual
zones corresponding to timezones are shown in the graph. The hosts choose a random
label in the particular virtual zone corresponding to the timezone it is in, and then
join that virtual zone. A host in Portland, USA will join zone [5:00,6:00] and a host
in Beijing, China will join zone [20:00,21:00]. Using this time-zone aware overlay
network, it is easy to locate hosts at night. For example, a client submitting a job
at 8:00am pacific time may schedule it in virtual zone [20:00,21:00], as hosts in this
zone are in midnight and have a high probability to be idle.

Note that a timezone aware overlay network can be designed with larger granu-

larity and additional resource information can be encoded in other dimensions of the

overlay.
Timezone Information
Other A o dm
Resource N I
Information| | { P i 04 IR I
A R N S A A -
00 01:00 02:00 :3704:90 05:00 06:00 07:00 18:00 19:00 20: 2500 22:00 100 24:80
Portland OSydney
C Beljing

FIGURE 5.4: An example of Timezone-aware RAON. Hosts join according to their
timezone information.

5.3.4 Summary

In the chapter, we have described the SORPS rendezvous point selection method
in structured overlay networks, which has many advantages over the rendezvous point

selection methods in unstructured overlay network. These advantages include con-

84

TABLE 5.1: Comparison of SORPS with rendezvous point selection in unstructured
overlay network (RP: rendezvous point)

SORPS Rendezvous Point Selection
in Unstructured Overlay
Search for RP Node label based | Probing based
Message Overhead | Low High
of RP Known All A few
by Non-RP
Proportion Bounded ratio Unbounded Ratio
Access Bounded latency | Unbounded latency
Load Balance Balanced Unbalanced
Fault-tolerance Good Better
Complexity Complex Simple
Maintenance Cost | High Low

stant rendezvous point discovery time and even distribution of the hosts. Table 5.1
summarizes the advantage of SORPS compared with the rendezvous point selec-
tion schemes in unstructured overlay networks. However, SORPS has some inherent
drawbacks regarding fault-tolerance and security. We developed the notion of virtual
rendezvous points which provides the function a rendezvous point system but does
not have the disadvantage of a physical rendezvous point scheme. Table 5.2 compares

the physical rendezvous point scheme with the virtual rendezvous point scheme.

TABLE 5.2: Comparison of physical rendezvous point with virtual rendezvous
points (RP:rendezvous point)

Physical RP Virtual RP
Client query Contact RP Auto dissemination
Matchmaking using DHT routing
Host resource profile | Deposit on RP Embedded in the overlay
Burden on Yes No
Physical nodes
Fault-tolerance Replication-based Inherent
Security concern RP vulnerable to attach | No security concern
Malicious RP related to physical RP
Resource represented | arbitraty stable

85

Our analysis led us to conclude that RAON holds the most promise for fast re-
source discovery in a peer-based desktop grid. It combines all the advantages of a
rendezvous point approach with very few disadvantages. In the next chapter, we
discuss the design of a timezone-aware RAON which we call WaveGrid for use in
heterogeneous peer-based grids. We use WaveGrid as the infrastructure for the next

stages of our research into fast turnaround scheduling.

86

CHAPTER 6

WaveGrid: Scheduling for Fast
Turnaround in Open Peer-based

Desktop Grid Systems

6.1 Introduction

In chapter 5, we have introduced the concept of resource awave overlay net-
work(RAON), which supports scalable, fast and efficient resource discovery in a struc-
tured peer-to-peer overlay network. In this section, we show a new scheduling method
for fast turnaround in open peer-based desktop grid systems combining RAON tech-
niques and migration.

Although peer-based desktop grid systems are lightweight, easy to assemble and
operate, and do not suffer from bottlenecks at the central servers, there are problems,
such as fast turnaround scheduling, scalable resource discovery, incentives and secu-
rity. In this study, we focus on the problem of efficient scheduling for fast turnaround

in a peer-to-peer environment.

87

The challenges to design a peer-based desktop grid system which satisfies jobs
with fast turnaround requirements are rooted in the nature of this type of system.

First, it is difficult to collect accurate global resource information in a large dy-
namic peer-based desktop grid system, as collecting resource information on all the
nodes is unscalable and resources are dynamically changing. Smart resource discovery
methods need to be designed, which require minimal message exchange but provide
sufficient resource information for the scheduler to make good scheduling decisions.

Second, the resources in a peer-based desktop grid are volatile. Peers may join
and leave. Resource owners may withdraw their resources at any time. Schedulers
in peer-based desktop grid systems are faced with frequent changes in this dynamic
environment and need to make fast adjustment accordingly.

Third, in this opportunistic system, local jobs should have higher priority than
foreign jobs. As a result, the foreign job will make slower progress since it can only
access a fraction of the host’s CPU availability. Schedulers must make use of as many
as idle cycles as possible to satisfy the need of the foreign jobs for fast turnaround.

Fourth, the system is heterogeneous, as hosts have different CPU clock rate, differ-
ent memory size and run on different operating systems. Scheduling strategies must

take the heterogeneity of the hosts into consideration.

Finally, each node is an autonomous system, so scheduling in peer-based desktop
grid system must be non-intrusive. Scheduling methods relying on heavy performance
monitoring are inappropriate as users, especially home machine cycle donors, will find
it is intrusive to report their CPU usage periodically to some remote clients.

Our solution to the problem, WaveGrid, is a novel scalable heterogeneous peer-
based desktop grid system for fast turnaround [104, 105]. Different from previous
peer-based desktop Grid systems, WaveGrid is motivated by the natural distribution
pattern of idle cycles: users have daily routines in using their machines. The most
noticeable idle cycles are the night-time idle cycles, and day-time idle cycles of home

machines. In addition, hosts are geographically distributed in different timezones

88

on the Internet, and the area which contains the most idle hosts changes over time.
Our contribution resides in two novel components to form WaveGrid: a self-organized
timezone-aware overlay network and an efficient scheduler using migration, designed

to take full advantage of this characteristic of the idle cycles.

e Self-organized timezone-aware overlay network. The timezone-aware
overlay network used by WaveGrid is a special case of ROAN. Virtual ren-
dezvous points are built based on timezones, as hosts self-organize by timezone

to indicate when they have large blocks of idle time.

As in ROAN, the timezone-aware overlay network provides a mechanism for
clients to find idle hosts without the high overhead of traditonal blind-search-
based research discovery strategies [53, 103]. It takes constant time for the
scheduler to choose the targeted area to search for an available hosts based on
the node-label, then a limited scope expanding ring search is conducted in that
area to discover a group of candidates. For example, a host in Pacific Time
timezone can join the corresponding area in the overlay network to indicate
that with high probability his machine will be idle from 8:00-14:00 GMT when

he sleeps.

¢ Efficient scheduling and migration. Under WaveGrid, a client initially
schedules its job on a host in the current night-time zone. When the host
machine is no longer idle, the job is migrated to a new night-time zone. Thus,

jobs ride a wave of idle cycles around the world to reduce turnaround time.

WaveGrid is the first desktop grid system to explore the power of migration
strategies for fast turnaround. When migrating, WaveGrid selects the host
with the highest performance potential. In this study, we focus on CPU speed,

but our model is easily generalized to other criteria.

We also propose an eager migration scheme to augment the basic migration

scheme in a heterogeneous environment. Hosts in the background search for

89

migration target with better CPU power, achieving better performance at with

slightly higher resource discovery costs.

Another contribution of this dissertation is an empirical heterogeneous host profile
model for evaluating the performance of Internet-wide desktop grid systems. None of
the previous desktop grid systems have used heterogeneous profiles characterizing a
large number of hosts on the Internet. They either do not consider heterogeneity of
the hosts or use profiles of a small number of lab or office machines. We use statistical
data from the BOINC project to generate the host profile. Based on this model, we
have studied the performance of WaveGrid compared with systems using a range of

non-timezone-based migration strategies. The simulation results show that:

¢ WaveGrid outperforms other systems with respect to turnaround, stability and

minimal impacts on hosts.
o WaveGrid reduces the migration delay and minimizes rescheduling attempts.

o All systems benefit from scheduling strategies that take host heterogeneity into

account.

6.2 Timezone-aware Overlay Network and Schedul-
ing in WaveGrid

The design of WaveGrid springs naturally from the observation that millions of
machines are idle for large chunks of time. For example, most home and office ma-
chines lie idle at night. It is also influenced by the notion of prime time v. non-prime
time scheduling regimes used by parallel job schedulers [66], which schedules long jobs

at night to improve turnaround time.

90

There are many motivations for the design of WaveGrid. First, resource informa-
tion, such as when the host will be idle and how long the host will continue to be idle
with high probability, will help the scheduler make much better decisions. WaveGrid
builds this information into the overlay network by having hosts organize themselves
into the overlay network according to their timezones. Second, efficient use of large
and relatively stable chunks of idle cycles provides the best performance, in contrast
to using sporadic short periods of idle cycles which may be countered by high re-
source discovery and scheduling overhead. Therefore, WaveGrid proposes to use long
idle night-time cycles. Third, the cycle donors are geographically distributed, so that
their idle times are well dispersed on the human 24-hour time scale. Machines enter
night-time in the order of the timezones around the world, making it well-suited for
efficient migration. Fourth, the scheduler should not be intrusive to users’ privacy.
WaveGrid only needs minimal user input such as timezone information and CPU
clock rate.

WaveGrid builds a timezone-aware, structured overlay network and it migrates
jobs from busy hosts to idle hosts. WaveGrid can utilize any structured overlay
network such as CAN [78], Pastry [83], and Chord [93]. The algorithm we present
here uses a CAN overlay (78] to organize nodes located in different timezones and
migration of jobs happens when the current host is no longer available(see Figure 6.1).

The key contribution of the timezone-aware overlay is its creation of virtual ren-
dezvous points which provides (a) fast resource discovery without any search overhead
and (b) a light weight system in which no physical host stores resource information.
Hosts simply join the overlay network according to their idle timezone and clients
simply hash to a host in the desired nightzone using the underlying DHT. Our work
is distinct from all other DHT-based resource discovery systems [7, 51, 48, 52, 72]
which query resource information stored in the DHT. These query-based systems

incur overhead to cache and maintain soft-state resource profiles of the hosts.

91

TineZone
1 2
] KlLlr |e
J
M H
TenaZorna
1 2 3 4
AN S - A
o Ol [T L) [o zone
M H 6' E 0 B C EmyZm
i o S Task

FIGURE 6.1: Job initiation and migration in WaveGrid

Wavezones in the CAN overlay: We divide the CAN virtual overlay space into
several wavezones. Each wavezone represents several geographical timezones. A
straightforward way to divide the CAN space is to select one dimension of the d-
dimensional Cartesian space used by CAN and divide the space into several wave-
zones along that dimension. For example, a 1 x 24 CAN space could be divided into
4 wavezones each containing 6 continuous timezones. Adjustments will be made for
timezones with low user population.

Host nodes join the overlay: A host node that wishes to offer its night-time cycles
knows which timezone it occupies, say timezone 8. It randomly selects a node label
in wavezone 2 containing timezone 8 such as {0.37, 7.12) and sends a join message to
that node. According to the CAN protocol, the message will reach the physical node
in charge of CAN node (0.37, 7.12) who will split the portion of the CAN space it
owns, giving part of it to the new host node.

Client selects initial nightzone: The scheduler for a workpile application knows
which timezones are currently nightzones. It selects one of these nightzones (based on

some selection criteria) and decides on the number A of hosts it would like to target.

