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Knowing how organisms are related evolutionarily is crucial for interpreting nearly
all biological results. Evolutionary history is inferred using computational techniques
that make simplifying assumptions about the evolutionary process. There is ample
biological evidence that many of these assumptions are routinely violated, but little
is known about. the effects of assumption violations on phylogenetic inference.

Here 1 show how site-specific changes in evolutionary rates—an important evolu-
tionary feature not incorporated into phylogenetic models—can cause existing meth-
ods to produce incorrect results. I develop a mixed branch length technique that
produces more reliable inferences under realistic conditions. I outline a strategy to

reduce the computational demands of the mixed branch length model by code opti-



mization and algorithm improvements.

Biologists also want to assess the confidence they should have in inferred phyloge-
nies. Bayesian methods calculate posterior probabilities—i.e. the probability that a
hypothesis is correct given the data, model, and prior probability distributions over
model parameters —for phylogenetic hypotheses, producing an intuitively meaningful
measure of statistical confidence, but concerns that posterior probabilities may reg-
ularly be too high has hampered acceptance of phylogenies produced using Bayesian
methods. Understanding if, when, and why posterior probabilties are inflated is a
crucial problem.

Here [ show that although posterior probabilities are by definition correct assess-
ments of subjective confidence given prior assumptions, they are accurate statements
of objective confidence only when branch lengths are known in advance. When branch
lengths are unknown, posterior probabilities can be either higher or lower than the
long-run chance a hypothesis is correct. Posterior probabilities reported on actual
phylogenies should therefore be interpreted only from a subjectivist standpoint.

My results suggest that phylogenetic techniques can produce incorrect phylogenies
and assessments of statistical confidence due to assumption violations. Incorporating
knowledge of how evolution works at the biological level into phylogenetic models
can improve the quality of evolutionary inferences. The mixed branch length model
incorporates an important feature of molecular evolution, potentially generating more
accurate phylogenies than existing techniques.

This dissertation includes both my previously published and my co-authored ma-

terials.
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CHAPTER 1

INTRODUCTION

Empirical data by themselves are typically not very interesting; rather, the
inferences we draw from the data are what give data meaning. Inferential
techniques produce general information about the hidden processes that govern the
world in which we live from specific data instances, but all techniques that infer
information from empirical data make assumptions about the underlying processes
that generated the data. These assumptions can be made because 1) we believe the
data-generating process to have certain properties, or 2) we require certain
simplifications in order to perform calculations or otherwise extract information
from the data. In either case, what we assume in order to make inferences often
turns out to be wrong, potentially undermining the quality of the resulting
information. Understanding which of our assumptions are incorrect, as well as the
effects of assumption violations on the accuracy of our inferences, is therefore crucial
for reliably interpreting inferred information. In addition, a thorough understanding
of how assumption violations affect resulting inferences can lead to the development
of novel techniques that produce more accurate results under realistic conditions.

Phylogenetic inference is a computational technique for reconstructing the
evolutionary history of living organisms or genes (usually depicted as a bifurcating
tree} from molecular sequence data (typically either DNA or protein sequences) or
other characters. The centrality of phylogenetic inference to evolutionary biology is
unquestionable; the only figure in Darwin’s seminal work, The Origin of Species, is

a tree-like structure depicting the historical relationships among present day



organisms {13]. Because nearly all biological results are meaningful only in the
context of evolution [15], phylogenetic inference is fast becoming one of the
fundamental computational techniques used throughout modern biclogy as a whole.
Phylogenetic inference provides a necessary framework for all valid comparative
biology [40] and has dramatically enhanced our knowledge of the epidemiology of
infectious disease [25, 34] and the complex interactions underlying ecological
processes {122, 125].

Phylogenetic inference is a unique and challenging problem for a number of
reasons. First, because evolution proceeds over immense time scales and leaves little
evidence of its process, the true phylogeny is long past and can never be known with
certainty. Fossil evidence is scarce, difficult to interpret, and cannot provide clear
molecular data about the distant past. Second, because characters that appear very
similar can have independent evolutionary origins (a phenomenon called
“convergent evolution”), misleading phylogenetic information is not only possible
but can sometimes overwhelm the true evolutionary signal in cases of ancient
evolutionary radiations and other difficult problems. Finally, the ways in which
species diversify and evolve over time are governed in large part by external
processes that are difficult to predict or model mathematically, such as changes in
global or local climate, cataclysmic geological events, interactions with other
organisms, and population-level dynamics. As a result, models used to infer
phylogenies—which typically include only molecular-scale dynamics—are necessarily
simplified compared to the true evolutionary process.

While little can be done to augment the paucity of of data from extinct and
ancestral organisms, likelihood models have been developed to formally evaluate
molecular convergence, and models that more closely approximate complex
real-world evolutionary dynamics are constantly being developed. Nonetheless, all
phylogenetic methods make simplifying assumptions about the process of molecular
evolution, many of which can be regularly violated by empirical sequence data.
Most techniques accurately reconstruct evolutionary relationships when their
assumptions are met, but violating the assumptions of a method can result in

inaccurate inferences. For example, maximum parsimony (MP, a simple



nonparametric technique) assumes that convergent evolution is not structured to
favor a particular tree. When evolutionary rates are significantly accelerated in
non-sister lineages, this assumption can be strongly violated, producing a
topological bias in favor of placing long branches together on the tree regardless of
the actual evolutionary history [21]. Although significantly more sophisticated than
simple MP, model-based phylogenetic methods also rely on a simplified model of the

evolutionary process and therefore may be prone to similar errors.

1.1 Model-Based Phylogenetic Inference

Model-based phylogenetics such as maximum likelihood (ML) and Bayesian
Markov Chain Monte Carlo (BMCMC) employ an explicit probabilistic model of the
evolutionary process that can account for accelerated evolutionary rates in different
lineages, producing highly accurate reconstructions under conditions that confound
maximum parsimony [115, 116, 127]. In addition, because different evolutionary
models can be specified and evaluated using well-founded statistical methodology
[88, 90, it is possible to formulate and test hypotheses about the process of
molecular evolution—not just the tree topology—using model-based techniques [52].
There is hope that because the evolutionary model can be made arbitrarily complex,
as important features of the molecular evolutionary process are identified, these can
be incorporated into the model, resulting in increasingly accurate inferences.

Given an evolutionary model, it is possible to infer a phylogeny that is ‘optimal’
under that model using the likelihood principle. If the tree topology (¢) and all free
parameters of the model M are known, the probability of any possible sequences X
occurring at the tips of the tree (P(X|t, M)) can be calculated directly from the
model. Reversing this process—taking the sequence data as given—the ‘likelihood’
of the model can be calculated under any set of parameter values using the same
formula: L(t, M|X) = P(X|t, M) [18]. Parameters can be optimized by choosing
values that maximize the model’s likelihood {the ML approach), or likelihoods can
be calculated by integrating over multiple parameter values using Bayesian Markov

Chain Monte Carlo.



Although it is possible to calculate likelihoods using any probabilistic model of
sequence change on a tree, all current phylogenetic models are based on a
continuous-time Markov process. Given a finite number of possible states—A,C,G,T
in the case of nucleotide data, the 20 amino acids in the case of protein data—a
Markov model specifies the conditional probability that, if a character is in state i
at time u, the character will be in state j at time u + v. In a phylogenetic context,
‘time’ is measured as the expected number of substitutions/site along each branch
on the tree (i.e. the ‘branch length’), and the likelihood for each site can be
efficiently calculated using a tree-traversal algorithm [22]. Under the standard
assumptions that the state at one site is not influenced by the states at other sites
(independence) and that all sites follow the same evolutionary model with the same
parameter values (identical distribution), the total likelihood for an entire molecular
sequence alignment is simply the product of all individual site-likelihoods.

One of the benefits of likelihood phylogenetics is that information about the
molecular evolutionary process can be formalized and incorporated into the
evolutionary model, potentially improving the accuracy of resulting phylogenetic
inferences. Common models used today have two main components: a component
describing the instantaneous transition rate from any state to any other state and a

component describing the rate of evolution.

1.1.1 Relative Transition Rate Models

Relative transition rates are modeled by extracting two pieces of information
from the data: a ‘substitutability’ matrix (S-matrix) describing the propensity for
different states to substitute for one another and a frequency vector (7) describing
how often each state appears in the molecular sequence data under study. Each of
these pieces making up the relative transition rate model have been developed to

explain observed features of molecular evolution.



Substitutability Matrix (S-matrix)

First, it has been observed that different types of state changes may be more or
less frequent than others. In the case of nucleotide data, transitions
(A« G,C « T) are typically more common than transversions [59]. In the case of
protein data, it is reasoned that because the molecular interactions upon which life
depends are determined in large part by the biochemical properties of the molecules
involved, changes preserving the biochemical properties of the amino acid at a given
position should tend to occur more frequently than changes that radically alter a
site’s biochemistry. For example, changes among hydrophobic residues are more
frequent than changing a hydrophobic amino acid to a hydrophilic one. The relative
substitutability among the various possible states is expressed by an N x N matrix
(where N is the number of possible states) called an S-matrix. Each entry (4, j) in
the S-matrix indicates the relative ‘substitutability’ among states i and j, with
large values indicating substitutions that are likely to occur and small values
indicating rare substitutions (Figure 1.1A). To maintain computational tractability,
it is assumed that the S-matrix is symmetrical or ‘time-reversible’: the relative
transition rate from ¢ — j is always the same as the rate from j — i. Matrices of
various complexity can be used, ranging from very simple models that assume all
changes have equal weight to a general time-reversible model in which the relative
substitutability between each pair of states is a separate free parameter. In the case
of protein data—where the large number of possible states makes parameter
estimation more difficult—empirical S-matrices have been developed by analyzing
large numbers of protein sequences and calculating the ‘average’ substitutability
matrix over these sequence data [57, 123]. Empirically-derived matrices-—which

have no free parameters—can then be applied to novel phylogenetic problems.

State Frequency Vector (7)

The state frequency vector () is used to augment the information in the
S-matrix to account for the observation that different states typically occur with

different frequencies in molecular sequence data [22]. For example, different genomic



branch length: 0.2 [
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FIGURE 1.1: Main components of phylogenetic models of evolution. (A) Sub-
stitutibility matrix (S-matrix) describing the relative substitutibility of nucleotides.
Large bubbles indicate nucleotides that substitute for one another more readily than
small bubbles; this example shows a 10:1 transition bias. (B) State frequency vector
(7) describing the frequency of each nucleotide in the data set. This example shows
elevated frequencies of G and C. (C) Each entry in the S-matrix is multiplied by
the appropriate state frequency to produce a @-matrix. (D) The Q-matrix is first
multiplied by the ASRV-corrected branch length then exponentiated to produce the
transition probability matrix (P-matrix) which gives the probability of each possible
nucleotide change along the branch.

regions regularly vary in Guanine+Cytocine (GC) content [8]; some regions are GC
rich, while others are relatively GC poor. Each entry in the matrix S;_,; is
multiplied by the frequency with which state j occurs in the sequence data in order
to reflect the idea that changing to a more frequent state is more likely than
changing to an infrequent state (Figure 1.1B,C). Typically, the frequency of each
state is estimated directly from the data as a free parameter, and state frequencies
are assumed to be ‘stationary;’ that is, state frequencies are assumed to remain
constant over evolutionary time. The result of combining the S-matrix and the
frequency vector is a new matrix called an R-matrix that describes the relative

instantaneous transition rates among any two possible states.



1.1.2 Evolutionary Rate Models

The second main component of modern evolutionary models used for
phylogenetic inference is a model of the rate of evolution. As with relative transition
rates, evolutionary rate models typically employed today have two pieces: a piece
describing lineage-specific evolutionary rates and a piece describing among-site rate
variation. Because it has been known for some time that the rate of evolution can
be faster or slower in different lineages, current evolutionary models have a free
‘branch length’ parameter associated with each branch on the tree that describes
the rate of evolution on that branch. Branch lengths—which are typically estimated
from the data—are expressed in terms of the expected number of substitutions/site
along the molecular sequence. Expressed in this way, branch lengths actually
conflate two evolutionary parameters; the branch length is the rate of evolution
along the branch times the amount of time between two speciation events.
Interestingly, although adding taxa to the tree does not necessarily increase the
complexity of the relative transition rate model, the addition of taxa must increase
the complexity of the evolutionary rate model, because new branch length

parameters are added to the tree.

Modeling Among-Site Rate Variation (ASRV)

The second piece of the model describing evolutionary rates is a model of
among-site rate variation (ASRV). Because different sites in a molecular sequence
are under different levels of evolutionary constraint—some sites are highly
constrained and tend not to accumulate mutations while others are more
variable—different sites can evolve at different rates, even within the same lineage
[128]. When a single branch length is applied to sites evolving at different
evolutionary rates, the branch length underestimates the rate of fast sites and
overestimates the rate of slow sites, resulting in incorrect rates for most sites and
very poor phylogenetic accuracy [127]. As it is typically unknown which sites evolve
at which rates, it is not possible in general to assign sites to different rate categories

a priori; instead, the likelihood at each site is calculated as a weighted average over



all possible rates. In an ASRV model, a pre-determined number of rate multipliers
T = (r1,72,...,7n) either ‘stretch’ or ‘compress’ the tree's branch lengths (by
multiplying the raw branch length by the rate multiplier to get a new
ASRV-corrected branch length) to account for different evolutionary rates at
different sites. A proportion of sites p = (p1, pa, ..., pn) are estimated to evolve at
each evolutionary rate, and the likelihood for a site is calculated as the weighted
sum over all rate multipliers: L{X|t, M,r,p) = 3 " p:L(X|t, M,r;), where M is the
evolutionary model and ¢ is the tree topology with branch lengths. Of course, for
branch lengths to retain their intended meaning—the expected number of
substitutions/site—it is required that 3 ._, p;r; = 1.0.

A very general ASRV model like the one just described has many parameters
(each rate multiplier and site proportion must be estimated separately), and the
constraints on the parameter values are complex, making optimization difficult.
Very simple ASRV models that assume sites are either fixed (invariant) or variable
have been proposed, but it is generally accepted that such a simple classification of
sites into ‘on’ and ‘off’ categories is too gross to account for the subtle evolutionary
dynamics affecting ASRV [42, 128]. The most common ASRV model used
today—the “discrete gamma model” —attempts to strike a balance between these
two extremes. The gamma ASRV model assumes a number of rate
multipliers—typically 4-8 rather than just two in the ‘invariant sites’ model—but
these multipliers are distributed according to a gamma distribution [126]. Using this
model, a single parameter value—the shape of the gamma distribution—determines
any number of rate multipliers, and the proportion of sites evolving at each rate is
assumed to be equal. The discrete gamma model has been shown to produce
accurate phylogenies under realistic conditions where other models fail
[46, 63, 116, 131].

1.1.3 Calculating Transition Probabilities

Multiplying a branch length by a rate multiplier gives an ASRV-corrected branch

length that can be used in conjunction with the relative transition rate matrix to



calculate the conditional probability of each state change along the branch. First,
the R-matrix is scaled so that the sum of the off-diagonals is 1.0, producing a
(-matrix. The transition probability matrix P is then calculated by taking: e,
where b is the initial branch length, and r is the rate multiplier (Figure 1.1D). Each
entry in the P-matrix (P, ;) gives the probability of changing from state 7 to state j
along the given branch on the tree; the total probability of observing a set of states

at the tips of the tree can be computed using a post-order tree traversal [22].

1.2 Model Violations

When the correct evolutionary model is used, maximum likelihood converges on
the correct tree as sequence length increases (i.e. it is ‘consistent’), and Bayesian
methods using the same probabilistic models may be expected to perform similarly.
When the model is very complex, however, different optimal trees can have the
same likelihood—the tree is ‘nonidentifiable’ —and ML is no longer capable of
distinguishing the correct tree from incorrect alternatives, even when the true model
is used and infinite data are available [107]. Moreover, computer simulations have
shown that when data are generated using a complex model but analyzed using a
simpler ‘underparameterized’ model, incorrect inferences of tree topology, model
parameters, and statistical support for phylogenetic hypotheses are regularly made
(11, 53, 62, 65, 101, 104, 111]. So, if the correct evolutionary model is
available—and the tree topology is identifiable under the model-—we can be assured
that likelihood methods have excellent asymptotic properties; however, this
guarantee is void if the model is either very complex or incorrect.

Evolutionary models used to infer phylogenies typically have a number of free
parameters that must be estimated from the sequence data. Failure to accurately
estimate model parameters can result in phylogenetic error, even if the model is
correct, but a certain degree of homogeneity must be assumed so that enough data
are available to ensure accurate parameter estimates. If every site in the sequence
evolved under unique dynamics, there would be no data to provide statistically

meaningful parameter estimates for each site. With the notable exception of
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among-site rate variation [128]—which incorporates faster- and slower-evolving
sites—evolutionary models typically assume that all sites evolve under the same
evolutionary dynamics. This maximizes the amount of data available to estimate
the parameters of the model, but there is ample empirical evidence that different
sites regularly evolve under different evolutionary constraints, resulting in a
violation of the homogeneity assumption implicit in existing evolutionary models. In
some cases, inferences can be robust to certain violations of the model’s
assumptions [41, 110, 131]; other times assumption violations can cause incorrect
trees to be strongly supported [9, 55, 62]. If model violations commonly found in
empirical sequence data undermine the credibility of existing phylogenetic inference
techniques, the potential repercussions for biological science are profound, as
phylogenetic techniques are ubiquitously employed, and many results are dependent

on evolutionary relationships being correct.

1.3 What is “Heterotachy”?

Both among-lineage and among-site rate variation are widely recognized as
important evolutionary features. Among-lineage rate variation is incorporated into
phylogenetic models by lineage-specific branch lengths, and among-site rate
variation is typically modeled using a discrete gamma approach. A related
molecular evolutionary feature that is not modeled by current phylogenetic
techniques is “heterotachy,” or site-specific evolutionary rate variation
[27, 48, 55, 69, 71, 72, 75, 76, 84, 87, 91]. Heterotachy was first identified as an
important molecular evolutionary feature in the mid-1970’s by Walter Fitch and
colleagues, who were studying the evolution of vertibrate cytochrome protein
sequences [26, 27, 76]. These researchers noticed that the identities of the variable
sites in the sequence were different in different lineages; in some lineages, a specific
site was constant in all extant taxa, while in another lineage that same site was
highly variable. Other sites exhibited the reversed pattern, being variable in the
first lineage and constant in the second. The observation of this pattern led to the

development of the “covarion” hypothesis of evolution, which states that at any
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given time, only some of the sites in a sequence are capable of accepting
substitutions—the remaining sites being fixed by selective constraints—but the
specific sites that are capable of varying can change over time [27, 120]. Weak
evidence for the covarion hypothesis has been generated by phylogenetic studies
showing that a covarion model typically provides an improved statistical fit to
empirical sequence data compared to simpler ‘homotachous’ models [48, 71]. A
second early observation regarding the covarion model was that not only which sites
are variable changes in different lineages, but how many sites are variable can also
be different across phylogenetic lineages [27]. This early observation has recently
been verified for additional molecular sequence data using more sophisticated
statistical estimation procedures [69].

The recent explosion of molecular sequence data has allowed the development of
more fine-grained statistical tests for site-specific evolutionary rate shifts, giving us
a more detailed picture of what heterotachy may look like. Recent analyses have
shown that—in addition to the ‘on’/‘off’ dynamics predicted by the covarion
model—sites in a molecular sequence can regularly undergo more subtle
evolutionary rate shifts in which a site can switch from evolving slowly to evolving
quickly and vice versa [35, 36, 72, 84]. A current general model of heterotachy views
this phenomenon as an interaction between lineage-specific and site-specific
evolutionary rate variation (Figure 1.2). In among-lineage rate variation—modeled
by lineage-specific branch lengths—different lineages can be fast- or slow-evolving,
but all sites evolve at the same rate in all lineages. Under an ASRV model, different
sites can be either fast or slow, but fast sites are fast in all lineages, and slow sites
are always slow. Under heterotachous evolution, some sites evolve fast in some
lineages and slower in other lineages, while other sites exhibit reversed evolutionary
rates, evolving slowly in lineages where other sites evolve quickly and quickly where
other sites evolve slowly. The result of heterotachy is a series of evolutionary rate
shifts that can occur throughout the phylogenetic tree but may apply only to some
postions in the sequence.

One of the functional explanations for heterotachy is that, as sequences diverge,

new molecular functions can be acquired—and ancestral functions lost—causing
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FIGURE 1.2: Types of evolutionary rate variation in molecular sequence data. (A)
No rate variation: all sites evolve at the same evolutionary rate in all lineages. The
total length from the root of the tree (the common ancestor of all taxa under study) to
each tip is the same. (B) Among-lineage rate variation: sequences evolve at different
rates in each lineage, but all sites evolve at the same relative rate. (C) Among-site
rate variation (ASRV): different sites evolve at different evolutionary rates, but rates
are proportional across sites. (D) Heterotachy, or site-specific rate variation, occurs
when different sites evolve at different non-proportional rates.

unconstrained sites to become fixed in certain lineages and vice versa. As sites that
are free to vary become involved in a new function, novel evolutionary constraints
cause these sites to become slow-evolving [68, 69, 108]; conversely, loss of function in
specific lineages can free previously constrained sites, allowing them to become more
variable [55]. Sites involved in different molecular subfunctions could exhibit
different evolutionary rate patterns on the tree due to various subfunctions arising
in different lineages, leading to heterotachous evolution. Although functional

divergence is one potential cause of heterotachy, heterotachous sites are not
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typically linked to known functional or structural domains but seem to occur
more-or-less evenly dispersed across the entire molecular sequence [72, 81]. This
suggests that heterotachy may be a very general feature of molecular evolution and
not necessarily linked to dramatic functional shifts.

A possible explanation for heterotachy without functional change is that nearby
positions in a sequence may be able to perform similar molecular roles; heterotachy
could arise as different positions become fixed to perform various roles in different
lineages. For example, if a stabilizing intramolecular interaction improves the
function of a protein, but either of two consecutive sites could perform the
stabilizing role, different positions could be fixed to stabilize the molecule in
different lineages. One of the sites may be stabilizing—and thus constrained-—in
some lineages but not in others, resulting in differential rates across lineages for that
site. The neighboring site may then exhibit a complementary rate pattern, being
variable in lineages where the first site is constrained and constrained where the first
site is variable.

Heterotachy could therefore be caused either by shifts in molecular function or
through random processes in which different sites in the molecular sequence are
recruited to perform similar functions in different lineages. If these and other
possible causes of heterotachy are important for molecular evolution, heterotachy
could be very widespread and may in fact be the ‘rule’ rather than an interesting

exception.

1.4 Does Heterotachy Matter for Phylogenetic

Inference?

Even though the importance of heterotachy in molecular evolution has been well
established, very little is known about the potential effects of heterotachy on
phylogenetic inference. It has been predicted theoretically that when different sites
evolve under different branch lengths—which is one way of modeling

heterotachy-—homotachous models may be statistically inconsistent [11], although
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no proof has been given for this conjecture. An intriguing empirical study has
suggested that heterotachy may be the chief cause of phylogenetic error when
elongation factor la (EFla) data are used to reconstruct the Eukaryotic phylogeny
[55]. When a homotachous model was used to reconstruct the Eukaryotic tree using
EF1la sequences, the spurious placement of the Microsporidia with the
Archaebacterial outgroup—rather than the correct placement of Microsporidia with
Fungi—was weakly supported. When sites that exhibited a marked rate shift across
the Archaebacterial and Eukaryotic subtrees were removed from the analysis,
support for the incorrect tree vs. the correct tree was significantly reduced,
suggesting that these ‘heterotachous’ sites are at least in part responsible for the
phylogenetic error. These results strongly suggest that heterotachy can be an
important factor contributing to a reduction in phylogenetic accuracy, but many
important questions remain unanswered.

