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Real-time, interactive, multi-user (RIM) applications are networked applications that
allow users to collaborate and interact with each other over the Internet for work, education
and training, or entertainment purposes. Multiplayer games, distance learning applications,
collaborative whiteboards, immersive educational and training simulations, and distributed
interactive simulations are examples of these applications. Of these RIM applications,
multiplayer games are an important class for research due to their widespread deployment
and popularity on the Internet. Research with multiplayer games will have a direct impact
on all RIM applications.

While large-scale multiplayer games have typically used a client/server architecture for
network communication, we propose using a peer-to-peer architecture to solve the scala-
bility problems inherent in centralized systems. Past research and actual deployments of

peer-to-peer networks show that they can scale to millions of users. However, these prior



peer-to-peer networks do not meet the low latency and interactive requirements that multi-
player games need. Indeed, the fundamental problem of maintaining consistency between
all nodes in the face of failures, delays, and malicious attacks has to be solved to make a
peer-to-peer networks a viable solution.

We propose solving the consistency problem through secure and scalable event order-
ing. While traditional event ordering requires all-to-all message passing and at least two
rounds of communication, we argue that multiplayer games lend themselves naturally to a
hierarchical decomposition of their state space so that we can reduce the communication
cost of event ordering. We also argue that by using cryptography, a discrete view of time,
and majority voting, we can totally order events in a real-time setting. By applying these
two concepts, we can scale multiplayer games to millions of players.

We develop our solution in two parts: a cheat-proof and real-time event ordering pro-
tocol and a scalable, hierarchical structure that organizes peers in a tree according to their
scope of interest in the game. Our work represents the first, complete solution to this prob-
lem and we show through both proofs and simulations that our protocols allow the creation
of large-scale, peer-to-peer games that are resistant to cheating while maintaining real-time

responsiveness in the system.
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CHAPTERI1

INTRODUCTION

Since the advent of the Internet, people have sought to collaborate and interact over Iong
distances on the network for work, education, training, and entertainment. Encompassing
these goals are a set of applications we call real-time, interactive, multi-user (RIM) appli-
cations which bring people together over the Internet for a variety of reasons. Multiplayer
games, distance learning, collaborative whiteboards, immersive educational and training
simulations, and distributed interactive simulations are examples of RIM applications.

Of these RIM applications, multiplayer computer games are an important area for re-
search for several reasons. First, the game industry is a multi-billion dollar industry which
has an annual gross income larger than Hollywood at the box-office. This widespread mar-
ket penetration makes game research relevant to the average person and to the economy in
general. Second, massively multiplayer online games (MMOGs) have thousands of play-
ers, require complex computational resources to simulate a large-scale virtual world, and
are the largest interactive environments in existence. As extensions of distributed com-
puting, the scale and complexity of MMOGs presents a difficult and interesting research
challenge. Third, as part of the class of RIM applications, research in MMOGs directly
benefits other RIM applications. As a research topic, MMOGs provide a rich area of study
and experimentation which will have a direct impact on both computer science and our
society.

Traditionally, MMOGs have been designed with a client/server communication archi-
tecture. This architecture has the advantage that a single authority orders events, resolves

conflicts in the simulation, acts as a central repository for data, and is easy to secure. On the



other hand, this architecture has several disadvantages. First, the computational complexity
of simulating a large scale virtual world for tens of thousands of players requires monolithic
systems to be greatly over-provisioned to meet peak demands while costly resources lie idle
the majority of the time. For example, a typical EverQuest world |1], which is simulated
on a cluster of servers, can handle around 2500 players concurrently |2]. Yet, with 150,000
players online at any time, approximately 1500 servers are required worldwide, averaging
only 100 players per server |2]. Second, the client/server architecture introduces additional
delay on messages between players because they are always forwarded through the server.
Third, traffic at the server increases with the number of players, creating localized conges-
tion and high-bandwidth requirements at the server’s location. One local game developer
stated that the bandwidth requirement of their MMOG was equivalent to all of the local
telephone bandwidth in the city combined.

To address the limitations of the client/server architecture, researchers have turned to
peer-to-peer architectures for MMOGs [3, 4, 5, 6]. The peer-to-peer architecture allows
peers to send messages directly to each other, reducing the delay for messages and eliminat-
ing localized congestion. It allows players to start their own games without the incredible
investment in resources required by the client/server architecture. Furthermore, this archi-
tecture allows games to overcome the bottieneck of server-only computation by harnessing
the processing power and storage capacity of the players’ machines. Available resources
grow organically as more peers join the system. Finally, this architecture is more resilient
and available because it does not have a single point of failure.

The realization of a large scale peer-to-peer architecture for MMOGs, however, faces
a number of clear challenges. Any peer-to-peer communication architecture for MMOGs
must maintain a consistent view of the game among peers. In a small-scale peer-to-peer
architecture, consistency can be achieved through a distributed event ordering protocol
which ensures that all players agree on the same set of events. However, MMOGs have
a real-time constraint on message passing because they are interactive by design. This
constraint typically falls between 100ms and 250ms, depending on the type of game. Thus,
events must be able to be distributed and ordered within this tight time constraint.

Adding more of a challenge is the fact that the event ordering protocol must be both

cheat-proof and scalable for MMOGs. Game players have a long history of cheating to



gain unfair advantages and can modify the flow of packets between players to cheat with-
out being detected or prevented by Byzantine agreement protocols |[7]. Furthermore, cheat-
prevention and indeed Byzantine agreement protocols typically require all-to-all commu-

nication and therefore do not scale well.

In this dissertation, we address the problem of cheat-proof and scalable event ordering
with real-time constraints for MMOGs under a peer-to-peer architecture. Research to date
has only addressed the requirements of this open problem individually, e.g. event ordering
protocols have been developed that prevent some cheats but which suffer from long laten-
cies and/or lack of scalability; or scalable peer-to-peer protocols that are highly vulnerable
to cheating. In addition, only a few types of cheating have been simultaneously addressed

within current protocols.

Our work is the first to synthesize these requirements into a single communication
architecture. This approach is necessary due to the complex requirements. We cannot
simply re-engineer existing protocols to solve these problems, but instead our protocols

must be initially designed to meet all of these requirements.

Accordingly, we have created two protocols, the New-Event Ordering (NEO) protocol
and the N-Tree protocol which address real-time event ordering, cheating, and scalabil-
ity. NEO uses a novel voting mechanism that can achieve consistency between peers in
real-time under a variety of network conditions. N-Trees build a tree based on the virtual
world and the distribution of the population within it for event ordering and propagation. It
leverages NEO at the leaves to provide fast event ordering and forecasts updates to prevent
rollback.

In addition, we also formalize consistency with respect to games and expand upon
distributed system ideas of consistency. Both NEO and N-Trees provide a type of majority
game consistency, which is similar to the concept of Lamport’s sequential consistency (8],
except that only the subset of updates which were voted on by a majority of peers in the
game are accepted. This concept of consistency allows NEO and N-Trees to mask both lost

and late packets and continue ordering events without requiring all updates to arrive.



1.1 Problem Definition

1.1.1 Massively Multiplayer Online Games

A massively multiplayer online game (MMOG) is a computer game in which many
players interact within a virtual world over the Internet. The number of concurrent players
is typically on the order of 10* or more. We define an MMOG as being scalable if it can
support 10? or more players and the cost in messaging between players is O(n), where n is
the number of players in the game.

MMOGs also have persistent state. This means that an MMOG, unlike other networked
games which end after some goal is completed, can continue indefinitely. Players join the
game and play until they are ready to quit, at which point the state of their alter-ego in
the game is saved. When they return, the state is restored. This also holds true for the
virtual world. For example, a player might own a house in an MMOG that other players
can visit even when she is not online. While many players often play in accordance with
the established rules of the game, MMOGs are also plagued by players who cheat to gain
advantages for themselves.

Games typically fall into three different archetypes known as first-person shooters

(FPS), role-playing games (RPG), and real-time strategy games (RTS):

o First-Person Shooter (FPS): In an FPS, the main goal is typically to kill other players
with various weapons in the virtual world, hence their name. Because a player can
only sustain several hits, depending on the weapon, fast reflexes and reaction times
play a significant role in the success of a player. Note that other games, such as racing
games, also require fast refiexes and reactions, and therefore fall into this category.

The twich nature of FPSs require a low round-trip network latency around 100ms.

o Role-Playing Game (RPG): In an RPG, one of the primary goals in the game is
to develop one’s alter-ego by increasing abilities, skills, and gathering new equip-
ment. These goals are achieved by banding together with other players to explore
new lands, kill monsters, and sometimes by fighting with other players. However,

combat in RPGs is resolved through a mathematical system based on the atler-ego’s



abilities and equipment, and not entirely through the reflexes of the player. Thus,

players can tolerate a slower response time from the game.

o Real-Time Strategy (RTS): In an RTS, a player is in control of units in a virtual
world, where a unit might be a soldier, vehicle, or building. The player acts as the
commander of the units and instructs them on what actions to take. Players compete
with each other to destroy all of the units of another player, or to capture some vital
unit or location in a game. Combat is resolved through strategy and the abilities
of the units, and not through reflexes. Thus, players have been reported to tolerate

latencies of up to one second, without it detracting from the game [9|.

The virtual world of commercial MMOG:s are instantiated as realms, which are copies
of the virtual world that differ in player population and current state. Realms are geograph-
ically distributed across the globe so that US players connect to US realms, European play-
ers connect to European realms, and so forth. As an analogy, consider the game Monopoly
™ At any time, millions of people might be playing Monopoly, but each game can sup-
port a maximum number of players. While each game has the same pieces and cards, the
players and state of each game are different.

A realm in an MMOG can handle several thousand players simultaneously. For ex-
ample, in the popular MMOG called EverQuest [1], a typical cluster handles around 2500
players concurrently and approximately 10,000 registered players [2]. To compensate for
millions of subscribers, game companies host hundreds of realms across the globe.

Each realm is further divided into zones, or geographically distinct areas in the virtual
world. Each realm contains all the same zones with the same computer controlled inhabi-
tants (though some of the population may be randomly generated). For example, World of
Warcraft | 10] has approximately 70 zones with names such as Elwynn Forest and Westfall.
Players within the same realm can move freely between zones.

Throughout the game, players generate moves, also referred to as events or updates,
which must be communicated to some or all of the other players. Associated with each
move is a timestamp that allows players to order events and maintain a consistent view
of the virtual world. Due to network conditions, moves sometimes arrive late, causing

players to roilback prior moves to insert the late move in their sequence of events. Another



technique, called dead-reckoning is used to predict where a player might move to when her
update has not been received.

The current commercial state of the art in MMOG design uses a client/server commu-
nication architecture. In this architecture, players (clients) generate moves and send them
to a centralized server. The server timestamps moves as they arrive and then appropriately
disseminates moves to the players according to whether or not a player is within the scope
of a move.

The client/server architecture has several failings when used as the primary architecture
for MMOGs. First, hosting an MMOG requires a huge investment in resources including
network bandwidth and server clusters. MMOGs are geographically distributed so hosting
requires server locations across the globe. Second, the server is a single point of failure
so that if one server fails, thousands of players are unable to play. Third, servers must be
over-provisioned to handle peak crowds. Typically more players are able to play during
non-working hours and weekends implying that servers are under-utilized during non-peak
hours. Fourth, each realm is limited in scope by the computational power of the server—
thus if a game requires more computational power, more servers must be added. Finally,
the client/server architecture introduces increased latency because all messages must pass

through the server before reaching other players.

1.1.2 Peer-to-Peer Architecture

Peer-to-peer {(P2P) architectures for MMOGs were recently proposed to overcome the
limitations of the client/server architecture. Peer-to-peer architectures have been shown
to be scale-free for certain classes of applications, such as distributed searching and stor-
age [11, 12, 13, 14, 4|. Thus, with more players we gain more resources for running the
MMOG, including increased storage capacity and computational power. A peer-to-peer
architecture allows peers to send messages directly to each other, thereby reducing the la-
tency for updates. In addition, the peer-to-peer architecture gains resilience because the

failure of one or more peers does not cause the failure of the entire system.



In a peer-to-peer communication architecture, players must timestamp their own events'
and then broadcast those events to other players, using rollback if necessary for events that
arrive late from other players. However, additional problems are introduced through this
method. First, if every player broadcasts their update to every other player, the peer-to-
peer architecture will not scale with the number of players. Second, because players are
responsible for timestamping and distributing their own moves, they are also capable of
cheating in several ways by either faking timestamps, purposely dropping updates, or pur-
posely delaying updates to other players. Third, it is necessary to maintain consistency in
a distributed fashion unlike the server which was the ultimate authority on the state of the

system.

Current protocols developed in the research community address one of three problems:
low-latency event delivery, cheat-prevention, or scalability. Diot and Gautier’s work on
bucket synchronization address low-latency event delivery by forcing a more granular view
of time so that fewer events have to be rolled back [15], but does not address cheating or
scalability. Baughman and Levine address cheat-prevention with the Lockstep protocol by
forcing all players to commit moves, agree on those moves, and then reveal the moves [3].
They then attempt to address scalability, but do so by statically subdividing the virtual world
into distinct areas. However, their protocol is subject to certain protocol cheats and does
not address low-latency event delivery. Bharambe et al. and Knutsson et al. use distributed
hash tables (DHT) to address scalability but ignore the problem of cheating or low-latency
event delivery 4, 6].

Our goal to design a peer-to-peer game architecture using a holistic approach. Thus,
we will develop a peer-to-peer architecture that provides low-latency event delivery, while
being scalable and cheat-proof. When these problems are considered separately, as re-
searchers have done in the past, very different solutions arise, and trying to subsequently

address the missing elements is a non-trivial task at best.

INoie that the alternative, where a player limestamps an event when it is received, will lead to inconsistent
state between players.



1.2 Research Challenges

In order to provide cheat-proof and real-time event ordering for MMOGs, we must

solve four key problems. These problems are:

|. Latency: Message passing between players must have very low latency in order to

meet the real-time constraints required by interactive games.

2. Consistency and Event Ordering: Because we are using a peer-to-peer architecture,
the state in the system will quickly become inconsistent without a protocol to main-

tain consistency.

3. Scalability and event notification: All to all message passing is not a scalable method
for event dissemination and agreement. In particular, we must be able to determine
who needs to receive events so that every peer does not need to be contacted with

every generated event.

4. Cheating: Historically, players find methods to cheat such as through the modifica-
tion of individual packets or packet flows. A peer-to-peer game architecture must

combat a wide range of cheats for the game to appeal to players.

With respect to latency, multiplayer games must be able to exchange messages within a
small time limit in order to maintain their interactive nature. This time limit is based on the
delays that players of a given multiplayer game archetype can tolerate before they find the
game unplayable. We list the maximum tolerable delays and archetypes in Table 1.1 [16].
The first two categories, first-person shooters and sports and racing games, have the lowest
tolerance for latency. Players with round-trip time delays above those listed in Table 1.1
perform worse than players with shorter latencies. The third category, role-playing games,
make up the bulk of large-scale multiplayer games on the Internet and players tolerate
round-trip times of up to .5 to | second. The fourth category of multiplayer games are real-
time strategy games, in which players tolerate round-trip times of up to 1 to 1.5 seconds.

Second, our peer-to-peer architecture needs to provide consistency guarantees so that

we can ensure the peer-to-peer system will work correctly. We can provide consistency



TABLE 1.1: Archetypes for multiplayer games: Maximum tolerated round-trip times and exam-
ples of large-scale multiplayer games.

Archetype Maximum Tolerated RTT | Example MMOG
First-person Shooter (FPS) 150-250 ms Planetside
Sports and Racing games (SRG) | 150-500 ms None developed
Role-playing Game (RPG) 500-1000 ms Everquest
Real-time Strategy (RTS) 1-1.5s None developed

through an event ordering protocol, but our protocol must be able to operate over a best-
effort network such as the Internet. In other words, it must tolerate high latencies, unreliable

peers, and dropped packets.

The third problem we must consider is scalability and event notification. If we pro-
vide an event ordering protocol, we must be able to scale it with the number of users in
the system. Traditional event ordering, such as the Paxos protocol, the Isis system, or RT-
Cast |17, 18, 19], are not options because they do not scale with the number of users due

to all-to-all message passing.

The event ordering protocol must be able to quickly determine which users need to
receive a particular event. Clearly the architecture is not scalable if a large number of
peers must be contacted in the process of disseminating an event to its intended recipients.
Multicast could be used to reduce the communication costs so that fewer messages are
delivered |20, 21, 22, 23, 24, 14]. However, multicast trees are built using the shortest path
between members of the tree. While this reduces the delay from root to leaf, an event may
have to traverse several (possibly end-system) nodes before reaching its destination. Thus,

we believe a new solution is needed.

Finally, we must address the problem of cheating. Historically, some players are willing
to cheat and gain an unfair advantage over honest players. Cheating can occur at many
levels in the game, from breaking game rules to launching denial-of-service attacks against
opponents. An architecture can only address certain kinds of cheats—in particular, those
that occur at the protocol level. However, due to the probability that players will cheat
if they can, any architecture that does not address cheating will not be considered a valid

alternative for the client/server architecture.
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We must address all four problems in an integrated manner to solve the problem of
cheat-proof and real-time event ordering for MMOGs. In the past, researchers have con-
sidered these problems in isolation |15, 3, 4, 6]. However, adapting their architectures to
solve all of these problems is a difficult task at best and in fact is still an open research
problem. On the other hand, we will address latency, consistency and event ordering, scal-
ability and event notification, and cheating together in the design of a scalable peer-to-peer
architecture for MMOGs.

1.3 Proposed Approach

Our work is the first to take a holistic approach towards addressing the requirements
of scalability, protection again cheating, and real-time responsiveness. This integrated ap-
proach is necessitated by the complex interactions among these requirements and by the
fact any solution that fails to achieve minimum performance standards for all three require-

ments simultaneously is not a viable solution in the highly competitive world of MMOGs.

Our approach to the problem of cheat-proof event ordering for large scale MMOGs con-
sists of two inter-related protocols. The NEO (New Event Ordering Protocol) is designed
for smaller groups of players. NEO uses a novel majority voting system that can achieve
event ordering in the presence of late messages, lost messages, and cheating. Strict dead-
lines on message passing allow us to totally order events and prevent common protocol-

level cheats. We present NEO in Chapter I11.

Scalability is achieved through the N-Trees protocol which hierarchically organizes
peers by their application level interests so that a peer mostly needs to communicate and
order events with peers that are close by. N-Trees are formed by recursively subdividing
and N-dimensional space evenly along each dimension. Peers are then placed in leaves
of the N-Tree according to their scope of interest in the game, using NEO to totally order
events at the leaves. Peers that are close by in the virtual world will be close by in the
N-Tree, thus events will only be ordered with nearby peers. Global events are handled by
a technique we develop called forecasting which propagates messages to the relevant NEO

groups in a timely and cheatproof manner. We present N-Trees in Chapter [V.
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In this dissertation, we also formalize the notion of consistency and event ordering
for large scale MMOGs by extending the classic notions from distributed computing to
the domain of large scale peer-to-peer applications. We define several notions of game
consistency, and show how these relate to safety and liveness of game protocols.

This dissertation will have a broad impact on future research in MMOGs, RIM appli-
cations, and distributed systems. The immediate impact of our work will be to help large-
scale peer-to-peer games become a viable alternative to the client/server architecture. It
will stimulate research in this area to look at other unsolved problems, such as cheat-proof
scheduling of peer-to-peer computations and large-scale, cheat-proof peer-to-peer storage
for MMOGs. The medium range impact will be on RIM applications including distance
learning, collaborative virtual environments, immersive educational and training simula-
tions, and distributed interactive simulations. Because the requirements for RIM applica-
tions are a subset of the requirements for MMOGs, our work will directly benefit research
in these areas. Finally, the long range impact of our work is on distributed and peer-to-peer
computing and networking, particularly in the fundamental areas of scalable event order-
ing and cheat-prevention. Our notions of consistency may be applied to other distributed
systems for scalability purposes. Furthermore, those distributed and peer-to-peer systems
with an application state space that can be hierarchically subdivided and with events that
can be meaningfully scoped will benefit from the solutions we propose for MMOGs.

The rest of this dissertation is organized as follows: Chapter Il explains the common
terms used in networking and game research. It also explains the common cheats and
presents the background material that forms the foundation of our research. Chapter I1I
then explains the NEO protocol, proves that it is resilient to protocol-level cheating, and
uses simulation to show that NEO can send a sufficient number of updates for the com-
mon game archetypes under a variety of network conditions. By maintaining consistency,
sending sufficient updates, and being cheat-proof, NEO is a viable protocol for peer-to-
peer multiplayer games. Chapter IV presents N-Trees as a structure for organizing peers
into large-scale, multiplayer games. We analyze the theoretical performance of N-Trees
and prove that they provide consistency for multiplayer games. We perform a measure-
ment study to develop a more realistic model for simulation and then we study N-Trees

experimentally through simulations of up to 100,000 players. We conclude in Chapter V.
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CHAPTER 11

RESEARCH FOUNDATIONS

2.1 Introduction

Our research is related to three areas: distributed systems, networking and computer
games. Therefore, a fundamental knowledge in these areas is required to understand our
protocols and choices in our designs. In the context of distributed systems, we discuss
the distributed consensus problem, event ordering and consistency in Section 2.2. Our
research builds on these theoretical foundations, expanding the notions of event ordering
and consistency to apply them towards distributed MMOGs.

Within the field of networking, multicast and peer-to-peer networks are key areas that
form the basis for our research with NEO and N-Trees as described in Section 2.3. We
adopt the basic ideas behind multicast and distributed hash tables to provide a scalable
event ordering architecture.

We discuss modern research in computer games in Section 2.4, and explain how prior
research has looked at event ordering and simplified cheating models. An important com-
mon theme throughout game research is the problem of cheating. We define a taxonomy of

cheating in Section 2.5, necessary to understanding our research with NEO and N-Trees.

2.2 Distributed Systems

A distributed system is defined as one in which the processes only coordinate through

message passing [25]. This definition implies that hardware will not be used to synchro-
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nize processes or maintain consistency. In our research, we are primarily interested in
distributed systems that communicate over the Internet and therefore we do not consider
hardware mechanisms or make assumptions about the reliability or capabilities of the net-
work.

Distributed systems are divided into two models: synchronous and asynchronous. In
the synchronous model, process execution either occurs in synchronous rounds (i.e., they
proceed in lockstep), or events can be timestamped according to a global clock |26] by
using a clock synchronization protocol such as the Network Time Protocol (NTP) [27].

NTP is a client/server protocol where servers are arranged in a tiered hierarchy. A
client synchronizes its clock with a server by measuring the round-trip time between the
two systems and estimating the difference between the current clocks each system has.
Depending on the level in the hierarchy (tier | NTP servers are more accurate than tier 2
servers, which are more accurate than tier 3 servers), a client can accurately synchronize
clocks to within milliseconds.

The advantage of the synchronous model is that it is easier to reason about, with the
caveat that most real distributed systems are not completely synchronous. In the asyn-
chronous model, processes execute local instructions at arbitrary speeds. This model has
the advantage that algorithms designed for it can run on al/ types of networks without
timing guarantees. The disadvantage of the asynchronous model is that some problems are
more difficult, if not impossible, in the asynchronous system [26]. For example, the Byzan-
tine Agreement problem is impossible under an asynchronous system model. Therefore,

we only consider synchronous models for computer games.

2.2.1 Distributed Consensus and Event Ordering

An important problem in distributed systems is the need to agree on things in the system
such as the current state of a variable or the result of an algorithm. In the distributed
consensus problem, processes in a distributed system propose a value and attempt to reach
agreement on that value. Distributed consensus algorithms guarantee that all non-faulty
processes will eventually reach agreement. The important results from past research show

that in an asynchronous system, distributed consensus is impossible while in a synchronous
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system, distributed consensus can be achieved by 3f + 1 processes in f rounds if only f
failures of any kind occur |7]. However, if we add digital signature to prevent forgeries,

f + 2 processes can reach consensus given f failures in f rounds of communication |7].

Event ordering is similar to distributed consensus in that all non-faulty processes are
trying to agree on the time when each event occurred [28]. The result is a total ordering of

events in the system. We can further distinguish between strong and weak event ordering:

e Strong Event Ordering: All events follow the same order on all nodes of the dis-
tributed system. This total ordering corresponds to Lamport’s sequential consis-

tency |8).

o Weak Event Ordering: An ordering of events in which some systems may see a
different ordering, but the shared state of all systems remains consistent |28]. Con-
sistency is achieved through distributed synchronization mechanisms such as locks

and critical sections.

In a distributed system that uses message passing to alter the shared state of the system,
for n participants, any event ordering algorithm requires at least 2(n?®) messages between
all participants sharing the state, and at least 2 rounds of communication before consensus
can be reached |29]. The Paxos algorithm, which only tolerates stopping failures, requires
up to five rounds of communication and a majority of nodes must have reliable communi-
cation with the leader [17]. Early systems, such as Isis | 18] and Orca [30], do not scale

because they assume the distributed system is tightly coupled over a local area network.