92

There are a variety of nightzone selection criteria for selecting the initial wave-
zone and the wavezone to migrate to, including (a) schedule the task to the wavezone
whose earliest timezone just entered night-time, (b) schedule the task to a random
night-time zone, and (c) schedule the task to a wavezone that currently contains the
most night-time zones. The first option performs better than the others, since it pro-
vides the maximal length of night-time cycles. However, it may be better to randomly

select a nightzone if many jobs simultaneously require scheduling to avoid collisions.

Host Discovery: The scheduler randomly generates h node labels in the wavezone
containing the target nightzone and sends request messages to the target node labels
using CAN routing. Each contacted host does an expanding ring search in a limited

scope to discover more candidates.

Host Selection: The application scheduler chooses the best host from the candidate
group to schedule the foreign job on. The primary selection criteria in a desktop grid
system is the availability of the host.

To address the concern that foreign jobs will disturb a user’s local work, WaveGrid
uses a strict host availability model, where CPU cycle sharing is limited to the time
when owners are away from their machines and the CPU load from local applications
is light. Figure 6.2 illustrates a sample host profile of available idle cycles under a strict
user local policy in WaveGrid: The host is available only when the CPU load is less
than 75% and there is no mouse or keyboard activity for 15 minutes. In reality, many
cycle sharing systems use a conservative CPU availability model. Condor supports
strict owner policies: users can specify a minimum CPU load threshold for cycle
sharing, or specify specific time slots when foreign jobs are allowed on that host.
SETI@home uses a screensaver model: it runs when no mouse or keyboard activities

have been detected for a pre-configured time; otherwise it sleeps.

93

Secondary selection criteria includes the CPU power, memory size and type of
operating system, etc. In this study, we focus on CPU power which is directly related
to the execution time of the foreign job. When a group of candidates is selected based
on CPU availability, the host with the best CPU power is chosen.

After negotiations, the application scheduler ships code to the chosen hosts.

Migration to next timezone: When morning comes to a host node and the host
is no longer available, it selects a new target nightzone, randomly selects a host node
in that nightzone, and after negotiating with that host, migrates the unfinished job

to the new host.

[[y
s Available cycles
I I Unavailable cycles

CPU).Dad =75%

I

15 mins
Mouserkeyboard Events

FIGURE 6.2: Sample host profile of available idle cycles

6.3 Migration

Migration was originally designed for load sharing in distributed computing to
move active processes from a heavily loaded machine to a lightly loaded machine.
Theoretical and experimental studies have shown that migration can be used to im-

prove turnaround time [31, 88]. We believe that application of migration scheme can

94

also improve the turnaround in peer-based desktop grid systems, however there are
often research questions to be solved such as selection of migration target and deci-
sion of when to migrate. We proposed and evaluate a variety of migration strategies
with respects to overhead and success rate. In addition, with the longer transmission

delay in the Internet, suitable applications needs to be identified for migration.

6.3.1 Suitable Applications for Migration in Peer-based Desk-
top Grid Systems

The type of applications which are suitable to schedule and migrate in WaveGrid
are large Workpile (Bag-of-tasks) jobs. Each job consists of a number of independent
tasks requiring large amounts of CPU cycles but little if any data communication.
Examples of workpile applications include state-space search algorithms, ray-tracing
programs, gene sequencing and long-running simulations. Often these applications
have higher performance requirements such as faster turnaround time and higher
throughput . Some of the above applications may have real time constraints, such as
weather forecasting and medical diagnosis for a patient, or scientific simulations that
must be completed in time for a scheduled reporting deadline.

The migration cost is higher in global peer-based cycle sharing systems than in
local area networks because the code and data are transferred on the Internet. If a
short running job is migrated many times in its life span, the accumulated migration
cost may well counter the migration benefit. Long jobs which run for hours or even for
months receive maximal benefit from migration. For such jobs, the cost of migration,
which includes resource discovery overhead to find a migration target, checkpointing,
and cost to transfer the code and data is negligible compared to the total runtime.

Many long running applications satisfy the migration criteria: small size and
minimal data communication. For example, the average data moved per CPU hour

by users of SETI@home is only 21.25 KB, which is feasible even for users with slow

95

dial-up connections. With respect to program size, Stanford Folding is only about
371KB, and SETI@home is around 791KB. These applications run for & long time.

The average computation time of each SETI@home job is about 6 hours.

6.3.2 Migration Strategies

There are two important issues for migration schemes: when to migrate the jobs
and where to migrate the jobs. Traditional load sharing systems used central servers
or high overhead information exchange to collect resource information about hosts
in the system to determine when and where to migrate jobs [31, 88]. New scalable
strategies are needed to guide migration decisions in a peer-to-peer system.

The optimal solution of when to migration the job requires accurate predication
of future resource availability on all the hosts. Many researchers have addressed
the CPU availability prediction problem for the Grid or for load sharing systems
[10, 100, 28], but they all require a central location to collect and process the resource
information. In our study, we assume there is no resource availability prediction and
that migration is a simple best effort decision based primarily on local information,
e.g. when the host becomes unavailable due to user activity.

The same resource availability issue exists for where to migrate the job. But the
issue of where to migrate the job is also related to the scalable host discovery which
we have discussed. The scheduler needs the host discovery to discover candidate hosts

which are suitable to migrate the job to.

We compare several migration schemes that differ regarding when to migrate and

where to migrate.

The options for when to migrate include:

o Immediate migration. Once the host is no longer available, the foreign jobs are

immediately migrated to another available host.

96

e Linger migration. Linger migration allows foreign jobs to linger on the host for
a random amount of time after the host becomes unavailable. After lingering, if
the host becomes available again, the foreign job can continue execution on that
host. Linger migration avoids unnecessary migration as the host might only be
temporarily unavailable. Linger migration can also be used to avoid network
congestion or contention for available hosts when a large number of jobs need

to be migrated at the same time.
There are also two options for where to migrate the jobs:

o Random. The new host is selected in a random area in the overlay network.
There is no targeted area for the search; the new host is a random host found

in the area where the resource discovery scheme is launched.

o Night-time machines. The night-time machines are assumed to be idle for a
large chunk of time. The Wave Scheduler uses the geographic CAN overlay to

select a host in the night-time zone.

6.3.3 Peer-based scheduling strategies that utilize migration

The scheduling scheme has two distinct steps: initial scheduling and later migra-
tion. In initial scheduling, the initiator of the job uses host discovery to discover
hosts satisfying the host selection criteria and schedules the job on the chosen host.
The migration schemes also use host discovery to discover candidate hosts. Table 6.1
sumimarizes the difference between different basic migration schemes.

The no-migration system follows the SETI@home model. It uses the more relaxed
host selection criteria: any unclaimed host can be a candidate.

No-migration: With no-migration, a client initially schedules the task on an un-
claimed host, and the task never migrates during its lifetime. The task runs in screen-
saver mode when the user is not using the machine, and sleeps when the machine is

unavailable.

97

TABLE 6.1: Different migration strategies

When to migrate

Where to migrate | Immediate Migration | Linger

Random Host Migration-immediate | Migration-linger

Host in night-zone Wave-immediate Wave-linger

WaveGrid and random-migrate all use migration schemes, which differs in where to
migrate. WaveGrid migrates jobs to available night-time hosts, while random-migrate
migrates jobs to random avatilable hosts. In regarding to when to migrate, WaveGrid
and random-migrate both adopt three different options: immediate migration, linger

migration and adaptive migration.

Immediate migration. With immediate migration, the client initially schedules
the task on an available host. When the host becomes unavailable, the foreign jobs
are immediately migrated to another available host. In the best case, the task be-
gins running immediately, migrates as soon as the current host is unavailable, and

continues to run right away on a new available host.

Linger migration. With linger migration, a client initially schedules the task on an
available host. When the host becomes unavailable, linger migration allows the task
to linger on the host for a random amount of time. If the host is still unavailable
after the lingering time is up, it then migrates. Linger migration avoids unnecessary
migration as the host might be temporarily unavailable. Linger migration can also

be used to avoid network congestion or contention for available hosts.

Adaptive migration. For initial scheduling, adaptive migration tries to find a host
that is available. If it cannot, migration-adaptive schedules the task on an unclaimed
host. When the host becomes unavailable, adaptive migration tries to migrate the
task to a new host that is available. If it cannot find such a host, it allows the job

to linger on the current host for a random amount of time and tries again later. A

98

cycle of attempted migration and lingering is repeated until the job finishes. Adaptive
migration is designed to avoid rescheduling. However, it puts a bigger burden on the
host since it may retry several times on behalf of the foreign task.

Eager migration. In this heterogeneous environment, we also designed an eager
migration option, which can be added to all the basic migration strategies described
above. With this aggressive migration model, after every wakeup interval a host does
resource discovery to search for available hosts with better CPU power, while it is
running the foreign jobs. If it can find such hosts, jobs will be migrated to these hosts
immediately; otherwise the jobs continue to run on the current host, until it is time

for them to leave the current hosts decided by the basic migration strategy.

6.4 Simulation-based Evaluation of WaveGrid

To evaluate the performance of WaveGrid, we compare it with a no-migration
system and a random-migration system.

In our simulator, we implement the peer-based desktop grid systems using the
following components: overlay network construction, host selection criteria, host dis-
covery strategy, local scheduling policy, and scheduling scheme. The systems we
evaluated use the same host discovery method and local scheduling policy, but differ
in overlay network construction, host selection criteria and scheduling schemes. We

use the scheduling and migration schemes described in section 6.3.3.

Overlay network construction. Both the no-migration system and the random-
migration system use the CAN overlay network [78]. WaveGrid uses the CAN-based

timezone-aware structured overlay network described above.

Local Scheduling. The local scheduling policy on a host determines the type of
service a host gives to a foreign job that it has accepted. We use a strict screensaver

model. We assume that one host can only accept one foreign job, and foreign jobs

99

can only run when it is admitted by local user policy such as there is no recent
mouse/keyboard activity and the CPU utilization is low. When the host is available,

the foreign job concurrently shares cycles with other local jobs.

Host selection criteria. A client uses its host selection criteria to select one host
among multiple candidates. The primary selection criteria in a desktop grid system
is host availability. As discussed in section 6.2, we use a strict host availability model.
The following terms define the criteria regarding CPU availability which we use in
the simulation. Unclaimed means that there is no foreign job on that host. Available
means that there is no foreign job on that host and the host is idle. The host’s local
user policy described in local scheduling is used to decide whether the host is idle.

Different systems use different host availability criteria. The simple no-migration
system relaxes this criteria to use any unclaimed hosts, while WaveGrid and random-
migration try to schedule foreign jobs on available hosts for instant execution.

All three systems use CPU power as a criteria to choose the best host among all

the candidates.

Host Discovery. The purpose of the host discovery scheme is to discover candidates
hosts to accept the foreign job. WaveGrid does an expanding ring search in the tar-
geted zone, while the other two systems do expanding ring search in the neighborhood
of the client or a random area of the system. The benefit of the latter approach is to

create a balanced load in case of a skewed client request distribution in the overlay.

6.5 Heterogeneous Host CPU Power Profile

We use a heterogeneous host CPU power profile derived from statistical data from
BOINC project in this study [90]. BOINC is client-server-based Internet-wide cycle

sharing system, which attracts millions of users. BOINC supports several scientific

100

applications. The most popular applications are searching for outer space intelli-
gence(SETI@home), climate prediction{Climateprediction.net), studying about pro-
tein related diseases(Predictor@home), and searching for gravitational signals emitted
by pulsars{Einstein@home). BOINC uses a credit-rewarding scheme to motivate hosts
to donate cycles. Each time when a host returns a result, once the result is verified,
the host is awarded some credits. Therefore the number of credits one hosts earns is
directly proportional to the number of results it generates. For each application sup-
ported by BOINC, there is statistical data (http://www.boincstats.com) providing
information such as total number of credits and average number of credits grouped
by types of CPUs, or types of Operating Systems, or regions. There is also statistical
data about individual user/host/team. Table 6.2 shows some sample entries from the

BOINC statistic website, which is grouped by types of CPUs.