First, the specific causes of heterotachy-induced phylogenetic error remain
unclear. Presumably, the failure of homotachous models to correctly estimate
site-specific evolutionary rates contributes to reduced accuracy under heterotachous
conditions, but the mechanisms responsible for specific errors are not known.
Understanding the precise causes of error can potentially generate information that
can be used to develop new methods less prone to heterotachy-induced artifacts.
Second, the potential types of errors likely to be seen when homotachous models are
applied to heterotachous data is almost completely unknown. Heterotachy could
cause certain trees to be preferred over others due to induced topological bias;
branch lengths could be either over or underestimated, or heterotachy could cause
reduced statistical power to resolve difficult phylogenies when homotachous models
are applied. Understanding what erroneous inferences are likely to look like might
help diagnose cases in which heterotachy may be causing an artifactual topology to
be supported. Finally, the potential of new evolutionary models to improve the
quality of phylogenetic inferences has not been adequately explored. The only
available model that does include heterotachous dynamics is the ‘covarion’ model
[29, 120], which incorporates a simplified form of heterotachy based on the covarion

hypothesis and may not be adequate to capture more subtle evolutionary rate shifts.



15

Little is currently known about the relative accuracy of the covarion model vis-a-vis
existing homotachous models. Other models of heterotachy are possible, but these
have not been developed or tested prior to the work presented here.

The first part of this dissertation (chapters 2-4) addresses these questions.
Chapters 2 and 3 examine the effects of heterotachy on model-based phylogenetic
inference. Chapter 2 is an in-depth analysis of a single form of simulated
heterotachy; I use a series of controlled simulation experiments to show how
heterotachous evolutionary dynamics can severely impair the accuracy of
phylogenies inferred using standard model-based methods (ML and BMCMC) by
inducing a bias in favor of an incorrect phylogeny. I introduce a mixed branch
length model that substantially improves phylogenetic accuracy under simulated
conditions, potentially improving the quality of phylogenies inferred from actual
sequence data. Chapter 3 examines additional forms of heterotachy using both
simulated and empirical sequence data. I show that, in general, various forms of
heterotachy can impair existing model-based techniques, resulting in incorrect
inferences from both simulated and real-world data sets. I futher develop and
implement a general mixed branch length model for inferring phylogenies under
heterotachous conditions. Applying this model to both simulated and empirical
data, I show that incorporating heterotachy using a mixed branch length model can
substantially improve the accuracy of phylogenetic inferences under realistic
conditions. These results suggest that heterotachy is an important concern in
phylogenetic inference, and that a mixed branch length approach is a useful tool for
improving the quality of reconstructed phylogenies. Finally, chapter 4 addresses
some of the computational issues raised by a complex mixed model approach. In
particular, the mixed model requires much more computer time than simpler
homotachous models, potentially limiting its applicability to large real-world data
sets. Chapter 4 outlines a number of strategies for reducing the computational costs

of mixed branch length analyses.
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1.5 Bayesian Phylogenetic Inference

The popularity of Bayesian phylogenetic techniques using Markov Chain Monte
Carlo (BMCMC) [54] has increased dramatically in recent years. Bayesian
phylogenetics is appealing for at least three reasons: 1) the efficiency of the MCMC
algorithm allows large phylogenies to be reconstructed from very large data sets
using complex evolutionary models, all of which can improve the accuracy of
phylogenetic reconstructions. 2) Bayesian techniques allow uncertainty in the values
of model parameters to be incorporated into the analysis by integrating over a range
of values, and 3) Bayesian posterior probabilities provide an intuitively meaningful
measure of statistical confidence in phylogenetic hypotheses. In contrast, maximum
likelihood (ML) analysis is computationally costly and provides no formal means of
incorporating parameter uncertainty. Furthermore, the measure of statistical
support used most often in ML analysis has been shown to be conservatively biased,
resulting in reduced statistical power and a high rate of type II error [44].

Although Bayesian techniques have been used to resolve difficult and
long-standing phylogenetic problems with strong statistical support [58, 79], there is
growing concern that posterior probabilities on phylogenetic trees may regularly be
too high, resulting in inflated confidence in uncertain results and a high rate of false
inferences {12, 17, 67, 74, 102, 112, 117, 132]. Understanding whether posterior
probabilities are inflated always or only under specific conditions—and why—is of
crucial importance for interpreting the results of Bayesian analyses. This
information can also be used to guide the development of new, more accurate
statistical estimation techniques.

It has recently been suggested that not sampling unresolved trees as part of a
Bayesian analysis could lead to overestimation of statistical confidence when the
true tree is either multifurcating or has very short internal branch lengths [67, 132].
Existing Bayesian phylogenetics software samples only fully-resolved bifurcating
phylogenies; multifurcating polytomies are approached by sampling very small
branch lengths, but explicitly polytomous trees are not considered. When data are

simulated on a small unresolved tree, Bayesian techniques produce equal posterior
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probabilities for each possible resolved phylogeny when sequences are very short,
but longer sequences occasionally produce strong support for one resolved tree over
the others, even though there is no legitimate phylogenetic signal in the data. These
results have led to predictions that posterior probabilities will become increasingly
unpredictable as sequence length increases when data are simulated on an
unresolved “star tree” [67, 132], although this prediction has not been explicitly
tested. Previous studies have not examined whether high support for one resolved
tree over the others occurs more frequently than expected due to stochastic error
alone, and too few sequence lengths were examined to establish a general trend.

Another potential cause of erroneous confidence estimation in Bayesian
phylogenetics is inaccurate prior information. In addition to the evolutionary model
employed by both ML and BMCMC, Bayesian methods require the specification of
prior probability distributions on all free model parameters. In effect, these prior
distributions amount to additional assumptions required to conduct a Bayesian
analysis; if these assumptions are wrong—as they are likely to be in any real
analysis—BMCMC might produce biased phylogeny estimates or inaccurate
assessments of statistical confidence. Unfortunately, very little is known about the
effects of different prior assumptions on Bayesian phylogenetic techniques. It has
recently been shown that when data are simulated with branch lengths drawn from
an exponential distribution with specified mean, and the same distribution is used
as a branch length prior in Bayesian analysis, the average posterior probability of a
group of trees is the same as the proportion of inferred trees that are correct
[53, 132). However, when the prior mean on internal branch lengths is higher than
the true mean, posterior probabilities are skewed upward; prior means lower than
the true mean skew posterior probabilities downward [132].

These results establish that prior assumptions can affect posterior probabilities,
but several important questions remain unanswered. First, real evolutionary history
follows a single historically correct tree, whereas the simulations employed by
previous authors [53, 132] generated phylogenetic trees and branch lengths using a
stochastic process. How different prior assumptions affect posterior probabilities

when there is a single correct tree with fixed branch lengths is unknown. Second,
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previous studies examined the effects of various priors for the internal branch only,
with the true prior distribution always assumed for terminal branches. Most
empirical studies use the same prior distribution on both internal and terminal
branches, and how different branch length priors applied across the entire tree affect
posterior probabilities is unknown. Third, it has been common to use a uniform
prior distribution with a large upper bound on branch lengths to represent prior
ignorance about this parameter; because such a prior will usually overestimate mean
branch lengths, it was predicted that flat priors would produce excessively high
posterior probabilities on trees [132]. Whether flat branch length priors actually
produce high posterior probabilities has, however, not been tested. Finally, previous
studies have considered only a single pattern of branch lengths; different branch
length patterns might interact with prior assumptions to produce different effects.
Chapters 5 and 6 examine the robustness of BMCMC to assumption violations
likely to be encountered in the analysis of empirical sequence data. Chapter 5
specifically addresses the recent concerns that not sampling unresolved trees can
lead to an unreliable assessment of statistical support using Bayesian techniques
[67, 132]. I show that these concerns are in fact unfounded; not explicitly sampling
unresolved trees does not undermine the reliability of existing BMCMC methods.
Chapter 6 examines the effects of prior assumptions on posterior probabilities. I
show that prior uncertainty can affect posterior probabilities over a range of
evolutionary conditions. Specifically, if branch lengths are not known in advance,
posterior probabilities calculated using a variety of prior assumptions can deviate
strongly from those that would be inferred given perfect prior knowledge. The
pattern of branch lengths on the true tree determines both the magnitude and
direction of this effect, with some patterns skewing posterior probabilities downward
and others skewing posterior probabilities upward. I also show that an empirical
Bayes approach that fixes branch lengths at their maximum likelihood values can
produce more reliable results than traditional Bayesian techniques that integrate
over a variety of branch length values. Little is known about the reliability of
phylogenetic confidence estimators, let alone their robustness to assumption

violations. My results suggest that further research in this area is clearly warranted



if we wish to accurately gauge the confidence we should have in reported

phylogenies.
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CHAPTER I1

PERFORMANCE OF MAXIMUM PARSIMONY
AND LIKELIHOOD PHYLOGENETICS WHEN
EVOLUTION IS HETEROGENEOUS

‘This chapter was originally published in the journal Nature (vol. 431, pp.
980-984, 2004). It was co-authored by Joseph W. Thornton, who assisted with

experimental design and edited the manuscript.

2.1 Introduction

All inferences in comparative biology depend on accurate estimates of
evolutionary relationships. Recent phylogenetic analyses have turned away from
maximum parsimony towards the probabilistic techniques of maximum likelihood
and Bayesian Markov Chain Monte Carlo (BMCMC). These probabilistic
techniques represent a parametric approach to statistical phylogenetics, because
their criterion for evaluating a topology-—the probability of the data, given the
tree—is calculated with reference to an explicit evolutionary model from which the
data are assumed to be identically distributed. Maximum parsimony can be
considered nonparametric, because trees are evaluated on the basis of a general
metric—the minimum number of character state changes required to generate the
data on a given tree—without assuming a specific distribution [98]. The shift to

parametric methods was spurred, in large part, by studies showing that although
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both approaches perform well most of the time [45], maximum parsimony is strongly
biased towards recovering an incorrect tree under certain combinations of branch
lengths, whereas maximum likelihood is not [21, 32, 47]. All these evaluations
simulated sequences by a largely homogeneous evolutionary process in which data
are identically distributed, and the correct evolutionary model was used to analyze
data using maximum likelihood. There is ample evidence, however, that real-world
gene sequences evolve heterogeneously and are not identically distributed.
Functional constraints on sites in a gene sequence often change through time,
causing shifts in site-specific evolutionary rates, a phenomenon called heterotachy
(meaning ‘different speeds’) (27, 48, 55, 71, 72, 75, 76, 84, 87, 91). Current models
available for phylogenetic inference assume the evolutionary process to be highly
homogeneous across sites and so do not incorporate heterotachy. When a largely
homogeneous evolutionary framework is imposed on sequences that evolve
heterogeneously, parameter estimates are compromises over sites and lineages and
are therefore incorrect for many or all sites. Likelihood-based techniques are
guaranteed to recover the true phylogeny only when the correct model is used, and
nonparametric statistical methods are often applied when the assumptions of
parametric techniques are violated. On the other hand, parametric methods,
including maximum likelihood, are generally more powerful than nonparametric
techniques and can be robust to certain violations [16, 109].

In this chapter we show that maximum likelihood and BMCMC can become
strongly biased and statistically inconsistent when the rates at which sequence sites
evolve change non-identically over time. Maximum parsimony performs
substantially better than current parametric methods over a wide range of
conditions tested, including moderate heterogeneity and phylogenetic problems not

normally considered difficult.

2.2 Methods

To determine the potential effects of heterogeneous evolution on phylogenetic

accuracy, we simulated molecular sequence data in which different sites in the
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sequence evolve under different evolutionary dynamics. Replicate data sets were
analyzed using the model-based techniques maximum likelihood (ML) and Bayesian
Markov Chain Monte Carlo (BMCMC) as well as the nonparametric method
maximum parsimony (MP). To determine the accuracy of each method examined,
we calculated the proportion of data sets from which the correct tree was uniquely
recovered as the amount of phylogenetic signal (internal branch length) was
systematically increased. A method that uniquely identifies the correct tree with
high probability given a short internal branch length is considered more accurate
than a method that requires more phylogenetic signal in order to identify the
correct phylogeny. To identify the specific effects of heterogeneity on phylogenetic
accuracy, results from heterogeneous sequences were compared to homogeneous

controls simulated under similar conditions but without among-site heterogeneity.

2.2.1 Simulations

We simulated sequences along a 4-taxon tree ((A,B),(C,D}) (Figure 2.1a) with
two independent partitions that were concatenated into one heterogeneous
alignment. In one partition, long terminal branches (p € [0.3,0.75]) lead to A and
C, and short terminals (¢ € [0.001, 0.4]) lead to B and D. In the other partition,
terminal branches to B and D have length p, whereas A and C have length q. The
internal branch length (r € [0.0,0.5]) is equal in both partitions. The two partitions
were of equal size unless otherwise noted. Two-hundred replicate alignments of
1,000, 5,000, 10,000 and 100,000 characters were simulated under each set of
conditions using the JC69 (DNA) or Poisson (protein) model. Average
homogeneous control data were simulated using the same internal branch length as
in the experimental condition and terminals with the mean length over the two
partitions. Single-partition homogeneous controls were simulated using conditions
for one of the experimental partitions (Figure 2.1a). Sequences were also simulated
on 8-taxon trees derived from 4-taxon trees by bisecting each terminal branch at the

halfway point.



2.2.2 Phylogenetic Analyses

Phylogenies were analysed using maximum parsimony (MP, provided by PAUP*
v4.0b10 [98]), maximum likelihood (ML, implemented by PAML v3.14 [130]) and
Bayesian Markov Chain Monte Carlo (BMCMC, implemented by MrBayes v3.0b4
[95]). ML phylogenetic analysis was conducted with exhaustive topology searches,
using a branch length smoothing delta cutoff of 1073° and a maximum of 1000
smoothing passes. Starting parameter values were randomly chosen, and branches
were collapsed to zero length if optimized to < 107®. BMCMC analyses were
conducted using 4 chains (temp = 0.2). To evaluate the stationarity of BMCMC
chains, 100 randomly-selected heterogeneous datasets were individually examined.
For each dataset, the minimum generation whose log-likelihood score was > the
average log-likelihood score of the last 50 Markov chain samples was recorded as the
generation in which the chain reached stationarity; after stationarity, the chain
presumably samples from the correct posterior distribution. Based on this analysis,
the first 5000 generations—a point always well past stationarity—were discarded as
burnin to prevent starting conditions from affecting resulting phylogenetic
estimates. Chains were run for 55,000 generations, sampled every 100 generations,
and chain swapping was attempted every generation. Longer BMCMC runs of
105,000 generations were also assayed, but the resulting estimates of parameter
means and variances did not change. The branch length prior probability
distribution was assumed to be uniform on [0, 10], and topology prior probabilities
were assumed to be equal.

We selected best-fit probabilistic models for ML and BMCMC analyses using a
hierarchical likelihood ratio test on a random sample of 100 experimental datasets
(using Modelltest v3.06 [89], @ = 0.05). This analysis supported the true JC69
model as the best-fit model in 93% of tests (5% K80, 2% F81), so this model was
used in all mucleotide analyses. The gamma and invariant sites models provided no
increase in likelihood and were rejected; we conducted analyses with and without
these models, however, to determine whether they improved performance of

likelihood-based methods. For the invariant sites model, the proportion of invariant
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sites was estimated for ML and integrated over in BMCMC, with prior probability
distribution uniform on {0, 1]. For gamma-distributed ASRV, a five-category
discrete approximation was used, with shape parameter (@) estimated by ML and
prior probability uniform on [0.5, 50] for BMCMC. The covarion model
implemented in MrBayes was also used, with prior probabilities for covarion switch
rates uniformly distributed on [0, 100]. The true Poisson model was used for protein
analysis, and maximum parsimony used equal weights.

To determine support, we used nonparametric bootstrapping (1,000 replicates)
for maximum parsimony and maximum likelihood and posterior probability for
BMCMC, with a support cutoff value of 95% to construct strongly supported

consensus trees.

2.2.3 Accuracy

The accuracy of each method was calculated as the proportion of replicates for
which the correct topology was uniquely recovered (¢). Nonlinear regression was
performed using the logistic equation ¢ = 1/1+exp((BLso — r)H), in which BLso is
the estimated internal branch length that produces 50% correct recovery, and H
estimates the steepness of the performance curve. The significance of differences

among BLsos was examined by a i-test.

2.2.4 Bias and Error

The type I error rate for each method was determined by analysing data sets
generated under strong heterotachy with zero-length internal branches and
determining the fraction of replicates falsely resolved with 95% bootstrap or
posterior probability support [115]. The presence of bias was determined by
calculating the proportion of erroneous estimates consistent with each possible
incorrect topology over all internal branch lengths. The intensity of bias was
investigated by calculating the proportion of erroneous topology estimates consistent

with each possible incorrect topology when a 95% support cutoff was imposed.
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To determine the impact of homogeneous optimization of branch lengths on
maximum likelihood error, we compared the standard maximum likelihood
algorithm that estimates a single set of branch lengths (MLhomo) with several
partitioned maximum likelihood models with constrained branch lengths. MLtrue
constrains all branch lengths for each site to the true values used to simulate data
sets. MLterm constrains the internal branch lengths to the true value for each site,
but terminal branches have the lengths homogeneously optimized under MLhomo.
MULshort assumes the true internal and long terminal branches but uses the short
terminal length from MLiomo. MLiong constrains the internal and short terminal
branches to their true values and takes the long terminal branch lengths from
MLhomo.

Support for the true topology by each character-state pattern was calculated
from a 100,000-site data set constructed under strong heterotachy
(p=10.75,¢9 = 0.05,r = 0.254). Net support for the true tree is defined as the
likelihood ratio of the true tree to the incorrect tree for each pattern z, weighted by

the frequency of z (f(z}) in the data set:

S _ P(z|({(AB), (CD)))
(ABLCDN= = B4((AC), (BD)))

f(z).

To determine the performance impact of violating the identical distribution
assumption when the true evolutionary model is used, we implemented a novel
likelihood model (BMCMChetero) that incorporates heterotachy a posteriori by
applying two sets of branch lengths to the data. The BMCMChetero method was
implemented by medifying the source code of MrBayes v3.0b4 to optimize and
calculate a likelihood score conditioned on two independent sets of branch lengths
for the same tree topology. For each sequence site z; the likelihood of tree ¢ with

branch length sets b, and b, is
L(tlz:) = piy x Plxilt,by),
i=l

where p; ;—the posterior probability that z; is in branch length set b;—is calculated



from the data as
P(.T,_t, bj)

Zf_l P(:‘Eilt! bk) .
Branch length sets are proposed and accepted or rejected using the BMCMC

Pij=

algorithms already implemented in MrBayes, as is calculation of the overall
posterior probability of each topology. Because of the increased number of
parameters in this model, BMCMChetero analyses were conducted using 8 chains to
avoid local optima. All other parameter settings were equivalent to those we used to
run standard BMCMC analyses under the JC69 model.

The BMCMCtrue method uses a priori partitioning and does not assume an
identical distribution. Data are partitioned into two mutually-exclusive subsets
corresponding to the partitions in which the data were simulated. For each
partition, a single set of branch lengths is proposed at each generation, and the
likelihood at each site is calculated assuming those lengths using the standard
homogeneous algorithm. The total likelihood of the tree given the two partitions is
the product of the likelihood over all sites in both partitions {129]. Branch lengths
are proposed and accepted using the existing BMCMC techniques in MrBayes, and

all settings were as described above for BMCMChetero.

2.3 Results

We used an experimental approach to evaluate the phylogenetic accuracy of
parametric and nonparametric methods under a simple form of heterotachy. We
simulated replicate DNA sequence alignments with two symmetrical rate partitions
along a four-taxon tree; each partition represents a phylogenetically challenging
problem—two clades, each consisting of a long branch (length p} and a short branch
(length g)—but the sites with accelerated rates differ between partitions
(Figure 2.1a). To reveal the specific impact of heterogeneity, we compared
phylogenetic accuracy (the fraction of replicates from which the true tree was
recovered) on heterogeneous data with accuracy on control sequences simulated

under corresponding evolutionary conditions without heterogeneity (see Methods).
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FIGURE 2.1: Likelihood-based methods are less accurate than maximum parsi-
mony (MP) under heterogeneous conditions. a, Trees on which heterogeneous and
control sequences were simulated. b, Heterotachy reduces the accuracy of likelihood
methods. Accuracy is plotted against internal branch length for sequences with and
without strong heterotachy. Dotted lines, BLso for each method (asterisk: maximum
parsimony < maximum likelihood (ML) and BMCMC, P < 0.001). c, Likelihood
methods are inconsistent below the BLso under strong heterotachy, recovering the
incorrect tree with increasing frequency as the amount of data increases.

Under conditions of strong heterotachy (p = 0.75 substitutions per site,
g = 0.05), the accuracy of both maximum likelihood and BMCMC is dramatically
reduced compared with homogeneous controls (Figure 2.1b). Both methods have
zero accuracy when the internal branch length r < 0.22, and they reach 100%
accuracy only when r > 0.34. Maximum parsimony is superior to the parametric
methods when 0.15 < r < (.35, and it is never inferior. For each method, we used
nonlinear regression to estimate the internal branch length at which 50% accuracy is

achieved (BLso) and found that maximum parsimony can reliably recover the true
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topology at significantly shorter internal branch lengths (BLso= 0.22) than the two
likelihood-based methods (BLso= 0.28, P < 0.001). Maximum parsimony’s
performance is worse than that of the parametric methods on single-partition data
(due to the well-known long branch attraction bias [47]), but it is not additionally
hampered by evolutionary heterogeneity (P = 0.76). Maximum parsimony retains
its performance advantage over maximum likelihood and BMCMC on heterotachous
data when strong support is required to accept a tree as resolved (bootstrap or
posterior probability > 95%, Figure 2.2). These results indicate that heterotachy
substantially reduces the accuracy of maximum likelihood and BMCMC on

phylogenetic problems that are not difficult enough to impair maximum parsimony,
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FIGURE 2.2: Maximum parsimony outperforms likelihood-based methods when
strong support is required. Each method’s BLso—the internal branch length at which
the true tree is recovered from half of replicates with the required support level—is
shown under conditions of strong heterotachy (see Methods). In the 95% support cat-
egory, trees were considered resolved only when supported by > 95% nonparametric
bootstrap proportions for MP and ML or by > 95% posterior probability for BMCMC.
Within each support category, significantly different results are indicated by different
letters (P < 0.001). 99% confidence intervals are shown. Unequal BLsos for ML and
BMCMC is likely caused by differences between nonparametric bootstrapping and
posterior probabilities.
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Under the heterotachous conditions studied, maximum likelihood and BMCMC
are statistically inconsistent, converging on the wrong answer as the amount of data
grows. For internal branch lengths below the BLso, accuracy declines to zero as
sequence length increases, indicating that parametric methods are statistically
inconsistent in this region of parameter space; the BLso therefore represents an
inconsistency point (Figure 2.1¢ and Figure 2.3). This inconsistency is due to a
directional bias: maximum likelihood and BMCMC specifically infer the erroneous
tree ((AC),(BD)) with high support when the internal branch is shorter than the
BLso, including length zero (Figure 2.4). This is the same tree towards which
maximum parsimony is biased on single-partition data, but heterotachy causes
likelihood-based methods to infer the incorrect tree over a wider range of parameter
values and with stronger apparent support.

Heterotachy reduces the performance of parametric methods across a broad
range of evolutionary conditions. Whenever the short terminal branch length
g < 0.3, maximum parsimony significantly outperforms both likelihood-based

methods. Even fairly weak heterotachy—a ratio of branch lengths among partitions
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FIGURE 2.3: The BLso defines a method’s inconsistency point. At internal branch
lengths below the BLso, increasing sequence length reduces accuracy, while increasing
sequence length improves accuracy at internal branch lengths above the BLso (BLso
indicated by dotted line, internal branch lengths for each series shown at right). Bars
indicate 99% confidence intervals.
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FIGURE 2.4: Evolutionary heterogeneity biases likelihood-based methods. A) Het-
erogeneity increases the type I error rate of likelihood-based methods. The proportion
of zero-internal-branch-length datasets falsely resolved with > 95% support is shown
for each method and data type. Error rates significantly > 0.05 (P < 0.001) are in-
dicated by asterisks. B) Erroneous inferences are biased towards a specific topology.
The proportion of ((AC),(BD)) inferences among erroneous trees is shown for both
zero- and non-zero- length internal branch datasets when strong nodal support is and
is not required. Significantly different values (P < 0.001) are indicated by different
letters. Support is measured by nonparametric bootstrapping for MP and ML and
by posterior probability for BMCMC. Bars indicate 99% confidence intervals.

as low as 0.5:0.2—is sufficient to produce a significant performance disparity
between the likelihood-based methods and maximum parsimony (Figure 2.5a). The
more intense the heterotachy, the greater the performance difference. Furthermore,

maximum likelihood’s accuracy can be reduced to zero when only a small fraction of



31

sites deviate in rate from the rest of the sequence. Fewer heterotachous sites are
required to impair performance as heterotachy grows more intense or the
phylogenetic problem becomes more difficult (Figure 2.5b).