Unfortunately, the time-sensitive messaging requirements for distributed games to use
a byzantine agreement protocol make it impractical. A typical game needs to exchange
around 10 updates per second over a best-effort network. Using a byzantine agreement
protocol (even with digital signatures) would require on the order of O(n?) messages per

player for n players each round.

We build upon the concepts of event ordering and consistency in distributed systems in

the development and analysis of our protocols.
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2.2.2 Distributed Interactive Simulations

Distributed Interactive Simulations (DIS), which are typically training simulations exe-
cuted on a distributed system for the purpose of simulating battlefield scenarios and training
soldiers in synthetic environment, were some of the first RIM applications. SIMNET com-
prised the first attempt at large scale, distributed simulations, followed by DIS, was funded
by DARPA in the late 1980s and early 1990s |31, 32, 33].

While DIS was designed to be a distributed system, the resulting protocols were not
general enough for all RIM applications and had the requirement that the underlying net-
work support multicast and guarantee latency within about 200ms. Using a combination of
supercomputers, high-speed networks and highly optimized DIS protocols, the latest DIS
experiments supported 100,000 entities. DIS research does not consider security, except to
encrypt packets when simulations are top-secret.

In our research, we propose addressing the problem of scalability through peer-to-
peer networking—a significantly different approach than DIS uses. Furthermore, security

against cheats is of paramount importance.

2.3 Networking Research

Communication protocols and paradigms are relevant to our research because we build
on the ideas from multicast and peer-to-peer networking in the development of our proto-
cols. Thus, we explain how multicast works, its development into application layer multi-

cast, and the history and workings of peer-to-peer networks.

2.3.1 IP Multicast

I[P multicast is a form of group communication that is implemented at the IP level in
the network. Participants join a multicast group, which acts as a logical address (and is in
fact assigned a special multicast [P address), and are able to send and receive packets with
that address. IP muiticast forms a multicast tree to disseminate packets over, where routers
in the Internet act as nodes in the tree and duplicate packets when they need to be sent over

multiple branches.
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The original concepts behind multicast were formalized by Deering and Cheriton in |20].
The goal of their design was to make multicast as similar to unicast as possible. To summa-
rize their design, multicast uses groups that can be addressed by a single address, groups
are open (knowledge of group membership is not necessary), hosts can join and leave at
will, and hosts can belong to more than one group at a time. The first large scale multicast
sessions began with the MBone, a set of tunnels over the Internet that connected to LANs
that were multicast capable |34].

The primary problem with the original multicast routing protocol (or DVMRP) is that it
is efficient only if a large number of nodes in the system are participating, due to the amount
of message passing that must occur to maintain multicast trees [20]. This led to research
that focused on sparse protocols, where membership in the system only comprises a small
percentage of the total number of nodes. Protocol Independent Multicast (PIM) [35] and
Core Based Trees |36] are examples of sparse multicast protocols.

In building multicast trees, two primary methods have been investigated: shortest path
trees and core based trees. Shortest path trees are rooted at the source with receivers at the
leaves. Core based trees pick a central node in a minimum spanning tree that acts as the
core. Sources unicast messages to the core which are then multicast to all group members.
Core placement was studied extensively in [37, 38].

Unfortunately PIM and CBT did not address several fundamental problems. First, nei-
ther considered inter-domain multicast, which is important since ISPs wish to do policy-
based routing so that they can direct as much of their traffic over their own networks as
possible to reduce cost. The MASC/BGMP architecture addressed this by allowing intra-
domain multicast to use whatever multicast protocol it deemed necessary and by building a
bi-directional core-based tree rooted in the domain of the source of the multicast group |39].

Second, some researchers felt that the multicast model was too general. Thus, single-
source multicast (SSM) was created in the form of EXPRESS multicast [40|. In SSM, only
one source can multicast messages to the group and an SPT is built rooted at the source.
Holbrook and Cheriton argued that SSM was applicable to many multicast problems such
multimedia broadcast [40]. Zappala and Fabbri added proxies to SSM in order to extend
the SSM model to the general multicast model; in other words, proxies allow any number

of sources to send over the SSM tree with receivers subscribing to additional sources [41].
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The use of multicast in distributed games could significantly reduce network traffic. In
our research, N-Trees act as a multicast tree for disseminating updates to interested players.
In addition, by solving the problem of totally ordered, reliable multicast, we also solve the

distributed consensus problem [25].

2.3.2 Reliable Multicast

IP multicast assumes best-effort delivery and does not guarantee all packets will arrive
at the receivers. Various researchers have designed reliable multicast variants [42, 43, 44,
45, 46, 47). These designs typically involve using some nodes to cache data that can then
later be recovered. In addition, reliable multicast requires that receivers can actually detect
lost packets. This implies that packets are either sequenced or that receivers expect packets
periodically and can therefore detect missing packets.

In LBRM, a special logging server is added to the network and records all multicast
packets. The logging servers provide packet recovery for reliability since native multicast
uses unreliable transport! [42]. RMTP is similar to LBRM in that certain receivers are
designated to cache packets. In SRM, however, any receiver can respond to a lost packet
message |43, 45]. RMX uses a designated host at the LAN level and the multicast tree is
built over the RMX receivers |[46]. Each RMX node limits the data flow according to the
reception abilities of its receivers. Finally, Kasera et al. propose using multiple multicast
groups for error recovery |47]. In their proposition, nodes subscribe to alternate channels

to recover missing packets.

2.3.3 Congestion Controlled Multicast

In addition to reliability, scientists have also studied congestion control with multicast.
Congestion control is vital to the sustainability of the Internet as Jacobson described in [48].
In order to provide congestion control for multicast effectively, two problems need to be
addressed. First, we have to make sure to only count one packet as lost when a single

packet is lost over multiple paths. Second, we have to adjust the sending rate based on

ILBRM was designed in the context of distributed interactive simulations, where adding logging servers
to the system was nol considered a serious issue.
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the congestion window for all receivers |49, 50]. This means that a source needs to track
the congestion window for each receiver individually in order to keep performance at a
maximum without overwhelming any single user.

RLM addresses the congestion issue by assuming that we can divide a multicast stream
into multiple layers |51). For instance, a media stream can be layered, with each successive
stream adding higher quality data to the receiver. MTCP, on the other hand, uses specific
receivers to collect data about their children in the multicast tree [52]. This data is collected
and collated up the tree until the source receives a report that represents the state of the

multicast tree. The source then adjusts the sending rate based on the report.

Application Layer Multicast

While a large amount of research went into designing multicast, one questions why it
has not been widely deployed. First, ISPs have been leery to enable new technology that
has not been standardized (no one has agreed on the best form of multicast). Second, billing
in the multicast model is a difficult problem. A single source can send just one packet that
is duplicated thousands of times in another domain. Thus, one ISP would could use very
little resources while generating a large volume of traffic in another.

By building multicast at the application layer, instead of at the network layer, re-
searchers hope to make multicast available on the Internet. They also argue that the network
layer is not an appropriate place for multicast when one considers that multicast requires
state to be kept on each router (which is the part of the end-to-end principle [53]).

In order to design application layer multicast, an overlay on top of the physical topology
must be built. Overlays are either structured or unstructured. Structured overlays are built
by algorithms that maintain a particular structure, such as a hypercube, while unstructured
overlays are designed to maintain other network properties such as connectivity or low
graph diamater.

Using the overlay, application layer muiticast builds a tree for message distribution.
Narada was one of the first application layer multicast protocols [21] and was shown to
be capable of handling media streaming |13]. Narada works by building a mesh between

members of a group and then building a tree for message distribution. SCRIBE, on the



19

other hand, uses Pastry |54] to build a peer-to-peer network with the group members | 14].
Each multicast group maps to a particular node in the overlay which then acts as the root
of the multicast tree. We also note that several other application layer multicast protocols
have been designed, and these two are simply representatives of the research in application

layer multicast.

2.3.4 Peer-to-Peer Networking

Peer-to-peer networking is a fully distributed form of storage and retrieval over a net-
work that has been used successfully recently and is currently the subject of a large amount
of research. With peer-to-peer networking, peers act as both clients and servers on the

network and form an overlay topology for routing purposes.

Unstructured Peer-to-Peer Networks

Perhaps the most notorious peer-to-pdeer networking system most people are familiar
with is Napster, which gained its notoriety from its users illegally sharing music files [55].
Though users transferred files directly from each other, Napster was not entirely peer-to-
peer. Instead, Napster used a central server that clients connected to in order to locate music
stored by other peers and peers transferred files directly to each other.

Gnutella, on the other hand, is a completely peer-to-peer network for file-sharing {56].
Gnutella has a two-level hierarchy, composed of peers and ultrapeers. Ultrapeers are reach-
able by all peers and are well-provisioned nodes in the network. Peers connect to ultrapeers
initially and all queries for files are sent to ultrapeers. Ultrapeers index the data stored by
peers to reduce the number of peers that have to be contacted directly.

Gnutella’s file searching protocol is a simple flooding protocol which floods a query
from one ultrapeer to other ultrapeers with a time-to-live (TTL) field that is decremented
by one for each new ultrapeer it is forwarded to. The TTL field is set dynamically based
on an approximation of how many peers an ultrapeer calculates will need to be contacted
to locate the file. If the query fails, the TTL is increased and the query is repeated.

The main drawback of unstructured peer-to-peer networks is that if we need to locate

data on the network, we typically have to flood our requests to a large number of peers.
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Gnutella’s hierarchy reduces this cost significantly and measurement studies have show
Gnoutella to have over | million peers connected simultaneously.

The success of Napster, and other so called unstructured peer-to-peer networks, has
prompted the creation of other peer-to-peer systems and motivated the research community

to explore the viability of peer-to-peer storage.

Structured Peer-to-Peer Networks

Structured peer-to-peer networks enforce a structure on the overlay network in order
to guarantee properties of the network, such as logarithmic routing times. One class of
structured peer-to-peer networks, called Distributed Hash Tables (DHTs), work similarly
to unstructured peer-to-peer networks in that they both have the ability to store and lookup
information on the network. However, structured peer-to-peer networks organize peers
according to some structure so that lookup operations are guaranteed to find the data on the
network if it still exists.

DHTs work similarly to hash tables. They have a key space, which is some number of
bits in length, that maps to the value space. DHTs typically have two functions: store(key,
value), and lookup(key). Objects that are to be placed in the network use some kind of
cryptographically secure hashing function to return a hash value that fits in the key space.
Nodes in the peer-to-peer network are also hashed into the key space. Thus, to determine
where to store an item on the network, one simply hashes the object and routes to the node
whose ID is closest to the obiect.

In order to route objects or requests to other nodes in the network, peers need to main-
tain routing tables. This maintenance is dependent on the DHT algorithms, but typically
the DHT forms some sort of logical structure. Chord |12], for example, is a logical ring,
while CAN is a d-dimensional torus [11]. The differences between route management in
these DHTSs are in routing guarantees (how long it takes to route to an item} and network
locality (how well does the overlay map to the underlying network). Table 2.1 lists the
differences between some of of the common DHTs.

DHTs, such as Chord, CAN, Pastry and Tapestry, are the cornerstone for any peer-
to-peer storage system |12, 11, 54, 57]. At its core, Oceanstore uses a DHT, and builds
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TABLE 2.1: Features of DHTs: The second column indicates how long a routing path, in terms
of application layer hops, will be on average while the third column indicates whether the DHT can
be built so that it can match the underlying physical topology of the network. N is the number of
nodes in the DHT and d is the dimension chosen for CAN.

DHT Route length in hops | Topologically sensitive
Chord O(lgN)

CAN O(NY) v

Pastry O(lgN) v

Tapestry O(lgN) v

global-scale storage services around it to provide consistency, reliability, and security |58].
Other services have also been built on top of DHTs, such as multicast (SCRIBE on top of
Pastry, for example j14]), which use the DHT primarily for routing.

While peer-to-peer networks provide the kind of mapping we need for the long-term
storage required by peer-to-peer multiplayer games, they are not optimized for providing
low-latency interactions between millions of players in a virtual world. In the same re-
spect, multicast is optimized to send as few messages as possible. While native multicast
has not been widely deployed, application layer multicast provides a viable alternative to
group communication. Unfortunately, current application-layer multicast protocols do not
address the problem of malicious nodes in the system (a distinct possibility with games)
and the additional latency introduced by the protocols make them insufficient as the sole
networking solution for large-scale multiplayer games. Our work addresses these prob-

lems.

2.4 Multiplayer Game Research

Diot, Gautier and Kurose described the first protocol for distributed games |15, 59| and
built a game called MiMaze to demonstrate its feasibility. Their work is important because
they developed a technique called bucket synchronization, in which game time is divided
into "buckets’, in order to maintain state consistency among players. The MiMaze protocol
uses multicast to exchange packets between players, resulting in a low latency; however, it

does not address cheating.
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At the other end of the spectrum, Baughman and Levine designed the Asynchronous
Synchronization (AS) protocol to address the problem of protocol level cheats [3]. As a
building block, the AS protocol uses a protocol called the Lockstep protocol. Lockstep
divides time into rounds. In one round, a player reliably sends a cryptographically secure
hash of their move to all other players. Once all players have sent their hashes, they send
their plain-text updates in the following round. This forces everyone to commit their move,
without revealing it, thereby preventing anyone from knowing someone else’s move ahead
of time.

To mitigate the problem of delay introduced by reliable transport and to scale to a
larger number of players than Lockstep can handle, Baughman and Levine developed
Asynchronous Synchronization (AS). In AS, a player can advance forward in time asyn-
chronously from other players, but must enter into Lockstep periodically with the other
players. To determine when two players must use Lockstep, a sphere of influence is asso-
ciated with each player. When a player receives or misses an update from another player
during a round, the associated sphere is contracted or dilated respectively. This allows play-
ers to progress in rounds asynchronously until their sphere intersects with another player’s
sphere—at which point they must engage in Lockstep and wait for each other’s messages.

AS is a major advance in distributed protocols because it is provably secure against
the fixed-delay and timestamp cheats. It gains this security by forcing moves to occur in
lockstep-no player can receive a plain-text move before they commit their move. Unfortu-
nately, its main drawback is that its playout latency, which is the time from when an update
is sent out to when the update can be displayed to other players, has a minimum bound of
three times the latency of the slowest link. This delay is due to Lockstep’s use of reliable
transport. Because interactive games require latencies of 100-250ms, the minimum delay
bound of Lockstep makes it unusable for games unless all players have fast links to each
other.

Cronin et al. designed the Sliding Pipeline (SP) protoco! [60] in order to improve the
Lockstep protocol. They add an adaptive pipeline that allows players to send out several
moves in advance without waiting for ACKs from the other players, reducing the time
that is dead-reckoned between rounds. The pipeline depth is designed to grow with the

maximum latency between players so that jitter, or inter-packet arrival time, is reduced.
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Like the Lockstep protocol, the playout latency of the SP protocol is 3d, where d is the
maximum delay between any two players.

Chambers et al. developed a technique to mitigate the amount of information exposure
in RTS games {61]. In their technique, a player’s move is only revealed to another player
if she is within the other player’s viewable area. Otherwise, she sends a cryptographically
secure hash of a secret key and her move. At the end of the game, each player reveals their
secret keys and moves. The moves can be verified as being valid moves in the game by
re-running the simulation.

Bharambe et al. design Mercury, a distributed publish-subscribe peer-to-peer commu-
nication architecture |4, 62|. Mercury is a type of DHT where users data is published and
subscribed to according to its subject. The subject is hashed to generate a key which in turn
can be routed to a node in the DHT. This node acts as the rendezvous point (RP) to gather
and disseminate publications on the subject.

Mercury uses a subscription language that is a subset of relational database query lan-
guages. This allows users to subscribe to a range of subjects with a single query. For
games, different areas in the virtual world are 'subjects’ that players subscribe to so that
they can send and receive updates to other players interested in the same area of the virtval
world. Mercury has been shown to solve the distributed state maintenance problem for
MMOGs [4].

Knutsson et al. also designed a publish/subscribe system |[6] using Pastry |54] and
Scribe [14]. The virtual world is statically divided into regions, and players in each region
form a group. Each region maps to a multicast group through Scribe so that updates from
the players are multicast to the group. Consistency is achieved through the use of coordi-
nators. Every object in the game is assigned to a coordinator; therefore, any updates to an
object must be sent to the coordinator who resolves any consistency problems. Fault tol-
erance is achieved through replication. However, their system does not fully take cheating
into consideration in its design, but instead relegates it to future work.

In the federated peer-to-peer network game architecture, groups of players use a peer-
to-peer protocol for communication which then send updates to a set of servers that are
installed on the Internet [63]. The servers coordinate the migrations of players between

servers and unicasts updates to relevant servers and players. Thus, the servers provide a
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publish/subscribe system for players and an application layer multicast service, though at
the high cost of locating multiple servers across the Internet.

The federated peer-to-peer game architecture acts simply as a client/server architec-
ture, except that the typical cluster of servers are distributed on the network to be closer
to players. Given the cost of locating and maintaining servers in geographically different
areas, the effectiveness of this architecture is not clear. Certainly, simply maintaining a
cluster of servers at a single location is more cost effective and will achieve higher perfor-
mance (since a cluster will not suffer from poor network performance that is typical of the
Internet). Further, the authors do not address cheating in their work.

In the game industry, very few networked games are fully distributed. One notable ex-
ception is Age of Empires (AoE) [9], in which games are synchronized across clients and
peer-to-peer communication is used. AoE’s protocol is similar to bucket synchronization,
except that unicast is used. While AoE is a commercial success for distributed game proto-
cols, it is subject to all but the inconsistency cheat (because players pericdically exchange

hashes of the game state with other players to detect inconsistencies).

2.5 A Taxonomy of Cheats

Cheating is defined as any action that circumvents the normal course of the application
to the benefit of a user. Cheats are possible because of security flaws in the application,
protocols, or network. We can taxonimize cheating into categories based on the layer
which they occur at: network, application, or game. Table 2.2 lists several common types
of cheating.

Cheats occurring in the first category, the network level, allow players to gain an ad-
vantage in the game by exploiting security flaws in network and routing protocols. Cheats
occurring at the application level occur from applications modified from their original in-
tent?. Last, cheats occurring at the game level are cheats that occur in the game by breaking

game rules (possibly by exploiting bugs or sidestepping rules in some way).

ZTypically network and application level cheats both occur through modifying the application, though
network cheats specifically target security flaws with the network protocols.
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TABLE 2.2: A taxonomy of cheating: Check marks indicate whether this type of cheat is possible
under the listed architecture, Stars indicate cheats which are partially possible.

Distributed
Cheat Level P2P | Multicast { Client/Server
Denial of Service Network v v *
Fixed Delay Protocol v v *
Timestamp Protocol v v *
Suppressed Update Protocol v

Inconsistency Protocol v v
Collusion Protocol & Application | v v v
Secret revealing Application v v *
Bots/reflex enhancers Application v v v
Breaking game rules Game v v v

In addition to showing the taxonomy of cheating methods, Table 2.2 shows which
cheats can be used with the three primary architectures (peer-to-peer, multicast, and cli-
ent/server). Both peer-to-peer and multicast architectures in this case are considered to
be fully distributed architectures without a centralized server. We also do not consider
a multicast client/server architecture because the cheats associated with the client/server
architecture are not de;;endent on a unicast or multicast communication paradigm.

In the following discussion of the categories of cheats, we use three characters: Alice

and Bob, two non-cheating players, and Mallory, the cheating player.

Network level cheats

Network level cheats are those cheats which occur at the network level and which are
preventable only by security measures that solve these problems on a more general level.
For example, the main network level cheat we list is a Denial of Service attack. In this
cheat, Alice and Mallory are competing. Mallory sends a flood of bogus packets to Alice
to cause her to loose important game related packets. Thus, Alice’s game play suffers,
giving Mallory an unfair advantage.

Clearly, two primary solutions exist to solve network level cheats: security measures
and indirection. Security measures can be implemented at the network level that prevent

denial of service (DoS) attacks. However, DoS attacks directed at a game may require less
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traffic than those aimed at causing other applications to fail, such as a web server. This
is because RIM applications typically have stringent latency requirements. Thus, even a
few extra packets sent by Mallory to Alice may be enough to cause packet loss that gives
Mallory an advantage.

Indirection, where Mallory has to forward updates to Alice through a relay which then
forwards the updates to Alice, can also be used to solve DoS attacks on RIM applications.
This helps solve the DoS problem because Mallory no longer knows Alice’s 1P address
to perform the DoS attack on. However, this solution introduces additional delay. Note
though that the server in the client/server architecture acts as this relay between clients, and

hence a DoS attack on the client/server architecture will only affect the server.

Protocol level cheats

Protocol level cheats are cheats that occur by manipulating packets, or the flow of pack-
ets, from player to player. Distinguishing between a protocol or application level cheat is
somewhat blurry because to manipulate the contents of a packet one often has to alter the
application.

Many of these cheats can be accomplished by using something like a NIST box, which
is a router that can be used to introduce artificial delay and packet loss on the network [64].
By placing the NIST box between the game and the network, a player can easily add delay
or suppress updates from the game that is indistinguishable from real network conditions.
Monitoring programs normally used to detect application level cheats also cannot detect
these kinds of cheats. Furthermore, because these cheats are easy to implement and unde-

tectable, they enable the less sophisticated game player to cheat without being caught.

o Suppressed Update: In this cheat, Mallory suppresses updates to Alice and Bob.
Just before the game would disconnect him due to packet loss, Mallory sends a new
update to his opponents. As a result, Alice and Bob do not know where Mallory is

exactly or what actions he has performed, giving him the ability to "hide’.

This cheat is particularly powerful when a player’s update includes the actual loca-
tion of a player instead of the series of moves (which is often the case when using

unreliable protocols since a move might have been dropped). In this case, Mallory
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does not let other players know where he is and then picks an advantageous location

several rounds later.

Fixed Delay: In this cheat, Mallory purposely adds a fixed amount of delay to his
outgoing packets while accepting all incoming packets. This cheat allows him to
receive updates faster than he is sending them, granting him the ability to respond to
game events quicker. For example, Mallory has a 10ms connection to Alice, but arti-
ficially adds a 140ms delay on outgoing updates. Thus, Mallory can react to updates
from Alice 10ms later, while Alice will not see Mallory’s updates until 140ms after
they occurred. The effect of disproportionate latency was examined in [65], which

showed that the added latency directly affects the ability to win in some games.

This cheat is possible in the client/server architecture if the server allows players
to timestamp their own updates (which may be done for performance reasons or to
prevent clients from having to rescind moves they have already displayed on the
player’s screen). Typically, though, the server determines when events occur and
local clients assume their updates were accepted by the server unless they are told

otherwise.

Inconsistency cheat: In the inconsistency cheat, Mallory sends his ’real’ update to
every player, except Alice, while sending a different update to Alice at time {. Now
Alice thinks Mallory is in a different location than he really is, but every other player
will disagree with Alice on Mallory’s location. Later, Mallory can send updates
to Alice that merge the two differing opinions on his location in order to hide his
cheat. In the worse case scenario, Mallory can corrupt an entire game, but Mallory
can also corrupt a single player, eliminating them from the game. The inconsistency
cheat arises from the Byzantine General’s Agreement problem [7}; in this case we

are trying to agree on everyone’s game state.

Timestamp: Because events must be ordered for consistency purposes, a global clock
is often used for time stamping. In the timestamp cheat, Mallory waits to receive an
update from Alice and then sends his update with a timestamp that is before Alice’s.

For example, Mallory could send out a move with a timestamp earlier than the "Alice
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shoots Mallory’ update just received. To other players, Mallory’s message appears

to have be delayed in the network and the shot misses.

The client/server architecture sidesteps this issue because the server can provides a
total ordering on events (based on when it receives the update, not when the update

is sent) and tells each client when each event occurred.

e Collusion Cheat: A collusion cheat occurs by having several players collude and
either share packets or modify them in some way to gain an advantage over other
players. For example, Mallory is colluding with Eve and is trying to catch Alice.
Eve sees Alice, even though Mallory cannot, so Eve can simply inform Mallory of
Alice’s location. Recall that this occurs at the protocol level-in other words, Eve
can simply forward Alice’s positional updates to Mallory even though he shouldn’t

receive them.