TABLE 6.2: Sample statistical data for SETI@home organized by types of CPUs,
which groups hosts according to type of its CPU. (Note: ”Average credit” is the
average credit granted over the last few days to the hosts with this type of CPU.)

Pos, | CPU #CPU | Total Average Credit Average
credit credit per CPU | credit
per CPU
1 Intel{R) Pentium(R) | 27,910 249,454,384.00 2,100,610.25 | 8,937.81 75.26
4 CPU 3.00GHz
4 AMD Athlon(tm) 13,934 47,707,040.00 | 356,019.28 3,423.79 25.55
Processor

We processed the statistical data about different CPUs in the system to generate
the heterogeneous host CPU power profile via the following method. Hosts with
same type of CPU are regarded as in the same group. We exclude those groups with
a very small population, e.g. rare kind of CPUs such as high-end multiprocessors or
vanishing types of CPUs. As the credits assigned to one host is directly related to the
number of results returned by it, we use the average number of credits per CPU to
predict the power of that type of CPU. For each CPU group, we compute the credit

ratio as maximal average number of credits earned among all different groups over

101

average number of credits earned by hosts in that group, and the population of that
group as a percentage of the total number of hosts. The smaller the credit ratio is,
the better the CPU power of that group is.

Figure 6.3 shows the cumulative graph, in which each data point represents one
group. The graph shows that for different types of applications, the distribution of
CPU power is different, probably related to the structure of the particular program
and the type of users attracted to that particular project. Except for Climatepred-
ition.net, the other three applications exhibit a distribution similar to a normal dis-

tribution: a large number of groups have a similar ratio.

09 |

08 |

07 |

06 |

a5 |

04 |

03 |

‘ G Einstein@home —+—

-t SETI@home —»— | |
’ i Predictor@home —x—
o BN : , , , . , , | Climateprediction.net —8—

1 2 3 4 5 [7 8 9 10 11 12 13 14 15
Ratio of Credits Over Maximal Credits

Cumulative Precentage of the Hosts

FIGURE 6.3: CPU powers of different CPU groups using empirical data from
BOINC statistic (collected in Aug. 2005). The credits are averaged over all the
CPUs in the same group.

We further convert the credit ratio into power rank. If the credit ratio of a
group falls in the range of [k,k + 1), the rank of that group equals k. The results
in Figure 6.4 further confirm that the distribution of the CPU power is far from a
uniform distribution. The majority of the hosts are clustered on one or a few ranks.

We use the information in Figure 6.4 in our simulation study.

102

0.7
SETl@home

0.6 - | Predicter@home
- Einstein@home
E 05 @ Climateprediction.net
2
& 0.4 - z
$ 03- :

0.2 g

0.1 H

FIGURE 6.4: Percentage of different CPU groups with different ranks

The empirical data from BOINC also shows that the types of operating systems
used by different hosts are quite uniform. About 89.1% of the hosts use windows
operating system, and 7.6% of the hosts use linux operating system. In our simulation
study, we assume that all the hosts use the same type of operating system or invoke
the same type of virtual machines to run the foreign job. The BOINC data provides
some information about the geographic distribution of the hosts, in which it shows
that the majority of the hosts reside in north America. We believe this is biased
information which derives from the fact that north America is the birthplace of the
BOINC project, and thus it attracts many users in north America. According to
statistic about the population of Internet users 73], 34.2% Internet users are in Asia,
28.5% Internet users are in Europe, and 23.4% Internet users are in North America.
Therefore considering the fast growth of the Internet and the end host connection
speed, the population of hosts in different parts of the world on a symmetric global-
wise desktop grid system will be more equalized geographically than what is hinted
by the BOINC statistic.

103

6.6 Simulation configuration

We use a 5000 node structured overlay in the simulation. Nodes join the overlay
following the CAN protocol (or timezone-aware CAN protocol in the case of the Wave
scheduler).

For simplicity, the Basic simulation configuration is used for in the preliminary
study comparing different basic migration strategies. A more realistic simulation con-
figuration is used when evaluating the performance of WaveGrid in a heterogeneous

peer-based desktop grid environment.

6.6.1 Basic Simulation Configuration

Profile of available cycles on hosts. To evaluate the performance of different
scheduling methods, a coarse-grain hourly synthetic profile is generated for each ma-
chine as follows: During the night-time (from 12pm to 6 am), the host is available
with a very low CPU utilization level, from 0% to 10%. During the daytime, for each
one hour slot it is randomly decided whether the machine is available or not. Finally,
the local CPU load in a free daytime slot is generated from a uniform distribution
ranging from 0% to 30%. We assume that when a host is running a foreign job, it can
still initiate resource discovery for migration and relay messages for other hosts. The
percentage of available time during the day varies from 5% to 95%. For simplicity,
we assume all the hosts have the same computational power.

Job workload. During the simulation, a given peer can be both a client and
a host. A random group of peers (10% to 90%) are chosen as clients. Each client
submits a job to the system at a random point during the day. The job runtime is
defined as the time needed for the job to run to completion on a dedicated machine.

Job runtime is randomly distributed from 12 hours to 24 hours.

104

Host discovery parameters. We set the parameters of the resource discovery
schemes to be scalable and to have low latency. The maximum number of scheduling
attempts for random node label-based resource discovery is 5 times and the search
scope for expanding ring search is 2 hops.

Migration parameters. The lingering time for the linger-migration models is
randomly chosen in the range 1 hour to 3 hours. In the adaptive model, the linger
time of a foreign job when it cannot find a better host to migrate to is also randomly
chosen in the range 1 hour to 3 hours.

Wave scheduler. For the Wave scheduler, a 1x 24 CAN space is divided into 6
wavezones, each containing 4 time zones based on its second dimension. We studied
the performance of a variety of strategies for selecting the initial wavezone and the
wavezone to migrate to. The variations included (a) migrate the job to the wavezone
whose earliest timezone just entered night-time, (b) migrate the job to a random
night-time zone, and (c) migrate the job to a wavezone that currently contains the
most night-time zones. The first option performs better than the others, since it
provides the maximal length of night-time cycles. The simulation results presented in
this paper use this option. However, it may be better to randomly select a nightzone

to balance network traffic if many jobs simultaneously require wave scheduling.

6.6.2 Heterogeneous Environment and Rescheduling

The basic simulation configuration is modified and enhanced with the following
option.

Profile of available cycles on hosts. When evaluating the performance of
WaveGrid in a heterogeneous peer-based desktop grid system, the computation power
of the hosts follows the heterogeneous model discussed in section 6.5. The amount of
available time on each host is weighted by its CPU power. The normalized available
time equals the unweighted available time times the CPU power divided by the median

CPU power in the whole system.

105

Job workload. The runtime of a task is defined as the time needed for the task
to finish on a dedicated machine with median CPU power rank over all the hosts in
the system. It means that it will take a slow dedicated host more than the runtime to
finish the job, and it will take a fast dedicated host less than the runtime to finish the
job. The median CPU power is computed based on our empirical host CPU power
profile, and the runtime is randomly distributed from 12 hours to 24 hours. Tasks

belonging to the same application have same runtime.

Rescheduling. When a client fails to find an available host during initial schedul-
ing or a host fails to find an available host to migrate the job to, it will try to reschedule
the task after a random amount of time. The waiting time in the simulation is chosen
between 1 to 2 hours, which includes the time to restart the task. The amount of

time the rescheduling takes is included in the total execution time of the task.

Migration parameters. The migration delay is added into the total execution
time. The migration delay includes time to discover available hosts, record the current
status of the program, ship the code and data to the new host and restart the program
on new hosts. For most of the simulation, the migration delay is 5 minutes, which is

a fairly conservative figure for the type of applications suitable to run in WaveGrid.

6.7 Evaluating Different Migration Strategies

We conducted simulations to investigate the performance of the migration strate-
gies described above and their effectiveness at reducing turnaround time, relative to a
no-migration policy similar to SETI@home. We also evaluated the performance of the
Wave Scheduler to see what gains are achievable through our strategy of exploiting

knowledge of available idle blocks of time at night.

106

6.7.1 Simulation Metrics

Our evaluation of different scheduling strategies is focused on the turnaround time
of a job, the time from when it first began execution to when it completes execution

in the system.

In our study, a job is considered to have failed if the client fails to find a host
satisfying host selection criteria, either when it initially tries to schedule the job, or
when it later tries to migrate. Most of the performance metrics are measured only
for those jobs that successfully complete execution. In this study, we do not model
rescheduling, as we are interested in the success rate of the first scheduling attempt
which includes the initial scheduling and the following successful migrations. The job
completes in the shortest time if the client only needs to schedule the job once, so
the slowdown factor measured this way show the peak performance of each migration
scheme. Also it is interesting to see what percentage of jobs needs to be rescheduled

under different migration models.

4 T T T T T T T T

No-migration (random) —v—

1 No-migration (expanding ring) —+—

Migration-linger (expanding ring) —»—

Migration-linger (random} —»—

. Migration-adaptive (random} —&—

2 Migration-adaptive {(expanding ring) —®&—

E 3} Migration-immediate (random) —&—

e Migration-immediale (expanding ring) —e—
;
=
2
7]
s
il
2
<%

10 20 30 40 50 60 70 80 90
Percentage of Free Time on Hosts during Daytime (%)

FIGURE 6.5: Average slowdown factor for no-migration vs. migration (The per-
centage of clients in the system is 20%)

107

The metrics used in the study are the followings:

e % of jobs that fail to complete (job failure rate): the number of failed
jobs divided by the total number of jobs submitted to the system.

e Average slowdown factor: The slowdown of a job is its turnaround time
(time to complete execution in the peer-to-peer cycle sharing system) divided
by the job runtime (time to complete execution on a dedicated machine). We

average the slowdown over all jobs that successfully complete execution.

e Average number of migrations per job: the number of times a job mi-
grates during its lifetime in the system, averaged over all jobs that successfully

complete execution.

We do not include migration and resource discovery overhead when plotting the
average slowdown factor. The migration and resource discovery overhead do not
make a visible difference in the results when migrations and resource discoveries are
infrequent and the jobs run for a long time. We will analyze migration overhead, which
dominates the computation overhead in the discussion of number of migrations. In
the next simulation, we model the migration overhead including resource discovery
latency, the time to transmit the data and code, the time to restore the program state

and restart on the job on a new host.

6.7.2 Simulation Results

In this section, the legends in each graphs are ordered from top to bottom to match
the relative position of the corresponding curves. Each data point is the average over

15 simulation runs.

108

No-migration vs. migration

We first compare no-migration with the two basic migration schemes: migration-
immediate and migration-linger. We measure the performance of these scheduling
strategies as a function of percentage of free time on the hosts. When the percentage
of free time on hosts increases on the x-axis, the load of the system decreases. We
also examine the impact of the resource discovery scheme employed.

(a) The impact of migration on job turnaround times

Figure 6.5 shows the average slowdown factor for successfully completed jobs as
a function of free time on the hosts during the daytime hours. As expected, jobs
progress faster with more available time on hosts during daytime. The performance
of the no-migration strategy is clearly the worst since there is no effort made to avoid
long waiting times when the host is not free. Note that the slowdown of migration-
immediate (for both expanding ring and random host discovery) is always 1, since
only jobs that successfully run to completion are considered. The success rate of
different scheduling schemes will be discussed in section 6.7.2(b).