We used several existing likelihood models that account for among-site or
among-lineage rate variation by applying identically distributed models of
heterogeneity, including gamma, invariant sites and covarion models, but none
improve the performance of maximum likelihood or BMCMC (Figure 2.6a). Using
amino acid instead of nucleotide sequences substantially increases the accuracy of
maximum parsimony {BLso= 0.08) because convergence is less likely with 20 than
with 4 possible states. In contrast, maximum likelihood and BMCMC improve to a
much smaller extent (BLso= 0.18). As a result, maximum parsimony’s performance
advantage on heterotachous protein sequences is even greater than on DNA
(Figure 2.6b). Denser taxon sampling to break up long branches [43] improves the
accuracy of all methods by about equal proportions (Figure 2.6b).

The accuracy of likelihood-based methods declines because they erroneously
impose homogeneous branch lengths across sites. On heterotachous data with
internal branch lengths below the inconsistency point, maximum likelihood
underestimates the length of the internal branch on the correct tree and infers the
lengths of the long and short terminals as approximately the average over the two
partitions (Figure 2.7). To test whether these errors are responsible for phylogenetic
bias, we compared the standard homogeneous maximum likelihood model (MLhomo)
with an a priori partitioned model in which the branch lengths for each site are
constrained to their true values (MLtrue). As Figure 2.8a shows, MLtrue has much
better performance (P < 0.001). Models that set only the internal (MLterm) or the
internal and long terminal branches (MLshort) to their true lengths did not improve
performance. Correcting the short terminal (MLiong), however, yields a substantial
improvement in phylogenetic accuracy. Erroneous optimization of the short terminal
length using ‘compromise’ branch lengths is therefore the primary cause of
heterotachy-induced phylogenetic error in maximum likelihood (Figure 2.8a).

Maximum likelihood’s bias is caused by misinterpretation of specific character

state patterns. We analysed the contribution each character state pattern makes to
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FIGURE 2.5: Parsimony outperforms likelihood over a wide range of heterotachous
conditions. a, Maximum parsimony is more accurate than likelihood-based methods
on data with weaker heterotachy. Bars show the BLso for combinations of long and
short terminal branch lengths in heterotachous data sets (black: maximum parsimony
< maximum likelihood and BMCMC, P < 0.001). The BLsos for maximum likelihood
and BMCMC are equivalent for all conditions (P > 0.91). b, Maximum likelihocod
accuracy is impaired when only a small fraction of sites are heterotachous. Accuracy
is plotted against the fraction of heterotachous sites as the phylogenetic problem
becomes more difficult (upper panel: p = 0.75,¢ = 0.05) and heterotachy more
intense (lower panel: p = 0.75,7 = 0.15).
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FIGURE 2.6: Maximum parsimony is more accurate than likelihood methods when
techniques to improve phylogenetic performance are used. a, Accuracy of likelihood-
based methods on heterotachous data does not improve when evolutionary models
that incorporate among-site rate variation {+G, gamma distribution; +1I, invariant
sites) or covarion heterotachy (+C) are used. BLsos are shown under strong het-
erotachy; bars indicate 99% confidence intervals. Asterisks show lower BLso val-
ues (P < 0.001). b, Maximum parsimony (white) outperforms maximum likelihood
(black} and BMCMC (grey) on amino acid sequences and 8-taxon data sets with
strong heterotachy.

the likelihood of the true and erroneous trees and compared net support for the true
tree using MLhomo to that using the heterogeneous model MLtrve (Figure 2.8b).
Patterns that provide the most support for the correct tree under MLtrue (zzyy and
zzyz) only weakly support the true tree when MLuomo is used; this occurs because
MLhomo overestimates the probability that these patterns are due to convergence on
short-terminal branches whose lengths are overestimated. In contrast, the
convergent patterns zyry and zyxrz support the wrong tree using either method. As
a result, the likelihood of the incorrect tree becomes greater than that of the true
tree when MLhomo is used on heterotachous data. Under the same conditions,
maximum parsimony recovers the true tree because the frequency of zryy is greater
than that of zyry; the patterns zzyz and zyzz, which taken together mislead
MLhomo, are not informative in a nonparametric context.

The bias of parametric methods arises due to heterogeneity in the data and the

resulting violation of the identical distribution assumption, as predicted
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FIGURE 2.7: Maximum likelihood fails to correctly infer the lengths of internal
and terminal branches from heterotachous data (p = 0.75,q = 0.05,s = 0.50).
'Top, ML-estimated internal branch lengths on the correct ((AB),(CD)) and incor-
rect ((AC),(BD)) topologies are compared to the true branch length (dashed line)
as the simulated internal branch increases. Bottom, ML-estimated terminal branch
lengths on the two topologies are shown as internal branch length increases. The true
terminal branch lengths are indicated by dashed lines, while their average length is
indicated by a dotted line. 99% confidence intervals are shown. Note that the lengths
estimated on the correct and incorrect phylogenies intersect at the BLso.

theoretically [11]. We implemented a novel likelihood method using a mixed model
(BMCMChetero) that incorporates heterotachy by including two branch length sets
for each topology. For each sequence site, the likelihood is calculated for each
branch length set, weighted by the posterior probability of the site being in that set
and then summed to yield the total likelihood. This model, which corresponds to

the true evolutionary conditions but assuming an identical data distribution,
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FIGURE 2.8: Poor maximum likelihood performance is due to assuming homoge-
neous branch lengths. a, Maximum likelihood error is caused primarily by overes-
timating short terminal branch lengths due to heterogeneity. Accuracy on strongly
heterotachous sequences is shown as the internal branch length increases, using sev-
eral likelihood models that constrain all (MLtrue), some (MLterm, MLshort, MLiong) or
no branches on the tree (MLuomo) to their true lengths for all sites. b, Support for the
true tree by specific character state patterns is reduced due to strong heterogeneity
when MLbome is used. For each character state pattern and model, net support is
shown as the ratio of the likelihood of the true topology to the likelihood of the incor-
rect ((AC),(BD)) tree, weighted by the frequency of the pattern. Asterisks indicate
parsimony-informative patterns. c, Incorporating heterotachy improves the accuracy
of parametric methods. Accuracy on strongly heterotachous data are shown for the
homogeneous model (BMCMChomo), a model that allows two independent branch
length sets and correct a priori paritioning of sites (BMCMCtrue), and a novel model
with two branch length sets and likelihoods calculated on the basis of a posteriori
weighting (BMCMChretero).
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performs dramatically better than both maximum parsimony and the standard
maximum likelihood or BMCMC algorithms (BLso= 0.045, P < 0.001) on
heterotachous data (Figure 2.8¢c). It did not perform as well, however, as a
non-identically distributed method (BMCMCtrue) that uses the true evolutionary
model with a priori sorting of sites into their true partitions. Furthermore,
BMCMChetero remains statistically inconsistent, converging on the wrong tree as
sequence length increases at internal branch lengths r < BLso, (Figure 2.9).
BMCMCirue is consistent under all conditions examined. These results indicate that
violating the identical distribution assumption can cause inconsistency, even when a

model approximating the ‘true’ evolutionary process is used.

2.4 Discussion

The form of heterotachy studied here is only one way that heterotachy can be
distributed on a tree. Additional studies presented in chapter 3 indicate that several
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FIGURE 2.9: Violating the identical distribution assumption causes likelihood-
based methods to be statistically inconsistent when the correct heterotachous evolu-
tionary model is used. Accuracy on strongly heterotachous data using a novel BM-
CMC method that assumes the correct number of branch length partitions but calcu-
lates likelihoods under an identically-distributed model (BMCM Chetero, see Methods)
is plotted against internal branch length for short, medium, and long sequences. At
internal branch lengths below the BLso, increasing sequence length reduces accuracy.
BLso (indicated by a dotted line) is the same for all sequence lengths (P = 0.89).
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other forms of heterotachy can also impair the accuracy of parametric methods.
The evolutionary model used in our simulations is a simplified one; the extent to
which phylogenetic accuracy is impaired by the more complex evolutionary
dynamics likely to affect real-world sequences is currently unknown. There are
numerous sequence data sets from which parametric methods have failed to infer
otherwise well corroborated phylogenies {14, 80, 94, 96], including one in which
heterotachy has recently been implicated [55).

There are two ways to avert the negative effects of heterogeneity on parametric
methods. One is to use maximum parsimony, which is not affected by heterotachy
because it does not assume an identically distributed evolutionary process. The
other is to develop more complex parametric models. Our results indicate that a
new likelihood method using mixed branch length models may offer substantially
improved accuracy on heterotachous sequences, but there are reasons for caution.
The model that performed well in our tests matched the true evolutionary process,
which we knew a priori. With real sequences, we do not know the true number of
branch length partitions, so imposed models may regularly use either too many or
too few branch length parameters. For many sequences, the actual number of
branch length categories may approach the number of sites; under these conditions,
the true one-category-per-site likelihood model is formally equivalent to maximum
parsimony [119]. Finally, the computational burden of mixed-model phylogenetic
inference grows exponentially with the number of branch length sets. With current
algorithms and computing power, incorporating heterotachy into a likelihood
framework will often require sacrifices in the number of sequences analysed or the
rigor with which tree and parameter space are searched, which may also reduce
phylogenetic accuracy [98]. The issues of determining how many branch length sets
to use in a mixed model analysis and how to speed up mixed model computations
are addressed in chapters 3 and 4.

Our findings place those who infer and use phylogenetic trees in an uncertain
position. Previous research has shown that parametric methods are superior or
equal to nonparametric approaches when evolutionary heterogeneity is not present,

but our work shows that maximum parsimony can substantially outperform current
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likelihood-based methods when it is. Worse still, heterotachy-induced bias leaves no
obvious signature, because the inferred trees have moderate branch lengths and
strong support for erroneous nodes. With no reliable a posteriori diagnostic for
heterotachy-induced phylogenetic error, how can we know which method to choose
or, when trees from different methods conflict, which one to favor? The overall
frequency and severity of the conditions that favor likelihood as compared with
those that favor parsimony is not yet known for real-world sequences. At present,
we recommend reporting nonparametric analyses along with parametric results and
interpreting likelihood-based inferences with the same caution now applied to
maximum parsimony trees. In the future, it is possible that new mixed-model
techniques may improve likelihood’s performance to the point that it is consistently

superior to nonparametric methods.
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CHAPTER II1

EFFECTS OF HETEROTACHY ON STANDARD
AND MIXED BRANCH LENGTH
PHYLOGENETIC INFERENCE

3.1 Introduction

The molecular evolutionary process is complex and dynamic; in fact, the more
closely examined the process is, the more complex and dynamic it appears to be.
While it has been expected for some time that different sites in a sequence may have
evolved at different evolutionary rates, and that evolutionary rates may have
changed over time independently for different sites in different lineages [26, 27}, it is
now well established that molecules commonly evolve under such “heterotachous”
dynamics {5, 31, 48, 69, 71, 72, 75, 76, 77, 81, 84, 91]. Understanding the propeties
of complex evolutionary dynamics such as heterotachy is important not only for
improving our understanding of how molecules have evolved but also because
heterotachy can potentialy limit the accuracy with which evolutionary
inferences—phylogenetic trees and parameter values describing the evolutionary
process—can be made using existing techniques [55, 62, 68, 82].

It is well known that inference techniques relying on a model of the evolutionary
process can produce biased phylogenetic inferences when that model is not the same
as the true process [49, 65, 115, 131]. Recent simulation studies {28, 30, 85, 104]

have confirmed our initial findings that some forms of heterotachy can strongly
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mislead existing model-based inference techniques that do not accomodate
heterotachous evolution [62]. Heterotachy has also been implicated in the faliure of
existing techniques to recover the correct Microsporidia + Fungi grouping from
elongation factor la sequences [55) and may be an important factor contributing to
other phylogenetic errors [9, 83]. Due to the prevalence of heterotachy in molecular
evolution and its potentially negative effects on the accuracy of phylogenetic
inference, understanding the causes of phylogenetic errors when heterotachy is not
incorporated, and developing techniques that overcome these problems, is a major
concern.

Using a controlled set of simulation experiments, we have shown that
misestimation of site-specific branch lengths - particularly overestimation of short
terminal lengths—caused by one type of heterotachy can cause model-based
methods (maximum likelihcod and Bayesian techniques) to misinterpret
phylogenetic signal as convergent evolution, resulting in a strong bias in favor of an
incorrect tree [62]. Other studies have largely focused on elucidating the relative
accuracy of model-based inference and maximum parsimony (MP) under different
types of heterotachy (28, 30, 69, 85, 104]—the consensus being that model-based
techniques are more accurate than MP more often than the converse—rather than
determining the causes of phylogenetic errors and the effects of heterotachy on
parameter estimation. As a result, although the rates of erroneous inferences under
various simulation conditions have been well documented, the types of errors made
under different conditions, as well as the reasons for these errors, remain largely
unknown. Knowledge of the types of phylogenetic errors likely to occur as well as
the specific evolutionary conditions responsible for such errors is required in order to
diagnose potentially incorrect inferences made from real data and guide the
development of new models more robust to heterotachy.

As part of our initial study, we introduced a general model for incorporating
heterotachy by allowing each branch on the tree to have multiple lengths; we noted
that this model produced significantly more accurate phylogenies than either
standard evolutionary models or maximum parsimony under the conditions we

examined [62]. Spencer et al. [104] subsequently improved on our initial design and
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showed that this mixed branch length model should be statistically consistent,
converging on the correct tree with probability 1.0 as sequence length approaches
infinity, provided the model does not contain too many parameters to uniquely
identify the correct tree. Although a promising approach for incorporating
heterotachy, the use of highly complex evolutionary models such as the mixed
branch length model raises a number of potential concerns [62, 107, 118]. First,
when the correct number of branch length sets is not known in advance, the number
of lengths per branch must be estimated from the data using statistical techniques
such as Likelihood Ratio Test (LRT), Akaike Information Criterion (AIC), or
Bayesian Information Criterion (BIC); the accuracy with which these tests estimate
the correct number of branch lengths is currently unknown. Second, as the number
of parameters in the model grows, the ability to accurately estimate the values of
these parameters from finite data decreases, leading to a potential loss of resolution
or inability to uniquely identify the correct phylogeny. It is not known whether this
is likely to be a problem for mixed branch length analyses of real data. Third,
model-based techniques are inherently computationally expensive [98], and more
complex models generally require even greater computer time in order to estimate
the additional parameters. Whether mixed branch length models can be solved
quickly enough to apply to real phylogenetic problems has not been determined.
Finally, it has been suggested that heterotachy in real sequence data may not fit a
mixed-branch-length model [69, 70]; instead, heterotachy may be more
appropriately envisaged as lineage-specific changes in the proprotion of invariant
sites. The mixed branch length model has not been tested in such cases.

Here we conduct detailed simulation experiments to examine the causes of
phylogenetic error observed for a number of types of heterotachy. We observe that,
in general, various forms of heterotachy can negatively affect the accuracy of
existing model-based phylogenetic approaches, leading to misestimation of both
phylogeny and expected branch lengths. In addition, we develop a software
implementation of the mixed branch length model and examinine its accuracy under
both simulated and real-world conditions. We show that although computation

times are dramatically increased compared to simpler models, a mixed branch
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length model can provide highly accurate phylogenetic inferences over a wide range

of challenging heterotachous conditions.

3.2 Methods

Experiments and analyses conducted in this chapter follow the methodology

described in chapter 2.

3.2.1 Phylogenetic Analysis

Sequence alignments were analyzed using maximum likelihood (ML), Bayesian
Markov Chain Monte Carlo (BMCMC), and unweighted maximum parsimony
(MP). MP analyses and ML analyses on nucleotide data were conducted using
exhaustive topology search in PAUP* 4.0b10 [114]. For ML analyses, the best-fit
evolutionary model was selected by hierarchical likelihood ratio test implemented in
Modeltest 3.7 [89], with a=0.05. Bayesian analyses wer conducted using MrBayes
3.1 [95]. Two independent runs of four chains were run until the average standard
deviation in posterior probabilities dropped below 0.01; the first 5,000 generations
were discarded as burnin to reduce the effects of starting conditions on posterior
probabilities. Topology priors were equal for each resolved tree, branch length priors
were uniform on [0,10), and the default priors were used for other model parameters.

In addition to standard ML, we analyzed heterotachous data using a mixed
branch length model which calculates likelihoods using multiple independent sets of
branch lengths on the tree [62, 104]. The likelihood of tree ¢ given data X and
branch length sets b=(b1, bo, ..., bn) is given by

L{t|X) = Z piP(X|t, b;)
=]

where each p; is estimated from the data, and P(X|t,b;) is the likelihood of the tree

given branch lengths b;.
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Mixed branch length model analyses were conducted in a maximum likelihood
framework using a novel simulated annealing algorithm to optimize the tree
topology and all model parameters. The simulated annealing algorithm is incredibly
simple: given a set of model parameters at iteration z, the algorithm slightly alters
some of the parameters to produce a new proposal (i + 1). This proposal is either
accepted or rejected based on the Metropolis criterion: proposals that improve the
likelihood score are always accepted, while proposals that reduce the likelihood are
accepted with probability proportional to the likelihood ratio between the new
proposal and the old state. As the algorithm runs, a temperature parameter controls
the probability of accepting proposals that reduce the likelihood score. At the
beginning, ‘bad’ proposals are accepted with higher probability; this acceptance
probability is gradually reduced until, by the end of the run, bad moves are rarely if
ever accepted [60}.

We used a temperature annealing schedule with a geometric descent of 1000
temperatures starting from 1.0 and ending at 1075. At each temperature, 1000
parameter changes were attempted, with acceptance based on the Metropolis
criterion; topology rearrangements included TBR, SPR, and NNI. The best-fit
number of branch length categories (n above) was selected using AIC [1].

In addition to both standard and mixed-branch-length models, we performed
phylogenetic analyses using the true maximum likelihood model (MLtrue), which
correctly partitions sites into branch length categories and estimates branch lengths
separately for each category. To validate the accuracy of our simulated annealing
algorithm, we re-ran each mixed model analysis using the correct mixture
proportions (p values) and branch lengths derived from analyses using the true
evolutionary model (MLirue); the results of these analyses were unchanged compared

to simulated annealing estimation (not shown).

3.2.2 Branch Length Heterogeneity

We simulated 5,000-nucleotide datasets using the JC69 model under four types

of four-taxon branch length heterogeneity (Figure 3.1): 1) Felsenstein Zone
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Heterotachy (FZH), 2) Inverse-Felsenstein Zone Heterotachy (IFZH), 3) Single Long
Branch Heterotachy (SLBH), and 4) Signal-Noise Heterotachy {(SNH). Both FZH
and IFZH partition sites into two branch length categories, with equal numbers of
sites in each category. Long branches (0.75 substitutions/site) lead to two terminal
lineages, while short branches (0.05) lead to the other two terminal lineages, but the
lineages with long terminal branches are different in different branch length
categories. In the case of FZH, the long terminal branches are not sister to one
another, while long branches lead to sister taxa in IFZH. The internal branch length
(which is the same in both categories) was varied between 0.0 and 0.4. SLBH
consists of four branch length categories; in each category, a single lineage has a
long terminal branch (0.75), while all other terminal branches are short {0.05). We
varied both the internal branch length (0.0-0.4, the same in all branch length
categories) and the proportion of sites in the first branch length category (0.2-1.0);
the remaining sites were equally-proportioned among the other three branch length
categories. SNH partitions sites into two categories; in the first category, sequences
evolve with long terminal branch lengths (0.75) and a zero-length internal branch.
In the other category, terminal branch lengths are short (0.05), and the internal
branch length varies between 0.0 and 0.4. We also varied the proportion of sites in
the first branch length category from 70% to 95% of sites. Two hundred replicate
sequence alignments were simulated under each set of evolutionary conditions.
Phylogenetic analyses of simulated data were conducted as described above. For
each phylogenetic method and set of simulation conditions, we calculated the
proportion of replicates from which the correct phylogeny was uniquely recovered.
We plotted the proportion uniquely correct for each method against increasing
internal branch length and estimated the branch length at which 50% correct
recovery was achieved (BLse) using nonlinear regression of the logistic equation:
1/1+exp((BLso — r)H), where r is the internal branch length and H estimates the
steepness of the curve. We compared the accuracy of different methods by
comparing BLso estimates; significance was assessed using a two-way {-test (62].
Bias was examined by simulating sequences under heterotachous conditions but

with a zero-length internal branch. Five hundred replicate sequence alignments were
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FIGURE 3.1: Summary of branch length heterogeneity simulations. Sequences of
5000 nt were simulated under each set of conditions (A-D) using the JC69 transition
model. The proportion of sites evolving under each set of branch lengths is shown
below the branch lengths used to simulate data. Long terminal branches were 0.75
substitutions/site, with short terminal branches of 0.05; the internal branch length
was allowed to vary. Conditions were: A) Felsenstein Zone Heterotachy (FZH), B)
Inverse-Felsenstein Zone Heterotachy (IFZH), C) Single Long Branch Heterotachy
(SLBH), and C) Signal-Noise Heterotachy (SNH).

analyzed using each phylogenetic method, and we recorded the proportion of
replicates from which each possible topology was recovered; an unbiased method
should recover each possible tree with roughly equal proportions, and the
significance of deviation from this behavior was assessed using a chi-square test.
The severity of bias was assessed for standard ML, BMCMC, and MP by
determining the proportion of replicates falsely resolved with support > 0.95.
Support was assessed using nonparametric bootstrapping (1000 replicates) for ML
and MP and posterior probabilities for BMCMC. In each case, deviation from an
expected false-positive error rate of 0.05 was assessed using a one-sided t-test.

In order to assess the asymptotic performance of ML with infinite data, ideal

pseudo-datasets with no stochastic error were analyzed. We calculated the expected
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frequency of each character state pattern (f(z)) under SLBH conditions with long
terminal branch lengths of 0.75 substitutions/site, short terminals 0.05, and an
internal branch length of 0.01. We implemented custom software to calculate
likelihoods given this vector of state pattern frequencies as follows. The per-site
likelihood of tree ¢ given state pattern z is calculated by raising the probability of
the pattern, given the tree, to the frequency with which that pattern is expected to
occur: L{t|z) = P(z|t)/®). The total per-site likelihood of the tree is the product of
this partial likelihood over all possible state patterns. To determine the maximum
likelihood estimate of the internal branch length when infinite data are available, we
calculated the likelihoods of internal branch lengths between 0.0 and 0.01
substitutions/site, with other branch lengths optimized.

We also examined the accuracy with which different phylogenetic methods
estimate expected branch lengths over sites from finite heterotachous data. For each
set of simulation conditions, we calculated the expected internal and terminal
branch lengths using standard ML, the mixed branch length model, and the correct
ML model (MLtrue). For the mixed model and MLuirve, expected branch lengths over
sites were calculated by multiplying each site-specific branch length by the weight
associated with that length; for the mixed model, these weights are inferred from
the data, while weights are correctly assigned a priori for MLirwe. In the case of
terminal branches, we report the average branch length over all four terminals.
Mean branch length estimates were calculated over 200 replicates for each set of

simulation conditions.

