SPECIFICATION AND SOLUTION OF MULTISOURCE DATA FLOW
PROBLEMS

by

JOHN HOWARD ELI FISKIO-LASSETER

A DISSERTATION

Presented to the Department of Computer
and Information Science
and the Graduate School of the University of Oregon
in partial fulfillment of the requirements
for the degree of
Doctor of Philosophy

December 2006

SPECIFICATION AND SOLUTION OF MULTISOURCE DATA FLOW
PROBLEMS

by

JOHN HOWARD ELI FISKIO-LASSETER

A DISSERTATION

Presented to the Department of Computer
and Information Science
and the Graduate School of the University of Oregon
in partial fulfillment of the requirements
for the degree of
Doctor of Philosophy

December 2006

i

“Specification and Solution of Multisource Data Flow Problems,” a dissertation pre-
pared by John Howard Eli Fiskio-Lasseter in partial fulfillment of the requirements
for the Doctor of Philosophy degree in the Department of Computer and Information

Science. This dissertation has been approved and accepted by:

A Knember 20000

Date

Committee in charge:
Dr. Michal Young, Chair
Dr. Dejing Dou
Dr. Michael Pangburn
Dr. Andrzej Proskurowski

Accepted by:

ol e

Dean of the Graduate School

© 2006 John Howard Eli Fiskio-Lasseter

iii

iv

An Abstract of the Dissertation of
John Howard Eli Fiskio-Lasseter for the degree of Doctor of Philosophy
in the Department of Computer and Information Science
to be taken December 2006
Title: SPECIFICATION AND SOLUTION OF MULTISOURCE DATA

FLOW PROBLEMS

-

Approved:

icha Young

The unified approach embodied in data flow frameworks has inspired several tool-
kits that partially automate the construction of solvers for various data flow problem
classes. Unfortunately, existing toolkits have fairly limited application. Although
most can handle both classical and more advanced analyses, the full breadth of Aow
analysis forms—particularly those arising in new applications of the technique—Ilies
outside the range of any single system.

This dissertation extends and reformulates the traditional approach, in order to
support the automatic generation of solvers for multisource data flow analysis prob-
lems. In this very general class, a data flow problem is modeled by a directed graph in
which more than one type of edge may be defined and information about the type of
an edge considered along with the flow value it carries. While this describes, roughly,

all forms of flow analysis, attempts to unify the members of the multisource family

have so far held only theoretical interest. The approach we present here thus offers a
significant increase in flexibility to existing flow analysis tools.

Our method is based on a new approach to user-level specification of data flow
problems. Existing approaches require instantiation of the four parameters of a data
flow framework: value lattice, function space, flow graph, and local semantic func-
tional. All such approaches presume a fixed global semantics, an assumption that
fails in the general multisource case. Instead, we propose a domain-specific language,
which harkens back to the earliest “flow equation” forms, allowing us to view the
global abstract semantics itself as a fifth parametric component.

We then leverage this language-theoretic view to develop a new technique for the
automatic generation of efficient solvers. There are several improvements to the basic
iterative solution strategy that exploit properties of the flow graph model in order
to discover advantageous orderings and avoid redundant computation in the global
solution. All rely on a known relationship between the structure of the flow graph
and the flow of information between nodes. To adapt these to the multisource case,
we present a new method for discovering the information flow relation induced by

arbitrary global semantic specifications.

Vi

CURRICULUM VITAE

NAME OF AUTHOR: John Howard Eli Fiskio-Lasseter
PLACE OF BIRTH: Raleigh, NC, U.S.A.

DATE OF BIRTH: December 29, 1968

GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED:

University of Oregon
Earlham College

DEGREES AWARDED:

Doctor of Philosophy in Computer and Information Science, 2006,
University of Oregon

Master of Science in Computer and Information Science, 1998,
University of Oregon

Bachelor of Arts in Philosophy, 1992, Earlham College

AREAS OF SPECIAL INTEREST:

Static Analysis
Type Theory
Programming Language Semantics

vii
PROFESSIONAL EXPERIENCE:

Lausanne Postdoctoral Fellow, Computer Science Department,
Willamette University

2006-present
Visiting Instructor, Mathematics and Computer Science Department,
Lewis and Clark College

2005-2006
Adjunct Instructor, Linfield College

2004
Graduate Research Fellow, Computer and Information Science Depart-
ment, University of Oregon

2001-2003
Graduate Teaching Fellow, Computer and Information Science Depart-
ment, University of Oregon

1996-2001, 2004

AWARDS AND HONORS:

University of Oregon / Mortarboard Society
Graduate Teaching Fellows Award, 2001

University of Oregon, Computer & Information Science Dept.
Best GTF Award, 2000

viii

PUBLICATIONS:

X. Zhang, M. Young, and J. H. E. F. Lasseter. Refining Code-Design
Mapping with Flow Analysis. In Proceedings of the 2004 ACM Sym-
posium on Foundations of Software Engineering (SIGSOFT 04), pages
231-240, 2004.

J. Fiskio-Lasseter and M. Young. Flow Equations as a Generic Pro-
gramming Tool for Manipulation of Attributed Graphs. In Proceedings
of the Fourth ACM SIGPLAN-SIGSOFT Workshop on Program Anal-
ysis for Software Tools and Engineering (PASTE 02), pages 69-76,
2002.

J. Fiskio-Lasseter and A. Sabry. Putting Operational Techniques to
the Test: A Syntactic Theory for Behavioral Verilog. Proceedings of the
Third International Workshop on Higher Order Operational Techniques
in Semantics (HOOTS 99), September 30-October 1, 1999. Paris,
France. Elsevier Electronic Notes in Theoretical Computer Science,
Volume 26.

ACKNOWLEDGMENTS

My thanks, first and foremost, goes to my dissertation advisor, Michal Young.
Throughout the many years I spent bringing this project to fruition, Michal has offered
a seemingly limitless supply of patience, faith, support, unnervingly encyclopedic
knowledge, priceless teaching advice, excellent home-roasted coffee (strong, the way
God intended), and the always well-placed tough question. If I achieve any of his own
measure of integrity, scholarship, and educational vision, I will be proud.

I am grateful, too, for the support and sound advice of my other committee
members—Andrzej Proskurowski, Dejing Dou, and Michael Pangburn. For your help
in bringing this thing to completion, and for years of exciting and collegial interaction,
both in the classroom and out: thank you.

Although they did not serve official roles in this research project, I want to ac-
knowledge a particular debt of gratitude to Amr Sabry (my M.S. thesis advisor, and
still an inspiration to me as a scholar and teacher) and Zena Ariola (for two excellent
years spent as her teaching assistant for our undergraduate programming languages
course, and the extraordinary opportunities that provided).

My final year as a grad student was spent very happily in a visiting position at
Lewis and Clark College. Both my students and fellow teachers—especially Yung-
Pin Chen, Peter Drake, Jeff Ely, Liz Stanhope, and Iva Stavrov—provided a first
professional experience beyond my most optimistic dreams.

Through ten years of grad school, I owe my sanity and more than a few moments
of inspiration to a great many other people, some colleagues, some office mates, some
in town, some far away. All friends: Star Holmberg, Jan Saunders, Cheri Smith,
(the Keepers of the Department); Paul Bloch, Lauradel Collins, and David Sullivan
(our crack systems staff); the Graduate Teaching Fellows Federation (AFT / AFL-
CIO, Local 3544); the Oregon Natural Desert Association; my beloved sisters Kate
and Helen, brothers William, Austin, and Benjamin, sisters through marriage Beth,

Leticia, and Carol, and my second parents, Mike and Ginger Fiskio; Peter Boothe,

Doug Botka, Kevin Glass, Kevin Huck, Tim Jackson, Ted Kirkpatrick, Lauren and
Uri Lessing, Jennifer Mori, Amitabha Roy, Lorena Reynolds, Deborah Seuss, Max
Skorodinsky, Shasta Willson, Justin Wirth, and Xiaofang Zhang. Thank you, one
and all.

Finally, and most of all, I am grateful to my parents, Rollin and Ruth Lasseter,
for their unwavering love and support. Even after 38 years, I can hardly believe my
luck

And to Janet, my wife, confidant, colleague, and best pal, to whom this work is
dedicated. For friendship, love, hiking, excellent musical taste, our cats, shop talk on

teaching, and so much more.

For my family: Janet, Pavarotti, and Pippin.

Chapter

L.

I1.

TABLE OF CONTENTS

INTRODUCTION ...ttt cresssnsnscetseetstsssssssnsssasessransssasssssnses

2.2
2.3
24
2.5

2.6

27

2.8

211 LAHHICES weeveeririririinineeeneeensessssssesesessesssssasssssssessssnsssssasssssesessons
2.1.2 EXBMPIES weeveiiierinicccccreeressssessssse s seae s s s sereasssssssssaserenes
2.1.3 Lattice Propertiescoocoovenmrreerceeecsrerece e nerevesee s sesnseees
2.1.4 Function Properties ... eesenee
2.1.5 Fixed Points rtresessnsnsnete st er s nenenenenens
Program Models for Data Flow Analysisccccccvmeeeinininneneneninsneenens
Some Iustrative ANALYSES .oiiicverereeremerermereeerenteteressssssessssesesesessererensiens
Data FIoW FramewWOrKScccivoemrrmrrrecscsinieteiresessesesesieessessssssesssssessssesens
Applications of the Framework Viewcccuvveccnineeccersvereesssncennes
2.5.1 Theoretical PrOPErtiesccooeveeeererrrrseneeereeeesecsenssssssesesssnssssens
2.5.2 Solution AlZOrithmsc..ccocovviiiorireeeeeeee et seeeeeenen
2.5.3 Aside: Correctness and Abstract Interpretationcceueun.n.
Data Flow Analysis Construction KitScccovveriniciicsceeenncceeseeseensnens
2.6.1 Flow Valles ..ot e esesess s esenes
2.6.2 FUNCHON SPACE ...eveeeeeeteee ettt ess s ess s seensnenas
2.6.3 FIOW GLaphl coeeeeceeeeiieecceeceee v ess b s n e saens s
264 FlowMapcoevvvevvrreennnnee. stssesasnenanaasurstasasnrsifhenseneuses
Advanced Forms
2.7.1 Interprocedural ANAlYSiScccoceriirevereerrerireeeceereresssssereressernns
2.7.2 Analysis of Concurrent Programsc.cccceeeeieveerevsvesesinosrenns
2.7.3 Bidirectional Data Flow Analysiscccecovvveerivrererisueeeeenanene
Limitations of the Toolkit Approachccccccoveeieieceeeeeieiseeeeee e
2.8.1 Data Flow Equations and the MFP Specificationccceeun..
2.8.2 Toward Toolkit Support for Multisource Flow Analysis

Xii

Page

Xiii

Chapter Page
Ill. FRAMEWORK SPECIFICATIONc.cocoiioeercceercsceeeeeeeesessssesesecessenenne 62
3.1 K-tuple Data Flow Frameworkscccoceueerrrrmncsneeessenicssesesecsessecasons 62

L] PrOPEIHIES .eoeeeeeeccceeeceetrsrsrsetetetreen s e essesebe s s sssensssnen 65

3.2 Specification of Data Flow Framework Instancesooeveeveeervececvenns. 68

3.2.1 Semantic Domain crereerrienenees 09

322 SYNAX oottt e esres s en bbb b e sre et enonene 70

3.2.3 BehaVIOr . sssvessesesessseserssssssssssssseens 14

324 EXAMPIES wovvivieerrerennretnietsenintse e steseressssssss st st ensoemensessensasens 79

3.3 Limitations of the K-tuple Approachccoceeeeeeivivvnviienie s eeeenens 86

1V. SPECIFICATION OF MULTISOURCE PROBLEMSccocevveereecierene 92
4.1 A Flow Equation Languagecoceceveeveveenrvorerinrseeserscsesesesesssssssssesenee 93

4.2 EXAIMIPIES .eovvviveririrnrerneerereesssissssesesesesesssessssssssssssosasnssssssssensssasssnsssenseseseens 05

4.3 Properties 99

4.4 Related WOIKccccoviiirirrnirmimininincneecrssissssencaise e sssssssssssssemssemsasasmssesns 106

V. SOLUTION TECHNIQUESceereeiecrececsesseseseastesssessnessnerasassssasas 109
5.1 The Influence of INFIUENCEcveueorcecercrirre et 110

5.2 Challenges to the Determination of Influencec..oocoevevvvrereeeeeeeereeeenne. 114

5.3 A Hybrid Technique for Static Determinationceceeerececucevsneenenecnn. 118

5.3.1 Factoring Complex Flow Expressionsc.ccecoeeveveveverevevineeee. 118

5.3.2 Static Construction of Influence Functionscccccovuevemneee.. 119

533 APPHCALION «.correeereeee ettt sssese e sesreeses s ssassene 121

5.4 Examples From the LIeratureccocovcvevrernresisnencesivereresenseremssersnes 125

5.5 Related WOTKc.occoiniirisisiiiimnnnriisete s s sttt e sosseeneneens 132

VI. CONCLUSION AND FUTURE WORKcoovrieeeerrteestrerese e ssesesesseneene 133

Xiv

Chapter Page
APPENDIX: EXAMPLE SPECIFICATIONScccoovevirinerieeeeeerevctrnseesessss s 136
A.1 Live Variables Analysis (ROKe)ccccrureeeeeverenccrrrrneeceeeee e, 137

A.2 Callahan’s Kill Analysis (ROKE)cerririveeeneeerrrrsneeetsene e sesssessseanns 137

A.3 PRE Flow Equations (ROKE)cceceeveriiientvmerennnirenireenee e sesssssssaenns 138

A.4 PRE Analysis, K-Tuple Form (ROKe)ccccoeeeviriineciccceseesscsesenene 140

A.5 Duesterwald/Soffa Ordering Analysis (ROKE)covvrrevveeemrreeenirerenenennes 142

A.6 Ordering Analysis (GenSet) ... Ceeemete sttt r s se e e n s nsaen e s st enenenten 145

BIBLIOGRAPHYooinimetstretemscnirenensessstssssssessssssssesssssssnessssasssessssessosossssnns 150

LIST OF FIGURES

Figure
2.1 The lattices (2{42%, C,(J,9,{1,2,3}) and (2123}, 2 N, {1,2,3},0).
22 Aflatlattice.
2.3 A lattice of integer intervals. L.
2.4 (a) C code to quicksort elements of global array a, and (b) 3-address code
representation of gsort fragment (JASUS6), p. 588-590)
2.5 A control flow graph, in basic block form, built from the 3-address code
of Fig. 2.4(b). ([ASUSE], P. 591) « « v v v oo e e
26 MOP and MFP forms, forward analysis
2.7 Morel-Renvoise Algorithm (modified version in [KD94])
3.1 Syntax of global semantic specifications as K programs
3.2 Type rules for K-—definition, equivalence, and declaration rules
33 Typerulesfor K—values.
3.4 Modified Morel-Renvoise Algorithm {Dha91]
3.5 Example MIG, taken from [DS91],p. 39.
4.1 A banned nested iteration and an example portion of a flow graph on

5.1
5.2

which this analysis might be defined. Note the way that flow information
at the intermediate node w is itself used in the transformation of the value
fromytoz.
Example IFG arising from LV analysis
The influence expression function.

xXv

xvi

LIST OF TABLES

Table Page
2.1 Four classical analyses as instances of a distributive framework. 27
2.2 Relationship of common user parameters to framework components . . . 46

3.1 Typesandtypejudgments. 76

CHAPTER 1

INTRODUCTION

It is possible to automate the construction of efficient solvers for data flow analysis
problems over flow graph models with an arbitrary number of edge types.

This is significant because the manual construction of a data flow analyzer is both
time-consuming and error-prone. Further, many new and experimental applications
of data flow analysis involve the development of a new flow graph model and usually
have a more complex relationship between flow graph structure and the abstract
semantics of the analysis, increasing the development burden further.

In traditional data flow analysis this burden is mitigated by a well-developed
unified theory. This theory presents the technique of data flow analysis in terms of
a family of algebraic structures known as date flow frameworks [MR90a], providing
a rigorous classification of problem families and a clear methodology for reasoning
about the convergence, precision, and complexity of a given analysis. Coupled with
generic solution algorithms, the theory also yields a straightforward way to solve a
given flow analysis problem with guaranteed results.

Indeed, the parametric nature of these generic algorithms suggests immediately
that such solvers can be constructed automatically, by implementing the generic com-
ponents of a data flow framework as the building blocks of an analyzer generation
toolkit. The approach is straightforward: The lattice structures of the framework

guide construction of data structures in the toolkit; the solution algorithm, properly

instantiated, becomes the heart of the generated analyzer; and framework abstractions
become user contracts, constrained by simple interfaces.

While a variety of these systems have been developed [Las04}, there remain several
important families of data flow problems for which automatic construction of solvers is
unrealized. For many such families, this is primarily a matter of inadequate demand,
in the sense that all of the technical components—framework and generic solution
algorithm—have known solutions.

In other cases, the technical problems themselves have remained open. One im-
portant example is this family of data flow problems over edge-typed flow graphs,
known collectively as multisource data flow analysis. In this very general problem
class, a data flow problem may be modeled with a directed multi- graph in which
more than one type of edge is defined and information about the type of an edge con-
sidered along with the flow value it carries. Such problems occur in many advanced
forms of data flow analysis, including interprocedural analysis, analysis of concurrent
programs, bidirectional analysis, and a number of non-traditional forms.

Although automatic solver generation has been realized for many of these prob-
lems, the solutions are specialized to their respective domains. A general framework
for multi-source problems was presented by Masticola et alin [MMR95], but no so-
lution algorithm was given.

This dissertation presents an extension of the approaches used in existing data
flow analysis toolkits to encompass the automatic generation of solvers for arbitrary
multisource data flow analysis problems. We begin in Chapter II with an extended
tutorial on data flow analysis frameworks, along with an account of the ways they can
be implemented in analyzer construction toolkits. We finish the chapter with a discus-
sion of the shortcomings of the traditional approach, even those supporting advanced
analysis forms, concluding that this approach must be fundamentally extended if we
are to support the general multisource case. In particular, there must be a mecha-
nism for the user to specify, in addition to the standard data flow framework/instance
components, the global abstract semantics.

In Chapter III, we develop an extension of framework-based specification, in the

form of a domain specific language for direct encoding of multisource problems as

instances of a cross-product lattice framework. The framework is essentially that
of Masticola et al [MMR5], although we extend and improve their formulation to
encompass heterogeneous cross-product formulation. Unfortunately, the resulting
specifications are often highly obscure and artificially complex. We conclude that,
while useful for reasoning about essential properties of an analysis, the framework
view itself imposes a needlessly heavy burden for analysis specification.

Chapter IV therefore abandons the traditional framework-based approach to spec-
ification of flow analyses. Instead, we develop the language Roke,! a declarative-style,
domain-specific language for specifying analyses in a declarative style that is remi-
niscent of early “flow equation” forms. While this results in specifications that lack
a direct encoding as instances of a data flow framework, we are nonetheless able to
achieve many of the same guarantees.of convergence and low-order polynomial-time
complexity.

More importantly, we still have efficient solution algorithms available, which means
that, from the viewpoint of efficiency, we pay nothing for giving up the framework-
based specification approach. This matter is the subject of Chapter V. While speci-
fications in our language can be solved with a naive iterative fixpoint algorithm, the
result is a loss in the performance, owing to wasted effort on the part of the solver.
To improve on this, we develop a new hybrid static/dynamic technique that is used

to generate automatically a workset solver for any given specification.

'In homage to the great storyteller, Ursula K. LeGuin.

CHAPTER II

BACKGROUND

The material in this chapter is divided into two overarching themes. In Sections 2.1
through 2.6, we review mathematical foundations and the basic elements of the data
flow analysis technique. These sections motivate and explain the fundamental ideas
underlying data flow frameworks, which provide a unified view of large classes of flow
analyses. We also review some practical considerations that arise in the adaptation
of a framework as the basis for an analyzer generation toolkit.

Having established the general foundations, we then present some of the leading
examples of multisource data flow analysis, reviewing the state of the science in
extending the classical framework and solution techniques to these advanced forms.

From this background review, we establish a motivation for the remainder of this
dissertation: that the traditional approach to the construction of data flow analysis
toolkits, although effective in specialized problem domains, is fundamentally unsuited
as a basis for the specification and automatic generation of arbitrary multisource

problems.

2.1 Mathematical Preliminaries

Lattices, in particular complete ones, form a crucial part of the underlying princi-

ples of data flow analysis. In this section, we review the ideas behind their

construction, along with some properties that are significant in guaranteeing the finite

convergence of a data flow analysis. Much of the following is taken from [DP02].

2.1.1 Lattices

Definition 2.1.1 (Partially-Ordered Sets). A partially-ordered set (or poset) is a pair
(D, £) of set D and binary relation < satisfying, for all a, b, ¢ € D:
(reflexivity) a<

a = a=2>b

[
(antisymmetry) a < band b <
a<bandbg<cec = a<c

(transitivity)
The related notation < and the dual orderings > and > have the expected meanings.
Definition 2.1.2 (Bounds). Let {D, <) be a poset, and let B C D.

1. An element a € D is an upper bound of B if a 2 b, for all b € B. Similarly, a is
a lower bound of Bifa < b, for all b€ B.

2. Assuming it exists, a is the least upper bound of B, written | | B, if it is an upper
bound of B and for all b € D, if b is an upper bound of B then a € . The
greatest lower bound of B, written [| R is defined analogously.

Alternately, | | B is called the join (or supremum) of B, while [] B is known as the
meet (or infimum). Both can be considered as binary operators. For {e, b}, we write
aUb for | [{a,b} and e M b for [{a,b}. If they exist, both | | B and [] B are unique.

Definition 2.1.3 (Lattices). Let (D, <p) be a non-empty poset.
1. Dis a lattice if aU b and a N b exist, for all a,b € D.
2. D is a complete lattice if | | B and []| B exist, for all B C D.

3. B is a (complete) sublattice of D if (B, <p) is a (complete) lattice and B C D.

If they exist, the least element (or bottom) of D is L = | @ = []D, and the
greatest element (or top) is T =[]@ = | |D. A lattice with both T and L elements

is bounded. All complete lattices are bounded, and all finite lattices are complete.

Much of the data flow analysis literature makes use of lattice structures that omit
either the | | or [] operator. These are known as semilattices or complete semilattices,
and are merely a convenience. The missing operator can always be recovered from

the defined one:

Proposition 2.1.1 (Connecting Lemma). Let (D, <) be a lattice and let a,b € D.

The following are equivalent:

1.a<b
2. alb=1d
3 aeNb=c
Proof. IDP02], Lemma. 2.8 O

Consequently, a lattice can be characterized by either its order relation or its [] and
|| operators. We can therefore describe a lattice in a number of equivalent ways,

including:
(D7 S) = (D1 I—I: n) = (D'r g! U, J—: T) = (D1 “'<-$ LI! l-l, J‘! T)

In keeping with established practice, we will generally use the explicit semilattice
form, or where the context is clear, simply D.

Finally, the dual of any lattice-theoretical proposition is obtained by interchanging
[1and [J, T and L, and < and >. One of the more elementary but useful facts

regarding lattices is the “duality principle”:

Proposition 2.1.2 (Duality). A proposition is true of a partial order (D, <) if and
only if its dual holds for the partial order (D, <), wherea £, b <= a2 b.

Proof. Trivial. ()

This tells us that anything we can say about a lattice can also be said (dually) about

the lattice when we turn it “upside down”.

Among the many applications of duality is to reconcile the lattice structures used
in most of the data flow analysis literature with those used in the literature on ab-
stract interpretation [CC77z]. The data flow analysis literature commonly uses meet
semilattice structures (i.e. omitting the | | operator), while descriptions of the same
analyses in most abstract interpretation papers—as well as in this thesis—employ
join semilattices. Prop. 2.1.2 tells us that this is irrelevant.

Finally, a few elementary algebraic properties of [] and |_}:
Proposition 2.1.3. Let D be a lattice. The following 1dentities hold for alla,b,c € D:

(associativity) (aUb)Uc=alU (bl c), and
(enNb)Ne=ani(bNc)
(commutativity) aUb="blLla, and

aNb=>5bMNa
(idempotence) ala=u
=alla
(absorbtion) al(afb)=a
=af{alUb)
Proof. [DP02], Theorem. 2.9 0O

2.1.2 Examples

Some complete lattices that prove useful in data flow analysis are the following:

Example 2.1.1. The lattice of boolean values ({1,0},0 < 1,A,0,1):

1

|
0

Example 2.1.2 (Powerset Lattices). Let A be a set, and 24 denote the powerset of
A. On this set, we can consider the order (24, C,|J, #, A) and its dual (24, 2,N, 4, 0),
both complete lattices. Figure 2.1 gives two examples of powerset lattices, over the
set {1,2, 3}.

Example 2.1.3 (Flat Lattices). Let A be any set, with T, L ¢ A. A flat lattice can
be constructed from AU {T, L} with the ordering Va,b€ A:a < b <= a =band
VeeA: L <a<T.

A flat lattice of the integers is given in Figure 2.2.

Example 2.1.4 (Cartesian Product). Let D; and D, be complete lattices. The
product lattice D = D, x D, is defined by

D ={(d1,da)|d; € D;}
and for all (a,b) and (¢, d) € D
(a,b) € {c,d) <= a<jcAb<d
Further, 1 = (L,,1,), and likewise for T. Similarly , | | is “pointwise” defined.
This has a straightforward extension to a product of k lattices, D; x ... x Dj.

Example 2.1.5 (Lattices of Functions). Let (D, <,U, L, T) be a complete lattice.
Define F, the total function space on D, by

F={f:D — D|f atotal function}

and
VigeF: f<g < (VdeD: f(d) < g(d))
Further, for all F C F
| |F=2.| {f@)|feF}

and L = Av.L (similarly for []and T).!

!The notation Av.E is taken from the functional programming literature; it denotes a function
of a single argument with body E.

{1,2,3} ¥/

{1,2 {2,3}) {3}

{1} {3} 1.2} (2.3}

¥/, {1,2,3}
(a) (b)

FIGURE 2.1: The lattices (2{13}, C,(J,8,{1,2,3}) and (2(123} 5 N, {1, 2,3}, 0).

FIGURE 2.2: A flat lattice.

10

2.1.3 Lattice Properties

The height of a lattice is an important property for reasoning about the con-
vergence of data flow analyses. More generally, we will use the concept of a chain.
Conceptually related, both ideas give a measure of the largest set of distinct, compa-

rable elements within a lattice:

Definition 2.1.4. An ascending chain is a sequence dy, d,, . .. of distinct elements in
D, such that Vi : d; < dj41. A descending chain is defined analogously. The length of
a chain, if finite, is equal to 1 less than the number of elements. The height of D is

the length of the longest chain (ascending or descending).

The boolean value lattice and flat lattices have heights 1 and 2, respectively.
The powerset lattice 24 has height |A|. The product lattice Dy x ... x D; (whose
components have heights k), ... , k) has height ZLI h;.

Definition 2.1.5. A lattice D has the ascending chain condition (ACC) property if,
for every ascending chain dp,dy, ... in D, there is an index j such that d; = dy, for

every k > j. The descending chain condition (ACC) is defined analogously

It is clear that a lattice has finite height if and only if it has both the ACC and
DCC properties, although neither ACC nor DCC' alone guarantees finite height.
All finite lattices have finite height. The lattice of natural numbers (N U {0},
<, min(), maz(), 0, 00), with < as ordinary numerical comparison, has the DCC prop-
erty, but not ACC, while the lattice (Z U {—o0, 0}, £, min, maz, 0, co) has neither.

Although less common, lattices of infinite height do occur in program analysis:

Example 2.1.6 (Interval Analysis). Figure 2.3 depicts the lattice of integer intervals
(D, <, s L, [-00,0]). Elements of this lattice are pairs [d,d,], where d; € Z U
{—00, 00} and d; < d,). They are ordered by inclusion:

(2,0 €[e,d] <= (c<a)A(b<d)

with [a,b] U [¢,d] = [min(e,c), maz(b,d)]. This lattice has infinite ascending and

descending chains.

FIGURE 2.3: A lattice of integer intervals.

11

Definition 2.1.6. A lattice D is distributive if it satisfies the law

VYa,byceD:aN(bUc)=(aNb) U (aMc)

D is modular if it satisfies

Va,b,c€D:azc = aN(blc)=(aNb)Uc

The powerset lattices of Figure 2.1 are both distributive and modular. In fact,
all distributive lattices are modular ([DP02], Lemma 4.2), though not vice-versa. On

the other hand, consider the lattices M3 (“diamond”) and N5 (“pentagon”)

3

N5

M3, although modular, is not distributive, while Ny is neither modular nor distribu-

tive.

Proposition 2.1.4. Let D be a lattice. D is non-modular if and only if it has a
sublattice isomorphic to Ns. D is non-distributive if and only if it has a sublattice

tsomorphic to either N5 or M3j.
Proof. [DP02], Theorem 4.10. 0

The most common example of a non-distributive lattice in data flow analysis is
the flat lattice over a set with more than two elements, for which the embedding of

Mj; as a sublattice is easy to see.

Definition 2.1.7. Let D be a lattice. For a € D, the element b € D is a complement
of aif bothaMb= 1L and alJb = T. If it exists, the unique complement of a is
written @. We say that D is uniquely complemented if a € D = @ € D (in which

case @ = a).

13

A relatively straightforward use of Prop. 2.1.1 shows that in a distributive lattice,
an element can have at most one complement. Examples of elements with more than
one complement are also easy to find: take any flat lattice over a set with more than

two elements.

Definition 2.1.8. A complete lattice D is a boolean lattice if it is both distributive

and uniquely complemented.

This notion is useful in data flow analysis, since the most common lattices we will
use—powerset lattices—are boolean. Indeed, every finite boolean lattice is isomorphic
to a finite powerset lattice ([DP02], Theorem 5.5 and Corollary 5.6), although this is

not true for boolean lattices over infinite sets.

2.1.4 Function Properties

Definition 2.1.9. Let D be a complete lattice. A function f:D — D is

1. monotone, if Ya,b € D: f(aUb) 2 fla) U f(b);
2. additive (or, distributive), if Va,b € D: f(aUb) = f(a) U f(b);
3. completely additive (U-continuous), f VB C D s.t. { |Be B: f(LUB)=|]f(B)

The dual notion of additivity is multiplicativity, which preserves M. An addi-
tive/multiplicative function is also called a lattice homomorphism. For continuity, it
is important that D be a complete lattice. If not, then the property of U-continuity
(resp. M) applies only to directed subsets—i.e. B # @, in which for every A C B,
| |A € B (resp. []A € B). Note that

continuity = distributivity = monotonicity

For finite D, continuity and distributivity are equivalent properties, but this does not
hold for the infinite case. Monotonicity is a strictly weaker property than distribu-
tivity in either case.

Monotone functions are also called order-preserving, as the following makes clear:

14

Proposition 2.1.5. Let D be a lattice, and f : D — D a function. The following are

equivalent:

1. Ya,beD: f(aUb) = fla)U f(b);
2. Va,beD: f(arb) < f(a) O f(b).

3 Va,beD:agb = f(a) < f(b);

Proof. [DP02], Prop. 2.19. O

2.1.5 Fixed Points

Much of the early development of the theory of data flow analysis used only
semilattices, without an explicit requirement that such lattices be complete or even
bounded (e.g. [Kil73, KU77, MR90a]). More recent developments have required the
use of complete lattice structures (e.g., [CC79b, Kno98]). One reason for this is that
it makes available the classical fixed point existence theorems. These are sometimes
known collectively as the “Tarski-Knaster/Kleene Fixpoint Theorems”, although the
origins of the basic ideas go back to the 19th century. Lassez et al. [LNS82] present
some interesting archeological detective work on the basic ideas.