The performance of migration-linger is better than the no-migration strategy but
worse than the others with its wasted lingering time associated with each migration.
The performance of the adaptive models is the closest to the idealized migration-
immediate schemes since it adaptively invokes the migration-immediate scheme when-
ever possible.

The slowdown factor is mainly influenced by the migration model used. However,
for the linger and adaptive strategies, the resource discovery protocol also plays a role
when the free time on the host is limited (e.g. when the percentage of hosts free time
during daytime is less than 65%). We noticed that for the linger strategy, random
performs better with respect to slowdown, but for the adaptive strategy, expanding
ring performs better. This can be explained as follows: For comparable search times,
expanding ring contacts more hosts than the random node label-based search, and

therefore yields a higher successful migration rate. However, since with migration-

109

linger, every successful migration implies (wasted) lingering time, ultimately random
has lower slowdown with its lower migration success rate. This observation is sup-
ported by Figure 6.17 which shows the average number of migrations for each strategy.
For the adaptive strategy, expanding ring has lower slowdown than random as ex-
pected.

Figure 6.5 also shows that the slowdown factor for the no-migration strategy and

for migration-immediate is insensitive to the resource discovery schemes.

1} &1 No-Migration
8 Migration-linger
X & Migration-adaptive
= B Migration-immediate
= 0.8t
]
E
g 0.6 |
=M
0.4 |
0.2 |
2
rEre Eﬁ
55 %
° . . R
[5.-) [4,5) 3.4
Slowdown Factor

FIGURE 6.6: histogram of slowdown factors of successfully finished jobs (The
percentage of clients is 20% and the percentage of free time on hosts is 15%)

Figure 6.6 further confirms the improvement of turnaround time when using a
migration model under heavy load. The majority of jobs scheduled by no-migration
scheduling experienced a slowdown greater than 2 and in the extreme case, jobs may
experience slowdown greater than 5. The majority of jobs scheduled by migration-

adaptive and migration-immediate have small slowdown or no slowdown at all.

110

100 T T T T T .
Migration-immediate (random) —e—
90 Migration-linger (random) —+—
Migration-immediate (expanding ring) —e—
80 Migration-linger (expanding ring) —%— |
Migration-adaptive {random} —&—
20+ Migration-adaptive (expanding ring) —— |
) No-migration (random) —~—
et 60 | No-migeation (expanding ring) —+— |
2
g 50
=
40}
=]
=}
= 30
20
10 f
0w

10 20 30 40 50 60 70 80 90
Percentage of Free Time on Hosts during Daytime (%)

FIGURE 6.7: % of jobs that fail to complete(The percentage of clients in the system
is 20%)

(b) The impact of migration on successful job completion

The above results regarding slowdown factor cannot be considered in isolation.
In particular, it is necessary to also consider the job failure rates, i.e. percentage of
jobs for which a host satisfying host selection criteria cannot be found either in initial
scheduling or in migration.

Figure 6.7 shows the percentage of jobs that failed to finish assuming the same sim-
ulation configuration as in Figure 6.5. For the two strict migration models (migration-
immediate and migration-linger) which only use local availability information, the
failure rate is extremely high. The adaptive models, which use a small amount of
global information at migration time, have dramatically fewer failed jobs — close to
Z€ro.

There is a tradeoff between the job turnaround time and percentage of jobs that
successfully complete. The strict models have the lowest turnaround time, but high
failure rates when free time on the hosts is limited. The adaptive model performs

best because it achieves low turnaround time with highest job completion rate.

111

Job Failure Rate{(%)

10 20 30 40 50 60 70 80 50
Percentage of Client Peers(%)

Migrtion-immediate (random) —_——
Migration-linger (random) —N—
Migration-immediate (expanding ring) ——
Migration-linger (expanding ring) ——
No-migration (random}) —
Migration-adaptive (random) —_——
Migration-adaptive (expanding ring) ——
No-migrtion (expanding ring) —

FIGURE 6.8: % of jobs that fail to complete (The percentage of free time on the
hosts during the day is 15%)

When the number of client requests increase, there will be intense competition for
free hosts. When the free time on these hosts is small, the situation is even worse.
Figure 6.8 shows that the failure rate of all scheduling strategies increases with the
increasing number of client requests. The persistently high failure rate of migration-
immediate makes it impractical for real applications when the available resources are
very limited.

The simulation results show that with abundant host free time, the failure rate

of migration-adaptive using an expanding ring search is even slightly lower than the

no-migration scheme.

(c) Number of migrations during job lifetime

Figure 6.17 shows that the average number of migrations varies with the different
migration scheduling strategies. The graph shows that when the percentage of host
free time increases, the number of migrations increases first and then decreases. The

reason is that there are two factors that influence the number of migrations: the

112

12 ¥ T T k) L} L] ¥ L 1
Migration-adaptive (expanding ring) —&—
Migration-immediate (expanding ring) —e—
Migration-linger (expanding ting) —*—
Migration-adaptive (random) —8— |
Migration-immediate (random) —e—
Migration-linger (random) —»—
8 - -

Average Number of Migrations
=)

10 20 30 40 50 60 70 80 90
Percentage of Free Time on Hosis during Daytime (%)

FIGURE 6.9: Average number of migrations for successfully finished jobs (The
percentage of clients in the system is 20%)

number of currently available hosts and the length of free time slots on the hosts.
With more available hosts, there is higher chance of migration success and therefore
a larger number of migrations. With longer free time slots, the need for the jobs to
migrate is reduced. With higher percentage of free time, the amount of currently
available hosts increases and the length of free time slots also increases.

We can demonstrate that migration overhead is low using the same graph. In early
morning or late night, the network traffic in the Internet is usually light. Therefore
the network connection from the end-host to the Internet is usually the bottleneck
link when downloading or uploading data. In the following computation, we assume
the upload bandwidth of the host is 256kb, which is the bandwidth of slow-end DSL
users and download bandwidth is higher than upload bandwidth with DSL. If the
amount of data to be transmitted during the migration is 1MB, the slowdown factor
of migration schemes will increase by at most 0.005 when the running time of the job
is longer than 12 hours. Even when the amount of data to transmit is 20MB, which

is quite large for a scientific computation, the influence is at most 0.1. The time

113

overhead of resource discoveries is much smaller and negligible compared with that
of migration. In next section, we present simulation results with migration overhead

using a heterogenous host CPU profile.

Performance of Wave Scheduler

This section presents the evaluation of the Wave Scheduler. In order to focus on
the difference between migration strategies, we only describe results with the resource
discovery method set as expanding ring search. (Simulations with random node label-
based discovery show the same relative performance.)

(a) Impact of Wave scheduler on turnaround time

4 T T T T T T T T T
No-migration (expanding ring) ——
Migration-linger (expanding ring) —»—
Wave-linger (expanding ring) —v—
Migration-adaptive (expanding ring) —®—
Wave-adaptive (expanding ring) —a—
Migration-immediate (expanding ring) —e—
3t Wave-immediate (expanding ring) —— 4

Average Slow Down Factor

1 L > i P 1 ~ L o I & 1 B 1 & 2

10 20 30 40 50 60 70 80 90
Percentage of Free Time on Hosts during Daytime (%)

FIGURE 6.10: Wave Scheduler: Average slow down factor(The percentage of client
request is 20%)

Figure 6.10 shows that the turnaround time of jobs with Wave Schedulers is lower
than other migration schedulers. Jobs progress faster with the Wave Scheduler be-
cause it can identify hosts with potentially large chunks of available times. The

turnaround time of wave-adaptive is consistently low, while the turnaround time

114

of migration-adaptive is significantly higher when the amount of free time is small.
When the percentage of free time on hosts is 15%, the turnaround time of jobs under
wave-adaptive is about 75% of that under migration-adaptive.

(b) Impact of Wave scheduler on successful job completion

The percentage of jobs that fails to complete using the Wave scheduler is influenced
by two factors. Wave identifies available hosts with large chunks of future free time.

However, if the ratio of requests to the number of such hosts is limited, there will be

scheduling conflicts.

100 T T T T T T T T
Migration-immediate (expanding ring) ——
o0 Migration-linger (expanding ring) -—»—
Wave-immediate (expanding ting) —&—
80 Wave-linger (expanding ring) —v— |
Wave-adaptive (expanding ring) —&—
70 b Migration-adaptive (expanding ring) —&— |
® No-migration (expanding ring) ——
Z 60
&
g 50
£ 40
=
[=]
=30
20+
10
0 ——=u=

10 20 30 40 50 60 70 80 90
Percentage of Host Available Time during Daytime(%)

FIGURE 6.11: % of job that fail to complete (The percentage of clients in the
system is 20%)

When the free time on hosts is limited, the Wave scheduler does better than other
migration schemes since it was designed for this exact situation. (see Figure 6.12).
The intensive contention for night-time hosts is relieved by wave-adaptive, which
adapts to the amount of free time by continuing to stay on the hosts in case of
contention. The job failure rate of wave-adaptive is competitive with the no-migration

model and slightly lower than with migration-adaptive.

115

100
90
80
70
60
50
40
30
20
10

0 - O——0
0 20 30 40 50 60 70 80 S0

Percentage of Client Peers(%)

Job Failure Rate{%)

Migration-immediate (expanding ring) —e—
Migration-linger (expanding ring) ——
Wave-immediate (expanding ring) R
Wave-linger (expanding ring) —v—
Migration-adaptive (expanding ring) —a—
Wave-adaptive (expanding ring) e
No-migration (expanding ring) —

FIGURE 6.12: % of job that fail to complete {The percentage of available time on
the hosts during the day is 15%)

Figure 6.11 shows the percentage of jobs that failed to finish under the same simu-
lation configuration as in Figure 6.10. The job failure rate of the Wave scheduler is rel-
atively higher than others when the percentage of free time on hosts increases, as wave-
immediate uses strict rules about using night-time hosts and this cause contention.
The other two wave scheduler strategies perform as well as migration-adaptive and
the no-migration strategy.

(¢) Number of migrations during job lifetime with Wave scheduler

Figure 6.13 compares the average number of migrations of successfully finished jobs
with the wave migration strategies versus the standard migration. As we expected,
jobs scheduled with the Wave scheduler finished with fewer migrations, because it
exploits the long available intervals at night while the others may end up using short,
dispersed time slots during the day. As in the discussion about migration overhead in
section 6.7.2(c), the migration overhead of Wave Scheduler is even smaller compared

with the standard migration schemes and therefore it is acceptable for jobs with long

running time.

116

Migration-adaptive (expanding ring) —&—
Migration-immediate (expanding ring) —e—
Migration-linger (expanding ring) —%—
Wave-immediate (expanding ring) —+—
Wave-adaptive (expanding ring) —a—
Wave-linger (expanding ring) —e—

Average Number of Migration
oh

0 1 1 [L 1 L L L 1
10 20 30 40 50 60 70 80 90

Percentage of Free Time on Hosts during Daytime (%)

FIGURE 6.13: Average number of migrations (The percentage of client in the
system is 20%)

6.8 Simulation Experiments using a Hetergeneous

CPU profile

In this section, we present simulation results evaluating the performance of Wave-
Grid. We compare WaveGrid with two other peer-based desktop grid systems, no-
migration and random-migration, using varied migration schemes described in sec-
tion 6.4 under an empirical heterogeneous host CPU power model. We tested four
metrics to evaluate the performance of the system: slowdown, makespan, number of

rescheduling attempts, and migration overhead.