3.2.3 Elongation Factor la Sequences

We analyzed the Micro* dataset of [55] using standard ML (JTT+gamma
model), MP, BMCMC (JTT+gamma--covarion), and the mixed branch length
model using JTT+gamma and a variable number of branch length categories (from
1 to 7). ML analyses were conducted using 4 gamma rate categories, with branch
lengths and shape parameter optimized using the simulated annealing algorithm

described above. We calculated the best-fit number of branch length categories for
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the mixed branch length model using AIC and assuming either the artifactual
Microsporidia + Archaebacterial (MA) tree or the correct Microsporidia + Fungi
(MF) topology. To determine the preferred tree for each number of branch length
categories, we calculated the likelihood ratio MF/MA and assessed the support for
the most likely hypothesis using the AU test [99] implemented in CONSEL [100].
Additionally, for the model selected by AIC, we calculated the posterior
probability that each site evolved according to each set of inferred branch lengths.
Assuming the correct MF tree (t}, the posterior probability of branch length set b;
for each site z (PP(b;|t, z)) was calculated by multiplying the proportion of sites
expected to evolve under the given set of branch lengths (p; above) by the likelihood
obtained for that site under the inferred lengths (P(z|t, b;)) and dividing by the sum

of the proportion-times-likelihood over all branch length sets:

pi P(zlt, b;)
_?-—I ij(Elt, bJ) '

3.3 Results

In order to determine the potential effects of heterotachous evolution on
phylogenetic inference, we simulated replicate datasets under a complex
evolutionary process in which evolutionary rates are heterogeneously distributed
across both sites and lineages. For each set of simulation conditions, we determined
the frequency with which correct evolutionary inferences are made using widely
available phylogenetic techniques: 1) standard maximum likelihood (ML) with the
evolutionary model selected by likelihood ratio test, 2) Bayesian Markov Chain
Monte Carlo (BMCMC) using the same model as for ML, and 3) equally-weighted
maximum parsimony (MP). In addition to these conventional approaches, we
examined the accuracy of two methods designed to address heterotachy: 1) a
Bayesian implementation of the “covarion” model [120], which allows sites to switch
between being variable (“on”) and invariant (“off”) as they evolve along the tree,
and 2) a maximum likelihood implementation of a mixed branch length model

[62, 104] allowing each branch on the tree to have multiple lengths; the likelihood
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for each site is calculated as a weighted average over all lengths, with weights being
estimated from the data (see Materials and Methods). The accuracy of these
methods was compared to a control model (MLtrve) that precisely matches the
simulation conditions by correctly determining site-specific evolutionary properties a

PrioTL.

3.3.1 Branch Length Heterogeneity

In its most general formulation, the concept of heterotachous evolution simply
states that different sites evolve at different evolutionary rates, and the rate of each
site can change independently as evolution proceeds [72, 84]. To simulate sequences
under this general model, we allowed different sites in the alignment to evolve under
completely independent branch lengths. Other ways of modeling heterotachy—such
as a covarion process [26, 27, 120] or lineage-specific changes in the proportion of
invariant sites {68, 69]—are special cases of this heterogeneous branch length model,
so simulating sequences under heterogenous branch lengths allows us to examine the
potential effects of heterotachy without subscribing to a particular formulation of
what real-world heterotachy might look like. Because different types of heterotachy
(i.e., different combinations of heterogeneous branch lengths) might produce very
different effects on the accuracy of phylogenetic methods, we examined datasets

generated using a variety of branch length combinations.

Felsenstein Zone and Inverse-Felsenstein Zone Heterotachy (FZH and
IFZH)

In both Felsenstein Zone Heterotachy (FZH) and Inverse-Felsenstein Zone
Heterotachy (IFZH), sites are divided into two branch length classes, each of which
contains two long terminal branches and two short terminal branches, but the
lineages with accelerated rates differ between classes (see Figure 3.2 and Figure 3.3).
The internal branch length is the same for ali sites. The difference between FZH
and IFZH is that long-branch lineages are sister to one another in IFZH, while they

are not in FZH. Chapter 2 focused exclusively on elucidating the effects of FZH on
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phylogenetic inference [62]; FZH conditions were found to strongly impair the
accuracy of model-based techniques across a range of conditions. Here we simulated
sequences of 5,000 nucleotides under strong FZH conditions (long terminal branch
lengths 0.75 substitutions/site, short terminals 0.05, and a variable internal branch
length) with equal proportions of sites in each branch length class. Data were
analyzed using the phylogenetic techniques described above, and the internal branch
length at which each method recovered the correct tree 50% of the time (BLso) was
calculated using nonlinear regression (see Materials and Methods). We compared
the accuracy of different methods to one another by comparing BLsos, a lower BLso
indicates a more accurate phylogenetic method which can reliably infer the correct
tree given less phylogenetic signal (i.e., a shorter internal branch).

Under FZH conditions, the true evolutionary model that correctly partitions
sites into branch length classes a priori and estimates the branch lengths within
each class separately (MLtrue) produced highly acccurate phylogenies, with a
BLs0<0.001 (Figure 3.2A). In contrast, the accuracy of both standard ML and
BMCMC was severely reduced by FZH conditions (BLs0=0.28, P < 0.001) when the
model was selected using likelihood ratio test (LRT, which selected the correct JC69
model 93% of the time at a = 0.05). At internal branch lengths below the BLso,
both methods preferentially recovered the incorrect tree with long terminal branches
grouped together. Results were equivalent when a covarion heterotachy model was
used (BLs0=0.28). MP was also inaccurate under FZH conditions, but it recovered
the correct tree with significantly less phylogenetic signal than either model-based
technique (BLs0=0.22, P < 0.001). As previously reported [62], both standard
model-based techniques and maximum parsimony are statistically inconsistent
under FZH conditions, converging on the incorrect “long branch attraction”
topology as sequence length increases at internal branch lengths below the BLso.
The mixed branch length model is significantly more accurate than any existing
technique tested (BLso<0.001, P < 0.001), confirming previous findings [104]. AIC
selected the correct number of branch length sets 96% of the time, and under these
conditions, the mixed branch length model was nearly as accurate as when the true

evolutionary process was known in advance.
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FIGURE 3.2: Accuracy of standard model-based phylogenetic inference is impaired
by Felsenstein Zone Heterotachy {(FZH); the mixed branch length model improves ac-
curacy. A) Proportion of replicate datasets from which the correct tree is uniquely
recovered by each method is plotted against increasing internal branch length; se-
quences of 5000 nt were simulated using the tree at left, with long terminal branch
lengths of 0.75 substitutions/site and short terminals of 0.05. Models examined were:
standard maximum likelihood (ML, blue dots), Bayesian MCMC (BMCMC, red dots),
maximum parsimony (gray dots), a Bayesian implementation of the covarion model
(red diamonds) and the mixed branch length model {green X’s). The true maximum
likelihood model that correctly partitions sites a priori is indicated by black crosses.
Note that standard ML, BMCMC, and the covarion model performed equivalently,
so these series overlap. B) Branch lengths estimated using standard ML (blue dots),
the mixed branch length model (green X’s) and the true ML model (black crosses)
are plotted against the true simulated internal branch length. Left panel indicates es-
timated internal branch lengths, while right panel shows estimated terminal lengths;

dotted lines indicate perfect correspondence between simulated and estimated branch
lengths.
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We additionally examined the accuracy of branch length estimates under FZH
conditions. As expected, when the true evolutionary process was known in advance,
MLtrue produced highly accurate estimates of both the internal branch
length—which is the same in both classes—and expected terminal branch lengths
across all sites (Figure 3.2B). In contrast, standard ML that assumes a single set of
branch lengths applies to all sites produced biased estimates of both lengths. In this
case, the internal branch length on the true tree is severely underestimated, even
when the correct phylogeny is reliably recovered. Expected terminal branch lengths
are similarly underestimated, although the degree of underestimation is small and
improves as the internal branch length grows. In contrast to standard ML models,
the mixed branch length model was not biased, producing highly accurate branch
length estimates that were similar to those obtained using MLtrue.

When sequences were simulated under IFZH conditions, with long terminal
branches leading to sister taxa, both standard model-based techniques and
maximum parsimony recovered the correct phylogeny 100% of the time, even when
internal branch lengths were very short and the true evolutionary model failed to
recover the correct tree (Figure 3.3A). In contrast, the mixed branch length model
(for which AIC correctly inferred two branch length classes 100% of the time) again
performed similarly to the true model, exhibiting reduced phylogenetic accuracy as
the internal branch length approached zero. In fact, the high accuracy of standard
model-based methods and MP in this case was due to a strong directional bias in
favor of the long-branch attraction tree, which happened to be correct. To
demonstrate this bias, we simulated sequences under IFZH conditions but with a
zero-length internal branch. These data were analyzed using standard ML, BMCMC
and MP, all of which recovered the incorrect long-branch attraction tree 100% of the
time with bootstrap or posterior probability support > 0.95 (Figure 3.3B). In
contrast, the true ML model recovered each possible topology with roughly equal
proportions (P = 0.91), as an unbiased method should [115]. The mixed branch
length model performed similarly to the true ML model, recovering each possible
tree about the same number of times from replicate datasets (P = 0.55). Although

we were unable to gauge support for trees inferred using the mixed branch length
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model due to the computational demands of bootstrapping a complex model, these
results indicate that the mixed branch length model does not suffer from the same
topological bias as standard model-based techniques under IFZH.

IFZH conditions also caused standard ML to misestimate branch lengths
(Figure 3.3C). While the true model produced accurate internal and terminal
branch length estimates, the internal branch length was severely biased upward and
expected terminal lengths were underestimated when standard ML was used to
analyze IFZH data. The degree of bias was consistent across a range of internal
branch lengths. In contrast, the mixed branch length model produced highly
accurate estimates of both internal and expected terminal lengths, similar to those

using the true model.

Single Long Branch Heterotachy (SLBH)

Single Long Branch Heterotachy (SLBH) divides sites into four classes; in each
class, sites are released from selection in one lineage, but the lineage with an
accelerated evolutionary rate differs among classes (see Figure 3.4). As before, we
simulated sequences of 5,000 nucleotides under SLBH conditions with long terminal
branches of 0.75 substitutions/site and short terminals of 0.05. Equal proportions of
sites were assigned to each branch length class. Replicate datasets were generated at
a variety of internal branch lengths, and the accuracy of each phylogenetic method
was assessed by comparing BLsos. We found that—similarly to FZH—SLBH caused
standard model-based techniques to strongly favor an incorrect phylogeny, resulting
in reduced accuracy and statistical inconsistency (Figure 3.4A). While the true
evolutionary model produced highly accurate results (BLs0=0.002), maximum
likelihood analysis using the true JC69 model (selected by LRT 92% of the time at
a=0.05) failed to recover the correct tree at branch lengths below BLs0=0.015. In
contrast, maximum parsimony was as accurate as the true ML model under SLBH
conditions {BL50=0.002). The mixed branch length model (BLs50=0.003) was
significantly more accurate than standard ML, but less accurate than MP or MLtrue

(P < 0.001) when the correct number of branch length classes was assumed. Under
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FIGURE 3.3: Standard phylogenetic techniques are strongly biased in favor of the
correct tree under Inverse Felsenstein Zone Heterotachy (IFZH); the mixed branch
length model is unbiased. A) Proportion of datasets correctly inferred is plotted
against increasing internal branch length when 5000-nt sequences were simulated us-
ing the tree at left, with long terminals of 0.75 substitutions/site and 0.05 short
terminals. Models examined were: standard maximum likelihood (ML, blue dots),
Bayesian MCMC (BMCMC, red dots), maximum parsimony (MP, gray dots), the
covarion model (red diamonds) and the mixed branch length model (green X’s). The
true partitioned model is indicated by black crosses. Note that standard ML, BM-
CMC, MP, and the covarion model performed equivalently—always recovering the
correct tree at all branch lengths examined—so these series overlap. B) The pro-
portion of each tree topology (t1,t2,t3) recovered from replicate IFZH datasets sim-
ulated with a zero-length internal branch length is shown. Models examined were
ML (blue), BMCMC (red), MP (gray), and the mixed branch length model (green),
with the true ML model shown in black. Bars indicate standard error; the dotted line
indicates equal proportions of each topology recovered. C) Branch lengths estimated
using standard ML (blue dots), the mixed branch length model (green X's) and the
true ML model (black crosses) are plotted against the true simulated internal branch
length, with left panel indicating estimated internal and right panel indicating esti-
mated terminal branch lengths. Dotted lines indicate perfect correspondence between
simulated and estimated branch lengths.
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SLBH conditions, AIC recovered the correct number of data partitions only 50% of
the time, and the number of partitions was underestimated as three in 47% of
replicates. Assuming three instead of the actual four branch length sets resulted in
a slight reduction in accuracy (BLs0o=0.006), but the mixed branch length model
was still more accurate than standard ML. While BMCMC appeared highly
accurate (BLs0=0.002), when we required > 95% bootstrap or posterior probability
support to consider a phylogeny correctly resolved (Figure 3.4B), ML and BMCMC
performed nearly equivalently (BLs0o=0.021 for BMCMC, 0.022 for ML), while MP
was significantly more accurate than either method (BLs0=0.009, P < 0.001). Use
of the covarion model did not improve the accuracy of BMCMC when strong
support was required {BLso=0.021). Due to the computational demands of the
mixed branch length model, we were unable to test the accuarcy of this model using
bootstrap support.

Even when a very small proportion of sites are heterotachous, the accuracy of
standard model-based techniques can be severely reduced by SLBH. We simulated
sequences under SLBH conditions with an internal branch length of 0.015, but with
a varying proportion of sites in a single branch length class; the remaining sites were
equally distributed among the other three classes. Under these conditions, MP
recovered the correct tree with > 95% bootstrap support about 92% of the time,
regardless of the amount of heterotachy present (Figure 3.4C). In contrast, the
accuracy of both ML and BMCMC declined with increasing heterotachy. When no
heterotachy was present (all sites had the same branch lengths), both methods
recovered the correct tree with > 95% support 96% of the time. However, when
only 7.5% of the sites had different branch lengths, ML recovered the correct tree
with strong support only 76% of the time, and BMCMC recovered the correct tree
75% of the time with posterior probability > 0.95. When half the sites were
heterotachous, ML and BMCMC recovered the correct tree with strong support
from fewer than 15% of replicates.

The reason standard model-based techniques perform poorly under SLBH
conditions is that both the internal branch length and expected terminal branch

lengths are severely underestimated (Figure 3.5A); at internal branch lengths below
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FIGURE 3.4: Single Long Branch Heterotachy (SLBH) impairs the accuracy of
standard model-based phylogenetic techniques; the mixed branch length model im-
proves accuracy. A) Proportion of correct inferences is plotted against increasing
internal branch length for various models when 5000-nt sequences were simulated us-
ing the tree at left; long terminal branch lengths were 0.75 substitutions/site, while
short terminals were 0.05. Models were: standard maximum likelihood (ML, blue
dots), Bayesian MCMC (BMCMC, red dots), maximum parsimony (MP, gray dots),
and the mixed branch length model with either the correct number of branch length
categories (green X's) or only three categories (green dots). True partitioned model
is indicated by black crosses. B) Proportion of correct inferences with support > 0.95
is plotted against increasing internal branch length, with support measured by non-
parametric bootstrapping for ML and MP and by posterior probability for BMCMC.
Red diamonds indicate Bayesian covarion model. C) Proportion of correct inferences
with > 0.95 support is plotted agains increasing proportion of heterotachous sites.
Sequences were simulated under SLBH conditions with an internal branch length of
0.015, but the proportion of sites in branch length classes 2-4 (x-axis) varied from
zero (no heterotachy) to 0.75.
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the BLso, the maximum likelihood estimate of the internal branch length on the
best tree is zero, resulting in an inference of an unresolved tree. Even when the
internal branch length is long enough for ML to reliably recover the correct tree, the
branch length is substantially underestimated —as are expected terminal lengths. In
contrast to standard ML, the mixed branch length model produces highly accurate
estimates of both the internal and expected terminal branch lengths, resulting in
improved phylogenetic accuracy. The inference of a zero-length internal branch by
standard ML does not improve with increasing sequence length, resulting in
statistical inconsistency at branch lengths below the BLso. Even with infinite
sequence data, ML inferred a zero-length internal branch from SLBH data with a
true internal branch length of 0.01 (Figure 3.5B); we calculated the per-site
likelihood of an infinite SLBH dataset at various internal branch lengths, and found
that a branch length of zero produced the highest likelihood. These results indicate
that standard ML is statistically inconsistent under SLBH conditions. Integrating
over multiple internal branch length values using BMCMC results in recovery of the
correct phylogeny, because phylogenetic signal favors the true tree when a non-zero
internal branch length is imposed. However, support for the true tree is very weak
using standard BMCMC, because SLBH conditions produce the greatest likelihood

when the internal branch length is zero.

Signal-Noise Heterotachy (SNH)

In Signal-Noise Heterotachy (SNH), sites are divided into two categories. In one
category, “noisy” sites are essentially randomized, with long terminal branch lengths
(0.75 substitutions/site) and no internal branch; in the other category, sites evolve
with shert terminal branch lengths (0.05) and a variable internal branch (see
Figure 3.6). We simulated 5,000-character SNH datasets with various proportions of
noisy sites, analyzed these data using the methods described above, and compared
the accuracy of different methods by comparing BLso estimates. Consistent with
previous findings that random sequence segments impair phylogenetic accuracy

[111], we found that SNH caused a reduction in the accuracy of phylogenetic
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FIGURE 3.5: Standard meximum likelihood misestimates branch lengths under
Single Long Branch Heterotachy (SLBH, see Figure 3.4); the mixed branch length
model provides improved estimates. A) Branch lengths estimated by standard max-
imum likelihood (ML, blue dots), the mixed branch length model (green X’s), and
the true partitioned ML model (black crosses) are plotted against the true simulated
internal branch length. Left panel shows estimated internal branch length, while right
panel indicates terminal branch lengths; dotted line indicates perfect correspondence
between estimated and actual branch lengths. B) Per-site likelihood calculated on
an ideal infinite dataset (see Materials and Methods) using standard ML is plotted
against increasing internal branch length; sequence was generated under SLBH con-
ditions with long terminals of (.75 substitutions/site, short terminals of 0.05, and a
true internal branch length of 0.01.

inference for all methods tested (Figure 3.6A). While the true model (MLerue)
produced highly accurate phylogenetic estimates at very short internal branch
lengths, phylogenetic accuracy was reduced when the true evolutionary process was
not known in advance (P < 0.001). The likelihood ratio test for the best-fit model
was ambiguous in this case, selecting the JC69+G+1 model 38% of the time, the
JC69+1 model 32% of the time, and the JC69+4-G model 28% of the time. The
JC69+G model was the most accurate, but differences in accuracy among the
varjous models (including the covarion model) were small (Figure 3.6B). The mixed
branch length model did not substantially improve the accuracy of phylogenetic
inference under SNH conditions, although AIC selected the correct number of
branch length categories 99% of the time.

Branch length estimates were biased using standard ML, which severely
overestimated the expected internal branch length while underestimating terminal

lengths (Figure 3.6C). In contrast, both MLtrue and the mixed model accurately
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FIGURE 3.6: Signal-Noise Heterotachy (SNH) impairs the accuracy of phylogenetic
inference. A) The proportion of trees correctly inferred is plotted against increas-
ing internal branch length for sites containing phylogenetic signal (20% of sites, with
terminal branch lengths 0.05 substitutions/site}; the remaining sites (80%) are ran-
domized (terminal branch lengths 0.75) with no phylogenetic signal. Sequences were
5000 nt long. Results are shown for 80% noise; similar results were obtained when
the proportion of noisy sites varied from 70% to 95% (not shown). Methods exam-
ined were: standard maximum likelihood (ML, blue dots, je69-+ig model), Bayesian
MCMC (BMCMC, red dots}, maximum parsimony (MP, gray dots), a Bayesian co-
varion model (red diamonds), and the mixed branch length model (green X's). Black
crosses indicate performance of the true partitioned ML model. Note that ML, BM-
CMC, MP, and the mixed branch length model all performed similarly, so these series
overlap. B) The internal branch length at which 50% correct recovery was obtained
is shown for a variety of evolutionary models implemented in either ML (blue) or
BMCMC (red). The invariant sites model is indicated by -+i, the gamma model by
+g, and the covarion model by +c. Note that a lower BLso indicates a more accurate
method. C) Internal branch lengths estimated using standard ML (blue dots), the
mixed branch length model (green X’s) and the true ML model (black crosses) are
plotted against the true expected internal branch length (averaged over both noisy
and signal sites). Left panel shows estimated internal branch length, while right panel
shows estimated terminal branch lengths; dotted line indicates perfect correspondence
between estimated and actual expected branch lengths.
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estimated expected terminal lengths, although expected internal branch lengths
were slightly overestimated by both methods. The reason the internal branch length
on the true tree was overestimated by the true model is that stochastic error inflates
the estimate of the internal branch length for noisy sites, which is actually zero:
when stochastic error in noisy sites produces state patterns that happen to favor the
correct tree, the internal branch length for noisy sites is overestimated. When
stochastic error favors an incorrect tree, the internal branch length for noisy sites on
the correct tree is inferred as zero. As a result, the net effect is to overestimate the
internal branch length for noisy sites—and hence the expected internal branch

length.

Summary

Taken as a whole, the results of our heterogenous branch length simulations
show that various forms of heterotachy can negatively affect the accuracy of
phylogenetic inferences when standard evolutionary models are employed. The
mixed branch length model provides much more accurate inferences of both
phylogeny and evolutionary model parameters than standard techniques under
simulated heterotachy. Although the mixed branch length model can sometimes
perform nearly as well as the true partitioned model (FZH and IFZH), in other
cases there is a significant loss of accuracy when the mixed model is compared to
the true model (SLBH and SNH).

3.3.2 Elongation Factor 1a Sequences

Although simulated evolution can establish the potential performance impacts of
heterotachy on phylogenetic inference, the true test of any method is how accurately
can it reconstruct correct evolutionary relationships from actual sequence data. To
determine whether the mixed branch length model can infer accurate phylogenies
from data that confound conventional methods, we analyzed the elongation factor
la dataset of Inagaki et al. [55], who showed that heterotachous “rate shifts” cause
both MP and ML to artifactually group Microsporidia with the Archaebacterial
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outgroup (the MA tree) rather than correctly with Fungi (MF, see Figure 3.7).
First, we analyzed Inagaki et al’s Micro* dataset using unweighted MP and ML
using the JTT+gamma model, confirming that both methods recover the artifactual
MA tree (not shown). Bayesian analysis using the covarion model also recovered the
MA tree with weak support (posterior probability 0.58, not shown). In contrast, the
mixed branch length model recovered the correct MF topology with significant
support when the number of branch length categories was selected using AIC
(Figure 3.7). We calculated the AIC value for each number of branch length
categories, from one (the simple JTT+gamma model) to seven, using both MF and
MA topologies; while the best-fit number of categories calculated using the correct
MF tree was six, using the incorrect MA phylogeny caused AIC to underestimate the
amount of heterotachy, resulting in only four branch length categories {(Figure 3.7A).
Underestimating the correct number of branch length categories resulted in
erroneous support for the MA tree (Figure 3.7B), while the correct MF tree was
supported when six or seven branch length categories were used. We used the AU
test [99] to determine whether the maximum likelihood tree was significantly
supported and found that when the AIC-selected number of branch length
categories (six) was used, the correct MF tree was weakly but significantly
supported over the artifactual MA grouping (P = 0.033). To assess whether the
mixed branch length model can partiton sites into branch length classes, we
calculated the posterior probability of each branch length class, given each site in
the dataset (see Materials and Methods, Figure 3.8). We found that sites producing
high posterior probabilty existed for each of the six branch length classes, with the
number of sites giving high posterior probability generally following the weights
inferred for each branch length category from the data. The ability of the mixed
branch length model to partion sites among its inferred branch length categories
suggests that the model is indeed capturing an important part of the underlying
evolutionary process. Taken as a whole, these elongation factor la results show that
the mixed branch length model can recover correct evolutionary relationships from
difficult data, providing improved phylogenetic accuarcy compared to existing

methods under challenging real-world conditions.
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3.4 Discussion

Accurately inferring evolutionary relationships and parameters describing the
evolutionary process from molecular sequence data is a challenging but vital
problem in evolutionary biology. Evolutionary conditions that strongly violate the
assumptions of phylogenetic models can result in biased an inaccurate inferences,
providing a misleading picture of how life has evolved. Site-specific changes in
evolutionary rates (heterotachy) have been widely documented in empirical sequence
data [5, 31, 48, 69, 71, 72, 75, 76, 77, 81, 84, 91], but models of heterotachy are not
regularly used for phylogenetic analyses. We have shown here that various forms of
heterotachy can cause standard evolutionary models to infer inaccurate phylogenies,
sometimes with strong support. Furthermore, accuracy is not always improved by
increasing the amount of sequence data available; under some heterotachous
conditions, model-based techniques would infer incorrect trees even if infinite data
were available (see also [11, 62]). In some cases, the nonparametric technique
maximum parsimony is significantly more accurate than maximum likelihood and
Bayesian methods using commonly-available evolutionary models. Although the
covarion model did not produce more accurate phylogenies than homotachous
models under the conditions we examined, a mixed branch length model allowing
different sites to evolve along different branch lengths did improve the accuracy of
phylogenetic inferences, both from simulated and real-world data.