For the following, let D be the complete lattice (D, <,U,N, L, T):
Definition 2.1.10. Let f : D — D be a monotone function. Define:
1. The set of extensive values for f: Ext(f) = {v| f(v) = v}
2. The set of reductive values for f: Red(f) = {v| f(v) < v}
3. The set of fized points of f: Fiz(f) = {v| f(v) = v}

We say that f is extensive if Ext(f) = D and reductive if Red(f) = D.2 (Note that
if Fiz(f) = D, then f is the identity function.)

2Such functions are also commonly known as inflationary (resp. deflationary).

15

Theorem 2.1.6 (Tarski-Knaster [Tar55]). For a monotone function f : D — D, the
set Fiz(f) of fized points is a complete lattice with ordering < inherited from D. In

particular, the least and greatest fixed points are
o Up(f} =[1Red(f)

* ofp(f) = Ll Ezt(f)
a

A more constructive formulation is expressed in terms of the iterative application

sequence f*, defined as

R i=0
f(v)_{ Fofilw) i>0

The following result is usually attributed to Kleene (specifically, [Kle52], p.348):

Theorem 2.1.7. Let f be e function D — D. If f is U-continuous, then Ifp(f)

exists, and is equal to

() = | JF)

i>0

Dually, if f is M-continuous, then

ae(f) = []F(M
i>0
Proof. [DP02], Theorem. 8.15, which implies the result for complete lattices. O

In fact, f need only be either monotone or extensive (resp. reductive) for the results
of Theorem 2.1.7 to hold ([DP02], pp.187-188). As a corollary, we have:

Theorem 2.1.8. If D satisfies ACC and f : D — D is U-continuous (monotone,

ertensive), then there is some k such that

if(f) = | = |F@)

i>0 i>0

16

Dually, if D satisfies DCC and f is N-continuous (monotone, reductive), then there

1s some j such that

ap(f) = [T = []F(T

iz0 i>0

2.2 Program Models for Data Flow Analysis

The term static analysis refers to a family of techniques, each of which provides
a way to extract information about a program’s runtime behavior without actually
running the programn. Naturally, precise determination of almost all such information
is impossible: the infinite number of potential program execution states, together
with fundamental undecidability results, form an insurmountable barrier. All forms
of static analysis must therefore rely on a finite model of program execution, which
is at best an approximation of actual behavior. In general, we want this approxi-
mation to be conservative: the model represents all possible behaviors, but may also
include behaviors that do not correspond to any execution.® As a consequence, the
information obtained from analysis will always be valid, but may be uninformative.

In data flow analysis, the approximation of program behavior is carried out in
two parts, one representing the program counter and the other the store. In practical
terms, this nieans that we first construct a model of program control flow as a directed
graph G = (N, E), with a finite set of nodes N and a set of directed edges, E C N x N.
For each node z € N we denote by E(z) set of immediate successors of £ in G; in
addition, we will denote the predecessors of z by E~(z) = {w|(w,z) € E}. In most
formulations, it is also common to identify two distinguished nodes in N: s € N is

the unique start node, with E~1(s) = @, and a path from s to every node in G, while

3We can also err in the other direction, using an approximation that does not consider non-
executable behavior at the cost of omitting some actual execution behavior. This is the idea behind
runtime testing.

17

e € N is the ezit node, with E{e) = @, and a path from every node in G to e.4 The
construction of this graph model, control flow analysts, serves as a preprocessing step
to the data flow analysis itself.

The traditional flow graph model is built from program source code, starting at
any level of abstraction, from abstract syntax tree to intermediate (3-address) code
to machine code. Conceptually, each node in G is associated with a program point,
although the precise meaning of “program point” (and hence the choice of nodes) can
vary. N can be chosen to represent the individual instructions, basic blocks, and so
on.

Edges record the flow of information from point to point. This is usually de-
termined by the execution order of the program statements, which is in turn de-
termined by the program control flow. Elements of £ may therefore correspond to
program counter advances, procedure calls, syntactic or statement ordering dependen-
cies, static single assignments, and synchronization or interleaving of tasks, among
other choices. The choice of program representation can affect the accuracy and
performance of a flow analysis, but it is irrelevant to the analysis technique itself.

In general, it is not possible to determine such flows precisely, and thus the edges
in G represent a superset of what can actually occur at runtime. For example, the
most common application for data flow analysis is in the compile-time optimization of
procedure bodies in traditional imperative programs [ASU86]. In this setting, known
as intraprocedural analysis, the basic flow graph construction is a control flow graph
(CFQ@G), in which the edges model control transfers between statements or basic blocks.
The resulting flow graph structure models all branch statements as nondeterministic,
as if both branches could be taken.

A reasonably precise approximation of intraprocedural, imperative control flow
can be derived from the syntactic structure of the source code. The CFG contains an
edge (m, n) if the source code has a control transfer from m to n, ignoring any other
program semantics. As an example, consider the C program given in Fig. 2.4(a),

specifically, the fragment delimited by the source code comments. A typical data

4The presence of s and e are a matter of convenience; since it is always possible to add themn as
needed, their inclusion imposes no real restrictions.

18

flow analysis would work with the intermediate representation given in 2.4(b). A

corresponding CFG is given in Fig. 2.5

2.3 Some Illustrative Analyses

We perform a data flow analysis in order to annotate each node in the flow graph

with one of a fixed set of assertions. Following are two of the best-known examples:

Example 2.3.1. The available ezpressions (AE) analysis determines for each node
(program point) z, the expressions whose values are guaranteed to have been com-
puted before execution reaches z. Specifically, it annotates each z with a subset of
the set of expressions occurring in the program. For the example in Fig. 2.4(b), this
is equal to the set Exp of temporary variables: {;|1 <i < 15}.

The set of expressions guaranteed available at z is constrained by those that are
guaranteed available at the predecessors of . To wit: let w be a predecessor of z,
and let AE(w) denote the expressions available at w. Further, let f(AE(w)) denote
the expressions that can be inferred from the execution of the program fragment at

w, given AE(w). Then the strongest assertion we can infer for z is that
AE(z) C f(AE(w))

Hence, the best (i.e. largest) value we can infer for AE(z) is the largest set that

satisfies the inequalities

0 , ifr=3s
AE(z) C
N f(AE(w)) , otherwise
weE-1(z)

Since f is intended to simulate execution at each x, we will use the following:
J(v) = (v \ Killap(z)) U Gen 4g(z)

Kill sg{(x) is the set of expressions which contain a variable assigned to in z, while
Genag(z) is the set of expressions whose values are computed (without having any

of the constituent variables subsequently reassigned) in z.

19

void gsort{(int m,int n) {
int i,j;
int v,x;
if (n <= m) return;

/* fragment begins here */

i =m-1; j=n; v=aln];
wvhile(1) {
do i++; while(a[i] < v);
() do j--; while(a[j] > v);
if(i >= j) break;
x=alil; alil=aljl; aljl=x;
}

x=a[i); alil=n; alnl=x;
/* end fragment */

gsort(m,j); gsort(i+l,n);

}

1. i ~ m-1 11. t5 — alt4) 21. alto} — x

2. j+~n 12, if (t; > v) goto 9 22. goto 5

3. 1) +~— 4*n 13. if (i >= j) goto 23 23, 1) — 4*i

4. v «— alt;] 14, tg — 4*i 24. x «— alty]
(b) 5. 1+~ i+l 15. x « al[ts] 25, it «— 4#i

6. typ +— 4*i 16. ty — 4»i 26. {13 «— 4*n

7. t3 +— alt.] 17. tg — 4*j 27. t14 — altis)

8. if (f3 < v) goto 5 18. tg +— alitg] 28. alt;n] « t1a

9. j ~— j=1 19. aft;] «~ o 29. tj5 + 4*n

10. £y «— 4%j 20. tp — 4%j 30. altjs] — x

FIGURE 2.4: (a) C code to quicksort elements of global array a, and (b) 3-address
code representation of gsort fragment ([ASU8G|, p. 588-590)

20

i = i+l
t2 = 4*i

t; = aft;]

if (t3< v) goto B,

j =31
b, = 4%)
ts-:- aft4]

if (t;> v) goto B,

|
B4 [if (i >= §) goto By

tg < 4%i B | £, = a*i
% - af[tg] x < aft
DU TLES t, = g*:.l :
tg = 4%]

- t;3= 4*n
tg altg]

tia = alyz)

a[t,] = tg
tio = 4%j aftp]l = fy
altyy) < x tys = 4*n

goto B, aft;51] = x

FIGURE 2.5: A control flow graph, in basic block form, built from the 3-address
code of Fig. 2.4(b). ([ASUS6], p. 591)

21

Note that AE actually denotes a system of constraints, which, if there are cycles in
the flow graph, may be individually or mutually recursive. It is not obvious, therefore,
that a solution exists for every system of AE constraints. We shall revisit this concern

in Section 2.5.

Example 2.3.2. A live variables (LV) analysis determines for each program point
z the set of variables whose current values could be used at a later point, before
being overwritten. This analysis annotates each x with a subset of the set Var of
variables declared in the program: in Fig. 2.4(b) the set {4, j,m,n,v,z,a}. Unlike
AE, information in LV propagates from control flow successors, i.e. backwards, with
respect to the direction of arcs in G. Further, LV{z) must be no smaller than any of
the LV values of its successors. Specifically, the best annotation we can deduce for

LV(z) is the smallest set which satisfies the inequalities

0 ,ifaz=ce
V() 2
U f(LV(y)) , otherwise
vEE(z)

where

f(v) = (v\ Killyy(z)) U Genpy(z)

Although the definition of f is similar to one given for AF, here Kill v (x) is the set
of variables assigned to in z, while Genry(z) is the set of variables used (without

being earlier assigned to) in z.

2.4 Data Flow Frameworks

Data flow analyses can be broadly classified by to three independent characteris-

tics:

o Quantification over ezecution paths. A may-analysis (or “any-paths”) deter-

mines properties that hold for some possible executions of a program, while a

22

must-analysis (“all-paths”) determines properties that hold on every possible

execution.

o Scope of analysis. A local data flow analysis is performed on a basic block—1.e.
a maximal sequence of branch-free instructions, with only the first instruction
in the block having incoming edges. Global (intraprocedural) analysis extends
across basic blocks, but within a single procedure body. An nterprocedvral
analysis extends across procedure calls. All three of these are traditionally
confined to sequential programs, but each can be extended to a concurrent

setting.

o Direction (with respect to ezecution order). Program statements in a forward
analysis are related to each other in the order they would execute at run time.
They are related in the reverse direction for backward analysis. There are also
bidirectional analyses that use information from both directions, although this

requires significant. extensions of the classical formulation.

Both AE and LV are intraprocedural analyses. AF is a forward, must-analysis, while
LV is a backward, may-analysis.

Most important, however, is the similarity between the AE, LV, and other analysis
specifications. Indeed, the key insight behind every data flow analysis toolkit is that
all flow analyses solve essentially the same problem. Each form of analysis can be
understood as an instance of a family of algebraic structures known as date flow
Jrameworks. This unified view was originally presented by Kildall [Kil73], with several
additional developments over the next decade ([GW76, CC77a, CC79b, KU76, KU77,
Ros80], among others). See Marlowe and Ryder [MR90a] for a comprehensive survey.

In general, the gross structure of a data flow analysis can be decomposed into
two parts: a local semantics modeling the execution of each program statement and
a global semantics which specifies the constraints that the final analysis must satisfy
[CC77a). The local component can in turn be decomposed into abstract values, and

abstract statements:

23

Definition 2.4.1 (Data Flow Framework). A data flow framework is a pair (D, F),

where
e D=(D,<,|], L, T) is a complete lattice;
o FC{f:D— D} is aset of total functions on D satisfying

- fu=(vv)eF
- Vf,g€F, fog={(M.f(glv)) € F
~VfigeF, fug=(w.flv)Ug(v)) e F

Each element of D, called a flow value, is an assertion about the possible pro-
gram states that can hold at runtime. The intuition behind the lattice order is the
information content of the assertions, with higher values containing more “noise”
(and less information). The elements of F are the transfer functions. They abstract
the behavior of each program point by capturing the effect on the flow values as
control is transferred to the next point. If every f € F is monotone (resp. distribu-
tive/continuous), we have a monotone (distributive/continuous) data flow framework.

A given data flow framework defines a single analysis problem, parameterized on
the program of interest. We instantiate this problem for a program by constructing
a flow graph model of the program and assigning to it an abstract semantics in the

framework.

Definition 2.4.2 (Data Flow Problem). A data flow problem (or instance) is a pair
I=(G,[]), where

o G=(N,E, s,e)is a flow graph;
e [}: E — F is the flow map, assigning a transfer function to each edge in G.

Alternatively, we can define [] on nodes rather than, or in addition to, edges (the
association with nodes may be seen as a special case in which the target of an edge
is ignored [MR90a)).

A local abstract semantics thus defines a simulation of the program represented

by the dependence flow graph G on elements of D. What this simulation should

24

produce—i.e. an overall specification of the analysis requirements—is given by the
global abstract semantics. In particular, a solution to a data flow problem (G, []) will
be an assignment ¢ : N — D, associating a flow value with each node. Note that we
can view ¢ as an element of the lattice (N — D) of finite maps from N to D, with

elements ordered pointwise:

o1 € 02 = V€ N,o(z) < a9(x)

As with the AE and LV examples, we want the choice of o to reflect the constraint
that no assertion be made for a node i beyond what can be deduced from the nodes
that immediately influence it.

This motivates the classical “maximal fixed point” (MFP) and “meet over all
paths” (MOP) constraint forms, as given in Figure 2.6.° The use of the ¢z function is
an alternative to the conditional presentation used in Examples 2.3.1 and 2.3.2, and
allows us to jettison the assumption that the extremal node s has an isolated entry.
The constant value ¢, which varies according to the particular framework, is a special
“entry value” used to annotate the entry node s. Strictly speaking, it is not necessary,
but it is both useful and very common. For the MOP equations, PATHS, (s,) is
the set of all finite paths from s to = in G. We write f,_ for the transfer function
given by [(w, z)], while f, is the composition of the transfer functions for each edge

on path 7, defined as

fe = Az.x
f‘rr’.(w,:r:) = fw::ofﬂ"

The difference between the two forms is in the candidate sources of information
to propagate. In the M F'P form, we consider only the information at the immediate
“upstream” neighbors of z, while the M OP solution requires that we consider every

possible way that information could have been propagated to z. In both cases, we

5The terms “meet” and “maximal” suggest a reverse lattice order from the one we use here. As
mentioned above in 2.1, this is an historical artifact of early literature, in which data flow frameworks
were presented as meet semi-lattices.

(a) MOP (“meet-over-all-paths”) o(z) 2 (1 f,,(L)) Ueg(x)
TEPATHS ;(s,1)

(b) MFP (*maximal fixed point”) o(r) = (B! fm(a(w))) Uee(z)

weE-1(x)

.. ,fzxz=s
where tp(z) =
AL, otherwise

FIGURE 2.6: MOP and M F P forms, forward analysis

want the best information consistent with the constraints, which is to say we require

the smallest assignment

that satisfies the inequalities. As with AE and LV, we can replace all inequalities
with equations, if 7 is a monotone space.

The MFP and MOP forms of Figure 2.6 assume a forward data flow analysis.
For backward analyses, the M FP form is the same, but we replace the E~'(z) term
with F(z) (the successors of z), and s with e in the definition of tz. The backward
MOP form is likewise an “edge reversed” version of the forward one, merging all

paths from z to the exit node e.

Example 2.4.1. Available Expressions. The AE analysis is a data flow framework
with lattice (227, 2, N, Ezp, 0), where Exp is the set of expressions occurring in the
program, ordered by subset inclusion. In our gsort example, this is equal to the set

of temporary variables: {t;|1 < 7 < 15}. Values are merged using set intersection,

26

and the overall analysis is a forward one. The ¢ value is AF(s) = §. The transfer

function at every edge (z,y) is of the form

foy () = (v\ Kill4g(z)) U Gengp(z)

where Kill p(x) is the set of expressions which contain a variable assigned to in z
and Genag(z) the set of expressions whose values are computed (without having any

of the constituent variables subsequently reassigned) in z .

Example 2.4.2. Live Variables. LV analysis uses the lattice (2V°", C,{J, 0, Var),
where Var is the set of variables declared in the program: in Fig. 2.4(b) the set
{i,7,m,n,v,z,a}. It is a backward analysis. The ¢ value is LV (e) = (). The transfer
functions are of the same form as AE: Killpy(z) is the set of variables assigned to
in z, while Genpy(z) is the set of variables used (without being earlier assigned to)

in x,

Example 2.4.3. Reaching Definitions. The reaching definitions (RD) analysis
finds, for each node (program point) z, those assignments that might have determined
the values of program variables at z. It uses (24" C |, 8, .4sgn) for a property
lattice (c.f. Fig. 2.1 (b)), where Asgn is the set of assignments occurring in the
program, and elements of 24%" are ordered by superset inclusion (i.e. z < y <
z 2 y). In Fig. 2.4(b), these are the assignments at lines 1,2,4,5,9,15,19,21,24,28,
and 30 (we exclude the temporary variables). As it is a “may” analysis, the flow
values are merged using set union. RD is a forward analysis. We use entry value
RD(s) = ¢ = 0. Transfer functions again follow the same form as those for AF and
LV: Killgp(z) is the set of assignments whose left-hand sides are re-assigned in =,
and Gengp(z) the assignments that occur (without the variable on the left-hand side

being subsequently re-assigned) in z.

Example 2.4.4. Very Busy Expressions. The very busy (VB) expressions at node
z are those expressions that are guaranteed to be used at a later point, before any
variable occurring in them is re-assigned. It is also a backward, “must” analysis, and

uses the same flow value lattice as in AE, with ¢ value V B(e) = 0. Transfer functions

27

are of the same form as the previous three, and Killyg(z) is the same as that used
for AE. However, Genypg(z) is the set of expressions whose values are computed in

z, without having any constituent variables assigned to beforehand.

Each of these examples is an instance of a distributive data flow framework. Table

2.1 gives a summary:

TABLE 2.1: Four classical analyses as instances of a distributive framework.

AFE LV RD VB
D 25‘::;) oVar 2Asgn 9Ezp

< 2 - - 2

L] N U U N

1T Ezp, @ 9, Var 0, Asgn Exp, 0
L) 0 0 0
direction
forward backward forward backward
(w.rt. CFG)

(=,)] {f:D—D|3vg,vc € D.f(v) = (v\ vk) Uvg}

Example 2.4.5. Constant Propagation. In constant propegation (CP), we de-
termine for each variable u at each node z, whether u has a guaranteed constant

value at z, and if so, what that value is. The lattice is (Store, <,[], L, T), which is

28

a Cartesian product of pair values: each element of Store is a set of pairs {(,v)},
one for each program variable u. The value u is drawn from the flat lattice (ref.
Ex. 2.1.3) of values corresponding to the type of u (integers, booleans, ete.), with
the L element carrying the intuition of no available information, and T denoting a
“not constant” value. To merge together two pair values, we apply the flat lattice | |

operation pairwise:

' (w,n) ,ifvo=1
1 ,.f = 1
(U,Ul) L ('U.,'U2) = J (u ’UQ) 1
('U., v2) y lf th = U2
| (u,T) ,otherwise

This induces an ordering on Store defined as (u;,v1) < (ug, %) <= u; =ug Av; <
vp. Note that this also makes CP a “must” analysis. The L value is (u, L), for all
program variables u, and similarly for T. CP is a forward analysis.

The transfer functions are somewhat involved, but in essence all specify versions
of the concrete operations, extended so that they are defined on the L and T values
of the flat lattices. For example, 242 = 4, while 2+ 7T = T. This results in a function
space that is monotone, but not distributive [KU77].

2.5 Applications of the Framework View

2.5.1 Theoretical Properties

If an analysis is formulated in terms of a data flow framework, several key theoret-
ical properties come for free. Of these, perhaps the most important is a guarantee of
convergence. If we are working with a monotone framework in which the flow value

lattice D satisfies the ACC condition, the A/ F'P solution , o is in fact the least

MFP?
fixed point, and it is computable by an easy iterative algorithm: guess initial useful
values for every o(7), then iteratively evaluate the right-hand and update the left-hand

sides of the equations until the solution stabilizes. We can formalize this by regarding

29

the M FP constraints together with a given data flow problem I = ((N, E, s,e), [])
as defining an evaluation function F : (N — D) — (N — D) such that

F(o) = An.eval,(n, o)

where eval,(n, p) is the result of evaluating the right hand side of the M FP form of

Fig. 2.6, under the substitution £ — n and solution p. For forward analysis, this is

evaly(2,0) = | || fuulo(w)) | Uen(a)

weE-1{x)

Similarly, backward analysis uses

eval,(z, p) = |_| fo(p(y)) | Uesly)

VEE(x)

Algorithm 2.5.1 (Chaotic Iteration).
Input: Date flow problem I = ((N, E,s,e),[]), with |N|=n.
Output: o)., = (o(1),...,0(n)), satisfying MFP
Method:
for each je N:
o(j) — we(d)
while (3j € N s.t. 0(j) 2 evals(j,0)):
o+— F(o)
a

Note that there is an implicit requirement here (and in all variants of the iterative
approach) that j be chosen according to a fair strategy [CC77b, CC79a).

Early proofs of termination [KU76, KU77, Kil73] proceeded by induction on the
number of iterations to show that iterated application of each transfer function eventu-
ally reaches the T element, if it does not stabilize earlier. If we restrict our framework

to complete semilattices, we can take a more general approach by applying Theorems
2.1.6 and 2.1.7 [CC77b, CC79a).

30

Lemma 2.5.1. The following function sets are closed under composition and join:

¢ Monotone functions
o Distributive functions

e Egtensive functions

Proof. [Mas93], Lemmas 6-10. O
Note that duality then gives us, as well

Corollary 2.5.2. The set of reductive functions is closed under composition and

meet.

a

Theorem 2.5.3. For a monotone framework (D, F), where D satisfies ACC, Algo-
rithm 2.5.1 computes lfp(F).

Proof. Every transfer function is monotone, and so, therefore, is eval, (Lemma 2.5.1).
In turn, this implies that F' is monotone, and so we can apply Theorem. 2.1.6 to
guarantee the existence of a (unique) least fixed point, Ifp(F). Since D satisfies ACC
and N is finite, (N — D) satisfies ACC, as well. By Theorem. 2.1.7, we therefore

have

k
Oprp = ifp(F) = UFi(-L) = |_|F1(J~)

i>0 i>0

for some (fixed) k. O

In fact, we need not begin iteration at the L element [CP89]. Provided ¢ < 0,,,,,

J
Opipp = I_lFt("E)

i>0
where j < k. This justifies our use of tg as an “initialization” function. As an

immediate consequence, we can prove the convergence of Algorithm 2.5.1 on all five

31

examples from 2.3 above, thus establishing the existence and finite computability of
solutions for instances of each analysis.

There are also alternatives to monotonicity that are sufficient to guarantee conver-
gence. For example, Chen [Che03] and Geser et al. [GKL196] observe that even when
a transfer function is not monotone, a finite number of compositions of the fnction
may be, and such “delay monotonicity” is a sufficient condition for convergence to
ifp(F). Another choice is the use of an inflationary least fized point (ilfp). In concrete

terms, we replace the update

o +— F(ag)

with

o+— Flo)Uv

If F is monotone then #fp(F) = {fp(F). Otherwise, the inflationary form will still
converge to a minimal solution for the MFP constraint (assuming a lattice with
ACC), but it may be the case that

dfp(F)z)> | || flo@w))] Uis(z)

weE~1(z)
and this solution i not necessarily unique [AHV95;.

Ideally, we would like to do better than M FP. Of the two forms given in Fig.
2.6, MOP represents a greater sensitivity to the possible runtime behavior, and so
the solution we would really like for I is the assignment ¢,,,,, which is the sinallest
one that satisfies the M OP inequation.

Unfortunately, we cannot always find it. In particular, Kam and Ullman showed
[KU77] that there are a number of ways to formulate M F P—all decidable-—but the
formulations do not always produce identical results, and in every case, the solution
may be strictly worse than o,,,,. Specifically, every non-distributive framework has
a problem instance for which o,,,, < ,,.p-

In fact, a general solution of the M OP specification is impossible:

32

Theorem 2.5.4 (Kam/Ullman [KU77]). A general algorithm to compute ,,,, does

not exist.

Proof. [KUT7} showed a reduction of MOP to the Modified Post Correspondence

Problem, which is undecidable. O

As an informal version of their proof, there are some data flow problems for which
a solution of M OP would require explicit enumeration of all finite paths in the flow
graph, and there are an infinite number of these paths (consider loops).

The M F P specification turns out to serve as a reasonable alternative to MOP in
the sense that it is often a precise computation of M OP, and that in no realistic case

does it introduce assertions (bogusly) beyond what could be deduced under MOP.

Theorem 2.5.5 (Coincidence Theorem [Kil73, KU77|). Let D be a distributive data
flow framework. For every data flow problem on D, o

AMOoP = UJ\fFP' D

Definition 2.5.1 (Graham/Wegman [GW76]). Let I be a data flow problem. A safe

solution for I is a solution & : N — D such that ¢,,,, < 0.

Theorem 2.5.6 (Kam/Ullman [KU77]). Let D be a monotone data flow framework.

For every data flow problem on D, the MFP solution is safe. That is, o <

MOoP

Tpsrp- O

As a consequence of its safety and decidability, the M FP specification is used for
almost all practical analysis settings. Sometimes, however, the result will be strictly
worse than the MOP ideal. The M FP specification thus represents a pessimistic
upper bound on what analysis can achieve, and so we usually insist that the global

abstract semantics do no worse than this:

Definitjon 2.5.2 (Graham/Wegman [GW76]). Let [be a data flow problem. An

acceptable solution for I is a solution ¢ : N — D such that ¢ € Oprpp

The MOP solution a,,,, is therefore the minimum safe solution for I, while 7, .,
is the maximum acceptable one.
Depending on the particular framework, the data flow problem, and the chosen

implementation strategy, there are a number of other characteristics of the framework

33

that will be of interest. The standard reference for this is Marlowe and Ryder’s survey

[MR90a]. What follows is a brief outline of the principal ideas.

Definition 2.5.3 (Local Finiteness Properties).

1. A monotone function f is k-bounded if there is some & for which

k-1
) =| | Fim)
1=0
We call f fast if it is 2-bounded, i.e. fo f= fUid.

2. f is k-semibounded if for all z,y € D

k-1
fH(z) = (I_J f"(w)) L f*(y)
i=0
We call f rapid if it is 1-semibounded.

Tarjan notes [Tar81b] that k-boundedness == k-semiboundedness == (k + 1)-

boundedness.

Local finiteness properties relate the convergence of iterated application of the
transfer functions to flow graph structure, in particular the summarization of flow
graph cycles (which correspond, loosely speaking, to program loops). In algebraic
formulations of data flow analysis, they play a significant role in determining the
computability, runtime complexity, and precision of 2 number of solution techniques.

If a transfer function is non-monoctone, it may not have fixed points. When the
flow value lattice has infinite descending chains, monotonicity of the transfer func-
tions guarantees the existence of fixed points, but is insufficient to guarantee that
these values are computable. Even if they are computable, the flow value lattice
may have such large height as to make the convergence time unaceeptable. In such
cases, we may need to make do either with a coarser flow value lattice that suitably
approximates the original, or else with an approximation to iterated application of
the transfer functions. The possibilities for approximate application constitute the

closure properties of the function space.

34

Definition 2.5.4 (Closure Properties of F). Let f € F. Define:

1. The refiexive, transitive closure of f
=
i=0
2. The iterated sequence f} = (f Uid)*"!
) = (f() uy™!

3. If 1} is of finite length k, then f1*} is the fastness closure of f.

4. The extended fastness closure of f

fe= U(f L id)*!
1=0
Note that f* is finite if and only if it is k-bounded, and that if f is not monotone, f*
need not exist. On the other hand, f{} is always monotone and increasing, and so it
has fixed points. In particular, f#*}(1) is the least inflationary fized point of f, i.e.

the smallest = that satisfies

r= f(z)Uz

Note also that (f Uid)’ > f*, and hence is a safe approximation of f. Indeed,
as mentioned above (p. 31), f U id has the same fixed points as f, assuming f is
monotone. However, this inequality may be strict, if monotonicity fails. Further, it
doesn’t really give a stronger termination guarantee, unless f is non-monotone: __fE
is not computable if the flow value lattice lacks the ACC property.

In such cases, f can be approximated further still, by replacing the | | operator
for merging iterates with an operator that also yields increasing values, but ones that
increase “fast enough” to guarantee convergence. In general we will need some form

of upper bound operator to do the trick:

Definition 2.5.5 ([NNH99)). An operator ¢ : (D x D) — D is an upper bound
operator if v; < (v; ¢ v2) 2 v, for all vy, v, € D.

35

Note that other than the comparison relation, no particular properties of ¢ are re-
quired. In particular, v; ¢ v, may be strictly greater than v; U vy, and ¢ need not
be monotone, commutative, associative, or idempotent. Examples in the literature
include Rosen’s @ operator [Ros80, Tar81b, Tar8la] and the family of widenings
[CCT77a].

Function space properties thus provide a number of powerful tools for reasoning
about any given analysis. Of particular interest are the boundedness guarantees,
which determine not only the closure properties, but also convergence speed. This
view is a refinement to Theorem 2.1.7 rather than an alternative. Although they are
related, A-boundedness of the function space is not determined by the height A of
the flow value lattice: for example, we would have k < h if an upper bound operator
other than U was used (ref. Definition. 2.5.5) [CC77a, Ros80]. It is also possible for
k > h (constant prepagation, for example).

Nonetheless, we can sometimes obscure the difference:

Lemma 2.5.7. Let D be a complete lattice of hewght k, and let F C {f: D — D} be

a function space. If F is extensive or reductive, it is at most (k + 1)-bounded.

Proof. If f € F is extensive, then f**! > 7, j > 0. Hence, f/*' > | J_, f*. Since
the chain id U f U f2 U ... is of length at most k, we have f**! = | |* fi. Duality

yields the result for the reductive case. O

2.5.2 Solution Algorithms

The practical significance of frameworks comes from the the family of generic
solution algorithms that have been developed: with the right parametric definition,
a solver for one data flow problem is a solver for all problems in that class.

The work to date can be broadly classified according to whether the algorithm
is based on techniques of iteration or elimination. The most widely-known iterative
approaches appear in several textbooks, notably Hecht [Hec77] and Nielson et al.
[NNH99]. A recent, high- level survey of elimination approaches is given in [Las04],
while detailed presentations of various algorithms can be found in Hecht [Hec77],
Ryder and Paull [RP86], and in most compilers textbooks [ASU86, Muc97].

36

Elimination algorithms exploit flow graph structure in a divide-and-conquer ap-
proach. The key insight behind this class of solvers is that in many flow graphs—-
in particular, those that arise from the control flow of structured (i.e. jump-free)
programs—there are nodes whose flow values have a disproportionate influence on
substructures within the graph. We can consider these nodes as representatives
of the substructures they influence, and thereby compute a solution on a reduced
representatives-only flow graph.

For a large number of problems, these solvers are the fastest known, offering order-
of-magnitude (or better) improvement over the performance of any iterative approach.
Of the various solvers presented in the literature [AC76, GWT6, Ros80, Sha80, Tar81a,
Ull73], the path algebra approach developed by Tarjan [Tar81b, Tar81aj (and, inde-
pendently, by Rosen [Ros80, Ros82]) is the most general-purpose. This approach is
the only one that makes direct, practical use of the o and U operators on a framework’s
function space.