6.8.1 Simulation Metrics

We use the following metrics for a comprehensive study of WaveGrid.

e Average slowdown factor: The slowdown of a task is its turnaround time

(time to complete execution in the peer-to-peer desktop grid system) divided by

117

the task runtime. Turnaround time includes both migration time and waiting
time due to rescheduling. We average the slowdown over all tasks. The slow-
down of one task can be less than 1 in this scenario as the runtime of the task is
defined using the median CPU power of the system while the actual execution

time on one host is weighted by its CPU power.

e Average makespan: The makespan of an application is the time the first task
belonging to that application is submitted until the last task finishes divided
by runtime of the task (Tasks in one application have equal runtime.). We then

average the makespan over all applications.

s Average number of migrations per task: the number of times a task

migrates during its lifetime in the system, averaged over all tasks.

o Average number of retries per task: the number of times a task is resched-

uled during its lifetime in the system, averaged over all tasks.

6.8.2 Simulation Results

Our simulation study investigates the performance gains achievable through timezone-
aware organization of the hosts, efficient migration and scheduling strategies that
consider the heterogeneity of the system.

In this section, the legends in each graphs are ordered from top to bottom to
match the relative position of the corresponding curves. Each data point is the aver-

age over 15 simulation runs.

1) Overall Performance of WaveGrid
The overall performance of WaveGrid is stable and is better then the other systems
with limited available cycles, as WaveGrid efficiently organizes hosts according to its

timezone and migrates using this timezone information.

118

35 T T T

No-migration ——
Random-migration(linger) —%—
Random-migration(adaptive) —5—
3t Random-migration(immediate) —>¢—
Wave(linger) —8—

Wave(adapuve) —@—

Wavelimmediate) —l—

Makespan

0.1 02 03 04 0.5 0.6 07 0.8 09
Percentage of Availabie Time on Hosts during the Day{%)

FIGURE 6.14: Average makespan vs host availability (The percentage of clients is
20%)

Figure 6.14 shows the makespan of applications when the percentage of available
time on hosts varies. Figure 6.15 shows the slowdown of applications in the same
scenario. All systems perform better as the amount of available time increases. No-
migration performs the worst, as it does not try to find available hosts for continuing
execution of the foreign applications and a lot time is wasted in waiting for the hosts

to be available again.

The performance of WaveGrid is quite stable over different host availabilities.
When the available time on hosts during the day changes from 90% to 10%, the
performance of WaveGrid degrades less than 10%. In contrast,the performance of

random-migrate degrades more than 85%.

WaveGrid performs better than all the other systems as it make efficient use of
large chunks of night-time cycles, when the available cycles are limited. Random-
migration improves with increasing host availability. When the hosts are mostly

available during the day, it performs slightly better than WaveGrid. The reason for

119

3.5 T T

No-migraion —+—
Random-migration(lingcr) —_—
Random-migration(adapuve) —2—
Random-migration(immediate}) —>¢— | |
erc(linger) ——
Wave(adaptive) —8—
Wave(immediale) —il—

2.5

Slow Down

0.1 02 a3 04 0.5 0.6 0.7 08 09
Percentage of Available Time on Hosts during the Day(%)

FIGURE 6.15: Average slowdown vs host availability (Percentage of clients is 20%)

that is random-migration selects candidate hosts from a larger pool than WaveGrid,
i.e. it is not restricted to the hosts in the next wavezone. Thus it has higher chance
to identify some host with better CPU power in this heterogeneous system.

Figure 6.16 confirms that systems utilizing migration perform better than the
no-migration option. The makespan of applications in the no-migration system has
a long-tail distribution, and in the extreme case the makespan of one application is
as high as 8. In contrast, the makespan of applications in migration-based systems,
except for those using linger migration strategies, is less than 2. WaveGrid using
immediate migration strategy performs the best with the highest percentage of ap-
plications having a makespan which is less than 1. Recall that makespan can be less

than 1, since it is defined in terms of a host with median CPU power.

120

L Random-migration{inger)

a No-migration

o Wave{linger)
Random-migration{adaptive)
B Random-migration{immediate)
OWaveladaptive)
Wave{immediate}

bl
™
s

Percentage of Jobs
s o o
M oo

o
-

FIGURE 6.16: Histogram of distribution of makespan (Percentage of clients is 20%.
Percentage of available time on hosts during the day is 40%.)

2) Effective migration in WaveGrid

The migration schemes used by WaveGrid effectively reduce the number of mi-

grations, migration delay and number of rescheduling attempts.

Figure 6.17 shows the average number of migrations. As expected, jobs scheduled
with WaveGrid finished with fewer migrations, because it exploits the long available
intervals at night while the others may end up using short, dispersed time slots during
the day. WaveGrid minimizes disturbance to hosts as it uses fewer hosts in migration

and therefore contacts fewer hosts for resource discovery, which is important to cycle

donors.

The graph also shows that when the percentage of host availability increases, the
number of migrations in random-migration increases first then decreases. The reason
is that there are two factors that influence the number of migrations: the number of
currently available hosts and the length of free time slots on the hosts. With more

available hosts, there is higher chance of migration success and therefore a larger

121

number of migrations. With longer free time slots, the need for the jobs to migrate
is reduced. With higher percentage of free time, the amount of currently available

hosts increases and the length of free time slots also increases.

161 Random-migration{adaptive) —5—
Random-migration(immediate) ——

Random-migration(linger) —
Wave(adaptive) —@—
Wave(immediate) —8—
Wave(linger) —5—

of Migration

0.1 0.2 0.3 04 05 0.6 0.7 0.8 0.9
Percentage of Available Time on Hosts during the Day(%)

FIGURE 6.17: Average number of migrations (Percentage of clients is 20%)

Figure 6.18 shows how makespan varies as a function of migration delay. It shows
that makespan increases with the increasing migration delay. The migration delay
has a much larger impact on the performance of random-migration than WaveGrid.
When the migration delay increases from 2 minutes to 22 minutes, the makespan in
random-migration(immediate) increases about 19.4%, while the makespan in Wave-
Grid(immediate) only increases about 6%.

Figure 6.19 shows that WaveGrid has much fewer scheduling retries than random-
migration. The reason for that is in random-migration the scheduler has no knowledge

about where to find potential hosts with available cycles.

122

T T T T

Random-migration{linger) —%—
Random-migrate(adaptive) —-£—
Wave(linger) —6—
Random-migrate(immediate} —x—
1.8 F Wave(adaptive} —@— 1
Wave(immediate}) —ll—

. 163
=
L
:
o
=L
2
14 f 1

10 12 14 16 18 20 2 24
Migration Delay (Minutes)

X}
.
o
=]

FIGURE 6.18: Average makespan when the migration delay varies (Percentage of
clients in the system is 20%. Percentage of free time on hosts during the day is 50%.)

3) Scheduling in a Heterogeneous Environment

Performance of all systems improve when the scheduling strategy chooses the
most powerful host from multiple candidates. Performance of WaveGrid and random-
migration can be further improved when the eager migration strategy is used.

Figure 6.20 shows the slowdown of applications when the scheduler selects one
random host instead of the most powerful host where there are multiple candidates
(Only selected strategies are shown due to limited space). Figure 6.21 shows the
percentage of performance improvement for all the strategies. Our results show that
WaveGrid’s superior performance is not greatly impacted by using the host selection
strategy based on CPU power, although it does improve performance. We also see
that this host selection strategy yields significant improvements for no-migration and

random-migration.

123

Random-mmigration{immediate) ——
Random-migration(finger) —¥%—
Wave(immediate) —l—

Wave(linger} —8—
Random-migration{adaptive) —&—

6 Wave(adaptive) —@—
No-migration —+—

of Rescheduling
E-9

0 = o i -
0.1 0.2 0.3 04 0.5 0.6 0.7 08 09

Percentage of Available Time on Hosts during the Day(%)

FIGURE 6.19: Average number of retries during the job execution (Percentage of
clients is 20%)

Figure 6.22 shows that when turning on the option of eager migration, the per-
formance of both WaveGrid and random-migration improve. Figure 6.23 shows the
percentage of performance improvement. It shows that eager migration improves
performance of both systems, while eager migration has a bigger impact on random-

migration as there is more room for improvement.

6.9 Extensions to WaveGrid

A number of extensions to WaveGrid can enhance its performance regarding

scheduling efficiency and fault-tolerance.

The night-time concept can be extended to any long interval of available time. The
overlay does not necessary need to be timezone based but can be organized based on

available time intervals. For example, a user in Pacific Time timezone can register

124

No-migration (random host) —+—
No-migmtion{most powerful host) —4—
1 Random-migration(immediate, random host) ——
3.5 Random_migration{(immediate, most powerful host) —8— 1
Wave(immediate, mndom host) —&—
Wave(immediate, most powerful host} —%—

31

25

Slow Down

0.1 0.2 ¢3 04 0.5 0.6 0.7 08 0.9
Percentage of Available Time on Hosts during the Day(%)

FIGURE 6.20: Average slowdown vs host availability when using random host
selection (Percentage of clients is 20%)

her home machine in a wavezone containing hosts idle from 0:00-10:00 GMT, when
she knows she is at work during the daytime. Wave scheduler can even accept more

complicated user profiles, which indicates idle time slots.

WaveGrid can also be easily leveraged to handle greater heterogeneity of the hosts
in the system. Information such as operating system, memory and machine types can
be represented by further dividing the node label space or adding separate dimensions.

Checkpointing techniques can be added to WaveGrid to provide fault-tolerance, using

the CAN file sharing protocol to organize the hosts into a distributed file system. The
host periodically stores the checkpointing information in the underlying CAN DHT,
and the initiator of the application can retrieve the information if the host fails. The
key to the data can be the address and port number of the initiator and the name of

the application.

125

20 T T T T T T T

Performance kmprovement -Slow Down (%)

1 i
0.1 02 03 04 05 0.6 0.7 08 09
Percentage of Available Time on Hosts during the Day(%)

o 1 L 1 1 i

No-migration —+— Wave(linger) —©

Random-migration(linger) —¥— Wave(adaptive) —8—
Random-migration{immediate) —»— Wave(immediate) —ill—
Random-migration(adaptive) —f3—

FIGURE 6.21: Percentage of performance improvement when using the most pow-
erful host selection instead of a random host selection (Percentage of clients is 20%)

When implementing WaveGrid, it is possible that the geographic population of
hosts on the Internet is unbalanced. Thus, we may need to merge several timezones
with small population into one Wavezone or even to skip timezones which are mostly
in the ocean, such as the timezone where Fiji is. The hosts in these timezone will be

instructed to join another timezone by the WaveGrid overlay construction protocol.

6.10 Conclusion

We propose a novel heterogeneous scalable fast-turnaround desktop grid system,
WaveGrid. WaveGrid allows hosts to register themselves in a structured overlay net-
work according to their long idle time slots at night. A client can quickly target an
area to search for available hosts without sending a large amount of messages. Ap-

plication schedulers migrate jobs from busy hosts to idle hosts with potentially large

126

]-7 L) L) L L L L
Random-migration(immediate} —&—
4 Random-migration(immediate+cager) —¢—
16 Wave(immediate) —i— |
Wave(immedigteteager) —&—
1.5

Slow Down

0.1 02 03 04 0.5 0.6 0.7 0.8 09

Percentage of Available Time on Hosts during the Day(%)

FIGURE 6.22: Average slowdown when using the eager migration strategy (Per-
centage of clients is 20%)

chunk of available time, maximizing utilization of available cycles. The simulation
results show that WaveGrid outperforms other systems with respect to turnaround,
stability and minimal impacts on hosts.