We have also shown that AIC can be an effective technique for determining the
best-fit number of branch length categories for a mixed branch length model
analysis. In contrast, our additional analyses (not shown) show that both the
corrected AIC (AICc) and BIC underestimate the number of branch length
categories. For example, BIC always supported a simple model with a single set of
branch lengths from four-taxon datasets simulated with multiple branch lengths
(FZH, IFZH, SLBH, SNH), even when ample data were available (5,000 nt) and the
simple model was significantly biased. Similarly, AICc underestimated the number
of branch length categories from elongation factor la data, preferring a model with

only two categories of branch lengths which strongly supported the incorrect MA
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tree; AIC selected a six-category model that resulted in significant support for the
correct tree. In contrast to AIC, which applies a constant penalty for additional
model parameters, both AICc and BIC penalize the addition of model parameters
proportionally to the number of sites in the sequence [88]; our analyses suggest that
this is not the best approach for selecting the number of branch length categories for
a mixed model. Likelihood Ratio Tests (LRTs) cannot be easily used to select the
best-fit number of branch length categories, as the LRT statistic is not chi-square
distributed in this case [73].

Although the mixed branch length model improved the quality of phylogenetic
inferences in our study, the computational complexity of the model remains a
nagging concern. Since likelihoods must be computed separately for each set of
branch lengths in the model, the number of required likelihood calculations
increases quickly with increasing evolutionary heterogeneity. In the case of
elongation factor la sequences, likelihood calculations using gamma-distributed
among-site rate variation with four rate categories and heterotachy with six branch
length categories required 24 separate likelihood calculations, compared to only four
using the simpler gamma model with a single set of branch lengths. In addition to
the increase in the number of likelihood calculations, the increased number of
parameters in the mixed model requires additional computation time to estimate.
The complex interactions and constraints on mixed branch length parameters make
simple hillclimbing heuristics ineffective, requiring slower but more robust
techniques such as simulated annealing to reliably estimate evolutionary parameters
under the complex model. The dramatic increase in computational resources
required to analyze data using a mixed branch length model prevents calculation of
common support measures such as bootstrapping and could limit the number of
taxa or amount of sequence data that can be analyzed in a reasonable amount of
time. Developing techniques to accurately and quickly solve mixed branch length
models and estimate statistical confidence in phylogenies inferred using mixed
branch length techniques is clearly an important area for future research. Because
the mixed model can produce accurate phylogenies under conditions that mislead

existing methods, however, mixed branch length analysis can be used to assess the
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robustness of existing inferences to model violations such as heterotachy. The ability
to infer site-specific evolutionary properties by calculating the posterior probability
that each site evolved along each set of branch lengths offers a novel and potentially

insightful window into the complexity of the molecular evolutionary process.



66

CHAPTER IV

OPTIMIZATION OF MIXED BRANCH
LENGTH MODELS

4.1 Computational Challenges in Phylogenetic

Inference

Typical phylogenies produced today are inferred from molecular sequence data
using complex evolutionary models and sophisticated statistical estimation
techniques. It is not uncommon for published trees to have on the order of 50 taxa
[58, 79], and sequence data sets with tens of thousands of characters are becoming
increasingly used to resolve difficult problems [83, 94]. When data are combined
from multiple genes extracted from a wide variety of organisms spanning many large
taxonomic groups, the process governing molecular evolution on this scale is likely
to be very complex, requiring a complicated evolutionary model in order to capture
important features of the process and avoid the potential for errors caused by model
underparameterization [9, 11, 55, 62, 131]. Inferring a large phylogenetic tree from
long molecular sequences using a complex evolutionary model is a computational
challenge; careful implementation of efficient algorithms is required to balance the
requirements of high accuracy and high speed.

It has been recognized for some time that increasing the number of taxa under
study can have a beneficial effect on phylogenetic accuracy [43]. As the number of

taxa increases, however, the number of possible trees grows exponentially, requiring
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heuristic tree-search algorithms to identify the optimal topology. Current
implementations rely almost exclusively on simple hillclimbing heuristics: given a
topology at iteration ¢, a new topology (i + 1) is proposed by rearranging some of
the nodes of tree 7. This proposal is accepted if it improves the optimality score of
the tree, otherwise it is rejected. The procedure is repeated until some stopping
criterion is reached, typically either no improvement in score for k consecutive
iterations or a pre-set iteration limit. Although these techniques work quite well for
moderately-sized topologies, they suffer from two major drawbacks that could limit
their effectiveness for inferring very large trees. First, most heuristic search
strategies in a maximum likelihood (ML) framework require the optimization of all
model parameters at each iteration step [98]. If the model is complex, parameter
optimization can be costly, thereby limiting the efficiency of the search algorithm.
Some algorithms have attempted to circumvent this issue by reducing the
complexity of tree rearrangements and the stringency of parameter optimization
[37, 106, 121], which icreases the efficiency of the algorithm but may reduce the
rigor with which tree space is searched and paramter optimization is done,
potentially leading to phylogenetic errors [9]. The second potential problem with
hillclimbing is the well-known issue of the algorithm becoming stuck in suboptimal
regions of parameter space. Although very little is known about the functional
landscape of phylogenetic problems, recent analyses suggest that real-world
phylogenetic problems may contain multiple peaks and valleys, potentially causing
hillclimbing techniques to become stuck in local optima [9, 61]. These problems
could become much worse as the complexity of the problem increases.

Recent advances in Bayesian phylogenetics have attempted to entirely sidestep
the computational issues raised when trying to find the best tree by focusing instead
on estimating a ‘credible set’ of trees with high likelihood using Markov Chain
Monte Carlo (MCMC [51]). MCMC uses the same iterative proposal mechanism as
hillclimbing ML but extends this technique to estimating model parameters as well
as topology. Rather than attempting to discover the best tree and parameter values,
Bayesian techniques use MCMC to ‘integrate over’ all possible trees and

parameters. The result is that relatively expensive numerical estimation techniques
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for parameter optimization are not necessary; the simple proposal mechanism can
be extended to sample model parameters as well as topologies. At each step in the
algorithm, a new topology and/or set of model parameters is proposed by slightly
altering the existing values; these proposals are either accepted or rejected, with the
acceptance probability being proportional to the likelihood ratio of the proposed
state to the old state. The algorithm continues until a pre-set number of proposals
have been attempted. At given intervals, the state of the MCMC run is recorded,
and the relative frequency with which each tree is sampled gives an estimate of the
tree’s posterior probability. Integrating over trees and model parameters using
MCMC results in a much faster algorithm than parameter optimization by ML
hillclimbing but leads to a new set of potential problems. First, although MCMC is
theoretically sound, concerns have been raised that it may not always be accurate in
practice, especially if the phylogentic problem is very complex [78, 93]. Second,
recent concerns have also been raised that even under simple simulation conditions
when the correct evolutionary model is used, Bayesian methods may overstate the
statistical confidence in the best tree, sometimes leading to high rates of error

(12, 17, 67, 74, 102, 112, 117].

The computational issues associated with molecular phylogenetics increase
dramatically when the evolutionary model is made more complex. We recently
introduced a mixed branch length model to account for heterogeneous evolution
[62, 104] and showed that this model can improve the accuracy of inferred
phylogenies using both simulated and empirical data {chapter 3). The main
drawback to this model is the potential explosion in the number of parameters; not
only are there more parameters, but complex interactions among different
parameters make fast numerical optimization impossible. Instead, we implemented
a simulated annealing algorithm to optimize model parameter values. Although this
algorithm provided highly accurate parameter estimates under simulation
conditions, the time required to perform the calculations was prohibitive. As a
result, the general usefulness of the mixed model for phylogenetic inference is

questionable.
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Here we address the computational challenges associated with our
implementation of the mixed branch length model. We develop strategies to
improve the efficiency of our software by addressing the problem from multiple
levels, including parallelization, algorithmic improvement, and code optimization.
First, we use runtime performance analysis to identify code ‘bottlenecks’ and
propose restructuring the code to address these issues. Second, we identify faster
simulated annealing algorithms that can be used to speed up our implementation
without sacrificing optimization rigor. Third, we outline an approach using
simulated annealing to optimize tree topology, parameter values, and model
complexity simultaneously, reducing the need to perform multiple independent runs
using different trees and/or models. Finally, we identify potential avenues for
parallelization and discuss the pros and cons of each. Using a combination of
multiple strategies to improve the efficiency of our phylogenetic reconstruction
algorithm should result in the necessary runtime improvements required to make
mixed-model phylogenetic analysis feasible for general use. Many of the
improvements outlined here should improve the running time of simpler models as

well, providing a very general strategy for fast, accurate phylogenetic reconstruciton.

4.2 Why Simulated Annealing?

A simple simulated annealing algorithm was used to optimize model parameters
for the mixed branch length model implemented in chapter 3. Although slower than
numerical techniques such as simplex and quasi-Newton methods, simulated
annealing is widely used to optimize complex functions. The major advantages of
simulated annealing over faster numerical methods are 1) ease of programming, 2)
applicability to constrained optimization problems, and 3) an ability to avoid local
optima. While numerical methods typically require calculation of derivatives in
order to quickly converge to a local optimum, simulated annealing uses a simple
stochastic proposal mechanism that requires no derivative information. Due to this
simple proposal mechanism, simulated annealing can be easily applied to highly

constrained optimization problems, while many numerical methods are only
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applicable to unconstrained parameters. The mixed branch length model has many
complex constraints on model parameters. For example, branch lengths must be at
least 0; the proportion of sites in each branch length class must also be > 0, and the
sum of site proportions must be 1.0. Finally, the acceptance of ‘bad’ proposals that
reduce the likelihood score allows simulated annealing to effectively traverse areas of
low likelihood to find function peaks, thereby avoiding local optima. Numerical
optimization algorithms rely on hillclimbing and can easily become stuck if multiple
local optima exist. Because evidence suggests that both phylogenetic problems and
mixed models may generate complex functional landscapes with multiple local
optima [61, 73], hillclimbing methods may not be appropriate for optimizing the

mixed branch length model.

4.3 Code Optimization

The prototype mixed branch length model-—optimized using simulated
annealing—was sufficient to address moderate-sized phylogenetic problems such as
the 24-taxa, 349-character elongation factor la data set of Inagaki et al. [55)
analyzed in chapter 3. Analysis of these data using the best-fit 6-category model
required about 2 weeks of computing time on a 2-gigahertz G5 processor running
mac OS X. Already pushing the patience of most biologists, analyses of larger data
sets was even more daunting. A recent analysis of a 92-taxon, 1448-character
dinoflagellate data set required over 2 months to complete, and the 49-taxa,
35,371-character bilaterian data set of Philippe et al. [83] crashed before completing,
A 183-taxa, 438-character nuclear receptor data set also failed to complete. These
results suggest that the existing prototype software may require significant
improvements before it can be applied to large phylogenetic problems.

In order to target code optimizations to parts of the software likely to produce
the greatest gains in efficiency, we used runtime profiling to identify the subroutines
responsible for most of the program’s execution time. Runtime profiling was
performed using Shark v4.3, included as part of the CHUD tools with mac OS X.

Because data sets with different properties might tax different parts of the software,
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we profiled the software while analyzing three separate data sets: 1) the elongation
factor la (efla) data analyzed in chapter 3 [55], 2) the dinoflagellate data set
described above, and 3) the concatenated bilaterian data set [83]. The efla data was
moderate in terms of both taxon sampling and sequence length; the dinoflagellate
data sampled many more taxa but still relatively few characters from each taxon,

while the bilaterian data had a moderate number of taxa but very long sequences.

4.3.1 Elongation Factor 1la (efla) Data Profiling

Runtime analysis of the mixed branch length model software applied to the
elongation factor la (efla) data revealed that 99.7% of function samples were
within the simulated annealing routine, so overhead required to read and process
input files or write output files was negligible. Within the simulated annealing
routine, 61.6% of the total time was spent copying the model from one memory
location to another, while 38.1% of runtime was spent calculating likelihood scores
(Figure 4.1). When the simulated annealing algorithm makes a new proposal, the
entire data structure encoding the model-—including the tree with multiple branch
lengths, transition model parameters, etc.-is copied into a new memory location.
The copy is then changed slightly, its likelihood calculated, and the likelihood of the
new proposal is compared to that of the old state. If the proposal is accepted, the
old data structure is deleted and replaced by the new data structure. Deletion of
data structures accounted for 41.3% of total runtime, while allocation of new data
structures required 20.3% of runtime.

Within the likelihood calculation, nearly all of the time was spent looking up
transition probabilities (38.0% of total runtime); only 0.1% of total runtime was
required to actually calculate transition probability matrices. Once the transition
probability matrices have been built, the likelihood calculation consists of a complex
series of nested loops that combine various fransition probabilities to calculate the
total likelihood using a post-order tree traversal [22]. Interestingly, these loops
required much more processor time than the matrix operations required to calculate

transition probabilities.
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FIGURE 4.1: Runtime profiling reveals data structure copying as the major per-
formance bottleneck. The proportion of total runtime spent in various procedures
is plotted when elongation factor 1 alpha (efla) and dinoflagellate data sets were
analyzed using our prototype mixed branch length model software. Data structure
manipulations are shown in gray, while time spent looking up likelihood values is
shown in black.

4.3.2 Dinoflagellate Data Profiling

The dinoflagellate data set has many more taxa than the efla data set (98 vs.
24}, but only moderately increased sequence length (1448 vs. 349 characters). When
the software was profiled while analyzing the dinoflagellate data, all of the samples
were within the simulated annealing routine, again indicating that file input/output
overhead was negligible (Figure 4.1). As with the efle data, nearly all of the
processor time was spent either copying data structures from one place to another
or calculating likelihood scores. However, the partitioning of time between these two
operations was very different in the case of the 98-taxa dinoflagellate data. In this
case, 98.1% of total runtime was spent copying data structures, while only 1.1% of
total time was spent actually calculating likelihood scores. Of the time spent
copying data, 73.4% of total runtime was required to delete various data structures,
while 25.5% was required to create new structures. All of the samples taken from
within the likelihood calculation routines were transition probability lookups rather

than matrix operations.
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4.3.3 Bilaterian Data Profiling

The bilaterian data consisted of relatively few taxa (49) but very long sequences
(35,371 characters). Under these conditions, the prototype software failed to
complete reading the sequence data into memory. Most of the total runtime {86.1%)
was devoted to system calls, while only 12.8% of the function samples were actually
taken within the main program execution. Analysis of the runtime trace confirmed
that the sequence data were never completely read into memory. We used the nexus
class library (NCL v2.0 [66]) to read input data files, and this library was
insufficient to handle the very large bilaterian data set. All of the functions sampled

within the main program execution were NCL library functions.

4.3.4 Planned Optimizations

To address the optimization issues identified by runtime profiling, we plan to
refactor the prototype software as follows. First, it is obvious from the bilaterian
data analysis that the nexus class library used to read input data files is not efficient
enough to analyze extremely long sequences. Because such ‘genomic’ data sets are
becoming increasingly exploited to address difficult phylogenetic problems, we will
replace the nexus class library with more efficient data input routines. Second, we
plan to explore the potential of more aggressive loop optimizations to reduce the
time required to calculate likelihood scores. Finally, it is obvious from the efla and
dinoflagellate data sets (Figure 4.1) that the copying of data structures as part of
the simulated annealing loop must be streamlined in order to improve the
performance of the algorithm. Our initially naive approach of creating a new data
structure and deleting the old data structure at each iteration is clearly inadequate.

To address this problem, we plan to implement a ‘reversible’ proposal
mechanism to entirely avoid data structure copying and deleting. Rather than
copying the entire data structure into a new memory location, we will instead
record the specific parameters changed during each iteration as well as their original
values. Parameters will then be altered on the original data structure and the

likelihood of the new proposal will be compared to that of the old state as before. If
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the proposal is rejected, the altered parameters will be reset to their original states.
This scheme should completely eliminate the need to create and delete large data
structures as part of the simulated annealing algorithm; runtime profiling analysis

suggests that the potential performance gains are considerable.

4.4 Faster Simulated Annealing

Although simulated annealing is widely used to optimize complex functions, it is
typically slower than numerical estimation techniques, and so is applied in cases
where numerical estimation is not appropriate. One of the main advantages of
simulated annealing over numerical optimization—the ability to avoid local
optima—is also one of the reasons simulated annealing is slow. Simulated annealing
relies on a ‘stochastic walk’ through parameter space to sample the function being
optimized. As this ‘walk’ is being conducted, the temperature parameter is slowly
decreasing, reducing the probability of accepting steps that reduce the function
value—and thus the ability of the algorithm to walk out of local optima. If the
temperature is decreased too rapidly, the algorithm can easily become stuck in a
locally optimal region of parameter space. This requirement for a slow temperature
reduction regime {called the “annealing schedule”) is the main cause of simulated
annealing’s relatively long running time.

Because the annealing schedule is crucial for both the efficiency and accuracy of
simulated annealing, considerable attention has been invested into determining ideal
methods for temperature reduction. Although many aspects of the annealing
schedule are problem specific, some general approaches have been developed.
Although it has been proven that a logarithmic annealing schedule—where the
temperature at step i is given by: T} = [Og% will converge to the global optimum
given large enough R [33], this schedule is typically far too slow to be useful in
practice. We implemented the most common annealing schedule, an exponential
descent where T; = T;_, * a. Here a is smaller than but very close to 1.0.
Unfortunately, it is well known that this schedule is not guaranteed to converge on

the globally optimal solution [38], and it is still quite slow. Ingber has shown,
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however, that an exponential schedule can safely be used provided specific proposal
mechanisms are employed [56]. Faster annealing strategies rely almost exclusively
on adaptive approaches that make use of statistical sampling of the algorithm to
‘tune’ the annealing schedule as the algorithm proceeds [56, 64]. The schedule
proposed by Lam and Delosme [64] estimates the local standard deviation of the
function being optimized and either accelerates or decelerates the annealing
schedule based on whether the standard deviation is small or large, respectively.
The approach used by Ingber {56] estimates the partial derivatives of the function to
optimize and uses this information to alter the current temperature independently
for each parameter; the temperature is increased if the partial derivative of a
parameter is relatively small, otherwise it is decreased.

To improve the quality of our simulated annealing software, we will implement
Ingber’s proposal mechanisms to guarantee that the exponential annealing schedule
will converge to the global optimum. We will additionally explore the potential for
adaptive annealing strategies to further improve the running time of our
implementation by making use of algorithmic sampling to intelligently alter the

program’s execution as it proceeds.

4.5 Model Selection Using Simulated Annealing
and Akaike Information Criterion (AIC)

In the case of empirical data, the appropriate number of branch length sets to
use in a mixed branch length model analysis will almost never be known in advance.
Therefore, estimating the best-fit number of branch length sets is a crucial aspect of
the analysis. In chapter 3, we used the Akaike Information Criterion (AIC, [1]} to
select the best-fit number of branch length sets, and this criterion was typically very
accurate under simulation conditions. A downside to this approach is the
computational cost incurred: in our prototype software, several analyses were

conducted separately on the same data, each using a different number of branch
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length sets. Only after all the analyses had completed was the best-fit model
selected using AIC.

An alternative to this computationally intensive approach is to optimize model
complexity directly as part of the simulated annealing algorithm. In addition to the
typical model parameter and topology proposals, a new type of proposal would
either increase the complexity of the model- by adding an additional set of branch
lengths to the tree—or decrease the number of branch length sets by merging two
sets into one. These ‘reversible jumps’ in model complexity would allow for
simultaneous optimization of topology, model parameters, and the complexity of the
model. This approach should free up computer resources by focusing the
algorithm's execution on models with good statistical fit to the data rather than
having to serially optimize several models, many of which may be either grossly
simplistic or overly complex.

A similar ‘reversible jump’ strategy has been successfully used in Bayesian
MCMC algorithms to select model complexity [2, 4], including one implementation
used to select the complexity of the relative transition rate matrix for phylogenetic
analysis [50]. In a Bayesian setting, model complexity need not be penalized
statistically, because integration over additional parameters in more complex models
automatically penalizes added complexity. In a maximum likelihood approach,
however, increasingly complex models will almost always produce higher maximized
likelihoods, so models with additional parameters must be penalized to find the
best-fit model without overfitting stochastic variation in the data. The AIC and
other model-selection criteria include a ‘penalty term’ that accounts for additional
parameters in more complex models, so models of various complexity can be
directly compared. If the simulated annealing algorithm were used to optimize AIC
instead of directly optimizing the likelihood score, the same reversible jump strategy
used in Bayesian MCMC could be utilized in a maximum likelihood framework to
determine the best-fit model and optimize model parameters and tree topology as

part of a single simulated annealing run.
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4.6 Parallel Algorithms

The advent of fast ‘supercomputers’ created by connecting standard machines
into a cluster of interacting nodes has brought high-performance computing to
practicing scientists, and the most recently developed phylogenetic inference
packages make use of parallel algorithms to exploit cluster computing resources.
Unfortunately, the simulated annealing algorithm does not admit easy
parallelization, because the state of the algorithm at iteration 7 is directly
dependent on the state at iteration i — 1. Convergence to the same parameter values
from multiple independent runs—separate instances of simulated annealing started
from different randomly-selected states—can be used to suggest that the true global
optimum has been found, but this technique does not improve the execution time of
each annealing run. Another general approach for parallelizing simulated annealing
is to perform multiple runs at different temperatures [39, 113]. High-temperature
runs effectively search parameter space for locally-optimal regions, while
low-temperature runs perform more fine-grained parameter optimization. At various
times during the algorithm’s execution, the temperatures of two runs are swapped,
allowing a low-temperature run to ‘jump’ to the state occupied by a
high-temperature run and vice versa. Again however, it is not clear that this
approach would significantly improve execution time compared to a single simulated
annealing run.

Qur runtime profiling data suggests that the likelihood calculation at each
iteration is potentially time consuming, indicating that parallelization of this
calculation could be an effective strategy for improving algorithmic efficiency. There
are two dimensions in which the likelihood calculation can be made parallel: either
the sequence data can be partitioned among processors, or the model’s parameters
can be partitioned. In the first case, the likelihood scores for separate columns in
the data matrix are calculated independently on different processors and then
combined once all scores are available. This approach is especially appealing in the
case of large genomic data sets like the bilaterian data analyzed above. When

sequence length is very long, the size of the sequence data in memory can impact
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performance by reducing cache efficiency. Partitioning these data into relatively
large independent subsets might therefore show faster-than-linear speedup.
Data-partitioning parallelism is probably less useful when sequence length is
relatively small.

In the case of the mixed branch length model and other mixed models—such as
the discrete gamma model of among-site rate variation—it is possible to partition
sub-models among processors. In this case, likelihood scores for different sets of
branch lengths are calculated for the entire data matrix independently; these scores
are then trivially combined to obtain the total likelihood. The appeal of this
approach is that model complexity has only a minimal impact on execution time: a
simple model running on a single processor takes the same amount of time to
calculate as a complex model running on multiple processors. In cases where the
best-fit model is very complex, this approach should provide good speedup
compared to a sequential algorithm. The drawback to this method is that
algorithmic efficiency cannot be improved when the model is simple, no matter how
many processors are available.