Application level cheats

Currently, application level cheats are addresssed by monitoring software installed on
the computer that a game runs on. The monitoring software inspects computer memory,
processes, and applications on the computer to detect if known cheats have been installed
on the system. For example, the program can compare a CRC of important game files
with known correct values to detect if the game has been tampered with. It can also scan
processes to determine if rogue processes are running. Of course, like a virus scanner, this
requires the monitoring program to have up to date information. Furthermore, one could
theoretically run the game and the operating system in a sandbox, or emulated system, so
that the monitoring system cannot detect cheating applications. While this technique may

not always be practical due to performance issues, it can subvert cheat-detection software.

e Secret revealing: Secret revealing occurs by Mallory altering his game client to give
him information that would normally not be available. For example, he may modify
his client so that walls are translucent, giving him the ability to locate enemy players

in a maze easily.
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In the client/server architecture, this cheat can only be prevented by revealing secrets
at the last possible moment. In the example above, the server would not reveal Alice’s
position to Mallory until Alice was in Mallory’s direct line of sight. Unfortunately,
this leads to high latency [66].

e Bots/refiex enhancers: This cheat occurs by modifying the client with additional soft-
ware so that a player can react faster than humanly possible. For example, Mallory
can automatically aim his weapons at Alice by reading Alice’s position from the

game client and firing at Alice’s predicted location.

This kind of cheat is difficult to detect in a game. An extremely skilled player may

look like a bot if her accuracy is very high.

Game level cheats

Game level cheats occur by finding loopholes in the game rules. For example, if the
inventor of Poker had left out the rule that a player is not allowed to peek at an opponent’s
hand, then she could base her next move on her opponent’s cards. Unfortunately, preventing

loopholes in game rules is a non-trivial problem!
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CHAPTER III

THE NEW-EVENT ORDERING PROTOCOL

3.1 Introduction

Our proposed solution for solving cheat-proof and real-time event ordering for dis-
tributed MMOGs consists of two parts: a real-time and cheat-proof event ordering protocol
and a scalable, hierarchical structure for organizing a large number of peers so that mes-
sages are disseminated quickly while event ordering is maintained. In this chapter we
present the New-Event Ordering (NEO) protocol which uses a majority voting system to
both prevent cheating and ensure consistency in a timely manner. To achieve these impor-
tant goals, NEO is limited in scalability. In Chapter 4.4, we show how to scale NEO.

The goal of any game protocol is to be playable, which we define as having three
facets: consistency, resistance to protocol level cheats, and the timely delivery of updates.
We address these three significant problems with the design of NEO. First, we have to
ensure consistency of the shared state between players so that all players view the same
sequence of events in the game. To that end, we have defined a new consistency model
called majority consistency, and we show that NEO achieves majority consistency. With
this new model of consistency, all players will experience the same sequence of events if
those events were seen by a majority of players. This consistency model helps reduces the
need to recover late or lost updates while ensuring that all players remain consistent.

Second, NEO has to be resistant to protocol level cheats. Any protocol that will be
used for games must be resistant to protocol level cheats for the simple reason that games

have a long history of players cheating through various means. We show how NEO can
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prevent the four common protocol- level cheats under a broader definition of cheating than

has been previously used.

Third, we have to deliver updates to players in a timely manner. Table 1.1 lists desirable
playout latencies for different game archetypes, indicating how fast updates must arrive at
their destinations. NEO divides time into rounds and uses the round length to bound the
maximum latency of a player from a majority of other players in the game. This means
that it is acceptable for a player to have a high latency to some players as long as her
latency to most players is low. Assuming reasonable network conditions, NEO provides
a playout latency 1/3 shorter than previous cheat-proof protocols, making it usable for all

game archetypes.

NEQO is the first protocol designed to simultaneously address consistency, security and
low playout latency. Diot and Gautier’s Bucket Synchronization only considered the prob-
lem of synchronization and consistency |15]. Baughman and Levine’s Asynchronous Syn-
chronization protocol addressed some protocol cheats, but was subject to inconsisten-
cies [3]. Age of Empires managed consistency but was subject to cheating |67]. Table 3.1
summarizes the primary game protocols and their contribution in terms of a low playout

latency, cheat- proofness, and consistency.

We present work directly related to NEO in Section 3.2 and the formal description of
NEQO in Section 3.3. We also show that NEO achieves majority consistency and prove that

it is cheat proof in Section 3.3. We then provide a simulation study to show that NEO

TABLE 3.1: Contributions of game protocols: NEO provides a low playout latency, is cheat-
proof and provides consistency. Bucket synchronization provides a low playout latency, but is not
cheat-proof, and doesn’t fully provide consistency. AS/Lockstep provides a consistency, but is only
partially cheat-proof and cannot ensure a low playout lalency. Age of Empires provides a low
playout latency but it is only partially consistent because it requires periodic exchanges of hashes of
the entire game state between all players, ending the game if any inconsistencies were found.

Protocol Low Playout Latency Cheat-Proof Consistency
NEO v v v
Bucket Synchronization v partial
AS/Lockstep partial v

Age of Empires partial partial
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outperforms other cheat-proof protocols, that NEO maintains a low playout latency even
in the face of late or dropped packets, and that group sizes do not affect the performance
of NEO in Section 3.5. Last, we show how scalable NEO is considering by analyzing
NEO group sizes versus payload sizes and available network bandwidth. We conclude in
Section 3.6.

3.2 Background and Related Work

In order to understand concepts related to NEO, we present definitions, background

material, and past work related specifically to NEO.

3.2.1 Terminology

The following terms are common to the game industry and used in NEO:

e Update: A message from the player which changes the state of the game. Inter-

changeable with move or event.

® Round: A fixed length amount of time. Rounds can be numbered sequentially from
0 to n starting from the beginning of the game. The time that a round begins at can

be calculated by round_length * round_number.

e Playout latency: The time from when an update is generated to when the game can
display the update to the player. Table 1.1 lists acceptable playout latencies for a

variety of game archetypes.

¢ Rollback: Inserting a late update into its correct sequence in time and replaying all
updates instantaneously up to the current time. This assumes that we have kept all
updates in the past up to the point in time that the late updates occurs. Rollback also
assumes that it is possible to replay all updates that happened previously, which is
possible in the game world. For example, if updates u;, uz were received and at a
later time wu; is received, the system will insert u; between u; and uy and replay us

and u3 to determine the correct results of all updates.
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e Dead-reckoning: Predicting the future state of an object in a game based on its past
behavior. For example, we can dead-reckon that an object traveling on vector V at
velocity |V'| will continue to do so in the future. To reconcile incorrect predictions,

we use rollback when the correct update arrives.

3.2.2 Game Protocols

Several networking protocols for games have been created in either a research or com-
mercial setting. We review these protocols which were originally discussed in Chapter II,
but we discuss them in relation to which properties they satisfy: low playout latency, re-
silience to protocol cheats and consistency. We summarize these properties and how they

relate to protocols in Table 3.1.

Low Playout Latency

Of the prior game protocols, bucket synchronization from Diot et al. and Age of Empires
(AoE) provide a low playout latency for games {15, 59, 9]. In bucket synchronization, mul-
ticast is used to disseminate updates and players send updates at a fixed rate. Lost updates
are not recovered and therefore the protocol can commit updates shortly after they arrive,
leading to a low playout latency. The protocol used by Age of Empires is similar to bucket
synchronization except that unicast is used. Thus, AoE also has a low playout latency.
Neither of these protocols address cheating, though both partially address consistency. Our

protocol NEO also has a low playout latency.

Resilience to Protocol Cheats

Asynchronous Synchronization (AS) was the first protocols to address protocol level
cheats |3]. AS uses Lockstep which divides game time into rounds and progresses by first
sending a hash of an update to all players over a reliable channel followed by sending
the plain-text update to all players to reveal the moves. This allows players to commit
moves and agree on the set of moves in one round without knowing the contents of those

moves, thereby preventing the Timestamp cheat. However, Lockstep is subject to other
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types of protocol cheats such as the Suppressed Update cheat, the Fixed-Delay cheat, and

the Inconsistency cheat. NEO addresses all of the protocol level cheats.

Synchronization and Consistency

Bucket synchronization, Age of Empires, and Asynchronous Synchronization all ad-
dress synchronization and consistency to some extent. With bucket synchronization and
Age of Empires, updates are timestamped and committed at some point in the future after
they are received. For example, if an update has the timestamp ¢, it is committed at time
t + d, where d is a fixed amount of time set by the game. This acts as a synchronization
point for all clients—ideally d masks various delays experienced by updates as they travel
through the network and thus all players are committing moves at the same time. However,
in both bucket synchronization and Age of Empires, clients can become inconsistent. Us-
ing the inconsistency cheat, a player can easily make a game using either protocol become
inconsistent.

The AS protocol with Lockstep also partially maintains consistency. Players remain
consistent because Lockstep uses reliable transport to ensure that all updates sent by a
player are received by the other players. This leads to a consistent view of the shared
state in the game as long as the player does not execute the Inconsistency cheat. NEO,
on the other hand, can prevent the inconsistency cheat and we describe how it achieves

consistency in Section 3.3.2.

3.2.3 Consistency and Event Ordering

Consistency models were originally created to address the problem of correct program
execution when multiprocessor systems share one or more memory units. Because this
shared state can be written to or read from more than one processor at a time, thereby
creating a condition where two processors disagree about what the contents of a memory
location should be, the shared state must be updated in a predictable manner. Using a
consistency model helps the programmer prevent inconsistencies and ultimately bugs. A
wealth of research in computer architecture and distributed systems addressed the problem

of (memory) consistency for systems ranging from shared-memory with local caches to dis-
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tributed systems based only on message passing [28]. The following notions of consistency

are relevant to the model we introduce for NEO.

Definitions:

o Atomic (strict) Consistency: The most strict consistency model where the result of
any computation is the same as if all reads and writes follow a sequential order, and
the reads and writes of each individual processor appear in this sequence in the order

they actually occurred at |68).

e Sequential Consistency: The result of any computation is the same as if the oper-
ations of all processors were executed in some sequential order, and the operations
of each individual processor appear in this sequence in the order specified by its

program [8]. [69].

With aromic consistency, all reads and writes have a sequential order and this order
follows the real-time order that each read and write have when they are executed on the
individual processors. However, atomic consistency is essentially impossible to achieve
in a true distributed system due to the simple fact that we can only synchronize clocks
to within some § and therefore we can never know the actual time when a read or write
occurs [70].

In Lamport’s sequential consistency, all reads and writes follow a sequential order
based on the program order of reads and writes running at each processor. Thus, a pro-
grammer can assume that reads and writes will never be reordered in the execution of the
program on multiple processors.

In a client/server architecture for games, the client acts as a cache of data it receives
from the server. When the client wishes to change the state of the game, it sends a message
to the server in the form of an update. The server validates the update and responds to
all clients with the change to the state they are caching for the players. Thus, the server
determines the order of all reads and writes to the state of the game.

In a distributed architecture, players share the state of the game and must agree on

changes to that state. Like a multiprocessor system, each node acts as a cache and proces-
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sor. Changes to the shared state must be propagated to the system so that all players main-
tain consistent views of the shared state. In Section 3.3, we introduce a new consistency
model, called majority game consistency for games which leads to improved performance

over traditional sequential consistency.

3.2.4 Time Warp and Rollback

Jefferson’s Time Warp algorithm is a consistency algorithm designed specifically for
distributed systems that do not require locking or other synchronization methods. Jefferson
described virtual time as a more natural ordering of events in a distributed system than se-
quential event ordering. The concept of virtual time is conceptually like Lamport’s regular
clock condition | 70], except that local events do not always advance the time'. Using vir-
tual time, Jefferson defines the Time Warp algorithm that is used to synchronize distributed
systems.

Time Warp works as follows. When a message is sent, the message is timestamped
according to the current local virtual time. When a message is received, virtual time is
advanced to the timestamp contained in the message if it is greater than the local time.

Time Warp gets its name because a system can rollback all events that have occurred
whenever it receives a message from another system with a time earlier than its current
virtual time. Thus, a node in the system can execute arbitrarily far into the future, including
sending out events to other systems, but must rollback time whenever it receives an event
from an earlier time period.

Jefferson also provides an algorithm for estimating the global virtual time (GVT), which
is the earliest virtual time of any process currently executing in the system, and proved that
the GVT increases monotonically. The GVT can be used to determine how long old events
must be tracked because a system will never be rolled back to a time earlier than the GVT.
The GVT can also be used to determine when to commit to I/O or when a global snapshot
of the system has completed.

For NEO, we develop a similar notion of a moving time horizon behind which no

rollback can occur.

'In other words, the Lst condition of the happened before relation is not used to define virual time.
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3.3 The New-Event Ordering (NEO) Protocol

The New-Event Ordering (NEQO) protocol is the first protocol that provides consistency,
avoids the common protocol level cheats, and keeps the playout latency to a majority of
players within a given bound. NEO divides time into rounds and derives its name from the

fact that new events are ordered according to which round they arrive in.

In all of our discussions about NEO, we assume a typical model for the network and
players. First, we assume that players only communicate by message passing over a best-
effort network. Thus, packets may be delayed, lost, or arrive out of order. We assume
that messages are transported by a protocol such as UDP and therefore arrive uncorrupted?.
Initially we assume that a group of players that is using NEO will continue to do so until the
game is over. We later relax this assumption to allow the joining and leaving of players in
a NEO group. We assume that players can modify NEO packets, artificially delay or drop

packets, though they cannot collude. We discuss collusion prevention in Section 3.3.3.

3.3.1 The Basic NEO Protocol

At a high level, NEO provides consistency and prevents cheats through two main tech-

niques:

¢ Players commit an update by first sending the digital signature of the update. Players
later reveal the plain-text update which allows other players to verify that the digital

signature matches the plain-text update.

o Only moves which are received by a majority of players within a given time bound
are accepted in the overall ordering of events. If a player is in the minority of those
who missed an accepted update, NEO continues, but the player must request the

missing update and roliback once the update is recovered.

2Recall that UDP uses a checksum to determine if a packel is has been corrupled en route to its destination.
Il the checksum is invalid, the packel is dropped and is never delivered to the operating system.
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NEO Rounds

With NEO, time is broken into equal intervals, called rounds, with a time length of I.
At the start of the game, all clocks are synchronized to within some 4, where § < R, using
a mechanism such as the Network Time Protocol (NTP) [27]. Rounds increase sequentially,
starting from round O at the beginning of the game.

At the start of each round, NEO generates an update to the state of the game based on
the player’s input and sends out a digital signature of this update to all other players. At the
start of the following round, NEO sends out the plain-text update. When a player receives
the plain-text update, she can use the digital signature to recover the hash of the update and
verify that the hash matches the update. Each message A from player A at round 7 has the

following format:

M5 = Sa(UR), Uy (3.1)

In this message, S4(U7) is the digital signature® for the update for round r. U ™! is the
plain-text update for the previous round. Figure 3.1 shows how NEO sends digital signa-
tures of updates followed by the plain-text updates the following round.

NEO rounds are important to both the performance and security of the protocol. Rounds

have the following characteristics:

1. Every player first commits a move in one round by sending their digital signature
of the move. The signature acts as proof of the player’s move for that round and

prevents her from using a different move when it is revealed the following round.

2. As with Lamport’s logical clocks |70], events that arrive in the same round, occur at
the same time, but we order the commitment of these events by a mutually agreed
ordering mechanism. For example, all accepted updates for round 7 occur at time £ in
the game, where ¢ = r* R in the game. The mechanism for deciding the actual order

to commit all the updates for round = could be any number of techniques, such as a

3The digital signature S is calculaled by § = E(H (M}, private_key), where we encrypl the hash of the
message, H (M) by the user’s private key. The hash can then be recovered by using the public key of the user
and compared with the plain-text message that will later be revealed to verify that the message did indeed
originate from the user.
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FIGURE 3.1: NEO rounds: Players first send the digital signature of their update for round r,
followed by the plain-text update in round 7 + 1. By r + 2, NEO commits the update from round r.

Thus, the playout latency of NEO is 2R, where R is the round duration.

random number generated with ¢ as the seed. The main stipulation on a tie-breaking

technique is that it cannot be exploited by a player to force an ordering of the updates.

. Round lengths serve as a bound on the delay that an update can incur before being
received by other players. If the delivery time of an update exceeds the round length,
the update is considered invalid. NEO’s mechanism for handling invalid updates
is described later. Bounded latencies ensure that the game progresses, unlike other
protocols which use reliable transport and may experience unnecessarily long delays

waiting for updates to be recovered.

. All event ordering in NEO is based on round numbers, rather than timestamps. Up-
dates are generated at round r and the plain-text updates are committed at the end of
round r + 1 according to a mutually agreed upon order. Note that while the game
time of the update for round 7 can be calculated by round_number * R, using rounds
instead of timestamps prevents players from increasing or decreasing the time that

an update occurred at by ¢, thereby preventing the timestamp cheat.
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5. NEO rounds lengths are tuned for the type of game being played. Games which
require a shorter playout latency use a shorter round length. For example, the desir-
able playout latency of a role-playing game is approximately 250ms. Using a round

length of 125ms ensures that all updates are revealed at 250ms.

Majority Voting

NEO has a distributed voting mechanism in the protocol to maintain consistency be-
tween players and to handle with late updates. In addition to sending the digital signature
and plain-text update from the previous round, we add a voting vector representing updates
that were received the previous round. The NEO update A{ from player A at round r with

the voting vector V' has the following format:
My = Sa(UR), Uy, (Vi + Sa(ViTh) (3.2)

In this message, S4(U7) and U7,"! are identical to the message in 3.1. V™! 4 S4 (Vi 1) is

the digitally signed vote vector from player A for the previous round (see Figure 3.2).

FIGURE 3.2: NEO update with voting : The format of a NEO update includes the digital signature
of the update for round j, the update for round j-1, and the vote vector for round j-1. Note that the
update includes information such as the round number so that NEO can easily determine which
update belongs to which round.

To understand how voting works, assume five players are in a game, and player A is
tallying the votes from the previous round. Also assume that the majority® is {n/2] + L.
Table 3.2 lists the voting bit-vectors that each player has sent to player A. From the tally, we
can conclude that a majority received A, B and D’s updates, while a majority did not receive
E’s update (so it is considered invalid). As for player C, player A cannot determine what

the outcome of the vote is, so she must contact another player to determine the outcome.

10ne could set the "majority’ to be higher than [n/2| + 1, bul not lower since this could lead to an
inconsistent slate of the game. Theoretically, one could set it lo higher than 50% Lo increase security al the
cost of having 1o ignore more packets.
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TABLE 3.2: Vote table for a NEO player: Player A receives a voting vector from all other players
and the calculates which updales to accept and which to reject based on a majority. In this case, any
tally of 3 or more positive or negative votes indicates an accept or reject respectively.

Player Bit-vector

A 11010

B 01010

C 11100

D L1111
E packet lost
Voting tally | 34231

Once all votes are collected from all other players, NEO tallies the votes with four

possible outcomes:

1.

Commit: If NEO receives the update, along with a majority of accept votes, the

update is committed.

Reject: If NEO receives a majority of reject votes, the update is rejected.

. Recover votes: If NEO receives the update, but does not have a majority of accept or

reject votes, NEO must recover a sufficient number of votes.

Recover update: 1f NEO did not receive the update, but has received a majority of

accept votes, NEO must recover the update.

The process of recovering missing votes or updates may cause NEO to rollback to ensure

consistency.

Voting serves two primary purposes:

Voting allows only those updates received by a majority of players within the round
to be required for consistency. This allows NEO to quickly reject updates that are
late or missing. Because the updates have been received by a majority of players,
only a minority of players will be required to recover an update if they missed it.
Assuming a majority of players are connected and receiving updates on time, NEO

will continue to progress through rounds®. On the other hand, if we used reliable

5If a majority of players are not receiving updates from each other, then the game is not playable,
but this holds true for any game, distributed or not!
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transport, dropped or late packets would delay the game for all players until it was

recovered.

2. Voting prevents players from cheating by purposely delaying or dropping updates.
The most that a player can delay an update to any player is by the difference of the
round duration and the network latency to another player. Beyond that, the update
will be considered late. However, since updates are not committed until the end of

the round, this delay has no effect on the game.

With the majority voting mechanism, all players will eventually agree on which updates
have been accepted and which have been rejected, assuming that a majority of players can
communicate with each other.

As with Jefferson’s virtual time [71], NEO has a similar concept to global virtual time
(GVT), which we call the NEO event horizon. Recall that the GVT is the earliest point
in time that the system may need to rollback to. Jefferson proved that the GVT advances
monotonically with the Time Warp algorithm [71]. We define the NEO event horizon as

follows:

Definition 3.3.1. NEO Event Horizon: The earliest round that any player may need to
rollback to due to the recovery of missing updates or votes, i.e. the NEO event horizon is
a minimum round r of all players such that if the current round is k, » < £ — 2 and NEO
will never rollback before r. Later we will show that the NEO event horizon advances

monotonically over time.

The NEO event horizon is important for two reasons. First, by estimating how far back
the event horizon is from the current round, we know the earliest time that NEO would
possibly rollback to. Thus, state in the NEO group is stable prior to the event horizon.
Second, players need to only keep state for rollback purposes back until the event horizon.
Once the event horizon advances, they can discard the stored state.

Estimating how far back the NEO event horizon is from the current round is difficult
primarily because we cannot predict network conditions. However, if we assume that we
need to recover update u for round r, NEO will not detect this fact until the start of round

r + 2. If NEO then sends out a request for the missing update or for the missing votes in
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round r 4+ 2, which will arrive at the latest by r + 3, then the other NEO peer will respond
by round r + 4 with the needed information. However, NEO normally commits updates
at r - 2, so while the NEO event horizon in the best case here would be 4 rounds prior to
the current round, it is only two rounds behind the normal commit time for an update. We
explore the effects of packet loss and update/vote recover in our performance analysis of

NEO using simulation in Section 3.5.

3.3.2 NEO Consistency

The purpose of event ordering protocols for games is to maintain consistency for all
players. We formally define three types of consistency. The first two follow traditional
consistency models for distributed systems, while the third is a new consistency model we
have developed.

It is important to understand that NEOs notion of consistency applies to updates, not
to notions of consistent actions in the game world. In other words, NEOs protocol yields
an ordered set S(U) of updates that are mutually agreed upon by a majority of the players.
When rollback occurs on player A in NEO, the late update is inserted to bring player A
into agreement with the majority. Rollback does not change any events that have already
been accepted by the majority. In the game world, rollback may cause unrealistic things to
occur, e.g. a dead character suddenly is alive again. However, as long as all players have
agreed to the same sequence of updates S(U) and as long as for each player, her updates in

S(U) corresponds to the order in which she generated them, NEQ is consistent.

Definitions:

The first two consistency models are based on the corresponding notions of traditional

distributed systems described in Section 3.2:

Definition 3.3.2. Atomic (strict) Game Consistency: The result of any game is the same
as if the updates from all players were executed in some sequential order, and this order
follows the order in which updates were actually issued by players. This model is analogous

to atomic consistency [68].
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Definition 3.3.3. Sequential Game Consistency: The result of any game is the same as
if the updates from all players were executed in some sequential order, and the updates of
each individual player appear in this sequence in the order specified by the player. This

model is analogous to Lamport’s sequential consistency |8)|.

Note that strict consistency means there is one global sequential ordering of events
while sequential consistency allows any interleaving of events that is consistent with local
ordering.

Strict game consistency assumes that some centralized system can actually determine
and sequentialize the order of updates received from all nodes in the system, that all nodes
will see this ordering, and that within this order, nodes will see their updates in the same
order that they were issued. For example, a client/server architecture exhibits strict game
consistency because the server can timestamp each event as it arrives and prevent the re-
ordering of events from individual clients.

With sequential game consistency, the protocols must ensure that however updates are
interleaved in the global sequence of updates, each individual player sees their updates in
the order that they were issued. For example, if the player issues update A before update
B, then update A must occur before update B in the sequential order of all update in the
system.

The third consistency model is a new model we developed for distributed games and
which NEO provides:

Definition 3.3.4. Majority Game Consistency: The result of any game is the same as
if the updates from all players were executed in some sequential order, and only the up-
dates seen by a majority of players appear in this sequence in the order specified by the

originating player.

In majority game consistency, all players see the same sequence of updates, however
only those updates seen by a majority of players appear in this sequence. As long as all
players can agree which updates have been seen by the majority of players, then each player
can individually recreate the sequence of updates, leading to consistency between players.

A key feature of majority game consistency is that updates not agreed on by a majority are
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dropped, i.e. they are not considered in the set of ordered events. Thus, late updates are
not accepted by NEO and do not cause roliback to occur. NEO provides majority game
consistency through its distributed voting mechanism.

We now show that NEO can provide sequential game consistency if all updates are
accepted each round. We then extend the proof to show that it provides majority game
consistency when only some of the updates are accepted. We divide our proofs into two

cases, with and without rollback. Note that NEO uses rollback only in two circumstances:

1. An update has arrived, but NEO does not have a sufficient number of votes to decide
whether to accept or reject the update. NEO then requests the missing voting vectors
and decides once it has a sufficient number of votes to accept or reject the vote. NEO

will need to rollback updates to insert this update if the update was accepted.

2. An update did not arrive, or arrived late, and NEO has determined it should accept

the vote. In this case, NEO will rollback updates and insert this missing update.