A notable disadvantage of elimination aigorithms is that all of them come at the
cost of great programming effort. The greatest disadvantage, however, is that all
elimination approaches fail on programs with ill-structured control flow, specifically
those that give rise tc irreducible flow graphs [HU72, HU74]. While extensions exist
to handle these graphs [Sha80, Tar81a, SGL98], all degrade performance to that of
an iterative solver, and make the overall programming burden even heavier. While
it is possible to transform irreducible flow graphs to equivalent reducible ones, this
cannot be done without combinatorial explosion [CFT03].

By contrast, all iteration methods will work, regardless of flow graph structure,
with no need to transform the flow graph. Such algorithms offer various improvements
over the basic fixpoint computation given in Algorithm 2.5.1. As a rule, they have
the advantages of being easy to implement and of working on all problem instances,
regardless of flow graph structure. A common implementation of the basic form is

the following:

37

(Alg. 2.5.1—Chaotic Iteration)
Input: Data flow problem ((N, E,s,¢€),[]), with |[N| =n.
Output: 6,,., = (¢(1),...,0(n)), satisfying MFP
Method:
for each j € N:
a(j) « welJ)
change — true
while(change):
change — false
for each j € N:
newval — eval,(j,0)
if(newval £ o(7)):
a(j) — newval Uo(y)

change +— true

Per the discussion above {p. 31), we have adopted the inflationary update here.

For a framework (D,F)), where F is k-bounded, and problem instance
((N, E,s,e),[]), the iterative approach of Alg. 2.5.1 guarantees a solution to the
M FP specification (namely, the inflationary Ifp). If F is monotone, we have a so-
lution to the equational form (i.e. the least fixed point). Further, we have a fairly

precise measure of the convergence speed:

Theorem 2.5.8. Let (G = (N, E,s,e),[]) be an instance of @ monotone function
data flow framework (D, F)), where D has height h and where M, is the largest number
of edges in E that share a common sink. Algorithm 2.5.1 converges in O(M, |N|*- h)

join operations.

Proof. For each node j in the inner loop, we perform O(M,) join operations. The

inner loop iterates |N| times. If there is any node j whose value o(j) changes, then

38

its value must increase, and this can happen at most A times. Hence the outer loop
can run O(}N| h) times, giving an overall cost of O(M, |[N|* h).
O

In the worst case (where G is a complete graph), M, = |N|. However, there are few
if any practical situations in which this is the case. For classical analysis, in fact, it is
customary to assume that M, is bounded by some constant for all programs. Similarly,
the largest number of edges sharing a common source, M,, is generally assumed to be
bounded. For example, in flow graphs modeling the intraprocedural flow of imperative
programs, we usually take M, = M, = 2. This yields the more common bound for
Algorithm 2.5.1 of O(|NJ* k). Lastly, if we consider the k-boundedness of F instead
of h, we may be able to refine the bound further (if k& < k), substituting k for h.
Tarjan shows that this refined bound is tight not only for Algorithm 2.5.1 but for all
iteration-based algorithms ([Tar76)], Theorem 5).

Although serviceable, Algorithm 2.5.1 represents a fair amount of wasted effort. In
the first place, each iteration involves a recomputation of the flow value at every node,
regardless of whether that value has changed. Second, in applying the evaluation step
F', there is no constraint on the order in which the nodes of N are considered. While
it makes little difference for convergence of the solution, for performance purposes,
some orders are better than others.

This motivates two improvements to Algorithm 2.5.1, the round robin and workset
solvers. These are given on the following two pages as Algorithms 2.5.2 and 2.5.3. We
present the forward forms only. For the backward applications of round robin, we use
a postorder instead of reverse postorder traversal. For workset solvers, the backward-
analysis definition of infl uses elements in £-!(j) instead of E(j). Backward analysis
under each algorithm requires also the appropriate definition of eval.

The idea behind the round-robin solver is to choose an evaluation order—namely,
a reverse post-order traversal of the flow graph—that follows program control flow
as much as possible. Since Algorithm 2.5.2 differs from Algorithm 2.5.1 only in the
order in which nodes are considered (which is clearly a fair strategy), we can apply

the same arguments for convergence and correctness.

Algorithm 2.5.2 (Round Robin [HU75]).

Input: Data flow problem ((N, E, s,e),[]), with |N| = n.
Output: a,,., = (o(1),...,0(n))
Method:

foreach j € N:

o(f) — te(j)

change — lrue
while (change) :
change = false
fori=2ton: // ordered by a reverse postorder traversal of G
newval — evaly(j,0)
if (newval £ o(j)) :
o(j) «— newval Ua(j)

change — true

39

Algorithm 2.5.3 (Basic Workset Solver).

Input: Data flow problem ((N, E, s,€), []), with |N| = n.
Output: o,,., = (6(1), ... ,o(n))
Method:
for each j € N:
o(3) « te(j)
W.add(j) // Initialize W to contain every node

while (!W.empty()):
j — W.estract()
newval — evaly(j,0)
if (newval £ o(j)):
o(7) «— o(j) U newval
W — infl(W,a, j)
Where:
infU(W,0,5) 2
for each k € E(j):
W.add(k)

return W

40

41

By contrast, the workset solver ignores consideration of advantageous ordering but
uses an elegant mechanism to avoid redundant effort by considering at each iteration
only the flow values at nodes which might have changed. When a change is detected
at some node j, we consider exactly the nodes that are directly influenced by 7, and
record that these nodes may require reevaluation by placing them in a workset, W.

For the worst case of a complete or nearly-complete graph, this does not offer any
savings, since we would still need to reevaluate o on O(|V|) nodes with each update.

In most practical settings, however, the savings are subscantial:

Theorem 2.5.9. Let (G = (N, E, s,e),[]) be an inslance of a monotone function
date flow framework (D, F), where D has height h. Algorithm 2.5.3 converges in
O(M. M. |N|h)} join operations.

Proof. On each iteration of the while loop, we remove one element j from W. We
then perform O(M.) join operations, after which o(5) 1s either left unchanged or eise
assigned the new value newval. If we assign to ¢(j), it is with a strictly larger value.
This can happen at most h times. With each of these assignments, the call to infl
adds O(M,) new elements to W, so each j € N adds O(h - M,) elements to W.
Hence, we perform O(M, |N|h) iterations of the while loop, for an overall cost of
O(M,M, [N|h) join operations.

O

W is an instance of an abstract data type W with operations add() (which adds
to W the node given as argument), extract() (which removes and returns one node
currently in W), and an empty() test. We make no commitment to a particular
implementation; common choices include a simple queue, a hash table, and a height-
balanced tree. We can combine the round-robin and workset approaches, by imple-
menting W as a priority queue, ordered according to a reverse postorder numbering
of N [NNH99]. A number of further extensions can be found in the literature. One
notable example is to compute the strong components of the graph and compute a
local depth-first spanning tree for each strong component. The strong components

form a directed acyclic graph, which is processed in topological order. The develop-

42

ment of this approach is described in [HDT87]. In every case, the cost to maintain
W is secondary to the overall cost of the algorithm.

More important are the internals of the infl function. We have already discussed
its contribution to the complexity of the solver. In addition, the correctness of Algo-
rithm 2.5.3 depends in part on nfl preserving a key invariant of W. For the technical

definition, we adopt the following conventions:

e We define the predicate

Iw(z) € o) ? eval,(z,0) = z€W

» We write the sequential execution of s and ¢ as (s;t)

Definition 2.5.6. Given a function f : W — (N — D) —» N — W, workset W : W,
a finite map ¢ : N — D, and an assignment a to o(j) we say that f is a workset
function for {a,o, W) if it satisfies the following:

If Iw(z) holds for all z € N\ {j} before execution of a, then after
(a; f(W,0.7)), Iw(z) holds for all z € N.

For the next lemma, we lei a, denote the assignment o¢(j) — o(j) Unewwval in
Algorithm 2.5.3.

Lemma 2.5.10. Let (G = (N, E, s,¢),[]) be an instance of a monotone data flow
framework (D, F), where D satisfies ACC. If infl is a workset function for {a,, o, W),

then Algorithm 2.5.3 terminates with o = o,, ..

Proof. (Adapted from the proof of Lemma 6.4 in Nielson et al. [NNH99)}

We show first that the while loop maintains the following two invariants:

1. Ve e N:o(z) € 0,,.p(2)

On initial entry to the loop, the invariant holds (by assumption of tg). Now
suppose it holds at the beginning of iteration m > 1. If ¢(j) is left unchanged
at the end of the loop, then the invariant is preserved. Otherwise, we assign to

o(7) so that the new value, denoted ¢(j),,, satisfies:

43

d(fm = 0(j)m-1 Unewval

= 0(Dmad U f,(0(@)m-)

ieE-1(j)

< O'A,pp(j)u U ft‘j(O.MF'P(i))
i€E-(j)

= Oyrp(J) U F(0,00)(F)

= Oupp (7)

The inequality in the third step holds by the inductive hypothesis and the
monotonicity of f;, the fourth step is by definition of F(s)(7), and the fifth

because o,,,., is a fixed point of F'.

2. Vz e N: Iy(z)

On initial entry to the loop, the invariant holds (since all nodes are in the
workset). Within the loop body, the invariant assumption implies that when
we extract j from W, it is the only node not on the workset for which Iy (7)
could fail. Hence we have Iw(z), for all x € N\ {j}. By assumption, the
execution of (aq;in fI{W, o, j)) therefore yields Vz € N : Iy (z), so the invariant

is preserved.

On termination of the loop (by Theorem 2.5.9), W is empty. By Invariant 2, we
therefore have o(j) = F(o)(j), for all 7 € N. F is therefore reductive on ¢, and so
0 2 0,,-p (by Theorem 2.1.6). Combining this with the Invariant 1 yields the final
result.

(W

Lemma 2.5.11. Let o, infl, and W be defined as in Algorithm 2.5.3, and let a; denote
the assignment o(j) — o(j) Unewval. The function infl is a workset function for
{(aj,0,W).

Proof. Suppose that immediately before execution of a; we have Vz € N\ {j} :
Iw(zx). 1If there is no arc (j,7) € E, then a; increases the value of o(j) such that
o(j) 2 eval,(j, o). Otherwise, j € E(j), and all such nodes are added to W. So
Iiy(7) holds.

44

Now suppose that immediately after a; there is some & such that o (k) # eval,(k, o)
but £ ¢ W (by assumption, there is no such & beforehand). This must be be-
cause eval,(k, o) has changed with the new value of o(j), and this is only possible
if j € E-'(k). But then k € E(k), and so it is added to W by infl, completing the
proof.

O

As an immediate corollary, we therefore have:

Theorem 2.5.12. Given (D,F) and (G,[]) as above, Algorithm 2.5.3 terminates

with 0 = 0,,pp.

Remark. The proofs of Lemmas 2.5.10 and 2.5.11 assume a forward analysis. Adap-

tation of these lemmas to the backward case is straightforward.

O

A common refinement to Algorithm 2.5.3 is to store edges in W, instead of nodes.
This allows us to avoid propagation flow values from every predecessor of a node.
Rather, we propagate only from those whose values have changed, and only then if it
makes a difference. Asymptotically, there is no improvement over the node-workset
approach, but it does reduce the overall number of LI operations (at the cost of a
corresponding increase in comparisons and while-loop iterations), and thus may offer
some savings if U is disproportionately expensive.

Other refinements of the workset approach apply in more limited circumstances.
If we are interested in the solution for only a small subset of the flow graph nodes,
the analysis can be performed using only the nodes of interest and those nodes whose
flow values can reach (and hence influence) them. The basic idea is very simple: we
modify Alg. 2.5.3 so that the initialization of W adds only the entry node s. Solution
algorithms of this kind are known as local solvers. Such solvers are uncommon in
classical analyses, particularly in the application to program optimization; in this
setting, whole-program solutions are almost always required. On the other hand,
their development has proven useful in the analysis of logic programming languages
[CH94, FS98, FS99, Jar94, VWL94] and some forms of program verification [0090].

45

2.5.3 Aside: Correctness and Abstract Interpretation

None of the framework properties discussed here gives an assurance that the anal-
ysis is correct: i.e. that the analysis results are assertions about the possible states
of a program at each control point, guaranteed to hold for every possible program
execution. From another viewpoint, this is a requirement that an analysis be sound
with respect to a program’s formal semantics. While important, this consideration
is completely decoupled from properties of the data flow framework, which concerns

only the relationship of the value and function lattices to the flow graph model.

The most widely-used approach to correctness is that of abstract interpretation,
originally due to Cousot and Cousot [CC77a, CC79b]. In the literature, this term
denotes two related ideas. First is the theoretical technique for establishing that a
static analysis is correct: ¢.e. that the abstract semantics of the analysis are a true
abstraction of a program’s concrete semantics. The other sense of the term refers to
an analysis technique, whereby the abstract syntax tree of a program is interpreted
with (1) an abstract value domain and (2) a nondeterministic execution of control

constructs.

It is tempting to confuse the analysis technique with data flow analysis, particu-
larly since the original formulation given in [CC77a] uses a flow graph model, as well.
The difference is that an abstract interpretation simulates program execution directly
on a program’s AST. Unlike data flow analysis, there is no initial construction of a

flow graph.

This has some advantages in space savings, and may be somewhat more intuitive
than the use of an explicit flow graph construction. The cost is a smaller range of
efficient solution techniques. Whether or not an e priori control representation is
necessary, most of the efficient solvers in the flow analysis literature have yet to be

transferred to the various abstract interpretation applications.®

%0ne exception is the local solver approach to workset algorithms. Also see Chen et al. [CHY95),
which presents a variant of the round robin algorithm.

46

TABLE 2.2: Relationship of common user parameters to framework components

flow value definitions/constructors/copy constructors
equality test

D
merge operator
second merge operator
P the functions defined with the flow map

the entry value

flow graph

[]1 | low map, initialization value

2.6 Data Flow Analysis Construction Kits

From the user’s point of view, a toolkit provides an interface that corresponds
to the key elements of any data flow analysis, which Knoop et al [KRS96] refer to
as a “cookbook” approach. In practice, existing data flow toolkits organize the user
specification of an analysis in terms of a generic “analyzer structure”, which includes
some or all of the following components: construction and access mechanisms for the
flow values, an egquality test (for detecting stabilization of analysis), a merge operation
for combining flow values, flow graph, flow map, the entry value (associated with the
flow graph’s start node), an initialization value, the direction of the analysis, and
(optionally) a second, generalized merge operation.

This structure is better understood as a practical realization of the generic view
of data flow analysis presented above: the nine components listed are precisely the
components of a data flow framework, instance, and global abstract semantics. The
tabular description in Table 2.2 makes this clear.

Existing toolkits for this family are distinguished by the level of abstraction
offered in the user interface for instantiation of the framework and instance com-
ponents [Las04]. Those designed for integration with industrial-strength systems
[CDG96, DC96, HMCCR93, KKKS96, TH92, ZMEQS] provide APIs which the user
instantiates in a general-purpose programming language, while those that exist as

free-standing systems [Mar98, Ven92, YH93] usually provide the user with high-level,

47

domain-specific languages for analyzer construction. Systems designed for specialized
applications of flow analysis such as the optimizer generator Gospel [WS94, WS97] or
the Cesar [0090, 0092], FLAVERS [DCCNO04], or ASTREE [CCF*05] verification

tools, also provide high-level specification facilities.

2.6.1 Flow Values

If an analyzer toolkit has a sufficiently narrow application domain, the designer
may forgo user specification of flow values altogether by restricting the available lat-
tices to a small set of built-in definitions [FLY02, KKKS96, KRS96, 0090, DCCNO4].
More general uses of the toolkit require a flexible means for the user to specify complex
value lattices.

In general, there are two paths for the specification mechanism. On the one hand,
a toolkit can require that the user implement all desired flow value lattices in some
general-purpose programming language (TH92, HMCCR93, CDG96, DC96), which
are then integrated with the generated analyzer. In this case the toolkit will provide
a collection of interfaces that supports definition of the lattice elements and their
elementary operations: comparison (<) and combination (U). The user must of course
verify that any given implementation satisfies the necessary algebraic properties.

Alternately, a toolkit can provide a domain-specific language tailored to the design
of nonstandard semantic domains [CCF*05, Mar98, NLM95, Ven92, YH93]. Such a
language will typically come with a few built-in sets to account for the most obvious
value types——integer, boolean, and so on. For most of these, there are a few common
orderings (true > false, flat ordering on integers, etc.) that will also be built in.
Also built-in will be several constructors, which produce new lattices from sets or
from other lattices.

A further possibility is support for explicit construction of orderings on small sets
{Mar98, NLM95]. For all but flat orderings, this takes the form of an enumeration of
pairs, representing the “immediately less than” relation, from which the rest of the

order can be derived. Here, as with general-purpose language implementations of a

48

lattice API, it is usually the user’s responsibility to ensure that the specified partial
order is indeed a lattice.

Finally, there are several flow value lattices with infinite ascending chains that are
useful in some forms of analysis. Examples include some lattices for type estimation
[Ten74], integer intervals [CC77a), and various real number approximations [Min01,
Min04, Fer04, Fer05]. If a toolkit includes support for such structures, there must be
additional facilities to guarantee convergence of analyses. This is usually in the form
of support for upper/lower bound operators that will be used in widenings/narrowings
[CC77a], and these are almost always user-defined [CDG96, Mar98).

An alternative—either in addition to or in lieu of widenings—is the inclusion of
a projection operator for constructing a new lattice as the image of another under
some projection function [YH93, Mar98]. Given the lattice (S, <g,Us, Ls, Ts) and
projection p : § — S we construct the lattice (p(S), <s,Us,p(Ls),p(Ts)). Even
without infinite-height lattices, this feature offers a convenient means of redefining
an analysis over a smaller flow value lattice, which allows the user to quickly trade
off performance and accuracy. It has been described by Martin as a limited form of
widening {Mar98], but more accurately, the projection function is (or should be) an
upper closure operator on the original lattice—monotone, idempotent, and extensive
({CC79b], p.272).

2.6.2 Function Space

As with flow values, the design of user support for the specification of transfer
functions begins with a decision on the specification mechanism. Here, the design
task is a decision on the language of expressions for the transfer function bodies.

Again, the balance to be struck here is between expressiveness and various cor-
rectness and performance guarantees. In particular, we would like to ensure that
evaluation of E is finite and that the transfer functions possess desirable order preser-
vation properties of monotonicity or even distributivity. Precisely where to set this
balance depends on the class of data flow problems we intend the toolkit to handle.

As with flow value definition, existing approaches range from supplying only built-

49

in forms [KKKS96] to domain-specific languages of limited expressiveness [FLY02,
Mar98, Ven92, YH93] to support for general-purpose programming languages [DC9s,
HMCCR93, LGC02, TH92].

The use of a general-purpose language offers the greatest flexibility, but many
opportunities for correctness/performance guarantees are also lost. As complete lan-
guages, termination of the individual transfer functions is impossible to enforce. But
so too is monotonicity, which is known to be undecidable even for a language as
limited in expressive power as the relational calculus [AHV95]. Thus, any data flow
toolkit that supports sufficiently expressive transfer functions must itself resort to
static analysis techniques for approximate guarantees of such correctness properties.
An interesting approach to this is given by Murawski and Yi [MY02], who define a
type-and-effect system for approximate determination of monotonicity in a language
similar to that used in System Z.

Regardless of the approach taken to support user specification, the program con-
structs that may be represented in the flow graph guide the functions that are defined.
At a minimum, the user will need to define a transfer function corresponding to each
possible program construct. Indeed, specification of the transfer functions in practice
is almost always combined with the specification of the flow map itself.

One flow map component that is often user-driven is the specification of the Aow
value to be assigned to all non-entry nodes at initialization. This is usually the L
element of the flow lattice, a choice that can safely be fixed by the toolkit designer.
In general, however, any flow value known to be < the least fixed point solution will
do [CP89).

An important side note here concerns the use of constant lattice values such as the
Gen and Kill sets which are presumed to annotate flow graph nodes in the bitvector
problems (Examples 2.4.1-2.4.4: although they are generally quite easy to compute,
these values must come from somewhere. Depending on the specifics of the data
flow problem and the flow graph model used, we can either encode them directly in
the transfer functions or rely on a “pre-processing” analysis. Encoding them in the

transfer functions is easier if the flow graph nodes represent individual statements

o0

rather than basic blocks, or if the flow graph is automatically extracted from a user-
supplied abstract syntax tree; these variants on the flow graph are discussed below.

A complete definition of the function space would have to include not only transfer
functions corresponding to every interesting language construct, but also the identity
function and the closures of each transfer function under composition and pointwise
join (and perhaps meet). In practice, however, this further specification is not needed,
unless the toolkit will support the generation of elimination-style solution algorithms,
as discussed in 2.5 above. Only here is it important to guarantee that every element
of the function space is defined, since an elimination algorithm may during flow graph
reduction construct a new flow function by combining the functions associated with
each edge that is collapsed.

In such case, it suffices to define the remainder of the function space implicitly
[TH92], by supplying implementations of an identity function and of the operators o,

U, and %, corresponding to function composition, join, and closure:

(Fooa) = flo(@)
(Fug@) = f(z)ug()
(@) = U@

As a very simple automatic approach, a toolkit could keep symbolic representa-

tions of the actual uses of the operators in defining new, complex functions. Func-
tions built by various combinations of the operators can be represented internally by
a graph structure that corresponds to an abstract syntax tree representation and can
be executed by a simple interpreter. This is essentially how an elimination solver is

built in an optimizing compiler—see Muchnick ([Muc97], 8.7.3), for example.

2.6.3 Flow Graph

User specification of the flow graph model will generally involve code to access
the nodes and edges, along with some form of switch indicating the direction of

the analysis. The user can also be required to supply access routines (successor,

51

predecessor,etc.) [TH92], although it is possible to build these into the toolkit directly
[FLY02].

On the other hand, the toolkit can forgo flow graph construction entirely by
interpreting the program’s AST itself (e.g. [Ven92], [Mar98], [CCF*05], and also
Rosen [Ros77]). Other than the use of abstract values and transfer functions, the
principal difference from a “concrete” interpreter is in the determination of control
flow. With either form of interpretation, the flow of control is determined dynamically
by the syntactic structure and the current machine state—the main difference in the
static analysis case is that interpretation of a branch statement requires that both

branches be executed.

This approach likely offers better ease-of-use for the toolkit user, but it exacts
a price in flexibility. Aside from the obvious differences in graph structure, a flow
graph differs conceptually from an abstract syntax tree in that the control structure
of the program is explicit. In the absence of knowledge beforehand of a program’s
control flow structure, many of the efficient generic solvers—round robin, Kennedy’s
iterative node listing solver [Ken75], and all elimination algorithms, for example—are
much more difficult to implement, and such a toolkit is therefore limited in the choice
of available algorithms (ref. Section 2.5.3). Further, there is no inherent relation
between program analysis and data flow analysis [Ete04, KBC199, NAC097, ZYL04],
yet a toolkit is committed to such a view if the user can only supply source code for

a problem instance.

2.6.4 Flow Map

Conceptually, this portion of the specification, along with the flow graph, is part
of a “data flow instance,” and like the flow graph, the specification of the flow map
consists of information sufficient to generate and use the low map at run time. Prac-
tically, this involves the definition of an interpreter for the target language, but one
that is defined over the abstract flow values, by specifying an association of one of

the defined transfer functions with each possible program construct.

02

A finer point here is the question of whether transfer functions will be mapped to
nodes or to edges. In the case of the unidirectional analysis problems assumed for this
chapter, it does not make much difference: as mentioned in 2.4 above, one form can
always be recovered from the other. In more advanced forms of data flow analysis,
such as bidirectional analysis [KD94], it is useful to distinguish the two. An edge-map
does sometimes offer a performance advantage in calculating flow value combination
at a node entrance, since the new combined value is simply the old one merged with
the new edge value: see [Mar98], for example.

Finally, although most of the existing toolkits separate its specification from that
of the flow map, the chosen start value ¢, which holds on entry to (resp. exit from) the
program, is in fact a constant-valued member of the function space. Conceptually,

the specification of this value, is thus a part of the flow map specification.

2.7 Advanced Forms

Classical data flow analysis is performed on sequential, imperative procedure bod-
ies, either forward or backward (but not both), with neither procedure calls nor con-
current execution of other tasks. It therefore suffices to consider only one type of flow
in the model of program execution. However, more advanced analysis forms relax
some or all of these assumptions, calling for analyses in which we distinguish between

these different flows.

2.7.1 Interprocedural Analysis

Many interprocedural analyses are based on a flow graph that distinguishes be-
tween ordinary intraprocedural flow, the flow from and back to the call site of a
procedure (to model the binding of arguments and effects on the call stack), and
the flow between a call site and corresponding return point (to restore local state)
[AM95, SP81, Kno98.

Most of these approaches are derived from the paper by Sharir and Pnueli [SP81].

In that work, the authors extend the classical data flow framework to encompass

53

interprocedural analyses that are both flow sensitive (in that intraprocedural flow
is considered as well) and contezt sensitive (in that the value at the entry node
for a procedure is determined by the abstract state at the call site). They offer two
approaches, one based on iterative techniques (“call string”), the other on elimination

{“functional”).

An important insight underlying both the call string and functional approaches
(and the extensions in [AM95, Kno98]) is that a sensitivity to the kind of edge on
which information flows offers a provable increase in precision. For example, analysis
can safely avoid consideration of any call/return flow that violates the call stack
discipline. In [SP81], the authors rely on this sensitivity to formulate an ideal measure
of precision, known as the meet over valid paths (MVP) solution. They show that
this solution can be strictly better than MOP, present an MFP form that is satisfied
by both the call string and functional approaches, and exhibit coincidence and safety

theorems, analogous to those of Theorems 2.5.5 and 2.5.6.

Although call and flow-sensitive analysis provides better accuracy for interpro-
cedural problems, it can be quite expensive. For the sake of performance on very
large programs, several interprocedural approaches adopt coarser flow graph models
for analyses that are relatively insensitive to context, intraprocedural flow, or both.
A successful example of this approach is Callahan’s program summary graph [Cal88],

which facilitates analyses with context sensitivity, but not flow sensitivity.

Unfortunately, Callahan’s approach does not fit neatly into the Sharir/Pnueli
framework. In the first place, the program summary graph is a substantial departure
from their more detailed flow graph model, employing only flow from call to return
points, and a very limited form of intraprocedural flow that ignores everything except
procedure entry, exit, call, and return points. Second, the analysis is in a nonsingular
form [KD94]: it makes use of both the lattice LI operator and also N (where it can
safely be used to sharpen information). Rather than an algebraic framework, the
various analyses in the paper are therefore presented as systems of flow equations, in
the manner of the AE and LV analyses in Section 2.3 above. Callahan also provides

a manual adaptation of the workset algorithm for these analyses.

o4

2.7.2 Analysis of Concurrent Programs

There are several extensions of the classical flow analyses for compile-time op-
timization, adapted to various forms of concurrency [CK94, GS93, RS90, KSV96,
LPM99]. However, most of the application effort in the concurrent setting has been
directed toward verification, in particular the canonical problems of deadlock and
race freedom [CKS90, DS91, DCCN04, LC91, MR91, PP91, TO80]. Other verifica-
tion approaches also benefit from incorporation of flow analysis, largely for discovering
opportunities for state space reduction. Here it is used for the approximate determi-
nation of instructions that cannot execute in parallel [MR93, Mer92, NA98, NAC99]
or cannot interfere with each others’ effects [Cor00, FBGO03].

Because of the wide variation in the type of concurrency that may be adopted,
there is little agreement on a standard flow graph model. Examples include the syn-
chronized control flow graph [CS88|, event spanning graph [RS90), parallel flow graph
[GS93], module interaction graph [DS91], Masticola and Ryder’s sync graph [MR90b]
and sync hypergraph [MR91], and Dwyer and Clarke’s trace flow graph [DC94]. In
general, any such model must represent not only ordinary intraprocedural control
flow, but also information regarding the possible communication between and inter-
leavings of concurrent tasks: synchronization actions, cross-task control precedence

(sometimes called “may immediately precede” edges), and so on.

As with flow graph models, there is a variety of data flow frameworks for the
concurrent setting. Examples in the literature include Dwyer’s “complete lattice”
framework [Dwy95], Reif and Smolka [RS90], Knoop et al. [KSV96), and Masticola’s
join-of-meets framework [Mas93]. Of these, only Dwyer’s framework has been realized

in a general-purpose toolkit [DCCN04].

Almost all data flow frameworks for concurrency share in common a recognition
that certain edge types can be used to refine the assertions derived from intraproce-
dural flow. For example, on any successor edges from a synchronization point, we can
safely assume that all incoming arcs have been traversed. Consequently, the merge of
information on incoming “wait” edges at a sync point can be done using the M oper-

ator instead of LI (e.g. [Dwy95], pp.39-42), thereby sharpening information. Hence,

95

the overall solution is specified in a nonsingular form, in which both operators are
used.

Although existing frameworks for concurrency offer substantial flexibility over the
classical approach, they are nonetheless specialized in their presentation to one or
another model of concurrency. Many new applications of data flow analysis to con-
current programs are therefore unable to leverage any particular framework. Instead,
many of these analyses are given in terms of complex flow equations alone.

In general, these flow equations are much more intricate than those that comprise
the usual MFP specification.” However, this form of declarative specification is an
easier development burden than the whole-cloth formulation of an algebraic frame-
work, and some key properties (e.g. monotonic growth of the equations’ right-hand
sides) impose only a modest effort. Other properties (e.g. fastness or rapidity) remain
unresolved, however. Worse, there is frequently a lack of efficient solution algorithms.
Instead, many of these “flow equation” approaches are solved with a general fixpoint
algorithm, & la Algorithm 2.5.1. Duesterwald/Soffa [DS91]. Callahan et al. [CKS90),
and [GS93] are illustrative of this approach.

2.7.3 Bidirectional Data Flow Analysis

In bidirectional problems, the data flow property holding at a given node depends
on both the successors and predecessors of that node in the flow graph. The earliest
such analysis in the literature appears in Tenenbaum’s thesis as a part of his type
estimation analysis for SETL [Ten74]. In practice, however, most of the interest in
this technique arises from its application to problems of code motion, especially the
partial redundancy elimination analysis of Morel and Renvoise [MR79]. This analysis
unifies several traditional optimizations by composing a number of classical forms
together. It is defined over an ordinary intraprocedural flow graph G = (N, E, s, e)

by a set of intricate data flow equations consisting of

e local properties of expressions associated with each node z: Antloc(z) (Gen,,,,,

from the very-busy expressions analysis), and Transp(z) (Ezp N Kill,, ,(z))

"See Grunwald/Srinivasan [GS93] for a particularly dramatic example.

o6

» the properties AE;,(z)/AFEu(z) and V Bay(z)/V Biy(z),along with the “par-
tially available” expressions, PAE:,(z)/PAE.u(z) (a may-analysis variant on

available expressions)

e analyses to determine those expressions that can safely be placed at the begin-
ning/end of z (PP, / PPF,,), those that can usefully be placed at the end of z
(INSERT), and those that are redundant in z (REDUN D)

The main equations are given in Fig. 2.7.

Khedker and Dhamdhere [KD94] extend the classical framework view to encom-
pass both unidirectional and bidirectional analyses. Their framework accommo-
dates singular data flow problems (i.e. those with a single confluence operator, as
in Morel/Renvoise), but not nonsingular ones (e.g. the variant on MRA given in
[Dha91]).