In order to provide an adaptive parallelization strategy useful both in situations
where sequences are long and in situations where the evolutionary model is
complex, we propose to implement both sequence-data partitioning and sub-model
partitioning parallelism. User-tunable parameters will control the level of
partitioning in each dimension, and we will perform extensive analyses to
empirically determine optimal levels of partitioning for a number of data sets in

order to guide the user’s choice.

4.7 Conclusion

Simulated annealing is a powerful and general strategy for optimizing complex
functions. Although simulated annealing has been used previously to address
phylogenetic problems, no current implementations make full use of the power of the
algorithm, and many are not useful for general phylogenetic reconstruction. The

LVB algorithm proposed by Barker [7] implements maximum parsimony
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optimization only and is not available for likelihood-based methods. The
RAxML-SA method of Stamatakis {105] uses simulated annealing to find the optimal
topology but relies on numerical optimization to estimate branch lengths and other
model parameters, making it useless for optimizing complex mixed models. Finally,
the method implemented by Salter and Pearl [97] is only useful for reconstructing
rooted trees under the molecular clock assumption (an assumption typically violated
by real sequence data), does not implement among-site rate variation models, and
cannot be used to optimize model parameters other than branch lengths. Qur
software is the only complete implementation of a simulated annealing approach to
phylogenetic reconstruction, and ours is the only implementation of the mixed
branch length model in a maximum likelihood framework.

Even though our implementation has been successfully applied to moderate-sized
phylogenetic problems, we have encountered computational difficulties attempting
to analyze larger problems—either in terms of increased taxon sampling or longer
sequences. Runtime profiling of our prototype software has identified a number of
potential areas for code optimization. In addition, improvements to the simple
simulated annealing algorithm we implemented have been suggested by other
authors; these could be implemented to improve the efficiency of our
implementation. Generalizing the simulated annealing algorithm to optimize model
complexity in addition to topology and model parameters may also improve runtime
performance, and parallelization strategies partitioning either data or model
parameters among processors are also potentially useful. Future research will
examine the effectiveness of each of the strategies outlined above for improving

algorithmic efficiency and runtime performance.
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CHAPTER V

IS THERE A STAR TREE PARADOX?

This chapter was originally published in the journal Molecular Biology and
Evolution (vol. 25 no. 10, pp. 1819-1823, 2006). It was co-authored by Joseph W.

Thornton, who assisted with experimental design and edited the manuscript.

5.1 Introduction

Accurately characterizing statistical confidence in phylogenetic hypotheses is an
important and long-standing challenge. Bayesian phylogenetics expresses confidence
in terms of posterior probability—the probability that a tree or clade is true given
the data, an evolutionary model, and prior probability distributions over model
parameters [54]. There is growing concern that inferred posterior probabilities may
be generally “overcredible” in a frequentist sense, leading to inflated confidence in
uncertain relationships and a high rate of incorrect inferences, especially when the
true tree has zero- or near-zero length internal branches, [12, 67, 112, 132].

Most software for Bayesian phylogenetic inference uses Markov Chain Monte
Carlo (MCMC) techniques that sample only resolved trees; unresolved phylogenies
are approached by examining very short internal branch lengths (typically 10-°
substitutions/site), but the remaining “hole” in parameter space is not sampled.
Lewis, Holder, and Holsinger ([67], LHH) suggested that when the true tree is
unresolved, not sampling unresolved trees causes “disturbingly high” posterior

probabilities to be inferred for one or another arbitrarily resolved tree, and this
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problem gets worse as sequence length increases: “For large data sets, the
phylogenetic uncertainty generated by the true polytomy manifests itself as
unpredictability in the level of estimated posterior support for arbitrary resolutions
of the polytomy, not as increased homogeneity of support for all possible
resolutions.” This conclusion was based on a series of simulations using a four-taxon
star tree with equal terminal branch lengths: when replicate sequences of length

N =1 were analyzed, equal posterior probability was always inferred for each
possible resolved tree, but when longer sequences (N = 100,000) were analyzed,
some replicates produced high support for one of the three resolved trees. Yang and
Rannala (]132], YR) examined additional sequence lengths and also found that very
short sequences {N = 20) always produced roughly equal support for each resolved
tree, but longer sequences (N = 200 and N = 1000) occasionally yielded high
support for one of the three topologies. Both LHH and YR sketched theoretical
arguments predicting that “posterior probabilities of particular resolutions of
polytomous tree topologies will become more unpredictable with increasing
sequence length” [67] and become completely unpredictable as N approaches
infinity. If true, this “star tree paradox” is a real concern; it suggests that posterior
probabilities on trees with short internal branches may regularly generate inflated
confidence in incorrect or uncertain phylogenies, leading to frequent inferences of
incorrect evolutionary relationships and increasingly pathological behavior as more
data are analyzed.

The prediction that posterior probabilities would become more problematic as
sequence length grows has not been directly tested, however. Both LHH and YR
examined too few sequence lengths to establish a general trend, and neither
explicitly examined how BMCMC methods would perform with infinite data.
Further, neither study investigated whether at any sequence length high posterior
probabilities are observed more often than they should be. Here we use simulation

experiments to test the predictions associated with the star tree paradox.
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5.2 Methods

Posterior probabilities were estimated using MrBayes v3.1 [95]. Four
incrementally heated chains (temp = 0.2) were run for 205,000 generations, with
samples taken every 100 generations. The first 5000 generations were discarded as
burnin. Prior probabilities were equal over all tree topologies and uniformly
distributed on [0,10] for branch lengths. The shape parameter for
gamma-distributed among-site rate variation was given a uniform prior on [0.05,50],
and the default prior was used for the transition/transversion ratio. The true
evolutionary model was assumed.

Sequence alignments of length 1,10, 100, 10%, 104, 10°, 108, and 107 nucleotides
were simulated on a four-taxon star tree. We simulated data using the JC69
substitution model and either equal terminal branches (0.5 or 0.05
substitutions/site) or Felsenstein-zone branch lengths with two long terminals (0.75)
and two short terminals (0.05). Data were also simulated using the K80+g
(s = 10, @ = 0.5) model and equal long terminal branches (0.5). We analyzed 1000
replicate alignments under each set of experimental conditions as described above.
In addition, we analyzed 5000-nt alignments simulated using a 10-taxon star tree
with long terminal branches (0.5), with posterior probabilities on clades summarized
over trees using MrBayes. In each case, observed type I error rates were compared
to maximum acceptable values using a one-sided ¢ test.

To examine the accuracy of posterior probabilities with infinite data, ideal
pseudo-datasets with no stochastic error were analyzed. We calculated the expected
frequency of each character state pattern (f(z)) under a four-taxon star phylogeny
with either long (0.5) or short (0.05) terminal branch lengths and the JC69
substitution model. We modified the source code of MrBayes v3.1 to estimate
posterior probabilities given this vector of state pattern frequencies. The per-site
likelihood of tree t given any state pattern z is calculated by raising the probability
of the pattern, given the tree, to the frequency with which that pattern is expected
to occur: L(t|z) = P(z|t)/*). The total per-site likelihood of the tree is the product

of this partial likelihood over all possible state patterns. Each ideal dataset was
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analyzed 100 times to account for variation in Markov chain sampling. We
calculated the mean posterior probability over all analyses and assessed deviation

from expected support of 1/3 for each possible resolved tree using a t test.

5.3 Results

If posterior probabilities become increasingly unpredictable as sequence length
increases, then the variance in the posterior probability of a particular resolved tree
over replicate datasets should increase as N grows. We tested this prediction by
simulating alignments of various lengths on a four-taxon star tree using conditions
similar to those examined by LHH and YR and estimating the posterior probability
of a resolved phylogeny using MrBayes v3.1, which does not sample unresolved
trees. We found that the mean posterior probability is always close to 1/3,
and—after an initial increase—the variance remains stable with increasing sequence
length (Figure 5.1). When N < 10, the variance in posterior probability is close to
zero, because a resolved tree can only be supported by convergent substitutions on
at least two branches; in very small datasets, such low-probability patterns usually
do not occur at all. Once sequences are long enough for convergent patterns to
appear, however, there is no increase in variance with the amount of data analyzed.
The apparent increase in earlier studies was due to a failure to examine enough
sequence lengths to distinguish between a long-term trend and the initial increase
due to near-zero variance at extremely short sequence lengths.

Both LHH and YR noticed that, when moderate or long sequences are simulated
on a four-taxon star tree, “disturbingly high” posterior probabilities were
occasionally observed, in contrast to very short sequences, for which posterior
probabilities were always close to 1/3. The occasional presence of high posterior
probabilities is not in itself reason for concern. Although a star tree is expected to
generate equal frequencies of state patterns that support each of the three trees,
stochastic variation with finite datasets causes pattern frequencies to deviate from
expectation, leading to spurious support for one tree or another. Usually the

stochastic deviation is small, but infrequently it will be larger. Unequal pattern
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FIGURE 5.1: Variance in posterior probability of a resolved tree does not increase
with increasing sequence length. The mean (left panel) and variance (right panel)
in posterior probability of a particular resolved tree over replicate datasets is shown
when data are generated using the JC69 substitution model and a four-taxon star
tree with long terminal branch lengths (0.5 substitutions/site). Gray line indicates
expected mean support of 1/3.

frequencies also occur when the true tree is resolved, producing phylogenetic signal.
The purpose of posterior probabilities is to help distinguish these possibilities by
expressing the probability that some resolved tree is true given the data. If a method
is to have any power to detect a resolved phylogeny when it is true, high posterior
probabilities must occur occasionally when finite data are generated on the star
tree. The crucial question is whether they occur more often than should, leading to
a high rate of erroneous inferences—an issue not addressed by LHH or YR.

If the posterior probabilty of a tree accurately estimates the probability that the
tree is the true tree (which it has been shown to do when the true tree is resolved,
provided the model and priors are correctly specified [53, 132]), a hypothesis with
posterior probability 0.95 should have a 0.05 chance of being false, and a group of
hypotheses with posterior probability 0.95 should contain 5% incorrect trees.
Though unconventional in a Bayesian framework, the use of a decision rule that
accepts a phylogenetic hypothesis only if it has posterior probability > 0.95 should
therefore result in a long-run type I error rate < 0.05 if posterior probabilities
accurately measure the frequentist probability that a tree is correct. We tested

whether use of current BMCMC implementations leads to high rates of type I error
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FIGURE 5.2: Type I error rates based on posterior probability are conservative.
A) The fraction of star trees incorrectly resolved at support cutoff values of 0.90,
0.95, and 0.99 posterior probability is shown. Sequences were 5000 nt long. Dotted
line indicates maximum permissible error rate. Bars indicate standard error, with a
significantly reduced eror rate compared to the maximum permissible for each cutoff
being indicated by an asterisk (o = 0.01). For 10-taxon trees, we calculated type I
error rates when posterior probabilities were summarized on clades in two ways: 1)
each clade is considered an independent hypothesis (white), and 2) a single resolved
clade per replicate is considered a type I error (black). B) Type I error rates {based
on a 0.95 posterior probabilty cutoff) are shown as sequence length increases when
the true four-taxon star tree has long terminal branches (0.5 substitutions/site, filled
triangles) or short terminals (0.05, open circles). Dotted line indicates maximally
acceptable type I error rate.

by simulating replicate sequence alignments on various unresolved trees and
observing the proportion of resolved trees with posterior probabilities greater than
various cutoff values. Resolved trees with support greater than cutoffs of 0.90, 0.95,
and .99 were considered type I errors [115], and observed error rates were
compared to maximuin error rates expected if posterior probabilities are accurate
estimators that a tree is true (0.10, 0.05, and 0.01, respectively). We found that
type I error rates were lower than the maximum acceptable for all sequence lengths
and thresholds used, whether terminal branch lengths were equal or in the more
challenging Felsenstein zone, and whether data were generated using simple or
complex evolutionary models (Figure 5.2A).

To determine if type I error rates remain low when larger phylogenies are
analyzed, we simulated data using a 10-taxon star tree with long terminal branches

(0.5 substitutions/site), analyzed these data using MrBayes, and assessed the
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frequency with which incorrectly resolved phylogenetic hypotheses were strongly
supported. First, we found that no fully-resolved trees were supported with
posterior probability > 0.9 when data were generated on a large star tree (not
shown). Posterior probabilities are typically not reported on an entire tree, however;
more commonly, posterior probabilities are reported on individual clades by
summarizing over all sampled trees. Recent concerns have been raised that this
practice may introduce a bias in posterior probability estimates, because the typical
assumption of flat priors over trees places higher prior probability on clades with
either few or many taxa [86). We found that when posterior probabilities are
summarized on individual clades—with each clade being considered an independent
hypothesis—type I error rates are very low (Figure 5.2A). Even if a single strongly
supported clade per replicate is considered a type I error—an extremely
conservative measure of type I error rate—the rate of erroneous inferences is still
less than maximally acceptable at all posterior probability cutoffs examined. Taken
together, the results of our type I error analyses indicate that current BMCMC
implementations do not frequently produce excessive confidence in falsely-resolved
hypotheses when data are generated on a star tree, even though the true phylogeny
is never explicitly considered.

Contrary to the prediction that posterior probabilities would become
increasingly unreliable as sequence length increases, we found that type I error rates
fall with increasing sequence length (Figure 5.2B). As observed with the variance in
posterior probabilities, the trend in type I error with sequence length is not
monotonic. With extremely short sequences (N < 10), the error rate is close to
zero, presumably due to the lack of any convergent state patterns. The rate of type
I error then increases with sequence length as convergent patterns begin to occur,
peaking at moderately short lengths (N = 100 to 1000) and then falling as sampling
error becomes less important with longer sequences. Even when type I error rates
are at their maximum, posterior probabilities never produce strong support for
incorrectly resolved phylogenies more often than they should.

LHH and YR suggested that, as sequences generated on a star tree approach

infinite length, we would like the inferred posterior probability of each possible
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resolved tree to become equal; however they predicted that these posterior
probabilities would become “completely unpredictable” over replicates. We tested
this prediction by analyzing pseudo-datasets that possess the same chararcteristics
as infinite data. With infinitely long sequences, the frequency of each possible
character state pattern equals the expected frequency, and the variance in pattern
frequencies among datasets is zero. To determine the posterior probabilities that
would be inferred if infinite data were available, we generated pseudo-infinite
datasets that do not deviate from expected character state pattern frequencies and
estimated posterior probabilities from these data by BMCMC without explicitly
sampling the true unresolved tree. Specifically, we calculated the per-site likelihood
of an infinite dataset by calculating the expected pattern frequencies given the
simulation conditions and modifying MrBayes to infer posterior probabilities given a
list of patterns and their associated frequencies. When these ideal data were
repeatedly analyzed, we observed a mean posterior probability of 0.333 for each
possible tree (Figure 5.3A) and very little scatter about the mean (¢ = 1.2 x 1074).
From 200 replicates——100 with long terminal branches (0.5) and 100 with short
terminals (0.05)—the maximum posterior probability observed for any resolved tree
was 0.37. The small amount of variation observed among replicates appears to be
due to stochastic error in MCMC sampling: when longer runs are executed,
posterior probabilities are even closer to 1/3 (Figure 5.3B, ¢% = 1.06 x 1079,
maximum posterior probability=0.34). These results indicate that posterior
probabilities do produce equal support for all resolved trees in the infinite case

(P = 0.98), which is the desired result. Analysis of ideal datasets does not indicate
what will happen when very large datasets with some stochastic error are analyzed,
but it does show that when infinite data are generated on a star tree, posterior
probabilities are predictable, equally supporting each possible resolved tree.

LHH and YR both used a coin-flipping analogy to support their contention that
posterior probabilities become increasingly unpredictable as sequence length grows.
YR demonstrated that when the null hypothesis is true (i.e., the coin is fair), the
expected frequency distribution of posterior probabilities for each “resolved”

hypothesis (that the coin is biased one way or the other} is uniform. Although the
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FIGURE 5.3: Star-tree generated data with ideal character state pattern frequen-
cies produce equal posterior probability for each possible resolved tree. The inferred
posterior probability of each resolved four-taxon tree (black dots) is shown for inde-
pendent Bayesian analyses of an ideal dataset with no stochastic variation. In the top
panel, the true tree has four long terminal branches (0.5 substitutions/site); in the
lower panel, the true tree has short terminals (0.05). Solid lines indicate theoretically
correct inference of 1/3 support for each tree. MCMC analyses were run for either
205,000 generations (A} or 505,000 generations (B).

distribution of posterior probabilities on phylogenetic trees is unknown, LHH and
YR presented the coin-flipping result as evidence of pathological behavior when the
null hypothesis is true but is not explicitly examined. In fact, this behavior is
reassuring. The uniform frequency distribution implies that data leading to an
inferred posterior probability > 0.95 on incorrect trees will be observed at most 5%
of the time, data leading to a posterior probability > 0.90 will be observed 10% of
the time, etc.—precisely the behavior expected if posterior probabilities accurately
reflect the probability that the hypothesis is true. For the same reason, a uniform
distribution is also observed for frequentist P-values whenever the null hypothesis is
true. The initially appealing intuition that posterior probabilities should converge

on equal support for each resolved hypothesis is correct only when data are truly
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infinite and precisely match the null expectation; in this case the frequentist P-value
will be 1.0. If posterior probabilities calculated from finite data were instead
concentrated around 1/T (where T is the number of possible resolved hypotheses, a
situation similar to having P-values biased toward 1.0 when the null hypothesis is
true), we would always infer low posterior probabilities for resolved trees—not only
when the null hypothesis is true but also when the true hypothesis is

resolved—leading to reduced statistical power to resolve difficult phylogenies.

5.4 Discussion

The implication of our results is that there is no star tree paradox. Even when
trees contain zero- or near-zero length internal branches, posterior probabilities
behave as an appropriate statistical estimator should, providing near-equal support
for all possible resolved trees with infinite sequence length and producing strong
support for incorrect trees very infrequently when finite data are analyzed. The fact
that unresolved trees are not explicitly evaluated has no apparent effect on the
accuracy of posterior probability as a measure of statistical confidence.
Furthermore, we have shown that evidence previously presented in favor of the star
tree paradox has been erroneously interpreted. The occasional support in favor of a
falsely-resolved phylogeny observed by LHH and YR is the expected result of
stochastic error, and the convergence of posterior probabilities to the uniform
distribution is a desirable property of a statistical estimator, producing a reasonable
balance between power to resolve difficult problems with strong support and a low
rate of false inferences. Our results do not imply that posterior probabilities will
never be inflated; previous studies have shown that posterior probabilities can be
unreliable when either the evolutionary model [53, 112] or prior assumptions about
model parameters [132] are incorrectly specified. That existing methods do not
sample unresolved trees, however, does not inflate posterior probabilities inferred by
MCMC.
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CHAPTER VI

EFFECTS OF PRIOR BRANCH LENGTH
UNCERTAINTY ON BAYESIAN POSTERIOR
PROBABILITIES FOR PHYLOGENETIC
HYPOTHESES

6.1 Introduction

One of the central goals of statistics is to help us express how certain we are
when we make an inference based on evidence. Phylogenies provide the framework
{or all valid comparative biology, so reliable measures of statistical confidence in
evolutionary trees have long been sought. The most common method is
nonparametric bootstrapping [23], a resampling procedure that has been shown to
be conservatively biased [44, 103). Bayesian phylogenetics [54, 92) expresses
statistical support in terms of posterior probability, which is the probability that a
tree is correct given the data, a model of the evolutionary process, and prior
probability distributions over trees and model parameters [51). Bayesian methods
are widely applied in phylogenetics, having resolved difficult and long-standing
problems with strong support [58, 79]. Bayesian Markov Chain Monte Carlo
(BMCMC) algorithms allow large phylogenies to be efficiently estimated using
complex evolutionary models, and posterior probabilities provide an intuitively

meaningful measure of statistical confidence.
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Concerns have been raised, however, that posterior probabilities may not
accurately estimate statistical confidence. Although a number of studies support the
general reliability of the Bayesian approach - while cautioning that results can be
sensitive to model misspecification [3, 10, 20, 53, 65, 124]—others have directly
challenged these findings, concluding that posterior probabilities are regularly
“overcredible” and produce high rates of false inferences, even when the correct
model is used (12, 17, 67, 74, 102, 112, 117]. Whether posterior probabilities are
inflated always or only under some conditions—and why—remains an open
question. As a result, the confidence we should have in phylogenies inferred using
Bayesian techniques is uncertain.

Much of the controversy surrounding the reliability of posterior probabilities in
phylogenetics may actually stem from a misunderstanding of what posterior
probabilities on trees actually mean. Early theoretical arguments suggested that
posterior probabilities calculated using uniformative priors should be equivalent to
bootstrap proportions [19]. Comparative studies generally contradicted this
prediction, finding instead that posterior probabilities are typically higher than
bootstrap confidence 12, 17, 20]. In fact, posterior probabilities and bootstrap
proportions are two different approaches to estimating statistical confidence and are
not expected to be equivalent [3]. Bootstrap proportions attempt to estimate how
often a given phylogeny would be recovered if replicate data sets could be sampled
from the same process that generated the original data. In contrast, posterior
probabilties measure the degree of support for a given phylogeny from the data set
actually sampled, conditional on the model of evolution and prior assumptions
about model parameters.

Because Bayes' Theorem states that the posterior probability of a hypothesis is
the probability that the hypothesis is correct—given the data, a model of the
data-generating process, and prior probability distributions over model
parameters—numerous studies have compared posterior probabilities on phylogenies
to the proportion of inferred trees that are correct [20, 53, 74, 102, 117, 124, 132].
However, there is no a priori expectation that posterior probabilities should

necessarily indicate the proportion of inferences that are correct, because 1)
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posterior probabilities are calculated directly from the data at hand and do not
require replication, whereas calculating the percent of correctly inferred trees
necessarily requires that a large number of inferences be made from different data
sets, and 2) posterior probabilities are conditioned on prior assumptions, while the
proportion of correct trees is not.

There are some specific conditions, however, in which the average posterior
probability of a group of inferences is expected to equal the proportion of correct
inferences in the group. The first condition necessary for this relationship to hold is
replication. Although evolutionary history happened once and cannot be replicated,
computer simulations allow us to generate multiple replicate data sets from any
conceivable set of evolutionary conditions, so the proportion of correct inferences
can be calculated. Under simulation conditions, when the chance of choosing each
set of evolutionary parameter values to generate data is known in advance and used
as prior information in a Bayesian analysis (i.e. the true priors are used), the
average posterior probability of a group of inferences is equivalent to the proportion
of those inferences that are correct. This follows directly from Bayes’ Theorem and
has been empirically shown in the case of phylogenetic inference when branch
lengths are exponentially distributed [53, 132].

These results suggest that, were the actual values of nuisance parameters known
in advance, the average posterior probability of a group of hypotheses would equal
the proportion of correct hypotheses in the group. In real analyses, the values of
nuisance parameters are never known in advance. Bayesian analysis incorporates
this prior uncertainty by integrating over many parameter values, conditioned on
prior beliefs about the probability of potential values for each model parameter.
Unfortunately, little is known about the effects of integrating over uncertainty using
different prior assumptions on resulting posterior probabilities for phylogenetic
hypotheses, and the robustness of the perfect correspondence between posterior
probability and proportion correct to prior uncertainty about the values of nuisance
parameters has not been thoroughly examined.

Yang and Rannala [132] simulated sequence data on rooted three-taxon trees

with branch lengths drawn from exponential distributions and compared the
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posterior probability of a group of trees to the proportion correct when different
exponential priors were assumed for terminal and internal branch lengths. When
the the same distributions used to generate data were also used as priors for
Bayesian analysis, the average posterior probability of a group of trees was the same
as the proportion of trees that were correct. However, when the mean of the prior
distribution on the internal branch length was greater than the actual mean,
posterior probabilities were higher than the proportion of correct trees; when the
mean of the internal branch length prior was less than the true mean, posterior
probabilities were lower. Additionally, when the land plant data of [58] were
analyzed using exponential priors with very small means on internal branch lengths,
many of the inferred clades exhibited reduced posterior probabilities.