Heterogeneity is inherent to the nature of peer-based desktop grid systems. To
accommodate heterogeneity of the system, we used a host selection criteria based on
CPU power. We further designed an eager migration scheme which actively seeks for
powerful hosts to migrate the jobs to. In our simulation, we used a heterogeneous
host CPU power model based on empirical data from BOINC. This model is helpful
for designing and evaluating other global desktop grid systems.

WaveGrid integrates several layers of components centered around the goal of fast
turnaround: A timezone-aware overlay network which organizes hosts for fast resource
discovery, and scheduling and migration using heterogeneous host information. We
believe the design approach of WaveGrid is promising and can be used for other

large-scale peer-based desktop grid systems.

127

30 T T T

Random-migration{linger}
Random-migration{adaptive) —&—
Random-migration(immediate) —¢—
Wave(linger) —&—
rLl o Wave(adaptive) —8— N

ave{immediate

Performance Improvement - Slow Down{%)
I

0.1 02 03 04 D5 0.6 0.7 08 0.9
Percentage of Avnilable Time on Hosts during the Day(%)

FIGURE 6.23: Percentage of performance improvement when using eager migration
(Percentage of clients is 20%)

128

CHAPTER 7

Conclusion and Future Work

7.1 Contribution

A scalable, light-weight, and easy to access peer-based desktop grid system which
harnesses idle cycles donated by hosts at the edge of the Internet can serve the increas-
ing need for computational cycles required by a wide range of applications. These
range from scientific applications to game and multimedia processing. In contrast to
previous cycle sharing systems, peer-based desktop grid systems do not use central
servers, and can thus achieve much larger scale. My dissertation research focuses on
the challenge of fast turnaround scheduling in a global desktop grid system through
two key techniques: fast resource discovery and migration.

We have designed a general peer-based desktop grid system [67], which is among
the first peer-based cycle sharing architectures proposed in the literature. Qur ar-
chitecture adapts techniques from the field of peer-to-peer networks to cycle sharing
systems to remove the bottleneck, cost, and vulnerability of the previous central-
server based approaches. This dissertation defines a generic peer-based cycle sharing
architecture and addresses the challenge of scheduling CPU intensive workpile jobs
in this type of system.

129

Scheduling for fast turnaround in peer-based desktop grid systems is an important
and open research field. Many applications have fast-turnaround requirements, such
as weather forecasting, research for a cure of a disease, and scientific applications with
research reporting deadlines. However, current Internet-wide cycle sharing production
systems can only provide best-effort scheduling which can yield poor turnaround time.
To date, minimal efforts have been made to improve scheduling methods for better

turnaround time in peer-based cycle sharing systems.

We note that to solve the problem of scheduling for fast turnaround, we need to
find the most scalable and efficient resource discovery method for locating idle hosts
in the Internet. Most research about resource discovery in peer-to-peer networks is
focused on content location in file sharing systems. We are the first to conduct a com-
prehensive simulation study of generic resource discovery methods (including expand-
ing ring search, random walk, advertisement-based search and rendezvous point based
search) for locating idle cycles in peer-based desktop grid systems [103]. Our results
show that the efficiency of a rendezvous point scheme is better than the other schemes
and is comparable to the central server scheme with a job completion rate within 95%
of the job completion rate of the central server scheme. In addition, the rendezvous
point scheme has much lower message overhead than the other schemes. Therefore,
rendezvous point based resource discovery performs best for locating available idle

hosts and for scheduling performance, considering both efficiency and overhead.

To further investigate the design of rendezvous point based schemes, we designed
a dynamic rendezvous point selection scheme for structured overlay networks using a
regular node label scheme. Although many rendezvous point selection schemes have
been proposed for unstructured overlay networks [56, 46], these schemes cannot guar-
antee an even distribution of rendezvous points so that all non-rendezvous points have
low access to the rendezvous points. Those schemes rely on expanding ring search to
find rendezvous points, and thus incur high search overhead; another disadvantage

of these algorithms is that each client only knows a few rendezvous points in the

130

system. Our rendezvous point scheme, SORPS, can guarantee a stable ratio of ren-
dezvous points to non-rendezvous points and low access from non-rendezvous points
to rendezvous points {68]. Fault-tolerance can be achieved via redundancy; combining

node qualifications into the selection scheme can further improve the performance of

SORPS.

Although SORPS can achieve even distribution of rendezvous points and low ac-
cess from non-rendezvous points to rendezvous points, there are still some inherent
drawbacks to a physical rendezvous point scheme. These include the burden for peers
to function as rendezvous points, the potential of security attacks, and complicated
fault-tolerance schemes. We next developed a unique new approach, virtual ren-
dezvous points, and the notation of a resource aware overlay network (ROAN). In a
ROAN, the node labeling space is divided into zones according to the resource infor-
mation and hosts join the right zone according to their resources. Clients’ request
can be automatically routed to matching hosts using bounded latency DHT rout-
ing associated with the underlying structured overlay. The virtual rendezvous point
scheme has the merits of efficiency and low message overhead, and further eliminates
the vulnerability to failure and potential security problems associated the physical

rendezvous point scheme.

The culmination of our work and the most important contribution in this disserta-
tion is WaveGrid, a scalable heterogeneous scheduling architecture for fast turnaround
in peer-based desktop grid systems. The key components of WaveGrid are (1) a
timezone-aware structured overlay network (a specialized ROAN) for fast resource
discovery and (2) migration schemes for access to continuing available cycles in the
Grid. We have investigate a range of different migration schemes with options for
where to migrate and when to migrate. For when to migrate, we studied both im-
mediate migration and migration after lingering on the current host for a while. For
where to migrate, we studied migration to a night-time zone and migration to random

hosts. The results show that immediate migration to night-time zone hosts performs

131

best when considering both slowdown and number of migrations. We then use a het-
erogeneous host profile based on statistical data derived from a production system to
perform a comprehensive evaluation of WaveGrid. Our simulation results show that
WaveGrid performs better than random migration and no migration with respect to
slowdown and low migration overhead. In addition, the performance of WaveGrid is
quite stable over different host availabilities: when the available time on hosts during
the day changes from 90% to 10%, the performance of WaveGrid degrades less than
10%. In contrast,the performance of random migration degrades more than 85%.
Moreover, the migration overhead of WaveGrid is much lower than that of random
migration. The simulation results also show that when considering heterogeneity of
the system, the performance of the scheduler is much improved.

We have reported a comprehensive body of research on scheduling for fast turnaround
in peer-based desktop grid systems in this dissertation. Our unique approach seeks
to achieve the performance of a dedicated system in a scalable autonomous peer-
to-peer cycle sharing architecture. Our system combines the features of an easy-to-
assemble and light-weight peer-to-peer architecture with advanced resource discovery
and scheduling schemes for fast turnaround for long running CPU intensive applica-

tion. In this dissertation, we have made the following contributions:

¢ A comprehensive study of generic resource discovery methods in peer-
based cycle sharing systems. Our simulation results show that rendezvous

point performs the best considering both efficiency and search overhead.

e A rendezvous point selection method in structured overlay networks.
We designed SORPS, a rendezvous point selection method in structured over-
lay networks, which can achieve a stable ratio of rendezvous points to non-

rendezvous points and even distribution of rendezvous points.

132

¢ Virtual rendezvous points and resource-aware overlay networks. We
have developed the notion of a resource-aware overlay network (ROAN) using
virtual rendezvous points based on structured overlay networks. Fast and ef-
ficient resource discovery can be achieved using a ROAN to embed resource

information into the topology of the overlay network.

e Fast turnaround scheduling using a timezone-aware ROAN and mi-
gration. Our unique approach of using migration in WaveGrid coupled with
timezone-aware resource discovery results in superior performance with respect

to fast turnaround time.

An open and light-weight peer-based desktop grid system can potentially attract a
large number of idle hosts on the Internet. Our research directly benefits a wide
range of applications which need a huge amount of cycles and have fast turnaround
requirements. Results will be produced much faster in WaveGrid than in the previous
Internet-wide cycle sharing systems. We believe that the design of future peer-based
desktop grid systems can greatly benefit by the results in this dissertation; especially
by using the ROAN and migration to achieve better scheduling performance.

7.2 Future Work

7.2.1 Improvement to WaveGrid

A number of enhancements can further improve the performance of WaveGrid
for fast turnaround. As we have described in Chapter 6, the night-time concept in
WaveGrid could be extended to any long chunk of idle cycles, such as day-time slots
on a home machine. More resource information such as memory size and type of

operating system, can also be built in the ROAN of WaveGrid.

133

In addition to these direct extensions of WaveGrid, we also propose research on
fault-tolerance and fairness of the system in order to further improve the turnaround
time. The goal is to waste minimal amount of computational work when faced with
hosts' failures or departure, and to prevent selfish clients from trying to grab all the

cycles, resulting in worse performance for the other clients.

7.2.2 Peer-to-peer Checkpointing

Fault-tolerant scheduling is a big challenge in peer-to-peer cycle sharing systems
in which a peer fails or leaves. The foreign job running on that host stalls and the
previous computational work may be lost, thus delaying completion of the job. A
client may restart the task when it detects the host failure via loss of heartbeat
messages. This is the simplest method but it wastes cycles and causes long delays for
the task. We propose to explore methods such as replication and checkpointing.

With replication, the client sends out several duplicate copies of the same task
in the hope that one or some of them will complete successfully. Replication does
not save total cycles but it provides faster turnaround than restarting the task, and
it works naturally with result verification methods that use replication and cross-
check. An important factor in replication is how many duplicated copies the client
needs to send, which should be proportional to the probability of host failure and
inversely proportional to the amount of available resources. A dynamic replication
scheme needs to be designed so that it can adjust to these factors. The case is more
complicated when considering coordination among several clients: how to balance
the amount of resources used and the turnaround of the tasks, so that all clients are
satisfied.

Checkpointing is also a promising approach: the client’s program states can be
periodically stored for recovery and continued execution when there is failure. In
clusters and institutional load sharing systems, checkpointing is done to a centralized

and stable server. In a peer-based desktop grid system, the challenges include which

134

and how many peers should serve as checkpointing storage nodes, how to balance the
checkpointing overhead and recovery speed with fast turnaround scheduling, and fre-
quency of checkpointing. These questions become even more challenging considering
the heterogeneity of system: the hosts in the peer-based desktop grid system have a
variety of network connection speeds, clock speeds, and storage sizes.

A peer-to-peer checkpointing scheme can use the underlying DHT to periodi-
cally store the program states. DHTs have been used to build resilient distributed
file systems, reputation systems, and for peer-based accounting. Development of a
peer-to-peer checkpointing system using the power and elegance of DHT design and

technology is an exciting new research direction.

7.2.3 Fairness in Peer-based Desktop Grid Systems

Peer-to-peer cycle sharing systems need to provide fairness to motivate nodes to
contribute, and to provide good turnaround time for all clients. However, fairness
is much harder to realize in an open dynamic network formed by anonymous nodes.
While traditional systems use a central server to perform strict account management
(users may need to acquire the account from some authority and then the activities
of the users are monitored by that authority), the open peer-to-peer systems relax
account management and then suffer from free riders, peers who take advantage of
the systemn without donating anything to the system. How to prevent a resource hog
from consuming a disproportionate share of the cycles?