’

0 Jifr=s
PAE;, () , otherwise
PPz =
N [[PPou(z) NTransp(z)|U Antloc(z)]
n n [AEaut (?.U) U P-Pout ('UJ)]
| weE~1(z)
r@ Jfz=e
PP, (z) = |
(@) N PPu(y) , otherwise
\ yeE(x)

INSERT(z) = PPOUT(z)N AEu(z) N[PPu(z) UTransp(z))
REDUND(z) = PPy(z)N Antloc(z)

FIGURE 2.7: Morel-Renvoise Algorithm (modified version in [KD94])

In [KD94], both workset and round-robin algorithms are given to solve this ex-
tended MFP form, along with precise measures of the complexity, and a characteri-

zation of analyses for which decomposition into a unidirectional equivalent is feasible.

a7

An extension of elimination solution techniques to the bidirectional case is given in

[DP93], but it is only applicable to a limited class of these analyses.

2.8 Limitations of the Toolkit Approach

Flow graph models with these or other heterogeneous edge classes all belong to the
family of multisource data flow problems. In each form, the abstract semantics arising
from the framework involves not only consideration of the information represented
by a flow value, but a sensitivity to the kind of source from which a value is received

(e.g. control successor/predecessor, call site, synchronization point, etc.).

Historically, this classification of data flow problems has not received much notice.
Where specialized algebraic frameworks are known for certain problem families, the
theoretical foundations have been extended from classical analysis. For all three of
the advanced problem families discussed above, generic solvers have been developed
for one or more frameworks. For interprocedural and concurrent flow analysis, some

frameworks have been realized as toolkits to support automatic generation.®

Indeed, the “cookbook” approach described for classical flow analysis-based tools
remains an appealing feature of toolkits in all three of these families. With the global
semantics and solution algorithms fixed in the generation tool, the user burden is

essentially unchanged from the classical case [KRS96).

Unfortunately, none of these extensions are sufficiently expressive for the spec-
ification of general multisource data flow problems. The problem lies not just in
a particular framework and its corresponding toolkit implementation, but in the
framework-based approach itself. If we want to extend the benefits of efficient,

executable specification to the general multisource case, we must reconsider the

8D. Dhamdhere reports the existence of a toolkit based on the theoretical
work in [KD94]. However, this appears to be unavailable for research. See
http://wuw.cse.iitb.ac.in/dnd/tech_transfer.html.

58

requirements of the cookbook for user specification, in order to identify a reasonably

benign—yet sufficiently expressive—set of parametric ingredients.

2.8.1 Data Flow Equations and the MFP Specification

We find justification for this claim—along with the key insight behind the solution
we develop in this dissertation—in the historical development of both classical and
advanced analysis forms, prior to the discovery of a unitying data flow framework.
Invariably, new forms of flow analysis have been specified according to the “fow
equation” approach, from the earliest bit-vector analyses onward. From this vantage,
the conceptual starting point for the development of data fow frameworks is the
observation that the flow equations defining various analyses follow a common pattern.
By the time of Kildall’s seminal paper [Kil73], there was already wide recognition
of this fact (for example, see [AU73, Sch73]). Lacking a precise characterization,
however, such a common form could serve only as a potential source of insight, not as
a basis for the systematic transfer of theoretical properties and practical techniques.®

The framework view of data flow analysis provides a formalization of this pattern,
specifying all problems within an analysis family in terms of a single flow equation.
For classical analysis, this is the MFP equation, and in the pattern it represents lies an
important philosophical point. Specifically, it represents the view that a flow analysis
abstracts concrete program semantics in two parts: the individual instructions on the
one hand, and program control flow on the other.

To illustrate, consider the two approaches to specification for the available expres-

sions analysis. Using the “How equation” approach, we would write
g q

'AEin (:B) = ﬂ AEout (w)
wePred(x)
AE, () = (AE, (z)\ Kill, . (z)) O IGill, . (z)

This form makes the twofold nature of the specification apparent. The equation

?As an illustrative example, two of the exercises in the last chapter of [AU73] require a man-
val adaptation of Ullman’s elimination algorithm for available expressions [Ull73} to other analysis
problems.

29

for AE,, (z) is defined only in terms of the AE, property holding at = (Kill, . (x)
and Kill,.(z) are constants); in particular, it makes no use of any element in the flow
graph besides z itself. On the other hand, the definition for AE, (z) relies almost
exclusively on flow graph structure, consisting of an expression to define some set of
nodes in the flow graph (Pred(z)), an expression parameterized on elements of this
set (AE,, (w)), and a description of how to combine the resulting set of values ().
The “behavior” is quite limited, consisting only of AE_, values.

We can therefore understand AE, , as defining the “instruction”, or “local” com-

out

ponent of the specification, while AE,_ defines the “fow”, or “global” element. This

is even more apparent if we treat AE

out

as a function to which AE, is passed as an

argument:
AE"n(m) = n AEuut (w,AE“'(:E))
we Pred(z)
AE,,(z,v) = (v\Kill,;(z))UGen,(z)

From this version, the last abstractions to reach the framework specification are

straightforward. AF,

oul

is the transfer function assigned to each program point, or,
using the taxonomy of Cousot and Cousot [CC77a, the local abstract semantics com-
ponent of the analysis. The global component is AE, , and in keeping with the
framework approach, we do not need to focus on the specifics of its definition beyond
knowing that the | | operator is (] and that the analysis is forward with respect to the
flow graph: the global semantics specifies how the property holding at a given point
can be guaranteed consistent with every point from which the program could transfer
control, and in the classical setting, this is always the MFP equation [CC79b]. Rosen’s
algebraic approach [Ros80] expresses the same idea in the requirement that, for ev-
ery arc (z,y) with associated transfer function f_, the flow annotation 6 : N — D
computed by some analysis must satisfy f_ (o(z)) 2p o(y).

Implicit in these and other works that rely on the MFP equational form is the
assumption that every arc in a flow graph constrains in the same way what can safely
be deduced as a flow property: that a path in the flow graph models actual program
execution ([Dwy95]). Because of this, the classical MFP formulation is insufficient to

describe more advanced forms of flow analysis.

60

In fact, the arcs in a flow graph constitute only a set of constraints on a program’s
control flow, with the global abstract semantics defining the relationship of these
constraints to the abstraction of individual instructions represented by the transfer
functions. In classical data flow analysis, these constraints yield a structure that
corresponds very closely to actual control flow semantics, and the accompanying MFP
equation is therefore quite simple. In the general multisource setting, however, the
correspondence is frequently more subtle.

'To our knowledge, Dwyer’s explicit observation of the flow path/execution as-
sumption is the earliest in the literature, but the idea had aiready occurred in other
forms: in the “meet-over-valid-paths” formulation of Sharir and Pnueli [SP81], for
example, and in several works that apply data flow analysis to concurrent programs
(D591, GS93]. In each case, successful extensions of the classical framework are ac-
companied often by an adaptation of the MOP form as a precision benchmark, and
invariably by an MFP form specialized to the edge labels assumed for the flow graph
model (e.g. [KD94, Kno98, KSV96]).

Unfortunately, none of these extensions will do for the general setting. The prob-
lem is that both the classical and extended framework views of flow analysis rest on
the assumption of a fixed universe of discourse from which the flow graph model is
constructed. In other words, the possible types of information flow—i.e. the set of
edge labels in a flow graph-—are always fixed a priori. Naturally, this assumption
is violated 1n the general multisource case, and as a consequence, existing data flow
frameworks fail to capture more than a limited subset of these problems.

Consequently, it is still common to present new forms of flow analysis in terms of
complex flow equations, particularly when the analysis employs a new understanding
of the relationship between flow graph structure and program control flow.!® This
is unobjectionable—when the assumptions about information flows are changed, we
must also change the global semantic constraints to accommodate this shift—but it

denies these advanced forms the power offered by a unified framework view.

1%Examples include nearly all of the work described in the preceeding three sections |CS88, DS91,
(G593, Cal88|, the first approaches to type estimation [Ten74, KU80], and the various forms of partial
redundancy elimination [Dha91, MR79] and dead code elimination [KRS94].

61

In the absence of a better choice, these equations are solved with a general fixpoint
algorithm, along the lines of Algorithm 2.5.1 (e.g. [Mas93]). In other cases (e.g.
{Cal88]), there is an ad hoc solver that improves on the basic strategy (usually a
variant on the workset heuristic). In most cases, the development includes proofs of
key properties such as the existence of solutions and convergence of the solver, but
these must be done manually, as there is no framework from which to derive them.

Because of the variability in the relation of flow graph structure to information
flow, it is not obvious how to formulate problems as instances of an underlying alge-
braic framework, or even whether a given framework is suitable. Indeed, we are in
something of a prisoner’s dilemma, if we insist on retaining the standard four-part
parametric approach to data flow analysis toolkits. Support for the development of
new forms requires either that the new analysis be a member of an existing frame-
work or that a new framework be developed. The first of these requirements places an
artificial limit on discovery, while the second imposes a substantial additional burden

on new development.

2.8.2 Toward Toolkit Support for Multisource Flow Analysis

Specification of general multisource data flow problems therefore requires the anal-
ysis designer to provide another component. In addition to the standard value lattice,
transfer function, flow graph, and flow map components, we also require a definition
of the global abstract semantics.

This leaves us with three tasks. First, we need a specification mechanism, in the
form of a suitable, domain-specific language. Second, and concomitantly, we want
the establishment of key properties of the specified analysis to be as easy as possible.
ldeally, this comes from an underlying data flow framework that is sufficiently general
to formulate such problems, and which is inferable from the global semantics. Finally,
we need good solution algorithms.

We develop a suitable data flow framework in the next chapter, along with the
beginnings of a language useful for specification. Development of this language is

completed in Chapter IV. The problem of efficient solution is taken up in Chapter V.

62

CHAPTER III

FRAMEWORK SPECIFICATION

The primary contribution of this chapter and the next one is an extension of the
traditional approach to user specification in a data flow analysis toolkit, in order to
support arbitrary multisource data flow problems. Our approach is simple: since
multisource problems vary according to the global semantic specification, we add to
the traditional framework components a mechanism for expression of this semantics.

In this chapter, we develop a high-level language for direct encoding of problems as
instances of a data flow framework. The framework we use, described in Section 3.1,
is essentially Masticola’s k-tuple formalism [Mas93, MMR95], although our version
offers some extensions from the approach originally proposed. We present a language

based on this framework in Section 3.2.

3.1 K-tuple Data Flow Frameworks

One approach to a broader unified view of multisource data flow problems is the k-
tuple frameworks formalism of Masticola, Marlowe, and Ryder [Mas93, MMR95]. The
basic idea is that, in order to solve a data flow problem over a lattice D, with a flow
graph model consisting of k edge types, we instead form a homogeneous cross product
lattice D*. Elements of this lattice are k-tuples, which keep separate the values that
propagate along a certain type of edge. Correspondingly, we extend the transfer

functions so that they “select” the appropriate index along which to propagate.

63

In addition to adapting several key theoretical classifications to these frameworks,
Masticola et al. exhibit k-tuple formulations of some well-known multisource analyses:
the partial redundancy analysis of Morel and Renvoise [MR79] and several analyses
over Callahan’s program summary graph [Cal88]. We are further encouraged by the
fact that very similar uses of cross-product lattice frameworks appear in earlier works
to formulate other multisource problems (c.f. [DRZ92, Ten74)).

Here, we recall and extend the basic ideas from their work.

A (typed) flow graph is a directed graph G = (N, E). N is a set of nodes, and E is
a set of triples in N x N x 4, where 1 < i < k is one of k distinct edge labels. Similar
to the case of a single-source flow graph, we write E;(z) to denote the successors of
z along edges with label i and E;!(z) to denote the ¢-predecessors of x. Note that G
may be a multigraph, although there is at most one triple (z,y,1), for each i. Note,
too, that we have omitted the distinguished entry/exit nodes. While it does not make
much difference from a technical standpoint, there is less point to distinguishing these

elements here, since the property of isolated entry/exit is relative to a particular edge

type.

Definition 3.1.1 (k-Tuple Data Flow Frameworks). Let (D;, <;, | J;, [Li, Ti)1<i<k
be a collection of complete lattices, not necessarily distinct. A k-tuple date flow

framework is a pair (D, F), where
o D is the cartesian product lattice D) x ... X Dy,

e F.D — D is a set of total functions of the form

f(dl, ,dk) = (J'T’l’ ?J‘D;-!’ g(dl, ,dk), 1 . ?'L‘Dk)

Tipr? 7

and satisfying

- fu=(Mvwv)eF
~VfgeF, fog=(lw.f(g(v) € F
-Vfig€F, fug=Qv.(f(wh U g, ..., fo)Upg(v))) € F

64

As before, a data flow problem is a pair (G,[]), with G an edge-typed flow graph
and] : £ — F a flow map.

The intuition here is that each index in a flow value of ’B represents one of &
possible kinds of information flow. In order to preserve information about the way in
which an assertion flows through the graph model, these k properties are kept separate
at each node. Each transfer function f; acts as a selector, propagating the flow values
transformed by g : 5 — D; along index ¢, with all other indices propagating the
U-neutral values for their respective domains.

In data flow analysis, the earliest use of a cross-product lattice form appears in A.
Tenenbaum’s Ph.D. thesis [Ten74], where each flow value tuple index corresponds to
one of the flow equations constituting his type estimation analysis. Dhamdhere et al.
also use a cross-product framework with similar conventions for the indices in their
formulation of the PRE analysis [DRZ92]. What distinguishes the k-tuple approach
of Masticola et al. is their association of indices with edge types rather than direct
representations of flow equations, which “captures the information at [node] y needed
to compute the edge functions for edges entering or leaving y” ([MMR95], p. 792).

Our formulation of k-tuple frameworks differs from that of Masticola et al. in the
allowable forms for ‘B Whereas they insist on cross-product frameworks in which only
a single lattice is used for all % indices, we allow for heterogeneous cross-products, as
well. The primary motivation for this arises from the observation made in [MMR95]
(and elsewhere) that values may be combined at a node in different ways, I or [T,
according to the types of the incoming edges. Indeed, this is one of the principal
motivations for separating the values that flow along different edge types. If we
are to insist on the unified MFP form above, we are therefore constrained to loosen
the definition of a k-tuple lattice value, so that each index is a value either from D
or its dual, D%. Since we assume that each D is a complete lattice, this does not
introduce any new difficulties. We add the remaining flexibility on the grounds that
the prohibition on heterogeneity is technically unnecessary, so long as we ensure that
all operations combining values from different indices are semantically well-formed.

While an explicit M F'P form for the global semantics is not given in [MMR95],

it is not difficult to construct one, for both their version and our extended one:

65

Definition 3.1.2. The minimal fized point (MFP) solution for a k-tuple data flow
problem, ;M“,, is the (pointwise) smallest assignment 7 :N— D, satisfying the

inequality

a(y) 2 Ll l=w,9l(c@) | visw) (3.1)

e U E; 'Yy
11,k

As with the classical forms given in Figure 2.6, 1z : N — D is a constant-valued
function that can be used to initialize extremal nodes. In this case, however, it

provides a k-tuple of such initializations:

-

te(y) = (e (y), - e y))

A corresponding “MOP” form is less clear. In the classical case, the paths we
consider are simply composed from the control flow graph’s successor relation {or
its reverse, for backwards analyses). However, this is an overestimate in the case
of multiple edge types, since it may be that flows along certain compositions are
impossible. This insight is well known for certain special cases of multisource analysis.
It is the insight behind Sharir and Pnueli’s “meet over valid paths” formulation [SP81],
for example. Similarly, the impossibility of certain compositions of intraprocedural
and synchronization flow forms part of Dwyer’s argument for his “complete lattice
framework” [Dwy95].

For the general multisource case, we require first a way to reason about the possible
flows {or “valid paths”, in Sharir and Pnueli’s terminology). The determination of

such flows is the subject of Chapter 5.

3.1.1 Properties
Although the added complexity of a k-tuple formulation makes some details more

involved, most of the classical properties carry over in a straightforward manner.

Theorem 3.1.1. Let D = Dy x ... xD;, such that each D; has finite height h;, and let
F be a monotone space. Let (G = (N, E),[]) be an wnstance of (D, F), where for each

66

edge type 1 < i < k, M,, is the largest number of i-edges in E that share a common
sink. Algorithm 2.5.1 converges in O (ZLI Mo‘.) INJ* (f=1 h,,-)) operations.

Proof. The E:;l fi; term is the height of D, while the largest number of predecessors
of any node is bounded above by Z;":l M,,. Otherwise, the details are similar to the
proof of Theorem 2.5.8. O

Lemma 3.1.2. A function

—

ft(d) = (-Lplx cee ’-I-'pl-_lv g(d): J—p.._'_ls :J-pk)
e is monotone if and only if

—%

Vd,,do €D: d; gB dy = g(d;) ‘-<-1:,. g(da)

o distributes over U if and only if

Vd,,dy €D : g(d,; UB da) = g(d1) Uy, g(d2)
Proof. [MMR95], Lemmas 3.1.1 and 3.2.1. O

Establishing either property for g proceeds along the same lines as for more tra-
ditional formulations, with one exception. Part of the original motivation for Masti-
cola’s k-tuple formulation was the need to account for flow graph nodes at which a
property holds if it holds on any of the node’s predecessors. In [MMR95}, analyses of
this sort are expressed as “join of meets” frameworks.! This is a special case of the
nonsingular phenomenon discussed above (ref. 2.7), in which analysis makes use of
both the M and U lattice operators to combine information at a node. It, too, reflects
a situation in which we can deduce a stronger assertion than that which is propagated
along any single edge.

The formulation involves transfer functions that begin by combining all k pieces

of information in the “wrong” way:

Y“Meet of joins”, in our dual formulation.

67

; g(d], ,dk), _I_

Depy? " ,ka)
where

g(dla ,dk) =h(d1r'| ﬂdk)

One of the more striking results of their work ([MMR95], Corollary 3.2.2) is a
proof that such frameworks are almost never distributive. Specifically, they show
that distributivity of f over U holds if and only if & is a constant-valued function.

Unfortunately, their theorem applies only to homogeneous k-tuple frameworks,
and the proof they give applies only to cross-products of the lattice of hoolean values
(ref. Example 2.1.1). We prove a version of the negative half of their result here,

which applies to both homogeneous and heterogeneous product lattices, of any type.

Definition 3.1.3. A function g(v;, ... ,v) = e, with k > 1, is a sharpening function

if € contains a subterm v;MNvy, 1 < 4,5 < k, and 5 # j'. If g is a sharpening function,

then a sharpening view of g is a pair (h, e,), where e, = v; M vy is a subterm in e and

g(vy, ... ,u) = h(e,)

Definition 3.1.4. A k-tuple framework (D,) is a sharpening framework if there is
some f; € F

f,'(dl, DA o ,dk) = (J“Dl? 00GC ’J"Di-1’ g,'(d.’l, v ,dk), 'L'Di+1" Do o "Lt’k)
such that g; : D — D; is a sharpening function.

Observation. A k-tuple framework (D x ... x Dy, F) is a sharpening framework
only if there exist 1 < 7,7 < k, with j # j', such that D; = Dy (otherwise, the N

operator cannot be applied to distinct elements of a k-tuple).

The following theorem (adapted from [MMR95), Cor. 3.2.2) tells us that if sharp-

ened information is actually used in a function, it matters when we use it:

68

Theorem 3.1.3. In a sharpening framework, a function f of the form given in Def-
inttion 3.1.4 distributes over U only if, for all sharpening views (h,v; Nv;) of g; and
for alla,be Dy, h(aMb) = h(a Ub).

Proof. We assume without loss of generality that k = 2, that f((a, b)) = (h(aMb), 1),
and that a # b. Now suppose that h{a M b) # h(a Ub). Then

Fla,t))u f((b,a)) = (h Ju(h(bNa), 1)
)

U (h(aTib), 1)

W
f—'\/—-\/é:/-\r—\
=
|
o
l_

3.2 Specification of Data Flow Framework Instances

Although the results in [MMR95] are promising, it is unclear whether specification
of new data flow problems as k-tuple instances is a reasonable burden. The formula-
tions given in [MMR95] are extremely complex and much less straightforward than the
original flow equational forms. Comparable formulations likely require considerable
expertise on the part of the designer.

Further, the presentation in [MMRY95] does not offer an efficient generic solution
algorithm for solving k-tuple problems. Although the authors observe that their uni-
fied view might suggest new domains for existing approaches, their focus throughout
is explicitly of theoretical interest only. Indeed, they suggest that a general solver is
unlikely to compete in efficiency with problem-specific algorithms ([MMR95], pp.779-
80).

69

Nonetheless, this approach seems to offer the best promise for a successful toolkit.
To investigate its potential, we therefore begin our language development with a
language to support direct expression of data flow problems as instances of a k-tuple

data flow framework.

3.2.1 Semantic Domain

Let (D;, <i,J;» [;s Lis Ti)iz1 be a collection of complete lattices. We require that
<i, Ll;» and []; be computable. Uniess stated explicitly, we require no further prop-
erties of any D;; in particular, we do not assume that D; is either a complemnented or
distributive lattice, nor that it satisfies any finite chain properties. Where the context
is clear. we drop the subscript, and write D instead. To account for commonly-used
structures, we write 2° to abbreviate the power set lattice (25,C, U.N,9,S), and for
a lattice D, we denote the dual lattice by D?.

We let A denote a finite set of atoms, and let G = (N, E) be a. directed graph
with node set V C 4 and edge set £ C N x N x i (with I < i < k, for some k).
In addition, we assume a set of finite maps of the form ¢ : § — D (with § C A),
defined prior to the present analysis. We will work with the extension of each map

to A, defining 0., (x), the “application” of ¢ to an atom z, as

d ,if(z,d)E€c
Oent (T) = (=d) (3.2)

A1, otherwise

For convenience, however, we will generally blur the distinction in names, dropping
the “ext” subscript.

In the case where D is the powerset lattice 2%, we can also view o as a binary
relation on S. Then o(z) = {y|(z,y) € o} is simply the projection of z through
o, and we can in addition define the inverse projection o~!(z) = {w|(w,z) € o}.
Examples of this include the k edge types in a flow graph,? and solutions to data flow

problems defined over D = 2%,

*which yields the familiar interpretation of E;(z) and E] '(z) as the successor/predecessor sets
of node z along edges with label i (c.f. [SS93])

70

3.2.2 Syntax

Let ;(y) be a k-tuple flow map, as defined by Inequality 3.1. Writing ;(y),- for
the i index of 7 (y), we now observe the following:
Proposition 3.2.1. Let (z,y,i) € E, 1 <i < k. Then
a(®): 21 (@y,9)(@(2))

Ji-1

N) P [(z,3,9))(7(z)
())1-{-1

A E;(!»')i+1 Zir1 [z, 9]

—

A el = [(zy0]@ @)k

Proof. [(z,4,8)](0(2)); = Lj, for j # . O
Corollary 3.2.2. Let y € N, and suppose that E(y) > igly). Then for all
(z,9,i) € E,

7@ # (.90 (=) U i)

if and only if

(y)i ;i [(:1:, , ?')] (;(:E))I

Ql

As a consequence, we can rewrite Inequality 3.1 as the system of parametric

inequalities

U g, (y) (3.3)

where each g, is the function selected for index % by

(=9, 000 (@) = (Lo - i Lo, 0., (0@, Ly sy Lp)

This yields the overall form of our specification language, K, whose syntax is given
in Fig. 3.1. Here, we present only the syntactic core, omitting the various unary and
binary operators defined on non-lattice data elements (denoted in the grammar by v,
and 7.), along with such immaterial forms as the langnage constructs to define lattice
domains, flow graphs, and various external maps. While these are interesting in
their own right (e.g. [Mar98, NLM95, Ven92, YH93]), they distract from the present

discussion.

The scoping rules are fairly straightforward. A function definition

def g(Z) 1Ty, ... ,Tn:Tw) : T =¢€;

introduces bound variables z;, ... , z,, whose scope is e. The scope of g extends from
the point following its definition; in particular, it is impossible to define functions
recursively.

By contrast, flow constraints may be individually or mutually recursive. Specifi-

cally, in a block of the form

for x in ¢ def

a{x):m >= ... ;

oL (T 3= ... ;

end

the scope of each o, (1 < i £ k) includes the right hand sides of all & constraints
within the same block (and also forward from the end of the block).

The rule concerning the parametric variable = (e.g. o(z)) does have one unusual
feature. While x has the expected property of being bound in any given inequality, we
also require that it be declared in a “domain initialization” expression (for z in e).
Note that = cannot occur in e itself.

We place three additional non-syntactic limits on K specifications. First, we forbid
recursion within the “iterator” component of a flow constraint. For example, in a

constraint

oi(z):7 >= /lub w in “oj(z): g(...) lub itg(T);

we require o} to be defined prior to the block in which this constraint occurs. Likewise,
tg, if this optional term is included, must be defined before any block in which it is
used. This ensures that both the initialization and the flow graph model for a given
constraint block remain fixed as the constraints are solved. Third, the “transfer

function application” g(...) is required to match a specific form:

oi{z):7 >= /lub w in “op(z): glw,z,01{w), ... ,on(w)) lub tp(x);

for a block consisting of the definitions of oy, ... , o%.

This last convention can (and should) be relaxed in a practical setting. It suffices
to require that both w and z each appear as arguments to g at most once, that only
expressions of the form o;(u) (1 €7 < k) be allowed as arguments otherwise, and

that each o;(w) appear as an argument to g at most once.

73

(spec) == [(block) | {fndecl)|*
{block) = for T in (ezp) def (ineqn)” end
(fndecl) = def gz, : 7, ...,Zn: ™) : 7 = (ezp);
(inegn) == o(x):7>=/lub w in "o'(@): g({esp), ..., {ezp)) [Lub tp(x)]’;
n= 0(z):7T <= /glb w in “o’'(x): g({ezp), ..., {ezp)) [glb tg(x)]’;
{exp) == w,T,9,1%,... (variables)
| top | bot | {const) (constants)
| {id) ({ezp), ... ,{ezp)) (application)
| ~o(z) (o~Yz))
| {ezp) 1ub {ezp) | (ezp) glb {ezp) (U/M)
| ~{ezp) (complement)
| {ezp} - {ezp) (relative complement)
| if (ezp) then (ezp) else {exp) (conditionals)
| 71 ((ezp)) | v2({exp), {ezp)) (other operators)

FIGURE 3.1: Syntax of global semantic specifications as K programs

74

Finally, we note that consideration of the dual “/glb ” form is technically unnec-

essary. Since we work only with complete lattices, we can always regard a constraint
o(r):7 <= /glb w in "“o(x): g{{ezp), ..., {exp)) glb tp(T);

as syntactic sugar for
o(z):7% >= /lub w in “o(T): g({exp), ..., {ezp)) 1ub tp(x);

Consequently, we will not consider this form in the remainder of our discussion.

3.2.3 Behavior

The basic program unit is a block of k£ maps, of the form

for £ in e def

o1(x):7my >=/lub w in "oy (z): glw,z,00(w), ... ,0(w)) lub i, (2);

Ok (Z):7T >= /b w in “op(x): glw,z,01(w), ..., o (w)) lub g (T);

end

which corresponds to the form given by Inequality 3.3 above. Incorporation of the
initialization ¢g, term is optional: if this is omitted, we assume the default map Az.L.
This block defines the maps o; : § — D; (1 < i < k), where § C A is a set of
atoms defined by evaluation of e. As with the GenSet language [FLY02] from which
we borrow this form, the reader should avoid the intuition familiar to imperative
languages; we do not simply iterate through the elements in S, and “execution” of
the block does not correspond to an iterated sequence of assignments. Rather, once
we have computed 5, execution consists of solving each constraint o;, for each z € S,
to compute the least o;(z) that is >; the corresponding right-hand side. Equation

blocks are solved in source code order.

75

We also support the definition of auxiliary transfer and utility functions

def g(x1:7T1, ..., Zn Tp) I T = €}

For the most part, the behavior of expressions is self-explanatory, with the possible

exception of the flow ezpressions—it.e. right hand sides of flow constraints

/lub w in o'(z): e

Here, we evaluate first the “index set” expression ¢’(z), the value of which is a set
of atoms. We then iteratively bind w to each element of this set, and evaluate e
with each binding. Results are collected using the U operator. The scope of w is the
subexpression e.

K is a statically-typed language, with explicit annotations required for the formal
parameters (e.g. z : 7) and return types of functions and for the left-hand sides of
flow constraints.

Types consist of boolean values, the set atom of atoms, user-defined subsets of
atom , and user-defined lattice datatypes, along with value tuples, maps, and powerset
and dual lattices. These are summarized in the first part of Table 3.1. The type
judgments produced by the proof rules are of the form I' I p, meaning that p holds
given the judgments in I'. The available type judgments are listed in the lower half
of Table 3.1. T is often referred to as a “type environment,” although the usual sense
of this term denotes a finite map from variables to types. Here I includes also any
declarations and equality or subset constraints.

The type rules are presented in Figures 3.2 and 3.3, according to whether they
concern the effect of declarations (i.e. judgments of the form I' - D . p), equality of
types (I' = 1y = 72), or value judgments (I' - E : 7). The rules Decl Fun and Decl Eqn-
Blk are standard, the latter resembling the usual typing rule for a mutually-recursive
block of values. Decl Seq transforms a declaration into a piece of the environment.
Egquiv Dual expresses the fact that duality is its own inverse.

Most of the Val rules are straightforward. Val ~ and Val\ restrict the binary

and unary ~ operators to powerset lattices as a safe approximation of the boolean

76

TABLE 3.1: Types and type judgments

Types bool {true, false}

atom Set A of atoms
51, ... ,S5u C atom Other declared sets
Dy, ..., Dy, Declared lattice type identifiers
DS 1<i<n Dual of lattice D;
25 1<i<m Powerset lattice (25, C,J,N., 9, Si)
TIX ... XTp Tuples
T — Ty Maps

Judgments| TrFn=mn Equality of types
'ke:r e is a well-formed expression of type 7
'kd..p d is a well-formed declaration of

judgment p

lattices on which these operators must be defined (ref. Proposition 2.1.4). The rule
Val Subs offers a limited form of the subsumption rule provided by subtyping.® The
rule for Val Dual expresses the useful fact that, since the identity map between the
two structures forms a lattice dual isomorphism [Gri98|, any element of a lattice is
also an element of the dual structure, without loss of information regarding order.
On the other hand the omission of a rule for constant values is surprising. Usually,

such a rule is given as

TypeOfid) =7
Thd:r

where the function TypeOf assigns types to constants. In our setting, however, this

(Val Const)

will not work, since an element may belong to any number of partial orderings. In-
stead, we treat constants, along with the symbols L and T, as constant-valued func-
tions, overloaded according to the defined lattice types. Like the unary and binary

operators, their types are inferred according to context.