We first show that the NEO event horizon exists and that it increases monotonically

over time.

Theorem 3.3.5. At round k > 2, there exists a minimum round r, where 0 < r < k — 2,
for all players which NEO will not rollback behind.

Proof. Assume the current round is &, the update we are rolling back to is u, and the round
that Player A is rolling back to is r. By definition, rollback is the removal of all previously
committed events which occurred from r...k — 2 followed by the subsequent commitment
of the events which occurred from 7.k — 2, including u,., at time k. Unlike the Timewarp
algorithm |71], the insertion of u, into the sequence of events from r...k — 2 does not cause
the generation of any new events, even though the addition of u, may cause future events
to be invalid. Since no new events are introduced into the system, adding u, to Player A’s
sequence of events does not cause any further rollback by Player A or by any other player
in the game. Therefore, NEO will not rollback before r.

Note that the only reason Player A had to rollback was because it was in the minority of

players that missed update u, and discovered that u, was accepted by a majority of players.
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Players in the majority will have accepted u, and will therefore not change their sequence
of events from r...k — 2. Thus, majority players will also not cause NEO to rollback before
- (]

Lemma 3.3.6. The NEO event horizon never decreases.

Proof. By Theorem 3.3.5, we know 7 is the minimum round that NEO can rollback to.
Thus, NEO cannot rollback to r — k&, where k& > 0, since then r — &£ would be the minimum

round. Therefore, the NEO event horizon never decreases. a
Theorem 3.3.7. The NEO event horizon monotonically increases over time.

Proof. By Theorem 3.3.6, we know that the event horizon will never decrease. Therefore,
we will show that it will increase. We assume that the network is not partitioned and that a
majority of players can contact each other.

If the NEO event horizon is at round 7, Player A needs to either recover the update
u, for round 7, or a sufficient number of accept or reject votes for the update for round r.
Assume Player A is in the majority of connected players. Then, there must exist a path
from Player A to some other Player B with the update or the necessary votes to decide on
u,. Thus, Player A can recover the needed information and decide on u,. Once all such
players have done so, the NEO event horizon will advance to at least round r + 1.

Assume Player A is in the minority of players not connected to the majority of players.
Player A’s updates or votes will not affect the majority and thus the majority will continue
to decide on updates and the NEO event horizon will advance.

Thus, the NEO event horizon will increase monotonically with time. a

Theorem 3.3.8. Prior to the NEO event horizon, if all updates from all players have been

accepted, NEO is sequentially consistent.

Proof. We divide our proof into two cases, without and with rollback. NEO uses a mutually
agreed upon tie-breaking mechanism to order all events that occur in round j. We assume

the current round is k.

(i) No roliback: Without rollback, the NEO event horizon must be at round k£ — 2. Since

we assume that all updates have been accepted from all players, then all updates will
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appear in global sequence to all players. Rounds prevent a re- ordering of events,
and thus the sequence of events generated by players will be interleaved in the global

sequence of events. Thus, NEO is sequentially consistent at round k — 2.

(ii) With rollback: With rollback, the NEO event horizon is at some round r < & —
2. Thus, all updates for rounds prior to v have been accepted by all players. All
updates from all players appear as a global sequence consisting of an interleaving of
the sequence of events generated by individual players. Thus, NEO is sequentially

consistentatround r < k — 2.

O

Definition 3.3.9. We define a partition to be a subgroup of players in the game who are
able to send and receive messages within a time bound of A. If A > r, where r is the round

length, this partition is unable to participate in NEO and removed from the game.

Definition 3.3.10. We define a majority partition to be a partition in the game which has

m out of n total players in the game, where m > |n/2] + 1.

We assume that a majority partition in the game exists. If a majority partition does not
exist, NEO cannot achieve majority game consistency. However, we assume that players in
a partition will eventually decide that players outside of the partition are no longer reach-
able, and remove them from the game. At that point, the partition will become a majority

partition and the following proofs hold.

Theorem 3.3.11. Prior to the NEO event horizon, NEO provides majority game consis-

tency lo a majority partition in the game,

Proof. We divide our proof into 3 cases, the first without rollback, and the last two with
rollback. Recall that in round £ all players send out the digital signatures of their updates
and in round £+ 1 all players send out the plain- text hashes and the vote vectors represent-
ing which signatures were received in round k. Because we assume no collusion occurs,
we assume that a majority of players do not lie about which updates were received. We
also assume that we have n players and the majority m equals |n/2] + 1. We assume the

current round is k.
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No rollback: Player A receives all the digital signatures in round £ — 2 and all the
plain- text updates and vote vectors in round £ — 1. Majority game consistency is
achieved for this player because she can tally the vote vectors received by each player
and accept those updates receiving a majority of votes while rejecting those updates

receiving a majority of negative votes.

If a player is only missing a minority of either the digital signatures or plain- text
updates with vote vectors, then as long as the player still receives a majority of accept
or reject votes for each update, then the player will still correctly decide which events
are valid because all players receiving the majority will have decided on the same

course of action.

With rollback, majority partition: Player A does not have a majority of positive or
negative votes but has received update u, or Player A has not received update u but
has received a majority of accept votes for update u. In both situations, Player A must
either recover enough votes from other players or must recover update u,. Without a

loss of generality, we assume that Player A is at the NEO event horizon at round 7.

Assume that Player A is in a majority partition, she has to recover enough votes to
decide on update u, and that she has received p accept votes and g reject votes for
the update. Then, Player A must recover either m — p accept votes or m — g reject
votes. By definition of Player A being in a majority partition, she only needs to
contact Player B in the majority partition who has already decided on update v, (and
by definition of the NEO protocol, can provide u and digital signature as proof of the
validity of u).

In fact, if the majority partition has 0 > m players in it, then any player that Player
A contacts has a probability of m/o to have already decided on u. Once Player A
contacts at most o — m other players in the majority partition, she can decide on
update u,. By definition of the majority partition, Player A can indeed contact o — m
other players and therefore majority consistency can be reached for round r when all

such players decide on u,

If Player A is not in a majority partition, her updates and votes cannot influence the
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decision to accept or reject update u, at round r. Thus, the majority of players in
the majority partition will achieve majority game consistency without Player A for

round r.

(iii) With rollback, non-majority partition: Player A does not have a majority of positive
or negative votes but has received update u, or Player A has not received update u
and has received a majority of accept votes for update u. In this case, Player A is
unable to reach any player in a majority partition, thus she cannot achieve majority
consistency. Eventually, Player A will reconnect with the majority partition or her
partition will remove the other players from their game and her partition will become

a majority partition, at which point cases (i) and (ii) hold.

O

We now show the safety and liveness of NEO. The safety of NEO ensures that no error
condition arises during the execution of the protocol, while livenessensures that the protocol
does not halt. The purpose of NEO is to maintain consistency, therefore we assume the error

condition that may occur is that players in the majority partition become inconsistent.

Lemma 3.3.12. The NEO protocol is safe; therefore, no error condition occurs for players

in the majority partition.

Proof. By Theorem 3.3.11, NEO provides majority game consistency to a majority parti-
tion in the game. Thus, NEO is safe. O

Lemma 3.3.13. NEO is always live, thus, rounds advance monotonically with real time.

Proof. By Theorem 3.3.7, the NEO event horizon advances monotonically with real time.
Thus, NEO is live. O

Finally, we show that NEO provides majority game consistency at the end of the game.
In other words, when the game ends, the NEO event horizon will eventually reach the end

of the game and all players will be majority game consistent.

Lemma 3.3.14. NEO provides majority game consistency at the end of the game.
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Proof. By Theorem 3.3.11, majority game consistency exists prior to the event horizon. By
Theorem 3.3.7, the event horizon advances monotonically with time. By Lemma 3.3.13,
we know NEO is live, therefore, when the game ends, the event horizon will eventually
reach the final round of the game. Thus, NEO provides majority game consistency at the

end of the game. a

3.3.3 NEO Security

NEO is resistant to all of the protocol level cheats listed in Table 2.2, including the time-
stamp cheat, the suppressed-update cheat, the fixed-delay cheat, the inconsistency cheat,
and the collusion cheat. Our holistic design of NEO which addresses the problem of real-
time event ordering and cheating prevents the protocol level cheats through fixed-length

rounds and majority voting.

Timestamp Cheat

The timestamp cheat is prevented by NEO through its use of rounds and cryptographi-
cally secure hashes. In the timestamp cheat, a player sets the timestamp of their next update
to occur before the timestamp of an update they have just received. This allows the move
to occur before the other move a player has just received. With NEO, players send a secure
digital hash of a move before the plain-text move is revealed. Thus, by the time a player
receives the plain-text update, it is too late to change the timestamp on the move they have
already committed by sending the hash the previous round. Any changes in the move they
had committed to previously will result in a different hash and therefore other players will

discover that the player is cheating.

Suppressed-Update Cheat

The suppressed update cheat is prevented by NEO through its use of fixed-length rounds.
In this cheat, players purposely drop packets (typically for several seconds) in the game to
receive an unfair advantage over other players. In NEO, the round length determines the
maximum amount of time any player will wait for a packet from another player. If a major-

ity of players do not receive the suppressed update on time, then they will simply ignore the
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move and assume that player did nothing for that round. In this case, the cheating player
gains no advantage by suppressing updates.

In the case where one player suppresses updates to a minority of players, NEQO is ca-
pable of recovering the missing updates within 2 round lengths. Since suppressed updates
are most effective in games requiring a low-latency, we can assume the round length will
be short to accommodate the game, and thus the missing updates will be recovered in time

to make the cheat ineffective.

Fixed-Delay Cheat

In the fixed-delay cheat, players purposely add a fixed amount of delay to outgoing
or incoming packets. If we assume that as long as packets which arrive within the round
will not somehow give a player an unfair advantage over another player, then NEO pre-
vents this cheat through the use of fixed-length rounds. The most a player would be
able to delay incoming or outgoing packets would be d, where d is a delay such that
d + latency_to_player < round_length. If the packet is delayed beyond that, the other
players will vote that it was not received on time. On the other hand, if the packet arrives
on time even with added delay, it will not give the player an unfair advantage since it can
only be delayed less than one round length in duration.

We can assume that packets that arrive within a round do not give a player an advantage
over another player because the use of fixed length rounds changes the concept of time in
the game from being completely continuous to being discrete. As such, the only possible
time that a move occurs at is at the start of a round, regardless of when the update arrived
during the previous round. For example, assume that a round has duration d, begins at time
t and ends at time ¢ + d. Even though an update may arrive at ¢t + k, where t + k < t + d,
the move actually occurs at ¢ + d, not ¢ 4 k. Thus, the fixed-delay cheat is unable to give a

player an advantage.

Inconsistency Cheat

In the inconsistency cheat, players send two different updates to two different players.

For example player A sends update U to player B and update U’ to player C. Note that this
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problem is the distributed consensus problem. All non-faulty players should agree on the
value proposed by A. In order to prevent this cheat, players need to exchange information
regarding other players’ moves.

We propose two different techniques to prevent the inconsistency cheat. In the first
technique, players simply exchange the digital hashes of moves by other players instead of
a vote that a move occurred. In essence, the bit-vector of votes is replaced by a list of hashes
received the previous round. With this added information, players that send two different
hashes for a round can be discovered. Indeed, in one round, at least one player will discover
that the player has cheated and can report this information to the other players. The main
drawback with this technique is the increased amount of overhead in each packet to send
the hashes instead of the bit-vector.

In the second technique, players keep a log of all committed moves and hashes and
they pericdically perform a cryptographic hash of the state of the game and exchange those
hashes. If the hashes do not match, then we know someone has attempted the inconsistency
cheat and we can exchange logs of moves to determine who the culprit is. The frequency
that we perform game state hashes depends on how quickly we want to catch potential
cheaters and how much storage we want to allocate for committed moves. The technique
of periodically hashing the game state has precedence in Age of Empires |67, though the
game did not try to determine who the cheater was. The drawback of this technique is that
depending on the amount of game state that needs to be hashed, the cost of hashing might

be computationally expensive to perform frequently.

Collusion Cheat

In the collusion cheat, several players agree on some action that gives them an unfair
advantage over the other players. The main collusion cheat that is possible in NEO is the
modification of the voting bit-vectors. For example, a group of players lies and states that
they did not receive a particular player’s updates causing those updates to be rejected.

This cheat is only possible in NEO if a majority of players are colluding. However, few
secure systems remain secure when a majority of participants are colluding in the system.

In the unlikely event that a majority of players collude, NEO cannot prevent it.
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On the other hand, out-of-band techniques can reduce this possibility. For example, we
can prevent users from having more than one ID through authentication so that they cannot
artificially create a majority on their own. With commercial games, IDs are tied to credit
cards, thereby limiting the number of [Ds any one person can have. Further, if collusion is
a problem, we could require that packets be received by |n/2| + k of the n players instead

of only |n/2| + 1, where k is adjusted to make gaining a majority more difficult.

3.4 NEO Real-time Responsiveness

The primary goal of NEQ is to be playable, which encompasses consistency, resistance
to protocol level cheats, and real-time responsiveness. We define NEO real-time respon-

siveness as having three characteristics:

1. Update Frequency: A game protocol needs to be capable of sending and receiving
updates each second at a frequency specific to the game archetype it was designed

for under various network conditions.

2. Playout Latency: A game protocol needs to be capable of sending and receiving
updates within a given latency specific to the game archetype it was designed for

under various network conditions.

3. Rollback: A game protocol needs to keep rollback at a minimum since this effects a

player’s performance in the game,

These three metrics are vital for a game protocol to have real-time responsiveness. A
protocol that does not attain the update frequency or playout latency specific to the game
archetype it was designed for will not be playable to the participants of the game. A proto-
col which is subject to frequent or long rollbacks will hamper the players’ ability to play the
game since they will not be able to accurately predict the movement and behavior of other
players. Table 3.3 lists the update frequency, playout latency and rollback percentages that
NEO needs to achieve for real- time responsiveness.

The real-time responsiveness of NEO is affected by several variables, including the

overhead of NEO, the ability to pipeline updates, and network conditions. We explore



54

the first two variables, overhead and pipelining, and then address network conditions in
Section 3.5.

TABLE 3.3: Playable parameters for games: Playable update frequencies, playout latencies, and
allowable rollback percentages for standard multiplayer game archetypes. While a higher update
frequency, lower playout latency and zero rollback is always desired, these values represent reason-
able values that protocols should target for real-time responsiveness from a player’s perspective.

Archetype Update Frequency Maximum Latency  Allowable Rollback
First-person/Racing  10-20 updates/s 100ms 3%
Role-playing Games  5-10 updates/s 250ms 5%

Real-time Strategy 5-10 updates/s 250-500ms 5%

3.4.1 NEO Overhead

The NEO protocol naturally has more overhead than simple distributed protocols or
client/server protocols. The overhead in NEO is due to two main factors. First, NEO is
resistant to the timestamp cheat. Like the Lockstep protocol, NEO first sends a hash of
the update followed by the plain-text update [3]. In addition, NEO uses a majority voting
system for consistency and cheat-prevention. This adds an additional amount of overhead
to each update.

If we take a base protocol that simply unicasts updates to all players, we can calculate
the amount of data that would need to be sent by each player. Assume that each player
samples input and sends an update 7 times per second. Each update is unicast to the other
n — 1 players. The payload of each update is p. The amount of data sent and received by
each player is then rp(n — 1) + rp(n — 1) = 2rp(n — 1) = O(n). Of course while this base
protocol is O(n), the hidden 2rp constant cannot be easily ignored. Without multicast, this
is the minimum amount of data that will be sent with a peer-to-peer protocol and serves as
a baseline for comparison with other peer-to-peer protocols.

NEO adds a digital signature and a digitally signed vote vector to the baseline traffic.
The size of the digital signature depends on the size of the encrypted hash using public-
key cryptography. A typical cryptographically secure hash, such as SHA-1 or SHA-256,
requires 256 bits for the hash. Public-key cryptography encrypts messages into blocks
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based on the size of the key. For example, RSA’s algorithm encrypts messages into 128-

byte blocks. We will simply refer to the size of the signature as k.

The vote vector increases in size depending on the number of players in a NEO group.
Using a single bit per player, the vote vector adds O(n) to each update. For explanatory
purposes, we refer to the vector size as v. Thus, the total cost of NEO per second, where p
is the payload size and r is the number of updates each second, is r(k +p + v}(n — 1) +
rk+p+v)(n—1)=2r(k+p+v)(n— 1) = O(n?). Again, we cannot easily ignore
the 2r(k + p) hidden constant, but we can see that NEO adds an additional order n cost for

secure, real-time event ordering for peer-to-peer games.

3.4.2 NEO with Pipelined Rounds

In the basic protocol, the delay from each player to the majority of other players is
bounded by the duration of the round. Increasing the round length increases the length of
time which the game must dead-reckon the positions and actions of other players. Dur-
ing this period of time, player input is ignored and the game may be inconsistent with the
true state of other players. To address these problems, NEO can pipeline its rounds, sim-
ilar to the technique of pipelining instructions in a processor and to the SP protocol |60].
The pipeline depth is related to the round duration and the update frequency, as seen in

Figure 3.3. This relationship can be expressed in the following formula:

d durati
pipeline depth = round duration

update frequency (3-3)

This formula has two important properties. First, the pipeline depth is | whenever the
update frequency is equal to the inverse of the round duration. In essence, the basic NEO
protocol has an update frequency of 1/R, where R is the round duration. Second, if the
pipeline depth is not an integer, then sending the vote vector and plain-text update at the
start of each round will increase the playout latency. Alternately, one could decouple the
sending of the plain-text update and vote vector from the signatures by sending out the
plain-text update and vote vectors after /£ has passed from the start of the round which the

update belongs to.
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We can now generalize Equation 3.1 using the pipeline depth d, round number r for

player A in the following equation:
My = E(Sa(U}), K574, Sa(Vi™?) (3.4)

Using pipelined rounds does not significantly change our basic protocol:

1. Signatures of updates are sent f times per second, where f is the update frequency,

instead 1/ R times per second, where R is the round duration.

2. Plain-text updates and vote vectors for round occurring at time ¢ are not sent until the

round occurring at time ¢ 4 12, where R is the round duration.

A dependency exists between the end of the round that the signature of an update is sent
out and the beginning of the round that the plain-text update is sent out (see Figure 3.3).
Similar to a dependency in a processor pipeline where we must wait until the dependency
has passed to execute a new instruction, we must wait until the round containing the signa-
ture has passed before we can send the plain-text update. For example, if a round starts at
t=80ms and the round duration is 120ms, then the plain-text update must not be sent until
t=200ms.

As the sending rate of updates increases, the real-time responsiveness and visual smooth-
ness of the game increase. Pipelining allows us to increase the update frequency at the
expense of sending more data. A game which needs a high update frequency can achieve
this through pipelining without the need to artificially lower the round length. For example,
a game may send 20 updates per second. This would require a round length of 50ms, or
approximately a 100ms round-trip time between peers. However, if the game can tolerate
a playout latency of 200ms, NEO can use a pipeline depth of 2 so that 20 updates are still

sent per second while the round length is 100ms.

3.5 Performance Experiments

Our experiments are divided into three parts to test NEO's viability as a game network-

ing protocol. In the first set of experiments, we compare NEO to Baughman and Levine’s



57

j«— round length —>| Time dependency between
] signature and

¥ | Signatureforr... | plain-text update

| Signature for r+1 ... |

]
ignature for r+2 ...

PRy

pipeline
depth

Signature for r+4,
v plain-text update for r

time 0=

e

FIGURE 3.3: Pipelining rounds in NEQ: The plain-text update cannot be revealed until the round
that its signature was sent has completed.

Lockstep protocol [3]. We measure the playout latency and update frequencies of both
NEO and Lockstep given packet loss and delay over the network in order to demonstrate
that Lockstep is not a playable protocol because packet loss and delay cause unacceptable
playout latencies and update frequencies. After this comparison, we no longer consider

Lockstep in our simulations.

In the second set of experiments, we examine the effects of NEO group sizes on update
frequency, playout latency, and rollback. We show that as we increase the group size, the
playability of NEO only decreases slightly. This is because the amount of data sent by a
NEO player increases proportionally with the number of players in the group. However,

given sufficient bandwidth, NEO group size does not effect the playability of the protocol.

In our last set of experiments, we explore NEO’s scalability by giving NEO an average
data payload size and bandwidth and plotting the resulting NEO group size attainable under
those conditions. Given that new broadband Internet connections are scaling to several

megabits per second, NEO will easily scale to over 100 players.
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3.5.1 Methodology and Metrics

We developed NEO and Lockstep on top of the ns-2 simulator |72], using packet level
traces and logs to measure the capabilities of both protocols. ns-2 is a widely used packet-
level network simulator that allows us to study the effects of dropped or delayed packets
on the performance of the protocols.

For all of our simulations, we used an Internet topology where a central node acts as
the Internet cloud connecting all other nodes. A diagram of the topology is in Figure 3.4.
More complex topologies would have introduced changes in the distribution of packet loss
and latencies, but would have had little effect on the protocols since neither Lockstep or

NEO is sensitive to these effects.

Internat Player 4

FIGURE 3.4: NEO simulation topology: For our simulations, we connected 1 to n players to-
gether in a NEO group, each connected to the Internet cloud. Latencies from the players to the
Internet varied by experiment.

We use three metrics to measure NEO’s real-time responsiveness: update frequency,
playout latency, and rollback. As discussed in Section 3.4, the update frequency is a mea-
sure of how many updates are received each second. The playout latency is a measure of

the delay from when an update is sent to when it can be committed for the player. Rollback



59

has two facets, the number of rollbacks that occur and the length of time that a player must

rollback. Excpected values for these metrics are listed in Table 3.3.

3.5.2 NEO and Lockstep

Our first set of experiments compare NEO and Lockstep by measuring the update
frequency and playout latency of both protocols when they experience increased delay
and packet loss on the network. Because Lockstep is the only other protocol resistant
to protocol-level cheating, we must compare both protocols’ playability. If Lockstep is
playable, then NEO is not needed for distributed, multiplayer games.

Our hypothesis is that Lockstep is not a playable protocol, as defined in Section 3.1,
because of its stop-and-wait design which will cause it to have intolerable update frequen-
cies and playout latencies when it experiences packet loss and increased delay. NEQ, on
the other hand, relies on majority voting and will be playable under adverse network con-
ditions. To test our hypothesis, we designed two experiments. Using a group of Lockstep
players and a group of NEO players, we simulated packet exchanges over our simulation
topology and inserted packet loss and increasing delay over a single link. Packet loss and
increased delay would occur, for example, if a player began experiencing congestion over

the network.

Playout Latency and Increasing Delay

Our first experiment was designed to test the affects of packet delay on the playability
of NEO and Lockstep. We simulated a group of players communicating over the Internet
using our topology from Figure 3.4 and we increased the latency of a single player from
20ms to 1000ms. All other players had a 20ms delay to the Internet. In addition, all players
had sufficient bandwidth so that bandwidth limitations would not affect our results. This
means that the minimum delay between any two players is 40ms, but may be higher due to
the increased latency of our chosen player. Table 3.4 lists our experiment paramters.

Figure 3.5 plots the playout latency of NEO, Lockstep, and desirable playout latencies
of FPS, RPG and RTS games archetypes (taken from Table 3.3). Note that in this figure,

lower playout latencies are better. NEO is able to maintain a playout latency that is suffi-
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TABLE 3.4: Experiment parameters for NEO with increasing delay.

Delay from Internet to players: 20ms
Increasing delay from Internet to one player: 20ms — 1000ms
NEO round length: 50ms

NEO pipeline depth: 1

Round length and pipeline depth adjustment: none
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FIGURE 3.5: Playout latency of NEO and Lockstep: NEO maintains a playout latency suitable
for FPS, RPG and RTS game archetypes (lower is better). Lockstep’s playout latency depends on
the maximum latency between any two players, therefore the increased delay of a single player
prevents it from achieving a low enough playout latency for FPS. Furthermore, once the maximum
latency to any player exceeds 80ms, it is no longer playable for RPG and RTS games.

cient for all game archetypes, while Lockstep cannot. In fact, Lockstep’s playout latency
will always be 3 times the maximum latency between any two players due to its use of
reliable transport. In this case, our single player with increasing latency causes all players

in the game to have a poor playout latency.

NEO can maintain a low playout latency because of its design. The majority voting
mechanism frees the group from having to wait for the updates from players who might
have late packets because unless an update was received on time by a majority of players,

it will simply be ignored. With NEO, the playout latency increases only until the single
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player is beyond the maximum round length. At this point, the playout latency drops back
down to its expected value, about 2 times the round length. Once the single player is beyond

100ms, her moves are dropped by the other players.