Credit-based systems can be used as a solution, but there are many challenges in
building such a system. First, how to evaluate the services of the hosts? Is one hour
of contributed cycles on a fast host equal to one hour on a slow host? Second, how can
credits can be used in scheduling? Strict credit-based scheduling is not enough in this
case, as hosts may want to give higher priority to those who have directly served them
even if other clients have more credits. Finally, how to secure this system against all

sorts of attacks? For example, how to provide proof of service for the host’s con-

135

tributed work and prevent the host from faking service? A possible solution to the
former problem can be a signed acknowledgment issued by the client in exchange for
keys to the encrypted results. The solution to the latter relies on result verification
schemes. Our overall goal is to combine all sorts of services in deciding the fairness
of the system. We believe that a comprehensive peer-based desktop grid system will
soon be built to provide services not just limited to CPU cycles but also extended to
storage and network bandwidth. Nodes should be rewarded for storing content, as
well as contributing bandwidth and cycles. The design of a fairness scheme that takes

all these different factors into consideration is an interesting and challenging problem.

Peer-based desktop grid systems provide compute cycles to a much broader range
of users than could have been imagined just a few years ago. While scientists and
mathematicians have utilized manual techniques and institutionally-based load shar-
ing software like Condor for years, the average citizen is not yet aware that such an
opportunity is possible. We expect many types of users to take advantage of the
peer-based desktop grid systems. Independent artists can use these systems for scene
rendering; chess hobbyists can test their latest programs; high school students can use
open desktop grids for science fair or art fair projects. Such a diverse user population
will be motivated to use cycle sharing if the research community can find ways to
make the system fast, reliable, and secure. This dissertation addresses fundamental
scientific questions regarding fast-turnaround scheduling in open peer-based desktop
grid systems. Our research is a significant step in the direction of providing the best

service to users in a open cycle sharing infrastructure.

136

BIBLIOGRAPHY

{1] ABERER, K., DATTA, A., HAUSWIRTH, M., AND SCHMIDT, R. Indexing

data-oriented overlay networks. In 31st International Conference on Very Large
Databases VLDB’05 {2005).

[2] ANDERSON, D., CoBB, J., KORPELA, E., LEBOFSKY, M., AND
WERTHIMER, D. SETI@home: An experiment in public-resource computing.
Communications of the ACM 45 (2002).

[3] ANDRADE, N., CIRNE, W., BRASILEIRO, F., AND ROISENBERG, P. Qur-
Grid: An approach to easily assemble grids with equitable resource sharing.
In Proceedings of the 9th Workshop on Job Scheduling Strategies for Parallel
Processing {June 2003).

[4] ANDRZEJAK, A., AND XU, Z. Scalable, efficient queries or grid information
services. In Proceedings of the Second IEEE International Conference on Peer-
to-Peer Computing (2002).

[5] ANNEXSTEIN, F., AND BERMAN, K. "modeling peer-to-peer network topolo-
gies through ”small-world” models and power laws”. In Proc. IX TELECOM-
MUNICATIONS FORUM TELFOR 2001 (November 2001).

[6] BArRATLOO, B., KARAUL, M., KEDEM, Z., AND WYCKOFF, P. Charlotte:
Metecomputing on the web. In Proceedings of the 9th International Conference
on Paralel and Distributed Computing Systems (1996).

{7] BAsu, S., BANERIEE, S., SHARMA, P., AND LEE, S. Nodewiz: Peer-to-peer
resource discovery for grids. In the 5th International Workshop on Global and
Peer-to-Peer Computing (in conjunction with ccGrid 2005) (May 2005).

[8] BErMAN, F., HEY, A., AND FoX, G., Eds. Grid Computing: Making The
Global Infrastructure a Reality. wiley, 2003.

[9] BERMAN, F. High-performance schedulers. In The GRID Blueprint for a New

Computing Infrastructure, 1. Foster and C. Kesselman, Ed. Morgan Kaufmann,
1999.

(10] BREVIK, J., AND NURMI, D. Quantifying machine availability in networked
and desktop grid systems. Tech. Rep. CS2003-37, UCSB, 2003.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

19

[20]

[21]

137

Burt, A., Fang, X., Hu, Y., AND MIDKIFF, S. Java, peer-to-peer, and
accountability: building blocks for distributed cycle sharing. In Proceedings
of the 3rd USENIX Virtual Machines Research and Technology Syposium (VM
'04) (May 2004).

BurtT, A., ZHANG, R., AND HU, Y. A self-organizing flock of condors. In
Proceedings of SC2003 (November 2003).

BurtT, A., ZHANG, R., AND HU, Y. A self-organizing flock of condors. Journal
of Parallel and Distributed Computing (JPDC) 66, 1 (January 2006).

CALDER, B., CHIEN, A., WANG, J., AND YANG, D. The Entropia virtual ma-
chine for desktop grids. In Proceedings of the First ACM/USENIX Conference
on Virtual Ezecution Environments (VEE’05) (2005).

CAMIEL, N., LonNDON, S., NisaN, N., AND REGEV, O. The PopCorn project:
Distributed computation over the Internet in java. In Proceedings of The 6th
International World Wide Web Conference (1997).

CappPELLO, F., DiiLaLl, S., FEDAK, G., HErRAULT, T., MAGNIETTE,
F., AND LODYGENSKY, V. Computing on large scale distributed systems:
Xtremweb architecture, programming models, security, tests and convergence
with grid. In FGCS Future Generation Computer Science (2004).

CaprrPELLO, F., FEDAK, G., MAGNIETTE, ¥., LoDYGENSKY, O., AND
FeEDAK., G. XtremWeb: a global computing experimental platform
http://www.Iri.fr/ fedak/xtremweb/introduction.php3.

Casanova, H., Haves, J., KoNpo, D., YaNG, Y., RaapT, K., HE, J.,
AND LEGRAND, . A. The Grid Research and Innovation Laboratory (GRAIL)
in UCSD http://grail.sdsc.edu/.

CASTRO, M., DRUSCHEL, P., KERMARREC, A.-M., AND ROWSTRON, A.
Scribe: A large-scale and decentralised application-level multicast infrastruc-
ture. IEEE Journal on Selected Areas in Communications (JSAC) (Special
issue on Network Support for Multicast Communications) 20, 8 (2002).

CHAWATHE, Y., RATNASAMY, S., BRESLAU, L., LANHAM, N., AND
SHENKER, S. Making gnutella-like p2p systems scalable. In ACM SIG-
COMM’03 {August 2003).

CHEN, L., CaNDAN, K., TATEMURA, J., AGRAWAL, D., AND CAVENDISH,
D. On overlay schemes to support point-in-range queries for scalable grid re-
source discovery. In The Fifth IEEE International Conference on Peer-to-peer
Computing (2005).

138

[22] CLARKE, I., MILLER, S., HONG, T., SANDBERG, O., AND WILEY, B. Pro-

tecting free expression online with freenet. IEEE Internet Computing 6, 1
(2002).

(23] Clip2 distributed search services, the gnutella protocol specification (version
0.4, revision 1.2).

[24] CoHEN, B. Incentives build robustness in bittorrent. In Proceedings of the first
workshop on economics of peer-to-peer systems (2003).

[25] Collabnet inc., project jxta. http://www.jxta.org/.

[26] Costa, L., FEITOSA, L., ARAJO, E., MENDES, G., CoELHO, R., CIRNE,
W., AND FIREMAN, D. MyGrid: A complete solution for running bag-of-tasks
applications. In Proceedings of the SBRC 2004 - Salo de Ferramentas (22nd
Brazilian Symposium on Computer Networks - III Special Tools Session (May
2004).

[27) Czaikowskl, K., FOSTER, 1., KESSELMAN, C., SANDER, V., AND TUECKE,
S. Snap: a protocol for negotiating service level agreements and coordinating
resource management in distributed systems. In Proc. JSSPP'02 (2002).

[28] DINDA, P. The statistical properties of host load. Scientific Programming 7,
3-4 (1999).

[29] distributed.net, general-purpose distributed = computing project,
http://distributed.net.

[30] DJiLALl, S. P2P-RPC: programming scientific applications on peer-to-peer
systems with remote procedure call. In Proc. GP2PC2003 (Global and Peer-to-
Peer Computing on Large Scale Distributed Systems) colocated with IEEE/ACM
CCGRID (2003).

[31] EAGER, D., LAZowskA, E., AND ZAHORJAN, J. Adaptive load sharing in
homogeneous distributed systems. IEEE Trans. on Software Engineering 12(5)
(May 1986).

[32] Entropia, inc., Entropia PC grid computing, http://www.entropia.com.

[33] EPEMA, D., LivNy, M., DaNTZIG, R., EVERS, X., AND PRUYNE, J. A
worldwide flock of condors : Load sharing among workstation clusters. Journal
on Future Generations of Computer Systems 12 (1996).

[34} EsTRIN, D., GOVINDAN, R., HEIDEMANN, J., AND KUMAR, S. Next century
challenges: scalable coordination in sensor networks. In MobiCom99 (1999).

[35]

[36]

[37)

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

139

FERREIRA, R., GRAMA, A., AND JAGANNATHANR, S. Enhancing locality in
peer-to-peer networks. In Proceedings of Tenth IEEE International Conference
on Parallel and Distributed Systems (July 2004).

For, G. AND PALLICKARA, S. NaradaBrokering: an event-based infrastruc-
ture for building scalable durable peer-to-peer Girds. In Grid Computing Mak-
ing the Global Infrastructure a Reality. John Wiley and Sons Ltd., 2002.

FosTER, 1., AND KESSELMAN, C. Globus: A metacomputing infrastructure
toolkit. The International Journal of Supercomputer Applications and High
Performance Computing 11 (1997).

FosTER, 1., AND KESSELMAN, C., Eds. The Grid: Blueprint for a New
Computing Infrastructure. Morgan Kaufmann, 2003.

FoSTER, I. AND IAMNITCHI, A. On Death, Taxes, and the Convergence of

Peer-to-Peer and Grid Computing. In 2rnd International Workshop on Peer-to-
Peer Systems (IPTPS’03) (Feb 2003).

Fox, G., Gannon, D., Ko, S., LEEg, S., PALLICKARA, S., PIERCE, M.,
Qiu, X., Rao, X., UYAR, A., WANG, M., AND Wu, W. Peer-to-peer grids.
In Grid Computing Making the Global Infrastructure a Reality. John Wiley and
Sons Ltd., 2002.

Frey, J., TANNENBAUM, T., FOSTER, 1., LivNY, M., AND TUECKE, S.
Condor-G: a computation management agent for multi-institutional grids. In
Proceedings of the Tenth IEEE Symposium on High Performance Distributed
Computing (HPDC10) (August 2001).

Fu, Y., CHASE, J., CHUN, B., SCHWAB, S., AND VAHDAT, A. Sharp: an
architecture for secure resource peering. In SOSP 2003 (2003).

GANESAN, P., SuN, Q., AND GARCIA-MOLINA, H. Yappers: a peer-to-peer
lookup service over arbitrary topology. In IEEE Infocom’03 (2003).

GKANTSIDIS, C., MIHAIL, M., AND SABERI, A. Hybrid search schemes for
unstructured peer-to-peer networks. In Infocom’05 (2005).

GuprTa, R., AND SoMaNI, A. CompuP2P: An architecture for sharing of
computing resources in peer-to-peer networks with selfish nodes. In Proceedings
of second Workshop on the Economics of peer-to-peer systems (2004).

HAN, J., AND PARK, D. A lightweight personal grid using a supernode net-
work. In Third International Conference on Peer-to-Peer Computing (P2P’03)
(2003).

140

[47) HANDLER, G., AND MIRCHANDANI, P. Location on Networks: Theory and
Algorithms. The MIT Press, 1979.