3We do not need the rules stating the partial-order properties, since these are already associated
with C.

s

T1iT1, .- o TpiTpl e T
(Decl Fun)
Lk (def flzy:7, ..., op:Tp):iT =€) (fimi X ... X7 = T)
' ejni : atom
T :atom, 0 :atom — Ty, ...,0%:atom — T, [Fep:m
T :atom, 0y :atom — Ty, ...,0f: atom — T, [Fep:my
(Decl EqnBlk)
(for = in €;nj \
def
F1(z) T >=eq;
k- 1_ ! ! co{oy ratom — Ty, ..., 0f - atom — Ty)
)T >= ey;
\ end /
'+d; .. JTHds o .
1.5 P, 2. P2 (Decl Seq) YR (Equiv Dual)
I'F(di da) .. (p1, p2) (r°) =7

FIGURE 3.2: Type rules for K—definition, equivalence, and declaration rules

78

T'te:25 SCT 'Fe:mm Tkn=mn
- Val Equiv
7 (Val Subs) Trerm {Val Equiv)
rg’l ke:7
#h (Val Var) ————— (Val Dual)
Thz:mIbhkz:T T'ke:7s
Fle :r F'key:T 'ke 7 Fkey: T
(Val) (ValU)
Ck(eyglbey): T I'F(e1lubeg): T

[g, ; 22t0R w:atom [Fey: T

'k (/lub w in e;: eg): 7

(Val | |-iter)

['t e, : 23t0M w:atom,['Fey:

I'F(/glb w in e;: es): T

. (Val []-uter)

Ibe:2° The :2° [Fey:25
—— (Val -) 5 (Val Rel -~)
F'F(~e):2 Tk (e ~eg):2
FFf:mx...x1m=7 TFe:nn ... Tle,:m,
s ‘ - " (Val Appl)
'k fler, ... ,en):T
T'Fo:atom — 23T0D 'Fz:atom
(Val Inv)

O+ ~g(x) ; 23tom

'k e : bool 'Feg:T FkFey:r

' (if e; then ey else e3) : T

(Val if)

FIGURE 3.3: Type rules for K—values

79

The Val Inv rule is also fairly subtle. Despite its appearance, this rule is not

redundant with Val Appl, and we cannot make do with the more straightforward

z:8ka(z) 24
£:STHo z):24

The problem is that this would allow us to type the expression ~o (), whenever we
could show that ¢ : A — (2’4)6. We need to prevent this because of the requirement
that “o(z) evaluate to a set of atoms, the desire to view this set as inverse projection
in a binary relation, and the interplay of this goal with Equation 3.2. Consider, for
example, the power set lattice D = (2{*%} C (J, N, 8, {a,b,c}), and suppose we have
amap o : {a,b,c} — D’ defined as

o = {(a,{b,c})}

The map of : {a,b,c} — D, consisting of the identical pair, corresponds precisely to

the directed graph

/b

so that an expression such as “¢°(b) = {a} gives the expected “predecessor” value.

By Eqn. 3.2, however,

o) =0 =1_, ={a,bc}

which would give “o(b) = {a,b,c}.

3.2.4 Examples

Example 3.2.1. We can specify a live variables analysis as follows. We begin by
considering the set progvars C atom of variables in the program source code, and

our value lattice will then be Vars = 2P*°8¥2*®, The flow graph consists of a node set

30

N and has only one kind of edge, f1ow : N — 2. We can recover N for £low by using

the ~; operator base : atom — 222 defined as
base(E) = {z|3y: (z,y) € E V (y,z) € E}

We will use the reversed edge set, revFlow. Lastly, we will need to have available the
maps isExit : atom — bool, genV : atom — Vars, and killV : atom — Vars, and we
assume these have been computed beforehand. We will use the default initialization
of Az. L.

The analysis itself is then specified by:

def revFlow(y:atom):(atom set) = ~“flow(y);
def f(y:atom,x:atom,v:Vars):Vars = (v ~ killV(y)) lub genV(y);

for x in (base flow) def
LV(x) >= /lub y in “revFlow(x): f(y,x,LV(y));
end

A complete version is given in Appendix A.l.

Example 3.2.2. Callahan’s program summary graph [Cal88] (ref. 2.7.1) is a control
flow model for large programs that replaces the intraprocedural flow graphs of proce-
dure bodies with compact summarizations. The nodes in a PSG represent four kinds
of program points: procedure call/return and entry/exit. For every procedure call in
a program, we add to the PSG a quadruple of each of these four node types, one for
each variable involved in an actual/formal parameter binding. A PSG has two kinds
of edges: those between call/entry and exit/return nodes (essentially the interproce-
dural parameter-passing edges used in the call string approach of Sharir and Pnueli
[SP81]) and those between entry/call, entry/exit, return/call, and return/exit points
(summarizing intraprocedural flow). While the interprocedural edges are determined
purely by the call structure of a program, an intraprocedural summary edge (z,y) is
added for a variable v only if the definition holding for v at x reaches ¥ (the necessary
reaching definitions analysis is performed for each procedure in order to build a PSG).

Among the analyses that Callahan defines on this graph structure is an inter-

procedural Kill analysis that determines the variables that must be modified by a

81

procedure call. This is a backwards, must-analysis. Using the lattice false < true,
with U = V and N = A, we define Kill(z) as the largest solution of the following
equations ([Cal88], p. 50):

(false ,if is an exit node

[Kill(y) ,if is an entry or return node
Kzll(m) = < (z.y)el

Kill(y) U Kill(z) ,if z is a call node, y the corresponding return

{ node, and z the corresponding entry node

This analysis makes use (implicitly) of an additional source of information flow
[MMRO5]: that between a call node and its corresponding return {analogous to the
interprocedural summary edges used in Sharir and Pnueli’s “functional” approach).
We will denote this additional edge type by Ej,m. Moreover, the K7l analysis does
not distinguish between the interprocedural parameter-passing and intraprocedural
summary edge types in a PSG, and thus we will simply denote these two by a single
type, E.

With this expanded edge set, we can rewrite Callahan’s equations in a more ho-

mogeneous form

Kill(z) = [] Kili(y) | Nee(z)| U [T Kility) | N esum(z)
(z.y)EE () EEsum

where

1 ,if z is an exit node
T ,otherwise

(z) T ,if z is a call node
Lsum\T) =
L ,otherwise

This version leads to a natural k-tuple, and hence K, formulation. The flow graph
consists of two edge types, revPSG and revSum, and a node set N = base(revPSG) U
base(revSum). The revPSG edges are exactly the PSG edges, with all directions

reversed; revSum corresponds to the Ej,,, edges, also with reversed direction. We

82

further assume the maps isExit : atom — bool and isCall : atom — bool. Boolean
is the lattice false < true. Because Callahan’s original analysis computes the greatest

fixed point, we will use the matching, dual formulation here:

def i_psg(x:atom):Boolean = if (isExit(y)) then bot else top;
def i_sum(x:atom):Boolean = if (isCall(y)) then top else bot;
def g(u:ToKill,v:ToKill):Boolean = u lub v;

for x in ((base revPSG) | (base revSum)) def
Kill_psg(x):Boolean <=
(/glb y in “revPSG(x):
g(Kill_psg(y),Kill_sum(y)))
: glb i_psg(x);
Kill_sum(x):Boolean <=
(/glb y in “revSum(x):
g(Kill_psg(y),Kill_sum(y)))
glb i_sum(x);
end

def Kill(x:atom) :Boolean = Kill_psg(x) lub Kill_sum(x);

The final definition of Ki1l combines the values from each edge type that we have kept
separate. This is what Masticola et al. call an “interpretation function” (([MMR95],
p.784). See Appendix A.2 for a complete version.

Callahan's analysis is one of the example k-tuple problems given in [MMR95], and
our version is essentially a transliteration of their formulation. Since g is monotone,
the function space induced by the closure of g under M and composition is monotone
(Lemma 2.5.1). However, it is not distributive. To see this, observe that g(u, v) is just
the identity function applied to a (dual) sharpening of u and v, and apply Theorem
3.1.3.

Example 3.2.3. In Section 2.7.3, we presented the flow equations that Morel and
Renvoise used to define their partial redundancy elimination analysis (Fig. 2.7). To
formulate this as an X specification, we need, in addition to the flow graph relation

flow, the following:

83

The relation revFlow, as in Example 3.2.1

The domain Exps, which is the power set lattice 27, with T the set of temporaries

used to store each expression value in the program

The map avin : atom — Exps, computed by an available expressions analysis

The “gen” maps antloc : atom — Exps (the available expressions Gen map)

and comp : atom — Exps (the very-busy expressions Gen map)

e The map transp : atom — Exps (the %ill map from AE and V B)

We will also define a may-analysis form of available expressions, in order to compute

the expressions that are partially available:

def initF(x:atom):Exps = if (isEntry(x)) then bot else top;
def initB(x:atom):Exps = if (isExit(x)) then bot else top;

def avout(x:atom):Exps = (avin(x) glb transp(x)) lub comp(x);
def pavout(w:atom,x:atom,v:Exps):Exps =

(v glb transp(w)) lub comp(w);
for x in (base flow) def

pav_in(x) :Exps >=
(/lub w in “flow(x): pavout(w,x,pav_in(w)))
lub initF(x);

end

The “profitable to place” component of the analysis is then:

def pp_out(w:atom,x:atom,vb:Exps,vf:Exps):Exps = vb;
def pp_in(y:atom,x:atom,vb:Exps,vf:Exps) :Exps =
pav_in(y) glb ((pp_out(y,x,vb,vf) glb transp(y))
lub antloc(y));
def f(w:atom,x:atom,vb:Exps,vf:Exps) :Exps =
pp_out (w,x,vb,vE) lub avout(w);

34

for x in (base flow) def
pp_forw(x) :Exps <=
(/glb w in ~“flow(x):
f(w,x,pp_back(w),pp_forw(w)))
glb initB(x);
pp_back(x) :Exps <=
(/glb y in “revFlow(x):
pp_in(y,x,pp_back(y) ,pp_foru(y)))
glb initF(y);
end

As with the Kill map at the end of our formulation of Callahan’s analysis, the insert

and redund maps serve as interpretation functions:

def insert(x:atom):Exps pp_forw(x) glb ~avout(x)
glb ~“(pp_back(x) glb transp(x)) ;

pp_in(x) glb antloc(x)} ;

def redund(x:atom) :Exps

Appendix A.4 gives the complete version.

Example 3.2.4. Among the advantages of allowing heterogeneous k-tuple frame-
works is the possibility of expressing non-singular data flow problems, ¢.e. problems

whose global abstract semantics involves both the [] and [_| operators.

One example of this is Dhamdhere’s modification of the PRE analysis to incorpo-
rate what he calls “edge placement” [Dha91]. The equational form is given in Figure
34.

The “profitable to place” component of the analysis is expressed as the following

k-tuple problem:

def pp_out(w:atom,x:atom,vb:Exps,vf:Exps):Exps = vb;
def pp_in(y:atom,x:atom,vb:Exps,vf:Exps):Exps =
pav_in(y) gib ((pp_out(y,x,vb,vf) glb transp(y))
lub antloc(y));
def g(w:atom,x:atom,vb:Exps,vf:Exps):Exps =
(pp_in{w,x,vb,vf) ~ antloc(w)) lub avout{w);

85

f

] Jifzx=s
PAE;,(x) ,otherwise
PPz =
N [[PPoue(z) N Transp(z) |U Antloc(z)]
N U [(PPa(w)\ Antloc(w)) N AEu(w)]
\ weE~1{x)
r(ﬂ Jifr=e
PPout(:E) = 4
N PPily) , otherwise
\ yEE(z)

FIGURE 3.4: Modified Morel-Renvoise Algorithm [Dha91]

for x in (base flow) def
pp_forw(x):Exps >=
(/lub w in ~“flow(x):
g{w,x,pp_back(w) ,pp_forw(w)))
glb initB(x);
pp_back(x):Exps <=
(/glb y in “revFlow(x):
pp_in(y,x,pp_back(y) ,pp_forw(y)))
glb initF(y);
end

In this formulation, the map (P Pjyrw, P Piack) is monotone, and the accompanying
transfer functions are, in fact, distributive. However, we can apply Theorem 3.1.3 to

see that (PPjorw, PPuqgck) is itself not distributive.

The syntactic differences between this and the formulation of PRE are small, but
they are nonetheless important. Note in particular that for PP, we require the
least solution to the constraints, while P Py, uses the greatest. This gives us a value

lattice of Exps x Exps®, which is not expressible in Masticola’s original formulation.

86

3.3 Limitations of the K-tuple Approach

The family of k-tuple frameworks extends the classical unified view to many if not
all multisource data flow problems. This has a clear theoretical utility. For example,
Masticola et al. were able to show boundedness and precision properties for a number
of significant analyses from the literature. With our extension of the approach to
heterogeneous frameworks, we can capture an even larger class of analyses. including

some previously unaccounted-for, nonsingular forms.

As a practical specification mechanism, however, k-tuple frameworks have some
notable disadvantages. Perhaps the most obvious one is the obscurity of k-tuple
formulations, as represented by our K language. The language’s constrained syntax
requires that many analyses with a natural declarative specification be given in a
form that is artificially homogenized, for the sole purpose of facilitating a direct
algebraic formulation. While useful for reasoning about the specification, the cost is
an added layer of obfuscation to confound the analysis designer. This is illustrated
by Examples 3.2.2 and 3.2.3, in which the corresponding k-tuple formulations bear

little resemblance to the original, rather straightforward, flow equations.

A more substantial shortcoming lies in the manner in which a k-tuple framework
can model information flow for a family of multisource flow graphs. Masticola’s
original formulation requires that “information must always propagate across some
explicit edge” ([MMR95], p.782), and a lattice is constructed so that “[eJach position
in a k-tuple in [TDL'] represents propagation from one source, across one edge class”
(p. 783).

The problem with this formulation is that the correspondence between flow graph
edges and information flow is not always direct. Indeed, part of the role of the global
abstract semantics is to define this correspondence. Thus, a correct accounting of
information flow in a flow graph requires consideration of both edge type and the
context in which the edge appears in the global semantics. In the PRE analysis of
Figure 2.7, for example, information flows both forwards and backwards with respect

to the direction of the flow graph arcs.

87

We can instead use the positions in a k-tuple to represent propagation across
the different kinds of information flow, rather than across explicit edge classes. In
fact, this is a complementary approach to Masticola’s own solution; in [MMR95], the
correspondence between edge types and information flows is handled by constructing
a new flow graph from the original, with new edge classes added to correspond to
each form of information flow. In the PRE analysis, this means we add a second class
of edges equal to those of the original, with directions reversed, thus doubling the size
of the edge set. This is reflected above in the use of the revFlow relation, Examples
3.2.3 and 3.2.4.

Ultimately, this is merely a matter of taste. In the examples of the present chap-
ter, we have adopted Masticola’s approach, but in general, we would like to avoid
the increase in model size that arises from explicit representation of the information
flows. However, we are then left with the burden of specifying in the global abstract
semantics exactly what those flows are. In addition, consideration of practical solu-
tion algorithms will need to include a mechanism for extracting the structure of this
information flow from the original flow graph model and global semantic specification,

a topic we address in Chapter V.

Regardless, both approaches are limited by the assumption of a fixed relationship
between flow graph structure and information flow. To see how this might fail, let us

consider an extended example.

Example 3.3.1. In [DS91], Duesterwald and Soffa present a technique for determin-
ing a partial execution order of program regions. The technique consists of a data
flow analysis over a flow graph that models {and distinguishes between) intraproce-
dural and interprocedural control flow, along with inter-task synchronization. It is
essentially a polynomial-time approximation of the set of all pairs of statements that
may happen in parallel [Tay83]. The language model is that of explicit concurrency,
in the style of Ada tasks, with a rendezvous synchronization mechanism and remote
procedure call. Hence the interaction statements consist of procedure calls, task entry

calls and accept statements, and procedure or task entry / exit.

33

Using a set of nodes IV, we model a program in this language with a special form of
flow graph, called a module interaction graph (MIG). A MIG is a triple (U, E, ., E_,,),
E,CSNxN,and £, NE

call eall

= @. U is a set of directed graphs of
). For each
digraph, s € M is the unique start node for which there is no edge (n,s) € E,,, and

where F

syn?

the form (M, E_, ,s,e), with M C Nand B, C (N xN)\ (E,, UE_,
such that every node in M is reachable from s; likewise e € M is the exit node for
which there is no edge (e,n) € E_,, and such that e is reachable from every node in

M. We require that for any two (M), E1,,,, 51,e1) and (Mz, By, , 52, €2),
Ml] M2 = Elcjg N E2-_fg e = 0

and that
U{M | (M, chg’s" e) € U} =N

The three edge types represent ordinary control flow (E,,), synchronization (£, ,),

cfg

and procedure/task call and return (E_,). The latter edge class is an elaboration

on the model given in [DS91], where only E_ and £, are used. However, their

g
analysis makes use of the information flow arising from call/return structure, and our
formulation of this imposes no conceptual changes.

The following code, originally from [DS91], illustrates the construction:

task Main; task T; proc P(v);
while (y <> 0) do read(y) ; if v = 0 then
read(y) ; accept Q; v :=1;
X = x+1; P(y); else
enddo; v o= 2;
create T;
T.Q;
P(y);

The corresponding MIG is reproduced in Fig. 3.5.

For this analysis, we represent the three edge types with the relations cfg, sync,
and callflow, which have the expected meanings. We will also need the maps
isEntry : atom — bool, isExit : atom — bool, and unit : atom — (atom) (the latter
maps each node to the task or procedure that contains it). We use the lattice Nodes,

which is the powerset lattice over the nodes in cfg (i.e. base cfg).

1.

2.

start

create T

FIGURE 3.5: Example MIG, taken from [DS91}, p.

clg
sync
call flow

89

90

The analysis to determine whether two regions are ordered—i.e. whether it is
impossible that they can execute concurrently-—occurs in two phases. The first phase
proceeds on the assumption that no task or procedure can execute concurrently with
itself. The goal of this phase is to compute two binary relations, before and after, such
that z € before(y) if and only if every instance of z executes before every instance of
y, and inversely for y € after(z).? In the second phase, the information represented
by the before / after relations is combined with information about those tasks and
procedures that can execute in parallel with themselves, in order to complete the
overall partial ordering of execution.

We will forgo the task of formulating the various components of this analysis as
instances of a k-tuple data flow framework. For the most part, the translation is
straightforward (see [Las05] for a sketch).

Instead, it is the ‘mutual update” phase as realized in the analysis’ before / after
component that interests us here. Unlike other parts of the analysis, it is not at all
clear how to formulate this component as an instance of any framework. In [DS91],
it is given in a procedural form rather than as a flow analysis, but the corresponding

K form is quite simple:

def fBef(v:Nodes):Nodes = v;
def fAft(x:atom,v:Nodes):Nodes = y lub set{x};

for x in (base cfg) def
before(x) :Nodes >=
(/1ub w in ~after(x): fBef (before(w))) lub before_glob(x);
after(x):Nodes »>=
(/lub y in “before(x): fAft(y,after(y))) lub after_glob(x);
end

Unfortunately, this cannot be a real X specification, since the flow constraints

violate the rule against recursion in the index set expressions:

before(x):Nodes >= ... /lub w in ~after(x): ... ;

4In fact, before and after are relational inverses of each other, so we could make do with only one
of them. Nonetheless, we will follow Duesterwald and Soffa’s formulation here.

91

More generally, this analysis represents the removal of an assumption that is often
considered basic to data flow analysis: that the flow graph, once determined, remains
fixed throughout the analysis. In essence, this analysis works by rewriting on the fly
the model that we are annotating, and using those changes to direct the remainder
of the analysis.

That idea is not wholly new, of course, although we are unaware of any approach
in which the rewriting is encoded directly as a part of the analysis’ global abstract
semantics. There have been several works in the literature that incorporate infor-
mation about the flow graph in the flow values themselves, collectively known as
“qualified” analyses [HR81, SP81] (and also c.f. Cousot [CC79b]). Other works have
investigated the formulation of flow analyses as restricted graph rewriting problems
[ABm00, LGC02, Rep98]. In fact, we suspect that these approaches are closely related
to each other, particularly as presented in [HR81] and {LGC02].

The significance to future research is that these approaches can offer performance
improvements to flow analysis solvers, by pruning away irrelevant parts of the flow
graph model. However, the possibly of a dynamically-changing program model com-
plicates static reasoning about the correctness of an analysis. It also complicates our
efforts at efficient solution, a matter that we will revisit in Chapter V. Finally, we
must address the practical task of toolkit-based specification, as we will need to relax
the requirement of modeling only flow graph edge types in the value lattice. This is
the subject of the next chapter.

92

CHAPTER 1V

SPECIFICATION OF
MULTISOURCE PROBLEMS

Although it has proven useful as a mechanism for reasoning about analysis, most
of the existing data flow frameworks are too limited to serve as the basis for specifi-
cation of general multisource analyses. The restrictions placed on the global abstract
semantics make them insufficiently expressive to capture the full range of interesting
problems. As we discussed in Section 3.3, this is true even for Masticola’s k-tuple
frameworks and the minor extensions developed in the previous chapter. Notwith-
standing this objection, we are still faced with the fact that specifications constrained
to a strict k-tuple form are often quite abstruse.

For the specification of multisource analyses, it is therefore best to abandon en-
tirely the traditional toolkit approach that follows closely the components of an un-
derlying data flow framework. History suggests instead that a more natural choice
for specification lies in a more general form of query language; this is, after all, the
form most commonly favored in the literature in the presentation of new flow analysis
forms.

In this chapter, we develop an approach to the specification of multisource flow
analyses based on a language that facilitates a direct translation from flow equations
common in the literature to working, executable specifications. Unlike other toolkit

approaches, we do not consider separate definitions of the function space F or the

93

local semantic functional []. While the definition of auxiliary transfer functions is
useful (and supported in our language), both 7, [], and global abstract semantics
remain only implicit in a specification, just as they do in those analyses presented in
terms of complex flow equations.

This approach to toolkit specification does have its drawbacks. First of all, it
complicates the task of reasoning about the analysis. However, the tools for that
are now well-established, and it should be possible to apply them as needed even to
analyses of the form given in this chapter. A more substantial objection is the family
of generic solution algorithms made available by an underlying data flow framework.
This latter point will be addressed in Chapter V.

4.1 A Flow Equation Language

Our language, Roke, is a strict superset of K. As before, we view the specification
of a data-flow problem as a system of simultaneous, parametric equations, drawn
from a language of first-order, recursive queries, but we now allow more flexibility of
form.

The difference in syntax consists of two changes. First, we replace the definition

of (inegn) in the grammar of Figure 3.1 with the following productions

(inegn) = 0(x):7T (con) e;

{con) == <=|>=

In addition, we add to the definition of expressions the productions
| /lub w in e: e
| /glb w in e: e

As before, we specify a data flow analysis problem as a block of recursive con-

straints, each of the form

o(z):T ¢ e;

in which 7 indicates the type of e, where ¢ is either >= or <=, depending on whether
we want the least or greatest solution to the constraint (respectively).
This gives us a specification language that is esseutially K but for three primary

differences:

e The right-hand side of a constraint can be any expression.

o We drop all of the restrictions against recursion within a block of flow con-
straints: a variable that is the left-hand side of a flow constraint may be used
anywhere in the right hand side of any constraint within the same block. Re-

cursion is still disallowed outside of for -blocks.

e Flow expressions—i.e. the iterated /lub and /glb terms-—have more flexible
syntax. Both forms can occur in arbitrary expressions, and both can be iterated

over arbitrary expressions, not just those of the form ~o(z).

Happily, the type rules given previously (Figs. 3.2 and 3.3) apply as well to our
more flexible specification language; no modification is necessary. However, with the
greater flexibility of flow expressions, we will need two additional non-syntactic limits.

First, in either of the flow expressions

/lub w in e;: e
/glb w in e;: e
we allow e; to be any expression ezcept another flow expression. In a similar spirit, a

function definition

def f(xy, ... T,):T =¢€;

cannot contain a flow expression.! The reason for these restrictions is discussed in

Section 4.3, below.

L1t is also possible to embed these restrictions in the syntax, but that requires a duplication of the
definitional clauses for expressions, in order to distinguish legal and illegal contexts for the iterated
forms.

95

4.2 Examples

Example 4.2.1. The k-tuple formulation of Morel and Renvoise’s PRE analysis from
Example 3.2.3 is essentially the one given in Masticola’s paper. With this version,
they are able to prove easily both the monotonicity and 3-boundedness (but not 2-
boundedness) of the function space. Unfortunately, the translation used to derive
this version from Morel and Renvoise’s original flow equations is somewhat opaque.
Indeed, it is not even obvious that the two formulations are equivalent.?

Our full language makes possible a more straightforward version (see also Ap-
pendix A.3):

for x in (base flow) def
pp_in(x) :Exps <=
if (isEntry(x) then bot
else (pav_in(x)
glb (antloc(x) lub
(pp_out(x) glb transp(y)))
glb
/glb w in “flow(x): (pp_out(w) lub avout(w))
)i
pp_out(x) :Exps <= if (isExit(x) then bot
else /glb y in flow(x): pp_in(y) ;
end

for x in (base flow) def
insert(x):Exps >= pp_forw(x) glb ~avout(x)
glb “(pp_out(x) glb transp(x));
redund(x) :Exps >= pp_in(x) glb antloc(x);
end

Example 4.2.2. We conclude this section by reconsidering the Duesterwald/Soffa
analysis, discussed previously in Example 3.3.1. This serves to illustrate how a com-
plete, complex flow analysis can be turned into an executable specification, using the

approach developed in this chapter.

2In fact, Khedker and Dhamdhere claim that they are not equivalent [KD99], although this is
given only as a passing comment, without evidence.

96

Part 1.1: Local ordering ([DS91], Eqns. 1 & 2). This part computes the
ordering information available from control low alone. It consists of transitive closures
over the cfg edges and their reverse, which are used as filters in determining the local
before/a fter information. We shall also find useful the relation gen(z), which is {z}
if = does not occur on a loop, and @ otherwise. Our implementation of this part is

the following pair of equation blocks:

for x in (base cfg) def
may_before(x) :Nodes >=
/lub w in “cfg(x): (may_before(w) lub set{w});
may_after(x) :Nodes >=
/lub y in cfg(x): (may_after(y) lub set{y});
end

for x in (base cfg) def
before_loc(x):Nodes >= may_before(x} ~ may_after(x);
after_loc(x) :Nodes >= may_after(x) ~ may_before(x);

gen(x) :Nodes >= set{x} ~ may_after(x);
end

Part 1.2: Synchronization ordering ([DS91], Eqn. 3). In this next step, we
propagate the local ordering information across synchronization edges in the model,

obtaining the relations before,,,,. and aftergm,:

for x in (base cfg) def
C_before_sync(x) :Nodes <=
if empty (“cfg(x)) then bot
else /glb w in “cfg(x):
(C_before_sync(w) lub S_before_sync(w));
S_before_sync(x) :Nodes <=
if empty (“sync(x)) then bot
else /glb w in “sync(x):
((C_before_sync(w) lub S_before_sync(w))
lub (before_loc(w) lub gen(w))
)

end

97

for x in (base cfg) def
C_.after_sync(x):Nodes <=
if empty (cfg(x)) then bot
else /glb w in “cfg(x):
(C_after_sync(w) lub S_after_sync(w));
S_after_sync(x) :Nodes <=
if empty (sync(x)) then bot
else /glb w in “sync(x):
((C_after_sync(w) lub S_after_sync(w))
lub (after_loc(w) lub gen(w))
)
end

for x in (base cfg) def
after_sync(x):Nodes »>=
(C_after_sync(x) lub S_after_sync(x))
~ after_loc(x);
before_sync(x) :Nodes >=
(C_before_sync(x) lub S_before_sync(x))
~ before_loc(x);
end

Part 1.2-3: Activation contexts / global propagation ([DS91], Eqn. 4).
Once we have the before / after information for both ¢fg and sync edges, we can
combine them to obtain global versions. Concomitantly, we must also consider the
ordering information that flow to (resp. from) the entry (resp. exit) points of each
unit. In [DS91], these are presented as (respectively) the final part of step 1.2 and
the initialization phase of step 1.3. In our implementation, we combine them into a

single initialization step for the activation context analysis:

93

for x in (base cfg) def
before_glob(x) :Nodes <=
if (isEntry(x) and not (empty callflow(x)))
then
/glb w in “callflow(x):
(before_glob(w) lub gen(w))
else
before_loc(x) lub before_sync(x) ;
after_glob(x) :Nodes <=
if (isExit(x) and not (empty callflow(x)))
then
/glb w in callflow(x): after_glob(w)
else
after_loc(x) lub after_sync(x) ;
end

The rather complicated-looking test in both conditionals simply checks whether z is
a start (resp. stop) node of some unit that is actually called during execution.
Following this initialization, the “mutual update” phase propagates the befure
and after information that holds on unit entry/exit into the unit bodies and across
callflow edges (ref. p.90):
for x in (base cfg) def

before(x) :Nodes >=
before_glob(x) lub (/lub w in ~after(x): before(w));

after(x):Nodes »>=
after_glob(x)
lub (/lub y in “before(x): after(y) lub set{y});
end

Note that the final line in the definition of after fixes a bug in [DS91], in which call

targets are never included in after sets.

Part 2: Analysis of Parallel Units([DS91], Eqn. 5). Once we have computed
them, the before and after sets can be combined to yield the overall partial execution
order. Specifically, our goal here is to compute for each node z the set Ord(z) of all
nodes in the program model that cannot execute simultaneously with z.

For our implementation, we begin with three auxiliary properties. The set local(z)

consist of those nodes that are in the same unit as = (the restrict type operator is

99

a limited, safe form of casting). The head of the unit to which = belongs is denoted
by head(z), while the set of all call sites of z’s unit is head.callers(z). Once we have

these, we compute Ord;,;;, which is the initial estimate of Ord (p. 43, par. 2).

def local(x:atom):(atom set) = “unit(unit(x));
def localNodes = restrict(local,Nodes);

for x in (base cfg) def
head(x) :Nodes >=
/lub h in local(x): (if isEntry(h) then set{h} else bot);
head_callers(x) :Nodes >= /lub h in head(x): ~callflow(h);

end
def Ord_init(x:atom) :Nodes >=
before(x) lub after(x) lub localNodes(x);

If there are no parallel execution units, then Ord = Ord;,;,. Duesterwald and
Soffa observe that in order to take into account parallel execution of a unit, it suffices
to consider the Ord sets holding at the call sites of that unit, using the result as a
filter. This is Equation #5 in [DS91). While not directly representable in our syntax,
the following is an equivalent form:

for x in (base cfg) def
unit_filter(x):Nodes <=
if (empty head_callers(x)) then top

else
/glb c in head_callers(x): Ord(c) ;

ODrd(x):Nodes <= Ord_init(x) glb unit_filter(x));
end

4.3 Properties

At this point, it is worth reflecting on some of the trade-offs we have made in
balancing the expressiveness, decidability, and complexity of our language. Roke
is essentjally a lightly sugared query language, over first-order fixpoint inequalities.

Strictly speaking, we do not really need to support any lattice datatypes other than

100

powersets, and if all our queries were monotone, we could safely express all inequalties
as equalities, since least/greatest solutions would be guaranteed to exist.

Not all Roke-expressible queries are monotone, however, and monotonicity is not
a decidable property for any but the simplest query language forms. Nonetheless, it
is possible to restrict the syntax (e.g. with a positivity or stratification requirement
[AHV95]) or to apply static analysis techniques that facilitate approximate enforce-
ment (e.g. the type and effect systems given in [MY02, YE02]). However, monotonic-
ity is a sufficient but not necessary condition for termination, and non-monotonic
equations have some existing uses in program analysis [Che03, FS99, GKL*96). We
therefore take the view that this responsibility is best left to the user of our language.

Similarly, we can adopt an inflationary semantics for the language, in which we
consider the meaning of a query to be its least inflationary (or greatest deflationary)
fixed point (ref. Section 2.5.1). This is a more palatable requirement than those than
monotonicity, since (1) we are always guaranteed the existence of a minimal solution,
if a unique least fixed point does not exist, and (2) in the case of monotone queries,
the least fixed point and inflationary fixed point solutions coincide. As discussed in
the following chapter, this is, in fact the approach we choose to adopt.

Roke is therefore closest to a form of Datalog with unrestricted negation, but
with inflationary semantics, over unordered databases [AHV95, Imm99].> While this
means that all queries take time polynomial in the size of the flow graph, this may
still result in a prohibitively high complexity: the problem is complete for PTIME
[AV91].

In fact, we have accomplished a much tighter bound for constraints expressible in

Roke (and therefore also K). To understand this, we define the following:

Definition 4.3.1. The elementary operators in Roke are the binary operators glb ,
lub, -, and 1, the unary operators ~ and 7, and application/inverse applications
o(z)/~o(x), where o : atom — D. An elemeniary expression is either a term or an

elementary operator applied to operands that are elementary expressions.