Update Frequency and Increasing Delay

In our second experiment, we look at the update frequency of NEO and Lockstep with
increasing delay. Using the same simulation setup (Table 3.4), we measured the number of
updates per second to understand how increased delay can affect the playability of NEO and
Lockstep. Examining Table 3.3 shows that we would like our game protocols to achieve 20
updates/second for FPS-type games and 5-10 updates/second for RPG and RTS games.

The results of our experiment can be seen in Figure 3.6. This figure shows that NEO is
capable of achieving the update frequency necessary for FPS, RPG and RTS games, even
when a minority of players are experiencing delays of up to 1 second. On the other hand,
Lockstep is not playable for any of the game archetypes; if any player has more than a

100ms delay, Lockstep only sends 3 or fewer updates per second.
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FIGURE 3.6: Update frequency of NEO and Lockstep: As delay is increased, NEO can maintain
a high update frequency, making it capable of being used for FPS, RPG, and RTS games (higher is
better). However, Lockstep is incapable of achieving the needed update frequencies for FPS, RPG,
or RTS games.
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TABLE 3.5: Experiment parameters for NEO with packet loss.

Delay from Internet to players: 20ms
Packet loss: 0-10%
NEO round length: 50ms
NEO pipeline depth: 1

Round length and pipeline depth adjustment: none

NEQ's superior performance over Lockstep is due to its majority voting mechanism.
Lockstep must stop and wait for the verification of each update to be received by all players
before sending out future updates. This means that the slowest connection between any two
players determines the maximum number of updates that can be sent each second. NEO, on
the other hand, uses its majority voting mechanism to decide in a distributed fashion which
updates are valid. Even though a minority of the players’ updates may have arrived late,
NEO can stili decide which updates are valid so that a majority of players send a sufficient

number of updates each second.

Update Frequency and Packet Loss

In order to understand the effects of packet loss on the update frequency of NEO and
Lockstep, we designed an experiment which increased the packet loss on the network from
0 to 10%. Using our Internet topology, we ran both protocols and measured the update
frequencies achieved during packet loss. Table 3.5 lists the parameters for the experiment.

Figure 3.7 shows that as we increase packet loss, the update frequency of NEO remains
mostly constant (though it drops slightly) while the update frequency of Lockstep drops to
an insufficient level. The impact of a lost update can have a dramatic effect on Lockstep
because the protocol must decide when to try to recover the missing packet. Using TCP,
this could take as long as a few seconds.

NEO maintains an update frequency that supports the three main archetypes of games
under a packet loss of 10% and below. Because a packet only has to be recovered if a
majority of players received it, many lost packets do not need to be recovered as Figure 3.7

shows,
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FIGURE 3.7: Update frequency of NEO and Locksiep with packet loss: As packet loss increases
NEO maintains a high update frequency because the game can progress even when packets are lost,
making it suitable for FPS, RPG and RTS game types (higher is better). Lockstep, on the other hand,
has to wait for lost packets to be recovered, and therefore cannot maintain a high update frequency.

Lockstep’s update frequency is insufficient for supporting the main multiplayer game
archetypes when packet loss occurs. This is due to the fact that when a packet is lost, all

players must stop and wait for it to be recovered before continuing the game.

Playout Latency and Packet Loss

Our fourth experiment was designed to compare the playout latency of NEO and Lock-
step when they experience packet loss. Our hypothesis is that NEO will be able to compen-
sate for packet loss and maintain a sufficiently low playout latency for all game archetypes,
while Lockstep’s playout latency will suffer because of its stop-and-wait mechanism.

Using the topology from Figure 3.4 and the paramters from Table 3.5, we simulated a
group of NEO and Lockstep players communicating over the Internet while experiencing an
end-to-end packet loss between 0 and 10%. Figure 3.8 shows the results of this experiment.
The error bars on the graph display the 95% confidence interval on the average taken.

Lockstep demonstrates two trends. First, it consistently has a worse playout latency

than NEO. Second, its round lengths fluctuate wildly under packet loss. This trend is due
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FIGURE 3.8: Playout latency for NEO and Lockstep witl packet loss: NEO consistently remains
playable for FPS, RPG, and RTS type games with very little variation in the playout latency. Lock-
step has a large variation in playout latency and is only capable of being playable for RPG and RTS
style games when packet loss is below 7%.

to the use of reliable transport which must determine when a packet has actually been lost.
End-to-end packet loss that exceeds 7% will cause Lockstep to be unplayable for FPS, RPG
and RTS game archetypes.

NEO performs well, keeping its playout latency fairly constant for all players, even in
the face of packet loss. NEO performs so well even under higher packet losses because
its voting mechanism can mask those losses. If a packet is received by a majority of play-
ers, then only the minority of players which didn’t receive it are required to recover it.

Therefore, only a minority experience a larger playout latency for those updates.

Discussion of NEO vs. Lockstep

Our experiments show that NEO, even with packet loss and increased delay, remains
playable for the three main game archetypes. NEO is capable of sending a sufficient num-
ber of updates within the time limits required by FPS, RPG and RTS games.

Our experiments also show that Lockstep is not playable for FPS, RPG, and RTS games

given the same network conditions that NEO was subjected to. If the one-way latency
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between any two players exceeds 40ms or if the packet loss on any link exceeds 2 or 3%, a
game using Lockstep will quickly become unplayable.

One might argue that we can modify Lockstep to drop the player with the large latency.
However, this is not a trivial problem because a player may be experiencing transient con-
gestion leading to delay and loss. Dropping players and having them rejoin could also lead
to instability in the protocol and exacerbate network conditions with an influx of traffic
generated by joining the group. NEO handles this problem problem by ignoring delayed or
lost packets while preventing cheating so that other players can continue to play the game.

NEO bounds the playout latency by the round length. If a player experiences temporary
congestion, and therefore increased delay above the round length, then updates generated
by the player will likely be dropped by the other players. Moreover, the player only needs
to have her delay less than the round length for a majority of players (i.e., more than 50%).
Finally, the other players are not affected by the latencies of those with large delays. In-
deed, unless a majority of players are experiencing delay above the round iength, then the
protocol will progress smoothly for a majority of players.

In the case of packet loss, Lockstep suffers because it must predict when a packet is
lost and when it is just late. TCP and other reliable protocols have a similar problem and
have been the subject of research for years. If we shorten the time that Lockstep uses to
determine that a packet is lost, packets which are just late may be incorrectly thought to be
lost, with the result that Lockstep will generate additional traffic for packet recovery.

NEO uses the round length to determine if an update is lost. The difference between
NEO and Lockstep is that an update in NEO does not necessarily need to be recovered,
unless it was received by a majority of players. Thus, many packets that are lost are not

recovered. Furthermore, rounds continue even as the update is recovered.

3.5.3 NEO Group Performance

Now that we see that NEO is capable of remaining playable given packet loss or in-
creased delay, we examine the effects of group size on NEO performance. We simulate
between 10 and 100 players over the simulation topology from Figure 3.4, and add be-

tween 0 and 10% packet loss to the network. We examined three metrics of playability:
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update frequency, playout latency, and rollback. The parameters for our experiments are
listed in Table 3.6.

TABLE 3.6; Experiment Parameters for varying NEO Group Sizes.

NEO group size: 10, 25, 50, 75, 100
Delay from Internet to players: 20ms

Packet loss: 0-10%

NEO round length: 50ms

NEO pipeline depth: !

Round length and pipeline depth adjustment: none

Neo Group Size and Update Frequency

In our first experiment, we measure the update frequency of NEO given a group size
of 10, 25, 50, 75, or 100 players. Our hypothesis is that NEO group size would not sig-
nificantly affect the performance of the protocol assuming each NEO player had sufficient
bandwidth.

Figure 3.9 shows that NEO group size does not significantly affect the update frequency
of the protocol. The downward trend of each line is due to the increased packet loss, which
causes some updates to be recovered and reduces the update frequency (since those updates
are lost). In all cases, the average update frequency is higher than 20 updates/second,
desired by FPS games and higher than 10 updates/second desired by RPG and RTS games.

Neo Group Size and Playout Latency

We next studied the effect of group size on the playout latency of NEO. Our hypothesis
is that NEO group size would not significantly affect the performance of the protocol,
assuming each player had sufficiently low latency to meet the round length. Parameters for
the experiment are listed in Table 3.6.

Figure 3.10 shows that NEO is capable of maintaining a sufficiently low playout latency
even with 100 players and 10% packet loss. As with the update frequency experiments, the
upward trend of the data lines is due to the increased packet loss, and not the increased

number of players.
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FIGURE 3.9: Update frequency of various NEO group sizes with packet loss: NEO's update
frequency is not significantly affected by increasing NEO group sizes even with a packet loss of up
to 10% (higher is better), though the downward trend of each line is a result of increasing packet

loss. Note that with FPS games, we hope to achieve 20 updates/second, while with RPG and RTS
games, we hope to achieve 10 updates/second.
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FIGURE 3.10: Playout latency for various NEO group sizes with packet loss: NEO’s average
playout latency is not significantly affected by increasing NEO group sizes with packet loss (lower
is better). Note that with FPS games, we hope 1o achieve a playout latency of 100ms or less, while
with RPG and RTS games, we hope to achieve a playout latency of 250ms or less.
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NEQ Group Size and Rollback

In our final set of experiments with NEO group sizes, we examine the effects of NEO
group sizes on rollback. Rollback occurs when a late update arrives, but is valid. In this
case, the simulation must rollback time to when the late update occurred, insert the update,
and instantaneously replay all successive events to the current time in order to maintain
consistency with the other players. Two aspects of rollback must be measured: how much
rollback occurs as a percentage of total updates, and how large a rollback is on average.

The parameters for our experiments are listed in Table 3.6,

The results from our simulations can be seen in Figure 3.11 and show that rollback
increases as packet loss increases, though group size seems to have little effect on the
amount of rollback that occurs. In fact, our results show a trend that the amount of rollback
is approximately 1/2 * packet_loss. This trend may be a result of the use of uniform packet
loss. Since each player unicasts their update each round in NEO, at least half of those
unicast packets would need to be lost in order for the update to be ignored. Thus, rollback

increases linearly with packet loss.

One difficulty in designing this experiment, is that no research has been done to date
that measures how much rollback is acceptable by players of FPS, RPG, and RTS games.
The lines in Figure 3.11 representing FPS, RPG, and RTS games are guesses on what
acceptable rollback might be. For a FPS game, where refiexes are important to the outcome
of the game, we assume a 3% rollback (1 in 33) would be the maximum tolerable rollback.
For RPG and RTS games, we assume that a 5% rollback (1 in 20) would be the maximum
amount of rollback. Figure 3.11 shows acceptable amounts of rollback for all genres when

the packet loss is less than 6%.

In addition to the percentage of updates that must be rolled back, we also measure
how far we have to rollback the updates. Smaller rollbacks can be easily masked by the
game through dead-reckoning, or ignored altogether if a more recent update overrides a

late update.
Figure 3.12 shows that the number of players appears to have no effect on the amount
of rollback that occurs. The deviation from the average increases as packet loss increases,

but in general, rollback is less than one round length.
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FIGURE 3.11: Rollback required as NEO group size increases: Group size appears (o have
little effect on the percentage of rollbacks that occur, but increases with packet loss (which is ex-
pected). The lines representing FPS, RPG and RTS games are guesses on the percentage of rollbacks

tolerated.
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FIGURE 3.12: Length of rollback as NEO group size increases: Group size appears to have little
effect on the amount of rollback that occurs, The 'No Rollback’ line indicates the maximum amount
of time an update can arrive without being considered 'late’. 'Max Rollback’ is the maximum
amount of time that any update will be late since it can the update can be routed through another

player.
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3.5.4 How Well Does NEO Scale?

In our final analysis of the NEO protocol, we investigate the scalability of NEO. We
look at how large NEO groups can be given bandwidth restrictions, average packet sizes,
and update frequencies. Given n players, we know that NEO packets are O(n?) in size. In
our analysis, we answer what this means in terms of today’s bandwidth and conclude that
NEO can support up to 64 players over a |Mbps link with 10 updates/second and up to 128
players over a |Mbps link with 5 updates/second.

Methodology

We performed an analysis on NEQ’s scalability by first developing a formula that relates
bandwidth to group size and packet payload sizes. Given n players and a payload size of
m, the size of a single NEO packet is p = m -+ n. Each round, a player sends n — 1 packets
of size p (to every other player) and receives n — 1 packets of size p (from every other

player), thus the total required bandwidth is:

B=(n-1s*p+(n—1)=p
=2np—2p
=2n(m+n) —2(m +n)
=2(mn+n*~m—n)

B represents the amount of data sent for each update. However, the amount of data
that NEO sends also depends on the number of updates sent each second. Thus, if f is
the frequency of updates each second, then a single NEO peer will need to fB bytes each
second.

By solving for n, we can determine how much bandwidth is required given a NEO

group size of n. Thus, we get®:

(1—-m=x+V1+2B 4 2m +m?)

b -

n=

SWe ignore the negative root of this equation since we cannot have fewer than 0 players.
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To determine the payload size, we look at previous measurement studies of multiplayer
games that examine the packet sizes produced by players. In one study, the mean packet
size was 40 bytes [73] while in another study, measurements showed that over 97% of all
packets were 31 bytes or less and 99% of the packets were 50 bytes or less |74]. Thus, we
chose a range of 20 to 100 bytes.

We distinguish between packet size and payload size because with NEO, the packet size
changes, depending on the number of players and how many updates we wish to send each
second. The payload size, as shown in our graphs, is only the amount of data relating to
the game that is transferred with each packet and is independent of the number of players
in a NEO group.

Update frequency was determined by the archetype of the game. If we look at Table 3.3,
we see that each type of game has a maximum latency tolerated. The inverse of this value
gives us the frequency of updates we would need to send to achieve that latency. Of these,
FPS and sports games have the most strict requirements and given the limit on human
reaction time, we use |10 updates/second as the maximum frequency that any game would
send need to send updates. A more common update frequency would be 5 updates/second,
covering most other classes of games. As such, we provide two graphs: one measured at
10 updates/second and the other measured at 5 updates/second. We expect the performance

of NEO to lie somewhere within that continuum.

Scalability Results

Figures 3.13 and 3.14 plot the results of our scalability analysis of NEO when we use a
payload size between 10 and 100 bytes and when we increase the bandwidth from 1 Kbps
to 10Mbps. Figure 3.13 demonstrates NEO group sizes when NEO is configured to send
10 updates/second-a rate sufficient for FPS games. Group sizes are represented by lines
and are ordered from left to right on the graph.

Figure 3.13 shows two things:

o NEO can support up to 64 players over a 1Mbps link and 128 players over a 7Mbps
link (a typical cable broadband download speed).

o The bandwidth required by a NEO peer increases as the NEO group size increases.
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FIGURE 3.13: Scalability of NEO with 10 updates/second: In this graph we see that the payload
size significantly effects the scalability of NEO. Given a 1Mbps link, NEO can support up 10 64
players which would be typical of FPS pames. At 7Mbps, NEO supports up to 128 players.

Figure 3.14 is a plot when NEQO is configured to send 5 updates/second, which is a rate
usable by RPG and RTS games. Group sizes, beginning with 2 players, are shown from
left to right. This figure shows that NEO can almost support 128 players with a IMbps and
can support up to 256 players with a 7Mbps link.

Scalability Discussion

NEQ’s scalability is limited by its packet size, which is O(n), where n is the number of
players in the game. Given that a player must send out n — 1 updates to the other players,
a single player generates network traffic that is O(n?). However, the typical payload of a
game packet is between 10 and 100 bytes. Given today’s broadband connection speeds,
NEO can support games between 64 and 128 players.

Note that in our analysis, we calculate the total bandwidth required by a peer. A typical
Internet connection has separate upload and download speeds. For example, in Figure 3.13,
we see that with a 7Mbps link, we can support up to 128 players with 10 updates/second.
This requirement is split evenly between upload and download speeds (NEO sends n — 1

udpates and receives n — 1 updates each round). Thus, our Internet link would need to have
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FIGURE 3.14: Scalabilty of NEO with 5 updates/second: In this graph we see that by reducing
the number of updates/second to 5, we can cffectively double the number of players supported at
a given bandwidth; at IMbps NEO supports 128 players while at 7 Mbps it can support up to 256
players. This reduced update frequency is more typical of RPG and RTS games,

a 3.5Mbps upload/3.5Mbps download speed. In the next chapter, we discuss how to scale
cheat-proof event ordering beyond the small groups that NEQ is capable of.

3.6 Conclusion

Scalable, cheat-proof and real-time event ordering is a difficult problem that needs to
be solved in order to realize peer-to-peer MMOGs. NEO solves one piece of this problem:
cheat-proof and real-time event ordering. To achieve this, NEO uses a majority voting
system with cryptography and maintains majority game consistency between peers. This
prevents peers from cheating while maintaining consistency as our proofs demonstrate.

Our analysis and simulations show that while NEO does indeed have significant over-
head, NEO is capable of achieving a sufficient update frequency and low playout latency
while preventing rollback that would occur if all updates had to be accepted. NEO trades
bandwidth for real-time responsiveness. However, we feel that this tradeoff is acceptable

due to the fact that bandwidth on the Internet continues to increase exponentially while
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latency between hosts has a theoretical minimum of the speed of light and cannot be sig-
nificantly reduced in the future.

We investigated traditional concepts of consistency in distributed systems. Strict con-
sistency and Lamport’s sequential consistency are two modelis easily adapted to the needs
of multiplayer games. As a result, we created strict game consistency, where a single,
global sequence for all events is seen by all players. This model is particularly well suited
for client/server architectures, where the server orders all incoming events and informs the
clients of the result of that ordering. We also created sequential game consistency, which is
analogous to Lamport’s sequential consistency. In this model, the sequence of events is an
ordered, interleaving of events generated by the players. Baughman and Levine’s Lockstep
protocol |3] achieves sequential game consistency.

We created a new consistency model for games called majority game consistency. In
this model, the sequence of events only includes those events seen by a majority of players.
The advantage of this model is that it allows us to mask failures and delayed updates by not
waiting to include them in the final sequence of events. However, we can also extend this

consistency model and apply it towards traditional distributed systems:

Definition 3.6.1. Majority consistency: the result of any computation is the same as if all
reads and writes follow a sequential order, and only the reads and writes seen by a majority

of systems appear in that sequence in the order specified by its program.

We expect that this model of consistency for distributed systems would have similar
performance benefits to NEO when used over best-effort networks such as the [nternet.

In summary, our work with NEO has two important contributions:

1. We have expanded the traditional notions of consistency and applied them towards

games in the form of majority game consistency.

2. We have developed the NEO protocol, which addresses both low-latency event order-
ing and protocol level cheats. We analyzed NEO with an extensive set of simulations
to show that its performance is superior to prior work and will scale depending on

the available bandwidth of the players. We also proved its resilience to cheating.
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As discussed previously, NEO has limitations with its ability to scale. Under present-
day bandwidth levels, such as DSL, NEO can support up to 128 players over a 1Mbps
link. In the next chapter, we describe the N-Trees architecture and the notion of scoped
event forecasting which, when combined with NEO, provides a scalable communication

architecture for cheat-proof and real-time event ordering.
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CHAPTER 1V

N-TREES

4.1 Introduction

While NEO provides cheat-proof, real-time event ordering for peer-to-peer game archi-
tectures, its scalability is limited by the incoming and outgoing bandwidth of the majority
of peers in the game. This limitation is due to the fact that NEO requires all-to-all com-
munication. If we relax this constraint and still provide the security and real-time message
delivery of NEO, our system will be capable of scaling to a larger number of peers. Ac-
cordingly, we have created a hierarchical structure to organize peers, called an N-Tree, that
relies on NEO to provide cheat-proof event ordering within NEO subgroups in the game
while allowing events to be propagated quickly to affected subsets of peers in the game.

Previous work in scalable peer-to-peer games has used some form of application layer
multicast (ALM), such as the publish/subscribe system of Mercury [4] or region-based
multicast |6], which used Scribe over Pastry [14, 54|. These systems organize their dis-
semination paths based on the proximity of peers on the network, instead of the proximity
of peers in the virtual world. The result is that peers which are close in the virtual world,
but far apart in the network, will have to route messages over potentially long distances in
the underlying ALM structure to order events. Even though some of these systems guar-
antee O(lgn) application layer hops with n peers, even a few additional hops can add
considerable delay, making interactive event ordering infeasible.

As discussed earlier, traditional event ordering protocols for distributed systems, such

as the Paxos algorithm which only tolerates stopping failures, can require up to five rounds
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of communication |17] and do not scale. In fact, even without faults, distributed event
ordering requires at least 2(n?) messages per event and two rounds of communication
between all peers [29)].

N-Trees face the same challenges as did NEO. First, how do we order events and ensure
consistency between players? Second, how do we deliver messages in a timely manner and
keep the game responsive in real time? Third, how do we prevent protocol-level cheating?

N-Trees address these problems through a hierarchical structure and scoped events,
which help determine which subset of peers should receive an event. N-Trees are a gen-
eralization of the octree, from computer graphics [75], that recursively subdivide an N-
dimensional space. For event ordering, the N-Tree subdivides the application state space,
which is the application domain that all peers share and modify. In a peer-to-peer game,
the application state space is the virtual world; hence, the state space of computer games
can be naturally decomposed into an N-Tree.

Peers are organized into an N-Tree by their scope of interest in the virtual world. The
N-Tree allows peers to efficiently move to new locations, discover other peers that are in
close proximity, and propagate events to other parts of the virtual world. By joining the
N-Tree, peers know which peers are close by, and can therefore order events directly with
those peers without having to exchange events with other, further peers.

Peers generate scoped events, which are events that are labelled with a tuple represent-
ing the scope of impact that the event has in the virtual world. When a peer generates an
event, it uses the N-Tree to propagate the event to other peers within the event’s scope. If
the scope of the event is contained within the leaf node, then the peer only has to exchange
events directly with other peers in the leaf. By routing scoped events over the N-Tree, we
minimize the number of peers that are involved in event ordering. Finally, we develop a
new technique called forecasting to minimize the amount of rollback and determine which
events are valid in the N-Tree.

In this chapter we show that this architecture, which builds on NEO and uses N-Trees,
ensures that events are delivered in a timely manner to peers who need them while allowing
peers to move efficiently through the tree as they move in the virtual world. We formally
define the notion of majority game consistency as it relates to N-Trees and scoped events

and show that N-Trees satisfies this new notion of consistency. We show the results of an
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initial measurement study that looks at the characteristics of virtual populations in order to
create a model for MMOGs. With further measurements, this model can be used for future
simulations and reasearch. In addition, we have verify the performance of N-Trees through
a set of simulations that examine the height of the trees based on our simulation model. Our
results show that the maximum height is reasonable even with a non-uniform distribution

of players in the virtual world.

4.2 Related Work

N-Trees are designed to add scalability to the cheat-proof and real-time event ordering
that NEO provides. Prior research in this area has addressed scalability or consistency, but
has not addressed the problem in conjunction with cheating and low-latency event ordering.

We are interested in N-Trees because they are optimized for event propagation so that
the fewest number of nodes are contacted for event ordering. Existing peer-to-peer struc-
tures, such as Gnutella, Chord, CAN and Pastry |56, 12, 11, 54|, are optimized for fast
storage and retrieval of data using two functions, insert(key, value) and lookup(key). DHTs
do provide the kind of mapping we need for the application space — we might map the
application space to the key space of a DHT, for example. However, propagating events to
neighbors and relocating to new places in the DHT would be too slow for scalable event
ordering.

N-Trees have a similar advantage when compared to using application layer multicast
(ALM) such as Bayeux, CAN-multicast, Narada, NICE, and Scribe |23, 22, 21, 24, 14|.
Multicast is optimized to send as few messages as possible in one-to-many (or many-to-
many) communication. However, multicast trees are built based on end-to-end delays be-
tween hosts, not on the interests of group members. While multicast reduces messaging,
all messages are sent to all group members and filtering messages to relevant members is
not a trivial task. Further, in a peer-to-peer game, every member sends messages, requiring
a shared tree (such as HMTP |76]), or n source-specific trees. On the other hand, ALM
could be used in conjunction with N-Trees between leaders of each node in the tree, and

even between nodes in each small group, to reduce messaging.
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Prior research in scalable, peer-to-peer games has tried to address scalability, but has not
considered the problem of cheating. Mercury, for example, provides a publish/subscribe
architecture to support massively multiplayer online games (MMOs) |4]. In this architec-
ture, a multi-attribute query language is used so that game state is published in Mercury and
players receive a small subset of state changes according to their subscriptions; thus, the
total state that each player receives is reduced by Mercury. The primary difference is that
Mercury uses a DHT to store and route information while N-Trees build a domain-specific
tree. Joining an N-Tree at a particular node determines what data a peer receives, whereas
with Mercury the subscription determines what data is routed to a peer.