Yang and Rannala’s experiments established that the choice of branch length
priors can affect posterior probabilities, and that the perfect correspondence
between posterior probability and proportion correct is not necessarily robust to
prior uncertainty when certain priors are used, but several important questions
remain unresolved. First, the simulations employed by previous authors [53, 132]
represent. a peculiar situation in which phylogenetic trees and branch lengths are
generated by a stochastic process. Real evolutionary history is not generated
stochastically but follows a single historically correct tree. How different prior
assumptions affect posterior probabilities when there is a single correct tree with
fixed branch lengths is unknown. Second, although Yang and Rannala examined
various priors for the internal branch, a separate prior—always the actual
distribution used to simulate data—was independently assigned to terminal
branches. In most real analyses, however, a single prior distribution is applied to all
branches on the tree. How different branch length priors applied across the entire
tree affect posterior probabilities is unknown. Third, it has been common to use a
uniform prior distribution with a large upper bound on branch lengths to represent
prior ignorance about this parameter; because such a prior will usually overestimate
mean branch lengths, Yang and Rannala predicted that flat priors would produce
excessively high posterior probabilities on trees. Yang and Rannala recommended

against such priors and suggested an exponential prior with very small mean.
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Whether flat branch length priors actually produce high posterior probabilities has,
however, not been tested. Finally, Yang and Rannala considered only a single
pattern of branch lengths; different branch length patterns might interact with prior
assumptions to produce different eflects.

Here we address these questions by examining the effects of integrating over
branch length uncertainty using various prior distributions on posterior probabilities
calculated for phylogenetic trees. We show that branch length uncertainty can affect
posterior probabilities across a range of phylogenetic problems and when various
prior distributions are used. Although posterior probabilities can be relatively
stable when different diffuse priors are assumed (including flat priors with various
upper bounds and exponential priors with moderate to large mean values), using an
exponential prior with very small mean across the entire tree produces more
extreme posterior probabilities, resulting in a higher frequency of incorrect
inferences with strong support. Additionally, posterior probabilities inferred using
any of the typical prior distributions can differ significantly from those calculated
when the actual branch lengths are known in advance. When branch lengths are not
known with certainty, the pattern of branch lengths on the true tree has a strong
effect on posterior probabilities, sometimes causing them to deviate significantly
from the posterior probabilities that would be inferred if the true branch lengths
were known. Some patterns push posterior probabilities upward, while others push
posterior probabilities downward. We conclude that prior uncertainty about branch
lengths—and potentially other parameters as well—interacts with sequence length,
the pattern of branch lengths on the tree, and the prior distributions assumed for
the analysis to produce a complex effect on posterior probabilities with potentially

significant consequences for phylogenetic practice.
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6.2 Methods

6.2.1 Bayesian Analyses

Posterior probabilities were estimated by MCMC using MrBayes v3.1 [95]. Four
incrementally heated chains (temp = 0.2) were run until the average standard
deviation in posterior probability estimates across two independent BMCMC runs
was < 0.01, indicating that chains had run long enough to converge on the posterior
distribution. Prior distributions on branch lengths were either uniform on (0,M]
(M = 1,5, 10, or 100) or exponential with z = 1075,1073,0.01,0.1, or 1.0. (Note
that MrBayes uses 1/u to parameterize the exponential distribution, so 4 = 1073
corresponds to a parameter value of 100,000) The true model was used for all
BMCMC analyses.

In addition to BMCMC analyses, we conducted Bayesian analyses using an
empirical Bayes approach that places prior probability 1.0 on the maximum
likelihood branch lengths calculated for each possible tree topology. We calculated
the maximized likelihood of each tree using PAUP* v4.0b10 [114] to optimize
branch lengths. Posterior probabilities were then calculated directly from Bayes’

Theorem using these maximized likelihood values.

6.2.2 Accuracy of BMCMC

We compared posterior probabilities estimated by BMCMC to Bayesian
posterior probabilities calculated using Bayes’ Theorem for a number of four-taxon
problems using both linear regression and the x? test, with posterior probabilities
binned every 0.01, combining adjascent bins to assure each bin had > 5 elements.
One thousand alignments of 10,000 characters were simulated on the ((AB),(CD))
tree using either the JC69 or K80+G (x = 10, a = 2.0) model. We examined two
types of branch length combinations: 1) equal terminal lengths (0.5
substitutions/site) with internal branch lengths of 0.0, 0.01, and 0.03, and 2)
Felsenstein zone trees with and internal branch length of 0.01, long terminals (0.75)

leading to nonsister taxa A and C, and short terminals (0.05) leading to B and D.
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We calculated the true posterior probability using Bayes’ Theorem:

_ LIS PX v, K, @) Pt v, 8, )
P(1X) = >, f L P(X(t,0,5,0) P(t, v, 5, 0)

where v is the set of branch lengths, x is the transition:transversion parameter, and
a is the gamma distribution shape parameter. P(X|t;, v, &, a) is the probability of
the data given specified parameter values, and P(t;,v, &, @) is the prior probability
of the parameter values. We assumed uniformly distributed priors for both
BMCMC and Bayes’ Theorem calculations; when prior probabilities are uniformly
distributed, the posterior probability reduces to the likelihood of tree ¢; to the sum
of the likelihoods of all trees, with model parameters being integrated out. We
numerically estimated the integral [ [ [ P(X|t;,v,x,a) for each tree using a
rectangular approximation, calculating likelihoods for each set of parameter values
uisng PAML v3.14 {130]. Branch lengths increased in steps of 0.001 on the interval
[0.0,0.1] for the internal branch and 0.2 away from the true value for the terminal
branches. x was sampled on the interval [8,12], and o was sampled on [0,4] in steps
of 0.4. The resulting samples from the likelihood surface were used to estimate the
integrated likelihood for each possible tree. We validated these numerical posterior
probability estimates by comparing estimates from 30 randomly-selected datasets to
posterior probabilities calculated using wider intervals and more thorough sampling
within intervals; we found the narrower intervals and sparser sampling to be highly

accurate (not shown).

6.2.3 Simulations

We performed “Bayesian simulations” [53, 132] using a four-taxon phylogeny
with fixed branch lengths (terminals 0.5 substitutions/site, internal 0.01).
Five-hundred replicates with sequence lengths 100, 1000, and 10,000 nucleotides
were simulated using the JC69 model and a randomly selected topology for each
replicate. Sequences were analyzed by BMCMC using the uniform and exponential

branch length priors described above as well as the true point priors on branch
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lengths, which place prior probability 1.0 on the branch lengths actually used to
simulate data (0.5 for terminal and 0.01 for internal branches). Additionally, we
calculated posterior probabilities using an empirical Bayes approach that places
prior probability 1.0 on the maximum likelihood branch lengths calculated for each
tree.

To assess the effects of different branch length patterns on inferred posterior
probabilities, we simulated 500 replicate data sets of either 100 or 10,000 nucleotides
on four-taxon topologies with internal branch length 0.01 and six different terminal
branch length combinations: 1) all short branches (0.01), 2) one long branch (0.75)
and three short, 3) three long and one short, 4) all long branches, 5)
inverse-Felsenstein zone lengths, with two long sister branches and two short sister
branches, and 6) Felsenstein zone branch lengths, with two long nonsister branches
and two short nonsister branches. Sequences were analyzed by BMCMC using
either a uniform branch length prior (U/(0, 10)), an exponential prior with x = 0.1,
or a small-mean exponential prior with g = 1075, In addition, we analyzed data sets
using the empirical Bayes prior that places prior probability 1.0 on the maximum
likelihood branch lengths for each tree.

To assess the impact of typical branch length prior assumptions on clade
probabilities under realistic conditions, we simulated 100 data sets of various
sequence lengths (1000-50,000 nt) using parameter values drawn from an analysis of
real sequence data [79]. To maintain computational tractability, we analyzed a
30-taxon subset in which very closely related taxa were represented by a single
species. We estimated the tree topology, branch lengths, and parameters of the
GTR+I+G model by BMCMC using the original nucleotide data and then used
these conditions to simulate replicate data sets. Posterior probabilities were
estimated by BMCMC using the true model, with priors on transition model
parameters fixed to their true values and branch lengths assumed to be either
uniformly distributed on (0,10] or exponentially distributed with 2 = 0.1 or
it = 107, The first 10,000 generations were discarded as burnin, and analyses were
terminated when the average standard deviation in clade probabilities between two

independent runs dropped below 0.01.
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We also performed Bayesian simulations using a 10-taxon problem with
increasing sequence length (25-1000 nucleotides) and the JC69 model. For each of
500 replicate data sets at each sequence length, the tree topology was selected at
random and each branch length drawn from an exponential distribution with
i =0.15. BMCMC analyses were performed using three different branch length
priors: U(0, 10), exzp(10~7), and ezp(0.15).

6.2.4 Comparing Posterior Probabilities

In order to assess the effects of integrating over branch length uncertainty using
various prior distributions on posterior probabilities, we determined whether
posterior probabilities calculated using different branch length priors matched those
that would be inferred if the true branch lengths used to simulate data were known
in advance. For each branch length prior, we collected posterior probabilities on
trees into 10 equally-sized bins and compared the average posterior probability of
each bin to the proportion of correct trees in the bin; these values should be equal if
nuisance parameters are known with certainty [53, 132]. Bins with fewer than 20
trees were excluded to avoid stochastic error in estimating the proportion correct.
Additionally, we examined the false-positive inference rate incurred using each
branch length prior. We considered inferred trees with > 0.95 posterior probability
as strongly supported and calculated the proportion of replicate data sets producing

incorrect inferences with strong support using each prior distribution.

6.3 Results

6.3.1 Accuracy of BMCMC

We used simulated data under a variety of conditions to evaluate the potential
effects of branch length uncertainty on posterior probabilities. MrBayes—the most
popular Bayesian phylogenetics software package-—was used to estimate posterior
probabilities by MCMC. Although MCMC should theoretically estimate posterior



99

probabilities with high accuracy, the accuracy of MrBayes has not been determined
experimentally. Therefore, to ensure that software errors did not undermine the
validity of our results, we first verified that posterior probabilities estimated using
MrBayes were equivalent to those calculated directly from Bayes’ Theorem using
numerical integration over branch lengths and other model parameters.

To determine if current BMCMC procedures correctly estimate posterior
probabilities defined by Bayes’ Theorem, we simulated sequence evolution under a
variety of conditions on four-taxon trees and compared the posterior probability of
each possible tree estimated by BMCMC (BMCMC-PP) to the posterior probability
defined by Bayes’ Theorem, which we calculated directly using numerical estimation
of likelihoods integrated over branch lengths and other parameters (see Methods).
We found that BMCMC-PPs are very accurate estimators of the true Bayesian
posterior probability (Figure 6.1). When terminal branch lengths were equal
(Figure 6.1A-C), BMCMC-PPs tightly fit the ideal line expected if they are the
same as the true values (x*P > 0.995). Even when the true tree was unresolved,
BMCMC-PPs estimated without explicitly sampling zero-length internal branches
were equivalent to numerical estimates calculated including unresolved trees
(x*P = 0.997, Figure 6.1C). There was a slight reduction in accuracy when the true
tree was a challenging Felsenstein-zone problem (Figure 6.1D), indicated by an
increased scatter around the ideal regression line (x2P > 0.720), but this reduction
was minor and did not introduce bias. BMCMC-PPs were also highly accurate
when the evolutionary model was more complex (x*P > 0.803, Figure 6.1E). We
find no evidence for an intrinsic bias or overcredibility associated with the use of
BMCMC to estimate posterior probabilities on phylogenies, at least for small trees.
This allows us to rule out MCMC error as a potential factor in the four-taxon

experiments described below.

6.3.2 Uncertainty Affects Posterior Probabilities

Bayesian phylogenetic analysis requires the specification of prior probability

distributions over trees and model parameters—including branch lengths. Although
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FIGURE 6.1: BMCMC accurately estimates Bayesian posterior probabilities. The
posterior probability of each possible tree estimated by MCMC is plotted against
the true Bayesian posterior probability calculated directly from Bayes’ Theorem (see
Materials and Methods). Sequences in A-D were simulated under a simple JC69
model; A-C had equal terminal branch lengths and internal branches of 0.03 (A),
0.01 (B), or 0.0 (C) substitutions/site, while panel D shows results using Felsenstein
zone branch lengths and an internal branch of 0.01. Sequences in E were simulated
using a more complex K8(+G model with equal terminal branches and an internal
branch length of 0.01.
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ultimately up to the researcher, the appropriate choice of prior distributions is not
uncontroversial. It is intuitively appealing to assume ‘flat’ or ‘uninformative’ priors
over branch lengths and other parameters to reflect prior ignorance concerning these
values; this allows the likelihood function to be directly reflected by the posterior
probability distribution without introducing any strong prior information that could
skew the posterior distribution away from that produced directly from the data at
hand. However, the assumption of flat priors is not itself unproblematic, because
priors that are flat when parameters are scaled one way may be highly skewed if a
different scale is used [24, 133]. If we have no prior information about the value of a
parameter 6, then we are equally ignorant about the potential values of 2, but
there is no prior distribution that is flat over both # and #?. Completely
uninformative priors are therefore impossible. Additionally, when a parameter is
unbounded--as when branch lengths can range from zero to infinity—the prior
distribution must be truncated, and it has been suggested that the choice of where
to truncate the distribution can affect which values are contained in resulting
credible intervals [24]. These concerns have led some researchers to eschew flat
priors over branch lengths in favor of exponential distributions; in fact, the default
branch length prior in MrBayes v3.1 is an exponential distribution with g = 0.1.
Recently, it has been suggested that when the mean of the prior distribution on
internal branch lengths is greater than the actual length, resulting posterior
probabilities can be skewed upward [132]; this led the authors to recommend using
an exponential prior with very small mean to avoid overcredibility.

To determine the potential effects of different branch length priors on posterior
probabilities estimated for phylogenetic trees, we first simulated data of various
lengths on a four-taxon phylogeny with equal terminal branch lengths (0.5
substitutions/site) and a short internal branch (0.01). Data were analyzed using flat
priors with various upper bounds and exponential priors with different means. To
isolate the effects of integrating over prior uncertainty, we analyzed data using two
point prior distributions that avoid integration by fixing branch lengths. First, we
used the true point prior distribution that places prior probability 1.0 on the actual

branch lengths used to simulate the data, producing posterior probabilities given
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perfect prior knowledge. Since perfect prior knowledge is never actually available,
we additionally employed an empirical Bayes approach that places prior probability
1.0 on the maximum likelihood branch length estimates obtained from the data.
This approach avoids integration over multiple branch lengths but does not rely on
knowing the correct lengths in advance.

We compared posterior probabilities estimated using each prior distribution by
collecting inferred posterior probabilites from replicate data sets into 10
equally-sized bins and plotting the mean posterior probability for each bin against
the proportion of correct trees in that bin (Figure 6.2A-C). When the true values of
nuisance parameters are known in advance, Bayes’ Theorem suggests that these two
values will be equivalent. Previous stuidies have empirically confirmed that when
branch lengths are stochastically generated from an exponential prior distribution,
and the same prior is used in a Bayesian analysis, the average posterior probability
of a group of trees is equivalent to the proportion of those trees that are correct
[53, 132}; our results show that this correspondence between average posterior
probability and proportion correct also holds when branch lengths are fixed over
replicate data sets (Figure 6.2A).

When branch lengths are unknown, they can either be estimated—by maximum
likelihood for example—or integrated over using a more diffuse prior distribution.
When branch length uncertainty was eliminated using an empirical Bayes approach
that places prior probability 1.0 on the maximum likelihood branch lengths, the
average posterior probability of a group of trees was higher than the proportion of
those trees that were correct when sequences were short (100 nt), but longer
sequences produced posterior probabilities that more closely matched the
proportion of correct inferences (Figure 6.2A). When branch length uncertainty was
incorporated by integrating over multiple values, the specific prior used affected the
resulting posterior probabilities (Figure 6.23,C). While all priors examined
produced average posterior probabilities greater than the proportion of trees that
were correct when sequences were of short or moderate length (100-1000 nt), long
sequences (10,000 nt) resulted in average posterior probabilities that matched the

proportion of correct inferences when diffuse priors were employed. For example,



sequence length

103

100 1000 10,000
A 50 1.0+
1.0 . point prior
branch lengths
go.a 0.8 . v
d . |
Eo.s 06 o om
2 0.4 o 0.4
S‘ 0Co¥0 ¢ -
£ 0.2+ 0.2+
D-G F ¥ T 1 1 D-c ¥ T ¥ L) 1 0 T T L} L} L]
00 D2 04 06 08 1.0 00 02 04 05 0.8 1.0 00 02 04 06 08 1.0
postarior prebability
B
1.0+ 1.0 10 exponential
T 0.8 0.8 08 -
g . W0
§o.5— 0.6 . 0.6 . 102
€04 T . e uh3 0.01
A AR L g D4 e e g% 04
2 L W LR ) . s 01
£ 0.2 0.24% 0.2 .10
0.0F—T——T———7— 00— OO F—————————
00 02 04 06 0B 4.0 00 0.2 04 06 0.8 1.0 00 02 0.4 06 08 1.0
posterior probability
c
1.0 1.01 10 flat prior
- §  upperbound
gos 0.8 0.8 A 2
8 0.6 0.6 « 06 5
5 it i ’ = 10
EM 0.4+ H 0.4 + 100
202 02** 02
0.0 ———r—+— 00— OO
00 0.2 04 06 08 1.0 00 0.2 04 08 0.8 1.0 0.0 02 0.4 06 08 1.0

posterior probability

point axp fiat 'point fiat

prior distributions

axp

flat

point exp

FIGURE 6.2: Branch length uncertainty affects posterior probabilities. (A-C) The

average posterior probability of a group of trees

is plotted against the proportion of

correct trees in the group for various sequence lengths (100-10,000 nt) and branch
length prior distributions. Panel A shows results using point priors placing prior
probability 1.0 on either the true branch lengths used to simulate data (black dots)
or the maximum likelihood branch length estimates (open circles); panel B shows
results from exponential priors with various means, and C shows results using flat
priors with varous upper bounds. (D) The proportion of replicate data sets giving
strong support (> 0.95 posterior probability) for incorrect trees is reported for each
prior distribution and sequence length. Colors are the same as in panels A-C; bars

indicate standard error, and horizontal line indic

ates an error rate of 0.05.
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when exponential branch length priors were used, a larger mean on the exponential
distribution (0.1-1.0 substitutions/site) produced posterior probabilities that closely
matched the proportion of correct trees, while small-mean exponential distributions
(1075-0.01) produced average posterior probabilities greater than the proportion of
correct trees (Figure 6.2B). Flat branch length priors with upper bounds from 1- 100
substitutions/site all produced similar posterior probabilities that closely matched
the proportion of correct trees when sequences were long (Figure 6.2C).

To further explore the effects of branch length uncertainty on posterior
probabilities, we calculated the proportion of false inferences with strong support
(> 0.95 posterior probability) produced at each sequence length by each prior
distribution (Figure 6.2D). When the true branch lengths were known in advance,
almost no false inferences were made. Similarly, estimating branch lengths using the
empirical Bayes approach produced extremely low false inference rates. When
branch length uncertainty was integrated over using exponential or flat prior
distributions, the more diffuse distributions {flat priors with various upper bounds
and exponential distributions with larger means) produced low false inference rates
(< 0.05), while small-mean exponential distributions produced excessive rates of
false inferences with high posterior probability. In general, the rate of false
inferences with strong support was higher when sequences were short and posterior
probabilities were greater than the proportion of correct trees; longer sequences
produced lower rates of false inferences.

These results confirm that, given perfect prior knowledge about the values of
nuisance parameters, the average posterior probability of a group of inferences is
equivalent to the proportion of those inferences that are correct. Uncertainty about
the values of nuisance parameters such as branch lengths can disrupt this
relationship-—causing the average posterior probability of a group of trees to be
higher than the proportion of correct trees in the group-—when sequences are not
long enough to provide highly precise parameter estimates. Under the conditions
examined, using either an empirical Bayes approach that places prior probability 1.0
on the maximum likelihood branch lengths or integrating over uncertainty using

diffuse prior distributions produced posterior probabilities that more closely
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matched the proportion of correct trees and resulted in lower rates of false

inferences with strong support than using exponential priors with small means.

6.3.3 The Effects of Branch Length Uncertainty on
Posterior Probabilities Are Determined by the
Pattern of Branch Lengths on the True Tree

To determine how different branch length patterns affect posterior probabilities
when the true branch lengths are not known in advance, we simulated data on
four-taxon trees with all possible combinations of long/short terminal branches. We
analyzed these data using BMCMC, assuming either a flat branch length prior
(U(0,10)), the default prior used in MrBayes v3.1 (ezp(i = 0.1)), or the small-mean
exponential prior suggested by Yang and Rannala (u = 107°). We additionally
calculated posterior probabilities using an empirical Bayes approach that places
prior probability 1.0 on the maximum likelihood branch length estimates.

We found that the pattern of branch lengths on the phylogeny used to simulate
data can have a strong effect on resulting posterior probabilities. When all terminal
branch lengths were short (0.01 substitutions/site), all branch length priors
examined produced average posterior probabilities that closely matched the
proportion of correct trees (Figure 6.3A), and the rate of false inferences with
posterior probability > 0.95 was always very low (Figure 6.3B). When only one
terminal branch was long {0.75 substitutions/site), all priors execpt the small-mean
exponential produced posterior probabilities that closely matched the proportion of
correct trees and low rates of false inferences with strong support (Figure 6.3C-D).
In contrast, the small-mean exponential prior produced posterior probabilities
greater than the proportion of correct trees when sequences were short (100 nt),
resulting in a rate of false inferences significantly greater than 0.05. Longer
sequences (10,000 nt) resulted in posterior probabilities close to 1.0 for the correct
tree using any branch length prior, and no incorrect trees were resolved with high

posterior probability.
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FIGURE 6.3: Branch length patterns affect posterior probabilities when few termi-
nal branches are long. (A,C) The average posterior probability of a group of inferred
trees is plotted against the proportion of correct trees in the group using the binning
method; sequences of 1000 and 10,000 nt were examined. (B,D) The proportion of
incorrectly-resolved trees with posterior probability > 0.95 is shown for various prior
distributions; bars indicate standard error, and an error rate of 0.05 is indicated by
a horizontal line. Sequence length increases along the horizontal axis, with 1000-nt
sequences shown at left and 10,000-nt sequences at right. Panels A,B show results for
sequences generated on a tree with a short internal branch (0.01 substitutions/site)
and all short terminal branches (0.01), while C,D show results when one of the four
terminal branches is long (0.75). Branch length priors examined were an empirical
Bayes prior that places prior probability 1.0 on the maximum likelihood branch length
estimates (open circles), a flat prior with uniform probability over branch lengths from
zero to ten substitutions/site {open diamonds), an exponential prior with mean 0.1
(X’s) and a small-mean exponential prior (i = 1075, crosses).
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FIGURE 6.4: Branch length patterns affect posterior probabilities when many ter-
minal branches are long. We plotted the average posterior probability of a group
of inferred trees against the proportion of correct trees in the group (A,C) and the
proportion of trees falsely resolved with posterior probability > 0.95 (B,D) when se-
quences were generated on four-taxon phylogenies with short internal branches (0.01
substitutions/site) and either three (top) or all four (bottom) long terminal branches
(0.75). Results for sequences of 1000 nt are shown at the left in each panel, while
results for sequences of 10,000 nt are shown at right. Branch length priors examined
were the empirical Bayes prior (open circles), a flat prior uniform over {0,10] (open
diamonds), an exponential prior with mean 0.1 (X’s) and a small-mean exponential
prior with mean 10~ (crosses).