SWhile lattices are partial orders, the base elements may not be. For example, in the lattice
(25,C), where § = {a,b,c}, there is no order among the atoms a, b, and c.

101

Note that we have limited the syntax of function definitions so that all function
bodies are elementary expressions. Consequently, every definable function is total,

and assuming a constant bound on program length, along with

Proviso 4.3.1. The elementary operators can each be computed in time bounded by

some constant.
it is clear that

Lemma 4.3.2. The execution time of every function application in Roke is bounded
by some constant.

O

In general, we require that these properties be preserved by any other constructs
we might add to the language. Consequently, we explicitly exclude from the syntax of
allowable function body expressions any construct that permits recursion or iteration.

Under more precise measures, of course, Proviso 4.3.1 is unrealistic, and we should
perhaps use the more noncommittal requirement that function application have a
cost no worse than that of an elementary expression. In fact, the cost of such high-
level operators will vary, some times significantly, depending on the underlying data
structures we choose. For a more general-purpose language, this problem cannot
be ignored. The possibility of determining the running time of an operation from a
program’s source code is termed computational transparency by Cai and Paige [CP93],
and there have been several efforts directed toward achieving this property with very
high level constructs such as our elementary operators (c.f. [CP87, CP89, CFH+91,
CP93, Goy00}).

Unlike high-level iterative and recursive forms, however, the complexity of elemen-
tary expressions depends only on the value domain that we use, not on the flow graph
model that arises from a particular problem. Since the number of value domains we
use is likely to be small compared to the range of flow graph models, it is therefore
reasonable to consider the cost of elementary expressions as in some sense indivisible,

much as arithmetic operations are viewed in more conventional, imperative languages.

(v)
S
Y

A(x):T <= /glb w in R1(x): (/lub y in R2(w): (A(y) glb B(w)) - B(x));

FIGURE 4.1: A banned nested iteration and an example portion of a flow graph
on which this analysis might be defined. Note the way that flow information at the
intermediate node w is itself used in the transformation of the value from y to z.

It is this desire to separate the complexity of various constructs that further
motivates the restricted usage of flow expressions; i.e. the prohibition against “nested

iteration.” The reason for this is the following

Lemma 4.3.3. Let ¢ be an expression of length . On a flow graph (N, E) evaluation

of ¢ requires at most O(l - |N|) elementary operations.

Proof. By structural induction on ¢. We observe that the only interesting cases
are when ¢ is of the form “/lub w in 4: €, “(/lub w in ¥: e) op &,
“f/glb w in P: €",or “(/glb w in P: e) op ex” (with op € {lub,glb,-}).
We consider only the first case, “/lub w in : e”, since the others are similar.
By assumption, e consists of ((l) elementary operations. Now it is clear that e
must be evaluated O(|y|) times, where |i)| is the cardinality of the set resulting from
evaluation of ¥. This is always a value of the lattice 2V whose largest element is N,
and evaluation of ¥ itself requires only O(! - |N|) elementary operations {by I.H.),
which completes the argument. More complex cases for ¢ follow from the inductive

hypothesis. 0

103
Assuming that ! is bounded by a constant, we have

Corollary 4.3.4. Evaluation of the right hand side of any flow constraint requires

O(IN|) elementary operations. O

Note that this proposition is false if nested flow expressions are allowed. In this
case, evaluation of ¢ would grow as O(|N|%), where d is the largest nesting depth of
any flow subexpression of ¢.

The example in Figure 4.1 makes clear that a flow equation containing a nested
flow expression is of a quite different character from one that does not. In general, a

constraint of the form

o(z):7 > /lubyin ¥y : ¢;

defines o(z) in terms of an index set 3 which is used (along with z itself) to establish
a set of values, as defined by the expression ¢. Note that ¢ can only be defined in
terms of y and z, since these are the only free variables that can occur. In this way,
¢ serves to transform directly the flow of information between y and z. By contrast,
the equation in Fig. 4.1 also makes use of information about the intermediate nodes
on a path from y to . Although such analyses might be useful in practice, the kind
of path-sensitivity represented by allowing these “super arecs” of information flow
is clearly different from the more direct notion of flow embodied in our language.
Lemma 4.3.3 also shows that there is a cost exacted in performance.

On the other hand, we give up little in the way of practical expressiveness by
adopting this restriction. We know of only one use of a nested iterative form in
the flow analysis literature (Tenenbaum {Ten74|, Eqn. 14), and even here, later
formulations of this analysis such as [KU80, KDM03] make no use the nested form.

Note that we do permit flow expressions within the definition of the index set
itself, as in the following example (adapted from [Ten74], Eqn. 12, which computes
the type of an assignment x, based on def-use chains in the basic block where =

occurs. }:

104

//T
// N

]

(lattice of types)
(powerset lattice of nodes)

for x in nodes def
idx(x}:N >= du(x) glb
(/lub w in (/lub b in block(x): ~“block(x) ~ set{x}):
rhs(w));
back(x):T <= /glb w in idx(x): backtype(w);
end

From a conceptual view, we allow the use at = of flow values holding at any other
node w in the flow graph model, regardless of whether z is a c-successor of w, for any
edge type c. However, we discard information about the path from w to z. Instead,
the atoms in the index set can be thought of as “predecessors” of r along some form
of information flow.* This flow will often correspond directly to edges in the flow
graph, but in our language, the existing edges are a strict subset of the possible forms
of flow. From an operational view, this incurs no additional penalty, since the index
set is evaluated exactly once, rather than O(|N|) times.

The result of all this is that the time to solve specifications by chaotic iteration
in our extended syntax is comparable to that of the more constrained k-tuple form.
Practically speaking, we need only refine the evaluation function F : (N — 5) —
(N — 5) and accompanying eval, (ref. p. 29) to handle the more general Roke

forms:

F(o) = An.(eval(1,n,0), ... ,eval(k,n, o))

where eval(i,m, p) is the result of evaluating the right hand side of the inequality

defining o;(z), under the substitution z =+ m and solution p.

(Alg. 2.5.1-—Chaotic Iteration)
Input: Multisource analysis specification o1(x): 1 >= ¢1; ... op{z): 7 >= ¢y; and
problem instance defined by the flow graph (N, E C U"=1 N x N x i), with |[N| = n.

4In fact, this is the purpose of the equation for idz, which allows us to consider in the definition
of back only those expressions that can use x and are also in the same block as z.

105

Output: The least o satisfying the constraints o1(x) 1y >=¢y1; ... op(T) ;7 >= Pics
Method:
for each (1 € {1,...,k},j € N):
oi(§) — u(7)
change — true
while(change):
change — false
for each (i€ {1,...,k},j € N):
newval — eval(i, j, ;)
if(newval £ a:(5)):
gi(7) — newval Uo;i(4)

change — true

We then have:

Theorem 4.3.5. Let Dy, ..., Dy be complete lattices such that each D; has finite
height h;, and let ¢ = o, ... , ok be defined by a set of stimultaneous, mutually recur-
siwe queries over Dy, ..., Dy, such that the right hand side of each o; is monotone.
Let (N, E) be a flow graph. Algorithm 2.5.1 converges in O(k? |N}® (ZLI h,-)) ele-

mentary operations.

Proof. The Z:.;l h; term is the height of ‘B = D) x ... x D;. For each (0y,7)
in the inner loop of, we perform O(|N|) elementary operations (Corollary 4.3.4).
The inner loop iterates O(k|N|) times. If there is any node j whose value o(j)
changes, then its value must increase, and for each of the k|N| pairs (o;,7) this

can happen at most h; times, giving an overall cost of O(k |N|? (Zf=1 k|N| h,-)) =
O INP (Lo i) O

Further, as in Theorem 2.5.3,

Theorem 4.3.6. For a monotone specification S over the laitice D satisfying ACC,
Algorithm 2.5.1 computes ifp(S5). O

106

In practice, & (the number of “flow equations™) is likely to be quite small. Indeed,
it is even reasonable to assume a constant bound on this value. Even so, the overall
complexity of Algorithm 2.5.1 is unappealing. We take up the matter of improved

solvers in the next chapter.

4.4 Related Work

In this chapter, we have developed a domain-specific language, Roke, that is suit-
able for specifying not only the transfer function and flow map components of a
multisource analysis, but also the global abstract semantics. The nearest ancestor of
Roke is the GenSet project of Young et al. [FLY02, ZYL04]. The two languages are
very similar in both syntax and behavior, and many ideas in the design of Roke were
taken directly from this earlier work. The main differences are (1) the definition of
lattice operators over varying types (GenSet is restricted only to sets of atoms), (2)
the restrictions on nested iteration in order to guarantee complexity bounds, and (3)
the possibility in Roke of defining auxiliary transfer functions and multiple lattice
types. The syntax and semantics of the data type and function definition constructs
owe a debt to the PAG system of Martin et al. [Mar98, Mar99].

While the language has been developed with an eye toward natural specification,
performance guarantees, and simplicity of reasoning, the particulars of the language
are less important than its place in our overall approach. Other specification mecha-
nisms may also be suitable.

An obvious choice is the use of a complete, declarative language such as SETL
[SDDS86], an implementation of the abstract language SQ+ [CP89, Goy00], or some
form of logic or partial-order programming [0JP99|. The disadvantage of all of these
approaches is that, being general-purpose programming languages, there is a greater
burden on the analysis designer to prove convergence. Moreover, these very high-
level languages lack computational transparency [CP93], making it more difficult to
establish fine-grained complexity bounds. On the other hand, Dawson et al. [DRWS6]

report experimental results that suggest general logic programming formulations of

107

program analyses can offer competitive performance, and this approach is worth fur-
ther study.

Use of a deductive database language such as Datalog [AHV95] offers many of
the benefits of a general-purpose language, but with convergence and complexity
guarantees similar to ours. Further, there is a fairly rich body of work on implementing
such languages, and existing implementation strategies can be leveraged to yield
improved solution algorithms for program analysis.

McAllester [McAO02] implements several forms of program analysis—including data
flow analysis—as Datalog programs, and develops techniques for the establishment of
precise complexity bounds, competitive with those of more standard implementations
of the analyses. In addition, Reps et al. [HRS95, Rep94b, Rep94a, Rep98, SRHI5]
have applied this approach to formulate context and flow-sensitive interprocedural
analyses as Datalog programs. Using this formulation, they can obtain a demand-
driven solver for free.®

However, Datalog is strictly less expressive than Roke (since it cannot express
negation, or at best is limited to stratified negation). In addition, for both Datalog and
more powerful Prolog-like languages, the iterated | J operation Uf=1 e; is embedded
implicitly in the multiple rules and solutions to rules that may exist. This is acceptable
so long as our iterated U operator is set union and we have no need of flow expressions
over M, as well. However, a k-ary intersection ﬂ:;l e; cannot be expressed statically
for arbitrary k, and while workarounds exist in many cases (c.f. Reps [Rep94a], p.13),
in general an analysis requiring k-ary intersection is at best awkward to construct.

Perhaps the most compelling alternative is the formulation of multisource analyses
as set constraint problems, which can then be supplied to a general constraint system,
such as Banshee [KA05). Set constraints are highly expressive, and have been success-
fully applied to a large array of program analyses [NNH99]. The disadvantage is that
set constraint languages are strictly more expressive than we need, and consequently

have a worse worst-case complexity [Aik99]. On the other hand, there are restricted

5...either by using the magic sets transformation of Bancilhon et al. [BMSUS6| with bottom-up
evaluation on the transformed program that results, or else by evaluating the (original) Datalog
program with a top-down tabulating evaluator [War92).

108

forms of set constraints that have polynomial {(O(N?)) complexity, which could well
be expressive enough for our needs. In many ways, our language, much like its pre-
decessor GenSet, can be understood as an explicit restriction to this “sweet spot”,
with added syntactic sugar appropriate to the domain of flow analysis problems.

Other than the one developed in this chapter, we are unaware of any approach
to toolkit development that encompasses arbitrary multisource data flow analyses.
Lerner et al. [LGCO2| indicate that a toolkit was built by Masticola’s group to
support the work in [MMR95], but this is incorrect.® As discussed in Chapter 1I,
there are a number of toolkits to support the automatic generation of data flow
analyzers, but even those supporting advanced analysis forms are unsuitable for the
general multisource case.

It is possible that, with a sufficiently rich language for defining the value lattice
and transfer functions, we could simply implement a k-tuple data flow problem as a
specification provided to a traditional toolkit. We believe it likely, however, that the
resulting specification would be nearly as complex as a hand-built implementation,
since we would have to encode all information about edge types (along with the
associated global semantics) within the transfer functions alone. Even then, we still
have not accounted for the cases where there is no clear expression of the problem as
a framework instance, such as a global abstract semantics defined on a dynamically-
changing flow graph model.

More directly, we could abandon the multisource data flow view, and instead
implement such analyses as abstract interpretations (for example, [CCF*05, Mar98,
YH93]). As discussed above, this restricts application to program analysis, which is

but one application of the data flow analysis technique.

8Barbara Ryder, personal communication.

108

CHAPTER V

SOLUTION TECHNIQUES

This dissertation supports the thesis that the implementation of program ana-
lyzers for multisource data flow problems can be largely automated with an analysis
generation toolkit. In the previous two chapters, we have shown how to extend the
traditional approach to toolkit-level problem specification, in order to support the
specifications in this more general problem family. Here, we show that efficient im-

plementations for these specifications can be constructed antomatically.

The primary contribution of this chapter is the development of a new solution
technique for the fixpoint constraint systems that arise from Roke specifications.
Because Roke is expressive enough for nearly all multisource data flow problems, we
have therefore overcome the main impediment to the automated implementation of

efficient solvers.

In contrast to existing data flow analysis toolkits, our approach does not assume
any particular relationship between flow graph structure and global abstract seman-
tics. Rather, this relationship is itself part of a Roke specification, whose structure
guides the generated solver. The technique, while being fairly easy to implement, is
quite general: the version presented here handles not only static constraint systems—
i.e. those that remain fixed throughout the solution process—but also systems in

which the constraints themselves can change dynamically.

110

5.1 The Influence of Influence

Theorem 4.3.5 shows that ordinary chaotic iteration (Algorithm 2.5.1) can be
used to solve monotone Roke specifications. Unfortunately, the complexity of this
approach—cubic in the number of flow graph nodes—may be prohibitively expensive.
As with the traditional version of the solver, it is also very often unnecessary. Again,
the primary culprit is the wasted effort that results from re-computing the value at
every node, for every flow constraint, whenever a change occurs.

To avoid this waste, we want a change in value to induce re-computation only
for those constraint/node pairs whose solutions have destabilized as a result. The
standard approach (for example, [NNH99}) is to view such influences as arcs in a

directed graph, which can itself be used to control the re-computation of solutions.

Definition 5.1.1. Let o = a1(z): Dy >=e1; ... op(z): Dy >= er; be a specification

of a data flow analysis over the lattice D = D, x ... x Dy and let the flow graph
G = (N, E) be an instance of this analysis.

e For m,n € N, solution p: N — D, and maps o; : N — D;,0; : N - D;
(1 < 14,5 < k), we say that o;(m) influences o;(n) in p if there exist distinct

a,b € D; and ¢ € D; such that

eval(e;, n, ploi(m) — a,0;(n) — c]) # eval(e;, n, plos(m) — b,05(n) — d])

o The information flow graph (IFG) for (t_;, G, p} is a directed graph (N*__, E*_),

IFG

where N*._ = {(i,n)|1 < i< kAne€ N}and E? = {(z,9)|z,y € N°__A

IFG IFG IFG

z influences y in p}

Given a specification, a problem instance, and the corresponding IFG, we can ap-
ply the workset improvement to obtain a solver that can in practice offer a significant

performance improvement:

111

Algorithm 5.1.1 (IFG Workset Solver).

Input: Flow analysis specification o1(x):Dy >=e;1; ... ox(x) :Dy >= ex; and information
flow graph (N?__, Ef_)
Output: The least 7:N = 'B, satisfying o1(z): D) >=ey; ... op(x) Dy >=¢ep;
Method:
for each (i.m) € NF__:
oi(m) — L

W.add{(i,m))

while (IW.empty()):
(i,m) — W.extract()
newval — eval(e;, m, ;)
if (newval £ ai(m)):
gi(m) — o;(m) Unewval
W — infl, .o (W, o,m,i)
Where:
infl, .. (W,p,m,i) i
for each (j,n} € EP__.((i,m)):
W.add((7,n))

return W

a

With only minor changes, this is essentially the solver given by Algorithm 2.5.3,
the main difference being the need to include the updated map o; as a parameter.

Likewise, much of the technical development parallels the earlier work in Section 2.5.2.

Theorem 5.1.1. Let D = D) x ... x Dy be complete lattices such that each D;

has finite length h;, and let oy(x):Dy >= e;; ... op{x): Dy >= ei; be a monotone

—

specification of a flow analysis over D. Let the flow graph G = (N, E) be an instance of
this analysis with IFG (N, Ef_). Denote by M, the largest number of edges in E*__

that share a common source. Algorithm 5.1.1 converges in O(M!(k|N|?) (ZLI h,-))

elementary operations.

112

Proof. On each iteration of the while loop, we remove one element (i, m) from W. We
then perform O(|N|} join operations, after which o;(m) is either left unchanged or else
assigned the new value newval. If we assign to o;(m), it is with a strictly larger value.
This can happen at most h; times. With each of these assignments, the call to infl

IFG

adds O(M,} new elements to W, so each (i,m) € N*__ adds O(h;- M) elements to W.
Hence, we perform O(M]|N?__| (Zle hi)) = O(M.(k|N]|) (ZLI h,-)) iterations of
N (ZLI h,-)) elementary operations.

0

the while loop, for an overall cost of O(M.(k

Actually, the bounds are a little better than this, since one of the |N| factors comes
from the cost of evaluating each right hand side (Corollary 4.3.4). Although an actual
proof requires the development of the next section, it is not hard to show that this
cost is in fact bounded by M., the largest number of edges in E? . that share a
common sink. Hence we can bound our workset solver by O(M! M. k|N| (ZLI h,-))
which more closely matches the result of Theorem 2.5.8. Similarly, we can use M’
to tighten the bound in Theorem 4.3.5. Either way, both M! and M! are always
bounded by ||, and in many cases, the bounds are constant.

Correctness also follows along lines very similar to those followed earlier (ref.
Theorem 2.5.12). As above, we write the sequential execution of steps s and ¢ in the

solver as (s;t). However, in this case we make use of the predicate

Iw((o:, T)) = oi(z) ¥ eval(e;,z,7) = (oy,z) €W

the difference lying mainly in the use of the IFG. The notion of a workset function for
(s, E'L, W) is defined with respect to this predicate. Denoting by a,, the assignment,

gi(m) — o;(m) U newval (line 8), we have

Lemma 5.1.2. Ifinfl
spectfication S over a lattice D that sotisfies ACC, Algorithm 5.1.1 terminates with

o = Ifp(9).

—
re 15 a_lworkset function for (a,, o, W), then, on a monotone

Proof. Similar to Lemma 2.5.10. O

113

Lemma 5.1.3. The function infl,__ is a workset function for (a,,, o, W).

Proof. As in the proof of Lemma 2.5.11, only in this case, we are considering the IFG.

In particular, we argue from the structure of E” . whose arcs represent all influence

IFG?

between ((z,m), (j,n)) pairs.
O

Corollary 5.1.4. On a monotone specification S over a lattice 'b that satisfies ACC,
Algorithm 5.1.1 terminates with o = Ifp(S). B

That the development here should parallel that of the earlier classical case is
hardly a coincidence. For both the forward and backward versions of Algorithm 2.5.3,
correctness is due to the fact that, in each case, the accompanying infl functions
guarantee the propagation of flow value changes to every directly-affected node in
the flow graph. The nodes to which a change must be propagated are precisely the
successor nodes in the problem’s IFG. For forward intraprocedural analyses, the IFG
edges are tightly approximated by the edges in the control-flow graph (i.e. £ 2 Er).
For backwards analyses, we use the reversed CFG.

In both cases, the approximation may be an overestimate,! but this is all we need:

Lemma 5.1.5. In Algorithm 5.1.1, replace infl, . with the function f, defined as

F(W,p,m, i) <
for each (j,n) € ReQP(i,m):
W.add((j, n))

return W

If
V(i,m) € N°._ : ReQ®(i,m) 2 E”, ((i,m))

IFG

then f is a workset function for {a,,, o, W).

Proof. Easy. 0

!For example, if the low value holding at node z is a constant, then we do not need to propagate
from control flow successors / predecessors of z.

114

In order to discover an efficient solver for a multisource data flow problem (given
as a Roke specification), we should therefore determine a good approximation of the
problem’s IFG. To construct such solvers automatically, we need to automate this

discovery, as well. This problem is taken up in the following section.

5.2 Challenges to the Determination of Influence

In classical intraprocedural analysis, static determination of influence is a simple
problem: the IFG is essentially the control flow graph for forward analyses, and the
reverse of the control flow graph for backward ones. Although it is unclear how one
would construct a reliable metric, this approximation of the influence relation for
any classical unidirectional analysis problem is probably quite good. Program points
whose properties cannot be affected by their control predecessors/successors are not
common. Indeed, we believe it is reasonable to assume that any overestimate is within
a constant factor.

In many advanced forms, the relationship between the global abstract semantics
and a problem’s IFG is also well-understood. For context/flow sensitive interproce-
dural analyses, workset solvers are presented in Sharir and Pnueli [SP81] and Knoop
et al. [KRS96], and several are implemented in the PAG toolkit [Mar98). For analysis
of parallel programs, the situation is somewhat more complicated, as determination
of the IFG depends on the chosen model of concurrency. Nonetheless, there are
several implementations of flow analyses for concurrent programs that successfuily
adapt the workset heuristic (e.g. [Dwy95, KSV96]). Khedker and Dhamdhere’s uni-
fied approach to bidirectional and unidirectional bit-vector analyses [KD94] considers
four different flows—control flow information and its reverse, through both nodes and
arcs—and includes a workset-based solver for instances of this framework.

Unfortunately, the limitation of all of these solution variants is the same one
that makes their underlying frameworks unsuitable for specification of arbitrary mul-
tisource flow analyses: all presume a fixed form for the global abstract semantics.

Consequently, the relationship between a flow graph model and its IFG is also fixed,

115

and the accompanying solvers are thus limited to analyses only within their respective

families.

What we want is a means of determining the influence relation from arbitrary
Roke specifications. For this, the most straightforward method is the “generate and
solve” approach embodied in various forms of set constraint-based analysis [Aik99]
(see also [NNH99], pp. 366-368).

The insight here is that a system of flow inequations

o1 (T):1 >=e;

o (Z) 1Ty >= ey

is parametric on the set of flow graph nodes, and thus serves as a set of constraint
generators. To determine the IFG for a given problem, we apply o; to each n € N
(1 £ j < k), expand the corresponding right hand sides (by unrolling all flow subex-
pressions in ¢;{n/z}), and consider the resulting k | N| (fully instantiated) constraints.
The left hand sides constitute the IFG node set N . E#_ is constructed by adding,

for every g;(n), the edge ((¢,m), (j,n)), for each o;(m) € e;{n/z}.

Consider, for example, a specification of liveness analysis in the traditional IN/OUT

form:

LV_in(x) >= (LV_out(x) ~ Kill(x)) lub Gen(x);
LV_out(x) >= if (isExit(x)) then bot
else
/lub y in flow(x): LV_in(y);

On the flow graph

we have the constraint system

LV_in(l) >=
LV.in(2) »>=
LV_in(3) »>=
Lv_in(4) »>=
LV_in(5) »>=
LV.in(6) >=
LV_out(l) »>=
LV.out(2) »>=
LV_out(3) >=
LV out(d) »>=
LV_out(5) »>=
LV_out(6) »>=

This yields the IFG of Figure 5.1.

) lut Gen(1)
) 1ub Gen(2)
) 1ub Gen(3)

(4)) 1ub Gen(4)
(LV_out(5) ~ Ki11(5)) lub Gen(5)
(LV_out(6) ~ Kill(6)) lub Gen(6)

Lv_in(2)

LV.in(2) lub LV_in(3)
Lv_in(3) lub LV_in(4)
LV.in(5) lub LV_in(6)
LV_in(2)

bot

116

The “generate and solve” approach works for many, but not all, specifications.

The problem is that the generation of constraints from the original parametric forms

LV_out ,6

FIGURE 5.1: Example IFG arising from LV analysis

happens all at once, before we begin solving them. While this “separation of specifi-
cation and implementation” is an appealing feature of set constraint-based analyses
[Aik99], it cannot handle the case in which the constraints themselves change dynam-

ically during intermediate results of the solution process.

In data flow analysis, this situation arises whenever intermediate results are used
to prune or add edges from or to the flow graph. Examples of this include quali-
fied data flow analysis {HR81}, composed analysis and optimization [BGS97, CC95,
LGC02], and various uses of reachability analysis [DS91]. In Roke specifications, it
corresponds to a flow expression “/lub w in ¢: e€” or “/glb w in ¢: e, in
which the index set expression ¢ is recursive; i.e. it contains an occurrence of some
flow map o, which is itself defined in the same block. The hefore/after analysis in

Example 3.3.1 is representative of this.

118

5.3 A Hybrid Technique for Static Determination

For the general multisource case. the key to our approach lies in the fact that
the Roke specification of a data flow analysis is merely a program. The significance
of this is the possibility that static analysis techniques can be applied fruitfully to
the specification itself, in order to improve the underlying solver. Specifically, we
will employ a static analysis in order to discover information about the (implicitly-
defined) TFG of a specification. While we cannot always determine the influence
relation statically, there remains still the possibility of determining, statically, how to

find this information, dynamically.

5.3.1 Factoring Complex Flow Expressions

In order to simplify the construction, we begin with a normalization step, which
factors out complex index sets from every flow expression. These are any index set
expressions other than applications (o(z)) or inverse applications ("o (z)), and we
replace each one with a new abstraction of the expression and an application of that

abstraction in the original context. For example,

o1(zx) : Dy >=ey;
o-,-(:r::):D,- >=/lub w in ¢: e;;
T (:z:') Dy >=ep;
becomes
oy (x):Dy >=e;;

adi{z):D;>= /1lub w in o (x): e;;

op(2): Dy >= e
Opyr () 12208 5= g

119

This transformation is applied iteratively until there are no complex ¢ remaining.
Since at each iteration, we only remove a complex index set expression (and never
add one), termination of the transformation is assured. The result is that every flow
expression will be of the form “[J w in “o(z):€” or “[] w in o(x):e” (where [] is
either of [],_])-

It should be noted that this step provides another reason for the prohibition in
Roke on nested flow expressions. Were we to allow such expressions, the transforma-

tion would break on any constraint of the form

o(zx):D >= /op win e;: (fop y in e3: e3);

in which z appears in e3, since the result would move z outside of its scope.

5.3.2 Static Construction of Influence Functions

QOur approach, which extends the earlier results of [FLY02], is based on a static
analysis of the specification’s source code, in which we perform a partial evalu-
ation [JGS93], specializing each equational definition to a set of “influence func-
tions”. Specifically, we associate with each equation definition o; a set of finite maps,
& : (N - ‘5) — N — 2N one for each parametric equation ¢ (including o; itself).
We assume that the space required to represent a single dg is bounded by a constant.
Since the number of these functions is quadratic in the number of parametric equa-
tions defined, we have a quadratic space bound overall. In practice the number of
these definitions is likely small, so this overhead should be manageable.

The construction of each function d? is by induction on the right hand side of ;.
It represents the computation necessary to determine the nodes on which ¢; might
change, when the value of &;(m) changes for some node m, i.e. those nodes that are
the immediate successors of (¢, m) in the IFG. Formally, for a constraint o;(z) >= ¢;,
the influence function for a definition o;(x) >= ¢; is

d] = Ap.dm.dep(p,i,ej,m)

where dep(p, i, e;,m) is defined inductively on the structure of e; as follows:

120

(asimaaryyo)
(9 = (w'a"2'd)dsp J1)
(as1mie1(y0)

(¢ = (w'a‘z'd)dap i)

(L n{-}3o0)
(e N {~‘a13‘an1} > @)
(9stm1a1[70)

(f=12p)

(asimIat]yo)

(f=150)
({3su00) N {30q ‘doa} 3 0)
(p) 3 =)

"uorgouny uoissaxdxa souanyur Y, :2°'C AHNOLA

(w(x)a, ‘2'd)dap N (¢ “us ' () £)jo02
(w'(x)yua. 2 'd)dap
(w ' (@) 2 d)dop N (0w ' (z).0.) o020
(ur‘(z).L'2'd)dap
(w ‘g2 ‘2 ‘d)dapn
(w'ga‘r'd)dap N (w ‘1o 2 'd)dop =
(w‘a‘r'd)dap =
(w'ga ‘2'd)dap N (w121 'd)dop =
0
(d ‘we* (z)'0)poaa
(w2 ‘v d)dapny
N(ut ‘12 ‘1 dYdap =
0
{we}

=
Il

(w'a:(x)ys_ ur m do/ 2'd)dap

(ut‘a: (z)s ut m do/ ‘2 'd)dap

(we‘ta o872 &3 wayz 12 F1 ‘2°d)dap
(w‘a0‘2'd)dap
(w‘za » 122 °d)dap

(w(r)fo, ‘2'd)dap

AE ,nam s ANV.\ ..ﬁ _.Q.vﬁﬁmﬁ
(w'(x) ‘o ‘2 'd)dap

(w ‘o' 'd)dap
(w 'z 'd)dap

121

Example 5.3.1. For the live variables specification given above as Example 3.2.1

for x in (base flow) def
LV(x) = /lub y in “revFlow(x): f(y,x,LV(y));
end

we have
dep(p,LV. £(y,x,LV(y)),x) = QUBUdep(p,LV,LV(y),x) = {=z}
and so the influence function is the familiar form

div(p) = An.eval(revFlou(x),n, p)

5.3.3 Application

We can use the statically-constructed influence functions to obtain a workset algo-
rithm in which all necessary influence information is determined dynamically, thereby

providing an efficient solver for any multisource flow analysis expressible in Roke:

Algorithm 5.3.1 (General Workset Solver).

Input: Flow analysis specification o1(x):Dy >=ey; ... op(z) Dy >= ¢y ; and flow
graph model (N, E)
Output: The least o : N — 'B, satisfying o1(z) : Dy >=ey; ... op(z): Dy >=ey;
Method:
for each (i,m):
gi(m) — 1
W.add((i,m))
while (IW.empty()):
(i,m) — W.eztract()
newval — eval{e;, m, ;)
if (newval £ oi(m)):
gi(m) — oi(m)Unewval
W — infl, (W, o,i,m)
Where:

122

infly (W, p,i,m) &
for each (j,n) € ReQP(i, m):
W.add((7,n))
return W
And:
ReQ?(i,m) o
rqg—

foreachj€{l,...,k} :
foreach n € df (p)(m):
rg— rqU(j,n)
relurn rg
O

The difference hetween this version and Algorithm 5.1.1 lies in the input require-
ments and in the substance of the infl, function. Here, we require only the spec-
ification and flow graph model itself rather than assuming construction a prier: of

the IFG. Of course N”__ is easily recovered from & and N. To see that we also have

IFG
Er

P o it suffices to show that

Lemma 5.3.1. Re@)® O E”P

IFG”

Proof. Writing N(J;'m) o {n|(4,n) € E*__((i,m))}, observe that E*

IFG IFG
to

((i, m)) is equal

U {Gn)nen? }

l=j<k
and that these sets partition E? ({¢,m)). We claim that, for all m € N and

0j(z):D; >= e, df(p)(m) = dep(p,z',ej,m) 2 Ni’;‘m .