Knutsson et al. statically divide a world into regions and use Scribe to multicast mes-
sages to all members of a region [6]. Peers join the multicast tree of the region they are
interested in, but this also means that peers will have to forward unrelated traffic. This
occurs because peers are members of the underlying Pastry DHT and will likely be on the
path of other multicast trees (since a source-specific tree is built for each region). Further,
the static division of the virtual world limits the scalability of the system if some areas
suddenly become popular. N-Trees in this case could be used in each region to increase the
scalability of their work.

Baughman and Levine proposed the first peer-to-peer protocol, called Asynchronous
Synchronization (AS), that was built upon Lockstep to prevent the timestamp cheat |3].
However, AS is subject to both the fixed-delay and suppressed update cheats. Further,
simple collusion allows players to execute the timestamp cheat'. Furthermore, AS suffers
from a long playout latency when a single player begins to have significant packet delay or
loss.

Recently St. John and Levine designed Ghost as an extension to AS to handle variable
delays and partitions in the network |77]. Ghost handles consistency issues due to packet
loss or delays by allowing game states to diverge and grouping those players with the same
game state. Both Ghost and AS scale by being used with a statically or dynamically divided

virtual world, such as with Knutsson’s work |6], or at the leaves of N-Trees.

"The timestamp cheal occurs in the following manner: Player A receives a plain-text update from Player
B and forwards it to Player C before Player C should have received it. This allows Player C to alter her next
cvent to take advantage of the knowledge of Player B’s update.
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The idea of subdividing the virtual world to increase scalability has been around since
the 1990’s, when researchers were investigating Distributed Interactive Simulations |78,
79]. However, this related work focused on dividing the virtual world with a grid to form
cells, with each cell being assigned a multicast group. Thus, joining a cell meant joining
a multicast group to communicate with other members of the cell. The work by Knutsson
et al. uses a similar approach over a DHT [6]. N-Trees differ significantly from this prior
work because they dynamically divide the virtual world into a hierarchy, they are used to

propagate events, and they are used to order events between players.

4.3 Definitions

Definition 4.3.1. N-Tree: An N-Tree is defined inductively as follows:
(Base Case): a Leaf without children
(Inductive Case): a Node with 2% children, each a distinct N-Tree

An N-Tree is a generalization of octrees with NV dimensions instead of only three that an
octree has |75].

In our use of N-Trees, the leaves of the N-Tree are NEO groups. Each NEO group
elects a leader to act as the node in the N-Tree and nodes communicate with each other with
reliable communication. All events are generated at the leaves of the tree and propagated

through the tree, as discussed in Section 4.4,

Definition 4.3.2. Application state space: The domain of a distributed application that is
hierarchically structured such that a domain has 2" sub-domains. Each sub-domain shares
this domain as a sole parent and can be recursively subdivided ad infinitum. We place the
restriction that each division of a sub-domain has 2" children solely for the purpose of
mapping the application state space into an N-Tree. The term state space is used inter-
changeably with application state space.

In a peer-to-peer game, the application state space is the virtual world and its contents,
including the players of the game. Events occurring in the virtual world inciude player

movement, taking an item in the virtual world, and larger events such as a snow storm in an
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area. The state space in this example includes two or three dimensions, or variables, which
correspond to the actual dimensions in the virtual world. Each object in the virtual world

has a corresponding location, and perhaps volume, in the virtual world.

Definition 4.3.3. Scoped event: A tuple consisting of an action, the location of the ac-
tion, and a function representing the scope of impact of that action in the application state
space. The location of the event indicates where the event originally occurs while the scope
indicates how broadly the event can impact the application state space.

For example, taking a treasure in a game creates an event that occupies a single point in
space, which is the location of the treasure. A snow storm, on the other hand, would have a
scope equal to the maximum radius of the storm. In this case, the scope is a circle centered
at the location of the action, with a given radius. Scopes can be defined by an arbitrary

spatial function which defines the impacted area in the virtual world.

In Figure 4.1, we illustrate a 2-tree, or quadtree. In a quadtree, the state space is a
Cartesian square that is subdivided as necessary to meet the scoping requirements of the
application and the current peers in the network (Figure 4.1a). The resulting N-Tree is
seen in Figure 4.1b. For example, the 2 dimensional virtual world corresponds to a 2-tree
so that each point in the world maps to a leaf in the 2-tree. In this figure, a snow storm
occurs at (.48, .28) with a scoped defined as a circle with a radius of .05. If the scope of the
event exceeds the boundary of the node it occurs in, it will be propagated to all nodes that

intersect its scope.

4.4 'The N-Tree Protocol

The N-Tree architecture organizes peers, provides a mechanism for propagating up-
dates, and uses rollback and forecasting to maintain consistency. The N-Tree structure is
maintained by the N-Tree protocol, which dictates where nodes join the tree, when leaves
are divided because their population is too high, how updates are propagated in the tree,
and how updates are voted on to determine their validity.

Peers in the system act as the nodes in the N-Tree and are elected to that role by a

leader selection protocol. To communicate between nodes, leader nodes use reliable com-
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FIGURE 4.1: Cartesian application space and quadtree representation: In (a), the virtual
world is represented by a Cartesian square, with lines representing the areas covered by
leaves in the N-Tree. In (b), we see the equivalent N-Tree representation. A snow storm
occurs at (.48, .28) with a radius of .05. The event occurs in the shown node and may be
propagated to other nodes if the radius of the event exceeds the boundary of the node it

occurs in. At the leaves of the N-Tree, groups of players run the NEO protocol for event
ordering and consistency.
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munication. However, allowing a peer to become a node leader enables that peer to cheat
because they can purposely drop or delay packets and alter vote tallies. We address security

in Section 4.6.

4.4.1 Node Leader Selection

In the N-Tree protocol, peers act as the nodes of the N-Tree for the purpose of event
propagation and vote tallying. Because we are assuming that N-Trees will support a large
number of peers, we know that our tree will also have a large number of nodes, necessitating
a fast leader election protocol.

To elect a leader for a node in the N-Tree, we use the following method. We assume
that all players have a unique ID assigned to them by a trusted authority. This authority
is most likely the game developer who uses it to ensure that players are authorized to play
the game. We also assume that all players use the same pseudo-random number generator
which is seeded and used for leader election.

Each player will generate a pseudo-random number, hash it, digitally sign it and ex-
change it with other members of the NEO group using reliable communication. Once all
hashes have been received, all players in the NEO will then exchange the plain-text ver-
sion of their pseudo-random number. Players then use modulo addition and all the random
numbers and use the result as a seed for the pseudo-random number generator. Once the
generator is seeded, we pick the first result from it and the player with the closest ID to it
is the leader.

To change leaders, we simply pick the next number from our pseudo-random number
generator and pick the next player with the closest ID. We repeat the seeding whenever a
new player joins the NEO group. This node leader selection protocol is resilient to most

security attacks. Further security measures are discussed in Section 4.6

4.4.2 Event Propagation

Event propagation occurs when the scope of an update issued by a peer in a NEO group
(at the leaves of the N-Tree as in Figure 4.1b) exceeds the sub-domain of a node in the

N-Tree. When a peer generates an update, the update is exchanged with other peers in
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the same NEO group. When the group leader receives the update, she checks the scope
and compares it to the scope under her responsibility. If the scope of the update is not
completely contained by her node, she forwards the update to her parent. The parent then
forwards the update to all children whose scope intersects with the update scope, and addi-
tionally forwards it up the tree again.

In Figure 4.2, we illustrate how event propagation works. At the top of the figure, our
virtual world is subdivided into 16 nodes of the N-Tree, with the Tree illustrated at the
bottom of the figure. An update occurs at (x,y), represented by a black dot in the virtual
world. The circle around the dot represents the scope of the update and all affected nodes
are shaded gray.

Events always begin at leaves in NEO groups. In the figure, the leader for the area

where the update at (x,y) occurs at discovers that the scope of the update exceeds her scope

Virtual World
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Event (x,y) T—
and
scope .,

- N-Tree
— ; : Representation

FIGURE 4.2: Event propagation in N-Trees: The update at (x,y) has a scope that exceeds the
boundary of the node it was generated in and must propagate the update to all shaded nodes in the
virtual world. At the bottom of the figure, the dotted arrows indicate the directions the update at
(x.y) takes in the N-Tree to reach its intended destinations.
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of control and forwards the update up the N-Tree. From here, the update is forwarded to
each node within the scope of the update. Interior nodes continue to forward updates up
the tree until the update reaches a node whose scope contains that of the event—at which

point the update is propagated down the tree.

4.4.3 Forecasting

Propagating scoped events via the N-Tree introduces the problem that updates may
experience a potentially high latency before they are committed. As the N-Tree increases
in depth, the delay from when an update was generated to when it is committed increases
proportionally. If the update is time-stamped with its round number according to when it
is generated, all players who fall within the update’s scope will receive a late update and
thus will have to rollback whenever the update is finally agreed upon. In essence, event
propagation through the N-Tree could cause a large amount of rollback.

We have created a new technique to minimize the rollback caused by event propagation

which we call forecasting:

Definition 4.4.1. Forecasting: Time-stamping an update with a round number to occur at

some time in the future, based on the scope of the update.

The idea behind forecasting is that updates that affect a large number of players beyond
the scope of a leaf are significant updates which often (and should) take some finite amount
of time to execute. Indeed, game players already easily accept such delay in games. For
example, a player must occupy and defend a tower for several minutes before they control
the tower as a resource. As another example, launching a missile that might damage a
large continent takes several minutes before it is successfully launched and is preceded in
game by a countdown and the emission of smoke and fire from the missile as it prepares
to launch?. Thus, forecasting is masked in the virtual world by the game mechanics for
updates that have a large scope. We forecast an update with N-Trees and wait for approval

of the update, during which time the game animates the beginning of the event. If we

2Consider the amount of time it takes to launch the Space Shuttle.
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successfully forecast the event and it is accepted, then we will receive agreement before the
completion of the update and no rollback will be necessary.

Forecasting eliminates the majority of rollback in the game because peers decide to
accept or reject an update before it is scheduled to occur. If the event is not forecast suf-
ficiently in the future, the update is rejected. However, forecasting does not eliminate all
rollback. For example, a plain-text update could arrive late after it was agreed upon. The
player receiving this update would then have to rollback and insert the update in her se-
quence of events.

One might argue that this limits the usability of large-scoped events to only those which
take some amount of time to execute, and we agree with this statement. Certainly, the use
of peer-to-peer networking for games, and the requirement that we prevent cheating and
maintain consistency within the game has a very real cost in terms of latency. Thus, peer-
to-peer networking cannot be used for every single type of multiplayer game, though we
believe it will work for a large percentage of those games.

Ideally, we would forecast an event to occur at a time in the future that ensures that
everyone has agreed that the event is valid. Since we cannot know when an event will be
agreed upon a priori. we settle for an estimation of this time based on the scope of an
update. The amount of time we forecast is based on the height of the tree and the scope
of the event. An event with a small scope may only need to traverse up the tree by one or
two nodes, and hence we would forecast based on the average latency between nodes of
the N-Tree multiplied by the number of hops in the N-Tree our update must take.

To estimate how far in the future we must forecast an event so that it arrives on time,
we can estimate how many nodes in the tree our event intersects with, and therefore how
high in the N-Tree an event must travel to reach the leaves it intersects with. In fact, we
can bound the maximum height of a 2-Tree by a constant value such as 20 because at
this height, if players are uniformly distributed, the N-Tree would support several trillion
players—a sufficiently large number of players for a single game. Therefore, as an upper
bound, an event that affects all leaves in the tree is at most the maximum height of the tree.

Deciding how far in the future to forecast an update depends not only on the height of
the N-Tree and how many leaves are affected, but also on the average latency between play-

ers. Unfortunately, few studies have measured latencies between end users at their homes,
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but instead of looked at measuring properties of the Internet between well-provisioned
hosts. Part of the difficulty here is that most home users are firewalled and use Network
Address Translation (NAT).

4.4.4 Event Ordering and Majority Voting in the N-Tree

N-Trees use NEO at each leaf and therefore majority game consistency is achieved at
the leaf level. However, at various times throughout the game, the scope of updates may
exceed the boundary of the leaf and the event will be propagated through the N-Tree by
the event propagation method described previously. The problem then arises that we must
maintain consistency across NEO groups of players at the leaf level.

To address this problem, we use a similar voting mechanism to NEO: an update is only
accepted when a majority of players accept the update. When an update exceeds the scope
of the leaf it is in, the update is propagated to other leaves whose boundaries intersect with
the scope of the update. Like NEO, we first send the digitally signed hash of the update
for other players to vote on. When the hash reaches a new leaf, all the players in the NEO
group of the leaf vote on the hash. The leader of the leaf then takes a count and forwards
this tally up the leaf to the root of the tree. Each intermediate node along the path to the
root tallies the votes from its children and forwards the results up to the root. Once the final
tally reaches the root, the root of the N-Tree sends the result back to the leaves. Figure 4.3
demonstrates tallying the votes. At this point, the originator of the update will receive the
update and decide by the vote tally whether or not to send the plain-text update.

Note that we do not need to use the actual root of the N-Tree to tally votes for all updates
with scopes that exceed the boundaries of their leaves. Instead, each node in the N-Tree
can act as the root of the update if their scope encompasses the entire scope of the update.
This prevents the updates from taking an unnecessarily long time to be voted on since the

votes will only need to be propagated up to the node that encompasses the event.

4.4.5 Bootstrapping

To bootstrap and help maintain N-Trees, we use an underlying DHT. In particular, we
use CAN [11], though N-Trees can be mapped to any DHT such as Chord or Pastry [54, 12},
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FIGURE 4.3: N-Tree Voting: In (a), a new update is generated at (x, y) and its hash is propagated
to the leaves with which it intersects (the dotted arrows indicate the direction of travel). In (b}, each
NEO group at a leaf votes on whether to accept or reject the hash of the update. This vote is sent to
the parent node and each parent sums the accept and reject votes, and further sends the vole up to
the parent until the root is reached. In {c), the root has received all voles and sends the result down
to all affected leaves. Once the vote reaches the leaves, it is accepted and the originating player can
send the plain-text update to the appropriate leaves.
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and possibly unstructured peer-to-peer networks. DHTs have already been shown to be
scalable, but they are optimized for data lookup based on a key. Thus, they provide a

mapping of keys to nodes in the DHT.

CAN is an N-dimensional torus and subdivides the key space when the load of a node
exceeds some threshold. Multi-dimensional virtual worlds map naturally onto CAN’s
keyspace because we can configure CAN to have multiple dimensions with a one-to-one
correspondence between a coordinate in the virtual world and a coordinate in CAN. Fig-

ure 4.4 demonstrates mapping (x,y) in the virtual world to the CAN keyspace.
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FIGURE 4.4: Mapping virtual world coordinates into CAN; Coordinates in the virtual world sim-
ply map directly to coordinates in the N-dimensional torus of CAN. In this case, the (x,y) coordinate
in the 2D world maps to the (x,y) coordinate in CAN’s key space.

Peers in the N-Tree use the DHT to register their IP addresses with locations in the
virtual world. When a new node wishes to join the system, they use the DHT to route a
message to the coordinate they belong to. This message will be routed to the system in the
DHT in charge of that key, which will have the IP addresses of players within that portion
of the key space.

The advantage of the DHT is that if some node in the DHT has failed and entries are
missing, the next responsible node in the DHT will respond with the entries it has. Instead
of having every node join at the root of the N-Tree and causing the root of the N-Tree to
handle the burden of all joins in the game, joining is distributed among the tree by whatever
distribution in the virtual world that players exhibit. Thus, as long as a single node in the

N-Tree can be discovered on the DHT, new peers can join the system.
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4.4.6 Joining the N-Tree

To join the N-Tree, a peer queries the DHT using her virtual world coordinates as the
key for some set of nodes in her location of the application space. She then sends a join
message to one of the nodes that includes the peer’s current scope in the application space.
The receiving node looks at the scope of the join and determines whether to forward the
message up or down the tree. Eventually, the join message reaches a node that is within
the peer’s event scope, and this node notifies the peer so that it can join the N-Tree at this
location.

Each node has the ability to divide its scope based on the communication needs of the
application. The reason that subdivision is application specific is that some applications
have a much higher event rate than others. Applications with a high event rate will need to
subdivide the state space to a high degree so that the t-way communication between the ¢
peers in a leaf is reduced as much as possible without hurting the performance (or security)

of the application.

4.4.7 Leaving the N-Tree

To leave the N-Tree gracefully, a peer sends a leave message to all other peers in its
node (or group). A new leader is elected and the parent node is notified if the departing
peer is the node’s current leader. For an ungraceful leave, either a parent or a group will
notice that a peer is missing when they try to forward an event to it. The case where the
peer is not a leader is trivial. However, when the peer is a leader, the protocol must handle
rejoining the group to the tree. If the group noticed that the leader is missing before the
parent did, then they can simply re-elect a new leader and notify their parent.

On the other hand, if the tree is attempting to forward an event to a subtree, then it
may discover that a child is not responding to an event. To handle this case, leaders should
periodically send membership lists to their parent so that the parent can quickly send the
event to another group member. Furthermore, the parent can queue updates until the subtree
is reconnected. However, even if the membership list of the parent is outdated, the parent

can locate members of the subtree through the DHT.
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If a peer leaves that is both a leader of a group and of one or more parent nodes, then
the group will first elect a new leader and then the leader will contact other leaders to elect
higher level node leaders. The DHT allows peers to discover other leaders if they do not

already know of them,

4.4.8 Subdivision of Leaves and Collapsing of Branches

N-Trees are configured with two thresholds, ¢, and ¢, which are used to determine when
a leaf is subdivided or when the children of a node are collapsed into a leaf respectively. To
determine when to subdivide a leaf, the leader of a NEO group monitors the population in
comparison to {,. When the population exceeds i, the leaf is evenly divided along all N
dimensions, players are grouped according to their location the new subspaces, and leaders
are elected for each subspace. Each new subspace forms a new NEO group.

Nodes also monitor the population of their children. If the collective population of the
children falls below £, the node informs the branches that they will be collapsed into a
single leaf with the node as the leader. Once the node becomes a leaf, and therefore a

single NEO group, a new election can be held to elect a new leader for the leaf.

4.5 N-Trees Consistency

Now that we have extended event ordering beyond NEO to include events between
leaves in the N-Tree, we must ensure that the N-Trees maintain consistency. We extend the

notion of majority game consistency to include scoped updates with each NEO group:

Definition 4.5.1. Majority Game Consistency: The result of any game is the same as if
the updates from all players were executed in some sequential order, and only the updates
seen by a majority of players and within the scope of that majority appear in this sequence

in the order specified by the originating player.

The distinguishing feature of Majoritys Game Consistency and Majority Game Con-
sistency is that only those updates voted on by a majority of players within the scope of
the update appear in a sequential ordering of the updates. Our prior definition of majority

game consistency assumed that all players experienced all updates.
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Figure 4.5 illustrates two different rounds in game time with two NEO groups in an
N-Tree. In Figure 4.5a, the shaded areas indicate which players accepted Update A at time
T in NEO group I and II respectively. In Figure 4.5b, a different set of players from NEO
groups I and I accept Update B at time 7'. However, at the end of the game, all players will
have agreed that Update A and Update B were part of the sequence of events. The players
who are not in the shaded majority will need to recover the updates and insert them in their
sequence of events.

As with NEQ, consistency in N-Trees only applies to the ordering of updates within a
game and does not necessarily correspond to human notions of consistency in the virtual
world. In other words, rollback may cause the game to appear inconsistent to a player since
we cannot really take back the moves, from a human perspective, that occurred prior to the
rollback. However, N-Trees is consistent if at the end of the game all players have accepted
the same set of updates at each round if they are in the scope of those updates.

N-Trees also have an event horizon, like NEQ. We define the N-Tree event horizon to
be:

Definition 4.5.2. N-Tree Event Horizon: The minimum event horizon of all NEO group

event horizons at the leaves of the N-Tree,

The event horizon is important for very practical reasons in an MMOG. The event
horizon allows us to determine when the earliest time (round) for which the state of the
game has been agreed on by all players. In an MMOG, which has persistent state, we know
we can commit state that is prior to the event horizon since it can no longer change due to
rollback. Thus, buffers can be cleared and we can commit to the game database once the

event horizon has passed.
Theorem 4.5.3. N-Trees provide majority¥ game consistency.

Proof. By Theorem 3.3.11, we know that all players in a NEO group achieve majority
game consistency for locally scoped events. Therefore, we only consider updates with

scopes that exceed the boundary of a leaf.
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FIGURE 4.5: N-Tree consistency: Updates which affect more than one NEO group must
be accepted by a majority of playeres from those NEO groups. In this figure, the shaded
area indicates the majority of players which accepted the Update in each NEO group. In
(a), at time r, both NEO groups I and II accept Update A, while at time » + 1, both NEO
groups accept Update B, albeit with a different set of players. At the end of the game, all
players will have agreed on the same set of updates, where in this case it includes Updates
A and B. Those players not in the majority will have to recover the update and most likely
rollback.

The primary question we must answer is whether or not an update can be accepted by

some player s while being rejected by other players. This can only happen in two cases:
(i) Some set of players do not receive the update even though it is in their scope.

{(ii) Some set of players believe that an update was accepted when the majority voted to
reject it, or they believe that an update was rejected when the majority voted to accept
it.

For case (i), recall that N-Trees use reliable transport between nodes in the N-Tree.
Therefore, we can assume that votes and updates can reach their intended nodes, unless the
node has failed. In that case, the N-Tree protocol will replace the node and the update or
vote tally can be resent or routed through the underlying DHT. Thus, we can guarantee that
players will receive the update if it is within their scope.

For case (ii), assume that players do not lie about voting tallies (we address security and
the case where players lie in Section 4.6). Since we know that voting tallies are guaranteed
to reach their intended nodes, all players within the scope of the update will receive the

correct tallies. Therefore, all players will agree on the update. O
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Safety and Liveness of N-Trees

We now show the safety and liveness properties of N-Trees. The error condition that
the safety of N-Trees protects against is that the game state will become inconsistent. The
liveness property of N-Trees ensures that N-Trees will not stall or halt during execution.
This property is important because we need to ensure that event ordering will progress until

the game is complete.

Lemma 4.5.4. Prior to the N-Trees event horizon, N-Trees are safe,; thus, no error condi-

tion will arise in the execution of the N-Tree protocol.

Proof. By Theorem 4.5.3, we know that N-Trees provide majority% game consistency.

Thus, prior to the N-Tree event horizon, N-Trees are safe. O

Lemma 4.5.5. N-Trees are always live; thus the game continues to advance monotonically

with time.

Proof. By Theorem 3.3.7, we know that the NEO event horizon increases monotonically
over time. Since the N-Tree event horizon is equal to the minimum NEO event horizon, we
know that it also must advance. Thus, the N-Tree event horizon increases monotonically

with time and therefore N-Trees are always live. [

Lemma 4.5.6. N-Trees are safe at the end of the game; thus, no error condition arises

when the protocol completes.

Proof. By Lemma 4.5.5, we know that the N-Trees are live, thus the protocol will continue
until the game ends. By Lemma 4.5.4, we know that N-Trees are safe prior to the N-Tree

event horizon. Thus, N-Trees will be safe when the protocol completes. ]

4.6 N-Trees Security

One important issue with N-Trees is that players who control nodes in the N-Tree have
significantly more power in terms of cheating than with NEO. Under the NEO protocol,

a player can only alter her packets, but with N-Trees, a player is now able to drop other
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players’ packets and lie about voting tallies. For example, the leader of a NEO group in
the leaf of a tree may simply not forward an update to other players or may say that no one

else voted to accept the update.

To address these problems, we propose using multiple N-Trees, similar to the method of
using multiple realities with CAN |11] and other DHTs. Multiple N-Trees with different
nodes acting as leaders can prevent a single player from controlling the root node, for

example, since more than one path exists to the leaves of the N-Tree.

The following protocol level cheats are addressed by N-Trees:

Timestamp Cheat

With the timestamp cheat, a player lies about when an update occurred so that it appears
the update was simply delayed in the network. While NEO prevents the timestamp cheat
at the leaf level, when we propagate updates through the the N-Tree, a player may see
this update and immediately issue a competing update timestamped at the same time. N-
Trees use a voting mechanism similar to NEO, except that nodes tally votes as they are
propagated from the leaves of the tree to the root. Thus, N-Trees can prevent the timestamp

cheat since players will vote on accepting a move before seeing it.

Suppressed-Update Cheat

The suppressed update cheat does not work with N-Trees for the simple reason that
updates are not accepted if they are not forecast sufficiently into the future. Thus, the

voting mechanism will prevent the suppressed update cheat from being viable.

Fixed-Delay Cheat

As with the suppressed update cheat, the fixed-delay cheat does not work with N-Trees
because updates that are not forecast sufficiently into the future are not accepted by players

within the scope of the event.
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Inconsistency Cheat

The inconsistency cheat in N-Trees is not possible because the N-Tree acts as a mul-
ticast tree and events are replicated by other nodes. A player cannot send two different

updates to two different nodes in the N-Tree.