Differences between the small-mean exponential and the other branch length
prior distributions examined were excentuated when either three or all four terminal
branches were long (Figure 6.4). When three terminal branches were long, short
sequences produced average posterior probabilities much greater than the

proportion of correct trees using any prior distribution; longer sequences lessened
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this effect (Figure 6.4A). When sequences were 10,000 nt, posterior probabilities
calculated using the empirical Bayes prior were very close to the proportion of
correct trees, and those calculated using the flat or exponential prior with moderate
mean (0.1) were not much higher. In contrast, average posterior probabilities
calculated using the small-mean exponential prior were much higher than the
proportion of correct trees. False inference rates were generally low (< 0.05 at
posterior probability cutoff 0.95), except the small-mean exponential prior produced
excessive rates of false inferences at both sequence lengths examined (Figure 6.4B).
Results were similar when all four terminal branches were long (Figure 6.4C-D).
Average posterior probabilities were greater than the proportion of correct trees
when sequences were short. Longer sequences reduced this effect, with empirical
Bayes priors producing posterior probabilities that more closely matched the
proportion of correct trees than those produced by other distributions (Figure 6.4C).
Posterior probabilities calculated using small-mean exponential priors were
substantially greater than those calculated using the other priors, and false inference
rates were higher when small-mean exponential priors were used (Figure 6.4D).
When only two terminal branches were long, the relationship between taxa with
long branches had a pronounced effect on posterior probabilities (Figure 6.5). When
sister taxa had long terminal branches, the empirical Bayes prior produced low
posterior probabilities when sequences were short and posterior probabilites slightly
higher than the proportion of correct trees when sequences were longer
{(Figure 6.5A). In contrast, posterior probabilities calculated when branch length
uncertainty was integrated over using the other prior distributions were lower than
the proportion of correct trees. False inference rates were always low under these
conditions (Figure 6.5B). When long terminal branches were not sister to one
another, the empirical Bayes prior produced posterior probabilities that closely
matched the proportion of correct trees (Figure 6.5C), and false inference rates were
low using the empirical Bayes approach (Figure 6.5D). In contrast, integrating over
branch length uncertainty resulted in a long-branch attraction artifact with
excessive support for an incorrect tree. Short sequences resulted in frequent support

for the incorrect tree placing long terminal branches as sister to one another. When
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sequences were long, the small-mean exponential prior always inferred the
long-branch attraction tree with strong support; the other diffuse priors tended to
recover the correct tree, although average posterior probabilities were lower than the
proportion of correct inferences (Figure 6.5C). False inference rates were
significantly greater than 0.05 (at 0.95 posterior probability cutoff) when sequences
were short and branch length uncertainty was integrated over using non-point prior
distributions (Figure 6.5D). Strongly supported false trees were absent when
sequences were long, except the small-mean exponential prior always recovered the
long-branch attraction tree with posterior probability 1.0.

Several general inferences can be drawn from the results of these branch length
studies (Figs. 6.2-6.4). First, the small-mean exponential prior produced more
extreme posterior probabilties than the other priors examined, resulting in average
posterior probabilities with stronger deviations from the proportion of correct trees
and a greater frequency of incorrect inferences with high support. Second, longer
sequences resulted in average posterior probabilities that more closely matched the
proportion of correct trees under all conditions, presumably because of the
reduction in branch length uncertainty associated with longer sequences. Longer
sequences cause the likelihood function over branch lengths to be more narrowly
peaked around the true values, so integrating over that function more closely
approximates knowing the true values in advance.

Third, the amount and structure of convergent evolution expected on the true
tree appears to determine whether average posterior probabilities will be higher or
lower than the proportion of correct trees when branch length uncertainty is
integrated over using a non-point prior distribution. Specifically, when one or none
of the four terminal branches were long—making convergent state patterns
rare——inferred posterior probabilities were close to the proportion of correct
inferences (Figure 6.3). When there was ample opportunity for convergent evolution
but no expected structure to the convergence—that is, when three or four of the
terminal branches were long—average posterior probabilities were higher than the
proportion of correct trees (Figure 6.4). In contrast, when convergence was

structured to favor a particular tree—as on trees with two long and two short
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FIGURE 6.5: Branch length patterns affect posterior probabilities when two ter-
minal branches are long (0.75 substitutions/site) and the other two are short (0.01).
Sequences of lengths 1000 (left) and 10,000 nt (right) were generated using inverse-
Felsenstein zone trees with two long sister branches and two short sister branches
(top) and Felsenstein zone trees with non-sister long branches (bottom). We plotted
the average posterior probability of a group of trees against the proportion of cor-
rect trees in the group using the binning method {A,C) as well as the proportion of
trees falsely-resolved with posterior probability > 0.95 (B,D) when different branch
length priors were assumed. Priors examined were the empirical Bayes prior placing
probability 1.0 on the maximum likelihood branch lengths {open circles), a uniform
prior over (0,10] (open diamonds), an exponential prior with mean 0.1 (X’s), and a
small-mean exponential prior with mean 10~° (crosses).

branches—posterior probabilities were lower than the proportion of correct trees
(Figure 6.5). When the true tree was in the inverse-Felsenstein zone (two sister long
branches), the true tree was always recovered, but posterior probabilities were
typically < 1.0 (Figure 6.5A). When the true tree was in the Felsenstein zone (two

non-sister long branches), integrating over incorrect branch lengths resulted in a
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long-branch attraction bias that reduced support for the correct tree while inflating
support for an incorrect tree (Figure 6.5C).

Fourth, we found that either flat or moderate-mean exponential branch length
priors consistently yielded posterior probabilities that more closely matched those
that would be inferred if the true branch lengths were known in advance than the
small-mean exponential prior. Under all conditions that resulted in average
posterior probabilities that were higher or lower than the proportion of correct trees,
the effect was less severe with the diffuse priors than the small-mean exponential
one, and increasing the amount of data reduced the deviation between posterior
probability and proportion correct to a greater degree with the flat or
moderate-mean exponential priors than the small-mean exponential. For example,
when sequences of 10,000 nuclectides were simulated along a tree with four long
terminal branches (Figure 6.4A-B), trees with posterior probability > 0.94 using a
flat or moderate exponential prior had a 64% chance of being correct, but only 50%
of trees with posterior probability > 0.94 using the small-mean exponential prior
were correct. Additionally, Felsenstein zone conditions caused long-branch
attraction when a small-mean exponential prior was used, resulting in strong
support for an incorrect tree even when sequences were very long (Figure 6.5C-D).
The flat and moderate exponential priors produced a less severe version of this same
effect: short sequences resulted in long-branch attraction; longer sequences allowed
inference of the correct tree, although the average posterior probability of the
inferred tree was slightly lower than thie proportion of trees that were correct.

Finally, the empirical Bayes approach that avoids integration over multiple
branch length values by fixing branch lengths at their maximum likelihood estimates
produced posterior probabilities more closely matching those that would be inferred
if the true branch lengths were known in advance than any of the non-point priors
examined. Long branch attraction was completely absent when the empirical Bayes
prior was used, and the rate of false inferences was consistently lower than that

incurred when branch length uncertainty was incorporated by integration.



6.3.4 Even Very Long Sequences Do Not Eliminate the
Effects of Branch Length Uncertainty

It is well appreciated that the choice of prior distributions can affect posterior
probabilities, and our results above indicate that posterior probabilities for
phylogenetic hypotheses may be sensitive to different branch length priors, although
they appear to be fairly robust to using either flat or moderate-mean exponential
distributions. One potential method for dealing with prior sensitivity is to collect
more data. Assuming that the evolutionary model is correct, parameter uncertainty
decreases with increasing sequence length: the likelihood function becomes
increasingly peaked around the true parameter values as sequences become longer,
and the effects of prior assumptions on the posterior distribution will disappear.
Although increasing sequence length generally reduced the degree to which average
posterior probabilities deviated from the proportion of correct trees in our
four-taxon simulations, even relatively long sequences (10,000 nt) were not sufficient
to produce posterior probabilities that matched the proportion of correct trees when
branch lengths were extreme. This naturally leads to the practical question: how
long must sequences be to eliminate the effects of branch length uncertainty on
posterior probabilities for real-world problems?

To addres this issue, we simulated replicate data sets using parameter values
inferred from empirical data, a 30-taxon subset of the placental mammal data of
[79]. We estimated the tree, branch lengths, and transition model parameters using
the original 16,397-nt alignment; we then simulated sequences of increasing length
under these conditions and analyzed them with BMCMC using the correct
evolutionary model. We calculated posterior probabilities using the three different
branch length priors examined in our four-taxon simulations (U(0, 10), ezp(0.1), and
ezp(107°)), and average clade probabilities from each prior were compared to the
proportion of clades that were correct using the binning method. We also assessed
the proportion of sampled clades falsely resolved with posterior probability > 0.95

using each branch length prior.
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FIGURE 6.6: Branch length uncertainty affects posterior probabilities under em-
pirically derived conditions. Sequences were simulated on the tree at left under a
complex model with branch lengths and parameters derived from the large mam-
malian data set of {79] and analyzed by BMCMC using the true evolutionary model
with three different branch length priors: 1) a flat prior on branch lengths (open dia-
monds), 2) an exponential prior with mean 0.1 (X’s), and 3) a small-mean exponential
prior (¢ = 1075, crosses). A} All clades sampled using each prior were binned by their
posterior probability, and the fraction of correct clades in each bin was calculated. B)
The proportion of sampled clades falsely resolved with posterior probability > 0.95
is shown for each branch length prior. Sequence length increases from 1000 to 50,000
nt along the horizontal axis. Bars indicate standard error, and the horizontal line
indicates an error rate of 0.05.

As sequence length increased, posterior probabilities for inferred clades
converged to 1.0 for all priors examined, although the flat and moderate-mean
exponential priors coverged faster than small-mean exponential priors in this case

(Figure 6.6A). Even though the choice of branch length prior became less important
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as sequences grew longer, average posterior probabilities were higher than
proportion of correct clades for all sequence lengths examined, including 50,000
nucleotides. When sequences were < 10,000 nt, the small-mean exponential prior
produced higher posterior probabilities than flat or moderate-mean exponential
priors. Very long sequences (25,000-50,000 nt) produced posterior probability 1.0
for all inferred clades using the flat and moderate exponential priors, with only 67%
of these inferences being correct. The same proportion of inferences with posterior
probability 1.0 were correct using the small-mean exponential prior under these
conditions, and an additional small number of mostly incorrect clades were more
weakly supported. False inference rates were significantly greater than 0.05 at a 0.95
posterior probability cutoff for all branch length priors examined (Figure 6.6B). The
underlying mammalian tree for this experiment has very short internal branch
lengths and longer terminals, precisely the conditions found above to cause average
posterior probabilities to be higher than the proportion of correct inferences in
four-taxon simulations. These results suggest that, for difficult real-world problems,
extremely long sequences may be required for Bayesian methods to reliably recover
the correct tree with high posterior probabilty, although the effects of different
branch length priors on posterior probabilities may disappear at shorter sequence

lengths.

6.3.5 Diffuse Priors Are Preferable to Small-Mean

Exponential Priors

The results described above consistently demonstrate that flat or moderate-mean
exponential branch length priors produce average posterior probabilities that more
closely match the proportion of correctly-inferred trees than the exponential priors
with small mean recommended by Yang and Rannala. Our simulations differ from
theirs in two crucial ways. First, we used the standard implementation of a single
prior distribution for all branch lengths on the tree, whereas they applied separate
priors to terminal and internal branches. Second, we simulated sequences on trees

with fixed branch lengths rather than variable lengths drawn from a distribution.
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To determine which factor is responsible for the differences in our results, we
simulated sequences on ten-taxon phylogenies with branch lengths drawn from an
exponential distribution with mean 0.15 substitutions/site and analyzed the data
using the true prior (ezp(0.15)), a fAat prior {U/(0,10)), or a small-mean exponential
prior {exp(10~")) applied to all branches of the tree {Figure 6.7). As expected, the
true prior produced average posterior probabilities that precisely matched the
proportion of correct clades. Posterior probabilities calculated using the flat branch
length prior matched the proportion of correct clades at all sequence lengths except
25 nucleotides, at which average posterior probabilities were slightly lower than the
proportion of correct clades. In contrast, the small-mean exponential prior produced
average clade probabilities higher than the proportion of correct clades at all
sequence lengths. These results indicate that a uniform branch length prior
produces posterior probabilities that more closely approximate those that would be
inferred if the true branch lengths were known in advance than a small-mean
exponential prior, whether the true tree has fixed branch lengths or lengths drawn

from an unknown distribution.
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FIGURE 6.7: Small-mean exponential branch length priors produce posterior prob-
abilities that deviate more strongly from those produced using the true prior distri-
bution than uniform priors. Sequences of length 25 (left), 100 (middle), and 1000
nt (right) were simulated on randomly-selected ten-taxon phylogenies with branch
lengths drawn from an exponential distribution with g = 0.15. The average posterior
probability of a group of clades is plotted against the proportion of correct clades in
the group when using the true branch length prior distribution (exp(0.15), black dots),
a uniform distribution (U(0, 10), open diamonds), or an exponential distribution with
g = 1075 (crosses).
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6.4 Discussion

Bayesian phylogenetics is appealing for at least three reasons: 1) BMCMC
algorithms allow very large phylogenies to be estimated using complex evolutionary
models in a reasonable amount of time; 2) uncertainty in model parameters can be
incorporated by integrating over multiple values, and 3) posterior probabilities
provide an apparently meaningful measure of statistical confidence in inferred
clades. Bayesian techniques have resolved previously intractable problems with
strong support [58, 79], but acceptance of these results has been hampered by a
growing suspicion that posterior probabilities may regularly be inflated.

Posterior probability is defined by Bayes’ Theorem as the probability that a
hypothesis is correct given the data, a model of the data-generating process, and
prior probability distributions over model parameters. Contrary to early theoretical
claims [19], posterior probabilties are not expected to be equivalent to bootstrap
proportions, because the two quantities are fundamentally different measures of
statistical confidence [3]. Bootstrap proportions attempt to estimate the proportion
of replicate data sets that would favor the same tree as the the original data,
whereas posterior probabilities measure the support for the favored tree given the
data at hand and prior assumptions about the potential values of model parameters.
It is also not correct to expect posterior probabilities to always match the
proportion of correctly inferred trees, again because posterior probabilties are
calculated from the observed data without replication and are conditional on prior
assumptions, whereas the proportion of correct inferences necessarily requires
replication and is not conditioned on prior assumptions. Nevertheless, our results
confirm previous findings that, under computer simulations where replication is
possible and when the true values of nuisance parameters are known in advance, the
average posterior probability of a group of trees is equivalent to the proporiton of
correct trees in the group [53, 132].

In practice, the true values of nuisance parameters such as branch lengths are
never known with certainty; our results show that prior uncertainty about the

values of branch lengths can affect resulting posterior probabilities. When branch
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length values are not known in advance, this uncertainty can either be eliminated by
fixing branch lengths at some specified values or incorporated by integrating over
multiple lengths using non-point prior distributions. Our results indicate that fixing
branch lengths at their maximum likelihood values using an empirical Bayes
approach produces posterior probabilities that more closely match those that would
be inferred given perfect prior knowledge and result in lower rates of
strongly-supported false inferences than integrating over branch lengths using
common prior distributions. When branch lengths are not known in advance,
integrating over prior uncertainty can dramatically affect posterior probabilities,
with both the magnitude and direction of the effect depending on the pattern of
branch lengths on the true tree as well as sequence length and the specific prior
distributions applied. Posterior probabilities calculated using the empirical Bayes
approach are also affected by prior uncertainty, but to a lesser degree. We have
shown these results in the case of branch lengths; similar results presumably hold
for other evolutionary model parameters as well.

When integrating over a range of plausible values using BMCMC, most of the
branch lengths used to calculate the marginal likelihood of a tree will be wrong. The
net effect of assuming incorrect branch lengths is to cause convergent state patterns
to be misinterpreted as phylogenetic signal or vice versa. With short sequences, the
likelihood function is relatively flat over a range of branch lengths, so incorrect
lengths contribute substantially to the total likelihood, resulting in strong effects on
posterior probabilities. As sequences become longer, the likelihood function becomes
more narrowly peaked around the true branch lengths, prior uncertainty decreases,
and posterior probabilities become increasingly similar to those that would be
calculated given perfect prior knowledge. Under challenging conditions derived from
real data, however, we found that posterior probabilities estimated using non-point
prior distributions on branch lengths were not the same as those that would be
calculated if the true branch lengths were known in advance, even with very long
sequences (50,000 nt). The reason for this result is not entirely clear; it could be
that the prior uncertainty associated with 50,000-nt sequences is sufficient to affect

posterior probabilities when the tree is large and the evolutionary model complex.
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An alternative explanation is that because uniform priors over tree topologies do
not imply uniform priors over clades, summarizing posterior probabilities on clades
over multiple trees could affect posterior probabilities [86]. Our results examining
clade probabilities on ten-taxon trees suggest that the summarization process is not
a cause of skewed posterior probabilities. Yet another possible explanation is that
existing BMCMC algorithms—although sufficient to reliably estimate posterior
probabilities for small trees—break down as the inference problem becomes more
complicated. Determining the convergence and mixing properties of BMCMC when
applied to complex phylogenetic problems would help resolve this issue.

We have shown that—contrary to the recommendation of Yang and Rannala
[132]—diffuse branch length priors produce more reliable inferences than
exponential priors with very small means across a range of phylogenetic problems.
Although Yang and Rannala found that a prior favoring an extremely short internal
branch results in low posterior probabilities when the true lengths of terminal
branches are known in advance, we have shown that such short branch-length priors,
if applied across the entire tree, result in extreme posterior probabilities that deviate
from the proportion of correct inferences more severely than those produced using
diffuse priors, result in higher rates of false inferences, and are subject to strong
long-branch attraction artifacts. These effects are produced because assuming
small-mean priors on all branches disfavors substitution in general, resulting in
underestimation of convergence when terminal branches are long. In principle, it
might be possible to implement a partitioned prior like the one used by Yang and
Rannala, where different priors are applied to internal and terminal branches; this
approach effectively increases the relative prior probability of convergence, resulting
in lower posterior probabilities [132]. Since prior distributions ideally reflect the
actual prior beliefs of the investigator, the ability to specify a variety of prior
distributions is an important feature to support in Bayesian phylogenetics software.

Uncertainty about nuisance parameters is a critical concern in phylogenetics,
because the data themselves are never adequate to precisely specify parameter values
with absolute certainty, and different parameter values can produce different results.

Maximum likelihood analysis circumvents this issue by fixing nuisance parameters



119

at their ‘best guess’ estimates; post-hoc analyses can be used to test the robustness
of inferences to parameter uncertainty but require additional resources. In contrast,
Bayesian methods formally incorporate parameter uncertainty by integrating over
multiple values; the advantage of this approach is that the posterior distribution
over parameter values is fully described, but results may be sensitive to prior
assumptions that can vary from researcher to researcher. Since prior assumptions
affect the posterior distribution, knowing the prior distributions assumed for an
analysis—and characterizing the posterior distribution over different prior
assumptions—is crucial for interpreting results obtained using Bayesian methods.
There are approaches to characterizing evidentiary support for a clade of interest
that are not conditioned on prior knowledge about nuisance parameters (and do not
require bootstrapping}, such as the likelihood ratio of the best tree with a clade
versus the best tree without it [18] and the maximum probability that a clade is
false given the data [6]. The empirical Bayes approach examined here is another
potentially useful approach to estimating statistical confidence that eliminates the
need to specify prior distributions, although the computational demands required to
apply the method to large problems may be prohibitively high. Understanding the
statistical properties of these and other confidence measures under a variety of
conditions warrants further study. Since we feel that no single measure is likely to
provide a complete and accurate estimate of statistical confidence under all
evolutionary conditions, a careful and critical application of a variety of
measures—each evaluated in light of a detailed understanding of its statistical
properties—will provide the most robust and thorough assessments of confidence in

phylognetic hypotheses.
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CHAPTER VII

CONCLUSION

All scientific inference methods make assumptions about the hidden processes
from which observed data are generated, and phylogenetic inference is no exception.
Current state-of-the-art phylogenetic methods rely on complex molecular
evolutionary models describing how sequences change over time. Although existing
evolutionary models incorprate many features of molecular evolution, they largely
ignore site-specific dynamics in order to maximize the amount of data that can be
used to estimate parameters of the model. I have shown that failing to incorporate
important site-specific evolutionary dynamics can lead to erroneous inferences. In
particular, site-specific changes in evolutionary rates—which have been shown to
regularly occur in real molecular sequence data
[27, 48, 55, 71, T2, 75, 76, 84, 87, 91]-can confound existing evolutionary models,
producing strong support for incorrect phylogenies. I have developed, implemented,
and tested a mixed branch length strategy for incorporating heterotachy, showing
that it can produce more accurate phylogenetic inferences than existing models
under both simulated and real-world conditions. The potential of this model to
improve the quality of phylogenetic inferences should be valuable to the biological
community, as nearly all biological results are interpretable only in the context of
evolutionary history.

The advent of Bayesian phylogenetics is arguably the most important
advancement in phylogenetics methodology since the development of model-based

methods. The posterior probability of a tree or node—i.e. the probability that the
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tree or node is correct given the data [53]—is exactly what we would like a
phylogenetic inference method to tell us, and the efficiency of the MCMC algorithm
allows posterior probabilities to be calculated on very large phylogenies using
complex evolutionary models. Although Bayesian methods have resolved previously
intractable problems with strong support, acceptance of these results has been
hampered by a number of studies suggesting that posterior probabilities may
regularly be too high, resulting in an inflated sense of statistical confidence and a
high rate of false inferences. Understanding if, when, and why posterior
probabilities are inflated is crucial for interpreting posterior probabilities presented
as statistical support for phylogenetic relationships.

I have shown that one of the main proposed causes of inflated posterior
probabilities, the star tree paradox, does not actually cause posterior probabilities
to be inaccurate. Even when the true tree is unresolved, posterior probabilities
calculated using existing algorithms that do not sample the true unresolved tree can
provide an accurate measure of statistical confidence. On the other hand,
conditioning on incomplete prior knowledge about the values of the evolutionary
model’s parameters can affect posterior probabilities. When the model’s parameter
values are not known in advance, Bayesian techniques require prior probability
distributions to be placed on all parameters; I have shown that prior uncertainty
about branch lengths can cause posterior probabilities to deviate strongly from
those that would be inferred given perfect prior knowledge. Different branch length
patterns on the true tree can cause posterior probabilities to be skewed either
upward or downward when branch length uncertainty is integrated over using
diffuse prior distributions. In contrast, an empirical Bayes approach that fixes
branch lengths at their maximum likelihood estimates produces posterior
probabilities that more closely approximate those that would be inferred if branch
lengths were known in advance.

In summary, I have shown that violating key assumptions of phylogenetic
inference techniques does make a difference, resulting in the potential for erroneous
results and incorrect assessments of statistical confidence in those results.

Furthermore, the types of assumption violations I have examined are likely to occur
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when real molecular sequence data are analyzed, suggesting that empirical results
should be carefully scrutinized to ensure that they are not an artifact of biases
induced by assumption violations. In particular, the development of more realistic
phylogenetic techniques that relax the simplifying assumptions made by current
methods should provide the potential for more accurate results and is an important
area for continued research.

These results have important repercussions outside of the biological sciences.
Statistical inference techniques are ubiquitous in scientific inquiry, and ali statistical
inference techniques make assumptions about the unknown processes generating the
observed data. In general there is little information available to confirm that these
assumptions are correct, and in many cases the assumptions may be wrong. The
potential for incorrect inferences due to assumption violations therefore always
exists when real data are analyzed to produce inferences. The methodology
developed in this dissertation can be used as a general strategy for evaluating the
potential accuracy of statistical inference techniques when applied to empirical data.
Such an approach requires answering two crucial questions: 1) which assumptions
are likely to be violated, and 2) what are the potential effects of such assumption
violations? Question 1 must be answered by careful investigations of the system
under study. The information gained by these studies can then be used to develop
simulation approaches that test the effects of possible assumption violations on
existing inference techniques. Understanding how assumption violations effect
existing methods can then inform the development of new techniques that better
model the system’s actual properties and produce more accurate inferences. As
scientists, it is crucial that we not only critically evaluate our hypotheses and
theories but also the methods we use to evaluate hypotheses and theories.

More generally, whenever automated processes are used to make decisions or
infer information from data, assumptions are made about the data that the process
observes. Data may not always conform to these assumptions, leading to potentially
erroneous results. When designing procedures to automate decisions or control
responses to incoming data, it is therefore crucial to investigate the behavior of the

decision making procedure when the data violate its assumptions. Robustness to
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assumption violations, rather than being a secondary property of automated control
systems, is likely to be one of the most important properties for predicting

real-world performance.
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