) The proof is by induction

on €;:

e; = [bot | top| {const} | (id)]. For all a,b € D; and c € D; we have

eval(e;, n, ploi(m) = a,05(n) = d]) = eval(e;, n, plos(m) — b,a;(n) — c])

Hence, N7 =0 = dep(p, i, [bot | top|{const) | (id)], m).

I

123

e; = o(z). If 0 # oy, then N(J;.m = (. Otherwise,

)

Nilm) = { [l Ha,bE 'D,-,c S Dj g
eval(oy(z),n, plos(m) — a,a3(n) — d)
eval(oi(z), n, ploi(m) — b,05(n) =~ c]} }

= {m}
= dep(p,1,0i(z), m)

e; = fley...ep). Foralla,be D;,ceD;

eval(f(ey ... ep),n, ploi(m) — a,oi(n) — c)

eval(fley ... eg),n, ploi(m) — b,o;(n) — ¢])

only if there is some e, (1 < p < ¢) that evaluates to different results under
ploi(m) — a,0;(n) — ¢ and plo;(m) > b, g;(n) — c}. Thus,
N(J;m) - U{n|3a,b€D,-,c€Dj:
' 1<p<q
eval(ep, n, ploi(m) — a,0,(n) =)
eval(ep, n, ploi(m) — b, 05(n) —) }
C U dep(p,i,ep,m) [I.H]

l=p=g

= dep(p,i, fer ... ey),m)

ej = "o(x). If 0 # oy, then N(J; _ = 0. Otherwise, consider the assignment

)

oi(m) « oi(m) Unewval

and let a and b denote the values of g;(m) before (resp. after) this assignment.

Note that b D a, and so, for all n
eval(~o;(z), n, ploi(m) — a]) C eval(~o: (), n, p[o;(m) — b))
(the inequality comes from the possibilities n € b and n ¢ b). We therefore have

Ni C eval(o;(z), m, plo;(m) — b])

(i,m)

= dep(p,i,o:(x), m)

124

e; =e;ee2 (o € {lub,glb, -} Uv.). Apply the inductive hypothesis to e, and ey,

and proceed on the same lines as the case e; = o ().

e; =oe (o€ {~}Um). Apply the inductive hypothesis to e, and proceed on the

same lines as the case e; = o ().

e; = if e; then ey else e3. Apply the inductive hypothesis to ey, es, and e3. Proceed

on the same lines as the case ¢; = o (2).

ej =/op w in r7(z):e. Denote by N[(resp. N(‘:.m)) the set of nodes for which the

)
value of 7(z) (resp. €) can change with o;(m). Formally,

N, o= {n]|3a,beD,ceD;:
eval(r(z),n, plai(m) — a,05(n) —)
eval(r(z), n, ploi(m) — b, 05(n) — c]) }
{n]|3e,beD;,ceD;:

eval(e, n, plo;(m) — a,oj(n) —)

e
(i,m)

7é eval(e, n)p[Ui(m) — b, O-.'f(n) — C]) }

If N(‘: - = ® then

N CN' o = dep(p,i,7(z),m) [[.H]

(\vm} — {t,
Otherwise

r T e
N(l]!ﬂ) g N(t'.m) U (Nh-m)
C

N":_ Y eval(“r(z), m, p)

N eval(“r(z),m,p))

= dep(p,i,r(x), m)Ueval("r(z), m,p)
dep(pa 7:: ej: m)

e = /op w in “r(z):e. Similar to the case e; = /op w in r(z):e.

We thus have, for all (i, m) € N*

IFG

ReQ?(im) = U {(j,n)|n € di(p)(m)} [defn)]

1<5<k

> U {GmIneN }

1<k

= Ef ;((im))

125

Remark. The proof of case e; = “o (2) relies on the inflationary update in Algorithm
5 3.1. If we use the non-inflationary form instead (as in Roke’s predecessor, GenSet),
then it is also possible for an edge (m, n) to be removed from o;. In this case, N(J; -
may also include elements under the old value of o;(m) that are missing in the new
one. Hence, dep(p, i, "o (z), m) would need to be modified to include also the nodes

in eval(o;(x), m, p'), where p’ is the environment just before the update to o;(m).

0

Combining this with Lemmas 5.1.2 and 5.1.5, we have

Theorem 5.3.2. On a monotone specification S over a lattice D that satisfies ACC,
Algorithm 5.8.1 terminates with ¢ = ifp(S). O

5.4 Examples From the Literature

Example 5.4.1. We consider the construction of a solver for the “mutual update”

phase of Duesterwald and Soffa’s analysis, as given above in Example 3.3.1.

The static evaluation of this analysis will construct the influence functions

dptter (p)(m) = dep(p, before,
after_glob(x) lub
(/1ub y in “before(x): after(w)) lub set{yl}),m)
= dep(p, before, after_glob(x), m)
U dep(p, before,
/lub y 1n “before(x): after(w)) lub set{y}, m)
= 0 U dep(p,before, “before(x),m) U eval(before(z), m, p)
eval(before(z), m, p) U eval(before(z), m,p)

= eval(before(z),m, p)

126

dﬁgg:;(p)(m) = dep(p, before,
before_glob(x) lub
(/lub w in "after(x): before(w)) ,m)
= dep(p, before, before_glob(x),m)
U dep(p, before,
/lub y in “after(x): before(w)),m)
= @ U dep(p, before, ~after(x),m) U eval(after(z),m,p)
= ¢ U @ U eval(atter(z), m,p)
= eval(after(z), m,p)
dg}{ge(p)(m) = dep(p,after,
before_glob{x) lub
(/1ub w in ~after(x): before(w)) ,m)
= dep(p,after,before_glob(x),m)
U dep(p,after,
/lub y in ~“after(x): before(w)),m)
= QUdep(p,after, ~after(x),m)

= eval(after(z),m,p)

defir(p)(m) = dep(p,after,

after_glob(x) lub

(/lub y in “before(x): after(w)) lub set{y}),m)
= dep(p,after,after_glob(x),m)

U dep(p,after,
/lub y in “before(x): after(w)) lub set{y},m)

= 0 U dep(p,after, "before(x),m) U eval(before(z), m, p)
= 0 U @ U eval(before(x),m, p)

= eval(before(z), m, p)

127

This gives us a Re@* function for Algorithm 5.3.1 that corresponds operationally

to the following:

ReQP(i, m) =
rqg+— @

ifi =before:

for each n € eval(before(z),m, p):

rqg — rqgU (after,n)
for each n € eval(after(z),m, p):
rq «+— rqU (before,n)
else:
for each n € eval(after(z),m, p):

rq — rqU (before,n)

for each n € eval(before(z),m, p):

rqg — rqU(after,n)

return rq

/1 dedfore(p)(m)

1/ dpore(p)(m)

/] daior®(p)(m)

/] dikier(p)(m)

Example 5.4.2. The implementation of Callahan’s interprocedural must-kill analysis

that was given in Example 3.2.2 has the following influence functions:

i (p)(m) = dep(p, Killgym,

(/glb y in “revPSG(x):
g(Kill_psg(y) ,Kill_sum(y))) glb i_psg(x),m)
= dep(p, Killyym, (/glb y in “revPSG(x):
g(Kill_psg(y),Kill_sum(y))),m)
U dep(p, Killgym, i_psg(x),m)
= dep(p, Killsum, "revPSG(x),m) U eval(revPSG(x),m,p) U
U eval(revPSG(x),m,p) U 0

= eval(revPSG(x),m, p)

dirm(p)(m) = dep(p, Killgym,

(/glb y in "revSum(x):
g(Kill_psg(y),Kill_sum(y))) glb i_sum(x),m)
= dep(p, Killsym, (/glb y in "revSum(x):
g(Kill_psg(y),Kill_sum(y))), m)
U dep(p, I(tlliym, i_sum(x),m)
= dep(p, Killyym, “TevSum(x), m) U eval(revSum(x),m,p) U
= 0 U eval(revSum(x),m,p) U 0

= eval(revSum(x},m, p)

dﬁ:ﬁ::;‘ (p)(m) = dep(p, Killy,,
(/glb y in “revSum(x):
g(Kill_psg(y) ,Kill_sum(y))) glb i_sum(x),m)
= dep(p, Killps, (/glb y in “revSum(x):
g(Kill_psg(y),Kill_sum(y))), m)

U dep(p, Kill,sg, i_sum(x), m)
= dep(p, Killpg, “revSum(x),m} U eval(revSum(x),m,p) U 0
= 0 U eval(revSum(x),m,p) U @

= eval(revSum(x),m, p)

illpsg
dieut (p)(m)

dep(p, Kill,sq,
(/glb y in “revPSG(x):

g(Kill_psg(y) ,Kill_sum(y))) glb i_psg(x),m)

= dep(p, Killp,, (/glb y in "revPSG(x):
g(Kill_psg(y),Kill_sum(y))),m)

U dep(p, Kill,sg, i_psg(x),m)
= dep(p, Killy,, "TevPSG(x),m} U eval(revPSG(x),m,p) U 0
= (0 U eval(revPSG(x),m,p) U @
= eval(revPSG(x),m, p}

129

This gives us a Re@)? function for Algorithm 5.3.1 that corresponds operationally

to the following:

ReQP(i,m) =
rqg— B
if i = Killgym:
for each n € eval(revPSG(x),m,p): // dg:ﬁ:’:fn (p)(m)
rq — rqU (Killysg,n)
for each n € evel(revSum(x),m, p): d}g:ﬁ::z (p)(m)
rg — rqVU (Killgym,n)
else:
for each n € eval(revSum(x),m,p): // dﬁﬁ;:;"(p)(m)
rq — rqU (Killsgym, n)
for each n € eval(revPSG(x),m,p): [/ dﬁ:::::"; (p){m)
rq — 1qU{Killpsg, 1)

return rq

Example 5.4.3. Khedker and Dhamdhere [KD94] extended the classical framework
view to encompass both unidirectional and bidirectional analyses. Their framework
accommodates singular data flow problems (i.e. those with a single confluence op-
erator, as in Morel/Renvoise), but not nonsingular ones (e.g. the variant on MRA

given as Example 3.2.4 above).

The core insight in their work is that the flow of information in a bidirectional anal-
ysis can be classified in four ways—through nodes and through edges, both forward
and backward. Consequently, there are four types of transfer functions to consider.
Writing g/ (vesp. g®) for forward (backward) edge flow functions and f/ (resp. f*)
for forward (backward) node functions, the solution to a given data flow problem (uni-
directional or bidirectional) is the largest pair of assignments (o, ,,0,,,) satisfying
the equations ([KD94], p.1491)

130

on(z) = M g;{:(aour (w)) N fg(aour (z)) N Cin(z)
wEPred|x)
Oour(T) = ESI_I ()g:y(gxn (y)) N f;{(gm (x}) 1 Cour(z)

A specification of this form gives rise to the following influence functions:

wePred(x)

dg‘if’ (p)(m) = dep(p’ O-IN’ (I—l g.{x(aOUT(w)) I_I fg(UOUT(m)) n Cﬂl(m))) m)

= dep(p,am,([gi,(aour('w))) , M)

wePred(z)
U dep(p, Umifg(o'our(m))ﬂn) U dep(p,o,y, Cia(z), m)
= dep(p,,y, Pred(z),m) U dep(p, 0y, 0or(z),m) U 0
=fpududp
=0

dali™ (p)(m) = dep(ﬂ,ffm,(M sz(am(y))ﬂfi(am(m))F‘Cm(:r)),m)

yESuce(z)
= dep(p,crm‘([l gi’,(am(y))) ,m)
y€Suce(z)
U dep(p,0,y, f{(0,y(2)),m) U dep(p,0,y, Cou(x), m)
= dep(p, o,,, Succ(z),m) U eval(Pred(z)), m, p)
U dep(p,0,y,0,,(z),m) U 0
= @ U eval(Pred(z)),m,p) U {m} U @
= eval(Pred(z)), m,p) U {z}

dgg:’lT (‘p) (m) = dep(p’ G-OUT’ (I_I g.{: (UOUT (w)) l_l f.’f:)(o-OUT(m)) r-l C‘"(I)) 1 m)

we Pred(z)

we Pred(z)

131

= dep(p, ooyrs ([g‘{:(aour(w))) , M)

U dep(p, Uoursf:(aour(z))’m) U dep(p, gour’ciﬂ(z)vm)
= dep(p,o,,., Pred(z),m) U eval(Suce(z)), m, p)

U dep(p, 0oyr Tong(2),m) U @
= @ U eval(Succe(z)),m,p) U {m} L 0

= eval(Succ(z)), m, p) U {z}

dggﬂ; (p)(m) = dep(p,00yys (M g:,(gm (y)) M f{(om (z) N Gﬂut(m)) ym)

vESuce(T)

= dep(p,am,(M Qiy(o'm(y))

yESucc(x)

)-

= dep(p,0,,,SUCC(z),m) U dep(p,0,,,0,,(x),m) U D

=pududp
=9

This gives us a solution algorithm for bidirectional bitvector data flow analysis

problems using a Re@? function for Algorithm 5.3.1 that corresponds operationally

to the following:

ReQ@*(i,m) =
rg— 0

ifi=o,,:

for each n € (evel(Pred(z)), m, p) U {z}):

rg — rqU (0 yp) 1)

else:

for each n € (eval{Succ(z)),m, p) U {z}):

Tq +— rqU{o,y,n)

return rq

/] 4287 (p)(m)

/] sty . (p)(m)

5.5 Related Work

The development of this chapter is an adaption and extension of earlier work
carried out by Lasseter and Young [FLY02]. In that paper, we investigated the
problem of influence determination for the GenSet language. GenSet is specialized to
a single lattice of sets of atoms, ordered by C. Within this domain, it is somewhat
more expressive than Roke, in that nested flow expressions are possible. However,
relaxing this restriction breaks the normalization step of Section 5.3.1. Consequently,
influence determination is coarser than in the present work, as no method was ever
found to handle the case of complex index set expressions.

For our purposes, the work most pertinent to the problem of dependence graph
determination is the body of research on local solvers, which have been applied mainly
to the abstract interpretation of logic programs ([CH94, FS98, FS99, Jgr94, VWLY4j,
although see also [CHY95]). In this family, we are given a flow graph, but only want
the solution at a particular node (or small subset of nodes). Like our approach,
static determination of the dependence graph is bypassed, with the algorithm instead
determining on the fly only those parts of the graph that are needed at each stage.

Without careful implementation, this “neededness” approach can result in a worst-
case choice of node order for evaluation. Since evaluation at every node other than
the chosen goal is delayed until it is needed, this can result in the slowest possible
propagation of information from a flow graph’s entry point to the goal. If the workset
is implemented as a priority queue, however, the use of timestamps to control the
priority of a node within the queue can alleviate this shortcoming [FS98, FS99], and
offers a good approximation of the topological ordering found in more conventional
round robin solvers. The possibility of integrating the timestamp method with our

hybrid approach offers an intriguing opportunity for future work.

133

CHAPTER VI

CONCLUSION AND FUTURE
WORK

In this dissertation, we have shown how to restructure the traditional approach
to data flow analyzer toolkits, in order to support the specification and efficient
solution of multisource data flow problems. The results presented herein consist
of three main contributions. First, we have extended the k-tuple lattice framework
approach of Masticola et al. [MMR95], in order to facilitate expression of nonsingular
analyses and other problems n.aturally expressed with a heterogeneous value lattice.
Second, and more substantial, we have developed a domain-specific language-based
approach to the specification of data How problems that is expressive enough to
encompass arbitrary multisource data flow problems. Finally, we have presented
a hybrid static/dynamic method for the determination of influence in a constraint
system, and we have shown how to leverage this to generate automatically an efficient
solver for any specified analysis.

This approach opens several opportunities for future research. An obvious project
is the construction of an industrial-strength implementation of Roke. Martin’s PAG
system [Mar98, Mar99) showed by example that one could generate data flow an-
alyzers from concise specifications that are competitive with the best manually-
constructed versions. The data type and auxiliary function definition mechanisms

in Roke were heavily influenced by those in PAG, and bear more than a passing re-

134

semblance. Many of the data structures and implementation techniques used there
should transfer easily to our system. For the Roke language itself, we would likely
want to implement the type rules as a static system, in order to aid the selection
of good data structures. Work on an implementation is ongoing at the time of this
writing.

As part of this implementation, it will be worthwhile to investigate what other
solution strategies are made available by our influence discovery technique. For exam-
ple, the round robin algorithm, generalized to the Roke setting, would need to use a
topological ordering (or weak ordering [Bou93]) on the influence graph. One approach
to this wounld be the “generate and solve” method from constraint-based analysis. As
discussed in Chapter V, however, a data flow problem whose IFG can change during
solution as a consequence of intermediate results cannot be solved in this manner. It
would be useful, therefore, to investigate the possibility of adapting some of the lo-
cal solver algorithms to our approach, particular those that achieve weak topological
orderings without requiring a priori construction of the IFG [CHY95, FS98, FS99|.

On the theoretical end, there remain several opportunities for generalization of
standard flow analysis properties to the multisource case. For example, the notion
of a control flow graph’s depth—the maximum length of a sequence of back edge
traversals with respect to a topological ordering of the flow graph nodes—has long
played a role in the refinement of other solution algorithms. It is used to characterize
the complexity of the round robin solver, for example, where Hecht and Ullman
[HU75] showed a striking, essentially linear bound for the algorithm on the class of
bitvector problems (which includes RD, LV, AE, and VB). Khedker and Dhamdhere
{KD94] generalized this to the notion of width, which can also be used to reason about
bidirectional analyses. Further generalization to the multisource case is an interesting
challenge.

We also see an opportunity to make precise the relationship between the limited
form of graph rewriting supported in Roke and the various uses in the literature
of on-the-fly flow graph rewriting. There have been several works that incorporate
information about the flow graph in the flow values themselves, collectively known

as “qualified” analyses [CC79b, HR81, SP81]. Such “super-analyses” can be impor-

135

tant, because there are combinations of analyses and transformations which when
run together produce more accurate analysis results and find more available transfor-
mations than can be obtained by running the component analyses in any sequential
order [CC95, WZ91). The result is the construction of more aggressive, but nonethe-
less safe, code-improving transformations. Further, although it has not received much
attention, these approaches appear to be closely related to each other, particularly as
presented in [HR81] and [LGC02).

The practical significance to the present discussion is twofold. On the one hand,
such “super analyses” are even more cumbersome to construct than ordinary forms of
flow analysis. Efforts in the formulation of flow analyses as restricted graph rewriting
problems [ABm00, LGC02, Rep98] offer some relief here, and have proven useful in
both prototyping and final implementation. We conjecture that the concise speci-
fications offered by an approach such as that of Roke would simplify the task even
further. Conversely, these integrated approaches offer performance improvements to
flow analysis solvers, by pruning away irrelevant parts of the flow graph model. Con-
sequently, their extension to the multisource family offers another opportunity for the

development of efficient solvers.

136

APPENDIX

EXAMPLE SPECIFICATIONS

Florian Martin described the basic goal of the PAG analyzer generator as allowing
“the automatic generation of program analyzers from clear and concise specifications”
([Mar99], p. v). That spirit has driven the design of the Roke language, as well.
Indeed, in those aspects that did not need further extension to the general multisource
case, we have borrowed freely from Martin’s DATLA and FULA languages, as well
as from GenSet [FLY02], the predecessor of Roke. This is particularly true of the
language elements for definition of value lattices and transfer functions external to
global abstract semantic specifications.

As of the writing of this dissertation, Roke is an abstract language, but it is
nonetheless worth presenting some examples of complete specifications, to give the
reader a feel for the conciseness of the language. In many of these cases, the same
analyses have also seen implementations in the earlier GenSet language, which are

also included here for the sake of completeness.

137

A.1 Live Variables Analysis (Roke)

[**+*xkkk%% LiveVars.rk */
flowgraph is

[flow]
with
[gen: (atom set), kill:{(atom set), isExit:bool]
end
domain is
Vars = psetOf(progvars);
with
progvars:atom = (rng gen) + (rng kill);
end

analysis is
def genV:Vars restrict(gen,Vars);
def killV:Vars = restrict(kill,Vars);
def revFlow(y:atom):(atom set) = “flow(y);

def f(y:atom,x:atom,v:Vars):Vars (v 7 killV(y)) lub genV(y);
for x in (base flow) def

LV(x) = /lub y in “revFlow(x): f(y,x,LV(y)) ;
end

end

present is [LV] end

A.2 Callahan’s Kill Analysis (Roke)

/**¥x*kx%¥x Callahan_Ktuple_Kill.rk =*/
/* K-tuple form of Callahan’s interprocedural Kill analysis */

flowgraph is
[intraproc, // entry to call or exit, return to exit or call
ip_param, // call->entry, exit->return
ip_summary // call->return
]
with
[isExit:bool, isCall:bool]
end

domain is
Boolean;

end

analysis is

def

def
def

def
def
def

for

end
def

present

A.3

E_psg(x:atom):{(atom set) = intraproc(x) | ip_param(x);

revPSG(y:atom) : (atom set)
revSum(y:atom) : (atom set)

“E_psg(y);
~ip_summary(y);

i_psg(x:atom):Boolean = if (isExit(y)) then bot else top;
i_sum(x:atom):Boolean = if (isCalil(y)}) thenr top else bot;
g(u:ToKill,v:ToKill) :Boolean = u lub v;

x in ((base revPSG) | (base revSum)) def
Kill_psg(x) :Booleap <=
(/glb y in "“revPSG(x):
g(Kill_psg(y),Kill_sum(y)))
glb i_psg(x);
Kill_sum(x) :Boolean <=
(/glb y in “revSum(x):
g(Kill_psg(y),Kill_sum(y)))
glb i_sum(x);

Kill(x:atom):Boolean = Kill_psg(x) lub Kill_sum(x);

is [mustKill] end

PRE Flow Equations (Roke)

Jx*kkkkkkkx PRE.Tk */

flowgraph is
[£low]

with

[genVB: (atom set), genAE:(atom set), kill:(atom set),

AE:

end

(atom set), isEntry:bool, isExit:bool]

domain is

138

139

Exps = psetOf (progexps);

with

progexps:atom = (rng gen) + (rng kill);

end

analysis is
LHTTITTETEETELTII LI T LTI T2 777700 77770707777770077777777177/177/7
// To begin, we’ll need some elementary properties concerning the
// availability of various expressions

def
def
def
def

def
def

def

def

for

end

antloc = restrict(genVB,Exps);

// "locally anticipate" (upwards exposed)
comp = restrict(genAE,Exps); // downwards exposed
transp = complement(kill,Exps); // not killed
avin = restrict(AE,Exps); // available at exit of node
initF(x:atom) :Exps = if (isEntry(x)) then bot else top;

initB(x:atom) :Exps = if (isExit(x)) then bot else top;

avout(x:atom) :Exps = (avin(x) glb transp(x)) lub comp(x);
pavout(w:atom,x:atom,v:Exps) :Exps =

(v glb transp(w)) lub comp(w);

// partially available at exit of node

x in (base flow) def
pav_in(x) :Exps >=
(/1ub w 1n “flow(x): pavout(w,x,pav_in(w)))
lub initF(x);

LILETITEILTII7707 700777707 77700777780777700777707777777777777771777
// Now the analysis itself

for

x in (base flow) def
pp_in(x):Exps <=
if (isEntry(x) then bot
else (pav_in(x)
glb (antloc(x) lub
(pp_out(x) glb transp(y))
)
glb

140

/glb w in “flow(x): (pp_out(w) lub avout(w))
);
pp_out(x):Exps <= if (isExit(x) then bot
else (
/glb y in flow(x): pp_in(y)
);

end

for x in (base flow) def
insert(x) :Exps >= pp_forw(x) glb “avout(x)
glb “(pp_out(x) glb transp(x));
redund(x) :Exps >= pp_in(x) glb antloc(x);
end

end // analysis

present is
{insert, redund]
end

A.4 PRE Analysis, K-Tuple Form (Roke)

/**x*xx*xx* PRE_Ktup.rk =*/

flowgraph is
[flow]

with
[genVB: (atom set), genAE:(atom set), kill:{(atom set),
AE: (atom set), isEntry:bool, isExit:bool]

end
domain is
Exps = pset0f(progexps) ;
with
progexps:atom = (rng gen) + (rog kill);
end

analysis is
def antloc

restrict(genVB,Exps);
// "locally anticipate" (upwards exposed)
restrict(genAE,Exps); // downwards exposed

def comp

def
def

def

def

def

def

for

end

def
def

def

def

def

for

end

141

transp = complement(kill,Exps); // not killed
avin = restrict(AE,Exps);
// available at exit of node

initF(x:atom) :Exps = if (isEntry(x)) then bot else top;
initB(x:atom) :Exps = if (isExit(x)) then bot else top;

I

avout(x:atom) :Exps = (avin(x) glb transp(x)) lub comp(x);
pavout (w:atom,x:atom,v:Exps) :Exps =

(v glb transp(w)) lub comp(w);

// partially available at exit of node

x in (base flow) def
pav_in(x):Exps >=
(/lub w in "“flow(x): pavout(w,x,pav_in(w)))
lub initF(x);

initF(x:atom) :Exps = if (isEntry(x)) then bot else top;
initB(x:atom) :Exps = if (isExit(x)) then bot else top;

pp_out (w:atom,x:atom,vb:Exps,vf:Exps) :Exps = vb;
pp_in(y:atom,x:atom,vb:Exps,vf:Exps) :Exps =
pav_in(y) gib ((pp_out(y,x,vb,vf) glb transp(y))
lub antloc(y));
f(w:atom,x:atom,vb:Exps,vf:Exps):Exps =
pp_out (w,x,vb,vf) lub avout(w);

x in (base flow) def
pp_back(x) :Exps <=
(/glb y in “revFlow(x):
pp-in(y,x,pp_back(y),pp_forw(y)))
glb initF(y);
pp_forw(x) :Exps <=
(/glb w in "“flow(x):
f(w,x,pp_back(w),pp_forw(w)))
glb initB(x);

def insert(x:atom):Exps = pp_forw(x) glb "avout(x)
glb “(pp_back(x) glb tramsp(x)) ;
pp-in(x) glb antloc(x) ;

def redund(x:atom):Exps

present is
[insert, redund]
end

142

A.5 Duesterwald/Soffa Ordering Analysis (Roke)

Roke specification of the “Can’t Happen Together” analysis, used in the race

detection work of Duesterwald and Soffa [DS91}.
/**xx*xkdx dues-soff _CHT-eqns.rk */

flowgraph is

fcfg,sync,callflow]
with

[isEntry:bool,isExit:bool, unit:atom]
end

domain is

Nodes = pset0f (nodeset);
with

nodeset:atom = base cfg;
end

analysis is
// PHASE 1: Assuming source code text models control behavior
// (i.e. no parallel execution of any units)

// STEP 1.1: compute "local" before and after sets

for x in (base cfg) def
may_before(x) :Nodes >=
/lub w in ~“cfg(x): (may_before(w) lub set{w});
may_after(x):Nodes »>=
/lub y in cfg(x). (may_after(y) lub set{yl});
end

143

for x in (base cfg) def
before_loc(x):Nodes >= may_before(x) ~ may_after(x);
after_loc(x):Nodes »>= may_after(x) ~ may_before(x);

gen(x) :Nodes >= set{x} ~ may_after(x);
end

// STEP 1.2: Synchronization analysis

for x in (base cfg) def
C_before_sync(x):Nodes <=
if empty (“cfg(x)) then bot
else /glb w in “cfg(x):
(C_before_sync(w) lub S_before_sync(w));
S_before_sync(x):Nodes <=
if empty ("sync(x)) then bot
else /glb w in “sync(x):
((C_before_sync(w) lub S_before_sync(w))
lub (before_loc(w) lub gen(w))
) ;

end

for x in (base cfg) def
C_after_sync(x) :Nodes <=
if empty (cfg(x)) then bot
else /glb w in ~cfg(x):
(C_after_sync(w) lub S_after_sync(w));
S_after_sync(x):Nodes <=
if empty (sync(x)) then bot
else /glb w in “sync(x):
((C_after_sync(w) lub S_after_sync(w))
lub (after_loc(w) lub gen(w))
)

end

for x in (base cfg) def
after_sync(x):Nodes »>=
(C_after_sync(x) lub S_after_sync(x))
- after_loc(x);

144

before_sync(x) :Nodes >=
(C_before_sync(x) lub S_before_sync(x))
~ before_loc(x);
end

// Completion of STEP 1.2:
// Combine control and sync flow ordering.

for x in (base cfg) def
before_glob(x) :Nodes <=
if (isEntry(x) and not (empty callflow(x)))
then
/glb w in “callflow(x):
_ (before_glob(w) lub gen(w))
else
before_loc(x) lub before_sync(x) ;
after_glob(x):Nodes <=
if (isExit(x) and not (empty callflow(x)))
then
/glb w in callflow(x): after_glob(w)
else
after_loc(x) lub after_sync(x) ;
end

// STEP 3: The "mutual update", expressed equationally

for x in (base cfg) def
before(x) :Nodes >=
before_glob(x) lub (/lub w in “after(x): before(w));

after(x) :Nodes >=
after_glob(x)
lub (/lub y in “before(x): after(y) lub set{y});
end

// PHASE 2: Computation of the 0Ord() relation,
// with or without parallel execution

// Initial annotations:

def local(x:atom):(atom set) = “unit(unit{x));
def localNodes = restrict(local,Nodes);

145

for x in (base cfg) def
head (x) : Nodes >=
/lub h in local(x): (if isEntry(h) then set{h} else bot);
head_callers(x):Nodes >= /lub h in head(x): ~“callflow(h);

end
def Drd_init(x:atom):Nodes >=
before(x) lub after(x) lub localNodes(x);
// Direct translation of Eqn #5 (p. 43), from their paper:
for x in (base cfg) def
unit_filter(x):Nodes <=
if (empty head_callers(x)) then top
else

/glb ¢ in head_callers(x): Ord(c) ;

Ord(x) :Nodes <= Ord_init(x) glb unit_filter(x));
end

end // analysis

present is [Ord] end

A.6 Ordering Analysis (GenSet)

GenSet specification of the “Can’t Happen Together” analysis, used in the race
detection work of Duesterwald and Soffa {DS91).