Collusion Cheat

In the collusion cheat, several players agree on some action that gives them an unfair
advantage in the game. The main action that colluding players can accomplish with the
N-Tree protocol is the modification of voting tallies. With N-Trees, two colluding players
must be controlling the same node in the N-Tree at which point they can lie about voting
tallies.

To prevent this cheat, we reassign node leaders in the N-Tree frequently. While this does
not guarantee that we can prevent collusion, we can reduce the probability of to a fairly low
value. For example, if we maintained 2 copies of the N-Tree and randomly assigned players
to control the nodes, the odds that 2 players were colluding and controlling the same node
would be 1/4" x 1/4* = 1/4%". Given an N-Tree with a height of 10, the probability would

be 9 x 10713, Collusion prevention methods are an area of future research.

4.7 Analysis of N-Trees

Our analysis of N-Trees assesses the ability of of N-Trees to meet the requirements for
scalability and real-time responsiveness under a range of network conditions. We begin
with an asymptotic analysis of the cost of joining and leaving the N-Tree, moving to a
new leaf, collapsing and subdividing leaves, and event propagation in terms of the number
of messages that must be sent over the N-Tree. We follow our asymptotic analysis with
an actual measurement study of a real MMOG and use the model derived from it in our

simulation-based analysis of N-Trees in Section 4.9,
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4.7.1 Asymptotic Analysis

In order to understand N-Trees as a communication structure for scoped events, we
analyze their performance in terms of messaging. In general, all operations take at most
logarithmic time in terms of the number of peers, while some only take constant time.
Table 4.1 summarizes these results. In the following discussion, n is the number of nodes
in the N-Tree, p is the number of peers, ¢, is the threshold for subdividing a node, d is the
number of leaves per branch (i.e., d = 2V in the N-tree), and h refers to the height of the
tree.

As with binary trees, many operations on the N-Tree are based on its height, k. N-
Trees do not try to balance themselves to achieve logarithmic height with respect to the
number of nodes in the tree. Thus, in a worse case scenario, the height of the tree could be
O(p/ts). However, this scenario only represents the case when all players are in the same
location in the virtual world (a case we assume to be extremely rare or non-existent as p
gets sufficiently large).

Unfortunately, no prior scientific measurements have been conducted that show the dis-
tribution of players in the virtual world, though we address this shortcoming with an initial
population study in Section 4.8 Anecdotally, game designers desire a uniform distribution
of players in the virtual world to keep the level of inter-player messaging low (so that the
game can scale to a large number of players). Given a uniform distribution, the N-Tree is
balanced and h = O(log, n). Recall that the height of the N-Tree is based on the number of
nodes in the tree, not the number of peers in the game. Each leaf in the N-Tree represents
a NEO group where the threshold {, is the maximum number of peers in a NEO group.
Assuming a uniform distribution, we have n = O(p/t;) since each leaf is subdivided when
the number of peers in it exceeds the threshold value ¢,.

Joining is a O(lg p) + O(h) operation. The O(lg p) timing comes from the search time
for most DHTs (assuming all peers are registered in the DHT). Once a node is found for
the N-tree, a peer will most likely be able to join the N-Tree in constant time. However, if
the DHT is not up to date, it can take an additional O(%) time to locate an appropriate node
through the N-Tree.
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TABLE 4.1: Asymptotic messaging costs: p is number of peers, A is height, n number of nodes,
d = 2% (or the number of leaves per branch) in the N-Tree.

Player distribution
Operation Pathological | Uniform
New Member Join | O(lgp) + O(h) | Oflgp)
Move to new node O(h) O(log,n)
Amortized movement 0(1) 0(1)
Leave O(1) O(1)
Collapsing branch o(1) o(1)
Subdividing leaf 0of1) 0(1)
Event propagation O(h) O(logg n)

Once a node has joined the N-Tree is joined for the first time, moving in the N-Tree
is a much faster operation. The majority of player movement is local in the virtual world,
so a player simply leaves their node and joins a neighboring node, requiring at most O(%)
time. However, O(h) is the worse case scenario where we have to move between two
branches of the root of the tree. Note that we can mask the latency required to join a new
node by joining the node early. In other words, the peer is temporarily the member of
two neighboring nodes and leaves the originating node once she has fully transitioned to
the neighbor. For global movement, e.g. warping from one part of the world to another,
the player leaves and rejoins the N-Tree at their destination as described above, similar to

joining the N-Tree for the first time.

Leaving, on the other hand, is a simple O(t,) operation, where ¢, is the maximum
number of members in a leaf (the application threshold before subdivision). When a node

leaves, it must contact the other t; — 1 members to notify them that it is leaving.

To analyze the complexity of subdivision, we simply examine our leader election pro-
tocols. A constant number of messages are required to initiate subdivision, i.e. O(t,). Our
leader election protocol requires O(t2) messages since all peers in the leaf must exchange
messages with each other.

Subdivision has another cost in the amount of state that must be stored at each node.
For N-dimensions, each node must store 2V pointers to children. Applications designers

should be motivated to reduce the application state space when possible to avoid a state
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explosion. We believe that most applications will not have a large number of dimensions in
the application state space. In particular, most games use 2 or 3 dimensions and therefore
N = 2or N = 3 with our N-Tree.

N-Tree collapsing is a O(1) operation. We assume in this case that O(2") = O(1)
because the IV value is a constant value set by the designers of the application. For peer-to-
peer games, /N would probably be 2 or 3, meaning 4 or 8 messages at most for collapsing a
branch. Each node is periodically sending membership lists to its parent. When the parent
notices that the number of peers in its subtree is less than or equal to {., the parent sends
out a message to the peers and collapses the tree. To prevent repeated subdivision and
collapsing, the minimum and maximum threshold for a leaf should be different.

Event propagation is a O(h) operation, where h is the maximum height in the tree.
In the worse case, a leaf at the lowest level of the N-Tree generates a global event that
must travel from the leaf up to the root of the tree and back to all NEO groups at the
leaves. As with joining, the worse case scenario is h = O(p/t), which again represents a
case where most players are in a single location in the game. With a uniform distribution,
h = O(log,;n). However, even if most players are located in a single location, empirical
observations indicate that the majority of the events are local so that most events will not
need to traverse the entire N-Tree. In most cases, events will travel through only a few

levels of the tree, keeping the cost of event propagation low.

4.7.2 Performance Analysis with Local Event Propagation

In addition to looking at the asymptotic performance of N-Trees, we wish to see how the
performance of N-Trees affects the latency players would experience if N-Trees were used
to propagate events, especially in comparison with similar architectures. We performed a
preliminary study to compare N-Trees to the only two existing studies.

In the architecture by Knutsson et al. which we call multicast with regions (MCast
Regions), experiments were run using their simulator with 1000 and 4000 players over a
virtual world divided into 100 and 400 regions, with players uniformly distributed over
the world [6]. Players were connected over a randomly generated topology with latencies

between 3 to 100ms. For Mercury, the authors only simulated 20 and 40 players in each
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simulation, but uniformly distributed players and assumed a random way-point model of
movement for players [4]. In the Mercury simulations, they assumed players were con-
nected with a star topology, each with a 20ms delay between each other and the simulation
field was about 2n times the maximum distance a player could move, for n players. Neither

work considered events that were not local to the players or a particular object.

To analyze the performance of N-Trees in a similar setting, we assume a uniform distri-
bution of players, only local events, and a 20ms delay between players, as with the Mercury
simulations, We then extrapolate the data from [6] and |4] to get an idea of how N-Trees,

Mcast Regions and Mercury compare for the dissemination of messages.

Using this data, we plot our hypothesized performance based on N-Trees and using the
simulation parameters common to Mercury and Multicast regions using Scribe. Please note
that the graph is purely speculative, but demonstrates the effectiveness of organizing players
by their application-level interest instead of by the shortest-path multicast tree. Figure 4.6

shows our hypothesis graphically.

We believe our hypothesis will hold for the simulation parameters used in [4, 6]. Our
reasoning is if players are uniformly distributed and events are only local (i.e., they do not
propagate through the N-Tree), then N-Trees perform optimally. The movement models
used in simulations by Bharambe et al. and Knutsson et al. ensure that the population will
stay uniformly distributed. Thus, the N-Tree will be perfectly balanced and subdivided so
that players close together exchange events directly with each other. With a 20ms delay
between all players, this results in an average 20ms delay, regardless of the population of

the game.

Clearly, a more complicated and realistic set of experiments are needed to validate N-
Trees. Indeed, the true test for N-Trees, Mercury, and Multicast regions, occurs when play-
ers have a non-uniform distribution and events have scopes that occupy more than a single
point in space. Knutsson et al. suggest dynamic region adjustment for these situations, but
do not describe how to accomplish this. Mercury, on the other hand, with its query lan-
guage should be able to handle crowded situations more gracefully. As such, we expand
our experimental analysis of N-Trees in Section 4.9 to include a power-law distribution of

players.
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FIGURE 4.6: Latency for local events with N-Trees, MCast Regions, and Mercury: For Mercury,
the first two data points at 20 and 40 players are taken from [4], with the rest of the points derived
from their measured number of hops in the Mercury DHT. For Multicast regions, points 1000 and
4000 are taken from their simulations in [6], with the rest of the points extrapolated from their data
and Scribe performance. N-Tree performance is hypothesized based on the simulation parameters
of previous work in [4, 6]

4.8 Measurements of Virtual Populations in MMOGs

In order to perform a deeper and more realistic evaluation of N-Trees, we develop a
model of player movement and behavior over time to use with our simulations. In particu-
lar, we have performed a measurement study of virtual populations on the popular MMOG
World of Warcraft and we have developed a player movement model to drive our simula-
tions of N-Trees in Section 4.9.

While previous research has addressed network characteristics, such as where players
are located geographically and inter-packet arrival times [61, 74|, these studies do not ad-
dress the behaviors of players online and therefore cannot be used independently to create
an accurate simulation model for MMOGs. Our study is, to the best of our knowledge, the
first measurement study of virtual populations and their behavior in commercial MMOGs.

To create a viable model for MMOGs, five aspects of the virtual populations from
MMOGs must be measured:
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e Population changes over time: Population changes over time are important because
we need to understand the impact on resource provisioning. Resource provision-
ing is affected by aspects of the population such as cyclical peak demand patterns
and the magnitude of the difference between the peak and lowest population sizes
during a cycle. We hypothesize that populations exhibit a prime-time diurnal pat-
tern, mimicking television viewing patterns, because the majority of people that play
MMOGs tend to have daily obligations, such as work or school and tend to play in

the evenings.

e Arrival rates and session durations: The arrival rate and session durations of play-
ers are necessary to measure because a fast arrival rate and short session duration
indicates that a significant amount of churn is occurring. The design and testing
of MMOGs need to take this into account. For example, the overhead of overlay

management increases in a P2P network as churn increases.

o Spatial distribution of players over the virtual world: The distribution of players over
the virtual world is an important factor because different distributions can have sig-
nificant effects on the performance of a given architecture or protocol. Architectures
will need to take issues like congestion control and load balancing into consideration
if the distribution of players tends to be non-uniform. We hypothesize that player

distributions are most likely nof uniform and are probably close to power-law.

o Movement of players versus time and space:The fourth important aspect to under-
stand in modeling MMOGs is where and when do players move around in the virtual
world. Player movement can have a huge impact on protocols. Consider the case
where players visit many zones and only remain in each zone for a small amount
of time during their session. In this case, the amount of player movement can have
an adverse affect on the seamless hand-off of players between nodes in a cluster or

distributed system.

o Temporal distribution of events and distribution of scope sizes: Knowing how fre-
quently events are generated and the distribution of their scope sizes will help us

understand how far events are propagated into N-Trees.
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We performed an extensive set of probing-based measurements over World of War-
craft | 10], one of the most popular MMOGs in North America. World of Warcraft is esti-
mated to have around 6 million subscribers and uses a client/server architecture typical of
all commercial MMOGs. The client provides a scripting interface and allows end-users to
create add-ons for the game. Using this interface, we wrote a set of scripts which measured
and recorded populations, distributions of players across the virtual world, session times,
and player movements. Due to a limitation of the scripting interface, we were unable to
capture event information, such as how frequently they were generated or what scope they
had.

Our preliminary results show that populations change according to a prime-time sched-
ule. This validates prior network traffic measurements by Kim et al. [74] and Chambers et
al. [61]. Our results show that player distributions and churn occur according to a power-
law distribution. Players tend to only visit a small number of zones and remain in each

zone for 10s of minutes if they play longer than 15 minutes.

4.8.1 Background

To validate research on distributed architectures for MMOGs, researchers have used
simulations with artificial workloads, with the exception of Baughman and Levine in {3],
who used real traces from a small networked multiplayer game called XPilot [80}]. The ar-
tificial workloads used by past researchers were similar and typically consisted of a virtual
world evenly divided into zones with a uniform distribution of players across the virtual
world. Player movement was simulated by having players remain in their zone for some
uniformly distributed amount of time and then randomly choosing a new zone to travel to.

Little work has been done on the characteristics of player populations in MMOGs.
Some website have measured population sizes and other statistical game information from
their favorite MMOG, including data such as the kind of equipment that players have,
where treasures are located, and how often particular items re-spawn. These informal mea-
surements are used by players for game strategy and are not part of a systematic and scien-

tific measurement study.
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With respect to scientific measurement studies, Chambers et al. have studied vari-
ous network conditions related to players and the server of small networked multiplayer
games |61]. Similar to our data, their measurements also show diurnal patterns of game
populations. This work focused on measuring network traffic patterns, and did not measure
characteristics of virtual populations.

Kim et al. measured network patterns on Lineage 11, a popular MMOG in Korea [74].
Their work focused on network packet sizes, RTTs, session times and inter-session arrival
times. Their data on session times appears to show a similar power-law distribution of
playing times, with 50% of all playing sessions lasting less than 26 minutes. Their work
focuses on network traffic and does not investigate MMOG virtual populations.

Tan et al. measured player mobility in small networked first-person shooter (FPS)
games and designed a mobility model for that class of games which they call the Net-
worked Game Mobility Model (NGMM) [81]. They showed that the typical random way-
point mobility model is not sufficient for modeling player movements when compared to
actual traces of player movements from FPS games. Unfortunately, FPS games typically
host only 16 to 32 players, with player movement that differs significantly from MMOGs.
Thus, the mobility model for FPS games does not extend to MMOGs.

4.8.2 Measurement Technique

In order to measure the virtual populations and behaviors of players in an MMOG,
two methods can be used. The first method is to analyze logs generated directly from an
MMOG. This method has a clear advantage that it will always be more accurate than other
methods. However, game companies are very protective of the proprietary technologies
used to run MMOGs and are typically unwilling to share log information which may give
competitors insight into their designs.

The second measurement method is to use a probing-based technique to try to infer
properties of the system. Because we were unable to convince any of the MMOG game
companies to share their logs for scientific study, we use probing-based measurements. We

collected data from a highly populated World of Warcraft realm.
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We designed a set of scripts that run from the game client. The World of Warcraft
client is designed with a Lua [82] scripting interface so that end-users can write add-ons
to change the user interface and provide modules that players can use to make the game
easier to play or more enjoyable. We use this interface to record information about the
virtual populations.

The World of Warcraft server provides an interface into the who service and provides
a friends list, both which assist our measurements. The who service is a service that the
game provides which lets us query which players are currently online and returns additional
information to us such as what zone they are in. For scalability reasons, the who service
only returns 50 results per query and only accepts one query every few seconds. However,
we can provide parameters and simplified search expressions with our query. For example,
we can query about only the players in a particular zone or about players with names that
begin with a particular set of letters. As such, when we query and receive 50 results,
we know that we need to subdivide our current query into a smaller set of players. This
technique allows us to systematically search the entire set of players currently online.

The second interface, the friends list, allows us to store updated information on 50
players in the game. World of Warcraft sends an event whenever one of our 'friends’ logs
into or out of the game. In addition, the server provides information about the player such
as what zone they are in. Therefore, when World of Warcraft informs us that a friend has
left, we can timestamp our data indicating their exact departure time.

The main difference between the two services is that with the who service, we can query
the server repeatedly to create a snapshot of the current virtual population. Because each
measurement takes up to five minutes, the population is changing while we are measuring.
Thus, we take back-to-back snapshots of the population which give us an idea of how
much fluctuation is occurring while we are measuring. For example, the union of the two
measurements represents the stable population over the measurement period.

On the other hand, the players seen in the second snapshot that are not seen in the first
snapshot represent the arrival rate over the time it takes to complete the second snapshot.
For example, if we see 200 new players in the second snapshot, and the time from starting
the first snapshot to finishing the second snapshot is £ seconds, then the arrival rate is 200/t

arrivals per second.
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With the friends list, we are able to query the status of our friends more frequently. In
our study, we ask for an update every 30 seconds. This allows us to track player movement
and session lengths on a more fine-grained scale. However, World of Warcraft still sends us
a message immediately when a friend leaves, allowing us to determine their exact session
length. In comparison, a single snapshot of the current virtual population takes approxi-
mately 5 minutes. During that time, a single player may left and rejoined the game, and
may have moved between several zones.

We initially populate the friends list with 50 randomly selected new arrivals from the
back-to-back snapshots produced by our who queries, i.e., those players in the second
snapshot that do not appear in the first snapshot. When a friend leaves, the server sends an
event indicating so, and we add a new friend as soon as the next back-to-back snapshot has
occurred. This allows us to track the session lengths of those players on our list with more
accuracy and it allows us to monitor which zones they are currently in (and how long they
stay there) until they log out of the game.

We measured data from World of Warcraft over several 24-hour periods, over a period
of 3 months. World of Warcraft is divided into over 100 realms and we measured from three
of the most populated realms. We determined which realms had the highest populations
from a web page provided by Blizzard that shows the current status of each realm, including
populations in general terms (low, medium, high, max (queued}) [83].

We record the current population every 15 minutes by taking two back-to-back mea-
surements from the who service. Due to the desire to not flood the server with constant
who queries, we limit our measurements of the entire population to 15 minutes. In addi-
tion, World of Warcraft is divided into two factions, or groups of players. Belonging to
one faction prevents you from querying about players in the other faction. Thus, we are
required to measure the population from both factions.

Our data collection methods were constrained by the game environment in a number
of ways. First, we had to log into the game as a player and use game-based probes to
gather our data. Obviously, logs generated by the game directly would have been both
easier and more accurate. Second, anti-cheating mechanisms built into the game prevented
us from running simple, periodic scripts to completely automate our data collection. These

mechanisms automatically log a player out of the game if she does not interact with the
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game every 15 minutes through a key press on the keyboard. Thus, we had to run the game
in the background and periodically move the character around to keep the measurements
going. This limitation severely constrains the ability to measure the game consistently over
a long period of time.

As future work, we plan on extending our data collection period for significantly more
time, over various realms, and on different MMOGs. However, we feel these initial mea-
surements are an important first step in understanding the characteristics of MMOG pop-
ulations. In addition, they provide an initial set of parameters to drive our simulation of
N-Trees in Section 4.9.

4.8.3 Measurement Results

In our measurements, we were able to study the population changes over time, the
arrival rates and session durations, the spatial distributions of players over the virtual world,

and the movement of players versus time and space.

Population Sizes over Time

We first measured population sizes over time, to see if the populations fluctuated with
respect to the time of day. Our hypothesis was that more players were online during evening
hours, due to other daily obligations such as work and school. Figure 4.7 shows a 24-hour
set of measurements from one of the most populated World of Warcraft realms. These
measurements are the sum of the population from both factions.

Figure 4.7 shows a typical 24 hour day, which has random fluctuations hour to hour.
One difficulty in with our tools is that we are unable to measure the game for long periods
of time. World of Warcraft is designed so that a player must physically press keys on the
keyboard periodically or they will be logged out of the game. This feature is designed
to prevent players from writing programs that run their characters automatically. Thus,
measurements require someone to be physically present to keep the game running.

In Figure 4.7, the X-axis is the hour on a 24-hour Pacific Time Zone clock, but the
server measured here is actually located in the Central Time Zone. Note that players do

not choose servers based on time zones, but on the more geographically broad category of
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FIGURE 4.7: Virwal population over time: As expected, the population increases during prime-
time hours (5PM PST - 9PM PST). Note that the population has a 5-fold increase at 5SPM from its
lowest census mark at SAM. This result is similar to network measurement studies on multi-player
games which also show cyclical patterns associated with prime-time peak populations.

continent. Thus, players in the United States can choose to play on any of the US servers,

while European players play on European servers.

We note two important aspects of these graphs. First, one might be surprised that the
population peaks at close to 3500 players. In fact, if a player tries to log into the game
during that peak period, they will be queued and have to wait before entering the game (we
determined this by trying to log into the game with a separate client during the peak period).
We speculate that 3500 might be the actual ceiling on the number of concurrent players on
the realms we measured and that due to churn, we are unable to record all 3500 players.
Finally, this number shows why MMOGs need hundreds of realms to support millions of

subscribers and is consistent with values reported on Everquest [1].

The second important aspect of this graph is that we see an almost 5-fold increase in the
number of players from the lowest point (at 5AM PST) to the highest point (17PM PST).
This means that servers must be over-provisioned to handle peak loads during the evenings

and are only partially loaded during the early mornings.
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Session Durations

The second goal in our measurements is to understand the duration that people play the
MMOG. Empirical evidence would suggest that players tend to log on and play for a long
period of time. Anecdotal stories talk about players who play for days on end. However,
our measurements in Figure 4.9 show that this is not entirely true.

Figure 4.9 shows the measured time playing versus the rank of the duration of play—
that is, each session is ranked from the most number of minutes played, to the least. 15
minutes is the shortest play duration that we can measure, which is seen in the graph as a
horizontal bar from about rank 3,000 to 10,000. Thus, approximately 70% of the time the
playing sessions were less than 15 minutes. To see this more clearly, we plot the CDF of
the session duration in Figure 4.8.

These results show that MMOGs have a fairly high amount of churn about every 15
minutes. Because we only measure every 15 minutes, this may be a conservative estimate.
Our results show that a large number of people log on and log off over a short period of
time. We believe that what may be happening here is that players may be logging on to
check to see if friends or guild members are currently online, and if not they log off. If this
is true, then the implication is that load on an architecture could be reduced by providing
an external Friends list that doesn’t require logging into the game.

However, to get a clearer picture of the session times, we examined the data collected
on session lengths from our friends list. This data allows us to track exactly when we first
see a player to when the player logs off. Figure 4.10 shows the session durations based off
of our friends list with the CDF in Figure 4.11. This data shows us that players continue to
play between 1 minute to over 600 minutes (10 hours). However, the CDF shows us that
over half of the players play for less than 1 hour in a single session (though they may log

in multiple times during the day.

Arrival Rate

We measured the arrival rate, i.e. new sessions, in order to understand how many arrivals
we are getting per hour. As expected, the arrival rate depends on the hour of the day, with

prime-time hours having a larger arrival rate. Figure 4.12 shows our measurement.
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FIGURE 4.8: CDF of play duration: This CDF clarifies the distribution in Figure 4.9. The left
part of the CDF curve hits 0 probability at 15 minutes, because we only measure every 15 minutes.
65% of the players have a duration of 15 minutes or less. 90% play for less than 200 minutes
(approx. 3 hours).
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FIGURE 4.9: Time versus playing duration: This measurement shows the ranks of the duration
of play for each time a player logs in and plays. Most players log in periodically for some time less
than 15 minutes (about 70%}), while around 10% of the time, players log in for more than 1 hour.
1% of the time, players are playing for more than 12 hours. Overall, the distribution appears to have
a power-law relationship.
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FIGURE 4.10: Session durations based on friends list: In this measurement, we used our friends
list to more accurately capture session times.
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FIGURE 4.11: CDF of session durations based on friends list: The CDF of the measurements
from Figure 4.10. This CDF illustrates that virtually all measured sessions are less than 10 hours
and over 50% of them are more than | hour.
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FIGURE 4.12: Arrival rate over time: The arrival rate varies, depending on the hour of the day,
with prime time hours having a higher arrival rate. The dip at 6pm PST may indicate that the server
was at capacity and denying arrivals, while at 8pm the players who were logged on at 5pm were,
with high probability from Figure 4.8, logging out so the server had the capacity for new players
resulting in the spike in arrivals.

The arrival rate appears to follow the same cyclical pattern that population sizes follow.
The minimum arrival rate, at 7AM was approximately 300 new sessions in the hour, versus
the maximum arrival rate at 5SPM of 1900 new sessions. Note that at 3PM and 4PM the
arrival rate fell off, which probably accounted for limits on the servers ability to accept so

many new connections at 5PM.