[48] HAUSWIRTH, M., AND SCHMIDT, R. An overlay network for resource dis-
covery in grids. In Grid and Peer-to-Peer Computing Impacts on Large Scale
Heterogeneous Distributed Database Systems (GLOBE’2005) (2005).

[49] HavEs, B. Computing science - collective wisdom. In American Scientist
(March-April 1998).

[50] HAYNES, T., HEDETNIEMI, S., AND SLATER, P. Fundamentals of Domination
in Graphs. CRC Press, 1998.

[51] HEINE, F., HOVESTADT, M., AND KAO, O. Towards ontology-driven p2p
grid resource discovery. In Fifth IEEE/ACM International Workshop on Grid
Computing (GRID’04) (2004).

[52] HUANG, Y., AND BHATTI, S. Decentralized resilient grid resource management

overlay networks. In Services Computing, 2004 IEEE International Conference
on (SCC’04) (2004).

[63] IamNITCHI, A., AND FOSTER, I. A peer-to-peer approach to resource location

in grid environments. In Grid Resource Management, J. Weglarz, J. Nabrzyski,
J. Schopf, and M. Stroinski, Eds. Kluwer, 2003.

[54] IYER, S., ROWSTRON, A., AND DRUSCHEL, P. Squirrel: A decentralized,

peer-to-peer web cache. In Proceedings of Principles of Distributed Computing
(PODC 2002} (2002).

[55] Kang, X., ZHou, D., Rao, D., L1, J., AND Lo, V. Sequoia: A robust
communication architecture for collaborative security monitoring systems. In
Poster session, SIGCOMM’04 (2004).

[56] KLINGBERG, T., AND MANFREDI, R. The gnutella protocol specification
(version 0.6), 2002.

[57) KonDo, D., Casanova, H., WiNG, E., AND BERMAN, F. Models and
scheduling mechanisms for global computing applications. In International Par-
allel and Distributed Processing Symposium (IPDPS) (2002).

[58] KonNpO, D., CHIEN, A., AND CASANOVA, H. Resource management for
rapid application turnaround on enterprise desktop grids. In ACM Conference
on High Performance Computing and Networking, SC2004 (November 2004).

141

[59] KonDo, D., TAUFER, M., BROOKSIII, C., CASANOVA, H., AND CHIEN, . A.
Characterizing and evaluating desktop grids: An empirical study. In Proceed-

ings of the 18th International Parallel eand Distribuled Processing Symposium
(IPDPS’°04) (2004).

[60] KUMAR, A., Xu, J., AND ZEGURA, E. Efficient and scalable query routing
for unstructured peer-to-peer networks. In Infocom’05 (2005).

[61] LEDLIE, J., SHNEIDMAN, J., SELTZER, M., AND HUTH, J. Scooped, again. In
Proc. 2nd International Workshop on Peer-to-Peer systems (IPTPS’'03) (Berke-
ley,CA, Feb 2003).

[62] L1, Y., AND MASCAGNI, M. Improving performance via computational repli-
cation on a large-scale computational grid. In Third International Workshop
on global and peer-to-peer computing (2003).

[63] Litzkow, M., LivNy, M., AND MUTKA, M. Condor -a hunter of idle work-

stations. In the 8th International Conference on Distributed Computing Systems
(1988).

[64] Liv, Y., Liu, X., X1A0, L., N1, L., AND ZHANG, X. Location-aware topology
matching in p2p systems. In IEEE Infocom’04 (2004).

[65] LivNYy, M., AND RAMAN, R. High-throughput resource management. In The
GRID Blueprint for a New Computing Infrastructure. Morgan Kaufmann, 1999.

[66] Lo, V., AND MACHE, J. Job scheduling for prime time vs. non-prime time.
In Proc 4th IEEE International Conference on Cluster Computing (CLUSTER
2002) (Sep 2002).

[67) Lo, V., ZAPPALA, D., ZHou, D., Liu, Y., AND ZHAO, S. Cluster Computing
on the Fly: P2P scheduling of idle cycles in the Internet. In JPTPS (2004).

[68] Lo, V., ZHou, D., Liu, Y., GAUTHIERDICKEY, C., AND LI, J. Scalable
supernode selection in peer-to-peer overlay networks. In HotP2P’05 (July 2005).

[69) LSF load sharing facility, http://accl.gre.nasa.gov/lIsf/aboutlsf.html.

[70] Lv, Q., Cao0, P., CoHEN, E., LI, K., AND SHENKER, S. Search and repli-
cation in unstructured peer-to-peer networks. In ICS5°02 (2002).

[71] LyNcH, A. Distributed Algorithms. Morgan Kaufmann, 1997.

[72] MARzOLLA, M., MORDACCHINI, M., AND ORLANDO, S. Resource discovery
in a dynamic grid environment. In 16th International Workshop on Database
and Ezpert Systems Applications (DEXA’05) (2005).

142

[73] Miniwatts marketing group, internet world stats (usage and population statis-
tic) http://www.internetworldstats.com/stats.htm.

[74] NATRAJAN, A., NGUYEN-TUONG, A., HuMPHREY, M., HERRICK, M.,
CLARKE, B., AND GRIMSHAW, A. The legion grid portal. Concurrency and
Computation: Practice and Ezperience 14, 13-15 (Grid Computing environ-
ments Special Issue) (2002).

[75] Pande, V., and Stanford University, Folding@Home
http://folding.stanford.edu/.

[76] PlanetLab consortium, PlanetLab an open platform for developing,deploying
and accessing planetary-scale services, http://www.planet-lab.org/.

[77] RamaN, R., LivNY, M., AND SOLOMON, M. Matchmaking: Distributed
resource management for high throughput computing. In Proceedings of the

Seventh IEEE International Symposium on High Performance Distributed Com-
puting (HPDC7) (July 1998).

[78] RATNASAMY, S., FRANCIS, P., HANDLEY, M., KARP, R., AND SHENKER,
S. A scalable content addressable network. In Proc. ACM SIGCOMM (Aug.
2001).

[79) RaTNASAMY, S., HaNDLEY, M., KarP, R., AND SHENKER, 8.

Topologically-aware overlay construction and server selection. In proceedings
of IEEE INFOCOM'02 (2002).

[80] RHEA, S., EATON, P., GEELS, D., WEATHERSPOON, H., ZHAO, B., AND
KuBiaTowicz, J. Pond: the oceanstore prototype. In Proceedings of the
2nd USENIX Conference on File and Storage Technologies (FAST ’08) (March
2003).

[81] RHEA, S., GEELS, D., RoscoE, T., AND KuBiaTowICz, J. Handling churn
in a dht. In Proceedings of the USENIX Annual Technical Conference’04 (2004).

[82] RipEANU, M., FOSTER, 1., AND IAMNITCHI, A. Mapping the gnutella net-
work: Properties of large-scale peer-to-peer systems and implications for system

design. IEEE Internet Computing Journal special issue on peer-to-peer network-
ing 6, 1 (2002).

[83] ROWSTRON, A., AND DRUSCHEL, P. Pastry: scalable, decentralized ob-

ject location, and routing for large-scale peer-to-peer systems. In Proc. 18th
IFIP/ACM Int’l Conf. on Distributed Systems Platforms (Nov. 2001).

[84] SETI@home: the search for extraterrestrial intelligence.
http://setiathome.ssl.berkeley.edu/.

143

[85] Sharman networks ltd, KaZaA http://www.kazaa.com.

[86] SHEN, K., AND SUN, Y. Distributed hashtable on pre-structured overlay
networks. In Web Content Caching and Distribution WCW 2004 (2004).

[87] SHirAZI, B., HURSON, A., AND Kav1, K., Eds. Scheduling and Load Balanc-
ing in Parallel and Distributed Systems. Los Alamitos, CA: IEEE Computer
Society Press, 1995.

[88] SHIVARATRI, N., KRUEGER, P., AND SINGHAL, M. Load distributing for
locally distributed systems. Computer 25(12) (December 1992).

[89] SINGLA, A., AND RoOHRS, C. Ultrapeers: Another step towards gnutella
scalability, 2002.

[90] Space sciences laboratory, BOINC: Berkeley open infrastructure for network
computing, http://boinc.berkeley.edu/.

[91] SRIPANIDKULCHAI, K., MAGGS, B., AND ZHANG, H. Efficient content loca-

tion using interest-based locality in peer-to-peer systems. In IEEE Infocom’03
(2003).

[92] SriPANIDKULCHAL, K., MAGGS, B., AND ZHANG, H. Efficient content lo-

cation using interest-based locality in peer-to-peer systems. In IEEE Infocom
(2005).

[93] SToica, 1., MoORRIS, R., KARGER, D., KAASHOEK, F., AND BALAKRISH-

NAN, H. Chord: a scalable peer-to-peer lookup service for internet applications.
In Proc. ACM SIGCOMM (Aug. 2001).

[94] THAIN, D., TANNENBAUM, T., AND LivNY, M. Condor and the Grid. In Grid
Computing: Making the Global Infrastructure a Reality, F. Berman, G. Fox, and
T. Hey, Eds. John Wiley & Sons Inc., 2002.

[95] THAIN, D., TANNENBAUM, T., AND LivNY, M. Condor and the grid. In Grid
Computing: Making The Global Infrastructure a Reality, F. Berman, A. Hey,
and G. Fox, Eds. wiley, 2003.

[96] VAZIRANI, V. Approzimation Methods. Springer-Verlag, 1999.

[97} Xu, Z., MAHALINGAM, M., AND KARLSSON, M. Turning heterogeneity into
an advantage in overlay routing. In IEEE Infocom’03 (2003).

[98) Xu, Z., TANG, C., AND ZHANG, Z. Building low-maintenance expressways
for peer-to-peer systems. Tech. Rep. HPL-2002-41, Hewlett-Packard Labs, Palo
Alto, CA, 2002.

144

[99] YaNg, B., VINOGRAD, P., AND GARCIA-MOLINA, H. Evaluating guess and
non-forwarding peer-to-peer search. In THE 24th IEEE International Confer-
ence on Distributed Computing Systems (ICDCS’04) (2004).

[100] YANG, L., FOSTER, I., AND SHOPF, J. Homeostatic and tendency-based CPU
load predictions. In Proceedings of IPDPS’03 (2003).

[101] ZHANG, R., AND Hu, Y. Assisted peer-to-peer search with partial indexing.
In Infocom’05 (2005).

(102] ZHAo, B., Huang, L., STRIBLING, J., RHEA, S., JOSEPH, A., AND KUBI-
ATOWICZ, J. Tapestry: A resilient global-scale overlay for service deployment.
IEEE Journal on Selected Areas in Communications 22, 1 (Jan. 2004).

[103] ZHou, D., AND Lo, V. Cluster Computing on the Fly: resource discovery in

a cycle sharing peer-to-peer system. In Proceedings of the fth International
Workshop on Global and P2P Computing (GP2PC’04) (2004).

[104] Znou, D., AND Lo, V. Wave scheduler: Scheduling for faster turnaround time
in peer-based desktop grid systems. In Proc JSSPP’05 (2005).

[105] ZHoUu, D., AND Lo, V. Wavegrid: a scalable fast-turnaround heterogeneous
peer-based desktop grid system. In Proceedings of the 20th International Par-
allel and Distributed Processing Symposium (IPDPS’06) (2006).

[106] ZHovu, S., ZHENG, X., WANG, J., AND DELISLE, P. Utopia: a load shar-
ing facility for large, heterogeneous distributed computer systems. Software -
Practice and Ezperience 23, 12 (1993).

	dayi zhou 2006[89].pdf
	dayi zhou 2006 b[33].pdf