// Equations from Duesterwald and Soffa [TAV ’91].
// Accompanying example file is duesterwald91ltav_MIG_Fig2.rsf

// PHASE 1: Assuming source code text models control behavior
// (i.e. no parallel execution of any units)

// STEP 1.1: compute "local" before and after sets

146

for x in (base cfg) do
may_before(x) :=
/union w in _cfg(x): (may_before(w) union single(w));
may_after(x) :=
/union y in cfg(x): (may_after(y) union single(y));
od;

for x in (base cfg) do
before_loc(x) := may_before(x) - may_after(x);
after_loc(x) := may_after(x) - may_before(x);

gen(x) := single(x) - may_after(x);
od;

// STEP 1.2: Synchronization analysis

for x in (base cfg) do
C_before_sync(x) :=
most (
if empty (_cfg(x))
then null
// else /intersect w in _cfg(x): before_sync(w)
else /intersect w in _cfg(x):
(C_before_sync(w) union S_before_sync(w))
fi);
S_before_sync(x) ;=
most (
if empty (_symc(x))
then null
else
/intersect w in _sync(x):
//(before_sync(w)
((C_before_sync(w) union S_before_sync(w))
union (before_loc(w) union gen(w))
)
i) ;
od;

for x in (base cfg) do
C_after_sync{x) :=
most (
if empty (cfg(x))

then null
// else /intersect w in cfg(x): after_sync(w)
else /intersect w in cfg(x):

(C_after_sync(w) union S_after_sync(w))

fi);
S_after_sync(x) :=
most (
if empty (sync(x))
then null
else

/intersect w in sync(x):
// (after_sync(w)
((C_after_sync(w) union S_after_sync(w))
union (after_loc(w) union gen(w))
)
fi);
od;

for x in (base cfg) do

after_sync(x) := (C_after_sync(x) union S_after_sync(x))
- after_loc(x);
before_sync(x) := (C_before_sync(x) union S_before_sync(x))

- before_loc(x);
od;

// Completion of STEP 1.2:
// Combine control and sync flow ordering.

for x in (base cfg) do
before_glob(x) :=
most (

147

if not empty (extremal(x) intersect single("start"))

and not empty (_callflow(x))
// if x is a start node
then
(/intersect w in _callflow(x):
(before_glob(w) union gen(w))
)
else
before_loc(x) union before_sync(x)
fi
E;

148

after_glob(x) :=
most (
if not empty (extremal(x) intersect single("stop"))
and not empty (callflow(x))
// if x is an exit node

then

(/intersect w in callflow(x): after_glob(w))
else

after_loc(x) union after_sync(x)
fi

);
od;

// STEP 3: The "mutual update", expressed equationall
P q y

for x in (base cfg) do
before(x) := before_glob(x)
union (/union w in _after(x): before(w));

after(x) :=
after_glob(x)
union (/union y in _before(x): after(y) union single(y));
od;

// PHASE 2: Computation of the Ord() relation,
// with or without parallel execution

// Initial annotations:

for x in (base cfg) do
local(x) := /union U in unit(x): _unit(U);
head(x) := local(x) intersect _extremal ("start");
head_callers(x) := /union h in head(x): _callflow(h);
Ord_init(x) := before(x) union after(x) union local(x);

od;

// Direct translation of Eqn #5 (p. 43), from their paper:
for x in (base cfg) do
unit_filter(x) :=
most (

od;

Ord(x)

if empty (head_callers(x))

then (base cfg)

else /intersect ¢ in head_callers{(x): Ord(c)
fi
);

149

:= most(Ord_init(x) intersect unit_filter(x));

[ACT6]

[AHV95]

[Aik99]

[AM95]

[ABmO0]

[ASUS6]

[AUT3|

[AVO1]

[BGS97]

[BMSUS6]

150

BIBLIOGRAPHY

F.E. Allen and J. Cocke. A program data flow analysis procedure.
Comm. ACM, 19(3):137-147, March 1976.

Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of
Databases. Addison-Wesley, 1995.

Alexander Aiken. Introduction to set constraint-based program analysis.
Science of Computer Programming, 35(2-3):79-111, 1999.

Martin Alt and Florian Martin. Efficient generation of interprocedural
analyzers with PAG. In Static Analysis (SAS '95), 2nd International
Symposium, pages 33-50. Springer-Verlag, 1995. LNCS 983.

Uwe ABmann. Graph rewrite systems for program optimization. ACM
TOPLAS, 22(4):583-637, July 2000.

Alfred Aho. Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles,
Techniques, and Tools. Addison-Wesley, 1986.

Alfred Aho and Jeffrey D. Ullman. The Theory of Parsing, Translation,
and Compiling, Vol. 2: Compiling. Prentice Hall, Englewood Cliffs, NJ
USA, 1973.

Serge Abiteboul and Victor Vianu. Datalog extensions for database
queries and updates. Journal of Computer and System Sciences,
43(1):62-124, August 1991.

R. Bodik, R. Gupta, and M. L. Soffa. Refining data flow information
using infeasible paths. In Foundations of Software Engineering (SIG-
SOFT °97), 5th International Symposium, pages 361-377 Springer-
Verlag, 1997. LNCS 1301.

F. Bancilhon, D. Maier, Y. Sagiv, and J. Ullman. Magic sets and other
strange ways to implement logic programs. In Principles of Database
Systems (PODS '86), 5th ACM Sympostum, pages 1-15. ACM Press,
1986.

[Bou93]

[Cal8g]

[CCTTa]

[CCT7h]

[CC794]

[CC79b)

[CCo5)

[CCF+05]

[CDGY6]

[CFH*91]

151

Frangois Bourdoncle. Efficient chaotic iteration strategies with widen-
ings. In D. Bjgrner, M. Broy, and I.V. Pottosin, editors, Formal Methods
in Programming and their Applications, 1993 Intl. Conference., pages
128-141. Springer-Verlag, 1993. LNCS 735.

David Callahan. The program summary graph and flow-sensitive inter-
procedural data flow analysis. In Programming Language Design and
Implemention (PLDI '88), 1988 ACM SIGPLAN Conference, pages 47-
56. ACM Press, 1988.

Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified
lattice model for static analysis of programs by construction or approx-
imation of fixpoints. In Principles of Programming Languages (POPL
"77), Proc. of the 4th ACM Symposium, pages 238-252. ACM Press,
1977.

Patrick Cousot and Radhia Cousot. Automatic synthesis of optimal
invariant assertions: Mathematical foundations. In Artificial Intell:i-
gence and Programming Languages, Proc. of the 1977 ACM SIGART
Sympostum, pages 1-12. ACM Press, 1977.

Patrick Cousot and Radhia Cousot. Constructive versions of Tarski's
fixed point theorems. Pacific Journal of Mathematics, 82(1):43-57,
1979.

Patrick Cousot and Radhia Cousot. Systematic design of program anal-
ysis frameworks. In Principles of Programming Languages (POPL '79),
Proc. of the 6th ACM Symposium, pages 269-282. ACM Press, 1979.

CIliff Click and Keith D. Cooper. Combining analyses, combining opti-
mizations. ACM TOPLAS, 17(2):181-196, March 1995.

P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux,
and X. Rival. The ASTREE analyzer. In M. Sagiv, editor, 2005 Euro-
pean Symposium on Programming (ESOP ’05), pages 21-30. Springer-
Verlag, 2005. LNCS 3444.

Craig Chambers, Jeffrey Dean, and David Grove. Frameworks for intra-
and interprocedural analysis. Technical Report 96-11-02, University of
Washington, November 1996.

J. Cai, P. Facon, F. Henglein, R. Paige, and E. Schonberg. Type anal-
ysis and data structure selection. In B. Moller, editor, Constructing
Programs from Specifications, pages 125-164. Elsevier Science Publish-
ers B.V., Amsterdam, 1991.

[CFT03]

[CHO4]

[Che03]

[CHY95]

[CK94]

[CKS90]

[Cor00]

[CP87]

[CP93)

[CP8Y]

[CS88]

152

Larry Carter, Jeanne Ferrante, and Clark Thomborson. Folklore con-
firmed: Reducible flow graphs are exponentially larger. In Principles
of Programming Languages (POPL ’03), 30th ACM Symposium, pages
106-114. ACM Press, 2003.

Baudouin Le Charlier and Pascal Van Hentenryck. Experimental evalu-
ation of a generic abstract interpretation algorithm for PROLOG. ACM
TOPLAS, 16(1):35-101, 1994.

Yifeng Chen. A fixpoini theory for non-monotonic parallelism. Theo-
retical Computer Science, 308(1-3):367-392, November 2003.

Li-Ling Chen, Williams L. Harrison, and Kwangkeun Yi. Efficient com-
putation of fixpoints that arise in complex program analysis. Journal
of Programming Languages, 3(1):31-68, 1995.

Shing Chi Cheung and Jeff Kramer. Tractable data flow analysis
for distributed systems. JEEE Transactions on Suftware Engineering,
20(8):579-593, August 1994.

D. Callahan, K. Kennedy, and J. Subhlok. Analysis of event synchro-
nization in a parallel programming tool. In Principles and Practice of
Parallel Programming (PPoPP '90), 2nd ACM Symposium. ACM Press,
1990.

James C. Corbett. Using shape analysis to reduce finite-state models of
concurrent java programs. ACM TOSEM, 9(1):51-93, 2000.

Jiazhen Cai and Robert Paige. Binding performance at language design
time. In Principles of Programming Languages, 1/th ACM Symposium
(POPL ’87), pages 85-97. ACM Press, 1987.

Jiazhen Cai and Robert Paige. Towards increased productivity of algo-
rithm implementation. In Foundations of Software Engineering, 1993
ACM Symposium (SIGSOFT ’93), pages 71-78. ACM Press, 1993.

Jiazhen Cai and Robert Paige. Program derivation by fixed point com-
putation. Science of Computer Programming, 11(4):197-261, 1988/89.

D. Callahan and J. Subhlok. Static analysis of low-level synchronization.
In Parallel and Distributed Debugging, 1988 ACM/SIGOPS Workshop,
pages 100-111. ACM Press, 1988.

[DC94]

[DC96]

[DCCNO4]

[Dha91]

(DP93|

[DPO2]

[DRW96]

[DRZ92]

[DS91]

[Dwy95]

153

Matthew B. Dwyer and Lori A. Clarke. Data flow analysis for verif-
ing properties of concurrent programs. In Foundations of Software En-
gineering (SIGSOFT °94), 2nd ACM Symposium, pages 62-75. ACM
Press, 1994.

Matthew B. Dwyer and Lori A. Clarke. A flexible architecture for build-
ing data flow analyzers. In Software Engineering (ICSE '96), 18th Inter-
national Conference, pages 554-564. IEEE Computer Society Pr., Los
Alamitos CA, USA, 1996.

Matthew B. Dwyer, Lori A. Clarke, Jamieson M. Cobleigh, and Gleb
Naumovich. Flow analysis for verifying properties of concurrent software
systems. ACM TOSEM, 13(4):359-430, October 2004.

D. M. Dhamdhere. Practical adaption of the global optimization al-
gorithm of Morel and Renvoise. ACM TOPLAS, 13(2):291-294, April
1991.

D. M. Dhamdhere and H. Patil. An elimination algorithin for bidi-
rectional data flow problems using edge placement. ACM TOPLAS,
15(2):312-336, April 1993.

B. A. Davey and H. A. Priestley. Introduction to Lattices and Order
(2nd Ed.). Cambridge U. P., 2002.

Steven Dawson, C.R. Ramakrishnan, and David S. Warren. Practical
program analysis using general purpose logic programming systems—
a case study. In Programming Language Design and I'mplementation
(PLDI ’96), 9th ACM SIGPLAN Conference, pages 117-126, 1996.

D. M. Dhamdhere, B. K. Rosen, and F. K. Zadeck. How to analyze large
programs efficiently and informatively. In Programming Language De-
sign and Implementation (PLDI '92), 5th ACM SIGPLAN Conference,
pages 212-223. ACM Press, 1992.

Evelyn Duesterwald and Mary Lou Soffa. Concurrency analysis in the
presence of procedures using a data flow framework. In Symposium on
Testing, Analysis, and Verification (TAV '91), pages 36-48. ACM Press,
1991.

Matthew B. Dwyer. Data Flow Analysis for Verifying Correctness Prop-
erties of Concurrent Programs. PhD thesis, University of Massachusetts
Ambherst, Amherst, MA, USA, 1995.

[Ete04]

[FBGO3]

[Fer0d]

[Fer05]

[FLY02]

[FS98]

{FS99)

[GKL+96]

[Goy00]

[Gra98]

[GS93]

154

K. Etessami. Analysis of recursive game graphs using data flow equa-
tions. In B. Steffen and G. Levi, editors, Verification, Model Checking
and Abstract Interpretation (VMCAI'04), Fifth International Confer-
ence, pages 282-296. Springer-Verlag, 2004. LNCS 2937.

J.-C. Fernandez, M. Bozga, and L. Ghirvu. State space reduction based
on live variables analysis. Science of Computer Programming, 47(2-
3):203-220, May—June 2003.

Jerdme Feret. Static analysis of digital filters. In D. Schmidt, edi-
tor, Programming Languages and Systems (ESOP ’04), pages 33-48.
Springer-Verlag, 2004. LNCS 2986.

Jeréme Feret. The arithmetic-geometric progression abstract domain.
In R. Cousot, editor, Verification, Model Checking and Abstract Inter-
pretation (VMCAI'05), Sixth International Conference, pages 42--58,
2005. LNCS 3385.

John Fiskio-Lasseter and Michal Young. Flow equations as a generic
programming tool for manipulation of attributed graphs. In Program
Analysis for Software Tools and Engineering (PASTE 02), Jth ACM
Workshop, pages 69-76. ACM Press, 2002.

Christian Fecht and Helmut Seidl. Propagating differences: An effi-
cient new fixpoint algorithm for distributive constraint systems. Nordic
Journal of Computing, 5(4):304-329, 1998.

Christian Fecht and Helmut Seidl. A faster solver for general systems of
equations. Science of Computer Programming, 35(2-3):137-161, 1999.

Alfons Geser, Jens Knoop, Gerald Liittgen, Oliver Riithing, and Bern-
hard Steffen. Non-monotone fixpoint iterations to resolve second order
effects. In Compiler Construction (CC '96), 6th International Confer-
ence, LNCS 1060, pages 106-120. Springer-Verlag, 1996.

Deepak Goyal. A Language-Theoretic Approach to Algorithms. PhD
thesis, New York University, New York, NY USA, 2000.

George Gritzer. General Lattice Theory. Birkhauser Verlag, Boston,
MA USA, 1998. 2nd Ed.

D. Grunwald and H. Srinivasan. Data flow equations for explicitly par-
allel programs. In Principles and Practice of Parallel Programming
(PPoPP ’93), Proc. of the 4th ACM Symposium, pages 159-168. ACM
Press, 1993.

[GW76]

[HDTS7)

[Hec77]

[HMCCR93]

[HRS1]

[HRS95]

[HUT72|

[HU74]

[HU75]

[Imm99]

[1GSo3]

[Jor94]

155

Susan L. Graham and Mark Wegman. A fast and usually linear al-
gorithm for global flow analysis. Journal of the ACM, 23(1):172-202,
January 1976.

Susan Horwitz, Alan Demers, and Tim Teitelbaum. An efficient general
iterative algorithm for dataflow analysis. Acta Informatica, 24(6):679-
694, 1987.

Matthew S. Hecht. Flow Analysis of Computer Programs. Elsevier
Science Publishers B.V., Amsterdam, 1977.

Mary W. Hall, John M. Mellor-Crummey, Alan Carle, and René G.
Rodriguez. FIAT: A framework for interprocedural analysis and trans-
formation. In Proc. 6th Workshop on Parallel Languages and Compilers,

pages 522-545. Springer-Verlag, 1993. LNCS 768.

L. H. Holley and B. K. Rosen. Qualified data flow problems. [EEE
Transactions on Software Engineering, SE-7(1):60-78, January 1981.

Susan Horwitz, Thomas Reps, and Mooly Sagiv. Demand interproce-
dural dataflow analysis. In Foundations of Software Engineering (SIG-
SOFT ’95), 8rd International Symposium, pages 104-115. ACM Press,
1995.

Matthew S. Hecht and Jeffrey D. Ullman. Flow graph reducibility. SIAM
Journal on Computing, 1(2):188-202, June 1972.

Matthew S. Hecht and Jeffrey D. Ullman. Characterizations of reducible
flow graphs. Journal of the ACM, 21(3):367-375, July 1974.

Matthew S. Hecht and Jeffrey D. Ullman. A simple algorithm for global
data flow analysis. STAM Journal on Computing, 4(4):519-532, Decem-
ber 1975.

Neil Immerman. Descriptive Complezity. Springer-Verlag, 1999.

Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial Evaluation
and Automatic Program Generation. Prentice Hall, 1993. Available
online at http://www.dina.kvl.dk/ sestoft/pebook/.

Niels Jorgensen. Finding fixpoints in finite function spaces using need-
edness analysis and chaotic iteration. In Static Analysis (SAS ’94), 1st
International Symposium, pages 329-345. Springer-Verlag, 1994. LNCS
864.

[KAO5]

[KBC*99)

[KD94]

[KD99)]

[KDMO03]

[Ken75]

[Kil73]

[KKKS96]

[Kle52]

[Kno98)

[KRS94]

156

John Kodumal and Alex Aiken. Banshee: A scalable constraint-based
analysis toolkit. In C. Hankin and 1. Silveroni, editors, Static Analy-
sis (SAS '05), 12th International Symposium, pages 218-234. Springer-
Verlag, 2005. LNCS 3672.

M. Kandemir, P. Banerjee, A. Choudhary, J. Ramanujan, and
N. Shenoy. A global communication optimization technique based on
data-flow analysis and linear algebra. ACM TOPLAS, 21(6):1251-1297,
November 1999.

U. P. Khedker and D. M. Dhamdhere. A generalized theory of bit vector
data flow analysis. ACM TOPLAS, 16(5):1472-1511, September 1994.

U. P. Khedker, , and D. M. Dhamdhere. Bidirectional data flow analysis:
Myths and reality. ACM SIGPLAN Notices, 34(6):47-57, June 1999.

Uday P. Khedker, Dhananjay M. Dhamdhere, and Alan Mycroft. Bidi-
rectional data flow analysis for type inferencing. Computer Languages,
Systems, and Structures, 29(1-2):15-44, April-July 2003.

Kenneth W. Kennedy. Node listings applied to data flow analysis. In
Principles of Programming Languages (POPL ’75), 2nd ACM Sympo-
stum, pages 10-21. ACM Press, 1975.

Gary A. Kildall. A unified approach to global program optimization.
In Principles of Programming Languages (POPL '78), 1st ACM Sym-
posium, pages 194-206. ACM Press, 1973.

Marion Klein, Jens Knoop, Dirk Koschiitzski, and Bernhard Steffen.
DFA & OPT-METAFRAME: A toolkit for program analysis and opti-
mization. In T. Margaria and B. Steffen, editors, Tools and Algorithms
for the Construction and Analysis of Systems, 2nd International Work-
shop (TACAS ’96), pages 422-426. Springer-Verlag, 1996. LNCS 1055.

Stephen C. Kleene. Introduction to metamathematics. North-Holland,
Amsterdam, NL, 1952.

Jens Knoop. Optimal Interprocedural Program Optimization: A New
Framework and its Applications. Springer-Verlag, 1998. LNCS 1428.

Jens Knoop, Oliver Riithing, and Bernhard Steffen. Partial dead
code elimination. In Programming Language Design and Implemen-
tion (PLDI '94), 8th ACM SIGPLAN Conference, pages 147-158. ACM
Press, 1994.

[KRS96]

[KSV96]

[KUT76]

[KU77]

[KUS80)

[Las04)

[Las05)

[LCo1]

[LGC02

[LNS82]

[LPM99]

[Mar98]

157

Jens Knoop, Oliver Riithing, and Bernhard Steffen. Towards a tool
kit for the automatic generation of interprocedural data flow analyses.
Journal of Programming Languages, 4(4):211-246, 1996.

Jens Knoop, Bernhard Steffen, and Jiirgen Vollmer. Parallelism for free:
Efficient and optimal bitvector analyses for parallel programs. ACM
TOPLAS, 18(3):268-299, May 1996.

John B. Kam and Jeffrey D. Ullman. Global data flow analysis and
iterative algorithms. Journal of the ACM, 23(1):158-171, January 1976.

John B. Kam and Jeffrey D. Ullman. Monotone data flow analysis
frameworks. Acta Informatica, 7:305-317, 1977.

Mare A. Kaplan and Jeffrey D. Ullman. A scheme for the automatic
inference of variable types. Journal of the ACM, 27(1):128-145, January
1980.

John H. E. F. Lasseter. Toolkits for the automatic construction of data
flow analyzers. Technical Report CIS-TR-04-03, University of Oregon,
2004.

John H. E. F. Lasseter. Notes on the algebraic formulation and auto-
matic implementation of Duesterwald and Soffa’s data Aow-based con-
currency analysis. Unpublished manuscript, January 2005.

D. Long and L.A. Clarke. Data flow analysis of concurrent systems that
use the rendezvous model of synchronization. In Symposium on Testing,
Analysis, and Verification (TAV ’91), pages 21-35. ACM Press, 1991.

Sorin Lerner, David Grove, and Craig Chambers. Composing dataflow
analyses and transformations. In Principles of Programming Languages
(POPL '02), 29th ACM Symposium, pages 270-282. ACM Press, 2002.

J.-L. Lassez, V.L. Nguyen, and E.A. Sonenberg. Fixed point theorems
and semantics: A folk tale. Information Processing Letters, 14(3):112-
116, 16 May 1982.

Jaejin Lee, David A. Padua, and Samuel P. Midkiff. Basic compiler
algorithms for parallel programs. In Principles and Practice of Parallel
Programming (PPoPP ’99), Tth ACM Symposium, pages 1-12. ACM
Press, 1999.

Florian Martin. PAG-—An efficient program analyzer generator. Soft-
ware Tools for Technology Transfer, 2(1):46-67, 1998.

[Mar99]

[Mas93]

[McAQ2)

{Mer92]

[Min01]

[Min0d]

[MJ81)

[MMRO5]

[MR79]
[MR90z]

[MR90b)

[MR91]

158

Florian Martin. Generating Program Analyzers. PhD thesis, Universitit
des Saarlandes, 1999.

Stephen P. Masticola. Static Detection of Deadlocks in Polynomial
Time. PhD thesis, Rutgers University, 1993.

David McAllester. On the complexity analysis of static analyses. Journal
of the ACM, 49(4):512-537, July 2002.

N. Mercouroff. An algorithm for analyzing communicating processes.
In Mathematical Foundations of Programming Semantics, 7th Interna-
tional Conf., pages 312-325. Springer-Verlag, 1992. LNCS 598.

Antoine Miné. A new numerical abstract domain based on difference-
bound matrices. In O. Danvy and A. Filinski, editors, Proc. 2nd Symp.
on Program as Data Objects (PADO ’01), pages 155-172. Springer-
Verlag, 2001. LNCS 2053.

Antoine Miné. Relational abstract domains for the detection of floating-
point runtime errors. In D. Schmidt, editor, Programming Languages
and Systems (ESOP ’04), pages 3-17. Springer-Verlag, 2004, LNCS
2986.

Steven S. Muchnick and Neil D. Jones, editors. Program Flow Analysis:
Theory and Applications. Prentice-Hall, Englewood Cliffs, NJ, 1981.

Stephen P. Masticola, Thomas J. Marlowe, and Barbara G. Ryder. Lat-
tice frameworks for multisource and bidirectional data flow problems.
ACM TOPLAS, 17(5):777-803, September 1995.

Etienne Morel and Claude Renvoise. Global optimization by suppression
of partial redundancies. Comm. ACM, 22(2):96-103, February 1979.

Thomas J. Marlowe and Barbara G. Ryder. Properties of dataflow
frameworks: A unified model. Acta Informatica, 28(2):121-163, 1990.

Stephen P. Masticola and Barbara G. Ryder. Static infinite wait
anomaly detection in polynomial time. In 2nrd International Conf.
on Parallel Processing (ICPP '90), pages 78-187. U. Pennsylvania Pr.,
1990.

Stephen P. Masticola and Barbara G. Ryder. A model of Ada programs
for static deadlock detection in polynomial time. In ACM/ONR Work-
shop on Parallel and Distributed Debugging, pages 97-107. ACM Press,
1991.

[MR93]

[Muc97]

[MY02)

[NA9S]

INAC99]

[NACO97]

[NLM95)

[NNH99]

[0TP9Y]

[0090]

[0092]

159

Stephen P. Masticola and Barbara G. Ryder. Non-concurrency analysis.
In ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP '93), pages 129-138. ACM Press, 1993.

Steven S. Muchnick. Advanced Compiler Design and Implementation.
Morgan Kaufman, San Francisco, CA USA, 1997.

Andrzej S. Murawski and Kwangkeun Yi. Static monotonicity analysis
for A-definable functions over lattices. In Agostino Cortesi, editor, Veri-
fication, Model Checking, and Abstract Interpretation (VMCAI '02), 3rd
International Workshop, pages 139-153. Springer-Verlag, 2002. LNCS
2294.

Gleb Naumovich and George S. Avrunin. A conservative data flow algo-
rithm for detecting all pairs of statements that may happen in parallel.
In Foundations of Software Engineering (SIGSOFT °98), 6th Interna-
tional Symposium, pages 24-34. ACM Press, 1998.

Gleb Naumovich, George S. Avrunin, and Lori A. Clarke. An efficient
algorithm for computing MHP information for concurrent Java pro-
grams. In Foundations of Software Engineering (SIGSOFT ’99), 7th
International Symposium, pages 338-354. ACM Press, 1999.

Gleb Naumovich, George S. Avrunin, Lori A. Clarke, and Leon J. Oster-
weil. Applying static analysis to software architectures. In Foundations
of Software Engineering (SIGSOFT '97), 5th International Symposium,
pages 77-93. Springer-Verlag, 1997. LNCS 1301.

Magnus Nordin, Thomas Lindgren, and Hakan Millroth. IGOR: A tool
for developing Prolog dataflow analyzers. Technical Report 111, Uppsala
University, 1995.

F. Nielson, H.R. Nielson, and C. Hankin. Principles of Program Anal-
ysis. Springer-Verlag, New York, 1999.

Mauricio Osorio, Bharat Jayaraman, and David A. Plaisted. The-
ory of partial-order programming. Science of Computer Programming,
34(3):207-238, 1999.

Kurt M. Olender and Leon J. Osterweil. Cecil: A sequencing constraint
language for automatic static analysis generation. [EEE Transactions
on Software Engineering, 16(3):268-280, March 1990.

Kurt M. Olender and Leon J. Osterweil. Interprocedual static analysis
of sequencing constraints. ACM TOSEM, 1(1):21-52, January 1992.

(PP91]

[Rep94a]

[Rep94b]

[Rep98}

[Ros77]

[Ros80)

[Ros8&2}

[RPS6]

[RS90]

[Sch73]

[SDDS86]

[SGLYS]

[Sha80]

[SP8l]

160

Wuxu Peng and S. Puroshothaman. Data flow analysis of communicat-
ing finite state machines. ACM TOPLAS, 13(3):399-442, July 1991.

Thomas Reps. Demand interprocedural program analysis using logic
databases. In R. Ramakrishnan, editor, Applications of Logic Databases,
pages 163-196. Kluwer Academic Pr., 1994.

Thomas Reps. Solving demand versions of interprocedural analysis
problems. In Compiler Construction (CC ’94), 5th International Con-
ference, pages 389-403. Springer-Verlag, 1994. LNCS 786.

Thomas Reps. Program analysis via graph reachability. Information and
Software Technology, 40(11-12):701-726, November/December 1998.

Barry K. Rosen. High level data flow analysis. Comm. ACM,
20(10):712-724, October 1977.

Barry K. Rosen. Monoids for rapid data flow analysis. SIAM Journal
on Computing, 9(1):159-196, February 1980.

Barry K. Rosen. A lubricant for data flow analysis. STAM Journal on
Computing, 11(3):493-511, August 1982.

Barbara G. Ryder and Marvin C. Paull. Elimination algorithms for data
Aow analysis. ACM Computing Surveys, 18(3):277-316, 1986.

John H. Reif and Scott A. Smolka. Data flow analysis of distributed com-
municating processes. Int. Journal of Parallel Programming, 19(1):1-30,
1990.

Marvin Schaeffer. A Mathematical Theory of Global Program Optimiza-
tion. Prentice Hall, Englewood Cliffs, NJ USA, 1973.

J.T. Schwartz, R.B.K. Dewar, E. Dubinsky, and E. Schonberg. Pro-
gramming With Sets: An Introduction to SETL. Springer-Verlag, 1986.

Vugranam C. Sreedhar, Guang R. Gao, and Yong-Fong Lee. A new
framework for elimination-based data flow analysis using DJ graphs.
ACM TOPLAS, 20(2):388-435, March 1998.

Micha Sharir. Structural analysis: A new approach to flow analysis in
optimizing compilers. Computer Languages, 5:141-153, 1980.

Micha Sharir and Amir Pnueli. Two approaches to interprocedural data
flow analysis. In [MJ81], pages 189-233, 1981.

[SRH95]

[SS93]
[Tar55]

[Tar76]

[Tar81a]
[Tar81b]
[Tay83]
[Ten74]

[TH92)

[TO80]

[un73]

[Ven92]

[VWL94]

161

Mooly Sagiv, Thomas Reps, and Susan Horwitz. Precise interproce-
dural dataflow analysis with applications to constant propagation. In
Formal Approaches in Software Engineering (FASE '95), 1995 Collo-
quium, pages 651-665. Springer-Verlag, 1995. LNCS 915.

Gunther Schmidt and Thomas Stréhlein. Relations and Graphs.
Springer-Verlag, 1993.

Alfred Tarski. A lattice-theoretical fixpoint theorem and its applica-
tions. Pacific Journal of Mathematics, 5:285-309, 1955.

Robert Endre Tarjan. Iterative algorithms for global flow analysis. In
J. F. Traub, editor, Algorithms and Complexity: New Directions and
Research Results, pages 71-101. Academic Pr., 1976.

Robert Endre Tarjan. Fast algorithms for solving path problems. Jour-
nal of the ACM, 28(3):594-614, July 1981.

Robert Endre Tarjan. A unified approach to path problems. Journal of
the ACM, 28(3):577-593, July 1981.

R. N. Taylor. Complexity of analyzing the synchronization structure of
concurrent programs. Acta Informatica, 19(1):57-83, 1983.

Aaron M. Tenenbaum. Type Determination for Very High-Level Lan-
guages. PhD thesis, New York University, New York, NY USA, 1974.

Steven W.K. Tjiang and John L. Hennessy. Sharlit: A tool for build-
ing optimizers. In Programming Language Design and I'mplementation
(PLDI '92), 5th ACM SIGPLAN Conference, pages 82-93. ACM Press,
1992.

Richard N. Taylor and Leon J. Osterweil. Anomaly detection in con-
current software by static data fow analysis. [EEE Transactions on
Software Engineering, SE-6(3):265-277, 1980.

Jeffrey D. Ullman. Fast algorithms for the elimination of common subex-
pressions. Acta Informatica, 2:191-213, 1973.

G. A. Venkatesh. SPARE: A development environment for program
analysis algorithms. IEEE Transactions on Software Engineering,
18(4):304-318, April 1992.

B. Vergauwen, J. Wauman, and J. Lewi. Efficient fixpoint computation.
In Static Analysis (SAS '94). 1st International Symposium, pages 314
328. Springer-Verlag, 1994. LNCS 864.

[War92]

[WS94]

[WS97]

[WZ91]

[YE02]

[YHO3|

[ZMEO6]

[ZYLO4]

162

D. S. Warren. Memoing for logic programs. Comm. ACM, 35(3):93-111,
March 1992.

Deborah L. Whitfield and Mary Lou Soffa. The design and implemen-
tation of Genesis. Software—Practice and Ezperience, 24(3):307-325,
March 1994.

Deborah L. Whitfield and Mary Lou Soffa. An approach for explor-
ing code-improving transformations. ACM TOPLAS, 19(6):1053-1084,
November 1997.

Mark N. Wegman and Frank K. Zadeck. Constant propagation with
conditional branches. ACM TOPLAS, 13(2):181-210, April 1991.

Kwangkeun Yi and Hyunjun Eo. Static extensionality analysis for A-
definable functions over lattices. Technical Report ROPAS-2002-17, Ko-
rea Advanced Institute of Science and Technology, 2002. Available on-
line af http://ropas.snu.ac.kr/zoo/.

Kwangkeun Yi and Williams L. Harrison. Automatic generation and
management of interprocedural program analyses. In Principles of Pro-
gramming Languages (POPL '93), 20th ACM Symposium, pages 93—
103. ACM Press, 1993.

Jia Zeng, Chuck Mitchell, and Stephen A. Edwards. A domain-specitic
language for generating dataflow analyzers. Electronic Notes in Theo-
retical Computer Science, 164:103-119, 2006.

Xiaofang Zhang, Michal Young, and John H. E. F. Lasseter. Refining
code-design mapping with flow analysis. In Foundations of Software
Engineering, 2004 ACM Symposium (SIGSOFT ’04), pages 231-240.
ACM Press, 2004.