While Figure 4.12 measures the number of arrivals over one day, we also examined
the arrival rates seen by our back-to-back snapshots. To determine the arrival rate in this
case, we marked when we ended the first snapshot at time ¢ and when we ended the second
snapshot at ¢’. We then calculated the number of new arrivals by counting how many new
players appeared in the second snapshot that were not in the first snapshot, which we call
c. We can then calculate the arrival rate by ¢/(¢’ — t). Figure 4.12 plots the arrival rate as
seen in Figure 4.13. The arrival rate varies from less than 1 player per minute to over 32
players per minute. As future work, we plan to correlate the arrival rate with the time the

measurements were taken.
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FIGURE 4.13: Arrival rate of players per minute: The arrival rate measured from our back-to-
back measurement varied from approximately 32 players per minute to less than one per minute,
with an average of approximately 7 players per minute.

Spatial Distribution of Players

Our next set of measurements show the distribution of players in the virtual world.
Recall that the world is statically divided into segments, called zones. We measure how
many players are in each zone over a 24-hour period at |5 minute intervals. Figure 4.14
shows the number of players versus the rank of each zone from the most populated to the
least and indicates a power-law relationship may exist.

These results indicate a non-uniform distribution of players as we predicted. Indeed,
approximately 30% of the zones have fewer than 10 people in them, while about 10% of
them have more than 80. Thus, the relationship between the number of players and the
zones appears to be power-law.

Our measurements in Figure 4.14 were chosen from the peak period from 5PM to 9PM.
Results plotted for other periods during the 24 hour day exhibited the same general pattern,
although the magnitudes were smaller due to the fower populations during non-peak pe-
riods. Thus, all sets of measurements that we looked at appear to also have a power-law

relationship, though we leave the actual curve-fitting to future work.
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FIGURE 4.14: Distribution of players per zone: Zones are ranked from most populated to least
populated, with all measurements from the 24 hour period with more than 100 players in the highest
ranked zone.

To clarify the results, we plotted the measured CDF of the zone populations in Fig-
ure 4.15. The CDF shows that approximately 60% of the zones have fewer than 10 people

in them, while a few zones have more than 100 people in them.

Player Movement

The last aspect we measured was player movement. We want to investigate how many
zones players visit during their playing time, and how long do they remain in any given
zone. To understand the data we measured, we plotted histograms.

Figure 4.16 is the histogram of the percentage of players versus the number of unique
zones visited during a playing session. The results show that over 30% only visit 1 zone,
while only 15% visit more than 6 zones. This result is expected because zones are tai-
lored for players of a given level. In essence, low level players can only visit a handful of
zones, while high level players rarely visit low level zones because they no longer offer a
challenge. Furthermore, the previous results that players only play for 15 minutes or less

corroborates the measurements that most players only visit only | or 2 zones.
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FIGURE 4.15: CDF of player distribution in zones: This CDF shows that approximately 60% of
the zones have fewer than 10 people in them, while only a few have more than 100 people in them.
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FIGURE 4.16: Histogram of players versus munber of unique zones visited: This data shows how
many unique zones a player visited during a playing session. As expected, a large portion of them
(over 30%) only visited | zone, due to the high probability that a player only logs into the game for
15 minutes or less. Only about 15% visit more than 6 zones during a playing session.
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When we measured the time spent in each zone, we saw that most players only spend
around |5 minutes in each zone as shown in Figure 4.17. This is again due to the fact
that most players only login to the game for 15 minutes or less. However, 35% spend 45

minutes or more in a zone. This indicates that players do not move from zone to zone very

frequently.
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FIGURE 4.17: Histogram of players versus time spent in a zone: The histogram shows that, as
expected, a large portion (approx. 45%) spend only 15 minutes in a zone, which is likely their entire
time in their play session. On the other hand, 55% spend 30 minules or more in a zone, and 35%
spend 45 minutes or more in a zone before moving to another zone.

4.8.4 Measurement Summary

In summary, our measurement study provides us insight into the virtual populations
and the behavior of players in an MMOG. The distribution of players over space appears
to have a power-law relationship, with a few zones being highly populated, and most zones
having a low population. The amount of time that players play the game, however, does not
appear to follow a strictly power-law distribution. On the other hand, the amount of time
spent per zone is also appears to have a power-law distribution, with most people spending

one hour or less in a zone.
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4.9 Simulation Experiments

in this section, we describe our experimental methodology and explain how we used the
results from our measurement study to design our virtual world model and N-Tree protocol.
We explain how our simulation works and describe the results, showing that N-Trees help
scale the communication architecture.

The primary goal of our experiments is to demonstrate that the height in the N-Tree,
when given an accurate model of the virtual world as seen in a modern MMOG, remains
within a reasonable value so that event propagation experiences only a small delay. Knowl-
edge of the tree height used in combination with forecasting, ensures N-Trees will cause
minimum rollback and so the entire game will operate with the same playout latency expe-
rienced by the NEO groups at the leaf of the N-Tree.

Therefore, in our experiments we focus primarily on the average and worse-case heights
of the N-Tree. In fact, the height of the N-Tree is the primary source of delay in event
ordering and all other operations, such as the time to join the N-Tree and the amount of time
we must forecast events is based on this factor. Since N-Trees do not attempt to balance
themselves, theoretically performance of the N-Tree could be linear with respect to the
number of nodes in the N-Tree. However, given even a power-law distribution of players,
we show that the resulting height is compatible with realistic masking times associated with

large scale events in MMOGs and user expectations.

4.9.1 Modeling a Virtual World

For our research, we decided to design a new virtual world simulation model. Previous
models in prior research uniformly distributed players in the virtual world and then used
a random way-point mobility model. The result of these two combinations is that players
will tend to remain uniformly distributed in the virtual world. For N-Trees and other com-
munication architectures, a uniform distribution of players (which we have shown to be
unrealistic) provides an operating environment that is too idealized. We instead develop a

new world model.
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We make a few simplifying assumptions that we believe do not significantly affect the
outcome of simulations with the model. First, we only model a 2-dimensional space and
in fact our virtual world is a Cartesian square. Extrapolating data to a 3rd dimension is
straightforward because popular locations will be simply distributed in a 3-dimensional
space, instead of the 2-dimensional space. Second, players in the game are allowed 4
degrees of freedom, typical of a 2-dimensional world. We do not model movement restric-
tions.

To model player movement, we add some number of hotspots to the virtual world,
which are popular locations. We model hotspots based on the results of our measurement
study in Section 4.8, which showed that players were not uniformly distributed over the
world, and instead were distributed according to a power-law model.

We use a Zipfian distribution to model player distributions because this type of power-
law distribution is used to model population distributions on Earth. Zipf’s law is stated

mathematically as:

1/k*
Zf-_a 1/n

In this equation, N is the number of elements, £ their rank, and s is the exponent

(s, N) = @.1)

characterizeing the distribution. For example, in our simulations we use 100 hotspots (N =
100) and we characterize the distribution with the exponent s = .9. We use 100 hotspots to
have a similar scale to the number of zones in World of Warcraft. We then randomly chose
100 points in the virtual world and assign them a probability based on their rank.

To model player movement, each player has a location, a destination, and an amount of
time they will wander in the vicinity of their destination before moving to a new destination.
Destinations are chosen from the hotspots based on their assigned probability from the Zipf
distribution. Initially, players choose their starting point from the hotspots also according
to the Zipf distribution. They then travel to their location (in a straight line) each tick of the
simulation clock. Once they arrive at their destination, they wander within a fixed radius
of a hotspot for a given amount of time based on a uniform distribution (see Table 4.2).

Finally, when this time expires, they choose a new hotspot to visit.
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Figure 4.18 shows a snapshot from the visualization window of our simulator that is
running a simulation with 100 hotspots and 3000 players on a 1000 by 1000 unit virtual
world. Light circles are the hotspots and dark spots are the players. Some hotspots appear
dark, but this is due to the large number of players currently visiting the area as derived

from the Zipfian distribution.

4.9.2 Methodology

We developed a discrete simulator to study the performance of N-Trees by varying
populations, numbers of hotspots, wandering times and virtual world sizes. The primary
measurement we are interested in is the path length in the N-Tree. This is because, as our
asymptotic analysis showed in Section 4.7, the height of the N-Tree dominates the cost of
every action by the player, including joining the N-Tree, propagating events, and moving
to new nodes in the N-Tree. Because N-Trees are not balanced, as a red-black tree might
be, the maximum and average path lengths can affect performance adversely.

We ran the simulations for 10000 clock ticks, ignoring the first 1000 ticks to eliminate
erroneous measurements from data dependent on starting conditions. Each simulation was
repeated 10 times and the results were averaged. The variances in our averages within a
95% confidence interval allow us to conclude that our 10 runs were sufficient to be repre-
sentative.

We summarize the simulation parameters for the experiments described in this section
in Table 4.2. Note that we did perform experiments varying the number of hotspots, the
size of the virtual world, and the wandering time. Increasing the number of hotspots, while
keeping the virtual world size the same resulted in more uniformly distributed players, and
visa-versa. Increasing the wandering time resulted in increasing the player density around
hotspots, while decreasing the wandering time decreased player densities. For a virtual
world of 1000 by 1000 units, we felt that 100 hotspots with a wandering time of 1000
units, sufficiently strained the system while realistically modeling game populations. We

limited the maximum tree depth to 21 and we subdivided the leaves whenever they reached
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FIGURE 4.18: Visualization of N-Tree simulator: Large, lightly shaded circles represent hotspots,
dark points represent players, and lines represent quadtree divisions. This example has 3000 players
with 100 hotspots on a 1000 by 1000 unit virtual world.
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TABLE 4.2: Experiment parameters for N-Tree simulations.

Variable Value

Virtual world dimensions 1000 x 1000
Number of hotspots 100

Number of players 1,000 to 100,000
Wandering time 100

Total simulation time 10,000 units

Maximum leaf population 20
Maximum N-Tree depth 21
Zipfian values N=100,k=.9

more than 20 players. Note that if players were uniformly distributed and we completely
filled the N-Tree to a depth of 21 at each leaf, our N-Tree would hold 87, 960, 930, 222, 080

players®.

4.9.3 Experimental Resuits

Our results show that the depth of the N-Tree resulting from a Zipfian distribution of
hotspots in the application state space is on average O(lg n) with respect to the number of
peers in the system. We measure the average and maximum path lengths given both a Zip-
fian and a uniform distribution of peers in the application state space. We use the uniform
distribution as a base-line for performance because if the peers are uniformly distributed,

the resulting tree will be optimally balanced.

Average Path Length in the N-Tree

In Figure 4.19 we see the results of our experiments when N-Trees are used with 100
to 100,000 players. This figure shows the average path length in the N-Tree. Given a
Zipfian distribution of the populations of the hotspots, the path lengths in the N-Tree are
approximately 2 hops longer than if players were uniformly distributed.

We now look at the histogram of path lengths for 1,000, 10,000, and 100,000 players.
Figure 4.20 shows these three histograms. The histograms show the lengths of the paths

322y x 20
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FIGURE 4.19: Average path lengths in the N-Tree: With 1,000, 10,000, and 100,000 players, the
path lengths tend to be approximately 2 hops longer with the Zipfian distribution versus a uniform
distribution.

from the root of the N-Tree to the leaves. We are interested in the spread of the path
lengths. For example, if we see that we have a bimodal distribution of path lengths, we
know the N-Tree is very unbalanced. However, Figure 4.20 shows that most path lengths
are clustered around an average, indicating that the N-Tree remains mostly balanced even
with the Zipfian distribution of playeres.

The path lengths in the N-Tree indicate how far events could travel if their scopes
exceed the leaf they were generated in. Empirical evidence from modern MMOGs demon-
strates that most events in the system will be local to a small area and only a few large scale
events will occur in the game. These small scale events typically include taking treasures,
fighting monsters, or other similar actions.

In Figure 4.21, we show how far events must be forecast if they are to reach all players
in time. We make a simplifying assumption that nodes in the N-Tree have a 50ms one-way
latency, though to date, no scientific measurements have been made that examine latencies
to home users (the primary consumers of computer games). However, any two points in the
United States can theoretically communicate within 20ms. Given the latency of electricity

over copper wires and queuing delay, 50ms is a reasonable one-way latency.
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FIGURE 4.20: Histogram of path lengths for 1,000, 10,000, and 100,000 peers.
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The amount of time that it takes to forecast an update is equal to 6 times the height of
the N-Tree. This is due to the need of the encrypted update to travel from a leaf to the root,
and back to the leaf. Votes are then collected at the root and when the originating peer hears
the final vote count, the plain-text update must then be sent to the other players. Thus, a
6 * 50ms = 300ms delay is added for each hop in the tree. Figure 4.21 shows that with up
to 100,000 players, we will have to forecast events approximately 2.5 seconds on average.
If the average delay between nodes in the N-Tree is 100ms, then we will have to forecast

events approximately 5 seconds into the future.
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FIGURE 4.21: Average forecasting time: The amount of time a player must forecast an event on
average to reach all peers in the game given 1,000, 10,000, and 100,000 players.

Maximum Path Length in the N-Tree

To examine the worse-case scenario, we look at the average maximum paths in the N-
Tree. Figure 4.22 shows these values for 1,000, 10,000 and 100,000 players given both
Zipfian and uniform distributions of players. In this worse-case scenario, the path length
increases significantly more under the Zipfian distribution than under the uniform distribu-
tion. At 100,000 players, the path lengths for the Zipfian distribution are a maximum of
approximately 20 hops, versus approximately 6 for the uniform distribution. This result

shows that the distribution of players has an impact on the communication architecture;
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FIGURE 4.22: Maxinuun path lengths in the N-Tree: For 1,000, 10,000, and 100,000 players,
the path lengths tend to increase significantly as we increase the number of players in the game.
At 100,000 players, the maximum path length is over 14 hops longer than if we had a uniform
distribution.

uniform distributions result in low maximum path lengths while Zipfian distributions have
maximum path lengths 2 to 3 times that of the Zipfian distribution.

Extending this scenario to actual forecasting times, we plotted our results against a
50ms delay between nodes of the N-Tree as shown in Figure 4.23. Our results show that as
the number of players increases in the game, the amount of time we have to forecast global-
scale updates increases. At 100,000 players, we would need to forecast update over 20
seconds into the future. However, as we noted before, an update that affects 100,000 players
cannot and should not be an instantaneous event in a peer-to-peer system. Increasing the
delay to 100ms between nodes in the N-Tree would force players to forecast events 40

seconds into the future.

4,10 Conclusions

In this chapter, we created the N-Trees protocol, which is a multi-dimensional tree
structure that recursively subdivides a space evenly along each dimension. N-Trees orga-

nize peers by their scope of interest in the virtual world. This organization allows peers to
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FIGURE 4.23: Maximiun forecasting time: The amount of time a player must forecast an event
in the worse-case to reach all peers in the game given 1,000, 10,000, and 100,000 players.

exchange events only with those peers close by. At the leaves, N-Trees use NEO, which
provides majority game consistency for all local events. However, some updates have a
scope which exceeds the leaf they were generated in, and therefore the updates must be
ordered with other players within the scope of the update. Like NEO, N-Trees use majority
voting to determine which updates are valid and which should be discarded.

We introduced the technique of forecasting events, a concept new to distributed sys-
tems. With this technique, we timestamp an update with a future time so that all interested
peers have a chance to vote on accepting the update and so that it can arrive on time before
it is scheduled to occur. With forecasting, rollback is minimized only to those players who
did not receive the update on time due to packet loss or delay.

We created a new model of consistency, called majoritys game consistency. This
model is similar to NEO’s majority game consistency, except that the set of events accepted
by the system are those which were voted on by a majority of players that were within the
scope of each event. This majority can change from event to event and over time, but the
system remains consistent.

As part of the analysis of N-Trees, we performed a measurement study to design an ini-
tial model for simulating virtual worlds and populations. In this study, we examined how

populations fluctuate over time, the movement of players in time and space, and the distri-
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bution of players over space. With further measurements and analysis, we plan to determine
how these results fit to well known distributions such as the power-law distribution.

We then used the results from our measurement study to examine the height of N-Trees
when simulated under our virtual world model. The results show that the height of the N-
Tree is logarithmic, given the power-law distributions of players that we used. This resuit
is important because it shows that the time needed to forecast updates is within the bounds
of latencies already present in large scale events for MMOGs and player expectations.

In summary, our work with N-Trees has three important contributions. First, we de-
veloped the N-Tree protocol which helps scale NEO to hundreds of thousands of players.
Second, we developed a new consistency model for games that uses majorities and scopes
to determine which events are valid. Third, we performed the first measurement study of
virtual populations in MMOGs which will help develop future models for the simulation
of MMOGs.
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CHAPTER V

CONCLUSIONS AND FUTURE WORK

In this dissertation, we investigated the problem of scalable, cheat-proof and real-time
event ordering for RIM applications. We focused our work on MMOGs, an important ex-
ample of RIM applications, and developed the NEO and N-Tree protocols. NEO provides
cheat-proof and real-time event ordering through a majority voting system and cryptogra-
phy. We proved that NEO provides majority game consistency and prevents peers from
cheating. We further demonstrated NEO’s playability as a game protocol through simula-
tions, showing that NEOQ is capable of delivering updates with a sufficient update frequency,
low playout latency, and little rollback under a range of network conditions and for all game
archetypes. However, NEO is limited in scalability and thus we developed N-Trees, which
use NEQO at the leaves, to address this problem.

The N-Tree protocol organizes uses a combination of hierarchical organization, major-
ity voting, event scoping, and forecasting to provide scalable, peer-to-peer communications
for games. N-Trees organize peers hierarchically by their scope of interest in the virtual
world. Updates are propagated over the tree according to their scopes, and peers forecast
updates based on the height of the N-Tree, thereby minimizing rollback. We showed that
N-Trees provide majoritys game consistency for all players in the game. We analyzed
N-Trees to show that their theoretical performance was acceptable for MMOGs.

Because the true performance of N-Trees is dominated by height of the tree resulting
from the distribution of players in the virtual world, we designed a set of simulations that
measured the average and maximum heights of the tree. We first performed an initial

measurement study and concluded that player distributions appeared to follow a power-law
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distribution. We then simulated N-Trees with this knowledge to measure their average and
maximum heights over time. The height of the N-Tree remained logarithmic in the number
of nodes in the N-Tree at populations of up to 100000 players.

Both NEO and N-Trees advance the state-of-the-art in protocols for peer-to- peer games.
Together, they provide a holistic solution to the problem of scalability, cheating, and real-
time event ordering while prior work only addressed one or two of these three issues.

In our investigations, we also examined previous consistency models for distributed
systems and adapted these for RIM applications. Lamport’s sequential consistency (8] is
too restrictive for RIM applications due to the requirement that all evens from all partici-
pants would need to be seen in a single sequential order, introducing significant network
delay to achieve this goal.

As an alternative to sequential consistency, we designed two models of consistency spe-
cific to multiplayer games: majority game consistency and majority% game consistency.
With majority game consistency, only those updates accepted by a majority of players oc-
cur in the sequence of events seen by players. Majoritys game consistency follows the
same logic of majority game consistency, except that only the players within the scope of
an event can accept an update. The advantage with majorityv% game consistency is that
only a subset of all players need to accept an update, though that subset are those players
which fall within the scope of the event.

Applying our consistency models towards more general distributed systems results in
two consistency models: majority consistency and majority¥ consistency, which are not
specific to games. Majority consistency was defined in Chapter II1. Majority¥ consistency

is defined as:

Definition 5.0.1. Majority¥ consistency: the resuit of any computation is the same as if all
reads and writes follow a sequential order, and only the reads and writes seen by a majority
of the systems within the scope of those reads and writes appear in that sequence and in the

order specified by its program.

Under this consistency model, a read or write is only accepted if a majority of the sys-
tems accepted the read or write, where the majority is taken from those systems which fall

under the scope of the read and write. This allows the distributed system to ignore nodes
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which may have failed or may be experiencing poor network conditions so that computa-
tions may continue. The primary drawback is that those systems in the minority will need
to rollback state when they discover what set of reads and writes the majority has agreed

on.

To understand the direct impact of our research, we present a simple RIM application
that would benefit from it. Most students will never have the chance to visit the space
station and a simulation of it would give students the ability to run experiments, interact
with each other, and operate the space station. However, most schools do not have the
budget to design, deploy, and host a large-scale simulation for their students for educational
purposes. Using a peer-to-peer architecture, schools could pool their resources to provide
immersive educational environments for students across the world. Our communication
architecture would provide scalability, reliability, reduced bandwidth, and probably most
importantly, more affordability at each site.

Beyond the direct impact of our research on MMOGs, our research makes other RIM
applications more viable because it addresses problems of scalability, real-time messaging
and cheating. Thus, distance learning applications, collaborative applications, and immer-
sive educational and training simulations can be designed using our protocols with guaran-
tees on performance and security and capable of working over best-effort networks such as
the Internet. In addition, the long range impact of our work is on the fundamental work in
distributed systems. We designed new models of consistency which can be applied in new
ways to distributed systems.

As for future work, we divide it into two categories: work related to NEO and N-Trees

and related future studies. The NEO and N-Tree future work includes;

o Improving the overhead of NEO: The main factor that reduces NEO’s scalability is
its overhead for cheat-prevention and consistency. If we can reduce this, we could

increase NEO’s scalability.

o [Implementing NEO in a modern game and studying its performance: We have not
experimented with NEO in a modern computer game. Examining its behavior in this

situation would give us a complete understanding of its performance.
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Investigating the problem of collusion: With NEO, we assume that a majority of
players cannot collude to gain an artificial majority. We would like to investigate

techniques to reduce or eliminate collusion among players.

Eliminating the need for rounds with NEO:. In NEQ, we use rounds to determine
when hashes and updates should be sent out. However, we may be able to elimi-
nate rounds by allowing voting to occur once each update is received. The security

implications of such a technique would need to be studied further.

Continued measurement and analysis of data from virtual populations in MMOGs:
Our current measurement study needs to gather more data to get a more complete
picture of the behavior of virtual populations. We need to fully understand how
players are distributed in the virtual world and to develop a model that takes arrival

rates, player movement, session times, and player movement into account.

Further analysis of N-Trees with events of varying scopes: Our current analysis looks
primarily at the height of N-Trees because it can significantly influence the delay for
almost all operations in the tree. On the other hand, if we simulate various scopes,
we can more accurately determine how well forecasting works, how much roliback

occurs, and how packet loss and delay affects event ordering over N-Trees.

N-Tree mapping to DHTs: We have examined how N-Trees can easily map to CAN,
however we should be able to map it to any DHT {11]. Thus, we would like to
understand an effective and efficient method for mapping nodes in the N-Tree to

various DHTs.

Studying the effects of churn on NEO and N-Trees: Electing leaders and adding or
removing players from a NEO group or an N-Tree can affect game play. Studying
these effects and deciding whether they are significant is important to the analysis of
NEO and N-Trees.

Understanding the distribution of scope sizes of events: To date, no studies have
looked at the distribution of scope sizes in events. Understanding these distributions

would allow us to more accurately model games.
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In addition, the we see the following three problems as future related studies:

¢ Different peer-to-peer structures for event ordering: N-Trees suffer from the fact that
trees are typically a weak structure in terms of resilience. A single broken branch can
disconnect a subtree. While we address this problem through the use of multiple N-
Trees, other structures may provide more resilient message delivery while remaining

efficient.

e Mapping the shared state of other applications to N-Trees: While not all applications
are capable of hierarchically decomposing their shared state, we would like to inves-
tigate the use of N-Trees with other applications as a foundation to make them more

scalable,

» Applying majority consistency to peer-to-peer computing. Distributed systems on
the scale of SETI@home [84] have tens of thousands of nodes in the system. How-
ever, these systems rely on the fact that their tasks are easily decomposed into small
subtasks that do not require inter-node communication. Our notion of majority con-
sistency could be applied in peer-to-peer computing to reduce communication and

use it for more general purpose computing.

e Peer-to-peer scheduling: RIM applications should be able to take advantage of all
the peers in the system by scheduling processes to be executed on them. Using
distributed MMOGs as an example, we could schedule tasks such as artificial intel-
ligence on multiple systems, allowing characters in the game to interact with players
in a more realistic manner than current client/server architectures provide. Like our
communication architecture, we are faced with problems of reliability, timeliness,

and security.

In summary, this dissertation has several important contributions. First, we advance
the state-of-the-art in peer-to-peer protocols for large-scale, distributed games with NEO
and N-Trees. These are the first protocols which address scalability, cheating, and consis-
tency with peer-to-peer networking for games. Future research in the design of distributed

MMOGs will be able to leverage our work and solve other related problems. In addition,
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our protocols may be used for other RIM applications. Second, we performed the first
measurement study of virtual population characteristics and behavior in MMOGs. Prior
work has examined network characteristics, which though important, do not allow us to
accurately simulate virtual world to analyze future protocols. Last, we developed new con-
sistency models that apply to games and to general distributed systems. Thus, majority
consistency and majority¥ consistency can be used in the development of peer-to-peer

computing architectures to accommodate packet loss and latency typical on the Internet.
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